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Abstract

A buman ambulator continuously adapts to changing terrain conditions by modi-
fying the dynamics of movement of its own components and their relationship to the
external world. The study of human locomotion as a biological model of adaptation,
inspires research in a variety of disciplines. Examples include applications where a
robot is required to maneuver on uneven terrain, the assessment of gait abnormalities

in humans, and the improvement of rehabilitation strategies.

In this work, the study of adaptation of human gait is carried out by the devel-
opment of neuro-musculo-skeletal models. The models developed proceed from the
skeletal system inwards; i.e., the skeletal system is modelled first, the muscles are
added next, and finally the central control system is developed.

Skeletal medels (rigid bodies) are developed with various levels of complexity (2-
D and 3-D). The results show translational energy applied at the hip joint provides
a given toe elevation for minimal energy cost. This strategy is most effective when
initiated during the double support phase, and results in increased hip elevation
velocity at toe-off. Also found is that the leading limb ankle push-off is the most
effective strategy for increasing hip elevation velocity at the start of the swing phase.
In addition, contributions of intersegmental dynamics are greater when active (flexor)

control is implemented at the knee joint compared to control at the hip joint.

Next, bi-articular muscles are added, and the muscle force inputs are optimized to
best satisfy the postulated objectives for landing stability, obstacle clearance, and ef-
ficiency of movement. The simulation results demonstrate that the use of bi-articular
muscles is sufficient to clear a range of obstacles with the trailing limb (obstacle en-
countered during early swing). Stride length or landing stability objectives need not
be specified, suggesting a simpler control of trailing limb trajectory by the central
nervous system (CNS). In contrast, while the use of bi-articular musecles can be suf-
ficient to clear obstacles with the leading limb (obstacle encountered during mid to
late swing), a stable landing and smooth toe and knee trajectories are compromised

without suitable initial conditions at toe-off.

vii



A proactive (feed-forward) control system for a novice ambulator is developed
by combining a neural network model, fuzzy logic control, genetic optimization, and
reinforcement learning. The ambulator, after performing several trials, learns to
relate visual inputs of the obstacle size and location to limb movement dynamics.
The ambulator learns to produce the muscle forces and joint velocities required to

step over an obstacle. This is done within a feed-forward network of neurons.

The neuro-fuzzy-genetic model is also used for performing muscle force optimiza-
tion. Some of the findings are: a) for the leading limb stepping over an obstacle, less
active control during the swing phase and more planning during the double support
phase are required; b) for the trailing limb, modifying the initial velocities at toe-off
is not sufficient to achieve obstacle clearance and landing stability, and the addition
of muscles is required to produce a satisfactory trajectory; and c) the model is able to
achieve an adaptive behavior. The model demonstrates satisfactory performance over

a range of obstacles without re-learning the neural weights and activation functions.

Finally, the modelling approach is applied to gain insight to reactive balance con-
trol strategies during locomotion. Specifically, the available response time for recovery
from an unsuccessful step over an obstacle (tripping) is considered. The simulation
results show that the available response time increases with obstacle compliance, size,
and its location within the stride. It also depends on the velocity of the swing foot
and the location of the center of mass at the time of impact. The simulation suggests
that at normal speeds and smaller obstacles, polysynaptic responses to tripping are
the only possible option for the human ambulator. Only if the obstacle is hit in early

swing, is a voluntary response to the trip possible.
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Chapter 1

Introduction

Locomotion is an integral part of an animal’s activity for survival. Like other bi-
ological mechanisms, evolution has sculptured locomotion to increase an animal’s
adaptability to its environment. Interestingly, for transportation on ground, legged
locomotion has been the most common choice of nature. Its outstanding feature,
compared to wheel and track type of locomotion, is the ability of the animal to
use isolated foot holds, thereby increasing maneuverability when negotiating uneven

terrain.

In humans, bipedal locomotion has freed the forelimbs for other activities. This
is obtained at the expense of the development of more sophisticated motor acts: the
main priority for the quadruped or hexapod locomotor is to generate a sequence
of limb movements to produce gait. In bipedal locomotion, however, the balance
constraint and narrower base of support are an added complexity on top the motor

control problem.

The study of bipedal locomotion, and in particular obstacle avoidance as one of its
main features, is advantageous to a variety of disciplines. It is important in assessing
gait abnormalities in humans and improving rehabilitation strategies. Its advantages
have also been recognized in the field of mobile robots, especially in applications

where a robot is required to maneuver on uneven terrain.

To develop a comprehensive understanding of the bipedal locomotor behavior, it is
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necessary to draw on and interpret the existing knowledge in a variety of disciplines.
Engineering techniques can be used to develop models for bipedal locomotion and to
search for answers to many observed behaviors in the study of the human locomotor.
On the other hand, the experimental analysis and observations on human locomotor
behavior can assist us to develop human-like bipeds, which is one of the goals of

bipedal locomotion studies.

Modelling is the major thrust of this thesis. Models of different complexities are

used to gain insights into the adaptability of human locomotion.

1.1 Some Issues in Stepping over Obstacle Strate-
gies

This thesis follows two themes: modelling the adaptation of human locomotion to new
environmental conditions (specifically when stepping over obstacles) and a search for
strategies used for this adaptation (with specific attention to the hip elevation strategy

for obstacle avoidance).

Redundancy is the key to adaptation of the human locomotor in the ever-changing
environment. An excess number of degrees of freedom in the lower limbs' skeletal
system offers a great deal of flexibility in modifying a limb trajectory when obstacles
are encountered in the pathway. In addition, usually more than one muscle acts upon
a joint, thus providing several options for producing a specific joint torque and/or
changing the stiffness in the joints. Evolution has not sufficed to all these: some
muscles span two joints; some of these bi-articular muscles are the principal actuators
for producing the required joint torques during locomotion. Added to this complexity
is the redundancy in the locomotor’s sensory system. The integration of the several
sensory inputs play an important role in the ambulator’s response to the environment.
The failure of some of the sensory systems, muscle actuators, and/or segment joints

are compensated by other sensors, muscle actuators, and/or joint torques respectively.



Can mathematical models provide insights to how the central nervous system
(CNS) deals with the redundancy problem in various levels? What are the CNS
objectives when grouping and integrating information and harnessing the degrees of
freedom in a certain way? Many researchers have used optimization methods to solve
the redundancy problem for muscles spanning one joint. These studies led to the
examination of several potential optimization objectives. However, limited success
was obtained in reproducing the EMG results for muscle activation. More recent
optimization research looked at the effect of the dynamics of movement between
segments. One limitation is that muscle activities show variability between subjects.
There exists a range of solutions for performing a movement task; the optimization

routines, however, usually end up with one optimal solution for muscle forces.

The adaptation of bipedal locomotion must be viewed beyond optimization for
certain obstacle size in a pathway. Adaptation can be viewed as the ability to perform
an appropriate (not necessarily optimal) response to a new condition. Thus, an
adaptive model must keep several venues open for further expansion and inclusion
of other necessary behaviors, having the ability to add new layers of control to its
existing ones. The design and simulation of adaptive models have attracted more
research energy over the last decade. However, very little work has been dedicated

to developing such models for understanding human locomotion.

The other theme in this thesis is to understand the strategies used for the human
adaptation when stepping over the obstacles. Intuitively, we tend to think of people
flexing their swinging limb’s knee and hip to achieve more toe elevation when stepping
over higher obstacles. However, recent experiments show that the strategy of elevating
the swing hip is more correlated to the obstacle height, than the former two strategies.
Does this observed phenomena have any mechanical relevance? How is it produced in
humans? How does it compare to other strategies? The presented work has exhausted

various modelling techniques to gain some insights to these questions.



1.2 Thesis Organization

The models presented vary in levels of complexity (e.g., from 2-D to 3-D). The mod-
els proceed from the skeletal system inwards. The skeletal system is modelled first
(chapters 2 and 3), muscles are added in chapter 5, and control systems are added in
chapters 6 and 7. Thus, each chapter is a step taken towards the development of a

neuro-musculo-skeletal model of human locomotion.

Each chapter deals with a specific phase of this work. Therefore, each chapter

includes its own literature survey, method, results, and discussion.

Chapter 2 describes the formulation of a planar biomechanical link-segment model
and how it is used to study the role of active torques and forces, and intersegmental
dynamics during the swing phase of locomotion over level ground and obstacles. The
material in this chapter was presented at the 8th biennial conference of the Canadian

Society of Biomechanics, Calgary (1994).

Chapter 3 synthesizes the problem of walking over obstacles through the devel-
opment of 3-D models of the swing and double support phases of locomotion. The
models are based on experiments conducted while human subjects stepped over ob-
stacles. The major focus of the synthesis approach is to understand the effects of hip
elevation on the limb trajectory. The material in this chapter was presented at the 9th

biennial conference of the Canadian Society of Biomechanics, Burnaby, B.C.(1996).

Chapter 4 describes a methodology that simplifies the use of Lagrangian multipli-
ers for a multibody dynamical system with nonholonomic constraints. The method
is applied to formulate the link-segment models used for simulation of gait. The
material in this chapter was presented at the 18th annual conference of the IEEE

Engineering in Medicine and Biology Society, Amsterdam (1996).

Chapter 5 presents numerical optimization approaches for investigating the objec-
tives the CNS may use to produce a desired limb trajectory over an obstacle. As well,
the method determines the active controls required when an obstacle is encountered at

various locations during the swing phase of locomotion. The material in this chapter
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is accepted for publication in the IEEE Transactions on Rehabilitation Engineering,
and was also presented in the 17th annual conference of the IEEE Engineering in

Medicine and Biology Society, Montreal (1995).

Chapter 6 describes a model developed to address the problem of learning and
adaptation in a novice locomotor. It combines neural network models, fuzzy linguistic
control, genetic optimization, and reinforcement learning in order to develop a robust
model of learning and adaptation. This model is also used to ascertain the level of

active control necessary for stepping over obstacles.

While previous chapters considered proactive control (planning the movement
before encountering the obstacle) of gait, the model developed in Chapter 7 looks
at the reactive control strategies for recovering from a trip over an obstacle. The
material in this chapter was presented in the Neural Control of Movement meeting,
Mexico (1997).

Finally, chapter 8 summarizes the contributions of this thesis. It also points
out limitations of this work and future directions that this research should take to
move towards a better understanding and modelling of the adaptation in bipedal

locomotion.



Chapter 2

The Role of Active Torques and
Forces and Intersegmental
Dynamics in the Control of the

Swing Phase of Locomotion

A biomechanical model is developed to study the role of active torques and forces
and intersegmental dynamics while walking over level ground and uneven terrain.
The simulation results clearly show that the locomotor control system exploits the
mechanical interactions between segments to simplify control of the swing phase of
locomotion. Two major findings are: (a) while walking over level ground, there are
no initial conditions at toe-off that can produce a swing phase that provides adequate
ground clearance and stable landing, although minimal active control exerted at the
ankle joint is sufficient to achieve a normal swing phase. This suggests that the control
system utilizes the passive mechanical interactions between segments to reduce the
energy cost of this movement. (b) Obstacle avoidance strategies used by subjects to
elevate the limb are most economical in terms of energy cost, while ensuring stable
landing. Specifically, translational energy applied at the hip joint provides a given

toe elevation for minimal energy cost, but severely compromises subsequent landing.
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This strategy is most effective when it is initiated during the double support phase.
In addition, contributions of intersegmental dynamics are greater when active (flexor)
control is implemented at the knee joint compared to control at the hip joint. This
work shows the usefulness of modelling to provide insights into the locomotor control

system.

2.1 Introduction

Knowledge of the plant is essential for the development of a control system. From
an engineering perspective, the control system has to account for the limitations of
the plant and exploit the desirable features of the plant to simplify the control. Re-
searchers studying the control of movement have begun to examine the contributions
of the effector system dynamics to the observed control strategies. Bernstein [10]
in his seminal work clearly stressed the need for studying the contributions of the
passive forces and moments to the final expression of movement, arguing that skilled

movements exploited these passive forces to control movements simply and efficiently.

The dominant contribution of passive forces to the pendular motion of the swing
limb is well demonstrated by the dynamic walking machine of McGeer [51] which
walked and balanced with sole gravitational effect provided by the slope of the terrain
without any active control. Research has shown the similarity of the swing phase
limb trajectory to that of compound pendular motion purely under gravitational
force (Mochon and McMahon [53, 54]). Normal swing motion, as reflected in swing
times, is possible under gravitational force only without any need for active muscle
involvement. However, in their model the foot was rigidly attached to the distal
link. Mena, Mansour, and Simon [52] presented a three degree of freedom model with
a normal hip trajectory. Their model included the foot of the swinging limb. They
concluded that active muscle control at the ankle joint is required to generate a normal
swing. We extend the work of these previous studies by performing a dimensional

search analysis to identify if there is any set of initial conditions, resulting from active



muscle control during the double support phase, that can produce a normal swing
phase motion over level ground. To adequately assess the swing phase motion, we

develop a number of criteria.

Next, we address the role of active muscle control and intersegmental dynamics
when walking over obstacles in the travel path. Zernicke et al. [90] separated the
torques due to gravity, generalized muscle forces (active muscle contraction and pas-
sive deformation of muscle and other tissues) and motion dependent torques. They
compared the changes in these torque components from walking to running, and con-
cluded that the role of generalized muscle forces become more predominant during
running than normal walking. Empirical studies on obstacle avoidance in humans
have shown contribution of specific groups of muscle activity during the double sup-
port phase and the swing phase [50, 60, 63]. How does such an increase in the role of
active torques and forces affect the intersegmental dynamics? McFadyen and Win-
ter [50] showed that while going over obstacles “additional knee and hip flexion is
achieved not by a higher hip pull-off power but rather by reduced knee extensor ac-
tivity during late stance thus allowing the knee to flex more: and further augmented
by an active knee flexor moment immediately after toe-off”. Patla et al. [62] pro-
vided experimental evidence that translational power at the hip joint, in addition to
the knee joint rotational power, is a major contributor to limb elevation for obstacle
avoidance. This suggests that muscle action in the stance limb can cause flexion of
the swing limb. In this work, we use the model to understand the reasons behind
the observed strategies for achieving limb elevation. We also explore the influence of
timing of the hip joint reaction force (which is responsible for the hip translational

power) on limb elevation.

2.2 The Biomechanical Model and Assumptions

A four degree of freedom model with added hip elevation capability was developed
for this study. The model consists of four links representing the thigh, the leg, the



foot of the swing leg, and the stance leg (Figure 2.1). To simplify the equations of
motion, the following assumptions were made: (a) motion was primarily restricted in
the sagittal plane; (b) joints were modelled as hinge joints; and (c) for each segment
the mass distribution was assumed uniform. Anthropometric data were taken from
Dempster provided in Winter [83]. The Lagrangian method was used to derive the
equations of motion. The general form of the equations are described in Appendices
A and B. The simultaneous numerical integration of these equations was performed

using a variable step size 4th and 5th order Runge-Kutta-Fehlberg method.

The uni-directional non-linear dampers (Figure 2.1) model the anatomical con-
straints (knee hyperextension, ankle plantarflexion, and ankle dorsiflexion). The

equations defining the damper dynamics (e.g. knee hyperextension) are :

A s
‘l[k = 1+ e:z:p((03 — 02)5) X (93 - 02) (21)

where:

0 ifé6,<6
A= 0 <, (2.2)
100 if €5 > 6,

The value of S was chosen to ensure the damper becomes active close to full knee

extension (typically S = -100).

The uni-directional feature ensures that the movement is limited only when mov-
ing toward anatomical limits, without locking the segment at that limit. Damping
becomes significant only at joint angles close to the anatomical limits, and the slope
S can be adjusted to avoid impact at the joint limits. Such a damper has the unique
feature of modelling the inelastic collision at the joint limits, which is more representa-
tive of the physical condition than an elastic collision, which will generate oscillatory
motion due to the spring. The limited time length of the simulation and the signif-
icant joint limit sensitive amplitude of the damping force generated, guarantee that

the joint angle will never exceed the joint limit.
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Figure 2.1: A schematic diagram showing a 4 degree of freedom model
which includes the segments for the swing limb (thigh, leg and foot) and
one segment for the stance limb. Uni-directional non-linear dampers are

used to model anatomical constraints. Hip hiking capability is included.
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Each possible swing was determined by a set of seven initial conditions (three
initial angles and four initial angular velocities). The eighth parameter (the stance
leg angular displacement) was determined from the kinematic condition at toe-off.
To establish a basis for comparison of results, we started with a set of experimental
initial conditions during toe-off [83] and varied the parameters around this point. The
initial conditions were adjusted from the experimental values to compensate for the

assumption that the stance limb was considered as a rigid link.

2.3 Control of Swing Limb Trajectory Over Level

Ground

Before proceeding with the simulations, it is necessary to define the characteristics of
a successful swing. When performing a normal swing over level ground, five desired
objectives should be accomplished (Figure 2.2). For each desired objective, control
parameters can be defined. Maintaining all of these control parameters within an
acceptable range will then ensure the performance of a successful swing. Figure 2.2
summarizes the desired objectives and the corresponding control parameters. Note
that the acceptable range is usually defined by the higher and lower limits. We have
proposed these limits only as a basis for comparison. Foot/floor clearance must be
greater than zero to avoid tripping. The upper bound for toe elevation is chosen to
be 1.5 times the average observed in subjects [82]. Stable landing is achieved based
on two criteria: first, the center of mass at landing is posterior to the swing toe;
second, the velocity of the center of mass is less than the average observed during the
swing phase (1.4 m/s from reference [82]). To minimize slipping, we have chosen to
limit the velocity of the foot at landing to 1.5 times its average experimental value (.4
m/s from reference [82]). A step length within 20observed for normal walking speeds
(from reference [82]) is chosen to be an acceptable range. Maintaining all of these
control parameters within an acceptable range will then ensure the performance of a

successful swing. Now we can address one of the questions posed in the introduction.
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Desired Objective | Control Parameter Acceptable Range
Avoid Tripping _ Foot/floor clearance Yie >0
Minimize Potential | Minimize max. Y. Yioemax < 1.5%0.13°
Energy
Achieve Stable Foot anterior to C.M. Xioe - Xem. >0
Landing Upper bound for V. Vem<1.5x1.4°
Minimize Slipping | Upper bound for Vy,, at landing Vo< 1.5%04
Cover Reasonable Normal step length Within 20% of the step
Distance/Step length of 0.5 meters
.Experimental values

Vewm.

v
T

- average

e Xem™>

—-
Vfoot

landing
<«— Step Length —»

Figure 2.2: A schematic diagram identifying objectives that have to be met

for a successful swing phase along with the relevant control parameters.
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2.3.1 Is Any Set of Initial Conditions at Toe-off Sufficient
for Performing a “Normal” Swing Under Gravitational

Force Alone?
Simulation Procedure

Once we established key centrol parameters for evaluating a normal swing, a full
dimensional search strategy was developed to find a set of initial conditions which
maintain all the control parameters within the acceptable range, and hence, does not
violate the desired objectives. Note that a full dimensional search not only varies each
initial condition independently, but also varies all combinations of initial conditions,

and checks the results with the acceptable range of values for the control parameters.

However, to reduce the required simulation effort, sets of pre-factorial simulations
were performed to identify parameter ranges from within which acceptable solutions
would be possible, and to identify trends between parameter variations and the re-
sultant swing trajectory. Amongst others, these pre-factorial studies provided range
limits on the ankle angular velocities in both limbs. For example, Vs was found
to be significantly dependent on the stance ankle angular velocity. Likewise, landing
with the heel within acceptable control parameter bounds required an initial dor-
siflexor activity on the swing limb’s ankle. These pre-factorial results enabled the
search space to be reduced to a three level investigation for ankle angular velocities,
and five levels for the three angular displacements (thigh, knee and ankle). How-
ever, 20 levels were considered for the most significant variables (the thigh and knee

angular velocities). These ranges are summarized in Table 2.1.

Results & Discussion

It is clear that there are no initial conditions at toe-off, which can produce a normal
swing phase in the absence of any active muscle forces. A select group of results from

the simulation is summarized in Table 2.2 (the corresponding stick figures shown in
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Variables Range of Variatioh Levels

0, (deg) 250 to 280 3

0, (deg) 225 to 255 3

0, (deg) 285 to 315 3
0', (rad/s) -1to-3 5
0', (rad/s) Oto5 20
0', (rad/s) “4to1l 20
', (rad/s) Oto5 3

Table 2.1: The parameter ranges and the levels of investigation for each pa-
rameter during simulation for swing phase over level ground under gravi-
tational force alone. The various terms are defined in captions for Figures
2.1 and 2.2.
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Figure 2.3) to guide our discussion. When initial conditions are set close to experi-
mental values [83], the swing limb tends to land with the toe. To avoid this situation,
a dorsi flexor initial velocity (as opposed to a plantar flexor initial velocity) was ap-
plied. Even with a relatively high dorsi flexor initial angular velocity, landing with
the heel only occurs when a knee eztensor velocity instead of the experimentally
observed knee flexor velocity is applied (row 7). In such a situation, the minimal
foot/floor clearance would be the limiting factor. To achieve a normal swing, these
should be combined with higher stance leg velocities (row 7). However, higher stance
leg velocities would result in higher hip velocities, which are not desirable. As well,
independent increase of the stance leg angular velocity will increase both toe clear-
ance and hip velocity, both undesirable (row 2). Increasing the angular velocity of
the swing thigh leads to larger landing velocities with the toe (row 5); however, de-
creasing this velocity leads the body to an unstable landing (row 4). The latter effect

was observed when the backward leg velocity was increased (row 6).

Also notable from Table 2.2 is the very different values of the foot velocity at
landing (column 7) from that of normal values (except for row 3 which refers to
a successful swing). One major difference is that in row 3 the knee reached full
extension (see also Figure 2.3). Therefore an energy transfer form the swing leg to
thigh occurred (through the damper) which resulted in arresting the leg velocity and
significantly reducing it. Another reason for the variability observed in the landing
foot velocity was that the swing foot segment was the last link in the link segment
chain. Therefore, any variation in the links’ initial velocities would alter the swing

foot velocity.

In summary, the results of the simulation suggest that reliance on purely passive
dynamics may allow the subject to clear the ground, but the step length, landing
velocity, and posture are compromised. This would certainly affect the execution of
the next step. Therefore, there is a need for some active control during the swing
phase. As previously noted, the main problem in achieving a satisfactory swing arises

from the inability of the foot to clear the ground during its free pendular motion. Asa
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Row 1 Row 2 Row 3

Row 4 Row 5§ Row 6

Row 7 Row 8

Figure 2.3: Stick diagrams for the various scenarios shown in Table 2.2. The

time interval between the two consecutive stick diagrams is 0.02 seconds.
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0,=103.7 6,=265.4 Stride | Max. Ve Xe X Veu Landed
8,=240.2 6, = 300.0 (deg.) Length | Y, landing (m) Average on

(*): constrained ankle motion (m) (m) (m/s) (m/s)
Normal Values (Winter, 1992)
o', e, e, o', 1.00 A3 4 3 1.4 heel
(rad/s) | (rad/s) | (rad/s) | (rad/s)
Simulation Results
-1.5 2.5 2.5 5.0 0.58 0.07 2.81 -0.03 1.41 toe
-3 25 -2.5 5.0 1.01 0.11 3.07 -0.11 2.86 toe
-1 25 -25 -5 1.06 0.08 0.19 0.34 0.89 heel
-1.5 1 -2.5 5.0 0.39 0.08 2.09 -0.25 1.41 toe
-1.5 3 -2.5 5.0 0.68 0.06 3.15 0.06 1.42 toe
-1.5 25 -3.5 5.0 0.62 0.10 2.61 -0.09 1.42 toe
-3.0 25 0.5 5.0 0.84 0.04 4.23 0.13 244 heel
-1.5 25 0.5 0.5 1.63 0.06 448 0.45 1.40 heel

Table 2.2: Simulation results for swing phase over level ground under gravi-
tational force alone for a range of initial conditions at toe-off. The various
terms are defined in captions for Figures 2.1 and 2.2. The corresponding

stick Diagrams are shown in Figure 2.3.
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solution to this problem, a dorsi flexor initial velocity was applied to the ankle. Such
a solution is not only unrealistic, but also it still does not generate a normal swing.
Empirical data suggest active dorsiflexor control at the ankle joint in addition to hip
and knee flexor control at the end of the swing phase [83]. We applied a moment
to the ankle to maintain it in a neutral position throughout the course of the swing
phase, and examined the control parameters defined before. To maintain the ankle at
a constant angle during the course of the swing, an extra constraint was introduced
to the system. The augmented method [1] was used to include such a constraint to
the set of equations. This method utilizes the equations of motion, together with
the differentiated form of the constrained equations to form a set of (# DOF + #

Constraints) second order differential equations to be integrated simultaneously.

The simulation results show that the model with this constraint can perform a
normal swing for some range of initial conditions (see Figure 2.3 and row 3 of Table
2.2). This result is in agreement with the work of Mochon and McMahon (53] who
showed a three degree of freedom model can perform a normal swing. Since the mass
of the foot is relatively small, it does not have a significant intersegmental influence on
other segments. Therefore, for performing a normal swing, an active moment applied
at the ankle combined with free pendular motion of the other segments is sufficient.
To understand the reason for more proximal muscle involvement at the end of the

swing phase, we would have to include the upper body in our model.

In the above discussion, while the dimensional search demonstrates the need for
active control of the ankle, it does not directly imply that no combination of segmental
properties exists that can provide a solution that satisfies all the criteria. However,
the addition of more detail (such as segmental initial accelerations and segmental
properties) to the search parameters, will greatly increase the required simulation

effort. Utilizing optimization was deemed to be a better approach.

Our point here is that on observing trends in the solution space that would seem
to indicate that no parameter combination will produce the required result, it is

reasonable to apply active control. The introduction of active control will widen the
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range of variables (initial conditions at toe-off, and segment properties) that result in

a successful swing, hence increasing the robustness of the strategy.

2.4 Control of the Swing Limb Trajectory Over

Obstacles During Locomotion

Next we focus our modelling effort to the problem of how a change in terrain condi-
tions, specifically existence of obstacles, would change the locomotor swing pattern.
Specifically, we address the following questions: a) Why is the translational energy
applied at the hip joint a dominant contributor to limb altitude control?; b) Should
a vertical force at the hip joint be applied starting in the double support phase, or
only during the swing phase to achieve higher limb elevation?; and ¢) Why is active
(Rexor) control at the knee joint and not at the hip joint preferred to elevate the
limb? Before we proceed to answer these questions, we need to revise the criteria for
a successful swing. Instead of minimum toe clearance, we must include maximum
toe elevation and the spatial (with respect to toe-off) location of this maximum toe

elevation.

2.4.1 Why is Translational Energy Applied at the Hip Joint

a Dominant Contributor to Limb Altitude Control?

Patla et al. [62] have shown that during the swing phase, vertical hip translational
power and rotational knee power are major contributors to the limb elevation during
obstacle avoidance. They found that the integral of the vertical hip translational
power and the knee rotational power (from toe-off to the time the limb was over the
obstacle) were highly correlated with obstacle height (Figure 2.4). We have extended

our model to gain insight into these observed strategies for limb elevation.
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Figure 2.4: Power profiles (translational power at the hip joint - F.v; Rota-
tional power at the hip, knee and ankle joint) from toe-off to subsequent
foot contact over different height obstacles (from (62]).
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Simulation Procedure

The effects of increasing the knee flexor torque, the hip flexor torque, and hip vertical
displacement, applied independently, on limb elevation were examined. Hip vertical
displacement was modelled as a sinusoidal vertical hip movement, h(t) = hq.sin(w,.t),
with respect to the stance leg position. The desired magnitude of the hip elevation
was therefore hg, while w,.t represents the complete swing phase cycle. It was also
assumed that the weight of the point mass (representing the weights of the head,
arms and trunk) was shifted over the stance leg. Rotational and translational energies
were calculated for hip/knee flexor torques and the vertical force resulting from the
vertical hip elevation respectively. The translational energy calculated in this way
does not consider the energy required to shift the pelvis or any necessary work on
the head, arms, and trunk (HAT). The justification for this assumption is that when
the weight of the HAT is shifted over the stance leg, the amount of work required to
tilt the pelvis is negligible when compared to that required to elevate the swing limb.
A more detailed investigation would require a more realistic (3-D) model, which is

outside the scope of the present work.

Results & Discussion

The contributions of translational and rotational joint energies to toe elevation are
shown in Figure 2.5. For a given amount of energy, translational energy applied at
the hip joint results in the highest toe elevation, followed by rotational joint energy
applied at the knee, while rotational energy applied at the hip joint results in the
smallest increase in toe elevation. As well, the rate of increase in toe elevation follows
the same trend (Figure 2.5). This explains the dominating role of these two strategies
for limb elevation. We conclude that in agreement with experimental observations
[62], translational energy applied at the hip and rotational energy applied at the
knee can provide most efficient limb elevation for obstacle avoidance. The evident
difference between the required knee rotational energy versus the hip translational

energy also indicates that even when the work required to tilt the pelvis is added, the
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Figure 2.5: Plots showing toe elevation as a function of translational energy
applied at the hip joint, rotational energy applied at the knee, and the
hip joint. Note that these results were obtained by applying each of three

energies to the model independently.

hip translational energy remains more efficient than the other methods.

A natural question resulting from these simulation results is as follows: If transla-
tional energy applied at the hip joint is most efficient, then why do subjects also use
active control at the knee joint during obstacle avoidance 62, 50]? The answer to this
question lies in the landing velocities and posture following obstacle avoidance when
different strategies are used (Table 2.3). It is clear that translational energy applied
at the hip joint may result in high toe elevation, but subsequent landing is severely
compromised. In particular, the body centre of mass is very close, and in some cases
anterior to the toe at landing (Column 6 in Table 2.3). Therefore, observed obsta-
cle avoidance strategies represent a compromise between efficient limb elevation and

stable landing.
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6,=103.7 9,=2654 Stride | Max. X-pos. Vo \'/A X - Veu Swing | Landed
8,=240.2 9, =300.0 Length Y, of Max. Landing | Landin Xes Avrg. Time on
Y_ (Horz.) g (Horz.)
(deg.) (m) (m) (m) (m/s) (Vert.) (m) (m/s) (s)
(mJ/s)

0.83 0.08 0.38 3.29 -0.77 0.14 141 0.33 toe

Increasing Hip 1.08 0.10 045 3.54 -0.64 0.30 1.42 0.39 toe
Flexor Torque

from 5.0 (N.m) 1.40 0.13 0.55 2.35 -0.46 0.50 143 048 heel
to 25.0 (N.m)

1.65 0.16 0.66 1.70 -1.10 0.62 1.45 0.55 heel

1.85 0.20 0.78 1.50 -1.61 0.72 1.47 0.62 heel

0.82 0.10 0.39 2,97 -1.06 0.09 1.42 0.36 toe

Increasing Knee 0.96 0.16 0.47 2.86 -1.53 0.11 1.44 0.44 toe
Flexor Torque

From -2.5 (N.m} 1.06 0.24 0.53 2.60 -2.10 0.10 1.46 0.51 toe
10-12.5 (N.m)

1.11 0.34 0.60 2.16 -2.60 0.03 1.47 0.58 toe

1.15 0.47 0.66 1.59 -3.22 -.08 1.49 0.68 toe

0.82 0.10 0.30 2.95 -1.06 0.08 143 0.36 toe
Increasing Hip

Hiking 0.91 0.15 047 2.73 -1.53 0.07 1.45 0.43 toe
from 2.0 (cm)

10 8.0 (cm) 1.00 0.24 0.52 2.40 -2.12 0.03 1.47 0.51 toe

1.08 0.37 0.59 1.89 -2.85 -0.07 1.50 0.62 toe

Table 2.3: Simulation results for swing phase over obstacles under three
different active controls applied independently during the swing phase.

The various terms are defined in captions for Figures 2.1 and 2.2.

2.4.2 What Phase is Most Efficient for Applying Hip Trans-

lational Force During Obstacle Avoidance?
Simulation Procedure

The non-zero first derivative of the vertical hip displacement, h(t) = ho.sin(w,.t) at
= 0, implies the existence of an initial hip vertical velocity at toe-off. This initial
condition indicates that a vertical force is applied during the double support phase

by muscles in the stance limb. The alternative scenario is that hip displacement
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starts with zero vertical velocity at toe-off, thus representing the condition when
vertical hip force is applied during the swing phase only. To model this situation,
the hip elevation term can be represented at A(t) = ho.(1 — cos(2ws.t))/2, where
0 <= w,.t <=7 again represents the swing phase cycle. Both formulae define half a
cycle sinusoidal hip elevation. As well, in the first derivatives of those two formulae:
h(t) = ho.ws.cos(wy.t)) and A(t) = ho.ws.sin(2.w,.t)) , the velocity amplitudes (ho-ws)

are the same.

Results and Discussion

To gain some insight about the effect of the phase of application of the hip elevation,
the magnitude of hip elevation (hg) versus the maximum resulting toe elevation is
shown in Figure 2.6. Note that the other experimental initial conditions were similar
for both cases and that no torque pulse on knee or hip was applied. As shown in
Figure 2.6, applying a vertical force to hip starting during the double support phase
results in higher toe elevation than applying this force only during the swing phase
of locomotion. These results are in agreement with observed changes in locomotor
patterns (muscle activity, kinetics) for obstacle avoidance prior to the onset of the

swing phase (50, 60, 63].

These results can be directly observed from the governing equations of motion:
the translational (first and second) terms in the right hand side of the equations for
M1 to M4 (Appendicies A and B) have the same sign. In the conventional sense,
the effect of the gravitational term will be to lower the limbs during swing. Now if
h has a negative sign, these first two terms will oppose each other. In other words,
by shaping and reducing the gravitational terms, the hip translational term will be
fully capable of controlling the limb elevation. However, to produce such an effect,
it is necessary to introduce an initial upward translational velocity to the hip, which
will be caused by the relevant muscle forces prior to toe-off. The first equation for
hip elevation (h(t) = hg.sin(w;,.t)) produces such a situation, and the results shown

in Figure 2.6 clearly demonstrate the effect.
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Figure 2.6: Plots showing toe elevation as a function of hip elevation trans-
lational energy applied at the hip joint when the hip elevation was initiated
during the double support phase and when the hip elevation was applied
only during the swing phase. The corresponding functions for a typical 3

cm hip elevation are also shown.

Even a simplified planar model used in this study is able to provide insights into
the experimental observations (Figure 2.4) (62, 82]. Determination of sources of hip

elevation will of course require more complex models.

2.4.3 Why is Active Flexor Control at the Knee Joint Pre-
ferred Over Control at the Hip Joint to Achieve Limb

Elevation?
Simulation Procedure

Experimentally observed initial conditions were applied to the link segment model.
Flexor torque pulses were applied at the hip and knee joints. To avoid the foot
from plantar flexing during the swing phase, two dorsi flexor pulses were applied to
the ankle joint. The first pulse started at the beginning of the swing to counteract
the plantar flexor velocity during push-off. The second torque pulse was applied at
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the point in the swing at which a flexor velocity exists, and the joint angle was 90
degrees (start of plantar flexion), provided it did not interfere with the first torque
pulse. While maintaining the same ankle torque pulses, the effect of changing the

magnitude of the knee and hip flexor torques, in different combinations were studied.

Results & Discussion

Figure 2.7 illustrates that an increase of the hip flexor torqué and the knee flexor
torque increase the foot/floor clearances as expected. As shown in Figure 2.7, for
the same value of the maximum toe elevation, a lower range of knee flexor torques
compared to hip flexor torques is required. This, together with Figure 2.5, confirms
that active control at the knee joint is a more efficient strategy for obstacle avoidance
and requires less effort than active control at the hip joint. This is in agreement with
the experimental results of McFadyen and Winter [50] and Patla et al. (62] showing
the predominant contribution of active control about the knee joint during obstacle
avoidance. To understand why active control at the knee joint is better than active

control at the hip joint, consider the relative intersegmental contributions.

Increasing the hip flexor torque (with no knee torque pulse and two ankle torque
pulses) resulted in an increase in knee flexion, although it had a minimal effect on
the location of maximum knee flexion (Figure 2.8). Increasing the knee flexor torque
resulted in a greater increase in both magnitude and location at which maximum
hip flexion occurred (Figure 2.9). These results clearly show that intersegmental
contributions are greater when knee flexor torque is applied compared to hip flexor

torque.

Furthermore, as knee flexor torque was increased, a backward shift was observed
in the location of occurrence of maximum ankle dorsi flexion. In contrast, increasing
the hip flexor torque results in a slight forward shift of the location of maximum ankle
dorsi flexion. However, the onset of the second dorsi flexor torque varied minimally
with change in the magnitude of hip and knee torques. Therefore such shifts are the

results of longer swing lengths due to greater knee flexion but lesser hip flexion. The
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Figure 2.7: A surface plot showing maximum toe elevation achieved for
various combination of knee and hip flexor torques. Note the convention:

counterclockwise torque is +ve.

results (Figure 2.9) clearly show that the knee flexor torque has a definite effect on

increasing the swing length.

In summary, the lower magnitudes of knee flexor torque required for obstacle
avoidance and its greater intersegmental influences, explains why we use this strategy

instead of hip flexor torque strategy.

2.5 Conclusions and Future Directions

We proposed that a biomechanical model of the swing phase of locomotion would be
useful to understand the role of active torques and forces and intersegmental dynamics

during the swing phase of locomotion over level ground and obstacles. Simulations
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Figure 2.8: Relative knee and ankle angle profiles as a function of distance

from toe-off for different values of applied hip flexor torque.

using this model have shown that mechanical interactions between segments provide
energy efficiency for walking on level ground and stepping over obstacles. It is clear
that the control system exploits these features of the effector system to regulate

locomotor patterns for different terrains.

Although the proposed model provides some insight on the control of the swing
phase of locomotion, many questions remain unanswered. A natural follow-up to this
work is empirically identifying how hip elevation is achieved, and using the simulation
model to understand the basis for the selection of the strategies. This will require
expanding the model to three dimensions, and adding upper limbs.

The choice of control parameters, whether the parameters chosen are complete,

and the type of control parameters required when studying the limb trajectory over
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obstacles, are other issues that require some method of verification using optimization

methods and will be discussed in the next chapter.
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Figure 2.9: Relative hip and ankle angle profiles as a function of distance
from toe-off for different values of applied knee flexor torque.

30



Chapter 3

3D Biomechanical Models:
Identifying Optimal Hip Elevation
Strategies to Control the Swing
Limb Trajectory

Recent experimental studies have demonstrated the dominant contribution of trans-
lational hip energy to swing toe elevation when stepping over obstacles during bipedal
locomotion. In this chapter we investigate potential strategies for elevating the hip
using simulation models. The effects of these strategies during both the double sup-
port and swing phases on the resulting toe elevation are identified. Results show that
hip vertical translation is most effective when resulting from torques and forces ini-
tiated during the double support phase. Also found was that the leading limb ankle
push-off is the most effective strategy for increasing hip elevation velocity at the start

of the swing phase.
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3.1 Introduction

Design of prosthesis and rehabilitation of gait amputees are both concerned with the
advantages of different strategies for stepping over obstacles. In fact, stepping over
obstacles is an integral part of gait evaluation during rehabilitation procedures. The
major challenges in the field of bipedal locomotion are the control of balance and
stability. Thus while the most significant feature that legged locomotion provides
is the ability to step over obstacles, this has attracted relatively little attention in

bipedal modelling and gait simulation.

Experimental studies of obstructed gait by McFadyen and Winter (50] concluded
that the additional swing limb flexion to step over an obstacle is achieved by a com-
bination of increasing hip pull-off power, reducing knee extensor activity during late
stance, followed by active knee flexor moment during the swing phase. Recently Patla
and Prentice [61] provided evidence that translational power at the hip joint is the

dominant contributor to limb altitude control.

The use of forward solution linkage models for synthesis of normal walking (e.g.
Mena et al. [52]; Mochon McMahon [53]; Onyshko and Winter [57]; Pandy and Berme
[58]) and paraplegic gait (e.5. Yamaguchi and Zajac [85]) is well established. To
investigate the strategies observed when stepping over obstacles, in previous chapter
we developed [5] a planar forward solution linkage model and studied the independent
effects of knee flexor torque, hip flexor torque, and hip vertical force to swing toe
elevation. It was shown that the contribution of hip translational energy to toe
elevation is more than the contribution of knee and hip rotational energies. We also
applied two sinusoidal trajectory constraints to the hip and showed that higher toe
elevations result when the hip vertical force is initiated during the double support
phase (prior to the swing limb’s toe-off). These results were in agreement with the

observed changes in locomotor pattern prior to the onset of the swing phase [63].

These findings suggested that while muscle action in the stance limb can cause
flexion of the swing limb, the locomotor pattern during the double support phase has

a major influence on observed toe elevation during the swing phase. The first goal
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of this work was to identify the most effective available strategies for achieving hip
elevation. The second goal was to investigate how changes in locomotor pattern prior

to the onset of swing affect toe elevation.

3.2 Methods

3.2.1 Experimental Protocol

The main objective of the experiments was to generate a data-base of kinematics
for the modelling technique (the models are described in the next section). Four
healthy male subjects were required to step over one of six different height obstacles
placed halfway along a 12 meter track. The obstacles ranged from .5 cm to 38 cm
in height. An OPTOTRAK imaging system was used to capture the 3-D marker
positions during gait. Twenty four markers were positioned on eight segments: the
feet, legs, thighs, pelvis, and trunk of the subjects (3 markers per segment). The
principal axis of each segment was found using extra digitized points on each segment
(two on the foot and one on the shank, thigh, and trunk). The relative Euler angles

for the eight segments were calculated from the absolute marker coordinates.

3.2.2 Modelling the Swing Phase

Possible sources of hip elevation are shown in Figure 3.1. We further divided the
sources into two groups: The first group provided stance limb interaction (including
stance limb ankle plantar flexion, knee extension, and hip extension) which basically
elevated the stance hip and the swing hip. The second group included pelvic elevation,
and the action of the trunk muscles. This group basically elevated the swing hip with

respect to the stance hip.

In order to isolate the sources of hip elevation, three different models were devel-
oped. Model [ was a six degree of freedom (DOF) model without pelvic elevation

for investigating stance limb interaction effects on toe elevation. The effect of stance
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Figure 3.1: Possible sources of hip elevation during the swing phase of step-

ping over obstacles.
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Figure 3.2: 3-D analytical models. The relative frames are attached to the

segment joints.

limb joint interactions was modelled using a single prismatic joint (g2 in Figure 3.2).
In Figure 3.2, ¢;(i = 1-- - n) are the generalized joint coordinates and the model has n
degree of freedom. Model II was also a six DOF model, but with ¢, replaced by stance
hip abduction/adduction (g3). Model III included both stance knee flexion/extension
and stance hip abduction/adduction and flexion/extension. This eight DOF model
was used to examine the combined effects of these two groups of hip elevators. Note
that from the experimental data, pelvic tilt was found to be negligible and was not

included in the models.
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A symbolic program in MAPLE was developed to generate the equations of mo-
tion from the Lagrange formulation. The validity of the program was checked by
comparing the derived equations of motion with those of SCARA and STANFORD
manipulators, and a double pendulum. The relative coordinates of each segment
were defined using the Denavit-Hartenberg (DH) convention (Appendix G). Once the
transformation between the principal axes of the experimental model (developed from
marker positions) and those of models I, II, and III were found, the displacements,

velocities, and accelerations were obtained by inverse kinematics (see Appendix G).

3.2.3 Modelling the Double Support Phase

The double support phase was modelled from heel-off of the support limb to toe-off of
the leading limb. During this period, the movement of the limb can be approximated
with a ball-joint connecting the metatarsal-phalangeal (MP) joint to the ground and

rotating around a fixed point.

However, the accumulating errors during simulation caused the position of the
MP joint not to be fixed in space. These errors were primarily due to mapping the
experimental data for eight segments (each with 6 DOF ) to the simulation mod-
els with only six or eight DOF, and in which fixed segment lengths and simplified
joints were assumed. To fix the position of the MP joint in space, the experimen-
tal data were corrected using a secant minimization with BFGS updates [26]. The
minimization procedure found the minimal joint angle changes of the swing hip abduc-
tion/adduction, hip flexion/extension, and ankle plantar/dorsi flexion at each time
step during the double support phase, to fix the position of the MP joint in space.
These joint angle modifications were found to be moderate, without serious effect on
the continuity of the resulting torques and forces, and usually required between 5 to

55 trials for successful convergence.

These constrained multibody systems can be modelled using the augmented method

[2]:
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where [D(g)] is the inertia matrix, [C(g,g)] are the Cristofell terms, {G} =
~(B){d}, {9} = [B]{¢} and {Q} is the vector of generalized forces and torques acting
on this system. For the inverse dynamics problem, all the left hand side terms except
{A} (the Lagrangian multipliers) are known. However, in next chapter we show that
for this case, {A} is the vector of ground reaction forces measurable by a force plate.
We also can detect the end of the double support phase and the beginning of the
swing phase by monitoring A, (the vertical ground reaction force measurable by the

force plate).

3.3 Results and Discussion

Both experimental evidence (Patla and Prentice [61]) and our planar model [5] had
shown that the hip translational energy during the swing phase is highly correlated
with the obstacle height. This might be because of velocity components of energy
J F.v.dt or the hip vertical force during swing. We first investigated these two pos-
sibilities by developing Models I, II, and III for the swing phase. Next, we extended
the models to the double support phase to investigate which strategy can contribute

most to hip vertical velocity at toe-off.

3.3.1 Effect of Scaling the Hip Vertical Force and Hip Veloc-
ity at Toe-Off

Figure 3.3 shows the stance hip vertical force from the experimental results from one
of the subjects. With the initial velocities and displacements at toe-off set to the
experimental values, the portion of the hip vertical force in excess of the body weight
(the portion of the stance hip force prior to the time shown by the vertical dashed

line in Figure 3.3), was scaled. As evident from these results, a variation of 40% in
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Figure 3.3: Effects of varying hip translational velocity at toe-off and hip
vertical force during swing phase on maximum toe elevation: increasing
the portion of hip vertical force in excess to the body weight (a), increasing
the portion of hip vertical force less than the body weight (b), increasing
the hip vertical translational velocity at toe-off (c), and reducing the bias
of the hip vertical translational force to 90% (d), and 80% (e) of its original

value (while increasing the hip translational velocity).

the vertical force about its nominal value (middle curve) resulted in a decrease of 5%
in toe elevation of the swing limb. The major effect of these forces was to increase

the distance between the stance ankle and hip (prismatic length in case of Model I).

The effect of scaling the negative portion of the hip vertical force (the portion
below the body weight) is also shown in Figure 3.3. Increasing this also resulted in
higher hip elevation with less than 5% effect on toe elevation. Reducing this force
had a major effect on increasing hip elevation and swing length, while having minor

effect on toe elevation. As a result, increasing the hip vertical force during the swing
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phase was not the cause of observed toe elevation when stepping over obstacles.

All three models I, II, and III demonstrated the same results. Therefore, no mat-
ter what the origin of hip vertical force generation during the swing phase, increasing
the hip vertical force does not produce significant toe elevation. However, the ex-
perimental results show that there is an increase in hip elevation force with obstacle
height. Our model shows that the existence of a positive component of vertical force
is not for increasing toe elevation, although it may be there to satisfy other require-
ments. For instance, hip flexors such as the psoas muscle also create hip elevation.
Therefore flexing the hip always results in some hip hiking (elevation of the swing hip
with respect to the stance hip). Hip hiking may also be used as a means of shifting
the centre of mass of the body from one leg to the other leg in order to maintain

equilibrium.

The initial hip velocity at toe-off was next increased from its nominal (experimen-
tal) value. As evident from Figure 3.3, such an increase in hip vertical velocity at
toe-off had a more significant effect on toe elevation in comparison to the previous
two methods. This was in agreement with the previous chapter’s results obtained

from the planar model.

However, the striking result was that by reducing the bias in hip vertical force,
the ratio of toe-elevation to hip-elevation improved significantly. The results for
10% and 20% reductions of the nominal value are shown in Figure 3.3. A linear
improvement is evident when the initial velocities are increased. This clearly shows
that the mechanism which makes hip elevation the most effective is a combined effect
of increasing the initial hip translational velocity during the double support phase and

reducing the anti-gravitational upward force on the hip during the swing phase.
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Figure 3.4: Effect of 10 and 20% reduction in the hip vertical translational
force on the knee and hip flexion when stepping over an obstacle. The hip
at neutral position (no flexion, no extension) has an angle of 360 degrees(in

Figure 3.2, X3 and X, must be colinear). The knee at full extension has
an angle of 360 degrees (in Figure 3.2, X, and X5 must be colinear).

3.3.2 Gravity Causes Toe Elevation Through Intersegmental

Dynamics

To understand how reducing hip translational upward force results in increasing toe
elevation, the intersegmental dynamics were studied. Asshown in Figure 3.4, reducing
the upward force bias during the swing phase results in additional flexion of both
knee and hip joints, the direct result of which is an increase in toe clearance over the

obstacle.

Winter [84], using kinematic link analysis has shown that hip abduction can pro-

duce relatively more toe elevation than other strategies. Our dynamic model shows
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Figure 3.5: Effect of reducing hip vertical translational force on maximum

hip elevation and maximum toe elevation.

that intersegmental effects of hip hiking during the swing phase is different from
what kinematics show. Although elevating the hip can geometrically result in more
toe elevation, the intersegmental dynamics of the linkage system acts in a way that

increasing the hip hiking force reduces toe elevation.

Figure 3.5 shows that by reducing hip upward vertical force from 10% above its
nominal value to 60% below the nominal value, maximum toe elevation increases
while maximum hip elevation decreases. In other words, increasing the effect of

gravitational forces will increase maximum toe elevation.

To avoid the collapse of segments when reducing the hip upward translational force
to up to 60% over its nominal value, it was necessary to increase the translational
velocity at toe-off. Therefore, for the purpose of this demonstration, the value of the
hip translational velocity at toe-off was boosted 6 times above its nominal value. The
observed excessive hip elevation at the nominal value for the hip vertical force is due

to this extra initial velocity.

These results demonstrate that an increase of hip vertical velocity at toe-off is not
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Figure 3.6: Possible sources for increasing hip translational energy at toe-
off.

only for achieving additional toe-elevation; the extra energy supplied prevents the
collapse of the linkage system when anti-gravitational forces which also elevate the
limb are reduced. Next, we examine how the hip translational velocity at toe-off is

increased.

3.3.3 Increasing the Hip Vertical Velocity at Toe-off

The hip translational velocity at toe-off is the result of interaction of many muscle
forces and joint torques during the double support phase, the possible sources of which
are shown in Figure 3.6. Here we chose to group our candidates as a) trailing limb an-
kle dorsiflexors, b) trailing limb interactions, c) leading limb hip abduction/adduction,
d) leading limb hip flexion/extension, ) leading limb knee flexion/extension, f) ankle

plantar/dorsi flexion.

Our goal was to study the independent effect of each of these on the leading hip
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translational velocity. One obvious problem is that each of the above mentioned
strategies affects not only the hip translational velocity, but also the other joint
velocities via intersegmental dynamics. Hence, we were interested in finding a strategy
that has a dominant effect on increasing the hip translational velocity, but with

minimal effects on the other joints.

We varied the torques around each generalized coordinate (Figure 3.7) and ob-
served their effects on maximum toe elevation. Note that the torques during the
swing phase were kept the same as the experimental values, while only the torques

during the double support phase were scaled.

Three levels of increase (10, 20, and 40%) for each torque or force around gen-
eralized coordinates are shown in Figure 3.8 (the generalized coordinates and their
corresponding torques and forces are shown in Figure 3.7). Increasing leading limb
plantar flexor torque during the double support phase (acting on ¢g) increases max-
imum toe elevation; however, it also has some effect on the swing length. Although
increased toe elevation can also be achieved by decreasing the leading limb hip ex-
tensor torque, and/or increasing knee flexor torque, their effect on the stride length
is very significant. The trailing limb hip elevator force (prismatic force) has rela-
tively less effect on the stride length; however, its effect on maximum toe elevation is

minimal.

In summary, it seems there is a trade-off between toe elevation and stride length
resulting from each of these strategies. For knee flexor and hip extensor torque,
the dominating factors are significant changes of toe trajectory and stride length.
However, increasing hip elevator force and leading limb plantar flexor torque does

not change the stride length as significantly as the previous two strategies.

Figure 3.9 shows the effect of increasing each of the torques around generalized

coordinates on the generalized velocities of the other joints.

We are looking for a strategy that produces maximum g, (Figure 3.9a) while hav-
ing minimal effect on the other velocities (Figure 3.9b). It is evident that increasing

the leading limb knee extensor torque, T(gs), reduces ¢, and has severe effects on
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Figure 3.7: Torques and forces around generalized coordinates: T(g;) the
trail limb plantar flexor torque; trail hip elevation force, F(g,); lead limb
abductor torque, T(g;); lead hip extensor torque T'(g,); lead knee extensor
torque T'(gs); and lead ankle plantar flexor torque T'(gs).
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Figure 3.8: Changes in the swing toe trajectories when increasing the lead-
ing limb plantar flexor torque (pf), knee flexor torque (kf), hip exten-
sor torque (he), and the trailing limb hip translational force (ht). Each
torque/force and its corresponding generalized coordinate is shown in Fig-

ure 3.7.
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Figure 3.9: Effect of increasing each of the generalized torques/forces dur-
ing the double support phase (a) on hip elevation velocity at toe-off, (b)
on other generalized velocities at toe-off. Each torque/force and its corre-

sponding generalized coordinate are shown in Figure 3.7.
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other generalized velocities. Increasing leading limb’s hip extensor torque, T'(g4), has
a moderate effect on ¢, and a major effect on the other joints. The trailing limb
translational force, T'(g,), increases ¢, and has minimal effect on other velocities. A
more pronounced increase in hip elevation velocity is observed when the leading limb
plantar flexor torque, T'(ge), is increased. These forces, torques and their generalized
coordinates are shown in Figure 3.7. Again, this strategy has minor effect on other
joint velocities. In summary, increasing leading limb plantar flexor torque seems to

be the most effective strategy for increasing hip translational velocity at toe-off.

3.4 Conclusion

Recent research has shown that hip elevation is the dominant strategy for stepping
over an obstacle. The 3-D models that we developed in this study show that reducing
hip vertical translational force during the swing phase results in increasing maximum
toe elevation. In other words gravity, via intersegmental dynamics, helps elevate the
limb during the swing phase. This, together with increasing hip vertical translational
velocity at toe-off, is the most effective strategy for obtaining maximum toe elevation

when stepping over obstacles.

The approaches used for modelling and simulation of the double support phase
showed that the most effective strategy for increasing hip translational velocity at toe-
off is lead limb ankle push-off. It was found that this strategy has minimal effect on
other joint velocities at toe-off, while maximizing the hip translational velocity. These
results clearly show that exploring the proper and effective methods for increasing
the efficiency of walking is often counter intuitive; models are necessary to investigate

these methods.
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Chapter 4

Simplifying Biomechanical
Modelling Problems using the
Physical Meaning of Lagrangian
Multipliers

In many multibody models for biomechanical applications, some of the constraint
forces are directly measurable. In this note we make use of the physical meaning
of Lagrangian multipliers to simplify the solution for such problems. This method
is also useful when some of the constraint forces have to be measured and/or when
a constraint violation has to be checked. Two biomechanical examples are given
to demonstrate how this method simplifies both inverse and forward solutions of a

multibody system.

4.1 Introduction

Multibody dynamics have found a wide range of applications in biomechanical mod-

elling. Quite often, in the modelling of biomechanical systems, constraints are active
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only for a range of motion. In these cases, it is normally desirable to derive the equa-
tions of motion first, and then build the closed loop and prescribed motion constraints
into the model. In this way, premature introduction of constraints to the dynamical
system can be avoided. In addition, specifically for linkage systems widely used in
biomechanical analysis, the constraint Jacobian is in general a transcendental function
of independent variables. This creates difficulty in deriving one independent variable
in terms of others. Thus, for large dynamical systems, it is not always desirable to
reduce the number of equations of motion by introducing kinematic constraints at

early stages.

An alternate method is to increase the number of equations by introducing con-
straint forces via Lagrange multipliers. In this case, for a system with n independent
generalized coordinates and m constraints, n + m equations are used to describe the

dynamics of the system, although the system has only n — m degrees of freedom.

The increased computational effort required to calculate indeterminate multipliers
has resulted in coordinate reduction methods attracting special attention. The goal of
these methods, in general, was to eliminate Lagrangian multipliers from the equations
of motion. The works of Hemami and Weimer [35], Singh and Likins (71], Kamman
and Huston’s [42] embedding method based on the zero eigenvalue theorem of Walton
and Steeves [3], and the Pseudo Upper Triangular Decomposition Method (Amirouche

and Tongyi [3]) are examples of coordinate reduction methods.

In many dynamical models, specifically biomechanical models, Lagrangian multi-
pliers are directly measurable. Thus, introducing them to the systems of equations
can actually simplify the problem. In some cases Lagrangian multipliers present the
constraint forces in global coordinates, usually measurable by existing instrumenta-
tion used in biomechanics labs. We present two simple biomechanical examples to
show how (1) predetermination of the Lagrangian multipliers simplifies the calcula-
tion of inverse dynamics, and (2) how addition of these to the systems of equations

allows specific forces of constraints to be monitored.
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4.2 Lagrangian Multipliers - A Special Case

Consider a system described by n generalized coordinates qQ1, 42, ---, Gn. Also consider a

non-holonomic constraint ¢ applied to the system with equations of motion as follows:

d (OL oL .
a(%)—a—%+xai-Qi (i=1,...,n) (4.1)

where L is the Lagrangian, B; = g{; is the Jacobian constraint, and Q; is the
external force. It is known that AB; is the constraint force corresponding to ¢; (e.g.
Goldstein [30]). Also, it can be shown that A is usually a force of constraint (e.g
Groesberg [32]).

As a special case of interest, if the following condition exists:

6¢ _ a.’L‘k
3 = Ba, (4.2)

(where z is a coordinate in an arbitrary frame of reference), then the Lagrangian
multiplier, A, will be the constraint force corresponding to the z; coordinate. Con-
dition (4.2) implies that we have found a coordinate z; along which the constraint

acts.

As we have not found an explicit declaration of condition (4.2) in the literature,
we demonstrate the analytical reasons for this condition. The reader who is most

interested in the application of this method can directly move to the next section.

The non-holonomic or holonomic constraint ¢ in the set of n independent gener-

alized coordinates can be defined as:

3 S—qui + -‘;—‘fdt =0 (4.3)

i=1
where ¢ is the function of ¢’s and time (t). Now consider a transformation from

a set of m > n coordinates to the set of n generalized coordinates such that:
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1 = fi(q,q2,- - -1 qn,t) (4.4)

I2= f2 (Qth---,(Imt)

Im = fm (QI1Q21 v aqnyt)
The constraint equation in the set of new m coordinates which are not independent

is:

m 56 o
AT+ -dt =0 4.5
2 55,00+ (4.3)

Now if there is a k € [1,m] such that condition (4.2) is satisfied, then writing the

constraint force as:

9¢

ci = \B; 30 (4.6)
and substituting (4.2) in (4.6) vields:
6¢ a.'L'k
i = Ag— = A 4.7
“ 9g; 9g; (.7

The virtual work of the constraint force in generalized coordinates for virtual

displacements dg; is:

oW = Z cidg; =0 (4.8)

i=1
Substituting (4.7) into (4.8) yields:
i a.’l.'k

oW = 2 /\a—qiéqi =0 (4.9)

=1
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The coordinates (zy, 22, . . ., ) are related to coordinates (91,92, - - -, qn) via (4.4).
Differentiating (4.4) and setting 6t = 0 results in expressing small virtual displace-

ments of §z; in terms of virtual displacements of dg;. We obtain

62‘[; = —-Jq, (410)

where %flf is a function of ¢’s and time ¢. By substituting (4.10) into (4.9)

sW=3 %x—’fcsq,- = Mz =0 (4.11)
i=1 t

This clearly shows that the Lagrangian multiplier, A, is the constraint force in the

direction of the coordinate dz;.

For simplicity, the case has been shown for one A, since we were interested in a
specific direction of a specific A. If the general form of several constraints on each
equation were used (3 A;B;;), then we could reformat the problem to maintain our
specific A and its Jacobian in the left hand side of equation (4.1) while treating the
rest of the constraits as external forces by transfering them to the right hand side of
(4.1).

4.3 Implications

Assume that for a system with n generalized coordinates, the coordinate zj is in the
direction of the global Cartesian axis X. From what was shown it can be imme-
diately concluded that if condition (4.2) is satisfied, A will be the constraint force
corresponding to the global axis X.

In many biomechanical applications such as gait studies, some constraint forces
in the global frame are directly measurable. Hence, by monitoring A, the phases of
the gait cycle in a linkage model can be easily monitored. As well, use of A as a

determinate variable can simplify the modelling process and assist in dealing with
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the modelling errors. The following two examples of link-segment models for gait,
emphasize the above points. An example for handling the geometrical constraints
using the above method will be discussed first. The second example uses the method

to find the reaction force due to a prescribed motion constraint.

4.3.1 Geometrical Constraints

One of the problems with linkage modelling of biomechanical systems is error accu-
mulation, especially for forward solution models. The sources of errors are usually
the simplifications on the skeletal model, assumptions such as fixed segment lengths
and pin joints, as well as numerical integration of the equations of motion. In an
example of a 3-D model in the previous chapter, the kinematic data collected from
an OPTOTRAK imaging system showed that the metatarsal-phalangeal (MP) joint
was rotating around a fixed point from heel-off to toe-off of the same limb during
the double support phase of locomotion, as shown in F igure 4.1a. However, direct
transformation of the ground reaction force to the generalized coordinates and then
solving the equations without using constraints, resulted in a movement of the MP
joint (Figure 4.1b). This conflicts with the experimental results. To avoid this, it was

necessary to add constrained equations to fix the MP joint.

Now consider a simple planar model of the double support phase. The model
and its generalized coordinates are shown in Figure 4.2. Assume force plate data are

collected only under the MP joint in contact with the ground.

Consider the global coordinates, XY. The constraints can be defined as:

¢ =X — Ry =z — Ry =l cos(q1) + lr cos(ga) + I3 cos(gs) — Ry =0

Go=Y -Ry=15— R, =1 sin(ql) + [ sin(qg) +3 sin(qg) ~Ry=0 (412)

Clearly for:
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(a)

(b)

Figure 4.1: Model simulation a) using the proposed method. b) without

using the proposed method.

{¢}={""} {x}={’”‘
@2 Iy

10 ]

and the constraint Jacobian matrix of this system is:

we have:

51- 3¢

Using (4.14), condition (4.2) is satisfied:

lycos(qi)  [ycos(gr)

54

}

3¢J _ [ —lisin(q1) -lpsin(g2) ~I3sin(gs)

I3 cos(gs)

|

(4.13)

(4.14)

(4.15)

(4.16)



Figure 4.2: Planar model for double support phase.

where £ = 1, 2. From (4.16) we conclude that A; and A, are the constraint forces

in the direction of the respective global coordinates X and Y.

Using the differentiated form of the constraint equations, we may choose to for-

mulate the equations of motion for this system as:

(e e

where [D(q)] is the inertia matrix, [C(q,§)] are the Christoffel symbols, {G} =

D BT
B 0

~[B]{4}, {9} = [B}{4} and f is the vector of generalized forces acting on this system.

When solving the inverse problem, since A; and X, are the forces measured with
the force plate, all the terms in the left hand side of the equation (4.17) are known.
Therefore, the forces and torques on the right hand side can be determined by simple
matrix multiplication of the left hand side of this equation. The equation satisfies

the constraint of rotation around the MP joint.

Also, if the forward solution model with given external forces and the constraint
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over the MP joint had to be solved, the calculated value of A, would have been the
ground vertical reaction force and its zero value would determine when the toe-off
occurred. Note that, the solution to the second row implies that MP Jjoint only allows

rotation around a fixed point ( for more detail on equation (4.17), refer to [2]).

4.3.2 Prescribed Motion Constraints

Consider the linkage system shown in Figure 4.3. Here, h(t), the model’s hip elevation

during the swing phase, is given by a constraint trajectory:

h(t) = hg sin(wt) (4.18)

where wt = 7 at the end of one swing cycle. To find the vertical reaction force
due to this constraint trajectory, all we have to do is to consider a new coordinate z

in the direction of h, such that A = z. The constraint equation is:

¢ =z — hosin(wt) = gasin(q;) — hgsin(wt) =0 (4.19)

a
%ﬁ-=1 [B]=[£] =[‘12COS(QI) sin(g;) 0 0] (4.20)

As before, by the chain rule, and using the above equation we can satisfy (4.2):

o= e (421)

Now the forward solution of the equation (4.17) will also calculate ), the constraint
force corresponding to the z coordinate. Therefore by applying extra coordinate in
the direction of constraint force, the desired reaction force due to hip hiking can
directly be calculated. Obviously, calculation of other unnecessary constraint forces

(other joint reaction forces) can be avoided using the Lagrange formulation.



Figure 4.3: Planar model with hip hiking constraint.

4.4 Conclusions

The method presented simplifies the derivation of the solution to the equations of
motion whenever some of the constraint forces are available, and/or in the case where
a constraint force in a specific direction is to be calculated. Therefore, the method
will be useful when monitoring some constraint forces is necessary. Two examples for
geometrical and prescribed motion constraints in biomechanics have been given, and

the ease of application of the method to these problems demonstrated.
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Chapter 5

Stepping over Obstacles during
Locomotion: Insights from
Multi-Objective Optimization on a

Set of Input Parameters

In this study we investigate possible objectives that the central nervous system (CNS)
may consider in planning a strategy for stepping over an obstacle. A link segment
simulation model has been developed based on Lagrangian dynamics, with which
muscle force inputs can be optimized to best satisfy the postulated objectives for
landing stability, obstacle clearance, and efficiency of the movement. A direct opti-
mization approach with multi-objective criteria based on the kinematics and kinetic
characteristics of the swing phase of locomotion is used in the simulation. The role of
initial conditions at toe-off and bi- articular muscle forces during the swing phase was
also investigated. The optimization was performed for both leading limb and trailing
limb during the swing phase (We step over the obstacle first with the leading limb
followed by the trailing limb).

The simulation results demonstrate that the use of bi-articular muscles is sufficient

to clear a range of obstacles with the trailing limb (obstacle encountered during early
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swing). Stride length or landing stability objectives need not be specified suggesting a
simpler control of trailing limb trajectory by the CNS. In contrast while the use of bi-
articular muscles can be sufficient to clear obstacles with the leading limb (obstacle
encountered during mid to late swing), a stable landing and smooth toe and knee
trajectories are compromised without suitable initial conditions at toe-off. The results
suggest that the set of postulated objectives for the lead limb is necessary, although

not sufficient.

5.1 Introduction

When we step over an obstacle in the travel path, the swing limb trajectory is modified
considerably from that used for normal level-ground locomotion. Several empirical
studies have described changes in the limb kinematics, kinetics, and muscle activity
during this adaptive locomotion [60, 14, 50, 63, 15]. What is less clear is the criterion
(or criteria) used by the central nervous system (CNS) to come up with the observed

movement pattern.

During normal level ground locomotion, researchers have used various single crite-
rion optimization methods to explain the specific recruitment of muscles for validating
the predicted muscle recruitment profiles based on experimentally measured muscle
activity profiles [34, 17, 64, 37, 16]. Lack of agreement between predicted muscle
recruitment with the muscle activity profiles have led researchers to speculate that
perhaps more than one aspect is optimized during locomotion [16]. While most op-
timization methods have been geared towards decomposing joint torques into muscle
forces, Pandy et al. [59] have used optimal control theory to optimize bi-articular
muscle forces in maximum high jumping. Also, Chou et al. [15] have used minimum
energy and dynamic programming to predict swing ankle trajectory. They found
that predictions were good for level ground; however, they are not acceptable during

locomotion over uneven terrain.

Stepping over obstacles is a prime example where several objectives have to be
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simultaneously optimized,; it is critical to not only elevate the limb over the obstacle to
avoid tripping, but also to achieve controlled landing to avoid slipping. Experimental
work has shown that several key characteristics of the swing limb trajectory (related
to slipping and tripping) are regulated within limits when stepping over obstacles of

varying heights [63].

Our goal is to use a multi-objective optimization approach to generate the swing
limb trajectory over an obstacle. It is clear that the initial conditions at the end of
the stance phase and the activity of various swing limb muscles are responsible for the
generation of the swing limb trajectory. In this study the multi-objective algorithm
optimizes selected critical initial conditions and pulse parameters of the bi-articular
muscles during the swing phase. The choice of these control inputs is consistent with
the experimental work that has shown bi-articular muscles play a dominant role in

the control of the swing limb over obstacles [63].

5.2 Multi-objective Optimization Model

The flow diagram of the optimization model is shown in Figure 5.1. This is based on a
link segment model of the lower limbs, the inputs to which are the muscle force pulses
and the initial conditions for the step cycle. For a given set of initial conditions and
temporal muscle activation profiles, the limb trajectory is calculated by integrating
the forward model. Selected characteristics of the resultant trajectory are combined
to produce a signature metric, which becomes the objective function value for a direct
or a variable metric optimization procedure. Maximization of this metric results in
a minimal overall error between the desired and calculated trajectory characteristics,
thus yielding the required temporal muscle activation profiles and initial conditions

to achieve this.
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Figure 5.1: The optimization algorithm. Details for each block are de-
scribed in the method section. The parameters shown in the top block are

described in Figures 5.2 and 5.3.
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Figure 5.2: Parameters describing single pulse muscle force: peak force (f,),

pulse start time (t,), pulse duration (¢,), pulse rise time (t-), and pulse half

relaxation time (¢;).

5.2.1 Input Parameters

One or more pulses characterize each muscle force activation profile (Figure 5.2). Each
pulse is described by five parameters: start time (¢,) duration (ta), peak amplitude

(fp), rise time (t,), and half relaxation time (t;).

Research has shown that the two bi-articular muscles, rectus femoris and biceps
femoris, have significant activity during the swing phase of obstructed gait (50, 63].
Biceps femoris has two peaks of activity: the first peak starts prior to heel contact
and continues during early swing. In our model, the focus is mostly on the early

activity of biceps femoris, which plays a critical role in elevating the limb over the

62



O,
0,

Figure 5.3: A 4 degree of freedom planar model with pin joints. The model
includes the segments for the swing limb (thigh, leg, foot) and one segment
for the stance limb. Three uni-directional non-linear dampers are used to

model anatomical constraints.

obstacle. At the end of the swing phase, non-linear dampers (Figure 5.3) become
active. The forces exerted by these dampers model both passive forces arising at the
joint limits, and the second burst of activity in biceps femoris during late swing. The
activity of rectus femoris generally occurs after clearing the obstacle, and is used to

provide stable landing and adequate step length.

Two single-pulse activities for each muscle were used in the simulation. In addition
to the ten control parameters defining these two pulses (five per pulse, as described
above), initial velocities of the hip and knee joints at toe-off were also treated as
control parameters for the model. These initial velocities result from muscle activity

prior to toe-off.
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0 Stride Length —

Figure 5.4: Criteria used to characterise swing limb trajectory: toe clear-
ance over obstacle (Y...-), location of the maximum toe elevation (Xvias)s
stride length, and a measure of landing stability (X — X)) measured

at foot contact (we refer to it as stability margin).

5.2.2 Model Definition

A symbolic program was written in MAPLE to generate the equations of motion and
the constraint Jacobian as required. Lagrangian dynamics were used to derive the
equations of motion (see Appendices A and B). For the planar models, both segment
absolute angles (Figure 5.3) and relative joint angles can be used to describe the
model. The description file for the program specifies the segments, position of the
generalized coordinates (using the Denavit-Hartenberg convention [72], Appendix G),

the type of joints, and the movement constraints.

For this study, a four degree of freedom planar model consisting of the thigh, the
leg, and the foot of the swing limb, and a single link stance limb was used (Figure
5.3). The anatomical constraints were modeled as uni-directional non-linear dampers
in which the damper coefficient increases exponentially close to the joint limit, and is
described as a function of joint displacement. For example, the knee damper equation

is as follows:
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A
M=13 ezp((63 — 62) x S)

x (65 — 6,) (5.1)

where: A =0if 93 <6,

The coefficients A and S were set to ensure that the damper becomes highly active
in a region close to knee full extension (typically A = 100, S = —100). 6,,8; and their
time derivatives (thigh and leg segment angular positions and velocities as defined in

Figure 5.3) are the variables of this equation.

5.2.3 Experimental Data Set Source

Kinematic and muscle activity patterns for individuals (age range 18-21 years) step-
ping over obstacles of different heights (10.5 to 38 cm) in the travel path have been
collected in our lab and are described in detail elsewhere [63, 61]. Obstacles were vis-
ible from the start and individuals walked at a natural self-selected pace and stepped
over the obstacle. The toe trajectories for individual participants show similar pat-
terns (see Figure 3 from (63]). Average values for selected kinematic parameters
and average toe spatial trajectory from this data set were selected and used in this

modelling work as described in the following section.

5.2.4 Kinematic Characteristics

The derived equations of motion have the format:

D(8) 6+ C(8,8) +¥(8) = T — M(8,6) (5.2)

Here, D is the inertia matrix, C represents the velocity dependent terms, and ¥
includes potential terms (defined in Appendices A and B). The 4-5th order Runge-
Kutta-Fehlberg numerical integration method with variable step size was used to

compute the kinematics.
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To describe the swing limb trajectory, certain trajectory characteristics must be
defined. We have previously proposed a set of characteristics for a normal swing [5]; if
the trajectory satisfies these characteristics, a successful swing is achieved. However,
when stepping over an obstacle, all of these characteristics need not be satisfied. For
instance, some landing stability can be sacrificed since corrective action could be
taken in the next step. On the other hand, other characteristics such as the position

of maximum toe clearance around the obstacle region become more significant,.

Experimental studies on obstacle avoidance during locomotion show that the fol-

lowing trajectory characteristics are tightly controlled:

1. Toe clearance over an obstacle falls within a limited range, for a range of obstacle
heights [63, 15). This appears to be a compromise between increased efficiency
(optimizing the lower limbs potential energy) and maintaining a safety margin

for clearing the obstacle.

2. The distance to an obstacle from the toe-off position is usually about 60% of
the total swing length; this ensures a safe landing while providing a reasonable

stride length across the obstacle [63].

3. Maximum toe-clearance usually occurs just after crossing an obstacle (63]. The
proximity of maximum toe clearance to obstacle location minimizes the lower

limbs potential energy over the obstacle.

To describe any given trajectory over an obstacle, we use the four trajectory
characteristics shown in Figure 5.4. Toe clearance (Yetear) occurs over the obstacle
while maximum toe elevation can occur anywhere between toe-off and landing, and
the position at which this occurs with respect to toe-off is given by (Xv,..)- Landing
stability is characterized by the distance between the toe on landing and the center of
mass (XweXc.ar.), while stride length is simply as shown. It is realized that dynamic
stability is influenced not only by the position of center of mass with respect to the

base of support, but also its velocity. In this model we simply ensure that the center
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Figure 5.5: Weighting factors for trajectory characteristics. Factor profiles
shown are maximized when (a) Y., is 0.1 m, (b) Xte — Xcar. is 0.2 m, (c)
XV¥me- is 0.8 m, and (d) stride length is 1.25 m. The obstacle was assumed
to be just behind Xy,___.

of mass is posterior to, and at a certain distance from foot landing. The velocity of

the center of mass will affect control of landing stability in the subsequent step.

5.2.5 Objective Function Generation

To describe how well any given swing trajectory over an obstacle meets the character-
istics defined above, it is necessary to generate a quality metric (or objective function)
by which the overall trajectory characteristics can be ranked. Two approaches for

defining such an objective function were investigated. The first approach (referred to
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as Method A) was to define a weighting function for each of the four trajectory char-
acteristics described above, and then obtain an overall scalar metric for the trajectory
as the product of the weights for each characteristic. The second approach (Method
B) was to fit a third order polynomial to the experimentally measured average toe
trajectory, and compute the objective function value as the sum-of-squared-errors
between the optimization model results and the polynomial fit to the average exper-
imental foot trajectory. The comparision of the two methods could show that how
good the four posulated objectives in method A produced the experimental toe tra-
jectories. Method A, however, carried the advantage of considering the ceneter of

mass location with respect to the toe of the swing limb.

The weighting functions used to quantify each of the four trajectory characteristics
for Method A of the leading limb, are shown in Figure 5.5. These weighting functions
were designed in a somewhat intuitive manner, although there is a logical rationale
for their profiles. Figure 5.5a shows that a toe clearance of 0.1 m is most desirable,
with lower clearance being severely penalized, while greater clearance is simply less
efficient. Figure 5.5b weights the stability of the landing; a distance of 0.2 m was
deemed optimal, with a shorter distance being severely penalized, while a longer
distance is satisfactory but somewhat less desirable. Figure 5.5¢ weights the maximum
toe elevation as a function of the distance to the obstacle (for an obstacle at 0.78 m
from toe-off). Ideally, the maximum toe elevation occurs over the obstacle, with an
increasing penalty for large elevations early or late in the trajectory. Figure 5.5d
weights the step length, based on a nominal desired step length of 1.25 m. For any
given trajectory, these four weighting functions are used to provide four weighting
factors for that trajectory. The product of these weighting factors yields a quality
metric that is used to rank the trajectory, the negative of which is the objective

function value to be minimized.
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5.2.6 Optimization

The goal of the optimization was to find a vector of parameter values describing the
temporal muscle activation profiles and initial conditions that resulted in a trajectory
for which the objective function was minimal. The general form of the minimization

problem solved was:

minimize  f(X) = {fy(X), fo(X), ..., fil(X)}" (5.3)
subject to g;(X)<0 j=1,....,m
XeER & fi:R"—R i=1,...k

where X = (z,1,,,z,) is an n-dimensional vector of decision variables (muscle
pulse parameters and initial conditions), fiX) = fi(zi,z2,...,20), i =1,... Kk (the
four weighting functions of Figure 5.5), and 9;(X) = gj(z1, 22y ..., 2p), 5 =11,.. .,m
(muscle force and pulse duration upper and lower limits) are real-valued non-linear
functions [69]. Each constraint was added as penalty a function. In this way, both
direct unconstrained methods and secant methods could be formulated using same

constraint functions. The added constraints were:

¢ Muscle forces must have positive values (i.e. tensile).
* The maximum stress for each muscle cannot exceed 35kg/cm? (83].

¢ The minimum pulse duration is 60 ms (time taken for muscle twitch).
The constraint vector, {A}, is:

100

Ai = - 17 Tty .
' 1+ezp((p; — b;) x 5) 8 (5-4)
where the control parameter vector, {p}, is:
{P} = {tb.n trsy tod; Lrd, 0b,0r, —0p, —ar} (5.5)
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where %y, tua, and o, are the start time (ms), duration (ms), and tension (kg/cm?)
of biceps femoris. t,s, trq, and o, are the start time (ms), duration (ms), and tension
(kg/cm?) of rectus femoris. The upper/lower bound vector, {b}, is defined as:

{b} = {0,0,60,60,35,35, —35, —35} (5.6)

The kinetic constraint, \g is:

Aq = Ifrectus +fbiceps|
’ 1000

where frectus and fpiceps are the force pulse magnitude for rectus and biceps femoris

muscles (N).

The final objective function, M 1, is:

9
.'\‘[[ = Z Ai + W, (58)

=1
where in method A, W, = [[%, W; (n is the number of weighting functions W),

In method B, W, is the sum-of-squared-errors.

The exponential functions for each constraint were designed to ensure that the
penalty function would become active only at points close to the limits of the con-
straint function. The kinetic constraint was divided by a large value (1000) to ensure
that any stress minimization could be performed only after other objectives were

generally satisfied.

Two direct search procedures were investigated: the non-linear simplex method
[36], and a multi-directional search algorithm [79]. The BFGS secant update method
[26] was also examined. Direct search methods were found to be more stable for
this work, since secant methods require gradient information and are based on ap-
proximating and updating the Hessian matrix (matrix of second derivatives), while
direct search methods do not use gradient information. This attribute of direct search

methods is important, since the model requires simultaneous numerical integration
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of the equations of motion, and the analytical calculation of partial derivatives is not
possible. While finite difference approximations could be used, the accuracy with
which the objective function values could be calculated was limited by accumulat-
ing errors in the numerical integration of the equations of motion; this made the
finite difference approximations unreliable, and resulted in instability in the opti-
mization. Ultimately for the simulation of the trailing limb, the simplex method was
used, while for the leading limb optimization the method was. improved by using a

multi-directional search algorithm from reference [79].

A disadvantage of numerical optimization methods is the computational effort
required, which is directly related to the number of iterations required to find the final
solution, and thus depends on the problem size. However, on observing the effect of
the control inputs on each of the trajectory objectives, it became evident that general
trends could be tabulated (Table 5.1). This table was used to guide the optimization
towards the field of attraction of the global minimum, as our problem included several
local minima. This separation of objectives and their causality not only assisted us in
better understanding the problem, but also resulted in faster convergence by driving
the problem towards the field of attraction of the global minimum. Note that as the
desired objectives were known (the weighting functions and their maxima in F igure

5.5) the desired or minimum was known.

5.3 Results

The simulation was performed for both the trailing limb (when the obstacle is en-
countered in early swing) and leading limb (when the obstacle is encountered in mid
to late swing). The focus of this study was on the effect of each objective and the
selected control inputs on the swing limb trajectory over the obstacle. Each opti-
mization is validated by its closeness of fit to either the objective functions which are
based on experimental observations [63] (see methods section d) or the polynomial

fit to the average spatial kinematic toe trajectory taken from reference [63].
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Table 5.1: Sample rule base used for guidance of the optimization procedure
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towards the global minimum. The table demonstrates the effect of start
time and force pulse amplitude of the two bi-articular muscles on the
toe clearance over the obstacle (Y., ), location of maximum toe elevation
(Xy...), and the measure of landing stability (X,,. — Xc.m.)- The upward

arrow indicates increase in value of each quantity shown.
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To reduce the number of initial conditions that should be included as control
inputs in the optimization problem, a sensitivity analysis was performed to find the
relative effect of the initial velocities on toe clearance. Five values of stance limb
velocity at toe-off between -1 and -3 rad/s were evaluated, as well as 20 values (over 0
to 5 rad/s) for the swing thigh angular velocity, 20 values (over -4 to -1 rad/s) for the
swing shank angular velocity, and 3 values (over 0 to 5 rad/s) for the swing foot. The
results of this analysis revealed that stance limb initial velocity dominantly influenced
stride duration with little effect on toe clearance. The hip and knee angular velocities
of the swing limb, however, had a significant effect on the toe swing toe elevation.
Hence the optimization study focused on these two angular velocities as well as the
active torques of the bi-articular muscles. All other parameters and anthropometric

data were set to values given in reference [83].

The obstacle location from toe-off was varied such that the swing limb encounters
the obstacle either in early swing or mid to late swing. We step over the obstacle first
with the lead limb followed by the trailing limb. The first series of simulations with
the obstacle stepped over in early swing corresponds to the trailing limb while the
second series corresponds to the leading limb. The simulation results are described

next.

5.3.1 Trailing limb stepping over obstacles

The initial states (angular velocities and displacements at toe-off) were set to typical
values of normal locomotion [83] and the bi-articular muscle forces were optimized.
To investigate the relative importance of the stride length and landing stability ob-
Jectives, three combinations of objectives were examined by computing the objective
function as the product of ¢) objectives (a), (b), (c), and (d) in Figure 5.5, i) objec-
tives (a), (b), and (c), i) objectives (a) and (c). The obstacle distance was set to 25
cm from toe-off, with an obstacle height of 15 cm. In general, it was found that re-
moving either the stride length objective (d) or stability objective (b) had little effect

on the optimization result in the sense that a stable landing is achieved in either case.
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However, removing both resulted in unstable landing, although the other two objec-
tives were achieved (Figure 5.6). The optimization model shown in Figure 5.6a has a
toe clearance of 10 cm and the location of maximum toe clearance is at 25 cm (The
objective weighting function reached 100% of its maximum). However, the stability
margin (the measure of landing stability as shown in Figure 5.4) was -13 cm. The
three objectives in the model shown in 5.6b have values of 9 cm for toe clearance, 27
cm for the location of maximum toe clearance, and 15.5 cm for the stability margin.
The desired value for the stability margin was chosen to be 15 cm and that for the
location of maximum toe elevation at 25 cm from toe- off. The objective weighting

function reached 91.4% of its maximum.

Using three objectives (obstacle clearance, location of maximum toe elevation, and
landing stability, i.e. i) above) the effect of obstacle location was investigated. The
15 cm obstacle was located at 15, 25, and 35 cm from the toe-off location of the swing
limb. The results for 15 and 25 cm distances are shown in Figure 5.7 and optimal
muscle force parameters are tabulated in Table 5.2. The kinematic characteristics
found for the models in Figure 5.7a and 5.7b respectively are as follows: toe clearance
9 cm and 8.5 cm (target 10 cm), location of maximum toe elevation 27 cm (target 25
cm) and 17 cm (target 15 cm) from toe-off, with a stability margin 15.5 cm and 16
cm (target 15 cm). The objective weighting functions reached 91.4% and 89% of their
maximum. From Figure 5.7 it is evident that a successful swing is achieved for both
obstacle distances, although the nearer obstacle results in a shorter stride. Table 5.2
indicates greater muscle effort required when the obstacle is encountered earlier in the
swing (at 15 cm). Biceps femoris effort increases to get the toe rising more rapidly
while rectus femoris pulses earlier and somewhat stronger in order to limit the toe
clearance over the obstacle to the desired value, place the location of maximum toe

elevation over the obstacle, and extend the swing knee to provide landing stability.

When the obstacle distance was increased to 35 cm (pushing it more towards
mid swing) obstacle clearance and landing stability could not be satisfied simulta-

neously; several local minima were found, corresponding to compromised maximum
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Figure 5.6: Stick diagrams for trailing limb stepping over an obstacle when
(a) only the objective functions for toe clearance over the obstacle (Yatear)
and the location of maximum toe elevation (Xy, ) are used, (b) three
objectives (except the stride length objective) are used. For each stick
diagram stance limb, trunk, swing thigh, leg, and foot are shown. The
dashed lines represent the joint and toe trajectories. The stick diagrams
shown represent toe-off, mid-swing at maximum toe elevation, and end of

swing (landing). Note the unstable landing of simulation (a) where the

(o)

center of mass is ahead of the leading toe position.
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Figure 5.7: Stick diagrams for trailing limb stepping over an obstacle for: (a)
three objectives except the stride length objective are used, and the distant
between toe-off location and the obstacle is 25 cm; (b) three objectives
except stride length objective are used and the distance between toe-off
location and the obstacle is 15 cm. For each stick diagram stance limb,
trunk, swing thigh, leg, and foot are shown. The dashed lines represent
the joint and toe trajectories. The stick diagrams shown represent toe-off,
mid-swing at maximum toe elevation, and end of swing (landing). Both
simulations satisfied all three objectives by optimizing peak force and start

time for rectus femoris and biceps femoris.
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Toe-off Muscle Force Parameters
to Obstacle| Magnitude Start Time Duration*
Distance M) (s) ()
(cm) BE.' | RF? | BE.' | RE? | BF.' | RE?
25 305 | 992 01 18 0.1 0.1
15 488 | 1055 | .01 10 0.1 0.1
'BF. Biceps Femoris *RF. Rectus Femoris * Duration fixed during simulation

Table 5.2: Control inputs for the trailing limb stepping over obstacles: (a)
when all objectives except stride length objective is used and obstacle is
located at 15 cm from toe-off location; (b) when obstacle is located at 25
cm from toe-off location. The control inputs that are not shown were kept

constant.

toe height location and landing stability. The rectus femoris force was also found to
reach the maximum physiological limit set, although even without this upper limit,
a stable landing could not be achieved. However, when the stability objective was
removed for this obstacle location, the rectus femoris force decreased significantly.
This demonstrates that rectus femoris plays a major role in satisfying the landing

stability objective in this configuration.

From the above scenarios, it is possible to characterize the general effect of each
control input on the objectives. Table 5.1 shows the effect of four of the control inputs
on three of the objectives. For instance, increasing the amplitude of the biceps femoris
force resulted in increasing the toe clearance, while the location of the maximum toe
clearance moved backwards, and the distance between the center of mass and toe
at landing (indicator of stable landing) reduced. Such tables were used to guide
the optimization algorithm towards the field of attraction of the global minimum.

This approach was found to be very successful in directing the optimization method
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towards the global solution. Since method A was successful in achieving the objectives

for the trailing limb trajectory, method B was not explored.

5.3.2 Leading limb stepping over obstacle

The experimental angular displacements and velocities for normal gait were used to
initiate the swing. Single pulse activity for each muscle group was considered, and
the parameters of the non-linear dampers were set to partially cover the function of
biceps femoris activation during late swing. Using these initial conditions and apply-
ing all four objectives, it was not possible to both clear the obstacle and have a stable
landing with single pulse bi-articular muscles. Figure 5.8a shows one locally minimum
solution in which landing stability and step length are satisfied, but the foot failed to
clear the obstacle. Relaxing the physiological constraint on maximum muscle force
was by itself insufficient to clear the obstacle. By both removing the location of max-
imum toe clearance objective and relaxing the physiological constraint on maximum
muscle force (i.e removing the objective related to the efficiency), the obstacle could
be cleared. However, the resultant toe trajectory (Figure 5.8b) was very different
from any experimentally observed trajectories. We found that by just removing an
objective, the resultant optimized trajectory either failed to clear the obstacle, or was
markedly different from experimental trajectory (Figure 5.8b). Therefore the problem

is not with the chosen objective criteria, but rather with insufficient control inputs.

The initial angular velocities at toe-off are the result of the active control of muscles
during the double support phase, and the values used above corresponded to those for
normal walking. The angular velocities of the swing limb hip and knee were therefore
included as control inputs to be optimized, together with the bi-articular muscle force
inputs. The resultant trajectory is shown in Figure 5.8c and clearly achieves all four
objectives. However, the toe trajectory is different from that found by a polynomial
fit to the experimentally measured data (shown by the dashed line in Figure 5.8¢), and
the knee joint can be seen to move backwards at the end of the swing phase, which was

not observed in experimental data [63]. The solution values of the initial conditions
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Figure 5.8: Stick diagrams of solution trajectories for the leading limb: (a)
when only bi-articular muscle forces are optimized. Note that stride length
and landing stability objectives are satisfied while toe clearance over ob-
stacle and the location of maximum toe elevation objectives are not; (b)
when location of maximum toe clearance objective and physiological con-
straint on maximum muscle force are relaxed. Note the trajectory differs
markedly from the experimentally observed data (shown by the dashed
line); (c) when angular velocities of the swing hip and knee at toe-off
are also optimized. Each individual objective is satisfied, although the
trajectory differs from the least squares polynomial fit to experimentally
observed data (shown by the dashed line). Each instant of the stick dia-
gram includes the stance limb, trunk, swing thigh, leg, and foot. The time
interval between each two consecutive stick figures is 45ms (except for the

last three instances of (b) where the time interval is 20 ms).
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and muscle parameters are given in Table 5.3 (Method A). The optimization results in
a toe clearance of 11.3 cm (target 10 cm), the location of maximum toe clearance at 72
cm (target 78 cm), a swing length of 128 cm (target 125 cm), and a stability margin
of 28 cm (target 20 cm). The multiplication of the objective weighting functions
reached 81% of its maximum. For the purpose of comparison, Method B was also
used to determine the initial conditions and muscle parameter values that resulted in
the toe trajectory matching the experimental trajectory (a least squares third order
polynomial fit to experimental data) as closely as possible (with a resultant RMS error
of 0.84 cm). The optimization resulted in a toe clearance of 14 cm, the location of
maximum toe clearance at 82 cm, a swing length of 126 cm, and a stability margin of
13 cm. The resultant control input values are given in Table 5.3. The initial velocities
are clearly too large for both methods, with the exception of the knee velocity for
Method B (3 rad/s for the hip and -3 rad/s for the knee is typical). The much lower
biceps femoris force required for Method A is primarily due to the much higher initial
knee velocity. Also, there is no co-contraction in the solution using Method B, while
this is significant in the solution using Method A. The low stability margin for Method

B indicates the closeness of the hip to the leading toe at landing.

5.4 Discussion

Our goal was to use multi-objective optimization approach to understand what the
CNS is trying to control during adaptive locomotion over uneven terrain and how it
achieves that using the many options available. Both the successes and failures of the

simulations have been illuminating in this respect.

Consider first the issue of what the CNS is trying to control. Both methods of
arriving at the objective function require that several objectives be simultaneously
satisfied. In the first method (A) the objectives are explicitly identified, while in
the second method (B) matching of the end point trajectory indirectly includes not
only the objectives in the first method but also probably others (except the stability
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Method Muscle Force Parameters Angular

Velocity at
Magnitude Start Time Duration Toe-off
™) (s) (s) (rad/s)

BE' | RF’ | BE' | RF? | BE! | RF? | Hip | Knee
(A) | 408 | 252 | 29 | 35 | .16 3 55 | -57
B) |88 | 105 | .10 | 20 07| 05 | 64 -3

'BF. Biceps Femoris °RF. Rectus Femoris

Table 5.3: Control inputs for the leading limb stepping over obstacles. A
comparison of methods A and B shows that the latter method favorably
produces smaller knee initial angular velocity, minimal co-contraction and
shorter duration of rectus femoris activity. For the angular velocities at

toe-off positive signs indicates hip flexor velocity while negative sign indi-

cates swing knee flexor velocity.
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criteria). The only attempt in the literature that we are aware of, which has used a
single criterion optimization method to generate limb trajectory over obstacles, has
not been very successful [15]. Patla and Rietdyk [63] have described how tripping
and slipping are avoided during this adaptive locomotor behavior, and identified key
kinematic measures that capture this control. Based on this experimental evidence
and interpretation we have outlined the multi-objectives that have to be met. Success
of both methods of generating objective weighting functions in producing the appro-
priate trailing and leading limb trajectory over the obstacles in this apprach, clearly

show that the CNS is not optimizing a single objective, but rather several objectives.

When one of the two objectives related to stable landing is removed, the resultant
trailing limb trajectory is still found to be adequate. This suggests that control of limb
trajectory over obstacles encountered during early swing is relatively simpler since
fewer objectives have to be satisfied. In contrast, when we compare the simulations
for the leading limb (obstacle encountered in the late swing phase) we find that both
methods (A and B) can lead to an adequate global solution. However, neither the
knee trajectory (Method A, Figure 5.8c) nor the stability margin (Method B) was
close to experimental values. This indicates that when an obstacle is stepped over
during late swing, the objectives included are necessary but not sufficient; further
objectives such as landing velocity (related to avoidance of slipping) may have to be

considered.

Next we turn our attention to how the CNS achieves its goal of satisfying multiple
objectives. The large number of muscles involved in the control of locomotor behavior
theoretically provides the CNS with a large number of options. We have chosen to
focus on a subset of key control inputs that were based on the experimental data
available in the literature. Research has shown, for example, that rotational power at
the knee and not the hip joint is key to swing limb flexion [50], and this is reflected in
the dominant modulation of the biceps femoris activity during the early swing phase
[63]. In contrast, rotational work done at the hip joint rather than at the knee joint

following limb elevation, is critical for stable landing [61] and is reflected in rectus
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femoris activity during the late swing phase [63]. It is for this reason that we have
focused on single pulse activity of these two bi-articular muscles. Appropriate separa-
tion of the activity of these two muscles in the simulation, with earlier biceps femoris
activity followed by rectus femoris activity, supports the experimental evidence. That
activity of rectus femoris is related to control of stability during landing is confirmed
when removal of the stable landing objective leads to reduction in its activity. Rectus
femoris also contributes to positioning the maximum toe clearance over the obstacle.
Therefore, it is active even without the stable landing objective, although to a lesser

extent.

For the leading limb, inclusion of single articular muscles in the model might not
have reduced the significance of the initial conditions at toe-off. The major deficiency
in the optimization of the leading limb was locating the maximum toe clearance over
the obstacle. This could be achieved by modifying initial conditions and not by active
control during swing phase. However, such possibility needs to be investigated in more

detail.

While CNS control exerted during the swing phase alone through the activation of
these two bi-articular muscles is adequate for the trailing limb, it was not enough for
the leading limb. Initial conditions at toe-off had to be included as additional control
inputs. Empirical work has shown that hip hiking achieved through translational
work at the hip joint is an important additional contributor to swing limb elevation
[61]. Our biomechanical modelling work has shown that effective hip elevation is
in part due to the forces initiated during the double support phase, and this can
be captured in the hip and knee joint angular velocities at toe-off. Thus successful
simulation of lead limb trajectory over an obstacle when hip and knee joint angular

velocities are included as input parameters supports experimental evidence.

The criteria chosen to rate the quality of any particular swing trajectory are not
exclusive, nor are the shapes of the weighting functions used to describe their relative
distribution. As previously stated, all four criteria are required for successful leading

limb trajectories over obstacles. While adjusting the strength and distribution of
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the weighting functions may refine the optimized trajectories, the number of control

inputs or objectives cannot be reduced.

Finally we note an observation made on static optimization models which were
mostly concerned with partitioning the joint torque, calculated from inverse dynamics,
to muscle forces spanning that joint. Collins [16] and Buchanan and Shreeve [13]. (for
wrist and elbow) showed that the choice of many kinetic cost functions used in the
literature had minimum effect on the optimization results. Collins [16] suggested
the use of more than one criterion for optimization, while Buchanan and Shreeve
pointed out the strong dependence of muscle coordination on the number of degrees
of freedom at the elbow and the shoulder joint that are satisfied (13]. In line with
these suggestions, we feel a better optimization model should include both kinetic and
kinematic criteria. In the long run, a forward approach including kinematic objectives
(as opposed to an inverse dynamics approach) combined with kinetic objectives can
provide better insight to the solution to the redundancy problem in both skeletal

system and the muscles.

5.5 Conclusions

A multi-objective optimization approach based on kinematics objectives has been
presented. This optimization approach demonstrates that the use of biceps femoris
and rectus femoris is adequate for stepping over obstacles when encountered in early
swing. However, if the obstacle is encountered in late or mid-swing, then additional
active control prior to the toe-off (role of initial conditions at toe-off) become impor-
tant. The manual guidance of optimization, using tables such as Table 5.1, provides
a fast means of converging to a global minimum and avoiding local minima. A fuzzy
logic approach using the sample rule base (Table 5.1) can automate the manual guid-
ance process, and is a promising tool for finding the global minimum. Finally, in
order to find better solutions to the redundancy problem in skeletal system and mus-

cle actuators, optimization approaches have to evolve their objectives to include both
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multi-objective kinematic criteria and dynamics of the movement.
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Chapter 6

Neuro-Fuzzy-Genetic
Optimization: Models of the
Proactive (feed-forward) Control

System

A human ambulator continuously develops and modifies the relationship between the
external world and the movement dynamics of its own components through the use
of various sensory systems. For a novice ambulator, an obstacle in the path is hit
frequently when first encountered. This may be due to the lack of internal representa-
tion of the obstacle and/or the limb movements required to avoid it. Through several
exposures and trials, coordination of limb movements to avoid the obstacle is learned.
This skill is developed with practice and multiple exposures to similar situations, and

limb coordination becomes more stereotypical and automatic.

The objective of this work is to develop a connectionist representation of a novice
ambulator who after performing several trials, learns to associate visual inputs of the
obstacle size and location with respect to the limbs. The ambulator then learns to
produce the muscle forces and joint velocities required to step over the obstacle. This

is done within a feed-forward network of neurons.
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6.1 Motivation

The purpose of developing this model is twofold: first to develop a more powerful
tool for addressing the biomechanical and motor control issues involved in stepping
over obstacles, and second to develop learning algorithms that could be expanded to

include a whole range of activities in addition to obstacle avoidance strategies.

Results of many experiments show that the strategies used by humans to step
over an obstacle may vary from person to person, as well as between two trials made
by the same person. When the performance of stepping over a single sized obstacle
at a certain location is desired, numerical optimization models usually lead to a
unique optimal solution. A more desirable learning method however, is to be able to
provide a pool of possible strategies (or a pool of some of the possible solutions to the
optimization problem). This characteristic could be achieved with the use of genetic
programming which is used in this chapter. We use this characteristic to continue
our investigation on the strategies used for stepping over obstacles. The questions we

wish to address are as follows:

1. How does active control of muscle forces during the double support phase affect

the requirements of active control during the swing phase?

2. Why does the human ambulator favor a 60% obstacle location to stride length

ratio when the leading limb steps over the obstacle?

3. Does genetic optimization confirm the experimentally observed correlation be-

tween hip elevation energy and obstacle height [63]?

4. When is the use of active control during swing phase most crucial?

In the previous chapter, we used optimization routines to find an optimized com-
bination of muscle forces and joint velocities at the start of the swing phase, used to
perform the obstacle avoidance task while satisfying certain objectives. In this chap-

ter neural weightings and activation functions are determined and used to enable the
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ambulator to step over any height obstacle at various locations, without requiring
a separate optimization for each new set of sensory inputs. Here, the model is not
concerned with optimal performance over a single sized obstacle (fixed behavior);
rather, it is concerned with a satisfactory performance over a range of obstacle sizes

(adaptive behavior).

Often the goal of the ambulator is not to excel in the independent performance of
a single task, such as stepping over an obstacle. We seek to improve the performance
of this task within a more general framework; that is, the specific requirements of the
external world. A better learning model of stepping over obstacles should keep venues
open for further expansion and inclusion of its superset of behaviors. A combination
of the expert system and adaptability is required for specific tasks as well as for
more general decision making problems (Figure 6.1). For instance, based on learning
and adaptation, an expert system for the task of stepping over an obstacle could be
developed. However, this expert system must function within the obstacle avoidance
network, which is another expert system because its parameters have also been learned
and adapted to the more general requirements for the external world: such as, should
the ambulator step over the obstacle or steer clear? These blocks have different
responsibilities with different input and outputs, but may have the same structure
that has been copied repeatedly. The immediate advantage of such a repeatable
network is that its functionality and decision making capabilities can be expanded
and adjusted to the requirements of the external world. We follow the assumption that
the goal of learning in the intelligent system is to adapt the parameters to produce

more generalized rules for a more robust system, parallel to developing certain specific
skills.

6.2 Related Research

In the optimization chapter we reviewed the literature for the use of optimization

routines for obstacle avoidance strategies and solving redundancy problems in muscle
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Figure 6.1: A simplified model for locomotion based on subsumption archi-
tecture [12]. All layers shown receive all the sensory information, however,

they use this information selectively.
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actuators spanning one or several joints. In this section we review some of the other
research that has inspired this work, and are most related to the methodology used

here.

Brooks [12] proposed that instead of building systems that intend to cover the
complete range of activities, one should follow an incremental path from simple to
complex behaviors. Each parallel behavior shown in Figure 6.1 is a complete sub-
system in itself, featuring sensing, reasoning, and acting. Each parallel behavior
represents a layer of control. Each layer can monitor and influence the behavior of
the layer below it. Once such behavior is adapted, it remains unchanged and covers a
particular aspect of the whole system’s behavior. In Brooks’ proposed subsumption
architecture, not all sensors need to feed into a central representation. At the same
time, however, such information may still be used by the robot. Other layers of con-
trol may use the results to achieve their own goal independent of how other layers may
use them. Angle and Brooks [4] applied this architecture to a six-legged robot named
Attila. Each leg had three degrees of freedom, an active whisker, a gyro-stabilized
pan-tilt head carrying a range finder and a CCD camera, 10 onboard processors, and
over 150 sensors. Our hypothesis fits well in the subsumption architecture. Each
of the parallel behaviors shown is a superset level in which its structure is a copy
of the obstacle avoidance level. Their outputs, as shown, ultimately influence the
actuators via the obstacle avoidance level (element of motivation as described in our

hypothesis).

Beer (7] proposed that planning, as typically formulated in Al is fundamentally
intractable in real life situations. The approach that he took was similar to that of
Brooks except in “the choice of agent (physical robot vs. simulated insect), control
scheme (network of augmented finite state machines vs. neural networks), and degree
of biological inspiration”. Beer’s work showed that relatively simple networks of neu-
rons are capable of producing the required motion of a hexapod. He simulated the
central pattern generators (CPG) of an insect and obtained a variety of insects walk-

ing patterns. His control system simulated insects’ behaviors including locomotion,
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wandering, edge following, and feeding. It was capable of organizing its behavioral
receptors in a variety of ways to meet environmental demands. Beer differentiated
between adaptation and learning, but did not include learning in his simulation. The

biologically inspired controllers of the insect were fine tuned by trial and error.

Edelman [24], in his theory of neuronal group selection, argues that the world
does not come pre-labeled in particular categories that are directly represented in the
brain. Rather, an animal must form appropriate categories itself, and constantly up-
date them as it confronts the external world. He hypothesized that groups of neurons
undergo a selection process similar to that of populations of organisms during evolu-
tion. Simulations with his DARWIN software produced a simple organism capable of

adaptively interacting with its environment [66].

The work concerned with evolution of behavior widely uses genetic algorithms
(GA). One example is the work of Lewis, Fagg, and Becky [47] who used genetic
algorithms for stage development of the CPG of a hexapod robot. Their goal was to
evolve a biologically inspired neural network to generate a sequence of signals that
can drive the legs of the hexapod robot to produce consistent forward locomotion
along the body axis. Their approach required careful selection of an intermediate on
the way to a goal set. Hence, they designed a biologically inspired objective function
satisfying a three-stage evolution process: formation of limb oscillators, coordina-
tion of oscillations, and coordination of limbs. The promising results of their work

encouraged us to use similar tools for simulation of stepping over obstacles.

6.3 Neural Control of Locomotion

Locomotion is a complex motor task and requires continuous, active control. The role
of reactive and proactive control (similar to feedback and feed-forward control), sen-
sory redundancy and confliction, control levels (spinal level, brain stem, and cortex),
and substrates such as the cerebellum and basal ganglia is briefly discussed in Ap-

pendix C. Obviously, the complete picture of the neural control system is not known.
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Even with the existing hypotheses for the functions and roles of neural substrates
(see Figure 6.3 in Appendix C), modelling such a system is problematic. Therefore,
we started developing our model based on the simplest innate behaviors. We first
considered fixed action patterns as a series of stereotyped movements. Then we add

a learning ability to the system, in order to make the fixed action patterns adaptive.

A simplified model of the neural organization for fixed action patterns consists
of three main blocks (Figure 6.2). The fixed action patterns are typically activated
by specific stimuli, called sign stimuli. One of the responsibilities of the sensory
analyzer is to extract the sign stimuli and their intensity from a series of exposed
sensory inputs. This information is directed to the command system. The command
system triggers preprogrammed stereotypical motor acts, which are performed by
motor pattern generators. These three components are the minimum required for the
simplest preprogrammed motor acts. In a simplified analogy, when a human steps
over an obstacle, certain features of the obstacle (e.g. height, location, and width) are
extracted by the sensory analyzer. It may further perform a rough quantification of
these features (e.g. visual observation of a small obstacle). Based on this information,
the command system triggers a preprogrammed activation pattern (e.g. activation
pattern for biceps femoris). The simplified diagram of the hierarchy of the locomotor
control system from that presented by Patla (Figure 6.3) includes two levels of control:
supraspinal and spinal. The blocks representing the visual system and somatosensory
cortex perform the role of the sensory analyzer (Figure 6.2). The command system
is presented by the motor cortex, which is known to be responsible for planning
movements. The pattern generators in the spinal neurons are then responsible for

motor pattern generation. Addition of learning, however, requires two more blocks.

At least two additional centers are required for learning. The cerebellum (as dis-
cussed in Appendix C) participates in motor learning. The storage of this knowledge
is presented by another block. It is important to note that this block may not repre-
sent any specific substrate. Reflexive memory (forms of perceptual and motor learning

that are exhibited by alterations in the performance of tasks), which is of our concern
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Figure 6.2: Simplified model of neural organizations for fixed action patterns
[43].

in this work, may be stored in various locations. Learning affects all three blocks of
Figure 6.2. Perception of an obstacle can be modified by learning. For the ambu-
lator, the sense of dimension and location of the obstacle is continuously modified
and refined. As well, motor plans and motor pattern outputs are also continuously
prone to modification and refinement. Therefore, the learning blocks communicate
with all levels of control. They not only gather all the afferent and efferent copies
(sensory and motor act information), but also synapse to various substrates in order
to influence their performance. The learning center (cerebellum) is connected to all

other blocks (as shown in Figure 6.3).

Several experiments have shown a human ambulator begins to modify its normal
gait a few steps before reaching the obstacle [62]. Although we only model the swing
phase of locomotion, the initial joint velocities at toe-off, produced by muscle forces
prior to the swing phase of stepping over obstacles, represent the effect of the previous
modifications. In addition, previous research and our own modelling work (as will be
discussed in chapter 7) suggest that the swing phase is primarily under feed-forward

control. Therefore, only feed-forward control is considered in this chapter.

In the following section we develop our model by borrowing and combining a neural
network model, fuzzy logic control, genetic optimization, and reinforcement learning.
Throughout this chapter we have made an effort to create an analogy between this
model and the blocks of the control system shown in Figure 6.3. The analogy we
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have made is concerned with the functionality of each block, for the functions that
we have just described. (Of course each substrate has far more responsibilities than
those considered.). Each block is represented by layers of neurons; however, neither
the function nor the structure of the neurons in each substrate has relevance to
biological neurons. The type and functions of the neurons are chosen to model a
neuro-fuzzy system, as has been developed in the literature [40]. The combination of

genetic algorithm and reinforcement learning is novel in the current work.

The three blocks shown in Figure 6.2 relate in spirit to the idea of the fuzzy
inference systems. Fuzzy inference is based on a logical system which is closer to
human cognition than conventional logic. Its logic captures the approximate nature of
cognition within the real world. Fuzzy logic describes the world with linguistic labels
(e.g. small, large). The heart of fuzzy expert systems is their linguistic control rules,
which are based on an expert knowledge and define the world as a set of if-then rules.
Fuzzy inference consists of three mechanisms which somewhat perform functions of
the three blocks in Figure 6.2. (Appendix D details some fuzzy architectures): 1)
A fuzzification interface which transforms crisp sensory input values into degrees of
match with linguistic values. The sensory inputs get linguistic values (e.g. small,
medium, or large obstacle). 2) A knowledge base which includes a series of rules and
performs the inference operations on the rules (e.g. if antecedent then consequent).
3) A defuzzification mechanism which transforms the fuzzy results to the crisp output

values.

Similar to behaviors which are mediated through networks of neurons [43], fuzzy
logic could also be embedded through a connectionist model (Appendix E). Based on
the cellular connectionism view, individual neurons are situated together in functional
groups and connect to one another in a precise manner [80]. Fuzzy logic can be
viewed as a parallel neural network where each neuron represents a fuzzy membership
function and each synaptic connection represents a weight for a fuzzy rule. The
fuzzification, knowledge base, and defuzzification layers are analogous to the blocks

in Figure 6.3 (excluding the cerebellum).
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Application of the neuro-fuzzy network resolves the problem of defining a connec-
tionist model consisting of individual blocks of Figure 6.3. There is no quantitative
information about the input-output relation of the blocks. The information at hand
is the visual input of the obstacle and limb locations, and some kinematics measures
of body location during and after the swing. If we were to design a feed-forward
multi-layer neural network to model stepping over obstacle behavior, the role and
physical function of the intermediate (hidden) layers (Appendix E) would not have
been known. Application of the neuro-fuzzy network (also known as the adaptive
network [40]), is a remedy to this problem. In a neuro-fuzzy network, each layer has

a certain function which can define an input-output set.

6.4 The Model

The simulation model used in this work includes a neuro-fuzzy architecture which re-
ceives two reference sensory inputs (obstacle height and location). This then generates
the required initial velocities at toe-off and the required bi-articular muscle pulses.
The neuro-fuzzy network’s outputs are applied to a link segment planar model of the
human lower limbs (plant). The rule-base (weights) of the neuro-fuzzy architecture
is trained by a reinforcement learning architecture, while its membership functions
are set by genetic optimization. Figure 6.4 illustrates the model. The details of this

model are as follows:

6.4.1 The Simulation Plant

The simulation plant consists of a five degree of freedom planar link-segment model
(Figure 6.5). The inputs to this link-segment model include initial angular velocities
at toe-off and single pulses of bi-articular muscle forces (please refer to the optimiza-
tion section 5.2 for the justification of these choices). The anthropometric data (e.g.,
segment weights, lengths, center of masses) were taken from [83] for a human weighing

60 kg. The initial angular displacements at toe-off were as follows (Figure 6.5):
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Figure 6.5: The 5 degrees of freedom model used in the simulation.

6 ={6,,0,4.63,4.19,5.76} rad (6.1)

where 6, was found from the constraint that the swing toe should be at ground

level at toe-off.

Each muscle pulse was characterized by five parameters. These parameters were
defined in the previous chapter (see Figure 5.2). We kept two of these parameters
constant during these simulations: rise time was set at 60 ms, and half relaxation

time was set at 100 ms.

The output of the link-segment model is the kinematics of the trajectory. Of the
kinematic parameters; toe clearance over the obstacle, location of maximum toe clear-
ance, and landing stability (see Figure 5.4) were calculated and used for developing

the fitness value for the genetic optimization. This will be described later.

6.4.2 The Neuro-Fuzzy Architecture

The neuro-fuzzy network (Figure 6.4) is a superset of feed-forward networks. It
is similar to a multi-layer feed-forward network [68], except each node performs a

particular function on the incoming signal. The choice of the node activation function
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depends on the input-output relation that the layer or the node is to carry out. In
Figure 6.4, the functions of each of the five layers are as follows (we also make an
attempt to create an analogy between the layers and the blocks of Figures 6.3 and
D.3):

Reference Inputs

The reference inputs include the sensory inputs captured by vision (obstacle location
and height in our case). The crisp value of these references are given by the vector

T = {z,, 12} (Figure 6.4).

Layer 1: Sensory Membership Layer

This layer performs the fuzzification on the sensory inputs (similar to the fuzzification
interface in Figure D.3). In other words, the degree of membership of each sensory
feature (obstacle height, and location) in each of the linguistic sets (small, medium,
large) are determined. This can also be translated to determining the activation
pattern for each sensory feature (analogous to the sensory feature analyzer block in
Figure 6.3). Each neuron in this layer is an adaptive (shown by square) neuron (as
defined in Appendix D). Each of these neurons is associated with a linguistic label.
In our case, the linguistic labels for obstacle height are: {low, medium, high} and for
location are: {earlyswing, midswing, lateswing}. The activation function of neuron

¢ in layer 1 is:

Ori = p,(z) (6.2)

where uy, denotes the membership function of neuron i corresponding to the
linguistic label L, as a function of the input z. The number of the neurons in this
layer is the sum of the linguistic labels of all the reference inputs. The activation
functions may be any of the usual shapes: triangular, trapezoidal, or bell-shaped
(Figure 6.6). Each of these functions are defined by a set of variable parameters called

99



£ A
[4]
2
§ ¢——a
=
—P
b
£ A I+ —>]
[
£
: — a —_—
b
C
—p
£ A
z
£
2l . .
K c $| Universe of Disage

Figure 6.6: Three types of membership functions: a) Triangular consist-
ing of two defining parameters, b) bell-shape consisting of three defining

parameters, and c) trapezoidal consisting of three defining parameters.

premise parameters [40]. For example, for the bell shaped membership function, the

parameters (a;, b;, ¢;] define p; (z) as:

1
(z) = ——— 6.3
wle) = 7 (G078 3

Layer 2: Minimization Layer

This layer is part of the decision making block in the fuzzy algorithm (Figure D.4).
Each neuron in this layer represents the firing strength of a rule. These are fixed action

(shown by circle) neurons. They perform a minimization operation (see Appendix
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D) between the incoming signals. Other operators (such as multiplication) may also
be used as activation functions. The number of neurons in this layer is equal to the
number of fuzzy subsets (rule-base). In our case we usually had two reference sensory
inputs, and each sensory input included three linguistic sets. The number of fuzzy

subsets therefore was 32.

The function of this together with layers 3 and 4 would be analogous to that of
the motor cortex block (motor planning) in Figure 6.3 and thé command system in
Figure 6.2. These blocks use their previous knowledge (stored in the knowledge base
in Figures D.3 and 6.3) to plan the required motor actions from the received sensory

information.

Layer 3: Normalization Layer

This layer is also part of the decision making block in Figure D.3. These are circle
(fixed action) neurons. The i** neuron calculates the ratio of the i* rule’s firing (in
layer 2) to the sum of all the rules’ firing strengths. The connection strengths between
layers 2 and 3 are all unity. The output of the i** neuron in layer 3 is therefore given

as:

Oy
Osi = ——— (6.4)
j=102;
where n is the number of neurons in layer 2. The number of nodes in this layer is

equal to the number of fuzzy subsets (rules).

Layer 4: Action Membership Layer

This layer calculates fuzzy values of the network outputs (actions). These are square
neurons (adaptive). The number of neurons in this layer is equal to the number
of linguistic labels of the network outputs (actions). The structure of this layer is
different from ANFIS [40] in that the number of neurons is not necessarily equal to

the number of fuzzy subsets. The activation function of the neurons in this layer
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is analogous to the centroid of the area method for triangular memberships (see
Appendix D). As usual, each triangle will have two parameters (the base and the
mean value of the triangle membership function). The neurons of layers 3 and 4 are
fully connected. Each of the connections implements a rule-base. Therefore, for each
of the layer 4 neurons, only one of their output connection’s strengths must be equal
to 1, and the rest must be equal to zero. However, we have modified this binary
representation, and this will be discussed in the reinforcement learning section. In
our case, the network contains 9 outputs (start time, duration, and magnitude of the
biceps femoris and rectus femoris pulses, as well as hip elevation velocity, hip flexor
velocity, and knee flexor velocity at toe-off). Each of these outputs usually comprised
three linguistic sets {low, medium, high}. However, in some of the simulations (as
will be discussed in the results section) we increased the number to 4 or 6 linguistic

sets to produce a more continuous output.

Layer 5: Summation Layer

This layer performs the defuzzification process (defuzzification interface in Figure
D.3). It calculates the crisp value of each output (action) by performing the maximum
operation ("OR” function) on its linguistic sets (see Appendix D). The number of
neurons in this layer is equal to the number of outputs. The strength of all of the
connections between layers 4 and 5 is equal to 1. However, the linguistic neurons
in layer 4 are only connected to their corresponding output. The output of the jtt

neuron in layer 5 is given as:

Nk
Osj = ZO4nk (65)

i=1
where n; is the number of linguistic labels for the k* output.

This layer represents the spinal pattern generators in Figure 6.3. The summation
layer is analogous to the motor neurons in the spinal level. However, the direct spinal

level sensory feedback (afferent feedback) is not modeled in this work.
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6.4.3 Learning

The remaining block to be discussed in Figure 6.3 is that referring to the learning
center (we have called it cerebellum, although we acknowledge that cerebellum is not
the only learning center in the human). As shown, this block communicates with all
other blocks. It receives sensory information from the sensory analyzer, motor plans
from the motor cortex, motor actions (efferent copies) from the spinal level, and
finally information regarding the state of the limbs (with respect to the obstacle and
the segments) after performing the swing. It also communicates with the knowledge
base. Learning modifies both the synaptic strengths (strength of the connections)

and the signal transmission properties of the neurons.

In a standard feed-forward neural network, learning is usually implemented by
modifying the connection strengths and thresholds of the neurons. In adaptive net-
works, learning is also performed on the square neurons such that their activation
function would be modified not only by a threshold value but by two or three param-

eter sets (e.g. the bell-curved activation has three parameter sets).

As noted in the literature review, some researchers have used global search al-
gorithms for training neural networks. For example, Lewis et al. [47] used genetic
algorithms to train the neural network of a six legged robot, while Kim et al. (44, 81]
used genetic algorithms to train rules and membership functions in a neuro-fuzzy net-
work. Others have used hybrid models of optimization to develop rules and modify

membership functions of fuzzy networks [40].

This work is somewhat similar to that of Kim et al. [44]; although there are

several significant differences:

* Kim et al. [44] used genetic optimization for training both the weights and
the memberships of the neuro-fuzzy network. This work utilizes reinforcement
learning for training the weights, while genetic algorithms are used to train the

adaptive neuron’s membership (activation) functions.
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o The connection strengths (the rule-base of the neuro-fuzzy network) were pre-
sented by binary values (in other words, a rule is either off or on). In the
proposed model, the strength of the connection has an approximate value (in

other words a rule may be partially on).

e Simulations of the above models were performed on the Cart-Pole system. This
work performs the simulations on a five degree of freedom planar link segment

model of the lower limbs.

Genetic Algorithms

The highly parallel and robust technique of genetic programming (Appendix F) was
used to optimize the membership parameters for the square neurons. Figure 6.7
illustrates how the neuro-fuzzy network, simulation plant, and the genetic algorithm
are connected. The genetic pool (Figure 6.7) usually consisted of 200 individuals
(genotypes or strings of binary characters). Each parameter of any linguistic set of
the network outputs was represented by an 8 bit binary fixed length string. Therefore,
for 9 network outputs, each including 4 linguistic sets, with each linguistic set being
defined by 2 parameters, a 9 x 4 x 2 x 8 bit binary string was assigned. The standard
genetic algorithm with only mutation and crossover operators was used. Selection was
performed using the standard Baker’s SUS algorithm (see Appendix F). Usually a 2
point crossover was performed at the rate of 60%. The mutation rate was maintained

constant at the rate of 0.1%.

The algorithm always started with similar membership shapes distributed uni-
formly within the universe of discourse (Figure 6.8). The genetic optimization routine
then changed the parameters of each linguistic set belonging to the various network
outputs (actions) in order to maximize a fitness value. The fitness value was max-
imized when the toe clearance over an obstacle reached 10 cm, and the location
of maximum toe elevation was equal to the corresponding network reference input.
Additionally, for some simulations, the stability margin (Figure 5.4) was also consid-
ered in calculating the fitness value. The desired stability margin was set to 0.2 m.
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Typically the fitness value, F,yq, was:

Flotat = 2000 — Fltearance — Flocation — stability (6.6)

Fclearancc = IYclear - -ll x 1000 (67)

where Yo is the toe clearance over the obstacle as shown in Figure 5.4,

Flocation = I(X)’m“ - 4Yobst)| x 1000 (68)

where X, is the obstacle-toeoff distance, and

Fstaln‘lity = |Xtoe - XC.M. - 2| x 1000 (69)
where X0 — Xc.ur. is the stability margin shown in Figure 5.4. All the units are
in meters.

For each simulation, the genetic optimization continued for 30 generations. The
program would also terminate when either the fitness value, Fiyq, had reached 90%

of its maximum, or the pool had lost its diversity.
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Reinforcement Learning

The connections between the normalization layer (layer 3) and the action membership
layer (layer 4) represent the rule-base of the neuro-fuzzy architecture. Each of the
neurons in the normalization level represent an antecedent of an if-then rule. The
consequent of rules are then defined by neurons of the layer 4. Figure 6.9 shows one of
the neurons in layer 3 representing an antecedent, connected to three neurons of layer
4 representing the linguistic sets of one network output. Based on the concept of a
fuzzy associative memory matrix (Figure D.2 in Appendix D), one of the represented
connections can be 1 and the others must be zero. For example the two following

rules should not exist simultaneously:

IF a1 AND bl THEN z is SMALL
IF al AND bl THEN z is LARGE

Kim et al. [44] let the genetic algorithm take care of learning the rule-base. In
the present work, the rule-base is learned by a reinforcement architecture. Each trial
on the link segment model provides the system with one set of the network’s actual
input-output mapping. This is potentially a rule that could be used to affect at least
one of the weighted connections between layers 3 and 4. To reduce the dimension of
the genetic search, each plant simulation is used to reinforce one of the rules. The
procedure is as follows (Figure 6.9): The inputs and outputs of the plant are fuzzified
by passing through their original membership functions. The mazimum operation is
performed on the linguistic sets to find the maximal membership of the input-output
mapping . The linguistic labels corresponding to the maximal memberships are put

together in the form of an if-then rule as shown in Figure 6.9.

The natural interpretation of this rule in the network (Figure 6.9B) would be that
the weights corresponding to the output neuron with the linguistic label medium is
set to 1, while the weights corresponding to the output neurons with linguistic labels
low and high would be set to zero. However, there is a potential problem with this

form of rule adjustments; a slight change in inputs x and y may not transform them
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to a new linguistic set, although it may cause a change in the output z membership
values. In other words, two set of inputs with identical linguistic labels could be
mapped to two different outputs. Figure 6.9C illustrates a remedy to such situations.
Instead of rewarding the connection corresponding to a rule by 1, the connection is
rewarded by 0.1 each time the network corresponds to the rule. However, the effect
of each rule on the network is reduced as the number of the trials increases. This
is done by normalizing the linguistic sets to 1 after each trial (see Figure 6.9). The
reward system defined in this way is rule specific, and therefore introduces more than

one baseline for reinforcement learning.

Genetic learning does not interfere with reinforcement learning of the rules. As
mentioned, the reward system uses the original uniform membership distributions,
and not those modified by the genetic operations. This approach is necessary because
the memberships defined by the genotypes vary significantly during the evolutionary
process. On the other hand the reinforcement learning has to be started from the
very first trials (we begin by assuming that we have absolutely no knowledge about

the rule-base) and cannot wait for the evolutionary process to become more stable.

The use of original uniform memberships has another advantage; it enforces the
genetic optimization to modify the membership parameters around a center baseline
(the original memberships). We can therefore always expect that the membership
labeled large corresponds to a higher range in the universe of discourse than the

membership labeled medium.

Eventually, after the genetic optimization converges to the solution, we can then
modify the reinforcement learning to look at the memberships of the best individual
in the pool, instead of the original memberships. This further improves results. We

refer to this stage as “skilled learning”.

6.4.4 Selection of Model Parameters

In the design of the neuro-fuzzy-genetic architecture, several parameters need to be

determined. In the neuro-fuzzy part, these parameters include: the number of lin-
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guistic sets for each input and output, the type of linguistic sets for each input or
output, and the defuzzification method. In addition, for genetic learning, several pa-
rameters need to be determined. These parameters include: the size of the genetic
pool, the number of binary bits for the linguistic set, the number of crossover sites, the
crossover and mutation rates, the selection pressure, and the termination criteria. For
the numerical integration of the link-segment model, the maximum allowable error at

each time step plays a crucial role in the speed and accuracy of the simulation.

Various types of linguistic sets (Figure 6.6) introduce different numbers of free
parameters. For example, the bell-shaped curve has a smooth shape. Although more
flexibility in defining each linguistic set can be obtained by the bell-shaped curve we
chose to use the triangular shape, since this has one less parameter, and therefore the
linguistic set for each output would be several bits shorter. This has a drastic effect

on the length of each genotype in the pool, and thus, reduces the computational load.

Increasing the number of linguistic sets for each input-output resulted in more de-
tailed knowledge of each universe of discourse. This increase also resulted in producing
more if-then rules in a more precise manner, such that each rule had smaller bound-
aries with better-defined elements. This parameter affected reinforcement learning
(finding the weights for the rule-base) the most and made it more effective. However,
increasing one linguistic set for one of the inputs, exponentially increased the size of
the network. In the network shown in Figure 6.4 the addition of a linguistic set for
input z results in one extra connection to layer 1, three new neurons and connections
for layer 2, three new neurons and 63 new connections in layer 3, and 36 more con-
nections in layer 4. Note that this illustrates a network for only one output, while
the actual network used included nine outputs. Therefore, all of the above numbers

are multiplied by a factor of 9.

Defuzzification methods usually affect the transient response in feedback control
systems. Of the two methods for the mean-of-maximum and the centroid-of-area
(Figure D.4), the latter yields to better steady state responses, while the former yields

to better transient responses [46]. The transient response for the maximum criterion
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method is better than the centroid-of-area method, however, it is not superior to that
of the mean-of-maximum method. As the architecture designed in this chapter was
meant for the steady state response, the centroid-of-area was found to be the most

suitable method.

The number of the genotypes in the genetic pool affects the degree of parallelism
in the search routine. The larger the population number, the less there is the chance
of the pool losing its diversion. Hence, the chances of premature convergence to a
local non-fit solution would be reduced. However, as each genotype holds information
regarding one set of network parameters, by increasing the number of genotypes in a
pool, the number of computations required for one generation will be proportionally
increased. Each evaluation of the networks requires simultaneous integration of the
link-segment plant model. As well, transfer of information between genotypes gets
more difficult when the population increases. Therefore, a balance should be met with
the necessary diversity, the convergence speed, and the computational loads required.
Each problem has its own specific favor in this matter. In this work, by several trials,

it was found that the pool size between 100 to 500 were most suitable.

The number of binary bits assigned to each linguistic set defines the grid over the
whole universe. An 8 bit binary string divides the universe of {0,4} to 256 grids of
length 1/256 each. Therefore, the resolution in the solution space increases with the
number of bits in the individual binary strings. This effect combined with the size
of the universe will determine how fine/coarse the network operates over the solution

space.

The number of crossover sites and the crossover rate combined with selection
pressure determine the rate at which the pool converges. The number of crossover
sites must be based on the length of the building blocks for each genotype. For a highly
epistatic representation (when too many elements are dependent on other elements,
e.g. parity problem) the higher number of crossover sites in a gene is not desirable.
In this situation, unless a unique set of binary values are found simultaneously, no

substantial fitness improvement can be achieved [18]. By increasing the crossover rate,

111



the fitness of an individual string compared to the pool becomes less important. In
other words, the possibility of destroying an individual with best fitness increases in
favor of giving more faith to the average fitness of the pool and the schemata (building
blocks carried by that gene). The mutation rate is another means of producing
diversity in the pool. It becomes more important as the pool size reduces and/or the
selection of the fittest pressure increases. The value chosen here (0.1%) was suggested
in [18].

The selection pressure depends on the selection algorithm and how the fitness func-
tion is scaled. The standard SUS selection algorithm aims at selecting the individuals
with higher than average fitness. However, an exponential scaling of the fitness func-
tion can change the topology of the surface that the genetic program is climbing on.
This exponential fitness may create a bias towards the original peaks and increase
the probability of immature convergence by widening the distance between the fittest
individuals and the rest of the pool at each generation. A low selection pressure, on
the other hand, results in very slow convergence, if any, and a higher computational
load. It follows that a linear scaling with a not very large pool (between 100 and 200

population) works best for this problem.

Finally, the termination criteria are mostly dependent on the search goal. For an
optimization looking for one best solution, the termination criteria might be reaching
certain fitnesses. The diversity of the solutions and their range was important for us
to ascertain. Clearly, in many instances this problem had more than one solution.
Therefore, we believed that the better termination function would look at both 90%
of genotypes having more than a certain fitness (RMS < 5 cm), and limit the op-
timization to 30 generations (the justification for selecting these termination criteria

will be shown later).
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Figure 6.10: With the increase of fitness in the genetic population, the range

of variation of all except foot velocity at toe-off converge to a certain level.

6.5 Results

6.5.1 Sensitivity of the Final Pool to the Foot Angular Ve-
locity at Toe- off

The genetic optimization was performed on a five degree of freedom link-segment
model (Figure 6.5). The goal was to find the sets of initial velocities at toe-off (linear
stance hip, angular swing thigh, angular swing leg, and angular foot) that produce at
least 95% of the maximum possible fitness value. This would correspond to less than
5 cm error in satisfying both objectives of a 10 cm toe clearance over the obstacle,
and locating the maximum toe clearance over the obstacle (see Equation 6.6). The
genetic pool included 100 genotypes and the simulation was terminated when the

average fitness of the pool was more than 95% of the maximum possible fitness.

Several simulations for different values of the reference inputs (obstacle location

with respect to the toe-off and obstacle height) to the neuro-fuzzy model were per-
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Figure 6.11: The fittest genotypes are not sensitive to the foot velocity at

toe-off.

formed. A typical result for an obstacle height of 20 cm located at 30 cm from toe-off,
and sorted by the fitness of the genotypes in the pool, is shown in Figure 6.10. As
the fitness value increases, all of the initial velocities (except the foot angular veloc-
ity) converged to a baseline value. Even in the fittest genotypes (Figure 6.11) there
is a significant range for the foot segment initial velocities. This indicates that the
final solution is less sensitive to the foot segment angular velocity at toe-off com-
pared to the other three initial velocities studied. Based on this result, the rest of
the simulations were performed with the foot segment fixed to the leg at a 90 degree

angle.

6.5.2 The Effect of the Number of Criteria Used in the De-
sign of the Fitness Function

The number of individual genes in the pool was increased to 500. When the two
criteria: location of maximum toe elevation and toe clearance, were used to design the

objective function, physically unacceptable solutions were found in the pool. Figure
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Figure 6.12: Two solutions with opposite signs exist for the thigh and hip

initial velocities.

6.12 shows two ranges of solutions with opposite signs for the swing leg and thigh
angular velocities. However, the solution range corresponding to the backward swing
of the thigh and the forward swing leg angular velocities at toe-off are not physically

acceptable (Table 6.1, rows 1 and 2).

Two remedies were considered: a) addition of a new constraint that limits the
movements of the swing limbs at toe-off, b) addition of a new objective to the fitness
function. The former remedy would limit some of the possible movements, while the
latter would create more realistic landings. Therefore, the landing stability criterion
was added for evaluating the fitness function (Figure 5.4). A 20 cm distance between

the stance hip and the swing toe at landing was considered optimal.

Simulations(Table 6.1, row 3) with the added stable landing criterion showed that
the undesirable solution was removed from the final pool. A comparison between
rows 2 and row 3 of the table demonstrates a significant reduction in the hip elevation
velocity at toe-off. This lower velocity caused significant loss of altitude of the hip
at landing, which in turn was a physically unacceptable solution. To avoid this,

the amount of loss of altitude of the swing hip was constrained. Since the addition
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Vie @ @ Yoear XYmax Xstabie Fitness
0.749 [ 2.304 |-3.038 [0.319 [0.310 1961.0
2.123 |-2.118[2.165 [0.299 [0.315 1968.8
0.580 {3.777 |-4.307 [0.305 [0.296 |0.202 |1990.3
2.184 [ 1.940 (-0.753[0.293 [0.576 [0.176 |1679.7

Table 6.1: The change of initial velocities with the addition of stability

criteria and the hip elevation constraint.

of a spring and damper to reduce the loss of altitude of the hip (an anatomically
justifiable solution) would cause extra computational effort for the variable step size
simultaneous integration of the link segment model, it was decided to add a constraint
to the fitness function: for each centimeter loss of hip altitude in excess of 10 cm,
the fitness function was penalized by 3 cm. Simulation with the added constraint to
avoid loss of hip altitude (Table 6.1, row 4) showed that the hip elevation velocity
was increased significantly in the pool of solutions. This was combined with lower leg

backward velocity. The major compromise was the reduction in the fitness value.

The results (row 4 of Table 6.1) show that this reduction of the fitness function
was due to the increased error in locating the maximum toe elevation during the swing
phase. Therefore, without active control, it was not possible to produce an efficient
swing for the obstacle located at 30 cm from the toe-off location. Note that the step

length at the beginning of the swing was set to 45 cm. The above configuration,
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therefore, refers to a condition that the obstacle had encountered during early swing.
In other words, the trailing limb was stepping over the obstacle. The effect of the

obstacle location on the fitness function is described next.

6.5.3 The Effect of the Obstacle Distance from Toe-off Loca-

tion

The obstacle height was set to 10 cm while the obstacle location was varied along the
stride length. Each simulation was performed on a genetic pool of 200 individuals.

At least two simulations for each obstacle location were performed.

The progression of the average fitness, with generations at various obstacle-toeoff
distances, (Figure 6.13) shows that most of the improvement on average fitness is
usually achieved by generation 30. Therefore 30 generations were chosen as the land-
mark for termination of the simulations. Only the simulations in which the pool did

not converge before 30 generations were used for plotting the results.

The maximum fitness was obtained for a obstacle-toeoff distance of 55 cm (Fig-
ure 6.14,A). For a symmetrical swing over the obstacle, this distance corresponds to
approximately 60% of obstacle-toeoff distance to stride length ratio (O/S ratio). As
discussed in previous chapters, this ratio is usually observed in young subjects step-
ping over small and medium-sized obstacles. Also evident is that as the obstacle is
encountered earlier in the swing (obstacle-toeoff distance less than 35 cm), the max-
imum fitness of the pools reduces. The same trend, although less significant, occurs
when the obstacle is encountered later in the swing (obstacle-toeoff distance greater

than 35 cm).

The average fitness of the pools also favored obstacle placement around 50 — 60%
of the stride length (Figure 6.14, B) although not as pronounced as the maximum
fitness (Figure 6.14, A). Obtaining a high fitness value became more difficult as the
obstacle was encountered earlier in the swing or in late swing. From these results we

can conclude that for an obstacle placed at mid-swing, less additional active control
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Figure 6.13: The progression of average fitness with generations for various

obstacle-toeoff distances.
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Figure 6.14: Maximum fitness (A) and average fitness (B) of the gene pool

after 30 generations as a function of the obstacle-toeoff distance.
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No. Vhe a, @, Stride Ymax Yeear X Vmax Xstable Fitness

1 | 292|1.67|-044| 1.49( 057| 024 0.76| 0.20] 1350.66

2 | 216(1.92| -0.44| 1.22| 0.34| 0.17| 0.59| 0.23] 144683

3 |219]188}-1.17| 1.11| 040 0.19| 0.54| 0.06] 142687

4 | 1.4111.07| -1.24| 0.60| 0.21| 0.19| 0.31| -0.18] 141436

5 | 1.54)12.12| -049] 0095( 0.20] 0.12| 0.49| 0.18] 128384

Table 6.2: The results for a typical solution pool for 15 cm obstacle-toeoff

distance with a 10 cm obstacle on pathway.

is required to achieve the objectives of safe clearance of the obstacle (safe landing and

efficient swing).

6.5.4 The Effect of Initial Velocities on Each of the Objec-

tives

A closer look at the results obtained from one of the solution pools shows why a higher
fitness value was not achieved for the trailing limb (Table 6.2). For this simulation
the obstacle-toeoff distance was set to 15 cm, and the obstacle height was 10 cm. Row
1 of the table indicates a solution where high hip elevation velocity (2.92 m/s) was
used with lower backward velocity of the leg (-0.44 rad/s). For this solution, landing
stability was achieved while the toe cleared the obstacle by 14 cm (desired solution
was 10 cm). The obstacle-toeoff distance (Xymes) Was very far from the desired value

of 15 cm, causing an inefficient swing (maximum toe clearance was 57 cm).

Row 2 demonstrates a solution in which hip elevation velocity at toeoff (Vie)
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was reduced to 2.16 m/s from the 2.92 m/s in row 1. The obstacle-toeoff distance
(Xyme.) came closer to the desired value, while the maximum toe clearance dropped
significantly. This denotes the high influence of the hip elevation velocity on the
maximum toe elevation and its location. Comparison of row 5 to rows 1 and 2 shows
that the observed change in maximum toe elevation is not due to the change in the
thigh forward velocity. In row 5, while thigh forward velocity remained relatively
high, a reduction in hip elevation velocity caused a lower maximum toe elevation and

location.

Comparison of rows 3 and 4 with rows 1, 2, and 5 demonstrates the dominant
influence of the leg backward velocity on the stability criterion. By increasing the
backward velocity of the leg by almost 1 rad/s, a stable landing was largely compro-
mised. The effect of thigh forward velocity on stable landing seems to be less than leg
backward velocity, and more than hip elevation velocity. Row 4 demonstrates a con-
dition in which both toe clearance and location of maximum toe clearance objectives

were accomplished, however the combination failed due to an unstable landing.

6.5.5 Failure Analysis

As an alternative method for comparison of the pools, a failure analysis over the
populations of genotypes was performed. The percent genotypes resulting from failure
to clear the obstacle (Y..r < 0 ) and/or unstable landing (X, eape < 0) was plotted

for various generations, as well as for various obstacle-toeoff distances.

A typical simulation for a pool with 200 individuals in the population, and an
obstacle height of 10 cm positioned 55 em from toe-off, is shown in Figure 6.15. As
expected, the failure rate was reduced from 60% in the fifth generation to less than
2% in the 30 generation. The reduction in failure rate denotes the convergence to
a fit population. The low failure rate after 30 generations shows that satisfactory
convergence in the pool is produced. Further generations would improve the results
insignificantly. The range of population fitnesses based on each of the criteria after

30 generations shows moderate variations in each of the criteria (Figure 6.16).
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Figure 6.15: A typical reduction in the failure ratio for a pool with 200
individuals in the population, obstacle height of 10 cm, positioned 55 cm

from the toe-off, as a function of generation number.
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Figure 6.16: The range of population fitness after 30 generations for an
obstacle height of 15 cm and obstacle-toeoff distance of 55 cm from toe-
off.
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Figure 6.17: The failure rate in clearing a 15 cm obstacle with increasing

obstacle-toeoff distance in generation 30.

The failure rate of generation 30 was studied for various obstacle locations (Figure
6.17). Although an obvious trend with increasing the obstacle-location distance was
not observed, one can easily conclude that the average failure rate for the trailing
limb is in general higher than what is observed for the leading limb. For the trailing
limb the failure rate was usually over 6%, while for the leading limb it was reduced

to less than 2%.

6.5.6 The Effect of Obstacle Height

Hip elevation velocity at toe-off is highly correlated with the obstacle height. The
obstacle-toeoff distance was fixed at 55 cm, and several simulations were performed
with various sized (10, 15, 20, 25, 30, and 35 cm) obstacles. All the individuals

that demonstrated a fitness of more than 1900 (out of maximum fitness of 2000)
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Figure 6.18: The average value and standard deviation of the initial condi-
tions at toe-off (hip elevation velocity v, thigh angular velocity, w;, and
leg angular velocity, w;) for 6 obstacle heights (at 55 cm obstacle-toeoff

distance) in generation 30.

were collected (in the case of the 35 cm obstacle, all the fitnesses larger than 1850
were collected). The average value and the standard deviation of each of the initial
conditions were calculated (Figure 6.18). The hip elevation velocity at toe-off showed
maximum correlation with obstacle height. However, no correlation between obstacle
height and hip flexion was found, and, little correlation was observed between knee

flexion velocity ((6; — 6,) in Figure 6.5) and obstacle height.

A plot of the three objectives versus the above 5 obstacle heights showed that the
toe clearance remained close to the desired value (10 cm) while the stability margin

remained close to the desired value of 20 cm (Figure 6.19). The location of maximum
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Figure 6.19: The range of values for the 3 objectives (toe clearance, Yaear,
location of maximum toe elevation, Xymaes Stability margin Xistatte) for 6

obstacle heights, in generation 30.

toe elevation, however, demonstrated an increasing trend with obstacle height. For
the largest obstacle (35 cm), the average location of maximum toe elevation was
closer to 65 cm. The increasing trend was similar to that of hip elevation velocity at
toe-off. The results clearly confirm the sensitivity analysis of the previous subsection,
suggesting that knee flexor velocity at toe-off is mostly concerned with stable landing,
while the hip elevation velocity at toe-off is mostly responsible for the control of the

maximum toe elevation and its location (indicators of movement efficiency).
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6.5.7 The Effect of Bi-Articular Muscle Forces

The single pulse activities of the two bi-articular muscles, biceps femoris and rectus
femoris, were modelled as shown in Figure 5.2. For each muscle pulse, three parame-
ters were varied: pulse magnitude (f,), pulse start time (ts), and pulse duration (tq).

The rise time and half relaxation time were set at 60ms and 100ms respectively.

The results of the simulation, for an obstacle height of 20 cm and an obstacle-
toeoff distance of 15 cm (trailing limb), are shown in Figure 6.20. Similar objectives to
the previous simulations were to be satisfied (Yetear = 10cm, Xy, = 15em, Xsiape =
20cm. Figure 5.4). The plots are arranged based on the individuals with the fitness of

more than 1800/2000 in the pool. The simulation was performed for 30 generations.

Clearly, the maximum and average fitness values obtained for this pull is larger
than the one obtained by simulation with only initial velocities at toe-off (see Figure
6.14 for 15 cm obstacle-toeoff distance). In Figure 6.20 the biceps activity usually
started before the rectus acivity (biceps_ts vs. rectus_ts) while the rectus ativity
lasted longer (biceps.td vs. rectus.td). The pulse magnitude for the rectus was
slightly higher than that for the biceps. Many of the solutions in the pool included co-
contraction between the two muscles (overlap between the area bordered by biceps_ts
and biceps.td, and the area bordered by rectus.ts and rectus_td denotes the amount
of co-contraction). Note that, in this model, for equal muscle pulse magnitudes, co-
contraction would result in a net extensor torque on both hip and knee joints. Clearly,

the pool shows that more than one solution exists.

The results of the simulation, for an obstacle height of 20 cm and the obstacle-
toeoff distance of 55 cm (lead limb), are shown in Figure 6.21. Similar objectives to
the previous simulations were to be satisfied (Yetear = 10cm, X¥maz = 55cm, Xgtapte =
20cm). The plots are arranged based on the individuals with the fitness of more than

1900/2000 in the pool. The simulation continued for 30 generations.

In the pool shown in Figure 6.21, the fitness values over 1900 increased significantly
compared to the pool for the 15 cm obstacle-toeoff distance (shown in Figure 6.20.

Rectus femoris activity (rectus.ts) often started prior to biceps femoris (biceps.ts).
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Figure 6.20: Initial velocities, muscle pulse magnitudes, timings, and the
fitness criteria for reference inputs of 20 cm obstacle height and 15 cm

toeoff-obstacle distance.
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Also, some of the solutions showed no muscle activity (consistent with the simulation

with initial velocities only).

6.5.8 Adaptive Locomotion

An important question yet to be addressed is how successful can the neuro-fuzzy
network operate over a range of untrained obstacle heights? The neuro-fuzzy network
was trained such that reinforcement learning continued with random reference inputs
(visual data) for the first two generations. After that, reinforcement learning of the
network weights (rule-base) was terminated and genetic learning on the linguistic
sets of the network outputs (the initial velocities at toe-off) continued for 28 more
generations. Genetic optimization was performed with only one pair of reference
values (obstacle height of 10 cm and obstacle-toeoff distance of 55 cm). After the
network was trained, its performance on a range of obstacle heights (5 cm to 40 cm)
was examined (Figure 6.22). For the simulation shown, only three linguistic sets
(small, medium, and high obstacle; short, medium, and long toeoff-obstacle distance;
and low, medium, and high for each of the three control inputs) were used to train

the network.

The neuro-fuzzy network showed a satisfactory performance over a range of ob-
stacle heights (Figure 6.22). A typical figure for one of the genes with a high fitness
of 1800/2000 shows that the network learned how to increase the hip elevation with
increasing obstacle height. The trend observed was consistent in most of the pool
with fitness values over 1800/2000. The average failing rate over three simulated
pools was 20%. Additional training and increasing the number of linguistic sets from
3 to 5, resulted in better fitness values for the network trained obstacle height (15
cm), and also its neighborhood heights (10 cm and 20 cm). However, the network
usually failed to produce a satisfactory performance over obstacle heights far from

the trained height.

Genetic learning of a neuro-fuzzy network exposed to two sizes of reference ob-

stacles (10 and 30 cm obstacle height, 55 cm toeoff-obstacle distance), and initial
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Figure 6.21: Initial velocities, muscle pulse magnitudes, timings, and the
fitness criteria for reference inputs of 20 cm obstacle height and 55 cm

toeoff-obstacle distance.
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131



3 ° e
5o 2 +—- "
[T

<3

&0 15 v —e—Hip Elevation (m/s)| ]
5 g —a—Thigh (rad/s)

Q 1 —a—Leg (rad/s) B
—

0 T T T T T T
0.7
A s ——a

0.6 /n/ —e—Yclear
-~ 05 - —a—Xymax ||
E 04 —a— Xstable ]
g 03 2
R e
A 01

.0 I | l | lK

005 0.1 015 02 025 0.3 035

Obstacle Height (m)

Figure 6.23: A neuro-fuzzy network which was trained with two reference
obstacle heights (10 cm and 30 cm) and the toeoff-obstacle distance 55

cm, was successfully used for other obstacle heights.

reinforcement learning (2 generations) that showed an improvement in the failure
rate (10.1% after 30 generations). The simulations were performed with 5 linguistic
sets for each reference input (obstacle height and location) and 3 linguistic sets for
each network output (toe-off velocities). In general, the fitness of the pool was better
conditioned than the simulation where only one reference obstacle was used to train
the pool. Most of the individual genes in the pool showed satisfactory performance
when interpolating, and relatively poor performance when extrapolating the size of
an obstacle. Figure 6.23 shows that except for the 35 cm obstacle, performance was
satisfactory. Also evident is that hip elevation velocity at toe-off was most correlated

with the size of the obstacle.
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6.6 Discussion

Genetic optimization was found to be more robust than the gradient descent and
direct optimization methods used in the optimization chapter. The large search space,
the nonlinear interaction of the free parameters, and the existence of local minima
in the search space were some of the reasons that made genetic optimization a more

attractive approach for this work.

In many cases, the program accomodated several solutions to the problem. The
characteristic of finding a population of solutions rather than one optimum solution is
consistent with human behavior, demonstrating a choice of strategies in performing a
task such as stepping over an obstacle. These characteristics turned the approach into
an effective tool for analyzing the sensitivity of the solution to the control parameters

and/or their range of effectiveness.

One interesting result of this work is the use of genetic optimization for sensitivity
analysis of the control variables. The development of a pool of solutions, which satisfy
certain criteria (Figure 6.11), showed the sensitivities of each of the initial velocities in
the final solution pool. The results indicated that foot and/or ankle angular velocities
were not crucial for achieving the desired trajectory. The ankle angular velocity at
toe-off was produced by active muscle forces, (especially the plantarflexors), during
the double support phase. In Chapter 3, however, we concluded that ankle push-
off is the major potential contributor to the swing hip elevation velocity and ankle
plantarflexor velocity at toe off. The addition of these two results suggests that
the primary responsibility of the plantarflexor activity, observed during the double
support phase, is to increase the swing hip elevation velocity. There is no advantage

to increasing ankle angular velocity in the system.

The initial simulations were conducted using a minimal number of control param-
eters without any limiting constraint. Additional fitness criteria and new constraints
were provided systematically to eliminate physiologically and anatomically unaccept-
able solutions (Table 6.1). The approach of starting the simulation with a limited

number of free parameters, rather than introducing all the available control parame-
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ters, proved to be beneficial in providing a better understanding of the system. Using
this approach it was found that active control during the swing phase was more cru-
cial for the trailing limb than for the leading limb (Figures 6.15). This approach also
showed that for the leading limb, less active control during swing and more planning
during the double support phase was required. These insights could not been achieved

if the simulation had started with several active muscle forces.

It has been shown that the stepping strategy is planned a few steps before reaching
the obstacle [33]. This suggests that for the leading limb, the muscle forces during
the double support phase (producing initial velocities at toe-off) may be at least
as important as the active control during the swing phase. Other experiments, in
which the subjects were tripped over unexpected obstacles, further strengthen this
hypothesis. These experiments showed that the subject failure rate dramatically
reduces when the unexpected obstacle is seen one step ahead, suggesting that active
control is not the first line of protection for a safe landing. Also, based on the
calculations in chapter 7, the very short available response time (ART) for reacting
to a body perturbation (usually in the range of 60ms), indicates that some proactive
mechanisms, in addition to the active control during the swing phase, is necessary to

ensure safe locomotion (see also [19, 25, 33)).

With respect to the above discussion, the requirement of using minimal active
control during the swing phase could be very advantageous to the safety and perhaps
the efficiency of the movement. Initial velocities at toe-off (produced by active muscle
forces during the double support phase) were found to best satisfy the objectives when
the obstacle is encountered at mid swing (50 — 60% obstacle location to stride length
ratio). The experimental data obtained from young subjects stepping over obstacles
at their normal pace [33] (see also the results in chapter 7) were consistent with this
result. When the obstacle was encountered in mid swing, minimal active control was
necessary to satisfy the efficiency and safe trajectory objectives. The use of minimal
active force during this phase has certain advantages. When the CNS does not rely on

active muscle forces to produce a satisfactory toe trajectory, it can use these resources
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to produce a faster recovery strategy in the case of an unexpected perturbation to the
body center of mass (such as an unexpected trip over an obstacle). The importance
of the above statement is better revealed when considering the very short available

response time for reactive response to 2 mechanical perturbation (Chapter 7).

Hip elevation velocity plays a major role in both placing the maximum toe eleva-
tion over the obstacle (Figure 6.18), and producing the required toe clearance (Figure
6.19) over a range of obstacle heights. Hip flexor velocity at toe-off seems to be more
correlated with stride length, and has a dominant control over stable landing (Table
6.2). As concluded from Chapter 2, the hip elevation velocity at toe-off is more energy
efficient than the active knee and hip flexor torque during the swing phase of stepping

over an obstacle.

From these results it can be suggested that for the trailing limb, hip elevation
velocity at toe-off is not the dominant contributor to the toe elevation. It is important
to note that hip elevation velocity also has a dominant effect on locating the maximum
toe elevation during the swing phase. As the size of the obstacle increases, the hip
elevation velocity at toe-off moves the location of the maximum toe elevation towards
late swing. The optimization program then starts to reduce the effect of hip elevation
velocity. The lost toe elevation due to this correction is compensated by increasing
the knee flexor velocity. However, the additional knee flexion velocity will result in
a lower stability margin. Thus the potential failure rate increases for the trailing
limb pools (Figure 6.17). As such, when obstacles are encountered during early swing
(trailing limb stepping over the obstacle), the relative importance of the hip elevation
strategy reduces. Therefore, we could expect to see more contribution from active
knee torques for the trailing limb. In fact, the experimental observations reporting
the high energy correlation of the hip elevation strategy with the obstacle height were
done for the leading limb and not for the trailing limb [63].

The observations on the trailing limb in this chapter complement the results of
the optimization chapter. The results reconfirm that initial velocities at toe-off are
important for the leading limb to step over the obstacle. In the previous chapter,
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it was shown that bi-articular muscles could not achieve a successful swing over the
obstacle without modifying the initial conditions. The bi-articular muscles, however,
were found to be sufficient for the trailing limb to clear the obstacles and to achieve
a stable landing. The added result to this scenario was that the initial velocities at

toe-off by themselves are not sufficient to produce an acceptable trajectory.

Adaptive locomotion over various sized obstacles was achieved by exposing the
model to only one or two different obstacle sizes, after the second generation. It is
important to note that the design of the network (the number of the linguistic sets,
the universe of discourse, and the membership shape) has an affect on the results
obtained for adaptive locomotion. The purpose of this section was to demonstrate
that such a goal is achievable with this network. The complete training of the network
could include the number of linguistic sets for each variable. Similar to feed-forward
neural networks, the neuro-fuzzy network can fall into the danger of memorizing data
points, instead of generalizing the complete behavior. This problem will be more

significant when the muscle actuators are added to the control input sets.

The adaptive network introduced in this work represents the stepping block in
Figure 6.1. The same structure could also be used for the other blocks, except the

input-output definitions would need to be modified.

Research has shown that the two bi-articular muscles, rectus femoris and biceps
femoris, have significant activity during the swing phase of obstructed gait [50, 63].
Biceps femoris has two peaks of activity. The first peak starts prior to heel contact
and continues during early swing. The early activity of biceps femoris plays a critical
role in elevating the limb over the obstacle. The second pulse of activity of the biceps
is modeled by the nonlinear damper and spring. The forces exerted by these springs
and dampers model both the passive forces arising at the joint limits, and the second
burst of activity in biceps femoris during late swing. The activity of the rectus femoris
generally occurs after clearing the obstacle, and is used to provide a stable landing

and an adequate step length.

The addition of bi-articular muscles resulted in achieving higher fitness values for
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the trailing limb, compared to the simulations that only included initial velocities at
toe-off as control inputs. This suggests that for the trailing limb, the use of active
control during the swing phase is necessary and could be achieved by bi-articular mus-
cles. The early activation of biceps femoris is consistent with experimental findings
(50, 63]). However, the genetic pool offered more than one solution, some including
co-contraction. Co-contraction indicates the possibility of the existence of another
optimization criterion such as joint stiffness in the human ambulator. It could also
indicate the contribution of single articular muscles on the hip and knee joints during
the swing phase. Therefore, the observed co-contraction may have substituted for the

single articular muscle activity which was not modeled in this work.

As expected for the leading limb, the addition of bi-articular muscles introduced
redundancy in the solution space. We have already observed that for the leading limb,
initial velocities at toe-off by themselves produce high fitness values. The addition
of bi-articular muscles increased the number of possible solutions. The use of these
muscles reduced the need for higher initial velocities. Therefore, they affect both
metabolic cost and joint stiffness. Also for higher obstacles, the initial velocities at
toe-off were not sufficient to fully optimize the swing (see Figure 6.19). Application

of the bi-articular muscles could assist on this matter also.

Similar to a human ambulator, the development of pools of solutions ensures that
the model can adapt to potential changes in the environment. The addition of muscle
forces in both cases of trailing and leading limb stepping over the obstacle provided
islands of solutions. It is important to note that these islands are not inclusive;
they represent only a porticn of the possible solutions, not all the possible solutions.
Therefore, these values may not include all the range of solutions used by humans.
On the other hand, several other characteristics, specific to humans, are not included
in producing these pools. Some of the limitations of this work, in regards to this

matter, are as follows:

e Only one typical anthropometric data set [83] was used for the link segment

model. The possibility of the influence of other anthropometric parameters
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(e.g. leg length to obstacle size ratio) was not considered.

The requirements for lateral balance may impose some limitations on the use of

the hip elevation strategy. These requirements were not modeled in this work.

The simulations were performed for normal speeds of stepping over obstacles.
The effect of varying the speed and active control of the stance ankle during

the swing phase was not considered.

Addition of uni-articular muscles, increases the number of possible solutions.
This may result in more desirable solutions (specially for the trailing limb)

because of reduction in co-contraction.

Experiments that compare the energy correlation of trailing limb’s various
strategies to the obstacle height can shed more light on the direction of this

research.
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Chapter 7

Estimating Available Response

Time following a Trip over an

Obstacle

In previous chapters, modelling has been used to gain an understanding of the proac-
tive balance control strategies where the muscle actuation try to provide safe toe
clearance over the obstacle and a safe landing [19]. In this chapter, the modelling
approach is applied to gain insight to reactive balance control strategies during loco-
motion. Specifically, the recovery from an unsuccessful step over an obstacle (tripping)

is considered here.

7.1 Introduction

Tripping is one of the major causes of falls during locomotion. Controlling the balance
of the body after a trip is a complex motor task. It involves control of several body

segments subjected to relatively large dynamic forces and torques.

The study of unexpected perturbations during locomotion has provided some in-
sights to the neural mechanism and sensory interactions responsible for reactive re-

sponse to a trip to regain balance of the body. These studies were usually based on
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electrical stimulation of cutaneous receptors for the lower limbs during locomotion of
cats or humans. This method enables researchers to control both timing and ampli-
tude of the stimulation. The latency of the reactive responses measured have generally
shown that the first line of defense to an unexpected perturbation is of reflex type (a
stereotypical reactive response which is not voluntary). However, the responses are
not monosynaptic (stereotypical reflexes characterized by latency of between 25 and
60 ms; they form a feedback loop from sensory receptors directly to motoneurons that
activate the muscle fibers). Rather, responses are polysynaptic (they include inter-
mediate neurons in the loop from sensory receptors to motorneurons). Polysynaptic
responses are usually characterized by latencies between 60 and 120 ms. The review

from Dietz [19] nicely describes the nature of these responses.

The results of research with electrical stimulation also indicates that latency and
amplitudes of reflexes depend on the phase of locomotion. Cats response to cutaneous
stimulation by excitation of flexors during the swing phase, and excitation of extensors
during the stance phase [21, 22, 27, 28, 65]. Humans also exhibit the same phase-
dependent excitation pattern when exposed to cutaneous electrical stimuli 8, 23].
Yang and Stein [87] found a reversal of the response from excitatory to inhibitory
within the swing phase of human locomotion. They attributed this response to the
task of control of balance. The excitatory response of the tibialis anterior in early
swing resulted in extra limb flexion, while the inhibitory response during late swing
resulted in lowering the limbs. Both flexing the limbs during early swing and lowering
the limbs during late swing are appropriate responses for regaining the balance of the
body. These longer latency reflexes are dependent on the movement task (73] and the

phase of the gait cycle [25].

Mechanical perturbation to the balance is more realistic than electrical stimula-
tion. Dietz et al. [20] studied the responses to mechanical perturbation of balance
during treadmill locomotion. They attached a cord to the swing limb and momen-
tarily obstructed the swing leg motion. They found that the perturbation applied

during late swing results in larger muscle excitations. Eng et al. [25] studied the
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recovery from an actual trip during locomotion over ground. They observed an ele-
vating strategy when the obstacle was encountered early in the swing (flexion of the
swing limb and extension of the stance limb). They also observed the lowering strat-
egy (extension of the swing limb and flexion of the stance limb) during late swing.
Both these recovery strategies were attributed to the overriding concern of the CNS to
the balance and stability. Rietdyk and Patla [67] tripped their subjects in a uni-limb
support condition (stance limb support), and tri-limb support .(stance limb support
and arms resting on two parallel bars). They found that “the magnitudes of the EMG
reflexive response to the trip were clearly modulated as a function of the threat to
stability, not in a simple manner, but rather in a complex manner which optimized
the recovery strategy”. Their subjects also exhibited anticipatory adjustments which

by the nature of the experimental protocol cannot be avoided.

The fact that during unexpected perturbations, reflexes are recruited suggests that
the CNS cannot wait for a voluntary response. It is important for our overall un-
derstanding of the response strategy to determine the theoretical maximum response

time available to the CNS.

We use a modelling approach to predict the available response time (ART). We
define this as the time required for the body center of mass to move just ahead of the
leading metatarsal-phalangeal (MP) joint after hitting an obstacle during the swing
phase of locomotion (Figure 7.1). The modelling approach eliminates the element of
anticipation to the trip. The model also provides some insight to the possibility of
a voluntary response to the trip. As well, the quantitative effects of obstacle height,
obstacle compliance, limb proximity to the obstacle, and phase of the swing over the

obstacle are also investigated with respect to the ART.

7.2 Methodology

Experimental data were collected from subjects stepping over various size obstacles in

the pathway. The 3-D kinematics of the motion were captured, the joint orientations
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Figure 7.1: Available Response Time (ART).

and position were matched to a linkage model, and the joint torques were calculated.
These torques were then used in a forward solution model to simulate the trip over

unpredicted obstacles.

7.2.1 Experimental Protocol

Four healthy male subjects were asked to step over one of six different height obstacles
ranging from 0.5 to 38 cm, placed halfway along a 12 m travel path. The obstacle
was visible throughout the path, and the subjects were asked to walk at their natural
speed. The height of the subjects ranged from 173 to 186 cm. The age of the
subjects ranged from 28 to 35 years old. The weights of the subjects ranged from
65 to 78 kg. The The OPTOTRAK Motion Analysis system was used to capture
the three-dimensional kinematics of the lower limbs. Twenty four infrared emmitive
diode (IRED) markers were attached to eight segments of the lower limbs (three on
each segment). These segments were: feet, legs, thighs, pelvis and trunk (Figure 7.2).
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Figure 7.2: Marker locations

The markers were used to locate the principal axis, the position, and the orientation
of the segments and joints. The eight segments had 48 degree of freedom (6 degree
of freedom for each segment). The relative orientation of the principal axis (in the
form of Xyz Euler rotation matrices) and the segment lengths were used to calculate
the kinematics of the model that will be described in the next section. Manual and
quadratic interpolations for any missed marker data were performed using KINGAIT

software [39].

7.2.2 The Model

A six degree of freedom linkage model was developed to model the swing phase of
stepping over an obstacle. The model included a prismatic joint (g) which accounted
for the stance limb’s joint interactions as shown in Figure 7.3. This also shows the
generalized coordinates of the model. A symbolic program was written in MAPLE to
derive the equations of motion using Lagrangian dynamics. The Denavit-Hartenberg

convention [72] was used to define the joint coordinates (Appendix G).

The coordinate transformations from the principal axis of the 48 degree of freedom
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Figure 7.3: Six degree of freedom model with prismatic joint.
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Figure 7.4: Obstacle reaction force at impact.

rigid body link segment model to the new 6 degree of freedom model was calculated.

Based on the calculated kinematics, the torques across the generalized coordinates
of the 6 degree of freedom model (Figure 7.3) were calculated. The validity of the
results was examined by reapplying these torques to the forward solution model, and
deriving the kinematics of movement. The model kinematics were checked with that
of the experimental data. The calculated and measured kinematics were in general

agreement.

The calculated forces and torques over the generalized coordinates were applied
to the forward solution model to find the trajectories before and after hitting an
obstacle in the path. The simulated obstacle reaction force at impact was modeled
by a linear spring and a non-linear damper. As shown in Figure 7.4, after the obstacle
is hit (z > z.), the spring force increases linearly (F = K(z - z.)), where 1 /k is the
obstacle compliance. The damping coefficient is a function of z — Z., and increases

from hy to the final level of Ay as the obstacle is deformed from 0 to d cm.
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Figure 7.5: The Effect of damping and compliance on the ART.

As mentioned, this model was used to obtain some quantitative insight on the
effects of obstacle height, limb proximity to the obstacle, and the phase of the swing
on the available response time. In this study we refer to the location of the actual
obstacle used in the experiments as anticipated obstacle location, and the obstacle’s
height is referred to as anticipated obstacle height. The location of the simulated
obstacle which obstructs the toe trajectory in the simulation is referred to as the

tmpact location.

7.3 Results

Both obstacle compliance and damping affect the ART. For the experimental trajecto-
ries, the effect of simulated obstacle compliance (1/k) and rate of energy absorbency
(characterized by d in Figure 7.4) was examined. A typical plot for a trajectory over
an obstacle height of 10 cm when the impact location is at the predicted obstacle
location is shown in Figure 7.5. ART increases with increased obstacle compliance
(1/k) and reduced rate of damping (d). However, the effect of the rate of damping
was not as large when compared to the effects of compliance. ART ranged from 95

ms for compliant obstacles to 40 ms for rigid obstacles.
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Figure 7.6: Foot placement in young subjects.

The ratio of obstacle location to stride length also affects the ART. The results
of Patla and Reitdyk’s [63] experiments demonstrated that the distance between the
lead limb toe-off location and the obstacle (we call it obstacle location) is usually
around 60% of the total stride length. In Figure 7.6, this ratio is referred to as the
O/S ratio. The experimental results of the current work on young subjects confirm
this finding (Figure 7.6). The results of our experiments show that for the small and
medium size obstacles, the O/S ratio is normally within the range of 55% — 60%.
However, for very high obstacles (38 cm obstacle) the O/S ratio increases to about

70% with a significant standard deviation.

In order to understand the above behavior, the model was examined by varying
the simulated impact location along the stride length (Figure 7.7). Since the stride
length found from experimental trials was constant, changing the impact location
would indicate a change in the O/S ratio. The plot of available response time for
a range of impact locations shows that when the obstacle is hit very early in the

swing, ART goes over 180ms. ART was minimum when impact location was around
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mid swing, and ART was smaller for impact location in late swing compared to early
swing. By increasing the O/S ratio from below 60% to above 70%, ART was increased
by 25ms. However, further increase to the O/S ratio from 70 to 80% did not affect
ART.

ART increases with anticipation of the larger obstacle heights. This was examined
by simulating the impact at anticipated obstacle locations for trajectories resulting
from different obstacle heights (Figure 7.8). The increasing trend of ART was more
distinguishable for the largest obstacles (26 and 38cm). The standard deviation for
these size obstacles was also increased. However it seems that only for the largest

obstacles (38cm height) the ART value was greater than 180ms.

It is important to note that Figure 7.8 does not show “what happens to the ART
when we trip over a larger obstacle”. It shows “what happens to the ART when we

are ezpecting to go over a larger obstacle, but we trip”.

Even with removing the effect of the O/S ratio, the trend of increase of ART with
anticipated obstacle height persists. The effect of the O/S ratio on anticipation of
different size obstacles was removed by simulating the impact location at mid stride
(Figure 7.9). ART reduced for all the anticipated obstacle heights from what was
shown in Figure 7.8. However, a similar trend of increase in ART with anticipated

obstacle height to that shown in Figure 7.8 was observed.

7.4 Discussion

The low ART values suggest that for the lead limb, voluntary responses cannot be
the first line of defense: reflexes are necessary to recover from a trip. The range of
ART for the lead limb (50 to 140 ms) suggests that in most cases a polysynaptic
response for recovery from a trip could be adequate. While previous experimental
results have suggested that the CNS uses polysynaptic reflexes to recover from an
unexpected perturbation, no published work has commented on the possibility of

voluntary reactive response to a trip.
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Figure 7.7: Dependence of ART to O/S ratio. Anticipated obstacle height

was 10 cm.

The available response time for recovery from a trip during early swing is much
greater than mid and late swing. This suggests that we can afford to be lax with the
trailing limb as the threat of tripping is less severe. Note that in experimental studies

accidental trips usually occur with the trailing limb and not the leading limb.

ART provides some insights on the O/S ratio used by humans when stepping over
various size obstacles. Young adults step over small and medium obstacles with an
O/S ratio of 60%. They increase this ratio to 70% when stepping over very large
obstacles (38cm). This causes the subjects to encounter the obstacle later in the
swing phase. By this time, the velocities of the hip and toe have not only reduced
[83], but also the lead toe has traveled more anterior to the center of mass of the
body. ART seems to increase (see Figure 7.7) when the threat of obstacle height to

the control of balance increases.

ART also gives some insights to the adjustments of the CNS to the O/S ratio,
due to aging and vision deficits. Patla et al. [33] observed that in healthy elderly
populations the O/S ratio increased to 70% compared to 60% observed in young
population. However, this ratio was maintained around 70% for cataract patients
after the first and second surgery, and did not change significantly (Figure 7.10). The
results of the simulation (Figure 7.7) show that by increasing the O/S ratio from
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Figure 7.8: Dependence of ART to the anticipated obstacle heights.

60% to 70%, some safety margin will be added due to the increase in ART; however,
not much will be gained with further increase in the O/S ratio. Therefore, even the
elderly (who step more conservatively over obstacles) and people with vision deficits

do not tend to increasae their O/S ratio to more than 70%.

The values of ART also suggest that it is more important to control the velocity
of the center of mass and foot, than positioning the center of mass back further
(i.e., increasing the distance between the lead toe and the center of mass). This
conclusion can be arrived at by comparing Figures 7.8 and 7.9. The increase in ART
with anticipation of larger size obstacles is both due to the relative location of the
center of mass with respect to the leading toe, and the velocity of the center of mass
and the leading toe. ART is also affected by the impact force on the foot and the
active muscle forces (Figure 7.5). However these effects are minimized in Figure 7.8,
because the same obstacle characteristics were used for all the simulations shown. By
performing the simulation with the impact location at mid swing for various obstacle
sizes, the effect of l;he O/S ratio to the ART was also removed. In Figure 7.9, the

only remaining parameter for the regulation of ART was the effect of the center of
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Figure 7.9: Change of ART when impact location is at 50% of stride length.

mass velocity. The similar trends in Figures 7.9 and 7.8 demonstrate that the center
of mass velocity has the most dominant effect on the observed increase of ART with
anticipated obstacle height. This is consistent with the results of Chen et al. (14]
who concluded that the reduction of the horizontal velocities of the toe and of the

center of mass when stepping over obstacles are important.

The values obtained for ART are usually overestimated. This is because of the
assumption that the trunk stays perpendicular to the pelvis. In real life, however,
while stepping over obstacles, the trunk is behind the pelvis and travels slower than it.
This causes an overestimation of ART which is an additional reason why a voluntary

response to recovery from a trip is not possible.

The final point worthy to note is that ART, as defined, is not the ultimate indi-
cator of the recovery from a trip. The body momentum at the time of impact, and
whether or not the muscle forces trap this momentum, are the major indicators of
the possibility of recovering from the trip. However, such definition would largely
rely on the state of the muscles at the time of impact. Our choice of ART will put

these results on the conservative side: before the center of mass passes the leading
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Figure 7.10: O/S Ratio in Healthy Elderly and Patients with First and

Second Cataract Surgery.

toe, the recovery from the trip may or may not be possible. After that, the chances
of recovery from the trip would be very slim, since both feet would be behind the
obstacle. A more detailed definition of the ART cannot offer much improvement to
the results. This is because the accuracy of the model prediction is limited by many
approximations (six degree of freedom model, rigid links, and one or two degree of

freedom joints).

7.5 Conclusions

The available response time provides some insight te the possibility of voluntary
and/or type of reflexive response to the tripping over obstacles. The available response
time after a trip increases with obstacle compliance, size, and its location with respect
to the stride length. It also depends on the velocity of the swing foot and the location
of the center of mass at the time of impact. The simulation suggests that at normal
speeds and smaller obstacles, polysynaptic responses to tripping are the only possible
option for the human locomotor. Only if the obstacle is hit in early swing is a

voluntary response to the trip possible.
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Chapter 8

Conclusion

The contributions of this work and recommendations for future directions in contin-

uing this research are now presented on a chapter by chapter basis:

8.1 Summary of Conclusions

In Chapter 2 we proposed that a biomechanical model of the swing phase of loco-
motion would be useful to understand the role of active torques and forces and in-
tersegmental dynamics during the swing phase of locomotion over both level ground
and obstacles. Simulations based on this model have shown that mechanical interac-
tions between segments provide energy efficiency for walking on level ground and over
obstacles. It is clear that the control system exploits these features of the effector

system to regulate locomotor patterns over different terrains.

A summary of the most important results obtained are as follows:

® During level ground walking, there are no initial conditions at toe-off that can
produce a swing that provides adequate ground clearance and stable landing.
However, minimal active control exerted at the ankle joint is sufficient to achieve

a normal swing phase.
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e Obstacle avoidance strategies used by subjects to elevate the limb are econom-
ical in terms of energy cost while ensuring stable landing. Specifically, transla-
tional energy applied at the hip joint provides a given toe elevation for minimal
energy cost but severely compromises subsequent landing. This strategy is most

effective when it is initiated during the double support phase.

¢ The contribution of intersegmental dynamics is greater when active (flexor)

control is implemented at the knee joint compared to the hip joint.

The experimental results [61] and the planar model of Chapter 2 demonstrated
the dominant contribution of translational hip energy to swing toe elevation when
stepping over obstacles. In Chapter 3 the model was expanded to 3-D in order to

investigate the potential strategies for elevating the hip. The results are as follows:

e Gravity, via intersegmental dynamics, helps elevate the limb during the swing

phase.

e The above strategy, together with increasing hip vertical translational energy
at toe-off, are the most effective strategies for obtaining maximum toe elevation

when stepping over obstacles.

® Lead limb ankle push-off during the double support phase appears to be the

most effective strategy for increasing the hip translational energy at toe-off.

In Chapter 4 we showed how force plate data (forces of constraint) can be used
effectively in the Lagrangian formulation of the equations of motion. This will help

to simplify the solution to the equations of motion of the link-segment model.

We also looked at reactive control strategies (Chapter 7). The concept of the
available response time (ART) provides some insight to the possibility of voluntary

and/or reflexive response needed to recover from a trip:

e The available response time following a trip increases with obstacle compliance,

size, and its location with respect to the stride length. It also depends on the
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velocity of the swinging foot and the location of the center of mass at the time

of impact.

¢ The simulations show that at normal speeds and smaller obstacles, polysynaptic
reflexes are the only possible recovery option available. Only if the obstacle is

hit in early swing might a voluntary response to the trip be possible.

The possible objectives that the central nervous system may consider in planning
a strategy for stepping over an obstacle was investigated in Chapter 5. A direct opti-
mization approach with multi-objective criteria was performed to satisfy postulated
objectives of landing stability, obstacle clearance, and efficiency of the movement.

The results showed that:

¢ Use of bi-articular muscles is sufficient to clear a range of obstacles with the
trailing limb. Stride length or landing stability objectives need not be specified

suggesting a simpler control of limb trajectory by the CNS.

e While the use of bi-articular muscles can be sufficient to clear the obstacle with
the leading limb, a stable landing and smooth toe and knee trajectories are

compromised without suitable initial conditions at toe-off.

The optimization results were expanded in Chapter 6 by using a neuro-fuzzy-
genetic algorithm. This model of the central system was also used to study adaptation
of human locomotion in performing obstacle avoidance strategies. The results showed

that:

e The final population of solutions is less sensitive to the swing ankle velocity at

toe-off.

e For the leading limb stepping over an obstacle, less active control during the

swing phase and more planning during the double support phase is required.
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e With no active control, the hip elevation velocity at toe-off controls the toe
clearance and the location of maximum toe elevation. The knee flexor velocity

at toe-off mostly affects the stable landing.

e The model suggests that the reason that individuals use approximately 60%
obstacle location to stride length ratio, could be explained by the minimal

requirement of active control when the obstacle is encountered in mid swing.

e For the trailing limb, modifying the initial velocities at toe-off are not sufficient
to achieve obstacle clearance and landing stability: addition of muscles are

required to produce a satisfactory trajectory.

e Finally, the model was able to achieve an adaptive behavior. It demonstrated
a satisfactory performance over a range of obstacles without re-learning the

neural weights and activation functions.

In this work, the large search space, the non-linear interaction of the free parame-
ters, and existence of local minima in the search space made the neuro-fuzzy-genetic

optimization a more attractive approach than gradient descent techniques.

8.2 Future Directions

Although the proposed dynamic models provide some insight on the control of the
limb trajectory when stepping over obstacles, many questions remain unanswered. A
natural follow up to this work is to identify empirically the contribution of various
sources to the observed hip elevation. It is also important to examine experimentally
the contribution of ankle push-off during the double support phase to the observed

hip elevation.

Stepping over obstacles involves shifting the center of mass in sagittal and frontal
planes. A model considering the shift of the center of mass in the frontal plane would

be a natural extension to the 3-D models introduced in this work.
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In order to compare the subject specific experimental data with the model pre-
dictions, extended optimization models must address the contribution of single joint
muscles. By inclusion of the line of pull and the variable moment arm length for each
muscle, subject specific information could be gained from the optimization approach.
The optimization model must also be extended to address the contribution of the
single articular muscles to limb elevation. In addition, as discussed in Chapter 35,
a fuzzy logic approach (instead of manual guidance) will be useful in directing the

optimization to the field of attraction of the global minimum.

A natural follow up to the study of reactive control (Chapter 7) is to determine
the strategies used to recover from a trip, and this can be done using optimization
methods. The inclusion of the trunk movements and the calculation of velocities of
the center of mass and toe during contact can provide more insights. In addition, the
model can be extended to include the case in which the obstacle topples over when

hit by the foot of the subject.

Finally, modelling the other blocks of the Figure 6.1 and integrating their functions
would be a natural progression of the study of adaptive locomotion. In addition, the
neuro-fuzzy-genetic network can be improved to include individuals with variable
string size in the genetic pool. As well, other operators as discussed in appendix F

can improve the performance of this network.
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Appendix A

Equations of Motion for a 4 DOF
Link Segment Model

The equations of motion for the planar model are derived using Lagrange equations.

The equation and it’s terms are defined as follows:

D(8) §+C(6,6) + ®(8) = T — M(8,6) (A1)
The inertia matrix:
K, Cacos(6) — 02) Cscos(6 —85) Cicos(6; — 8y) ]
D) = Cacos(6, — ;) K, Cicos(6 — 03) Cscos(8; — 6,)
C3COS(91 - 93) CICOS(OQ - 04) K3 CsCOS(eg - 94)
| Cicos(6 — 04) Cscos(6; — 0,) Cecos(65 — 6,) K, ]
(A.2)

The velocity dependent terms:
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~Cs” sin(By — 85) — C16;” sin(B — 83) + Cefly>sin(ds — 6,)

| —Ci6) " sin(8) — 6,) — Csby"sin(8 — 64) — Cefly sin(65 — 6,) J

c,8) = > (A.3)

The potential terms:
( Wicos(6,) ‘
Wacos(6,)
Wicos(63) (

| Wacos(6s)

¢(8) = (A.4)

/

The right hand side of the equation of motion (A.1) includes external torques and

damping forces:

- T’

. Th — Tk — M,
T(t) — M(8,6) =< R » (A.5)

Te — Tg + A/[k - A/Ip - l"fd

Ta + A’[p + My J

\

where: My, M,, and Mj are the non-linear damping forces opposing knee hyper-

extension, ankle plantar-flexion, and ankle dorsi-flexion respectively.

Ts; Thy Tk, and 7, are the external torques applied to stance limb, hip, knee, and

ankle. The equation constants are defined in Appendix B.

When hip elevation is applied as constrained trajectory, the following terms are

added to the left hand side of the equation A.1:

( Alﬁcos(01) ‘
W2 heos(8

H={9 (2)» (A.6)

p—;,3}1.60.3(93)

{ ’—'g"ifzcos(04) )
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When it was desired to constrain the ankle movement (rigid ankle) the differential
form of constraint (9; ~b; = 0) along with the equations of motion was formulated

by using augmented method [23]:

e A B

where [B] is the Jacobian constraint, {G} = —[B]{6}, {g} = [B]{6}, and the rest
of the terms are as defined above. The Jacobian constraint in the case of a rigid ankle
will be: {B} ={00 - 110}, and {G} = {g} =0.

D BT
B 0
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Appendix B

Constants of the Equations of
Motion for the Planar Link
Segment Model

The followings are the constants used in the equations of motion in the previous

appendix:

g Gravitational acceleration

Is Moment of inertia of the stance limb around the ankle

I, I, I3 Moments of inertia at the C.M. of the thigh, shank, and foot
myg Concentrated mass of hip, arm, and trunk

™My, my, Mg, m3 Masses of stance limb, swing thigh, shank, and foot

L1, 05,13 Lengths of thigh, shank, and foot respectively

z Distance from the proximal joint to the centre of mass of the stance
limb

21, 29, 23 Distances from the proximal joint to the centre of mass of swing thigh,

shank, and foot respectively
T, Tk, T, External joint torques applied at hip, knee, and ankle

h Hip elevation vertical distance
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l=L+1+1;

Wy = (2my + my)gl — mygz

Wa = (myz, + maly + m3ly)g

W3 = (mazy + mgla)g

Wi = m3z3g

K1 = Is+ (2myg + my + my + m3)1?
K2 =I,g+mz? + (mg + m3)l;?
K3 = I + mazp? + mgly?

Ky = I3 + m3z3®

Ci = maly 29 + m3lyl,

Ca = mylzy + molly + mall,

C3 = malzo + msll,

Ci= m3123
Cs = m31123
Cs = m31223
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Appendix C

Understanding the Control of

Locomotion

The objective of this section is to draw a general picture of the neural aspects of the
control of human locomotion. The materials presented in this section for most follows

that of references [43, 33].

C.1 Human Movement

The human motor system produces three overlapping classes of movements: reflex
responses, voluntary movements, and rhythmic movements. Voluntary movements
are the purposeful, goal directed movements, which are largely learned and improved
by practice. As the skills of any movement improve, the conscious participation for
performing those movements reduces. Reflex responses (such as knee jerk) are rapid,
stereotyped movements with minimal conscious participation. Rhythmic movements
(such as walking and running) require conscious participation for the start and the
end of the movement but may continue automatically without any need for external

stimuli. During locomotion animals utilize all three classes of movement.

All three classes of movements rely on sensory information, and are performed by

translating the neural information to mechanical energy produced by muscles. For
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the motor system to perform any movement, it is necessary to get information from
the surroundings, the relative position of the body parts, the equilibrium state of the
body, and the motor plant (that is, the knowledge of the human musculo-skeletal

system and the effect of intersegmental dynamics).

The classes of movement rely on a hierarchy of the control system that utilizes
the necessary sensory information. The control strategies used can be classed under
feedback (reactive) and feed-forward (proactive) control. The reactive control detects
an unexpected (sensed) movement and is followed by a stabilizing response. This
type of response in biological systems is usually slow and is mostly used for regulating
posture and slow movements. To perform fast movements, such as catching a ball
thrown to us, it takes several hundred milliseconds for a visual cue to be responded to.
Note that the response to a quick movement may take only 150 to 200 milliseconds.

Therefore, proactive (feed-forward) control is a necessary part of the movement.

The proactive response may be due to visual identification of the upcoming event
for which the motor system estimates the required modifications in locomotor move-
ments to avoid the potential threat to body stability. For example, by detecting an
obstacle in the path of movement, the locomotor may increase limb elevation, change

direction, or stop.

Other type of proactive response may be evoked by prediction of an expected
perturbation caused by a concurrent voluntary movement. For example, if the arms
are decided to be thrown forward (an action that pushes the centre of mass of the
body forward), prior to this event, the humans back and thigh muscles (erector spinae
and hamstrings) become active to push the centre of mass of the body backward to

counteract the upcoming event.

These two strategies utilize three types of sensory information which flow through
three organizational neural control levels. Prior to describing each of the neural

control levels, we briefly discuss the type of sensory information used in locomotion.
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C.2 Sensory Systems Used During Locomotion

The role of the sensory system is to provide the body with the perception of the
surroundings, as well as movement and orientation of the musculo-skeletal system.
Three types of sensory systems are used in the hierarchy of control of locomotion:

kinaesthetic, vestibular, and visual systems.

The kinaesthetic system is mainly responsible for sensing -relative position and
movement of the limbs, orientation of the body relative to the supporting surface,
and muscle tension. Muscle spindles, Golgi tendon organs, joint receptors, and cuta-
neous receptors are the major players in this system. A brief outline of the type of

information each modality conveys follows:

Muscle spindles are sensitive to muscle stretch. They convey information about
relative orientation, and changes in the velocities of the limbs. Golgi Tendon Organs
convey information about the muscle tension. Cutaneous receptors provide informa-
tion about support surface and joint position. Joint receptors convey information

about joint position, and are more sensitive to the joint limits.

During locomotion, the visual system is mostly used for proactive control. It
provides information on orientation and movement of body parts relative to each other
and to the external environment. The visual sampling of movement is intermittent.
It can be appreciated that such a feature enables our visual system to remain reserved

for other important activities during locomotion.

The vestibular system, located in the inner ear, is the organ of sensing balance.

It senses the angular and linear acceleration of the head with reference to gravity.

The existence of several sensing organs for detecting one feature of a movement
may introduce a sensory conflict, an important factor in the hierarchy of the human
control system. Note that in most cases, sensory information are not utilized in
a parallel manner, as such, loss of information from one can affect the task to be
performed. However, the loss of that information may not result in a complete failure

in performing a task. The hierarchy of the control system has to consider such conflicts
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and set priorities in utilizing the type of sensory information available.

C.3 Control of Locomotion in Human

There are three levels to the motor control system for human movement: the spinal
cord, brain stem, and the cortical motor areas (Figure C.1). These three levels are
organized both hierarchically and in parallel. The levels have some common orga-
nizational features: all receive sensory information; all contain somato-topic maps
(spatial relations are preserved so neurons influencing adjacent body parts are adja-
cent to each other); and higher levels can suppress the sensory information that they
receive. Two additional subcortical systems, the cerebellum and basal ganglia, play
major roles in motor regulation. All of the levels of control are under the influence of

these subcortical systems. A brief description of each level follows:

The spinal cord is the lowest level in the hierarchy of the motor control. It contains
neural circuits that mediate a variety of automatic and stereotyped reflexes. These
reflexes are part of the general mechanism used for locomotion. The gain of these
reflexes can be modulated by higher levels of control. As well, these reflexes form a
closed loop feedback mechanism that can operate even when the cord is disconnected
from the rest of the brain. The spinal circuitry is the final common pathway for

mediating the voluntary movements.

Spinal reflexes are modulated during locomotion. These modulations are under
the influence of both spinal and supra spinal mechanisms. Another important aspect
of the spinal circuitry of neurons and interneurones is that they form part of the
pathway for the pattern generators. The spinal pattern generators are responsible for

developing rhythmic patterns for locomotion.

The second level of the motor control system is the brain stem. The brain stem
receives inputs from the cerebellum, basal ganglia, cerebellar cortex, and sensory
information from vestibular, visual, and kinaesthetic systems. The information is

mediated to the spinal level through its five major tracts: vestibula-spinal tract,
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rubro-spinal tract, reticula-spinal tract, tecta-spinal tract, and cortico-spinal tract.
These tracts play an important role in modulation of the locomotor patterns during
various phases of locomotion. As well, via dorsal and ventral tegumental fields, the

brain stem is responsible for setting the posture and initiating the locomotion.

The cerebellum is responsible for accuracy and timing of movement. Most impor-
tantly, it acts as a comparator between the ongoing motor commands and the resulting
responses. As expected, the cerebellum receives information from all sensory modal-
ities, the efferent copy of the motor act (the actual neural firings that resulted in
performing a movement), and the planning centers of the cerebellar cortex. [t is also

known that it has a role in motor learning.

The basal ganglia is the other subcortical component. It does not receive di-
rect sensory information, however, it receives processed sensory information from the
somato sensory cortex. The anatomical and lesion studies on Parkinsqp patients
suggests that the basal ganglia’s role is more related to planning and initiation of
movement. The activity of the basal ganglia is usually related to directionally selec-

tive passive and active movements of single joints [43].

The highest level of control includes the three areas of the primary motor cortex,
premotor area , and supplementary motor area. The supplementary and premotor
areas are more responsible for planning and complicated sequential movements. They
also receive information from the primary motor cortex (responsible for voluntary
motor acts), the parietal cortex and hippocampus (responsible for cognitive mapping
and memory storage). The primary motor cortex has both direct pathways to the

spinal level and indirect pathways through the brain stem.
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Figure C.1: A simplified diagram showing various efferent and afferent connections in the lo-
comotor control system. Legends: SLR, subthalamic locomotor region; MLR, mesensephalic
locomotor region; PLR, pontine locomotor region; VTF, ventral part of the cadual tagmen-
tal field; CST, cortico-spinal tract; REST, reticulo-spinal tract; RUST, rubro-spinal tract:
SRCT, spino-reticulo-cerebellar tract; DSCT, dorsal spino-cerebellar tract; RF, reticular

formation; RN, red nucleus; VN, vestibular nuclei [33].
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Appendix D
Fuzzy Logic

The fuzzy reasoning approach can model the qualitative aspects of human knowledge
and reasoning processes without employing precise quantitative analysis. This ap-
proach provides an efficient way to cope with imperfect information and imprecise
knowledge. It offers some kind of flexibility in decision making processes and is espe-
cially useful when a process can be controlled by a skilled human without knowledge

of its underlying dynamics.

Since Zadeh’s [89] introduction of the linguistic approach and system analysis
based on fuzzy set theory, fuzzy logic controllers have been widely used for various
practical applications. The research of Mamdani and colleagues (45, 49] on the
development of the fuzzy controller for a steam engine was widely followed by other
researchers for various applications. Examples of some of these works are water
quality control [78], automatic train operation system [88], nuclear reactor control

[9], hardware system [86], and memory devices [77].

D.1 Fuzzy Sets and Ordinary Sets

A key characteristic in the fuzzy set theory is the gradual loss of information. Let
the universe U be a collection of objects denoted generically by u. U is called the

universe of discourse while u is a generic element of UU. For an ordinary set O in U
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Figure D.1: Triangular membership functions.

the elements of U are either inside O or outside 0. We could assign binary value
1 to all the elements which are members of this set and 0 to the non-members of
this set. Fuzzy sets, however, allow degrees of membership. For example, assume
a universe consisting of different size obstacles. An ordinary set defined as "high
obstacles”, may include all the obstacles higher than 30cm. A 32£m obstacle and a
4‘7c/:m obstacle are members of ”hlgh obstacle? set equally while a 29cm obstacle is
not considered ”)hlgh obstacle? For the fuzzy sets this sharp deﬁmtxons would be
modified to a new interpretation (Figure D.1). A 32fm obstacle has a membership
in the range of {0,1} in the fuzzy set of Fhigh obstacles”. This obstacle size might
as well have a membership in the fuzzy set of "medium obstacles”. The triangles in
Figure D.1, which are one possible function for defining the membership of each set,
are called membership functions. The domain of each triangle defines the fuzzy set.
Most common membership functions often used in fuzzy logic control have triangular,
bell curved, trapezoidal, or a sigmoid function shape. As a formal definition a fuzzy
set F'in U may be represented as a set of ordered pairs of a generic element u and

its grade of membership function: F = {(u, z;(v)) | u € U}.

We can employ fuzzy sets to represent some linguistic variables. In the example
of Figure D.1, obstacle height is a linguistic variable, and the universe of discourse is
divided into the term sets (or linguistic values) {low, medium, high }.

The approximate reasoning of fuzzy systems is achieved by a fuzzy rule base. The
fuzzy rule base combines the linguistic variables in the following format:
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If antecedent Then consequent

The antecedent and consequent are usually a combination of linguistic variables

and their values. As an example:
If obstacle is low AND its location is far THEN apply a small hamstring force

In this example obstacle height, obstacle location, and hamstring force are three
linguistic variables. Low, far, and small are their linguistic sets respectively. Examples

of other variations of fuzzy rule base are given in (76, 88].

One method of storing fuzzy rules is using a fuzzy associative memory (FAM)
matrix. The example of Figure D.2 demonstrates a FAM matrix for two inputs X
and Y and one output Z. The universe of discourse for the two inputs is divided into
three linguistic sets of Negative (N), Zero (ZE) and Positive (P), while the output
Z consists of five linguistic sets of Negative small (NS), Negative Large (NL), Zero
(ZE), Positive Small (PS) and Positive Large (PL). The elements of the FAM matrix
produce the fuzzy subsets. The number of antecedents (premises) of the fuzzy rules
determine the dimensionality of the FAM matrix. Three inputs produce a FAM
matrix that looks like a three-dimensional cube. Higher number of inputs produce

hypercube matrices.

Most commonly, more than one rule applies to a condition. Therefore, an inference
mechanism is required to determine the proper action to be taken by the process

output.

D.2 Fuzzy Inference Mechanism

The structure of a fuzzy inference system (Figure D.3) includes the following blocks
(It is interesting to compare this with Figure 6.3; if the cerebellum is removed, the
blocks are identical).

e A knowledge base includes:
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Figure D.2: Fuzzy associative memory.

1. A database that defines the membership functions of the fuzzy sets (Figure
D.1)

2. A rule base that consists of a number of conditional statements as described
(FAM matrix)

o A fuzzification interface that transforms the crisp values to the linguistic values
¢ A decision making logic that performs inference operation on rules

e A defuzzification interface that transforms the inference operation results to

crisp values.

The fuzzification interface measures the values of input variables, performs scale
mapping that transfers the ranges of values of the input variables into the corre-
sponding universe of discourse, and finally performs the function of fuzzification that
converts input data to a suitable linguistic values (memberships of the linguistic sets).
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Figure D.3: Fuzzy inference system.

As indicated, for example, a 10cm high obstacle has a membership in both lin-
guistic sets of "small” and "medium” obstacles. Therefore a minimum of two rules

applies to this obstacle:
[F obstacle is small AND ... THEN ...

[F obstacle is medium AND ... THEN ...

Performing these rules requires some fuzzy operators (e.g. AND). Several opera-

tors are defined for fuzzy sets. The most common of these include:

1. The union of two sets, P U N, corresponds to the OR. function and is defined
by
ppun = maz(pp(z), un(z)) (D.1)

2. The intersection of two sets, PN N, corresponds to the AND function and is
defined by

pean = min(pp(z), pn(z)) (D.2)
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3. The complement of a set P corresponds to the NOT function and is defined by
puy =1-py(z) (D.3)

The decision making unit may derive an overall fuzzy output from the premises of
the if-then rules in various ways. One of the more common ways in fuzzy logic control,
also used in this work, is the application of the min-max operation to the qualified
outputs. Figure D.4 illustrates an example of the decision making operations. The
universe of discourse for the two references of obstacle height and obstacle location
is defined such that the obstacle heights of [0,1] meters are mapped to the universe
of [0,4], As well, the location of the obstacles [-.5, .5] is mapped to the universe of
[-2,2]. It is assumed that obstacle size of z has membership in two linguistic sets,
as is the obstacle location y. The minimum operation results in the mapping of the
smaller membership of each of the two rules(membership of 0.1 corresponding to x in
rule 1 and membership of 0.6 corresponding to membership of y in rule 2) from the
premises of these rules to their consequent. Finally the max operation (OR operation)

is performed on the areas of the two consequent rules to find the overall fuzzy output.

The output of the inference process is an overall fuzzy set specifying a possibility
of distribution of the output (control action). The defuzzification interface produces a
crisp value (a non-fuzzy control action) that best represents the possibility distribution
of the overall fuzzy output. Again there is no standard method and several methods
have been proposed. Some of the more common methods are (see [46]): the maximum
criterion method, the mean-of-maximum method, and the center-of-area method.
Among these we have chosen to use the center-of-area method which is most often
used and has been shown to lead to superior results (11]). This method generates
the center of gravity of the possibility distribution of the overall fuzzy output. For

the triangular linguistic sets of the same slope, the center-of-area method will lead to

I=3 (paxUn)/ Y tta (D.4)

where n is the number of conditional statements applied.
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Figure D.4: Fuzzy decision making system for two inputs (x and y).

In this work we have used 3 to 5 linguistic sets of triangular shape for each refer-
ences(obstacle size and location). For each of the control inputs (muscle pulses and
the initial conditions at the toe-off) five linguistic sets are usually used (see Figure

5.2 for the definitions of the muscle pulse parameters).
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Appendix E

Neural Networks

The power of the human brain in problem solving, thinking and remembering has
stimulated researchers to create models that imitate the accepted structure of the
brain. Artificial Intelligence emerged from the belief that intelligent human behavior
can be formalized and mechanized, and problem solving is according to rules. Con-
nectionist models, however, carried the idea that intelligent behavior, or the problem
solving according to rules, is just an emergent property of the underlying mechanisms.
These models, with the goal of developing the microstructure of cognition, focused on
physiologically plausible models that were inspired by biological neurons. This has
resulted in the development of Artificial Neural Networks; a structure that processes
information using simple computational elements called neurons. Neurons operate in
parallel and pass signals to each other via interconnections. The strength of the con-
nections (the weights) determine the behavior of the system. Figure E.1 illustrates
the topology of a standard multi-layer Network.

The important features of a Neural Network, which make it different from other

computing methods, are as follows:

o The network generates its own computing rules for given input/output rela-
tionships. This is done by using a learning algorithm, which determines the

appropriate weights.
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Figure E.1: The Topology of Neural Networks.

e Neural networks store information in distributed memory units (weights). This
characteristic enables the network to estimate a response when an incomplete

or noisy input is presented.

e They are fault tolerant. This means that if a computing element is damaged or

destroyed, the behavior of the network does not change dramatically.
e The network can perform non-linear mapping between input/output pairs.

o Neural networks can handle high computational rates. This feature makes them

suitable for pattern recognition applications.

o They are capable of synthesizing complex continuous functions.

The above features make neural networks suitable for a variety of applications in-
cluding pattern recognition, signal processing, system modelling, functional synthesis

and control of complex mechanical systems and processes.
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Figure E.2: The Structure of a Single Node.

E.1 Terminology

The basic element of an ANN is called a Neuron, Node or Unit. The basic function
of a node is shown in Figure E.2. Each node receives input signals from other nodes.
These signals may be excitatory or inhibitory. When the signal is excitatory, the
output value increases with an increase of the input value, and the node is more
likely to "fire”. The output of a node receiving an inhibitory input, decreases with
increasing value and is less likely to fire. In order to determine whether the output
fires or not, the sum of the inputs is compared with a threshold value. When the input
value exceeds the threshold, the node sends its output signal to other nodes through
weighted connections. The weights of the connections determine the degree of effect
of each input on the overall behavior of the node and of the network in general. To
control the performance of the Network, the weights are usually modified by using

various learning algorithms.

As shown in Figure E.2, the output from a node is related to the sum of the
inputs to the node via an activation function, (3 (z; Wii)). Four common activation

functions are:
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e Linear Activation Function: this function has the form f(z) = a.z in which o

magnifies the node input z.
* Non-linear Ramp Function: this is a linear function in the range (-4, 6].

e Step Threshold function: this is a binary function which usually gets the values

0 and 1.

* Sigmoid Function: this is a bounded and monotonic (output uniformly increases
or decreases with input) function. It is usually in the form of a logistic or

hyperbolic function and provides a graded nonlinear response.

In the ANN, nodes are arranged in layers or groups. The nodes in each layer
are generally activated simultaneously. Figure E.2 illustrates the two types of layer
commonly used, namely output and hidden. The output layer emits to the environ-
ment the processed signals received from a hidden layer (or sometimes the inputs).
The hidden layers consist of intermediate nodes between the network inputs and the
output layer nodes. They emit the signals received from the inputs or the previous

hidden layer, to the next hidden layer or the output layer.

The type of connections used between the nodes depends on the usage of the net-
work. Figure E.3 shows three types of the common node connections. The standard
feed-forward network [68] has only connections between the nodes in the consecutive
layers. The inter-layer connections are mostly used for pattern classification applica-
tions [48]. Recurrent connections [68], which loop back to the same node, are suitable

for representing the dynamic behavior of a system.

Learning is the most important feature of the ANN. When a data vector is applied
to the input nodes, a 'learning rule’ is used to adapt the weights between the layers
so that the desired output results. If the desired network response is not provided,
the learning is called unsupervised. In this type of learning structure, only the input
vector is shown to the network. The network then internally organizes itself to form

a cluster of similar sets in the input space [48].
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If the desired network response is provided, the learning is referred to as supervised
learning. In supervised learning, for each input vector a desired output vector is
presented, and the network is gradually trained to achieve approximately the desired
input/output mapping. When the desired output vector is the same as the input
vector, the Network is called auto-associative. This type of network is useful for
pattern recognition applications, where a degraded or incomplete input pattern is
presented, and the Network recalls the complete pattern. If the desired output vector

is not the same as input vector, the network is called hetero-associative [48].

E.2 Multi-layer Networks

A multi-layer network is essentially a feed-forward network with one or more hidden
layers between the input vector and output layer. The main advantage of a multi-layer
network over a perceptron (network without hidden layer) is its ability to perform
non-linear mapping. This can be best understood by comparing the decision regions
that these two networks produce [48]. However, the convergence of the multi-layer
net to a correct input/output mapping is not guaranteed. This is the problem of

being trapped in a local minimum, which is discussed in the following section.

E.3 Error Propagation

The application of multi-layer nets was limited before 1986 when Rumelhart et al.
[68] presented a back propagation technique for adapting the weights. Since then,

multi-layer nets have been used in variety of applications.

Back-propagation uses a gradient search technique to minimize a cost function
equal to the square difference between the desired and the actual plant outputs. An
input vector is presented to a feed-forward multi-layer net. The resultant output
vector is compared to a target output vector. If there is a difference between actual

and target outputs, all the connections may be responsible. The error is propagated

181



backward to the previous layer modifying the weights. This process repeats until the

input layer is reached.

The rule for changing the weight for a perceptron with a linear activation function

is:

BpWik = n(tp; — 0p;)ipe = M0p;ipk (E.1)
where: 7 is the learning rate (between 0 and 1)
ApWiy is the change of the weight from input & to output j
tp; is the j** component of the target output
op; is the j** component of the actual output
ik is the k™ element of input due to pattern p
dp; is the error signal for j** component of the output due to pattern p.

A single step linear system can do all the computations possible with a multiple
step linear system [68]. Therefore, multi-layer networks with a linear activation func-
tion provide no advantage over single-layer networks. The rule of changing the weight

for a network with a non-linear activation function is:

Apl’ij = né'pjopk (E2)

where o is the output of node & as defined in Figure E.2. This is the generalized
delta rule used for weight adaptation. In order to feed-back the error, the error signal
should reflect the effect of the change of the error to the change of the node output.
For a monotonic semi-linear activation function, the error signal for any output node

J would be:

Gpi = (toj — 0p5)f; (O Wik 0pk) (E.3)
where W is the weight between the nodes £ and j and f]’- is the first derivative of

the activation function of the node j.
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If node j is in a hidden layer, the error signal would be:

Opj = f;(z Wik opk) Z Opk Wi; (E.4)

A common example for a good activation function is the logistic function. This
function is continuous, nonlinear and monotonic. It has been found to be a useful

activation for variety of applications of multi-layer networks. It has the form:

1
P T ezp(—(= W o + 5,))

(E.5)

where 6; is the threshold, and its value is learned similar to the other weights. It

is assumed as a node which is always on.

When the generalized delta rule is used for a network without hidden units, the
error surface, in the weight space, gets the shape of a bowl with only one minimum. In
this case, the net convergence to the desired respond is guaranteed. With a multi-layer
network, the error surface may have several local minima and there is a possibility
of getting trapped in these. In the next appendix we introduce Genetic Algorithms
as a global search technique which tries to overcome the problem of trapping in local

minima.

E.4 Reinforcement Learning

Learning of behavior based on trial and error without an explicit teacher is referred to
as reinforcement learning. Like supervised learning, these models get some feed-back
from the environment. However, the signal is in the form of reward (reinforcement
signal), which is evaluative and not instructive. This means that the signal does not
indicate the correct behavior. It is a single scalar and the goal is to maximize the
cumulative reward received over time. Reinforcement learning is also called learning

with a critic, as opposed to learning with a teacher [36].
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Figure E.4: A Simple Reinforcement Learning Network.

Reinforcement learning involves the learning of the mapping that indicates what
action is taken in a certain state. The mapping is called policy [75] and can be a
neural network or a heuristic system. The reward is taken from the environment and
used to change the weights of the neural network, if the policy is a neural network
(Figure E.4).

The reinforcement learning architectures have improved considerably to include
more sophisticated problems. For instance one problem with the architecture shown in
the Figure E.4 is that a low reward for a certain state (action-sensory mapping), may
be the highest attainable for another state. To resolve this problem, reinforcement-
comparison algorithm were proposed [6]. These algorithms include a model predictor
network whose output is the reward signal (Figure E.5). After the model prediction
gets close enough to the reward signal from the environment, it would be directly used
to train the policy network. These architectures are effective for immediate reward.

Actions, however, not only affect the next reward but also the next states. Adaptive
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Figure E.5: learning with Reinforcement and Comparison.

heuristic networks with critics was designed to take such delayed effects into account
(74]. Descriptions of the evolution of the types of reinforcement learning, are nicely

described by Sutton [73].

E.5 Adaptive Neural Networks

Another notation used in Chapter six is the adaptive neural network. An adaptive
neural network is a superset of all kinds of feed-forward networks. In these networks
the links and the node thresholds are modified by learning algorithms. Moreover,
the activation functions of all or some of the neurons in adaptive networks include
parameters that are modified with the learning algorithm (Figure 6.2). Adaptive

nodes are shown by a square instead of a circle. In adaptive neural networks, the
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type of activation functions can also be different. In the neuro-fuzzy network used in
this work the form of parameters and activation functions for the nodes of each layer is
specific to that layer. This has to be taken into account when using back-propagation

learning.
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Appendix F

Genetic Algorithms

Genetic algorithms (GA) are highly parallel mathematical algorithms that solve prob-
lems in the same way that living organisms solve the problem of adapting to the harsh
realities of life in a hostile world: evolution. Because of their parallel organization,
genetic algorithms are capable of performing optimization on nonlinear multimodal
(many local maxima and minima) functions. Although their convergence to a global
maximum or minimum is not guaranteed, GAs have been experimentally realized as
a robust optimization tool in many problems. The use of GAs as a global search
routine for training neural networks instead of gradient search algorithms (such as

back propagation) has also been examined successfully (81, 55).

GAs were first introduced by Holland [38], as a form of search technique mod-
eled on Darwinian evolution. Good introductions to GAs are by Goldberg [29],
Grefensette [31] and Schaffer [70].

For a multi-dimensional search problem with several possible solutions, a genetic
code representation is chosen such that each point in the search space is represented
by a string of binary characters called a genotype (Figure F .1). Each string represents
a behavioral architecture in an organism, or a network structure in a connectionist
model (phenotypes). A number of initial random genotypes (called individuals) is
produced that form the initial population. Each of the genotypes are evaluated with

an appropriate evaluation function and are given a fitness value. The next generation

187



of individuals is generated from the present population by selection and reproduction.
The selection process is based on the fitness of the present population such that the
individuals with more than average fitness contribute more to the new population
(survival of the fittest). This is done probabilistically. Genetic operators, such as
mutation and crossover (will be discussed in more detail), operate on the new repro-
ductive pool of genotypes. With these operations, the original genotypes (parents)
are transformed to new off-spring (children) (Figure F.2). In this way, a new gener-
ation of the genotypes is created. This generation inherits some useful information
from the older generation. This is mainly because of two reasons: a) the selection
process has favored the reproduction of the individuals with a higher than average
fitness value, b) the crossover operators favor performing operations on individuals
with higher fitness. The process of selection and reproduction followed by other ge-
netic operations (crossover and mutation) are then performed on the new pool and
the process will repeat until the solution is reached (other criteria for termination of

the search algorithm may be considered as well).

The main theorem that demonstrates the fitness improvement of the genetic pools
through generations is Holland’s [38] schema theorem. His theorem proves that
schemata (the building blocks in his genetic representation) of above average fitness
will receive exponentially increasing numbers of trials and errors in successive genera-
tions. Hence, improvement will result. He also showed that in a population of size n,
the number of schemata being processed is on the order of n?® for the binary strings.
In other words, the algorithm is efficient. This is referred to as implicit parallelism
in GAs. These results are the only underlying theoretical foundations for GAs, at

present.

In the design of GAs, several decisions have to be made. Some of these include:
size of the population, use of the fixed or variable size genotype, type of genetic
operators, the termination criteria, and the choice of selection technique. Some of

these issues will be discussed in more detail:
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F.1 Genotype Representation

Representation is a key issue in GAs as the algorithms directly manipulate the coded
representation of the problem. A fixed representation scheme (such as fixed length
genotypes) limits the window by which the system observes its world (see [41] ).
For example a binary length of 8 bits divides the sensory input information range
into 2° discrete levels. This is a limitation for problems where the size and shape of
the solution and the possible range of inputs are unknown in advance. However, the
schemata theorem is proven and valid for fixed length (as apposed to variable length)
genotypes. In this work, we have chosen to use a representation of binary strings of

8 to 16 bits per variable.

F.2 Selection Techniques

A recurring problem in the choice of selection technique is to keep a balance in
selective pressure. Too little selective pressure results in small fitness improvement
per generation. Too much selective pressure, on the other hand, leads to premature

convergence and the lack of diversity needed to escape from local minima.

In this work we use standard Baker’s SUS algorithm for the selection technique.
In the SUS algorithm the fitness of the genotypes in the pool are rearranged such
that:

frlx= r’z-l 7 (F.1)

where:
fn @ the new fitness of the n** genotype,

fn: the original fitness of the n** genotype,

f: the average fitness of the pool
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In this pool the fitness of each individual is the partial sum of the previous fitness
divided by the average fitness of the pool. Therefore, the fitness of the last individual

in the pool will become equal to the size of the pool.

In the SUS algorithm, the partial sum of each individual is compared with an
incrementing random number. The result is that the genotypes with higher than

average fitness will be favored for reproduction.

We have also included an aging factor in the SUS algorithm. Only the individuals
that are older than the average age of the pool (number of generations) are qualified
for reproduction. In this way we ensure that the individuals which are selected for
reproduction, have already survived through several trials. This characteristic is
especially important for simulations where the reference sensory input for each trial
is selected randomly. Thus a specific individual may exhibit a high fitness to one set
of sensory inputs, while its fitness might reduce significantly when exposed to another

set of sensory inputs.

F.3 Genetic Operators

Several genetic operators have been proposed and used for GAs. The two original
biologically inspired operators, crossover and mutation (Figure F.2), are common in
all GA applications. Other genetic operators, such as addition and deletion operators,
are introduced in other works (e.g., [18]). In this work we only use crossover and

mutation operators.

Mutation operators randomly change the value of a single bit of some individuals
in the pool. They preserve the diversity of the pool, by protesting against the focusing
effect of recombination(crossover) operators. Thus, they prevent premature conver-
gence to a local solution. By increasing the effect of mutation, the genetic search will
become more similar to the random search. Mutation operators are mostly required
for smaller size pools, where the probability of immature convergence increases. For

a pool size of 100-500 individuals, we found the mutation rate of 0.1% to be most
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effective.

Crossover or recombination operators transform two parents strings of genotypes
into new off-spring (Figure F.2). This is done by exchanging a portion of the strings
between two parents. The string lengths (at least in our model) in the off-spring
will remain the same as their parents. This mating may result in transformation of
schemata carried by each parent to the child, hence creating the possibility for the
child to be more fit than the parents. The crossover may occur on several points
(n-point crossover). As well, other forms of recombination within a gene are also
used in the literature (Segregation crossover). For this work we have chosen to use
only two sites of crossover at a time (Figure F.2). As well, a crossover rate of 60%
is maintained throughout the simulations. The values of the crossover rate and the

mutation rate used were also recommended by Davidor [18].

F.4 Scaling

As the GA progresses, the average fitness of the population improves. As there is an
upper bound for the maximum fitness, the difference between the minimum and the
maximum fitness continuously reduces. After several generations, fitness values get
very close. Therefore, the fitter strings will not have that much of an advantage when

the time for crossover reaches.

Scaling is a remedy to this situation. Scaling magnifies the distance between the
upper and lower fitness value. In this way, the individuals at higher bounds of the
fitness values will be more prone to crossover. However, scaling has two dangers.
First, it changes the topology of the surface that the GA is climbing on. This change
may produce a misleading bias against the original peaks. Second, scaling increases

the probability of premature convergence.

Because of the above two dangers and the fact that in most of our trials a small
percentage of the individuals with considerable low fitness were present, we chose to

not apply scaling to the fitness function. Moreover, the goal of this work was to find a
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pool of individuals with higher fitness (and not necessarily the best fitness). The high
fitness would indicate that the locomotor has cleared the obstacle efficiently and has
landed safely. We were willing to compromise maximum safety and efficiency for a
pool of individuals including more than one solution to the problem. In other words,
various hills with acceptable heights were more desirable than just one maximum

peak.

In summary, the use of the GA is advocated when at least one of the following

conditions exist:

e the search space is so large that other approaches are computationally infeasible,

reliance on global information and robustness is crucial,

certain degree of nonlinearity exists in the problem,

the storage capacity and processing power are not critical,

real-time response is not necessary.
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Appendix G

D-H Convention and Pareto

Optimality

The Denavit-Hartenberg or D-H convention is a method for the systematic placement
of frames of reference and is commonly used in robotics applications. With this con-
vention, the relation between two consecutive frames of reference can be established
by two rotations and two translations. Thus, the three Euler angles and the three
translation components relating two consecutive frames can be expressed by only four
parameters. To satisfy D-H convention the two consecutive frames ToYo2o and z,y,2;

are assigned such that
1. The axis ; must be perpendicular to the axis Zg
2. The axis z, must intersect with the axis 20

For more detailed descriptions consult reference [72].

Definition of local Pareto optimal solution taken from reference [69]: z* € X is said
to be a local Pareto optimal solution to the multi-objective non-linear programming
problem if and only if there exists a real number & such that z* is Pareto optimal in
X N N(z*,4) i.e. there does not exist another z € X N N (z*,0) such that fi(z) <
fi(z*) for all i and f;(z) # f;(z*) for at least one j, where N (z*,9) denotes the &
neighborhood of z* defined by {z € R*| || z — z* ||< é}.
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