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Abstract

For over a century, physicians have prescribed x-ray radiation to destroy or im-
pede the growth of cancerous tumours. Modern radiation therapy machines shape
the radiation beam to balance the competing goals of maximizing irradiation of
cancerous tissue and minimizing irradiation of healthy tissue, an objective compli-
cated by tumour motion during the treatment and errors positioning the patient
to align the tumour with the radiation beam. Recent medical imaging advances
have motivated interest in using feedback during radiation therapy to track the
tumour in real time and mitigate these complications. This thesis investigates how
real-time feedback control can be used to track the tumour and focus the radiation
beam tightly around the tumour. Improving on these results, a feedback control
system is proposed for intensity modulated radiation therapy which allows a non-

uniform radiation dose to be applied to the tumour. Motivated by the results of the
proposed control systems, this thesis also examines two theoretical control prob-
lems: estimating the output of an unknown system when a sensor delay prevents
its direct measurement, and designing a controller to provide an arbitrarily fast
nonovershooting step response.
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Chapter 1

Introduction

1.1 Radiotherapy Cancer Treatment

Radiation therapy, or radiotherapy, has been used in the treatment of various dis-
eases for over a century. The first use of radiation for therapeutic purposes followed
only a few years after the categorization of x-rays by Röntgen in 1895 [1]. Out of
this beginning came the field of radiation oncology, which, in general, refers to the
use of radiation in the treatment of cancer.

There are three common ways to apply radiation to a cancerous tumour in
current day radiotherapy: brachytherapy (implanting a radioactive source in or
near the tumour), unsealed source radiotherapy (injecting or ingesting a soluble
radioactive substance) and, the most common form of radiotherapy, external beam
radiotherapy (applying a radiation beam to the tumour from a source external to
the patient) [2]. This work focuses exclusively on external beam radiotherapy and
future references to radiotherapy refer to this particular treatment. For medical
reasons, the prescribed radiation dose is not delivered in one treatment, but over
several increments called fractions, with treatment typically progressing at the rate
of one fraction per day [3].

The inherent challenge of radiotherapy is to deliver a prescribed radiation dose to
a tumour while sparing radiation to healthy tissue surrounding the tumour. To this
end, radiotherapy machines collimate the radiation beam in an attempt to shield
healthy tissue from radiation. Previous generations of radiotherapy machines used
two pairs of metal blocks called “jaws” to decrease radiation of healthy tissue, as
shown in Figure 1.1(a). Modern radiotherapy machines employ multiple opposing
metal slats to reduce this healthy tissue irradiation, as illustrated in Figure 1.1(b).
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Jaws

Tumour

MLC
Leaves

(a) (b)

Figure 1.1: (a) Collimation with two pairs of jaws; (b) multileaf collimation.

Each slat is called a leaf and the set of leaves is referred to as a multileaf collimator
(MLC). Figure 1.2 shows a radiotherapy machine and a multileaf collimator with 80
leaves. The radiation beam is collimated in the treatment head of the radiotherapy
machine.

Radiotherapy using a MLC is an example of conformal radiotherapy, which, as
its name suggests, refers to radiotherapy in which the radiation beam is shaped
to match the geometry of the tumour. Traditionally, the collimator leaves are
static during the course of a fraction, but motivated by medical and computing
advances, interest in intensity-modulated radiotherapy (IMRT) has grown over the
past decade. IMRT actuates the collimator leaves during the fraction so the post-
fraction radiation dose has a non-uniform intensity. By appropriately choosing
the radiation profile for each fraction, the aggregate (from all fractions) radiation
profile can be made to conform more closely to the three-dimensional geometry of
the tumour1.

To position the collimator leaves for a fraction, a radiation oncologist first defines
three volumes related to the tumour geometry: the gross tumour volume (GTV),
the clinical target volume (CTV) and the planning target volume (PTV) [5]. The
GTV is the palpable volume of malignant tumour growth. The CTV contains
the GTV and a tissue volume surrounding the GTV that is suspected to contain
subclinical cancerous tissue. Finally, the PTV contains the CTV plus another
margin to ensure the prescribed dose is absorbed by the CTV when tumour motion
(caused by biological processes such as breathing and the beating of the heart,
for example) and errors in aligning the patient with the radiation beam (called
“patient setup errors”) are taken into account. These volumes are illustrated in

1For a comprehensive overview of IMRT see [1].
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(b)(a)

Treatment Head

Figure 1.2: (a) External beam radiotherapy machine; (b) multileaf collimator, from
[4].

Figure 1.3(a), which shows tumour motion during a fraction. While portions of the
PTV are blocked by the collimator leaves as the tumour moves, at no time is any
portion of the CTV blocked by the leaves. In essence, the PTV includes a volume
of healthy tissue which is sacrificed to ensure radiation delivery to the CTV. This
healthy tissue irradiation typically leads to undesirable side effects and constrains
the overall efficacy of the fraction.

1.2 Objective

Extending [6] and [7], this work seeks to reduce or eliminate the PTV by tracking the
tumour as the fraction progresses and adjusting the collimator leaves appropriately.
As illustrated in Figure 1.3(b), the proposed technique will keep the radiation beam
tightly focused around the tumour, reducing side effects caused by healthy tissue
irradiation. While [6] and [7] focus on a tumour tracking control scheme for the
jaw-based collimator, this work develops analogous control schemes for the MLC
and IMRT.

The central objective of accounting for tumour position uncertainty is not new.
It has been widely accepted in the radiotherapy community that patient setup errors

3
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Figure 1.3: Radiotherapy using a MLC: (a) traditional scheme with static leaves;
(b) proposed scheme where the leaves move to track the tumour motion.

and intrafractional tumour motion are limiting the potential of radiotherapy (e.g.,
see [9], [10], [11]). Moreover, other researchers have advocated the use of image
feedback, but they use the feedback in a limited way, typically just to correct
patient setup errors (e.g., see [12]) or to verify tumour position at the conclusion of
a fraction (e.g., see [13]). More ambitious approaches monitor the tumour in real
time and toggle the radiation beam on and off depending on the tumour location
(e.g., see [14]). The novelty of the approach outlined in this work is that both

patient setup errors and intrafractional tumour motion are accommodated.

1.3 Outline

The next chapter summarizes the work of [6] and [7] in the development of a tumour
tracking controller for a jaw-based collimator. This previous work serves as the
foundation for the development of a tumour tracking controller for the multileaf
collimator in Chapter 3. Chapter 4 extends these results to design a controller
for IMRT that incorporates tumour tracking capabilities. This controller provides
more accurate delivery of radiation than traditional IMRT.

Chapters 5 and 6 examine theoretical control problems motivated by the work
in Chapters 3 and 4. Chapter 5 considers the problem of estimating the output
of a system when a known sensor delay prevents its direct measurement. An algo-
rithm is developed that provides asymptotic estimation of the system output under

4



very mild assumptions on the system. Finally, motivated by the need to prevent
opposing collimator leaves from colliding, Chapter 6 explores the nonovershooting
step response problem. The chapter will show that for particular systems it is im-
possible to design a linear time-invariant controller that provides an arbitrarily fast
nonovershooting step response.
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Chapter 2

Background: Jaw-Based
Collimator Controller

This chapter summarizes the work of [6] and [7] in the development of a tumour
tracking jaw-based collimator controller. The goal of this controller is to position
the collimator jaws to focus the radiation beam tightly around the tumour. The
control strategy summarized in this chapter serves as the foundation of the proposed
control schemes for the MLC and IMRT in Chapters 3 and 4, respectively.

2.1 High-Level Approach

In order to track the tumour for the jaw-based collimator controller, it is proposed
that the therapeutic radiation beam be used as an imaging beam to determine
the tumour position1. One immediate drawback of this approach is the rate at
which the images are acquired and processed is significantly slower than the rate of
intrafractional tumour motion. To overcome this hindrance, it is also proposed that
the breathing flow rate of the patient (which can be measured relatively quickly)
be used in conjunction with the image feedback to estimate the tumour position.
Based on the estimated tumour position, the collimator jaws are actuated so the
radiation beam tracks the tumour. A high level diagram of the proposed system is
shown in Figure 2.1.

1Having said that, the control schemes presented in this work are general enough to accom-
modate any imaging setup, such as the separate radiation beam and x-ray imager employed in
[8].
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Computer
Control

Figure 2.1: (a) Traditional radiotherapy; (b) proposed scheme from [6] and [7]
using image feedback and breathing flow rate measurement.

2.2 Multirate Observers

Before describing the jaw-based collimator control scheme in the next section, this
section outlines the design of a multirate observer. This observer will be used to
estimate the tumour and collimator jaw positions based on relatively fast measure-
ments of the patient’s breathing flow rate and relatively slow measurements from
the x-ray imager. Although it may be possible to formulate the jaw-based colli-
mator controller design problem in a general multirate framework, a simpler, more
intuitive approach is taken in [6] and [7]. To accommodate the fast measurements
of the patient breathing flow rate and the slow measurements of the image feedback,
a “sampling timing signal” is used, as explained below.

Consider first the general discrete-time multirate observer setup of Figure 2.2.
The linear time-invariant (LTI) system, P (z), is modelled by the state space equa-
tions

x[k + 1] = Ax[k] + Bu[k] (2.1)

y[k] = Cx[k] (2.2)

and is assumed to be known and operating with an h second sampling period.
Although the input signal, u[k], is measurable at every time instant, the output
signal is only measurable at time instants k = 0, N, 2N, 3N, . . ., where N ≥ 1 is
a constant integer. In the figure, the measured signal is denoted by ys[k] where the

7
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ys[k]

x[k]
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0
BA

C

P (z)

x̂[k]

y[k]

SN [k]

Figure 2.2: Basic multirate observer setup, from [6].

subscript “s” denotes “sampled”. ys[k] is defined to be zero at time instants when
y[k] is not measurable. Thus,

ys[k] =

{
y[k] if k = 0, N, 2N, 3N, . . .
0 otherwise.

(2.3)

The “sampling timing signal”, SN [k], is I (the identity matrix) at time instants
when a measurement is available and 0 otherwise. For the uniform sampling of
(2.3),

SN [k] =

{
I if k = 0, N, 2N, 3N, . . .
0 otherwise

(2.4)

and the sampled plant output is

ys[k] = SN [k] · y[k]. (2.5)

This sampling technique has the added benefit of providing for more complicated
output sampling arrangements. For example, missing a sample can easily be in-
dicated by setting the appropriate element of SN [k] to 0. (In the radiotherapy
application, missing a sample could be caused by an image processing failure, for
example.)

The observer problem of Figure 2.2 is to estimate the state x[k] based on mea-
surements of u[k] and ys[k]. Denote the estimate of x[k] by x̂[k] and consider the
observer

x̂[k + 1] = Ax̂[k] + Bu[k] + H(ys[k] − ŷs[k]) (2.6)

ŷs[k] := SN [k] · ŷ[k] (2.7)

= SN [k] · Cx̂[k], (2.8)
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where H is the to-be-determined observer gain. This observer structure is identical
to the standard discrete-time observer (e.g., see [21]) with the exception that the
state equation (2.6) runs without a corrective term when no output measurements
are available (i.e., when SN [k] = 0). As the next theorem shows, this observer
provides asymptotic estimation of the system state for an appropriate choice of the
observer gain H.

Theorem 2.2 [6]: Consider the plant (2.1)–(2.5), the observer (2.6)–(2.8), and
the sampling timing signal (2.4). Assume that the pair

(CAN−1, AN) (2.9)

is detectable. Then the matrix H can be chosen such that AN −HCAN−1 has all its
eigenvalues in the unit circle. Any such choice of H results in the state estimation
error, e[k] := x[k]− x̂[k], tending to zero as k → ∞ (for arbitrary initial conditions
on x[0] and x̂[0] and for arbitrary signal u[·]).

Proof [6]: Define Āk := A − HC · SN [k] for k ≥ 0. Now use (2.1)–(2.5) and
(2.6)–(2.8) to obtain

e[k + 1] = (A − HC · SN [k]) · e[k]

= Āk · e[k], k ≥ 0. (2.10)

For the special case of uniform sampling reflected in (2.4) it follows that, for j ≥ 0,

e[(j + 1)N + 1] = ĀN ĀN−1 · · · Ā2Ā1 · e[jN + 1]

= (AN − HCAN−1) · e[jN + 1]. (2.11)

If (CAN−1, AN) is detectable, then, by definition, H can be chosen to make AN −
HCAN−1 stable. Assume that H is chosen as such, then from (2.11), e[jN +1] → 0
as j → ∞. Now observe that

e[jN + 2] = ĀjN+1 · e[jN + 1] = A · e[jN + 1].

Since e[jN + 1] → 0 as j → ∞, it is also true that e[jN + 2] → 0 as j → ∞.
Similarly,

e[jN + 3] = ĀjN+2 · e[jN + 2] = A · e[jN + 2],

9



giving e[jN + 3] → 0 as j → ∞. Repeat this argument until one obtains e[jN +
N ] → 0 as j → ∞. This proves that e[k] → 0 as k → ∞. The result holds for any
e[0], and is independent of the input u[k].

The observer technique outlined above can be applied to more complicated
observer arrangements. Consider the observer setup of Figure 2.3, in which there
is an output disturbance, w[k], and stable sensor dynamics modelled by the filter
F (z). The observer measures the plant input, u[k], and the sampled output of
F (z), denoted by ȳfs[k] (the subscripts “f” and “s” denote that the signal has been
filtered by F (z) and sampled by the sampling timing signal SN [k], respectively).
Based on these measurements, the observer goal is to estimate the signal ȳ[k]. The
motivation for this goal is the need to estimate the tumour and collimator jaw
positions; this will become apparent in Section 2.3.

observer

0

P (z)

C

B

SN [k]

u[k]

ˆ̄y[k]

x[k]

y[k]

w[k]

F (z)

Bf

Cf Df

Af

SN [k]

ȳ[k] ȳf [k] ȳfs[k]

xf [k]

A

Figure 2.3: More general multirate observer setup, from [6].

The observer for this general multirate setup can be designed using the results
of Theorem 2.2 by first forming an augmented plant, composed of P (z), F (z), and
the disturbance dynamics and then constructing an observer of the form (2.6)-(2.8).
Specifically, first assume that the disturbance is generated by the exosystem

w[k + 1] = Aww[k], (2.12)

and using the augmented state

xaug[k] := [x[k]T xf [k]T w[k]T ]T

10



(where superscript T denotes the transpose operator), construct the augmented
state-space model

xaug[k + 1] = Aaugxaug[k] + Baugu[k] (2.13)

ȳf [k] = Caugxaug[k] (2.14)

ȳfs[k] = SN [k] · ȳf [k], (2.15)

where

Aaug :=





A 0 0
BfC Af Bf

0 0 Aw



 , Baug :=





B
0
0



 , and Caug :=
[

DfC Cf Df

]
.

The observer for this augmented plant is

x̂aug[k + 1] = Aaugx̂aug[k] + Baugu[k] + Haug(ȳfs[k] − ˆ̄yfs[k]) (2.16)

ˆ̄yfs[k] := SN [k] · ˆ̄yf [k]

:= SN [k] · Caugx̂aug[k], (2.17)

where Haug is the to-be-chosen observer gain. The desired estimate is

ˆ̄y[k] := ŷ[k] + ŵ[k] = Cyx̂aug[k], (2.18)

where
Cy :=

[
C 0 I

]
. (2.19)

Applying Theorem 2.2 to the plant (2.13)-(2.15) with the observer (2.16)-(2.17)
and the sampling timing signal (2.4) yields that, at long as

(
CaugA

N−1
aug , AN

aug

)
is

detectable, there exists an Haug to place the eigenvalues of AN
aug − HaugCaugA

N−1
aug

inside the unit circle and drive the state estimation error to zero. Consequently,

ˆ̄y[k] − ȳ[k] = Cy · (x̂aug[k] − xaug[k]) → 0

as k → ∞.

The next section, which summarizes the proposed jaw-based collimator con-
troller of [6] and [7], will demonstrate the importance of the observer setup of
Figure 2.3. Recall that this controller serves as the basis for the MLC and IMRT
controllers of Chapters 3 and 4, respectively.
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2.3 Jaw-Based Collimator Controller

The goal of the jaw-based collimator controller of [6] and [7] is to use image feedback
to track the tumour as the fraction progresses and adjust the radiation beam ac-
cordingly (recall Figure 2.1). Figure 2.4 compares traditional radiotherapy in part
(a) with the the proposed scheme in part (b). Traditional radiotherapy requires a
relatively large PTV to ensure that the CTV is irradiated throughout the fraction
in spite of patient setup errors and intrafractional tumour motion. On the other
hand, by tracking the tumour during the fraction, the proposed jaw-based collima-
tor controller focuses the radiation beam tightly around the tumour, allowing for a
reduction in the PTV.

(b)

PTV

(a)

Centroid

Offset (yoffset)

Desired PTV

Smaller PTV

CTV

Dynamic Jaws

Static Jaws

Tumour Moves

Tumour Moves

Figure 2.4: (a) Traditional radiotherapy with a jaw collimator; (b) radiotherapy
scheme in [6] and [7], with tumour tracking and dynamic jaws.

Although the problem is inherently multivariable, for clarity the controller de-
scribed in this section considers tumour motion along only one degree of freedom
and the control of only one collimator jaw. Also, only rigid translational tumour
motion is considered; rotational, scaling and warping effects are ignored. Con-
sequently, the centroid of the tumour uniquely defines the tumour position. It is
worth noting that this assumption effectively decouples the inherently multivariable
controller; the desired position of each collimator jaw depends on tumour motion
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along one degree of freedom only. Finally, note from Figure 2.4(b) that each colli-
mator jaw should be positioned a constant distance from the tumour centroid. This
distance is referred to as the desired PTV offset and can be readily determined from
the relationship between the tumour centroid and tumour geometry.

The proposed jaw-based collimator control structure is shown in Figure 2.5.
There are two central components in the control setup: estimating the position
of the tumour centroid (shown above the bold dash-dot line) and controlling the
collimator jaw position, based on the estimated tumour position (below the bold
dash-dot line).

Control
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control signal

ȳjaw,fs[k]

SN [k]

controller (C(z))

collimator jaw
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Figure 2.5: Overview of the proposed jaw-based collimator controller, from [6] and
[7].
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Focus first on the problem of estimating the tumour position. Recall that the
control structure uses image feedback to determine the position of the tumour; it is
assumed that this image processing imposes a pure delay in determining the tumour
position2. Thus, it is only possible to directly measure the past position of the tu-
mour, motivating the need to estimate its current position. It is proposed that the
breathing flow rate of the patient, q[k], and the delayed and sampled tumour posi-
tion, ȳtumour,fs[k], be used to estimate the tumour position3. It is assumed that a
model relating the breathing flow rate to the tumour position, ȳtumour[k], is known;
this model consists of the LTI component, Mbreathing(z), and an unknown bias,
wtumour[k]. As previously mentioned, the controller cannot access ȳtumour[k] in real
time due to the delay imposed by image processing; it can only access a delayed,
slowly sampled version of this signal. To overcome this obstruction, a multirate
observer of the same structure as Figure 2.3 is used to estimate ȳtumour[k]; this esti-
mate is denoted by ˆ̄ytumour[k]. Note that the signals q[k], wtumour[k], ȳtumour[k], and
ˆ̄ytumour[k] operate at the “fast” sampling rate, only the signal used by the observer,
ȳtumour,fs[k], operates at the “slow” sampling rate. All sampling is assumed to be
uniform, with the slow sampling governed by the signal SN [k], according to (2.4).

The bottom half of Figure 2.5 shows the feedback loop used to control the
collimator jaw position. The desired jaw position, rjaw[k], is simply an offset (the
desired PTV offset) from the tumour position (recall Figure 2.4(b)). The “plant” in
the feedback loop is the collimator jaw mechanism, assumed to be modelled by the
discrete-time transfer function, Mjaw(z), and an unknown bias term, wjaw[k]. By
treating wjaw[k] as an unknown constant, it is possible to gain some robustness by
guaranteeing that the controller can accommodate translational calibration errors
in the jaw. The plant output, ȳjaw[k], is the collimator jaw position in the x-ray
imager frame of reference. Note that the scaling and translation factors required
to transform from the collimator frame of reference to the x-ray imager frame of
reference are included in Mjaw(z) and wjaw[k], respectively. Since ȳjaw[k] cannot be
measured in real time, it is proposed that another multirate observer of the type
described in Figure 2.3 be used to estimate the jaw position. Finally, the controller,
C(z), uses this estimate to appropriately position the jaw as the fraction progresses.

The next chapter will describe in detail a control scheme for the MLC that
builds upon the jaw-based collimator controller described in this chapter. Note
that only a summary of the results of [6] and [7] has been presented in this chapter;
refer to these works for complete details.

2Note that the focus of this work is not on image processing and it is assumed throughout
that image processing imposes a delay in the control schemes. Image processing algorithms for
the radiotherapy project have previously been explored in [7].

3For a good overview on tumour motion caused by respiration, see [11].
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Chapter 3

Multileaf Collimator Tumour
Tracking Control

Based on the results of [6] and [7] (as summarized in the previous chapter), this
chapter develops a tumour tracking control scheme for the MLC1. Similar to the
jaw-based collimator controller, the goal of this scheme is to use the MLC to position
the radiation beam tightly around the tumour by tracking the tumour during the
fraction. As will be described later in the chapter, the control of the MLC poses
some unique challenges compared to the jaw-based collimator controller.

Before proceeding with the design of the MLC controller in Section 3.2, the
next section describes a notable optimization to the transient performance of the
leaf and tumour position observers, the pivotal components of both the jaw-based
collimator and MLC controllers. Simulations detailing the efficacy of the proposed
MLC controller are provided in Section 3.3.

3.1 Observer Gain Optimization

Recall from the development of the multirate observer in Section 2.2 (especially
Theorem 2.2) that the state estimation error asymptotically tends to zero for any
suitable choice of the observer gain H. However, no claims were made about the
transient characteristics of the estimation error. Indeed, in [6] and [7], the place-
ment of the observer eigenvalues inside the unit circle was arbitrary and transient
performance was largely ignored. Poor transient performance can have devastating

1This control scheme has been previously proposed in [15].
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consequences in the radiotherapy application at hand; even an error in the tumour
position of a centimeter can have detrimental effect on the success of a fraction
(consider, for example, a tumour near the spinal cord or gall bladder).

To improve the observer transient performance, the calculation of the observer
gain, H, will be formulated as a linear quadratic regulator (LQR) optimization
problem. The optimization outlined in this section is similar to the LQR optimiza-
tion of a standard state observer (e.g., see [16]). First, define the observer error at

every Nth sample as

eN [k] := xaug[kN + 1] − x̂aug[kN + 1].

Recall from (2.11) that this error signal satisfies

eN [k + 1] = (AN − HCAN−1)eN [k]. (3.1)

Ideally, the observer gain, H, should be chosen to minimize the cost index

Je =
∞∑

k=0

(eN [k])T QeeN [k], (3.2)

where Qe > 0 is a design parameter. However, to restate the problem in a standard
LQR setup, introduce a system whose dynamic matrix is the transpose of that in
(3.1),

aN [k + 1] = ((AN)T − (AN−1)T CT HT )aN [k], (3.3)

where the superscript T denotes the matrix transpose. Note that (3.1) and (3.3)
have the same poles; however, (3.3) can be viewed as the “closed-loop” system of
the following artificial plant and controller:

aN [k + 1] = (AN)T aN [k] + (AN−1)T CT v[k] (3.4)

v[k] = −HT aN [k]. (3.5)

Viewing (3.4) as the “plant” and (3.5) as the “controller”, LQR optimal control
methods can be used to determine the “controller gain” HT that minimizes the
cost index

J =
∞∑

k=0

[
(aN [k])T QaN [k] + (v[k])T Rv[k]

]
, (3.6)

where Q ≥ 0 and R > 0 are design parameters. Since the observer is used to
estimate ȳ[k], Q is chosen to be Q = CT

y Q̄Cy, where Q̄ is a design parameter and
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Cy is defined in (2.19). Note that when Qe = CT
y Q̄Cy in (3.2), Je becomes

Je =
∞∑

k=0

(eN [k])T (Cy)
T Q̄CyeN [k]

=
∞∑

k=0

(xaug[kN+1] − x̂aug[kN+1])T (Cy)
T Q̄Cy (xaug[kN+1] − x̂aug[kN+1])

=
∞∑

k=0

(
ȳ[kN+1] − ˆ̄y[kN+1]

)T
Q̄

(
ȳ[kN+1] − ˆ̄y[kN+1]

)
,

and estimation errors of ȳ[k] are explicitly penalized. Although choosing Q =
CT

y Q̄Cy in (3.6) does not explicitly penalize estimation errors of ȳ[k] in this manner,
this choice of Q seems reasonable.

To demonstrate the improved transient performance that is attainable using
this optimization approach, consider the tumour position observer in the top half
of Figure 2.5. As in [6] and [7], the dynamics of the model relating the breathing
flow rate to the tumour position is approximately an integrator:

Mbreathing(z) =
0.0149

z − 0.990

(for a sampling period of h = 0.1 s). The image processing delay, N , is 5 (i.e., the
image processing sampling is 5 times slower than the breathing flow rate sampling)
and the tumour bias is constant, Aw = 1. Based on these models, there are 7 states
in the augmented plant and, therefore, 7 observer poles to assign. The observer of
[6] and [7] used pole-placement techniques to arbitrarily place the observer poles
at {0, 0, 0, 0, 0, 0.2, 0.3}. Using the optimization technique outlined above, with
Q̄ = 105 and R = 1, the observer poles are optimally placed at {0, 0, 0, 0, 0, 0, 0.951}.

Figure 3.1 compares the performance of the two observers over the first 10 s (100
samples using a 0.1 s sampling period). The breathing flow rate, q[k], is assumed to
be sinusoidal with a frequency of 1/6 Hz and is shown in part (a). Part (b) shows
the tumour position, ȳtumour[k], and the observer output, ˆ̄ytumour[k], for the original
observer proposed in [6] and [7] in response to an initial transient and a change in
the tumour bias (caused by the patient shifting on the treatment table, for example)
of 2.0 cm at t = 5.1 s. The estimation error of the original observer is shown in
part (c). Finally, parts (d) and (e) show the markedly improved performance of the
optimal observer in response to the same initial transient and tumour bias change.
Note that the lag between the tumour bias change and the update of ˆ̄ytumour[k] is
due to the delay and slow sampling of the image processing.
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Figure 3.1: Multirate tumour position observer performance for the observer from
[6] and [7] (parts (b) and (c)) and the optimized observer (parts (d) and (e)).

3.2 Multileaf Collimator Controller

Using the observer gain improvement of the previous section and the original jaw-
based collimator controller of [6] and [7], this section describes the design of a
tumour-tracking controller for the MLC. Recall from Figure 1.1 that the purpose
of using a MLC in radiotherapy, instead of a jaw collimator, is to provide better
conformity of the radiation beam to the tumour geometry. The high-level approach
is similar to that taken for the jaw-based collimator controller: image feedback
is used to track the tumour as the fraction progresses, and the collimator leaves
are positioned to keep the radiation beam tightly focused around the PTV (recall
Figure 2.1). As shown in Figure 3.2(b), this approach permits a smaller margin
between the CTV and the PTV, reducing the amount of healthy tissue irradiation
compared to the traditional (fixed collimation) approach of Figure 3.2(a).
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Figure 3.2: Radiotherapy using a MLC: (a) the traditional scheme, where the
leaves are fixed; (b) the proposed scheme, where the leaves move in real time to
track the tumour motion, allowing a smaller PTV to be used.

A block diagram of the proposed MLC controller is shown in Figure 3.3; for
simplicity, the control of only one leaf is shown in the diagram. The tumour is
assumed to move with two degrees of freedom, where the “horizontal” direction
is defined to be the direction of travel of the collimator leaf and the “vertical”
direction perpendicular to it (see Figure 3.2(b)). Where appropriate, horizontal
and vertical signals are denoted with a superscript “h” or “v”, respectively.

At the top of Figure 3.3 are two tumour position observer blocks used to esti-
mate the position of the tumour centroid in the horizontal and vertical directions.
(As with the jaw-based collimator controller, only translational and rigid tumour
motion is considered.) Each block is a consolidation of the breathing model, image
processing delay, and observer of the “tumour position estimation” portion of Fig-
ure 2.5. Unlike the jaw-based collimation scheme, the estimated tumour position
in both directions is required to determine the reference position for each leaf. In
each observer block, the breathing model is assumed to be2

Mbreathing(z) =
0.0149

z − 0.990

2The models and constants used in this section are the same as those chosen in [6].
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Figure 3.3: Overview of the proposed MLC controller for a single leaf.

with a sampling period of h = 0.1 s. The image processing delay, N , is 5 and the
tumour bias is constant, Aw = 1. Using the LQR optimization technique outlined
in the previous section, with Q̄ = 105 and R = 1, the observer poles in both tumour
position observer blocks are optimally placed at {0, 0, 0, 0, 0, 0, 0.951}.

The most interesting difference between the jaw-based collimator controller and
the MLC controller is the calculation of the desired PTV offset, yoffset[k]. In
the jaw-based collimator controller, this offset is constant, reflecting the constant
distance between the tumour centroid and the desired jaw position (recall Fig-
ure 2.4(b)). However, in the MLC controller, this signal is time-varying and depends
on the v-axis estimated tumour position and the geometric relationship between the
tumour centroid and the PTV. Figure 3.4 illustrates the calculation of yoffset[k] in
two cases: when the path of the leaf intersects the PTV, in part (a), and when it
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Figure 3.4: Computing leaf offsets: (a) leaf is beside PTV; (b) leaf is below PTV.

does not intersect the PTV, in part (b) (this determination is made using the v-axis
estimated tumour position and the tumour geometry). The leaves marked “A” and
“B” in Figure 3.2(b) are examples of the former case and those marked “C” and
“D” are examples of the latter. In the part (a) case, the offset is calculated as the
maximum (absolute) horizontal distance between the horizontal tumour centroid
position and the portion of the PTV that is estimated to be along vertical edge of
the leaf. In the part (b) case, it is desired that the left and right opposing leaves
touch to completely block the radiation. This is accomplished by setting the offset
such that the leaf is in the “middle” of the PTV. When the leaves are below the
PTV, they are set to the middle of the PTV when approaching it from the bottom.
Similarly, when the leaves are above the PTV, they are set to the middle of the
PTV when approaching it from above. The leaves are positioned in this fashion to
improve transient leaf performance when the tumour moves into or out of the plane
of the collimator leaves (e.g., see the leaf marked “E” in Figure 3.2(b)).

The leaf controller feedback loop in the lower part of Figure 3.3 is almost identi-
cal to the jaw position control feedback loop of Figure 2.5; the only difference is the
replacement of the jaw dynamics model with the leaf dynamics model, Mleaf (z).
The collimator leaf is modelled as a first-order lag system with a time constant of
0.1 s and a DC gain of 3. With the “fast” sampling rate of h = 0.1 s, the leaf
model is

Mleaf (z) =
1.896

z − 0.3679
.

The LQR observer optimization technique of the previous section was also applied
to the leaf position observer. Using Q̄ = 105 and R = 1, the leaf position observer
eigenvalues were optimally placed at {0, 0, 0, 0, 0, 0, 0.0681}.

The final component to be designed is the leaf controller, C(z). Fortunately, the
separation principle applies to the feedback loop (see [17]) and the leaf controller
can be designed independently of the observer. The leaf controller is required to
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1. stabilize the loop;

2. reject constant disturbances (i.e., the collimator leaf bias, wleaf [k]);

3. provide asymptotic tracking for a periodic reference signal with discrete-time
frequency θ;

4. provide asymptotic tracking for a step reference signal.

The third and fourth requirements are imposed by the nature of the tumour mo-
tion: the tumour moves in a roughly sinusoidal pattern with frequency θ, the same
frequency as the breathing rate of the patient. The step changes in the reference
signal occur when the tumour enters or exits the path of the leaf (e.g., see the
leaf marked “E” in Figure 3.2(b)). Figure 3.5 shows a typical leaf reference signal,
determined by simulation, which justifies these controller requirements. The final
leaf controller structure is

C(z) = K ·
z − α

z − 1
·
z2 − 2(cos θ)ωnz + ω2

n

z2 − 2(cos θ)z + 1
. (3.7)

The pole at z = 1 guarantees that requirements 2 and 4 are met, while the poles on
the unit circle ensure that requirement 3 is met. The gains and zeros were chosen
to provide “good” step response transients, in addition to closed loop stability
(requirement 1). Root locus methods were employed to obtain K = 0.6, ωn = 0.9
and α = 0.4.
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Figure 3.5: Sample leaf reference signal, rleaf [k].
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3.3 Simulation Results

This section compares representative simulations of the proposed MLC controller
to equivalent simulations of traditional multileaf collimation. Figure 3.6(a) shows
the CTV used in the simulations; the CTV has a height of 5.1 cm and a width
of 6.0 cm. From a medical perspective, the ideal outcome of the fraction would
be the irradiation of the CTV only, without irradiating any of the healthy tis-
sue surrounding the CTV. The breathing flow rate, q[k], is sinusoidal and causes
translational sinusoidal motion of the CTV with amplitude 0.56 cm and frequency
1/6 Hz in both the horizontal and vertical directions for a total translational mo-
tion of

√

(0.56 cm)2 + (0.56 cm)2 ≈ 1.58 cm. The magnitude of this motion is
consistent with the 1.6 cm respiration-induced movement of the kidney reported in
[18]. Moreover, the magnitude of this motion is not unreasonable as intrafractional
tumour movement of up to 3.5 cm has been documented in abdominal tumours
[19]. A PTV margin (distance between the edges of the CTV and PTV) of 0.63 cm
was used for the traditional multileaf collimation simulations (see Figure 3.6(b)).
This margin is just large enough to ensure radiation delivery to the CTV in spite of
the sinusoidal tumour motion (assuming constant h-axis and v-axis tumour biases).
The PTV margin for the proposed MLC controller was set to 0.0 cm (the ideal case
where the PTV and CTV perfectly overlap).

The fraction was simulated for 10 s, or 100 samples at a sampling period of
0.1 s. The radiation dose rate was assumed constant and scaled such that the CTV
should receive 10 s of radiation. During each sampling interval, any tissue covered
by leaves was assumed to receive no radiation, and tissue not covered by leaves
was assumed to receive full radiation; effects such as scattering and penumbra (a
geometric effect arising from the positioning of the radiation source, MLC and
patient) were ignored. The MLC consists of 50 leaves, 25 on each side of the
collimator, each with a vertical height of 3.924 mm. This choice is consistent with
modern MLCs, such as the MLC with a 4.0 mm leaf height reported in [20].
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Figure 3.6: (a) CTV used in the simulations; (b) PTV used in the simulation of
traditional multileaf collimation.

The proposed and traditional MLC controller are compared in Figure 3.7, which
shows each simulated fraction at 0.0 s, 1.4 s, and 4.5 s from the start of the fraction.
The leaves in the traditional controller are statically placed so the radiation beam
is shaped around the PTV at the start of the fraction. Although the traditional
controller irradiates the CTV, there is significant irradiation of healthy tissue sur-
rounding the CTV (shown in white between the CTV and collimator leaves). By
using image feedback, the proposed MLC controller tracks the tumour and adjusts
the collimator leaves to focus the radiation beam tightly around the CTV. At the
start of the fraction (0.0 s), the leaves of the MLC are fully retracted to obtain a
wide image of the cancerous region and determine the tumour position. The vertical
blue lines in the proposed MLC controller simulation indicate reference positions
for each collimator leaf (rleaf [k]).
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t = 4.5 st = 1.4 st = 0.0 s

(a)

(b)

Figure 3.7: Radiotherapy fraction simulations: (a) traditional MLC controller; (b)
proposed MLC controller.

The dose delivered to the region in and around the CTV is shown Figure 3.8 for
both the traditional (part (a)) and proposed (part (b)) MLC controllers. The first
column shows the dose delivered to the patient, with intensity proportional to the
delivered radiation dose. The second column shows the magnitude of the dose error,
where red indicates tissue that has received too much radiation and blue indicates
tissue that has received too little radiation; colour intensity is proportional to the
magnitude of the dose error. (In this simulation, very little tissue has been under
irradiated and it may be difficult to see these regions.) As expected, the traditional
controller succeeds in irradiating the CTV, but at the cost of significant healthy
tissue irradiation. As shown in Figure 3.8(b), the proposed MLC controller irradi-
ates the CTV just as well as the traditional controller, but with much less healthy
tissue irradiation. The vertical “tails” at the top and bottom of the delivered dose
are caused by the leaves not closing quickly enough when the fraction begins (see
the t = 1.4 s screenshot in Figure 3.7(b)).
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Delivered Dose Dose Error

(b)

(a)

Figure 3.8: Accumulated dose: (a) traditional MLC controller; (b) proposed MLC
controller.

The effectiveness of the proposed MLC controller is even more pronounced in
the simulation shown in Figure 3.9. This simulation is identical to the previous
simulation, except a change in the vertical tumour bias, wv

tumour[k] (caused by
the patient shifting on the treatment table, or a sudden movement of intestinal
gas, for example), of −1.0 cm occurs at 5.0 s. This causes the CTV to be be
partially covered by the collimator leaves in both the traditional and proposed MLC
controllers. However, after the bias change propagates through the image processing
delay, the proposed MLC controller repositions the collimator leaves so that the
radiation beam is again focused around the CTV. Lacking the image feedback of
the proposed controller, the traditional MLC controller cannot accommodate this
small change in the tumour bias and some of the CTV is covered by the collimator
leaves later in the fraction (compare the t = 5.7 s screenshots in Figure 3.9).
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t = 5.7 st = 5.0 st = 4.9 s

(b)

(a)

Figure 3.9: Radiotherapy fraction simulations: (a) traditional MLC control with
tumour bias change; (b) proposed MLC controller with tumour bias change.

Figure 3.10 shows the result of the tumour bias change in the dose delivered to
the patient. Most troublesome is the under irradiated region (shown in blue) of the
CTV for the traditional MLC controller resulting from the CTV moving beneath
the collimator leaves. Due to the image feedback, the proposed MLC controller
accounts for the bias change and the results are nearly identical to the previous
simulation of Figure 3.8(b).
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Figure 3.10: Accumulated dose: (a) traditional MLC controller with bias change;
(b) proposed MLC controller with bias change.
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Chapter 4

Tumour Dose Control for
Intensity-Modulated
Radiotherapy

Based on the MLC tumour tracking controller developed in the previous chapter,
this chapter proposes a dose controller for IMRT. Recall that in IMRT the collimator
leaves are dynamically positioned during a fraction so the post-fraction delivered
radiation dose has a non-uniform intensity. By appropriately defining the radiation
dose profile for each fraction, the aggregate (from all fractions) applied radiation
dose conforms more closely to the actual geometry of the tumour. In addition,
denser or “more malignant” portions of the tumour can receive more radiation
than surrounding cancerous tissue.

Despite its effectiveness, IMRT suffers from the same problems as standard ra-
diotherapy: intrafractional tumour motion and errors in aligning the patient with
the radiation beam at the start of a fraction (patient setup errors) lead to un-
necessary healthy tissue irradiation. These, and other problems, are explored in
the next section before the proposed dose controller is outlined in Section 4.21. In
Section 4.3, simulations comparing the IMRT dose controller with standard IMRT
illuminate the advantage of the proposed controller. Finally, Section 4.4 describes
two important weaknesses of the proposed dose controller; these weaknesses moti-
vate the theoretical control problems of Chapters 5 and 6.

1This controller has previously been proposed in [22].
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4.1 Motivation

Recent studies have confirmed the improved dose coverage to cancerous tissue and
decreased irradiation of healthy tissue with IMRT (e.g., see [23], [24]). In spite of
this improvement, other studies have cautioned that tumour motion and patient
setup errors can significantly degrade the planned delivered radiation dose (e.g.,
see [25], [26]). Furthermore, leaf and tumour transient motion can adversely affect
the delivered radiation dose. For example, Figure 4.1 shows the MLC controller
fraction simulation previously described in Section 3.3 at 0.2 s; the left and right
leaves have overshot their reference positions. The overshooting leaves beside the
tumour inadvertently block radiation and the leaves above and below the tumour
are overlapping, as indicated by the hatched region.

Building on the MLC tumour-tracking controller of the previous chapter, the
dose controller developed in this chapter aims to overcome these deficiencies. Us-
ing the same image feedback mechanism proposed in Chapters 2 and 3, tumour
motion and patient setup errors can be accommodated. In addition, by estimat-
ing the applied radiation dose as the fraction progresses, the dose controller can
compensate for “cold spots” (under-irradiated tissue) caused by leaf and tumour
motion transients. (The more worrisome issue of overlapping leaves is considered
in Chapter 6.)

Figure 4.1: Proposed MLC controller fraction simulation at 0.2 s.
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4.2 Proposed Dose Controller

The high-level approach of the dose controller design is similar to the MLC con-
troller design of Chapter 3: image feedback is used to estimate the positions of the
tumour and collimator leaves in real time and the collimator leaves are positioned
so the post-fraction dose profile is as close as possible to a reference dose profile.
For the purposes of the dose controller, the nomenclature “desired irradiation area”
is used to distinguish the desired geometry of the radiation beam from the actual
tumour. By appropriately defining the desired irradiation area as the fraction pro-
gresses, the delivered dose profile can be varied as the fraction progresses; this is
the high-level mechanism employed by the dose controller to create a delivered dose
profile that is close to a reference dose profile.

The reference dose profile is assumed to be specified as an M ×M array, where
each element of the array is called a voxel. (Although “voxels” typically refer
to volume elements, the term is used here to emphasize that the reference dose
profile is a two-dimensional projection of an overall three-dimensional prescribed
dose profile.) Each element in the array specifies a desired absorbed dose for that
voxel, in units called grays (Gy). A gray is the SI unit for absorbed dose and is
defined as 1 Gy = 1 J/kg.

4.2.1 Control Structure

Figure 4.2 shows a block diagram of the proposed IMRT dose controller; the control
of only one collimator leaf is shown for clarity. The two tumour centroid position
observers (at the top of the figure) and the leaf controller feedback loop (at the
bottom right of the figure) are identical to those of the MLC controller of Figure 3.3;
consult Section 3.2 for the design of these blocks.

To compensate for under-irradiated tissue caused by leaf and tumour transient
motion, it is proposed that the dose controller estimate the accumulated dose pro-
file as the fraction progresses. Estimating the dose profile is the function of the
“calculate hit matrix” and “accumulator” blocks at the bottom left of Figure 4.2.
Using the estimated tumour centroid and leaf positions, the “calculate hit matrix”
block estimates which voxels were hit with radiation at the current sample time.
For simplicity, the estimated tumour and leaf positions are rounded to the nearest
voxel to avoid partially covered voxels. The output of this block is a signal of width
M2 where each element is either 1 or 0, indicating whether the corresponding voxel
received or did not receive radiation. For simplicity, any voxels covered by leaves
receive no radiation, and voxels not covered by leaves receive full radiation at a
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Figure 4.2: Overview of the proposed IMRT dose controller for a single leaf.

constant dose rate of G Gy/sample; as with the MLC controller, effects such as
scattering and penumbra are ignored. The “accumulator” block sums the dose re-
ceived by each voxel as the fraction progresses, i.e., A(z) is a fully decoupled system
and each diagonal component has the transfer function G/(z − 1).

4.2.2 Desired Irradiation Area Calculation

The most interesting difference between the MLC and IMRT dose controllers is
the calculation of the desired irradiation area. In the former controller, the geo-
metric relationship between the tumour centroid and the desired irradiation area is
constant, reflecting the goal of positioning the collimator leaves tightly around the
tumour. However, in the dose controller design, this relationship is time-varying so
the dose profile can be varied as the fraction progresses.

The desired irradiation area is defined at each sample time such that the post-

32



fraction dose profile is as close as possible to the reference dose profile. The high-
level technique is to use the reference dose profile and the estimated accumulated
dose profile to determine areas that have not received their prescribed dose. Specif-
ically, at the start of the fraction, the dose controller chooses the voxel from the
reference dose profile that requires the highest radiation dose; if this voxel is not
unique, any voxel from the set can be chosen. This voxel is referred to as the “seed”
voxel. Then, at each sample time, the following steps are performed:

1. The estimated dose error profile is calculated by subtracting the estimated
accumulated dose profile from the reference dose profile. Voxels still requiring
radiation are indicated by a value greater than zero in this profile.

2. Using flood-fill operations, the region of voxels connected to the seed voxel
that still require radiation is determined.

3. The total dose (in Gy) still required by the region determined in Step 2 is
calculated, and one of the following actions is taken:

(a) If the dose in this area is less than a threshold value (indicating that the
remaining dose required by the region is negligible), a new seed voxel
is chosen. This seed is chosen as the voxel that requires the highest
radiation dose from the estimated dose error profile. If this voxel is not
unique, any voxel from the set is chosen.

i. If a new seed voxel is determined in this step, the algorithm resumes
at Step 2.

ii. Otherwise, there are no regions remaining that require significant
radiation and the fraction is complete.

(b) If this area is greater than a threshold value, define the desired irradiation
area as the region calculated in Step 2.

The purpose of the threshold value in the above algorithm is to prevent the dose con-
troller from focusing on small regions that require radiation. Without the threshold,
it is possible for the controller to focus the radiation beam on a single voxel, likely
resulting in over irradiation of tissue surrounding the voxel. In a sense, the threshold
value indicates the tradeoff between reducing under-irradiated tissue and reducing
over-irradiated tissue.

The calculation of the desired irradiation area is illustrated by the simple ex-
ample in Figure 4.3. (Note that, to preserve the simplicity of the example, effects
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caused by tumour and leaf motion transients are ignored.) Part (a) shows the es-
timated dose error profile at a particular sample time in the fraction; the elliptical
area on the left requires an additional 2 Gy/voxel of radiation to reach its reference
dose and the area on the right requires an additional 1 Gy/voxel. A voxel within
the ellipse on the left is initially chosen as the seed voxel. All voxels connected to
this seed voxel are then determined, as indicated by the white region in part (b).
This region becomes the desired irradiation area and will remain so until it receives
its full 2 Gy/voxel dose. Afterward, the estimated dose error profile will resemble
that shown in part (c) and a new voxel is chosen as the seed voxel. The white region
of part (d) shows the new desired irradiation area; this area will be targeted by the
radiation beam until it receives its prescribed 1 Gy/voxel dose. Once this region
receives its prescribed dose, there are no voxels remaining that require radiation
and the fraction is terminated.

Seed

2 Gy/voxel

1 Gy/voxel

(d)(c)(b)(a)

Seed

Figure 4.3: Illustration of the calculation of the desired irradiation area.

4.3 Simulation Results

This section compares a representative simulation of the IMRT dose controller
described in the previous section to that of traditional IMRT. The reference dose
profile used in the simulations is a matrix of 545 × 545 voxels2 and is shown in
Figure 4.4. Note that the profile consists of two distinct sections; such a profile
may be required if a tumour surrounds a critical structure such as the spine or
the liver. The prescribed dose to each voxel in the reference profile is indicated by
the colour intensity at that voxel, with brighter reds denoting a higher prescribed
dose. The maximum prescribed dose of all voxels in the reference dose profile is 2
Gy/voxel.

2These matrix dimensions are used for compatibility with a proof-of-concept experiment.
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7.8 cm

5.1 cm

Figure 4.4: Reference profile used in the simulations.

In the simulation, the tumour is perfectly aligned with the radiation beam at the
start of the fraction (i.e., there are no patient setup errors) and exhibits sinusoidal
translational motion with amplitude 0.56 cm and frequency 1/6 Hz in both the
horizontal and vertical directions. (It is worth repeating that intrafraction tumour
motion of up to 3.5 cm has been reported in [19].) The MLC consists of 50 leaves,
25 on each side of the collimator, each with a vertical height of 3.924 mm. At
each sampling interval, any voxels covered by the collimator leaves were assumed
to receive no radiation, and voxels not covered by leaves were assumed to receive
radiation at the constant rate of 0.02 Gy/sample (0.2 Gy/s at the sample rate of
0.1 s). Finally, the threshold value in determining the desired irradiation area is
4 Gy. That is, if a connected region still needing radiation requires less than 4 Gy
of radiation (as determined by summing the radiation required by each voxel in
this region from the estimated dose error profile), it is ignored.

The proposed dose controller is compared with traditional IMRT in the simula-
tion screenshots of Figure 4.5. The screenshots show the collimator leaves and the
reference profile in the imager frame of reference. Due to intrafractional tumour
motion, traditional IMRT erroneously focuses the radiation beam during the frac-
tion (note especially the regions of healthy tissue in white that receive radiation).
Using image feedback, the proposed dose controller estimates the tumour position
during the fraction and the radiation beam is focused appropriately. The desired
irradiation area is indicated by the green outline in Figure 4.5(b).
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t = 6.8 s t = 17.4 s

t = 6.8 st = 1.0 s

(a)

t = 1.0 s

(b)

t = 11.4 s

Figure 4.5: Radiotherapy fraction simulations: (a) traditional IMRT controller;
(b) proposed dose controller.

Note that the first two screenshots of both methods in Figure 4.5 show their
respective simulation at 1.0 s and 6.8 s from the start of the fraction; the third
screenshot is at 11.4 s for traditional IMRT and 17.4 s for the proposed dose
controller. In general, due to the feedback mechanism used to correct for under-
irradiated tissue, a fraction for the proposed dose controller will be longer than a
comparable fraction for traditional IMRT. In the simulations shown in Figure 4.5,
the fraction for traditional IMRT requires 15.2 s to complete, while the fraction for
the dose controller completes in 25.1 s.

The efficacy of the proposed dose controller is illustrated in Figure 4.6 which
shows the simulation of the controller at 0.2 s (part (a)) and 14.4 s (part (b)) from
the start of the fraction. At 0.2 s, the right collimator leaves have overshot their
reference positions, causing some voxels to be inadvertently covered by the leaves.
By estimating the accumulated dose profile as the fraction progresses, the proposed
dose controller compensates for this transient effect and later in the fraction, the
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(a) (b)

Figure 4.6: Simulation of the proposed dose controller at: (a) 0.2 seconds; (b) 14.4
seconds.

region that was covered is targeted by the radiation beam, as shown in Figure 4.6(b).
As in Figure 4.1, the collimator leaves above and below the profile have overshot
their reference positions and are overlapping. This issue is considered in detail in
Chapter 6.

The dose delivered to the region in and around the tumour is shown in Figure 4.7
for both traditional IMRT (part (a)) and the proposed dose controller (part (b)).
The first column shows the dose delivered to the patient, with intensity proportional
to the delivered radiation dose. The second column shows the magnitude of the
dose error, where red indicates regions that have received too much radiation and
blue indicates regions that has received too little; colour intensity is proportional
to the magnitude of the error. Due to the tumour motion and the lack of corrective
feedback, traditional IMRT results in significant errors between the desired and
delivered dose profiles. Especially disconcerting are the regions of tissue which do
not receive their full prescribed dose (note that these regions may be difficult to
see in Figure 4.7(a)); this under-irradiation may severely affect the success of the
fraction. Using image feedback and estimation of the accumulated dose profile
during the fraction, the proposed dose controller significantly reduces the number
of under-irradiated voxels and provides a tighter bound between the reference and
actual dose profiles.
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(b)

(a)

Figure 4.7: Accumulated dose: (a) traditional IMRT; (b) proposed dose controller.

4.4 Weaknesses of the Proposed Control System

Despite the demonstrable benefits of the proposed IMRT dose controller, this con-
trol scheme (and the MLC controller of Chapter 3) has two significant deficiencies.
The first is the assumption that a model relating the breathing flow rate of the
patient and the tumour position is known (recall the tumour position estimation
portion of Figure 2.5). Although this assumption reduces the complexity of the
controller design, it is unrealistic. The model will vary between patients and tu-
mours and will even vary in the same patient from fraction to fraction (e.g., the
amount of food in the stomach affects abdominal tumour motion). One approach
to overcome this problem is to identify this model and estimate the tumour position
as the fraction progresses; such an approach is the focus of the next chapter.

The other notable weakness of the proposed control scheme is the possibility
of opposing collimator leaves colliding with each other. The leaf controller, C(z),
was not designed to handle this requirement and, in some of the simulations, op-
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posing leaves do in fact collide. One method to prevent opposing leaf collisions
is to design C(z) so each collimator leaf does not overshoot its reference position;
however, it is not clear how to design such a controller, or even if such a controller
exists. Chapter 6 explores the problem of designing a controller that provides a
fast nonovershooting step response.
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Chapter 5

Adaptive Estimation in the
Presence of Sensor Delays

To estimate the current tumour position, the control schemes of Chapters 2 through
4 assume the existence of a known and constant model relating the breathing flow
rate of the patient to the tumour position (recall the transfer function Mbreathing(z)
of Figure 2.5). While this assumption makes the control system design more
tractable, it is decidedly unrealistic; the model will differ between patients and
even over time in the same patient (e.g., changes in bowel volume between frac-
tions can affect the relationship between patient breathing and tumour motion).
Although it may be possible to identify this model using standard system identifi-
cation techniques (e.g., see [27]) before a fraction begins, the increased treatment
complexity would not be desirable. This chapter explores a technique to identify
this model on-line and estimate the tumour position as the fraction progresses.

Although this chapter focuses on the problem of estimating the tumour position,
the results of this chapter are applicable to many diverse estimation problems where
a sensor delay prevents direct measurement of the system output. For example, the
results of this chapter could be applied to [28], which describes the difficulty of
designing an air-fuel ratio controller for gasoline engines due to an air-flow sensor
delay, or [29], which details the challenges of fermenting ethanol using baker’s yeast
with a sensor delay in ethanol measurement.

The next section defines the general plant output estimation problem investi-
gated in this chapter; this problem is the single-rate version of the multirate tumour
position estimation problem in the control schemes of Chapters 2 through 4.
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5.1 Problem Formation

The topology of the plant output estimation problem is shown below in Fig-
ure 5.1(b); this setup is similar to the tumour position estimation setup dupli-
cated in Figure 5.1(a) with the exception of sampling. To reduce the complexity
of the estimation problem, the plant output estimation setup assumes single rate

sampling. (The applicability of the results of this chapter to the tumour position
estimation problem is further discussed in Section 5.4.) In Figure 5.1(b), a sensor
delay (modelled as a pure delay of N steps) prevents direct measurement of the
plant output, ȳ[k]. The technique developed in this chapter uses the plant input,
u[k], and the delayed plant output, ȳ[k − N ], to produce an estimate of the plant
output, denoted by ˆ̄y[k], such that

lim
k→∞

(
ȳ[k] − ˆ̄y[k]

)
= 0.

The plant is assumed to consist of an unknown linear, time-invariant and proper
system, P (z), and an unknown constant bias, w. The only other assumption on the
plant is that an upper bound on the number of poles and zeros of P (z) is known.

Since P (z) is linear, time-invariant and proper, it can be written in the difference
equation form

y[k] =
n∑

i=1

aiy[k − i] +
m∑

i=0

biu[k − i], k ≥ t0 (5.1)

where the coefficients ai and bi are unknown constants. Note that if an upper bound
on the number of poles and zeros is known, the plant model can be written in such
a form. Now, from (5.1), y[k − 1] can be written as a linear combination of

{y[k − 2], y[k − 3], · · · , y[k − n − 1]}

and
{u[k − 1], u[k − 2], · · · , u[k − m − 1]} .

In general, y[k − i] can be written as a linear combination of

{y[k − i − 1], y[k − i − 2], · · · , y[k − i − n]}

and
{u[k − i], u[k − i − 1], · · · , u[k − i − m]}

for
i = {1, 2, · · · , N − 1} .
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Figure 5.1: (a) The multirate tumour position estimation problem; (b) simplified
single rate plant output estimation problem considered in this chapter.

Therefore, (5.1) can be rewritten as

y[k] =
n̄∑

i=0

āiy[k − N − i] +
m̄∑

i=0

b̄iu[k − i], k ≥ t̄0,

where the constants, n̄, m̄, āi, b̄i and t̄0 are functions of n, m, ai, bi and t0. The
biased plant output is then given by

42



ȳ[k] = y[k] + w

=
n̄∑

i=0

āiy[k − N − i] +
m̄∑

i=0

b̄iu[k − i] + w

=
n̄∑

i=0

āi (ȳ[k − N − i] − w) +
m̄∑

i=0

b̄iu[k − i] + w

=
n̄∑

i=0

āiȳ[k − N − i] +
m̄∑

i=0

b̄iu[k − i] + w − w ·
n̄∑

i=0

āi

︸ ︷︷ ︸

c

= [ ȳ[k − N ] · · · ȳ[k − N − n̄] u[k] · · · u[k − m̄] 1 ]
︸ ︷︷ ︸

φ[k]T














ā0
...

ān̄

b̄0
...

b̄m̄

c














︸ ︷︷ ︸

θ∗

= φ[k]T θ∗, k ≥ t̄0. (5.2)

Note that φ[k] consists of measurable signals and θ∗ consists of unknown con-
stants; this is the standard form used in many on-line estimation techniques (a
good overview of standard on-line estimation results can be found in [30]). The ba-
sic premise behind the estimation technique outlined in this chapter is to estimate
θ∗ by measuring φ[k] at every time instant and from this estimate, calculate the
estimate of the plant output, ˆ̄y[k]1. Specifically, denoting the current estimate of

1 Although the plant is assumed to consist of a linear time-invariant component, P (z), the
results of this chapter are applicable to a more general class of systems. Specifically, the estimation
technique developed in this chapter is applicable to any system where ȳ[k] can be written as

ȳ[k] = φ[k]T θ∗,

where θ∗ is a vector of constant parameters and φ[k] is a linear or nonlinear combination of the
data

D[k] := {ȳ[k − N ], ȳ[k − N − 1], . . . , u[k], u[k − 1], . . .} .
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θ∗ by θ̂[k], define the plant output estimate as2

ˆ̄y[k] := φ[k]T θ̂[k − 1].

Also, define the parameter estimate error as

θ̃[k] := θ̂[k] − θ∗,

and the prediction error as

e[k] := ȳ[k] − ˆ̄y[k]

= φ[k]T θ∗ − φ[k]T θ̂[k − 1]

= −φ[k]T θ̃[k − 1].

The next section outlines a projection algorithm technique which provides asymp-
totic plant output estimation, i.e.,

lim
k→∞

e[k] = 0.

5.2 Adaptive Estimation Technique

Based on the plant model (5.2), this section develops a projection algorithm tech-
nique to estimate θ∗ based on the standard projection algorithm for on-line param-
eter estimation (e.g., see [31]). The lemma and theorem proofs in this section are
derived from analogous results for the standard projection algorithm in [32] and
[33]. The basic intuition behind the algorithm is as follows: given a new delayed
output, ȳ[k − N ] and a vector of input/output data, φ[k − N ], all possible values
of θ∗ satisfying the model (5.2) lie on the hypersurface

H :=
{
θ : ȳ[k − N ] = φ[k − N ]T θ

}
. (5.3)

Among these candidate values for θ∗, the new estimate, denoted by θ̂[k], is chosen
as the one closest to θ̂[k − N − 1]. Hence, θ̂[k] is chosen as the value of θ which
minimizes

J(θ) =
1

2

∥
∥
∥θ − θ̂[k − N − 1]

∥
∥
∥

2

2
(5.4)

subject to θ ∈ H where (5.4) uses the standard Holder 2-norm. A geometric
interpretation of this technique is illustrated for a second-order case in Figure 5.2.
The following lemma shows the minimizing θ is unique and easy to express.

2Although it may seem more natural to use θ̂[k] in this equation, developments later in the

chapter require θ̂[k − 1].
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Figure 5.2: Geometric interpretation of the projection estimation algorithm.

Lemma 5.2:

arg minθ∈HJ(θ) =
{

θ̂[k−N−1], φ[k−N ]=0

θ̂[k−N−1] + φ[k−N ]
φ[k−N ]T φ[k−N ]

(

ȳ[k−N ]−φ[k−N ]T θ̂[k−N−1]
)

, otherwise.

Proof: Since H is closed and convex,

θ̂[k] := arg minθ∈HJ(θ)

exists and is unique.

If φ[k − N ] = 0, then ȳ[k − N ] must be zero as well, so from (5.3), H is the entire
space and

θ = θ̂[k − N − 1]

minimizes (5.4).

Now, suppose that φ[k−N ] 6= 0. Introduce a Lagrange multiplier for the constraint
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θ ∈ H and define

Jl(θ̂[k], λ) :=
1

2

∥
∥
∥θ̂[k] − θ̂[k − N − 1]

∥
∥
∥

2

2
+ λ

(

ȳ[k − N ] − φ[k − N ]T θ̂[k]
)

=
1

2

(

θ̂[k] − θ̂[k − N − 1]
)T (

θ̂[k] − θ̂[k − N − 1]
)

+λ
(

ȳ[k − N ] − φ[k − N ]T θ̂[k]
)

.

The necessary conditions for a minimum are

∂Jl(θ̂[k], λ)

∂θ̂[k]
= 0 &

∂Jl(θ̂[k], λ)

∂λ
= 0.

Now,

Jl(θ̂[k], λ) =
1

2

p
∑

i=1

(

θ̂i[k] − θ̂i[k − N − 1]
)2

+

λ

(

ȳ[k − N ] −

p
∑

i=1

φi[k − N ]θ̂i[k]

)

,

so
∂Jl(θ̂[k], λ)

∂θ̂i[k]
= θ̂i[k] − θ̂i[k − N − 1] − λφi[k − N ] = 0,

which implies

∂Jl(θ̂[k], λ)

∂θ̂[k]
= θ̂[k] − θ̂[k − N − 1] − λφ[k − N ] = 0. (5.5)

Also,
∂Jl(θ̂[k], λ)

∂λ
= ȳ[k − N ] − φ[k − N ]T θ̂[k] = 0. (5.6)

Substituting (5.5) into (5.6) and rearranging gives

λ =
ȳ[k − N ] − φ[k − N ]T θ̂[k − N − 1]

φ[k − N ]T φ[k − N ]
.

Substituting this back into (5.5) gives

θ̂[k] = θ̂[k−N−1] +
φ[k−N ]

φ[k−N ]T φ[k−N ]

(

ȳ[k−N ] − φ[k−N ]T θ̂[k−N−1]
)

.
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A potential problem with the above algorithm is that φ[k − N ] may get close
(or equal) to zero, potentially causing numerical problems3. To avoid this problem,
a small constant, c, is added to the denominator of the algorithm leading to the
following slightly modified version of the algorithm.

Projection Algorithm for Plants with Sensor Delays. With 0 < a < 2, c > 0,
let

θ̂[k] = θ̂[k−N−1] +
aφ[k−N ]

c + φ[k−N ]T φ[k−N ]

(

ȳ[k−N ]−φ[k−N ]T θ̂[k−N−1]
)

,

k ≥ t̄0 + N + 1 (5.7)

with θ̂[t̄0] = θ̂[t̄0 + 1] = · · · = θ̂[t̄0 + N ] = θo.

The next theorem, the main result of this chapter, shows that this projection
algorithm provides asymptotic estimation of the plant output for bounded input,
bounded output (BIBO) plants. In other words, under the mild assumptions that
the unknown plant is linear with an offset, time-invariant, stable, and an upper
bound on the number of poles and zeros of the plant is known, this projection
algorithm can asymptotically estimate the output of the plant in spite of a known
sensor delay.

Theorem 5.2: Suppose that the projection algorithm for plants with sensor delays
is applied to the system of Figure 5.1(b). Then

(i)
∥
∥
∥θ̂[k] − θ∗

∥
∥
∥

2
≤

∥
∥
∥θ̂[k−N−1] − θ∗

∥
∥
∥

2
≤ · · · ≤ ‖θ0 − θ∗‖2 , k ≥ t̄0+N+1

(i.e., every (N + 1)th parameter estimate error is nonincreasing);

(ii) If P (z) is BIBO stable and the input to the system, u[k], is bounded

then,

lim
k→∞

e[k] = lim
k→∞

(ȳ[k] − ˆ̄y[k]) = 0

(i.e., the algorithm provides asymptotic estimation of the plant output).

3Having said that, recall from (5.2) that the last element of φ[k − N ] is the constant 1; thus,
φ[k − N ]T φ[k − N ] ≥ 1. However, in other formulations of this estimation problem (e.g., the
basic estimation problem of Figure 5.1(b) with the bias term, w, removed), it is possible for
φ[k − N ] = 0.
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Proof: Subtracting θ∗ from both sides of the update equation (5.7) gives

θ̃[k] = θ̃[k − N − 1] +
aφ[k − N ]

c + φ[k − N ]T φ[k − N ]
×

(

ȳ[k − N ] − φ[k − N ]T θ̂[k − N − 1]
)

= θ̃[k − N − 1] +
aφ[k − N ]

c + φ[k − N ]T φ[k − N ]
e[k − N ].

Now,

∥
∥
∥θ̃[k]

∥
∥
∥

2

2
=

∥
∥
∥θ̃[k − N − 1]

∥
∥
∥

2

2
+ 2a

φ[k − N ]T θ̃[k − N − 1]

c + φ[k − N ]T φ[k − N ]
e[k − N ]+

a2 φ[k − N ]T φ[k − N ]

(c + φ[k − N ]T φ[k − N ])2 e[k − N ]2

=
∥
∥
∥θ̃[k − N − 1]

∥
∥
∥

2

2
− 2a

1

c + φ[k − N ]T φ[k − N ]
e[k − N ]2+

a2 φ[k − N ]T φ[k − N ]

(c + φ[k − N ]T φ[k − N ])2 e[k − N ]2

=
∥
∥
∥θ̃[k − N − 1]

∥
∥
∥

2

2
+

a








∈[0,a)
︷ ︸︸ ︷

a
φ[k − N ]T φ[k − N ]

c + φ[k − N ]T φ[k − N ]
−2








︸ ︷︷ ︸

<0

(
e[k − N ]2

c + φ[k − N ]T φ[k − N ]

)

︸ ︷︷ ︸

≥0

(5.8)

∥
∥
∥θ̃[k]

∥
∥
∥

2

2
≤

∥
∥
∥θ̃[k − N − 1]

∥
∥
∥

2

2
,

which implies (i).

Next, for k ≥ t̄0 + N + 1, denote k by

k = t̄0 + γ(N + 1) + τ,

where γ ∈ {1, 2, 3, . . .} and τ ∈ {0, 1, 2, . . . , N} and, for convenience, define

φ̄[k] := φ[k]T φ[k] ≥ 0.
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Then, iterating (5.8) gives

∥
∥
∥θ̃[k]

∥
∥
∥

2

2
=

∥
∥
∥θ̃[t̄0 + γ(N + 1) + τ ]

∥
∥
∥

2

2

=
∥
∥
∥θ̃[t̄0+(γ−1)(N+1)+τ ]

∥
∥
∥

2

2
+a

(

a
φ̄[t̄0+(γ−1)(N+1)+τ +1]

c+φ̄[t̄0+(γ−1)(N+1)+τ+1]
−2

)

×

(
e[t̄0 + (γ − 1)(N + 1) + τ + 1]2

c + φ̄[t̄0 + (γ − 1)(N + 1) + τ + 1]

)

= · · ·

=
∥
∥
∥θ̃[t̄0 + τ ]

∥
∥
∥

2

2
+

γ−1
∑

i=0

a

(
aφ̄[t̄0 + i(N + 1) + τ + 1]

c + φ̄[t̄0 + i(N + 1) + τ + 1]
− 2

)

×

(
e[t̄0 + i(N + 1) + τ + 1]2

c + φ̄[t̄0 + i(N + 1) + τ + 1]

)

=
∥
∥
∥θ̃[t̄0]

∥
∥
∥

2

2
+

γ−1
∑

i=0

a

(
aφ̄[t̄0 + i(N + 1) + τ + 1]

c + φ̄[t̄0 + i(N + 1) + τ + 1]
− 2

)

︸ ︷︷ ︸

∈[−2,a−2)

×

(
e[t̄0 + i(N + 1) + τ + 1]2

c + φ̄[t̄0 + i(N + 1) + τ + 1]

)

, (5.9)

where the last equality arises from the initial conditions of the algorithm in (5.7).
Now, from (5.9), the following inequality results:

0 ≤
∥
∥
∥θ̃[k]

∥
∥
∥

2

2
≤

∥
∥
∥θ̃[t̄0]

∥
∥
∥

2

2
+ a(a − 2)

γ−1
∑

i=0

e[t̄0 + i(N + 1) + τ + 1]2

c + φ̄[t̄0 + i(N + 1) + τ + 1]
.

Hence, ∀ γ,

γ−1
∑

i=0

e[t̄0 + i(N + 1) + τ + 1]2

c + φ̄[t̄0 + i(N + 1) + τ + 1]
≤

1

a(2 − a)

∥
∥
∥θ̃[t̄0]

∥
∥
∥

2

2
,

which implies

lim
γ→∞

e[t̄0 + γ(N + 1) + τ + 1]
(
c + φ̄[t̄0 + γ(N + 1) + τ + 1]

)1/2
= 0. (5.10)
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Now, assume that P (z) is BIBO stable and the system input, u[k], is bounded.
Then, φ[k] is bounded (recall from (5.2) that the elements of φ[k] are constants,
plant inputs and plant outputs) and the denominator of (5.10) is finite. Therefore,

lim
k→∞

e[k] = 0,

and (ii) holds.

Note that Theorem 5.2 makes no claims on the convergence of the projection
algorithm and, in general, θ̂[k] will not converge to θ∗ (i.e., the plant is not fully
identified)4. Some insight into this behaviour can be gained by considering a high
order plant with a constant frequency sinusoidal input; this input does not yield
“rich” enough data to fully identify the plant. In the standard projection algorithm,
θ̂[k] will converge to θ∗ if the input, u[k], meets a persistent excitation criterion [35];
it is unknown if a similar result applies to the projection algorithm for plants with
sensor delays. However, such a result is not the focus of this chapter.

5.3 Simulation Results

This section explores the modified tumour position estimation problem of Fig-
ure 5.3; this problem is identical to the tumour position estimation problem of
Chapters 2 through 4, except that single rate sampling is assumed. The biased tu-
mour position, ȳtumour[k], is related to the breathing flow rate of the patient, q[k],
by a dynamic component, Mbreathing(z), and a bias term, wtumour[k]. Mbreathing(z)
is assumed to be a stable first-order lag system of the form

Mbreathing(z) =
β

z − α
,

where β > 0 and |α| < 1 are unknown constants. A sensor (image processing) delay
of N = 5 steps prevents direct measurement of the tumour position.

4Moreover, in the standard projection algorithm, it is possible for θ̂[k] to not converge at all
[34].
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Figure 5.3: Example estimation problem.

First, note that ȳtumour[k] can be written in the form of (5.2):

ytumour[k] = α · ytumour[k − 1] + β · q[k − 1]

= α (α · ytumour[k − 2] + β · q[k − 2]) + β · q[k − 1]

= α2ytumour[k − 2] + αβ · q[k − 2] + β · q[k − 1]

= · · ·

= α5ytumour[k − 5] +
5∑

i=1

βαi−1q[k − i],

giving
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ȳtumour[k] = ytumour[k] + wtumour[k]

= α5ytumour[k − 5] +
5∑

i=1

βαi−1q[k − i] + wtumour[k]

= α5 (ȳtumour[k − 5] − wtumour[k]) +
5∑

i=1

βαi−1q[k − i] + wtumour[k]

= α5ȳtumour[k − 5] +
5∑

i=1

βαi−1q[k − i] + (1 − α5)wtumour[k]

= [ ȳtumour[k − 5] q[k − 1] q[k − 2] · · · q[k − 5] 1]
︸ ︷︷ ︸

φ[k]T

×












α5

β
αβ
...

α4β
(1 − α5)wtumour[k]












︸ ︷︷ ︸

θ∗

= φ[k]T θ∗. (5.11)

The projection algorithm for plants with sensor delays will be used to compute an
estimate of θ∗ and calculate an estimate of the plant output,

ˆ̄ytumour[k] = φ[k]T θ̂[k − 1].

As long as wtumour[k] is constant, Theorem 5.2 guarantees that this estimate will
satisfy

lim
k→∞

(
ȳtumour[k] − ˆ̄ytumour[k]

)
= 0.

In the simulation, the sampling period is 0.1 s, the breathing flow rate, q[k], is
assumed to be sinusoidal with frequency 1/6 Hz and amplitude 250 cm3/s and the
tumour bias is constant, wtumour[k] = 1.8 mm. The breathing model is

Mbreathing(z) =
0.0149

z − 0.99

(i.e., α = 0.99 and β = 0.0149) and the estimator uses the parameters a = 1 and
c = 1, and an initial parameter estimate of θ0 = 0.
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Figure 5.4 shows the performance of the estimator over the first 40 s. Note that
the prediction error converges to zero impractically slowly in this example; even
after 40 s, the magnitude of the prediction error is roughly 3 mm. Figure 5.5, which
shows the performance of the estimator over 1000 s, confirms that the prediction
error converges to 0. Also, note that the normed parameter estimate error converges
to approximately 0.4 (i.e., the parameter estimate, θ̂[k], does not converge to θ∗).
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Figure 5.4: Estimator performance over the first 40 s: (a) breathing flow rate; (b)
actual and estimated tumour positions; (c) prediction error; (d) normed parameter
estimate error.
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Figure 5.5: Estimator performance over the first 1000 s: (a) prediction error; (b)
normed parameter estimate error.

5.3.1 Convergence Rate Sensitivity to Plant Input

Intuitively, the performance of the estimator is largely a function of the “richness”
of the plant output which is itself a function of the plant input. Different plant input
signals should yield different responses from the estimator; however, it is surprising
just how profound an impact such differences have. For example, Figure 5.6 com-
pares the prediction error of the estimator of Figure 5.3 for three different breathing
flow rate signals. All of the signals are sinusoidal with amplitude 250 cm3/s, they
only differ in frequency. Even a relative difference of 1 % in the frequency results
in a drastically different prediction error convergence. Note that the frequencies
are not realistic for a breathing flow rate, they are only used for their illustrative
value.
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Figure 5.6: Prediction error with different breathing flow rate signals

5.3.2 Improving Convergence Rates Through Scaling

Although the prediction error converges to zero in the preceding simulations, the
slow rate of convergence (for most breathing flow rate signals) would not be practical
for the radiotherapy application at hand. Recognizing that the magnitude of the
individual elements of θ∗ vary greatly (the minimum and maximum values are
approximately 0.014 and 0.95), it is natural to wonder whether scaling the elements
of θ∗ so they have comparable magnitudes will improve the rate of convergence. Of
course, since the elements of θ∗ are unknown, it is not generally possible to scale
the elements so they are equal; however, scaling can be applied if some information
on the relative magnitudes of the elements is known a priori. For example, assume
that the parameters α, β and wtumour[k] are known to be bounded:

0.9 ≤ α ≤ 1

0.01 ≤ β ≤ 0.05

0 ≤ wtumour[k] ≤ 4.
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Using the median value for each parameter, the tumour position can be scaled as
follows:

ȳtumour[k] =
[
0.955ȳtumour[k−5] 0.03q[k−1] · · · (0.03 · 0.954)q[k−5] 2(1−0.955)

]

︸ ︷︷ ︸

φ[k]T

×










α5/0.955

β/0.03
...

α4β/(0.03 · 0.954)
(1 − α5)wtumour[k]/(2(1 − 0.955))










︸ ︷︷ ︸

θ∗

. (5.12)

Note that when α = 0.95, β = 0.03 and wtumour[k] = 2, θ∗ of (5.12) will be a
vector of ones. With α = 0.99, β = 0.0149 and wtumour[k] = 1.8 as in the previous
simulation, (5.12) becomes

ȳtumour[k] ≈
[
0.955ȳtumour[k−5] 0.03q[k−1] · · · (0.03 · 0.954)q[k−5] 2(1−0.955)

]

︸ ︷︷ ︸

φ[k]T

×













1.229
0.497
0.518
0.539
0.562
0.586
0.195













︸ ︷︷ ︸

θ∗

,

and the elements of θ∗ are now roughly within one order of magnitude of each other.
Figure 5.7 demonstrates the improved speed of convergence of the prediction error
with the above scaling improvement; the output estimate error decays to less than
0.5 mm after only 5 s.

Although the scaling improvement outlined above has intuitive appeal, there is
no guidance on how close together the elements of θ∗ must be to achieve a practical
rate of convergence of the prediction error to zero. Efforts to deterministically
determine a rate of convergence have proven unsuccessful and other authors have
noted the difficulty in determining a bound on the convergence rate of the standard
(non-sensor delayed) projection algorithm [36], [37].
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Figure 5.7: Estimator performance with the scaling improvement: a) breathing flow
rate; (b) actual and estimated tumour positions; (c) prediction error; (d) normed
parameter estimate error.

5.3.3 Tracking Time-Varying Parameters

Until this point in the simulations, it has been assumed that the tumour bias,
wtumour[k], is constant. Recall from (5.11) that this assumption makes θ∗ constant
and therefore Theorem 5.2 applies. However, the projection algorithm for plants
with sensor delays can be used to track some time-varying parameters. Figure 5.8
shows the estimator performance using the scaling improvement outlined above
with a change in the tumour bias from 1.8 mm to 11.8 mm at t = 7.0 s. Although
Theorem 5.2 no longer applies, the prediction error still converges to zero. Also
note that property (i) of Theorem 5.2 does not hold in this simulation; however,
this is not surprising since θ∗ is now time-varying.
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Figure 5.8: Estimator performance with a tumour bias change: a) breathing flow
rate; (b) actual and estimated tumour positions; (c) prediction error; (d) normed
parameter estimate error.

5.4 Applicability to Tumour Position Estimation

The results of this chapter, although motivated by the problem of estimating the
tumour position, are not directly applicable to this problem. While the problem
formulation of this chapter assumes single rate sampling, the tumour position es-
timation problem in Chapters 2 through 4 uses a simplified multirate sampling
scheme (recall Section 2.2) and efforts to apply the work of this chapter to the
tumour position estimation problem have remained unfruitful5. Despite this, two
intuitive results shed some light on the difficulty of transitioning from the single
rate to the simplified multirate framework. First, aliasing effects can “mask” the
true tumour position. For example, Figure 5.9 shows sinusoidal tumour motion

5However, if the sampling rate of the breathing flow rate signal is slowed to match the sampling
rate of the image processor, then the results of this chapter can be applied.
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ȳtumour[k] ȳtumour,fs[k]

Figure 5.9: Aliasing effects of the multirate tumour position estimation problem.

at 1/2 Hz with a sampling period of h = 0.1 s. If the image processing delay is
20 steps, i.e. N = 20 (recall Figure 5.1(a)), then the delayed, sampled tumour
position, ȳtumour,fs[k] is a constant 20.

The second, related, problem is the loss of information due to sampling. In
Figure 5.9, since the tumour position is sampled every 20 steps, only 1/20th of the
tumour position “information” is accessible by the tumour position estimator. In
general, for an N step delay, 1/N th of the “information” is available. Does this loss
present a limitation in the design of an estimator? Is it always possible to design an
asymptotic estimator for the multirate tumour position estimation scheme for any
value of N (assuming no aliasing effects)? To date, these remain open questions.

5.5 Relationship to Adaptive Prediction

Before leaving this chapter, it should be noted that after the work of this chapter was
completed, it was discovered that the main motivation and result is a special case
of adaptive prediction. Conceptually, the problem of this chapter was to estimate

the signal ȳ[k] (recall Figure 5.1(b)). Adaptive prediction, on the other hand,
would focus on the mathematically identical problem of predicting where the signal
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ȳ[k − N ] would be N steps from the current time. Mathematically, the projection
algorithm commonly used in adaptive prediction minimizes the cost index

J(θ) =
1

2

∥
∥
∥θ − θ̂[k − 1]

∥
∥
∥

2

2
,

whereas the results in this chapter focused on the cost index

J(θ) =
1

2

∥
∥
∥θ − θ̂[k − N − 1]

∥
∥
∥

2

2

(recall (5.4)). Otherwise, the results of this chapter and the standard projection
algorithm are derived similarly. A good overview of adaptive prediction results can
be found in [38].
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Chapter 6

The Nonovershooting Step
Response Problem

The design of the collimator leaf controller, C(z), in Section 3.2 focused on meeting
stability, tracking and disturbance rejection requirements; however, in retrospect,
one critical requirement was overlooked. Simulations revealed that it is possible
for opposing collimator leaves to collide with each other. If this were to occur
on a real collimator, serious damage to the collimator (or worse) could result.
One possible method to prevent opposing leaf collisions is to design C(z) so that
each collimator leaf does not overshoot its reference position; however, it is not
immediately clear how to design C(z) to meet this requirement, or if it is even
possible. In addition, C(z) should have a “fast” response to reduce errors caused by
leaf transient motion. Focusing, in particular, on the step response, this chapter will
show that it is impossible to design a stabilizing controller to provide an arbitrarily
fast nonovershooting response if the plant has two real nonminimum phase (NMP)
zeros. This result has been published in a different form in [39].

The work of this chapter is motivated not only by the control of the collimator
leaves; many control problems require a fast response with no (or minimal) over-
shoot. Robot force control, for example, typically requires minimizing overshoot to
prevent damage to the environment (e.g., see [40]). Also, [41] describes the design
of a missile autopilot controller with a fast response and minimal overshoot.

The next section provides some background and related work on the design of
compensators to provide a nonovershooting response and definitions used in this
chapter. For simplicity, this chapter focuses on continuous-time systems; analogous
single rate discrete-time results are summarized in Section 6.5.
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6.1 Background and Definitions

The focus of this chapter can be summarized in the following questions: given a
linear time-invariant (LTI) plant, is it always possible to design a stabilizing LTI
controller to provide a nonovershooting step response? If so, can a stabilizing LTI
controller provide an arbitrarily fast nonovershooting step response? The answer to
the former question is yes. In [42], the authors describe a stabilizing two degree-of-
freedom compensator to render the step response nonovershooting for stabilizable
plants without a zero at the origin. However, the authors note that their technique
“is equivalent to sufficiently slowing down the speed of the response”. In [43] and
[44], nonovershooting controllers are considered where there are no constraints on
the speed of the response, but the results only apply if the plant is minimum phase.
In particular, [44] presents a controller design procedure for minimum-phase plants
to achieve independently specified overshoot and rise time. With these results in
mind, the only open question is whether a stabilizing controller can be designed to
provide an arbitrarily fast nonovershooting step response for nonminimum phase

(NMP) plants, i.e., plants with zeros in the open right half of the complex plane.

It is well established that NMP zeros limit the achievable closed-loop perfor-
mance; representative works that discuss such performance limitations include [45]-
[50] and good overviews of these and related results include [51] and [52]. Perhaps
the most familiar characteristic of real NMP zeros is that they lead to undershoot

in the step response. The purpose of this chapter is to show that real NMP zeros
can also lead to overshoot in the step response.

Throughout this chapter, let P (s) denote the transfer function of the known
plant, let r(t) denote the reference signal and let y(t) denote the plant output.
The control topology is assumed to be the general two degrees-of-freedom (2-DOF)
control configuration shown in Figure 6.1(a). Note that classical 1-DOF control
(Figure 6.1(b)), open-loop control (Figure 6.1(c)) and standard control schemes
based on state-space methods (such as the observer-based state-feedback control
scheme with integral action of Figure 6.1(d)) are special cases of Figure 6.1(a).
Denote the closed-loop transfer function from R(s) to Y (s) in Figure 6.1(a) by H(s).
Assuming closed-loop stability, the zeros of H(s) include all the NMP zeros of P (s)
and assuming that P (s) is strictly proper, then H(s) is also strictly proper. Hence,
throughout this chapter, H(s) is assumed to be a strictly proper NMP transfer
function with input R(s) and output Y (s). Since this chapter investigates the unit
step response of H(s), R(s) = 1/s throughout. The following characteristics of the
unit step response, y(t), will be used (see Figure 6.2):
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Figure 6.1: Control configurations considered in this chapter: (a) a general two
degree-of-freedom feedback scheme; (b) the classical unity feedback one degree-of-
freedom feedback scheme; (c) an open-loop scheme; (d) an observer-based state-
feedback control scheme with integral action.
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Figure 6.2: A representative step response of H(s) used to show the definitions of
steady-state value (y∞), undershoot (yus), overshoot (yos), and settling time (ts).

• The steady-state value of y(t), denoted y∞, is

y∞ = lim
t→∞

y(t).

The Final Value Theorem immediately gives y∞ = H(0). For simplicity, it is
assumed y∞ > 0, although similar results can be derived if y∞ < 0.

• The undershoot of the step response, denoted yus, is the smallest nonnegative
number such that

y (t) ≥ −yus ∀t ≥ 0.

y(t) is said to “exhibit undershoot” if yus > 01.

• The overshoot of y(t), denoted yos, is the smallest nonnegative number such
that

y (t) ≤ (y∞ + yos) ∀t ≥ 0.

y(t) is said to “exhibit overshoot” if yos > 0.

• The settling time of y(t), denoted ts, is the smallest time such that

|y (t) − y∞| ≤ 0.02y∞ ∀t ≥ ts.

1 Note that alternate definitions of undershoot have been used. For example, in [46] the term
undershoot is used in the more limited situation where there exists a T > 0 such that y(t) < 0
for 0 < t < T .
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The following theorem, which shows that real NMP zeros lead to undershoot, is
essential for the main result of this chapter. The proof is included for completeness.

Theorem 6.1 [47]: Let H(s) be a stable strictly proper transfer function with a
real NMP zero at s = z and with any number of additional zeros located anywhere
in the complex plane. Assume y∞ > 0. Then the step response of H(s) exhibits
undershoot that, as a fraction of the steady-state value, is bounded by

yus

y∞
≥

0.98

ezts − 1
> 0. (6.1)

As ts → 0, the bound (6.1) tends to ∞.

Proof: Since z is a zero of H(s), it is true that Y (z) = H(z)R(z) = H(z)/z = 0.
Now, the Laplace transform of y(t) is

Y (s) =

∫ ∞

0

y(t)e−stdt,

which (due to the stability of H(s)) converges for all s with positive real part,
including the point s = z. Hence,

Y (z) =

∫ ∞

0

y(t)e−ztdt = 0. (6.2)

Since y∞ > 0, (6.2) implies that time intervals where y(t) is positive must be
balanced by time intervals where y(t) is negative. Thus, the step response of H(s)
exhibits undershoot. To derive the undershoot bound, first use (6.2) and the fact
that −y(t) ≤ yus to obtain

∫ ∞

ts

y(t)e−ztdt =

∫ ts

0

−y(t)e−ztdt

≤

∫ ts

0

yuse
−ztdt

=
yus

z

(
1 − e−zts

)
. (6.3)

Second, use the fact that y(t) ≥ 0.98y∞ for t ∈ [ts,∞) to compute that
∫ ∞

ts

y(t)e−ztdt ≥

∫ ∞

ts

0.98y∞e−ztdt

=
0.98y∞

z
e−zts . (6.4)

65



Combine (6.3) and (6.4) to obtain (6.1).

The following lemma is also crucial in the investigation of step response over-
shoot in the next section. It shows that augmenting a stable strictly proper transfer
function with a real NMP zero can never decrease the settling time of the step re-
sponse.

Lemma 6.1: Let G(s) be a stable, strictly proper transfer function and

H(s) = G(s)

(

1 −
1

z
s

)

,

where z > 0 is a real number. Denote the step responses of H(s) and G(s) by y(t)
and f(t), respectively. Then the settling time of y(t) is not less than the settling
time of f(t).

Proof: By the lemma assumptions,

y(t) = f(t) −
1

z

d

dt
f(t) (6.5)

holds for all t > 0. Since G(0) = H(0), the signal f(t) tends to a positive number
as t → ∞, namely y∞. Denote the settling time of f(t) by tsf . There are two cases
to consider, as shown in Figure 6.3. In the first case, f(tsf ) = 1.02y∞, and therefore
d
dt

f(tsf ) ≤ 0. Equation (6.5) yields

y(tsf ) = f(tsf ) −
1

z

d

dt
f(tsf )

= 1.02y∞ −
1

z

d

dt
f(tsf )

≥ 1.02y∞. (6.6)

In the second case, f(tsf ) = 0.98y∞, and therefore d
dt

f(tsf ) ≥ 0 and

y(tsf ) = f(tsf ) −
1

z

d

dt
f(tsf )

= 0.98y∞ −
1

z

d

dt
f(tsf )

≤ 0.98y∞. (6.7)
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t
tsf

case where f(tsf ) = 1.02y∞

case where f(tsf ) = 0.98y∞

f(t)

y∞

0

1.02y∞

y∞

0.98y∞

Figure 6.3: A representative step response of f(t), including a zoom-in near t = tsf ,
showing the two possible cases discussed in the proof.

Inequalities (6.6) and (6.7) imply that |y(tsf ) − y∞| ≥ 0.02y∞; in other words,
signal y(t) must have a settling time at least as long as the settling time of the
signal f(t).

The next two sections investigate step response overshoot when H(s) has two
real NMP zeros (the following section) and one real NMP zero (Section 6.3).

6.2 Case where H(s) has Two NMP Zeros

Theorem 6.1 establishes that the presence of at least one real NMP zero in H(s)
is enough to guarantee undershoot, and that the undershoot grows without bound
as the settling time tends to zero. The following theorem, the main result of this
chapter, shows that a similar result holds for step response overshoot, assuming
that H(s) has at least two real NMP zeros. While two real NMP zeros do not
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necessarily guarantee overshoot, overshoot will occur if the settling time is small
enough and the overshoot grows without bound as the settling time tends to zero.

Theorem 6.2: Let H(s) be a stable strictly proper transfer function with real
NMP zeros at s = z1 and s = z2 and with any number of additional zeros located
anywhere in the complex plane. Assume y∞ > 0. Then

yos

y∞
>

(
0.98

ez2ts − 1

)(
1 − z1ts

z1ts

)

− 1. (6.8)

For sufficiently small ts, the bound in (6.8) is positive, so the step response neces-
sarily exhibits overshoot. As ts → 0, the bound (6.8) tends to ∞.

Proof: The intuition behind the proof is that one zero leads to undershoot while
the other zero introduces negative derivation action (see (6.10) below); the effect of
the negative derivative action is to increase y(t) and the increase gets more severe
as the settling time decreases.

Begin by factoring H(s) as

H(s) = G(s)

(

1 −
1

z1

s

)

, (6.9)

where G(s) is stable and strictly proper with a NMP zero at s = z2. Let f(t) denote
the step response of G(s) and, as usual, let y(t) denote the step response of H(s)
(see Figure 6.4). By (6.9),

y(t) = f(t) −
1

z1

d

dt
f(t) (6.10)

holds for all t > 0. The signal f(t) tends to a positive number as t → ∞, namely
y∞, since H(0) = G(0). Figure 6.5 shows a representative plot of f(t). Since G(s) is
NMP, Theorem 6.1 implies that f(t) exhibits undershoot; more precisely, denoting
the minimum value of f(t) by −fus, Theorem 6.1 states

fus ≥
0.98y∞

ez2tsf − 1
, (6.11)

where tsf is the settling time of f(t) (again, see Figure 6.5). From Lemma 6.1,
signal y(t) must have a longer settling time than signal f(t):

ts ≥ tsf . (6.12)
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Step
f(t)

G(s) 1 −
1

z1

s y(t)

H(s)

Figure 6.4: Factoring H(s) as in (6.9).

From (6.12) and (6.11), the following bound on fus results:

fus ≥
0.98y∞
ez2ts − 1

. (6.13)

Next, choose t2 to be any value in the (necessarily non-empty) set {t : f(t) =
−fus} and define t1 := max {t : f(t) = 0, 0 ≤ t < t2}, as indicated in Figure 6.5.
By the Mean Value Theorem, there exists a t∗ in the interval (t1, t2) such that

d

dt
f(t∗) =

f(t2) − f(t1)

t2 − t1
=

−fus

t2 − t1
. (6.14)

tsf

f(t)

y∞

f(t∗)

t

t1

t2

−fus

0

Figure 6.5: Representative plot of f(t).
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The machinery now exists to determine a bound on the peak value of y(t). In
particular, use (6.10), (6.14), the fact that f(t∗) ≥ −fus, the fact that ts > t2 − t1,
and (6.13) to obtain

max
t∈[0,∞)

y(t) ≥ y(t∗)

= f(t∗) −
1

z1

d

dt
f(t∗)

= f(t∗) +
fus

z1

1

t2 − t1

≥ −fus +
fus

z1

1

t2 − t1

> −fus +
fus

z1

1

ts

= fus

(
1

z1ts
− 1

)

≥
0.98y∞
ez2ts − 1

(
1

z1ts
− 1

)

. (6.15)

Finally, use (6.15) and the relationship max
t∈[0,∞)

y(t) = yos + y∞ to obtain (6.8).

Note that the bound in Theorem 6.2 is equally valid with z1 and z2 exchanged,
but neither of the two arrangements of z1 and z2 yields a consistently tighter bound.
Also note that, although the bound may be conservative in particular examples,
it does prove that the step response of a transfer function with at least two real
nonminimum phase zeros exhibits overshoot if the settling time is short enough.

6.3 Case where H(s) has One NMP Zero

While Theorem 6.2 establishes that step response overshoot results from the pres-
ence of two real NMP zeros and sufficiently small settling time, an analogous result
does not hold if H(s) has only one NMP zero:

Theorem 6.3: Let H(s) be a stable strictly proper transfer function with exactly
one NMP zero, at s = z. Then there does not exist a non-trivial lower bound
(possibly dependent on ts, y∞, and z) on the step response overshoot of H(s).
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Proof: Consider the special case where all the poles of H(s) are real and distinct:

H(s) =
−K(s − z)
np∏

i=1

(s + pi)

. (6.16)

In (6.16), K > 0, z > 0, and pnp
> pnp−1 > · · · > p1 > 0 with np ≥ 2. As

usual, let y(t) denote the step response of H(s). Then, y(t) exhibits the following
characteristics:

1. y(0) = 0 (since H(s) is strictly proper);

2. y∞ > 0 (by direct calculation of H(0));

3. y(t) exhibits undershoot (using Theorem 6.1); and

4. y(t) has exactly one extrema for t > 0 (using the results in [53]).

These four properties imply that y(t) does not exhibit overshoot, no matter how
small ts is. Consequently, there does not exist a non-trivial lower bound on the
overshoot.

Theorem 6.3 does not imply that there is never closed-loop step response over-
shoot for a plant that has a single NMP zero; indeed, it is not difficult to generate
counter-examples where overshoot is exhibited because of the positions of other
poles and zeros. However, the theorem does establish that a single NMP zero does
not necessarily lead to step response overshoot.
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6.4 Simulation Results

Consider the plant

P (s) =
(s − 1)(s − 2)

(s + 1)3
.

Assume that any of the control configurations shown in Figure 6.1 is used, and, for
simplicity, assume that perfect steady-state step tracking is required, i.e., y∞ = 1.
Using z1 = 1 and z2 = 2, the bound on overshoot in (6.8) was computed as a
function of the settling time, and is plotted in Figure 6.6 as a solid curve. Note
that, for ts > 0.4237 s, the bound is negative, and therefore provides no meaningful
information. However, for ts < 0.4237 s, the bound is positive and therefore there
must be overshoot for every possible stabilizing linear time-invariant control scheme.
As expected, the overshoot tends to infinity as ts tends to zero.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

0

1

2

3

4

5

6

7

8
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10

Settling Time (s)

Overshoot
bound

Figure 6.6: Lower bound on the step response overshoot. The dash line marks
where the bound becomes positive.
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To demonstrate more explicitly the overshoot trend for this example, consider
an observer-based state-feedback controller with integral action, as shown in Fig-
ure 6.1(d). Let ẋ = Ax + Bu, y = Cx be any minimal state-space realization of
P (s). To describe the controller in Figure 6.1(d), introduce

Ã :=

[
A 0
C 0

]

and B̃ :=

[
B
0

]

.

The controller equations are then

ż = y − r
˙̂x = (A − BK1 − HC)x̂ − BK2z + Hy

u = −K1x̂ − K2z,

where the two controller gains, K := [K1 K2] and H, are chosen such that the
eigenvalues of (Ã− B̃K) and (A−HC) are all in the open left-half complex plane.
(The closed-loop poles are, of course, the union of the eigenvalues of (Ã − B̃K)
and those of (A − HC).) The gain K was computed so that the eigenvalues of
(Ã−B̃K) are placed at {−α,−2α,−3α,−4α} (where α > 0 is a parameter), and H
was computed so that the eigenvalues of (A−HC) are placed at {−5α,−6α,−7α}.
Figure 6.7 shows the final closed-loop step responses for three values of α. In all
cases, zero initial conditions are assumed. Observe that, due to the integrator in
the feedback loop, y∞ = 1 holds. Also, note the presence of overshoot in the plots;
the overshoot is much larger than the bound (6.8), indicating that Theorem 6.2
can be conservative. Finally, it is interesting that the overshoot is significantly
larger in magnitude than the undershoot, implying that overshoot is, at least for
some examples, a greater cost associated with multiple real NMP zeros than is
undershoot.
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Figure 6.7: Closed-loop step responses using three different values of α.

Now, consider the same controller constructed for the plant

P (s) =
(s − 1)

(s + 1)3
.

Note that P (s) is the same as before, except one of the NMP zeros has been
removed. The closed-loop transfer function from R(s) to Y (s) is in the form of
(6.16) in the proof of Theorem 6.3 and the step response will not exhibit overshoot,
independent of the value of α. Figure 6.8 shows the final closed-loop step responses
for three values of α.
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Figure 6.8: Nonovershooting closed-loop step responses using three different values
of α.

6.5 Extensions to Discrete Time

Although this chapter has focused on a continuous-time performance limitation
associated with NMP zeros, the radiotherapy control setups of Chapters 2 through
4 operate in discrete time. This section returns to the discrete-time framework
and investigates whether a discrete-time stabilizing LTI controller can be designed
to provide an arbitrarily fast nonovershooting step response for any stabilizable
LTI discrete-time plant. It turns out that the continuous-time results presented
earlier in this chapter have analogous discrete-time counterparts; however, while
Section 6.2 showed that there is always overshoot for continuous-time plants with
two real NMP zeros if the speed of response is made fast enough, the corresponding
discrete-time result (see Theorem 6.5.2 below) is not as strong. In particular, since
the speed of response is lower bounded by the system delay (relative degree) of
the discrete-time plant, the speed of response cannot be made arbitrarily fast and
overshoot cannot be guaranteed. On the other hand, continuous-time plants do
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not, in general, have such a limit and Theorem 6.2 guarantees overshoot as the
settling time approaches zero.

6.5.1 Background and Definitions

Section 6.1 noted that, given a stabilizable continuous-time LTI plant without a
zero at the origin, it is always possible to design a continuous-time LTI controller to
render the step response nonovershooting. A similar result holds for discrete-time
plants: there always exists a discrete-time LTI controller that results in a nonover-
shooting step response for stabilizable discrete-time LTI plants with no zeros on
the unit circle [54]. Although proving the existence of a nonovershooting controller,
the authors of [54] make no claims on the speed of response. This section will shed
some insight into the design of a discrete-time controller to provide an arbitrarily
fast nonovershooting step response by developing discrete-time counterparts to the
theorems and lemmas of Sections 6.1 through 6.3.

Throughout this section, let P d(z) denote the transfer function of the known
plant, let rd[k] denote the reference signal and let yd[k] denote the plant output.
(A superscript “d” is used to distinguish the discrete-time definitions from the
continuous-time definitions used earlier in the chapter.) Denote the z-transform
of the reference signal and plant output by Rd(z) and Y d(z), respectively. The
control topology is assumed to be the general two degrees-of-freedom (2-DOF)
control configuration shown in Figure 6.9. Denote the closed-loop transfer function
from Rd(z) to Y d(z) in Figure 6.9 by Hd(z). Assuming closed-loop stability, the
zeros of Hd(z) include all the NMP zeros of P d(z) and assuming P d(z) is strictly
proper, Hd(z) is also strictly proper. Therefore, Hd(z) is assumed to be a stable
strictly proper NMP transfer function with input Rd(z) and output Y d(z). Since
this section explores the unit step response of Hd(z), Rd(z) = z/(z − 1). The
following characteristics of the unit step response, yd[k], will be used:
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3 (z)rd[k] yd[k]
−

Figure 6.9: General two degree-of-freedom discrete-time control configuration con-
sidered in this section.

• The steady-state value of yd[k], denoted yd
∞, is yd

∞ = limk→∞ yd[k]. The
Final Value Theorem immediately gives yd

∞ = Hd(1). It is assumed yd
∞ > 0

throughout this section.

• The undershoot of the step response, denoted yd
us, is the smallest nonnegative

number such that
yd [k] ≥ −yd

us ∀k ≥ 0.

yd[k] is said to “exhibit undershoot” if yd
us > 0.

• The overshoot of yd[k], denoted yd
os, is the smallest nonnegative number such

that
yd [k] ≤

(
yd
∞ + yd

os

)
∀k ≥ 0.

yd[k] is said to “exhibit overshoot” if yd
os > 0.

• The settling time of yd[k], denoted tds, is the smallest time such that
∣
∣yd [k] − yd

∞

∣
∣ ≤ 0.02yd

∞ ∀k ≥ tds.

The following theorem, the discrete-time counterpart of Theorem 6.1, is a key
component of the main development in this section and is important in its own
right since it shows that real positive NMP zeros lead to step response undershoot.

Theorem 6.5.1 [55]: Let Hd(z) be a stable strictly proper transfer function with
a real positive NMP zero at z = a > 1 and with any number of additional zeros
located anywhere in the complex plane. Assume yd

∞ > 0. Then the step response of
Hd(z) exhibits undershoot that, as a fraction of the steady-state value, is bounded
by

yd
us

yd
∞

≥
0.98

atds − 1
> 0. (6.17)
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Proof: Since a is a zero of Hd(z), it is true that Y d(a) = Hd(a)Rd(a) = Hd(a) ×
a

a−1
= 0. Now, due to the stability of Hd(z), the z-transform of yd[k] converges for

all
{z ∈ ℜ : z > 1},

including the point z = a. Hence,

Y d(a) =
∞∑

k=0

yd[k]a−k = 0. (6.18)

Since yd
∞ > 0, (6.18) implies that time intervals where yd[k] is positive must be

balanced by time intervals where yd[k] is negative. Therefore, the step response of
Hd(z) exhibits undershoot. To derive (6.17), use (6.18) and the fact that −yd[k] ≤
yd

us to obtain

∞∑

k=tds

yd[k]a−k =

tds−1
∑

k=0

−yd[k]a−k

≤ yd
us

tds−1
∑

k=0

a−k

= yd
us

(

1 − a−tds

1 − 1/a

)

. (6.19)

Now, use the fact that yd[k] ≥ 0.98yd
∞ for k ∈ [tds,∞) to compute that

∞∑

k=tds

yd[k]a−k ≥ 0.98yd
∞

∞∑

k=tds

a−k

= 0.98yd
∞

(

a−tds

1 − 1/a

)

. (6.20)

Combine (6.19) and (6.20) to obtain (6.17).

The following lemma, the discrete-time equivalent of Lemma 6.1, is also required
in the main development of this section. It shows that augmenting a stable strictly
proper transfer function with a positive real NMP zero can never decrease the
settling time of the step response.
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Lemma 6.5.1: Let Gd(z) be a stable strictly proper transfer function and

Hd(z) = Gd(z)

(
a

a − 1
−

1

a − 1
z

)

,

where a > 1 is a real number. (Note that Hd(z) has been factored in this form so
the DC gain of Hd(z) and Gd(z) are equal.) Denote the step responses of Hd(z)
and Gd(z) by yd[k] and fd[k], respectively. Then the settling time of yd[k] is at
least as long as the settling time of fd[k].

Proof: By the lemma assumptions,

yd[k − 1] =
a

a − 1
fd[k − 1] −

1

a − 1
fd[k] (6.21)

holds for all k ≥ 1. Since Gd(1) = Hd(1), the signal fd[k] tends to a positive number
as k → ∞, namely yd

∞. Denote the settling time of fd[k] by tdsf . There are two

cases to consider. In the first case, f [tdsf −1] > 1.02yd
∞ and

∣
∣fd[tsf ] − yd

∞

∣
∣ ≤ 0.02yd

∞

(i.e., the signal fd[k] enters the “settling band” from above), and therefore (6.21)
yields

yd[tdsf − 1] =
a

a − 1
fd[tdsf − 1] −

1

a − 1
fd[tdsf ]

>
a

a − 1

(
1.02yd

∞

)
−

1

a − 1

(
1.02yd

∞

)

= 1.02yd
∞ (6.22)

In the second case, fd[tdsf −1] < 0.98yd
∞ and

∣
∣fd[tdsf ] − yd

∞

∣
∣ ≤ 0.02yd

∞ (i.e., the signal

fd[k] enters the “settling band” from below), and therefore (6.21) yields

yd[tdsf − 1] =
a

a − 1
fd[tdsf − 1] −

1

a − 1
fd[tdsf ]

<
a

a − 1

(
0.98yd

∞

)
−

1

a − 1

(
0.98yd

∞

)

= 0.98yd
∞ (6.23)

Inequalities (6.22) and (6.23) imply that
∣
∣yd[tdsf − 1] − yd

∞

∣
∣ > 0.02yd

∞; in other

words, signal yd[k] must have a settling time no less than the settling time of signal
fd[k].

The next two subsections investigate step response overshoot in the discrete-
time framework.
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6.5.2 Case where Hd(z) has Two NMP Zeros

Theorem 6.2 confirms that the presence of two real NMP zeros in a (stable) contin-
uous-time transfer function results in step response overshoot if the settling time
is made short enough. The following theorem shows that a similar result holds for
discrete-time transfer functions.

Theorem 6.5.2: Let Hd(z) be a stable, strictly proper transfer function with
real, positive NMP zeros at z = a1 > 1 and z = a2 > 1 and with any number of
additional zeros located anywhere in the complex plane. Assume yd

∞ > 0. Then

yd
os

yd
∞

>

(

0.98

a
tds
2 − 1

)(
1

a1 − 1

)

− 1. (6.24)

Proof: The intuition behind the proof is similar to that of Theorem 6.2: one zero
leads to undershoot, while the other zero introduces a negative scaling action.

Begin by factoring Hd(z) as

Hd(z) = Gd(z)

(
a1

a1 − 1
−

1

a1 − 1
z

)

, (6.25)

where Gd(z) is stable and strictly proper with a NMP zero at z = a2. (As be-
fore, Hd(z) has been factored in this form to make the DC gain of Hd(z) and
Gd(z) equal.) Let fd[k] and yd[k] denote the step responses of Gd(z) and Hd(z)
respectively (see Figure 6.10). By (6.25),

yd[k] =
a1

a1 − 1
fd[k] −

1

a1 − 1
fd[k + 1] (6.26)

holds for all k ≥ 0. The signal fd[k] tends to a positive number as k → ∞, namely
yd
∞, since Hd(1) = Gd(1). Since Gd(z) has a positive real NMP zero, Theorem 6.5.1

implies that fd[k] exhibits undershoot. Denoting the minimum value of fd[k] by
−fd

us, Theorem 6.5.1 states

fd
us ≥

0.98yd
∞

a
td
sf

2 − 1
, (6.27)
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z

Figure 6.10: Factoring Hd(z) as in (6.25).

where tdsf is the settling time of fd[k]. From Lemma 6.5.1, signal yd[k] must have a

longer settling time than signal fd[k]:

tds ≥ tdsf . (6.28)

From (6.28) and (6.27), the following bound on fd
us results:

fd
us ≥

0.98yd
∞

a
tds
2 − 1

. (6.29)

Next, choose k∗ to be any value in the necessarily non-empty set {k : fd[k∗] ≥
0, fd[k∗ + 1] < 0}. Now, use (6.26), the fact that fd[k∗ + 1] ≥ −fd

us and (6.29) to
obtain

max
k≥0

yd[k] ≥ yd[k∗]

=
a1

a1 − 1
fd[k∗] −

1

a1 − 1
fd[k∗ + 1]

≥ −
1

a1 − 1
fd[k∗ + 1]

≥
1

a1 − 1
fd

us

≥

(
1

a1 − 1

) (

0.98yd
∞

a
tds
2 − 1

)

(6.30)

Finally, use (6.30) and the relationship

max
k≥0

yd[k] = yd
os + yd

∞

to obtain (6.24).
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Note that the bound in Theorem 6.5.2 is equally valid with a1 and a2 exchanged,
but neither of the two arrangements yields a consistently tighter bound. Also note
from the control configuration of Figure 6.9 that Hd(z) (the closed-loop transfer
function from Rd(z) to Y d(z)) will have a system delay (relative degree) at least
equal to the system delay of P d(z). Hence, the settling time of yd[k] can be no
smaller than the system delay of P d(z). If P d(z) is strictly proper, then tds ≥ 1
and the bound in Theorem 6.5.2 is positive only for certain arrangements of a1 and
a2. In contrast, the analogous continuous-time result of Theorem 6.2 does not have
a similar lower limit and as the settling time approaches zero, there will be step
response overshoot irrespective of the positions of the real NMP zeros.

6.5.3 Case where Hd(z) has One NMP Zero

While Theorem 6.5.2 establishes that step response overshoot can result from the
presence of two positive real NMP zeros and sufficiently small settling time, a similar
result does not hold for one positive real NMP zero. The following theorem, the
discrete-time counterpart to Theorem 6.3, shows that one positive real NMP zero
does not necessarily lead to overshoot, regardless of the speed of response.

Theorem 6.5.3: Let Hd(z) be a stable strictly proper transfer function with
exactly one positive real NMP zero at z = a > 1. Then there does not exist a
non-trivial lower bound on the step response overshoot of Hd(z).

Proof: Consider the special case where all the poles are real and distinct:

Hd(z) =
−K(z − a)
np∏

i=1

(z − pi)

. (6.31)

In (6.31), K > 0, a > 1, and 1 > pnp
> pnp−1 > · · · > p1 > 0 with np ≥ 2. As

usual, let yd[k] denote the step response of Hd(z). Then, yd[k] exhibits the following
characteristics:

1. yd[0] = 0 (since Hd(z) is strictly proper);

2. yd
∞ > 0 (by direct calculation of Hd(1));
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3. yd[k] exhibits undershoot (using Theorem 6.5.1); and

4. yd[k] has exactly one extrema for k > 0 (using the results in [56]).

These four properties imply that yd[k] does not exhibit overshoot, independent
of the zero location or the value of tds. Consequently, there does not exist a non-
trivial lower bound on the overshoot.

As with Theorem 6.3, Theorem 6.5.3 does not imply that there is never closed-
loop step response overshoot for a plant with a single positive NMP zero. However,
both theorems establish that a single NMP zero does not necessarily lead to step
response overshoot.
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Chapter 7

Summary and Future Work

This work proposed control schemes to improve the effectiveness of conformal and
intensity-modulated radiotherapy cancer treatment by using image feedback to
track the tumour during treatment. By tracking the tumour, a smaller PTV can be
used in conformal radiotherapy, reducing the harm to healthy tissue surrounding
the tumour. The proposed control scheme for intensity-modulated radiotherapy, in
addition to tracking the tumour, also estimates the dose profile as the treatment
progresses. This provides more accurate radiation delivery and a post-treatment
dose profile that is closer to a reference profile than that achieved with traditional
intensity-modulated radiotherapy.

Motivated by the need to determine the current tumour position, this work also
investigated estimating the output of an unknown affine time-invariant system when
a sensor delay prevents its direct measurement. An algorithm was developed for a
discrete single rate framework that provides asymptotic estimation of the output
under mild assumptions on the system.

Finally, this work examined the design of a controller to provide an arbitrarily
fast nonovershooting step response, a requirement arising from the need to prevent
opposing collimator leaf collisions. A new performance limitation was derived that
proves it is impossible to design such a controller when the plant contains two or
more real nonminimum phase zeros.

Avenues for future work on the radiotherapy control system include:

1. Developing a technique to estimate the tumour and collimator leaf positions
when the breathing model is unknown. Recall that this estimation prob-
lem operates in a multirate framework, whereas the algorithm developed in
Chapter 5 applies to single rate topologies.
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2. Preventing opposing collimator leaf collisions (by, for example, designing the
leaf controller to provide a nonovershooting response).

3. Developing an observer design technique that explicitly penalizes errors in the
tumour and leaf position estimates. Recall that the LQR optimized observer
described in Section 3.1 penalized a related, but not identical, cost index.

4. Devising a method to toggle the radiation beam on and off depending on the
certainty of the tumour and leaf position estimates.

5. Quantifying the ability to tolerate random image processing failures (caused
by a failure to determine the tumour location in an image, for example).

6. Accounting for deformable and rotating tumours.

7. Using a more realistic collimator leaf model (e.g., a stepper motor model) for
the leaf controller design.

8. Designing a tumour and leaf position estimator to accommodate image pro-
cessing noise (caused by quantization error in the image processing algorithm,
for example).
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Portions of this thesis have been previously published and have been used with
permission from the IEEE. The specific works are as follows:

J. Stewart and D.E. Davison, “Conformal radiotherapy cancer treatment with mul-
tileaf collimators: improving performance with real-time feedback,” Proceedings of

the IEEE Conference on Control Applications, Aug. 2005, pp. 125–130. c© 2005
IEEE.

J. Stewart and D.E. Davison, “Dose control in radiotherapy cancer treatment: im-
proving dose coverage with estimation and feedback,” Proceedings of the American

Control Conference, June 2006, pp. 4806–4811. c© 2006 IEEE.

J. Stewart and D.E. Davison, “On overshoot and nonminimum phase zeros,” IEEE

Trans. Auto. Control, vol. 51, pp. 1378–1382, Aug. 2006. c© 2006 IEEE.
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Massachusetts: Birkhäuser, 1996, pp. 63–67.

[32] G.C. Goodwin and K.S. Sin, Adaptive Filtering Prediction and Control. Infor-
mation and Systems Science Series, Englewood Cliffs, New Jersey: Prentice
Hall, Inc., 1984, pp. 49–54.

[33] D. Miller, Adaptive Control Course Lecture Notes. Department of Electrical
and Computer Engineering, Univ. of Waterloo, 2006.

[34] E. Lefeber, J.W. Polderman, “On the possible divergence of the projection
algorithm,” IEEE Trans. Auto. Control, vol. 40, pp. 495–497, 1995.

[35] I. Mareels and J.W. Polderman, Adaptive Systems, an Introduction. Boston,
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