
Distributions in Semantic Space

by

Kira A. Selby

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Kira A. Selby 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner: Graham Taylor
Professor, School of Engineering, University of Guelph

Supervisor(s): Pascal Poupart
Professor, School of Computer Science, University of Waterloo

Internal Members: Yaoliang Yu
Associate Professor, School of Computer Science, University of Waterloo

Jesse Hoey
Professor, School of Computer Science, University of Waterloo

Internal-External Member: Ali Ghodsi
Professor, Dept. of Statistics & Actuarial Science, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis was based on three existing works of research authored by myself, my supervisor Dr.
Pascal Poupart, and several co-authors.

For the work ‘Robust Embeddings Via Distributions’ (discussed in Chapter 3), I developed the
original idea, wrote the code to implement the model, and led the experiments. Yinong Wang and
Ruizhe Wang assisted in running experiments and made contributions to the code. My coauthors
Ahmad Rashid, Peyman Passban and Mehdi Rezagholizadeh contributed to writing the Related
Works section. I wrote all other sections of the paper. Ahmad Rashid, Peyman Passban, Mehdi
Rezagholizadeh and Pascal Poupart provided feedback and editing.

For the work ‘Learning Functions on Multiple Sets Using Multi-Set Transformers’ (discussed in
Chapter 4), I conceived the idea, conducted all experiments, and wrote the paper. Ahmad Rashid,
Ivan Kobyzev, Mehdi Rezagholizadeh and Pascal Poupart provided feedback and editing.

For the work ‘Few-Shot Image Generation Using Conditional Set-Based GANs’ (discussed in
Chapter 5), I conceived of the idea, conducted all experiments and wrote the paper. Pascal
Poupart provided feedback and editing.

iv

Abstract

This thesis is an investigation of the powerful and flexible applications of analyzing empirical
distributions of vectors within latent spaces. These methods have historically been applied with
great success to the domain of word embeddings, leading to improvements in robustness against
polysemy, unsupervised inference of hierarchical relationships between words, and even used to
shatter existing benchmarks on unsupervised translation.

This work will serve to extend these existing lines of inquiry, with a focus on two key areas
of further research:

• Probabilistic approaches to robustness in natural language.

• Approximating general distance functions between distributions in order to infer general
hierarchical relationships between words from their distributions over contexts.

Motivated by these initial research directions, the resulting investigations will then demonstrate
novel and significant contributions to a diverse range of problems across many different fields and
domains - far beyond the narrow scope of word embeddings. The key contributions of this work
are threefold:

1. Proposing a probabilistic, model-agnostic framework for robustness in natural language
models. The proposed model improves performance on a wide range of downstream tasks
compared to existing baselines.

2. Constructing a general architecture for modelling distance functions between multiple per-
mutation invariant sets. The proposed architecture is proved to be a universal approximator
for all partially permutation-invariant functions and outperforms all existing baselines on a
number of set-based tasks, as well as approximating distance functions such as KL Diver-
gence and Mutual Information.

3. Leveraging this architecture to define a novel, set-based approach to few-shot image gen-
eration. The proposed approach outperforms all existing image-to-image baselines without
making restrictive assumptions about the structure of the training and evaluation sets that
might limit its ability to generalize, making it a promising candidate for scaling to true
zero-shot generation.

v

Acknowledgements

I would like to thank my supervisor Dr. Pascal Poupart for his patience, encouragement
and insightful critique. I would also like to thank my co-authors Mehdi Rezagholizadeh, Ahmad
Rashid, Ivan Kobyzev, Peyman Passban, Yinong Wang and Ruizhe Wang. Finally, I would like
to thank the Vector Institute for providing the computational resources necessary to perform the
experiments needed for these works.

vi

Dedication

This thesis is dedicated to my mother and my friend Laura, both of whom have been anchors
of stability for me through challenging and confusing times, and without whom this would never
have been possible.

vii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vi

Dedication vii

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Word2Vec: A Motivating Example . 2

1.1.1 Distributional Similarity across Languages 2

1.1.2 Distributional Semantics and The Distributional Inclusion Hypothesis . . . 3

1.1.3 Probabilistic Word Embeddings for Polysemy and Homonymy 3

1.2 Core Problems . 4

1.2.1 The Problem of Noise in Natural Language 5

1.2.2 Approximating Distances between Distributions 7

1.3 Contributions & Overall Structure . 8

viii

2 Background 10

2.1 Preliminaries . 10

2.1.1 Word Embeddings . 10

2.1.2 Attention . 13

2.1.3 Generative Adversarial Networks . 16

2.1.4 Diffusion Models . 20

2.1.5 Few-Shot Image Generation . 21

2.2 Focus Areas . 23

2.2.1 Robustness in Natural Language . 24

2.2.2 Hypernymy and Approximating Distances between Distributions 25

3 Robust Word Embeddings 29

3.1 Introduction . 29

3.2 Related work . 30

3.2.1 Robust Methods . 30

3.2.2 Probabilistic Word Embeddings . 31

3.3 RED . 31

3.3.1 Robust Model . 31

3.3.2 Ensembling . 33

3.4 Experiments . 34

3.5 Results . 36

3.5.1 Clean Training . 37

3.5.2 Noisy Training . 38

3.6 Analysis . 39

3.6.1 Ablation Study . 39

3.6.2 Examples . 39

3.6.3 Computational Cost . 40

3.6.4 Hyperparameter Analysis . 41

3.7 Conclusion . 41

ix

4 Multi-Set Transformers 44

4.1 Introduction . 44

4.2 Related Work . 45

4.3 Method . 45

4.3.1 Background . 45

4.3.2 Multiple Sets . 47

4.3.3 The Proposed Model . 49

4.3.4 Multi-Set Transformer . 50

4.3.5 Variable-Dimension Encoders . 50

4.4 Theoretical Analysis . 51

4.5 Proof of Theorem 4.4.2 . 53

4.5.1 Construction of the Contextual Mapping 56

4.5.2 Proof of Lemma 6’ . 56

4.5.3 Proof of Lemma 7’ . 59

4.6 Experiments . 60

4.6.1 Statistical Distances . 61

4.6.2 Image Tasks . 64

4.6.3 Analysis . 67

4.6.4 Scaling . 67

4.7 Discussion and Conclusion . 68

5 SetGAN 70

5.1 Introduction . 70

5.2 Related Work . 71

5.2.1 Few-shot GANs . 71

5.2.2 Diffusion models . 72

5.2.3 Image translation . 73

5.2.4 Set-based approaches in GANs . 74

x

5.3 Methods . 74

5.3.1 Architecture . 74

5.3.2 Latent space truncation . 77

5.4 Experiments . 78

5.4.1 Setup . 78

5.4.2 Datasets . 79

5.4.3 Baselines . 79

5.4.4 Evaluation procedure and metrics . 80

5.5 Results . 84

5.5.1 Quantitative Results . 84

5.5.2 Qualitative Results . 84

5.5.3 Inference Time . 85

5.6 Analysis . 86

5.6.1 Effect of the conditioning network by reference image 87

5.6.2 Effect of the conditioning network by layer 87

5.6.3 Effect of the base style vector . 88

5.7 Conclusion and Future Work . 89

6 Conclusion 90

6.1 Contributions . 90

6.2 Future Work . 91

References 93

APPENDICES 107

A Appendix 1 108

A.1 Experiments and Baselines . 108

A.2 Ablation Results . 108

A.3 Hyperparameter Analysis . 108

xi

A.3.1 τ . 110

A.3.2 K . 110

A.3.3 M . 110

B Appendix 2 114

B.1 Experiment Details . 114

B.2 Attention Derivation . 115

C Appendix 3 117

C.1 Architecture and training details . 117

xii

List of Figures

2.1 The base attention mechanism [Vaswani et al., 2017]. 13

2.2 The original transformer encoder-decoder model from Vaswani et al. [2017]. 15

2.3 A diagram of the StyleGAN generator architecture from Karras et al. [2019] as
compared to previous convolutional GANs. 17

2.4 The pixel2style2pixel encoder architecture from Richardson et al. [2021]. Feature
maps are extracted at three levels of resolution (coarse, medium and fine) using
a ResNet. A “map2style” network at each layer learns to extract the style vector
from the appropriate feature map (0-2 for coarse, 3-6 for medium, 7-18 for fine). . 19

2.5 Gaussian embeddings of words from Vilnis and McCallum [2014], demonstrating
how words with similar meanings could be modelled as distributions with overlap-
ping support. 26

2.6 Visualizations of Singh et al’s distributional estimates for the words “rock” and
“music”, taken from their paper. “Rock” has a mode that overlaps strongly with
the distribution for music (i.e. the rock music as a genre) as well as modes that do
not (“rock” as in a stone). 27

3.1 Diagram of the robust embedding model and how the output distribution is com-
puted. 30

3.2 Motivating example of how the predictions from both streams are combined to
generate the final output. 33

3.3 Ensembling model for robust embeddings. K sampled vectors for each token are
organized into K sequences. These sequences are each passed through the classifier
independently, and aggregated at the end into a single prediction. 34

3.4 Example of the RED model applied to a sample noisy sentence. Tables show the
probability distributions over possible embeddings for each of three key tokens in
the sentence. Results are shown for all candidate words with probability > 0.1%. . 39

xiii

4.1 Diagram of the Multi-Set Transformer and Multi-Set Attention Block 48

4.2 Plot of absolute error in predicted mutual information for correlated Gaussian data
with 2d, 10d and 20d marginals for the MST model and baselines. 63

5.1 Examples of generations using images across many different test classes that share
similarities according to other features - e.g. women with heavy eye makeup,
animals with long upward-pointing ears, or clusters of pink and purple flowers.
SetGAN generates diverse output images that faithfully reproduce these features,
whereas other baselines either copy the reference images or generate images which
are not faithful to the shared features. 72

5.2 Generations from AGE, FSDM, WaveGAN and SetGAN conditioned on 3 reference
images from unseen classes of each of the Animal Faces, Flowers and VGGFace
datasets. 73

5.3 Diagram of the SetGAN generator. The pSp encoder maps each input image to the
latent space W+. The input style vectors are then passed through the StyleGAN2
mapping network, then passed to a series of conditioning networks which compute
conditional styles for each layer of the decoder by attending to the appropriate
output layer of the pSp encodings. These conditional styles then become the
inputs to the StyleGAN2 generator, which decodes them into images. 75

5.4 Diagram of the SetGAN discriminator. Sets of input images are encoded as fixed-
size vectors using a convolutional network. These sets of vectors are then passed
through a Multi-Set Transformer (see Chapter 4) consisting of several multi-set
attention blocks, followed by a pooling operation performed on each set. These
outputs are then concatenated and passed through a feedforward decoder layer to
produce a scalar output. 77

5.5 Additional generations from SetGAN using reference sets of 5 images. 78

5.6 Diagrams of an example generation process from SetGAN. 86

5.7 Sample generations using the reference images in Figure 5.6 with only the first
conditioning layer active. Heatmaps underneath each image indicate the attention
weights given to each reference image. 87

5.8 Heatmap of attention weights by layer for Fig. 5.6a 87

5.9 Generations from Fig. 5.6 with some attention layers inactive. Red boxes indicate
active layers. 88

5.10 Generations from different reference batches using the same base style. 89

xiv

A.1 Plot of MRPC accuracy using the RoBERTa classifier and RED with ensembling
by τ value, ranging from τ = 0.01 to τ = 2. 111

A.2 Plot of SST-2 accuracy using the RoBERTa classifier and RED with ensembling
by τ value, ranging from τ = 0.01 to τ = 2. 111

A.3 Plot of MRPC accuracy using the RoBERTa classifier and RED with ensembling
by K value, ranging from K = 5 to K = 30. 112

A.4 Plot of SST-2 accuracy using the RoBERTa classifier and RED with ensembling
by K value, ranging from K = 5 to K = 30. 112

A.5 Plot of MRPC accuracy using the RoBERTa classifier and RED with ensembling
by M value, ranging from M = 5 to M = 30. 113

A.6 Plot of SST-2 accuracy using the RoBERTa classifier and RED with ensembling
by M value, ranging from M = 5 to M = 30. 113

xv

List of Tables

3.1 Scores averaged across selected GLUE tasks with RoBERTa and HBMP classi-
fiers with clean training. An x indicates a method that is not compatible with
RoBERTa. ↑ and ↓ signify results that are statistically better or worse respec-
tively than RED-Ensemble with p < 0.05 according to the Wilcoxon signed rank
test [Wilcoxon, 1945]. 35

3.2 Scores averaged across selected GLUE tasks with RoBERTa and HBMP classifiers
with noise applied during training time. An x indicates a method that is not
compatible with RoBERTa. ↑ and ↓ signify results that are statistically better or
worse respectively than RED-Ensemble with p < 0.05 according to the Wilcoxon
signed rank test [Wilcoxon, 1945]. 36

3.3 Results of ablation study on RED components, averaged across the five GLUE
tasks. ↑ and ↓ signify results that are statistically better or worse respectively
than RED-Ensemble with p < 0.05 according to the Wilcoxon signed rank test
[Wilcoxon, 1945]. 37

3.4 Comparison against other baselines as a denoising method on example noisy se-
quences. 38

3.5 An expanded version of the first table from Fig. 3.4 showing the contributions of
each stream to the final distribution over embeddings for the noisy token ‘lids’.
Values shown are log-scale, save for the final column. 38

3.6 5 ensemble samples from RED for the sentence in Figure 3.4. 40

3.7 Average time (in minutes) for each stage of computation for each model on the
MRPC and SST-2 datasets using the RoBERTA classifier. 41

3.8 Results of baselines by task with clean training. An x indicates a method that
is not compatible with RoBERTa. ↑ and ↓ signify results that are statistically
better or worse respectively than RED-Ensemble with p < 0.05 according to the
Wilcoxon signed rank test [Wilcoxon, 1945]. 42

xvi

3.9 Results of baselines by task with with noise applied during training time. An
x indicates a method that is not compatible with RoBERTa. ↑ and ↓ signify
results that are statistically better or worse respectively than RED-Ensemble with
p < 0.05 according to the Wilcoxon signed rank test [Wilcoxon, 1945]. 43

4.1 Mean absolute error of models trained on Gaussian mixture data for estimating
KL divergence. 61

4.2 Average accuracy and L1 error of each model on the MNIST and Omniglot counting
tasks across 3 runs (higher is better for accuracy and lower for L1). 64

4.3 Average accuracy and standard deviation of each model across 3 runs on the align-
ment tasks. 65

4.4 Average accuracy and standard deviation of each model across 3 runs on the dis-
tinguishability tasks. 66

4.5 Scaling of the number of operations required for each model with set sizes n,m
and dimension d. 68

5.1 Scores for conditional generation on the Animal Faces, Flowers and VGGFace
datasets for each of the four baselines, conditioned on reference sets of size 1, 3
and 10. Results were averaged over three different random partitions of the test
set into Deval and Dref. Lower scores are better for MIFID, higher is better for
LPIPS. The best score in each category is bolded. Scores that exceed all others by
at least one standard deviation are italicized. 80

5.2 Scores for synthetic baselines using a variety of performance metrics. Methods
that simply copy the reference set (”Noisy” and “Copy”) are disproportionately
favored by many scoring methods, outperforming most trained models and even
approaching the score for the true test set. MIFID scores are discussed in Section
5.4.4. 82

5.3 Time to perform a single batch of generations, with batch size 20 and 3 generated
images per input set. 85

A.1 Results of ablations on GLUE tasks with RoBERTa and HBMP classifiers. ↑
and ↓ signify results that are statistically better or worse respectively than RED-
Ensemble with p < 0.05 according to the Wilcoxon signed rank test[Wilcoxon,
1945]. 109

xvii

Chapter 1

Introduction

A near-universal paradigm in machine learning is the representation of examples from various
domains as vector encodings embedded in a continuous latent space. These latent encodings
can take many forms. Often they are used as a form of preprocessing - converting images or
text into vectors in a continuous latent space that can then be processed by a neural network
model. Notable examples of this are word embeddings such as the widely-used “Word2Vec”
vectors [Mikolov et al., 2013a], or the “WordPiece” vectors [Wu et al., 2016] used by many large
language models such as BERT. But such approaches are not limited to preprocessing alone.
Latent representations are leveraged by many powerful autoencoder or encoder-decoder models -
compressing semantic information about sequences, images, or other complex inputs into vectors
that can then be leveraged in many diverse applications.

Before the advent of so-called “large language models”, encoder-decoder “sequence-to-sequence”
models dominated the field of natural language. These models used an “encoder” module to en-
code the input sequence into a continuous representation, which was then used by the ‘decoder’
in order to generate an output sequence [Sutskever et al., 2014b, Vaswani et al., 2017]. In more
modern examples, large pretrained transformer models such as BERT [Devlin et al., 2018a] are
frequently leveraged to generate powerful latent representations which can be generalized to many
different applications. An enormous swath of the modern machine learning literature relies on
leveraging these pretrained representations, then finetuning small output modules in order to per-
form a broad range of downstream tasks. This paradigm of leveraging pretrained representations
is not limited to natural language, either. In computer vision, models such as VGG [Simonyan
and Zisserman, 2015], Inception [Szegedy et al., 2015], or CLIP [Radford et al., 2021] are often
used to encode images as latent vectors in a similar way, which can then be leveraged for appli-
cations such as assessing model quality [Heusel et al., 2018], or measuring perceptual similarity
[Zhang et al., 2018].

1

While latent representations are ubiquitous throughout all fields of machine learning, they
are often used merely deterministically, as components in larger model pipelines. This narrow,
utilitarian focus fails to leverage one of the richest sources of information encoded in these latent
representations: the distributions of vectors within continuous latent space. As a motivating
example, let us consider the Word2Vec word embedding vectors, first proposed in Mikolov et al.
[2013a].

1.1 Word2Vec: A Motivating Example

At a high level, Word2Vec consists of two primary components: a set of word vectors U ∈ R|V |×d

and context vectors V ∈ R|V |×d. Each word w in the vocabulary W is thus encoded as two d-
dimensional latent representations: one as a ”center word”, and one as a ”context word”. These
vectors are then trained using a reference corpus, by maximizing the probability over all words
in T of a given context word c occurring nearby a given center word w (for a more detailed
presentation, see Section 2.1.1).

p(c|w; θ) =
euw·vc∑

c′∈V e
uw·v′c

(1.1)

1.1.1 Distributional Similarity across Languages

The key assumption that underlies Word2Vec is the distributional hypothesis [Harris et al., 1954,
Firth, 1957]. Concisely stated, the hypothesis states that ”a word is characterized by the company
it keeps” - i.e. words with similar meanings occur in similar contexts. One critical observation
about the distributional hypothesis is that it is not limited to a single language. Consider two
languages L1 and L2, with vocabularies W1 and W2. Let us (naively) assume that each word
w ∈W1 is a direct translation of a word w′ ∈W2. Then, any word w ∈W1 that is likely to occur
in some context of C = ci ∈W1 must have some associated word w′ ∈W2 that is likely to occur
in context C ′ = c′i ∈W2, where C and C ′ must be the image of each other under translation.
As such, the distribution of word-context pairs should be universal between L1 and L2. Since
Word2Vec vectors encode this precise distribution, there is a deep connection between the latent
distribution of word vectors in the trained representations for L1 and those of the representations
for L2.

In fact, it has been found by many authors [Mikolov et al., 2013b, Artetxe et al., 2016, Lample
et al., 2018a] that these two latent distributions are not just similar: they are a linear transfor-
mation of one another. If we assume V1 to be the trained Word2Vec vectors for L1 and V2 to be
the same for L2, then with very high accuracy we can state that V1 = WV2 for some linear trans-
formation W . This observation led to a flurry of work in unsupervised translation, culminating in

2

the work of Lample et al. [2018b]. This paper leveraged this fundamental observation about the
distribution of latent representations within a continuous vector space in order to shatter existing
benchmarks for unsupervised translation, and even surpass the performance of many supervised
models.

1.1.2 Distributional Semantics and The Distributional Inclusion Hypothesis

From the distributional hypothesis mentioned in the previous section, we may conclude that the
meaning of a given word w to be fundamentally connected to and summarized by its distribution
over contexts - p(c|w). Given this observation, then relationships between words should also imply
relationships between their corresponding distributions. Consider the ‘entailment’ relationship
(or ‘is-a’ relationship) - i.e. a cat is an animal, or a car is a vehicle. Geffet and Dagan [2005]
propose to extend the distributional hypothesis to their “distributional inclusion hypothesis”,
which states that one word v can be said to entail (or be a hypernym of) another word w if
“the most characteristic contexts of v are expected to be included in all w’s contexts (but not
necessarily amongst the most characteristic ones for w)”. If we thus consider distributions over
possible contexts p(c|v) and p(c|w), the support of p(c|w) should be a superset of the support for
p(c|v). This line of inquiry has been investigated by many different works [Vilnis and McCallum,
2014, Sun et al., 2018, Singh et al., 2020], each of which represented these distributions in different
ways.

[Singh et al., 2020] considered expressing these distributions directly as discrete histograms
over context words. They proposed a “context-mover’s distance”, which utilized the Wasserstein
distance over a ground metric based on the similarity operator = defined by Henderson and Popa
[2016] as their ground metric: DHend

ij = −vi = vj .

CMD(wi, wj ;D) = OT(Pwi
V , P

wj

V ;D) (1.2)

Alternatively, since Word2Vec vectors are trained to encode the distribution p(c|w), distri-
butions within the latent space of Word2Vec vectors can also be used to demonstrate the same
properties [Vilnis and McCallum, 2014, Sun et al., 2018]. Vilnis and McCallum [2014] propose
to use Gaussian mixtures centered on point embeddings of words within the latent space of
Word2Vec. These embeddings were then compared against one another by means of distance
measures such as the KL Divergence, or the Wasserstein distance in the case of Sun et al. [2018].

1.1.3 Probabilistic Word Embeddings for Polysemy and Homonymy

In a similar fashion to the works of Vilnis and McCallum [2014] and Sun et al. [2018], many
other authors have also explored modelling distributions within the latent space of embedding

3

vectors. One common motivation for these probabilistic approaches is the problem of polysemy
and homonymy. A very large proportion of words in the English language can have multiple
distinct meanings in different contexts. As such, it may not be sensible to encode the meaning
of a given word into a single static vector - instead, the latent meaning of a given token can be
viewed probabilistically as a mixture over different “senses” or “prototypes”. This concept was
first introduced in Tian et al. [2014], who proposed a method to extend the well-known Word2Vec
embeddings into a mixture over “prototypes” using expectation maximization. Liu et al. [2015]
also sought to address this problem by proposing a form of “topical word embeddings”. Their
proposed method adapted the well-known Latent Dirichlet Allocation of Blei et al. [2003] to infer
latent “topics” for each word, and learned different representations of each word vector under each
distinct topic. In order to incorporate contextual information, the authors propose a Bayesian
approach wherein the distribution over the latent topic z for a given word w with context c is
given by P (z|w, c) ∝ p(w|z)p(z|c). The “contextual embedding” for w in context c is then found
via a mixture over possible topics.

wc =
∑
z∈T

p(z|w, c)wz (1.3)

Miao et al. [2019] extended the ideas proposed in Tian et al. [2014] with respect to the output
embeddings of language models, rather than focusing solely on input embeddings. Language
models often consist of a layer of input embeddings Win, a decoder f , and a layer of output
embeddings Wout such that for an input word ŷt−1 observed in context ct:

et = Lookup(Win, ŷt−1) (1.4)

ht = f(ct, et) (1.5)

P (yt = i) = Softmax(htWout)i (1.6)

Miao et al suggest that the traditional softmax approach relies on the assumption that each word
can be accurately represented by a single vector, and that the context vector h will always be
able to approximate the single point vector of the ground truth word. In a similar fashion to
Tian et al. [2014], the authors propose to instead model words as mixtures over a dynamically
allocated number of senses, each with their own vector encodings. The final prediction would
then be based on these probabilistic representations rather than single word encodings in order
to reduce the ambiguity induced by polysemy and homonymy.

1.2 Core Problems

The examples shown in Section 1.1 highlight how analyzing distributions of vectors within latent
spaces of word embeddings can lead to diverse and powerful applications. Two aspects of these

4

methods in particular will become the foundation on which much of the work within this thesis
is built:

1. The representation of word embeddings as distributions over many possible semantic en-
codings, and how this can be used to resolve ambiguities in the meanings of tokens. While
these methods were used in works such as Liu et al. [2015], Tian et al. [2014] and Miao
et al. [2019] in order to address polysemy and homonymy, ambiguity in word meanings can
also be induced by other factors - for example, text that contains noise.

2. The problem of inferring relationships between words by analyzing relationships between
their induced distributions over contexts. Rather than use handcrafted distance functions
between these distributions such as those discussed in Singh et al. [2020] and Sun et al.
[2018], another approach might be to train a distance function that will encode a given
relationship. This gives rise to the more general question of how to approximate learnable
distance functions between multiple distributions or sets of samples.

These motivating questions will provide the backdrop for the contributions detailed in the
rest of this thesis, and will lead to a number of discoveries with applications in many diverse
areas of machine learning - far beyond the narrow initial scope of word embeddings. I will now
discuss these two key focus areas in detail, and lay the groundwork for the contributions that will
be discussed later in this work.

1.2.1 The Problem of Noise in Natural Language

As discussed in Section 1.1.3, many previous works have explored the uses of probabilistic rep-
resentations in resolving ambiguities in the meanings of tokens due to polysemy and homonymy.
An interesting extension of these works would be to see if similar methods can be applied to
other sources of ambiguity - for example, the problem of noise. Noise is a significant challenge for
existing methods in the field of natural language due to the difficulties it induces in the process
of tokenization and embedding. Embedding schemes using traditional word-based tokenization
must use a fixed vocabulary, and cannot handle unknown, or “out-of-vocabulary” (OOV) words.
This can be a major problem when dealing with data mined from social media - an increasingly
common domain for NLP tasks - as social media data frequently contains misspellings, slang, or
other distortions [Belinkov and Bisk, 2017, Khayrallah and Koehn, 2018]. Such noise can cause
otherwise highly successful models to completely break down, as demonstrated by Belinkov and
Bisk [2017].

Traditional pre-processing approaches to noise such as text normalization or spell-checking
can be used to mitigate this, but are often outperformed by end to end approaches [Malykh et al.,
2018, Doval et al., 2019]. Another approach is to simply train embeddings on noisy corpora, but,

5

as noted by Piktus et al. [2019], obtaining meaningful representations for all misspelled tokens
may require an impractical expansion of the size of the training data. The compromise solution
used by many recent models is to use byte-pair encoding (BPE) for tokenization [Sennrich et al.,
2016] (see Section 2.1.1). With BPE, any word can be tokenized and embedded - even words that
would otherwise be OOV. The downside to this is that such noisy words will not be embedded as
a single token, but rather as multiple subwords or characters. Consider the example of the word
’redact’. If this word is misspelled to ‘redavt’ (a simple error to make on most keyboards, as the
‘c’ and ‘v’ keys are adjacent), then what was previously the single token [‘redact’] is now encoded
as four tokens [‘red’ ‘a’ ‘v’ ‘t’]! Worse still, none of these tokens carry much semantic information
- or any relationship to the meaning of the original word. As such, while approaches such as
BPE or subword tokenization enable models to handle noise better than traditional word-based
tokenization, they are still not an adequate replacement for a true noise-aware approach.

Fundamentally, the majority of existing approaches fail to fully tackle this problem due to a
misalignment between the proposed methods and the underlying problem. The problem of noise in
general is one that is intrinsically uncertain and ambiguous. Given a particular misspelled token,
there are often multiple possible ‘corrections’ that one could make to obtain a valid word from the
vocabulary - and thus multiple possible semantic roles that a token could perform in a statement.
Just as a single representation for the meaning of a polysemous word is insufficient to capture its
range of possible meanings, any single correction to a noisy token is also necessarily overconfident
for the same reason. Deterministic approaches are thus insufficient to address this problem - in
order to truly tackle robustness, the problem of noise must be addressed probabilistically. In order
to address this problem, existing approaches usually make one of three choices:

1. Proposing single corrections to noisy tokens (e.g. text normalization and most denoising
methods). These corrections are necessarily overconfident, as they do not account for the
uncertainty in the meanings and semantic roles of the token, and may also remove important
semantic information, as discussed in Doval et al. [2019].

2. Proposing alternative scratch-trained vectors which include penalty terms to ensure that
words which are lexically close are embedded near each other. These methods essentially
do implicitly incorporate uncertainty, as we can view the embedding of each word as a sort
of mixture over the embeddings of nearby words. These methods can only be used with
their particular vectors, however, which limits their applicability.

3. Using subword-level tokenization to remove the out-of-vocab problem. As mentioned earlier,
this does compensate for the problem, but can lead to strange ways of tokenizing words
that may remove or alter semantic information.

Each of these approaches has significant limitations that prevent it from being a fully general
solution to this problem. A better approach is to model this uncertainty in a truly noise-aware
way - an approach which requires a probabilistic framework.

6

1.2.2 Approximating Distances between Distributions

As mentioned earlier in Section 1.1, many previous works have investigated how relationships
between the semantic meanings of words can be reflected in the structures of distributions in
latent space associated with those words. The details of these works and the relationships between
them will be discussed in Section 2.2.2 - but for the moment it suffices to observe that each
of these works provides different ways to construct distributional representations of words and
compare these representations against one another in order to infer entailment relationships. In
each case, a distribution is constructed to represent the latent distribution of contexts induced
by a particular word - either by direct histograms over co-occurrence matrices, or continuous
distributions within embedding space. These distributions are then compared by some distance
function D(f, g), which in existing works was taken to be some handpicked function such as KL
Divergence or Wasserstein distance.

While these distance functions are theoretically well-motivated, there is no guarantee that they
are optimal for this task. In addition, these distance functions are specialized to the entailment
relationship, and do not generalize to other possible relationships between words. Consider instead
the notion of training a flexible distance metric Dθ(f, g) between distributions that could be
optimized to learn any given set of relationships, given a reference corpus and a training set of
existing relationships between some candidate words.

This is really a special case of a far more general problem: the problem of training a neural net-
work to approximate a distance function between two distributions. Solving this problem would
have wide-ranging implications far beyond the narrow subject of inferring word relationships.
In addition to learning entirely new and bespoke distance functions to perform particular tasks
(such as the aforementioned task of unsupervised inference of hierarchical word relationships),
a solution to this problem would also allow for improved approximations of existing divergences
- including exactly those divergences used in the existing works of Vilnis and McCallum [2014],
Sun et al. [2018] and Singh et al. [2020]. These well-known distance functions (e.g. KL Diver-
gence, Mutual Information or Wasserstein Distance) are often intractable, and very difficult to
effectively approximate outside of specific contexts where they may have well-defined closed form
solutions (such as the Gaussian distributions used by Vilnis and McCallum [2014]). This often re-
quires methods to be formulated in restrictive ways in order to effectively leverage these distance
functions. Finding a class of neural network functions that could effectively approximate func-
tions between distributions would allow for the pretraining of approximators to compute these
previously-intractable functions, which could have wide-ranging and general applications across
all of machine learning.

In practice, the distributions under consideration in these settings are often accessible only
as discrete sets of samples. In that case, this problem may be specified even further: proposing a
neural network architecture that is suitable to compute mappings between multiple permutation-
invariant sets of inputs. Such an architecture would have applications even beyond the com-

7

putation or approximation of divergences between distributions, as it would also represent an
extension of existing set-based neural networks [Zaheer et al., 2017, Lee et al., 2019] to the more
complex domain of functions defined between multiple sets. This problem is largely unsolved in
the literature, and has many applications - for example, pretraining discriminators to differenti-
ate between sets drawn from different distributions, or predicting the alignment between sets of
examples from different domains (such as images and their captions).

This area of inquiry will thus focus on the broad and general problem of approximating
functions between distributions or sets of samples using neural networks. Rather than focusing
narrowly on the initial problem of hypernymy, I will use that initial question as a springboard to
motivate the study of general functions on multiple sets, and how neural network architectures
can be used to approximate these functions in a wide variety of settings.

1.3 Contributions & Overall Structure

The problems described in Section 1.2 will provide the foundation for the ensuing explorations
throughout this work. These contributions will span a wide variety of different fields and domains,
but all are motivated by the power of distributional approaches in understanding and enhancing
machine learning models. The focus of this work is threefold:

• Analyzing empirical distributions of points embedded in continuous latent spaces, and how
these distributions of vector encodings can be leveraged in powerful applications - for ex-
ample, improving the robustness of natural language models to noisy inputs by modelling
distributions over latent embedding vectors.

• Building powerful tools that can be used to aid in modelling these distributions over en-
codings, such as novel methods of approximating functions defined on distributions or sets
of samples.

• Showcasing how these tools can be applied to solve timely and relevant problems in the
landscape of machine learning today - such as building new types of foundation models in
image generation.

In Chapter 2, I will review a number of key concepts such as word embeddings, attention and
generative adversarial networks that will lay the foundations for the work in subsequent chapters.
This chapter will also summarize the existing literature on the problems discussed in Section
1.2, and provide a detailed background on the existing state of the field with respect to these
motivating questions.

In Chapter 3, I will focus on the first of the key focus areas defined in Section 1.2. I will
demonstrate how the problem of building models robust to noisy or error-ridden data is intrinsi-
cally connected to modelling uncertainty. I will propose a probabilistic framework called Robust

8

Embeddings Via Distributions (or RED) that explicitly models uncertainty in tokens and their
meanings, and uses this to improve performance on downstream tasks by combining information
about the noisy token itself with information gleaned from the surrounding context. This frame-
work is model-agnostic, and can be used to improve the performance of any natural language
model on downstream tasks involving noisy text. I will compare this proposed approach to a
number of existing baselines, and demonstrate superior performance across the diverse tasks of
the well-known GLUE benchmark.

In Chapter 4, I will answer the fundamental question raised in the second key focus area: how
to build a neural network model to approximate learnable functions defined between multiple
distributions or sets of samples. I will propose a novel, general-purpose architecture to model
functions defined on multiple permutation-invariant sets - a problem for which almost no proposed
solutions exist in the literature. I will demonstrate that this architecture is a universal approxi-
mator of partially-permutation-invariant functions, and show that it outperforms the few other
approaches that do exist by significant margins on a variety of different tasks. I will demonstrate
the effectiveness of this model on a wide variety of tasks relating to multiple input sets, such as
predicting alignment between sets from different domains, as well as distinguishing between sets
sampled from the same or different distributions. I will also demonstrate how to use the same
principles of permutation invariance to define models that are equivariant with respect to the
input dimension, and thus train estimators of statistical distance qualities such as KL divergence
and mutual information that can be applied to inputs of any dimensionality.

In Chapter 5 I will highlight the broad applicability of the model from chapter 4 by showing
how the task of distinguishing between sets from different distributions can be extended to define
a discriminator architecture for a novel type of generative adversarial network. This proposed
generative architecture - titled SetGAN - can be used to perform few-shot image generation by
generating sets of images conditioned on a set of reference images. The model learns to generate
images drawn from the same distribution as the reference set. By using a set-based approach
and incorporating the architecture from Chapter 4 into the discriminator, this approach avoids
the limitations that plague existing models, and does not rely on restrictive assumptions about
the structure of the data. As such, this model has the potential to be scaled to perform truly
zero-shot image generation in a style similar to foundation models such as DALL-E [Ramesh
et al., 2022] or Stable Diffusion [Rombach et al., 2022].

Finally, Chapter 6 will give an overview of the key contributions from the previous three
chapters, and concisely summarize the significance of the work as a whole. In this chapter, I
will also discuss potential extensions of the work presented herein, and how this thesis lays the
groundwork for promising future lines of inquiry. In particular, I will discuss two key avenues of
research stemming from the work in Chapters 4 and 5: pretraining a general estimator for mutual
information, and extending the SetGAN model to large-scale datasets such as ImageNet in order
to achieve true zero-shot image-to-image generation.

9

Chapter 2

Background

2.1 Preliminaries

In this section, I will review a number of commonly used techniques in machine learning that will
become relevant to later sections of this thesis. While many of these methods are fairly standard
in the literature, I provide my own detailed definitions here in the interest of clarity, and for
consistency of notation with later chapters. Any references to concepts defined in this section in
later chapters can be assumed to follow the notation and definitions detailed here.

2.1.1 Word Embeddings

Skip-Gram with Negative Sampling

Word embeddings first exploded in popularity after the success of Word2Vec, first proposed by
Mikolov et al in 2013[Mikolov et al., 2013a]. Word2Vec proposed to embed each word w in the
vocabulary V by a specific fixed-size vector vw, that would somehow encode the semantics of
that word and its relationship to other words in the vocabulary. Consider a vocabulary V and
corpus T = [w1, ..., wN ;wi ∈ V]. In the most succesful variant of the Word2Vec model (known
as Skip-gram) the model seeks to predict the likelihood of the context Ci given the center word
wi, where Ci is a “context window” of l words in each direction around the center word - i.e.
Ci = {wi−l, ..., wi−1, wi+1, ..., wi+l}. Skip-gram thus maximizes the loss function: [Goldberg and
Levy, 2014]

arg max
θ

∏
wi∈T

∏
c∈Ci

p(c|w; θ)

 (2.1)

10

This can also be rewritten as follows:

arg max
θ

∏
(w,c)∈D

p(c|w; θ) (2.2)

where D is the set of all word-context pairs. In order to parameterize this model, Skip-gram
represents each word w ∈ V by two fixed-size vectors: the “center word representation” uw and
the “context word representation” vw. Using this parameterization, p(c|w; θ) can be defined using
a softmax as:

p(c|w; θ) =
euw·vc∑

c′∈V e
uw·v′c

(2.3)

This equation causes some computational difficulties due to the size of the sum in the denominator
of the softmax. While there are some ways to resolve these difficulties, the most popular form of
the Skip-gram model actually formulates the problem in a slightly different way to bypass them
entirely. This is known as Skip-gram with Negative Sampling (SGNS), and it forms the basis for
almost all other embedding models in the literature.

SGNS still considers pairs (w, c) of center and context words respectively, but it does not use
a softmax. Instead, SGNS predicts the probability that an arbitrary pair (w, c) is a true pair
that actually occurs in the training corpus T, rather than a false pair that does not. The loss
can then be reformulated as follows: [Goldberg and Levy, 2014]

arg max
θ

∏
(w,c)∈D

p(D = 1|c, w; θ)
∏

(w,c)∈D′

p(D = 0|c, w; θ) (2.4)

where p(D = 1|c, w; θ) is the predicted probability that (w, c) is a valid pair from the training
data, D is the set of all such true pairs that do occur in the data, and D′ is a set of “negative
examples” (thus the name) that do not come from the data. This probability is parameterized
by

p(D = 1|c, w; θ) = σ(uw · vc)

where

σ(x) =
1

1 + e−x

By using this definition, taking the log and doing some algebraic manipulation, the loss defined
in Eq. 2.4 can be expressed in the forms

arg max
θ

∑
w,c∈D

log σ(uw · vc) +
∑

w,c∈D′

log σ(−uw · vc) (2.5)

or, using l as the negative log logistic function l(x) = log(1 + e−x) and casting the problem as
minimization,

arg min
θ

∑
w,c∈D

l(uw · vc) +
∑

w,c∈D′

l(−uw · vc) (2.6)

11

which is the form often used by other papers built on this method.

In order to obtain vector representations from this algorithm, the matrices U and V are
trained in order to maximize this log-loss on the corpus T , and then the matrix V is discarded,
keeping only the “center” vectors in U as the vector representations of the words in V .

Byte-Pair Encoding

While word-level methods such as the ones mentioned previously dominated the field for many
years, many modern transformer-based models use tokenizations based on subword units or char-
acter n-grams. One of the most common and flexible such forms of tokenization is Byte-Pair
Encoding (or BPE).

Algorithm 1: Byte-Pair Encoding (Naive)

Input: Corpus T of length n, character set C, dictionary size m
Tokens ← {[ci] ∀ci ∈ C}
Function Count(T , x):

c← # occurrences of x in T
return c

Function FindNextToken(T , X):
2Grams ← {[x1;x2] ∀x1, x2 ∈ X}
NextToken ← arg max{Count(T,g) ∀g ∈ 2Grams}
x← 2Grams[NextToken]
return x

while |Tokens| < m do
Tokens ← Tokens

⋃
FindNextToken(T, Tokens)

end

Byte-pair encoding was first proposed in Gage [1994b] as a method of data compression, but
was adapted for use in tokenization by Sennrich et al. [2016]. The algorithm consists of starting
with an initial dictionary of single characters, then iteratively expanding the dictionary by adding
a new token consisting of the most common 2-gram of existing tokens within a given reference
corpus. A naive version of this algorithm is described in Algorithm 1 in order to demonstrate
the method (though this implementation is inefficient and should be used only for illustrative
purposes).

This procedure leads to a tokenization method with a flexible dictionary size, which learns
common and semantically important subword tokens, as well as many common words. Unlike
word-based tokenization methods, BPE-based tokenization has no notion of “out-of-vocabulary”

12

Figure 2.1: The base attention mechanism [Vaswani et al., 2017].

words, as any string of text can always be encoded by the resulting token dictionary - being
at worst equivalent to character-level tokenization. This form of tokenization is a flexible in-
termediary between word-level and character-level tokenization, and is used by nearly all large
transformer-based models today.

2.1.2 Attention

The attention operation and the associated transformer architecture have become the backbone
of much of modern machine learning - and nowhere more so than in the field of natural lan-
guage. Variants were first proposed as augmentations to existing sequence-to-sequence models in
Sutskever et al. [2014a] and Cho et al. [2014], but quickly exploded after the introduction of the
transformer network in Vaswani et al. [2017].

Fundamentally, the attention mechanism (shown in Fig. 2.1) consists of a mapping acting on
three input sets: Q ∈ Rn×dk , K ∈ Rm×dk and V ∈ Rm×dv - referred to respectively as the queries,
keys, and values. Each key is paired with a given value, and in practice the keys and values are
frequently chosen to be the same vectors (at least up to a linear transformation). The essential
idea of the attention mechanism is that for each query q ∈ Q, a scoring function s(q, k) is applied
to rank the similarity between q and each of the m keys k ∈ K. These scores are then normalized
by a softmax function (denoted σ) to achieve a set of weights W defined on the m-dimensional
probability simplex:

Wq = σ(s(q, k) ∀k ∈ K (2.7)

13

Finally, each value is scaled by the weight of its associated key, and the final output is computed
by a weighted sum. When the scoring function is defined as s(q, k) = q · k (as it frequently is),
this can be written neatly as:

ATTN(Q,K, V) = σ(QKT)V (2.8)

Note that in practice, a scaling factor of 1/
√
dk is often added to the outputs of the scoring

function in order to improve gradient flow.

Multi-Headed Attention

This basic operation led to the birth of the transformer architecture in the seminal work of
Vaswani et al. [2017]. This paper defined the multi-headed attention block, which makes several
key modifications to the architecture detailed above. First, each of the queries, keys and values are
first transformed by weight matrices WQ,WK ∈ Rdin×dk ,W V ∈ Rdin×dv . Second, the mechanism
is split into h different parallelattention heads, each of which have their own parameter matrices
and act independently on the inputs. The outputs are then concatenated and transformed by an
output matrix WO ∈ Rhdv×dout - or, equivalently:

MHA(Q,K, V) =

h∑
i=1

σ
(

(QWQ
i)(KWK

i)T)
)
VW V

i W
O
i (2.9)

This is often written as MHA(Q,K), as identical inputs are frequently used for both the keys K
and values V .

Transformers

This multi-headed attention block forms the backbone of the transformer architecture. There
are often two types of transformer blocks used in practice: the transformer encoder block and
decoder block.

Transformer encoder blocks consist of self-attention layers, where the outputs of the previous
block (or the initial inputs, in the case of the first block) are used as inputs to the queries,
keys, and values of the next block. Intuitively, this corresponds to computing intra-sequence
relationships between each element of the input with all other elements - hence the name “self-
attention”, as the sequence is “attending” to itself. Each block is composed of a multi-headed
attention block, followed by an elementwise feedforward network that is applied independently to
each entry of the output. Usually, both the attention and feedforward layers are followed by layer
normalization and residual connections to improve gradient flow. Examples of this structure are

14

Figure 2.2: The original transformer encoder-decoder model from Vaswani et al. [2017].

15

shown in the left half of Figure 2.2. Specifically, we can represent a single transformer encoder
block by the equations:

Z = LN(X + MHA(X,X))

T (X) = LN(Z + FF(Z))
(2.10)

wherein LN is the Layer Norm operation [Ba et al., 2016], and FF is a shallow (typically 2-layer)
feedforward network applied independently to each element in the set.

The transformer decoder block is structured along similar principles, but is used when there
is an external set or sequence to be attended to (for example, the “decoder” of a sequence-to-
sequence model generating an output sequence while attending to the input sequence). This
block consists of a self-attention layer followed by a cross-attention layer, and a final feedforward
layer. This architecture is shown in the right half of Figure 2.2. As above, this can be described
by the equations:

Z1 = LN(X + MHA(X,X))

Z2 = LN(Z1 + MHA(Z1, Y))

T (X,Y) = LN(Z2 + FF(Z2))

(2.11)

Originally these architectures were used together as an encoder-decoder model for sequence-
to-sequence generation. Now, however, each of the transformer encoder and decoder models
are often used independently in a wide variety of applications. The vast majority of models
used in natural language processing today rely heavily on these architectures, and nearly all
so-called “foundation models” are built upon one of these two frameworks. Transformers are
also increasingly popular in many other domains and applications, including computer vision
[Dosovitskiy et al., 2021]. When used in domains such as sequence-to-sequence prediction, the
inputs are commonly modified by a positional encoding, which adds a variable offset to each
embedded vector in the sequence in order to break the permutation-equivariance of the attention
operation. This property will become of particular interest in Chapter 4, and will be discussed
at greater length at that time.

2.1.3 Generative Adversarial Networks

Generative adversarial networks (or GANs) [Goodfellow et al., 2014] are a well-known class of
generative model that have been exceedingly popular since their inception in 2014. These models
consist of two components: a generator and a discriminator, which train jointly in an adversarial
fashion by playing a minimax game. As in all generative modelling, the goal is to train a model
to generate new samples from an underlying data distribution D defined on a domain G, given a

16

Figure 2.3: A diagram of the StyleGAN generator architecture from Karras et al. [2019] as
compared to previous convolutional GANs.

number of empirical samples from said distribution. These samples are referred to as the training
set, which I will denote as Dtrain.

The generator G : Z → G consists of a mapping from a high-dimensional latent distribution pZ
defined on a latent space Z (often taken to be a standard multivariate normal on the space Rd) into
the space of the data distribution, and is trained to generate samples that are indistinguishable
from the elements of Dtrain. The discriminator, conversely, acts as a mapping D : G → [0, 1],
which is trained to predict the probability that a given element from the domain belongs to the
data distribution D. The adversarial training of the models consists of the following optimization
process:

min
G

max
D

Ex∼Dtrain [logD(x)] + Ez∼pZ [log 1−D(G(z))] (2.12)

This training process is equivalent to minimizing the Jensen-Shannon Divergence JSD(D||G(pZ)
between the data distribution D and the generated distribution G(pZ).

17

StyleGAN

One of the most common modern GAN architectures is the StyleGAN architecture proposed by
Karras et al. [2019], and further refined in Karras et al. [2020]1. These works proposed an entirely
different structure for the generator G compared to existing works, as shown in Figure 2.3. Rather
than reshaping the input latent code into a pixel map that would then become the input to the
rest of the convolutional generator, StyleGAN instead uses a learned constant input. Instead, the
latent vector z is incorporated into the output by way of a series of scaling operations within the
convolutions themselves.

First, z is passed through a deep feedforward network known as the mapping network, resulting
in the style vector w ∈ W. This network has the effect of conditioning the latent space W,
essentially acting as a form of regularization to improve the disentanglement of latent factors
within the space. After this, the resulting style vector w becomes an additional input to each
of the ns convolutional layers in the generator. At each layer, a learned weight matrix projects
the style vector into the space of the feature maps at that convolutional layer, resulting in a
series of scaling factors si - one for each input channel at that layer. The convolution weights
wijk at that layer are then scaled to become w′

ijk = siwijk, before they are then applied to the
input. StyleGAN also uses skip connections in its generator: at each resolution level, the output
at that layer is mapped into an RGB image, then upsampled to the final output resolution. The
final generated output is the sum of all these intermediate output images. This has the effect of
ensuring that the convolutional blocks at each resolution level focus only on the output features
at that resolution scale - early layers of the network affect coarser features, while progressively
later layers affect finer and finer details.

Together, these changes have the effect of ensuring that the style vector wi used as the
input to the i-th convolutional layer will control the application and intensity of the particular
features attended to by that layer’s convolution maps. While during training, the same w vector
is used as the input to all layers2, this is not required at inference time, and different styles
can be used at different layers to alter and control the generations. These properties grant the
StyleGAN architecture highly interpretable relative to other generative models, and make it easy
to interpolate and combine features from different images in many different ways - as explored in
depth in the original papers.

1The original StyleGAN architecture has a number of differences from the improved StyleGAN2 architecture,
but both operate on similar principles. For the rest of this section any references to “StyleGAN” can be assumed
to be describing StyleGAN2 wherever there is any difference.

2except when using the “style mixing” regularization

18

Figure 2.4: The pixel2style2pixel encoder architecture from Richardson et al. [2021]. Feature
maps are extracted at three levels of resolution (coarse, medium and fine) using a ResNet. A
“map2style” network at each layer learns to extract the style vector from the appropriate feature
map (0-2 for coarse, 3-6 for medium, 7-18 for fine).

GAN Inversion

If image generation using GANs is the process of mapping from a latent space Z to the space
of output images G, then GAN inversion is the inverse process of mapping from G back into the
latent space Z. This can be done in a number of ways, including optimization-based methods and
encoder-based methods. The areas of manipulating, editing and inverting images using StyleGAN
have drawn considerable interest, and there is a large body of existing work on this subject. Much
of this work, however, focuses on optimizations in the latent space, or other non-encoder-based
approaches. For the purposes of this work, the focus will be on performing encoder-based GAN
inversion on the latent space of StyleGAN2. That is to say, defining an encoder F : G → W+,
where W+ is the expanded latent space Wns wherein each of the style vectors are permitted to
vary independently.

One such encoder framework is the pixel2style2pixel (pSp) architecture proposed in Richardson
et al. [2021]. Given a trained StyleGAN network, pSp trains a ResNet-based architecture to map
any given image into the series of nstyle style vectors that, when fed into the StyleGAN generator,
will most closely approximate that image. pSp’s architecture (shown in Figure 2.4) consists of
a deep ResNet backbone that decomposes the input image into feature maps at three levels of
resolution: coarse, medium and fine. A series of ns “map2style” layers then further decompose
these feature maps into the desired style vectors. Styles 0-2 are learned from the “coarse” feature
map, 3-6 from the “medium” feature map, and 7-18 from the “fine” feature map3.

3These numbers assume a StyleGAN generator that generates 1024x1024 images (corresponding to ns = 18).

19

This architecture was later refined further by papers such as Alaluf et al. [2021] and Tov et al.
[2021], proposing architectures such as ReStyle and E4E. These serve a similar purpose and have
a similar structure, though use other refinements such as performing multiple passes through the
encoder to more accurately minimize the error between the input and reconstructed image.

2.1.4 Diffusion Models

Another class of generative image model that has achieved great success in recent years is that of
the diffusion model [Sohl-Dickstein et al., 2015, Ho et al., 2020a]. Diffusion models are a class of
probabilistic generative model based on mathematical concepts from statistical thermodynamics.
These models consider a forward diffusion process as a Markov chain which iteratively adds a
small amount of Gaussian noise to a source datapoint x0 ∼ q(x) to generate increasingly noisy
samples x1, ..., xT using a variance schedule βt.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2.13)

This forward process is paired with a reverse process pθ(xt−1|xt) which iteratively reconstructs
the original data sample x0 from the corrupted noisy samples x1 : T

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) pθ(x1:T |x0) =

T∏
t=1

pθ(xt−1|xt) (2.14)

Training is done using the variational bound:

L = Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 (2.15)

This loss function can be rewritten as a combination of KL divergence terms that are tractable
when conditioned on x0, and allow for efficient training by optimizing random terms of L using
stochastic gradient descent. This formulation corresponds with the commonly used denoising
diffusion probabilistic model (DDPM) framework proposed in Ho et al. [2020a], but many varia-
tions and related models have been explored in works such as Song and Ermon [2020], Song et al.
[2019b] and Song et al. [2022].

These architectures are commonly used to build powerful image generation models, using
large convolutional decoders with a U-Net structure to approximate the reverse process. Models
of this nature have been extremely successful, but suffer from significant limitatations in their
ability to perform efficient inference, with Song et al. [2022] reporting that “it takes around 20
hours to sample 50k images of size 32 × 32 from a DDPM, but less than a minute to do so from
a GAN on a Nvidia 2080 Ti GPU. This becomes more problematic for larger images as sampling
50k images of size 256 × 256 could take nearly 1000 hours on the same GPU”.

20

Latent Diffusion Models

In order to resolve this limitation, Rombach et al. [2022] proposed latent diffusion models, which
combined the powerful-yet-inefficient diffusion model backbone with a deep convolutional autoen-
coder network for upsampling. The diffusion model backbone would be used to generate images
within the latent space of the autoencoder network, which would then be upsampled by the de-
coder to produce high-quality, high-resolution outputs without the prohibitive computational cost
of running a diffusion model at high output resolution. This approach has been extremely success-
ful, and has become the basis for many so-called ”foundation models” for zero-shot text-to-image
generation, such as DALLE-3 [Betker et al., 2023] and Stable Diffusion.

2.1.5 Few-Shot Image Generation

Few-shot image generation consists of a dataset D divided into a number of classes {Ci}, which
are each composed of some nCi images. These classes are partitioned into a disjoint training set
Dtrain and test set Dtest. Given a particular set of reference images Cref ⊊ C, the model is trained
to infer the latent class C and generate additional samples Cgen drawn from C.

During evaluation, each test class C ∈ Dtest is divided into two disjoint sets: a reference set
of nref images Cref, and an evaluation set of neval images Ceval. The model then generates ngen
images Cgen|Cref for that class. These generated images are then used to evaluate the model using
one of several different evaluation metrics - the most common of which are the Frechet Inception
Distance (FID) [Heusel et al., 2018], and Learned Perceptual Image Patch Similarity (LPIPS)
[Zhang et al., 2018]. Depending on the metric, these scores can be computed using Cgen and Ceval
on a class-by-class basis (as is commonly done for LPIPS), or all generated sets and evaluation
sets can be aggregated into a single Dgen and Deval (as is commonly done for FID).

Metrics

Frechet Inception Distance [Heusel et al., 2018] is very often used as a measure of generation
fidelity and quality for GANs - in both conditional and unconditional settings. Given a generated
set Dgen and evaluation set Deval, FID is computed by embedding each image into a space of
latent vectors, then measuring the statistical similarity between the distributions of embedded
vectors corresponding to the evaluation set and generated sets respectively. A pretrained vision
network (commonly the Inception network [Szegedy et al., 2015]) is used to perform the image
embeddings, then Multivariate Gaussian distributions are fitted to each dataset of embedded
vectors. The alignment between the two distributions is scored by way of the Frechet Distance
(or 2-Wasserstein distance) between the resulting distributions. Given image encodings X,Y with

21

means µX , µY and covariance matrices ΣX ,ΣY , this can be computed by:

FID(X,Y) = ||µX − µY ||2 + tr
(

ΣX + ΣY − 2(ΣXΣY)1/2
)

(2.16)

LPIPS [Zhang et al., 2018] is a metric used to measure perceptual similarity between pairs of
images in a fashion that correlates with human judgments. It operates by using a pretrained net-
work (often AlexNet or VGG) to evaluate two images, and storing the outputs of all convolutional
layers in the network. Given two images x1, x2 with image embeddings {yl1}, {yl2} ∈ RHl×Wl×Cl

(wherein l indexes the layer), the LPIPS distance between the two images is computed by aver-
aging the ℓ2 of the distances between the spatial representations, with the channel features scaled
by a learned weight vector wl ∈ RCl .

LPIPS(x1, x2) =
∑
l

1

HlWl

∑
h,w

||wl ⊙ (yl1hw − yl2hw)||22 (2.17)

The resulting score produces similarity judgments between pairs of images that track well
with human evaluations. This metric is used to measure the diversity of generated images by
computing pairwise distances between each pair of images in a given set of generations Cgen.
These distances are averaged within each class, then a final average over all classes is taken as a
measurement of the overall diversity of the generated outputs.

Existing Methods

Existing models in this domain largely fall into one of two categories: generative adversarial
networks (see Section 2.1.3) and diffusion models (see Section 2.1.4). Among these categories,
the GAN-based approaches are typically divided further into one of three categories: optimization-
based methods, fusion-based methods, and transformation-based methods.

Optimization-based methods were among the first models proposed to address this problem.
Clouâtre and Demers [2019] and Liang et al. [2020] proposed meta-learning-based approaches in
which pretrained generators were fine-tuned on examples from the evaluation class using meta-
learning techniques such as MAML [Finn et al., 2017]. These approaches are not competitive
with the current state of the art, however, and thus will not be an area of focus.

Fusion-based methods typically work by picking a single reference image as a focus, then
combining local features of other reference images into the base image. This approach includes
models such as F2GAN [Hong et al., 2020c], LoFGAN [Gu et al., 2021] and WaveGAN [Yang
et al., 2022b].

22

Transformation-based methods have been some of the most successful approaches to this
problem in recent years, including models such as DAGAN [Antoniou et al., 2017], DeltaGAN
[Hong et al., 2020a] and AGE [Ding et al., 2022]. Transformation-based approaches rely on the
fundamental assumption that the latent factors of variation within each of the classes C ∈ D
are similar to one another - i.e. that there exists some transformation T : G → G such that if
T (x1 ∈ C1) ∈ C1, then T (xi ∈ Ci) ∈ Ci for all other classes Ci. If this property holds, then the
class label of the image is effectively invariant under the transformation T. In practice, this is
used to find some transformation T under which this invariance property holds for the training
classes Dtrain - and the assumption made by these methods is that this invariance relationship will
continue to hold for the test classes Dtest. Approaches such as AGE [Ding et al., 2022] using these
methods have been highly successful in practice, but their applications are generally restricted to
highly structured datasets on narrow domains such as images of human faces.

While these GAN-based approaches all focus specifically on the task of few-shot image gen-
eration, and often incorporate assumptions about the structure or relationship of the test and
training datasets, diffusion-based approaches typically focus instead on zero-shot generation. This
term is often used loosely to describe models trained on exceptionally large and diverse datasets,
and expected to perform well at inference even when used on data belonging to many highly di-
vergent domains, without any further finetuning. The majority of these approaches are designed
to perform the distinct but related task of text-to-image generation, where the output images
Cgen are conditioned on a text prompt rather than a set of reference images. Some work has been
done, however, on adapting models of this type such as Stable Diffusion[Rombach et al., 2022]
and DALLE-3 [Betker et al., 2023] to the task of image-to-image generation instead. Dream-
Booth [Ruiz et al., 2022] and HyperDreamBooth [Ruiz et al., 2023] focus on the closely related
task of using large-scale diffusion models to generate images of particular subjects in different
contexts - for example, using images of a family pet to generate pictures of that pet in front of
the Acropolis in Greece, or swimming underwater. Models such as IP-Adapter [Ye et al., 2023]
and Stable Diffusion Image Variations [Pinkney, 2023] adapt these models to the task of few-shot
image generation directly, by allowing them to condition on image-based embeddings rather than
text.

2.2 Focus Areas

Section 1.2 described the two key focus areas which motivated much of this work. This section
will now discuss existing works in these areas in detail, in order to provide background on the
current state of the art and how the contributions in this work serve to advance each of the areas
under discussion.

23

2.2.1 Robustness in Natural Language

Existing works on robustness in natural language at the embedding level have typically fallen
into one of two categories: denoising-based approaches, and scratch-trained robust vectors.

Denoising Approaches

Examples of the first approach can be found in many text denoising or spellchecking models.
An early example of this can be found in the “noisy channel” model of Kernighan et al. [1990],
who modelled possible corrections to each noisy token using ‘confusion matrices’, defined over
other possible correction words with an edit distance of 1. Another example of this approach is
the work of Sun and Jiang [2019], who proposed to use pretrained masked language models such
as BERT [Devlin et al., 2018a] to perform text correction. Their approach proposed evaluating
possible corrections to each token with a variable number of masked tokens to model how the
addition of noise might distort the BPE tokenization to turn one token into several (see the
example mentioned earlier with the word ‘redact’). They then compare many possible corrections
generated by the contextual model, and choose the one with the lowest edit distance to the noisy
token at that location.

Scratch-Trained Vectors

A wide variety of works have proposed methods based on the second approach detailed above,
proposing robust word embedding methods such as RoVE [Malykh et al., 2018], MOE [Piktus
et al., 2019], Bridge2Vec [Doval et al., 2019] and RobEn [Jones et al., 2020]. While the details
of these approaches vary, all apply similar principles of scratch-training a bespoke set of embed-
dings using various penalty terms to ensure that words with similar character representations are
encoded near each other in the latent space.

Robust Word Vectors (RoVe) [Malykh et al., 2018] is a morphological context-dependent
robust embedding technique targeting typos in the text and is able to deal with open vocabulary.
RoVe derives word embeddings by decomposing words into beginning (B), middle (M), and end
(E) components based on the common prefix, main, suffix word structures. Then, the output
morphological embedding and both left and right context of the word are fed into an encoder to
obtain RoVe embeddings.

The MOE approach proposed by Piktus et al. [2019] is modelled on the classic embedding
method known as FastText [Bojanowski et al., 2016]. They use a modified loss function that
adds a spelling correction term to improve the robustness of the representations. In addition to a
training corpus Ttrain, MOE also considers a misspelling set Tms (harvested from social media),
consisting of word pairs (wms, we) such that we ∈ V is a correctly spelled word and wms is a

24

misspelling of that word. Their spelling correction loss term encourages each word vector to be
close to the vectors for its misspellings.

Doval et al. [2019] proposed a robust word embedding approach based on a modified version of
skip-gram by introducing the concept of bridge-words (that is the chain of similar word variants
that every two adjacent words are only different in one character, e.g., friend → frind → freind).
They augment existing skip-gram-based methods such as FastText [Bojanowski et al., 2016] by
altering the training process to include bridge-words in addition to each center word. This
technique aims to encourage the vector representations for each word to be similar to the vector
representations for nearby bridge-words, and thus to encourage the resulting vectors to be more
robust to character-based noise.

Jones et al. [2020] propose a method they refer to as “RobEn” to address adversarial noise
in text in a way that remains compatible with pretrained transformer models. They propose a
framework for adding an encoding function before the downstream model to map all sentences to
a smaller set of robust encodings. They discuss the theoretical properties these encoding functions
should have, as well as providing two examples based on clustering algorithms. They show that
their method outperforms existing baselines when dealing with adversarial noise - though they
do not look at more realistic noise settings.

2.2.2 Hypernymy and Approximating Distances between Distributions

Hypernymy & Inferring Word Relations

As discussed in Section 1.1, the entire framework of cooccurence-based word embeddings rests on
the Distributional Hypothesis [Harris et al., 1954, Firth, 1957], which states that the meanings of
words are intrinsically characterized by the contexts in which those words occur. Section 1.1.2 also
described one interesting extension of this principle: the Distributional Inclusion Hypothesis of
Geffet and Dagan [2005]. This principle describes the ‘is-a’ relationship (or entailment) between
words - i.e. a cat is an animal, or a car is a vehicle. The Distributional Inclusion Hypothesis
states that one word v can be said to entail (or be a hypernym of) another word w if “the most
characteristic contexts of v are expected to be included in all w’s contexts (but not necessarily
amongst the most characteristic ones for w)”. One of the more interesting results of this is that
words which share an entailment relationship also have overlapping supports in their induced
distributions over contexts - if v entails w, then the support of p(c|w) should be a superset of the
support for p(c|v). While these distributions can be expressed at simple histograms over discrete
word occurrence matrices, they can also take more complex forms. Often, these distributions are
embedded within a latent space, such as those of a space of word embeddings. Since Word2Vec
is trained to encode cooccurence information, distributions within its latent space can achieve
much the same effect as directly modelling p(c|w) using empirical samples. Examples of these
entailment properties using latent space distributions can be seen in Figures 2.5 and 2.6.

25

Figure 2.5: Gaussian embeddings of words from Vilnis and McCallum [2014], demonstrating how
words with similar meanings could be modelled as distributions with overlapping support.

Many different authors have proposed research along these lines. Vilnis and McCallum [2014]
proposed a system of probabilistic embeddings, wherein each word w in the vocabulary W was
embedded not as a point vector, but as a gaussian distribution with mean µw and covariance Σw.
They trained these representations using an algorithm highly similar to that of Word2Vec, save
for a few small modifications. Vilnis & McCallum replaced the “energy function” wT c used by
Word2Vec with a distribution-based similarity function - either using the inner product kernel∫
f(x)g(x)dx, or the KL Divergence. Sun et al. [2018] later proposed an extension to this method

involving a Wasserstein-based energy function E(w, c) = −W2(fw, fc) + b, where W2 was the
2-Wasserstein distance and b was an offset term used to scale the energy to an appropriate range.
These probabilistic representations were evaluated on the task of unsupervised entailment on
datasets such as those proposed by Baroni et al. [2012]. Similarity scores between words were
determined by either the KL divergence between the distributions or the cosine distance between
their means.

A more sophisticated approach to this was introduced by Singh et al. [2020], who defined
what they refer to as the “context-mover’s distance” between distributional estimates of words.
They define this distributional estimate of a word w as a histogram of its probabilities p(c|w)
over contexts c, embedded in a latent space of context embeddings given by V = (vc)c∈C .

Pw
V =

∑
c∈C

(Hw)cδ(vc) (2.18)

26

Figure 2.6: Visualizations of Singh et al’s distributional estimates for the words “rock” and
“music”, taken from their paper. “Rock” has a mode that overlaps strongly with the distribution
for music (i.e. the rock music as a genre) as well as modes that do not (“rock” as in a stone).

Given some metric D for the ground space of the embedding vectors, Singh et al then define their
“context mover’s distance” between two words as an optimal transport problem:

CMD(wi, wj ;D) = OT(Pwi
V , P

wj

V ;D) (2.19)

Singh et al discuss how this distance measure can be used to measure entailment by using this
context-mover’s distance with the similarity operator = defined by Henderson and Popa [2016]
as their ground metric: DHend

ij = −vi = vj .

vi = vj = σ(−vi) · log σ(vj) (2.20)

Approximating Distances Between Distributions

Existing literature on learning or approximating functions between distributions is largely based
on providing tractable methods for approximating specific distance functions such as KL Di-
vergence or Mutual Information. These functions are often notoriously intractable, and require
problems to be formulated in restrictive ways where they can be calculated in closed form in
order to allow them to be used at all (see, for example, Kingma and Welling [2014]). When
approximations are possible, they often use methods such as nearest-neighbours [Kraskov et al.,
2004] rather than neural network models. These methods often suffer from troublesome scaling
properties [Gao et al., 2015], and are not sufficient as general solutions to this problem.

Those neural networks models that do exist often rely on formulations such as those proposed
by Donsker and Varadhan [1983], in which the distance calculation for a particular pair of dis-
tributions P,Q is formulated as an optimization problem over a class of functions. This class of

27

functions can then be approximated by a neural network, as was done in the widely-used “MINE”
method [Belghazi et al., 2018] for approximating mutual information.

MI(X,Y) = max
θ

EX,Y∼PXY
Tθ(X,Y)− logEX,Y∼PX⊗PY

eTθ(X,Y) (2.21)

This approach is not helpful as a general solution to the approximation of divergences, how-
ever, as the trained network can be used only to calculate the divergence between the two distri-
butions on which it was trained, and would need to be retrained from scratch in order to evaluate
the divergence between any new pair of distributions P ′, Q′.

28

Chapter 3

Robust Word Embeddings

3.1 Introduction

This chapter is dedicated to further exploration of the problem defined in Sections 1.2.1 and
2.2.1: developing a probabilistic framework to address the problem of noise in natural language
processing. As discussed previously, the majority of existing approaches each have their own
significant limitations. Denoising-based approaches are often overconfident and delete important
semantic information. Scratch-trained robust vectors can only be applied to certain models,
as many models (including most pretrained transformer models) assume certain sets of ground
embeddings. BPE-based tokenization removes the out-of-vocabulary problem without actually
correcting the token, but allows small amounts of input noise to wildly distort how a given word
is tokenized. Fundamentally, most of these problems stem from the fact that these approaches
are deterministic, and thus do not model the uncertainty inherent in the problem.

Rather than follow any of these approaches, I propose a probabilistic schema that can be
used in concert with any existing embedding vectors or form of tokenization, in order to im-
prove performance on noisy corpora. This model explicitly models the uncertainty over possible
meanings by modelling each token as a distribution over embedding vectors. The model combine
two components: a token-level stream modelling possible corrections to the noisy token, and a
context-level stream evaluating such corrections in the context of the surrounding sentence. I also
introduce an ‘ensembling’ method to turn these distributions into inputs to downstream models in
a way that maximizes the available information to the downstream model. This scheme requires
no additional training and can be used in combination with any existing embedding methods.
The approach is evaluated on several noisy text classification tasks against a number of simple
baselines, as well as other robust vector methods and denoising methods from the literature.

29

3.2 Related work

3.2.1 Robust Methods

As discussed in Section 2.2.1, existing work primarily falls into one of three categories: denoising-
based approaches, scratch-trained vectors, or BPE/subword tokenization.

Scratch-trained vector approaches are the most common of the three - at least among ex-
plicitly robust approaches. As mentioned previously, these approaches involve training bespoke
embedding vectors using penalized losses to ensure lexically similar words are also embedded near
each other in semantic space. These approaches are powerful, but cannot be used with models
such as BERT or RoBERTa that assume a particular set of input embeddings - at least not
without retrainin the entire model pipeline.

Denoising-based approaches include works such as Kernighan et al. [1990] and Sun and Jiang
[2019] - as well as many other methods intended purely for spelling correction, which could in
principle then be combined with an embedding pipeline. Some of these methods have similarities
to my proposed approach, but differ in the application and interpretation. By making only a
single correction, these models will often be overconfident - especially in difficult cases where
the ‘correct’ correction is unclear. By using a probabilistic method that expresses distributions
over possible ‘corrected’ sentences and training end to end on downstream tasks, the downstream
model is provided with a broader range of information about the noisy sequence and can learn
to use that information to make more informed predictions.

Figure 3.1: Diagram of the robust embedding model and how the output distribution is computed.

30

3.2.2 Probabilistic Word Embeddings

Many other works have sought to construct probabilistic representations of word embeddings. In
particular, many works have used these methods to compensate for ambiguity in word meanings
due to factors such as polysemy and homonymy. Section 1.1.3 discusses several of these works in
detail - most notably the works of Tian et al. [2014], Liu et al. [2015] and Miao et al. [2019]. Vilnis
and McCallum [2014] and Sun et al. [2018] also discuss how these probabilistic representations can
be used to reflect uncertainty inherent in word meanings, and measure the similarity of different
words. My proposed approach contains many similarities in motivation to these works, but seeks
to address a different form of ambiguity: the ambiguity caused by the introduction of noise.
These existing techniques are not sufficient to handle this particular case, as they are limited to
operating only on words in a fixed dictionary, and have no methods for handling out of vocabulary
words. Furthermore, it is not always obvious how to build NLP models for downstream tasks on
top of those probabilistic embeddings.

3.3 RED

In order to address to shortcomings of existing approaches, any proposed solution to the problem
of noise in natural language models must thus satisfy several criteria. First, such an approach
must be tailored to address the fundamental uncertainty and ambiguity inherent to the problem
- and thus, must approach the problem probabilistically. Second, an ideal approach should be
compatible with a wide variety of existing models, and be usable as a drop-in replacement for
existing forms of embedding or tokenization, without requiring retraining. I propose an approach
called ’Robust Embeddings Via Distributions’ (RED) which satisfies both of these criteria.

3.3.1 Robust Model

Fundamentally, RED is a schema of robust embeddings which represents each token in the noisy
sequence as a distribution over many possible word vectors drawn from a given set of ground
embeddings. This representation explicitly encodes the uncertainty in the meaning of the noisy
token, while also being model-agnostic.

In order to construct this distribution for a particular misspelled word, consider how a human
responds to seeing a misspelled word. Once the misspelling is identified, we naturally rely on two
sources of information to resolve the misspelling: the characters within the word itself (and their
similarity to other words we do know), and the surrounding context. Based on this intuition, I
propose a model that is constructed from two streams: a token-stream, and a context-stream.
These two streams will each make independent predictions about likely corrections, which will

31

then be unified to produce a final distribution over output embeddings (see Figure 3.2 for an
example).

Suppose we have a sequence of noisy tokens t1, ..., ti, ..., tl. In order to produce a robust embed-

ding ei for token ti, we first consider the characters within the token ti itself. Let w
(1)
i , ..., w

(K)
i ∈ V

be the K nearest words or tokens in our vocabulary V to the noisy token ti under a particular
string distance metric (e.g., the Levenshtein distance [Levenshtein, 1966]), with respective dis-

tances d
(1)
i , ..., d

(K)
i . Let e(w) be a function mapping words to embedding vectors. Then, the first

component of the model is given by:

p
(
ei = e(w

(j)
i)
)

= h
(
d⃗i

)
j

(3.1)

where h is some normalization function that maps the vector d⃗i = (d
(1)
i , ..., d

(k)
i) of distances to

normalized weights, such that larger distances correspond to smaller weights. For the purposes
of this investigation we use the softmax function, as shown in Eq. 3.2:

h
(
d⃗
)

= Softmax

(
− d⃗
τ

)
(3.2)

where τ is a temperature parameter that controls the concentration of the distribution.

The second component of the distribution is a likelihood function that computes the prob-
ability of the surrounding context tokens t1, ..., ti−1, ti+1, ..., tl given a particular center token.
The most obvious model for this task is the famous skip-gram formulation of Word2Vec [Mikolov
et al., 2013a], which trains to perform exactly this function. Unfortunately, skip-gram does not
consider word order, and thus it evaluates the probability of each word occurring in the con-
text independently. In practice, this ends up being overly naive, and does not lead to good
predictions. Pre-trained transformer models such as BERT present an alternative to construct
a more sophisticated likelihood function. Since BERT is trained using masked language mod-
elling, it naturally computes a likelihood for the masked tokens in an input sequence conditioned
on the rest of the sequence. Given a token ti at position i in noisy sequence S (with context
S−i = {tj ; j ̸= i}), consider the embedded sequence E−i with ti replaced by a mask token. BERT
effectively computes:

hti = [fBERT (E−i)]i (3.3)

pc(ei = e|Ci) =
exphti · e∑

w∈V
exphti · e(w)

(3.4)

In order to combine the predictions of the two streams, we use a product-of-experts model,
as discussed by Hinton [2002]. We can treat p(ei|ti) and fBERT (ei|E−i) as two expert models

32

Figure 3.2: Motivating example of how the predictions from both streams are combined to gen-
erate the final output.

that make separate predictions based on different evidence. Hinton proposed to combine the
probabilities of different experts simply by multiplying them and re-normalizing. To compute
our final output distribution p(ei), we thus compute:

p(ei|ti, E−i) ∝ pt(ei|ti)pc(ei|E−i) (3.5)

3.3.2 Ensembling

This now results in a method for obtaining a distribution over the set of ground embeddings
which represents the robust embedding of the noisy token ti given its surrounding context. In
practice, however, our resulting embedding vectors will need to be fed into other deep models,
which require a single vector as input rather than a distribution. There are several solutions to
this. The naive solution is to simply sample a vector from the distribution or take the maximum a
posteriori vector. This is perfectly adequate, but does not fully utilize the information contained
in the distribution. Instead, we propose to use an ensembling method that more fully captures
the full expressiveness of the distribution.

Suppose we have a sequence of noisy tokens S = {t1, ..., tl} that we wish to embed before pass-
ing them into another downstream model (e.g., some sort of text classification model). Each token
ti and its associated context S−i = {t1, ..., ti−1, ti+1, ..., tl} are passed through the robust embed-
ding model, with the intent of producing robust vector representations of each token respectively.

33

Figure 3.3: Ensembling model for robust embeddings. K sampled vectors for each token are
organized into K sequences. These sequences are each passed through the classifier independently,
and aggregated at the end into a single prediction.

Instead of producing single embedding vectors e1, ..., el, the model instead samples M vectors from

the posterior distribution for each token, resulting in ensembles {(e(1)1 , ..., e
(M)
1), ..., (e

(1)
l , ..., e

(M)
l)}.

These ensembles of embeddings are then reorganized into an ensemble of embedded sequences

{s(1), ..., s(M)}, where s(j) = {e(j)1 , ...e
(j)
l }. Each sequence is then independently fed into the down-

stream model, producing M outputs o1, ...oM . These outputs can now be aggregated to produce
a final consensus in several ways. The most obvious is to simply average the resulting logits,
but other possibilities include taking a majority vote of the predicted classes or adding a shallow
feedforward network at the end that could be trained to produce a final, aggregated prediction.
In practice, it was found a simple average of the logits worked best, but this is a potential site
for future exploration.

3.4 Experiments

This method can be evaluated on a variety of downstream tasks. For simplicity, and to focus
primarily on the embedding method rather than the details of downstream architectures, we
focus on several simple text classification tasks. We use a subset of the tasks from the GLUE
text classification benchmark1 for our experiments [Wang et al., 2018], covering tasks such as
paraphrase detection, natural language inference, sentiment analysis, and several other forms of
text classification. For each task, we train two different classifiers: a BiLSTM-based approach
known as HBMP [Talman et al., 2019], as well as the state of the art pretrained transformer
model “RoBERTa” [Liu et al., 2019b]. Evaluation is performed on the test set for MRPC, and

1All details and download links can be found at https://gluebenchmark.com/

34

RoBERTa HBMP

20% 50% 20% 50%

Model Clean Synth. Natural Synth. Natural Clean Synth. Natural Synth. Natural

Naive 0.890↑ 0.797↓ 0.826↓ 0.606↓ 0.690↓ 0.807↑ 0.698↓ 0.725↓ 0.545↓ 0.608↓
MOE x x x x x 0.795 0.637↓ 0.707↓ 0.493↓ 0.596↓
B2V x x x x x 0.809↑ 0.655↓ 0.714↓ 0.480↓ 0.575↓
Sun&Jiang 0.872↓ 0.844↓ 0.856↓ 0.775↓ 0.813↓ 0.792 0.757↓ 0.770↓ 0.681↓ 0.724↓
RobEn 0.828↓ 0.765↓ 0.786↓ 0.652↓ 0.718↓ 0.766↓ 0.677↓ 0.709↓ 0.538↓ 0.615↓
RED 0.879 0.860↓ 0.866↓ 0.822↓ 0.836↓ 0.796 0.777 0.781 0.734↓ 0.748↓
RED-Ens 0.880 0.862 0.869 0.833 0.843 0.789 0.778 0.783 0.739 0.752

Table 3.1: Scores averaged across selected GLUE tasks with RoBERTa and HBMP classifiers
with clean training. An x indicates a method that is not compatible with RoBERTa. ↑ and ↓
signify results that are statistically better or worse respectively than RED-Ensemble with p < 0.05
according to the Wilcoxon signed rank test [Wilcoxon, 1945].

the development set for all other datasets (as public test sets are not available), with 20% of the
training set withheld as a substitute development set. Several different versions of each evaluation
set are created: one that is unaltered and has no noise added, as well as versions that have noise
injected with either natural or synthetic noise methods. The noisy corpora are generated by
randomly selecting words to have noise injected with a fixed probability of either 20% or 50%.
Synthetic noise is injected using the method presented in [Sun and Jiang, 2019]: if a word is
selected to have noise injected, there is a 25% chance each of either deleting a character at a
random location, inserting a random character at a random location, swapping the characters
at two random locations, or replacing a character at a random location with another random
character. Natural noise is injected using a dataset of misspellings harvested from social media
(we use the dictionary published by Piktus et al. [2019]). A word selected to have natural noise
injected will be replaced by a random misspelling for that word taken from the dataset. We show
results with noise applied both a) during training and evaluation and b) during evaluation only.

We compare our method against several baselines. First, we compare against the relatively
naive baselines of either a) simply using the downstream model with no additional attempt to
improve the robustness, or b) correcting each out-of-vocabulary word to the nearest word under
the Levenshtein distance. We also compare against several baselines from the literature. For
experiments using the RoBERTa classifier, we compare to the denoising method of Sun and
Jiang [2019] as well as the robust encoding method “RobEn”[Jones et al., 2020]. For the HBMP
classifier, we also compare against scratch-trained vector methods such as Bridge2Vec [Doval
et al., 2019] and MOE [Piktus et al., 2019]. Unfortunately, it is not practical to compare against
these methods in the case of RoBERTa, as replacing the input embedding layer of RoBERTa
would require retraining the entire model. Our model does not suffer from this issue since it can
output embeddings from any predefined embedding space and therefore can be inserted below

35

RoBERTa HBMP

20% 50% 20% 50%

Model Synth. Natural Synth. Natural Synth. Natural Synth. Natural

Naive 0.842↓ 0.859↓ 0.732↓ 0.805↓ 0.748↓ 0.764↓ 0.678↓ 0.714↓
MOE x x x x 0.731↓ 0.752↓ 0.675↓ 0.712↓t
B2V x x x x 0.754↓ 0.768↓ 0.698↓ 0.725↓
Sun&Jiang 0.853↓ 0.860↓ 0.797↓ 0.833↓ 0.767↓ 0.777↓ 0.731↓ 0.752↓
RobEn 0.793↓ 0.802↓ 0.744↓ 0.758↓ 0.731↓ 0.742↓ 0.690↓ 0.717↓
RED 0.868 0.871 0.840↓ 0.852 0.782 0.787 0.759↓ 0.767↓
RED-Ens 0.869 0.871 0.852 0.849 0.777 0.787 0.764 0.772

Table 3.2: Scores averaged across selected GLUE tasks with RoBERTa and HBMP classifiers
with noise applied during training time. An x indicates a method that is not compatible with
RoBERTa. ↑ and ↓ signify results that are statistically better or worse respectively than RED-
Ensemble with p < 0.05 according to the Wilcoxon signed rank test [Wilcoxon, 1945].

any pretrained model such as RoBERTa without requiring retraining.

3.5 Results

Experiments were performed using Nvidia T4 and P100 GPUs. FastText vectors were used as
the ground embeddings for the HBMP classifier for the Naive method, our method, and all
spellchecking/denoising-based methods. Implementation details for the HBMP classifier were
taken from their publicly-available code2, with 400-dimensional hidden layers and default hy-
perparameter settings. Implementation details for the RoBERTa models and GLUE tasks were
taken from the HuggingFace repository3 [Wolf et al., 2020], with default hyperparameter settings.
Implementations of baselines were taken from publicly available source code where possible, and
otherwise were re-implemented based on descriptions of the methods. Further details on the ex-
perimental setup and baseline implementations are contained in the appendices. For the robust
model, the softmax temperature parameter in the token stream was taken to be τ = 0.15, with
the top K = 20 nearest words under the Levenshtein distance considered, and the ensemble mod-
els used M = 10 samples each. We use the likelihood function described in Equations 3.3 and
3.4, with the base uncased pretrained BERT model published by HuggingFace. Each experiment
was performed ten times, and the results were averaged across the trials. In order to determine
statistical significance, the Wilcoxon Signed Rank Test [Wilcoxon, 1945] was used to compare
results across the ten trials for each experiment category between different baselines. Table 3.1

2https://github.com/Helsinki-NLP/HBMP
3https://github.com/huggingface/transformers

36

20% 50%

Model Clean Synthetic Natural Synthetic Natural

Token Stream Only 0.884↑ 0.837↓ 0.847↓ 0.769↓ 0.789↓
Context Stream Only 0.868↓ 0.781↓ 0.807↓ 0.582↓ 0.664↓
RED (No Ensemble) 0.879 0.860↓ 0.866↓ 0.822↓ 0.836↓
RED (Ensemble) 0.880 0.862 0.869 0.833 0.843

Table 3.3: Results of ablation study on RED components, averaged across the five GLUE tasks.
↑ and ↓ signify results that are statistically better or worse respectively than RED-Ensemble with
p < 0.05 according to the Wilcoxon signed rank test [Wilcoxon, 1945].

show results of the ten trials for each baseline and noise setting averaged across all trials and all
tasks (specifically, the MPRC, SST-2, QNLI, MNLI and QQP tasks from the GLUE benchmark)
with no noise applied during training. Table 3.2 shows results when we repeat the experiments
while including noise during training. Results marked with a ↓ are statistically worse than RED-
Ensemble with p < 0.05. Results marked with a ↑ are statistically better than RED-Ensemble
with p < 0.05. In keeping with standard practice for the GLUE benchmark, we report accuracy
for SST-2, MNLI and QNLI, and report an unweighted average of accuracy and F1 score for
MRPC and QQP. Full results broken down by individual dataset are also included in Tables 3.8
and 3.9 at the end of this chapter.

3.5.1 Clean Training

The two RED models perform the best (by statistically significant margins) across all datasets
and noise settings except for the completely clean case. The model with ensembling outperforms
the base RED model on all the high-noise settings across all datasets, and most of the low-
noise settings as well. The benefits of ensembling seem highly dependent on the specific task,
with the ensemble method being clearly superior on MRPC, SST-2 and QQP, and comparable
or slightly superior on MNLI and QNLI. Ensembling also seems to provide a larger boost on
the higher noise cases than the lower noise cases in general. The slight decrease in performance
compared to the naive baseline on clean data is expected due to the nature of robust methods. As
discussed in Tsipras et al. [2019], there is an inherent tradeoff between robustness and accuracy
in the completely clean case. A non-robust model can fit more exactly the input data at the
cost of becoming extremely brittle to noise and perturbations. Robust models, in contrast, learn
representations that are more robust to noise and more similar to human evaluation, but may
suffer a small loss of accuracy in the clean case by modeling the possibility of errors that are not
there.

Overall, the ensemble model improves performance by larger margins with RoBERTa than

37

Method Text

Original Sequence: Isn’t a woman’s body her most personal property?
Noisy Sequence: sIn’t a woman’s boyd ther kmost persopal property?
Token-Stream: sin’t a woman’s boyd their most personal property ?
Context-Stream: sin’t a woman’s boyd - a ” property ?
RED: isn’t a woman’s body the most personal property ?
Sun & Jiang: sin’t a woman’s bond the most personal property ?

Original Sequence: fun , flip and terribly hip bit of cinematic entertainment.
Noisy Sequence funu, flip land terribly hip bit of cqnematic entertainmenth
Token-Stream fun , flip land terribly hip bit of cinematic entertainment
Context-Stream also , flip land terribly hip bit of the .
RED fun , flip and terribly hip bit of cinematic entertainment
Sun & Jiang funk , flip land triple hip bit of kinetic entertainment

Table 3.4: Comparison against other baselines as a denoising method on example noisy sequences.

Word Token Stream Context Stream Product Final Probability

kids -6.677 -4.292 -10.969 0.719
lids -0.010 -12.132 -12.142 0.222
lips -6.677 -7.110 -13.787 0.043
lads -6.677 -8.589 -15.266 0.010
lies -6.677 -9.378 -16.054 0.004

Table 3.5: An expanded version of the first table from Fig. 3.4 showing the contributions of
each stream to the final distribution over embeddings for the noisy token ‘lids’. Values shown are
log-scale, save for the final column.

HBMP. We hypothesize that since this classifier is less powerful than RoBERTa, it is less able to
fully leverage the information provided by the ensemble, and thus the benefit is less significant.

3.5.2 Noisy Training

The two RED models again outperform all other baselines by statistically significant margins
save for the completely clean case. The benefit of ensembling is slightly lower in this setting,
especially in the low noise case. Once again, this varies greatly with the dataset, with ensembling
providing a more significant boost on MRPC, QQP and SST-2, and being less beneficial on QNLI
and MNLI.

38

A group of lids olay n a colorful structure.

Figure 3.4: Example of the RED model applied to a sample noisy sentence. Tables show the
probability distributions over possible embeddings for each of three key tokens in the sentence.
Results are shown for all candidate words with probability > 0.1%.

3.6 Analysis

3.6.1 Ablation Study

To compare the effects of the different streams of the model, we performed an ablation study.
Experiments were performed on all datasets showing the results of a) RED with the ensemble
model, b) RED without the ensemble, c) only using the token-level stream, and d) only using the
context-level stream. Results for the RoBERTa classifier averaged across all datasets are shown
in Table 3.3 (see Appendices for full results). Using only context-level information gives very
poor results, especially on higher noise levels. The token-level stream performs better, but still
suffers compared to the full RED model - especially on higher noise levels.

3.6.2 Examples

In order to illustrate the workings of the model, we will now highlight some examples of the model
applied to some sample noisy sequences from the data. We can thus compare the RED model
to some of the other baselines from the viewpoint of text correction, and show some examples of
how the different components of the model contribute.

In Table 3.4, we compare our model against the Sun & Jiang baseline on some difficult
noisy sequences taken from the data, as well as showing the predictions made by the separate
components of the model. Even in cases where the sequences are very noisy, our model can
often generate reasonable corrections where the other models cannot. In the second example, we

39

Samples

A group of kids play in a colorful structure.
A group of kids play in a colorful structure.
A group of lips lay on a colorful structure.
A group of kids lay on a colorful structure.
A group of kids play in a colorful structure.

Table 3.6: 5 ensemble samples from RED for the sentence in Figure 3.4.

can see how the token-stream model can generate some reasonable corrections, but cannot fully
reconstruct the sequence without the added benefit of the context stream to handle the cases
where a typo is also a valid word.

To explore this in more detail, consider the example shown in Figure 3.4. This figure demon-
strates the action of the RED model on each of three tokens in the noisy sentence “A group
of lids olay n a colorful structure”. The tables show the top candidates in the output distribu-
tions generated by RED at each position in the sequence (truncated to show only results with
probability > 0.1%). An expanded version of the first table is also shown in Table 3.5, which
shows the contributions of each stream on a log scale, as well as the final unnormalized logits
and log probabilities. As shown in the tables, this noisy sentence contains significant ambiguity
in several tokens - e.g. do the kids “lay on” the structure or “play in” it? This situation is an
excellent example of the utility of the ensemble-based approach; rather than simply making a
single choice for how to embed this sentence, the downstream model can be presented with a
number of choices, such as the samples shown in Table 3.6. This allows the model to present
multiple possibilities for ambiguous tokens, and increases the chance that some of the samples
will be correct for highly noisy sequences. By combining different possible sampled sequences,
the downstream model has access to more information and can make better predictions.

3.6.3 Computational Cost

One possible concern with the ensembling approach is that it might lead to a prohibitive additional
computational cost. In fact, this is not a huge concern. When performing experiments with the
robust models, the computations are done in two stages: denoising/embedding, and training. In
the first stage, the denoised/robustly embedded representations are computed for every sequence
in the dataset. In the second, these representations are then used to train the downstream
classifier. Table 3.7 shows the average time (in minutes) required to perform each stage for each
of the models on the MRPC and SST-2 datasets with the RoBERTA classifier. As these tables
show, the denoising stage is usually significantly more expensive than the training stage, but
ensembling does not necessarily yield a higher cost in this portion and when there is a higher cost

40

MRPC SST-2

Model Denoise Time Train Time Total Time Denoise Time Train Time Total Time

Naive 0.097 2.741 2.837 0.092 29.474 29.566
Roben 0.204 1.334 1.538 0.092 38.550 38.641
Sun & Jiang 219.512 1.283 220.795 301.713 25.521 327.235
RED 66.536 1.946 68.481 224.683 20.820 245.503
RED-Ensemble 67.892 10.032 77.924 190.460 99.302 289.763

Table 3.7: Average time (in minutes) for each stage of computation for each model on the MRPC
and SST-2 datasets using the RoBERTA classifier.

it is not significant. Ensembling increases the training time considerably, but this does not lead to
a prohibitively higher total time. In theory, ensembling M embeddings could slow down training
by a factor of M , but since GPUs parallelize part of the computation for those M embeddings,
the slow down is typically less. While M is 10 in the experiments, the observed slow down in
Table 3.7 is closer to a factor of 5.

3.6.4 Hyperparameter Analysis

This method makes use of three important hyperparameters: the softmax temperature τ , the K
value in the top-k operation in the token stream, and M , the number of samples used for the
ensemble. Experiments were performed to test optimal hyperparameter values, and it was found
that values of τ = 0.15, K = 20, and M = 10 worked well for all experiments. See the appendices
for further details and figures.

3.7 Conclusion

In conclusion, this chapter proposes a novel approach to robustness at the embedding level that is
probabilistic and transferable. This method can be used as a foundation for any other NLP model
in order to make that model more robust, without requiring any changes to the architecture. My
approach is probabilistic, and thus more fully expresses the uncertainty in meaning within a noisy
sequence than other similar models. Using the ensembling approach, the downstream model can
have access to all (or at least many) possible meanings of the noisy tokens, and can be trained
end to end to decide for itself how to use this information - rather than making overconfident
corrections at the preprocessing level. The proposed model demonstrates superior results on a
range of noisy tasks, using both synthetic and natural noise.

41

RoBERTa HBMP

20% 50% 20% 50%

Model Clean Synth. Natural Synth. Natural Clean Synth. Natural Synth. Natural

MRPC

Naive 0.868↓ 0.764↓ 0.801↓ 0.368↓ 0.523↓ 0.799 0.640↓ 0.679↓ 0.332↓ 0.463↓
MOE x x x x x 0.769↓ 0.568↓ 0.680↓ 0.388↓ 0.567↓
B2V x x x x x 0.798 0.541↓ 0.643↓ 0.198↓ 0.361↓
Sun&Jiang 0.864↓ 0.857↓ 0.855↓ 0.773↓ 0.819↓ 0.793↓ 0.756↓ 0.773↓ 0.642↓ 0.707↓
RobEn 0.843↓ 0.793↓ 0.812↓ 0.610↓ 0.719↓ 0.791↓ 0.690↓ 0.719↓ 0.450↓ 0.568↓
RED 0.872↓ 0.866↓ 0.867↓ 0.842↓ 0.847↓ 0.798 0.775 0.783 0.713↓ 0.742
RED-Ens 0.879 0.872 0.873 0.853 0.854 0.800 0.780 0.786 0.723 0.749

QNLI

Naive 0.899↑ 0.831↓ 0.861↓ 0.721↓ 0.782↓ 0.804↑ 0.742↓ 0.762↓ 0.643↓ 0.692↓
MOE x x x x x 0.788 0.693↓ 0.740↓ 0.606↓ 0.675↓
B2V x x x x x 0.808↑ 0.736↓ 0.764↓ 0.642↓ 0.706↓
Sun&Jiang 0.887 0.866↓ 0.876↓ 0.812↓ 0.847↓ 0.796 0.780↓ 0.783↓ 0.739↓ 0.761↓
RobEn 0.840↓ 0.795↓ 0.816↓ 0.722↓ 0.774↓ 0.778↓ 0.741↓ 0.756↓ 0.687↓ 0.720↓
RED 0.891 0.879 0.883 0.849↓ 0.863↓ 0.800 0.793 0.795↑ 0.773↓ 0.777
RED-Ens 0.889 0.877 0.883 0.856 0.869 0.767 0.792 0.794 0.777 0.781

QQP

Naive 0.890↑ 0.751↓ 0.797↓ 0.540↓ 0.684↓ 0.852↑ 0.679↓ 0.730↓ 0.521↓ 0.614↓
MOE x x x x x 0.853↑ 0.575↓ 0.706↓ 0.356↓ 0.535↓
B2V x x x x x 0.858↑ 0.586↓ 0.709↓ 0.360↓ 0.536↓
Sun&Jiang 0.867↓ 0.825↓ 0.845↓ 0.750↓ 0.802↓ 0.837↓ 0.781↓ 0.806↓ 0.674↓ 0.746↓
RobEn 0.858↓ 0.750↓ 0.800↓ 0.582↓ 0.714↓ 0.837↓ 0.691↓ 0.751↓ 0.515↓ 0.631↓
RED 0.873 0.842↓ 0.855↓ 0.789↓ 0.817↓ 0.842 0.809 0.818↓ 0.741 0.770↓
RED-Ens 0.877 0.847 0.858 0.794 0.823 0.843 0.809 0.822 0.739 0.772

SST-2

Naive 0.934↑ 0.898 0.897↓ 0.818↓ 0.809↓ 0.860↑ 0.814↓ 0.811↓ 0.730↓ 0.726↓
MOE x x x x x 0.856↑ 0.779↓ 0.790↓ 0.665↓ 0.684↓
B2V x x x x x 0.862↑ 0.818 0.821 0.736↓ 0.744↓
Sun&Jiang 0.908↓ 0.885↓ 0.893↓ 0.833↓ 0.848↓ 0.824↓ 0.802↓ 0.806↓ 0.753↓ 0.772↓
RobEn 0.839↓ 0.809↓ 0.806↓ 0.770↓ 0.766↓ 0.780↓ 0.743↓ 0.748↓ 0.699↓ 0.701↓
RED 0.916 0.901 0.901↓ 0.884↓ 0.878↓ 0.825 0.820 0.819↓ 0.802↓ 0.799
RED-Ens 0.913 0.903 0.908 0.895 0.886 0.829 0.823 0.825 0.814 0.806

MNLI

Naive 0.859↑ 0.742↓ 0.772↓ 0.584↓ 0.650↓ 0.722↑ 0.618↓ 0.642↓ 0.497↓ 0.545↓
MOE x x x x x 0.709 0.568↓ 0.620↓ 0.449↓ 0.518↓
B2V x x x x x 0.721↑ 0.591↓ 0.634↓ 0.466↓ 0.530↓
Sun&Jiang 0.833↓ 0.790↓ 0.809↓ 0.709↓ 0.751↓ 0.708 0.667↓ 0.683↓ 0.595↓ 0.632↓
Roben 0.761↓ 0.676↓ 0.698↓ 0.573↓ 0.617↓ 0.657↓ 0.586↓ 0.609↓ 0.499↓ 0.542↓
RED 0.843↑ 0.814 0.823 0.748↓ 0.777↓ 0.713↑ 0.689↑ 0.692 0.640 0.653↑
RED-Ens 0.840 0.813 0.822 0.768 0.781 0.707 0.685 0.690 0.640 0.650

Table 3.8: Results of baselines by task with clean training. An x indicates a method that is
not compatible with RoBERTa. ↑ and ↓ signify results that are statistically better or worse
respectively than RED-Ensemble with p < 0.05 according to the Wilcoxon signed rank test
[Wilcoxon, 1945].

42

RoBERTa HBMP

20% 50% 20% 50%

Model Synth. Natural Synth. Natural Synth. Natural Synth. Natural

MRPC

Naive 0.819↓ 0.836↓ 0.749↓ 0.766↓ 0.760↓ 0.768↓ 0.726↓ 0.745↓
MOE x x x x 0.722↓ 0.734↓ 0.709↓ 0.724↓
B2V x x x x 0.762↓ 0.765↓ 0.73↓5 0.742↓
Sun&Jiang 0.859↓ 0.860↓ 0.823↓ 0.843↓ 0.782↓ 0.786↓ 0.757↓ 0.771↓
RobEn 0.814↓ 0.823↓ 0.765↓ 0.795↓ 0.761↓ 0.765↓ 0.731↓ 0.752↓
RED 0.866 0.866↓ 0.852↓ 0.852↓ 0.787↓ 0.791 0.773↓ 0.782↓
RED-Ens 0.869 0.871 0.860 0.860 0.793 0.793 0.784 0.788

QNLI

Naive 0.857↓ 0.870↓ 0.782↓ 0.815↓ 0.743↓ 0.762↓ 0.652↓ 0.706↓
MOE x x x x 0.713↓ 0.741↓ 0.631↓ 0.690↓
B2V x x x x 0.753↓ 0.771↓ 0.683↓ 0.702↓
Sun&Jiang 0.869↓ 0.876↓ 0.830↓ 0.853↓ 0.774↓ 0.781↓ 0.735↓ 0.760↓
RobEn 0.805↓ 0.818↓ 0.766↓ 0.792↓ 0.745↓ 0.759↓ 0.701↓ 0.734↓
RED 0.885↑ 0.887 0.867 0.872 0.788 0.791 0.768↓ 0.776↓
RED-Ens 0.881 0.885 0.865 0.874 0.759 0.791 0.772 0.781

QQP

Naive 0.859↓ 0.869↑ 0.823↓ 0.847↓ 0.777↓ 0.805↓ 0.712↓ 0.774↓
MOE x x x x 0.776↓ 0.809↓ 0.721↓ 0.781↓
B2V x x x x 0.788↓ 0.817↓ 0.733↓ 0.788↓
Sun&Jiang 0.844↓ 0.854↓ 0.812↓ 0.835↓ 0.801↓ 0.814↓ 0.761↓ 0.791↓
RobEn 0.822↓ 0.837↓ 0.786↓ 0.815↓ 0.780↓ 0.803↓ 0.733↓ 0.779↓
RED 0.860 0.865↓ 0.841↓ 0.852↓ 0.818↓ 0.825↓ 0.787↓ 0.807↓
RED-Ens 0.861 0.867 0.844 0.857 0.821 0.829 0.794 0.813

SST-2

Naive 0.904↓ 0.902↓ 0.854↓ 0.842↓ 0.818↓ 0.821↓ 0.752↓ 0.750↓
MOE x x x x 0.806↓ 0.817↓ 0.755↓ 0.758↓
B2V x x x x 0.820↓ 0.821↓ 0.772↓ 0.777↓
Sun&Jiang 0.887↓ 0.893↓ 0.850↓ 0.858↓ 0.803↓ 0.815↓ 0.772↓ 0.784↓
RobEn 0.806↓ 0.811↓ 0.782↓ 0.775↓ 0.752↓ 0.755↓ 0.719↓ 0.726↓
RED 0.905↓ 0.907 0.889 0.884 0.826 0.831 0.808 0.803↓
RED-Ens 0.911 0.908 0.899 0.894 0.828 0.830 0.816 0.814

MNLI

Naive 0.769↓ 0.818↓ 0.450↓ 0.754↓ 0.643↓ 0.661↓ 0.550↓ 0.595↓
MOE x x x x 0.6348↓ 0.6577↓ 0.5588↓ 0.6058↓
B2V x x x x 0.6450↓ 0.6684↓ 0.5675↓ 0.6157↓
Sun&Jiang 0.805↓ 0.817↓ 0.669↓ 0.778↓ 0.676↓ 0.686↓ 0.628↓ 0.652↓
Roben 0.716↓ 0.724↓ 0.619↓ 0.610↓ 0.614↓ 0.628↓ 0.564↓ 0.594↓
RED 0.825↑ 0.828↑ 0.748 0.802 0.691↑ 0.696↑ 0.661↑ 0.667
RED-Ens 0.821 0.824 0.794 0.759 0.685 0.691 0.656 0.666

Table 3.9: Results of baselines by task with with noise applied during training time. An x indicates
a method that is not compatible with RoBERTa. ↑ and ↓ signify results that are statistically
better or worse respectively than RED-Ensemble with p < 0.05 according to the Wilcoxon signed
rank test [Wilcoxon, 1945].

43

Chapter 4

Multi-Set Transformers

4.1 Introduction

The second major application of distributional approaches explored in this work is the use of neu-
ral network models to approximate distance functions between distributions. Section 1.1.2 pro-
vides a motivating example of how such models could be used to train bespoke distance functions
between empirical distributions over word embeddings for unsupervised inference. As discussed
in Section 1.2.2, however, the applications of this approach go far beyond this initial motivat-
ing problem. More generally, this concept of training models to approximate distance functions
between distributions could be used to model troublesome quantities such as Kullback-Leibler
Divergence and Mutual Information. These quantities are highly useful in many applications,
but notoriously difficult to approximate by conventional means - to the extent that problems are
often structured in cumbersome ways to allow them to be computed in closed form.

The primary challenge with this idea is that it requires a model architecture which can be used
to predict functions defined on distributions - or, at the very least, unordered sets of samples from
these distributions. Unfortunately, typical deep learning algorithms are constrained to operate on
either fixed-dimensional vectors or ordered sequences of such vectors. While some investigation
has now been done into the problem of applying deep learning to functions on sets [Lee et al.,
2019, Zaheer et al., 2017], these works all focus on the problem of learning a function on a single
input set, and do not generalize to the case of multiple sets.

This chapter will detail a novel architecture to do just that: provide a framework to approx-
imate functions defined on multiple permutation invariant sets. I will define the properties of
partial permutation invariance and -equivariance that this architecture must satisfy, detail how
this architecture can be constructed from modified attention blocks based on the work of Lee
et al. [2019], and prove that the proposed architecture is a universal approximator of all partially

44

permutation invariant or equivariant functions on multiple sets of inputs. I will demonstrate the
proposed model’s superiority to existing works and naive extensions of single-set architectures
across a wide range of applications, including predicting alignment between multiple sets of sam-
ples from different domains (for example, images and their captions), or determining whether two
sets of samples were drawn from the same distribution (a task whose significance will be explored
in further detail in Chapter 5). I will also highlight the particular application of approximating
distance functions between distributions by demonstrating the proposed model’s effectiveness at
approximating the notoriously intractable quantities of KL Divergence and Mutual Information
- surpassing the results of widely used existing models such as MINE [Belghazi et al., 2018].

4.2 Related Work

This method is based on the work of Zaheer et al. [2017], who originally drew attention to
the problem of using neural networks to approximate functions on permutation-invariant sets. In
particular, it draws from the work of Lee et al. [2019], who extended this work to use transformer-
based models on sets.

Gui et al. [2021] also address the idea of designing neural networks to learn functions between
multiple permutation-invariant sets. Their work, however, focuses on graph embeddings as a
primary application, and does not consider estimating distances or divergences. Their method
also relies on a more simplistic architecture that has been criticized in Wagstaff et al. [2019],
whereas our proposed architecture has a number of theoretical and empirical advantages.

4.3 Method

4.3.1 Background

Consider first the problem of learning a function upon a single set X = {x1, ..., xn} in Rd. As
discussed in the work of Zaheer et al. [2017], this general problem takes on one of two forms: the
permutation-equivariant and -invariant cases. In the permutation-equivariant case, the function

takes the form f : 2R
d → 2R

d′
, and must obey the restriction that permutations of the inputs

correspond to identical permutations of the outputs - i.e. for a permutation π,

f(π(X)) = π(f(X)) (4.1)

In the permutation-invariant case, the function takes the form f : 2R
d → Rd′ , and must obey

the restriction that permutations of the inputs correspond to no change in the output - i.e.

f(π(X)) = f(X) (4.2)

45

Zaheer et al. [2017] proposed an architecture to learn such functions that we will refer to as
the sum-decomposition architecture (following Wagstaff et al. [2019]). This architecture proposes
to learn permutation-invariant functions using the model:

f(X) = ρ

(∑
x∈X

ϕ(x)

)
(4.3)

Each member of the set x is encoded into a latent representation ϕ(x), which are then summed
and decoded to produce an output. While this architecture is adequate for some purposes, it is
also very simple, and has difficulty modeling interactions between multiple elements in the set.
In particular, Wagstaff et al. [2019] proved in their paper that sum-decomposable architectures
such as this require each element to be mapped to a latent vector with latent size at least as large
as the maximum number of elements in the input set in order to be universal approximators of
functions on sets. Practically speaking, this is a major restriction when working with large sets,
because this introduces a hard maximum on the size of the input set for a given latent size. Qi
et al. [2017] also propose a very similar architecture to this in their paper on PointNets. While
PointNets use a more complicated encoder architecture and a different form of pooling (sum vs
max pool) are different, they follow the same general structure of applying a deep elementwise
encoding, followed by a final pooling operation.

Lee et al. [2019] improved on this architecture in their paper, proposing an architecture
they referred to as ‘Set Transformers’. This architecture leverages the fact that the widely-used
attention operation (discussed in Section 2.1.2) is itself permutation-equivariant. This means
that transformer encoder blocks (as defined in Eq. 2.10) that do not contain positional encodings
can be used as the basis for a permutation-equivariant encoder. Their proposed architecture
consists of a stack of transformer encoder blocks {T1, ..., TL}, followed by a pooling operation
Γ (by default, their proposed ‘Pooling by Multiheaded Attention’ operator) and a feedforward
decoder ρ.

f(X) = ρ

(
Γ
X

TL(TL−1(...T1(X))

)
(4.4)

The Set Transformer architecture bears some similarities to another model proposed by San-
toro et al. [2017]. While these networks do not utilize attention, they also involve elementwise
comparisons between pairs of elements from the input set, combined with pooling and decoding
operations. Relation networks are defined by the model:

f(X) = ρ

∑
xi∈X

∑
xj∈X

θ(xi, xj)

 (4.5)

wherein ρ is again a decoder, and θ is a feedforward pairwise encoder which encodes the relation-
ship between each pair of elements in X.

46

General Model

In general, we can consider all three of these architectures to consist of an equivariant encoder ϕ
on the set X, followed by a pooling operation Γ and decoder ρ:

f(X) = ρ

(
Γ
X

ϕ(X,X)

)
(4.6)

In both the Set Transformer and Relation Network case, this general architecture may be
specified even further. Each of these cases consist of encoders which compute pairwise operations
on the elements xi, xj . In these cases, ϕ(X) can be written more explicitly as:

ϕ(X) = Λ
X

θ(X,X) (4.7)

where θ(X,X) is a pairwise encoder that computes an encoding of each pair (xi, xj), then Λ is a
form of pooling operation that reduces this N ×N encoding matrix row-wise into a single vector
for each element in X. For the base relation network architecture, θ is simply a feedforward neural
net, and both pooling operations take the form of sums. For the set transformer architecture, ϕ(X)
is the multiheaded self-attention operator, with θ(X,X) being the dot product of the transformed
queries and keys and Λ consisting of a softmax and matrix multiplication by the transformed value
matrix. The pooling operator Γ in this case is given by the ‘Pooling by Multiheaded Attention’
(PMA) operator defined in Lee et al. [2019] (though a sum or max pool could also be used).

4.3.2 Multiple Sets

I propose to extend these methods to the case of multiple permutation invariant sets - which I
refer to as the case of partial permutation invariance. A function f : 2R

d × 2R
d → Rd′ is partially

permutation invariant if ∀π1, π2 it obeys the property:

f(π1(X), π2(Y)) = f(X,Y)

Similarly, a function f : 2R
d × 2R

d → 2R
d × 2R

d
is partially permutation equivariant if it obeys

the property:
f(π1(X), π2(Y)) = (π1(fX(X,Y)), π2(fY (X,Y)))

Note that these definitions are straightforward extensions of the base concepts of permutation
invariance and equivariance under a direct product of groups. The definitions in Equations 4.1
and 4.2 can be considered as the invariance or equivariance of the function f under the action
of the symmetric group Sn. Similarly, partial permutation invariance or equivariance can be

47

Figure 4.1: Diagram of the Multi-Set Transformer and Multi-Set Attention Block

understood as the invariance or equivariance of the function f under the action of the product
Sn × Sm.

Gui et al. [2021] propose a similar definition in their work, where they define a partially
permutation invariant model:

f(X1, ..., Xm) = ρ

∑
x∈X1

ϕ1(x), ...,
∑

x∈Xm

ϕm(x)

This is essentially a generalization of the sum-decomposition architecture described by Equation
4.3. As mentioned previously, this sum-decomposition architecture has a number of significant
theoretical and practical limitations. Rather than build a multi-set architecture on this simple
sum-decomposition model, I choose to focus on the general models defined in Equations 4.6
and 4.7, with particular focus on the set transformer model defined in Lee et al. [2019]. This
architecture is also advantageous for other reasons; models such as transformers which explicitly
model the relationship between pairs of elements in a set carry a useful inductive bias for learning
distance functions. Consider the case of computing the Wasserstein distance, wherein computing
the ground distance (e.g. euclidean distance) between every pair of elements within the sets is a
necessary step. Similarly, for quantities such as KL divergence, methods such as the algorithm of
Wang et al. [2009] often rely on nearest-neighbour distances as a useful proxy for the concentration

48

of the distribution.

4.3.3 The Proposed Model

Let us thus begin from the model presented in Equation 4.6. In order to generalize this to the
multi-set case, let us now consider applying these architectures to the case where the single input
X is now replaced by X

⊔
Y - the concatenation of the two inputs X and Y . When the encoder

acts upon this input, ϕ(X) can be written by representing the pair encodings θ(X
⊔
Y,X

⊔
Y)

as block matrices:

ϕ(X
⊔
Y) = Λ

X
⊔

Y

(
θ(X,X) θ(X,Y)
θ(Y,X) θ(Y, Y)

)
This model is still equivariant, rather than partially-equivariant - it makes no distinction between
elements in X and elements in Y . In order to break this symmetry, two key changes can be
made. First, instead of having a single encoder θ learn all four of these relationships, θ can be
split into four separate pair encoders: θxx, θxy, θyx, and θyy. These encoders each have their
own parameters, though parameter sharing can be employed when the desired function contains
symmetries. Second, rather than pooling over the entirety of the joint set X

⊔
Y to reduce the

encoding matrix to a single set of vectors, each block matrix thetaab is pooled over only the first
input set A. The overall encoder ϕ can thus be divided into its outputs ϕx, ϕy, which can then
be decomposed further into:

ϕxx(X,X) = Λ
X

θxx(X,X)

ϕxy(X,Y) = Λ
X

θxy(X,Y)

ϕyx(Y,X) = Λ
Y

θyx(Y,X)

ϕyy(Y, Y) = Λ
Y

θyy(Y, Y)

(4.8)

In this manner, each encoder learns the relationships between one of the four pairs of sets
separately. This information can then be recombined to produce output encodings for X and Y by
concatenating the outputs of the appropriate encoder blocks and applying a shallow feedforward
network:

ϕx(X,Y) = gx(ϕxx(X,X), ϕxy(X,Y))

ϕy(X,Y) = gy(ϕyx(Y,X), ϕyy(Y, Y))
(4.9)

Equation 4.6 then becomes

f(X,Y) = ρ

(
Γ
X

ϕx(X,Y),Γ
Y

ϕy(X,Y)

)
(4.10)

49

This structure satisfies the property of partial permutation equivariance, and allows the model
to retain the benefits of explicitly representing relationships between each pair of elements and
each pair of sets. This general model can now be used to extend any single-set model defined by
Equation 4.6 - including both Set Transformers and Relation Networks.

4.3.4 Multi-Set Transformer

The primary architecture under consideration is the multi-set transformer architecture, which
follows from constructing the encoder defined in Equation 4.9 with transformers as the encoders
ϕ. Let the multi-set attention block be defined as MSAB(X,Y) = (ZX , ZY) where

ZX = X + gx(Txx(X,X), Txy(X,Y))

ZY = Y + gy(Tyx(Y,X), Tyy(Y, Y))
(4.11)

and where Tab(A,B) is a transformer block as defined in Eq. 2.10, and the functions g are 1-layer
feedforward networks with ReLU activations which are applied to the elementwise concatenation
of the outputs of the two transformer blocks. These MSABs can now be treated like regular
transformer blocks and stacked to form a deep encoder. A multi-set analogue of Eq. 4.4 can
then be defined using Equation 4.10, wherein ϕ is an encoder formed of stacked MSABs, which
produces outputs of ZX and ZY . These outputs are then pooled over X and Y independently,
concatenated, then passed into a feedforward decoder to produce the final output. A detailed
demonstration of how the multi-set attention block is derived from a single-set attention block
is presented in Section B.2 of the appendices. Figure 4.1 illustrates the proposed model with
MSABs.

4.3.5 Variable-Dimension Encoders

Another application of permutation-invariance that will be particularly useful when discussing
distance functions is invariance to the input dimension itself. Incorporating the principles of
permutation with respect to the input dimension (i.e. treating each feature of the input in a sym-
metric fashion) can yield several advantages. First, the model is no longer restricted to operate
on inputs of a fixed dimension, and can accept inputs of many different sizes. Second, this repre-
sentation carries a useful inductive bias for the particular setting of statistical distance functions.
A traditional machine learning pipeline in a field such as NLP might learn an embedding scheme
in which different dimensions encode different representations of the input sequence, and must
thus be treated differently from one another. Statistical distance functions such as the Wasser-
stein Distance or KL Divergence, however, are often symmetric with respect to the dimensions
of their input vectors. In these settings, this invariant representation forces the model to align
more closely with the true underlying function, and generally leads to improved performance.

50

Zaheer et al. [2017] propose a simplistic form of this in their original paper. They demonstrate
that a linear layer with a weight matrix that takes the form Θ = λI + γ11T is equivariant with
respect to the input dimension. This essentially corresponds to a neural network that computes:

yi = λxi + γ
∑
i

xi

Each output is thus computed from a constant multiple of the corresponding input added to a
multiple of the sum of all inputs. This has some unfortunate properties, however, since it is
constrained to an output size that is exactly equal to the input size at every layer. The solution
to this is to introduce multiple channels. Instead of mapping each input dimension to a single
output dimension, each input dimension can be mapped to a multichannel output. Multiple
encoder layers can thus be stacked, each acting only on this multichannel representation of the
input dimensions, and treating the input dimension itself as a batch dimension. Then, after these
encoder layers are applied, a pooling operation can be introduced over the input dimension to
obtain a fixed dimensional output. This procedure allows inputs of any size to be mapped to a
fixed dimension encoding.

In accordance with this, I propose an analogous multichannel transformer block, wherein the
weight matrices are applied as multichannel transformations which treat the input dimension as
a batch dimension. A standard multiheaded attention block (see Section 2.1.2) receives inputs
X,Y ∈ Rn×d and computes:

MHA(X,Y) = σ
(
(XWQ)(YWK)T

)
YWVWO

Our multichannel attention block instead is a function from Rn×d×nc × Rm×d×nc to Rn×d×nc

which computes:

A = σ

(
d∑

i=1

(X:,iWQ)(Y:,iWK)T

)
MHA(X,Y):,i = AY:,iWVWO

(4.12)

This multichannel transformer architecture consists of an initial projection from a single input
channel up to k input channels, followed by nb multichannel transformer blocks, followed by a max
pooling over the input dimension d. This is also compatible with the Multi-Set Attention Block
architecture, in which case the multichannel transformer blocks are replaced by multichannel
MSABs, with a max pooling at the end as before.

4.4 Theoretical Analysis

In order to demonstrate the theoretical effectiveness of the proposed approach, I will demonstrate
that the multi-set transformer architecture described in Section 4.3.4 is a universal approximator

51

on partially permutation equivariant functions, and that combined with a pooling layer it is also
a universal approximator of partially permutation invariant functions.

While the property of universal approximation can of course be achieved by standard feedfor-
ward neural networks, these networks have many undesirable properties when modelling functions
on equivariant sets. Such networks are limited to inputs of a fixed size n - a restriction which
the multi-set transformer architecture does not share. In addition, traditional feedforward net-
works offer no guarantees of permutation equivariance. As such, there are significant benefits to
be offered from demonstrating an alternative architecture which can offer the same theoretical
guarantees while also obeying a structure that is naturally more suited to the problem at hand.

First, some preliminaries. I will follow the notation in Yun et al. [2019], for their Theorem
2 forms a foundation for the theorem that will be stated shortly. Let FPE be the class of all
continuous permutation-equivariant functions with compact support from Rd×n to Rd×n. Given
f, g : Rd×n → Rd×n and 1 ≤ p <∞, let

dp(f, g) =

(∫
∥f(X)− g(X)∥ppdX

)1/p

(4.13)

Let th,m,r : Rd×n → Rd×n denote a transformer block with an attention layer with h heads of size
m and a feedforward layer with r hidden nodes. Then, let T h,m,r define the class of functions
g : Rd×n → Rd×n such that g consists of a composition of transformer blocks of the form th,m,r.
Given these definitions, consider the following statement of Theorem 2 from Yun et al. [2019],
which is given by:

Theorem 4.4.1. Let 1 ≤ p <∞ and ϵ > 0, then for any given f ∈ FPE there exists a transformer
network g ∈ T 2,1,4 such that dp(f, g) ≤ ϵ. [Yun et al., 2019]

To extend this to the case of partial permutation equivariance, these definitions must now
be modified slightly. Let FPPE be the class of all continuous partially-permutation-equivariant
functions on two sets with compact support from Rd×n × Rd×m to Rd×n × Rd×m. Let ch,m,r :
Rd×n × Rd×m → Rd×n × Rd×m denote a multi-set attention block with attention layers with h
heads of size m and feedforward layers with r hidden nodes, and let T h,m,r

C define the class of
functions g : Rd×n × Rd×m → Rd×n × Rd×m such that g consists of a composition of MSABs of
the form ch,m,r. The modified theorem now states:

Theorem 4.4.2. Let 1 ≤ p <∞ and ϵ > 0, then for any given f ∈ FPPE there exists a multi-set
transformer network g ∈ T 2,2,4

C such that dp(f, g) ≤ ϵ.

A proof of Theorem 4.4.2 is given in Section 4.5. If we define FPPI to be the class of
all continuous partially-permutation-invariant functions on two sets with compact support from
Rd×n × Rd×m to Rd, this now directly leads to the corollary:

52

Corollary 4.4.3. Let 1 ≤ p <∞ and ϵ > 0, then for any given f ∈ FPPI there exists a function
f(X,Y) = max g(X,Y) such that dp(f, g) ≤ ϵ, wherein g ∈ T 2,2,4

C is a multi-set transformer
network.

Observe that this corollary follows directly from Theorem 4.4.2, since for any function f ∈
FPPI we can construct g ∈ FPPE such that g(X,Y):,j = f(X,Y) ∀j (i.e., a set of outputs where
each entry simply contains f(X,Y)). f thus obeys the equation f(X,Y) = maxj g(X,Y):,j .
Therefore, any function in f ∈ FPPI can be expressed as a pooling function applied to a func-
tion g ∈ FPPE and f can thus be approximated by a multi-set transformer network by simply
approximating g as per Theorem 4.4.2.

4.5 Proof of Theorem 4.4.2

This proof will closely follow the work of Yun et al. [2019]. In their work, they define the following
theorem (stated earlier as Theorem 4.4.1):

Theorem 2 ([Yun et al., 2019]). Let 1 ≤ p < ∞ and ϵ > 0, then for any given f ∈ FPE there
exists a transformer network g ∈ T 2,1,4 such that dp(f, g) ≤ ϵ.

The proof of this theorem follows several stages, enumerated here:

1. Approximate FPE by piecewise constant functions FPE on the grid of resolution δ, denoted
Gδ = 0, δ, ..., 1− δd×n.

2. Approximate FPE by a class of modified transformers T , with particular choices of param-
eters and hardmax replacing softmax.

Proposition 4 ([Yun et al., 2019]). For each f ∈ FPE and 1 ≤ p < ∞, ∃g ∈ T 2,1,1
such

that dp(f, g) = O(δd/p)

3. Approximate the class of modified transformers T 2,1,1
with T 2,1,4

Each of these steps leads to a certain error under dp, with step 1 and 3 contributing an error of
order ϵ/3 and step 2 contributing an error of order O(δd/p). This leads to a total error of less
than order ϵ, so long as δ is chosen to be sufficiently small. The proof of Theorem 4.4.2 will follow
the same procedure. Many of these steps will be omitted, as they remain unchanged from their
presentation in the original paper.

Of the steps mentioned above, we will focus our attention on step 2, as the others remain
unchanged. The key is to prove a modified version of Proposition 4. The proof of this proposition
itself follows the following steps:

53

1. Given X ∈ Rd×n, quantize X to L(x) ∈ G+
δ , where Gδ is the [0, 1]d×n grid with resolution δ

and G+
δ = Gδ ∪ {−δ−nd}.

2. Implement a contextual mapping q(X) such that all elements of q(L), q(L′) are distinct if
L,L′ are not permutations of each other. This essentially maps each (xi, X) to a unique
representation.

3. Since each (xi, X) is mapped to a unique representation, we can use feedforward networks
to approximate any mapping from these unique representations to the desired outputs up
to arbitrary accuracy due to their nature as universal approximators, and thus approximate
any equivariant function on X.

In order to translate this proof to the multi-set case, several adjustments need to be made. The
first of these steps remains unchanged, and applies in a similar fashion to X,Y . The most critical
part of the proof comes in the second step, with the construction of the contextual mapping. Yun
et al demonstrate a particular construction of this contextual mapping, and with it they prove
their Lemma 6, detailed below:

Lemma 6 ([Yun et al., 2019]). Let G̃δ = {L ∈ Gδ| L:,i ̸= L:,j ∀i ̸= j}. Let n ≥ 2 and δ−1 ≥ 2.
Then, there exists a function q(L) of the form q(L) = uT gc(L) where u ∈ Rd, and gc(L) : Rd×n →
Rd×n is a function composed of δ−d + 1 self-attention layers using the σH operator, as well as
constants tl, tr such that q(L) has the following properties:

1. For any L ∈ G̃δ, all entries of q(L) are distinct

2. For any L,L′ ∈ G̃δ, if L is not a permutation of L′ then all entries of q(L) and q(L′) are
distinct

3. For any L ∈ G̃δ, all entries of q(L) are in [tl, tr]

4. For any L ∈ G+
δ \ G̃δ, all entries of q(L) are not in [tl, tr]

The overall structure of this proof will remain largely the same, save for substituting a new
version of this lemma:

Lemma 6’. Let G̃δ = {L ∈ Gδ| L:,i ̸= L:,j ∀i ̸= j}. Let n ≥ 2 and δ−1 ≥ 2. Then, there exists
a function q(LX , LY) on LX , LY ∈ G+

δ ;LX ̸= LY consisting of 2δ−d + 4 MSAB layers using the
σH operator, as well as constants tXl , t

X
r , t

Y
l , t

Y
r such that q(LX , LY) has the following properties:

1. For any LX , LY ∈ Gδ, all entries of q(LX , LY) are distinct

2. For any LX , LY , L′X , L′Y ∈ Gδ, if L
′X is not a permutation of LX and L′Y is not a permu-

tation of LY then all entries of q(LX , LY) and q(L′X , L′Y) are distinct

54

3. For any LX , LY ∈ G̃δ, all entries of qX(LX , LY) are in [tXl , t
X
r]

4. For any LX , LY ∈ G̃δ, all entries of qY (LX , LY) are in [tYl , t
Y
r]

5. For any LX ∈ G+
δ \ G̃δ, L

Y ∈ G+
δ , all entries of q(LX , LY) are not in [tl, tr]

6. For any LY ∈ G+
δ \ G̃δ, L

X ∈ G+
δ , all entries of q(LX , LY) are not in [tl, tr]

Once the equivalent contextual mapping is defined and Lemma 6’ is established, the second
stage of the proof is complete. In order to prove the third stage, I then make a slight modification
of Yun et al’s Lemma 7. This lemma states:

Lemma 7 ([Yun et al., 2019]). Let gc : Rd×n → Rd×n be the function defined in Lemma 6. Then,
there exists a function gv : Rd×n → Rd×n composed of O(n(1δ)dn/n!) column-wise feedforward
layers (r = 1) such that gv is defined by a function gcol : Rd → Rd,

gv(Z) = [gcol(Z:,1), ..., gcol(Z:,n)]

where ∀j = 1, ..., n

gcol(gc(L):,j) =

{
(AL):,j L ∈ G̃δ

0d L ∈ G+
δ \ G̃δ

The modified version states instead that:

Lemma 7’. Let gc : Rd×n × Rd×m → Rd×n × Rd×m be the function defined in Lemma 6’. Then,
there exists a function gv : Rd×n×Rd×m → Rd×n×Rd×m composed of O

(
(n+m)(1δ)d(n+m)/(n!m!)

)
column-wise feedforward layers (r = 1) such that gv is defined by a function gcol : Rd → Rd,

gv(Z) = [gcol(Z:,1), ..., gcol(Z:,n)]

where ∀i = 1, ..., n, j = 1, ...m

gcol(gc(L):,j) =

{
(AL):,j L ∈ G̃δ

0d L ∈ G+
δ \ G̃δ

The construction of q(LX , LY), and the proofs of Lemma 6’ and 7’ will follow in the subsequent
sections.

55

4.5.1 Construction of the Contextual Mapping

The construction of this function proceeds as follows. First, note that a multi-set attention block
can implement functions consisting of multiple feedforward or attention blocks successively by
using the skip connections to ignore the other component when needed. It can also implement
a function consisting of multiple blocks successively applied to a single one of the input sets
by simply letting the action of the block on the other set be the identity. The multi-set at-
tention block can also implement a layer which simply performs the attention computation e.g.
ATTNXX(X,X) by letting gX(fXX , fXY) = fXX . As such, multi-set attention blocks can re-
produce any function on either X or Y implemented by regular transformer blocks - such as the
constructions defined in Yun et al. [2019].

Let gc(L) be the iterated selective shift network defined in Yun et al. [2019], consisting of n
selective shift operations followed by a final global shift layer. This results in the mapping

uT gc(L):,j = ℓ̃j + δ−(n+1)dℓ̃n

where ℓ̃j is the j-th output of the selective shift layers, sorted in ascending order. We will now
construct our own analogous network, gc(L

X , LY). Let gs(L) be the selective shift portion of
gc(L). Then, we let the first δ−d blocks implement gs(L

X) on LX alone while performing the
identity operation on LY (TXY , TY X = 0 for this component). The next δ−d blocks do the same
thing on LY , while performing the identity on LX . The next block then applies a modified
global shift to each set with attention component δ(n+1)dψ(·; 0) - the same global shift as in Yun
et al. [2019]. This shift is applied with attention over X, and a scaled version is also applied
with attention over Y - i.e. shifting LX by δ−(n+1)d maxk u

TLX
:,k and also by δ(m+1)d maxk u

TLY
:,k

(and the same in reverse for LY). This can be implemented by a single MSAB block with
TXX = TY Y = δ−(n+1)dψ(·; 0) and TXY = TY X = δdψ(·; 0). This comprises our gc(L

X , LY) block,
and results in an output of

qX(LX , LY)j = uT gXc (LX , LY):,j = ℓ̃Xj + δ−(n+1)d ℓ̃Xn + δ(m+1)d ℓ̃Ym

qY (LX , LY)j = uT gYc (LX , LY):,j = ℓ̃Yj + δ−(m+1)d ℓ̃Ym + δ(n+1)d ℓ̃Xn

4.5.2 Proof of Lemma 6’

The proof of Lemma 6’ proceeds much as the proof of Lemma 6. We must now check that all
conditions are satisfied. In order to do so, we will also require Lemma 10 from Yun et al. [2019],

restated here for convenience. This lemma applies to both ℓ̃Xn and ℓ̃Ym independently, as both are
constructed from the same selective shift operations as in Yun et al.

Lemma 10 ([Yun et al., 2019]). After n shift operations, ℓ̃n = uT L̃:,n satisfies the following
bounds:

δ−(n−1)d+1(δ−d − 1) ≤ ℓ̃n ≤ δ−nd+1(δ−d − 1)− δ(δ−d − 1)2

56

Property 2

For the second property, let us begin by considering the case where LX , L′X are not permutations
of each other. Then, analogous to Yun et al., we have that

uT gXc (LX , LY):,j ∈ [δ−(n+1)dℓ̃Xn + δ(m+1)dℓ̃Ym, δ
−(n+1)dℓ̃Xn + δ(m+1)dℓ̃Ym + δ−(n+1)d+1 − δ−nd+1)

As in Yun et al., LX , L′X ∈ G̃δ which are not permutations of each other must result in ℓ̃Xn , ℓ̃
′X
n

differing by at least δ. By Lemma 10, distinct LY , L′Y can lead to ℓ̃Ym, ℓ̃
′Y
m differing by a value

strictly less than δ−(m+1)d+1. The smallest net change this can result in is δ−(n+1)d · δ− δ(m+1)d ·
δ−(m+1)d+1 = δ−(n+1)d+1 − δ. Since this is larger than the width of the original interval and the
intervals are open on at least one end, the intervals must thus be disjoint, and thus if LX and
L′X are distinct, QX and Q′X must be distinct. Now, consider the case where LX , L′X ∈ G̃δ

are permutations of each other, but LY , L′Y ∈ G̃δ are not. In this case, since ℓ̃Ym, ℓ̃
′Y
m must differ

by at least δ, QX and Q′X must again be distinct. Since |ℓ̃Ym − ℓ̃′Ym | < δ−(m+1)d+1, the resulting
change in QX must be strictly less than δ. Since ℓ̃Xj , ℓ̃

X
k must be separated by at least δ for j ̸= k,

QX
j ̸= Q′X

k for any j ̸= k. Thus, all entries of QX and Q′X must be distinct in this case as well.

These results apply symmetrically for QY and Q′Y , and thus this proves Property 2.

Note that if LX , L′X are not permutations of each other then uT gXc (LX , LY), uT gXc (L′X , L′Y)
must be separated from each other by at least δ, whereas if LX , L′X are permutations of each
other, but LY , L′Y are not, uT gXc (LX , LY), uT gXc (L′X , L′Y) must be separated by at least δm+2.
In general then, all entries of uT gXc (LX , LY), uT gXc (L′X , L′Y) must be separated from each other
by at least δm+2 (and conversely with δn+2 for Y).

Properties 3-4

By the same procedure as Yun et al (in B.5.1), we can see that qX(LX , LY) obeys

(δ−2nd+1 + δ2d+1)(δ−d − 1) ≤ uT gXc (LX , LY) < (δ−(2n+1)d+1 + δd+1)(δ−d − 1)

if LX , LY ∈ G̃δ. Thus, ∀LX , LY ∈ G̃δ q
X(LX , LY) ∈ [tl, tr] where

tXl = (δ−2nd+1 + δ2d+1)(δ−d − 1)

tXr = (δ−(2n+1)d+1 + δd+1)(δ−d − 1)

The same holds for qY (LX , LY) with

tYl = (δ−2md+1 + δ2d+1)(δ−d − 1)

tYr = (δ−(2m+1)d+1 + δd+1)(δ−d − 1)

57

Property 1

Within QX and QY , all entries must be distinct since ℓ̃1 < ... < ℓ̃n. Consider the bounds tXl , t
X
r

from the previous section. Consider first the case where n ̸= m. Without loss of generality,
suppose m < n. If m = n− k then we have tYr = (δ−(2n+1−2k)d+1 + δd+1)(δ−d− 1) < tXl and thus
QX and QY belong to disjoint intervals.

If n = m, then we can apply a similar argument as we did in proving Property 2, and argue
that ℓ̃Xn , ℓ̃

Y
n which are not permutations must differ by at least δ. This results in intervals shifted

from each other by at least δ−(n+1)d+1−δd+1, which will always be larger than δ−(n+1)d+1−δ−nd+1,
which is the width of the intervals. Thus, in this case too QX and QY must be distinct, and
Property 1 is proven.

Properties 5-6 - Case 1

Take LY ∈ G+
δ and LX ∈ Gδ \ G̃δ. This corresponds to an LX with duplicate columns but within

the region of compact support. In this case,

ℓ̃Xn ≤ δ−(n−1)d+1(δ−d − 1)− δ(δ−d − 1)2

Then,

uT gXc (LX , LY):,j = ℓ̃Xj + δ−(n+1)d ℓ̃Xn + δ(m+1)d ℓ̃Ym

≤ (δ−(n+1)d + 1)(δ−(n−1)d+1(δ−d − 1)− δ(δ−d − 1)2)

+ δ(m+1)d(δ−md+1(δ−d − 1)− δ(δ−d − 1)2))

< δ−2nd+1(δ−d − 1) + δ−(n−1)d+1(δ−d − 1)− δ−(n+1)d+1(δ−d − 1)2 + δd+1(δ−d − 1)

< δ−2nd+1(δ−d − 1) + δ−(n−1)d+1(δ−d − 1)(1 + δnd − δ−2d(δ−d − 1))

< δ−2nd+1(δ−d − 1) < tXl

since δ−d ≥ 2. Thus, QX falls strictly outside [tXl , t
X
r], proving Property 6 for the case when

LY ∈ G+
δ and LX ∈ Gδ \ G̃δ. The same applies in reverse for Property 7.

Properties 5-6 - Case 2

Take LY ∈ G+
δ and LX ∈ G+

δ \Gδ. This corresponds to an LX that contains at least one element
outside the region of compact support. This leads to columns of LX containing negative values.
Note first that for a column LX

:,j containing −δ−nd, ℓXj = ℓ̃Xj as the selective shift operation does

not alter it. From Yun et al, we have that ℓ̃Xj ≤ −δ−nd + δ−d+1 − 1 < 0, and that the last

58

layer shifts negative values by δ−(n+1)d mink ℓ̃
X
k . After this shift is applied and our additional

attention-based shift is applied,

uT gXc (LX , LY):,j ≤ (−δ−nd + δ−d+1 − 1)(1 + δ−(n+1)d) + δ(m+1)dℓ̃Ym

≤ (−δ−nd + δ−d+1 − 1)(1 + δ−(n+1)d) + δ(m+1)dδ−(m+1)d+1

≤ −δ−(2n+1)d + δ−(n+2)d+1 + δ < 0 < tXl

where we use that ℓ̃Ym ≤ δ−(m+1)d+1 and δ−1 ≥ 2. Thus, any negative column is mapped to a
value outside of [tXl , t

X
r]. Note that this holds for any LY , including an LY ∈ G+

δ \Gδ .

In the case where all columns are negative, the argument proceeds exactly as in Yun et al,
and all elements are straightforwardly less than zero as shown above. In the case where only
some columns are negative, the negative columns are mapped to negative values as before, and
the positive columns satisfy uT gXc (LX , LY):,i ≥ δ−(2n+2)d+1 before we apply our attention shift

layer. If maxk ℓ̃
Y
k > 0, then uT gXc (LX , LY):,i ≥ δ(− (2n+ 2)d+ 1 still holds. If not, all entries of

ℓ̃Yk must be negative, which means maxk ℓ̃
Y
k = −δ−md(δ−d − 1). We then have

uT gXc (LX , LY):,i ≥ δ−(2n+2)d+1 − δd(δ−d − 1) > tXr

and thus Property 5 is proved for all cases (and symmetrically for Property 6).

4.5.3 Proof of Lemma 7’

This proof very closely follows the proof shown in Yun et al, with a few small changes. The first
layer used to map all invalid entries to strictly negative numbers becomes

Z 7→ Z − (M − 1)1n+m(ϕX(uTZX) + ϕY (uTZY))

where M is the maximum value of the image of gc(G
+
δ , G

+
δ) and

ϕX(t) =

{
0 t ∈ [tXl , t

X
r]

1 t /∈ [tXl , t
X
r]

ϕY (t) =

{
0 t ∈ [tYl , t

Y
r]

1 t /∈ [tYl , t
Y
r]

This layer is applied to both X and Y , and ensures that if either X or Y contain invalid elements,
the entirety of both sets are mapped to negative values. The next d layers, which map all negative
entries to the zero matrix, remain unchanged and are applied again to both X and Y .

The remaining layers must now map gXc (LX , LY) to AX
L and gYc (LX , LY) to AY

L . In a similar
fashion to Yun et al, we add O

(
(n+m)(1/δ)d(n+m)/(n!m!)

)
feedforward layers, each of which

59

maps one value of uT gXc (LX , LY) or uT gYc (LX , LY) to the correct output while leaving the others
unaffected. For a given value of uT gXc (L̄X , L̄Y):,j these layers take the form:

ZX 7→ ZX +
(
(AX

L̄):,j − gXc (L̄X , L̄Y):,j
)
ϕX
(
uTZX − uT gXc (L̄X , L̄Y):,j1

T
n

)
ZY 7→ ZY +

(
(AY

L̄):,j − gYc (L̄X , L̄Y):,j
)
ϕY
(
uTZY − uT gYc (L̄X , L̄Y):,j1

T
m

)
wherein

ϕX(t) =

{
0 t < −δm+2/2 or t ≥ δm+2/2

1 − δm+2/2 ≤ t < δm+2/2
ϕY (t) =

{
0 t < −δn+2/2 or t ≥ δn+2/2

1 − δn+2/2 ≤ t < δn+2/2

If Z = gc(L
X , LY) where LX is not a permutation of L̄X and LY is not a permutation of L̄Y , then

ϕX
(
uTZ − uT gXc (L̄X , L̄Y):,j1

T
n

)
= 0 and Z is unchanged. If on the other hand LX is a permuta-

tion of L̄X and LY is a permutation of L̄Y , with L̄X
:,j = LX

:,i, then ϕX
(
uTZX − uT gXc (L̄X , L̄Y):,j1

T
n

)
=

(e(i))T and gXc (LX , LY) is mapped to (AX
L):,i. Thus, this layer maps gXc (LX , LY):,j to the correct

output for the specific inputs L̄X , L̄Y (or permutations thereof), and does not affect any other in-
puts. By stacking O

(
(n+m)(1/δ)d(n+m)/(n!m!)

)
of these layers together, we achieve the correct

output for any possible inputs LX , LY .

4.6 Experiments

In order to evaluate the model, I consider several tasks, including a number of simple image-based
set tasks as well as the aforementioned distance functions. Our model is compared against the
PINE model proposed in Gui et al. [2021], as well as a number of single-set models. For those
baselines, I take a single-set architecture such as Deep Sets (Single-Set RFF), Relation Networks
(Single-Set RN) or Set Transformers (Single-Set Transformer), compute pooled representations
for each of X and Y , then concatenate these representations and pass them into a feedforward
decoder. Finally, I also compare to a simple transformer baseline wherein a Set Transformer is
applied to the union X

⊔
Y (Union Transformer).

Several variants and ablations of the proposed model are also examined. The two variants
of our model include Multi-Set Transformer and Multi-Set RN (Relation Networks). In the lat-
ter, transformer blocks are replaced by relation network blocks for the four encoders, with max
pooling operations for both Λ and Γ. In addition to these variants, several ablations of the
proposed Multi-Set Transformer model are also considered. First, I consider a variant where
gx(Txx(X,X), Txy(X,Y)) = Txx(X,X) + Txy(X,Y) (referred to as Sum-Merge). Second, I con-
sider modifications to the four-block encoder structure itself by removing TXX and TY Y - leaving
only the cross terms TXY and TY X (referred as Cross-Only). Finally, the single set transformer
baseline (Single-Set Transformer) can itself be considered an ablation of the model with the cross-
set blocks removed instead of the same-set blocks. For all experiments, three trials are performed

60

d=2 d=4 d=8 d=16

Baselines

KNN 0.2047 0.5662 4.0584 28.0382
PINE 0.174 ± 0.0003 0.496 ± 0.001 2.080 ± 0.0004 10.534 ± 0.011
Single-Set RFF 0.122 ± 0.011 0.440 ± 0.016 1.777 ± 0.012 8.008 ± 0.164
Single-Set RN 0.156 ± 0.001 0.526 ± 0.002 2.143 ± 0.003 9.596 ± 1.621
Single-Set ST 0.073 ± 0.003 0.260 ± 0.004 1.689 ± 0.034 7.591 ± 0.213
Union Transformer 0.175 ± 0.0004 0.499 ± 0.001 2.267 ± 0.001 9.732 ± 0.046

Our Models

Multi-Set Transformer 0.073 ± 0.001 0.190 ± 0.008 0.921 ± 0.019 11.105 ± 0.072
Multi-Set RN 0.106 ± 0.002 0.393 ± 0.014 1.517 ± 0.043 7.400 ± 0.126
Cross-Only 0.079 ± 0.002 0.197 ± 0.001 0.993 ± 0.035 5.421 ± 0.169
Sum-Merge 0.070 ± 0.001 0.195 ± 0.005 0.932 ± 0.014 10.508 ± 0.066
Multi-Set-Transformer-Equi 0.073 ± 0.002 0.192 ± 0.002 0.800 ± 0.022 4.700 ± 0.297

Table 4.1: Mean absolute error of models trained on Gaussian mixture data for estimating KL
divergence.

and the average and standard deviation are reported. Hyperparameters and detailed experiment
settings are included in Section B.1 of the appendices.

4.6.1 Statistical Distances

One particular application of partially-permutation-invariant models that is worth highlighting
is their ability to learn to approximate statistical distances between distributions such as the KL
divergence or mutual information. Both mutual information and KL divergence are useful metrics
that are widely used in a variety of settings within machine learning, and both are very difficult
to estimate for any but the simplest distributions. Results are shown for the base multi-set
transformer model, as well as the dimension-equivariant model discussed in Section 4.3.5.

KL Divergence

Training the estimator to learn the KL divergence has unique challenges, as calculating the ground
truth requires the log likelihood for both the source and target distributions. In order to train the
model to learn the KL divergence between a general class of distributions, it is necessary to find a
class of models that are effective universal approximators and also admit a tractable log-likelihood.
The most obvious class of models fitting this criteria is that of Gaussian mixture models. Gaussian
mixtures are generated with a uniformly random number of components (between 1 and 10) and

61

mixture weights sampled from a uniform Dirichlet distribution. The means of each Gaussian are
generated from a uniform distribution, and the covariance matrices are generated by multiplying a
correlation matrix sampled from a Lewandowski-Kurowicka-Joe (LKJ) distribution (with ν = 5)
by a vector of covariances distributed according to a log-normal distribution (with µ0 = 0,
σ0 = 0.3).

Each training example consists of a random number of points X ∼ pX and a random number
of points Y ∼ pY (with NX , NY ∈ [100, 150]). The ground truth is estimated by a Monte Carlo
estimate of the true KL divergence using the closed-form log likelihoods, with the generated points
X as the samples. The generated data is normalized by computing the mean and covariance across
both X and Y , then applying a whitening transformation

[X ′;Y ′] = Σ
−1/2
XY ([X;Y]− µXY) (4.14)

under which the KL divergence is invariant.

The model is compared (with and without dimension-equivariance) against the aforemen-
tioned baselines, as well as the k-nearest-neighbours estimator of Wang et al. [2009]. Table 4.1
shows the mean average error of each model on Gaussian mixture data, averaged over 3 runs. Our
model has the lowest error on all dimensions considered. The dimension-equivariant model per-
formed approximately equal to the standard transformer model in low dimension, but performed
significantly better in high dimension.

Convergence was a significant issue with the GMM data in higher dimensions, since as the di-
mensionality increased the true KL divergence of the generated distributions would often explode.
This effect was especially notable when the concentration parameter of the LKJ distribution was
small, but always occurs once the dimensionality gets large enough.

Mutual Information

In addition to KL-divergence, I will also show the effectiveness of this method for estimating
mutual information. Following previous work [Belghazi et al., 2018, Kraskov et al., 2004], ex-
periments are performed using Gaussians with componentwise correlations ρ ∈ (−1, 1), with
standardized Gaussian marginals. Training examples are generated in a similar fashion as in the
KL case, with a ρ sampled uniformly from the interval (−1, 1), then a random number of samples
between 100 and 150 drawn from the resulting distribution for each of X and Y. We plot the
performance of the proposed model for varying values of ρ compared to both the Kraskov et al.
[2004] and MINE [Belghazi et al., 2018] baselines in 2, 10 and 20 dimensions (see Fig. 4.2). The
model performs somewhat worse than the other methods shown in the 2-dimensional case, but
is almost indistinguishable from the ground truth in the 10 and 20-dimensional cases. Note also
that while methods such as MINE must be trained on a particular dataset in order to predict its
mutual information, the proposed method need only be trained once, and can then be used for
inference on any similar dataset wthout retraining.

62

Figure 4.2: Plot of absolute error in predicted mutual information for correlated Gaussian data
with 2d, 10d and 20d marginals for the MST model and baselines.

63

Omniglot MNIST

Model Acc L1 Acc L1

Baselines

Pine 0.662 ± 0.013 0.824 ± 0.006 0.468 ± 0.004 1.244 ± 0.041
Single-Set RFF 0.631 ± 0.002 0.892 ± 0.042 0.442 ±0.012 1.363 ± 0.028
Single-Set RN 0.672 ± 0.006 0.811 ± 0.009 0.537 ± 0.098 1.097 ± 0.218
Single-Set Transformer 0.724 ± 0.003 0.733 ± 0.006 0.912 ± 0.034 0.466 ± 0.062
Union Transformer 0.630 ± 0.001 0.868 ± 0.009 0.534 ± 0.003 1.111 ± 0.006

Our Models

Multi-Set Transformer 0.854 ± 0.008 0.543 ± 0.012 0.975 ± 0.004 0.314 ± 0.012
Multi-Set RN 0.870 ± 0.005 0.517 ± 0.008 0.978 ± 0.010 0.318 ± 0.056
Cross-Only 0.819 ± 0.034 0.593 ± 0.052 0.972 ± 0.002 0.313 ± 0.011
Sum-Merge 0.854 ± 0.007 0.542 ± 0.008 0.978 ± 0.001 0.260 ± 0.015

Table 4.2: Average accuracy and L1 error of each model on the MNIST and Omniglot counting
tasks across 3 runs (higher is better for accuracy and lower for L1).

4.6.2 Image Tasks

As a demonstration of the model’s ability to perform simple general set-based operations, I begin
by looking at a selection of image-based tasks similar to those considered by Lee et al. [2019] and
Zaheer et al. [2017]. When working with image or text data, each example was first individually
encoded as a fixed-size vector using an appropriate image or text encoder, then passed through
the set based model.

Counting Unique Images

For the first task, the models were given input sets consisting of images of characters. The
task was to identify the number of unique characters that were shared between the two input
sets of a variable number of images drawn from the MNIST [Deng, 2012] and Omniglot [Lake
et al., 2015] datasets (6-10 images for Omniglot, 10-30 images for MNIST). For this task, the
model used simple CNN encoders that were pretrained on the input datasets as classifiers for a
short number of steps, then trained end to end with the set-based model. The multi-set models
convincingly outperformed the alternatives - achieving almost 98% accuracy on the MNIST task
and 83-85% accuracy on the Omniglot task (see Table 4.2), and outperforming the baselines by
considerable margins. The RN-based model outperformed the transformer model by a margin
of about 1.5% on the Omniglot task, and they performed equivalently on the MNIST task. The
ablations performed largely similarly to the base model, with degraded performance only in the

64

Model CoCo FastText

Baselines

PINE 0.498 ± 0.007 0.498 ± 0.002
Single-Set RFF 0.496 ± 0.000 0.497 ± 0.003
Single-Set RN 0.775 ± 0.037 0.786 ± 0.013
Single-Set Transformer 0.906 ± 0.004 0.770 ± 0.011
Union Transformer 0.929 ± 0.002 0.732 ± 0.016

Our Models

Multi-Set Transformer 0.927 ± 0.013 0.822 ± 0.002
Multi-Set RN 0.935 ± 0.019 0.763 ± 0.009
Cross-Only 0.919 ± 0.012 0.810 ± 0.007
Sum-Merge 0.930 ± 0.018 0.816 ± 0.009

Table 4.3: Average accuracy and standard deviation of each model across 3 runs on the alignment
tasks.

case of the Cross-Only model on the Omniglot dataset.

Alignment

While the first task was purely synthetic, this second task is representative of a general class of
applications for this model - predicting alignment between two sets. The first example of this I
chose was image captioning on the MSCOCO [Lin et al., 2014] dataset. The models were given a
set of 8-15 images and a set of captions of the same size, and tasked to predict the probability that
the two sets were aligned - i.e. that the given set of captions consisted of captions for the given set
of images. For this task, the pretrained models BERT and ResNet-101 were used as encoders for
the text and images respectively. The second example of tasks in this category were cross-lingual
embeddings. Lample et al. [2018a] show that there is a geometric relationship between learned
FastText [Bojanowski et al., 2016] embeddings across languages. As such, the model should be
able to predict the alignment between sets of embeddings in one language and sets of embeddings
in another. The model is shown a set of 10-30 embeddings in English and another set of the same
size of embeddings in French. The model is then tasked to predict whether or not the embeddings
in the two sets correspond to the same words.

Results on these tasks are shown in Table 4.3. The proposed multi-set models performed
the highest across both tasks. Interestingly, the Single-Set Transformer and Union Transformer
models performed quite well on the CoCo task (though not as well as our model), but were
significantly worse on the FastText task. No other baseline aside from the Single-Set RN model
performed notably better than chance. Given that the unaligned sets consisted of entirely disjoint

65

Model Synthetic Meta-Dataset

Baselines

PINE 0.501 ± 0.002 0.505 ± 0.003
Single-Set RFF 0.501 ± 0.002 0.783 ± 0.007
Single-Set RN 0.500 ± 0.001 0.798 ± 0.064
Single-Set Transformer 0.604 ± 0.018 0.881 ± 0.009
Union Transformer 0.591 ± 0.006 0.743 ± 0.016

Our Models

Multi-Set Transformer 0.729 ± 0.035 0.892 ± 0.014
Multi-Set RN 0.735 ± 0.009 0.868 ± 0.011
Cross-Only 0.635 ± 0.019 0.904 ± 0.009
Sum-Merge 0.629 ± 0.010 0.868 ± 0.007

Table 4.4: Average accuracy and standard deviation of each model across 3 runs on the distin-
guishability tasks.

images and captions (i.e., no images and captions overlapped), it’s possible that learning whether
the net sum of all embedded vectors in each set were aligned might be sufficient, and the model
might not need to directly compare individual elements across sets. This might explain the high
performance of the Single-Set Transformer and Union Transformer models - though interestingly,
this did not hold true for the FastText task (perhaps due to the fact that the FastText task
appeared to be more difficult).

Distinguishability

The last task in this category was distinguishability. Given two sets of samples, the models would
be asked to predict whether the two input sets were drawn from the same underlying distribution.
Two examples were again considered for this task: a synthetic dataset, and a dataset of real-
world images. For the synthetic data, sets were sampled from randomly generated 8-dimensional
Gaussian mixtures (Gaussian mixture parameters were generated in the same fashion as the data
in Section 4.6.1). For the second example, I used Meta-Dataset [Triantafillou et al., 2019]1 - a
dataset consisting of 12 other image datasets, each with many subclasses. In each case, each
training example consisted of a batch of two sets of 10-30 data points. The data points would be
drawn from the same distribution (the same Gaussian mixture for the synthetic data, or the same
class from the same parent dataset for Meta-Dataset) with probability 1/2, and generated from
different distributions with probability 1/2. The model was tasked to predict the probability of

1Pytorch implementation taken from Boudiaf et al. [2021]

66

the sets being drawn from the same distribution. For the meta-dataset task, images were first
encoded using a CNN trained along with the network.

Results are shown in Table 4.4. The Multi-Set Transformer and Relation Network models
performed by far the best on the synthetic task. On the image task, the Single-Set Transformer
again performed very well, though not as well as the multi-set transformer model. I hypothesize
this might be because the distinguishability task relies on recognizing the distribution from which
the set is drawn, which is a task that might be possible to do by simply reducing each input set
to a single vector and then comparing the resulting vectors.

4.6.3 Analysis

Overall, two different variants of the model were considered (RN-based and transformer-based),
as well as several ablations of the transformer model. The base multi-set transformer model
performed consistently well across every task, with either the highest accuracy or close to the
highest accuracy. The relation-network variant of the model performed slightly better on a
number of tasks, but significantly worse on many others. This variant of the model also had
significant issues with memory usage, and often required very small batch sizes in order to fit on
GPUs. Each of the single-set transformer, cross-only, and sum-merge models can be considered
ablations of the multi-set transformer architecture. The cross-only model performed competitively
or slightly better on some tasks, but similar to the RN model, it performed worse by notable
margins on others. It’s possible that the TXX and TY Y blocks - which computed the internal
relationships between elements in X and Y - were simply not needed for certain tasks, but very
helpful for others. The sum-merge model generally performed comparably to the base model, and
degraded performance by notable margins only in the case of the distinguishability tasks. This
is not entirely unexpected, given that it is the most minor of the ablations, and represents only
a small change to the structure of the model.

4.6.4 Scaling

One important consideration when using set-based architectures is how the architectures will scale
to large set sizes. Given input sets of size n and m and with model dimension d (assuming that
dhidden is of approximately the same order as dlatent), Table 4.5 shows the scaling properties of
each model with the set sizes and latent dimension. The PINE and Single-Set RFF architectures
are the fastest, scaling linearly with set size. All other models contain terms that are quadratic
with set size, as they need to compare each element in one set to each element in another set (or
the same set). Of these models, the transformer-based models (i.e. Single-Set Transformer, Union
Transformer, Multi-Set Transformer, Cross-Only and Sum-Merge) all require approximately (n+
m)d2+(n+m)2d operations (though some need only nmd or (n2+m2)d due to omitting same-set

67

Model Ops. Scaling

PINE O
(
(n+m)d2

)
Single-Set RFF O

(
(n+m)d2

)
Single-Set RN O

(
(n2 +m2)d2

)
Single-Set Transformer O

(
(n+m)d2 + (n2 +m2)d

)
Union Transformer O

(
(n+m)d2 + (n+m)2d

)
Multi-Set Transformer O

(
(n+m)d2 + (n+m)2d

)
Multi-Set RN O

(
(n+m)2d2

)
Cross-Only O

(
(n+m)d2 + nmd

)
Sum-Merge O

(
(n+m)d2 + (n+m)2d

)
Table 4.5: Scaling of the number of operations required for each model with set sizes n,m and
dimension d.

terms or cross-set terms, the effect is still a net quadratic scaling with set size). The relation
network models have the worst scaling properties, as they scale quadratically with the product
of both set size and latent dimension. These scaling properties will remain the same if these
architectures were generalized to K > 2 sets, with n+m simply replaced by the total size of the
union of all input sets.

While the PINE and Single-Set RFF architectures have the best scaling properties, they also
demonstrate by far the worst performance, achieving results no better than chance on many of
the image tasks. All of the transformer models share approximately the same scaling properties,
scaling quadratically with the set sizes n and m. This is a well-known property of transformer-
based models, and a site of active research. Many previous works have proposed ways to reduce
this quadratic dependency, and find approximations that allow these models to require only
linear time (Wang et al. [2020], Choromanski et al. [2021],Kitaev et al. [2019], etc...). All of
our proposed transformer models are compatible with any of these approaches, though we leave
such explorations for future work. The Relation Network models are the most troublesome, as
they scale quadratically with the product of both the model dimension and the set size. While
these models do perform very well on some of the tasks discussed, they perform poorly on others,
and overall the Multi-Set Transformer models exhibit both better scaling properties and more
consistent performance across tasks.

4.7 Discussion and Conclusion

The Multi-Set Transformer model proposed in this chapter performs well at estimating a variety
of distance/divergence measures between sets of samples, even for quantities that are notoriously
difficult to estimate. It clearly outperforms existing multi-set and single-set architectures, and

68

beats existing KNN-based estimators in the settings under consideration. In an ideal case, the
model could be pretrained once and then applied as an estimator for, e.g., KL divergence in a
diverse array of settings. This is a primary area of focus going forward.

Since this model is a universal approximator for partially permutation equivariant functions,
its applications are far broader than simply that of training estimators for divergences between
distributions. I chose to showcase a number of simple applications with image data, but these are
merely meant to be representative of larger classes of applications. The applications in terms of
distinguishability, for example, are highly reminiscent of GANs [Goodfellow et al., 2014], and the
FastText task from the alignment section bears some similarities to existing work in which GANs
are used [Lample et al., 2018a], where this model might lead to improvements. These connections
will be explored further in the following chapter.

69

Chapter 5

SetGAN

5.1 Introduction

The previous chapter introduced a flexible, general-purpose architecture for computing functions
on multiple sets, and showcased a number of possible applications on which it could be highly
effective. This chapter will highlight just how powerful some of these applications can be, by
using this architecture as the foundation for a novel type of generative model: a conditional,
set-based generative adversarial network for few-shot image generation.

Consider the ‘distinguishability’ task discussed in Section 4.6.2, where the model is trained to
take two sets as input and determine whether they are drawn from the same distribution. This
task is highly reminiscent of the role that a discriminator plays within a generative adversarial
network (see Section 2.1.3 for a review of generative adversarial networks). In a regular discrimi-
nator, the model accepts only a single image as input at a time - the second distribution is stored
implicitly in the discriminator’s parameters over the course of training. This new formulation
can instead explicitly compare a set of images to another set. This suggests a radically different
approach to GAN training: rather than learning to encode a single data distribution and gen-
erate single samples unconditionally, consider training a GAN which can accept a set of images
as input, and generate a set of output images which are samples from the same distribution.
This formulation can act as a form of few-shot or zero-shot learning, similar to the text-to-image
paradigm used by celebrated models such as DALL-E 3[Betker et al., 2023] or Stable Diffusion
[Rombach et al., 2022].

The architecture proposed in this chapter is a novel few-shot image generation model that is
trained to generate images conditioned on sets of reference images of unseen classes. This model,
titled “SetGAN”, learns to extract relevant features from the unseen reference sets, then generate
high-quality, diverse images similar to the reference images at inference time. Once pretrained on

70

a given image dataset, SetGAN can then generate any number of images for a variety of unseen
reference classes, all without any further training or finetuning.

Conceptually, SetGAN uses a similar framework to models such as DAGAN [Antoniou et al.,
2017], following a conditional GAN-based approach where the generator generates images condi-
tioned on a given input image, and the discriminator learns to distinguish between the generated
images and other true images from the same class. The difference lies in the set-based nature
of the proposed approach - SetGAN can condition its generations on multiple reference images
rather than just a single image. This allows the model to better understand the variations within
the reference class and produce diverse sets of output images conditioned on that class. The
discriminator is also able to compare the generated sets of images to the reference set, and judge
the generated sets based not only on the individual images’ similarity to the reference class, but
also on the diversity and factors of variation within each set - leading to generations that more
closely match the variations within the true reference class.

Existing works such as AGE [Ding et al., 2022] or DeltaGAN [Hong et al., 2020a] also fre-
quently rely on learning factors of variation within a typical reference class at training time, then
applying those variations to a single image at inference time. This makes the assumption that
the factors of variation within a given class at training time will be the same as for the unseen
test classes - an assumption that does not always hold. Works that follow this methodology also
have a tendency to produce generations that are highly similar to the reference image, limiting
their diversity. SetGAN does not suffer from these limitations, and can generate truly novel and
diverse outputs that are similar to the reference class as a whole without simply reproducing
elements of a single input image. SetGAN can also perform inference conditioned on inputs that
are grouped across different classes from the dataset (see Section 5.5 and Figure 5.1). This more
general form of inference is very challenging for many existing models, due to their strong as-
sumptions of similarity between the organization of test classes and training classes, and their
inability to condition on more than one image at a time.

5.2 Related Work

5.2.1 Few-shot GANs

As discussed in Section 2.1.5, revious works on few-shot image generation using GANs generally
fall into three categories: optimization-based methods, fusion-based methods, and transformation-
based methods. Optimization-based methods [Clouâtre and Demers, 2019, Liang et al., 2020] use
meta-learning techniques [Finn et al., 2017] to fine-tune their generative models on small amounts
of data, but do not produce results competitive with other approaches. Fusion-based methods
[Hong et al., 2020c, Gu et al., 2021, Yang et al., 2022b] condition on several input images by
starting with a single base image and incorporating local features from other reference images.

71

Figure 5.1: Examples of generations using images across many different test classes that share
similarities according to other features - e.g. women with heavy eye makeup, animals with long
upward-pointing ears, or clusters of pink and purple flowers. SetGAN generates diverse output
images that faithfully reproduce these features, whereas other baselines either copy the reference
images or generate images which are not faithful to the shared features.

These methods are highly dependent on the images they condition on and sometimes struggle to
generalize beyond the features in the input images. Transformation-based methods [Ding et al.,
2022, Hong et al., 2020a, Antoniou et al., 2017] learn transformations during training that mimic
the typical factors of variation within each training class, then apply these learned transforma-
tions to a single test image. These methods can be highly successful at one-shot image generation,
but make strong assumptions about the similarity in factors of variation between classes that may
not generalize to more diverse datasets. Using only a single image to condition on can also limit
diversity, as each generation may be only a slight transformation of the given input image.

5.2.2 Diffusion models

Many diffusion-based approaches such as DALL-E 3 [Betker et al., 2023] and Stable Diffusion
[Rombach et al., 2022] have achieved incredible success at text-to-image generation, generating
diverse high-resolution images from a wide variety of text-based prompts. While some limited
equivalents exist for image-to-image generation such as inpainting Rombach et al. [2022] or image
translation Saharia et al. [2022], Sasaki et al. [2021], no such large-equivalents exist for large-scale
true few-shot generation of images conditioned on sets of unseen images. Giannone et al. [2022] do
propose a framework for few-shot generation with diffusion models, however their model is tested

72

Figure 5.2: Generations from AGE, FSDM, WaveGAN and SetGAN conditioned on 3 reference
images from unseen classes of each of the Animal Faces, Flowers and VGGFace datasets.

only on very low-resolution datasets. Their model is also extremely slow to perform inference
even at lower resolution scales, and this problem is compounded at higher resolutions.

5.2.3 Image translation

A closely related task to few-shot image generation is image-to-image translation. In this task,
the goal is to translate images from one domain to a new domain, often in a few-shot setting.
This frequently takes the form of adapting models pretrained on the source domain to the target
domain via a minimal number of examples [Li et al., 2020, Ojha et al., 2021]. While this approach
to few-shot image translation is a distinct task from few-shot image generation, some approaches
such as FUNIT [Liu et al., 2019a] have combined these approaches by seeking to translate images
between different classes of the same dataset.

73

5.2.4 Set-based approaches in GANs

Ferrero et al. [2022] proposed an approach where the discriminator is allowed to make decisions
based on a set of samples from either training data or the generator in order to increase stability
and prevent mode collapse. While this work does also examine the idea of leveraging equivariances
for generation, it focuses on improving the stability of unconditional generation rather than
performing conditional set-based generation.

5.3 Methods

Formally, the setting under consideration is similar to that laid out in Section 2.1.5, where there
is a dataset D divided into a number of classes {Ci}, which are each composed of some nCi images.
These classes are partitioned into a disjoint training set Dtrain and test set Dtest. During training,
a class C ∼ Dtrain is sampled, and from this class are drawn two (disjoint) sets of images: a
reference set R ∈ Cn, and a candidate set C ∈ Cm.

As in the case of a traditional GAN (see Section 2.1.3), the algorithm consists of a discrim-
inator and generator model, trained jointly via an adversarial minimax game. The generator is
a mapping G : Rm×d × Gn → Gm that accepts as input a set of n reference images as well as
m latent vectors, and produces a set of m output images. The discriminator is then a model
D : Gn × Gm → [0, 1] which accepts two sets of images, and predicts the probability that the
two sets are drawn from the same underlying distribution. The two models are trained via the
following minimax game:

min
G

max
D

EC∼DtrainER∼Cn,C∼Cm [logD(R,C)] + log (1−D(R,G(R))) (5.1)

5.3.1 Architecture

Generator

The generator model follows an encoder-decoder structure similar to that of a U-Net [Ronneberger
et al., 2015]. StyleGAN2’s generator is taken to be the base decoder architecture (discussed in
Section 2.1.3), which maps a series of k = 181 512-dimensional style vectors to a single output
image, with each style vector controlling the convolutions at a particular stage of the decoding.
It has become common to refer to the extended latent space formed by the concatenation of these
k vectors as W+. Similar to Ding et al. [2022], the pixel2style2pixel (pSp) encoder proposed by

1Note that the default 18 style vectors correspond to a generation size of 1024x1024 px. All experiments use a
generation size of 256x256, and thus in practice use a truncated W+ space of 14 vectors.

74

Figure 5.3: Diagram of the SetGAN generator. The pSp encoder maps each input image to
the latent space W+. The input style vectors are then passed through the StyleGAN2 mapping
network, then passed to a series of conditioning networks which compute conditional styles for
each layer of the decoder by attending to the appropriate output layer of the pSp encodings.
These conditional styles then become the inputs to the StyleGAN2 generator, which decodes
them into images.

75

Richardson et al. [2021] (see Section 2.1.3) is taken to be the encoder model, which maps a single
input image into the space W+ (although this could also be done with other similar encoders
such as E4E [Tov et al., 2021] or ReStyle [Alaluf et al., 2021]). This encoder-decoder model is
then augmented with a series of attention-based conditioning networks, consisting of a stack of 2
transformer decoder blocks for each of the k style vectors, each surrounded by a skip connection.
A diagram of this generator architecture is shown in Figure 5.3.

Given a set of n reference images, each image Ri is encoded into a latent code: Ci = pSp(Ri) =
{c0i , ..., cki }, with the notation cℓi for style ℓ of the encoding of image i, and Cℓ = {cℓi}. To generate
a set of m candidate images, these latent codes are then combined with a series of m sampled noise
vectors Z = z1,...,m ∼ N(0, 1). These noise vectors are passed through the decoder’s mapping
network to generate the base style vectors W = {f(zj)}, in the same fashion as StyleGAN. Now,
the model takes the base style vectors W and transforms them by attending to the features of
the reference encodings C. At each layer ℓ, the model computes the corresponding conditional
style vector :

ωℓ = gℓ(W,T ℓ(W,Cℓ)) (5.2)

where T ℓ is the transformer block associated with the ℓ-th style vector, and gℓ is a linear layer
applied to the concatenation of the base style vector with the output of the attention blocks.
These k conditional style vectors then form the conditional encoding ω ∈ W+, which becomes
the input to the StyleGAN2 decoder.

In order to stabilize the early training, the layers gℓ were initialized as gℓ = [I; Σ], where I is
the identity mapping and Σ is a matrix of gaussian noise with σ = 0.2. This ensures that near
the beginning of training the decoder will be given approximately the base style vector, with the
effect of the conditioning layers being incorporated gradually as the network learns.

Discriminator

The discriminator now takes the form D : Rn×d × Rm×d → R, mapping an input reference set
R and candidate set C to a single scalar output. To do this, the architecture must accept as
input multiple permutation-invariant sets - an ideal use case for the multi-set transformer model
proposed in Chapter 4. The input images are first passed through a convolutional encoder to
encode each image within the two input sets as fixed-sized vectors, then passed through the
multi-set transformer network. Finally, the two pooled output vectors are concatenated and fed
to a linear output head. Skip connections are used to connect the outputs of the convolutional
encoder to the latent vectors just before the pooling layer of the multi-set transformer. The
convolutional architecture of the StyleGAN2 discriminator is used as the base architecture for
the discriminator encoder. A diagram of this architecture is shown in Figure 5.4.

76

MSAB MSAB...

Reference
Images

Generated
Images

Pool

Pool

Concat Decoder

Multi-Set Transformer
Encoder

Conv
Encoder

Figure 5.4: Diagram of the SetGAN discriminator. Sets of input images are encoded as fixed-
size vectors using a convolutional network. These sets of vectors are then passed through a
Multi-Set Transformer (see Chapter 4) consisting of several multi-set attention blocks, followed
by a pooling operation performed on each set. These outputs are then concatenated and passed
through a feedforward decoder layer to produce a scalar output.

5.3.2 Latent space truncation

SetGAN uses latent space truncation for inference, in a similar manner to StyleGAN2. In order
to improve the quality of the generated results, style vectors are shifted towards the mapping
network’s mean style vector w̄ by a given factor λ. Unlike StyleGAN2, however, this truncation
may be applied to SetGAN in two ways: either pre-conditioning or post-conditioning.

Given a base style vector w, pre-conditioning truncation is applied in the same manner as it
is for StyleGAN: the latent vector is transformed by the procedure:

w → w̄ + λ1(w − w̄) (5.3)

This ensures that the base style vector used to generate the output images remains in the well-
explored region near the mean, and leads to generations of higher quality but slightly lower
diversity.

In addition to this, however, truncation may also be applied post-conditioning, to shift the
final conditional styles w′ towards the mean style vector as follows:

w′
j → w̄ + λ2(w

′
j − w̄) (5.4)

This has a large effect on output quality, but at a much greater cost to output diversity.

77

Figure 5.5: Additional generations from SetGAN using reference sets of 5 images.

Both λ1 and λ2 truncation provided significant benefits on the Flowers dataset, improving
sample quality and MiFID score by considerable amounts. λ1 truncation improved sample quality
and MiFID score for the Animal Faces dataset, but this was not used due to the tradeoff in sample
diversity. Truncation provided little benefit on the VGGFace dataset.

5.4 Experiments

5.4.1 Setup

First, a StyleGAN2 model [Karras et al., 2020] is pretrained on the given dataset at 256x256
resolution. Then, a corresponding pSp [Richardson et al., 2021] network is trained to perform
GAN inversion on the pretrained StyleGAN2 model to act as the encoder (see Section 2.1.3).
These pretrained models are used to instantiate the encoder and decoder for our generator, and
are then frozen. The discriminator from the StyleGAN2 model is also used to initialize the
encoder for our multi-set discriminator model. These models are then trained following Eq.
5.1 until convergence. The model uses the base training scheme of StyleGAN2 [Karras et al.,

78

2020] to train SetGAN, using a non-saturating loss with R1 gradient penalty (λ = 10) and path
length regularization. Reference and candidate sizes are sampled uniformly from size 7-10 and
4-6 respectively, so that the model does not learn to assume a specific input size. Models are
trained on NVIDIA A40 GPUs with the ADAM optimizer, with a batch size of 2 and learning
rate 1e-3.

For inference, latent space truncation is used - as discussed in Section 5.3.2. Results in this
work were obtained with λ1 = λ2 = 0.8 for the Flowers dataset and λ1 = λ2 = 1 for the other
two datasets.

5.4.2 Datasets

In keeping with prior works [Hong et al., 2020a, Ding et al., 2022, Yang et al., 2022b, Gu et al.,
2021], results are reported on the Animal Faces [Liu et al., 2019a], Flowers [Nilsback and Zis-
serman, 2008] and VGGFace [Cao et al., 2018] datasets. The same train and evaluation splits
proposed in Hong et al. [2020a] are used on Animal Faces and Flowers. For VGGFace, the eval-
uation set is restricted to the final 53 classes due to the computational requirements of inference
for the FSDM baseline.

5.4.3 Baselines

Previous papers often compare directly against the results reported in other prior works. Un-
fortunately, I found that many existing few-shot image generation models contain significant
inconsistencies in the methodologies used for evaluation. For example, the LPIPS metric can be
evaluated using either AlexNet or VGG activations, which cannot be compared directly against
each other. I found that previous works such as F2GAN and DeltaGAN used AlexNet activa-
tions to measure LPIPS score, while WaveGAN and LoFGAN used VGG activations. These
previous works also generated results at a variety of different resolutions - and some were then
rescaled before applying the metric, while others were not. AGE generated outputs at 256x256,
while other works performed their generations at 128x128. WaveGAN, LoFGAN and AGE also
rescaled images to 32x32 before computing LPIPS distances, while other works did not.

Different works also used different code for compiling generated images and rescaling them
to the target size of the pretrained models used to obtain vector embeddings. As discussed in
Parmar et al. [2022], the details of these steps can have a substantial impact on the final results,
and inconsistent methodologies between papers can lead to significant discrepancies. In addition
to these inconsistencies in methodology, I found that in many cases I was unable to reproduce the
reported scores of existing works - despite using code and checkpoints provided by the authors,
and consulting with the authors directly.

79

MIFIDInc MIFIDCLIP LPIPS

1 3 10 1 3 10 1 3 10

Animal Faces

AGE 71.35 62.23 56.55 14.09 12.77 11.74 0.403 0.560 0.550
WaveGAN 2327.29 1057.39 529.08 603.44 242.81 136.09 0.000 0.421 0.556
FSDM 75.68 73.93 77.37 8.78 8.59 10.38 0.604 0.608 0.609
SetGAN 61.51 52.34 47.18 6.56 5.84 5.28 0.614 0.615 0.618

Flowers

AGE 81.87 70.15 65.48 16.82 15.03 14.31 0.379 0.553 0.608
WaveGAN 2653.56 1305.31 699.96 851.14 373.62 182.11 0.000 0.484 0.635
FSDM 69.25 62.35 61.47 10.69 10.26 10.18 0.681 0.699 0.704
SetGAN 62.44 59.84 59.31 10.68 9.79 9.88 0.617 0.624 0.628

VGGFace

AGE 22.12 18.39 16.76 8.20 6.51 5.94 0.260 0.369 0.406
WaveGAN 852.70 36.97 23.12 17.50 9.40 6.65 0.000 0.325 0.430
FSDM 10.51 11.26 12.48 3.28 3.47 3.76 0.451 0.448 0.447
SetGAN 9.60 7.93 7.83 4.16 3.12 2.82 0.463 0.461 0.471

Table 5.1: Scores for conditional generation on the Animal Faces, Flowers and VGGFace datasets
for each of the four baselines, conditioned on reference sets of size 1, 3 and 10. Results were
averaged over three different random partitions of the test set into Deval and Dref. Lower scores
are better for MIFID, higher is better for LPIPS. The best score in each category is bolded.
Scores that exceed all others by at least one standard deviation are italicized.

Due to these significant inconsistencies in existing results and methodologies, I chose a se-
lection of the highest performing models from the literature as baselines and computed metrics
for each model myself by running the provided models under identical settings to ensure a fair
comparison. Code and checkpoints provided by the authors were used wherever possible. The
AGE [Ding et al., 2022] and WaveGAN [Yang et al., 2022b] models were selected as representative
of the highest-performing GAN-based approaches in the literature, as well as the diffusion-based
approach FSDM [Giannone et al., 2022].

5.4.4 Evaluation procedure and metrics

For each dataset, the test dataset is divided by class, then each class is partitioned into a reference
set Dc

ref of size nref and evaluation set Dc
eval of size neval. For each such class, the model is used to

generate ngen new images, conditioned on images from Dc
ref, to form Dc

gen. For some metrics (such
as FID or MIFID), these images are then aggregated into a single Deval and Dgen. These image

80

sets are then used to evaluate the generations using a variety of metrics. For the experiments in
this work, neval = ngen = 128, and nref varied by experiment (see Section 5.5 for further details).
If the number of images in a given evaluation set was lower than 128, all images were used. Each
of these evaluations was performed three times with different randomly chosen partitions for
each class. The most common metrics used to evaluate models for this purpose are the Frechet
Inception Distance [Heusel et al., 2018], or FID, and Learned Perceptual Image Patch Similarity
[Zhang et al., 2018], or LPIPS. These metrics are defined in detail in Section 2.1.5.

Limitations of existing metrics

While the aforementioned FID and LPIPS scores are the most widely-used metrics among existing
literature, these metrics have significant flaws - particularly FID. Existing works such as Rangwani
et al. [2023] and Kynkäänniemi et al. [2023] have already identified flaws in the FID metric related
to its bias towards particular features specific to the ImageNet classes it was trained on, leading
to arbitrary manipulation of scores via imperceptible changes in generated images. Rangwani
et al. [2023] also demonstrate that traditional FID scores sometimes strongly emphasize fidelity
over diversity in few-shot generation, and propose FIDCLIP in order to address this issue - a
modification to the FID method using the large multi-modal CLIP model [Radford et al., 2021]
in place of the Inception backbone.

While FIDCLIP is an improvement over traditional Inception-based FID scores in some re-
spects, it does not wholly solve the problems with the FID metric. In the experiments, I found
that models that generate identical or nearly identical copies of the reference images consistently
achieved extremely low FID scores. To test this, I measured the FID scores between the evaluation
sets and generated sets constructed solely by copying N random images sampled with replacement
from the reference set (denoted as the “Copy” baseline). I also tried the same experiment if the
copied images were subjected to a small, imperceptible level of Gaussian noise (denoted as the
“Noisy” baseline). I then compared these scores to the best scores among all trained models2, as
well as a theoretical maximum score given by comparing two randomly selected partitions of the
test set. As shown in Table 5.2, this baseline of simply copying the reference images achieves FID
scores close to the theoretical maximum, and matches or exceeds the score of the best trained
baseline in almost every case. As a result, it is clear that traditional FID scores are not a reliable
metric for measuring the performance of few-shot generation.

2WaveGAN was excluded from this, given WaveGAN’s propensity to also generate nearly-identical copies of the
reference images.

81

FIDInc FIDCLIP MiFIDInc MiFIDCLIP FLSInc FLSCLIP

Animal Faces

Best Model 46.20 5.02 46.20 5.02 125.93 133.38
Noisy 24.05 6.94 109.66 14.44 126.72 143.02
Copy 20.44 1.59 17714.97 1335.72 229.81 168.31
True 13.55 1.05 13.56 1.05 114.93 127.70

Flowers

Best Model 57.12 9.29 57.75 9.29 142.59 144.41
Noisy 37.06 4.21 394.61 22.37 144.18 143.83
Copy 36.98 2.56 23408.14 1737.27 164.80 169.98
True 30.18 1.69 30.18 1.69 139.21 132.39

VGGFace

Best Model 8.87 2.95 8.87 2.95 134.90 129.20
Noisy 47.96 12.20 56.51 12.64 148.23 145.64
Copy 9.54 0.77 4849.92 438.17 170.63 176.04
True 7.15 0.58 7.15 0.58 134.58 119.17

Table 5.2: Scores for synthetic baselines using a variety of performance metrics. Methods that
simply copy the reference set (”Noisy” and “Copy”) are disproportionately favored by many
scoring methods, outperforming most trained models and even approaching the score for the true
test set. MIFID scores are discussed in Section 5.4.4.

Alternative metrics

These issues have also been identified in many other previous works, in the context of training set
memorization. Works such as Gulrajani et al. [2020], Bai et al. [2021] and Jiralerspong et al. [2023]
have discussed the tendency for traditional GAN evaluation metrics such as FID to overvalue
fidelity and fail to penalize training set memorization. The same tools proposed in these papers
to measure generalizability beyond the training set can also be equivalently applied here for the
reference set. Of the methods discussed in these works, several have obvious difficulties or are not
applicable in this case. Conditional FID [Soloveitchik et al., 2022] requires an FID calculation to
be computed over the reference set, which does not work for cases with small reference sizes due to
the instability of the FID calculation with small numbers of samples. Neural network divergences
[Gulrajani et al., 2020] are architecture-specific, and must be trained repeatedly for each inference
setting. This makes them different to compare across different models and publications, as well as
costly to evaluate. I thus focus on two metrics: MiFID [Bai et al., 2021] and Feature Likelihood
Score [Jiralerspong et al., 2023].

82

Feature Likelihood Score [Jiralerspong et al., 2023] uses a method similar to Kernel Density
Estimation to fit a Gaussian Mixture density to the generated samples. The covariances of the
mixture components are chosen to maximize the likelihood of the points from the reference set,
ensuring that the density will be highly concentrated if the samples are simply copied from the
reference data. The score is then calculated by evaluating the likelihood of the test data under
the generated density. This scoring method is an interesting candidate, but fails to sufficiently
penalize copying - particularly in cases where imperceptible perturbations are applied to the
copied image. As shown in Table 5.2, the FLS scores for the “noisy” synthetic baseline nearly
match those of the best trained models across multiple datasets.

MIFID

MiFID uses the standard Frechet Inception Distance, scaled by a multiplicative penalty calculated
from the similarities between the generations and the reference images:

MiFID(Sg, St) = mτ (Sg, St) · FID(Sg, St) (5.5)

wherein Sg is the generated set, St is the training set (or reference set, in the case of condi-
tional generation), FID is the standard Frechet Inception Distance, and mτ is the penalty factor.
Specifically, mτ is defined by:

s(Sg, St) =
1

|Sg|
∑

xg∈Sg

min
xt∈St

1− |⟨xg, xt⟩|
|xg| · |xt|

(5.6)

mτ =

{
1

s(Sg ,St)+ϵ s(Sg, St) < τ

1 else
(5.7)

This metric penalizes models that simply reproduce reference images by adding a multiplica-
tive penalty based on the average cosine similarity between the generated images and the nearest
reference image. As shown in Table 5.2, this metric successfully penalizes models that simply
copy the inputs, while keeping the original FID scores otherwise intact.

I adopt this metric as a drop-in replacement for FID, with the threshold τ determined by the
average scale of the test set Stest. For each dataset, the test set is divided into two partitions of
equal size, S1 and S2, then calculate the base score value τ0 = s(S1, S2) using Equation 5.6. To
ensure that models which produce results on a similar scale of variation to the test set are not
unfairly penalized, models are only penalized if their scores are at least one standard deviation
lower than the mean similarity scale (i.e. τ = τ0 − σ, where σ is the standard deviation of the
summand in Eq. 5.6).

83

5.5 Results

5.5.1 Quantitative Results

Results for all baselines are shown in Table 5.1. Results are shown for reference sizes of 1, 3
and 10, across each of the 3 datasets. As shown in the table, SetGAN outperforms all existing
baselines across nearly all datasets and reference sizes - in some cases by significant margins.
In addition to SetGAN’s results being of high fidelity and quality, they are also highly diverse.
SetGAN achieves high LPIPS scores across all datasets, outperforming or matching all other
approaches in almost all settings. The only exception to this is the Flowers dataset, where the
FSDM model achieves higher diversity scores. This is likely due to its poor fidelity with the
reference class, as discussed in Section 5.5.2.

Notably, WaveGAN performs markedly worse than the other models under the MiFID score
- largely due to it being heavily penalized for its tendency to produce nearly-indistinguishable
copies of the reference images (see Section 5.5.2). While other models such as AGE often produce
images very similar to the reference images, they were not copies, and as such did not fall under
the threshold to be penalized.

While Inception-based scores and CLIP-based scores generally ranked models similarly, there
were some cases where they demonstrated interesting differences - particularly on the VGGFace
dataset. One possible explanation for this might be that the Inception network trained on
ImageNet-1k data in which images of human faces were infrequent - unlike CLIP, which used
many diverse image datasets from across the internet.

5.5.2 Qualitative Results

Test images with similar factors of variation to the training classes

Figure 5.2 shows images generated by the four models conditioned on reference images from the
test classes of each of the three datasets considered. For these experiments, all reference images
were drawn from the same unseen test class - measuring the models’ effectiveness at generalization
along similar factors of variation to the training classes. As shown in the figure, SetGAN generates
diverse, high quality images, and avoids many of the struggles that other models demonstrate.
Models such as AGE and WaveGAN often simply copy one of the input images, or generate
small, subtle variations on it. This causes their generations to be limited in diversity, particularly
when conditioned on only a small number of images. WaveGAN in particular very frequently
copies the reference image almost exactly, differing from it only in imperceptible high-frequency
perturbations. FSDM does succeed at generating diverse images, but often struggles to closely
match the input class. This is particularly notable in the results from the flowers dataset, where
its generations were often starkly different from the reference class.

84

Test images with different factors of variation from the training classes

In addition to evaluating the models’ generations given images from the same unseen class, we
can also examine how the models perform given images from different classes. As in the training
data, each test class corresponded to images of a single type or breed of animal (for the Animal
Faces dataset), a single type of flower (for the Flowers dataset), or a single individual (for the
VGGFace dataset). I selected three groups of images wherein each image was taken from a
different class, but all images shared common traits. In the first example, the images consisted
of animals of many different types or breeds, with the shared trait being long upward-pointing
ears. The second example contained flowers of a variety of types, in which all images contained
clusters of multiple pink or purple flowers. The third contained images of many different women
who were all wearing bold, dark eyeshadow. The resulting generations are shown in Figure 5.1.

In all cases, SetGAN accurately reproduced the target features while generating a diverse
range of output images. Other baselines which conditioned on a single image (i.e. AGE and
WaveGAN) each struggled with this - again generating output images either identical to the
inputs or very similar with subtle variations. These subtle variations would sometimes lead to
deviations from the target features, as the models did not have multiple images to compare to
in order to identify which features were shared. For example, the generations from AGE led to
some images with short ears, single flowers, or less distinctive makeup. The FSDM baseline was
also capable of incorporating features from multiple images, but the results were often of lower
quality and were less faithful to the target features than those of SetGAN.

5.5.3 Inference Time

To measure the computational efficiency of each model, the time required for each model to
generate a single batch of inputs was recorded, with 3 generated images per set and a batch size
of 20. As shown in Table 5.3, all GAN-based models (including SetGAN) are relatively fast to
perform inference, with WaveGAN being the fastest. FSDM, as a diffusion-based approach, is
extremely slow to perform inference - even at only 128 x 128 resolution.

Model Time

AGE 00:09.79
FSDM 15:42.49
WaveGAN 00:00.42
SetGAN 00:04.64

Table 5.3: Time to perform a single batch of generations, with batch size 20 and 3 generated
images per input set.

85

(a) The full generation process for a given style w and set
of reference images R using SetGAN.

(b) The “template image” generated
by the same w with no conditioning
layers.

Figure 5.6: Diagrams of an example generation process from SetGAN.

5.6 Analysis

In order to visualize how SetGAN constructs an output image from a given set of inputs, consider
the example generation shown in Fig. 5.6a. As explained in section 5.3.1, the generation process
begins by encoding each of these reference images into a latent representation Ci using the pSp
encoder. The model will then generate a series of m Gaussian noise vectors (one per output
image) and pass these through the pretrained StyleGAN2 mapping network to obtain base latent
codes W ∈ W. If these latent codes were fed directly to the generator, they would result in
samples from the pretrained StyleGAN2 model, without any conditioning. These unconditional
generations can be considered to be a form of “template” images, which will then be transformed
and modified to become the final output (see Fig. 5.6b).

In order to incorporate the information from the reference images, a series of attention-based
conditioning layers will then combine the base latent codes W with the reference encodings cℓi at
each layer of the network to produce a series of conditional style vectors ω. This will have the
effect of progressively shifting the template image towards the reference images as it progresses
through the network.

86

Figure 5.7: Sample generations using the reference images in Figure 5.6 with only the first
conditioning layer active. Heatmaps underneath each image indicate the attention weights given
to each reference image.

5.6.1 Effect of the conditioning network by reference image

Figure 5.8 shows the relative weight given by the attention blocks in the conditioning network to
each of the reference images from the generation process in Figure 5.6a. In order to visualize how
the different weight for each image affects the generation outputs, let us consider the effects of
the conditioning network on just a single style. With the conditioning network active on only the
first style vector, Figure 5.7 shows examples of the output with varying degrees of weight given
to each reference image - including examples with the true weights taken from the heatmap in
Figure 5.8, as well as 100% weight given to each reference image in turn.

Figure 5.8: Heatmap
of attention weights
by layer for Fig. 5.6a

The effect of the varying attention weights at this layer on the final
image can be clearly seen from these examples. Features such as the
ear shape, ear orientation, fur texture and tongue/mouth position change
significantly in accordance with the reference image being most closely
attended to at this layer. The effect can be clearly seen on those same
features in the final output image. The ears take on a slightly rounded
shape, the fur texture becomes shaggy and long, and the open mouth
takes on a slight upward lilt that looks almost like a smile - all features
strongly similar to the third reference image. This matches the values
shown in Figure 5.8, where the weights are indeed highly concentrated
around that same image.

5.6.2 Effect of the conditioning network by layer

These previous examples highlighted the effects of the attention layers in
attending to and incorporating features from the reference images - but
only using a single layer. To see the cumulative effects of these condi-
tioning layers throughout the generation process, I apply the generation

87

process with a variable number of conditioning layers active. As before, inactive layers use only
the base style vector as input. The results of this experiment are shown in Figure 5.9. Initially,
no conditioning layers are active, and the generator produces the template image mentioned pre-
viously. As more layers are introduced, additional features from the reference image are used to
adjust this template image further and further towards the images in the reference set.

Figure 5.9: Generations
from Fig. 5.6 with
some attention layers in-
active. Red boxes indi-
cate active layers.

Interestingly, the features affected by the introduction of the condi-
tioning layers vary strongly by the position of the layer in the network.
Enabling the conditioning layers in the early layers affects coarse fea-
tures such as fur texture, stripes/patches, head facing and ear position.
In contrast, the middle conditioning layers affect the background, fur
color, and finer adjustments to face structure/expression. Finally, the
last layers in the network affect subtler qualities like color saturation
and fine textural details.

This matches closely with the common observation that the layers
of the StyleGAN2 network affect the properties of the output image
based on their location in the network, with earlier layers affecting
coarser features of the image and later layers affecting the finer details.
As the SetGAN decoder is directly based on the StyleGAN2 decoder,
it is unsurprising to observe the same property here.

5.6.3 Effect of the base style vector

One interesting consequence of the many residual or skip connections
through SetGAN’s architecture is the predominant role played by the
base style vector in the generation. As discussed previously, this base
style vector represents a sort of “template image”, that will then be
modified by each of the conditioning layers in turn to attend to the
features of the reference images. Despite the significant effects of these
layers shown in the previous sections, the initial template image retains
a strong effect on the final generation. Figure 5.10 shows a series of
generations using the same base style vector as in Fig. 5.6, but different
reference images. Notice how all of these images retain similar features
in terms of their orientation, head position and overall expression.

To understand the reason for this, consider Equation 5.6.3, which
shows how the conditional encodings are incorporated into the styles:

ωℓ = gℓ(W,T ℓ(W,C))

In this equation, gℓ represents a learned transform applied to the con-
catenation of the base style vector with the conditional style computed

88

by the appropriate attention block. At the beginning of training, gℓ is initialized to act as an
identity map on the base style, making this essentially a residual connection. As such, the com-
puted conditional encoding will act as an offset relative to the base style - anchoring the output
generation strongly to the template image.

5.7 Conclusion and Future Work

Figure 5.10: Generations from different
reference batches using the same base
style.

The task-specific experiments shown in this paper
demonstrate that SetGAN can effectively replicate and
even surpass the ability of other GAN-based approaches
to learn the factors of variation within different classes in
a dataset and generalize them to new classes at inference
time. In addition, SetGAN shows potential to general-
ize beyond the structure of the training classes and flex-
ibly perform generation conditioned on reference images
sharing features across a wide array of different axes of
similarity. It is my hope that in the future, this may
be extended to more truly general, zero-shot forms of
image generation on larger and more diverse datasets.
Other approaches such as Giannone et al. [2022] have
shown results on datasets such as CIFAR-100 and Mini-
ImageNet, but these datasets are low-resolution and con-
tain a very limited number of classes, which limits the
model’s ability to generalize to truly diverse and varied
unseen classes at inference time. While Giannone et al.
[2022] do report some succesful results at few-shot gen-
eration with these datasets, they often struggle to adapt to unseen classes at inference time as
a result of this, and end up producing samples from unrelated training classes. Instead, my
focus is on scaling this approach to truly diverse and large-scale high resolution datasets such
as ImageNet. This may provide a path to achieving truly zero shot set-based image-to-image
generation, and will be the focus of future work.

89

Chapter 6

Conclusion

6.1 Contributions

The power of latent representations in machine learning is undeniable. By exploiting and lever-
aging the distributions of these latent representations, we can gain insights into diverse fields and
provide powerful new tools to approach many common tasks. In the field of natural language
alone, we can predict relationships between words, improve robustness in natural language, im-
prove the effectiveness of common model architectures, and even translate between languages
without parallel data.

In this work, I set out to make my own contribution to the study of distributions within em-
bedding spaces of words. Beginning from existing works such as the distributional representations
proposed by Vilnis and McCallum [2014], Tian et al. [2014] and many others, I began with two
overarching focus questions:

• How can we leverage the uncertainty inherent to the problem of noise in natural language
to create robust representations, in order to improve the performance of natural language
models in realistic domains such as social media?

• Can we train neural networks to approximate distance functions between distributions in
order to learn bespoke functions that are optimal for particular tasks - for example, un-
supervised inference of relationships between words from their induced distributions over
contexts?

While these initial questions remained tightly connected to the field of word embeddings, the
investigations that followed did not. The insights motivated from those narrow beginnings blos-
somed out to encompass multiple diverse subfields and applications - from robustness in natural

90

language, to approximating statistical distance functions, to novel forms of few-shot image gen-
eration. In the end, the primary contributions of this work were threefold:

1. Proposing a flexible robust framework for natural language models that could explicitly
model the uncertainty inherent to noisy text in order to improve performance on downstream
tasks in a model-agnostic fashion. This approach demonstrated superior results to existing
methods across many of the tasks in the well-known GLUE benchmark [Wang et al., 2018]
using multiple different classifier architectures.

2. Defining a framework for describing functions defined on multiple permutation-invariant
sets, and proposing a general model architecture for training neural network models to
approximate these functions. The proposed architecture was proved to be a universal ap-
proximator of these partially permutation-invariant functions, and demonstrated superior
performance to any existing methods on a variety of set-based tasks, including approximat-
ing notoriously intractable distance measures such as KL Divergence and Mutual Informa-
tion.

3. Leveraging this multi-set architecture to propose a novel model for few-shot image gen-
eration. The proposed model demonstrated superior performance to all existing few-shot
image-to-image models, and was not restricted by the limiting assumptions of existing
fusion-based or transformation-based methods. As such, this model provides a framework
that could be scaled up to true zero-shot image generation in the vein of existing foundation
models such as DALL-E or Stable Diffusion - unlike competing approaches.

6.2 Future Work

The works presented in this thesis each offer many promising opportunities for extensions and
further work. While embeddings in the vein of Word2Vec have largely fallen out of favor, the
large language models that now dominate the field still rely on BPE-based subword embeddings
for tokenization. These embeddings do not demonstrate the unique structure of Word2Vec that
allowed for rich applications such as MUSE [Lample et al., 2018a] - but many opportunities still
exist. Despite the immense power of these models, they must still contend with the same problems
as the previous generation of natural language models, and issues such as polysemy and noisy or
error-ridden text still remain relevant.

The most critical and promising extensions of this work do not lie within the field of natural
language, however. One highly interesting field of exploration motivated by the work presented in
Chapter 4 is the approximation of Mutual Information. Mutual Information is a key concept in
many areas of machine learning, and is essential to widely-used approaches such as the Information
Bottleneck [Tishby and Zaslavsky, 2015]. Mutual information-based approaches are also widely

91

used in fields such as privacy & fairness [Song et al., 2019a, Zhao and Gordon, 2022, Locatello
et al., 2019], contrastive learning [Zhang et al., 2021, Yang et al., 2022a], and many others. Such
works are often forced to rely on adversarial approaches to approximate mutual information,
which often presents challenges in optimization. The framework in Chapter 4 presents a possible
method for creating a pretrained estimator of mutual information in a supervised fashion. Such
an estimator could be trained once and used in a wide variety of applications. Due to the
dimension-equivariance discussed in Section 4.3.5, such an estimator could even be applied to
inputs of variable dimension, ensuring that its use could be extended to a wide variety of different
problems and model architectures. This is an extremely promising direction for future work.

Finally, as discussed previously, the framework presented in Chapter 5 has the ability to be
extended to much larger and more general datasets. While the experiments presented in this
chapter were limited to small, task-specific datasets, this is not a requirement of the method.
Unlike competing approaches, SetGAN does not make limiting assumptions about the structure
of the training and test data. As such, extensions to larger and more general datasets such
as ImageNet are a promising next step. Once scaled to such a general setting, SetGAN could
then be used for zero-shot generation using reference sets of images from diverse domains and
organized by diverse factors of similarity. Even in this limited setting, the model demonstrates
some ability to generalize beyond the structure of the training data in this way (see Figure 5.1)
- an encouraging sign for the model’s potential in larger settings.

92

References

Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based stylegan encoder
via iterative refinement, 2021.

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adver-
sarial networks. 11 2017.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning principled bilingual mappings of word
embeddings while preserving monolingual invariance. In Jian Su, Kevin Duh, and Xavier Car-
reras, editors, Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2289–2294, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1250. URL https://aclanthology.org/D16-1250.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word embeddings with (al-
most) no bilingual data. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 451–462, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1042. URL https://aclanthology.org/P17-1042.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. stat, 1050:21,
2016.

Ching-Yuan Bai, Hsuan-Tien Lin, Colin Raffel, and Wendy Chi wen Kan. On training sample
memorization: Lessons from benchmarking generative modeling with a large-scale competition.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
ACM, aug 2021. doi: 10.1145/3447548.3467198.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan. Entailment above
the word level in distributional semantics. In Walter Daelemans, editor, Proceedings of the
13th Conference of the European Chapter of the Association for Computational Linguistics,
pages 23–32, Avignon, France, April 2012. Association for Computational Linguistics. URL
https://aclanthology.org/E12-1004.

93

https://aclanthology.org/D16-1250
https://aclanthology.org/P17-1042
https://aclanthology.org/E12-1004

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pages 531–540. PMLR, 2018.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine
translation. CoRR, abs/1711.02173, 2017. URL http://arxiv.org/abs/1711.02173.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu,
Yunxin Jiao, and Aditya Ramesh. Improving image generation with better captions. 2023.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3(null):993–1022, mar 2003. ISSN 1532-4435.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. arXiv preprint arXiv:1607.04606, 2016.

Malik Boudiaf, Ziko Imtiaz Masud, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, and Pablo Pi-
antanida. Mutual-information based few-shot classification, 2021.

Samuel Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 632–642, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
URL https://arxiv.org/abs/2005.14165.

Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. Vggface2: A dataset
for recognising faces across pose and age, 2018.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/

D14-1179.

94

http://arxiv.org/abs/1711.02173
https://arxiv.org/abs/2005.14165
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.
Stargan: Unified generative adversarial networks for multi-domain image-to-image translation,
2018.

Min Jin Chong and David Forsyth. Effectively unbiased FID and inception score and where to
find them, 2020.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with
performers. In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=Ua6zuk0WRH.

Louis Clouâtre and Marc Demers. Figr: Few-shot image generation with reptile, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018a.
URL http://arxiv.org/abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Guanqi Ding, Xinzhe Han, Shuhui Wang, Shuzhe Wu, Xin Jin, Dandan Tu, and Qingming Huang.
Attribute group editing for reliable few-shot image generation, 2022.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process expec-
tations for large time. iv. Communications on Pure and Applied Mathematics, 36(2):183–212,
1983. doi: https://doi.org/10.1002/cpa.3160360204. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/cpa.3160360204.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

Yerai Doval, Jesús Vilares, and Carlos Gómez-Rodŕıguez. Towards robust word embeddings for
noisy texts. arXiv preprint arXiv:1911.10876, 2019.

95

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/1810.04805
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160360204
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160360204

Alessandro Ferrero, Shireen Elhabian, and Ross Whitaker. Setgan: Improving the stability and
diversity of generative models through a permutation invariant architecture, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks, 2017.

J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1–32, 1957.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, February 1994a.
ISSN 0898-9788.

Philip Gage. A new algorithm for data compression. The C Users Journal archive, 12:23–38,
1994b. URL https://api.semanticscholar.org/CorpusID:59804030.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient Estimation of Mutual Information
for Strongly Dependent Variables. In Guy Lebanon and S. V. N. Vishwanathan, editors,
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,
volume 38 of Proceedings of Machine Learning Research, pages 277–286, San Diego, California,
USA, 09–12 May 2015. PMLR. URL https://proceedings.mlr.press/v38/gao15.html.

Maayan Geffet and Ido Dagan. The distributional inclusion hypotheses and lexical entailment.
In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 107–114, Ann Arbor, Michigan, June 2005. Association for Computational
Linguistics. doi: 10.3115/1219840.1219854. URL https://aclanthology.org/P05-1014.

Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990. doi:
10.1080/01621459.1990.10476213. URL https://www.tandfonline.com/doi/abs/10.1080/

01621459.1990.10476213.

Giorgio Giannone, Didrik Nielsen, and Ole Winther. Few-shot diffusion models, 2022.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. CoRR, abs/1402.3722, 2014. URL http://arxiv.org/abs/1402.

3722.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural infor-
mation processing systems, 27, 2014.

Zheng Gu, Wenbin Li, Jing Huo, Lei Wang, and Yang Gao. Lofgan: Fusing local representations
for few-shot image generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 8463–8471, October 2021.

96

https://api.semanticscholar.org/CorpusID:59804030
https://proceedings.mlr.press/v38/gao15.html
https://aclanthology.org/P05-1014
https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10476213
https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10476213
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722

Shupeng Gui, Xiangliang Zhang, Pan Zhong, Shuang Qiu, Mingrui Wu, Jieping Ye, Zhengdao
Wang, and Ji Liu. Pine: Universal deep embedding for graph nodes via partial permutation
invariant set functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(2):770–782, 2021.

Ishaan Gulrajani, Colin Raffel, and Luke Metz. Towards gan benchmarks which require general-
ization, 2020.

Zellig Harris et al. Distributional hypothesis. Word World, 10(23):146–162, 1954.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1026–1034, 2015.

Georg Heigold, Stalin Varanasi, Günter Neumann, and Josef van Genabith. How robust are
character-based word embeddings in tagging and MT against wrod scramlbing or randdm
nouse? In Proceedings of the 13th Conference of the Association for Machine Translation in the
Americas (Volume 1: Research Papers), pages 68–80, Boston, MA, March 2018. Association for
Machine Translation in the Americas. URL https://www.aclweb.org/anthology/W18-1807.

James Henderson and Diana Popa. A vector space for distributional semantics for entailment.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2052–2062, Berlin, Germany, August 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1193. URL https://www.aclweb.org/

anthology/P16-1193.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Asso-
ciates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/

file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020b.

Yan Hong, Li Niu, Jianfu Zhang, Jing Liang, and Liqing Zhang. Deltagan: Towards diverse
few-shot image generation with sample-specific delta. CoRR, abs/2009.08753, 2020a. URL
https://arxiv.org/abs/2009.08753.

97

https://www.aclweb.org/anthology/W18-1807
https://www.aclweb.org/anthology/P16-1193
https://www.aclweb.org/anthology/P16-1193
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2009.08753

Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Matchinggan: Matching-based few-shot
image generation. CoRR, abs/2003.03497, 2020b. URL https://arxiv.org/abs/2003.03497.

Yan Hong, Li Niu, Jianfu Zhang, Weijie Zhao, Chen Fu, and Liqing Zhang. F2GAN: fusing-
and-filling GAN for few-shot image generation. CoRR, abs/2008.01999, 2020c. URL https:

//arxiv.org/abs/2008.01999.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks, 2018.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

Marco Jiralerspong, Avishek Joey Bose, Ian Gemp, Chongli Qin, Yoram Bachrach, and Gauthier
Gidel. Feature likelihood score: Evaluating generalization of generative models using samples,
2023.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang. Robust encodings: A framework
for combating adversarial typos, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan, 2020.

Mark Kernighan, Kenneth Church, and William Gale. A spelling correction program based on a
noisy channel model. pages 205–210, 01 1990. doi: 10.3115/997939.997975.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models, 2020.

Huda Khayrallah and Philipp Koehn. On the impact of various types of noise on neural ma-
chine translation. In Proceedings of the 2nd Workshop on Neural Machine Translation and
Generation, pages 74–83, 2018.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

98

https://arxiv.org/abs/2003.03497
https://arxiv.org/abs/2008.01999
https://arxiv.org/abs/2008.01999

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Alexander Kraskov, Harald Stoegbauer, and Peter Grassberger. Estimating mutual infor-
mation. Physical Review E, 69(6):066138, Jun 2004. ISSN 1539-3755, 1550-2376. doi:
10.1103/PhysRevE.69.066138. arXiv: cond-mat/0305641.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role
of imagenet classes in fréchet inception distance, 2023.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science, 350(6266):1332–1338, 2015. doi: 10.1126/
science.aab3050. URL https://www.science.org/doi/abs/10.1126/science.aab3050.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
machine translation using monolingual corpora only. arXiv preprint arXiv:1711.00043, 2017.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. In International Conference on Learning Representa-
tions, 2018a.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
Phrase-based & neural unsupervised machine translation, 2018b.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International conference on machine learning, pages 3744–3753. PMLR, 2019.

V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, February 1966.

Vladimir Levenshtein. Binary codes capable of correcting spurious insertions and deletion of ones.
Problems of information Transmission, 1(1):8–17, 1965.

Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with
elastic weight consolidation. CoRR, abs/2012.02780, 2020. URL https://arxiv.org/abs/

2012.02780.

99

https://www.science.org/doi/abs/10.1126/science.aab3050
https://arxiv.org/abs/2012.02780
https://arxiv.org/abs/2012.02780

Weixin Liang, Zixuan Liu, and Can Liu. Dawson: A domain adaptive few shot generation
framework, 2020.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.

0312.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan
Kautz. Few-shot unsupervised image-to-image translation, 2019a.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word embeddings. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692, 2019b. URL http://arxiv.org/abs/1907.11692.

Francesco Locatello, Gabriele Abbati, Thomas Rainforth, Stefan Bauer, Bernhard Schölkopf,
and Olivier Bachem. On the fairness of disentangled representations. Advances in neural
information processing systems, 32, 2019.

Valentin Malykh, Varvara Logacheva, and Taras Khakhulin. Robust word vectors: Context-
informed embeddings for noisy texts. In Proceedings of the 2018 EMNLP Workshop W-NUT:
The 4th Workshop on Noisy User-generated Text, pages 54–63, 2018.

Ning Miao, Hao Zhou, Chengqi Zhao, Wenxian Shi, and Lei Li. Kernelized bayesian softmax for
text generation. In Advances in Neural Information Processing Systems, pages 12487–12497,
2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among languages for
machine translation, 2013b.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729, 2008. doi: 10.1109/ICVGIP.2008.47.

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, and Richard
Zhang. Few-shot image generation via cross-domain correspondence. CoRR, abs/2104.06820,
2021. URL https://arxiv.org/abs/2104.06820.

100

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2104.06820

OpenAI. Gpt-4 technical report, 2023.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties
in gan evaluation. In CVPR, 2022.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

Aleksandra Piktus, Necati Bora Edizel, Piotr Bojanowski, Édouard Grave, Rui Ferreira, and
Fabrizio Silvestri. Misspelling oblivious word embeddings. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3226–3234, 2019.

Justin Pinkney. Stable diffusion image variations. https://www.justinpinkney.com/blog/

2023/stable-diffusion-image-variations/, 2023.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks, 2016.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.

06125.

Harsh Rangwani, Lavish Bansal, Kartik Sharma, Tejan Karmali, Varun Jampani, and
R. Venkatesh Babu. Noisytwins: Class-consistent and diverse image generation through style-
gans, 2023.

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and
Daniel Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022.

101

https://www.justinpinkney.com/blog/2023/stable-diffusion-image-variations/
https://www.justinpinkney.com/blog/2023/stable-diffusion-image-variations/
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/1505.

04597.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa,
Michael Rubinstein, and Kfir Aberman. Hyperdreambooth: Hypernetworks for fast personal-
ization of text-to-image models, 2023.

Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans,
David J. Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models, 2022.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
Advances in neural information processing systems, 30, 2017.

Hiroshi Sasaki, Chris G. Willcocks, and Toby P. Breckon. Unit-ddpm: Unpaired image translation
with denoising diffusion probabilistic models, 2021.

Klaus U Schulz and Stoyan Mihov. Fast string correction with levenshtein automata. International
Journal on Document Analysis and Recognition, 5(1):67–85, 2002.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/

pytorch-fid, August 2020. Version 0.3.0.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, Au-
gust 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://www.aclweb.org/anthology/P16-1162.

Zhuoran Shen, Mingyuan Zhang, Shuai Yi, Junjie Yan, and Haiyu Zhao. Factorized attention:
Self-attention with linear complexities. CoRR, abs/1812.01243, 2018. URL http://arxiv.

org/abs/1812.01243.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015.

Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, and Martin Jaggi. Wasserstein is all you
need. CoRR, abs/1808.09663, 2018. URL http://arxiv.org/abs/1808.09663.

102

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://www.aclweb.org/anthology/P16-1162
http://arxiv.org/abs/1812.01243
http://arxiv.org/abs/1812.01243
http://arxiv.org/abs/1808.09663

Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, and Martin Jaggi. Context mover’s distance
& barycenters: Optimal transport of contexts for building representations. In Silvia Chiappa
and Roberto Calandra, editors, Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research,
pages 3437–3449. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.press/v108/

singh20a.html.

Samuel L. Smith, David H. P. Turban, Steven Hamblin, and Nils Y. Hammerla. Offline bilingual
word vectors, orthogonal transformations and the inverted softmax, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics, 2015.

Michael Soloveitchik, Tzvi Diskin, Efrat Morin, and Ami Wiesel. Conditional frechet inception
distance, 2022.

Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and Stefano Ermon. Learning
controllable fair representations. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 2164–2173. PMLR, 2019a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distri-
bution, 2020.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation, 2019b.

Robyn Speer and Catherine Havasi. Representing general relational knowledge in ConceptNet 5.
In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings
of the Eighth International Conference on Language Resources and Evaluation (LREC’12),
pages 3679–3686, Istanbul, Turkey, May 2012. European Language Resources Association
(ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf.

Chi Sun, Hang Yan, Xipeng Qiu, and Xuanjing Huang. Gaussian word embedding with a wasser-
stein distance loss. arXiv preprint arXiv:1808.07016, 2018.

103

https://proceedings.mlr.press/v108/singh20a.html
https://proceedings.mlr.press/v108/singh20a.html
http://www.lrec-conf.org/proceedings/lrec2012/pdf/1072_Paper.pdf

Yifu Sun and Haoming Jiang. Contextual text denoising with masked language models. arXiv
preprint arXiv:1910.14080, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems, 4, 09 2014a.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neu-
ral networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014b. URL https://proceedings.neurips.cc/paper_files/paper/2014/

file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision, 2015.

Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann. Sentence embeddings in NLI with iterative
refinement encoders. Natural Language Engineering, 25(4):467–482, 2019.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu. A
probabilistic model for learning multi-prototype word embeddings. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages
151–160, 2014.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle, 2015.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an
encoder for stylegan image manipulation, 2021.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A
dataset of datasets for learning to learn from few examples. In International Conference on
Learning Representations, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding. arXiv preprint
arXiv:1412.6623, 2014.

104

https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A. Osborne.
On the limitations of representing functions on sets. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6487–6494. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/wagstaff19a.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
CoRR, abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdu. Divergence estimation for multidimensional
densities via k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55(5):
2392–2405, 2009. doi: 10.1109/TIT.2009.2016060.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768, 2020. URL https://arxiv.org/abs/2006.

04768.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945. ISSN 00994987. URL http://www.jstor.org/stable/3001968.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.

emnlp-demos.6.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jef-
frey Dean. Google’s neural machine translation system: Bridging the gap between human and
machine translation, 2016.

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15671–15680, 2022a.

105

https://proceedings.mlr.press/v97/wagstaff19a.html
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
http://www.jstor.org/stable/3001968
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Mengping Yang, Zhe Wang, Ziqiu Chi, and Wenyi Feng. Wavegan: Frequency-aware gan for
high-fidelity few-shot image generation, 2022b.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image
prompt adapter for text-to-image diffusion models. 2023.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Cross-modal con-
trastive learning for text-to-image generation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 833–842, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Han Zhao and Geoffrey J Gordon. Inherent tradeoffs in learning fair representations. The Journal
of Machine Learning Research, 23(1):2527–2552, 2022.

Jingyuan Zhu, Huimin Ma, Jiansheng Chen, and Jian Yuan. Few-shot image generation with
diffusion models, 2023.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks, 2020.

106

APPENDICES

107

Appendix A

Appendix: Robust Embeddings

A.1 Experiments and Baselines

Independent noisy versions of the data were constructed for each trial, which were each then used
to train each of the two classifiers on the appropriate task, with each robust method used in turn
to mitigate the effects of the noise. Basic preprocessing was applied to the noisy data before
passing it through the robust models (e.g., lowercasing, stripping non-alphanumeric characters
except for basic punctuation, etc.). Experiments were performed using the glue finetuning and
evaluation script from HuggingFace, with all training parameters left as default. For the HBMP
case, FastText vectors were used as a ground embedding layer for the methods that did not
prescribe their own vectors.

Baselines were evaluated using existing source code where possible (Bridge2Vec, RobEn), and
otherwise were reimplemented following as closely to the authors’ original descriptions as possible
(MOE, Sun & Jiang). A value of α = 0.05 was used for the MOE training.

A.2 Ablation Results

For full results of the ablation study on all datasets, see Table A.1.

A.3 Hyperparameter Analysis

In order to evaluate the optimal hyperparameter values, we ran a number of experiments with
the RED-Ensemble model on two of the GLUE datasets: MRPC and SST-2. Five trials were

108

RoBERTa HBMP

20% 50% 20% 50%

Model Clean Synth. Natural Synth. Natural Clean Synth. Natural Synth. Natural

MRPC

Token Stream 0.875↓ 0.848↓ 0.855↓ 0.788↓ 0.799↓ 0.799 0.731↓ 0.740↓ 0.547↓ 0.602↓
Context Stream 0.868↓ 0.793↓ 0.809↓ 0.402↓ 0.526↓ 0.798 0.659↓ 0.700↓ 0.297↓ 0.428↓
RED (Base) 0.872↓ 0.866↓ 0.867↓ 0.842↓ 0.847↓ 0.798 0.775 0.783 0.713↓ 0.742
RED (Ensemble) 0.879 0.872 0.873 0.853 0.854 0.800 0.780 0.786 0.723 0.749

QNLI

Token Stream 0.895↑ 0.865↓ 0.874↓ 0.813↓ 0.835↓ 0.801↑ 0.779↓ 0.780↓ 0.739↓ 0.749↓
Context Stream 0.878↓ 0.810↓ 0.837↓ 0.681↓ 0.751↓ 0.791 0.745↓ 0.760↓ 0.654↓ 0.698↓
RED (Base) 0.891 0.879 0.883 0.849↓ 0.863↓ 0.800 0.793 0.795 0.773↓ 0.777↓
RED (Ensemble) 0.889 0.877 0.883 0.856 0.869 0.767 0.792 0.794 0.777 0.781

QQP

Token Stream 0.885↑ 0.800↓ 0.824↓ 0.697↓ 0.754↓ 0.857↑ 0.734↓ 0.765↓ 0.582↓ 0.651↓
Context Stream 0.862↓ 0.740↓ 0.783↓ 0.524↓ 0.660↓ 0.836↓ 0.697↓ 0.743↓ 0.470↓ 0.596↓
RED (Base) 0.873↓ 0.842↓ 0.855↓ 0.789↓ 0.817↓ 0.842 0.809 0.818↓ 0.741 0.770↓
RED (Ensemble) 0.877 0.847 0.858 0.794 0.823 0.843 0.809 0.822 0.739 0.772

SST-2

Token Stream 0.917↑ 0.896↓ 0.891↓ 0.865↓ 0.851↓ 0.842 0.820 0.816↓ 0.786↓ 0.779↓
Context Stream 0.905↓ 0.860↓ 0.861↓ 0.767↓ 0.773↓ 0.827 0.786↓ 0.788↓ 0.709↓ 0.710↓
RED (Base) 0.916 0.901 0.901↓ 0.884↓ 0.878↓ 0.825 0.820 0.819↓ 0.802↓ 0.799
RED (Ensemble) 0.913 0.903 0.908 0.895 0.886 0.829 0.823 0.825 0.814 0.806

MNLI

Token Stream 0.847↑ 0.774↓ 0.790↓ 0.679↓ 0.705↓ 0.718 0.643↓ 0.657↓ 0.555↓ 0.577↓
Context Stream 0.829↓ 0.703↓ 0.745↓ 0.536↓ 0.606↓ 0.712 0.616↓ 0.642↓ 0.494↓ 0.542↓
RED (Base) 0.843↑ 0.814 0.823 0.748↓ 0.777↓ 0.713↑ 0.689↑ 0.692 0.640 0.653↑
RED (Ensemble) 0.840 0.813 0.822 0.768 0.781 0.707 0.685 0.690 0.640 0.650

Average

Token Stream 0.884↑ 0.837↓ 0.847↓ 0.769↓ 0.789↓ 0.803↑ 0.741↓ 0.752↓ 0.642↓ 0.671↓
Context Stream 0.868↓ 0.781↓ 0.807↓ 0.582↓ 0.663↓ 0.793 0.701↓ 0.727↓ 0.525↓ 0.595↓
RED (Base) 0.879 0.860↓ 0.866↓ 0.822↓ 0.836↓ 0.796 0.777 0.781 0.734↓ 0.748↓
RED (Ensemble) 0.880 0.862 0.869 0.833 0.843 0.789 0.778 0.783 0.739 0.752

Table A.1: Results of ablations on GLUE tasks with RoBERTa and HBMP classifiers. ↑ and ↓
signify results that are statistically better or worse respectively than RED-Ensemble with p < 0.05
according to the Wilcoxon signed rank test[Wilcoxon, 1945].

109

performed for each experiment, and the results were averaged. In general, the accuracy of the
results was not very sensitive to the hyperparameter values, as long as those values were not too
extreme. As such, each hyperparameter was evaluated independently of the other two, using the
approximately correct values for the other hyperparameters as an ansatz.

A.3.1 τ

Figures A.1 and A.2 show plots of accuracy on MRPC and SST-2 respectively against the softmax
temperature value τ , on a range of values from τ = 0.01 to τ = 2.0. All experiments were
performed using the RoBERTa classifier and utilized RED with ensembling. Experiments were
performed with clean training data, and values of K = 20 and M = 10 were used as the other
hyperparameters. The exact optimal τ value varied by dataset and noise type, but in general all
values in the approximate range 0.05 ≤ τ ≤ 0.3 gave reasonable results with only small levels of
variation. We chose τ = 0.15 as a good compromise value that was optimal or close to optimal
across almost all datasets and noise levels.

A.3.2 K

Figures A.3 and A.4 show plots of accuracy on MRPC and SST-2 respectively against the K
value in the top-k operation from the prior, on a range of values from K = 5 to K = 30. All
experiments were performed using the RoBERTa classifier and utilized RED with ensembling.
Experiments were performed with clean training data, and values of τ = 0.15 and M = 10 were
used as the other hyperparameters. Performance tended to increase slightly as K increased, but
with diminishing returns after a point. This matches expectations, as the K value should only
need to be large enough to include most or all of the reasonable corrections, which in most cases
tend to be relatively close to the noisy word. In order to balance improved performance with the
constraints of increased memory usage, we used K = 20 for all experiments.

A.3.3 M

Figures A.5 and A.6 show plots of accuracy on MRPC and SST-2 respectively against the number
of samples used for the ensemble, on a range of values from M = 5 to M = 30. All experiments
were performed using the RoBERTa classifier and utilized RED with ensembling. Experiments
were performed with clean training data, and values of τ = 0.15 and K = 20 were used as the
other hyperparameters. Similar to K, increasing M resulted in a slight increase in performance,
but there were again diminishing returns - and after a certain point the performance stopped im-
proving or even worsened. We use M = 10 for all experiments to once again balance performance
with memory constraints.

110

Tau

A
cc

ur
ac

y

0.75

0.80

0.85

0.90

0.0 0.5 1.0 1.5 2.0

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

MRPC Accuracy by Tau Value

Figure A.1: Plot of MRPC accuracy using the RoBERTa classifier and RED
with ensembling by τ value, ranging from τ = 0.01 to τ = 2.

Tau

A
cc

ur
ac

y

0.750

0.800

0.850

0.900

0.950

0.0 0.5 1.0 1.5 2.0

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

SST-2 Accuracy by Tau Value

Figure A.2: Plot of SST-2 accuracy using the RoBERTa classifier and RED
with ensembling by τ value, ranging from τ = 0.01 to τ = 2.

111

K

A
cc

ur
ac

y

0.75

0.80

0.85

0.90

0 10 20 30

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

MRPC Accuracy by K Value

Figure A.3: Plot of MRPC accuracy using the RoBERTa classifier and RED
with ensembling by K value, ranging from K = 5 to K = 30.

K

A
cc

ur
ac

y

0.750

0.800

0.850

0.900

0.950

0 10 20 30

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

SST-2 Accuracy by K Value

Figure A.4: Plot of SST-2 accuracy using the RoBERTa classifier and RED
with ensembling by K value, ranging from K = 5 to K = 30.

112

M

A
cc

ur
ac

y

0.75

0.80

0.85

0.90

0 10 20 30

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

MRPC Accuracy by M Value

Figure A.5: Plot of MRPC accuracy using the RoBERTa classifier and RED
with ensembling by M value, ranging from M = 5 to M = 30.

M

A
cc

ur
ac

y

0.75

0.80

0.85

0.90

0.95

0 10 20 30

Clean Synthetic (20%) Natural (20%) Synthetic (50%) Natural (50%)

SST-2 Accuracy by M Value

Figure A.6: Plot of SST-2 accuracy using the RoBERTa classifier and RED
with ensembling by M value, ranging from M = 5 to M = 30.

113

Appendix B

Appendix: Multi-Set Transformers

B.1 Experiment Details

The base architecture used in all experiments was the architecture shown in Figure 4.1, with the
MSAB blocks replaced as appropriate for each baseline. The only exception was the PINE model,
which followed the architecture described in their paper.

In all cases (except where noted otherwise), we used architectures with 4 blocks, 4 attention
heads (for the transformer models), and 1-layer feedforward decoders. We used Pooling by Mul-
tiheaded Attention (PMA) (see Lee et al. [2019]) as the pooling layer for the overall network,
and max pooling within each relation network block. We used layer norm around each encoder
block, as well as within the transformer blocks as per usual. Each block used the same latent and
hidden size, and linear projection layers were added at the beginning of the network to project
the inputs to the correct dimension if needed.

For the KL and MI experiments, we trained for 100,000 batches of size 64 with a learning
rate of 1e-4. The models used a latent size of 16 per input dimension and feedforward size of
32 per input dimension. The dimension-equivariant model was trained across data of multiple
dimensions (1-3 for d = 2, 3-5 for d = 4, 7-9 for d = 8 and 14-18 for d = 16). Sets were generated
as described in Sections 4.6.1 and 4.6.1.

For the Counting experiments, we trained with a batch size of 64 using a latent size of 128
and hidden size of 256. We used a single projection layer as a decoder, with no hidden layers. For
MNIST, we used a convolutional encoder with 3x3 convolutional layers of 32 and 64 filters, each
followed by a max pool, with a linear projection to the latent size of 128 at the end. This encoder
was pretrained for 1000 batches, then the network and encoder were trained end to end for 10,000
batches with a learning rate of 3e-4. Sets were randomly sampled with set size randomly selected
in [10, 30]. For Omniglot, the convolutional encoder used one 7x7 conv with stride 2 and 32

114

filters, followed by three blocks of two 3x3 convs each with 32, 64 and 128 filters respectively.
Each block was followed by a max pool, and a final linear projection to size 128 was again added
at the end. This was pretrained for 300 batches, then the network itself was trained end to end
for 10,000 batches with a learning rate of 1e-4. Loss was calculated by mean-squared error. Sets
were randomly sampled with set size randomly selected in [6, 10].

The CoCo experiments again used convolutional encoders to obtain fixed size representa-
tions of each image, and used transformer encoders to do the same for the captions. This time,
the pretrained ResNet-101 model was used as the image encoder, with BERT used as the text
encoder. The model was trained for 2500 batches of batch size 48 with learning rate 1e-5,
using a latent size of 512 and hidden size of 1024. The set size was increased gradually ac-
cording to a schedule during training, beginning at sets with size randomly selected in [1, 5] for
1250 batches, [3, 10] for 625 batches and [8, 15] for 625 batches. Standard image preprocess-
ing techniques were applied, with each image rescaled to 256x256, center cropped to size 224,
then normalized according to the method expected by PyTorch’s pretrained ResNet models (see
https://pytorch.org/vision/stable/models.html). The FastText experiments used common crawl
FastText vectors for English and French 1, with ground truth translations taken from MUSE 2.
The model was trained for 3125 batches of batch size 128 with learning rate 1e-5, using a latent
size of 512 and hidden size of 1024. The set size was increased gradually according to a schedule
during training, beginning at sets with size randomly selected in [1, 5] for 1250 batches, [3, 10] for
625 batches, [8, 15] for 625 batches and [10, 30] for 625 batches.

Meta-Dataset experiments used the same convolutional encoder architecture as the Omniglot
experiments, though without pretraining. Images were preprocessed in the standard fashion
performed by the Pytorch Meta-Dataset library. The model was trained for 7500 batches of
batch size 64 with set size randomly selected in [10, 30] and learning rate 1e-5, using a latent size
of 512 and hidden size of 1024. The synthetic experiments for distinguishability were trained for
7500 batches of batch size 256 with set size randomly selected in [10, 30] and learning rate 1e-5,
using a latent size of 8 and hidden size of 16.

B.2 Attention Derivation

A typical self-attention block with the set X ∈ Rn×d as the input queries and keys/values obeys
the following equation:

Z = MHA(X,X)

=
[
σ
(
(XWQ)(XWK)T

)
(XWV)

]
WO

= σ
(
X(WQW

T
K)XT

)
XWVWO

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

115

If we now consider the joint set X
⊔
Y ∈ Rn+m×d and perform self-attention on that, we find the

following: (
ZX

ZY

)
= ATTN

((
X
Y

)
,

(
X
Y

))
=

[
σ

((
XWQ

YWQ

)(
XWK

YWK

)T
)(

X
Y

)
WV

]
WO

=

(
Axx Axy

Ayx Ayy

)(
X
Y

)
WVWO

wherein (
Axx Axy

Ayx Ayy

)
= σ

((
X(WQW

T
K)XT X(WQW

T
K)Y T

Y (WQW
T
K)XT Y (WQW

T
K)Y T

))
Then, we find that

ZX = AxxXWVWO +AxyYWVWO

ZY = AyxXWVWO +AyyYWVWO

This function remains entirely equivariant with respect to the order of the elements in the joint
set X

⊔
Y - there is no distinction between elements in X and elements in Y .

Suppose, however, that we were to let the softmax for Aαβ be computed only over the elements
of the set α, and let the parameter matrices be different for each of the 4 terms. Then, we find

ZX = σ(X(WQ,xxW
T
K,xx)XT)XWV,xxWO,xx

+ σ(X(WQ,xyW
T
K,xy)Y T)YWV,xyWO,xy

ZY = σ(Y (WQ,yxW
T
K,yx)XT)XWV,yxWO,yx

+ σ(Y (WQ,yxW
T
K,yy)Y T)YWV,yyWO,yy

These are just four separate attention blocks! Now we can simply write

ZX = MHAxx(X,X) + MHAxy(X,Y)

ZY = MHAyx(Y,X) + MHAyy(Y, Y)

Since the attention function is equivariant with respect to the first input and invariant with
respect to the second, this meets the conditions for partial equivariance. To make this slightly
more general, we can now write

ZX = gx (MHAxx(X,X),MHAxy(X,Y))

ZY = gy (MHAyx(Y,X),MHAyy(Y, Y))

where the function g acts on each vector in the output set independently.

116

Appendix C

Appendix: SetGAN

C.1 Architecture and training details

All experiments used pretrained StyleGAN2 [Karras et al., 2020] and pSp [Richardson et al., 2021]
models provided by Ding et al. [2022] 1. Layers of these models corresponding to resolutions of
256x256 and lower (i.e., the first 14 layers) were taken to use for the initialization. A standard
StyleGAN2 generator is used as the decoder, with 14 layers and a latent dimension of 512. The
mapping network uses 8 feedforward layers, with a learning rate multiplier of 0.01. A standard
pixel2style2pixel (pSp) architecture was used for the encoder, truncated to 14 style vectors as
well. Conditioning networks in the generator used stacks of 2 transformer decoder blocks (see
Fig. 5.3), with 16 attention heads and latent size 512. The discriminator used the standard
StyleGAN2 discriminator architecture as its encoder, with the last layer removed. The multi-set
transformer model in the discriminator used a stack of 4 multi-set attention blocks, with mean
pooling, skip connections surrounding the multi-set transformer network, and a linear output
projection. Training was performed using the StyleGAN2 training schema, with a nonsaturating
loss, R1 gradient penalty (λ = 10), path length regularization (λ = 2) and style mixing (p = 0.9).
The model used lazy regularization, with the R1 penalty applied every 16 steps, and path length
regularization applied every 4 steps. The generator weights used an exponential moving average,
with γ = 0.999. Training, validation and test splits for each dataset followed the standard splits
in prior work, except as discussed previously (see Ding et al. [2022], Hong et al. [2020a], Gu et al.
[2021], Hong et al. [2020c]).

Experiments were performed using NVIDIA A40 GPUs. Each model was trained for approx-
imately 1 week using 2 GPUs in parallel via data parallelism.

1https://github.com/unibester/AGE

117

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Word2Vec: A Motivating Example
	Distributional Similarity across Languages
	Distributional Semantics and The Distributional Inclusion Hypothesis
	Probabilistic Word Embeddings for Polysemy and Homonymy

	Core Problems
	The Problem of Noise in Natural Language
	Approximating Distances between Distributions

	Contributions & Overall Structure

	Background
	Preliminaries
	Word Embeddings
	Attention
	Generative Adversarial Networks
	Diffusion Models
	Few-Shot Image Generation

	Focus Areas
	Robustness in Natural Language
	Hypernymy and Approximating Distances between Distributions

	Robust Word Embeddings
	Introduction
	Related work
	Robust Methods
	Probabilistic Word Embeddings

	RED
	Robust Model
	Ensembling

	Experiments
	Results
	Clean Training
	Noisy Training

	Analysis
	Ablation Study
	Examples
	Computational Cost
	Hyperparameter Analysis

	Conclusion

	Multi-Set Transformers
	Introduction
	Related Work
	Method
	Background
	Multiple Sets
	The Proposed Model
	Multi-Set Transformer
	Variable-Dimension Encoders

	Theoretical Analysis
	Proof of Theorem 4.4.2
	Construction of the Contextual Mapping
	Proof of Lemma 6'
	Proof of Lemma 7'

	Experiments
	Statistical Distances
	Image Tasks
	Analysis
	Scaling

	Discussion and Conclusion

	SetGAN
	Introduction
	Related Work
	Few-shot GANs
	Diffusion models
	Image translation
	Set-based approaches in GANs

	Methods
	Architecture
	Latent space truncation

	Experiments
	Setup
	Datasets
	Baselines
	Evaluation procedure and metrics

	Results
	Quantitative Results
	Qualitative Results
	Inference Time

	Analysis
	Effect of the conditioning network by reference image
	Effect of the conditioning network by layer
	Effect of the base style vector

	Conclusion and Future Work

	Conclusion
	Contributions
	Future Work

	References
	APPENDICES
	Appendix 1
	Experiments and Baselines
	Ablation Results
	Hyperparameter Analysis
	
	K
	M

	Appendix 2
	Experiment Details
	Attention Derivation

	Appendix 3
	Architecture and training details

