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Abstract

This thesis presents the results of a series of experimental investigations focused on exploring
one degree of freedom (1-DOF) vortex-induced vibrations (VIV) of a rigid, circular cylinder
in two practical flow conditions: elevated freestream turbulence (eFST) and unsteady
incoming flow. Elevated FST was generated by placing a turbulence grid upstream of
the VIV setup. Unsteady freestream conditions were achieved by ramping the freestream
velocity in sigmoidal profiles between end states corresponding to adjacent VIV response
branches. A key novelty of the present work is the simultaneous consideration of the
structure and wake dynamics to better elucidate the physical mechanisms at play.

First, VIV in moderate levels of eFST (𝑇𝑢 = 2.7%) were examined. Notable deviations
of both structure and wake behavior are observed towards the end of the lower response
branch. In particular, an earlier onset of desynchronization is observed in the presence
of eFST. Conversely, minimal changes are observed within the initial and upper response
branches. The underlying mechanisms resulting in the general robustness of VIV to eFST
were investigated by comparing eFST effects on the wake of a stationary cylinder and an
elastically-mounted cylinder vibrating with minor oscillation amplitudes (less than 1% of
cylinder diameter). For stationary cylinders, eFST promotes transition in the separated
shear layers, precipitating several changes to the near wake characteristics. Conversely, the
shear layers in the VIV cases are desensitized to the perturbations of eFST. This change in
shear layer behavior in VIV is linked to the coupling between the fluid and cylinder, featuring
small perturbations to the shear layer induced by cylinder oscillations. The fluid-structure
coupling is evidenced by a slight modification of the von Kármán shedding frequency in the
wake and the emergence of this modified shedding frequency in the cylinder displacement
spectra in addition to the structure’s natural frequency. Additionally, analysis of the wake
in the lower branch revealed subtle changes to the vortex dynamics in the presence of eFST
that are reflective of the system transitioning to a premature desynchronized state.

VIV in unsteady flows typically feature transient changes to the structural and wake dynam-
ics. Transient dynamics are encountered when the energy gained by the structure from the
fluid is not balanced by the energy lost to damping, leading to a change in the state of the
system. Transient VIV dynamics are also encountered in steady flow conditions when the
system experiences changes to its structural properties. Thus, owing to fewer experimental
challenges, transient VIV was first studied in steady flow by releasing a cylinder from
rest and observing its transient progression until it converges on quasi-steady oscillations.
The results indicate notably different dynamics across the response branches, including a
distinct overshoot of oscillation amplitudes for reduced velocities in the initial branch and a
gradual increase in oscillation amplitudes, with the envelopes resembling sigmoidal curves,
for reduced velocities in the upper and lower branches. The oscillation amplitude growth
rate was found to decay with increasing reduced velocities. This is associated with the
differences in the forcing characteristics (and consequently the energy transfer between the
fluid and structure) on the cylinder, with the phase difference between forcing and cylinder
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displacement playing a prominent role. Analysis of the wake revealed the different coherent
structures encountered as the system transitions from initial von Kármán shedding to the
final vortex shedding patterns characteristic to each branch. Additionally, quantitative
wake analysis revealed a close relationship between the forcing phase difference and the
timing of vortex shedding with respect to the oscillation cycle. Finally, key insights are
gained into the onset of lock-in, featuring distinct changes to the forcing characteristics
that are associated with a modification of the vortex shedding mechanism. Specifically,
cylinder oscillation promotes the deflection and mutual interaction of oppositely-signed
shear layers, resulting in a progressive disruption of the von Kármán shedding mechanism.

The final set of experiments considered transient VIV in unsteady incoming flow conditions.
Two distinct freestream accelerations were considered including a “fast ramp”, where the
change in freestream velocity occurs within 45 cylinder oscillation cycles, and a “slow
ramp” where the freestream velocity change is within 900 oscillation cycles. A total of six
cases were considered that correspond to transitions between adjacent response branches.
Analysis of the structure and wake response for the fast ramp indicate a relatively rapid
initial response to the changing freestream velocity (within 20 oscillation cycles) for all
cases, however, the transient progression between the two end states varies significantly
between the different cases considered. Similar to the findings from the release from rest
experiments, the transient dynamics were closely related to the energy transfer mechanisms
between the fluid and structure, with significant influence from the phase difference between
forcing and displacement. The slowest rates of oscillation amplitude change were observed
at larger reduced velocities near the lower branch, while the largest rates of amplitude
change occurred near the initial-upper branch transition. Overall, the transient dynamics
for the fast ramp deviated significantly from the expected quasi-steady response, with
the slowest transient exceeding six times the expected quasi-steady response based on the
instantaneous freestream velocity. Analysis of the slow ramp cases revealed the transient
dynamics approaching quasi-steady behavior, while the nature of the responses remained
similar to those from the fast ramp. Comparisons between the present results and those
from previous studies suggest a significant dependence of system behavior on the mass ratio.
In particular, an approximately inverse relationship was found between the mass ratio and
the mean freestream acceleration required to elicit quasi-steady behavior.
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Chapter 1

Introduction
Vortex-induced vibrations are introduced and the key motivations for this work are outlined
following a brief outlook of the current state of the art. Finally, the objectives for this thesis
are set.
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Vortex-induced vibrations (VIV) are a class of fluid-structure interactions that may result in
significant structural oscillations for bluff bodies exposed to fluid flow. The oscillations are
a consequence of periodic loads imposed by the regular shedding of vortices at frequencies
near the structure’s natural frequency. VIV have serious implications for many engineering
structures exposed to fluid flow, including ocean risers [79], chimneys [128], transmission
tower tubes [43], and towers/masts [106]. Conversely, VIV can also be leveraged for energy
harvesting applications [187]. Physically, the oscillations of the structure modify the vortex
shedding characteristics, resulting in coupled nonlinear interactions between the oscillating
body and the surrounding fluid flow. The complex physics engendered by these interactions,
in conjunction with the critical practical implications, have resulted in VIV receiving
widespread attention in research studies.

Many early studies of VIV considered a relatively simple but fundamental model of VIV con-
sisting of a rigid cylinder constrained to oscillate in 1 degree of freedom (1-DOF) transverse
to the incoming freestream with uniform amplitude along the cylinder’s span (e.g, [54, 185]).
The direction transverse to the freestream is where the largest amplitudes of oscillation are
typically observed owing to the dominance of fluctuating forces along that direction [23].
Since the early studies, significant progress has been made toward the exploration of both
the structural and wake dynamics of the 1-DOF uniform amplitude case (e.g., [62, 123]).
Building on this foundation, recent studies on VIV have investigated increasingly complex
cases of VIV that are more representative of real-world applications. These include rigid
cylinders exhibiting 2-DOF motion (transverse to and in-line with the freestream) with
uniform amplitude [75], 2-DOF motion with spanwise variation in amplitude [55, 112], and
flexible cylinders exhibiting 2-DOF motions [30]. In addition to uniform circular cylinders,
different studies have considered VIV of elliptical cylinders [194], curved and wavy cylinders
[10, 11], tapered cylinders [80], and square cylinders [217], among others.

While rapid progress continues to be made on VIV, comprehensive characterization of
real-world VIV needs to incorporate the effects of various non-uniform and/or unsteady
inflow conditions that may be encountered in diverse operational environments. To this
end, notable research directions include the effects of shear flow on VIV [36, 102] and VIV
in oscillatory flows [184, 218]. However, there has been surprisingly little research related
to two incoming flow conditions commonly encountered in real-world flows: (i) incoming
flow with elevated levels of freestream turbulence (eFST) and (ii) unsteady incoming flows.
Elevated FST encompasses a variety of incoming flow disturbances that span a wide range
of length and time scales, whereas unsteady incoming flows are characterized by transient
changes in the incoming flow velocity. Both these flow conditions feature prominently in
environments where VIV are observed [39, 209].

Pertinent to the dynamics of VIV in eFST and unsteady freestream conditions is the
concept of energy transfer between the fluid and the structure. For a system to exist at an
equilibrium state, the energy gained by the structure from the flow over one oscillation cycle
has to be balanced by the energy lost due to structural damping [115, 123]. The majority
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of prior VIV studies have focused on structures exhibiting quasi-steady vibrations near a
stable equilibrium state. Conversely, changes in the quasi-steady energy balance may result
in transient changes to the system state (amplitude and/or frequency of oscillations), with
minimal focus on such cases in literature. Intuitively, transient VIV behavior is expected in
unsteady freestream conditions due to the constant change in operating conditions. However,
transient VIV behavior can also be observed in steady flow conditions. A case in point is
a system subject to changing structural properties (e.g., due to a structural component
failure, such as a supporting cable) that triggers the onset of VIV. Irrespective of the way
transient VIV is initiated (changing freestream/structural conditions), the growth/decay
of vibrations is closely related to the energy transfer between the fluid and the structure.
This allows for examination of transient VIV in steady flows (that are easier to replicate
at a lab scale), thereby serving as a useful first step towards characterizing transient VIV
in unsteady flows. Overall, while transient VIV may be induced in steady flows, unsteady
flows, and eFST conditions, the effects of eFST considered in this thesis are found to
primarily affect the quasi-steady response of the system due to the characteristics of the
incoming flow disturbances (more details on this are provided in section 2.3).

Prior research on quasi-steady VIV in eFST conditions and transient VIV in steady and
unsteady conditions are relatively scarce. Studies that investigated quasi-steady VIV in
eFST conditions have considered notably different configurations (1-DOF rigid, 2-DOF
flexible, etc.) and different operating conditions with minimal to no flow field information
(e.g., [139, 173]). Consequently, limited insights can be gained about the underlying physical
mechanisms at play. Studies that have explored transient VIV (e.g., [7, 150]) report dy-
namics that are distinct from the quasi-steady cases. However, unlike the generally steady
progression in problem complexity for quasi-steady VIV of various geometries, transient
VIV studies have examined more complex configurations and geometries (e.g., 2-DOF
flexible) without a consistent bottom-up approach. Moreover, most of the studies do not
provide flow measurements in conjunction with structural responses, thereby providing
limited insight into the underlying mechanisms. Overall, the two incoming flow conditions
being studied in the thesis, eFST, and unsteady incoming freestream, result in significant
changes to both quasi-steady and transient VIV behavior. However, notable gaps remain in
our understanding of VIV under such conditions.
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1.1 Motivation and thesis outline

This thesis is motivated by the imperative to advance the current state of the art in vortex-
induced vibrations within the context of two key practical flow conditions encompassing
both quasi-steady and transient system behaviors. Furthermore, the author contends that
such an endeavor necessitates the concurrent examination of wake and structural dynamics,
helping to form a holistic understanding of the underlying physical mechanisms. A series of
experimental investigations are carried out to address the knowledge gaps while employing
techniques that enable the measurement of structural displacement and forces on carefully
manufactured VIV setups. Additionally, flow information is simultaneously acquired with
force and displacement through a minimally invasive flow measurement technique, particle
image velocimetry (PIV). The 1-DOF rigid cylinder is adopted as the standard model
throughout this thesis given the gaps in the literature even for this relatively simple case in
both eFST and unsteady freestream conditions. In light of this motivation, the following
research objectives are put forth:

• Characterize the response of a cylinder undergoing quasi-steady VIV in eFST condi-
tions and associate the modified structural response to changes in the wake dynamics
when compared to baseline (low FST) conditions.

• Examine the transient structural and wake dynamics of a cylinder released from rest
in steady flow conditions and identify the system characteristics associated with the
onset of nonlinear behavior.

• Examine the transient wake and structural response of a cylinder undergoing quasi-
steady VIV subject to unsteady incoming freestream conditions. Additionally, asso-
ciate the system dynamics to the different energy transfer mechanisms responsible for
the growth/decay of oscillations in the transient VIV cases for both the steady and
unsteady freestream cases.

This thesis is organized as follows. Chapter 2 presents the relevant literature pertaining
to the aforementioned objectives. Specifically, brief overviews of flow across stationary
cylinders and the dynamics of quasi-steady VIV are presented. This is followed by detailed
reviews of previous works on the influence of eFST on VIV, and transient VIV in both steady
and unsteady flow conditions. Chapter 3 describes the different experimental facilities, VIV
setups, and data analysis techniques employed in the thesis. This chapter is followed by
the results from experiments on VIV in eFST conditions in Chapter 4. Comparisons are
made to the stationary cylinder case to elucidate similarities and differences in the wake
dynamics in eFST conditions. Chapter 5 details the outcome of experiments conducted on a
cylinder released from rest in a steady freestream and the associated transient structure and
wake characteristics. Following this, transient VIV characteristics in unsteady freestream
conditions are explored in Chapter 6. Finally, the conclusions from the experimental studies
and recommendations are provided in Chapter 7.
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Chapter 2

Background
Pertinent research studies essential to the current thesis are discussed in this chapter.
First, flow across the stationary cylinder is described, forming a baseline for the basics of
quasi-steady VIV which are discussed next. Following this, previous studies on the effects
of eFST on stationary cylinders and VIV are detailed along with a brief outlook of the
expected FST in VIV environments. Lastly, transient VIV are discussed for both steady and
unsteady freestream cases based on a defined parameter space representative of environmental
conditions.
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Owing primarily to the geometric similarity, the flow over oscillating cylinders and station-
ary cylinders share several commonalities, including the formation of shear layers and the
periodic shedding of large-scale coherent structures into the wake. It is thus instructive to
examine the flow across stationary cylinders before moving on to the oscillating cylinder
cases.

2.1 Crossflow over a stationary cylinder

The dynamics of the stationary cylinder wake have been the primary focus of numerous
studies (e.g., [18, 133, 159]). The Reynolds number 𝑅𝑒 demarcates different wake flow
regimes.

For 𝑅𝑒 between 30 and 50 depending on experimental conditions, the separated shear
layers roll-up into a staggered arrangement of laminar vortices, also known as the Kármán
vortex street [146]. The flow in the regime between 50 ⪅ 𝑅𝑒 ⪅180 can be considered
two-dimensional as the vortices are shed parallel to the cylinder (spanwise invariant under
controlled conditions [59, 201]). The onset of three-dimensionality in the flow is first
identified between 180 ⪅ 𝑅𝑒 ⪅ 300 through two distinct instabilities [202, 205] called Mode
A and Mode B instabilities. These instabilities are characterized by the appearance of
small-scale streamwise vortices. Farther downstream of the vortex formation region, the
flow transitions into turbulence. With increasing 𝑅𝑒, the transition region moves upstream.
When this upstream movement approaches the vortex formation region, turbulent vortex
shedding ensues [60]. However, the separated shear layers and the boundary layer remain
laminar throughout this regime (180 ⪅ 𝑅𝑒 ⪅ 300).

Transition to turbulence is observed within the separated shear layers over a wide range
of Reynolds numbers (300 ⪅ 𝑅𝑒 ⪅ 200,000) [216]. This regime, relevant to many engi-
neering applications, is commonly referred to as the transition in the shear layer regime
[215]. It can be divided into three sub-regimes. The first of these, (300 ⪅ 𝑅𝑒 ⪅ 1,200) is
where transition waves are observed along the separated shear layers [26]. The formation
length steadily increases in this regime before reaching a maximum. In the second sub-
regime (1,200 ⪅ 𝑅𝑒 ⪅ 20,000-50,000 depending on the freestream turbulence), small-scale
vortices are observed in the separated shear layers [196]. The vortex formation length
continually reduces in the second shear layer transition regime. Beyond 𝑅𝑒 ≈ 20,000, the
length of the formation region remains unchanged [215]. The final sub-regime of shear
layer transition (𝑅𝑒 ⪆ 20,000-50,000) is characterized by a steady upstream movement of
the transition region with increasing 𝑅𝑒 and the three-dimensional flow in the near wake [41].

Following the shear layer transition, the next regime is characterized by a transition in the
boundary layer [215]. This is typically accompanied by a downstream movement of the
separation line leading to the “drag crisis”, characterized by a sudden reduction in the drag
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at 𝑅𝑒 ≈ 120,000. The transition location then moves upstream with increasing 𝑅𝑒 until it
reaches the front stagnation point, and this marks the end of the boundary layer transition
regime. Different regimes of flow exist beyond boundary layer transition but will not be
discussed here as they are of little interest to the current work.

The mechanics of turbulent vortex shedding can be categorized into different stages including
vortex formation, saturation, and downstream advection [157]. During formation, the vortex
is fed by circulation from the shear layer and grows in size. Vorticity for this process is
provided by the tangential acceleration of fluid over the cylinder surface [126]. The saturation
stage is characterized by a peak in the vortex circulation and a subsequent pinch-off from
the separated shear layer as the vortex sheds [76]. The shed vortex then advects away from
the cylinder. Not all of the vorticity generated at the surface is shed as a vortex [21]. Some
of the vorticity is annihilated by oppositely-signed vorticity as it is entrained across the
wake by the shear layers [3, 126, 212]. The ratio between the circulation contained in the
shed vortices to that generated at the surface, known as the deficit ratio, varies between 0.4
and 0.7 depending on the experimental conditions [158, 207].

2.2 Quasi-steady vortex-induced vibrations

As discussed above, periodic vortex shedding is a key feature of flow across stationary cylin-
ders for 𝑅𝑒 ⪆ 50. Vortex shedding results in periodic fluctuating forces on the cylinder with
forces in the lift direction typically being more dominant [23]. For an elastically-mounted
cylinder in crossflow, if the vortex shedding frequency approaches the structure’s natural
frequency, significant vortex-induced vibrations may ensue [203]. The cylinder motion in
turn modifies the vortex shedding characteristics, resulting in a coupled interaction between
the wake and the cylinder motion [62]. Partly owing to the significant practical relevance,
multiple studies have explored the structure and wake dynamics of VIV, several of which
are summarized in extensive reviews on the subject (e.g., [19, 166, 203]). The majority of
prior VIV studies have focused on systems exhibiting quasi-steady vibrations near a stable
equilibrium state. At equilibrium, the energy gained by the structure from the flow over
one oscillation cycle is balanced by the energy lost to structural damping [91, 115, 123].
Conversely, changes in the quasi-steady energy balance may result in a transient change
in VIV dynamics. It must be noted that even under ideal conditions, systems undergoing
VIV may not be in perfect equilibrium owing to small cycle-to-cycle variations in system
dynamics. Consequently, the system “hovers” near the stable equilibrium state. First, a
brief overview of quasi-steady structure and wake characteristics is presented.

Irrespective of its state (quasi-steady/transient), a structure undergoing VIV can be
represented as a spring-mass-damper subjected to external forcing [203] (figure 2.1). When
the structure is restricted to move in one degree of freedom (1-DOF) transverse to the
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freestream, the equation of motion is:

𝑚 ¥𝑦 + 𝑐 ¤𝑦 + 𝑘𝑦 = 𝐹 (𝑡) (2.1)

where 𝑚 is the mass of the structure, 𝑐 is the structural damping, and 𝑘 is the spring
constant. Systems undergoing quasi-steady VIV exhibit the phenomenon of “lock-in” [18],
where the dominant wake (shedding) frequency matches the structure oscillation frequency,
and the structural response and forcing are well approximated by single harmonic periodic
functions [83] as:

𝑦(𝑡) = 𝐴𝑠𝑖𝑛(2𝜋 𝑓 𝑡), 𝐹 (𝑡) = 𝐹0𝑠𝑖𝑛(2𝜋 𝑓 𝑡 + 𝜙) (2.2)

where 𝐴 is the amplitude of oscillations, 𝑓 is the lock-in frequency, and 𝜙 is the phase differ-
ence between forcing and displacement. The structural response is typically characterized by
a nondimensional amplitude 𝐴∗ = 𝐴/𝐷 and a nondimensional frequency 𝑓 ∗ = 𝑓 / 𝑓𝑛, where 𝐷

is the cylinder diameter and 𝑓𝑛 is the natural frequency of the structure in the operational
medium at quiescent conditions1 [166]. These parameters are primarily influenced by the
reduced velocity 𝑈∗ = 𝑈0/( 𝑓𝑛𝐷), where 𝑈0 is the freestream velocity. Other influencing
parameters include the mass ratio 𝑚∗ = 4𝑚/(𝜌𝜋𝐷2𝐿), damping ratio 𝜁 = 𝑐/(2

√
𝑚𝑘), and

Reynolds number 𝑅𝑒. A more comprehensive list of influencing parameters that account
for different geometrical and/or flow conditions (e.g., spanwise taper, shear flow) may be
found in other studies (e.g.,[166, 190]).

Figure 2.1: Schematic of a cylinder modeled as a spring-mass-damper system free to
oscillate transversely to the oncoming fluid. The z-axis is into the page.

A typical quasi-steady amplitude and frequency response of a 1-DOF system (data from
[62, 83]) is depicted in figure 2.2 against the reduced velocity 𝑈∗. Here, the amplitude
response is quantified as the maximum nondimensional amplitude (𝐴∗

𝑚𝑎𝑥) peak in a time
series of cylinder oscillation2. The frequency response is typically extracted by identifying
1Throughout this thesis, structural natural frequency refers to that obtained in still water as the operational
medium

2The amplitude response is quantified using different metrics in various studies (e.g., [83, 154]) with the
current work adopting the mean of all amplitude peaks 𝐴∗

𝑚𝑒𝑎𝑛 in a given time series for better statistical
representation.
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the dominant frequencies in a spectral analysis of the displacement signal. Two distinct
types of responses are observed in figure 2.2 with markers that correspond to low mass-
damping (black markers) and high mass-damping (red markers), respectively3. Unlike a
linear oscillator, the amplitude response of both low and high mass-damping systems reveals
the existence of different regions, or “branches”, of response. For low mass-damping systems
(figure 2.2(a), black markers), four response branches can be identified. These regions are
commonly referred to as the initial, upper, and lower branches as well as desynchronization
(see annotations in figure 2.2(a)) [203]. In contrast, high mass-damping systems exhibit
only the initial and lower response branches along with desynchronization [203].

The initial branch is typically characterized by relatively low oscillation amplitudes (figure
2.2(a)). A dual frequency response centered around the von Kármán shedding frequency and
cylinder natural frequency [83] is observed in the early initial branch. This is represented
by two black markers at the same 𝑈∗ in figure 2.2(b). This is followed by a switch to a
single lock-in frequency towards the end of the initial branch (figure 2.2(b)) [83]. The dual
frequency response is associated with a beating-type amplitude response [166]. For low
mass-damping systems, the phase difference between forcing and displacement 𝜙 (equation
2.2) remains close to 0◦ in the initial branch. The switch to the upper branch for low
mass-damping systems is characterized by an abrupt jump in amplitude. The phase differ-
ence remains near 0◦ and a single lock-in frequency near the system’s natural frequency
[62] is observed. The transition between the initial and upper branches is hysteretic [84].
Additionally, the largest amplitudes of oscillation are generally found in the upper branch.
The lower branch continues to exhibit a single lock-in frequency along with a switch in
the phase difference (𝜙 ≈ 180◦). The amplitudes, while still relatively large, are smaller
than those in the upper branch. Finally, the onset of desynchronization is marked by
a substantial decrease in the oscillation amplitudes [132]. This is associated with the
wake desynchronizing from the structural oscillation (hence the name) and is characterized
by the re-emergence of the von Kármán component (figure 2.2(b), 𝑈∗ ⪆ 8) [132]. High
mass-damping systems also exhibit some similar characteristics in the initial and lower
compared to low mass-damping systems albeit with some key differences. Apart from lower
oscillation amplitudes, high mass-damping systems also exhibit more narrow ranges of
synchronization (lock-in) [54] (compare the red and black markers in figure 2.2).

3No specific cutoff demarcating high and low mass-damping systems are used in literature
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Figure 2.2: (a) Amplitude and (b) frequency response for low (black markers) and high
(red markers) mass-damping systems, respectively. The dashed slanted line in the frequency
response represents von Kármán shedding frequency. Figures adapted from [62, 83].

Each response branch is associated with unique vortex dynamics. A detailed study on the
effect of cylinder oscillations on the wake was conducted by Williamson and Roshko [204]
using flow visualization. They employed forced (controlled) vibrations of the cylinder at
different amplitude ratios and reduced velocities to create a map of the different vortex shed-
ding patterns observed across a large parameter space that also encompasses the expected
regions of possible free vibrations for a 1-DOF system. An updated map was provided
by Morse and Williamson [123] who used PIV to study the wake. The vortex shedding
patterns associated with the main branches of oscillation along with the corresponding
map are shown in figure 2.3. Vortex shedding in the initial branch resembles that in the
wake of a stationary cylinder, characterized by the alternate shedding of oppositely signed
vortices into the wake (figure 2.3(b)). This mode of shedding is commonly referred to as 2S
[204]. The switch to the upper branch is accompanied by a change in the wake topology
where two vortices, one primary, and one weaker counter-rotating secondary vortex, are
shed in each half cycle (2P0 mode, figure 2.3(c)). The lower branch wake topology features
a modified version of 2P0 with primary and secondary vortices of similar strengths (2P
mode, figure 2.3(d)) [204].
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Figure 2.3: (a) Map of vortex shedding patterns across a wide range of 𝐴∗,𝑈∗. Adapted
from [123]. (b-d) Illustrations of vortex shedding patterns observed in 1-DOF free vibration.

Knowledge of the associated vortex dynamics in VIV allows for a better understanding of
the mechanisms underlying system behavior. Govardhan and Williamson [62] modified the
equation of motion (equation 2.1) to explore a more direct relationship between the structure
and the wake. Following the work of Lighthill [103], the total force can be decomposed into
an added mass force and a vortex force. For circular cylinders exhibiting periodic motion,
the added mass component, given by 𝐹𝑎 (𝑡) = −𝑚𝑎 ¥𝑦 (where 𝑚𝑎 is the added mass), is in
phase with the cylinder motion [62, 116]. Equation 2.1 can now be represented as:

𝑚 ¥𝑦 + 𝑐 ¤𝑦 + 𝑘𝑦 = 𝐹 (𝑡) = 𝐹𝑎 (𝑡) + 𝐹𝑣 (𝑡) (2.3)

(𝑚 + 𝑚𝑎) ¥𝑦 + 𝑐 ¤𝑦 + 𝑘𝑦 = 𝐹𝑣 (𝑡) (2.4)

The vortex force can be represented as a periodic function 𝐹𝑣 = 𝐹0𝑣𝑠𝑖𝑛(2𝜋 𝑓 𝑡 + 𝜙𝑣), where
𝜙𝑣 is the phase difference between the vortex force and the cylinder displacement [62]. This
decomposition helps in correlating the phase jumps between the branches with changes in
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the vortex shedding mode. Specifically, the transition between 2S and 2P0 shedding accom-
panying the initial-upper branch transition is associated with a nearly 180◦ phase jump in
the vortex force phase difference4 𝜙𝑣, and minimal change to the total phase difference 𝜙.
The jump in the vortex phase is also related to a switch in the timing of vortex shedding
with respect to the oscillation cycle [100]. Conversely, the second transition between the
upper and lower branches is characterized by a large jump in the total phase difference,
and an insignificant change in the vortex force phase difference (timing of shedding), since
both upper and lower branches are associated with similar shedding topologies (2P0 and
2P, respectively) [62].

VIV characteristics can also be examined through the lens of an energy transfer between
fluid flow and the structure. For a system at equilibrium undergoing VIV, the energy
transfer from the fluid to the structure over an oscillation cycle can be calculated as:

𝐸 =

∫ 𝑡+𝑇

𝑡

𝐹 (𝑡) · ¤𝑦(𝑡) 𝑑𝑡 =
∫ 𝑡+𝑇

𝑡

[𝐹𝑎 (𝑡) + 𝐹𝑣 (𝑡)] · ¤𝑦(𝑡) 𝑑𝑡 (2.5)

where 𝑇 = 1/ 𝑓 is defined using the oscillation (lock-in) frequency. The added mass
component does not contribute to the energy transferred to the structure over a cycle
[75, 116], leaving the vortex-induced force as the sole contributor. Approximating the
vortex-induced force as 𝐹𝑣 (𝑡) = 𝐹0𝑣𝑠𝑖𝑛(2𝜋 𝑓 𝑡 + 𝜙𝑣) and displacement from equation 2.2,
energy transfer to the cylinder over one oscillation cycle can be calculated as [123]:

𝐸 = 𝜋𝐴𝐹0𝑣𝑠𝑖𝑛(𝜙𝑣) (2.6)

The vortex force phase difference 𝜙𝑣 in equation 2.6 assumes a prominent role in determining
the system response characteristics. Positive energy transfer to the structure, and subse-
quently, the condition for the existence of free vibrations, necessitates the phase difference
to lie within 0 < 𝜙𝑣 < 180 [123]. Additionally, any value of 𝜙𝑣 other than 90◦, results in a
component of forcing in phase with the cylinder acceleration, thereby contributing to an
effective added mass [83].

Menon and Mittal [116] employed energy transfer analysis to investigate the mechanisms
responsible for initiating and sustaining VIV of elliptical cylinders operating in the laminar
shedding regime. A force partitioning method [35, 147] was used to isolate individual
contributors to the total force experienced by the structure including added mass force,
viscous force, and vorticity-induced force (see [116] for details). The authors show that
vorticity-induced forces dominate for both the onset of vibrations and at quasi-steady state,
with added mass force and viscous forces contributing negligibly. The study also utilizes the
concept of “energy maps” to analyze free vibrations. Energy maps have also been explored
in other studies (e.g., [115, 123]). The map is created by employing forced oscillations at
multiple prescribed amplitudes and frequencies and calculating the energy transferred to
4Also referred to as vortex phase moving forward
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the structure over an oscillation cycle across the amplitude-frequency plane. Iso-contours
of zero energy transfer on the map are used to identify the boundaries for free vibration at
zero damping and have been shown to accurately predict quasi-steady state response under
carefully matched kinematic conditions [115, 123].

2.3 Freestream turbulence effects on stationary and
oscillating cylinders

In addition to the inherent variation in key nondimensional parameters known to influence
VIV, practical applications subjected to VIV encounter varying levels of incoming flow
disturbances, commonly referred to as freestream turbulence (FST) or elevated FST (eFST)
[39, 209, 216]. eFST is typically characterized by a turbulence intensity 𝑇𝑢 = 𝑢

′
𝑟𝑚𝑠/𝑈0,

and a characteristic length (integral) scale Λ𝑥 [143], where 𝑥 denotes the streamwise (lon-
gitudinal) direction. The integral scale approximately characterizes the size of the most
energetic turbulent structures [183]. Turbulent flow typically contains structures of varying
length and time scales. Energy is transferred from the larger to smaller scales in a process
known as the energy cascade, eventually dissipating into heat at the Kolmogorov scales [143].

The size of the most energetic turbulent flow features (integral scales) relative to the char-
acteristic geometry length scale (e.g., cylinder diameter) of a structure susceptible to VIV
is relevant to the effect of the incoming freestream perturbation on system characteristics.
In general, the time scales of turbulent flow structures typically scale with the size of the
structures [144]. Thus, for engineering structures of relatively small characteristic lengths
(diameters of O(0.01)𝑚 − O(1)𝑚)5, flow features with integral scales on the order of tens or
even hundreds of meters are likely to be perceived as relatively slow changes in the global
freestream velocity. These situations are outlined in more detail in section 2.4. Conversely,
integral scales less than or on the order of the structure characteristic length scale (typically
cylinder diameter) are likely perceived as localized short-term unsteady fluctuations in
velocity. If the time scales associated with these fluctuations are much smaller than the
dominant system time scales (such as lock-in or shedding frequency), then it is expected that
the flow unsteadiness will primarily affect the quasi-steady system behavior with minimal
effect on the long-term (transient) VIV response. The spatial and temporal scales associated
with eFST considered in this thesis are smaller than the dominant length and time scales
associated with VIV. Consequently, the effects of eFST on VIV are adequately captured
through examination of the mean (quasi-steady) VIV characteristics, with insignificant
influence on the transient (long-term) behavior of the system.

Two notable operational environments where structures susceptible to VIV operate are large
water bodies (ocean risers, oil pipelines) and the atmosphere (towers/masts, chimneys, e.t.c).
5examples include transmission tower tubes, ocean risers or towers/masts
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Turbulence in the ocean arises from a number of flow phenomena including ocean waves
and Langmuir circulations [32]. However, turbulence measurement in the oceans is still in a
relatively nascent stage compared to atmospheric measurements. Most previous studies
have focused on the mixed and upper ocean layers (first few hundred meters in depth)
where interactions with the atmosphere and various instabilities are primarily responsible
for a higher degree of unsteadiness [58]. Turbulent motions have been found to range in
integral scales from a few centimeters to hundreds of meters and are often superimposed
on wave motions with wavelengths on the order of a few meters to hundreds of meters
[39]. Direct measurements of the turbulence intensities from different studies conducted
primarily near coastal regions indicate a wide range of values from approximately 𝑇𝑢 = 3%
to over 15 % [110, 117, 136, 137].

Atmospheric flows are inherently turbulent, with flow features spanning length scales ranging
from millimeters to the order of the Earth’s circumference, and time scales ranging from
fractions of a second to years [14]. Further, atmospheric flows are subject to the no-slip
condition at the Earth’s surface, resulting in the formation of an atmospheric boundary
layer (ABL) that typically spans hundreds of meters in the wall-normal direction [121].
Complex terrain features over urban and suburban regions further influence the boundary
layer development. Numerous studies have been conducted to characterize the structure
and characteristics of the ABL (e.g., [65, 72, 122]). Of interest to the present work is an
estimation of the turbulence intensities and integral length scales inherent to atmospheric
flows that can potentially affect VIV response of structures operating in such environments.
Recommended values for modeling the turbulence intensity and/or integral length scales
have been proposed in different international standards (e.g., ESDU 85020 [188], Eurocode
EN 1991-1-4 [1], ASCE 7-05 [134]). For example, the turbulence intensities for a reference
velocity of 10 𝑚/𝑠 and roughness height of 0.3 𝑚 from ESDU 85020 range between approxi-
mately 7 and 12% at a height of 300 𝑚 to between approximately 15 and 25% at a height of 20
𝑚 [88]. The roughness height chosen corresponds to that recommended for small towns and
suburbs of large towns and cities. For the same parameters, the integral length scale varied
between approximately 150-200 𝑚 at a height of 20 𝑚 to between 300 and 650 𝑚 at a height
of 300 𝑚. The turbulence intensity and integral length scales reduce for smaller values of the
roughness height. For example, a roughness height of 0.002 𝑚 and the same reference velocity
from ESDU 85020 results in estimated turbulence intensities between approximately 5 and
11% for the same height ranges, and corresponding integral scales between 70 and 125 𝑚 [50].

In laboratory settings, grids have typically been used to generate nearly isotropic turbulence
(e.g., [92, 95–97, 119, 156]). Grids generally consist of monoplane or biplane rods that form
a mesh pattern. If the Reynolds number based on the rod diameter is sufficiently large, the
turbulence intensity in a facility can be increased from its baseline levels [97]. Due to a
lack of turbulence-generating mechanisms downstream of the grid, the turbulence intensity
decays while the integral length scales increase with the downstream distance from the grid
[156] as per:

𝑇𝑢2 = 𝐶 ( 𝑥 − 𝑥0
𝑀

)𝑏 (2.7)
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Λ𝑥

𝑀
= 𝐶Λ(𝑥 − 𝑥0)1/2𝑀−1/2 (2.8)

Here, 𝐶, 𝑏 and 𝐶Λ are constants that depend on initial conditions (e.g., rod geometry ) [95].
Additionally, Λ𝑥 is the longitudinal integral scale, 𝑥, 𝑥0 are the distance from the grid and
the imaginary center of the grid, and 𝑀 is the mesh width. Previous studies have shown
that nearly isotropic turbulence may be achieved approximately 20𝑀 downstream of the
grid [64, 90, 95].

Turbulent incoming flow can be considered as a perturbation to various regions of flow
around a cylinder including the boundary layers, shear layers, and the wake. These pertur-
bations may result in changes to the wake dynamics that affect the forces experienced by
the structure. Although the flow dynamics are typically different between stationary and
vibrating cylinders, some similarities in wake development, particularly at low amplitudes
of vibrations, warrant a brief overview of the research focused on eFST effects on flow over
stationary cylinders.

2.3.1 Effect of eFST on stationary cylinders

Freestream turbulence effects on stationary cylinders have been widely investigated in
literature. Due to the sensitivity of the flow across a cylinder to the operational 𝑅𝑒 (see
section 2.1), studies on eFST effects on a cylinder have typically focused on specific regimes
ranging from the transition in wake regime (180 ⪅ 𝑅𝑒 ⪅ 300) [2] to the critical and post
critical regimes (𝑅𝑒 ⪆ 120,000) [213]. For this overview, the results pertaining to the shear
layer transition regime are presented due to their relevance to a wide range of engineering
applications.

Maryami et al. [113] conducted experiments at 𝑅𝑒 = 14,500, corresponding to the early
shear layer transition regime. The turbulent intensity varied between 3.1 and 5.1 % with
corresponding integral length scales between 0.66 and 1.1𝐷. The results show that eFST
delays boundary layer separation on the cylinder by up to 10◦ and increases the rms
surface pressure coefficient by up to 25%. Khabbouchi et al. [82] studied the effect of
eFST on the separated shear layer for 4,500 < 𝑅𝑒 < 47, 000 using turbulence intensities
ranging from 0.2 to 6.2 %. The integral scales were maintained at approximately 2𝐷.
Hotwire measurements were acquired at multiple streamwise and spanwise locations across
the shear layer and near wake. The results indicate an upstream movement of the shear
layer transition with eFST and a decrease in the vortex formation length from 𝑋/𝐷 ≈
2.2 to 1.6. An increase in the transverse extent of the shear layer (width of the shear
layer) was promoted with eFST. Additionally, the presence of high-frequency fluctuations
associated with the shear layer vortices was observed to diminish with increasing eFST. The
authors conclude that eFST promotes the breakdown of shear layer structures into turbu-
lence, thus precipitating the outlined effects on the shear layer and near wake characteristics.
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Arie et al. [9] investigated the effect of both the turbulence intensity and the integral length
scale on cylinders for 8,000 < 𝑅𝑒 < 54,000. Cylinders of varying diameter were used with
different grids to achieve desired combinations of intensities and relative length scales (0.9 %
< 𝑇𝑢 < 12 %, and 0.1 <

Λ𝑥

𝐷
< 10). The introduction of eFST was found to minimally affect

the Strouhal number 𝑆𝑡. For relatively constant turbulence intensities, the authors found
that decreasing the integral scales resulted in lower drag coefficients. Overall, increasing
the turbulence intensity and decreasing the integral scale were found to induce premature
drag crisis. Additionally, eFST was found to decrease the spanwise correlation lengths, in
some cases to approximately 0.1 times the baseline value. Surry [179] studied the effect
of high-intensity turbulence on stationary cylinders for 33,000 < 𝑅𝑒 < 44,000. Freestream
turbulence intensity of 𝑇𝑢 ⪆ 10 % and integral length scales varying between 0.36 to 4 𝐷

were considered. Similar to other studies (e.g., [9]), eFST minimally affected 𝑆𝑡. Overall,
the authors describe the effects of eFST as similar to increasing the operational 𝑅𝑒.

Several studies (e.g., [52, 53, 162]) have found that eFST modifies the boundary layer
characteristics to varying extents depending on the intensity and length scale of turbulence.
In particular, studies conducted for 𝑅𝑒 corresponding to the later stages of shear layer
transition (𝑅𝑒 ⪆ 30,000) indicate that the boundary layers are prone to transition when
exposed to eFST. One mechanism responsible for boundary layer transition in the presence
of eFST is vorticity amplification [161, 162, 180]. Turbulent fluctuations present in the
incoming flow, are susceptible to undergoing significant amplification as they are conveyed
by the diverging mean flow toward the body stagnation zone. Selective stretching of vortex
filaments is proposed as the mechanism responsible for the amplification of vorticity and,
hence, of streamwise turbulence. The amplified turbulence, in particular, those eddies of
scales on the order of the boundary layer thickness, interact with the boundary layer to
induce a premature transition and the onset of the drag crisis [93].

In conclusion, the effect of eFST on cylinders has been shown to depend strongly on the
operational 𝑅𝑒 regime, the freestream turbulence intensity, and the integral length scale. A
common thread among all tested regimes is the significant influence of eFST on the wake
characteristics. In the early shear layer transition regime (1, 000 ⪅ 𝑅𝑒 ⪅ 10, 000), the shear
layers and near wake are modified, including premature shear layer transition, a significant
reduction in the extent of the recirculation region behind the cylinder, and an increase in
structural loading [82, 113, 130]. For higher 𝑅𝑒, eFST can induce earlier boundary layer
transition, resulting in narrower wakes, and decreased structural loading associated with
the drag crisis [24, 86, 214].

2.3.2 Effect of eFST on VIV

Comparing to the case of a stationary cylinder, a limited number of investigations have
considered the effect of eFST on VIV of circular cylinders, making it difficult to draw general
conclusions. Goswami et al. [61] conducted experiments in a wind tunnel for a cylinder with
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a large mass ratio (𝑚∗ >100) and 𝜁 = 0.0015 with one degree of freedom (1-DOF) transverse
to the flow. They conducted measurements at 𝑇𝑢 = 2.5% for 5,000 < 𝑅𝑒 < 6,500. The
results show that eFST induces notable modulations in the amplitude response and a more
broadband frequency response, however, there are minimal changes to the overall nature
of the amplitude response curve. Pasto [139] conducted experiments on a cylinder with
relatively large mass-damping (𝑚∗𝜁=0.321-0.78) constrained to 1-DOF and in three different
freestream conditions – smooth flow (no baseline characteristics provided), 𝑇𝑢 = 3%, and 𝑇𝑢

= 13.5% with longitudinal integral scales of Λ𝑥/𝐷 = 0.2 and 1 for the low and high 𝑇𝑢 cases,
respectively. The Reynolds number varied between 34,000 and 50,000. The results show a
departure from normal amplitude response for both the low and high turbulence cases. For
𝑇𝑢 = 3 %, peak amplitude of oscillations decreased. This was more pronounced for 𝑇𝑢 =

13.5%, along with a smoother transition between the initial and lower branches. Further,
increasing FST intensity produced earlier desynchronization (reduced range of synchroniza-
tion). Finally, an effective 𝑅𝑒 formulation suggested in [98] for stationary cylinders was used
to interpret the results. The formulation translates the effect of elevated freestream turbu-
lence and/or surface roughness into an increased perceived Reynolds number. Depending
on the case, this resulted in the cylinder operational 𝑅𝑒 regime changing from sub-critical
to either transitional or critical, which the author related to the observed changes in system
response. Recently, a study by Bourguet and Mathis [29] on the VIV of a cylinder of large
mass ratio (𝑚∗ ≈ 1000) at 𝑅𝑒 ≈ 10,000 reported an increase of up to 45% in peak oscillation
amplitudes in the presence of freestream turbulence with intensities up to 10 %. Notably,
owing to the large mass ratio, the peak oscillation amplitudes were relatively small (≈ 0.1𝐷).

Previous studies have also investigated the effect of eFST on circular cylinders under-
going 2-DOF VIV. So et al. [173] conducted experiments with an elastic acrylic cylinder
with 𝑚∗𝜁 = 23.4 between 5, 000 < 𝑅𝑒 < 41, 000 and 𝑇𝑢 ranging from 9.8 to 13.3 % compared
to a baseline 𝑇𝑢 = 0.2%. A significant increase in oscillation amplitudes was observed,
with no appreciable change in the range of synchronization. Deng et al. [43] conducted
full-scale experiments on cylinders hinged at the end with various joints to mimic those
used in transmission tower tubes for 10,000 < 𝑅𝑒 < 80,000 and 1.49 < 𝑚∗𝜁 < 15. For
eFST of different intensities (𝑇𝑢 = 5.7%, 10.1%), a decrease in peak amplitudes was ob-
served. Furthermore, increasing 𝑇𝑢 was found to result in lower amplitudes of oscillation.
Apart from experimental studies, wake oscillator models have been employed to study
eFST effects on VIV [12, 13]. In particular, eFST is introduced as a stochastic distur-
bance to the input and the results are compared to a baseline case with smooth flow.
However, the results from wake oscillator models are typically limited in their scope and
rely on experimental data to tune their models. Hence they are not used to draw any
conclusions for the present work. Other studies of possible interest to the reader but with
limited overlap to the current scope include studies examining eFST effects on VIV and
galloping of rectangular cylinders and flexible side-by-side cylinders (e.g., [40, 111, 195, 208]).

The prior studies on eFST effects on VIV have reported varying results. While some of this
may be attributed to the different configurations (1/2-DOF, rigid/elastic) and parameter
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ranges employed, the lack of flow field data makes it difficult to identify the underlying
mechanisms governing the reported responses. Moreover, considering the sensitivity of
stationary cylinder wakes to both the Reynolds number and eFST, it is important to
provide independent control of these two parameters, which has not been undertaken in
the mentioned studies.

2.4 Transient vortex-induced vibrations

Quasi-steady VIV are typically attained under controlled laboratory conditions where the
freestream is steady and uniform. However, changes in the quasi-steady energy balance
resulting in transient VIV is a more realistic representation of real-world VIV. Transient
VIV may be encountered in different situations. One common example is a change in in-
coming freestream velocity that positions the vortex shedding frequency near the structural
natural frequency thereby triggering vibrations and the subsequent transient progression
to a quasi-steady (equilibrium) state. Conversely, changes in the global mean freestream
velocity (unsteady freestream) may perturb a system from a prevailing quasi-steady state.
Transient VIV may also be encountered in steady flow conditions as a result of changing
structural properties (e.g., due to a structural component failure, such as a supporting cable)
that triggers the onset of VIV. The outlined situations, among others, should be considered
during the design of engineering structures susceptible to VIV, particularly due to their
operation in inherently unsteady environments such as oceans and the atmosphere [39,
209]. It is reiterated here that, in the present work, the discussion of freestream turbulence
effects on VIV is limited to the cases where the integral scales are smaller than the struc-
ture size. Consequently, eFST does not appreciably modify the transient VIV characteristics.

In the atmosphere, coherent motions may result in unsteady freestream conditions (com-
monly known as gusts). A gust is typically characterized as a relatively rapid excursion
of the freestream velocity from its mean value. Various parameters are used to describe
gust characteristics including the gust factor (𝐺), rise time (𝑡𝑔𝑟), lapse time (𝑡𝑔𝑙), and
gust duration (𝑡𝑔𝑑) [67]. The gust factor is defined as the ratio between a short-term,
time-averaged wind speed 𝑈𝑔 and a long-term, time-averaged wind speed 𝑈ℎ as 𝐺 = 𝑈𝑔/𝑈ℎ.
The time periods used to define the two time scales vary in literature. The World Meteoro-
logical Organization and North American building code recommend 3 𝑠 for the short-term
average and 10 𝑚𝑖𝑛s for the long-term average [174, 206]. Measured gust factors at different
locations worldwide typically fall between 1 < G < 4 barring some extreme gust events [67,
78, 211]. The gust rise time 𝑡𝑔𝑟 is the time taken for the wind speed to increase from a steady
value to a local peak value. The gust duration 𝑡𝑔𝑑 is the length of time when the velocity
remains elevated, and the gust lapse time 𝑡𝑔𝑙 is the time taken from the peak amplitude to
the next local minimum in velocity. The gust factor (magnitude) and rise/lapse times are
important parameters that govern the transient structural loading and response on struc-
tures [142]. Compared to the relatively rapid wind speed changes caused by atmospheric
gusts, the time scales of various oceanic processes that may result in changing freestream
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conditions are typically significantly larger [31]. Of the different oceanic processes, those
with timescales of possible relevance to transient VIV include turbulent patches [210], Lang-
muir cells [32], and surface waves, with the timescales ranging from O(10)𝑠 to O(1000)𝑠 [45].

Pertinent to bluff body flows, the ratio between the freestream time scales (gusts, oceanic
processes) and the dominant system time scales (natural time period/vortex shedding time
period) plays a prominent role in determining the transient structure/wake dynamics [151,
165]. For instance, consider that the freestream time scale (e.g., gust rise time) is much
larger than the structure/wake time scale (𝑡 𝑓 /𝑡𝑣𝑠 >> 1, where 𝑡 𝑓 represents the freestream
timescale and 𝑡𝑣𝑠 is the vortex shedding period). In this case, the slow variation in the
freestream relative to system time scales allows for the system to approach quasi-steady
state at each new operating condition. This allows the resulting transient behavior to
potentially be modeled using quasi-steady response characteristics. Conversely, relatively
rapid changes to the freestream (𝑡 𝑓 /𝑡𝑣𝑠 << 1) may be considered impulsive, thereby eliciting
distinct dynamics [165].

A brief examination of the ratio between typical freestream time scales and the dominant
system timescales of structures susceptible to VIV provides an insight into the relevant
parameter space. Table 2.1 provides a list of different applications susceptible to VIV along
with relatively simple approximations of their characteristic lengths (diameters), expected
vortex shedding periods, and the ratio between the freestream timescale and the shedding
period (𝑡 𝑓 /𝑡𝑣𝑠). The use of the shedding period instead of the natural frequency as the
dominant system timescale is considered a reasonable assumption given that the largest
oscillation amplitudes (upper branch) are typically achieved when the structural natural
frequency is within approximately 20% of the vortex shedding frequency [83]. Strouhal
numbers of 0.2 were used to calculate the range of vortex-shedding periods as expected
for circular cylinders that typically approximate the shapes of the examined structures [5,
135]. Gust rise times are employed as a representative time scale for gusts with a range
of 5-40 𝑠 considered as the gust rise time scale, derived from reported values in various
studies [16, 67, 211]. This range corresponds to a minimum probability exceeding 1 % on a
probability distribution of rise times. While mean wind speeds vary significantly across the
globe based on region and height above sea level [8], a conservative range of speeds was
adopted (2-12 𝑚/𝑠) for the calculation of shedding periods based on reported values (e.g,
[15, 67, 160, 211]). For oceanic flows, current speeds typically range from O(0.1)𝑚/𝑠 to
O(1)𝑚/𝑠 [73, 81, 164] and a range of 0.1 to 10 𝑚/𝑠 is employed for the present analysis.

Figure 2.4 depicts the ratio of freestream to system timescales on a semi-log plot as obtained
from the above analysis. Even from this simplified analysis, it is apparent that changing
freestream conditions occur over a wide range of relevant system timescales. Chimneys are
found on the lower end of this range where the freestream changes occur relatively rapidly
compared to the dominant system time periods, while ocean risers and transmission tower
tubes fall farther to the right with changes in freestream occurring over tens or hundreds of
system time periods.
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Application Diameter(𝑚) Shedding period(𝑠) 𝑡 𝑓 /𝑡𝑣𝑠
Chimney [49, 128, 149] O(1) − O(10) 0.3-250 0.04-130
Transmission
tower tubes [43, 68, 101] O(0.01) − O(0.1) 0.002-0.25 20-15000

Tower/mast [38, 48, 106, 192] O(0.1) − O(1) 0.04-25 0.2-1300
Ocean riser [79, 186, 191] O(0.01) − O(0.1) 0.005-5 2-200000

Table 2.1: Parameter space estimation for the ratio of freestream time scales to the
dominant system time scales.

Figure 2.4: Illustration of the parameter space for various applications susceptible to
VIV with ranges provided for the estimated ratio of freestream time scales to the dominant
system time scales.

The following sections provide an overview of the relevant literature for transient VIV in
steady and unsteady freestream conditions.

2.4.1 Transient VIV in steady freestream conditions

An elastically-mounted cylinder released from rest in a steady freestream is considered a
representative case of a system following an impulsive change in structural characteristics
that give rise to the onset of VIV. Anagnostopoulos and Bearman [7] conducted an early
study that considered transient VIV development from rest, where a cylinder was released
into a steady freestream in laminar vortex shedding conditions (90 < 𝑅𝑒 < 150). The
cylinder had a mass ratio 𝑚∗ ≈ 149, damping ratio 𝜁 ≈ 0.0015, and was restricted to move
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in 1-DOF transverse to the freestream. For reduced velocities corresponding to the lower
branch, the cylinder exhibited a steady increase in oscillation amplitudes up to quasi-steady
state. In particular, for 𝑈∗ ≈ 5.8, the cylinder reached quasi-steady state (𝐴∗ ≈ 0.53) in
around 70 oscillation cycles. At a larger reduced velocity (𝑈∗ ≈ 6.3), a significant reduction
(>50%) in the amplitude growth rate was observed despite similar final quasi-steady state
amplitudes (𝐴∗ ≈ 0.5).

Leontini et al. [100] conducted a numerical study of VIV in a laminar shedding regime (𝑅𝑒 =

200) with 𝑚∗ = 10 and 𝜁 = 0.01. The simulations included the transient build-up from rest
and continued through quasi-steady state. The lower branch transient behavior exhibited
a steady growth of amplitudes with the envelope of oscillation amplitudes resembling a
sigmoid curve. In contrast to quasi-steady state, where the phase difference 𝜙 is relatively
constant, a consistent increase in 𝜙 was observed during the transient amplitude growth.
The transient response in the initial branch revealed a beating-type behavior with the
instantaneous phase difference 𝜙 (equation 2.2) modulating between positive and negative
values. A number of other studies pertaining to transient VIV development from rest have
also been conducted within laminar vortex shedding regimes (e.g., [6, 116, 145]). While the
findings from these studies provide further support to the discussed response, including
varying amplitude growth rates and non-stationary instantaneous phase differences, struc-
tural response characteristics and wake dynamics for laminar shedding regimes are different
from turbulent regimes [203].

Brika and Laneville [30] conducted experiments (including release from rest) on a long
flexible cylinder free to move in 2-DOF for 3, 400 < 𝑅𝑒 < 11, 800. The flexible cylinder
had an aspect ratio of 52.7 and mass damping 𝑚∗𝜁 varied between 0.013 and 0.3. When
released from rest for reduced velocities in the initial branch, the cylinder exhibited a
distinct overshoot in oscillation amplitudes above quasi-steady values before settling into
quasi-steady state. The instantaneous phase difference 𝜙 exhibited an abrupt drop (exact
values not specified in [30]) near the instant where the amplitude overshoot reached its
maximum. For 𝑈∗ in the lower branch, amplitudes continuously increased to quasi-steady
state values, with the envelope exhibiting a sigmoid shape. The authors further show that
the time required to attain quasi-steady state (settling time) in the lock-in regime increases
nearly exponentially with reduced velocity, with the shortest settling time near the initial
branch (approximately 3, 000 cycles) and the longest settling times in the lower branch
(approximately 50, 000 cycles). Notably, wake measurements were not reported for the
transient build-up.

To the best of the author’s knowledge, despite recurring themes emerging from the different
studies regarding the transient response of the system at the onset of VIV, a comprehensive
investigation focused on characterizing transient VIV development from rest across all
response branches and at turbulent shedding conditions has not been undertaken.
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2.4.2 Transient VIV in unsteady freestream conditions

Transient VIV response may also be initiated through a change in freestream velocity.
However, the number of studies that explore this topic is limited compared to the vast
number of studies on stationary cylinders in changing freestream conditions (e.g., [28, 66,
99, 165, 175]). Further, to the best of the author’s knowledge, no studies examine the case
of a rigid elastically-mounted cylinder under unsteady freestream conditions. Laguë and
Laneville [94] conducted experiments on a flexible cylinder in time-varying flow using the
same 2-DOF setup as Brika and Laneville [30]. Briefly, the mass ratio of the system 𝑚∗ ≈
1590 and 𝜁 varied between 0.83 ×10−4 and 2 ×10−4. The freestream velocity was modified
by superimposing a sinusoidally varying Δ𝑈0 with differing periods on 𝑈0. The associated
change in the reduced velocity is represented as:

𝑈∗(𝑡) = 𝑈∗ + Δ𝑈∗𝑠𝑖𝑛(𝑡/𝑃) (2.9)

where 𝑃 is the period of the freestream, and was varied between 10 and 150 𝑠. Further, Δ𝑈∗

varied between 0 and 1.88. The results of the study are primarily focused on the 𝑃 = 100𝑠
and Δ𝑈∗ = 1.25 case. Comparing the sinusoidal variation in freestream to the definition
of gusts, the quarter time period 𝑃/4 is analogous to the gust rise time 𝑡𝑔𝑟 . The change
in velocity for 𝑃/4 = 25𝑠 occurs over approximately 437 cycles of the cylinder oscillation,
which would fall in the range of conditions experienced by transmission tower tubes, towers,
and risers based on figure 2.4. The results show significant modulations in the cylinder
amplitude with the envelopes exhibiting sawtooth and/or sinusoidal shapes depending on
the operational reduced velocity (𝑈∗ on the right-hand side of equation 2.9). Further, the
modulations in amplitude are periodic with the period synchronized with the change in
freestream conditions, but with a time lag of approximately 𝑃/3 − 𝑃/4. One such example
is shown in figure 2.5(a) where the blue lines show freestream variation and the black
lines show the envelope of the cylinder amplitude time series for mean 𝑈∗ = 5.65. This
unsteady amplitude modulation is mapped as a trajectory of points in the 𝐴∗ −𝑈∗ plane as
shown in blue markers in figure 2.5(b). The black markers show the quasi-steady system
response. The unsteady responses for other mean 𝑈∗ values are also plotted using different
colors. It can be seen that, in all cases, the trajectories loosely resemble ellipses around the
quasi-steady response at the mean 𝑈∗ (large colored markers on the quasi-steady response
plot), with the exception of the red dots (𝑈∗ = 6.3), where the unsteady response amplitudes
are significantly smaller than the corresponding quasi-steady state. It is worth noting that
the freestream change in this case falls in the region of mode transition between the initial
and upper branches.

22



0 2 4 6 8 10

-0.2

0

0.2

4

5

6

7

4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

(a) (b)

Figure 2.5: (a) Envelope of the amplitudes for a sinusoidally varying freestream velocity
(shown in blue) with mean 𝑈∗ = 5.65. (b) Quasi-steady system response (black markers)
along with the unsteady system responses (colored markers) with the quasi-steady amplitude
of the mean 𝑈∗ in the unsteady cases highlighted on the quasi-steady curve. Adapted from
[94]

For fixed Δ𝑈∗, increasing the period of the velocity variation 𝑃 resulted in the oscillation am-
plitudes approaching those of quasi-steady state, which the authors attributed to increased
time for amplitude build-up. Increasing the magnitude of Δ𝑈0 resulted in larger changes
to the reduced velocity within the same period, in some cases allowing for a switch in the
response branch. Overall, the unsteady responses indicate that the changes in freestream
velocity are not slow enough to allow the transient response to approach the quasi-steady
state system response.

Resvanis et al. [150, 151] conducted experiments on a flexible 2-DOF cylinder exposed to
time-varying flows. The aspect ratio of the cylinder model was 166, with a mass ratio of
1.53. The cylinder was towed from rest with varying ramp (up/down) profiles for Reynolds
numbers up to 60,000. A nondimensional parameter to quantify unsteadiness is introduced
as 𝛾 = 𝑇𝑛

|𝑑𝑈0/𝑑𝑡 |
𝑈𝑛

, where 𝑛 is the mode of response, and 𝑈𝑛, 𝑇𝑛 are the freestream velocity
required to excite the mode and the time period of the mode, respectively. This parameter
is interpreted as the fractional change in flow velocity during one oscillation cycle. The
experiments consisted of sweeping the entire lock-in range using different accelerations
(𝛾) with the cylinder starting from rest. The amount of time spent by the system in the
synchronization (lock-in) region can be estimated. In particular, assuming that the system
is excited when the freestream velocity is within ±20% of 𝑈𝑛, then [151]:

𝛾 ≈ 𝑇𝑛
Δ𝑈/Δ𝑡
𝑈𝑛

= 𝑇𝑛
1.2𝑈𝑛 − 0.8𝑈𝑛

𝑈𝑛

=
2𝑇𝑛
5Δ𝑡 (2.10)

From this, the time spent in the synchronization region Δ𝑡, which is loosely analogous to
the freestream timescale 𝑡 𝑓 , can be represented as Δ𝑡 = 2𝑇𝑛/5𝛾. Thus, for larger 𝛾, the
system spends less time in the lock-in region and vice-versa. The results show that, for
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slow accelerations (𝛾 < 0.02), the system response approached quasi-steady levels. For
moderate accelerations (0.02 < 𝛾 < 0.1), the cylinder exhibited significant oscillations,
which in some cases were found to exceed quasi-steady state values. For large accelerations
(𝛾 > 0.1), insignificant oscillations were observed, owing to the limited time spent in the
lock-in regime. This is depicted in figure 2.6, where the discussed slow, moderate, and fast
acceleration regions are classified as A, B, and C, respectively.

The experiments of Laguë and Laneville [94] with the flexible cylinder in sinusoidally varying
flow indicate that quasi-steady behavior is not observed despite the relatively slowly varying
freestream. Assuming the quarter period as the freestream time scale (analogous to the gust
rise time), 𝑡 𝑓 𝑓𝑛 = 𝑃

4 𝑓𝑛 ≈ 437, when 𝑃/4 = 25𝑠. Conversely, in the experiments of Resvanis
[150], quasi-steady system behavior is observed when 𝑡 𝑓 𝑓𝑛 = Δ𝑡 𝑓𝑛 ⪆ 20. The contrasting
behavior is most likely due to the significant difference in mass ratios (𝑚∗ ≈ 1590 in the
experiments of Lague and Laneville and 𝑚∗ = 1.53 in the experiments of Resvanis). A high
mass ratio implies that the system requires a much longer time (more oscillation cycles) to
reach quasi-steady state. In particular, for the cylinder model used by Lague and Laneville,
the minimum time required to reach quasi-steady state when the cylinder was released from
rest was approximately 3,000 cycles as shown in a different study using the same facility
and model [30]. This is an order of magnitude higher than the change in freestream velocity
timescale. In the experiments of Resvanis [150], the cylinder converged on quasi-steady
state in approximately four cycles when subjected to an impulse change in velocity. The
effect of mass ratio on the classification of system response based on 𝛾 is also proposed as a
future research question.

Other studies that explore unsteady freestream conditions on VIV have focused on oscillating
flows with zero mean velocity (e.g., [34, 56, 87, 177]). However, in all these studies, the
cylinder is forced to cross its own wake when the flow direction is reversed, thus eliciting
distinct behaviors and, as such, are not the primary interest for the present work.

24



A B C

Figure 2.6: Time spent in the lock-in region (Δ𝑡 𝑓𝑛) vs 𝛾 with the vertical dashed lines
representing the boundaries between regions exhibiting different behavior. A- System
response is similar to quasi-steady response, B- System shows significant response that may
or may not resemble quasi-steady response, and C- system shows minimal response owing
to the limited time spent in the lock-in regime. Adapted from [150].
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Chapter 3

Methodology
Experimental facilities and VIV setups for the three main campaigns are detailed along with
the associated measurement techniques. Key data processing methods are also discussed.
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3.1 Experimental setups

The experiments conducted as part of this thesis were performed at the University of
Waterloo in the Fluid Mechanics Research Laboratory (FMRL) and at the University of
Calgary in the Laboratory for Turbulence Research in Aerodynamics and flow Control
(LTRAC), respectively. The experiments at FMRL addressed the objectives related to
(i) the effect of eFST on VIV and (ii) transient VIV development from rest, while the
experiments at LTRAC were performed to (iii) explore the effects of changes in freestream
on VIV. Herein, an overview of the experimental facilities and VIV setups is provided.
Chapters 4 and 5 contain the results for the experiments conducted at FMRL while Chapter
6 contains the results of the experimental campaign at LTRAC. The associated uncertainties
in all quantities are presented in Appendix A.

3.1.1 FMRL water tunnel, VIV setup, and eFST generation

FMRL houses an open channel, closed-loop water tunnel facility that is shown in figure
3.1. The flow in the water tunnel at FMRL is driven by a constant head developed in an
overhead tank that is supplied with water from two centrifugal pumps. The velocity in the
test section is set by a combination of a gate valve and a variable porosity back gate placed
approximately 1 𝑚 downstream of the test section. The settling chamber houses the flow
conditioning elements including a square grid (12.7 𝑚𝑚 spacing), a honeycomb (12.7 𝑚𝑚

cell), and four wire meshes, with all the elements following the design recommendations of
Mehta and Bradshaw [114] and Derbunovich et al. [44]. The flow enters the test section
through a contraction which has an area ratio of 5:9. An entrance length equivalent to
the width of the contraction is allowed before the start of the glass test section. The 2.5
𝑚 long test-section is 0.5 𝑚 in width and is designed for a water height of 0.8 𝑚. The
walls and floor of the test sections are constructed from glass to facilitate optical access.
For all experiments at FMRL, the freestream velocity in the test section was held fixed at
𝑈0=0.155 𝑚/𝑠 and was uniform to within 0.01𝑈0 outside of the wall boundary layers. The
corresponding water height was 0.26 𝑚. The baseline freestream turbulence intensity in the
streamwise direction is 0.9% of the mean velocity.
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Figure 3.1: Water tunnel facility inside FMRL at the University of Waterloo.

In contrast to most traditional VIV setups, the experimental setup at FMRL was designed
to examine VIV at constant Reynolds numbers. The VIV setup employs a method of modi-
fying the natural frequency to produce a wide range of reduced velocities while maintaining
a constant freestream velocity. This experimental arrangement is inspired by previous
approaches [25, 75] and is shown in figure 3.2. A 2.54 𝑐𝑚 diameter solid acrylic cylinder of
length 73.00 𝑐𝑚 is mounted at the end of a 182.00 𝑐𝑚 long rigid hollow aluminum pendulum
arm with an outer diameter of 2.54 𝑐𝑚. The pendulum arm is hinged to a support frame
using a pair of ball bearings and is free to move in 1-DOF transverse to the freestream.
Four springs, each with a stiffness of 367 𝑁/𝑚 are attached using a collar that can slide
along the length of the pendulum arm in order to modify the cylinder’s natural frequency.
Additionally, a system was devised to enable automated release from rest as described below.
This system was only used for the study on transient VIV development from rest (Chapter 5).

To ensure repeatable cylinder release from rest, a plunging mechanism was used (shown
in the left inset of figure 3.2). Specifically, the pendulum arm was held at its equilibrium
position (𝑌 = 0) between two prongs of a plunger that is mounted on a sliding rail, with the
end of the plunger attached to a pull-type solenoid. The solenoid was powered through a 24
𝑉 DC power supply and triggered using a 5 𝑉 DC signal from an external circuit controlled
through LabVIEW software. When activated, the solenoid initiates a rapid recoil of the
plunger (recoil time < 5% of the von Kármán vortex shedding period), thus freeing the
cylinder to vibrate. The release mechanism was verified to minimally influence the cylinder.
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Figure 3.2: VIV setup on water flume. The right top inset shows components of the VIV
setup. The right bottom inset shows a schematic of the turbulence grid, and the left inset
shows the release mechanism. The origin of the coordinate system shown in the figure is at
the center of the cylinder at its equilibrium position. The PIV schematics are included with
the camera under the channel and the green laser sheet at the submerged cylinder midspan.

The relevant parameters of the VIV system are presented in table 3.1. The cylinder’s
natural frequency was determined from spectral analysis of free vibration tests in quies-
cent water, while free vibration tests in air were used to estimate the structural damping,
by applying the log-decrement method [74] as shown in equation 3.1. Minor differences
in the damping ratio across the range of natural frequencies investigated as seen here
are found to minimally affect system response characteristics [176]. The maximum ex-
pected peak-to-peak VIV oscillation amplitude (O(2𝐷)) results in less than 1◦ of angular
displacement of the pendulum, negligible vertical displacement, and less than 0.1𝐷 os-
cillation amplitude disparity between the top and bottom portion of the submerged cylinder.

𝜅𝑖 = 𝑙𝑛( 𝐴𝑖−1
𝐴𝑖

)

𝜁𝑖 =
𝜅𝑖

2𝜋

𝜁 = 1/𝑁
𝑁=10∑︁
𝑖=1

𝜁𝑖

(3.1)
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Parameter 𝑚∗ 𝜁 (× 10−4) 𝑓𝑛 (𝐻𝑧) 𝑈∗

Value 18.2 6.5-3.4 0.48-1.55 3.9-12.7

Table 3.1: Parameters of the experimental VIV system.

To minimize end effects, a rectangular end plate, spanning the width of the tunnel and
with length 9𝐷, was placed less than 1 𝑚𝑚 from the tip of the cylinder. The end plate has
a sharp tapered leading edge that is 3𝐷 upstream of the cylinder edge. It was mounted
outside of the wall boundary layer to ensure uniform freestream conditions across the span
of the submerged cylinder model. The height of the submerged cylinder was 21.0 𝑐𝑚,
resulting in an aspect ratio of 8.26, and a blockage ratio of less than 5 %. The Reynolds
number was maintained constant at approximately 4,400. This value is within the shear
layer transition regime for a stationary cylinder, of relevance to many practical applications,
and was selected due to the availability of reference data (e.g., [63]).

The incoming flow turbulence characteristics were varied from the baseline case through
the use of a bi-planar grid [92, 95]. The grid has a mesh width 𝑀 = 35.0 𝑚𝑚, and a
square rod width 𝑑 = 4.7 𝑚𝑚, resulting in a solidity 𝜎 ≈ 25%, well below the maximum
recommended solidity of 𝜎 ≈ 50% in order to achieve homogeneous and isotropic turbulence
[156]. Previous studies have shown that nearly homogeneous and isotropic turbulence
may be achieved approximately 20𝑀 downstream of the grid [64, 90, 95]. In the present
study, the grid was placed 28𝑀 upstream of the cylinder in a frame attached to the water
flume as seen in figure 3.2. The turbulence characteristics were evaluated through Particle
image velocimetry (PIV) measurements (detailed in section 3.2.2). Figure 3.3 presents the
power spectral density of the streamwise velocity fluctuations at the cylinder location in an
empty test section with and without the grid. A clear increase in energy content across
the entire range of frequencies is observed, and the inertial subrange can be identified in
the spectrum [144]. The produced flow at the cylinder location has a turbulence intensity
𝑇𝑢 = 2.7% with the longitudinal integral scale Λ𝑥/𝐷 = 0.33, determined by integrating an
exponential curve fit to the spatial auto-correlation function of the fluctuating velocity [183].

It must be noted that, apart from the presented case, two other eFST conditions were
studied by moving the grid further upstream and employing another grid with a smaller
mesh width. However, both additional cases had lower turbulence intensities and had a
similar but less pronounced effect on VIV response. Thus, results are presented only for the
largest intensity case (𝑇𝑢 = 2.7%) where the most prominent effects were observed. While
investigating the effects of higher intensities on VIV is desirable, the use of a passive grid in
conjunction with typical experimental facility restrictions (e.g., size), the desired parameters
(e.g., cylinder diameter and freestream velocity), and requirement for homogeneous and
isotropic turbulence limit the maximum intensity that can be generated. More details are
provided in chapter 4.
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Figure 3.3: Spectra of the streamwise velocity fluctuations at the cylinder location with
and without the grid.

3.1.2 LTRAC water tunnel and VIV setup

The open channel, closed-loop water tunnel at LTRAC is show in figure 3.4. Water is
introduced into the primary plenum and guided through a sequence of flow conditioning
elements comprising a singular honeycomb flow straightener and three fine screens. The
flow is then accelerated to the test section by a contraction with a 6:1 ratio. A reservoir
located at the terminus of the test section facilitates water recirculation back to the plenum.
This process is managed through an axial pump regulated by a variable frequency drive.
For optimal optical access, both the walls and floor of the test sections are constructed
from glass. The test section spans 4 𝑚 in length and features a cross-section of 0.385 𝑚

width and 0.45 𝑚 height. The water velocity can be varied between approximately 7 and
40 𝑐𝑚/𝑠 in increments of 0.07 𝑐𝑚/𝑠. The flow within the test section is uniform to within
0.01𝑈0 outside of the wall boundary layers and the baseline freestream turbulence intensity
is less than 1% of the mean freestream velocity.
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Figure 3.4: Water tunnel facility inside LTRAC at the University of Calgary.

The VIV setup at LTRAC comprised a more traditional spring-mounted, air-bearing ap-
paratus. A 1.905 𝑐𝑚 hollow carbon fiber cylinder was mounted onto two OAV 13 𝑚𝑚 air
bushings, as shown in figure 3.5, to facilitate low friction 1-DOF movement transverse to the
freestream. A plate fixed to the ends of the bushings was connected to two identical linear
springs with a spring constant 193 𝑁/𝑚. The other ends of the springs were connected
to fixed frames such that they were extended when the cylinder was at its equilibrium
position. The cylinder was connected to the plate through an ATI Mini40 force transducer
(details in section 3.2.4). The natural frequency of the structure in still water, measured
through spectral analysis of impulse tests, was 1.7 𝐻𝑧. The structural damping in air was
𝜁 = 0.0013, as calculated through the log decrement method. The mass ratio of the system
was 9.37.

A rectangular end plate spanning the width of the tunnel and with length 23𝐷 was placed
within 2 𝑚𝑚 from the tip of the cylinder model. The leading edge of the plate has a
super-elliptic profile and was placed 7𝐷 upstream of the cylinder center. The end plate
was mounted approximately 4 𝑐𝑚 from the bottom wall to minimize boundary layer effects.
Thin rubber inserts were used to seal the gaps between the plate and the water tunnel side
walls. The blockage ratio presented by the cylinder was less than 5%. The aspect ratio of
the submerged cylinder was held fixed at 21, while the Reynolds number based on cylinder
diameter was varied between approximately 2,300 and 6,800.
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Figure 3.5: Air bearing VIV setup at LTRAC. The camera is shown positioned under
the water channel. The green plane indicates the laser sheet with the gray shaded region
showing the shadowed regions.

3.2 Data Collection

3.2.1 Particle image velocimetry

Particle image velocimetry (PIV) was the primary flow measurement technique employed
in this work. PIV offers the advantage of non-intrusive acquisition of instantaneous velocity
field data, thus holding significant appeal. Briefly, PIV involves imaging tracer particles,
illuminated by pulsed light sources, to derive velocity vector fields via statistical image
processing techniques. Comprehensive insights into PIV techniques and useful recommen-
dations can be found in several works (e.g, [148, 168, 198, 200]). Here, a brief overview of
the general procedures employed in this thesis is provided, with experiment-specific details
provided in the subsequent sub-sections.

To enable imaging, tracer particles are introduced into the flow. Apart from the requirements
of these particles being non-toxic, non-corrosive, non-abrasive, non-volatile, and chemically
inert, the particles must conform to the flow without experiencing notable inertial effects.
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Compared to gaseous flows1, PIV experiments in water afford the luxury of a significantly
higher-density medium, in which relatively large tracer particles can adequately follow the
flow. For all experiments in this thesis, the flow was seeded with hollow glass spheres with
a mean particle diameter of 10 𝜇𝑚, and a specific gravity of 1.1. The hollow glass spheres
were first thoroughly mixed into a container of water and then added to the water tunnels.
Since both water tunnel facilities are closed-loop, minimal decay in the seeding densities
was observed throughout each campaign.

To illuminate the tracer particles, laser light is typically employed. All flow field mea-
surements conducted within this thesis constituted measurements of two velocity vector
components in a plane, i.e., two-component PIV. Thus, the laser beam was formed into
a thin diverging sheet, using a combination of spherical and cylindrical lenses. Imaging
was then performed by placing cameras at orthogonal viewing angles to the laser sheet.
Calibration was performed by imaging a submerged target comprising a square grid of
10 𝑚𝑚 at the laser sheet location and performing a scaling. To minimize reflections, the
regions where the laser sheet impacted the cylinder were painted black.

3.2.2 Quasi-steady VIV in eFST (FMRL)

Quasi-steady measurements for both baseline and eFST cases were acquired at 45 re-
duced velocities (𝑈∗) throughout the synchronization (lock-in) region spaced approximately
Δ𝑈∗ = 0.15 apart. Prior to measurement at each 𝑈∗, the natural frequency of the struc-
ture was modified by changing the spring position (see section 3.1.1). Following this, the
system was allowed to settle at its quasi-steady state for a sufficiently long time before
data acquisition. Cylinder position was measured using a Hoskin CP24MHT80 laser-based
displacement sensor secured to a mounting frame at a sampling frequency of 500 𝐻𝑧, which
is more than 50 times greater than the highest natural frequency of the structure considered
in the present study. The sensor has a measuring range of 120 𝑚𝑚, equivalent to 4.72𝐷, a
resolution of 20 𝜇𝑚, and a measuring rate of 1500 𝐻𝑧. The sensors were powered through a
24 𝑉 DC power supply. The calibration of the sensors was verified using a Velmex BiSlide
traverse. The uncertainty associated with cylinder displacement measurements is estimated
to be ± 0.003𝐷. For cases where PIV measurements were acquired simultaneously with
displacement, analog signals were acquired at a sampling frequency of 100,000 𝐻𝑧. The
oversampled data were then resampled to 500 𝐻𝑧. At each 𝑈∗, data were collected for a
total of 120 𝑠 enabling the capture of at least 80 cycles of oscillation. In addition to the
VIV experiments, flow measurements were acquired for a reference stationary cylinder case.
To achieve stationary conditions, the tip of the cylinder was anchored to the end plate at
its equilibrium position.

Flow velocity measurements for the VIV experiments, reference stationary cylinder, and
eFST characterization were performed using two-component PIV. Wake measurements
1Recently, the development of sub-millimetre helium/air-filled soap bubbles have emerged as a viable
candidate for relatively large and nearly neutrally buoyant tracer particles in air flows [17, 27, 167].
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were performed at a horizontal plane (𝑋𝑌 plane) at the midspan of the cylinder, with
background flow characterization performed in the same plane without the cylinder in place.
The flow was seeded with hollow glass spheres with a mean particle diameter of 10 𝜇𝑚,
and specific gravity of 1.1. Illumination was provided by a dual cavity 532 𝑛𝑚 Nd:YAG
laser (Quantel EverGreen 70), whose light was formed into a sheet with an approximate
thickness of 2 𝑚𝑚 at the cylinder location. Images for the stationary and vibrating cylinder
were acquired using an Imager Pro X CCD camera with a sensor size of 2560 x 2160 𝑝𝑥,
equipped with a Nikon 50 𝑚𝑚 lens and set to an aperture 𝑓#= 2.8. The full sensor was
used to capture a field of view of approximately 6.7 × 6.2𝐷. 2,350 particle images were
acquired for each case in a dual-frame mode at a frequency of 22 𝐻𝑧 (more than 17 times the
highest vortex shedding frequency), with frame separation of 5,500 𝜇𝑠, resulting in average
particle displacements of approximately 10 𝑝𝑥 in the freestream. For background flow
measurements, the camera was outfitted with a Nikon 105 𝑚𝑚 lens, set to an aperture 𝑓#=
5.6, resulting in a full-sensor field of view of approximately 3.3 × 2.8𝐷. 4,100 images were
acquired in single frame mode at a frequency of 45 𝐻𝑧. For all cases, the laser and camera
were synchronized by a programmable timing unit and controlled via LaVision DaVis 10.0
software. The essential parameters used for the different experiments are summarized in
table 3.2.

The PIV images were processed using the LaVision DaVis 10.0 software. The images were
first preprocessed by minimum subtraction across the entire ensemble, followed by the
application of a geometric mask over the cylinder and any shadowed regions. Intensity
normalization was then applied across all the images. Following the prepossessing, velocity
fields were obtained using a multi-pass cross-correlation algorithm [4], with a final inter-
rogation window size of 48X48 𝑝𝑥 and 75 % overlap, resulting in a final vector pitch of
approximately 0.02𝐷. The results were post-processed using universal outlier detection [199]
with vector removal. The measurement uncertainty in instantaneous velocity magnitude
due to random errors was estimated using the correlation statistics method [170], and is
less than approximately 1.5% and 12% of 𝑈0 in the freestream and wake, respectively.

For the estimation of turbulence intensity from PIV, the methods outlined by Scharnowski
et al. [169] and Lavoie et al. [95] were adopted. In particular, the field of view was reduced
by approximately 50 % compared to the cylinder cases by employing a 105 𝑚𝑚 Nikon lens.
This ensured that the field of view was approximately ten times the integral length scale
while still ensuring good spatial resolution from the final interrogation window. Specifically,
the final vector pitch (0.25 𝑚𝑚/vector) was deemed sufficiently small when compared to the
integral length scales. Additionally, large particle displacements between image pairs were
ensured (around 100 𝑝𝑥) to reduce relative uncertainty, and a larger number of samples
were acquired compared to wake measurements to ensure sufficient statistical convergence.
The resulting turbulence intensity was estimated to be 𝑇𝑢 = 0.9 and 2.7 ± 0.05%, for the
baseline and eFST cases, respectively.
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Parameter eFST characterization Cylinder Units
Plane 𝑋𝑌 𝑋𝑌

Lens focal length 105 50 𝑚𝑚

Lens aperture 2.8 5.6 -
Sensor resolution 1560 X 2560 2160 X 2560 𝑝𝑥

Field of view 71 X 85 158 X 172 𝑚𝑚

PIV mode Single frame Double frame -
Sample rate 45 22 𝐻𝑧

Frame separation - 5500 𝜇𝑠

Final vector pitch 0.25 0.52 𝑚𝑚/vector
Number of images 4100 2350 -

Table 3.2: Parameters for eFST PIV experiments.

3.2.3 Transient VIV in steady freestream conditions (FMRL)

The transient response of an elastically-mounted cylinder released from rest was investigated
at six 𝑈∗ values spanning the lock-in regime including two 𝑈∗ values in each of the initial,
upper, and lower response branches. A minimum of fifteen release-from-rest trials were
conducted for each case. Of these six cases, three 𝑈∗ (one in each of the initial, upper,
and lower branches and highlighted in section 5.1) included simultaneous cylinder position
and wake velocity measurements for five of the fifteen trials. After each trial, the structure
was brought to rest and allowed to settle for a period of at least 30 shedding cycles before
the next trial. Additionally, quasi-steady system response (data recorded after allowing
sufficient time for the system to settle) was obtained over the entire lock-in regime using
incremental variations in 𝑈∗. Cylinder position was measured using a Hoskin CP24MHT80
laser-based displacement sensor. For each case, data were recorded for 120 𝑠. For transient
cases, both displacement and flow measurements were started ten seconds prior to the
release of the cylinder, and the signals were acquired at a sampling frequency of 100,000
𝐻𝑧. The oversampled data were then resampled to 500 𝐻𝑧.

Flow velocity measurements were performed using two-component PIV in a horizontal
plane (𝑋𝑌 plane) at the midspan of the cylinder. The flow seeding, illumination, image
acquisition procedure, and PIV processing procedure were the same as described for the
eFST experiments (section 3.2.2), and the essential PIV parameters are summarized in
table 3.3.
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Parameter Value Unit
Plane 𝑋𝑌

Lens focal length 50 𝑚𝑚

Lens aperture 2.8 -
Sensor resolution 2160 X 2560 𝑝𝑥

Field of view 156 X 185 𝑚𝑚

PIV mode Double frame -
Sample rate 22 𝐻𝑧

Frame separation 5500 𝜇𝑠

Final vector pitch 0.7 𝑚𝑚/vector
Number of images 1350 + -

Table 3.3: Parameters for PIV experiments.

3.2.4 Transient VIV in unsteady freestream conditions (LTRAC)

For the experiments at LTRAC, six cases of changing freestream conditions were considered.
These cases were chosen to assess transient system characteristics during the transition
between the main response branches. The changes in velocity were achieved through the
input of sigmoid ramp signals to the variable frequency drive. This in turn resulted in
a similar ramp in freestream velocity. Velocity measurements for the ramp cases were
conducted using PIV at the cylinder location in an empty test section. The drive input
along with the associated velocity changes are depicted in figure 3.6, where the velocity
is averaged over three PIV trials. Overall, the velocity profiles in all cases were seen to
follow the imposed frequency changes relatively closely. Small overshoots/undershoots in
the velocity profiles are observed in almost all cases near the end of the velocity change
and are a result of oscillations introduced by surface waves. However, these oscillations
are within 5% of the mean freestream velocity at the end state and do not affect the
results or conclusions appreciably. The final ramp profiles were selected after multiple
tests focused on minimizing the generation of surface waves following the conclusion of
the velocity ramp. The total ramp time was scaled based on the difference between the
initial and final quasi-steady state velocities to maintain nearly constant mean freestream
accelerations across all cases. This resulted in the total period of the freestream transient
varying between approximately 28 and 45 cycles of cylinder oscillation depending on the
case. Shortening the ramp time further resulted in notable velocity oscillations following
the ramp (greater than approximately 5% of the quasi-steady velocity). Hereafter, the
velocity changes described above are referred to as the “fast ramp” cases.

In addition to the fast ramp cases, significantly slower variations in velocity were also
considered for all the cases investigated. Specifically, for these “slow ramp” cases, the total
period of the freestream transient was between approximately 13 and 20 times longer than
the fast ramp cases. Freestream velocity measurements using PIV were not collected for the
slow ramp cases since the frequency changes were tracked well by the velocity for the fast
ramp cases (figure 3.6), they are expected to match even better for the slow ramp cases.
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Figure 3.6: Imposed change in variable drive frequency (dashed lines) and the associated
change in measured freestream velocity (solid lines) for all six cases considered.

A minimum of twenty repeated trials were conducted for each fast ramp case involving
cylinder displacement measurements. These included initial branch (IB) ↔ upper branch
(UB), upper branch (UB) ↔ lower branch (LB), and lower branch (LB) ↔ desynchronization
(Dsnc). An additional minimum of five trials were acquired simultaneously with PIV, and a
minimum of ten trials were conducted for the slow ramp cases without PIV acquisition.
Details of the different cases are provided in table 3.4.

Case # trials
(fast,slow)

# PIV trials
(fast ramp)

Velocity change
(𝑚/𝑠)

Ramp time
(fast,slow 𝑡 𝑓𝑛)

IB to UB 20,10 5 0.159-0.178 28, 360
UB to IB 40,10 8 0.178-0.159 28, 360
UB to LB 20,10 5 0.191-0.220 37, 646
LB to UB 20,10 5 0.22-0.191 37, 646
LB to Dsnc 20,10 5 0.3-0.335 45, 890
Dsnc to LB 20,10 7 0.35-0.3 45, 890

Table 3.4: Parameters for unsteady freestream experiments.

The cylinder position was measured using a Wengler CP24MHT80 laser-based displacement
sensor at a sampling frequency of 1,000 𝐻𝑧. For cases where particle image velocimetry
measurements were acquired simultaneously with displacement, analog signals were acquired
at a sampling frequency of 50,000 𝐻𝑧. The oversampled data were then resampled to 1,000
𝐻𝑧. Direct force measurements were performed using a 6-axis ATI Mini40 sensor with
a resolution of 0.005 𝑁. The fluid forcing was obtained by subtracting the inertial force
(inertial mass times the acceleration) associated with the accelerating cylinder and the
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mounting apparatus from the force measurements. For all cases, force and position acqui-
sition were acquired 20 𝑠 prior to the initiation of the ramp and continued for a total of 180 𝑠.

Flow velocity measurements were performed using two-component PIV in a horizontal plane
(𝑋𝑌 plane) at the midspan of the cylinder. The flow was seeded with 10 micron hollow
glass spheres. Illumination was provided by a Photonics 20 𝑚𝐽 Nd:YLF high repetition
rate pulsed laser with a wavelength of 527 𝑛𝑚, whose light was formed into a sheet of
approximately 2 𝑚𝑚 thickness at the cylinder location. Images were acquired using a
Phantom Miro M340 digital camera with sensor resolution 2560 × 1600 𝑝𝑥 equipped with a
24 𝑚𝑚 Nikon AF Nikkor lens located underneath the water channel (figure 3.5). Images
were acquired in dual-frame mode at 30 𝐻𝑧. The frame separation was varied between
3,000 and 7,000 𝜇𝑠 based on the freestream velocity to achieve a pixel displacement of
approximately 10 𝑝𝑥 in the freestream. The sensor was cropped to 1216 × 1200 𝑝𝑥 to enable
longer acquisition times that can accommodate cases with slower transients (LB ↔ Dsnc).
This resulted in a final field of view of approximately 136 × 136 𝑚𝑚. At least 2300 images
were acquired for each case. The laser and camera were synchronized by a programmable
timing unit and controlled through LaVision Davis 10.0 software. Additionally for the PIV
cases, position and force measurements were initiated 15 𝑠 prior to the start of the PIV
acquisition. Further, the ramp started 15 𝑠 after the PIV image acquisition was initiated.
The processing steps after image acquisition were the same as those used in the previous
two experiments (see section 3.2.2) with the final relevant parameters shown in table 3.5.

Parameter Value Unit
Plane 𝑋𝑌

Lens focal length 24 𝑚𝑚

Lens aperture 2.8 -
Sensor resolution 2560 × 1600 𝑝𝑥

Field of view 136 × 136 𝑚𝑚

PIV mode Double frame -
Sample rate 30 𝐻𝑧

Frame separation 3,000-7,000 𝜇𝑠

Final vector pitch 1.1 𝑚𝑚/vector
Number of images 2300 + -

Table 3.5: Parameters for PIV experiments.

3.3 Data Analysis Techniques

3.3.1 Proper orthogonal decomposition

Proper orthogonal decomposition (POD), also commonly known as principal component
analysis (PCA) among other names [182], is a modal decomposition technique that extracts
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modes based on optimizing the mean square of the field variable being examined. POD was
introduced to the fluid mechanics community by Lumley [108] as a tool to study coherent
structures in turbulent flows with a detailed methodology outlined by Berkooz et al. [22].
POD has since been used extensively in the analysis of bluff body flows (e.g., [127, 141,
153, 189]). The turbulent velocity field in the wake of a bluff body can be decomposed into
mean and fluctuating components, where the latter is composed of quasi-periodic coherent
motions and residual small-scale turbulence. This triple decomposition can be expressed as
[71, 152]:

®𝑢( ®𝑋, 𝑡) = ®𝑢( ®𝑋) + ®𝑢′( ®𝑋, 𝑡) + ®𝑢′′( ®𝑋, 𝑡) (3.2)

where the overbar represents an ensemble average, ®𝑢′( ®𝑋, 𝑡) represent the coherent motions,
and ®𝑢′′( ®𝑋, 𝑡) represents the small-scale turbulence. Application of POD to a fluctuating
velocity component field will yield an energy-based decomposition into a set of spatial
modes ®𝜙𝑛 ( ®𝑋) and temporal coefficients 𝑏𝑛. The velocity field can now be represented as:

®𝑢( ®𝑋, 𝑡) = ®𝑢( ®𝑋) +
𝑁∑︁
𝑛=1

𝑏𝑛 (𝑡) ®𝜙𝑛 ( ®𝑋), (3.3)

The modes are spatially orthogonal and the temporal coefficients are uncorrelated in time.
The spatial modes are obtained as eigenmodes of the velocity autocorrelation matrix, while
the eigenvalues represent the contribution of the corresponding mode to the total fluctuating
kinetic energy. Consequently, the most dominant modes can be identified by sorting the
modes in descending order of their eigenvalues. Further, truncating the POD series (equation
3.3) to the modes that contain a significant portion of the total fluctuating energy enables
the construction of a reduced-order model of the flow that includes contributions from
only the most dominant coherent structures. For flows dominated by large-scale convective
features, such as flow past oscillating and stationary cylinders, the most energetic POD
modes are paired [109, 189]. The present study employs the snapshot method of computing
POD modes [172].

3.3.2 Time-frequency analysis

For non-stationary signals, time-frequency analysis is essential to capture dynamic signal
characteristics and identify frequency transitions and modulations that spectral analysis
may overlook. Two common techniques are the short-time fourier transform (STFT)
and Wavelets [171]. STFT divides the signal into short segments and computes Fourier
transforms for each segment, facing challenges in representing varying frequency content
within a single window. In contrast, wavelet analysis uses adaptive windows, providing
better temporal localization for transient features compared to STFT. To this end, wavelet
analysis is employed in this thesis for time-frequency analysis. For a continuous function
𝑦(𝑡), the wavelet transform is given by [104]:

𝑊𝜓 (𝑡, 𝑠) =
1
√
𝑠

∫ ∞

−∞
𝜓∗(𝜂 − 𝑡

𝑠
)𝑦(𝜂)𝑑𝜂 (3.4)
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where 𝜓∗ is the complex conjugate of the wavelet function and 𝑠 is the scale parameter.
Throughout this work, a Morse wavelet [105] with a symmetry parameter 𝛾 = 3 and
time-bandwidth parameter 𝛽 = 60 was used. The modulus square of the resulting wavelet
transform |𝑊𝜓 (𝑡, 𝑠) |2 expresses the local energy density of the signal at time 𝑡 and wavelet
scale 𝑠.

3.3.3 Numerical force estimation

For experiments conducted at FMRL, instantaneous forcing on the cylinder was estimated
through the substitution of known variables into the system equation of motion (equation
2.1). The displacement signal was low-pass filtered to remove high-frequency noise using a
cutoff frequency where the spectral energy has decayed to 3 orders of magnitude from its
peak value. Following this, the velocity and acceleration terms were calculated through
numerical differentiation of the displacement signal using the fourth-order central finite
difference scheme for the interior points and first-order schemes at the boundaries. With
known structural parameters 𝑚, 𝑘, and 𝑐, the estimation of kinematic variables on the
left-hand side of equation 2.1 provides a direct estimate of the forcing term at a given time.
While the forcing estimate is sensitive to the uncertainties in the measured variables (see
appendix A for uncertainties), the approach was verified to produce reliable estimates based
on the comparison against experimental force balance measurements in LTRAC.

3.3.4 Vortex Identification

Coherent structures (vortices) of varying patterns feature prominently in the wakes of cylin-
ders undergoing VIV (section 2.2). Robust identification of vortices enables a more detailed
qualitative and quantitative analysis of wake dynamics. Despite the routine occurrence of
vortices in a wide variety of fluid mechanics problems, a universal definition of a vortex has
not been adopted through the fluid mechanics community [51]. A common challenge in
vortex identification stems from the lack of a sharp boundary between the rotational and
irrotational regions of a fluid.

A relatively simple vortex identification method is based on vorticity [85, 120, 163]. However,
this method fails to distinguish between a rotational region with swirl and a shear-dominated
region of the flow [51, 77]. Other more advanced methods that partly address this issue have
been developed that employ the velocity gradient tensor to identify vortices. These include
the Δ criterion [37, 193], 𝑄 criterion [70, 197], 𝜆𝑐𝑖 [20, 219] and its extension 𝜆𝑐𝑟/𝜆𝑐𝑖 [33],
among others. In the present study, coherent structures in the wake were identified through
an iterative vortex identification routine based on the 𝜆2 criterion [77], in part due to its
relatively simple implementation and widespread use for bluff body wakes (e.g., [42, 57, 178]).
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Figure 3.7 demonstrates the application of the iterative procedure to an example flowfield
associated with the initial branch of VIV. Each PIV snapshot was spatially averaged using
a 4×4 window and contours of 𝜆2 at an initial threshold 𝜆2𝑜 were chosen to identify vortex
cores downstream of the cylinder (dotted lines in figure 3.7(a)). Following this, the threshold
was iteratively relaxed up to the last continuous contours that completely enclosed contours
at 𝜆2𝑜 (solid lines in figure 3.7(a)) while any other identified contours were discarded. The
last continuous contours appear to reasonably capture the bulk of the negative and positive
vortices immediately downstream of the cylinder (𝑋/𝐷 ⪅ 3). However, the vortex farther
downstream is not identified due to the selection of a relatively aggressive initial threshold.
The process was then repeated using a less aggressive starting threshold (𝜆2𝑜) to identify a
more diffused vortex core farther downstream as shown in figure 3.7(b). A constraint on
the maximum number of expected vortex cores within the field of view was used to limit
the number of iterations of 𝜆2𝑜.

(a) (b)

Figure 3.7: Contours of identified vortex boundaries overlaid on contours of spanwise
vorticity. (a) Contours using aggressive 𝜆20 (dotted line) and the associated last continuous
contours (solid line), and (b) contours using relaxed 𝜆20 and associated last continuous
contours.
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Chapter 4

Freestream turbulence effects on quasi-
steady vortex-induced vibrations
The effect of moderate elevation of freestream turbulence intensity from the baseline level is
investigated on the quasi-steady response of a low mass-damping VIV system. The most
prominent effects of eFST on quasi-steady VIV response are observed towards the end
of the lower branch and through desynchronization along with the inter-branch transition
regions. Conversely, eFST is found to minimally affect quasi-steady VIV response within the
initial and upper response branches. To elucidate this relative robustness of VIV to eFST,
comparisons are made between eFST effects on the wake of a stationary cylinder and VIV
with very low oscillation amplitudes. The results reveal a distinct change in the separated
shear layer characteristics with free vibration that contribute towards the robustness of VIV
to eFST.
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4.1 Amplitude and frequency response

Figure 4.1 shows the amplitude and frequency response of the cylinder with and without
eFST. The amplitude response is characterized by the average of all amplitude peaks
in a given time series (𝐴∗

𝑚𝑒𝑎𝑛) with the uncertainty in mean amplitude accommodated
by the marker size. The baseline amplitude response (shown in black circles) is typical
for systems with comparable mass-damping ratios (e.g., [62], [63]), featuring the initial
(4.0 ⪅ 𝑈∗ ⪅ 5.3), upper (5.3 ⪅ 𝑈∗ ⪅ 6.5), and lower branches (6.5 ⪅ 𝑈∗ ⪅ 10.0) of response
followed by desynchronization. The identified branch boundaries, range of synchronization,
and frequency response characteristics agree well with those reported in literature (e.g.,
[83], [62]) for similar mass ratios. An example, representing 𝐴∗

𝑚𝑎𝑥 from [62] is shown in blue
open circles in figure 4.1(a) with 𝑚∗ = 8.63 and 𝜁 = 0.00151. 𝐴∗

𝑚𝑎𝑥 from [62] is expectedly
higher than 𝐴∗

𝑚𝑒𝑎𝑛 from the current experiments in the initial and upper branches due to
the higher degree of amplitude modulations in these branches compared to the relatively
stable oscillation in the lower branch (see next section). Apart from this, differences in the
upper-to-lower branch transition and the 𝑈∗ corresponding to desynchronization could be a
result of the different 𝑅𝑒 and/or differences in the experimental setups.
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Figure 4.1: (a) Amplitude response of system. Green and yellow circled markers indicate
locations where PIV data were collected for the eFST and baseline cases, respectively. Blue
open markers correspond to data from [62] for comparison at similar mass-damping. (b)
Frequency response of the system. The dashed line represents a Strouhal number of 𝑆𝑡 =
0.205.

The results show that the introduction of eFST leads to premature desynchronization of
the system. Additionally, differences in baseline and eFST response can be observed around
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the transition between the initial and upper branches. However, over the majority of the
initial and upper branch, eFST does not significantly modify the system response, where
differences in 𝐴∗

𝑚𝑒𝑎𝑛 between the cases are within the measurement uncertainty. Towards
the end of the lower branch, lower mean amplitudes of oscillation are observed in the eFST
case beginning at 𝑈∗ ≈ 8.5. This difference in amplitudes progressively increases with
increasing reduced velocity, eventually resulting in earlier desynchronization for the eFST
case. Negligible amplitudes of oscillation are first observed around 𝑈∗ ≈ 10.7 in the eFST
case, compared to 𝑈∗ ≈ 11.2 for the baseline. This is confirmed in the frequency response
shown in figure 4.1(b), where a secondary peak is observed close to the Strouhal frequency
at lower reduced velocities for the eFST case. Increasing FST also appears to affect the
transition between the branches of response. Notably, near the transition between the initial
and upper branch (𝑈∗ ≈ 5.3), the distinct increase in amplitudes for the eFST cases is
lower (from approximately 0.3𝐷 to 0.55𝐷) than the baseline case (from approximately 0.3𝐷
to 0.65𝐷) in figure 4.1(a). To explore cycle-to-cycle variations in the structural response,
histograms of the peak amplitudes measured over approximately one thousand cycles of
oscillation are shown in figure 4.2 for the baseline and eFST case. The insets display a
representative time trace of cylinder displacement. The histograms reveal distinct changes
in amplitude response characteristics across the different branches. In the initial branch
(figure 4.2(a)), a relatively broad histogram is observed. This is attributed to substantial
modulations in the cylinder displacement seen in the inset signal trace and also reported in
previous studies (e.g., [83]). In the upper branch (figures 4.2(b) and 4.2(c)), the histogram
narrows notably; however, intermittent switching between vortex shedding modes [123]
contributes to the variance in peak amplitudes, reflected in the inset displacement traces.
The histograms pertaining to the lower branch (figures 4.2(d),4.2(e)) feature a relatively
narrow peak and the lowest standard deviation across all response branches. This is a
consequence of the relatively stable cylinder oscillations seen in the insets and reported in
earlier studies for the lower branch (e.g., [62]). System desynchronization (figure 4.2(f)) is
characterized by increasing variance in peak amplitudes which are related to the emergence
of multiple wake structures as the system transitions from lock-in to a desynchronized wake
[132].

The trends observed in the baseline case are also apparent for the eFST case. Similar to the
mean system response characteristics, the main effects of freestream turbulence are largely
confined to the transition between the initial and upper branch (𝑈∗ ≈ 5.3), where the eFST
case displays higher variance, and when the system is desynchronizing (𝑈∗ ≈ 10.5), where
the case with eFST exhibits a more complex distribution with higher variance than the
baseline case. In contrast, the effect on cycle-to-cycle variations within the main branches
of response is marginal. This contrasting behavior is likely related to and reflected in the
flow dynamics which is explored in the following section.
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Figure 4.2: Histograms of peak amplitudes across the synchronization region. Insets show
typical time traces of response along with the corresponding color coded standard deviation.
The peaks are normalized by the mean of all peaks in the dataset.

.

4.2 Mean flow topology and vortex shedding modes

Mean streamwise velocity fields at representative 𝑈∗ spanning all response regimes along
with the corresponding phase averaged spanwise vorticity fields are presented in figure 4.3.
Phase averaging was performed based on the cylinder position, and the results are shown
for the cylinder positioned at the maximum positive displacement (𝜃 =90◦). In the initial
branch (𝑈∗ ≈ 5.2, figure 4.3(a)), the expected 2S mode of vortex shedding is observed in the
wake, where vortices of opposite sign are shed from each shear layer in an alternating fashion
[62]. The mean flow features a symmetric recirculation region immediately downstream of
the cylinder base (marked by deep blue contours) where a significant wake velocity deficit
is observed. In the initial branch, the introduction of eFST has minimal effect on both the
vortex shedding characteristics and the mean flow topology.

In the upper branch (𝑈∗ ≈ 6.0, figure 4.3(b)), 2P0 shedding is observed [123], with two
vortices, one primary, and one weaker counter-rotating secondary vortex, shed in each half
cycle. The change in the shedding mode is also accompanied by a 180◦ phase shift in
shedding compared to the initial branch, consistent with previous observations (e.g., [62]).
The increase of the oscillation amplitude in this response branch leads to the formation of
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Figure 4.3: Mean streamwise velocity and phase averaged spanwise vorticity contours.

a wider wake compared to that seen for the initial branch. However, the local wake velocity
deficit is lower on average, and no reverse flow is observed downstream of the cylinder.
When eFST is introduced, the mean flow topology and vortex shedding mode remain
relatively unchanged, however, the phase averaged vorticity contours indicate the shedding
of stronger primary vortices. This is particularly evident for the negative vortex about
to be shed from the cylinder (compare vortices at approximately 𝑋/𝐷 ≈ 1.5 in figure 4.3(b)).

In the lower branch (𝑈∗ ≈ 9.5, figure 4.3(c)), a pair of counter-rotating vortices of roughly
equal strength is shed in each half cycle, characteristic of the expected 2P shedding [62]. It
should be noted that 𝑈∗ ≈ 9.5, while still representative of the lower branch, is situated
towards the end of the lower branch and close to the transition to desynchronization.
The change in the vortex shedding mode from 2P0 to 2P produces a distinct dual-lobe
topology in the mean wake contours for the lower branch, characterized by an increase
in the maximum velocity deficit in this region compared to the upper branch. Similar to
other branches of response, increasing eFST does not alter the wake topology significantly
in the lower branch. However, a subtle difference is noticeable in the separation process
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between the two like-signed vortices. In the baseline case (figure 4.3(c)), the two negative
vortices are separated more distinctly, with minimal vorticity present between the two cores,
whereas the separation between the like-signed vortices in the eFST case is not readily
apparent. Additionally, the upstream negative vortex in the eFST case is more elongated
compared to the baseline case, where the roll-up of the vortex is more apparent. These
differences in the vortex shedding characteristics are found to be particularly important as
the system desynchronizes, and are discussed further in section 4.4.

As the system desynchronizes (𝑈∗ ≈ 10.5, figure 4.3(d)), and the oscillation amplitudes
decrease markedly, 2P shedding is gradually replaced by 2S shedding [132]. Wake desyn-
chronization from the cylinder oscillation results in a phase averaged field that approaches
time averaged statistics, with vorticity concentrated primarily in the shear layers. The
mean wake velocity increasingly resembles that of the initial branch, with a notable increase
in maximum velocity deficit and the reappearance of a prominent recirculation region. The
changes to the phase averaged vorticity and mean velocity fields are more apparent with
the introduction of eFST, as expected from the structural response. The baseline case at
𝑈∗ ≈ 10.5 (figure 4.3(d)) is at an early stage of desynchronization and resembles the eFST
case from figure 4.3(c), characterized by the less apparent separation between like-signed
vortices, and more elongated vortex shapes.

As expected from the structural response results, the main effect of eFST on wake develop-
ment is seen in the onset of and progression to desynchronization. The sensitivity of the
initial-upper branch transition to eFST may be ascribed to the sensitivity of associated
vortex shedding mode changes to variations in test conditions, including FST. However, the
overall robustness of wake development to changes in free stream turbulence is strikingly
different from the significant effect of eFST on stationary cylinder wakes at similar 𝑅𝑒 [82].
This is explored in the following section, followed by a more detailed examination of the
desynchronization region.

4.3 Wake reorganization with small-amplitude cylin-
der vibrations

To explore the general robustness of VIV wake development to eFST, it is instructive
to examine in more detail the effect of eFST on stationary cylinder wakes at similar 𝑅𝑒,
where previous literature has reported significant modifications to the wake (e.g., [82]).
The flow dynamics associated with freely vibrating cylinders in the initial branch and
when the system is desynchronized are similar to the flow across stationary cylinders in
that the vortex shedding modes are 2S, and the mean flow topology in all cases features a
recirculation zone bounded by separated shear layers and a topological saddle point. These
similarities allow for a comparison of the contrasting effects of eFST on stationary and
vibrating cylinder wakes.
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To this end, two VIV cases were chosen: 𝑈∗ ≈ 4.0, 𝑓𝑛 ≈ 1.45 𝐻𝑧 (Initial branch), and 𝑈∗ ≈
11.2, 𝑓𝑛 ≈ 0.54 𝐻𝑧 (Desynchronized). Both reduced velocities are characterized by very
small mean oscillation amplitudes (≈ 0.01𝐷 ) with a relatively large separation between the
associated natural frequencies. The wakes in the VIV cases are compared to the stationary
cylinder wake, achieved by anchoring the tip of the cylinder model to the end plate.

Figure 4.4 displays contours of the mean streamwise velocity for the selected cases with
and without eFST. The bottom row depicts the differential wake (eFST-baseline) to better
illustrate the differences between each case. Figure 4.5 highlights the variation of key
statistics (4.5(a): mean streamwise velocity, 4.5(b) rms streamwise velocity fluctuations
𝑢𝑟𝑚𝑠 =

√︁
𝑢′2, and 4.5(c) rms transverse velocity fluctuations 𝑣𝑟𝑚𝑠 =

√︁
𝑣′2) along the wake

centerline. The measured wake statistics for the baseline stationary cylinder case fall within
the scatter reported in previous studies at similar 𝑅𝑒 [46, 89, 107, 138]. The variance
between individual studies is typically ascribed to differences in the Reynolds number, aspect
ratio, and/or blockage effects [129, 131, 181]. For the stationary cylinder, increasing FST
leads to a marked decrease in the streamwise extent of the recirculation region. Specifically,
the wake closure point, defined as the point where zero mean velocity is attained along the
wake centerline, moves upstream from 2.18𝐷 for the baseline case to 1.35𝐷 when eFST
is introduced. Accompanying this wake contraction is a notable increase (≈ 18%) in the
magnitude of 𝑣𝑟𝑚𝑠 directly downstream of the cylinder, along with an upstream shift in the
location of peak 𝑣𝑟𝑚𝑠 and 𝑢𝑟𝑚𝑠, in line with previous observations (e.g., [130]).

For VIV at 𝑈∗ ≈ 4.0, eFST marginally affects the near wake, involving minimal changes to
the wake closure point, as well as minimal modification to both location and magnitude of
peak 𝑣𝑟𝑚𝑠 and 𝑢𝑟𝑚𝑠. At 𝑈∗ ≈ 11.2, eFST induces a more notable upstream movement of
the wake closure point from 2.49 𝐷 to 2.16 𝐷. Although the peak rms magnitudes are not
changed appreciably with eFST, contrary to 𝑈∗ ≈ 4.0 case, their locations move upstream,
indicating an upstream movement of the vortex formation region. However, this effect is
less prominent than in the stationary cylinder case.

Significant quantitative differences between eFST and baseline cases can be extracted
from figure 4.5. Specifically, differences can be observed in the location and magnitude
of the minimum streamwise velocity along the wake centerline (𝑢𝑚𝑖𝑛) seen in figure 4.5(a).
For the stationary cylinder 𝑢𝑚𝑖𝑛 = -0.28𝑈0 at 𝑋/𝐷 = 1.66, while 𝑢𝑚𝑖𝑛 = -0.21𝑈0 at 𝑋/𝐷 =

1.51 for 𝑈∗ ≈ 4.0, and 𝑢𝑚𝑖𝑛 = -0.29𝑈0 at 𝑋/𝐷 = 1.82 and for 𝑈∗ ≈ 11.2. Thus, it is evident
that free vibration of the cylinder at both reduced velocities (𝑈∗ ≈ 4.0 and 11.2) results in
unique mean wake characteristics irrespective of the FST level. The observed differences in
baseline mean wake characteristics are expected to be related to changes in vortex shedding
between the cases, which is explored further for the baseline cases.
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Baseline

eFST

(a) (b)

Figure 4.4: Effect of eFST on the mean streamwise velocity for (a) stationary cylinder,
(b) low-amplitude cylinder vibration at 𝑈∗ ≈ 4.0, and (c) low-amplitude cylinder vibration
at 𝑈∗ ≈ 11.2. Bottom row depicts the differential wake (eFST-baseline) to better illustrate
the changes.

Spectral analysis of the transverse velocity component along the wake centerline at the
location of peak 𝑣𝑟𝑚𝑠 for all the baseline cases are presented in figure 4.6(a). Compared to
the expected Strouhal shedding (𝑆𝑡𝑣𝑠) for the stationary cylinder, the VIV cases exhibit a
distinct reduction (≈ 8% with a more broadband distribution at 𝑈∗ ≈ 11.2) in the dominant
wake Strouhal number (marked by the red dashed lines in figure 4.6(a)). This is also
reflected in the structural response spectra shown in figures 4.6(b) and 4.6(c) for baseline
cases at 𝑈∗ ≈ 4.0 and 11.2, respectively. Both cases reveal two dominant frequencies in the
structural response–one close to the structure’s natural frequency (black dashed line marked
𝑆𝑡𝑛), and one centered around the modified vortex shedding frequency (red dashed line).
The reduction in dominant wake frequencies that is also reflected in the structural response
points to a coupled fluid-structure response, even at very low oscillation amplitudes and
two distinct natural frequencies. The introduction of eFST is seen to minimally affect the
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Figure 4.5: Velocity statistics along wake centerline (a)Mean streamwise velocity, (b) rms
streamwise velocity fluctuations, and (c) rms transverse velocity fluctuations.

dominant frequencies for all tested cases and is not shown here for brevity.
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Figure 4.6: (a) PSDF of transverse velocity along wake centerline for baseline cases. (b)
Spectra of cylinder displacement at 𝑈∗ ≈ 4.0 (c) Spectra of cylinder displacement at 𝑈∗ ≈
11.2. Red dotted lines indicate the modified vortex shedding frequency.

The fluid-structure coupling evidenced through common dominant frequencies in wake
and structure response (figure 4.6), and associated distinct baseline wake characteristics
at 𝑈∗ ≈ 4.0 and 11.2 (figure 4.5) is speculated to contribute to the robustness of VIV
cases to eFST when compared to stationary cylinder wakes. For stationary cylinders,
the observed drastic changes with the introduction of eFST are related to the effect of
external perturbations on the separated shear layers. In particular, eFST promotes the
breakdown of coherent structures in shear layers thereby resulting in premature laminar-
to-turbulent transition [82] that further precipitates the contraction of the wake (figure
4.4(a)). The transition to turbulence in the shear layers partly contributes to increased
Reynolds stresses along the shear layers [46] and this is explored further for the selected cases.

Figure 4.7 displays contours of Reynolds shear stress in the wakes of the stationary and
vibrating cylinders with and without eFST. The results for all baseline cases feature distinct

51



“lobes” that do not extend up to the cylinder and are antisymmetric with respect to the
wake centerline. For the baseline stationary cylinder, the notable initial Reynolds stress
levels in the shear layers are attributed to the shear layer instability and transition expected
at the investigated Reynolds number, as well as shear layer flapping due to vortex roll-up
[46]. When eFST is introduced, aside from the wake contraction and increase in fluctuating
velocity magnitudes previously observed (figure 4.5), there is a marked increase (≈ 35%
) in Reynolds shear stress along the shear layers, with the lobes now extending farther
upstream towards the cylinder. This increase may result from a combination of earlier
shear layer transition [82], and more vigorous shear layer flapping [140] due to roll-up
moving closer to the cylinder base. Conversely, for both VIV cases, eFST does not induce
appreciable changes in the magnitudes of Reynolds shear stress along the shear layers. Thus,
while stationary cylinder shear layers at the current 𝑅𝑒 are highly sensitive to external
perturbations, the fluid-structure coupling in the VIV cases appears to desensitize the shear
layers to elevated free-stream perturbations, thereby contributing to the general robustness
of the flow development and structural response to eFST.

Stationary cylinder VIV U*~4.0

Baseline

eFST

(a) (b) (c)

VIV U*~11.2

Figure 4.7: Reynolds shear stress in the wake for (a) stationary cylinder, (b) low-amplitude
cylinder vibration at 𝑈∗ ≈ 4.0, and (c) low-amplitude cylinder vibration at 𝑈∗ ≈ 11.2.

4.4 Desynchronization analysis

This section explores the evolution of the coherent structures in the wake leading to and
during desynchronization. Snapshot proper orthogonal decomposition (POD) [172] is
employed here for this purpose. Figure 4.8 displays the first and third streamwise POD
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spatial modes (𝜙𝑢1, 𝜙𝑢3) for the baseline and eFST cases through the transition from the
end of the lower branch (𝑈∗ ≈ 9.5) and into desynchronization (𝑈∗ ≈ 11.0 for baseline and
𝑈∗ ≈ 10.5 for eFST). Given that POD modes are found to exist in pairs for large-scale
convective-dominated flows such as the present cases [109], the first and third modes here
are representative of the first two mode pairs. The third column in both cases corresponds
to different reduced velocities that produce comparable amplitude response for the baseline
and eFST cases in desynchronization.
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Figure 4.8: POD streamwise spatial mode contours of the first and third mode for (a)
baseline and (b) eFST cases.

.

At 𝑈∗ ≈ 9.5, both baseline and eFST cases exhibit similar spatial mode structures for
both first and third modes, characteristic of the expected 2P shedding [155] in the lower
branch. As the cylinder undergoes desynchronization, both baseline (𝑈∗ ≈ 11.0) and eFST
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(𝑈∗ ≈ 10.5) cases exhibit a distinct third mode. The structure of the third mode resembles
the first mode pair found in the initial branch, where 2S shedding is observed [153]. This
2S mode becomes the dominant mode for both baseline and eFST cases with an increase
in reduced velocity [155] (not shown here for brevity), highlighting the transition from 2P
lock-in to 2S desynchronized wake. The existence of nearly identical mode structures as the
wake transitions from 2P to 2S affirms similarities in the desynchronization process between
baseline and eFST cases. However, despite similarities in the structure of the spatial
modes, some differences were identified in their relative energy contributions, particularly
in cases where the 2P mode of shedding is dominant. Figure 4.9 shows the relative energy
contribution of the six most energetic modes for both baseline and eFST cases at 𝑈∗ ≈ 9.5.
The introduction of eFST results in a distinct redistribution of relative energy between
the mode pairs. In all cases, the relative contribution of the first mode pair is higher with
eFST, while the relative contribution of the subsequent two mode pairs decreases. This
redistribution likely reflects a modification of the 2P vortex shedding process since other
potential influencing parameters such as amplitude and frequency response at 𝑈∗ ≈ 9.5 are
nearly identical between baseline and eFST cases.
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Figure 4.9: Relative energy of first six POD modes associated with 2P shedding near the
onset of desynchronization at 𝑈∗ ≈ 9.5.

A low order model (LOM) of the wake is employed here to illustrate the differences in
wake development between baseline and eFST cases associated with the relative energy
distributions seen in figure 4.9. The LOM utilizes the six most energetic modes (𝑁 = 6 in
equation 3.3), consistent with previous investigations where a minimum of six modes were
required to reconstruct the 2P shedding phenomenon [69]. Figure 4.10 compares the phase
averaged spanwise vorticity reconstruction of the wake using the LOM for baseline and
eFST cases at 𝑈∗ ≈ 9.5. A notable difference is observed in the like-signed vortex separation
between the two cases. In particular, the baseline case is characterized by an apparent
separation between the two negative vortex cores and a defined roll-up of the upstream
vortex. Conversely, the like-signed vortex separation and upstream vortex roll-up in the
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eFST case are less prominent. Additionally, differences in the shape of the two positive
vortices are also apparent between the two cases, with the eFST case exhibiting more
elongated shapes. The differences in like-signed vortex separation were first observed in the
original phase averaged vorticity fields (figure 4.3), and are featured more prominently in
the LOM reconstruction. Overall, the LOM reconstructions show clear differences in the
vortex roll-up and like-signed vortex separation process between baseline and eFST cases
that are associated with the modal energy redistribution seen in figure 4.9.

The changes to the vortex roll-up and separation process seem to be reflective of the
system transitioning from the lower branch to desynchronization, involving the change from
2P lock-in to 2S desynchronized state. Similar behavior is also observed for the baseline
case at higher reduced velocities. As seen in the phase averaged images from figure 4.3, the
baseline case also exhibits a less apparent like-signed vortex separation and vortex roll-up
between figures 4.3(c) and (d). The introduction of eFST advances this process, thereby
promoting earlier desynchronization.

Baseline eFST

Figure 4.10: Phase-averaged spanwise vorticity with the cylinder at maximum positive
amplitude for (a) baseline and (b) eFST cases using a LOM of six modes at 𝑈∗ ≈ 9.5.

4.5 Concluding remarks

The present study examined the influence of eFST on the response characteristics of VIV
through simultaneous displacement and flow field measurements. A 1-DOF system with
low mass-damping (0.0084 < 𝑚∗𝜁 <0.0145) was considered for a range of reduced velocities
(3.9 < 𝑈∗ < 12.7) at a constant Reynolds number of approximately 4400. Freestream turbu-
lence (eFST) was generated using a biplanar grid of square cross sections that increased
the turbulence intensity from 𝑇𝑢 = 0.9% to 𝑇𝑢 = 2.7% at the cylinder location. In addition,
a reference case of a stationary cylinder was considered at the same Reynolds number and

55



the two levels of free-stream turbulence.

The results show that eFST at the tested intensity and 𝑅𝑒 predominantly modifies the
response at larger reduced velocities, particularly inducing earlier desynchronization. In
contrast, eFST is found to minimally affect mean and dynamic VIV response within the
main branches of synchronization with the exception of the inter-branch transitions. Con-
sequently, the main effect on the flow development is also confined to the earlier onset of
desynchronization induced by eFST.

The contrasting robustness of VIV and sensitivity of a stationary cylinder wakes to eFST
has been explored by considering stationary cylinder flow and VIV with minor amplitudes
(≈ 1% of cylinder diameter at 𝑈∗ ≈ 4, 11.2). The results show drastic changes to the near
wake of the stationary cylinder with eFST, notably resulting in a contraction of the near
wake, while the wakes in the VIV cases were minimally affected. For stationary cylinders,
the changes to the near wake are associated with the earlier transition of the shear layers
with the introduction of eFST. Conversely, for freely vibrating cylinders, the fluid-structure
coupling apparently desensitizes the shear layers to elevated freestream turbulence, thus
contributing to the robustness of the limit cycle oscillations.

Proper orthogonal decomposition was employed to explore the wake structures through the
end of the lower branch and into desynchronization for both baseline and eFST cases. The
results show similarities between baseline and eFST cases in the spatial structure of the
POD modes through desynchronization, but notable differences in the associated relative
energy content, particularly when the wake is dominated by 2P shedding. The impact
of the relative energy modification on the wake structure was investigated by creating a
low order model (LOM) of the wake using the six most energetic POD modes. The LOM
showed differences between baseline and eFST cases in the vortex roll-up and like signed
vorticity separation that is characteristic of the 2P mode. In particular, the presence of
eFST results in less apparent vortex separation and less distinct vortex roll-ups. Similar
behavior is also observed for the baseline case at higher reduced velocities, thus indicating
that eFST primarily promotes premature desynchronization while minimally modifying the
underlying physical processes.

The relative robustness of VIV to the moderate level of eFST tested in the present work
agrees with the work of Goswami et. al. [61] who also explored VIV in moderate eFST
conditions and at similar 𝑅𝑒. The present work links the change in shear layer behavior
with cylinder oscillations that to the robustness of VIV to eFST. The present results
indicate that VIV at low mass-damping remain relatively unaffected by eFST at 𝑅𝑒 that
correspond to the earlier stages of the shear layer transition regime for stationary cylinders.
Significant changes are expected at larger 𝑅𝑒 and more intense turbulence where boundary
layer transition takes place. This is supported by the results from Pasto [139] who observed
a decrease in oscillation amplitudes for 𝑅𝑒 near the end of the shear layer transition regime
and at higher turbulence intensities.
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Chapter 5

Transient vortex-induced vibrations of
a cylinder released from rest in a steady
freestream
The VIV setup at FMRL is modified to enable a release from rest into a steady freestream
at various reduced velocities spanning the different response branches. The results show
distinct responses across the response branches including an amplitude overshoot in the
initial branch and a continuous increase in amplitudes in the upper and lower branches.
Analysis of the forcing signals is used to identify the onset of nonlinear lock-in behavior
characteristic of VIV following cylinder release. Additionally, differences in the transient
amplitude growth rates are found across the response branches, with these differences being
linked to the forcing characteristics on the cylinder. Quantitative analysis of the wake is
used to relate the changes in forcing characteristics with the timing of vortex shedding along
with identification of the changing wake topologies during the transients.
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5.1 Quasi-steady state system characteristics

The quasi-steady system amplitude response (𝐴∗
𝑚𝑒𝑎𝑛), frequency response ( 𝑓 ∗), and mean vor-

tex force phase difference (𝜙𝑣) are presented in figures 5.1(a-c), respectively. The amplitude
response features the initial branch (IB, 4.0 ⪅ 𝑈∗ ⪅ 5.3), upper branch (UB, 5.3 ⪅ 𝑈∗ ⪅ 6.5),
lower branch (LB, 6.5 ⪅ 𝑈∗ ⪅ 10.5), and desynchronization regimes (𝑈∗ ⪆ 10.5) expected
for a low-mass damping system [83]. Dashed vertical lines roughly delineate the bound-
aries between the branches. The amplitude response (figure 5.1(a)) in the initial branch
is characterized by relatively low amplitudes of oscillation (0.08 ⪅ 𝐴∗

𝑚𝑒𝑎𝑛 ⪅ 0.25). The
frequency response (figure 5.1(b)) reveals two dominant frequencies near the von Kármán
shedding frequency (sloped dashed line) and the structure’s natural frequency for 𝑈∗ ⪅
4.8. This early initial branch is referred to as the quasi-periodic regime [83] and is not of
significant interest in the present work. A single lock-in frequency lower than the structure’s
natural frequency ( 𝑓 ∗ < 1) is attained towards the end of the initial branch (figure 5.1(b)).
The vortex force phase difference (figure 5.1(c)) following lock-in to a single frequency
is positive and close to 0◦. The upper branch is characterized by the largest oscillation
amplitudes (0.68 ⪅ 𝐴∗

𝑚𝑒𝑎𝑛 ⪅ 0.73). The nondimensional oscillation frequency is slightly
greater than one, and 𝜙𝑣 settles close to 180◦. As expected, oscillation amplitudes in the
lower branch (0.5 ⪅ 𝐴∗

𝑚𝑒𝑎𝑛 ⪅ 0.62) are smaller than those in the upper branch. Here, the
nondimensional frequency and vortex force phase difference remain greater than one and
close to 180◦, respectively. Increasing the reduced velocity beyond 𝑈∗ ≈ 10.5 brings the
system to the desynchronization regime, where a dual frequency response (around the
natural and von Kármán shedding frequencies) reappears. The amplitudes of oscillation
are reduced substantially in this regime. The identified branch boundaries, oscillation
amplitudes, and frequency/phase response characteristics agree well with those reported in
literature, for example, [62] and [83] for similar mass-damping ratios.
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Figure 5.1: Quasi-steady state system characteristics. (a) Mean amplitude response
calculated as the mean of all peaks in a time series, (b) frequency response calculated using
spectral analysis of the displacement signal, and (c) mean vortex force phase difference
obtained through the application of the Hilbert transform [83]. The uncertainty in all
quantities is accommodated by the marker sizes. The red, green, and blue markers indicate
𝑈∗ which are analyzed in further detail using both PIV measurements and detailed force
analysis.

The quasi-steady state wake topology varies significantly across the response branches, as
depicted by phase-averaged spanwise vorticity contours presented in figures 5.2(a-c) for the
initial (𝑈∗ ≈ 5.2), upper (𝑈∗ ≈ 6.0), and lower (𝑈∗ ≈ 7.2) branches, respectively. For phase
averaging, the cylinder position was used as the reference signal, with 0◦ corresponding to
the instant when the cylinder crosses its equilibrium position and is moving in the positive
𝑌 direction. The velocity fields were segregated into 15◦ bins for averaging, with each
bin comprising approximately eighty individual snapshots. For each case in figure 5.2,
the cylinder is located at the top dead center of oscillation The initial branch flow field
(figure 5.2(a)) features the expected 2S mode [62] characterized by the alternate shedding of
oppositely-signed vortices. In the upper branch, (figure 5.2(b)) the wake topology resembles
that of the 2P0 mode [62], however, the weaker secondary vortex is not clearly identifiable
in the phase-averaged vorticity contours. The characteristic jump in 𝜙𝑣 accompanying the
initial-upper branch transition (figure 5.1(c)) is reflected in a nearly 180◦ change in the
phase of vortex shedding in figure 5.2(b) compared to figure 5.2(a). In the lower branch
(figure 5.2(c)), the 2P mode [62] is identified by pairs of counter-rotating vortices of roughly
equal strength being shed at each half-cycle [123].
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Figure 5.2: Phase-averaged spanwise vorticity contours at locations marked by the colored
symbols (figure 5.1 in the (a) initial, (b) upper, and (c) lower branches, respectively. The
cylinder is at top dead center of oscillation cycle in all cases.

5.2 Transient amplitude response

Figure 5.3 depicts the transient amplitude response for final reduced velocities 𝑈∗ ≈ 5.2, 6.0,
and 7.2, corresponding to the initial, upper, and lower branches of quasi-steady end state.
Figure 5.3(a) displays a time series of the cylinder displacement for a single trial overlaid
with the amplitude envelope across the time series. Figure 5.3(b) displays the amplitude
envelopes across 15 trials. For all cases, 𝑡 𝑓𝑛 = 0 corresponds to the instant of cylinder release.
The results show that amplitude envelopes exhibit similar trends for each reduced velocity,
with the transient envelopes appearing to be shifted in time (this is particularly evident at
𝑈∗ ≈ 7.2). Accordingly, cross-correlation analysis of the corresponding time series was used
to estimate a “time lag” (𝜏) between the individual trials in each set. This time lag was
computed relative to the trial with the earliest transient onset in each data set. To align
the trials, each trial was temporally shifted by the difference between its individual time lag
relative to the leading trial and the mean time lag across all trials. An ensemble average
of all shifted trials was obtained with the results presented in figure 5.3(c). The resulting
profiles reveal the system’s mean amplitude progression (solid black line) at each reduced
velocity. The slopes of the envelopes represent the amplitude growth rate. The gray-shaded
region represents ± one standard deviation of amplitude envelopes between the shifted trials
and provides an estimate of the variability in dynamics between the temporally shifted trials.

The mean amplitude progression (figure 5.3(c)) at 𝑈∗ ≈ 5.2 is characterized by a distinct
amplitude overshoot followed by a steady amplitude decay to quasi-steady state. In par-
ticular, amplitudes of around 𝐴/𝐷 ≈ 0.4 are achieved within approximately 11-12 cycles
((𝑡 − 𝜏) 𝑓𝑛) of cylinder release, followed by a reduction in amplitudes until quasi-steady state
is attained at (𝑡 − 𝜏) 𝑓𝑛 ≈ 25 where 𝐴/𝐷 ≈ 0.23. Relatively low trial-to-trial variability
(gray-shaded region) is observed during the transient growth in amplitude, with a noticeable
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Figure 5.3: Transient amplitude response across the branches. (a) Representative time
series response at marked locations in figure 5.1, (b) envelope of peak amplitudes across 15
trials, and (c) ensemble average of all trials shifted by estimated time lag 𝜏.

increase in trial-to-trial variability beyond the peak amplitude. The maximum time delay 𝜏

between different trials is within 3.5 cycles (figure 5.3(b)). At 𝑈∗ ≈ 6.0, the amplitudes
steadily increase with low trial-to-trial variability up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 15. Beyond this, the
amplitudes continue to increase, however, there is a noticeable decrease in the slope of the
envelope along with increasing trial-to-trial variability until quasi-steady state is attained at
(𝑡 − 𝜏) 𝑓𝑛 ≈ 22. The mean amplitude envelope in the upper branch resembles a sigmoid-type
profile. The maximum time delay 𝜏 between different trials is within 4.5 cycles. At 𝑈∗ ≈
7.2, a relatively smooth sigmoid-type envelope is observed. Aside from a significant increase
in the time lag between the trials (figure 5.3(b)), transient response in the adjusted envelope
(figure 5.3(c)) shows the lowest variability in this case. Quasi-steady state is achieved in
approximately 34 cycles.

Ensemble-averaged transient amplitude envelopes for six reduced velocities (one additional
𝑈∗ in each response branch) are presented in figure 5.4(a). The mean amplitude envelopes
reinforce the trends outlined previously, namely, the overshoot in the initial branch and
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Figure 5.4: (a) Ensemble-average of all trials across the synchronization regime, and (b)
associated settling time at each 𝑈∗. The settling time is determined as per the algorithm
described in text.

sigmoid-type profiles in the upper and lower branches. Additionally, notable differences in
the growth rates (slopes) are observed with changing reduced velocities, with the largest
growth rates near the end of the initial branch (𝑈∗ ≈ 5.2), and at the start of the upper
branch (𝑈∗ ≈ 5.3). Growth rates decline with increasing reduced velocities, particularly
beginning from 𝑈∗ ≈ 6.0 in the upper branch. The time taken to attain quasi-steady state
also increases, similar to the observations in [30]. A “settling time (𝑡𝑠)” is defined at each 𝑈∗

to quantify the time taken to attain quasi-steady state by identifying the first instance when
a moving average of the amplitude envelope over a prescribed window for each trial falls
within a given threshold. Specifically, at each 𝑈∗, the mean (𝐴𝑚𝑒𝑎𝑛) and standard deviation
(𝐴𝜎) of all amplitude envelopes at quasi-steady state are calculated over approximately
500 cycles. A limiting threshold is then defined as 𝐴𝑚𝑒𝑎𝑛 ± 𝐴𝜎. Following this, a moving
average and moving standard deviation are calculated for each trial using a window length
of approximately five oscillation cycles. The first instance where the moving average falls
within the limiting threshold and the moving standard deviation is within 10 % of 𝐴𝜎 is
defined as the settling time 𝑡𝑠. Figure 5.4(b) presents the resulting nondimensional 𝑡𝑠 𝑓𝑛
for all tested reduced velocities except 𝑈∗ ≈ 4.8, where the system exhibits a beating-type
response (quasi-periodic regime, [83]) and does not “settle”. The error bars represent ± one
standard deviation of 𝑡𝑠 𝑓𝑛 across all trials. The upper branch cases at 𝑈∗ ≈ 5.3 and 6.0
exhibit the fastest settling times (approximately 23 − 24 cycles) and relatively low standard
deviations (≈ 2 − 3 cycles). The settling time for 𝑈∗ ≈ 5.2 is comparable to the two upper
branch cases (𝑡𝑠 𝑓𝑛 ≈ 25 cycles). With increasing 𝑈∗ in the lower branch, both the settling
time and the standard deviation increase rapidly, reaching 𝑡𝑠 𝑓𝑛 ≈ 35 ± 5 at 𝑈∗ ≈ 7.2, and
𝑡𝑠 𝑓𝑛 ≈ 57 ± 7 at 𝑈∗ ≈ 8.3.

The preceding discussion of transient amplitude response highlights notable similarities and
differences across the response branches. The similarity of the observed transient response
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across different trials for a given 𝑈∗, particularly during the periods of most prominent
amplitude growth (figure 5.3(c)), indicates persistent mechanisms governing the system
transient dynamics. However, the time lag between trials (figure 5.3(b)) points to a notable
variability in the onset of the substantial amplitude growth. Further, in contrast to the
upper and lower branches, where the amplitude envelopes indicate continuous positive
energy transfer to the cylinder during the transient response (figure 5.4(a)), the amplitude
overshoot in the initial branch indicates a switch in the sign of energy transfer to the cylinder.

To elucidate the underlying mechanisms responsible for the observed transient dynamics,
the transient frequency response, forcing on the cylinder, and wake PIV measurements are
considered further. First, analysis of the transient system frequency response is used to
identify the onset of fluid-structure interactions that trigger amplitude growth and lock-in
behavior (section 5.3). Following this, an analysis of the forcing on the cylinder is employed
to elucidate the energy transfer mechanisms governing varying growth rates and differences
in the nature of amplitude envelopes between the initial and upper/lower branches (section
5.4). Finally, the attendant transient wake characteristics are explored in section 5.5 to
highlight the underlying physical mechanisms associated with the different responses.

5.3 Transient frequency response and the onset of
lock-in

The transition from forcing at the expected von Kármán shedding frequency before cylinder
release to the final lock-in frequency at quasi-steady state (figure 5.1(b)) was examined
through wavelet analysis of the vortex force. Figure 5.5 presents ensemble-averaged signal
energy (modulus square of the wavelet transform) of the force acting on the cylinder at
𝑈∗ ≈ 5.2, 6.0, and 7.2, respectively. At each time instance, the signal energy is normalized
by the total energy across all scales considered. The maximum energy magnitude is plotted
in green, while the red line represents the equivalent maximum in the ensemble-averaged
signal energy of displacement. The horizontal dashed and dashed-dotted black lines identify
the von Kármán vortex shedding frequency and the structural natural frequency, respectively.

At 𝑈∗ ≈ 5.2 (figure 5.5(a)), the von Kármán shedding frequency is within 5 % of the natural
frequency, and within two cycles following release at (𝑡 − 𝜏) 𝑓𝑛 = 0, the dominant force and
displacement frequencies are both identified at a common value that is slightly below the
structural natural frequency (dashed-dotted black line), indicating lock-in behavior. This
initial lock-in continues up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 6. Afterward, the forcing frequency exhibits a
distinct decrease, reaching a local minimum at (𝑡 − 𝜏) 𝑓𝑛 ≈ 10 before settling on the final
lock-in value ( 𝑓 ∗ ≈ 0.94) attained near (𝑡 − 𝜏) 𝑓𝑛 ≈ 13, while the displacement frequency
exhibits a continuous gradual reduction to the final lock-in value. The dominant frequencies
throughout the transient are lower than the structure’s natural frequency as a consequence
of the vortex force phase difference (𝜙𝑣) being lower than 90◦ thereby contributing to a
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Figure 5.5: Ensemble-averaged normalized wavelet scalograms of force at (a) 𝑈∗ ≈ 5.2
(initial), (b) 𝑈∗ ≈ 6.0 (upper), and (c) 𝑈∗ ≈ 7.2 (lower branches). The green solid lines
represent locus of maximum in force scalogram magnitude, red represents the locus of
maximum in displacement scalogram magnitude, dashed black indicates von Kármán
frequency, and the dashed-dotted black line represents the structure’s natural frequency.

positive effective added mass. This is explored further in section 5.4.

At 𝑈∗ ≈ 6.0 (figure 5.5(b)), the von Kármán shedding frequency is separated from the natural
frequency by approximately 20%. Near (𝑡 − 𝜏) 𝑓𝑛 ≈ 4, both the forcing and displacement
frequencies assume a common value ( 𝑓 ∗ ≈ 1.02), which is higher than the natural frequency.
Both the forcing and displacement frequency increase up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 14 before settling
near the final lock-in value 𝑓 ∗ ≈ 1.01 near (𝑡 − 𝜏) 𝑓𝑛 ≈ 20. At 𝑈∗ ≈ 7.2 (figure 5.5(c)), the
von Kármán shedding frequency is well separated from the natural frequency (≈ 40%), and
notable energy content in the forcing signal is observed at the von Kármán frequency up
to (𝑡 − 𝜏) 𝑓𝑛 ≈ 6. Between (𝑡 − 𝜏) 𝑓𝑛 ≈ 6 and 13, notable energy content is observed around
both von Kármán and structure natural frequencies. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 14, lock-in is attained
at a value higher than the structure’s natural frequency ( 𝑓 ∗ ≈ 1.03). Note that, in contrast
to the transient for the initial branch, at both 𝑈∗ ≈ 6.0 and 7.2, the lock-in frequencies are
greater than the natural frequency throughout the transient and at quasi-steady state due
to the vortex force phase differences being between 90 < 𝜙𝑣 < 180 ([83] with 𝜙 values shown
in section 5.4). For all the cases presented in figure 5.5, the detection of notable signal
energy for the forcing near the structure’s natural frequency following cylinder release (albeit
at different instances) signifies a modification of forcing characteristics due to nonlinear
fluid-structure interaction. While lock-in is observed relatively early ((𝑡 − 𝜏) 𝑓𝑛 ⪅ 4) at 𝑈∗ ≈
5.2 and 6.0 (figures 5.5(a-b)), forcing at 𝑈∗ ≈ 7.2 (figure 5.5(c)) exhibits a dual frequency
response near natural and von Kármán shedding frequencies prior to lock-in. A closer
examination of this initial period is required to gain insight into transient system lock-in.
For this purpose, linear system response theory is employed to model the initial system
response after cylinder release.

64



The general solution to a linear spring-mass-damper excited by a constant sinusoidal force
𝐹 (𝑡) = 𝐹0𝑠𝑖𝑛(𝜔𝑡) can be expressed as a sum of homogeneous and particular solutions to
the equation of motion (equation 2.1):

𝑦(𝑡) = 𝐹0

4𝜋2𝑚
√︁
( 𝑓 2

𝑛 − 𝑓 2)2 + (2𝜁 𝑓 𝑓𝑛)2
𝑠𝑖𝑛(2𝜋 𝑓 𝑡 − 𝛼)︸                                                       ︷︷                                                       ︸

Particular Solution

+

Homogeneous solution︷                                     ︸︸                                     ︷
𝐵𝑒−𝜁2𝜋 𝑓𝑛𝑡𝑠𝑖𝑛(2𝜋 𝑓𝑛𝑡

√︁
1 − 𝜁2 + 𝛽), (5.1)

where 𝐵 and 𝛽 are constants that depend on the initial conditions. The general solution
exhibits a dual frequency response at the forcing frequency 𝑓 and the damped natural
frequency 𝑓𝑑 = 𝑓𝑛

√︁
1 − 𝜁2) through the particular and homogeneous (decaying) solutions,

respectively. The homogeneous solution decay rate is proportional to the damping and
persists for O(100) cycles for the damping ratio representative of the present system,
𝜁 ≈ O(10−4). Thus for a cylinder released from rest where it is subjected to forcing at von
Kármán frequency prior to release, the initial structural response is expected to feature
both von Kármán and structure natural frequencies while forcing remains at von Kármán
shedding frequency. Evidence of a brief period of linear system response matching that of
equation 5.1 is observed at 𝑈∗ ≈ 7.2, where the von Kármán and natural frequencies are
sufficiently separated. An example is presented in figure 5.6, where figure 5.6(a) displays
time traces of nondimensional displacement and forcing for approximately 50 cycles, and
figure 5.6(b) shows the normalized wavelet scalogram of the forcing signal during the same
time period. The scalogram in figure 5.6(b) indicates significant energy at the von Kármán
shedding frequency and negligible energy near natural frequency for 𝑡 𝑓𝑛 ⪅ 9. The left inset
of vortex force time history in figure 5.6(a) shows strongly periodic fluctuations for this
initial period following the release of the cylinder. Here, the cylinder exhibits relatively
minor oscillations that are modulated as a result of the dual-frequency response (equation
5.1 and verified through spectral analysis). At 𝑡 𝑓𝑛 ≈ 11, notable energy content appears
at the structure’s natural frequency in figure 5.6(b). Beyond 𝑡 𝑓𝑛 ≈ 11, the forcing time
history becomes relatively noisy (see right inset in figure 5.6) which is also reflected in
a significant broadening of the energy spectrum (figure 5.6(b)). The amplitude response
shows increasing oscillation amplitudes and the beginning of sustained amplitude growth.
Beyond 𝑡 𝑓𝑛 ≈ 30, the forcing exhibits periodic oscillations with minimal noise. The onset of
nonlinear forcing, characterized by the emergence of a notable component of forcing near
the structure’s natural frequency at 𝑡 𝑓𝑛 ≈ 11, is critical for sustained amplitude growth. In
particular, it can be shown that for continuous net positive energy transfer to the cylinder,
there must be a component of forcing at the structural oscillation frequency (analogous
to resonance in a linear system). If forcing persisted only at von Kármán frequency, the
amplitudes in the lower branch would remain less than approximately 1 % of the cylinder
diameter, as seen in figure 5.6(a) for 𝑡 𝑓𝑛 ⪅ 9.
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Figure 5.6: Onset of nonlinear behavior for a single trial at 𝑈∗ ≈ 7.2. (a) Nondimensional
displacement and vortex force and (b) normalized wavelet scalogram of vortex force. The
left inset displays the time period featuring periodic forcing at predominantly von Kármán
frequency and the right inset displays a period of noisy forcing signal characterized by
frequency components around both von Kármán and structure natural frequency along
with the associated growth in oscillation amplitudes.

To further investigate the onset of transient fluid structure interactions leading to lock-in,
energy contributions around each of the pertinent frequencies are extracted from a single
trial (figure 5.6(b)). Specifically, the total normalized wavelet magnitude is extracted from
a band of frequencies (± 10 %) bounding the natural and von Kármán frequencies at each
time instance (𝐸𝑠 =

∑𝑠2
𝑠=𝑠1 𝑊̂𝜓). The time history of the respective energy bands normalized

by total energy across all scales is plotted in figure 5.7. A significant difference in the
extracted energy content is observed between the natural and von Kármán bands for 𝑡 𝑓𝑛 ⪅
9. Following this, the natural frequency component begins to increase, coinciding with a
decay of the energy content around the von Kármán frequency up to lock-in. The time
series of energy content around natural and von Kármán frequency reveals a high degree of
negative correlation. This suggests an energy exchange between the two dominant forcing
mechanisms, with the natural frequency component gradually superseding the von Kármán
frequency, signifying the transition to a lock-in state.
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Figure 5.7: Time history of energy concentrated around a band of ±10% of the von
Kármán and natural frequency components at 𝑈∗ ≈ 7.2 for a single trial (figure 5.6).

The onset of lock-in behavior has been observed for all three representative 𝑈∗. While the
proximity of the initial von Kármán frequency and structure natural frequency promotes
relatively early lock-in for 𝑈∗ ≈ 5.2 and 6.0 (figure 5.5), a brief period of linear system
behavior is observed at 𝑈∗ ≈ 7.2 where the two frequency components are more separated.
The onset of substantial forcing near the structure’s natural frequency, marking the beginning
of nonlinear system behavior, is critical for sustained amplitude growth. However, the
onset of forcing at the structure’s natural frequency was observed to exhibit significant
trial-to-trail variability, particularly in the lower branch. The associated differences in
the onset of lock-in and the beginning of prominent growth in vibrations amplitudes are
postulated to be the underlying reason for the notable variations in time lag 𝜏 (figure 5.3(b))
between different trials. Next, the mechanisms driving the differences in amplitude growth
rate and natures of the amplitude curves (figure 5.4(a)) are explored through analysis of
the transient forcing characteristics and energy transfer between the fluid and the cylinder.

5.4 Transient forcing characteristics and energy anal-
ysis

Figure 5.8 presents the ensemble-averaged nondimensional vortex force (𝐶𝐿𝑣, top row),
the phase difference between vortex force and displacement (𝜙𝑣, middle row), and the
nondimensional energy transferred to the cylinder over each cycle of oscillation (𝐸∗, bottom
row) at 𝑈∗ ≈ 5.2, 6.0, and 7.2. 𝐸∗ is estimated through numerical integration of the
nondimensional force and cylinder velocity over each cycle of oscillation, as discussed in
section 3.3.3. The shaded regions in all figures represent ± one standard deviation around
the mean (solid lines). The force magnitude plots are overlaid with ensemble-averaged
transient amplitude (from figure 5.3(c)) and the phase plots are overlaid with the loci of
maxima in force and displacement frequencies (from figure 5.5). To minimize the noise in
the phase estimation due to the presence of multiple frequencies (e.g., figure 5.5(c)), the dis-
placement data were band-pass filtered around the natural frequency for the estimation of 𝜙𝑣.
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At 𝑈∗ ≈ 5.2 (figure 5.8(a)), the vortex force magnitude increases up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 7,
followed by a notable decrease and then recovery to quasi-steady values. The vortex force
phase difference (𝜙𝑣) remains relatively stable at a value slightly below 90◦ for around 6
cycles. This is followed by a small overshoot and a significant reduction in 𝜙𝑣 that coincides
with the reduction in forcing frequency. Between 11 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 22, 𝜙𝑣 remains negative
(𝜙𝑣 ≈ −5◦) before recovering to a positive value (𝜙𝑣 ≈ 3◦) at quasi-steady state. The vortex
force phase difference is critical to the energy transfer from the fluid to the cylinder since
the net magnitude of energy transferred to the cylinder over a cycle depends on both the
force magnitude and 𝑠𝑖𝑛(𝜙𝑣) (e.g., equation 2.5 for quasi-steady state). A value of 𝜙𝑣 =

90◦ implies that the vortex force is in phase with the velocity, enabling maximum energy
input over an oscillation cycle. Conversely, 𝜙𝑣 = 0 or 180 ◦ results in net zero energy input
over one cycle. At 𝑈∗ ≈ 5.2, 𝐸∗ increases to its peak value at (𝑡 − 𝜏) 𝑓𝑛 ≈ 8 (bottom row,
figure 5.8(a)). The rising energy transfer in this time period is due to a combination of
increasing force magnitude and 𝜙𝑣 remaining relatively close to 90◦. The significant drop in
𝜙𝑣 beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 8 results in decreasing 𝐸∗, with negative 𝐸∗ expectedly observed for
negative 𝜙𝑣. Negative 𝐸∗ implies that energy is being transferred from the cylinder to the
fluid, which leads to decreasing vibration amplitudes (see gray plot in top row). During the
period of negative energy transfer, the force magnitudes are near their quasi-steady value
(figure 5.8(a)), highlighting the importance of phase difference to the energy transfer. From
(𝑡 − 𝜏) 𝑓𝑛 ⪆ 20, 𝐸∗ gradually recovers to near zero values, coinciding with the leveling of 𝜙𝑣
at 0◦.
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Figure 5.8: Ensemble-averaged nondimensional vortex force (top row, 𝐶𝐿𝑣), vortex force
phase difference (middle row, 𝜙𝑣), and nondimensional energy transfer to the cylinder over
each oscillation cycle (bottom row, 𝐸∗) for representative 𝑈∗ in (a) initial, (b) upper, and (c)
lower branches, respectively. The force plots are overlaid with ensemble-averaged amplitude,
and the phase plots are overlaid with loci of force and displacement frequencies from figure
5.5.

At 𝑈∗ ≈ 6.0 (figure 5.8(b)), the vortex force magnitude initially increases and peaks at
(𝑡 − 𝜏) 𝑓𝑛 ≈ 12. Following this, the force magnitude reduces and then recovers to the
quasi-steady state level. Shortly following cylinder release, the forcing phase 𝜙𝑣 ≈ 115◦ and
increases up to 160◦ near (𝑡 − 𝜏) 𝑓𝑛 ≈ 12. The phase difference then remains nearly constant
up until (𝑡 − 𝜏) 𝑓𝑛 ≈ 20, when it begins to converge to the quasi-steady value where 𝜙𝑣 is
close to 180◦. A continuous increase in 𝐸∗ (bottom row) is observed following cylinder
release up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 11. The slope of the 𝐸∗ curve during this period is lower than that
at 𝑈∗ ≈ 5.2, which is partly a consequence of the higher 𝜙𝑣 values relative to the optimal 90◦.
Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 11, 𝐸∗ decreases until (𝑡 − 𝜏) 𝑓𝑛 ≈ 14, followed by a relative plateau in 𝐸∗

up to (𝑡 − 𝜏) 𝑓𝑛 ≈ 20. Note that for 28 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 32, 𝐸∗ briefly becomes negative, which
coincides with 𝜙𝑣 increasing slightly beyond 180◦. Once the system attains quasi-steady
state, 𝜙𝑣 remains close to and below 180◦. However, 𝜙𝑣 associated with individual trials
exhibits regular excursions across the 180◦ threshold that result in a modulated amplitude
response (figure 5.3(b)).
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Figure 5.9: Vortex force phase difference 𝜙𝑣 immediately after lock-in for all tested 𝑈∗.
The dotted line represents 90◦.

At 𝑈∗ ≈ 7.2 (figure 5.8(c)), the force magnitude remains relatively constant up to (𝑡−𝜏) 𝑓𝑛 ≈
13 and then increases continuously up to quasi-steady state. Approximately five cycles
following cylinder release, 𝜙𝑣 is identified close to 140◦ and remains relatively constant up
to (𝑡 − 𝜏) 𝑓𝑛 ≈ 20. This is followed by a steady increase in 𝜙𝑣 to the quasi-steady state
where 𝜙𝑣 is close to 180 ◦. Negligible positive values of 𝐸∗ are observed up to (𝑡 − 𝜏) 𝑓𝑛 ≈
13 coinciding with the period of relatively constant force magnitude and phase difference.
Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 13, 𝐸∗ increases up to its peak value near (𝑡 − 𝜏) 𝑓𝑛 ≈ 23, followed by a
gradual decay towards quasi-steady state. The increase of 𝐸∗ to its peak value is attributed
to rising force magnitude despite the growing separation of 𝜙𝑣 from 90◦ up to (𝑡 − 𝜏) 𝑓𝑛 ≈
23. Beyond this point, the decreasing component of forcing in phase with velocity (due to
increasing 𝜙𝑣) results in 𝐸∗ gradually reducing to zero.

Further analysis of the results showed that, across all 𝑈∗, the vortex force magnitudes
during the first few cycles of oscillation are of a similar order. However, the initial vortex
force phase difference immediately following the onset of lock-in was found to vary signifi-
cantly with 𝑈∗. This is shown in figure 5.9 where 𝜙𝑣 is obtained immediately after lock-in,
identified as the instant when the contribution of the ensemble-averaged wavelet energy
band around natural frequency first reaches 50 % of the total energy content. The results
show that 𝜙𝑣 increases from approximately 70◦ at 𝑈∗ ≈ 4.8 to 𝜙𝑣 ≈ 160 at 𝑈∗ ≈ 8.3. The
vortex force phase difference 𝜙𝑣 is related to the timing of vortex shedding with respect
to the oscillation cycle [100]. Thus, the results imply that, at the onset of lock-in, the
timing of vortex shedding relative to the cylinder oscillation varies with 𝑈∗. The initial
𝜙𝑣 after lock-in is closest to 90◦ for 𝑈∗ ≈ 5.2 and 5.3. Consequently, since 𝜙𝑣 = 90 yields
the highest energy transfer rate to the cylinder, the largest initial amplitude growth rates
are observed in this region (figure 5.4(a)). At other 𝑈∗, particularly in the lower branch,
increasing separation of the initial 𝜙𝑣 from 90◦ results in lower rates of energy transfer and
subsequently lower amplitude growth rates.
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Apart from implications on the energy transfer, the vortex force phase difference also
influences the value of the lock-in frequency with respect to the structural natural frequency.
The relationship between oscillation frequency and the vortex force phase difference has
been shown previously [62] and is obtained through substitution of the expressions for
force and displacement (equation 2.2) into the equation of motion (equation 2.1). After
rearrangement, this gives:

𝐹𝑣𝑐𝑜𝑠(𝜙𝑣)
𝑘𝐴

= 1 − ( 𝑓 ∗)2 (5.2)

Thus, as the vortex force phase difference 𝜙𝑣 passes through 90◦, the nondimensional
frequency 𝑓 ∗ will pass through 1. This is seen when examining the initial and final phase
differences after lock-in (figures 5.9 and 5.8). At 𝑈∗ ≈ 5.2, 𝜙𝑣 is initially slightly below
90◦ implying a negligible component of forcing in phase with the cylinder displacement
(𝐹0𝑣𝑐𝑜𝑠(𝜙𝑣) ≈ 0, 𝜙𝑣 ≈ 90) and a minimal change to the effective added mass. Consequently,
the initial oscillation frequency is close to the natural frequency ( 𝑓 ∗ ≈ 0.98). The final
lock-in frequency ( 𝑓 ∗ ≈ 0.94) is further below the structure’s natural frequency, which is
attributed to a significant component of forcing in phase with the cylinder displacement
(𝐹0𝑣𝑐𝑜𝑠(𝜙𝑣) ≈ 𝐹0𝑣, 𝜙𝑣 ≈ 0), thereby contributing to a positive effective added mass. Con-
versely, at 𝑈∗ ≈ 6.0 and 7.2, 𝜙𝑣 remains greater than 90◦ throughout the system response
and the associated lock-in frequencies ( 𝑓 ∗) are above 1 (figure 5.5(b-c)).

The examination of the vortex forcing and energy characteristics improves our understanding
of the differences in the transient amplitude response curves across the different response
branches. Next, the wake dynamics associated with the outlined forcing characteristics and
lock-in behavior are explored.

5.5 Attendant transient wake dynamics

Transient wake dynamics is examined through PIV measurements ensemble-averaged across
five trials for the cylinder converging to quasi-steady state VIV in the initial, upper, and
lower branches for 𝑈∗ ≈ 5.2, 6.0, and 7.2, respectively. Qualitative and quantitative as-
sessments of the transient wake development are performed using vortex identification via
the methodology outlined in section 3.3.4. The shedding of each tracked vortex in the
ensemble-averaged transient sequence is defined as the moment when vortex circulation
𝛤 reaches a peak value, with circulation estimated through integration of the ensemble-
averaged vorticity field inside the identified vortex contour (section 3.3.4). The downstream
distance at which a given vortex attains a maximum circulation provides an estimate of
the vortex formation length (𝐿 𝑓 ), measured from the origin to the streamwise location
of the shed vortex centroid. The phase of the cylinder oscillation cycle (𝜃) at which a
given vortex sheds can also be identified, with 𝜃 = 0◦ corresponding to the instant when
the cylinder crosses the equilibrium point in the positive 𝑌 direction. Note that 𝜃 is
distinct from 𝜙𝑣, with the former representing the absolute phase of cylinder oscillation
and the latter representing the phase difference between cylinder oscillation and vortex force.
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Figure 5.10 presents the ensemble-averaged spanwise vorticity contours overlaid with
the identified vortex boundaries for 𝑈∗ ≈ 5.2 at four instances during the transient. The
corresponding instances are marked in the transient ensemble-averaged displacement time
series in figure 5.10(a). For all the depicted vorticity contours, the cylinder is at the
bottom dead center of an oscillation cycle. The nondimensional vortex formation length and
oscillation phase of the cylinder at shedding are presented in figure 5.11. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 3,
the wake exhibits an alternating pattern of oppositely signed vortices similar to quasi-steady
2S shedding from a stationary cylinder. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 6, the wake continues to exhibit a
similar alternating pattern of vortices; however, the shear layer roll-up takes place closer to
the cylinder compared to that seen at (𝑡 − 𝜏) 𝑓𝑛 ≈ 3. Additionally, the positive shear layer
has a more pronounced deflection in the direction opposite to the cylinder displacement
when compared to (𝑡 − 𝜏) 𝑓𝑛 ≈ 3 (compare figures 5.10(c) and 5.10(b)). Near the peak
oscillation amplitude at (𝑡 − 𝜏) 𝑓𝑛 ≈ 10 (figure 5.10(d)), a more significant deflection of the
positive shear layer is observed along with a weaker negative vortex roll-up near the cylinder
base (𝑋/𝐷 ≈ 0.75) compared to the flow development seen at (𝑡 − 𝜏) 𝑓𝑛 ≈ 6. Additionally, a
weaker vortex is shed from the positive shear layer and trails the negative vortex at 𝑋/𝐷 ≈
1 (figure 5.10(d)), resembling the 2P0 shedding mode. The 2P0 mode is more evident in
wake vorticity data from individual runs (not shown here for brevity) near peak oscillation
amplitudes. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 15 (figure 5.10(e)), the wake closely resembles a quasi-steady 2S
pattern, but negative vortex roll-up near the base of the cylinder is evidently delayed in
this same oscillation phase (compare figures 5.10(e) and 5.10(d)). Specifically, the negative
vortex at 𝑋/𝐷 ≈ 2 in figure 5.10(e) is still attached to the shear layer whereas the negative
vortex at a similar streamwise location in figure 5.10(d) has already been shed. This
highlights a change in the shedding phase during the transient.
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Figure 5.10: (a) Ensemble-averaged time series and spanwise vorticity at 𝑈∗ ≈ 7.2 for (b)
(𝑡 − 𝜏) 𝑓𝑛 ≈ 3, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 6, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 10, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 15. The solid black
lines in (b-e) indicate the vortex boundaries identified through the methodology outlined in
3.3.4.

The shortening of the near wake with increasing oscillation amplitudes observed in figure
5.10 is reflected in the vortex formation lengths trend captured in figure 5.11(a). The
dashed line in the plot represents the formation length for a stationary cylinder estimated
using the same methodology. The dotted line represents the formation lengths obtained
from phase-averaged vorticity fields in quasi-steady state VIV. The results show that the
formation length reduces during the onset of vibrations, reaching a local minimum when
the amplitude of vibrations peaks at (𝑡 − 𝜏) 𝑓𝑛 ≈ 10, following which it recovers to the
quasi-steady state value 𝐿 𝑓 /𝐷 ≈ 2.2. For approximately 10 cycles, the oscillation phase
at shedding (𝜃, figure 5.11(b)) is approximately 40◦ for the positive vortex and 215◦ for
the negative vortex. Thus, the positive vortex is shed when the cylinder is moving towards
positive 𝑌 and is located between the equilibrium and top dead center positions, while the
negative vortex sheds roughly 180◦ after that. After (𝑡 − 𝜏) 𝑓𝑛 ≈ 11, positive and negative
vortices are shed at 𝜃 ≈ 130◦ and 𝜃 ≈ 300◦, respectively, which constitutes a 90◦ phase shift
compared to the earlier portion of the transient. Here, the negative vortex is shed as the
cylinder is moving from the bottom dead center towards the equilibrium position, and the
positive vortex sheds roughly 180◦ later as the cylinder is moving down from its top dead
center towards the equilibrium position.
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Figure 5.11: Transient wake characteristics at 𝑈∗ ≈ 5.2. (a) Vortex formation lengths
and (b) phase of oscillation at vortex shedding. Dashed, dotted lines in (a) represent the
formation lengths obtained from the stationary cylinder and quasi-steady, phase-averaged
VIV cases, respectively. Dashed lines in (b) indicate the quasi-steady, phase-averaged 𝜃

with the shaded regions indicating the methodological uncertainty. Gray areas identify
regions where estimations are unreliable due to the absence of lock-in and/or low-amplitude
oscillation preventing accurate phase estimation.

It is instructive to contrast the development of vortex shedding at the onset of cylinder
oscillation with that for a stationary cylinder. For the latter, vortex pinch-off (shedding)
results primarily from a growing vortex drawing the opposing shear layer across the wake
that ultimately cuts off the supply of vorticity to the growing vortex [60]. For VIV, the
onset of cylinder oscillation induces shear layer deflection. As observed in the vorticity field
snapshots (figure 5.10 (b-c)), the deflected positive shear layer impinges on the negative
shear layer, which affects the vortex pinch-off process. This is supported by the fact that
shedding of oppositely signed vortices is separated by 180◦ in terms of the phase of cylinder
oscillation, thus linking the pinch-off process to the cylinder motion. Increasing oscillation
amplitudes leads to larger deflections of the shear layer (compare figures 5.10(b) and (d))
and a subsequent shortening of the vortex formation region. As the cylinder reaches the
overshoot amplitudes ((𝑡 − 𝜏) 𝑓𝑛 ≈ 10) and the shear layers exhibit the largest deflections,
a rapid change in the shedding phase ensues, with the associated change in 𝜃 comparing
well with that in 𝜙𝑣 at the same time (figure 5.8). It can be deduced that, near the peak
oscillation amplitude, the combination of large shear layer deflections and short forma-
tion lengths inhibits opposite shear layer impingement, thereby causing the change in the
vortex shedding phase and transition to the new equilibrium state at the end of the transient.

Figures 5.12 and 5.13 present the ensemble-averaged spanwise vorticity contours and the
associated quantitative metrics for 𝑈∗ ≈ 6.0. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 8 (figure 5.12(b)), the wake
exhibits alternating shedding of single vortices similar to the initial wake topology for 𝑈∗ ≈
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Figure 5.12: (a) Ensemble-averaged time series and spanwise vorticity at 𝑈∗ ≈ 6.0 for (b)
(𝑡 − 𝜏) 𝑓𝑛 ≈ 8, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 10, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 13, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 18. The black solid
lines in (b-e) indicate the vortex boundaries identified through the methodology outlined in
3.3.4.

5.2 (figure 5.10(a)). As the amplitude of oscillations increases, a distinct change in wake
topology is identified at (𝑡 − 𝜏) 𝑓𝑛 ≈ 10 (figure 5.12(c)), where a counter-rotating pair of
vortices is shed (𝑋/𝐷 ≈ 3), similar to 2P shedding. At (𝑡−𝜏) 𝑓𝑛 ≈ 13 (figure 5.12(d)), the 2P
pattern persists and is accompanied by the reduction in the formation length. At (𝑡− 𝜏) 𝑓𝑛 ≈
18 (figure 5.12(e)), the positive shear layer is significantly deflected due to the relatively
large oscillation amplitudes, and the 2P mode is no longer identifiable in the near wake. At
quasi-steady state, the 2P0 mode can be identified in the data from individual runs (not
shown), but the weaker secondary vortex cannot be discerned in the ensemble-averaged
images due to cycle-to-cycle variations in shedding phase alignment.

To enable consistent vortex tracking during the periods of changing wake topology through
the transient, attention in this transient case is focused on the leading vortex in each vortex
pair (e.g., negative vortex at 𝑋/𝐷 ≈ 3.5 in figure 5.12(d)). The vertical lines in figure
5.13(b) are used to approximate the shedding regimes observed in phase-averaged sequence.
The vortex formation length (figure 5.13(a)) shows a continuous reduction from 𝐿 𝑓 ≈ 3𝐷
to approximately 1.8𝐷 at quasi-steady state. Note, that the formation length is noticeably
higher than that for the stationary cylinder case (dashed line) for (𝑡 − 𝜏) 𝑓𝑛 ⪅ 10, despite
relatively small amplitudes of vibrations. With the lock-in frequency being notably lower
than the von Kármán frequency for the stationary cylinder (figure 5.5(b)), the increased
formation length may be in part attributed to the longer shedding period allowing more
significant downstream advection of the forming vortex prior to pinch-off. Around 5 cycles
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Figure 5.13: Transient wake characteristics at 𝑈∗ ≈ 6.0. (a) Vortex formation lengths
and (b) phase of cylinder oscillation at the instant of vortex shedding. Refer to figure 5.11
for interpretation of lines and shaded regions.

after cylinder release, the shedding phase of positive and negative vortices is 𝜃 ≈ 40◦ and
𝜃 ≈ 210◦, respectively, and a steady reduction in the shedding phase is observed up to
(𝑡 − 𝜏) 𝑓𝑛 ≈ 13. Beyond this time, 𝜃 remains relatively stable near the quasi-steady state
value. The observed change in 𝜃 between 5 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 13 mimics that in 𝜙𝑣 during the
transient (figure 5.8).

Figures 5.14 and 5.15 present the ensemble-averaged spanwise vorticity contours and the
associated quantitative metrics at 𝑈∗ ≈ 7.2. Prior to lock-in ((𝑡 − 𝜏) 𝑓𝑛 ⪅ 14, figure 5.5),
distinct coherent structures can be only identified in the immediate vicinity of the cylinder
(figure 5.14(b)), with no particular topological features identifiable beyond 𝑋/𝐷 ≈ 2.5 due
to run-to-run variation in the wake development. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 18 (figure 5.14(c)), an
alternately signed vorticity pattern is identified in the wake, resembling the 2S shedding
mode. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 27 (figure 5.14(d)), the wake exhibits the 2P topology which persists
to quasi-steady state ((𝑡 − 𝜏) 𝑓𝑛 ≈ 33, figure 5.14(e)).
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Figure 5.14: (a) Ensemble-averaged time series and spanwise vorticity at 𝑈∗ ≈ 7.2 for (b)
(𝑡 − 𝜏) 𝑓𝑛 ≈ 10, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 18, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 27, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 33.The black solid
lines in (b-e) indicate the vortex boundaries identified through the methodology outlined in
3.3.4.

Following lock-in, the ensemble-averaged wake characteristics are estimated based on
the leading vortex tracking in each vortex pair, similar to the 𝑈∗ ≈ 6.0 case. Between
14 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 21, where the wake topology resembles 2S shedding, consistent tracking of
the vortex cores was not possible, and no wake metrics are provided. Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈
21, the vortex formation length, on the average, shows a decrease from above 𝐿 𝑓 /𝐷 ≈ 3.0
to the quasi-steady state value 𝐿 𝑓 /𝐷 ≈ 2.75. The leading positive and negative vortices are
shed at a relatively constant 𝜃 ≈ -10◦ and 170◦ in the resolved later stages of the transient
wake response.
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Figure 5.15: Transient wake characteristics at 𝑈∗ ≈ 7.2. (a) Vortex formation lengths
and (b) phase of cylinder oscillation at the instant of vortex shedding. Refer to figure 5.11
for interpretation of lines and shaded regions.

The analysis of the ensemble-averaged wake characteristics is useful in identifying the
transient changes in wake topology and characteristics. However, transient wake dynamics
during the onset of lock-in behavior can be illustrated better through the examination of
wake characteristics in individual runs. This is particularly true in the lower branch case,
where the ensemble-averaged wake downstream of 𝑋/𝐷 ≈ 3 during the initial transient pe-
riod ((𝑡 − 𝜏) 𝑓𝑛 ⪅ 14, figure 5.14(b)) is smeared out as a result of the different times at which
lock in is attained in different trials. Figure 5.16 depicts normalized wavelet scalograms
of the vortex force (top row), and the corresponding transverse velocity signal along the
wake centerline at 𝑋/𝐷 ≈ 4 for individual trials at 𝑈∗ ≈ 5.2, 6.0, and 7.2, respectively. In
all cases, the location of the sampled for the velocity signal is downstream of the vortex
formation region throughout the transient.

For all the cases considered, prior to cylinder release, the dominant wake frequency is
identified near the von Kármán frequency prior to release (𝑡 𝑓𝑛 < 0, bottom row). For 𝑈∗ ≈
5.2 (figure 5.16(a)), a slight decrease in dominant frequency is observed almost immediately
following cylinder release. Beyond 𝑡 𝑓𝑛 > 0, the trend observed in the vortex forcing scalogram
(top row) is closely reflected in the velocity scalogram (bottom row) including the significant
reduction in dominant frequency near 𝑡 𝑓𝑛 ≈ 10. The larger separation between the natural
and von Kármán frequencies at 𝑈∗ ≈ 6.0 compared to 𝑈∗ ≈ 5.2 allows for a more distinct
identification of the change in dominant wake frequency at 𝑡 𝑓𝑛 ≈ 4 (figure 5.16(b), bottom
row). After 𝑡 𝑓𝑛 ⪆ 4, the velocity wavelet is more modulated than the forcing wavelet,
however, the general trend remains similar with the dominant frequency remaining close to
the natural frequency throughout the rest of the transient.
The wavelet scalogram of vortex force at 𝑈∗ ≈ 7.2 (figure 5.16(c), top row) indicates the
emergence of a significant energy content near the structural natural frequency at 𝑡 𝑓𝑛 ≈
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Figure 5.16: Single realization transient of the normalized wavelet scalogram of vortex
forcing (top row), and normalized wavelet scalogram of transverse velocity signal (bottom
row) at 𝑋/𝐷 ≈ 4 for (a) 𝑈∗ ≈ 5.2, (b) 𝑈∗ ≈ 6.0, and (c) 𝑈∗ ≈ 7.2, respectively.

8, prior to a full lock-in at 𝑡 𝑓𝑛 ≈ 13. During the time interval between 8 ⪅ 𝑡 𝑓𝑛 < 13, both
the von Kármán and natural frequency components appear in the results. The scalogram
is comparable to figure 5.6, highlighting a gradual changeover from the von Kármán to
the natural frequency forcing mechanisms. A similar distribution of energy is observed
in the wavelet scalogram of the wake velocity in the bottom row of figure 5.16(c). Since
the chosen point is downstream of the vortex formation region, and velocity fluctuations
resulting directly from cylinder oscillations are minimal for 𝑡 𝑓𝑛 ⪅ 13 (where the amplitude
of oscillations are less than 0.1𝐷), the occurrence of distinct energy bands at both natural
and von Kármán frequencies indicates the passage of wake structures at both frequencies.
It can be deduced that in the time period prior to complete lock-in (𝑡 𝑓𝑛 ≈ 13 in this case),
the cylinder motion induces shear layer deflection that disrupts the von Kármán shedding
mechanism and promotes the shedding of structures at frequencies near the structure’s
natural frequency. The shedding of these structures contributes to positive energy transfer
to the cylinder and amplitude growth. The larger shear layer deflections associated with
amplitude growth increasingly influence the vortex shedding, culminating in lock-in, where
opposite shear layer impingement dominates the shedding mechanism.

5.6 Discussion

The examination of the wake dynamics (section 5.5), in conjunction with the forcing charac-
teristics (section 5.4) and transient frequency response (section 5.3), provides an insight into
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the fluid-structure interactions throughout the transient system response. As seen in figures
5.16 (bottom row) for 𝑡 𝑓𝑛 < 0, the dominant frequency in the wake is associated with von
Kármán shedding prior to cylinder release. Across all branches, nonlinear forcing is initiated
at different times after cylinder release, resulting in a response that differs from a linear
system response (equation 5.1). The forcing experienced by the cylinder at von Kármán fre-
quency prior to release (figure 5.16, bottom row for 𝑡 𝑓𝑛 < 0) results in an initial displacement
that disrupts the prevailing von Kármán pinch-off mechanism. For 𝑈∗ ≈ 5.2 (initial branch),
the proximity of the von Kármán and natural frequencies (figure 5.5(a)) promotes rapid
lock-in within a few cycles where the vortex pinch-off is facilitated through the impinging
shear layers. The phase difference between vortex forcing and displacement (figure 5.8(a))
is initially slightly below 90◦, leading to a lock-in frequency below natural frequency ( 𝑓 ∗ ≈
0.98). Further, 𝜙𝑣 ≈ 90◦ enables near maximum net energy input to the cylinder per cycle
that results in the largest initial amplitude growth rates (figure 5.4(a)) during the transients
in the initial branch of VIV. Near peak oscillation amplitudes (figure 5.10(a), (𝑡 − 𝜏) 𝑓𝑛 ≈
10), a change in the timing of vortex shedding results in a brief period of negative energy
transfer and subsequently a new equilibrium state at the end of the transient. While the
wake topology remains similar to 2S throughout the transient, a brief period of 2P0 shedding
is observed near peak oscillation amplitudes, prior to the change in timing of vortex shedding.

For 𝑈∗ ≈ 6.0 (upper branch), despite an increased separation between von Kármán and
natural frequencies (≈ 20%), lock-in is established within approximately four cycles (figure
5.5(b)). Following lock-in, 𝜙𝑣 increases from approximately 120◦ to 160◦ (figure 5.8(b)).
Consequently, the lock-in frequency exceeds the natural frequency ( 𝑓 ∗ > 1) throughout the
transient, and the amplitude growth rates are lower than those for the initial branch case
(figure 5.4(a)). With increasing oscillation amplitudes, the initial 2S shedding is eventually
replaced by the 2P mode, along with a notable reduction in the vortex formation length. As
the oscillation amplitudes increase and the formation length decreases further, the trailing
vortex strength gradually diminishes.

For 𝑈∗ ≈ 7.2 (lower branch), the larger separation between natural and von Kármán
frequencies (approximately 40 %, figure 5.5(c)) results in a notably delayed onset of lock-in
((𝑡−𝜏) 𝑓𝑛 ≈ 14). The vortex force phase difference continuously increases from approximately
140◦ following lock-in to the quasi-steady value close to 180◦ (figure 5.8(c)). Similar to the
𝑈∗ ≈ 6.0 case, the lock-in frequency consistently exceeds the natural frequency ( 𝑓 ∗ > 1)
throughout the transient. However, the amplitude growth rates are notably lower than
those in the upper branch (figure 5.4(c)) owing to the increased separation of 𝜙𝑣 from
the optimal value of 90 ◦. Similar to the transient in the upper branch, as the cylinder
oscillations increase in amplitude, 2P shedding begins, and the vortices form progressively
closer to the cylinder, with the 2P mode persisting until quasi-steady state.

For all the cases examined, wavelet analysis of the transverse velocity fluctuations at the
wake centerline for individual trials revealed a good match with the forcing frequency
behavior (figure 5.16), establishing a link between the large-scale vortex shedding and
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forcing behavior on the cylinder. Moreover, the onset of lock-in behavior is more readily
identified through analysis of the dynamics in a single realization, particularly for the lower
branch case. Specifically, the time period prior to lock-in ((𝑡 − 𝜏) 𝑓𝑛 ⪅ 14 for 𝑈∗ ≈ 7.2, figure
5.16(c)) is characterized by the presence of two dominant frequencies centered around the
natural and von Kármán frequencies in both the forcing and velocity signals. A gradual
changeover from the more dominant von Kármán to the natural frequency component takes
place up to lock-in (figure 5.7). Physically, the progressive increase in deflection of the
shear layers accompanying the growing oscillation amplitudes results in a more pronounced
effect on the timing of vortex pinch-off and diminishes the importance of the von Kármán
shedding mechanism [60].

The transient structural and wake characteristics have been examined for all response
branches. However, in the context of practical applicability, the prediction of transient VIV
response is important. While transient response prediction has been briefly explored in
previous studies for example [125] and [115], it remains to be investigated in more detail.
Morse and Williamson [125] and Menon and Mittal [115] used energy maps created from
forced vibration data to predict free vibration response. Specifically, for a given combination
of vibration amplitude 𝐴 and frequency 𝑓 , the average energy extracted from the flow over
one forced oscillation cycle (𝐸∗) is calculated. Subsequently, detailed contour maps can be
generated that show how 𝐸∗ varies with 𝐴 and 𝑓 . Through nondimensionalization using
cylinder diameter and flow velocity, 𝐸∗ can be expressed as a function of 𝐴∗ and a wave-
length parameter 𝜆∗ = 𝑈/ 𝑓 𝐷 = 𝑈∗/ 𝑓 ∗. In the present experiments, the range of amplitudes
and frequencies encountered during the transient response across all branches falls within
the bounds of the detailed contour maps from Morse and Williamson[123], thereby allowing
for a comparison of the energy extracted at each 𝐴∗ and 𝜆∗. To this end, the transient
response at each representative 𝑈∗ is first mapped onto the amplitude-wavelength plane.
Specifically, the ensemble-averaged peak amplitude (𝐴/𝐷, figure 5.3(c)), and associated
oscillation frequency ( 𝑓 ∗, figure 5.5) are extracted at each cycle. These values are then
plotted on the amplitude-wavelength plane as shown in figure 5.17(a) in red dots. For
all reduced velocities, the red dots outline the system state trajectory starting from rest
(𝐴 = 0, approximate location marked in blue dots in figure 5.17(a)) up to the respective
quasi-steady states. In other words, each circle represents the location of the system in the
amplitude-wavelength plane during the transient.

For 𝑈∗ ≈ 5.2, the trajectory expectedly captures the amplitude overshoot, however, there is
a noticeable increase in wavelength through the trajectory due to the decreasing frequency
between the initial and final lock-ins (figure 5.5). In contrast, the trajectories for 𝑈∗ ≈
6.0 and 7.2 map a relatively straight path up to quasi-steady state owing to the relatively
stable lock-in frequencies. Using the mapped trajectories, the energy extracted by the
cylinder between successive points (red dots) can be obtained from figure 5.8. The results
are presented in figures 5.17(b-d) and compared to estimates obtained from quasi-steady
forced vibrations at the same point in the amplitude-wavelength plane by interpolating
values of 𝐶𝑌 𝑠𝑖𝑛(𝜙) from the maps of [123], and applying equation 2.5. The results show
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(a)

(b) (c) (d)

Figure 5.17: Energy transferred over one cycle through the cylinder’s trajectory in the
amplitude-wavelength plane. (a) Trajectory at all representative 𝑈∗ with the start identified
through blue markers and (b-d) comparison of energy extracted with forced vibration data
from [124].

that for 𝑈∗ ≈ 5.2 (initial branch), the predictions based on quasi-steady forced vibration
(black dots) differ significantly from the actual transient. Conversely, for 𝑈∗ ≈ 6.0 and 7.2,
a progressively closer match is observed.

For 𝑈∗ ≈ 5.2, the forced vibration data indicates predominantly negative energy extraction
within 2 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 11. The negative values result from the trajectory entering regions
of negative excitation for forced vibrations. For 𝑈∗ ≈ 6.0, the forced vibration data shows
continuous positive energy transfer during the initial transient, but notable differences are
still observed. In particular, the slope of the graph is larger in the transient experiments
compared to predictions, resulting in a delayed energy peak. For 𝑈∗ ≈ 7.2, the energy
input to the cylinder, including the timing and magnitude of the peak, matches relatively
well with predictions. The non-zero energy values at quasi-steady state in the forced
vibration data for all cases are speculated to be due to the differing 𝑅𝑒 between the present
experiments (𝑅𝑒 ≈ 4,400) and the forced vibration data (𝑅𝑒 = 4, 000), since zero-energy
isoline positioning is sensitive to 𝑅𝑒 [123]. The progressive improvement of the agreement
between actual data and estimates from quasi-steady results correlates with the increase
in the duration of the transient from the initial to lower branches of response. For the
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initial branch case (𝑈∗ ≈ 5.2), the largest amplitude growth rates are observed, leading
to a relatively rapid transient and more dynamic changes to the wake characteristics. As
the growth rates decrease in the upper branch and the duration of the transient increases,
a better agreement with the quasi-steady predictions is attained. Ultimately, the best
match is observed in the lower branch, where a slower transient process facilitates a better
agreement with quasi-steady state-based estimates.

5.7 Concluding remarks

This study conducted an experimental investigation into the transient dynamics of an
elastically mounted cylinder released from a stationary state in a steady freestream flow.
The cylinder’s motion was constrained to one degree of freedom transverse to the incom-
ing flow. The Reynolds number was maintained at approximately 4,400, while reduced
velocities were varied within 4.5 < 𝑈∗ < 11.5 by adjusting the structure’s natural frequency.
Simultaneous cylinder displacement and two-component velocity field measurements were
used in conjunction with force estimation to characterize reference quasi-steady states, and
transient system responses. The transient development of VIV was investigated for a range
of reduced velocities spanning the three response branches.

For the transient response in the initial branch, a notable overshoot of amplitude is
observed approximately ten cycles after cylinder release, followed by a gradual convergence
to quasi-steady state. Conversely, for transients in the upper and lower branches, a continu-
ous growth of amplitudes to quasi-steady state is observed with the amplitude envelopes
resembling sigmoid curves. Within each response branch, different trials exhibit similar
trends, particularly during the periods of most significant amplitude growth. However, the
timing of the onset of sustained amplitude growth differs between the trials, resulting in
the amplitude envelopes being separated by a time delay, and the variability in the onset
of substantial amplitude growth, on the average, increases with increasing 𝑈∗. Further,
the time to attain quasi-steady state increases, while the maximum amplitude growth rate
decreases, with increasing 𝑈∗.

The analysis of the results shows that lock-in behavior, characterized by the dominant
forcing and displacement frequencies assuming a common value, occurs within two and up
to a maximum of four cycles following cylinder release for the initial and upper branch
transients, respectively. This is linked to the relatively small separation between the initial
von Kármán shedding frequency and the natural frequency of the structure in these branches.
In contrast, in the lower branch, as the natural and von Kármán frequencies become more
separated, the vortex forcing exhibits a dual-frequency response for a longer time period,
delaying the onset of lock-in. The departure of forcing from primarily von Kármán frequency
marks the onset nonlinear forcing, associated with lock-in, which is shown to be crucial for
sustained amplitude growth.
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The observed changes in the growth rate of vibrations amplitude in different response
branches are shown to be linked to distinct changes in both the vortex force magnitude
and phase difference with respect to cylinder oscillations, with the latter playing a more
dominant role. Specifically, near the transition between the initial and upper branches, the
vortex force phase difference 𝜙𝑣 is initially close to 90◦, facilitating the most efficient energy
transfer to the structure and, hence, the fastest increase in vibration amplitudes compared
to the other 𝑈∗. The decrease in transient amplitude growth rates with increasing 𝑈∗ is
attributed to increasing separation of initial vortex force phase difference from the optimal
90◦ following lock-in.

Analysis of the wake flow development was employed to establish a relationship between the
transient wake dynamics and the associated structural responses in each response branch.
Specifically, the vortex force phase difference is linked to the timing of vortex shedding with
respect to the cylinder oscillation cycle, with changes in the timing of shedding shown to
mimic the changes in 𝜙𝑣. Additionally, the onset of nonlinear forcing is identified through
the emergence of wake vortex shedding near the structural natural frequency in addition to
the dominant von Kármán shedding. The onset of cylinder oscillation results in shear layer
deflections that disrupt the von Kármán shedding mechanism by promoting opposite shear
layer impingement. With growing oscillation amplitude, more significant deflections of the
shear layers increasingly affect the vortex shedding process, progressively diminishing the
significance of the von Kármán shedding mechanism up to lock-in. Further, the transition
between different vortex shedding modes is identified throughout the transients in each
response branch.

The possibility of modeling the transient response based on available data for quasi-steady
forced vibrations was explored. The results show a significant difference in cycle-to-cycle
energy extraction predictions compared to experimental measurements for the transients in
the initial branch. However, the agreement with experiments progressively improves for
the transients in the upper and lower branches. This is associated with the increase of the
transient duration and decrease in transient amplitude growth rates with increasing 𝑈∗.
Thus, employing existing quasi-steady state databases is expected to provide notably better
modeling capabilities of the transient system response for the upper and particularly lower
branch, compared to the initial branch.
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Chapter 6

Transient vortex-induced vibrations of
a cylinder in unsteady freestream con-
ditions
Experiments are conducted at LTRAC to evaluate system behavior when subjected to various
ramp up/down changes in the freestream velocity. The results indicate a departure of system
characteristics from quasi-steady behavior when the freestream transient period is on the
order of tens of cylinder oscillation cycles. Quantitative analysis of the wake and structural
response reveals a relatively fast initial response to the changes (within approximately 20
cycles of oscillation), with the subsequent transient response closely related to the forcing
characteristics (primarily phase difference) and consequently, the energy transfer between the
fluid and the structure. Topological changes to the wake are identified through the transients.
Additionally, significantly slower variations in the freestream (O(100) cycles) allowed the
system to approach quasi-steady behavior.
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6.1 Quasi-steady state system characteristics

The quasi-steady system amplitude response (𝐴∗
𝑚𝑒𝑎𝑛), frequency response ( 𝑓 ∗), and mean

vortex force phase difference (𝜙𝑣) are presented in figures 6.1(a-c), respectively. Data
collected while increasing 𝑈∗ incrementally are shown in black circles, while the gold square
markers represent the system characteristics for decreasing 𝑈∗. The amplitude response
(figure 6.1(a)) features the expected response branches for a low mass-damping system,
including the initial branch (IB, 3.9 ⪅ 𝑈∗ ⪅ 5.3), upper branch (UB, 4.9 ⪅ 𝑈∗ ⪅ 6.5), lower
branch (LB, 6.5 ⪅ 𝑈∗ ⪅ 9.5), and desynchronization regimes (Dsnc, 𝑈∗ ⪆ 9.5). Details of
the response characteristics within each branch are described in Section 5.1. Additionally,
hysteresis was observed in the IB-UB transition region during the LTRAC experiments 1,
similar to previous studies (e.g., [83]). In particular, for increasing 𝑈∗ (black markers), the
initial branch persists up to 𝑈∗ ≈ 5.3 with mean amplitudes reaching up to 𝐴∗

𝑚𝑒𝑎𝑛 ≈ 0.3
(figure 6.1(a)). Additionally, the mean phase difference remains close to 0◦ (figure 6.1(c))
and 𝑓 ∗ < 1 (figure 6.1(b)) up to 𝑈∗ ≈ 5.3. Conversely, for decreasing 𝑈∗ (gold square
markers), high-amplitude oscillations (𝐴∗ ⪆ 0.65) persist for 𝑈∗ as low as 4.9. While the
oscillation amplitudes remain high, the nondimensional frequency indicates a switch to
𝑓 ∗ < 1 towards the end of the hysteresis curve for decreasing 𝑈∗ (gold square markers within
4.9 ⪅ 𝑈∗ ⪅ 5.1). This indicates a switch in mean vortex force phase difference to near 0◦,
however, mean phase estimations were unreliable in this region due to phase slips [47] which
are discussed later. The hysteretic region is discussed in more detail in Appendix B. Overall,
the oscillation amplitudes, range of synchronization, and frequency/phase characteristics
agree well with previous literature at similar 𝑚∗𝜁 (e.g., [83]).

6.2 Transient amplitude response

Figure 6.2 depicts the transient amplitude response of the system when subjected to a fast
ramp in freestream velocity (see section 3.2.4 for details on the fast ramp) for all cases
investigated. The black lines represent the envelopes of peak oscillation amplitudes for
individual trials, the green lines represent the ensemble average of the envelopes across
all the trials, and the red lines indicate the associated quasi-steady state response (figure
6.1(a)) for the imposed velocity changes. Additionally, the vertical dashed lines indicate
the start and end of the freestream velocity ramp period (freestream transient). The top
and bottom rows depict increasing and decreasing 𝑈∗ cases, respectively.

Across all of the cases examined except the UB-IB case, it is apparent that the system tran-
sient behavior deviates from the associated quasi-steady responses (red lines). The IB-UB
case (figure 6.2(a)) reveals a continuous amplitude increase between the two quasi-steady
1The experiments at FMRL did not reveal hysteresis behavior likely due to the way 𝑈∗ was changed.
Specifically, to achieve a change in 𝑈∗, the structure was brought to rest following which the position of
the springs was changed. This change in the system state presumably negated any hysteresis effect.
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Figure 6.1: Quasi-steady state system characteristics. (a) Mean amplitude response
calculated as the mean of all peaks in a time series, (b) frequency response calculated using
spectral analysis of the displacement signal, and (c) mean vortex force phase difference
obtained through the application of the Hilbert transform [83]. The uncertainty in all
quantities is accommodated by the marker sizes. Black markers signify increasing 𝑈∗ while
gold markers signify decreasing 𝑈∗.

end states, with the envelopes exhibiting a sigmoidal shape and the different trials appearing
to be separated by a relatively small time delay. Most of the amplitude growth occurs
within the free stream transient period (between the vertical dashed lines). The associated
quasi-steady response (red line) shows the drastic jump in mean amplitudes characteristic
of the quasi-steady IB-UB transition (figure 6.1(a)). Conversely, the transient response
indicates a more gradual and continuous increase in amplitudes. The UB-IB transition
(figure 6.2(d)) reveals two distinct behaviors. In most trials, the cylinder exhibited a small
amplitude drop and remained in a high-amplitude hysteresis state (𝐴∗ ≈ 0.65) found at
the end of the IB-UB transition for reducing 𝑈∗ (gold square markers in figure 6.1(a)).
Conversely, in approximately 10% of all trials, the oscillation amplitudes continued to decay
until they reached the corresponding initial branch quasi-steady state (𝐴∗ ≈ 0.17). The
timing of the onset of this second reduction in amplitude varied significantly. The seemingly
spontaneous amplitude decay to the initial branch suggests that the high-amplitude state
may be in unstable equilibrium. It is worth noting that the quasi-steady end state after
the freestream transient is situated towards the end of the hysteresis loop for decreasing
𝑈∗ in the quasi-steady state response (figure 6.1(a)). Moreover, this region falls within
the unstable equilibrium zone identified in a previous study based on energy maps [124].
For the UB-IB case, the ensemble average (green line) was calculated based only on the
trials that remained at the high-amplitude state through the data collection period. The
ensemble average matches well with the quasi-steady response curve (red line).
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Figure 6.2: Transient amplitude envelopes across all trials for the fast ramp cases (see
section 3.2.4 for details on the fast ramp). The red lines represent the quasi-steady
amplitudes at the corresponding freestream velocities. The green lines represent the
ensemble averages of all trials. The vertical dashed lines demarcate the period of freestream
velocity change (freestream transient).

The UB-LB transition case (figure 6.2(b)) shows a relatively rapid amplitude decay for
all trials within the freestream transient period. While the rate of decay appears similar
between the trials, the onset of the decay occurs at slightly different times. Notably,
this behavior is similar to what is observed during intermittent switching reported in the
quasi-steady upper branch [203]. This is illustrated by examining the envelopes of two
trials that exhibit this amplitude decay from UB to LB values before the start of the
freestream transient (𝑡 𝑓𝑛 ≈ 15 and 20 in figure 6.2(b)). The rate of amplitude decay in
these two instances is similar to that observed in all trials during the freestream transient.
The amplitude decay for all trials occurs after the quasi-steady response reaches its end
state (red line). For the LB-UB case(figure 6.2(e)), all the trials show a gradual increase in
amplitudes to the upper branch. The amplitude growth rate remains similar across all trials.
Contrary to the UB-LB case, the onset of amplitude growth for all trials in the LB-UB
case occurs near or after the end of the freestream transient when the quasi-steady state
amplitudes have already reached their end state. The amplitude growth rate is similar to
that observed in the intermittent switching behavior in the upper branch. The similarities
between transient responses for both UB-LB and LB-UB cases and intermittent switching
behavior are further explored during the discussion of the transient forcing characteristics
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(section 6.3).

The transients in the LB-Dsnc case (figure 6.2(c)) reveal a steady amplitude decay across
all trials, with the envelopes exhibiting an inverse sigmoid curve. The onset of amplitude
decay occurs within the freestream transient period around the time that the quasi-steady
response is near its end state. The amplitude decay rate decreases asymptotically with the
decay continuing well after the end of the freestream transient. The Dsnc-LB case (figure
6.2(f)) reveals a continuous amplitude growth across all trials with the envelopes resembling
sigmoid curves. The onset of significant amplitude growth occurs either toward the end
or after the freestream transient. Additionally, the periods of most significant amplitude
growth occur after the quasi-steady response has reached its end state. Contrasting with
the low variance in the onset of amplitude decay across different trials in the LB-Dsnc case,
the onset of sustained amplitude growth for different trials in the Dsnc-LB case shows a
substantial variability.

Figure 6.3 shows the transient amplitude responses of the system when subjected to the
slow ramp in freestream velocity (up to 20 times slower than the fast ramp cases). In
general, the transient responses are observed to follow the quasi-steady responses more
closely compared to the fast ramp cases. Additionally, the transient amplitude changes
occur well within the bounds of the freestream transients (dashed vertical lines). The IB-UB
transition (figure 6.3(a)) shows the envelopes attaining larger amplitudes in the initial
branch (𝐴∗ ≈ 0.3, compared to 𝐴∗ ≈ 0.25 in the fast ramp case) before the rapid increase in
amplitude to upper branch values. The UB-IB (figure 6.3(d)) transition shows all the trials
remaining in the high-amplitude hysteresis state following the freestream transient. The
UB-LB (figure 6.3(b)) case reveals an amplitude decay similar to the fast ramp cases that
also occurs after the quasi-steady response attains lower branch amplitudes. Additionally,
for the trials with the most delayed onset of the amplitude decay, a period of relatively
stable amplitudes in between the two quasi-steady states is observed (500 ⪅ 𝑡 𝑓𝑛 ⪅ 600).
The LB-UB (figure 6.3(e)) case reveals a gradual increase in oscillation amplitudes with
the trend closely resembling the quasi-steady response. Finally, the LB-Dsnc and Dsnc-LB
cases (figures 6.3(c,f)) follow the quasi-steady curves relatively well.
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Figure 6.3: Transient amplitude envelopes for all trials across the branches for slow ramp
cases (see section 3.2.4 for details on the slow ramp). The red lines represent the quasi-
steady amplitudes at the corresponding freestream velocities. The green lines represent the
ensemble averages of all trials. The vertical dashed lines demarcate the freestream transient
period.

In addition to the different transient behaviors outlined above, it is of interest to estimate
the time taken by the system to transition between two quasi-steady states in response
to a change in freestream conditions. To this end, a “transient time” was estimated for
each case. Specifically, the mean (𝐴𝑚𝑒𝑎𝑛) and standard deviation (𝐴𝜎) of all amplitude
peaks at the initial and end quasi-steady states are calculated over approximately 400
cycles of quasi-steady VIV. Limiting thresholds between the quasi-steady end states are
then defined as 𝐴𝑚𝑒𝑎𝑛 ± 2 × 𝐴𝜎. Following this, a moving average is calculated for each
transient trial using a temporal window length of approximately five oscillation cycles. The
transient time (𝑡𝑡) is defined as the period when the moving average lies between the two
quasi-steady thresholds. Figures 6.4(a) and (b) depict the nondimensional transient start
and end times for all the cases except the UB-IB case for the fast and slow ramp cases,
respectively. The start times are represented using open symbols while the end times are
shown by filled symbols. Figures 6.4(c) shows the total transient time for both fast (yellow)
and slow (magenta) ramps while figure 6.4(d) shows the transient time as a percentage
of the corresponding quasi-steady transient time. Transient times for the UB-IB case did
not yield reasonable results using this method primarily due to the proximity of the two
quasi-steady end states. Each case in figures 6.4(a) and (b) consists of three elements:
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• The freestream transient duration (the period between the vertical dashed lines in
figures 6.2 and 6.3), represented here as yellow (fast ramp) and magenta (slow ramp)
shaded regions.

• Start and end times for the quasi-steady response (red lines in figures 6.2 and 6.3).
These are obtained using the methodology described above and marked by dashed-
dotted lines.

• Start and end times for the actual response. These are shown as open and filled
markers, respectively, and the error bars represent one standard deviation of the start
and end times across all trials.

The subsequent discussion will include elements from all four plots in figure 6.4. The
discussion of start and end times of the transient and quasi-steady responses pertain to
figures 6.4(a) and (b). The total transient time of the response (time between the markers)
is presented in figure 6.4(c). Finally, figure 6.4(d) presents the transient time estimates
normalized by the quasi-steady transient time.

A brief examination of the mean transient start and end times for the fast ramp (open and
closed markers in figure 6.4(a)) reveals significant variance across all the examined cases.
The mean end time (upper closed marker) for the IB-UB case is located just outside the end
of the freestream transient periods (yellow-shaded region). The mean start time (lower open
marker) is near its corresponding quasi-steady transient start time (lower dashed-dotted
line). However, the total transient time of approximately 16 cycles (figure 6.4(c)) is notably
larger than the associated quasi-steady transient time (approximately five times longer,
figure 6.4(d)). The shorter transient time for the quasi-steady response is reflective of
the distinct jump between the initial and upper branches. The actual transient response,
however, is characterized by a more gradual, continuous growth of oscillation amplitudes
between the two end states. Additionally, the relatively small standard deviations (approxi-
mately 2 cycles) reflect a tight window between the onset and end of the transient response
across all trials.

The mean start and end times in the UB-LB fast ramp case (figure 6.4(a)) are within the
freestream transient period, however, the start time lies above the associated quasi-steady
end time. Notably, the total transient time (7 cycles figure 6.4(c)) is shorter than the
corresponding quasi-steady transient time (figure 6.4(d)). Here, the switch from the upper
to lower branch is similar to intermittent switching behavior characterized by a relatively
rapid drop in amplitudes. Conversely, the quasi-steady response for UB-LB is characterized
by a comparatively gradual reduction in oscillation amplitudes. Finally, the larger standard
deviations (between 5 and 7 cycles) compared to the IB-UB case indicate a larger variability
in the onset of the transient behavior (intermittent switching) across all trials. The LB-UB
case (figure 6.4(a)) shows the mean start time near the end of the freestream transient and
a total transient time of approximately 10 cycles (figure 6.4(c)), which is about 25% longer
than the corresponding quasi-steady transient time (figure 6.4(d)). Similar to the UB-LB
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case, the transient behavior resembles intermittent switching, with the amplitude growth
rate lower than the quasi-steady growth rate for the associated freestream velocity change,
thus resulting in slightly longer transient times. In this case, the standard deviations are
relatively large (approximately 10 cycles).

The LB-Dsnc fast ramp case shows the longest mean transient times (nearly 70 cycles,
figure 6.4(c)) with the onset of the transient (lower open marker) near the end time for
the quasi-steady response (upper dashed line). The transients across all trials are initiated
within approximately 4 cycles of each other, signifying a nearly consistent response to the
changing freestream. However, the end time has a larger standard deviation (approximately
13 cycles, figure 6.4(a)). This is due to the system transitioning into desynchronization where
the cylinder exhibits significant amplitude modulations relative to the mean amplitudes.
Consequently, different trials cross the lower quasi-steady thresholds at different times.
Overall, the LB-Dsnc fast ramp case has the longest relative transient time (approximately
6 times longer than the associated quasi-steady response, figure 6.4(d)). The Dsnc-LB
fast ramp case also exhibits a relatively long transient time (45 cycles, figure 6.4(c)) with
the largest standard deviation (15 cycles, figure 6.4(a)) in both the mean start and end
time. The relative transient time is over four times the associated quasi-steady response
(figure 6.4(d)). The mean start times are near the end of the freestream transient when the
quasi-steady response has already reached its end state. While the trend in the transient
amplitude growth remains similar across all trials (figure 6.2(f)), the large spread in transient
times is attributed to the differences in the timing of onset of sustained amplitude growth
(figure 6.2(f)).

For the slow ramp cases, the mean start and end times (figure 6.4(b)) fall well within the
bounds of the freestream transients (magenta shaded region). While the total transient
times in all cases are longer than those from the fast ramp cases (figure 6.4(c)), the relative
transient times in the IB-UB, LB-Dsnc, and Dsnc-LB cases are closer to 100%, reflecting
the increasingly quasi-steady nature of the responses. While both UB-LB and LB-UB
slow ramp cases also indicate behavior that signifies a more quasi-steady response, the
current estimations of transient time do not reflect that due to the adopted methodology.
As an example, consider the transient amplitude response in the slow ramp for the UB-LB
case (figure 6.3(b)). The ensemble-averaged amplitude envelopes (green line) indicate a
steady decrease in mean amplitudes before the rapid drop associated with intermittent
switching while the quasi-steady response (red line) is still decreasing in amplitude. This
small decrease in mean amplitudes still falls within the quasi-steady threshold for upper
branch oscillations (𝐴𝑚𝑒𝑎𝑛 ± 2 × 𝐴𝜎), thus not registering as the start of the transient.
However, the increasingly quasi-steady nature of the response in the UB-LB and LB-UB
cases is more apparent in the subsequent discussion (associated with figure 6.5).

Overall, the transient time estimates affirm the qualitative trends observed in the amplitude
responses for the fast and slow ramp cases (figures 6.2 and 6.3). Specifically, the longest
transient times are observed in the LB-Dsnc and Dsnc-LB cases for both fast and slow
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(c) (d)

Figure 6.4: Estimations of transient start (open symbols) and end times (filled symbols)
for (a) fast ramp and (b) slow ramp cases, respectively. The shaded regions indicate the
freestream transient period with the yellow representing the fast ramp and the magenta
representing the slow ramp. The dashed-dotted lines indicate the transient time of the
quasi-steady response, estimated using the same methodology. (c) The total nondimensional
transient time for each case, and (d) transient time as a percentage of the associated quasi-
steady transient time.

ramps. Conversely, the shortest times are observed in the UB-LB and LB-UB cases, due to
the proximity of the mean amplitudes at the two end states along with the nature of the
transient responses exhibiting behavior similar to intermittent switching. While the relative
transient time provided evidence of some of the cases (IB-UB, LB-Dsnc, and Dsnc-LB)
exhibiting increasingly quasi-steady responses for the slow ramp cases, the UB-LB and
LB-UB transient times estimates did not follow this trend due to the limitations of the
estimation methodology.

Examination of the transient amplitude responses in both fast and slow ramp cases revealed
the different ways in which the system transitions between two quasi-steady end states.
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However, it is of interest to visualize the extent to which system behavior deviates from
quasi-steady behavior when subjected to changing freestream conditions. To this end, the
system response is mapped onto the 𝐴∗ − 𝑈∗ plane for both fast and slow ramp cases.
Specifically, at each instant in time, the nondimensional ensemble-averaged amplitude is
plotted against the reduced velocity corresponding to the instantaneous freestream velocity.
The resulting locus of points maps the “trajectory” of the system in the 𝐴∗ − 𝑈∗ plane.
Figure 6.5 presents the resulting system trajectories for both the fast ramp (yellow lines) and
the slow ramp (magenta lines) cases, respectively. In all cases except the UB-IB transition,
the slow ramp trajectories (magenta lines) fall closer to the quasi-steady response markers
(open symbols) through the transient. Notably, the increasingly quasi-steady nature of the
response to the slow ramp in the UB-LB and LB-UB cases is also captured here. Overall,
slower changes in freestream velocity allow more time for the system to adjust to its new
state, thus more closely approximating quasi-steady behavior. However, the results show
that the transient response does not completely match the quasi-steady response for the
slow ramp case. Specifically, for the current system (𝑚∗ ≈ 10), even relatively slow rates of
change in freestream velocity (change in 𝑈∗ of 1 per approximately 600 oscillation cycles)
result in transient responses that differ from quasi-steady state. For the fast ramp cases
(yellow lines), the deviation from quasi-steady curves is more pronounced. This is most
evident in the LB-Dsnc and Dsnc-LB cases. In particular, the shapes of the trajectories
signify minimal change in 𝐴∗ while 𝑈∗ is rapidly changing during the initial transient period.
A similar but less exaggerated deviation from quasi-steady response is observed in the
UB-LB and LB-UB fast ramp transients. The IB-UB fast ramp transient also deviates from
quasi-steady response more than the slow ramp case. The UB-IB case for both fast and
slow ramps shows the closest match to the quasi-steady response.
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Figure 6.5: Transient system trajectories in the 𝐴∗ −𝑈∗ plane. The yellow lines depict
the fast ramp cases while the magenta lines depict the slow ramp cases.
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In summary, examination of the transient amplitude responses in the fast ramp cases
revealed the different ways in which the system transitions from one quasi-steady state to
another (e.g., intermittent switching in UB-LB, inverse sigmoid in Dsnc-LB). Moreover,
decreasing the mean acceleration rates (slow ramp) showed that, while the system transients
increasingly approached quasi-steady behavior, the nature of the responses between the
two quasi-steady end states remained similar to the fast ramp cases. Estimations of
the transient times provided quantitative evidence of the different trends outlined in the
amplitude responses. To shed more light on the mechanisms driving the different responses
across all the examined cases, an analysis of the forcing characteristics is carried out next.
From this point, attention will be paid to only the fast ramp cases as the inferences drawn
can be extended to the slow ramp cases.

6.3 Transient forcing characteristics

Figure 6.6 displays the ensemble-averaged forcing characteristics for all cases except the
UB-IB transition (the dual response nature of this case is explored separately in the sub-
sequent discussion). The procedure for ensemble averaging utilized the similarity in the
nature of the transient amplitude responses (figure 6.2) across all trials for each case by
temporally shifting each trial to a common datum. Specifically, cross-correlation analysis
of individual time series was used to estimate the “time lag” (𝜏) between the transient
responses across individual trials in each case. This time lag was computed relative to
the trial with the earliest transient onset in each data set. To align the trials, each trial
was temporally shifted by the difference between its individual time lag relative to the
leading trial and the mean time lag across all trials. This ensemble averaging procedure
is the same as the one used during the release from rest experiments (section 5.2), and
provides a reliable statistical representation of the dynamics observed within each realization.

The left column in figure 6.6 displays the ensemble-averaged nondimensional vortex forcing
magnitude (blue color) along with the ensemble-averaged cylinder displacement (gray). The
ensemble-averaged phase difference between the vortex force and cylinder displacement is
presented in the middle column, and the last column displays the ensemble-averaged signal
energy (modulus square of the wavelet transform) of the vortex forcing signal. The signal
energy at each instant is normalized by the total energy across all scales. The maximum
energy magnitude is plotted in green, while the red line represents the equivalent maximum
in the ensemble-averaged signal energy of displacement. In the first two columns, the shaded
region represents ± one standard deviation based on the ensemble averaging.

The force magnitudes in the IB-UB case (left column in figure 6.6(a)) gradually increase
after the onset of the freestream transient (first vertical dashed line). This is followed by a
relatively sharp drop in force magnitudes at (𝑡 − 𝜏) 𝑓𝑛 ≈ 55, near the end of the freestream
transient (right vertical dashed line). The drop in force magnitudes coincides with the
period of most significant amplitude growth. Concurrently, the vortex force phase difference
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(middle column) exhibits a rapid increase from near 0◦ to near 180◦. The continuous
positive values of the phase difference and passage through 90◦ (phase difference for most
efficient energy transfer) promote sustained net positive energy transfer to the cylinder,
resulting in rapid amplitude growth (equation 2.6). Prior to the freestream transient, the
dominant force and displacement frequencies (green and red lines, last column in figure
6.6(a)) are well below the structure’s natural frequency ( 𝑓 ∗ ≈ 0.92) as a consequence of the
phase difference being near 0◦. During the period of most significant amplitude growth,
the dominant forcing frequency exhibits a distinct overshoot followed by settling near the
quasi-steady value where 𝑓 ∗ > 1. The end quasi-steady state lock-in frequency is slightly
higher than the structure’s natural frequency as a consequence of a change in the sign of
the effective added mass resulting from the change in forcing phase difference (equation 5.2).
During the transient, The dominant displacement frequency (red line) gradually increases
from the initial branch quasi-steady lock-in value ( 𝑓 ∗ ≈ 0.92) to the final quasi-steady
lock-in value.

The force magnitudes in the UB-LB case (figure 6.6(b), left column) continuously increase
for approximately 15 cycles after the onset of the freestream transient. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 55,
the force magnitudes exhibit a distinct spike that coincides with the amplitude decay from
the upper to the lower branch. Following the spike, the force magnitudes settle on a value
larger than the quasi-steady upper branch force magnitudes. The drop in amplitudes also
coincides with a slight overshoot of the phase difference (middle column) above 180◦. This
overshoot signifies a brief period of negative excitation, resulting in the amplitude decay.
Following the overshoot, the phase difference stabilizes slightly below the 180◦ threshold,
with a lower variance that is characteristic of the stable oscillations in the lower branch.
The dominant forcing and displacement frequencies (figure 6.6(b), right column) increase
from 𝑓 ∗ ≈ 1.02 to 1.05 near the drop in amplitudes. The increased separation of the
lock-in frequency from the structural natural frequency is a consequence of larger forcing
magnitudes on the cylinder while the phase remains close to 180◦, thereby reducing the
effective added mass (equation 5.2).
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Figure 6.6: Forcing characteristics for all cases except the UB-IB transition. The left
column depicts the ensemble-averaged normalized force magnitude in blue along with
the ensemble-averaged cylinder displacement in gray. The middle column depicts the
vortex force phase difference, and the right column depicts the ensemble-averaged and
normalized signal energy of vortex forcing. The vertical dashed lines in all plots demarcate
the freestream transient period.
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For the LB-UB case (figure 6.6(c)), the force magnitudes (left column) remain stable until
the end of the freestream transient where they exhibit a rapid drop. This drop coincides
with the onset of cylinder amplitude growth, with the force magnitudes remaining near the
lower value during the amplitude growth. Following this, the forcing recovers to the final
quasi-steady state value. The vortex force phase difference (middle column) exhibits a small
but noticeable reduction below the lower branch quasi-steady values that enable net positive
energy transfer to the cylinder during the period of amplitude growth. As the amplitudes
reach their final quasi-steady state, the phase difference recovers to a quasi-steady value
closer to the 180◦ threshold while exhibiting the larger variance typical of the upper branch.
The dominant forcing and displacement frequencies (right column) gradually reduce to
values closer to the structure’s natural frequency as a result of the forcing changes as
discussed in the UB-LB case. Similarities in the amplitude responses between the UB-LB
and LB-UB cases and intermittent switching behavior in the quasi-steady upper branch
were briefly discussed in section 6.2. This similarity is explored later through analysis of
the forcing characteristics of individual realizations in both UB-LB and LB-UB cases.

The LB-Dsnc case force magnitudes (figure 6.6(d), left column) exhibit a gradual reduction
starting slightly after the amplitude of vibrations begins to decrease. Both the amplitude
and forcing continue to decay well after the end of the freestream transient. The onset of
amplitude decay coincides with the phase difference increasing and remaining slightly above
180◦, resulting in a continuous net negative energy transfer to the cylinder. The signal
energy of forcing (right column) reveals the emergence of a second component of forcing
around 𝑓 ∗ ≈ 2.1 near the end of the freestream transient while the cylinder amplitudes
continue to decay. This dual frequency response is reflective of the emergence of forcing at
von Kármán frequency in addition to that at the structure’s natural frequency. The von
Kármán component gradually strengthens and becomes dominant as the cylinder reaches
its final quasi-steady state. The dominant displacement frequency remains near structural
natural frequency throughout the transient.

The Dsnc-LB case (figure 6.6(e)) force magnitudes increase at a rate slower than the
amplitude growth rate starting from near the end of the freestream transient. The phase
difference (middle column), before the end of the freestream transient, is close to 170◦
and remains relatively stable until the end of the freestream transient, where it starts
gradually growing towards the quasi-steady state value close to 180◦. The proximity of the
phase difference to 180◦ results in a relatively slow amplitude growth rate (figure 6.2(f)).
The forcing signal energy (right column) reveals a dual frequency response similar to the
LB-Dsnc case with a larger contribution from the von Kármán component until near the
end of the freestream transient, where a relatively sudden lock-in is established. Notably,
sustained cylinder amplitude growth is only observed following the onset of lock-in (first
column, figure 5.8(e)). Additionally, the timing of the onset of lock-in was found to vary
between trials, resulting in the large variance between transient start times for this case
(figure 6.4).
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The UB-IB case (figure 6.2(d)) exhibited a dual-response, where approximately 90% of
trial remained at the high-amplitude hysteresis quasi-steady state while the remaining
trials returned to initial branch amplitudes. Figure 6.7 depicts two trials of the UB-IB
case showing (a) a trial that remained in the high-amplitude state and (b) a trial that
returned to the initial branch. Individual realizations are considered due to unreliable
ensemble-averaged phase difference estimations due to “phase slips” as discussed further.
For the trial that remained at high amplitude (figure 6.7(a)), the force magnitudes decrease
to 𝐶𝐿𝑣 ≈ 0.25 and exhibit lower variance shortly following the onset of the freestream
transient. The new mean value is lower than the quasi-steady values for both IB and
UB (see figure 6.6(a)). The phase difference (middle column) exhibits unique behavior
compared to the previously discussed cases. Before the onset of the freestream change
(first vertical dashed line), the phase difference is close to the 180◦ threshold. During the
freestream transient, the phase difference decreases rapidly toward 0◦, however, there are
distinct spikes in the phase difference. These spikes (phase slips) are related to frequency
modulations in the forcing that result in intermittent lock-in behavior [47]. Evidence of this
can be found in the signal energy of the forcing (right column) which shows the dominant
forcing frequency (green line) exhibiting significant modulations while the displacement
frequency is relatively stable and below natural frequency. The mean phase difference
(apart from the phase slips) is slightly higher than that observed in quasi-steady IB (see
figure 5.8(a)), oscillating near 𝜙𝑣 ≈ 15. This larger value of 𝜙𝑣 ensures sufficient positive
energy transfer to the cylinder to support the large amplitude oscillations (equation 2.6)
despite the lower values of forcing. Additionally, since the phase difference remains between
0 and 180◦ through the transient, the cylinder continuously extracts positive energy from
the flow, however; the drop in force magnitudes results in the reduction of mean amplitudes
from 𝐴∗

𝑚𝑒𝑎𝑛 ≈ 0.72 to 0.65.
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Figure 6.7: Forcing characteristics of individual realizations for the UB-IB transition with
(a) remaining in the high-amplitude state and (b) returning to the initial branch.

For the trial during UB-IB transition that returns to the initial branch (figure 6.7(b)),
marked differences in the forcing characteristics are observed compared to the trial that
remained at high-amplitude oscillations. Specifically, after the freestream transient, the
forcing magnitude exhibits larger modulations. Additionally, the force magnitudes gradually
increase beyond 𝑡 𝑓𝑛 ≈ 100 until the onset of the most significant amplitude decay near 𝑡 𝑓𝑛 ≈
130. The phase difference (middle column) also differs from the previous case in that the
mean phase values are closer to the 0◦ threshold, particularly for 𝑡 𝑓 𝑛 ⪆ 100. Consequently,
the energy input to the cylinder is unable to balance the energy lost to damping, and the
amplitudes exhibit a generally decaying trend for 𝑡 𝑓𝑛 ⪆ 100. Beyond 𝑡 𝑓𝑛 ≈ 130, the phase
difference regularly drops below 0◦ and the amplitude decay rates increase. The periods of
most significant amplitude decay coincide with the lowest phase difference values. Once
the system attains the final quasi-steady state values, the phase oscillates slightly above 0◦
(not visible with the current axis limits). The signal energy shows the switch in dominant
frequencies from 𝑓 ∗ > 1 before the freestream transient to 𝑓 ∗ < 1 after the freestream
transient. As the oscillation amplitude decays to the final quasi-steady state values and
the force magnitudes increase, the dominant frequencies move further below the natural
frequency and settle near 𝑓 ∗ ≈ 0.92.

The amplitude decay in the UB-LB case (figures 6.2(b)) and the steady amplitude growth
in the LB-UB case (figures 6.2(e)) resemble intermittent switching behavior found in quasi-
steady upper branch vibrations. To elucidate the similarities, individual realizations of
both transient cases (UB-LB, LB-UB) are presented in figure 6.8. The first column depicts
the force magnitude and vortex force phase difference associated with a single trial of the
UB-LB case while the second column shows the same plots for a single trial in the LB-UB
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case. In the UB-LB and the LB-UB cases, the amplitude response shows the existence of
intermittent switching behavior for 20 ⪅ 𝑡 𝑓 𝑛 ⪅ 40 and 120 ⪅ 𝑡 𝑓𝑛 ⪅ 150, respectively. In both
instances, the system is in the quasi-steady upper branch state, under steady freestream
conditions (outside the dashed lines). For both cases, amplitude decay coincides with a
significant spike in the force magnitudes and a small but noticeable excursion of the phase
difference above 180◦. In the UB-LB case (left column), the amplitudes begin increasing
almost immediately following the rapid amplitude decay. The forcing magnitudes decrease
and remain relatively low during the amplitude growth while the phase difference exhibits a
reduction to lower values before returning closer to 180◦ as the cylinder amplitude increases.
In the LB-UB case (right column), the amplitude remains close to the lower branch values
(𝐴∗ ≈ 0.56) for 120 ⪅ 𝑡 𝑓𝑛 ⪅ 130. Beyond this, the amplitudes grow to typical UB values, and
the forcing magnitude and phase difference follow the same trend outlined in the UB-LB case.

(a) (b)

UB-LB LB-UB

Force

magnitude

Phase 

difference

Figure 6.8: Forcing magnitude (top row) and phase difference (bottom row) of individual
realizations for the (a) UB-LB and (b) LB-UB cases, respectively.

The system characteristics described above for intermittent switching in the upper branch
under steady freestream conditions match those observed during the freestream transients
for both UB-LB and LB-UB cases. Specifically, the force magnitudes and phase difference
both spike during the amplitude drop in the UB-LB case, and the force magnitudes and
phase difference values decrease prior to the amplitude growth period for the LB-UB case.
Moreover, the amplitude decay rate in the UB-LB case, and the amplitude growth rate
during the LB-UB transition are similar to those observed during intermittent switching for
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quasi-steady VIV in UB. The changing freestream conditions appear to promote intermittent
switching behavior in the UB-LB case during the freestream transient. In the LB-UB
case, the amplitude growth is initiated only near the end of the freestream transient. How-
ever, slightly larger modulations in the forcing magnitude during the freestream transient
(starting at 𝑡 𝑓𝑛 ≈ 55, figure 6.8(b)) point to changes in wake dynamics. Ultimately, the
system characteristics during the amplitude growth (growth rate, forcing characteristics)
resemble those of a system already in the upper branch. It is thus speculated that the wake
characteristics are modified during the freestream transient and resemble a system in the
low-amplitude state of upper branch intermittent switching near the end of the freestream
transient.

The foregoing discussion of the forcing characteristics for all cases has provided more insight
into the underlying mechanisms resulting in different amplitude responses (figure 6.2) and
transient times (figure 6.4). While the forcing magnitude and phase difference are both
important in transient behavior, the latter is critical to the energy transfer to the cylinder
(equation 2.6) and consequently the amplitude growth/decay rate. Next, the transient wake
dynamics associated with the outlined responses are discussed.

6.4 Attendant transient wake characteristics

The dominant modes of vortex shedding in the initial, upper, and lower branches include
the expected 2S,2P0, and 2P modes, respectively. The characteristic features of each mode
along with mean wake development in each response branch are detailed in previous chapters
(see sections 4.2 and 5.1). The same modes of shedding are observed during the present
experiments, albeit with minor changes to the topology likely arising from the difference
in Reynolds numbers. In addition to the shedding characteristics in the initial, upper,
and lower response branches, the flow development in the hysteresis region is discussed
in Appendix B. The transient wake dynamics are examined through PIV measurements
ensemble-averaged over five trials for all cases. The ensemble averaging methodology is the
same as that used for the forcing analysis (section 6.3). Additionally, the two responses
in the UB-IB case are treated by conditionally averaging trials that exhibit the distinct
type of response, and the results are discussed in section 6.4.1. Ensemble-averaged PIV
measurements enable the identification of the changing coherent structures throughout the
transient. Additionally, the dynamic response of the wake to the changing freestream is
examined in two ways. First, the wavelet analysis (section 3.3.2) of the transverse velocity
signal along the wake centerline at 𝑋/𝐷 ≈ 2.5 downstream of the cylinder is used to identify
temporal changes to the dominant wake frequencies. Second, the rms of an instantaneous
“error field” is constructed to quantify the temporal evolution of the near wake character-
istics from the initial quasi-steady state. While a universal definition of the near wake is
lacking, the region between 0.5 < 𝑋/𝐷 < 3 and −1.5 < 𝑌/𝐷 < 1.5 is adopted as the near
wake here since the vortex formation and shedding process for all cases occurs within this
domain. The moving average of the streamwise velocity within this domain is constructed
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by employing a temporal window of approximately six oscillation cycles in length (approxi-
mately 150 PIV snapshots). At each instant, this moving average is subtracted from the
initial quasi-steady mean streamwise velocity field in this domain estimated over approxi-
mately 200 cycles before the start of the freestream transient. The rms of this “error field”
at each instant then represents the statistical deviation of the near wake from its initial state.

Figure 6.9 depicts the ensemble-averaged spanwise vorticity at four instances through the
transient for the IB-UB case. The corresponding instances are marked in the transient
ensemble-averaged displacement time series figure 6.9(a)2. In all the cases, the cylinder
is at the top dead center of an oscillation cycle. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 46 (figure 6.9(b)), the
wake exhibits an alternately signed pattern of vortices representative of 2S shedding. At
(𝑡 − 𝜏) 𝑓𝑛 ≈ 56 (figure 6.9(c)), the wake continues to exhibit 2S shedding with the positive
vortex at 𝑋/𝐷 ≈ 1.75 still attached to the shear layer. As the cylinder oscillations continue
to grow in amplitude, distinct changes are observed in the wake. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 62 (figure
6.9(d)), the wake still exhibits the alternating pattern of vortices. However, the positive
vortex at 𝑋/𝐷 ≈ 2 has already been shed with evidence of a weak negative trailing vortex
at 𝑋/𝐷 ≈ 0.6. The shedding of the positive vortex by this point in the oscillation cycle
signifies a switch in the timing of vortex shedding. This is further supported by the rapid
change in the vortex force phase difference from 0◦ to 180◦ around the same time (figure
6.6(a)). The switch in vortex shedding timing, along with evidence of a weak trailing vortex,
is indicative of the transition from 2S to 2P0 shedding. As the system reaches its final
quasi-steady state at (𝑡 − 𝜏) 𝑓𝑛 ≈ 70 (figure 6.9(e)), the wake continues to exhibit the 2P0
mode.

2Note that the freestream transient limits are not provided in this figure and subsequent amplitude figures
due to the differing x-axis scales employed for clarity.
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Figure 6.9: (a) Ensemble-averaged time series and spanwise vorticity for the IB-UB case
at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 46, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 56, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 62, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 70.

Figure 6.10(a) depicts the ensemble-averaged signal energy of the transverse velocity along
the wake centerline at 𝑋/𝐷 ≈ 2.5. The signal energy at each instant is normalized by the
total energy across all scales. The vertical dashed lines demarcate the freestream transient
period. The dashed-dotted line represents the structure’s natural frequency and the dashed
line represents the expected von Kármán shedding frequency based on the instantaneous
freestream velocity. Before the freestream transient (first vertical dashed line), the dominant
wake frequency ( 𝑓 ∗ ≈0.92) remains well below the structure’s natural frequency. Beyond
(𝑡 − 𝜏) 𝑓𝑛 ≈ 55, the dominant frequency exhibits a significant increase and settles near 𝑓 ∗ = 1
towards the end of the freestream transient. Beyond this point, the normalized signal
energy is significantly diminished, signifying a broadening of the energy spectrum. The
wake dominant frequency matches well with the dominant forcing frequency (figure 5.8(a)).
Figure 6.10(b) depicts the ensemble-averaged rms error of the near wake with respect to the
initial quasi-steady state. Before the start of the freestream transient, the rms error is below
5% of the freestream velocity. Following the onset of the freestream transient, the rms error
gradually increases, particularly beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 40, indicating a steady departure of the
near wake from the initial quasi-steady state. The steady increase in rms error coincides
with the increase in forcing magnitudes during the same period (figure 6.6(a)). Beyond
(𝑡 − 𝜏) 𝑓𝑛 ≈ 55, the rms error rapidly increases to its final value near 25% of the freestream
velocity at the final quasi-steady state. The rapid growth in rms error coincides with the
period of most significant amplitude growth (figure 6.2(a)). Notably, while the wake begins
to depart from its initial state soon after the onset of the freestream transient, the shedding
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frequency remains relatively stable until the periods of most significant amplitude growth.

(a) (b)

Figure 6.10: Transient wake dynamics for the IB-UB case. (a) Ensemble-averaged
normalized signal energy of the transverse velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5
and (b) ensemble-averaged rms error of the near wake with respect to the initial quasi-steady
state.

Figure 6.11 presents the ensemble-averaged spanwise vorticity contours at four instances
during the transient in the UB-LB case. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 40 (figure 6.11(b)), the wake exhibits
2P0 shedding. With the cylinder at the top dead center, only a negative vortex roll-up is
visible near the cylinder base at 𝑋/𝐷 ≈ 0.6. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 48 (figure 6.11(c)), the wake
still exhibits a topology that resembles 2P0 shedding, however, the negative vortex roll-up
occurs farther downstream compared to the previous instance. As the oscillation amplitudes
decrease, the wake at (𝑡 − 𝜏) 𝑓𝑛 ≈ 55 (figure 6.11(d)) shows evidence of both positive and
negative vortex roll-ups moving farther upstream. The wake farther downstream begins to
show signs of 2P shedding, as evidenced by the counter-rotating vortex pair seen between
1.5 ⪅ 𝑋/𝐷 ⪅ 3.75. As the system approaches its final quasi-steady state, the wake at
(𝑡 − 𝜏) 𝑓𝑛 ≈ 62 (figure 6.11(e)) exhibits a clear 2P pattern of shedding, characterized by the
counter-rotating pair of roughly equal strength. Additionally, both negative and positive
vortex roll-ups are apparent near the cylinder.
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Figure 6.11: (a) Ensemble-averaged time series and spanwise vorticity for the UB-LB
case at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 40, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 48, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 55, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 62.

The ensemble-averaged signal energy of the transverse velocity (figure 6.12(a)) shows the
dominant frequency located near the structure’s natural frequency with relatively low
magnitudes for (𝑡 − 𝜏) 𝑓𝑛 ⪅ 55. Beyond this, the normalized signal energy increases, sig-
nifying a narrower spectral distribution, and the dominant frequency shifts above the
structural natural frequency. The rms error (figure 6.12(b)) begins to depart from the
initial quasi-steady state within 5-7 cycles after the freestream transient is initiated. The
increase in rms error mirrors the increase in forcing magnitudes during the same period
(figure 6.6(b)). Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 55, the rms error rapidly increases, coinciding with the
drop in oscillation amplitudes and the spike in forcing magnitudes.
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(a) (b)

Figure 6.12: Transient wake dynamics for the UB-LB case. (a) Ensemble-averaged
normalized signal energy of the transverse velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5
and (b) ensemble-averaged rms error of the near wake with respect to the initial quasi-steady
state.

Figure 6.13 presents the ensemble-averaged spanwise vorticity contours at four instances
during the transient in the LB-UB case. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 63 (figure 6.13(b)), the wake exhibits
the 2P mode of shedding. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 70 (figure 6.13(c)), near the beginning of cylinder
amplitude growth, the wake continues to resemble the 2P mode. However, a slight reduction
in formation length is observed, as evidenced by the less apparent roll-up of the positive
vortex near the cylinder base at 𝑋/𝐷 ≈ 0.6 compared to the previous instance (compare
figures 6.13(c) and (b)). As the oscillation amplitudes continue to grow (figure 6.13(d),
(𝑡 − 𝜏) 𝑓𝑛 ≈ 76)), the reduction in formation length becomes more apparent. In particular,
the negative vortex roll-up occurs much closer to the base of the cylinder and the positive
vortex roll-up is not identified within the current field of view. Around this time, the 2P
mode transitions to 2P0, as evidenced by the diminishing trailing vortex strengths. The
2P0 shedding mode persists as the system approaches quasi-steady state (figure 6.13(e),
(𝑡 − 𝜏) 𝑓𝑛 ≈ 83).

The dominant wake frequency in the LB-UB case (figure 6.14(a)) remains above the struc-
ture’s natural frequency before and throughout the freestream transient period. Concurrent
with the period of oscillation amplitude growth, the dominant frequency exhibits a notice-
able decrease to values below the structure’s natural frequency before increasing slightly
above 𝑓 ∗ = 1 and settling there. The near wake rms error (figure 6.14(b)) remains below 5%
for (𝑡 − 𝜏) 𝑓𝑛 ≈ 50 before exhibiting an increase to approximately 13% towards the end of
the freestream transient. The rise in rms error between 50 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 70 (figure 6.14(b))
is linked in part to the reducing formation length before the rise in amplitudes. In contrast
to the previous two cases (IB-UB and UB-LB), the initial increase in rms error during the
freestream transient is not reflected in the ensemble-averaged forcing signal for the LB-UB
case (figure 6.6(c)). However, the forcing signal in the individual trial analysis (figure 6.8(b))
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showed a slight increase in the forcing modulation during this period. Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈
70, the error increases significantly, coinciding with the rising oscillation amplitudes and
the transition from 2P to 2P0 shedding.

Figure 6.13: (a) Ensemble-averaged time series and spanwise vorticity for the LB-UB
case at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 63, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 70, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 76, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 83.

(a) (b)

Figure 6.14: Transient wake dynamics for the LB-UB case. (a) Ensemble-averaged
normalized signal energy of the transverse velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5
and (b) ensemble-averaged rms error of the near wake with respect to the initial quasi-steady
state.
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The ensemble-averaged vorticity contours during the transient for the LB-Dsnc case are
presented in figure 6.15. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 44 (figure 6.15(b)), the wake exhibits the 2P
mode of shedding. Note that the 2P shedding topology at this reduced velocity differs
from the 2P quasi-steady state at the end of the UB-LB transition, particularly in the
streamwise vortex spacing and the vortex strength. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 60 (figure 6.15(c)),
the wake continues to exhibit the 2P mode. As the amplitude of vibrations decay, the
wake topology at (𝑡 − 𝜏) 𝑓𝑛 ≈ 70 (figure 6.15(d)) begins to exhibit an alternating pattern of
vorticity similar to 2S shedding. This shedding pattern persists as the cylinder moves into
the desynchronization regime ((figure 6.15(e)), (𝑡 − 𝜏) 𝑓𝑛 ≈89).

Figure 6.15: (a) Ensemble-averaged time series and spanwise vorticity for the LB-Dsnc
case at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 44, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 60, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 70, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 89.

The dominant wake frequency in the LB-Dsnc case for (𝑡 − 𝜏) ⪅ 70 exhibits the lock-in
frequency above 𝑓 ∗ = 1 (figure 6.16(a)). Between 70 ⪅ (𝑡 − 𝜏) ⪅ 90, a dual frequency
activity centered near the von Kármán and structure natural frequencies emerges. Notably,
the von Kármán frequency is very close to the first harmonic of the oscillation frequency.
This, coupled with the fact that the temporal shift for ensemble averaging in the LB-Dsnc
case is minimal (figure 6.2(c)), results in minimal phase-smearing during the ensemble
averaging. Consequently, the identification of the coherent 2S-like structures in figures
6.15(d-e) is possible. Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 90, the von Kármán frequency becomes dominant.
The near wake rms error (figure 6.16(b)) increases steadily with a relatively large standard
deviation (gray shaded region) for (𝑡−𝜏) 𝑓𝑛 ⪅ 60. During this initial period of the freestream
transient, neither the forcing magnitudes nor the oscillation amplitudes change appreciably
(figure 6.8(d)). This is similar to the results during the initial freestream transient period
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for the LB-UB case. Beyond (𝑡 − 𝜏) 𝑓𝑛 ≈ 60, the rms error asymptotically increases up to
quasi-steady state, coinciding with the decrease in forcing magnitudes and amplitude decay.
The standard deviation of the rms error is minimal during the periods of amplitude decay
(figure 6.16(b)).

(a) (b)

Figure 6.16: Transient wake dynamics for the LB-Dsnc case. (a) Ensemble-averaged
normalized signal energy of the transverse velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5
and (b) ensemble-averaged rms error of the near wake with respect to the initial quasi-steady
state.

The Dsnc-LB case ensemble-averaged vorticity contours are presented in figure 6.17. At
(𝑡 − 𝜏) 𝑓𝑛 ≈ 50 and (𝑡 − 𝜏) 𝑓𝑛 ≈ 70 (figure 6.17(b-c)), distinct coherent structures are only
identified near the cylinder, and no distinct topological features can be identified beyond
𝑋/𝐷 ≈ 2.5. The 2P mode of shedding is identified as the cylinder amplitude continues to
grow (figure 6.17(d), (𝑡 − 𝜏) 𝑓𝑛 ≈ 90) and persists through quasi-steady state (figure 6.17(e),
(𝑡 − 𝜏) 𝑓𝑛 ≈ 107).

The dominant wake frequency (figure 6.18(a)) closely follows the von Kármán frequency
(dashed line) for (𝑡 − 𝜏) 𝑓𝑛 ⪅ 90. Starting from (𝑡 − 𝜏) 𝑓𝑛 ≈ 69, notable energy content is
identified near the structure’s natural frequency. Between 69 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 95, both von
Kármán and natural frequencies are identified. The emergence of a component near the
natural frequency coincides with the onset of significant amplitude growth. Contrasting
with the LB-Dsnc case (figure 6.16(a)), the von Kármán frequency at the end of the
freestream transient is not near the first harmonic of the oscillation frequency. Thus, the
ensemble averaging is affected by significant phase smearing during the initial period of
amplitude growth where both von Kármán and natural frequency components are detected
in the wake (69 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 95). The near wake rms error (figure 6.18(b)) remains
relatively low for (𝑡 − 𝜏) ⪅ 60, beyond which a continuous increase in rms error is observed
until a small plateau near the end of the freestream transient. Similar to the LB-UB and
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Figure 6.17: (a) Ensemble-averaged time series and spanwise vorticity for the Dsnc-LB
case at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 50, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 70, (d) (𝑡 − 𝜏) 𝑓𝑛 ≈ 90, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 107.

LB-Dsnc cases, the oscillation amplitudes and forcing magnitudes do not change appreciably
during this period (figure 6.6(e)). Coinciding with the period of most significant oscillation
amplitude growth ((𝑡 − 𝜏) 𝑓𝑛 ⪆ 80), the rms error rapidly increases up to approximately 30%
at quasi-steady state (figure 6.18(b)).
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(a) (b)

Figure 6.18: Transient wake dynamics for the Dsnc-LB case. (a) Ensemble-averaged
normalized signal energy of the transverse velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5
and (b) ensemble-averaged rms error of the near wake with respect to the initial quasi-steady
state.

6.4.1 UB-IB dual response

The wake dynamics for the dual-response observed in the UB-IB case are explored further.
Figure 6.19 depicts four instances during the transient for the case that remains in the
high-amplitude state (top set of images), and the trials that return to the initial branch
(bottom set of images). For the former case, five PIV trials were used for ensemble averaging.
Only three PIV trials were captured for ensemble averaging in the case that returned to
the IB due to the lower frequency of occurrence for this mode. For the high-amplitude case,
the instances at (𝑡 − 𝜏) 𝑓𝑛 ≈ 40 and 46 (figure 6.19(b-c)) are within the freestream transient
period, and the wake resembles the 2P0 mode of shedding. Near the end of the freestream
transient (figure 6.19(d), (𝑡 − 𝜏) 𝑓𝑛 ≈ 62), slight changes are observed in the wake topology.
Specifically, while the shedding pattern still resembles 2P0, the vortices appear to have
moved upstream by as much as one diameter. This is also evidenced by the fact that, in the
previous two instances, four vortices (two on each side of the wake centerline) can be identi-
fied within the field of view, while an additional negative vortex is visible towards the end of
the field of view at (𝑡−𝜏) 𝑓𝑛 ≈ 62. This new topology persists at (𝑡−𝜏) 𝑓𝑛 ≈ 72 (figure 6.19(e)).

For the trials that returned to the IB, the reduction in oscillation amplitudes occurred after
an extended period at the high-amplitude state (60 ⪅ (𝑡 − 𝜏) 𝑓𝑛 ⪅ 120, figure 6.19(f)). The
wake topology during this period (e.g., figure 6.19(g), (𝑡 − 𝜏) 𝑓𝑛 ≈ 120) is similar to that
seen in figures 6.19(d-e) for oscillations at the high-amplitude state. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 135
(figure 6.19(h)), it can be seen that the positive vortex at 𝑋/𝐷 ≈ 2 remains attached to
the shear layer, signifying changes in vortex shedding timing. This becomes more apparent
as the oscillation amplitudes decay further (figure 6.19(i), (𝑡 − 𝜏) 𝑓𝑛 ≈ 160), signifying a
switch in the timing of shedding. At (𝑡 − 𝜏) 𝑓𝑛 ≈ 160, the wake topology begins to resemble
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2S shedding, characterized by the lower transverse distance between the vortices. The
vortex formation region moves farther upstream, as evidenced by the upstream movement
of the last negative vortex at 𝑋/𝐷 ≈ 6, now well within the field of view. The end state
quasi-steady 2S shedding is observed at (𝑡 − 𝜏) 𝑓𝑛 ≈ 180 (figure 6.19(j)).
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Figure 6.19: (a) Ensemble-averaged time series and spanwise vorticity for the UB-IB.
case that remains at a high-amplitude state at (b) (𝑡 − 𝜏) 𝑓𝑛 ≈ 40, (c) (𝑡 − 𝜏) 𝑓𝑛 ≈ 46, (d)
(𝑡 − 𝜏) 𝑓𝑛 ≈ 62, and (e) (𝑡 − 𝜏) 𝑓𝑛 ≈ 72. (f) Ensemble-averaged time series and spanwise
vorticity for the UB-IB. case that returns to the initial branch at (g) (𝑡 − 𝜏) 𝑓𝑛 ≈ 120, (h)
(𝑡 − 𝜏) 𝑓𝑛 ≈ 135, (i) (𝑡 − 𝜏) 𝑓𝑛 ≈ 160, and (j) (𝑡 − 𝜏) 𝑓𝑛 ≈ 180.
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Figures 6.20(a-b) present the ensemble-averaged signal energy of the transverse velocity
and near wake rms error for the trials that remain at high-amplitude oscillations in the
UB-IB case. Figures 6.20(c-d) present the same for the trials that returned to the initial
branch. Before the end of the freestream transient, the dominant wake frequency for the
high-amplitude case (6.20(a)) is centered around the structural natural frequency. After the
freestream transient, the dominant wake frequency decreases below the structural natural
frequency. The near wake rms error (figure 6.20(b)) shows a nearly immediate increase
following the onset of the freestream transient. The maximum value of the rms error
(approximately 15 %) attained towards the end of the freestream transient, is relatively low
compared to previous cases due to the similarity in the wake topology between the initial
and final states (figure 6.9). The ensemble-averaged transverse velocity signal energy for
the trials that return to the initial branch (figure 6.20(c)) shows that the dominant wake
frequency primarily remains below 𝑓 ∗ = 1 for (𝑡 − 𝜏) 𝑓𝑛 ⪅ 160. A notable increase in signal
energy is seen for (𝑡−𝜏) 𝑓𝑛 ⪆ 130. Additionally, a decrease of the dominant frequency to well
below 𝑓 ∗ = 1 is observed near (𝑡 − 𝜏) 𝑓𝑛 ≈180, coinciding with the period of most significant
amplitude decay (figure 6.19(f)). The near wake rms error (figure 6.20(d)) is approximately
15%, for (𝑡 − 𝜏) 𝑓𝑛 ⪅ 130, similar to the end state in figure 6.20(b). Beyond this, a steady
increase in rms error is observed until (𝑡 − 𝜏) 𝑓𝑛 ≈ 160, where the error saturates near 20%.
The steady increase in rms error coincides with the onset of gradual amplitude decay and a
change in shedding mode to 2S shedding (figure 6.19(i)).

For all the cases considered, qualitative analysis of the transient wake development helped
identify the topological changes to the wake during system transients. Time-frequency
analysis of the dominant wake frequencies matched them to those of the forcing on the
cylinder, affirming the link between the large-scale shedding in the wake and the forcing on
the cylinder. Additionally, the near wake rms error provided a measure of the deviation of
the near wake from its initial state, with the start of the increase in rms error signaling
the onset of the wake transient response. For the IB-UB, UB-LB, and Dsnc-LB. cases, a
departure from the initial quasi-steady state is observed within approximately five cycles
after the onset of the freestream transient. Concurrently, changes are also identified in the
forcing characteristics for the IB-UB and UB-LB cases. This suggests that the forcing on
the cylinder in the initial and upper branches is sensitive to relatively small changes in
the wake characteristics. Conversely, in the LB-UB and LB-Dsnc cases, relatively minor
changes to the forcing characteristics are observed despite significant changes to the wake
characteristics within the freestream transient periods. The decreased sensitivity of the
forcing to changes in the wake is speculated to stem in part from the larger vortex formation
lengths in the lower branch compared to the initial and upper branches. In other words,
the farther the vortices (low-pressure regions) are from the cylinder base, the lower the
sensitivity of forces to similar changes in the near wake characteristics.
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(c) (d)

(b)

Figure 6.20: Transient wake dynamics for the UB-IB. cases. The top row depicts the trials
the remain in high-amplitude oscillations, while the bottom row depicts trials that returned
to the initial branch. (a) Ensemble-averaged normalized signal energy of the transverse
velocity along the wake centerline at 𝑋/𝐷 ≈ 2.5 and (b) ensemble-averaged rms error of
the near wake with respect to the initial quasi-steady state.

6.5 Discussion

The combined analysis of the transient wake response with the forcing characteristics (sec-
tion 6.3) and the amplitude response (section 6.2) provides a holistic outlook on transient
VIV response in the unsteady freestream conditions considered in the present study.

The onset of the continuous increase in near wake rms errors approximately marks the
start of the transient wake response and is observed within a maximum of nearly 20
cycles after the onset of the freestream transient for all cases. However, there is a con-
siderable variance in the timing of onset of wake response between the different cases.
Nevertheless, the start of the system transient amplitude response (transient start time in
figure 6.4(a)) occurs later than the start of the corresponding transient wake response for
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all cases. While different methods were adopted for quantifying the wake and system re-
sponses, the results suggest that the initial structural response lags the initial wake response.

Following the onset of the structural response, the paths taken by the system between the
two quasi-steady states and the total transient times are closely related to the energy trans-
fer between the fluid and the structure. The largest rates of oscillation amplitude growth
(figure 6.2) are observed in the IB-UB case, where large rates of net positive energy transfer
are enabled by the phase difference passing between 0 and 180◦ through 90◦. Conversely, the
slowest transients are observed in the LB-Dsnc and Dsnc-LB cases, where the phase differ-
ences remain close to 180◦. These findings are similar to the ones from the release from rest
experiments, where a gradual increase in initial lock-in phase differences was observed with
increasing 𝑈∗ (figure 5.9), resulting in slower transients with increasing 𝑈∗. Additionally,
the results from a previous study [30] considering a large mass ratio (𝑚∗ ≈ 1590) flexible
cylinder released from rest also indicate a similar trend. Specifically, the fastest transient
responses were found near the end of the initial branch and the maximum amplitude
growth rate decreased with increasing 𝑈∗. This suggests that the trends in phase difference,
and subsequently energy transfer rates vs 𝑈∗ remain similar over a wide range of mass ratios.

The two distinct behaviors observed in the UB-IB case (with most trials remaining at a
high-amplitude state and approximately 10% of trials returning to the initial branch) also
provide evidence of the importance of phase difference to the transient dynamics. For trials
where the system remained in the high-amplitude state, the vortex force magnitudes are sig-
nificantly lower than those in either quasi-steady upper or initial branches. Additionally, the
mean phase differences are more separated from 0◦ compared to quasi-steady IB, enabling
sufficient net positive energy transfer to the cylinder despite the lower forcing magnitudes
(figure 6.7(a)). The trials that returned to the initial branch exhibited a period where the
mean phase difference decreased to values closer to 0◦. Despite the phase difference being
positive, the energy transferred to the cylinder is insufficient to sustain the high-amplitude
oscillations (energy input does not balance energy lost to damping) and a gradual amplitude
decay commences. The underlying mechanisms that trigger the decrease in amplitudes to
IB in some trials remain unanswered.

The current study has presented results pertaining to the simultaneous examination of the
structure and wake dynamics for a low mass-damping system subjected to two distinct
freestream accelerations. The nature of the system responses along with some of the key
underlying mechanisms have been elucidated. However, the utility of the presented results
to the broader engineering community remains to be addressed. To this end, some of the
potential questions that may arise for various engineering considerations are briefly discussed:

1. How applicable are the studied freestream accelerations to real-world VIV?

Two distinct mean freestream acceleration rates were considered within this study. The
fast ramp case consisted of freestream transients that lasted between approximately 30 and
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45 cycles of cylinder oscillation, while the slow ramp case lasted between approximately
360 and 900 cycles. These ranges cover operating conditions that are experienced by many
engineering applications as seen in figure 2.4. Thus, the results from the present study can
directly inform transient behavior prediction for systems of comparable mass ratios (𝑚∗ ≈
10) for a wide range of freestream accelerations within the tested limits.

2. How can the present results be extended to systems with significantly different mass
ratios?

While a comprehensive investigation needs to be undertaken to satisfactorily answer this
question, a comparison of the present results with those from relevant studies can provide
some initial insight. This is particularly true when trying to estimate the freestream accel-
eration rate required to elicit near quasi-steady system behavior. For the current mass ratio
(𝑚∗ ≈ 10), nondimensional mean accelerations of the freestream corresponding to a change
in 𝑈∗ of 1 over approximately 600 oscillation cycles (Δ𝑈∗/(Δ𝑡 𝑓𝑛) ≈ 1/600) resulted in the
system approaching close to quasi-steady behavior. A previous study considering unsteady
freestream effects on flexible cylinders of mass ratio 𝑚∗ ≈ 1 [150], found near quasi-steady
behavior for nondimensional mean accelerations of Δ𝑈∗/(Δ𝑡 𝑓𝑛) ≈ 1/50. This constitutes a
nearly 10 times increase in mean accelerations from the current experiment for an order of
magnitude decrease in 𝑚∗. Further, results from another study conducted on flexible cylin-
ders of mass ratio 𝑚∗ = 1,590 [94] subjected to mean accelerations of Δ𝑈∗/(Δ𝑡 𝑓𝑛) ≈ 1/360
showed significant transient effects. The deviations from the quasi-steady curve are more
exaggerated than those found in the present study (compare figures 6.5 and figure 2.5).
Additionally, release-from-rest experiments conducted on the same flexible cylinder setup
revealed the number of oscillation cycles taken to attain quasi-steady state from rest was
approximately 100 times those found in the present study (𝑚∗ ≈ 18, Chapter 5) at similar
reduced velocities (figure 5.4). Overall, a comparison of the different results indicates a
weakly linear relationship between transient behavior (for e.g, transient time) and mass
ratio. However, the actual mean acceleration required is expected to vary based on the
quasi-steady start and end states.

3. While slower transients will elicit more quasi-steady responses, how will system
transients behave for faster mean flow accelerations than those considered in the present
study?

For the fast ramp case, it can be shown that the local accelerations are at least two orders
of magnitude lower than the largest convective accelerations. In other words, the pressure
gradients introduced by the flow acceleration are not expected to appreciably influence the
system response. It is speculated that the trends in system responses described for the
fast ramp case will remain similar for faster freestream accelerations provided the local
accelerations are still significantly lower than the convective accelerations, particularly for
systems with mass ratios of the same order or larger. Consider that the outlined transient
behaviors between the two end states involve coupled changes to the wake and structural
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dynamics that are driven by the energy transfer between the fluid and the structure. Thus,
while faster freestream accelerations will likely promote faster initial wake and structural
responses, the paths taken by the system between the two end states depend on the rates
of energy transfer and the system inertia. Evidence for this can be also found in the
present results for the LB-Dsnc and Dsnc-LB cases, where the majority of changes in system
dynamics occur after the freestream transient has ended. As mentioned previously, the
trends in energy transfer rates hold for a wide range of mass ratios, thus allowing for a
first-order estimate of transient behavior in the case of faster ramps and for different mass
ratios.

6.6 Concluding remarks

The present study experimentally investigated the transient response of an elastically-
mounted cylinder (𝑚∗ = 9.4, 𝜁 ≈ 1×10−3) subjected to unsteady freestream conditions.
The system was forced to transition between adjacent response branches by varying the
freestream velocity in sigmoidal profiles between the two associated end states. The
cases considered include transitions between the initial and upper branches (IB↔UB),
upper and lower branches (UB↔LB), and lower branch to desynchronization (LB↔Dsnc).
Simultaneous cylinder displacement, forces, and two-dimensional velocity field measure-
ments were acquired. Two mean acceleration rates were considered: a fast ramp where
Δ𝑈∗/(Δ𝑡 𝑓𝑛) ≈ 1/50, signifying a change in reduced velocity of 1 over approximately 50
oscillation cycles, and a slow ramp where Δ𝑈∗/(Δ𝑡 𝑓𝑛) ≈ 1/600.

The transient response in all cases subjected to the fast ramp lags the associated quasi-steady
response (response based on the instantaneous freestream velocity), with the transient
responses exhibiting similar behavior between multiple trials within each case. A notable
exception is the UB-IB case where a dual response was observed, where a majority of the
trials (approximately 90%) remained at a high-amplitude hysteretic state while a smaller
fraction of trials returned to the initial branch. The transient time (time spent between
the two end states) varied significantly between the different cases. In particular, the
shortest transient times were observed in the UB-LB and LB-UB cases, primarily due
to the proximity of the steady state amplitudes between the two end states, while the
longest transient times were found in the LB-Dsnc and Dsnc-LB cases. The largest rates of
change in the amplitude were found in the IB-UB case. Plotting the system trajectories
on an 𝐴∗ −𝑈∗ map indicated the degree to which the transient responses deviate from the
quasi-steady curve on the same map. As expected, transient responses for the slow ramp
case indicated a closer match with the quasi-steady state response, while the fast ramp
cases showed significant deviations from the quasi-steady results.

The forcing characteristics (magnitude and phase difference with respect to cylinder dis-
placement) were used to elucidate the underlying mechanics responsible for the different
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transient behaviors in the fast ramp conditions. The phase difference, in particular, was
shown to be critical in determining the system response. Generally, net positive energy
transfer to the cylinder resulting in growing oscillations requires the phase difference to lie
between 0 and 180◦ with sustained periods outside those thresholds resulting in amplitude
decay. The fastest growth rates in the IB-UB transition were linked to the phase difference
passing between 0 and 180◦ through 90◦. Conversely, the slowest amplitude growth/decay
rates (LB↔ Dsnc) were associated with the phase difference continually being close to 180◦
resulting in low rates of energy transfer. Wavelet analysis of the forcing signal was used to
identify the changes to the dominant lock-in frequencies through the transient with these
behaviors linked to the forcing phase difference.

Analysis of the wake flow development enabled identification of the different wake states
and topologies encountered during the transition between different end states. The onset
of the changes in the wake was shown to precede the onset of significant changes in the
amplitude response for all cases, signifying a lag in the initial system response. Additionally,
the changes in the near wake velocity field were shown to closely correlate with trends in
the system forcing for the cases starting in the initial and upper branches, particularly
during periods of insignificant amplitude change. This points to an increased sensitivity of
the forcing to the near wake characteristics for the initial and upper branches. Conversely,
the lower branch exhibited a decreased sensitivity to changes in the near wake. Finally,
the comparative analysis of the results from the present study and those from previous
investigations highlighted the importance of both the mass ratio and the mean acceleration
rate to the transient system response characteristics.
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Chapter 7

Conclusions & Recommendations
The main findings from this work are summarized and recommendations for future studies
are provided.
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7.1 Conclusions

In this thesis, a series of experimental investigations were carried out to explore the structure
and wake dynamics of a circular cylinder undergoing 1-DOF VIV subjected to two flow
conditions commonly encountered in real-world flows: elevated freestream turbulence and
unsteady freestream conditions. In contrast to most previous work related to these two
flow conditions, a key objective of this work was to simultaneously explore the structure
and wake dynamics to better elucidate the physical mechanisms at play. Experiments were
conducted at two different free-surface water channel facilities on carefully manufactured
VIV setups. Additionally, an array of measurement techniques including simultaneous
displacement, force, and non-intrusive flow measurements were employed.

The two flow conditions considered in this thesis give rise to changes in both the quasi-
steady and transient system characteristics, with eFST primarily modifying the quasi-steady
response and unsteady freestream conditions giving rise to distinct transient dynamics.
Transient VIV behavior is also encountered in steady freestream conditions when there
are changes to the system’s structural properties. The dynamics of transient VIV in both
steady and unsteady flows are closely related to the energy transfer between the fluid and
the structure. Since steady flows pose fewer experimental challenges, this case was studied
first to understand key transient system behavior.

The investigation of the effects of eFST on quasi-steady VIV is presented in Chapter 4. A
turbulence grid placed upstream of the cylinder was used to raise the freestream turbulence
intensity from a baseline of 0.9% to 2.7% at the cylinder location. Elevated FST was found
to primarily affect the quasi-steady response towards the end of the lower branch and
at the transitions between the main response branches. In particular, an earlier onset of
desynchronization was observed with eFST. In contrast, the responses within the initial
and upper branches were minimally affected. Analysis of the wake dynamics affirmed the
marginal effects of eFST through most of the synchronization region. This insensitivity was
in stark contrast to the drastic changes observed in stationary cylinder wake at the same
conditions. A comparison of stationary cylinder wakes and VIV wakes at low oscillation
amplitudes (early initial branch and desynchronization region) revealed distinct changes to
the shear layer characteristics in the VIV cases. In particular, for the Reynolds number
considered in the study, stationary cylinder shear layers are highly susceptible to transition,
with eFST promoting this transition process. Conversely, the separated shear layers in the
VIV cases were found to be largely insensitive to the eFST perturbations. This change in
shear layer behavior likely resulted from the coupled fluid-structure interactions when the
cylinder is free to oscillate, thereby serving as perturbations to the separated shear layers.
The fluid-structure coupling was highlighted through spectral analysis of the wake signals
which revealed distinct modifications to the shedding frequency that were also reflected
in the displacement signals. Finally, a low order model constructed from the six most
energetic POD modes of the wake near the end of the lower branch revealed subtle changes
to the 2P shedding process that are reflective of an earlier onset of desynchronization.
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Specifically, less pronounced like-signed vortex separation was observed in the presence of
eFST, highlighting the change from 2P to 2S shedding at desynchronization.

In Chapter 5, the results from experiments detailing the dynamics of a cylinder released
from rest were presented. The setup remained the same as that used for the eFST ex-
periments with the addition of a system designed to release the cylinder when triggered.
Exploring the dynamics of a system released from rest was critical to understanding the
onset of nonlinear coupling behavior characteristic of VIV. In particular, the transition
from the initial forcing induced by von Kármán shedding to nonlinear forcing was examined
through the analysis of the forcing and displacement signals. In all cases, immediately after
release, the cylinder is displaced due to the forcing imposed by von Kármán shedding. This
displacement subsequently disrupts the von Kármán shedding mechanism. For reduced
velocities where the von Kármán shedding frequency and structural natural frequency are
close, relatively large initial cylinder displacements result in a rapid switch in the vortex
pinch-off and shedding mechanism. Specifically, opposite shear layers are forced to interact
due to their deflection, resulting in changes to the vortex pinch-off and shedding. Shear
layer deflection progressively increases with cylinder amplitude growth further promoting
this pinch-off mechanism until lock-in is established.

For reduced velocities within the synchronization region, lock-in is eventually established,
and the subsequent amplitude growth is closely related to the energy transfer between the
fluid and the cylinder. The phase difference between vortex force and cylinder displacement
was shown to be critical to the net energy transfer, and consequently, the oscillation ampli-
tude growth rate. In particular, net positive energy transfer to the cylinder was observed
only when the phase difference was between 0 and 180◦, with energy transfer maximized at
90◦, when the cylinder velocity and forcing are in phase. Additionally, a close relationship
was found between the timing of vortex shedding and the phase difference. Notably, the
initial phase difference after lock-in progressively increased with reduced velocity, resulting
in slower amplitude growth at larger reduced velocities. In addition to the energy transfer
implications, the phase difference was shown to influence the system lock-in frequency by
modifying the effective added mass.

Chapter 6 examined the transient dynamics of a circular cylinder undergoing VIV subjected
to various ramp changes in freestream velocity. The experiments were conducted at a
different facility with a different 1-DOF VIV setup from the one considered for Chapters
4 and 5. Two different rates of freestream velocity change were studied: a “fast ramp”
case where the total freestream transient time was within 45 cycles of cylinder oscillation,
and a “slow ramp” case, with the freestream transient lasting up to approximately 900
oscillation cycles. A total of six cases were examined that correspond to a transition
between the main response branches. The results from the fast ramp cases revealed distinct
transient dynamics that deviated substantially from the expected quasi-steady response.
The transient responses lagged behind the expected quasi-steady responses to varying
degrees. Further, the onset of the changes in the wake was shown to precede the onset of
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significant changes in the amplitude response for all cases, signifying a lag in the initial
system response. While the initial wake response was relatively rapid in all the examined
cases (within 20 cycles following the start of the freestream velocity change), the transient
progression to the new quasi-steady state differed significantly between the different cases.
The longest transients lasted more than six times the expected quasi-steady response
based on the velocity change. The transient dynamics in unsteady freestream were closely
related to the phase difference between forcing and displacement (and consequently energy
transfer) throughout the transient, similar to the results from Chapter 5. The slowest
rates of amplitude change were attained near the end of the lower branch, where the phase
differences were close to 180◦ throughout the transient. The fastest oscillation amplitude
change rates were observed at lower reduced velocities (initial-upper transition region).

System transient dynamics approached quasi-steady behavior for the slower freestream
variations. Although additional measurements are required to determine the required
mean freestream accelerations to promote quasi-steady behavior, a comparative analysis
of the present results and those of previous studies on VIV in unsteady flows point to the
importance of the mass ratio in system response to unsteady flows. In particular, the rate
of change of freestream velocity required to elicit near quasi-steady behavior is seen to scale
approximately inversely with the mass ratio. In other words, the larger the mass ratio, the
slower the freestream variation is required for quasi-steady behavior.

Overall, this thesis extends the body of knowledge regarding VIV behavior in two key real-
world flow conditions through simultaneous consideration of structural and flow dynamics.
Additionally, new insights are gained into the onset of nonlinear system behavior that is
characteristic of VIV. The key takeaways from this work include the robustness of the
shedding dynamics for cylinders free to vibrate at the tested eFST levels and 𝑅𝑒, and the
prominent role that phase dynamics play in transient VIV behavior.

7.2 Recommendations

The results obtained in this thesis have given rise to several research questions that warrant
further exploration in future studies. A few of the most pertinent suggestions for future
work are listed below.

• Extension of the current 1-DOF system to different 2-DOF VIV (constant/variable
amplitude, flexible cylinder) subjected to the same freestream conditions will help
further our understanding of real-world VIV. The results from the transient cases
indicated similarities in behavior with previous studies considering 2-DOF flexible
systems (e.g., slower amplitude growth rates with increasing reduced velocity). How-
ever, studies of 2-DOF VIV in eFST have reported contrasting results, prompting the
need for further investigation.
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• Only a relatively moderate level of elevated freestream turbulence intensity was
employed in this thesis. While the reported results are expected to hold for slightly
higher levels of turbulence intensity and 𝑅𝑒 within the early shear layer transition
regime, it is essential to study the effect of larger turbulence intensities as well as at
higher 𝑅𝑒 pertaining to the later stages of shear layer transition and boundary layer
transition regimes. It is speculated that earlier boundary layer transition that may be
induced at such conditions will result in decreased loading and oscillation amplitudes
compared to a baseline case. In addition to the turbulence intensity, the turbulence
integral length scale effects need to be considered.

• Analysis of boundary layer and separated shear layer development for a cylinder
undergoing minor vibrations may provide insights into the physical mechanisms
underlying the decreased sensitivity to external perturbations of eFST. To this
end, higher-resolution measurements in the shear layer region are needed. These
measurements would also enable the identification of the small-scale shear layer
structures and their behavior. The results from such a study may find use in flow
control applications where forced vibrations of the cylinder may be used to target
desirable near wake behavior.

• Near wake measurements may also be employed to offer additional insights into the
mechanisms leading up to lock-in for a structure released from rest in the synchro-
nization region.

• Quantitative analysis focused on relating specific topological flow features to the
forcing on the cylinder is required. The force partitioning method [147] presents a
viable option for this, with its application to experimental data in complex separated
flows recently demonstrated [220]. Such a targeted forcing analysis would enhance
understanding of the importance of the different flow regions (e.g., shear layers,
formation region, far wake) on the forcing characteristics. Among other possibilities,
such a study would enable more informed flow control strategies.

• The importance of the mass ratio to the transient response behavior was briefly
discussed in Chapter 6. A parametric study focused on transient VIV considering
a wide range of mass ratios is required to generalize the present results to a wider
range of systems encountered in real-world applications (section 2.4). The importance
of other parameters such as the damping and the Reynolds number must also be
considered for a comprehensive understanding of transient VIV.
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Uncertainty quantification is critical to ensure reliable interpretations of results, particularly
considering the experimental nature of the present work. Here, uncertainty is estimated
using the methodology outlined by Moffat [118]. Specifically, the total uncertainty 𝜖𝛽 for a
quantity 𝛽 is expressed as the root-sum-square of 𝑛 sources of errors 𝜖𝑖 over a 95% confidence
interval:

𝜖𝛽 = ±
(

𝑛∑︁
𝑖=1

𝜖2
𝑖

)1/2

(A.1)

While it is not practical to estimate all the sources of error, the investigator must account
for the most dominant error sources.

For quantities that are not measured directly (derived quantities), two approaches were
adopted to estimate the uncertainty propagated from the measured to the derived quantity.
First, if the relationship between the derived quantity 𝛽 and the measured quantities 𝛼 is
known through a defined function, i.e. 𝛽 = 𝑓 (𝛼1, 𝛼2, ...𝛼𝑛), then the propagated uncertainty
is estimated as:

𝜖𝛽 = ±
[

𝑛∑︁
𝑖=1

(
𝜕𝛽

𝜕𝛼𝑖
𝜖𝛼𝑖

)2
]1/2

(A.2)

Often, the derivatives in equation A.2 are tedious to evaluate or impossible to compute. In
these cases, the propagated uncertainty is estimated through the sequential perturbation
method [118]. Briefly, the uncertainty in the measured quantities 𝛼𝑖 is propagated to 𝛽 as
follows:

1. Estimate the nominal value of the derived quantity 𝛽0 from 𝛼𝑖 without accounting for
the uncertainty.

2. Sequentially perturb each 𝛼𝑖 by increasing its value by its uncertainty interval and
recording the associated uncertainty 𝛽+

𝑖
.

3. Repeat the previous step by reducing each 𝛼𝑖 by the uncertainty interval and recording
𝛽−
𝑖
. The total propagated uncertainty from each measured quantity 𝛼𝑖 is |𝛽+

𝑖
− 𝛽−

𝑖
|.

4. Calculate the total uncertainty in 𝛽 using equation A.1.

Table A.1 presents the uncertainties of all quantities in the present work rounded to the
first decimal. At both FMRL and LTRAC, the cylinder diameter was measured at multiple
locations using a digital vernier with a resolution of 0.01 𝑚𝑚. The associated relative
uncertainties in the diameter at FMRL and LTRAC are ±0.03% and ±0.026%, respectively.
The submerged cylinder length was measured using a tape measure with a resolution of
1 𝑚𝑚 corresponding to relative uncertainties of ±0.24% and ±0.13%, respectively. The
propagated uncertainty using equation A.2 to the aspect ratios are ±0.24% and ±0.16%,
respectively. The uncertainty in the mass ratio is propagated through the structural mass
and the displaced fluid mass. The mass of each component was measured using digital scales
with resolutions of 0.001 𝑘𝑔. The propagated uncertainty in the mass of the displaced fluid
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considered the uncertainty in the density, submerged length, and diameter. The density
was calculated indirectly through the temperature measured using a thermometer with
resolution 1◦C. The overall propagated uncertainty to the mass ratios are 0.4% and 0.5%
at FMRL and LTRAC, respectively. The propagated uncertainty to the Reynolds numbers
accounts for the uncertainties in the freestream velocity, diameter, and kinematic viscosity.
The uncertainty in kinematic viscosity was calculated indirectly using the temperature
with a resulting relative uncertainty of ±2.5% at both facilities. The uncertainty in the
freestream velocity was calculated using the correlation statistics method [170] resulting
in an uncertainty of ±1.5% of the mean freestream velocity. The propagated uncertainty
to the Reynolds numbers was less than 2.9 and 3.3% at FMRL and LTRAC, respectively.
The propagated uncertainty to the reduced velocity accounted for uncertainties in the
freestream velocity, diameter, and system natural frequency in still water. The natural
frequency was determined through impulse tests in still water and spectral analysis of the
resulting displacement signal. The signal was divided into equal windows of length 2×1015

with a 50% overlap, corresponding to a frequency resolution of 0.0153 𝐻𝑧. The overall prop-
agated uncertainty to the reduced velocity was less than 6.6% at FMRL and 7.4% at LTRAC.

The uncertainties in the cylinder position (±0.003𝐷, based on a sensor resolution of 20𝜇𝑚
and linearity of 0.1% of full scale), and the cylinder diameter were propagated to the
nondimensional amplitude 𝐴∗ resulting in total uncertainties less than 2.7% in all cases.
Similarly, the uncertainties in the nondimensional frequency are propagated from the
uncertainty in the frequency measurement and the system natural frequency, giving values
less than 1.2% at FMRL and less than 0.4% at LTRAC. The higher uncertainty in the
FMRL experiments is a consequence of the changing system natural frequency giving
rise to larger relative uncertainties at lower natural frequencies. The uncertainties in the
streamwise velocities and rms velocities are estimated using the correlation statistics method
and are typically highest in the wake regions. The associated values for each case are
presented in table A.1. The uncertainty in the forcing was estimated using two methods.
At FMRL, the total uncertainty in the numerically derived vortex forcing magnitude and
vortex force phase difference was estimated through sequential perturbation of the individual
contributors (displacement, velocity, acceleration, mass, spring constant, and the system
damping) with their associated uncertainties. The uncertainty in the spring constants was
propagated from the mass and system natural frequency. The uncertainty in the damping
was propagated from the nondimensional damping (estimated through the log-decrement
method, equation 3.1), the spring constant, and the mass. Following this, the uncertainty
in the forcing magnitude, freestream velocity, density, and frontal area were propagated to
the final nondimensional forcing using equation A.2. The total propagated uncertainty in
the nondimensional mean force at quasi-steady state was found to be within ±16% and ±3%
for the phase difference. AT LTRAC, the forces were measured directly using a six-axis
ATI-mini force sensor with a resolution of 0.005 𝑁. The propagated uncertainty to the
nondimensional force was calculated to be less than 3.1% of the mean force and less than
0.9% of the vortex force phase difference at quasi-steady state.
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Parameter Chapter 4 Chapter 5 Chapter 6 Methodology
AR ±0.2% ±0.2% ±0.2% Eq. A.2
𝑚∗ ±0.4% ±0.4% ±0.5% Eq. A.2
𝑈∗ < ±6.6% < ±6.6% < ±7.4% Eq. A.2
𝑅𝑒 ±2.9% ±2.9% < ±3.3% Eq. A.2
𝐴∗ < ±2.7% < ±2.7% < ±2.7% Eq. A.2
𝑓 ∗ < ±1.2% < ±1.2% < ±0.4% Eq. A.2
𝑇𝑢 ±0.05% - - [169]
|𝑢 |/𝑈0 < ±12% < ±10% < ±13.5% Eq. A.2
𝑢𝑟𝑚𝑠 < 8.4% of max 𝑢𝑟𝑚𝑠 - - Eq. A.2
𝑣𝑟𝑚𝑠 < 7.6% of max 𝑣𝑟𝑚𝑠 - - Eq. A.2

|𝐶𝐿𝑣 | - < ±16% < ±3.1% Sequential
perturbation, Eq.A.2

|𝜙𝑣 | - < ±3% < ±0.9% Sequential
perturbation, Eq.A.2

𝐿 𝑓 /𝐷 - < ±0.25𝐷 - section A.1
𝜃 - < ±35◦ - section A.1

Table A.1: Maximum uncertainty estimates of measured and derived quantities. All
uncertainty estimates are provided over a 95% confidence interval.

A.1 Uncertainty in vortex shedding dynamics

In Chapter 5, the instant of peak circulation of a vortex was used to identify the vortex
formation length, and the cylinder phase at shedding. However, estimating the associated
methodological uncertainty in peak identification presents unique challenges. The first step
involves estimating the uncertainty in the circulation estimates, a nontrivial task owing to
the lack of a universal definition of the vortex boundary. To illustrate the method adopted
in the present work, an example of the phase-averaged shedding in the quasi-steady initial
branch is provided. Identification of the vortex boundary in the present work involved an
iterative process that searches for the last continuous contour of 𝜆2 that encloses a given
vortex (see section 3.3.4 for details). To estimate the methodological uncertainty in the
circulation arising from differences in the identified boundary, the iterative procedure was
also conducted using the contours of the 𝑄 criterion. Figure A.1 compares the identified last
continuous contours of the phase-averaged vorticity fields in the wake of the cylinder using
the (a) 𝜆2 contours, and the (b) 𝑄 contours. It can be seen that both vortex identification
methods capture essentially the same regions of vorticity with minor differences between
the contours.
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(a) (b)

Figure A.1: Vortex boundaries identified using the last continuous threshold method (see
section 3.3.4) employing contours of (a) 𝜆2 criterion and (b) 𝑄 criterion.

Once the vortex boundaries are identified, the rms of the difference between the circulations
estimated using the 𝜆2 and 𝑄 criterion over a complete cycle of oscillation is used as a
measure of the uncertainty in the circulation (multiplied by 2 for 95% confidence). These are
shown as errorbars in figure A.2 which depicts the estimated circulation of the positive and
negative vortex as functions of the cylinder oscillation phase 𝜃. Next, the peak circulation
is identified for the positive and negative vortices as the intersection of linear fits to the
periods of growing and decaying vorticity (shown as solid blue and red lines in figure
A.2). For each of the growth/decay phases of the vortex (e.g., 30◦ ⪅ 𝜃 ⪅ 130◦), the root
mean square error of the measured circulations with the linear fit is calculated. For 95%
confidence, the error is multiplied by two. The total uncertainty is then calculated as
the root-sum-square (equation A.1) of the rms error from the linear fit (fit error) and
the methodological uncertainty in circulation (𝑄 vs 𝜆2). This is done separately for the
individual growth and decay phases. Finally, the total uncertainty in the circulation is then
translated to an uncertainty in the shedding phase by substitution into the equations for
the linear fit.
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Figure A.2: Circulation estimates from phase-averaged vorticity contours versus cylinder
oscillation phase.
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Appendix B

Additional measurements of the hys-
teresis in the initial↔upper branch tran-
sition
The hysteretic transition between the initial and upper branches is examined in more detail.
For decreasing 𝑈∗, a switch in the mean vortex force phase difference from near 180◦ to
near 0◦ is observed despite sustained high-amplitude oscillations typical of the upper branch.
In this high-amplitude state, distinct changes are observed in the wake topology compared to
a typical upper branch case, including the shedding of more coherent vortices. Moreover,
the switch in phase difference is not related to a distinct switch in the timing of vortex
shedding but is speculated to be linked to a change in the phase of the pressure fluctuations
with respect to the cylinder oscillation due to the modified vortex shedding characteristics.
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The existence of hysteresis in the transition between initial and upper branches is well
established in literature (e.g., [83]). However, to the best of the author’s knowledge, a
detailed characterization of the structure and wake dynamics within this region has not
been undertaken. To this end, an additional set of measurements was conducted at LTRAC
by imposing small variations in the freestream velocity near the hysteretic region corre-
sponding to Δ𝑈∗ ≈ 0.03. The resulting amplitude response, rms vortex force coefficient,
and nondimensional frequency are presented in figure B.1 where the black and red markers
represent increasing and decreasing 𝑈∗, respectively. The amplitude response for increasing
𝑈∗ (black markers, figure B.1(a)) indicates a notable increase in oscillation amplitudes
for 𝑈∗ ⪅ 5.25, with peak amplitudes reaching 𝐴∗

10 ≈ 0.4. The jump in amplitudes to
𝐴∗

10 ≈ 0.75 beyond this point indicates the switch from the initial to the upper branch.
The rms force magnitudes (figure B.1(b)) are seen to increase gradually up to 𝑈∗ ≈ 5.05
followed by a brief plateau and then a small decrease up to the end of the initial branch.
Following the switch to the upper branch, the rms force magnitudes increase with 𝑈∗.
The system oscillation frequency (figure B.1(c)) shows a gradual increase in frequencies
from 𝑓 ∗ ≈ 0.9 to 0.95 before the transition to the upper branch, where 𝑓 ∗ > 1. The
switch in the position of the lock-in frequency with respect to system natural frequency is
related to the switch in vortex force phase difference from near 0◦ to near 180◦ (equation 5.2).

While decreasing 𝑈∗ down to approximately 4.95, the oscillation amplitudes remain notably
high (𝐴∗ ⪆ 0.68, figure B.1(a)). The rms vortex force magnitudes (figure B.1(b)) exhibit a
continuous decrease until the end of the high-amplitude region, with the values notably
lower than those in both both quasi-steady initial and upper branches. The nondimensional
frequency (figure B.1(c)) indicates a switch in the lock-in frequency from 𝑓 ∗ > 1 to 𝑓 ∗ <1 at
𝑈∗ ≈ 5.1. This switch in the lock-in frequency to 𝑓 ∗ <1 is not typical of the upper branch
system behavior where 𝑓 ∗ remains greater than 1. The subsequent discussion is focused on
the decreasing 𝑈∗ case owing to its unique dynamics.

(a) (b) (c)

Figure B.1: Measurements between 4.7⪅ 𝑈∗ ⪅5.5.(a) Top ten percent of amplitude
peaks, (b) rms vortex force coefficient, and (c) nondimensional frequency ratio with the
dashed-dotted line demarcating system natural frequency.
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To elucidate the changes to the system dynamics with decreasing 𝑈∗, two representative 𝑈∗

(4.95 and 5.4) on either side of the frequency switch (figure B.1(c)) are explored further.
These cases are depicted as filled markers in figure B.1(a). In both cases, the system
exhibits high-amplitude oscillations. This is seen in figure B.2(a) where the left column
depicts a time series of oscillations in the upper branch, and the right column depicts the
system at the high-amplitude hysteresis state. The amplitude modulations for the hysteresis
case are notably lower. The corresponding time trace of vortex forcing is shown in figure
B.2(b). Apart from the magnitude of forcing being significantly lower for the hysteresis case,
notably lower modulations in forcing are also observed, similar to the amplitude response.
The vortex force phase difference (figure B.2(c)) shows a switch in the mean phase from
near 180◦ in the quasi-steady UB state to near 0◦ in the hysteresis state. Additionally,
both quasi-steady and hysteresis states exhibit phase slips [47]. These phase slips are due
to brief periods where the forcing and displacement frequency are not locked in. These
“lock-out” periods are evidenced in the normalized signal energy (modulus square of the
wavelet transform) of the forcing signal (figure B.2(d)), where the green line is the locus of
maximum in signal energy and the red line is the locus of maximum in the corresponding
displacement signal energy. The hysteresis case (right column) exhibits larger and more
frequent modulations of the forcing frequency. Additionally, the dominant frequencies (force
and displacement) predominantly lie below 𝑓 ∗ = 1 due to the mean vortex phase difference
switch from near 180◦ to near 0◦.

Overall, notable differences in system dynamics are encountered as the reduced velocity is
decreased from reduced velocities in the upper branch. The drastic switch in the vortex
force phase difference is typically associated with the transition between the initial and
upper branches, simultaneously accompanied by a distinct change in oscillation amplitudes.
Moreover, this transition is typically reflective of a switch in the timing of vortex shedding
[62]. The wake and shedding dynamics are explored next.
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(a)

(b)

(c)

(d)

UB UB-hysteresis

Figure B.2: System characteristics in the upper branch (left column) and the high-
amplitude hysteresis state (right column). (a) Time series of cylinder displacement, (b)
Time series of the vortex forcing, (c), (d) vortex force phase difference, and (e) normalized
signal energy of the vortex force overlaid with the maximum locus of the forcing (green)
and displacement (red) signal energies, respectively.
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Figure B.3 presents the phase-averaged spanwise vorticity contours for the cylinder at its
top dead position or the upper branch oscillations (left column) and the high-amplitude
hysteresis state (right column), respectively. The vortex shedding mode in both cases is 2P0.
This is more evident in figure B.3(b) where a weak trailing vortex is being shed near the
positive vortex at 𝑋/𝐷 ≈ 1.5. However, the vortices in the hysteresis case are significantly
more coherent. Additionally, the hysteresis case indicates a lower mean vortex advection
speed, evidenced by the increased number of vortices contained within the same field of
view (five vortices in the hysteresis case compared to four in the upper branch case, not
counting the weak trailing vortex). The lower vortex advection speed is presumably in part
linked to the lower freestream velocities for the hysteresis case (approximately 10% lower
than the upper branch case). Near the cylinder base (𝑋/𝐷 ≈ 0.5), there is a change in
the structure of the positive shear layer, with that in the hysteresis case angled away from
the cylinder compared to the upper branch case. Finally, in both the upper branch and
hysteresis cases, the first positive vortex (𝑋/𝐷 ≈ 2) has already been shed at the depicted
instant (cylinder at top dead center), indicating that despite the change in vortex force
phase difference, there appears to be minimal change to the timing of vortex shedding.

Figure B.4 presents the mean streamwise velocity contours for the upper branch oscillations
(left column) and the high-amplitude hysteresis state (right column). A larger velocity deficit
is observed in the hysteresis case (right column) presumably resulting from the slightly lower
oscillation amplitudes. The lack of change in the timing of vortex shedding accompanying
the shift in mean vortex force phase differences is in stark contrast to previously examined
cases (e.g., transient release from rest for all response branches, chapter 5) where a close
relationship between both quantities was observed. It is speculated that, in the hysteresis
region, the changes to the vortex shedding characteristics and wake topology (described
above) facilitate a change in the phase of the surface pressure fluctuations with respect to
the cylinder oscillation, resulting in the switch of phase difference between vortex force
and cylinder displacement. A further reduction of 𝑈∗ results in a switch in the timing of
shedding and a drop in amplitudes to the initial branch (see figure 6.19). To the best of
the author’s knowledge, the switch in the vortex force phase difference independent of the
timing of shedding has not been reported previously.
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(a) (b)

UB UB-hysteresis

Figure B.3: Phase-averaged spanwise vorticity contours (top row) for the (a) upper branch
and (b) high-amplitude hysteresis cases.

(a) (b)

Figure B.4: Mean streamwise velocity contours (top row) for the (a) upper branch and
(b) high-amplitude hysteresis cases.

153


	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation and thesis outline

	Background
	Crossflow over a stationary cylinder
	Quasi-steady vortex-induced vibrations
	Freestream turbulence effects on stationary and oscillating cylinders
	Effect of eFST on stationary cylinders
	Effect of eFST on VIV

	Transient vortex-induced vibrations
	Transient VIV in steady freestream conditions
	Transient VIV in unsteady freestream conditions


	Methodology
	Experimental setups
	FMRL water tunnel, VIV setup, and eFST generation
	LTRAC water tunnel and VIV setup

	Data Collection
	Particle image velocimetry 
	Quasi-steady VIV in eFST (FMRL)
	Transient VIV in steady freestream conditions (FMRL)
	Transient VIV in unsteady freestream conditions (LTRAC)

	Data Analysis Techniques
	Proper orthogonal decomposition
	Time-frequency analysis
	Numerical force estimation
	Vortex Identification


	Freestream turbulence effects on quasi-steady vortex-induced vibrations
	Amplitude and frequency response
	Mean flow topology and vortex shedding modes
	Wake reorganization with small-amplitude cylinder vibrations
	Desynchronization analysis
	Concluding remarks

	Transient vortex-induced vibrations of a cylinder released from rest in a steady freestream
	Quasi-steady state system characteristics
	Transient amplitude response
	Transient frequency response and the onset of lock-in
	Transient forcing characteristics and energy analysis
	Attendant transient wake dynamics
	Discussion
	Concluding remarks

	Transient vortex-induced vibrations of a cylinder in unsteady freestream conditions
	Quasi-steady state system characteristics
	Transient amplitude response
	Transient forcing characteristics
	Attendant transient wake characteristics
	UB-IB dual response

	Discussion
	Concluding remarks

	Conclusions & Recommendations
	Conclusions
	Recommendations

	References
	Appendices
	Uncertainty analysis
	Uncertainty in vortex shedding dynamics

	Additional measurements of the hysteresis in the initialupper branch transition

