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Abstract

Explainable AI methods have been proposed to help interpret complex models, e.g.,
by assigning importance scores to model features or perturbing the features in a way that
changes the prediction. These methods apply to one model at a time, but in practice,
engineers usually select from many candidate models and hyperparameters. To assist with
this task, we formulate a space of comparison operations for multiple models and demon-
strate CAMEO: a web-based tool that explains consensus and expertise among multiple
models. Users can interact with CAMEO using a variety of models and datasets, to ex-
plore 1) consensus patterns, such as subsets of the test dataset or intervals within feature
domains where models disagree, 2) data perturbations that would make conflicting models
agree (and consistent models disagree), and 3) expertise patterns, such as subsets of the
test dataset where a particular model has surprising performance compared with other
models.
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Chapter 1

Introduction

Society is increasingly adopting AI models across numerous decision-making domains that
range from credit scoring [13] to employment assessments [31]. However, these advances
come at the expense of rising complexity for data-intensive models, which impacts several
steps of the machine learning workflow such as feature extraction, feature transformation,
model selection, and model evaluation [39]. For example, extracting meaningful feature sets
from a large number of attributes is a non-trivial problem that requires repeated testing
against the data itself [3]. The complexity of adopted models makes it difficult for users to
easily understand internal mechanisms and interpret their results: users often view these
models as black boxes [6]. Thus, helping users interpret their AI models serves as motivation
for solutions that support explainable artificial intelligence (XAI). We generally categorize
work towards explaining machine learning models as instance-centric and feature-centric:

1. Instance-centric explanation methods identify unusual or surprising data subsets with
respect to a given property. Examples include InfoMoD [14] and model slicing [10],
which find subsets of the test dataset where a model under- or over-performs com-
pared against its average behavior. Additionally, GOPHER [30], finds subsets of the
training dataset that contribute to model bias.

2. Feature-centric explanation methods identify important features in a model. Ex-
amples include saliency methods such as SHAP [26] and LIME [33] that score model
features according to their importance to the prediction, and counterfactual methods
such as DiCE [28] and NICE [7] that identify minimal perturbations to feature values
that change the model output.
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These XAI methods are crucial for many tasks such as model debugging, bias mitiga-
tion, evaluating data quality during training, and establishing trust behind model outputs
and decision-making processes.

1.1 Problem and Applications

Machine learning operations or MLOps represent a set of best practices for the reliable
development, deployment, and maintenance of models in production. A typical machine
learning pipeline that works towards deploying models will include steps geared towards
data collection of labeled and unlabeled data, as well as training and testing various can-
didate models. A crucial step before deployment is then model selection, the process of
singling out the most appropriate model from this set of candidate models for the task
of inference or prediction. Selecting an unsuitable model that poorly fits the data can
contribute to misleading outputs; engineers responsible for model selection want to deliver
a model with excellent predictive and computational performance for a given problem.
Thus, engineers typically consider the following actions when performing model selection:

1. Experiment with different types of models (e.g., multi-layer perceptrons [35], extreme
gradient boosting models [9], ensemble learning models [37]) that they believe are
appropriate for the given problem to then identify a machine learning algorithm that
best suits their problem. Note that an engineer responsible for model selection may
not necessarily be responsible for training the models themselves; they might be given
models of varying types to then select from as part of the machine learning pipeline.

2. Tweak tuning parameters or hyperparameters of a machine learning algorithm, that
results in different models, to identify a model configuration that best improves
desired metrics such as accuracy, sensitivity, and training costs. Similar to the above,
as part of the machine learning pipeline, the engineer might be given models with
varying hyperparameters to then select from.

3. Rank candidate models against each other by estimating their respective performance
on various datasets via model selection techniques [32].

Several model selection techniques exist in the literature such as resampling meth-
ods that score models based on their performance on out-of-sample data (e.g., cross-
validation [17]) and probabilistic measures that score models based on their model com-
plexity and performance on training data (e.g., Akaike information criterion [1]). Several
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methods for hyperparameter tuning also exist such as random search [5] and automatic
tuning frameworks (e.g., Hyper−Tune [25]). However, these techniques do not offer ex-
plainability over candidate models. A model engineer could select a best-performing model
according to these techniques that unknowingly contributes to adverse societal outcomes
such as amplification of bias. For example, Seyyed-Kalantari et al. found that chest X-
ray prediction models consistently and selectively underperform for patient groups such as
Black female patients. If left unchecked, these model biases can escalate existing system-
atic biases and contribute to real-life consequences such as under-served patient subgroups
receiving suboptimal medical care [41].

To the best of our knowledge, existing explainability work focuses on an individual
model in isolation. However, as described above, model engineers in practice face the task of
selecting a model from a vast range of models, and fine-tuning numerous hyperparameters.
They must perform thorough model comparison to help mitigate the potential business
impact of replacing an old production model [46]. To find areas of improvement, model
engineers need to understand the strengths and weaknesses of models such as why, when,
and where a model performs better or worse than other candidate models (e.g., a model
returning inconsistent results relative to other models) [22, 47, 49]. This model comparison
can also provide insights into model ensembles, such as finding models that complement
each other to then effectively combine for improved performance [49].

A simple solution for explaining multiple candidate models is to compute accuracy and
sensitivity metrics, as well as explanations via XAI methods, for each model individually
and then compare them manually side-by-side [47]. This process is unfortunately not
scalable as the sets of candidate models, hyperparameters, and input features can be very
large. For instance, GPT−4 has more than a trillion parameters [4]; training NASNet
to convergence on the image database ImageNet took multiple days [51]. The growing
size of datasets and complexity of models also require techniques to summarize relevant
information at a high level to ease inspection [49]. Thus, the described simple solution is
not user-friendly, and can fail to unearth many relevant patterns.

A significant challenge lies in defining a space of explanations that explain multiple
models. For example, what does it mean to provide intuitive instance- or feature-centric
explanations for multiple models as part of bias mitigation? Can we concisely compare
multiple models and find patterns that offer valuable insights into model selection and
hyperparameter tuning?
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1.2 Contributions

To address the emerging problem of finding and explaining differences or similarities be-
tween how a set of models behave, we present CAMEO, an MLOps tool engineered to
explain model agreement across multiple models and find where models are relative ex-
perts. Our contributions span conceptual, technical, and practical aspects, offering insights
for various use cases. We now summarize our contributions below:

1. Problem Formulation. On the conceptual front, we formulate a novel space of model
comparisons along two axes. First, we explore how to define consensus and expertise,
while also distinguishing between prediction consensus (i.e., if models made the same
prediction) versus logic consensus (i.e., if they paid attention to the same features
when making their decision or whether they had similar SHAP explanations for a
given instance). These consensus measures enable users to evaluate the robustness of
their models over various contexts and also isolate potential reasons for agreement or
disagreement. For expertise, CAMEO can find surprising subsets of the test dataset
where a model has atypical performance compared with other models, enabling users
to better find where models are a relative expert in.

Second, we examine where we find expertise, consensus, or discord amongst the
models, considering row-wise data subsets versus column-wise intervals within feature
domains.

2. Explaining Consensus and Expertise. On the technical front, we present CAMEO,
an interactive web-based tool designed to facilitate these comparisons. We employ
information-theoretic rule mining methods and feature plots to identify notable data
subsets and intervals, enabling users to then drill into via counterfactual analysis
to better understand the decision boundary between model agreement and disagree-
ment.

3. Applications. On the practical front, we demonstrate how users can interact with
CAMEO on real-world datasets, including strip-search arrestee data from the Toronto
Police Service, New York City flight departure delay data, S&P500 financial data
from Yahoo Finance, and the Pima Indian Diabetes dataset. This demonstration
showcases CAMEO’s ability to offer valuable insights into model selection and hyper-
parameter tuning. For example, if a user selects the strip-search arrestee dataset and
a set of predictive AI models, CAMEO can find informative subsets where models
have unusually high prediction disagreement. This allows users to identify models
that handle sensitive subsets well (e.g., Indigenous youth).
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We specifically detail the following curated use cases:

(a) Model Type Selection: CAMEO can identify unusual consensus patterns for a
set of various pre-trained models with varying model types.

(b) Hyperparameter Tuning: CAMEO can identify unusual consensus patterns for a
set of pre-trained models with varying hyperparameters.

(c) Finding Model Experts: CAMEO can identify unusual patterns where a model
appears to be an expert relative to other candidate models.

1.3 Outline of the Thesis

In Chapter 2, we provide some background about explanation tables, the aforementioned
information-theoretic rule mining approach that CAMEO leverages. In Chapter 3, we dis-
cuss related work to CAMEO and provide additional background on related XAI methods.
In Chapter 4, we discuss our approach and formulate a conceptual answer to the problem.
In Chapter 5, we discuss our curated use cases performed on real-world datasets. Finally,
in Chapter 6 we discuss both the limitations of our work and potential extensions for future
research.
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Chapter 2

Preliminaries

In this chapter, we provide some background on explanation tables [16], an information-
theoretic ruling mining method that CAMEO leverages to generate row-wise patterns.

2.1 Explanation Tables

Consider a dataset D with a set of features F (i.e., dimensional attributes that are numeric
or categorical) and a target T (i.e., measure attribute that is either numeric or binary).
Let F = {F1, ..., Ff} be this set of f features, where dom(Fi) is the domain of the ith
feature. The wildcard or star character, “*”, represents all possible values of that feature,
akin to ALL in a data cube.

To summarize the distribution of T with respect to F, an explanation table consists
of k patterns that contain the most information about this distribution. Although k is
a user-specified parameter, for the purposes of this thesis, we expect k to range between
10 and 20 so that we do not present too many patterns to a human user. Each pattern
r (i.e., a row-wise data subset or rule) is then a tuple from the data cube over F (i.e.,
(dom(F1)∪{∗}) × · · ·× (dom(Ff )∪{∗})) that captures a group of datapoints—expressed
as conjunctions of values or value ranges—for the given set F. We specify that a tuple t in
D matches r if and only if either r[Fj] = ∗ or r[Fj] = t[Fj] for each feature in F.

We now use a similar dataset and explanation table to that in [11] as follows to illus-
trate how an explanation table can summarize the distribution of T with respect to F. In
Table 2.1, each row represents a flight that specifies an ID, the day, the origin airport, the
destination airport, and whether the flight was delayed. In other words, the set F consists
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of day, origin, and destination, while T is a binary value that is 1 if the flight was delayed
and 0 otherwise.

ID Day Origin Destination Delayed
1 Fri SF London 1
2 Fri London LA 1
3 Sun Tokyo Frankfurt 0
4 Sun Chicago London 1
5 Sat Beijing Frankfurt 0
6 Sat Frankfurt London 1
7 Tue Chicago LA 0
8 Wed London Chicago 0
9 Thur SF Frankfurt 1
10 Mon Beijing SF 0
11 Mon SF London 0
12 Mon SF Frankfurt 0
13 Mon Tokyo Beijing 0
14 Mon Frankfurt Tokyo 0

Table 2.1: An example flight delay dataset from [11] adapted for this chapter.

Day Origin Destination Target
* * * 0.36
Mon * * 0.00
* * London 0.75

Table 2.2: An example explanation table for the dataset in Table 2.1.

Table 2.2 is a corresponding explanation table that consists of three different patterns.
Every pattern in this table reports their target rate in the “Target” column; i.e., the
percentage of tuples or datapoints that match the pattern with a positive target. The first
pattern at the top of this table, an all-stars rule with the “*” value for all features, matches
the entire dataset. Note how the target is 0.36; i.e., 36% of total flights were delayed. The
second rule states that no flights on Monday were delayed, while the third rule states that
75% of flights bound to London were delayed. Thus, Table 2.2 specifically summarizes the
distribution of flight delays in Table 2.1.

In an explanation table, the first pattern at the top is always an all-stars rule that
matches the entire dataset. To determine the remaining patterns, we use the greedy algo-
rithm described in [16] that iteratively selects patterns that provide the most information

7



about the the distribution of T, until k patterns have been found. We quantify this in-
formation via Kullback-Leibler (KL) divergence [19], which measures the distance between
the true and estimated probability distributions of T based on the explanation table. To
estimate the distribution of T, the algorithm fits a maximum-entropy estimate of T based
on the information contained in the patterns found so far. Thus, the information content
for any candidate rule is the corresponding reduction in KL-divergence should the esti-
mated maximum-entropy distribution be updated with the information reported in that
candidate rule. Note that CAMEO allows the user to filter out low-support candidate rules
via a minimum support threshold parameter, where support is how many tuples match
that specific rule.

Table 2.3: Example explanation table generated by CAMEO for the strip-search arrestee
dataset.

We now stress that the explanation tables generated by CAMEO use completely different
targets from that in Table 2.2: we specifically engineer the targets in CAMEO’s row-
wise patterns for the purposes of model comparison. For example, Table 2.3 consists of
four different patterns and is a smaller version of the full explanation table presented in
Table 5.1. In this specific table, the target T is a binary value that denotes whether all
models made the same prediction or not (i.e., prediction consensus). For the purposes of
CAMEO, as T is a binary value, every pattern in Table 2.3 will report their target rate in
the “agree%” column. Note that if T was a numeric measure attribute, we would instead
have a “target” column with the actual numeric value itself (i.e., T is not a percentage).

In Table 2.3, observe how each row specifies the data subset, si, based on feature values.
For the purposes of CAMEO, all columns before the “support” column correspond to the set
of features. For example, the first pattern at the top of this table is the all-stars rule as the
Perceived Race, Sex, and Age group at arrest columns for this row all have the “*” value;
82.4% of records for the entire dataset have a positive target. The second rule matches male
Indigenous adults, where 76.0% of records have a positive target. Along similar lines, we
can observe how the third rule matches individuals that are 64 and younger with unknown
or legacy race, and the fourth rule matches individuals that are female East/Southeast
Asians.
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In the explanation tables generated by CAMEO, we also have more columns to report
additional statistics for each subset. Each row consists of a support (how many data-
points match si), the average similarity of model explanations (SimilarSHAP, details in
Section 4.1.1), the prediction accuracies for each model and a majority voting ensemble
(the fraction of datapoints in si where the predictions correctly match the ground truth),
and the model or ensemble with the best F1 score (a metric that measures precision and
recall of a classification model). Note that a majority voting ensemble in this scenario is a
soft voting ensemble model that predicts the class based on the largest summed probability
from the constituent models. To give an example of reading these statistics from Table 2.3,
we can observe how the third rule has a support of 4938 (i.e., matches around 7.6% of total
datapoints), an avgSimilarSHAP of 0.815543 (i.e., the average similarity of model expla-
nations in this data subset is less than the average similarity of model explanations for
the entire dataset), and that the ensemble model actually has the best F1 score compared
against the individual models.

All together, these patterns summarize the distribution of the target with respect to
the feature set, which allows the user to identify unusual or surprising data subsets where
the distribution of the target is different from what is expected.
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Chapter 3

Related Work

In this chapter, we review related work similar to CAMEO that considers multiple models
and furthers model understanding, highlighting their differences from our approach (see
Section 3.1). We also review related work based on the XAI methods used in the technical
implementation of CAMEO (see Sections 3.2 and 3.3).

3.1 Frameworks to Understand Multiple Models

Although no existing works explain multiple AI models simultaneously, solutions do exist
in the literature that consider scenarios that involve more than one model.

3.1.1 Side-by-Side Comparisons

In 2016, Kahng et al. designed MLCube and MLCube Explorer [22] as a visualization tool
that enables users to explore aggregate statistics and evaluation metrics over data subsets
and interactively drill down into models. Its goal is to allow users to find interesting pat-
terns between features and model results. However, [22] only visualizes the performances
of up to two user-selected models side-by-side. For example, in part A of Figure 3.1, the
user visualizes the performance of two different models and observes that the latter model
has significantly improved accuracy over the other model for the subset user age group
= 0. By selecting and drilling down into this subset (see part B), the user can observe
interesting patterns between the tfidf sim query title feature and model accuracy. Note
that the user must manually define these subsets via relational selections using both data
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Figure 3.1: Comparing performance of two models via MLCube for user age group = 0 [22].

attributes and features. Thus, MLCube is unable to automatically find interesting subsets
such as those with surprising performance differences between models.

In 2020, Wexler et al. proposed WIT [47] as an interactive tool that probes the behavior
of models and visualizes their performance via confusion matrices (i.e., tabular summary
that compares ground truth with model predictions) and scatter plots of datapoints to
highlight correct and incorrect predictions. WIT can also further evaluate differences in
performance and fairness by drilling into slices of the dataset based on feature values. For
example, Figure 3.2 visualizes the performance of two different models over two different
subsets: male and female, while outputting confusion matrices for both models. Similar
to [22], WIT still manually compares individual models side-by-side; it only allows users to
probe the input and output of models. Zhang et al. from Uber Technologies presented a
similar work to WIT in Manifold [49], though their visualizations are preset and less flexible.

In 2023, Wang et al. proposed LFD [46], a framework to visually compare feature
importances across two classifier models. Similar to CAMEO, LFD identifies data instances
with disagreed predictions and leverages a feature-centric explanation method such as
SHAP to compute feature importances. At a high level (see Figure 3.3), LFD compares
two models A and B by first taking a dataset and feeding it into A and B to retrieve their
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Figure 3.2: Comparing performance of two models via WIT by gender [47].

Figure 3.3: Process used in LFD to compare two models [46].

prediction scores for data instances (Step 1○). For each model, LFD sorts these scores in
decreasing order, setting a user-defined threshold as the score cutoff (Step 2○). If scores
are above this cutoff, then we consider them highly scored by the model. LFD takes these
two sets of scores and joins them into a disagreement matrix (Step 3○) where one cell
corresponds to data instances being highly scored by both models (A+B+), and the other
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two cells correspond to data instances being highly scored by one model but not the other
(A+B−, A−B+).

Using ground truth, LFD further divides the disagreement matrix into two matrices:
one for true positives, and the other for false positives (Step 4○). LFD then trains two
discriminator binary classifiers to differentiate between A+B− and A−B+ instances from
the true positive and false positive matrices, respectively (Step 5○). Note that this step
requires the user to manually propose features derived from the disagreed instances for this
training dataset. LFD can then interpret the discriminators via SHAP to determine which
feature in what condition is more important to one model over the other, allowing the user
to gain more insight into the differences between A and B (Step 6○).

To summarize, these existing approaches visualize the performance of two models side-
by-side. However, CAMEO does not rely on side-by-side comparisons and instead leverages
methods such as explanation tables to summarize model agreement and expertise which is
novel and more concise.

3.1.2 ModelDiff

Figure 3.4: Process used in ModelDiff to find distinguishing features between two models
in terms of how they use training data to make predictions [47].

13



In 2023, Shah et al. presentedModelDiff [42], a framework that compares two supervised
learning algorithms. Note that a learning algorithm is the whole process of mapping
training datasets to AI models. At a high level (see Figure 3.4), ModelDiff first computes
two sets of datamodels, one for each learning algorithm (Step 1○). A datamodel for a
test example x is a simple function that directly maps training data to predictions. More
specifically, it is a linear function that takes any subset of the original training data (S’)
and predicts the output of models (i.e., those trained with the learning algorithm) on x
should they be trained on S’.

For each test example x, ModelDiff then computes two residual datamodels to determine
the difference in how the learning algorithms use training data (Step 2○). The first residual
datamodel represents a weighted combination of training examples that influences models
trained with one of the learning algorithms on x after projecting away the component that
influences models trained with the other learning algorithm, and vice versa for the latter
residual datamodel. These two sets of residual datamodels enable ModelDiff to better
understand how models trained with different learning algorithms differ at a per-example
level.

To understand global differences in model behavior, ModelDiff uses a dimensionality-
reduction method to distill residual datamodels into distinguishing training directions (i.e.,
set of weighted combinations of training examples) that generally influence predictions
trained with one learning algorithm but not the other (Step 3○). A user of ModelDiff
can then look at these training directions to find test examples whose residual datamodels
are most aligned with that direction to identify a set of subpopulations or distinguishing
features that are specific to one learning algorithm and not the other. Finally, ModelDiff
performs counterfactual experiments to verify whether these distinguishing features legiti-
mately influence model behavior (Step 4○).

To summarize, the main intuition behind ModelDiff is that models that use different
features to reach their final prediction will rely on different training examples to make
those predictions. ModelDiff is an orthogonal work to CAMEO because it focuses on helping
model engineers improve the efficiency of training by finding groups of training examples
that strongly influence predictions made on a subset of test examples for models trained
with one learning algorithm but not the other.

3.2 Instance-Centric Explanations

Instance-centric explanations explain models in terms of surprising data subsets with re-
spect to a given property. This section focuses on solutions that automatically find such
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data subsets.

In 2020, Chung et al. proposed SliceFinder [10] to find the top-k largest and most prob-
lematic subsets where an AI model underperforms compared against its average behavior.
Their technique of model slicing ranks subsets of the test dataset based on how poorly the
model performs over a given subset compared to the rest of the data. SliceFinder lever-
ages statistical techniques such as training a decision tree to partition examples into slices
before performing a Breadth-First-Search on the decision tree to find statistically signifi-
cant and large enough subsets. Note that a decision tree-based model splits data multiple
times according to cutoff values in the features, which creates different data subsets where
each instance belongs to one subset (i.e., distinct rule-like groups). However, decision trees
can be unstable depending on the training dataset and could potentially have a lack of
smoothness. Thus, [10] also proposes a Lattice Search variant, where slices form a lattice
that can then be searched to find results. In 2021, Sagadeeva et al. proposed SliceLine [36]
that specifically focuses on improving SliceFinder’s scalability and speed. At a high level,
SliceLine leverages monotonicity properties of slice sizes, errors, and resulting scores (e.g.,
authors of [36] observed that slice sizes and errors are monotonically decreasing along a
direct path in the lattice) to enable effective pruning.

In 2022, Pradhan et al. proposed GOPHER [30] to help explain bias in an individual AI
model. GOPHER’s explanations identify training data subsets responsible for model bias
by scoring subsets based on their contribution to model bias and then outputting the top-k
patterns that cause the most bias. Note that GOPHER derives bias from a fairness metric
such as statistical parity (i.e., does the algorithm that classifies protected and privileged
groups with the same probability fit within some threshold?). GOPHER also provides
update-based explanations that use interventions to measure the effect of patterns in data
that significantly promote bias by removing a subset of data (i.e., one believed to be the
root of bias), before evaluating whether a model built on the remaining data has less bias.

To summarize, these existing approaches focus on the problem of model diagnostics.
However, they can produce verbose outputs should subsets exceed a given error or bias
threshold in their algorithm, thus motivating CAMEO’s use of explanation tables instead.
From the context of explaining individual models, in 2023, Esmaeilzadeh et al. proposed
InfoMoD [14] which leverages explanation tables to tackle the problem of model diagnostics.
At a high level, InfoMoD looks at how a model performs across different subsets of the data
and points out surprising data subsets with performance indicators such as false positives
and false negatives. Dadvar et al. similarly leveraged explanation tables in POEM [12] to
find patterns that link somatic concepts such as shapes and colors to model predictions
from convolutional neural network image classifiers. Dadvar et al. effectively reduce the
problem of unstructured data to that of structured data by 1) transforming image data to
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tabular data, and 2) using simpler models such as decision trees and explanation tables to
then explain black-box outputs.

3.3 Feature-Centric Explanations

Feature-centric explanations explain models in terms of features and their outcomes. We
can generally categorize them as saliency-based methods, counterfactual-based methods,
and hybrid methods that combine the two.

3.3.1 Saliency-based Methods

Feature attribution methods tend to quantify how responsible input features are for model
outcomes. In 2016, Ribeiro et al. presented LIME [33], which relies on the technique of
approximating a black-box model with a simpler and more interpretable model to help
explain it. This well-known method first generates random neighboring instances around
dataset samples by performing small perturbations. LIME then creates a surrogate linear
model to simulate the local behavior of the black box in question, using its feature im-
portance values to explain the model decision. This allows the user to identify what is
the most important attribute around the datapoint of interest. Note that one drawback
of LIME is its assumption of linearity, which makes it unsuitable for complex time series
data [29].

In 2017, Lundberg and Lee proposed the SHapley Additive exPlanation method [26] to
generate local explanations (SHAP) without a linearity assumption, motivating its use in
CAMEO. Inspired by classic game theory, this well-known method computes the impor-
tance of features based on their additive Shapely values. At a high-level, SHAP considers
each feature as a player in a m-person game to fairly distribute feature contributions to
the model output by comparing the output of the same model when a feature is present
or not present. It can then assign a single numeric score for each input feature to a model
to approximate the relative importance of input features on model output.

3.3.2 Counterfactual-based Methods

Counterfactuals-based methods identify minimal perturbations to input features that change
the model output. The SEDC method by Martens and Provost [27] is one of the first works
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to formally introduce the concept of counterfactuals. In 2022, Geng et al. [18] proved that
rule-based explanations (i.e., those that identify an ideally small set of features whose val-
ues likely lead to the same outcome [8, 34]) and counterfactual-based explanations are duals
to each other. [18] also presented an approach to generate local rule-based explanations
using a counterfactual-based explanation system.

In 2018, Wachter et al. [45] proposed counterfactuals as an optimization problem, using
a distance term to ensure their counterfactuals are close to the original instance. In 2020,
Mothilal et al. proposed Diverse Counterfactual Explanations (DiCE) [28] which allows the
user to tune a diversity hyperparameter to generate multiple counterfactual explanations
for each observation. For example, they provide a genetic algorithm variant that is model-
agnostic. Note that diversity is how different the resulting counterfactuals are from each
other so that the system can provide multiple different explanations for a single query case
(i.e., different users may find different explanations helpful). DiCE also enables the user
to add constraints on counterfactual generation such as specifying what features can be
varied and their permissible ranges.

In 2022, Brughmans et al. presented Nearest Instance Counterfactual Explanations
(NICE) [7] which can generate counterfactual explanations for tabular data by exploiting
information from the nearest unlike neighbor to speed up the search process. They also
propose four different versions to optimize explanations in terms of sparsity, proximity, and
plausibility. Proximity is how close the query is to the generated counterfactual instance,
which is typically measured via distance metrics. Sparsity is if (ideally) the generated
counterfactual instance only modifies a small number of features. Plausibility is how rep-
resentative the generated counterfactual is of the underlying data distribution (i.e., can
have counterfactuals with high proximity but are out-of-distribution, which corresponds to
low plausibility).

In 2021, Schleich et al. proposed GeCo [38] that focuses on optimizing counterfactual
analysis for a given instance of interest to generate explanations quicker at a interactive
speed. Note that GeCo also focuses on local explanations to explain a single prediction while
keeping explanations plausible. For example, in Figure 3.5, GeCo found a counterfactual
for a decision tree model that only perturbs the CapitalGain value. For the neural network
model, GeCo found a counterfactual that suggests a realistic increase in education and age.
Indeed, GeCo uses its own language PLAF to help define constraints for plausibility and
feasibility (e.g., filter out individuals who are older than 80).

At a high-level, GeCo efficiently explores the space of counterfactual explanations for
tabular data via a genetic algorithm that prioritizes counterfactuals with fewer feature
changes. This genetic algorithm first defines an initial population of candidates based on a
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Figure 3.5: Example counterfactuals generated by GeCo and other methods [38].

given instance of interest, before it iteratively selects the fittest counterfactual candidates
in the population and generates new candidates via mutation and crossover operations on
selected candidates. GeCo then repeats this iterative process until it reaches a sufficient
number of examples. Note that GeCo uses the following optimization techniques to speed
up this iterative process. First, it does not store all possible candidates as it groups the
current population by the set of features that differ from the given instance of interest.
GeCo represents this subpopulation as a single relation whose attributes are only that set
of features. Second, if GeCo also has access to the model’s code, it can translate the model
into a simpler model that can then be used for any candidates with that specific set of
features [38].

To summarize, many counterfactual methods exist in the literature. However, we specif-
ically leverage DiCE in CAMEO because of its model-agnostic variant, the diversity of coun-
terfactuals, as well as its support for defining which features can be varied for outputted
counterfactuals.
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3.3.3 Hybrid Methods

Albini et al. designed CF−SHAP [2], a variant of SHAP that combines feature attribution
with counterfactuals. The intuition behind CF−SHAP is that Shapley values can identify
features that strongly impact the output, but they fail to identify which input values are
associated to output values of interest (i.e., how can we intervene to change the adverse
outcome?). Thus, Albini et al. use a set of counterfactual points instead as the background
dataset to compute Shapely values because they believe feature attributions alone do not
provide enough actionable guidance on how to alter features to change the prediction of
a model. At a high level, this effectively allows CF−SHAP to provide derived trends that
compare features with the counterfactual distribution to better convey relevant information
to the user. For example, in Figure 3.6, the red and blue regions represent areas of the
feature space where the decision is either adverse or not. Colored arrows and scatter
points represent the direction of the Shapley values vector and the background dataset
used for their computation, respectively. In Figure 3.6, note how the leftmost chart (i.e.,
background set is a training set where samples are predicted of being of the same class
of the input) suggests Feature A negatively contributed to the model output but provides
no actionable insight. This is in contrast with the rightmost chart (i.e., background set is
a set of counterfactuals) because now the background distribution depends on the input
X so that X is being compared to samples similar to answering the intended contrastive
question.

Figure 3.6: The effect of different choices of background dataset on Shapley values of the
same input with the same model [2].
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Chapter 4

Methodology

In this chapter, we discuss the space of comparison operations for multiple models as well
as the components that make up CAMEO’s architecture.

4.1 Problem Formulation

The concepts of model consensus and expertise are core to CAMEO. Consider a test dataset
D and a set of n pre-trained models M = {m1, ...,mn} for a classification problem1 where
n ≥ 2. For example, suppose we have models trained to predict if a strip search happened
during an arrest event by the Toronto Police. Note that the models use the same features,
and may be of different types or instances of the same model type but trained using
different hyperparameters. In CAMEO, we categorize the space of model comparisons
along two axes: 1) how to define model consensus and expertise, and 2) where we find
expertise and consensus (or discord) amongst the models.

4.1.1 The How Axis

In a machine learning pipeline, engineers responsible for model selection might not nec-
essarily have access to resources such as training datasets and the model’s code. Thus,
we desire comparison operations that do not rely on the internal logic of models and are

1CAMEO can be used for regression by effectively converting it into a classification problem (e.g.,
defining a threshold for consensus).
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Figure 4.1: Initial space of model comparisons with only test datasets available.

non-invasive. For the how, we consider three different measures: prediction consensus, logic
consensus, and expertise.

We categorize these measures based on the resources available to the engineer (see Fig-
ure 4.1). For example, if they only have unlabeled test datasets and pre-trained models
(i.e., the bare minimum resources), then we can still check whether models agreed or dis-
agreed on predictions (i.e., prediction consensus). If the engineer has additional access to
feature importance scores via existing XAI methods, then they can check whether con-
flicting models paid attention to different features during inference (i.e., logic consensus).
Finally, if the engineer has further access to ground truth, then they can check whether
a model is more correct than others to find situations where a model is a relative expert
(i.e., expertise). In Chapter 6, we envision an expanded space of model comparisons as
future work such as users having access to more resources and being able to define their
own comparison operations.

Regarding consensus, suppose we generally express consensus as a Boolean expression
that is true if all models in M agree on some criteria, and false otherwise. For determining
prediction consensus, we check if models made the same prediction for a given instance.
As an example, if all models agreed that a strip search occurred for a given arrest event,
then we would have prediction consensus. This measure evaluates the robustness of models
over various contexts.

21



To determine logic consensus when we only have access to test datasets, we leverage
the feature attribution method SHAP [26] previously discussed in Section 3.3.1 to compute
approximate Shapley values. We do this for every instance in the test dataset, obtaining a
score for each feature based on its importance for this prediction. This gives a vector for
each model and prediction. For each component in this vector, the magnitude of the score
determines how much that feature influenced the model output, and the sign indicates if
that feature influenced the prediction in a positive or negative way; i.e., the outcome is
more or less likely to occur, respectively.

Our intuition here is that Shapley feature contribution values quantitatively describe
knowledge embedded in a model’s prediction logic. With this intuition, we can now define
two variants of logic consensus. The first variant is straightforward as it is a Boolean
that indicates whether all models have the same highest-scoring features according to the
explanation vectors. This Boolean expression checks whether models agreed on the most
important feature contributor for a given instance. We denote the more fine-grained second
variant, SimilarSHAP, as follows: we first calculate the centroid for the set of explanation
vectors, one for each model, before calculating one minus the average normalized Eucledian
distance between the explanation vectors and the centroid. SimilarSHAP is thus a range
between zero and one, where values closer to one indicate greater similarity among the
decision-making processes. This second variant is a numerical value that measures whether
models paid attention to the same features when making their decisions for a given instance.

These consensus measures allow us to drill down and isolate potential reasons for agree-
ment or disagreement: if the models made different decisions, did they use different logic to
arrive at their decisions? By capturing the degree of consensus, we can identify insightful
consensus patterns over D according to the evaluated consensus measures.

Regarding expertise, the intent of this comparison operation is to identify situations
where a model is unusually more correct than the rest of the candidates. We believe
there exist a few options to define this expertise. One option is to express expertise as a
numerical value that measures the performance difference between a model of interest and
the other best-performing model for a given instance on a fractional level. To be more
specific, we identify the subgroup that a given instance matches (e.g., an Indigenous male
that is younger than 18), and then compute the difference between the overall accuracy of
the model of interest for that subgroup and the overall accuracy of the other most-accurate
model for that subgroup.

Another option to express expertise is as a binary number of length n. For a given
instance, we would use 1 to represent a model being correct and 0 otherwise. For example,
if n is 3, a value of 100 would indicate that the first model was correct but the second and
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third models were not. Note that for the purposes of this thesis we define expertise via the
first option because 1) the second option could return expertise patterns where a model of
interest is compared against non-important models such as the worst-performing model,
and 2) we can precompute the overall accuracies beforehand to help optimize performance.
Thus, this measure allows us to identify data subsets where a model notably outperforms
(or underperforms) relative to the other models in M.

4.1.2 The Where Axis

The where refers to the types of patterns: we consider row-wise data subsets and column-
wise feature intervals where the models predominantly agree or disagree (details in Sec-
tions 4.3 and 4.4). CAMEO also allows users to drill into interesting subsets to perform
counterfactual analysis, in which CAMEO identifies minimal perturbations of the feature
values that would make conflicting models agree or consistent models disagree (details in
Section 4.5). Note that counterfactual analysis has traditionally been used in context of
individual models, but we are the first to apply it to multiple models.

Models
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Row-wise
data
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Training 
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Figure 4.2: An architectural overview of CAMEO.
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4.2 System Overview

Figure 4.2 summarizes the architecture of CAMEO. CAMEO’s current implementation is
as an interactive Python web application (details in Section 4.6) that enables users to gain
further insights into their models via row- or column-wise patterns. Row-wise patterns
are useful for finding subgroups of datapoints with unusual rates of model consensus and
expertise; column-wise patterns are useful for visualizing intervals within feature domains
with unusual degree of consensus or discord. As illustrated in Figure 4.3, the web interface
has two main panels: options on the left, and explanations on the right. The options panel
selects a dataset and changes the view to either a row- or column-wise method (Step 1○).
These methods are orthogonal to each other; for example, we do not need to generate
instance-centric patterns before generating feature-centric patterns. On the explanations
panel, the user can select the models and configure various settings such as the features to
use for generating data subsets (Step 2○). Note that users can choose an example use case
(i.e., model type selection or hyperparameter tuning) in the options panel to automatically
fill out the fields in the explanations panel.

Figure 4.3: Interface of CAMEO before a run.

After pressing the Run button to generate the patterns, if the Tables and Counterfac-
tuals view is selected, the user can also select one of the generated patterns (see Table 5.1),
and drill down into individual datapoints to generate counterfactuals (see Figure 4.4).
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Figure 4.4: CAMEO allows the user to drill down into individual datapoints to generate
counterfactuals.

4.3 Explanation Tables for Row-Wise Data Subsets

To find data subsets with unusual rates of model consensus and expertise, CAMEO gener-
ates three explanation tables as described in Chapter 2, where each table defines the target
t based on the how measures described in Section 4.1.1. For example, prediction consensus
would be a Boolean value that indicates whether all models made the same prediction,
while expertise would be a number that indicates the performance difference between our
model of interest and the other best-performing model according to their accuracies. The
patterns in these explanation tables allow users to understand model consensus and exper-
tise for key subgroups of datapoints based on the set of features chosen for subsetting these
groups. For example, users can choose to return subsets where the pattern feature set only
contains protected attributes (e.g., age). Possible insights could be that model mi handles
some combinations of protected attributes better than other models (e.g., predicting strip
searches done on Indigenous arrestees), that an ensemble handles some subset(s) better
than individual models, or that models are confused about particular subset(s). In the
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latter case, one might need to consider more training data of that type for training newer
models and/or different model types to run with CAMEO.

As described in Chapter 2, we include a column in the explanation table that cor-
responds to the prediction accuracy of a soft majority voting ensemble. Note that this
thesis does not treat model ensembles [50], a popular machine learning approach that ag-
gregates the predictions of multiple pre-trained models to ideally achieve better predictive
performance than individual models, as a first-class citizen. However, helping the user to
understand the relative strengths and weaknesses of different models could assist ensemble
construction because different models are typically used as constituent members to better
exploit the differences in prediction errors (e.g., averaging predictions to ideally improve
performance). In Chapter 6, we envision future work that focuses more on ensembles in
context of our space of model comparisons.

4.4 Feature Plots for Column-Wise Feature-Centric

Patterns

CAMEO can use feature plots to display intervals within feature domains with unusual
degree of consensus or discord. We show an example in Figure 5.1. The x-axis corresponds
to the values of a feature selected by the user (here, the age group of an individual who was
arrested by police) and the y-axis captures the similarity of model explanations based on
SimilarSHAP (here, the class label denotes whether the arrested person was strip-searched).
The plots use two different colors to visualize consensus.

These feature plots enable users to understand how consensus changes over column-
specific feature values, so they can further investigate intervals with concerning feature
values. For example, we observe in Figure 5.1 how models with diverging predictions
generally have dissimilar explanations, and models with converging predictions have similar
explanations. However, some datapoints do not appear to follow this trend (i.e., there exist
intervals where models agree on prediction, but disagree on decision making, or vice versa),
most notably those that belong to the age groups between 18 and 54. Note that in the plots
displayed to the user, we add horizontal random noise to datapoint positions for features
that are discrete and have relatively few unique values to help address overplotting.

To assist further investigation, CAMEO can also generate SHAP feature importance
plots for individual models (see Figure 4.5) as well as a global feature importance plot
(see Figure 4.6). Note that in these figures, the y-axis corresponds to the features while
the x-axis captures the feature’s absolute average impact on model output. For example,
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in Figure 4.6 (i.e., a multiple-bar plot with one bar type for each model), the global
importance of each feature is taken to be the mean absolute SHAP value for that feature
over all the given samples so that users can easily see the most important features as a
whole for models.

Figure 4.5: An example feature importance plot for a specific model that displays feature
importance based on prediction consensus.
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Figure 4.6: An example global feature importance plot for models.
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4.5 Feature-Centric Counterfactuals

After CAMEO produces row-wise patterns as described in Section 4.3, the user can select
specific data subset(s) to raise a second table that contains the datapoints that belong to
these subsets. We show an example in Figure 4.4. Within this second table, the user can
select any datapoint to generate counterfactuals that flip the consensus. For example, a
counterfactual to flip discord to consensus for the selected datapoint in Figure 4.4 is to
perturb ArrestLocDiv from 51 to 11 (see Table 5.3). This helps users to understand the
decision boundary. If the models did not achieve prediction consensus, then a counter-
factual explanation is a minimal perturbation of feature values such that all models make
the same prediction. Likewise, for consistent models that achieved prediction consensus, a
counterfactual explanation is a minimal perturbation of feature values such that at least
one model makes a different prediction.

To produce multiple counterfactuals for a given datapoint, we leverage the model-
agnostic DiCE [28]. At a high level, DiCE formulates an optimization problem (i.e., similar
to finding adversarial examples) and then uses a genetic algorithm to find the best coun-
terfactuals close to the initial point: the algorithm converges relatively quickly to promote
diverse counterfactuals. CAMEO also allows the user to select which features can be varied
to ensure feasibility. This is because we want counterfactuals that still belong to their
drilled down subset; e.g., if our subset is specific to Indigenous adults, then the counter-
factual should not change race.

4.6 Implementation Details

We implemented CAMEO primarily in Python, leveraging existing libraries to build AI
models (e.g., scikit−learn, TensorFlow), handle the front-end (e.g., Streamlit), and efficiently
calculate SHAP values (e.g., FastSHAP [21]). We obtained the C++ explanation table code
from the original authors and then modified it to 1) support a numerical target attribute
by adapting the algorithm described in SIRUM [15] for C++, 2) introduce a minimum
support threshold for patterns with feature numerical ranges, and 3) support both positive
and negative numerical target values by normalizing measure and estimate values before
calculating overall information gain for these scenarios.
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Chapter 5

Experiments

In this chapter, we present multiple curated use cases with various models to demonstrate
how users can gain insights into their models.

5.1 Datasets

To help demonstrate its applicability for various scenarios, CAMEO enables users to explore
various datasets and produce explanations for their own inquiries. We preload CAMEO with
pre-trained models for these datasets; however, for the purposes of this thesis, we only use
the strip-search arrestee dataset when describing the use cases in Section 5.2.

5.1.1 Toronto Police Strip Search Arrest Events

This dataset includes over 65,000 arrest events between 2020 and 2021 with protected
demographic attributes (e.g., perceived race of the arrestee, gender, and age group) and
a binary outcome denoting whether the arrest involved a strip search; i.e., removal of
some/all clothing before visual inspection of the body. Given the issue of systematic racial
disparities in policing, the Toronto Police Service has curated this dataset in the hopes
of identifying, monitoring, and reducing potential systemic racism and racial bias in their
processes [43]. Our aligned goal for this dataset is therefore to identify a model or ensemble
that best handles desired minority subgroups.
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5.1.2 NYC Flight Departure Delay

This dataset includes over 300,000 flights that departed from New York City, for the years
2019 to 2023, to destinations in the United States, Puerto Rico, and the American Virgin
Islands. Some attributes include air travel data from the US Bureau of Transportation
Statistics (e.g., flight date, carrier, origin airport, count of traffic operations at the time,
etc.) and weather data derived from Meteostat (e.g., flag for poor weather such as heavy
hail). The binary outcome denotes whether the flight was delayed, which we define as a
flight that departs at least 15 minutes after its scheduled time.

Besides disrupting travel plans, flight delays can negatively impact the productivity of
airlines and airports in terms of reputation, efficiency, and economy. Small local delays in
airports can also potentially cascade into network-wide congestion for multiple airports [48].
Unfortunately, the flight delay problem appears to be receiving a lot of national attention
lately: numerous passengers are complaining about inadequate compensation for disrupted
travel plans due to delayed or canceled flights. According to Lamb et al. who studied the
social and emotional perspectives of passengers during the COVID-19 pandemic, trust is-
sues that involve COVID-19 and how airlines conduct their operations with staff shortages,
cost-cutting, scheduling, and flight loads contribute to negative passenger perceptions [24].
However, findings from [24] also show that passengers are more likely to trust airlines or
airports should they be better informed about their flights. Our aligned goal is therefore to
identify a model or ensemble that best handles the unusual data subsets found by CAMEO.

5.1.3 Pima Indian Diabetes

This dataset includes hundreds of patients with various attributes to help determine type
2 diabetes in women of Pima Indian heritage. The binary outcome denotes whether the
patient has type 2 diabetes. Some attributes in this dataset include BMI (body mass index),
a function for diabetes pedigree (risk of type 2 diabetes based on family history where larger
values indicate higher risk), age, insulin (2 hour serum insulin), skin thickness (skinfold
thickness of triceps), blood pressure (diastolic blood pressure), glucose (concentration after
a 2 hour oral glucose tolerance test), and number of pregnancies. Our aligned goal for this
dataset is therefore to identify a model or ensemble that best handles sensitive subsets well
(e.g., youth with a family history of diabetes).
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5.1.4 S&P500

This dataset includes over 3,900 records dating back from September 2008 to September
2023 that describe the behavior of the S&P500 benchmark for the US market. The binary
outcome of a record denotes whether the index will be a buy or sell the next day. Some
attributes in this dataset include date, index values (e.g., open, close, volume, etc.), macro-
factors (e.g., returns for Nasdaq, Dow Jones, etc.), and technical indicators (e.g., MACD
and RSI100). Our aligned goal is therefore to identify a model or ensemble that best
handles unusual data subsets found by CAMEO.

5.2 Use Cases

In this section, we discuss the following curated use cases that use strip-search arrestee
data from the Toronto Police Service:

1. Model Type Selection: CAMEO can identify unusual consensus patterns for a set
of various pre-trained model types. For example, CAMEO found subsets such as
Indigenous male adults where all model types are confused. To address this issue, a
user might need to consider more training data or different model types.

2. Hyperparameter Tuning: CAMEO can identify unusual consensus patterns for a set
of pre-trained models with varying hyperparameters. For example, CAMEO found
a particular hyperparameter that results in the model handling some combination
of protected attributes, such as female East/Southeast Asians, better than other
hyperparameters.

3. Finding Model Expertise: CAMEO can identify unusual expertise patterns for a set
of pre-trained models. For example, CAMEO allowed us to learn that a particular
model was a relative expert in handling key subgroups such as male East/Southeast
Asian young adults.

Note that for logic consensus, we specifically describe only the first variant for simplicity.
As mentioned in Section 4.1.1, the first variant is a Boolean expression that checks whether
models agreed on the most important feature contributor for a given instance.
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5.2.1 Use Case #1: Model Type Selection

Consider the following pre-trained models: a light gradient boosted machine (LightGBM) [23],
an extreme gradient boosting (XGBoost) model [9], and a multi-layer perceptron (MLP) [35].
We choose these model types as they are all popular machine learning algorithms for clas-
sification tasks in industry. As illustrated in Figure 4.3, we start by running these models
with the Tables and Counterfactuals view, select three protected attributes (perceived race,
sex, and age group at arrest) as the pattern feature set for explanation tables, and then
select 15 as the number of patterns to return and 0.01 as the minimum support threshold.
From the generated Tables 5.1 and 5.2 that contain all the consensus-related statistics
described in Chapter 2, we observe that the table for logic consensus has a noticeably
lower average consensus compared with the table for prediction consensus (59.4% versus
82.4%). According to these tables, models are more likely to achieve prediction consensus
for female East/Southeast Asians compared against male Indigenous adults (93.3% from
row 14 and 76.0% from row 3 in Table 5.1). Models are also more likely to achieve logic
consensus for Latinos and Middle-Eastern adults that are 45 and older (65.3% from row
15 in Table 5.2) and for Black females between the ages of 25 and 34 (64.7% from row 12),
compared against senior females who are South Asian, or have unknown or legacy race
(45.8% from row 13).

Table 5.1: Use Case #1’s explanation table for prediction consensus.

According to the performance-related statistics for the models and the voting ensemble,
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Table 5.2: Use Case #1’s explanation table for logic consensus.

we see that LightGBM has good overall performance. However, this model did not perform
better for some reported patterns. For example, XGBoost has the best F1 score for Black
adults between the ages of 45 to 54 with known gender (row 10 in Table 5.1). Another
pattern of interest is how the voting ensemble of trained models has better accuracy and
F1 Score for male Indigenous adult arrestees (row 3 in Table 5.1). Note that the models
for this pattern have relatively low prediction agreement (76.0%) and accuracy (less than
80%). This pattern might suggest the necessity of collecting more training data for this
subgroup.

At this point, we observe that many patterns in the explanation tables specify the
arrestees’ age group. To gain a better big-picture understanding, we run the Plots view
with age group at arrest as the feature of interest and look at the feature plots to observe
how prediction consensus changes (see Figure 5.1). We see that models with diverging
predictions generally have dissimilar explanations, and models with converging predictions
have similar explanations. However, adults appear to have some datapoints that do not
follow this; the most notable age groups are 18 to 54. Perhaps data subsets belonging to
these age groups with relatively low AvgSimilarSHAP should be further investigated. The
user also notices in a plot that observes how prediction consensus and correctness changes
(see Figure 5.2) that these age groups have many datapoints where the models achieved
prediction consensus and were incorrect, though this was most notable for the age groups
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Figure 5.1: Use Case #1’s feature plot for prediction consensus.

18 to 54 and was surprisingly less of a factor for the senior age group. A similar observation
also applies for a plot that observes how logic consensus changes (see Figure 5.3).

Switching back to the Tables and Counterfactuals view, we look for one of these afore-
mentioned data subsets to explore further. After selecting a row that corresponds to
Indigenous adults, we drill down to an event where a male individual between the ages of
35 and 44 was arrested in the second quarter of the year inside Division 51 (i.e., Toronto
Centre) for robbery and theft. The police did not strip search this arrestee; they did not
report the arrestee as taking any notable actions. The gradient boosting models, however,
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Figure 5.2: Use Case #1’s feature plot for prediction consensus and correctness.

incorrectly classified this arrestee as being strip-searched.

After choosing actions at arrest and arrest division location as the features to vary
(see Figure 4.4), we generate counterfactuals so that conflicting models agreed on their
predictions (see Table 5.3). For example, all models would report no strip search if the
arrest location division was changed to Division 11. Note that Division 11 corresponds
to Toronto-Roncesvalles, which was the only neighborhood in Toronto to make it into the
finals of the 2012 Canadian Institute of Planners’ Great Places in Canada contest [20]. This
division also has fewer incidents of robbery according to the Toronto Police. For example,
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Figure 5.3: Use Case #1’s feature plot for logic consensus.

from January 1 to November 4, 2023, Division 11 had 74 arrests related to robbery while
Division 51 had 230 arrests [44]. This discrepancy could be a reason why a change to
Division 11 might potentially lead to a shift in model agreement.

To summarize, an engineer responsible for model selection could reach several conclu-
sions after looking at these generated patterns. First, the LightGBM appears to have better
overall performance compared against the other model types. Second, there exist several
row-wise patterns where XGBoost outperforms LightGBM, which could warrant further in-
vestigation of XGBoost or the use of it in an ensemble. Finally, CAMEO found certain
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Table 5.3: Use Case #1: An example counterfactual where a change to arrest location
division caused conflicting models to now agree on no strip search occurring.

subsets where all model types are confused (e.g., male Indigenous male adults), so the
engineer might need to collect more training data or investigate different model types to
better handle these subgroups.

5.2.2 Use Case #2: Hyperparameter Tuning

Table 5.4: Use Case #2’s explanation table for prediction consensus.

Suppose the user decides to tune the hyperparameters of LGBM models. In gradient
boosting, important hyperparameters control the complexity of the tree model; i.e., the
max depth and number of leaves of each tree added to the ensemble. Say the user pretrains
three LGBM models where max depth is some value i, num leaves is around (0.75 × 2i),
and each model uses 200 decision trees in the ensemble, for i = 8, 9, 10. We choose these
parameter values in particular because they result in the overall accuracies of models being
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high and also very close to each other so that there is no clear choice for an immediate
model selection.

We start again by running these models with the Tables and Counterfactuals view to
produce two explanation tables with the same protected attributes as Use Case #1 (see
Tables 5.4 and 5.5). Compared with Use Case #1, the average model consensus is much
higher, which makes sense given that they are the same model type. We see that the models
are more likely to achieve prediction consensus for female East/Southeast Asians (98.5%
from row 6 in Table 5.4) compared against male East/Southeast Asians between the ages
of 35 and 44 (93.3% from row 12). Models are more likely to achieve logic consensus for
White males between the ages of 25 and 64 (89.5% from row 4 in Table 5.5) compared
against Middle-Eastern individuals that are 24 and younger (79.3% from row 15).

Table 5.5: Use Case #2’s explanation table for logic consensus.

According to the performance-related statistics for the models and the voting ensemble,
LightGBM with i = 10 has the best overall performance. However, this model did not per-
form better for some reported patterns. For example, the LightGBM with i = 9 performed
better for Middle-Eastern individuals that are 24 and younger (row 15 in Table 5.5), while
the model ensemble performed better for White individuals between the ages of 35 and 54
(row 6 in Table 5.5). Switching to the Plots view and specifying age group at arrest as the
feature of interest, the plot describing prediction consensus had similar explanations asso-
ciated with consensus and dissimilar explanations associated with discord (see Figure 5.4).
That said, the user notices for many age groups a surprising number of datapoints where
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models achieved consensus but were incorrect, suggesting further investigation of these
subsets (see Figure 5.5).

Figure 5.4: Use Case #2’s feature plot for prediction consensus.

Switching to the Table and Counterfactuals view, we investigate the data subset of male
East/Southeast Asians that are between the ages of 35 and 44, because the model with
i = 9 handles this subgroup the best. Within this subgroup, the user finds an individual
who was correctly classified as strip-searched only by the model with i = 9. This male
East/Southeast Asian was between the ages of 35 to 44 and was arrested in the second
quarter of the year in Division 14 for robbery and theft (see Figure 5.6). The police
reports this individual as cooperative. When generating counterfactuals, the user specifies
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Figure 5.5: Use Case #2’s feature plot for prediction consensus and correctness.

actions at arrest and arrest location division as the features to vary. CAMEO then reports
counterfactuals where conflicting models agreed that the individual was strip-searched.
This counterfactual involved the individual being arrested outside Toronto (see Table 5.6),
which could be a topic for the user to investigate in more detail.

To summarize, an engineer responsible for model selection could reach several con-
clusions after looking at these generated patterns. First, the model variant with i = 10
appears to have the best overall performance compared against the other model variants.
Second, several row-wise patterns exist where i = 10 does not have the best performance,
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Figure 5.6: Finding an individual datapoint for Use Case #2 to generate counterfactuals.

Table 5.6: Use Case #2: An example counterfactual where a change to arrest location
division caused all models to correctly agree that a strip search occurred.

which could warrant further investigation such as consulting with the Toronto Police to
determine if these patterns are important enough to justify the use of a different model
variant in an ensemble. Finally, where an arrestee is arrested appears to be an important
feature at the decision boundary for model agreement in our first two use cases, which
could serve as motivation to further analyze this behavior.

5.2.3 Use Case #3: Finding Model Expertise

Suppose the user intends to identify subsets where a model of interest demonstrates ex-
pertise (or a lack thereof) compared with the rest of the candidate models. Using the
same models, protected attributes, and minimum support threshold as Use Case #1, we
select the LightGBM as our model of interest (i.e., as it had a good overall performance
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according to Subsection 5.2.1) and then run the Tables and Counterfactuals view. From
the generated Table 5.7, we observe that the LightGBM model has slightly better overall
performance compared with the max overall performance of the other models as the target
value is positive (i.e., 0.002 in row 1). According to this table, LightGBM has unusually
high expertise with White males between the ages of 25 and 64 (excluding ages 35 to 44,
see rows 1, 2, and 6), male East/Southeast Asians between the ages of 18 to 34 (see rows
3 and 5), and Black males between the ages of 25 to 34 (see row 4). These patterns might
suggest the necessity of collecting more training data for other subgroups or the potential
of using this model in an ensemble where other models are not experts for these specific
subgroups.

Table 5.7: Use Case #3’s explanation table for the LightGBM model’s expertise.
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Chapter 6

Conclusion

In this thesis, we introduced CAMEO as a tool to summarize consensus and expertise pat-
terns across multiple models. The consensus measures enable users to evaluate the robust-
ness of their models over various contexts and also isolate potential reasons for agreement
or disagreement. The expertise measure enables users to further identify the strengths of
models such as identifying critical subgroups where models are relative experts. CAMEO
leverages rule mining and XAI methods to find these patterns, while also supporting the
use of counterfactuals to identify data perturbations that would make conflicting models
agree and consistent models disagree. Our curated use cases show CAMEO’s ability to
explore these patterns, offering insights into model selection and hyperparameter tuning.
We also created a web application for CAMEO to facilitate interactive analysis of generated
patterns.

6.1 Future Research

As engineers responsible for model selection probably have more resources than just testing
datasets while evaluating models, one future research direction is to expand the space of
model comparisons and support further fine-grained operations to address more use cases.
For example, suppose these engineers now have access to the datasets used for training
candidate models (see Figure 6.1). If we can leverage methods such as ModelDiff [42] to
compute the influence of training data on models, then we can also check whether models
agreed or disagreed on training data subsets. This potentially has use cases for better
evaluating training data quality.
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Figure 6.1: Expanding the space of model comparisons when more resources are available
to engineers.

Further emphasis on the notion of time could be an interesting direction for future
research. Time series data is immutable (i.e., data comes in chronological order) and
append-only (i.e., for data consistency); change over time and the chronological order of
record data are particularly important aspects for time series data. Temporal dependencies
can result in the features that drive a model’s outcome changing over time: for example,
a change in some input features might not immediately change a model’s prediction for
many real-life applications. In context of multiple models, we might have a case where
models compared at one point of time agree on predictions for some data subsets but then
disagree at another point of time. We can also extend this to other comparison operations,
such as models gaining (or losing) expertise at different points in time. Perhaps focusing
more on explanations to better understand temporal dependencies across multiple models
could benefit model engineers? It might also be interesting to treat seasonal-based patterns
as first-class citizens instead of having to rely on range-based patterns from the current
explanation tables.

Although the techniques used by CAMEO do not rely on having access to the internal
logic of models, our experiments currently use structured datasets with predefined data
models and clearly identified features. This limitation leads to a new unexplored research
direction where we generalize our approach: can we also apply CAMEO-like techniques to
unstructured data? Example models for unstructured data include large language models
(LLMs) or models for computer vision applications (e.g., CNNs or convolutional neural
network models). Indeed, our motivation for explaining multiple models still applies for
unstructured data. For example, fine-tuning LLMs (i.e., re-training pretrained LLMs on
specific datasets so that they are better tailored for domain-specific use cases) is still the
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industry standard for companies such as Grammarly: model selection is still a relevant
problem because models such as GPT−4 are not yet being exclusively used.

We can now formulate a new space of explanations for multiple models along an addi-
tional axis: structured data versus unstructured data. This future research would involve
investigating and formulating new techniques to add structure to the unstructured for
CAMEO to then apply comparison operations on. For example, POEM [12], which ad-
dresses individual CNNs, leverages a gradient-based approach inspired by Grad−CAM [40]
to attribute concepts to images. Perhaps we could find concept consensus or discord
amongst CNNs? Regarding expertise, perhaps we can identify a subset of topics where a
LLM or ensemble of LLMs has better performance, or create an expertise taxonomy for
CNNs?

A natural step for extending CAMEO is to better identify its strengths and weaknesses
by consulting with real-life users. When selecting participants for a user study that thor-
oughly evaluates the interpretability and usefulness of explanations and interface provided
by CAMEO, we would prioritize engineers responsible for model selection in particular. We
imagine this user study would involve 1) gathering end-to-end feedback from all stages of
use, and 2) datasets and pre-trained models that all participants are familiar with. Their
feedback would also help us triage new features for improved functionality. One useful fea-
ture could be updating the tool’s interface to support user-defined comparison operations
for use as the target in their generated patterns. For example, the user might decide to
define the target in their explanation tables as the probability of classes from model out-
put to give them a better idea of model confidence across multiple models. Perhaps users
might desire more automation of the selection process such as being prompted beforehand
to specify what patterns must be present so that the tool automatically presents the best
model according to that criteria.

Another direction for future research is to focus more on ensembles as a first-class citi-
zen: can we use CAMEO-like techniques to find more suitable ensembles for data subsets?
For example, engineers can find it time-consuming to balance the cost of creating and man-
aging ensembles with additional performance gains. Perhaps one use case could be finding
which subsets of models (i.e., those that would then make up an ensemble) can handle a
subset of protected attributes better than other model subsets? Could we identify expert
ensembles among a set of different ensembles?

Further optimization of CAMEO could help improve its overall usefulness to users. Re-
garding explanation table generation, further investigating some pruning strategies for po-
tential patterns to present could improve its performance for users. To speed up SimilarSHAP
computation, one possible strategy that we could investigate is running a dimensionality-
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reduction method on each SHAP explanation vector before then computing entropy. In
this case, low and high entropy would indicate similarity and dissimilarity, respectively.
To produce counterfactuals, CAMEO currently leverages the DiCE method [28], which we
found in practice to be a bottleneck performance-wise. One possible improvement is to
allow the user to search for nearest neighbor-based counterfactuals to naturally provide
feasible datapoints that are close in proximity. We can alternatively explore the use of
other libraries such as NICE [7] that look at the nearest unlike neighbor and then itera-
tively introduce feature values from this neighbor into the instance to be explained. That
said, we would have to account for the shortcomings of these other libraries, such as NICE
lacking the ability to set constraints or specify which features to vary.
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