
A Query-Based Approach for the Analysis of
Aspect-Oriented Systems

by

Eduardo Salomão Barrenechea

A thesis presented to the

University of Waterloo

in fulfillment of the thesis requirement

for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Eduardo Barrenechea 2007

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

Eduardo S. Barrenechea

I understand that my thesis may be made electronically available to the
public.

Eduardo S. Barrenechea

iii

Abstract

In recent years, many aspect-oriented languages and methods have been

proposed in the literature to support separation of concerns that can be

spread throughout a software system and its components and to facilitate

post-development and unpredictable system changes in the code of these

systems. These languages and methods provide new abstraction and com-

position mechanisms to deal with some special concerns, which are called

cross-cutting concerns. Cross-cutting concerns, by nature, encode struc-

tures that represent changes related to many different system modules, and

are often difficult to understand. Also, the provision and support for met-

rics that can give quantitative estimates related to various software quality

features had been a challenge. Because of the complexity and intricate re-

lationships with the base code, techniques for more rigorous analysis are

crucially needed to check whether, for instance, some aspects are interfering

with other aspects in an undesirable way or not behaving according to the

systems requirements and expected behaviour.

In this thesis we advocate that by extending the metrics and analysis

capabilities of current approaches, which are often restricted to code-level

evaluations, we can (i) define an approach to analyze aspect-oriented sys-

tems based on design and architecture-level quality criteria and metrics, (ii)

implement tool support for our approach and (iii) provided experimental

support based on case studies indicating the usefulness and impact of the

approach.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Aspect-Oriented Programming 2
1.1.2 Software Metrics . 3
1.1.3 Object-Oriented Design and Architecture 3

1.2 Problems . 3
1.3 Proposed Approach . 5
1.4 Contributions . 6
1.5 Thesis Outline . 7

2 Background and
Related Work 9
2.1 Background . 9

2.1.1 Aspect-Oriented Languages 9
2.2 Related Work . 15

2.2.1 Aspect-Oriented Metrics 15
2.2.2 Aspect Analysis and Tool Support 19

3 A Query-Based Analysis Approach 26
3.1 Knowledge Base Model . 26

3.1.1 Class Model . 30
3.1.2 Aspect Model . 33

3.2 Query-Based Analysis . 37
3.2.1 System, Aspect and Class Analysis 37
3.2.2 System Metrics . 40
3.2.3 Design Guidelines . 43

4 Implementation 45
4.1 Knowledge Base XML Schema 47

vii

4.1.1 Software System and Package Elements 47
4.1.2 Class Element . 48
4.1.3 Aspect Element . 50

4.2 AspectJ Extractor . 56
4.3 Analysis Using XQuery . 58

4.3.1 Analysis . 59

5 Case Studies 62
5.1 Aspect-Oriented Systems Overview 62
5.2 Experimental Results . 64

5.2.1 General System Analysis 64
5.2.2 Metrics . 66
5.2.3 Design Guidelines . 73
5.2.4 Package Metrics . 75

6 Conclusion And Future Work 80
6.1 Conclusion . 80
6.2 Future Work . 81

6.2.1 Additional Metrics and Metrics Validation 81
6.2.2 Update of Model and Tool Support 82

A AspectJ Quick Reference 86
A.1 Aspects . 86
A.2 Pointcut Definitions . 87
A.3 Advice Declarations . 87
A.4 Special Forms . 88
A.5 Intertype Member Declarations 88
A.6 Other Inter-type Declarations 89
A.7 Primitive Pointcuts . 90

B Software System Schema 93

viii

List of Tables

2.1 Common types of pointcuts and advices 14

3.1 Software system related queries. 38
3.2 Class related queries. 39
3.3 Aspect related queries. 40
3.4 Metrics related queries. 43
3.5 Design guidelines. 44

4.1 The software system and package elements. 47
4.2 The class element. 49
4.3 The variable model. 50
4.4 The constructor and method elements. 51
4.5 The aspect element. 52
4.6 The declare and match elements. 53
4.7 The ontype element. 54
4.8 The intertype field and method elements. 55
4.9 The pointcut elements. 56
4.10 The advice elements. 57
4.11 XQuery example. 58

5.1 AspectJ systems to be analyzed 64
5.2 Aspect affecting maximum number of packages. 65
5.3 Size and coupling queries. 67
5.4 Pointcuts with highest WPP. 68
5.5 Pointcuts used in the pointcut getNonThreadSafe. 69
5.6 Analysis of classes with high NoA. 69
5.7 Analysis of aspects with high NoCA. 70
5.8 Aspects that extend AbstractConditions. 71
5.9 Analysis of advices with high WOC. 72
5.10 Analysis of join points with high CCC. 72

ix

5.11 Design guidelines - Around advices. 73
5.12 Design guidelines - Other performance guidelines. 74
5.13 Design guidelines - Dead code detection. 75
5.14 Design guidelines - Redudant execution. 76
5.15 AJHSQLDB package dependency metrics. 76
5.16 AJHotdraw package dependency metrics. 78
5.17 Contract4J package dependency metrics. 78
5.18 DJProf package dependency metrics. 79
5.19 AJEFW package dependency metrics. 79

x

List of Figures

2.1 System level dependence graph as proposed by Zhao. 16
2.2 The AJDT environment. 21
2.3 The AJDT cross-cutting comparison. 22
2.4 The AJDT visualiser. 23
2.5 The Active Aspect tool. 24
2.6 The Aspect Browser. 25

3.1 Approach overview . 27
3.2 Hierarchy of the software system model 28
3.3 Software system model . 29
3.4 Package model . 30
3.5 Class model . 31
3.6 Inheritance model . 31
3.7 Software system model . 32
3.8 Constructor and method model 33
3.9 Aspect model . 34
3.10 Declare model . 35
3.11 Pointcut model . 36

4.1 Implementation of the approach. 46

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, many aspect-oriented languages and methods have been

proposed in the literature to support separation of concerns that can be

spread throughout a software system and its components and to facilitate

post-development and unpredictable system changes in the code of these

systems.

These languages and methods provide new abstraction and composi-

tion mechanisms to deal with some special concerns, which are called cross-

cutting concerns. Such concerns cross-cut the boundaries of other concerns.

These cross-cutting concerns include synchronization, presistence, error han-

dling and logging, and deal with issues such as requirements inolving global

constraints, system properties and protocols.

Cross-cutting concerns, by their very nature, encode structures that rep-

resent changes related to many different system modules, and are often

1

difficult to understand. In addition, also the provision and support for met-

rics that can give quantitative estimates related to various software quality

features had been a challenge. Because of the complexity and intricate re-

lationships with the base code, techniques for more rigorous analysis are

crucially needed to check whether aspects are, for instance, interfering with

other aspects in an undesirable way or not behaving according to the systems

requirements and expected behaviour.

1.1.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is an emerging programming paradigm

in computing. Aspect-oriented programming provides a cleaner and simpler

way of modularizing concerns that affect different objects and parts of a

system. Such concerns are called cross-cutting concerns.

AOP is not a standalone programming paradigm, but is used along

with other programming paradigms such as object-oriented programming.

Object-oriented programming provides a good degree of separation of con-

cerns, but “it has difficulties localizing concerns which do not fit naturally

into a single program module, or even several closely related program mod-

ules” [Lee]. AOP is able to provide a solution for this problem by imple-

menting aspects that address these cross-cutting concerns.

Currently there are many different implementations of aspect-oriented

languages and frameworks. Some examples for Java are AspectJ [Pro] and

HyperJ [J]. There are projects in aspect oriented programming also for C

[Aspb], C++ [Aspa], Microsoft’s .NET framework [Sha, LOO, Wea] and

Smalltalk [Apo] among others.

2

1.1.2 Software Metrics

Software applications are growing in size and complexity. Software analysis

using metrics is an approach to deal with this issue. The use of analysis

tools can greatly improve the understanding of how individual modules in-

side an application work. It provides great insight also into relationships

between modules, and help identify possible points of interest such as dead-

locks and bottlenecks. Software metrics can provide a basis for comparison

between different approaches. Through metrics, engineers are able to evalu-

ate a software application in terms of complexity, quality, adaptability and

maintainability.

1.1.3 Object-Oriented Design and Architecture

The software architecture discipline is centered on the idea of reducing com-

plexity through abstraction and separation of concerns. The increase in size

of software systems result, among other things, in an increased complexity of

the software. As a result, it becomes increasingly harder to understand fully

the software system and the relationships between its sub-systems. This

affects the implementation, maintenance and evolution of such systems and

often results in low quality software being developed.

1.2 Problems

Changes to specific concerns can relate to many disparate and independent

system modules, and, for this reason, they are often difficult to understand

and analyze. Because of a cross-cutting concern’s complexity and intricate

3

relationships with the base code, techniques for more rigorous analysis are

crucially needed to check whether aspects are, for instance, creating new

dependencies in the system or even introducing overhead. In addition, there

is a need for metrics that can give quantitative estimates related to vari-

ous software quality features particularly as specific concerns are modified

through software system evolution. Providing and supporting these metrics

is a challenge.

Most aspects in aspect-oriented software systems represent several con-

cerns that cross-cut multiple modules. For this reason, aspects are in gen-

eral difficult to understand. In addition, cross-cutting between aspects and

components is intricate also because not only can one aspect cross-cut an

arbitrary number of components but multiple aspects can cross-cut a single

component as well. This many-to-many relationship between components

and aspects and the inherent complexity of cross-cutting also makes the

problem of measuring and analyzing aspect-oriented systems much harder

than the same problem in the case of objects.

In summary, there is a need for extended metric sets and tool support to

help developers analyze aspect-oriented systems. Specifically, there is a need

for methods and tools to help developers quantitatively evaluate the systems

they build in terms of metrics, and qualitatively analyze the systems to check

whether they have an undesirable behavior such as an aspect undesirable

interference.

Such approaches would be very helpful in many cases. For example, dur-

ing inspection, a programmer needs to evaluate two or more design options

and determine the most simple and efficient one. An approach to analysis,

4

and its related tools can support him/her in this process and provide a basis

for the comparison of these design options.

These problems raise a number of questions, including:

1. Can we provide a query-based approach that can help us to analyze

an aspect-oriented system, and its related entities and relationships?

2. How can we develop tool support for the analysis of aspect-oriented

systems based on queries, metrics and design criteria?

3. How can we provide experimental results of the analysis of relevant

real-world aspect-oriented systems based on our approach?

1.3 Proposed Approach

To alleviate the problems previously mentioned we propose an approach

and its related prototype tools that can help developers to analyze aspect-

oriented systems. First, AspectJ code is parsed into an internal aspect-

oriented representation and stored in an Aspect-Oriented System Knowledge

Base (AOS Knowledge Base). This knowledge base contains the systems rep-

resentation based on the aspect design models we have defined for AspectJ.

These models include the essential entities and relationships of AspectJ.

Our approach is supported by a prototype tool called AspectA. A user

interface has been defined that allows developers to input queries relating to

measurement questions and analysis properties and to view the results. To

help support this process, we provide also pre-defined sets of queries, metric

definitions, and analysis checks that developers can reuse. In this way, simple

5

queries or more complex, hybrid questions can be asked involving one or a

combination of these features. For example, the developer can pose a query

in order to find all aspects that have a pointcut that uses a specific object or

can combine this query with the measurement condition that the cohesion

of these aspects should exceed.

The approach to aspect analysis consists of the following main steps:

1. Generation of the AOS Knowledge Base. This step consists of parsing

the aspect-oriented system in AspectJ to produce the aspect design

models that will be stored in the AOS Knowledge Base.

2. Query Definition and Reuse. In this step the features of the system

to be analyzed are chosen. Pre-defined analytical queries and metrics

can be reused.

3. Query Execution and Evaluation. Using our tool, it is possible to

execute the chosen queries and evaluate the results. After query ex-

ecution and evaluation, there may be a need to go back to Step 2 to

define other queries. Query evaluation can provide a valuable input

for system re-design based on query results.

1.4 Contributions

In this thesis we advocate that by extending the metrics and analysis capa-

bilities of current approaches, which are often restricted to code-level evalua-

tions, we can (i) define an approach to analyze aspect-oriented systems based

on design and architecture-level quality criteria and metrics, (ii) implement

6

tool support for our approach and (iii) provided experimental support based

on case studies indicating usefulness and impact of the approach.

Our approach identified points of interest in the system that could be im-

proved and affect the system at the interface, component and package levels.

These changes would help improve modularity, reusability and separation of

concerns in the software.

In supporting our thesis statement, we provide the following contribu-

tions:

1. The definition of a more comprehensive approach for the analysis of

aspect oriented systems based on higher-level analysis and metrics;

2. The definition of a set of criteria, e.g., dead code, redudant execution,

dependency constraints, for the analysis;

3. The definition of extended metrics sets, e.g., subsystem dependency,

interface level separation of concerns (SoC) and architectural coupling,

suitable for the higher-level approach;

4. Implementation of a prototype tool supporting the proposed approach;

5. Development of case studies demonstrating the application and use-

fulness of the approach.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 goes over back-

ground information and related work. Chapter 3 describes our approach

7

and Chapter 4 presents the implementation of our approach. Chapter 5

covers the case studies and experimental results. Finally, Chapter 6 states

our conclusions and future work.

8

Chapter 2

Background and

Related Work

2.1 Background

2.1.1 Aspect-Oriented Languages

The world of software engineering is constantly evolving, aiming at facili-

tating the development of software systems. As software systems became

more complex, different better approaches to represent the problem in ques-

tion were presented. The introduction of higher-level languages enabled

programmers to represent their programming goals in higher levels of ab-

straction from machine language.

Separation of Concerns is defined as the principle of breaking a program

into smaller distinct parts without much overlapping in functionality. Sep-

aration of concerns is an important concept in software engineering and is

9

a desired feature in software system modeling and design since it helps in

managing the complexity of the system.

Both procedural and object-oriented programming provide ways to apply

the separation of concerns principle. They allow for a software system to be

decomposed into different modules, each addressing a well-defined concern

in the software system. A concern is simply a goal or point of interest

in a program. These modules work together to implement the complete

solution for the problem being addressed. Object-oriented programming has

advantages over procedural programming due to its use of several techniques

such as modularity, polymorphism, and encapsulation to decompose and

model the problem at hand better, but it still has limitations.

Even though object-oriented programming provides for a good represen-

tation of the programming problem, it still has some difficulties in dealing

with concerns that are spread throughout different objects. More specifi-

cally, if methods relating to different concerns intersect each other [TEO01].

Such concerns are referred to as cross-cutting concerns. A more formal defi-

nition of cross-cutting concerns is given by Kiczales: “whenever two proper-

ties being programmed must compose differently and yet be coordinated, we

say they cross-cut each other” [GK97]. These types of concerns cannot be

easily and cleanly abstracted into objects. Their implementation is either

scattered among or tangled with different parts of the system. Examples

of such cross-cutting concerns are error handling, synchronization, logging,

persistance, security, performance optimizations and memory management.

Cross-cutting concerns go against the separation of concerns principle,

since a module is addressing more than one concern in the system. The

10

tangling and scattering of code results in undesired properties such as an

increase in difficulty in maintaining and adapting the modules, increase

in module complexity and restriction and oftentimes prevention of module

reuse since the module is not addressing a single concern.

Aspect-oriented programming provides a new entity called aspect. An

aspect is able to isolate cross-cutting concerns completelly and clearly, al-

lowing composition and reuse of modules in an Aspect-Oriented software

system. A cross-cutting concern modularized into an aspect has the follow-

ing properties [Kic03, TEO01]:

1. It is localized;

2. It has a well-defined interface;

3. It allows for separate development.

An aspect-oriented system has two different parts: the component pro-

gram and the aspect program.

The component program is simply a program using either the proce-

dural or, more commonly, the object-oriented paradigm. It is responsible

for identifying and implementing all of the non cross-cutting concerns of the

software system. It is responsible also for providing the composition between

the component modules.

The aspect program is a program using an aspect language. It is respon-

sible for modularizing the cross-cutting concerns of the system. The aspects

contain also the composition rules, which is information about composition

between aspects themselves and between aspects and components.

11

Kiczales defines the terms component and aspect as follows [GK97]:

• Component if the concern can be cleanly encapsulated in a general-

ized procedure;

• Aspect if the concern cannot be cleanly encapsulated in a generalized

procedure.

The actual composition of components and aspects is done by the use of a

weaver. The weaver takes the component and the aspect programs as input,

interprets the composition rules on the aspect program and “weaves” the

aspect code into the right places on the right modules. The weaving of the

aspect can be done either at compile time or at runtime. The weaver requires

that all implementation strategy decisions be provided by the programmer.

Ultimately, the goal of aspect-oriented programming is “to support the

programmer in cleanly separating components and aspects from each other,

by providing mechanisms that make it possible to abstract and compose them

to produce the overall system”[GK97].

Aspect-Oriented Languages

In recent years, many aspect-oriented languages and methods have been

proposed, with some discussion on what qualifies as an approach to be

aspect-oriented [MK03a]. An aspect-oriented language is any programming

language that enables a programmer to modularize cross-cutting concerns.

This modularization needs to comply with the properties stated in section

2.1.1, mainly localization and a well-defined interface.

12

In order to modularize cross-cutting concerns, an aspect language needs

to have the means to identify particular points on a program and to specify

semantics at such points. This ability is implemented through a join point

model. A join point is any point of interest in the flow of a program which

can be, for example, an object instantiation or a method call. Once a

join point is identified the specified behaviour can be weaved in the correct

place. A join point model can be implemented in many different ways such

as class composition, traversal specification [KLO01] and pointcut/advice

combinations as used in AspectJ (see section 2.1.1 for more details).

This property is referred to as quantification by Filman and Friedman

[FF00]. Quantification can be classified as either static quantification or

dynamic quantification. Static quantification relates to the conditions that

occur on the source code of the program, such as the calling of a method.

Dynamic quantification relates to runtime events such as an exception being

raised.

Another defining characteristics of aop approaches is obliviouness [FF00].

Since an aspect-oriented system is composed of a component program and

an aspect program, the component programmer should be oblivious to the

aspect code. This prevents the component programmer from changing the

component code to adapt to the cross-cutting concern. This property reit-

erates the separation of concerns principle.

AspectJ

Even though there are many different implementations of aspect-oriented

programming we shall focus on AspectJ [Pro]. AspectJ is an aspect-oriented

13

language that extends the Java programming language to support modular-

ization of cross-cutting concerns. The base entity where this modularization

occurs is called the aspect.

AspectJ has two types of cross-cutting mechanisms, one based on a join

point model and one based on static cross-cutting. The join point model

mechanisms enables the definition of aditional procedures at the join points.

This is handled through the use of pointcuts and advices. Pointcuts are

collections of join points combined to pinpoint the location where a cross-

cutting concern takes place. Pointcuts are able to expose the data and

execution context of a join point. Advices are the procedures that are weaved

into the join points. Advices contain the actual code that will address the

cross-cutting concerns at a join point. Table 2.1 contains a list of the most

common types of pointcuts and advices in AspectJ.

Table 2.1: Common types of pointcuts and advices
Pointcut Purpose

execution Identifies the execution of a method or constructor.
call Identifies the calling of a method or constructor.
this Identifies the object being executed.
target Indetifies operations performed on a given type.

Advice Purpose

after Weaves the code after the join point.
before Weaves the code before the join point.

The static mechanism enables the introduction of new procedures on ex-

isting types. These introductions are called intertype declarations. AspectJ

allows for the introduction of instance variables, constructors and methods

into existing objects. It allows the programmer to also change the inheri-

tance hierarchy of an object. When more than one aspect targets the same

14

pointcut a declare precedence statement can be used to order the priority of

the aspects.

2.2 Related Work

Research efforts related to our approach fall into the following categories:

(i) aspect-oriented modeling and languages, (ii) metrics and (iii) property

analysis. In general, our approach provides a more comprehensive analysis of

aspect-oriented systems since it addresses different levels of abstraction (e.g.,

design and architectural packages, design criteria and guidelines), and pro-

vides query-based tool support for the analysis of real-world aspect-oriented

systems.

In a seminal paper published in 1996, Kiczales et al. have established the

conceptual framework for aspect-oriented programming [GK97]. AspectJ is

an aspect-oriented extension to Java that was developed to support general-

purpose aspect-oriented programming.

2.2.1 Aspect-Oriented Metrics

There are many different proposed approaches to deal with aspect-oriented

system and aspect measurement. In [Zha] Zhao defines a metrics suite based

on the quantification of the information flow in aspect-oriented systems. He

defines a model for aspect-oriented systems that is represented by depen-

dence graphs and bases his metrics on such graphs. Figure 2.1 [Zha] shows

an example of such graphs.

The graphs are defined in three levels, namely the module level, the

15

aspect leve and the system level. The module level refers to individual

snipets of code such as advices, intertype declarations and methods. The

aspect level refers to an aspect in the system and is composed of many

different module level graphs. The system level is the representation of the

entire aspect-oriented system. The graphs on the three levels are connected

through a series of different types of edges that indicate data and control

dependence, parameter passing and containment relations.

Figure 2.1: System level dependence graph as proposed by Zhao.

16

His approach, however, does not clearly structures classes and aspects in

the aspect-oriented system, but rather follows the information flow through-

out the execution of the software. The construction of such graphs is non

trivial and time consuming, and may even become infeasible for large aspect-

oriented systems. Although his approach enables the calculation of metrics

that may assess the complexity of the aspect-oriented system as a whole,

it does not provide analysis of the individual aspects and their relationship

with other components of the system.

Also Zhao et al. [ZX04] propose a framework for assessing aspect cohe-

sion, based on the analysis of dependencies. This framework is based on the

aspect dependence graph, and it analyzes the degree of coherence between

aspects attributes and modules (advices, introductions, pointcuts and meth-

ods). The approach defines different types of dependencies in an aspect and

covers the degree of coherence in three instances: inter-attribute dependen-

cies, module-attribute dependencies and inter-module dependencies.

His approach focuses on the features of the aspect itself, and does not

consider the application context in which the aspect is placed. The mea-

surements proposed by this approach are quite complex and the choice of

the metric weights is ad hoc [JGB06].

Zhao proposes also a framework for assessing coupling in aspect-oriented

systems [Zha04]. The focus of his approach is that the coupling in aspect-

oriented systems is due to the degree of interdependence between classes

and aspects and the metrics suite is based on counting the dependencies

between the classes and aspects in the system. He defines many different

dependencies between aspects and classes, but his approach does not take

17

into consideration dependencies between aspects and aspects nor dependen-

cies between classes and classes.

Another approach to measure aspect cohesion is proposed by Gélinas et

al. in [JGB06]. Also their approach is based on dependency analysis. It

differs from Zhao’s approach in that the dependencies are between module

and data and between modules themselves. The cohesion, in this case, is

the result of a ratio between connected and non-connected module-data

and module-module pairs in an aspect and measures the relatedness of an

aspect’s module.

In [CSS03] Sant’Anna et al. propose a reusability and maintainability

assessment framework based on a metrics suite and a quality model. Their

approach defines a metrics suite able to asses different properties of aspect-

oriented systems by reusing and extending already defined classical and

object-oriented metrics [CK94].

The metrics suite is divided into four categories: separation of concern

metrics, coupling metrics, cohesion metrics and size metrics. The separa-

tion of concern metrics are related to the identification, encapsulation and

manipulation of parts of the software relevant to a given concern. They

measure the degree to which a concern is diffused over components, op-

erations and lines of code. The coupling metrics measure the strength of

interconnection between components by defining measurements for coupling

between components and for depth of the inheritance tree. The cohesion

metrics defines a lack of cohesion in a component of the system. The size

metrics are based on the measurement of physical properties and length of

the software system, such as lines of code and vocabulary size.

18

Also their proposed assessment framework also contains a quality model.

This quality model is based on the analysis of already defined quality models

and classical definitions of quality attributes and takes into account the

impact of aspect-oriented principles on the software system. The model

provides a foundation for the interpretation of the defined metrics and asses

the reusability and maintainability of aspect-oriented systems. Although

our work takes advantage of some metrics proposed in [CSS03], we extend

the basic set of metrics and apply them to aspect-oriented instead of object-

oriented code.

Dufour et al. [DGH+03] propose a study of the dynamic behaviour of

aspect-oriented software, more specificaly for AspectJ systems, focusing on

performance and execution costs. This approach analyzes the overhead in-

troduced by the aspect-oriented language constructs into the system. It is

based on the pinciple of assigning tags at compile time that are dynamically

propagated through the system. This allows the identification of costly con-

structs and features with very high accuarcy, correctly identifying system

bottlenecks. As a result, guidelines for better performance on AspectJ were

proposed. This approach differs from ours in that it focuses on the mea-

surement of dynamic behaviour, and not on static attributes of the source

code.

2.2.2 Aspect Analysis and Tool Support

Some tools have been provided for aspect browsing [MK03b, ABUoC, RV],

visualization [Han], mining [Han, CZ02, CZJ] and re-factoring [SP04].

19

QJBrowser

QJBrowser is a source code browser for Java, which is based on a model

of source code as a pool of syntactic units represented as logic facts, that

supports on-demand re-modularization [RV].

Masuhara and Kiczales have proposed a general framework for aspects

[MK03b], which includes the query-based browsing provided by QJBrowser.

They focus on a simple mechanism of constructing the hierarchical structures

based on queries and lists of variables.

Eclipse AspectJ Development Tools

AspectJ Development Tools (AJDT) is an AsjectJ development suite inte-

grated into the Eclipse IDE, as shown on Figure 2.2. It supports gutter

annotations on the code editor to to show where an advice cross-cuts a class

and provides other views that portrait the relationships between advices and

join points.

Another feature of AJDT is the comparative map, showing how changes

in the aspect code, more specifically in pointcuts, affect the cross-cutting of

the system, Figure 2.3 shows this tool. AJDT provides also visualization

tools that allow cross-cutting concerns to be visualized, as shown on Figure

2.4.

Even though AJDT provides good support for developing AspectJ sys-

tems, it still does not allow the system to be queried, and cannot assess

detailed properties of the system in question. This follows from the pur-

pose of the tools in AJDT, which is to help developers write software using

20

Figure 2.2: The AJDT environment.

AspectJ, rather then focusing on the analysis of AspectJ systems.

Active Aspect

ActiveAspect [Coe] is a tool that produces interactive graphical models of

program structures affected by aspects in AspectJ. Figure 2.5 shows the

Active Aspect tool. It uses an extension of the UML notation that includes

support for aspect-oriented constructs. The models display the direct effects

an aspect has on a class, such as inter-type members it declares and the

impact of its advices. This model is expandable and able to show additional

context such as calls made to introduced members or from advice bodies.

21

Figure 2.3: The AJDT cross-cutting comparison.

aopmetrics

The focus of the aopmetrics project [aMS] is to provide a metrics tool for

both object-oriented and aspect-oriented programming. The project is still

under development and aims to provide aspect-oriented extensions to the

metrics suite defined by Chidamber and Kemerer [CK94], and by Martin

[Mar94].

Aspect Mining Tool

The Aspect Mining Tool (AMT) [Han] implements an analysis framework

that supports the identification of concerns as well as system understanding.

22

Figure 2.4: The AJDT visualiser.

AMT is composed of two programs, an analyzer and a visualizer, and is able

to offers both lexical and type-based analysis techniques.

The analyzer is based on a modified version of the AspectJ compiler.

It is extracts all necessary line-oriented program statistics (source code and

types used) and other relevant information (package and class hierarchy

information) and puts it in a data file.

This data file is used by the visualizer to represent the system in a line-

based (i.e. compilation units as collections of lines of code), and supports

queries to a system database, which is created by the visualizer, based on the

data file. AMT supports the following kinds of queries: substring matching

and regular expressions (lexical), and types used (structural). It creates also

class and package hierarchies to allow for additional orientation.

Multi-visualizer [Han] is an extension of the visualization functionality

of AMT.

23

Figure 2.5: The Active Aspect tool.

AspectBrowser

Aspect Browser [ABUoC] helps program visualization by searching for user-

defined regular expressions and displaying the results graphically. Aspect-

Browser includes also features to navigate through search results and manage

a potentially large set of regular expressions. Figure 2.6 shows the Aspect

Browser.

Prism

Prism offers an aspect mining perspective to the user who can, using this

tool, manage mining tasks for the identification of aspects in large Java

24

Figure 2.6: The Aspect Browser.

source code bases [CZJ, CZ02].

Ophir

Ophir is a framework for mining which automatically identifies desirable

candidates for re-factoring into aspect-oriented programming [SP04].

25

Chapter 3

A Query-Based Analysis

Approach

Our approach consists of defining a model for aspect-oriented systems that

represents its structure and properties, and developing a query-based anal-

ysis approach and tools to query this model.

Figure 3.1 shows the relationship between the aspect-oriented system,

the model and the developer. The aspect-oriented system is compiled into

an instance of the model that can be then queried by the developer to extract

information about the system.

3.1 Knowledge Base Model

The design goal of the software system model is to provide a simplified yet

resourceful representation of the aspect-oriented system that can be queried

to help one infer about the structure, relationships and complexity of the

26

Figure 3.1: Approach overview

entities in this system. To achieve said goal it is necessary that the model

faithfully represent each entity of the system. Figure 3.2 shows a hierarchical

overview of the software system model.

Our approach organizes the software system as a collection of packages

that may contain both classes and aspects. This definition agrees with the

notion of an aspect-oriented system being composed of two parts: a compo-

nent program and an aspect program. Our software system model, therefore,

has a collection of package models contains both class and aspect models.

Figure 3.3 shows the software system model and the package element using

the UML notation.

27

Figure 3.2: Hierarchy of the software system model

The class model1 represents an entity in the component program. It is

able to describe a class, its properties, instance variables and methods. It is

able also to infer about relationships between the classes of a system through

the analysis of the instance variables and methods of a class (a class being

used as an instance variable or as a parameter, for example).

The aspect model represents an entity in the aspect program. It is able

to describe the aspect, its properties and cross-cutting behaviour. The as-

pect model may describe also instance variables and methods. It represents

the relationships between the component and aspect programs, through the

1We consider the component program to be an object-oriented system.

28

Figure 3.3: Software system model

matching of join points.

The class model does not represent this relationship of matching join

points. This design decision is based on the principle of obliviousness of

the component program toward the aspect program and it does not hinder

the analysis of the software system since relationship information can be

reversed.

The model is created by combining features and attributes extracted

from the component and aspect source code with information about the

weaving of the aspect program into the component program (the relation-

ships). In order to do so we need to examine both the class and aspect

definitions first and identify the important constructs that may have an

impact on the modeling of the software system.

A class can be defined as a container for abstract characteristics of an

entity in the problem domain. The characteristics relate to both attributes

and behaviour. An aspect, as defined in Section 2.1.1 and [Kic03, TEO01], is

a container for abstract characteristics of cross-cutting concerns in the prob-

lem domain. The characteristics relate not only to attributes and behaviour,

but also to localization of such cross-cutting concerns.

Although there are two distinct major entities (classes and aspects),

they both share some of the same characteristics, and may co-exist inside

29

the same packages. An aspect can be considered an extension of the class

entity that defines a join-point model.

Figure 3.4: Package model

In the following sections we describe the class model and the aspect

model in detail and state the information extracted to create the entire

software system model.

3.1.1 Class Model

The class model is used to represent classes or interfaces in the system.

The class model is composed of a modifier model, an inheritance model, a

variable model, a constructor model and a method model. Figure 3.5 shows

the class model.

The modifier model is responsible for representing the class properties,

such as scope visibility or being an abstract class. The inheritance model,

shown on figure 3.6, is differentiated between two categories: the implement

model and the extend model. The only difference between the two is that

30

Figure 3.5: Class model

the first is used to indicate the implementation of an interface, while the

later indicates the extension of a class.

Figure 3.6: Inheritance model

The other components of a class model are the variable, constructor

and method elements, and deal specifically with the representation of those

entities in the model.

31

Variable Model

The variable model is used to represent instance variables of a class. It is

shown in figure 3.7. It uses modifier elements to represent the scope visibility

and extra properties. The type model is used to fully identify the declared

object type of the variable through a class name and package combination.

Figure 3.7: Software system model

Constructor and Method Model

The constructor model is used to represent the class constructor. A construc-

tor may have only scope visibility modifiers, which are represented through

the modifier model. The constructor arguments as well as any throwable

exception are modeled through the use of a type model. In our model, the

method is an extension of the constructor, with the inclusion of a modifier

and a return type modeled by a type model. Even though there’s a concep-

tual difference between a constructor and a method, from the point of view

of the model and its purpose this definition is not incorrect.

32

Figure 3.8: Constructor and method model

3.1.2 Aspect Model

The aspect model is based on the class model, since we can consider an

aspect as an extension of the class entity (see Section 3.1). Figure 3.9 shows

the aspect model. The aspect model represents a modularized cross-cutting

concern. It consists of the all the models declared in the class model (except

for the constructor model), along with a declare model, an intertype model,

a pointcut model and an advice model.

Static Cross-cutting

The declare model is used to represent the declare statements of the aspect-

oriented language. The declare model supports three types of declare state-

ment. The first one is the declare precedence, and uses the declaration

element to identify the order in which the aspects should process a given

join point. The second one is the declare soft, which uses the match model

33

Figure 3.9: Aspect model

to specify join points where it will soften an exception, if it is thrown. The

third is the declare parents, which uses the inheritance model to indicate

that a certain class either extends another or implements an interface. The

declare parents is closer in essence to intertype declarations.

The intertype model corresponds to the declaration of instance vari-

ables, constructors and methods existing classes defined in the component

program. The intertype model specifies either a variable, constructor or

method to be included in a class through their respective models and uses

a type model to indicate its target class.

34

Figure 3.10: Declare model

Pointcuts and Advices

The pointcut model contains a modifier model, a type model, a designator

model and a match model. Figure 3.11 shows the pointcut model. The

modifier model represents the pointcut properties and scope visibility, while

the type model represents the pointcut arguments.

The designator represents the primitive pointcuts that compose the join

point. It is composed of an identifier, which indicates the pointcut type,

and a target which holds the pattern of the join point. The match model

represents a match for the target pattern in the system. It is composed of the

target, the parent element and the package identifiers. The target identifier

refers to the method or instance variable name, for example. The parent

element indicates the class where the target is declared and the package

identifies the location of the class in the system.

The advice model specifies a kind and a pointcut identifier. It contains a

type model that represents the arguments the advice may receive, the return

type, and any exception that may be raised. The advice identifies when the

35

Figure 3.11: Pointcut model

cross-cutting concern should be applied in the target, either before, around

or after the target.

36

3.2 Query-Based Analysis

In this section we describe queries related to analyzing the software system

in its different levels of granularity. We provide sample queries to help

understand the system from design and architectural level, from an object

relations level and from a cross-cutting level.

3.2.1 System, Aspect and Class Analysis

System Model Queries

The architecture of a software system closely relates to the concept of sep-

aration of concerns, and software systems are usually divided into packages

that address a specific concern. Take, for example, an internet browser ap-

plication. It is divided into packages that deal with different concerns such

as networking, user interface and html rendering. Even though those con-

cerns can be considered as higher levels concerns, they are still present in the

architecture of the software system. The packages, in turn, perform their

own internal separation of concerns, and address different faces of the major

concern. The networking package in our internet browser example could be

further decomposed into sub-packages, for example one that implements the

required protocols and another that controls the socket connections.

Our approach defines a software system model. This model is able to

capture relationships between packages, classes and aspects and represent

the structure of an aspect-oriented system. Our query based approach allows

us to query this model and extract information about those relationships and

about the structure of the system and its components. The result is a better

37

understanding of the system as a whole and insight into the complexity of

the software system.

Query Query Description

S1 Find all packages in a system.

S2 Find all sub-packages of a package.

S3 Find all classes and aspects of a package.

S4 Find all dependencies between two packages.

S5 Find all packages affected by an aspect.

Table 3.1: Software system related queries.

Our software system model supports queries such as the ones listed in

table 3.1. The introduction of aspect-oriented constructs in a system may

result in the creation of dependencies between packages that did not exist

previously. This new dependency may interfere with the overall architecture

and separation of concerns defined by the system. The use of queries and

may help identify how a cross-cutting concern behaves in the system and

may even provide guidelines to modularize this cross-cutting concern better,

in conformance with the architecture of the system.

Aspect and Class Model Queries

The aspect and class model are used to represent the attributes, characteris-

tics and relationship of aspects and classes in the software. Classes represent

low level concerns in a system, while aspects represent cross-cutting concerns

in a system. Our query-based approach enables one to query both classes

and aspects according to their structure and relationships and attain a bet-

ter understanding of the concerns they represent and their interactions in

order to address the higher level concerns.

38

Query Query Description

C1 Find all variables/methods in a class.

C2 Find all arguments from a class constructor.

C3 Find all methods that have a given class as argument.

C4 Find all classes that use a given class as method argument.

C5 Find all superclass/interfaces a class inherits from.

C6 Find all classes that implement a given interface.

C7 Find all exceptions thrown from a class.

C8 Find all the classes that throw a given exception.

C9 Find the return type of all methods in a class.

C10 Find the classes that return a given class.

Table 3.2: Class related queries.

The class model is used to support queries such as the ones listed in

Table 3.2. By analyzing the components of a class, it is possible to identify

the relationship between objects. This provides the means to understand

the system without taking any cross-cutting concerns into consideration, in

other words, one is able to analyze and understand the system in a way that

is oblivious to the cross-cutting concerns that are present in the system.

The aspect model is used to support queries such as the ones listed in

Table 3.3. When analyzing the aspects, we are in fact analyzing the cross-

cutting concerns in the system. Those cross-cutting concerns may occur

with different levels of granularity. For example, a synchronization aspect

cross-cutting different thread-enabled classes versus a logging aspect that

cross-cuts entire packages or even the whole system.

Our approach allows us to extract information about the aspect and their

join points in a system. Using this information it is possible to understand

the roles of the classes in relation to the cross-cutting concern and how they

are affected by this cross-cutting concern. It supports pointcuts, advices

39

Query Query Description

A1 Find all pointcuts/advices in an aspect.

A2 Which advices use a given pointcut?

A3 Find all aspects that affect a given class or method.

A4 Find all classes used by an aspect.

A5 Find all aspects that have pointcuts using a given class.

A6 Find all methods declared in an aspect.

A7 Find all pointcuts that use a primitive element.

A8 Find all pointcuts that are used in an after/around/before advice.

A9 Find all the join point matches per pointcut.

A10 Find all classes that are returned in around advices.

A11 Find all advices that throw an exception.

A12 Find all advices that use the same pointcut.

A13 Find all introduced fields.

A14 Find all introduced methods.

A15 Find all introduced fields in an aspect.

A16 Find all introduced methods in an aspect.

A17 Find all aspects that implement an interface.

A18 Find all interfaces that an aspect implements.

A19 Find all abstract aspects.

A20 Find all aspects that extend a given aspect.

Table 3.3: Aspect related queries.

and static cross-cutting constructs.

3.2.2 System Metrics

Our approach can be used also to extract some metrics from the system

through the use of queries. In [CSS03] and [Mar94], both Sant’Anna et al.

and Martin define some metrics that can be retrieved from our model:

40

Size Metrics

Vocabulary Size: the number of system components (classes and as-

pects).

Number of Attributes(NoA): the number of internal attributes of each

component.

Weighted Operations per Component(WOC): measures the complexity of

a component by counting the number of arguments of the operation. This

assumes that an operation with more arguments is likely to be more complex

than one with fewer arguments.

We can expand further in some of those concepts:

Cross-cutting Vocabulary Size(CVS): the number of system components

that deal specifically with cross-cutting concerns, ie. the number of aspects

in the system. This is useful when assessing the extent of the influence of

cross-cutting concerns in the system.

Number of Cross-cutting Attributes(NoCA): the number of internal vo-

cabulary directly connected with identifying cross-cutting concerns. In other

words, the number of pointcuts.

Weighted Primitive Pointcuts(WPP): the number of primitive pointcuts

that comprise a pointcut. This metric is based on the Weighted Methods

per Class metrics [CK94]. It follows from the principle that the more prim-

itive pointcuts are combined to create a pointcut, then the more complex it

becomes.

41

Coupling Metrics

Coupling Between Components(CBC): count of the number of times a

class is used as a variable or argument.

We can extend further the concept to accomodate also cross-cutting:

Cross-cutting Coupling(CCC): the number of aspects that target the

same join point in the system. A join point is related to many aspects, then

a change in the join point may result in a change also in the aspects.

Package Dependency Metrics

Abstractness (ABS): The ratio of the number of abstract modules to

the total number of modules in the package. The metric has the range of

[0,1], with 0 indicating a completely concrete package and 1 indicating a

completely abstract package.

Afferent Couplings(CA): The number of classes and aspects outside this

category that depend upon classes within this category. This includes use

as an instance variable, method or advice argument and return types.

Efferent Couplings(CE): The number of classes and aspects inside this

category that depend upon classes outside these categories. This includes

use as instance variable, method or advice argument and return types.

Instability(I): This metric has the range [0,1]. I = 0 indicates a max-

imally stable category. I = 1 indicates a maximally unstable category.

Instability is computed as follows: I = CE

CE+CA

The measurement techniques include the metrics described in Table 3.4

42

Metric Metric Name

M1 Number of pointcuts.

M2 Number of aspects.

M3 Cross-cutting vocabulary size.

M4 Number of pointcut arguments - by aspect.

M5 Number of pointcut arguments - by pointcut.

M6 Number of pointcut arguments - by object.

M7 Number introductions - both attributes and methods.

M8 Number introductions - attributes.

M9 Number introductions - methods.

M10 Number of internal methods and attributes - both.

M11 Number of internal attributes.

M12 Number of internal methods.

M13 Weighted operations per component.

Table 3.4: Metrics related queries.

3.2.3 Design Guidelines

In [DGH+03] Dufour et al. defined some guidelines for the usage of AspectJ,

in particular. According to their research, some AspectJ constructs tend to

add significant overhead to the execution of the code. Four points are of

particular interest: loose pointcuts, unwarranted use of around advices,

use of cflow pointcuts and use of pertarget pointcuts. The first guideline,

loose pointcuts, deals with pointcuts that have many join points. The second

one states that the generic form of around advices can introduce significant

overhead due to the boxing and unboxing of arguments passed to the advice.

The use of after returning advices is preferred over the use of around

advices. The third and fourth deals with the use of cflow and pertarget

primitive pointcuts. cflow pointcuts also introduce significant overhead and

the use of a withincode pointcut is preferred. pertarget pointcuts are used

to control the creation of aspects, and this introduces overhead also in the

43

compiled system.

In many cases, the aspects defined in AspectJ interfere with other aspects

in an undesirable way. This interference may lead to problems that are not

detected by the AspectJ compiler such as the introduction of ‘dead’ code

or multiple execution of the same advice. These problems are indicated in

aspect-oriented and AspectJ mailing lists and newsgroups, but their non-

automatic detection is very challenging.

The first problem we describe is that an around advice can block a

before or after advice related to the same join point. In this case, the

around advice can cause the before or after advice to become ‘dead’ code.

The second problem2 is that if there are concrete pointcuts inside an abstract

aspect, the advice related to each of these pointcuts is executed n+1 times,

where n is the number of concrete instances of the abstract aspect.

Properties to check each one of these interference types and guidelines

are described in table 3.5.

P1 Find pointcuts with more than x join point matches.

P2 Find all around advices.

P3 Find all pointcuts using a cflow primitive.

P4 Find all pointcuts using a pertarget primitive.

P5 Find if there exists an around advice that can block a before or after
advice related to the same method.

P6 Find if there exists any concrete pointcut inside any abstract aspect.

Table 3.5: Design guidelines.

2Issue present in early versions of AspectJ

44

Chapter 4

Implementation

The implementation of our approach deals with the parsing of source code

and gathering of relationships to implement the software system model in

the form of a knowledge base. Since there are different implementations

of aspect-oriented programming, each with its own syntax and constructs,

we limited our implementation to the modeling of aspect-oriented systems

developed in Java and AspectJ. Some of the reasons for this are:

• AspectJ is one of the most advanced implementations of aspect-oriented

programming;

• AspectJ has a large user base compared to other aspect-oriented lan-

guages;

• AspectJ is open source, with the source code readily available;

• AspectJ has good documentation on language constructs and syntax;

45

The second part is to query this knowledge base and extract information

about the system. Many different approaches are suitable for our needs in

terms of storing and retrieving information, with database systems being

the strongest contenders. Full fledged database systems have also their

drawbacks, and portability and flexibility being the most important. A non-

traditional database such as XML is far more attractive for our purposes.

Figure 4.1: Implementation of the approach.

XML and its related technologies and tools offer a powerful and standard

way to deal with semi-structured data. Consequently, we chose XML as the

structure to represent our AOS Knowledge Base, and XML Schema language

[W3C] to define and implement the data schema (i.e. the valid class of data

that can be stored). The XML Schemas are extensible to incorporate future

additions since they introduce inheritance of complex types.

46

4.1 Knowledge Base XML Schema

The XML Schema language [W3C] to define the xml schema for our knowl-

edge base is created using the software system model defined in section 3.1.

The full schema can be found in appendix B.

4.1.1 Software System and Package Elements

The schema follows the definition of a software system as a collection of

packages, and packages being containers of classes and aspects. Table 4.1

shows the software system and package elements.

<xs:complexType name="SoftwareSystemModel">

<xs:sequence>

<xs:element name="package"

type="PackageModel"

minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="PackageModel">

<xs:sequence>

<xs:element name="class" type="ClassModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="aspect" type="AspectModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

Table 4.1: The software system and package elements.

Each package has its own identifier, the package id, which uniquely iden-

47

tifies the package within the software system. All of the classes and aspects

contained in a package have the property of belonging to that given package.

This creates the notion of a subsystem. Even though packages do not con-

tain other packages, this notion is embedded in the package id, since Java

and AspectJ treat packages as a series of directories in the file system. An

inner package is a package that contains the path of the outter package in its

identifier. For example, package org.eclipse.ajdt belongs to the package

org.eclipse.

4.1.2 Class Element

The class element is shown on table 4.2. It has an identifier, which uniquely

identifies the class within its containing package. A class may have more

than one modifier, since modifiers are not only restricted to scope modi-

fiers, but also to other properties such as being an abstract class or a final

class. The list of possible class modifiers is: abstract, final, private1,

protected1, public and strictfp. A class element may implement many

interfaces, but is allowed to have only one superclass. It has also collections

of instance variables, constructors and methods.

Variable Element

Table 4.3 shows the variable and type elements. A variable needs a unique

identifier inside its declaring class. It requires also modifiers that, like the

class element, are not limited to scope visibility. The list of possible variable

modifiers is: final, private, protected, public, static, transient

1Possible only if it is an inner class

48

<xs:complexType name="ClassModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="extends" type="ExtendsModel"

minOccurs="0" maxOccurs="1" />

<xs:element name="implements"

type="ImplementsModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="variable" type="VariableModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="constructor"

type="ConstructorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="method"

type="MethodModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

Table 4.2: The class element.

and volatile. A variable has also a type, i.e. is an instance of a given class

defined in a given package. This is represented through the type element,

which states the class that the variable is instantiating and the package such

class belongs.

Constructor and Method Elements

The constructor element does not require an identifier, since it is automati-

cally invoked through the use of the new keyword. It may have only the scope

visibility modifiers private, protected and public. It contains also a col-

49

<xs:complexType name="VariableModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

maxOccurs="unbounded" />

<xs:element name="type" type="TypeModel"

maxOccurs="1" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="TypeModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

Table 4.3: The variable model.

lection of arguments and a collection of exceptions. The method element is

an extension of the constructor element, and includes (1) an identifier that

uniquely identifies the method within the declaring class and (2) a return

element. The return element states the type of the object being returned,

as well as the declaring package for that object. In addition to the scope

visibility, a method can have the following modifiers: abstract, final,

native, static, synchronized and strictfp.

The constructor and method elements are shown on table 4.4.

4.1.3 Aspect Element

The aspect element is implemented as an extension of the class element

with the additional support for dynamic and static cross-cutting. Since it

50

<xs:complexType name="ConstructorModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="argument" type="ArgumentModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="exception" type="ExceptionModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="MethodModel">

<xs:complexContent>

<xs:extension base="ConstructorModel">

<xs:sequence>

<xs:element name="return" type="TypeModel"

maxOccurs="1" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:extension>

</xs:complexContent>

</xs:complexType>

Table 4.4: The constructor and method elements.

inherits all of the elements and attributes from the class element, it has

also a unique identifier within its containing package, supports inheritance

and collections of instance variables and methods. Aspects do not have

constructors, though, but since this element is optional on the class ele-

ment it will not affect aspect element in any way. An aspect element may

have the following modifiers: abstract, final, private, privileged,

protected, public and static2. An aspect element may contain a collec-

2All inner aspects must be declared static

51

tion of declarations, intertype definitions, pointcuts and advices. Table 4.5

shows the aspect element.

<xs:complexType name="AspectModel">

<xs:complexContent>

<xs:extension base="ClassModel">

<xs:sequence>

<xs:element name="declare" type="DeclareModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypefield"

type="IntertypeFieldModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypemethod"

type="IntertypeMethodModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypeconstructor"

type="IntertypeConstructorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="pointcut" type="PointcutModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="advice" type="AdviceModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Table 4.5: The aspect element.

Declare Element

The declare element defines a declare statement in an aspect. Its kind can

be of the types soft and parent. The extends and implements elements

are used in conjunction with only the parent statement, while the match

element is used in conjunction with the soft statement. The match element

52

is discussed in more detail in the Pointcut Element subsection. In this

instance, the match element identifies a pointcut where an exception could

be thrown (the execution or call of a method or constructor, for example).

Table 4.6 shows the declare and match elements.

<xs:complexType name="DeclareModel">

<xs:sequence>

<xs:element name="match" type="MatchModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="extends" type="ExtendsModel"

minOccurs="0" maxOccurs="1" />

<xs:element name="implements" type="ImplementsModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="kind" type="xs:string"

use="required" />

</xs:complexType>

Table 4.6: The declare and match elements.

Intertype Elements

An intertype declaration is the addition of a method, constructor or instance

variable in a class. Each of those is already defined in the class element, and

their intertype counterparts extend those elements to add class identification

capabilities. This is achieved through the ontype element, which is used to

identify a class and package where the intertype should be inserted. Table

4.7 shows the ontype element.

Table 4.8 shows the intertype field and intertype method elements.

53

<xs:complexType name="OnTypeModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

Table 4.7: The ontype element.

Pointcut Element

The pointcut element is shown on table 4.9. A pointcut requires a unique

identifier, even though it may be declared as an anonymous pointcut, in

which case an identifier is generated. It may have a collection of arguments.

It has also a designator, which states the kind of primitive pointcuts and

their declarations.

The primitive pointcuts are: call, execution, get, set, handler,

adviceexecution, within, withincode, this, args, target, cflow,

cflowbelow, staticinitialization, initialization and

preinitialization. The match element describes a match for the join

point specified in the pointcut. It has an identifier that identifies the target

of the join point, which can either be a method execution, method call,

field get, field set or exception handling. It has also the parent attribute

which states the object type of the match in the case of a method execution,

and indicates the object type and originating method for any of the other

matches.

A pointcut may have the same modifiers as a method: abstract, final,

native, private, protected, public, static, synchronized and

54

<xs:complexType name="IntertypeFieldModel">

<xs:complexContent>

<xs:extension base="VariableModel">

<xs:sequence>

<xs:element name="ontype" type="OnTypeModel"

maxOccurs="1" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="IntertypeMethodModel">

<xs:complexContent>

<xs:extension base="MethodModel">

<xs:sequence>

<xs:element name="ontype" type="OnTypeModel"

maxOccurs="1" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Table 4.8: The intertype field and method elements.

strictfp.

Advice Element

The advice element is shown on table 4.10. Contrary to methods and point-

cuts, it does not need an identifier, but rather a kind attribute, which speci-

fies its behaviour. An advice can fall into one of the following kinds: after,

afterReturning, afterThrowing, around or before. It has a pointcut

element that links it to a pointcut that defines the location of a cross-cutting

concern. It may have a collection of arguments, and may have a return type

55

<xs:complexType name="PointcutModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="argument" type="TypeModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="designator" type="DesignatorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="match" type="MatchModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="MatchModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="parent" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

Table 4.9: The pointcut elements.

depending on the kind of advice (either afterReturning or around). If it is

an afterThrowing advice then it may specify also exceptions to be thrown.

4.2 AspectJ Extractor

A parser was needed in order to extract the information from the source

code. Our options were either to create our own parser, or extend an already

exiting parser. We decided to go for the second option since it would allow

56

<xs:complexType name="AdviceModel">

<xs:sequence>

<xs:element name="kind" type="KindModel" maxOccurs="1" />

<xs:element name="pointcut" type="PointcutIDModel" />

<xs:element name="argument" type="TypeModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="return" type="TypeModel"

maxOccurs="1" />

<xs:element name="exception" type="TypeModel"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

Table 4.10: The advice elements.

us to use a newer version of AspectJ, as well as to enable us to remain

current with the newer releases of the AspectJ.

The two choices for an AspectJ compiler are the ajc which is the stan-

dard AspectJ compiler [Pro], and the AspectBench Compiler [Com] which

is a complete re-implementation of AspectJ.

We chose the ajc compiler due to its support for the Eclipse IDE. Our

AspectJ Extractor is integrated into Eclipse in the form of a plugin. An

AspectJ application needs to be compiled and then have the aspects woven

into it, our approach is similar. The AspectJ Extractor parses the source

code and retrieves the static information from the classes. Because we are

not compiling the source code, the weaver will not weave the aspects but

the relationships will remain. We use the relationship information from the

weaver to get the join point match for the pointcuts.

When parsing, also anonymous and inner classes and aspects are counted

as classes and aspects inside a package, therefore the number of classes and

57

aspects may easily outnumber the number of physical java and aspectj files.

We extended the ajc compiler to create its own AST and retrieve the

relationships from the weaver (the weaver knows where everything fits).

After the AST is done and the relations are stored, match the two into a

XML file, following the XML Schema.

4.3 Analysis Using XQuery

XQuery is a structured query language designed to query XML documents.

It is based on a tree-structured representation of the data contained inside

the XML document. It has some semantic similarities to SQL and is a

flexible solution for a non-standard database.

XQuery defines the FLWOR expression which stands for: FOR LET WHERE

ORDERBY RETURN. The FLWOR expression is the basis for queries in XQuery.

The basic structure of a query in XQuery is shown on Table 4.11.

for $foo in /path/to/node

let $bar := $foo/child/grandchild

where ($foo=$bar) or ($foo!=$bar)

order by ...

return element result {

attribute attfoo{$foo/@fooattribute},

attribute attbar{$bar/@barattribute}

}

Table 4.11: XQuery example.

Both $foo and $bar are variables. $foo is of “type” node and $bar is

of “type” grandchild.

58

4.3.1 Analysis

System Model Queries

In this subsection we present the XQuery version of some system queries

defined in Section 3.2.1.
Find all subpackages of a package: Find all packages declared within the

scope of a package with id parent.package.

let $p := "parent.package"

for $a in /system/package[@id!=$p]

where contains($a/@id,$p)

return element pacakge

{

attribute id{$p},

attribute contains{$a/@id}

}

Aspect and Class Model Queries

In this subsection we present the XQuery version of some aspect and class

queries defined in Section 3.2.1.
Find all variables and elements in a class: For each class in the system,

find the variables and methods inside that class.

for $class in /system/package/class

return element class

{

attribute id{$class/@id},

for $v in $class/variable

return element variable {

attribute id{$v/@id}

},

for $m in $class/method

return element method {

attribute id{$m/@id}

}

59

}

Find all pointcuts in an aspect : For all aspects in the system, find the
pointcuts inside that aspect.

for $asp in /system/package/aspect

return element aspect {

attribute id{$asp/@id},

for $p in $asp/pointcut

return element pointcut {

attribute id{$p/@id}

}

}

Metrics

In this subsection we present the XQuery version of some metrics queries

defined in Section 3.2.2.
Cross-cutting vocabulary size:

count (/system/package/aspect)

Weighted Operations per Component :

for $a in /system/package/aspect

return element aspect

{

attribute id{$a/@id},

for $b in $a/advice

let $na := count($b/argument)

return element advice {

attribute kind{$b/kind/@id},

attribute refersto{$b/pointcut/@id},

attribute arguments{$na}

}

}

Count the number of abstract aspects:

60

for $package in /system/package

let $na := count($package/aspect[modifier/@id="abstract"])

return element package

{

attribute id{$package/@id},

attribute abstract{$na}

}

Design Guidelines

In this subsection we present the XQuery version of some design guideline

queries defined in Section 3.2.3.
Find all pointcuts using a cflow primitive: For each aspect in the system,

find the aspects with a pointcut using the cflow primitive pointcut.

for $pointcut in /system/package/aspect/pointcut

where ($pointcut/designator/@id="cflow")

return element aspect

{

attribute id{$pointcut/../@id},

attribute pointcut{$pointcut/@id}

}

Abstract aspects with concrete pointcuts: For each aspect in the system,
if the aspect is abstract, find all aspects that extend it.

for $a in /system/package/aspect

where $a/modifier/@id="abstract"

return element aspect {

attribute id{$a/@id},

for $p in $a/pointcut

where not(exists($p/modifier[@id="abstract"]))

return element pointcut {

attribute id{$p/@id}

}

}

61

Chapter 5

Case Studies

Our approach has been evaluated through five case studies. All five sys-

tems are open source, with the source code available over the internet. The

analysis performed on these systems is comprised of the metrics queries de-

fined in section 3.2.2 and of some design guideline queries defined in section

3.2.3. The goal of these case studies is to demonstrate the usefulness of the

query-based analysis approach.

5.1 Aspect-Oriented Systems Overview

We have made experiments involving the queries previously described in Sec-

tion 3.2, which are related to measurement and analysis of aspect-oriented

systems. Table 5.1 shows some size metrics and information about the sys-

tems in question.

Our integrated approach and related tool support was found very useful

to help understand, measure and analyze the systems in the five case studies

62

we have conducted. Using the special purpose prototype tools we could

understand the architecture and dependencies of the systems written in

AspectJ in a very effective way. Some representative queries and results

related to AJHSQLDB follow.

The first aspect-oriented system we have used id called AJHSQLDB, the

result of an AOP refactoring case study [MSS06]. The AJHSQLDB version

used in this case study contains the code after the refactoring of tracing,

logging, profiling and exception handling.

The second one, AJHotDraw [oT], is an aspect-oriented refactoring of

JHotDraw, a relatively large and well-designed open source Java framework

for technical and structured 2D graphics.

The third one is Contract4J [Teab], a tool that supports Design by Con-

tract programming in Java 5. Contract tests are defined using Java 5 an-

notations and aspects written in AspectJ evaluate the test expressions at

runtime and handle failures.

The fourth one is DJProf [Pea] which is an experimental Java profiling

tool. It uses AspectJ to insert the instrumentation for profiling instead

of approaches such as the Java Machine Profiler Interface. DJProf aims to

enable profiling of Java programs without source code modification and uses

the Load-Time Weaving capability of AspectJ to achieve this goal.

The fifth one is the AspectJ Exception FrameWork (AJEFW) [Teaa],

which provides a framework to handle exceptions focusing on core reuse for

different types of exceptions.

63

Case Study Size (LoC) Classes Aspects Vocab. Size AOS-KB (LoC)

AJHSQLDB 149,536 330 31 361 54,510

AJHotDraw 36,304 401 10 411 21,798

Contract4J 5,051 44 14 58 3,276

DJProf 1,124 20 6 26 1,530

AJEFW 857 25 3 28 737

Table 5.1: AspectJ systems to be analyzed

5.2 Experimental Results

In this section we analyse the case studies using a set of general analysis

exploratory queries, as well as queries based on proposed metrics, design

guidelines and package metrics. As a result of our analysis, we suggest

possible changes to the case studies that affect the systems at the interface,

component (composition and decomposition) and package level.

5.2.1 General System Analysis

Aspect-Package Dependencies

Table 5.2 shows the maximum number of packages affected by a single as-

pect. By comparing this number with the total of packages in the system

we are able to assess the effect that those aspects have on the system. Both

AJHSQLDB and AjHotDraw have aspects that affect more than 80% of the

total of packages in the system. From this result it is possible to infer that

both the TracingFullAspect and ReportThrows aspect are highly coupled to

other the packages in the system.

Both the TracingFullAspect and CmdCheckViewRef aspects are defined

inside packages created for the inclusion of aspects in the system. This re-

64

Case Study Aspect Max. Packages Total Packages

AJHSQLDB TracingFullAspect 13 14

AJHotDraw CmdCheckViewRef 4 21

Contract4J ReportThrows 8 10

DJProf HeapAspect 1 4

AJEFW AspectError 1 4

Table 5.2: Aspect affecting maximum number of packages.

sulted in the introduction of new dependencies between packages in the sys-

tem, which refer to dependencies between the old and new packages. This

does not affect any already existing dependencies, but makes the system

more complex. Since Contract4J is not a refactoring of an existing applica-

tion to include aspects, it is not possible to assert if the aspects introduce

any new dependencies.

Aspect-Package Dependency Introductions

AJHSQLDB is a refactoring of HSQLDB to include aspects. The aspect

ValuePoolingAspect is an aspect introduced into “replace” the ValuePool

class. By querying the knowledge base, it was verified that the ValuePoolin-

gAspect affects 7 packages in total while the ValuePool class affects only 2

packages, therefore there are 5 extra dependencies being introduced. This

aspect is comprised of 11 pointcuts. Each of these pointcuts targets exe-

cution of the constructor for some primitive wrapper classes, and relates

to an around advice. In summary, this aspects checks if the value being

placed inside the wrapper class has the same value as another one already

in the pool. The aspect then intercepts this execution with the use of the

around advice and returns a reference to the object in the pool. By using an

65

aspect-oriented approach, it was possible to apply the value pooling to the

entire system in a fairly easy way, and oblivious to the component program

(which, for all purposes, still calls the constructor for the wrapper class).

Unfortunately, this refactoring does not behave in the same manner as

the refactored portion of the program. It was possible to determine this

behaviour through our analysis. The introduced dependencies are not part

of the original system design, and could lead to inconsistencies and undesired

behaviour. More knowledge about the system and functionality in question

would be required in order to assert the benefits or drawbacks of this specific

approach. The introduced dependencies are between the store package and

the packages jdbc, resources, scriptio, util and persist.

5.2.2 Metrics

Size and Coupling Metrics

We measured the five systems using the metrics described in Section 3.2.2.

Table 5.3 shows the five case studies according to the maximum measure-

ment for the following metrics: weighted primitive pointcut, number of at-

tributes, number of cross-cutting attributes, coupling between components.

The measurements shown correspond to the highest value achieved by an

entity in each of the case studies.

Coupling Between Components (CBC)

The CBC metric counts the number of times a class was used as an instance

variable or method argument. Both DJProf and AJEFW use primitives

66

Case Study CBC WPP NoA NoCA WOC CCC

AJHSQLDB 8 37 635 19 5 6

AJHotDraw 4 6 35 2 1 1

Contract4J 7 7 24 4 3 2

DJProf 0 5 8 2 1 6

AJEFW 0 1 7 1 1 1

Table 5.3: Size and coupling queries.

and standard library Java objects and do not use any of their own declared

objects.

Weighted Primitive Pointcuts (WPP)

The WPP metric is used to assess the complexity of a pointcut by the

number of primitives it uses to compose its join point expression. A higher

number for WPP indicates that the join point expression is more complex.

AJHSQLDB has the most complex pointcut while the remaining case studies

have somewhat manageable maximum pointcut complexity.

One way to reduce a high WPP is to use one or more interfaces in the

component program to determine the location of a cross-cutting concerns.

By using interfaces, some of the more related join points can be grouped

together, and be more easily specified through the primitive pointcuts. The

decomposition of pointcuts would result also in a lower WPP. The resulting

pointcuts could then be combined to reconstruct the original set of join

points.

Upon further analysis of the case studies through our query-based ap-

proach, we could determine some other characteristics for pointcuts in ques-

tion, as shown on Table 5.4. There are two interesting results from this

67

analysis. The first one is that even though the pointcut in AJHSQLDB is

the most complex one, it is not the one with the most number of join points.

The second result is that the pointcut with maximum WPP in Contract4J

had no matching join points. This could be due to an error in the pointcut

design and further inspection would be required to determine if that is the

case.

Case Study Pointcut WPP Arguments Matches

AJHSQLDB traceFieldSets 37 0 24

AJHotDraw commandExecute 6 0 18

Contract4J invarTypeMethod 7 2 0

DJProf allUses 5 0 92

AJEFW AspectMajorGroup 1 0 16

Table 5.4: Pointcuts with highest WPP.

With our exploratory analysis, we were able to identify the pointcuts

with a WPP value of 0. They are located in the AJHSQLDB, with names

getNonThreadSafe and nonThreadSafe2. It was verified that its WPP values

is due to the use of named pointcuts instead of primitive pointcuts. Using

the getNonThreadSafe pointcut, for example, it was possible to verify that

it is composed of two named pointcuts, namely voidUIMethodCalls and

excludedJoinPoints. The later one is a composition of one primitive and

one named pointcut, threadSafeCalls. Table 5.5 shows the WPP for each of

those pointcuts. Even though the result of the WPP query states a value of

0 for getNonThreadSafe, after the analysis of its properties one can say that

the real value for the WPP of getNonThreadSafe is the sum of the WPP for

its composing pointcuts, which would result in a WPP of 8. Likewise, the

WPP value for nonThreadSafe2 could be updated to 11.

68

Pointcut WPP

voidUIMethodCalls 3

excludedJoinPoints 1

threadSafeCalls 4

Table 5.5: Pointcuts used in the pointcut getNonThreadSafe.

Number of Attributes (NoA)

The NoA metric is used to asses the complexity of a class based on its

instance variables. A class with higher NoA is probably more complex that

a class with lower NoA. Table 5.3 shows the maximum NoA for each of the

case studies. Our query-based approach allowed us to better analyze the

classes in question and we could find that, for AJHSQLDB, AJHotDraw

and Contract4j, over 94% of variables had the static modifier and over

91% of the variables had also the final modifier. One possible conclusion

is that such classes are being used to define constants used throughout the

system. Table 5.6 shows the results of our extended analysis.

Case Study Class NoA static final

AJHSQLDB Token 635 635 632

AJHotDraw FigureAttributeConstant 35 33 32

Contract4J KnownBeanKeys 24 24 24

DJProf WasteData 4 0 0

AJEFW Principal 7 0 0

Table 5.6: Analysis of classes with high NoA.

Number of Cross-cutting Attributes (NoCA)

The NoCA metric is used to assess the complexity of an aspect by the

number of pointcuts it contains. A higher number of pointcuts may indicate

69

that an aspect affects more join points in a system. Table 5.7 shows the

results of further analysis on those aspects with high NoCA for each of the

case studies.

Case Study Aspect NoCA Total Matches Advices

AJHSQLDB AccessControlAspect 19 19 19

AJHotDraw SelChgdNotification1 2 4 2

Contract4J AbstractConditions 4 0 0

DJProf WasteAspect 2 116 2

AJEFW AspectMajorGroup 1 16 0

Table 5.7: Analysis of aspects with high NoCA.

The aspects in AJHSQLDB and AJHotDraw use a higher number of

pointcuts to match more specific join points. Each pointcut in AccessCon-

trolAspect matches exactly one join point and has its corresponding advice

to deal with the cross-cutting concern. After performing more queries it

could be verified that each pointcut deals with different combinations of

arguments. A possible conclusion is that such pointcuts address the same

cross-cutting concern, but the data involved in each join point match varies

thus requiring a more refined pointcut evaluation.

A possible solution to this issue is to create an interface for cross-cutting

concerns. Also this interface can be extended to some of the arguments

being passed to the advice, and would allow for a easier handling of the

data. This would result in a composition of pointcuts and advices with

similar interfaces and help reduce the number of pointcuts that are required

to target this cross-cutting concern. This approach would be better suited

for pointcuts with low WPP, since the composition of pointcuts could lead

1Abbreviated from SelectionChangedNotification.

70

to a significant increase in WPP.

Another possibility is to decompose the aspect further, and modularize

the cross-cutting concerns at a lower level of granularity. This approach

would result in a increase in the number of aspects in the system, but would

help to localize the cross-cutting concern inside a more consistent aspect.

All the pointcuts dealing with a specific type of argument, or targeting a

specific part of the system would be placed together. This approach is better

suited for pointcuts with high WPP, since it would break down the pointcut

into smaller units.

The aspect in Contract4J is an abstract aspect, and our query shows

it is extended by 7 other aspects. Table 5.8 shows those aspects and their

results for our analysis. They have no effect on the system, since they match

no join points.

Aspect Max. Matches Advices

ConstructorBoundaryConditions 0 2

InvariantCtorConditions 0 1

InvariantFieldConditions 0 2

InvariantFieldCtorConditionsPerCtor 0 2

InvariantMethodConditions 0 1

InvariantTypeConditions 0 2

MethodBoundaryConditions 0 3

Table 5.8: Aspects that extend AbstractConditions.

Weighted Operations per Component (WOC)

The WOC metric is used to identify advices with a high number of ar-

guments. An advice that deals with more arguments is likely to be more

complex than an advice with fewer arguments. Table 5.9 shows the result

71

of our query on the case studies.

Case Study Advice Pointcut WOC

AJHSQLDB before beforeUpdateSingleRow 5

AJHotDraw after invalidateSelFigure 1

Contract4J around invarSetField 3

DJProf before allUses 1

AJEFW around errorPoints 1

Table 5.9: Analysis of advices with high WOC.

One suggestion to deal with this issue is to decompose the advice and

its relating pointcut into smaller parts that require less arguments.

Cross-cutting Coupling (CCC)

The CCC metric is used to assess the degree of coupling of a join point. A

higher value indicates that a join point is being targeted by more pointcuts.

This may lead to issues when refactoring or maintaining such join point,

since a change in the join point will affect a greater number of aspects.

Table 5.10 shows the results of our analysis. The (M) indicates that the join

point is a method, while the (F) indicates the join point is a field (instance

variable).

Case Study Join Point Parent CCC

AJHSQLDB dropColumn (M) TableWorks 6

AJHotDraw execute (M) RedoCommand 1

Contract4J isEnabled (F) Contract4J 2

DJProf constructor Hashtable 6

AJEFW io (M) ErrorThrower 1

Table 5.10: Analysis of join points with high CCC.

In the case of AJHSQLDB, any change in the dropColumn method may

72

affect 6 other pointcuts and/or advices in the system. One way to address

this problem is to define interfaces for the join points. This would result in

the pointcuts being coupled to a single entity and allow for more flexibility

in the join point construction.

In the case of DJProf, the join point is a constructor for a standard Java

library class, the Hashtable. Because it is part of the standard Java library,

it is more likely to remain unchanged, and can even be considered as an

interface (it is part of the java.util API).

5.2.3 Design Guidelines

Around Advices

Table 5.11 shows the results of the application of the around advice design

guideline query. This guideline is provided by Dufour et al. to improve

the execution of the software and minimize the overhead imposed by the

AspectJ compiler.

Case Study Around Advices

AJHSQLDB 36

AJHotDraw 0

Contract4J 6

DJProf 0

AJEFW 1

Table 5.11: Design guidelines - Around advices.

The number of around advices may result also in poor system perfor-

mance. The query show that there are some advices both in AJHSQLDB and

Contract4J that could potentially be changed and result in an increased per-

formance. The suggestion given to this guideline is to use after returning

73

advices if possible.

Other Performance Design Guidelines

Table 5.12 shows the results of the application of other design guideline

queries. These guidelines are provided by Dufour et al. [DGH+03]. The

table shows in order: the maximum number of join points per pointcut,

the total number of cflow pointcuts and the total number of pertarget

pointcuts.

Case Study Max. Matches cflow pertarget

AJHSQLDB 3570 7 0

AJHotDraw 18 0 0

Contract4J 338 3 0

DJPorf 139 0 0

AJEFW 16 0 0

Table 5.12: Design guidelines - Other performance guidelines.

Each join point that is matched by a pointcut incurs overhead being

placed on the software. The larger the number of maximum join points, the

worse the performance the system will suffer. We can assess from the results

of our query that both AJHSQLDB and Contract4J have a pointcut which

introduces significant amounts of overhead in the system.

The use of cflow pointcuts should be kept to the absolute minimum,

according to Dufour et al., and the use of withincode pointcuts is preferred.

Our query-based approach allowed us to identify the use of cflow pointcuts

in the system, as shown on Table 5.12. Even though the number of instances

may be small when compared to the rest of the system, it is a valid point of

interest. None of the systems in this case studies had a pertarget pointcut.

74

Dead Code Guidelines

This guideline is based on the notion that an around advice may block

another advice that targets the same join point. This behaviour may be

corrected by the use of the proceed command. Table 5.13 shows the result of

our query-based analysis. The query returns all instances where an around

advice targets the same join point as any other advice in the system. Code

inspection would be required in order to assert the use of proceed.

None of our case studies presented the possibility of having dead code.

Case Study Dead Code

AJHSQLDB 0

AJHotDraw 0

Contract4J 0

DJProf 0

AJEFW 0

Table 5.13: Design guidelines - Dead code detection.

Redundant Execution Guidelines

This guideline is based on the notion that if there are concrete pointcuts

inside an abstract aspect, the advice related to each of these pointcuts is

executed n + 1 times, where n is the number of concrete instances of the

abstract aspect. Table 5.14 shows the number of concrete pointcuts inside

abstract packages.

5.2.4 Package Metrics

In the following sections we show the measurement of the package depen-

dency metrics for AJHSQLDB, AJHotDraw and Contract4J case studies.

75

Case Study Possible Redundancy

AJHSQLDB 2

AJHotDraw 0

Contract4J 4

DJProf 0

AJEFW 0

Table 5.14: Design guidelines - Redudant execution.

For completeness, the package dependency metrics for DJProf and AJEFW

are present in Table 5.18 and Table 5.19, respectivelly. The metrics are used

as described in Section 3.2.2.

AJHSQLDB Package Dependency Metrics

Packages ABS CE CA I

org.hsqldb.aspects 0.3 159 0 1

org.hsqldb 0.081 4986 117 0.977

org.hsqldb.index 1 3 12 0.2

org.hsqldb.jdbc 0 1398 2 0.998

org.hsqldb.lib 0.190 1103 199 0.847

org.hsqldb.lib.java 0 25 0 1

org.hsqldb.persist 0.1 632 36 0.946

org.hsqldb.resources 0 20 0 1

org.hsqldb.rowio 0.333 473 46 0.911

org.hsqldb.sample 0 81 0 1

org.hsqldb.scriptio 0.25 221 1 0.995

org.hsqldb.store 0 259 9 0.966

org.hsqldb.types 0 14 12 0.538

org.hsqldb.util 0.030 1733 1 0.999

Table 5.15: AJHSQLDB package dependency metrics.

The dependency metrics show that the majority of the packages have

high instability, with only the index and types packages having instability

significantly lower than the others. One interesting result is the analysis

76

of the org.hsqldb.aspects package, which has no afferent coupling. In other

words, the component program is completely oblivious to the aspect pro-

gram, and no extra outbound dependency was introduced between the pack-

ages appart from the aspects package. Table 5.15 shows the results of our

package analysis.

AJHotDraw Package Dependency Metrics

The dependency metrics for this case study show two interesting factors

about AJHotDraw. The first is the abstract nature of the framework pack-

age, which is the core of the JHotDraw application as stated in Section 5.1.

The other is related also to the framework package which is the most stable

of all, since the entire system is built on top of this framework. Table 5.16

shows the results of our package analysis.

Contract4J Package Metrics

The Contract4J package metrics show that the abstract nature of the system

is well spread among the system. They show also no package as having

significant more stability than others. This is, in part, due to the purpose

of the system, which is described in Section 5.1. It’s purpose is to server as

a library, supporting design by contract development. Table 5.17 shows the

results of our package analysis.

77

Packages ABS CE CA I

org.jhotdraw.applet 0 89 4 0.956

org.jhotdraw.application 0 173 17 0.910

org.jhotdraw.cmdcontracts 0 5 0 1

org.jhotdraw.contrib 0.1 1023 26 0.975

org.jhotdraw.contrib.dnd 0.2 172 4 0.977

org.jhotdraw.contrib.html 0.289 368 0 1

org.jhotdraw.contrib.zoom 0.076 355 0 1

org.jhotdraw.figures 0.065 921 16 0.982

org.jhotdraw.framework 0.807 368 1123 0.246

org.jhotdraw.lib 1 0 1 0

org.jhotdraw.observselection 0.25 52 0 1

org.jhotdraw.persistence 0 30 0 1

org.jhotdraw.samples.javadraw 0 165 2 0.988

org.jhotdraw.samples.minimap 0 10 0 1

org.jhotdraw.samples.net 0 33 0 1

org.jhotdraw.samples.nothing 0 8 0 1

org.jhotdraw.samples.pert 0 83 0 1

org.jhotdraw.standard 0.135 1873 108 0.944

org.jhotdraw.util 0.255 671 245 0.756

org.jhotdraw.util.collections.jdk11 0 112 0 1

org.jhotdraw.util.collections.jdk12 0 12 0 1

Table 5.16: AJHotdraw package dependency metrics.

Packages ABS CE CA I

org.contract4j5.aspects 0.214 186 0 1

org.contract4j5.configurator 0.333 90 4 0.957

org.contract4j5 0.454 106 92 0.535

org.contract4j5.enforcer 0.5 36 6 0.857

org.contract4j5.interpreter 0.4 115 30 0.793

org.contract4j5.policies 0 5 0 1

org.contract4j5.testexpression 0.363 135 36 0.789

org.contract4j5.util.debug 0 7 0 1

org.contract4j5.util 0 10 0 1

org.contract4j5.util.reporter 0.333 53 11 0.828

Table 5.17: Contract4J package dependency metrics.

78

Packages ABS CE CA I

djprof 0.285 52 20 0.722

djprof.timing 0.5 5 1 0.833

com.ibm.DJProf.CallCountProfiler 0 15 0 1

default 0 163 0 1

Table 5.18: DJProf package dependency metrics.

Packages ABS CE CA I

gj.ajframework 0.555 77 8 0.905

gj.ajmod 0 2 0 1

gj.app 0.1 45 0 1

gj.errormod 0 56 0 1

Table 5.19: AJEFW package dependency metrics.

79

Chapter 6

Conclusion And Future Work

6.1 Conclusion

In this thesis we have shown that by extending the metrics and analysis

capabilities of current approaches, which are often restricted to code-level

evaluations, we can define a more comprehensive approach for the analysis

of aspect oriented systems based on higher-level analysis and metrics, a set

of criteria (e.g., dead code, redudant execution, dependency constraints) for

the analysis and extended metric sets (e.g., subsystem dependency, interface

level separation of concerns, architectural coupling) suitable for a higher-

level approach.

We implemented tool support for our approach, which combines a parser

for Java/AspectJ and a XQuery interface for the Aspect Knowledge Base.

The parser for Java/AspectJ uses the work already done in AJDT, and

should provide for an easier update for later versions of AspectJ. The Aspect

Knowledge Base is implemented in XML and provides great flexibility and

80

adaptability.

We provided experimental support based on five relevant case studies.

The results of the analysis indicated the usefulness and impact of the ap-

proach in understanding and assessing the quality of aspect-oriented soft-

ware systems. Overall we believe the techniques proposed in this thesis

have a positive impact on aspect-oriented programming and contribute to

the field of software engineering.

6.2 Future Work

The approach and work presented in this thesis can be extended in different

areas.

6.2.1 Additional Metrics and Metrics Validation

New aspect-oriented metrics have been proposed in the literature [MB,

MB06, NP], as well as already proposed metrics, such as the Separation of

Concern metrics defined by [CSS03], can be included in the Aspect Knowl-

edge Base. Such metrics can be incorporated into the knowledge base by the

extension of the XML Schema and use of XSL transformations. This would

enable the results from other tool sets to be introduced into our knowledge

base and enable a more thorough assessment of the aspect-oriented system

based on combined metrics.

81

6.2.2 Update of Model and Tool Support

Further work can be done in the model and tool, to support the latest version

of the AspectJ language, AspectJ 5.0, which has new features in par with

Java 5.0. Such features include support for generic types, autoboxing and

unboxing and annotations among others. As AspectJ evolves, its capabilities

to encapsulate cross-cutting concerns clearly and more easily improves, by

providing better constructs and syntax to deal with specific issues. Such

additions would have to be correctly parsed and represented in the Aspect

Knowledge Base, therefore an updated version of the parser and the software

system model needs to be created.

82

Bibliography

[ABUoC] San Diego Aspect Browser University of California.
http://www.cse.ucsd.edu/ wgg/software/ab/.

[aMS] aopmetrics Michal Stochmialek. http://aopmetrics.tigris.org/.

[Apo] Apostle. http://www.cs.ubc.ca/labs/spl/projects/apostle/.

[Aspa] AspectC++. http://www.aspectc.org/.

[Aspb] AspectC. http://www.cs.ubc.ca/labs/spl/projects/aspectc.html.

[CK94] S. Chidamber and C. Kemerer. A metrics suite for object-
oriented design. Transactions on Software Engineering,
20(6):476–493, 1994.

[Coe] Active Aspect Wesley Coelho.
http://www.cs.ubc.ca/labs/spl/projects/activeaspect/.

[Com] AspectBench Compiler. http://abc.comlab.ox.ac.uk/introduction.

[CSS03] C. Chavez C. Lucena C. Sant’Anna, A. Garcia and A. Staa.
On the reuse and maintenance of aspect-oriented software: An
assessment framework, 2003.

[CZ02] H. Jacobsen C. Zhang. Quantifying aspects in middleware plat-
forms. International AOSD’02 Conference, 2002.

[CZJ] T. Javeed C. Wong C. Zhang, H. Shi and H. Jacobsen.
http://www.eecg.toronto.edu/%7ejacobsen/prism/.

[DGH+03] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and
G. Sittampalam. Measuring the dynamic behaviour of aspectj
programs, 2003.

83

[FF00] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. Workshop on Advanced Sepa-
ration of Concerns, OOPSLA 2000, 2000.

[GK97] A. Mendhekar C. Maeda C. Lopes J. Loingtier J. Irwin G. Kicza-
les, J. Lamping. Aspect-oriented programming. In Proceedings
of ECOOP, 1997.

[Han] Aspect Mining Tool J. Hannemann.
http://www.cs.ubc.ca/̃jan/amt/.

[J] Hyper J. http://www.alphaworks.ibm.com/tech/hyperj.

[JGB06] M. Badri J. Gelinas and L. Badri. Cohesion measure for aspects.
Journal of Object Technology, 5(7):97–114, 2006.

[Kic03] G. Kiczales. Aspect-oriented programming - the fun has just
begun. Key note address of 2nd International Conference on
Aspect-Oriented Software Development, 2003.

[KLO01] D. Orleans K. Lieberherr and J. Ovlinger. Aspect-oriented pro-
gramming with adaptive methods. Communications of the ACM,
44(10):39–41, 2001.

[Lee] Ken Wing Kuen Lee. Introduction to aspect oriented program-
ming. The Hong Kong University of Science and Technology.

[LOO] LOOM.NET. http://www.ajlopez.net/itemve.php?id=996.

[Mar94] Robert Martin. Oo design quality metrics. an analysis of depen-
dencies, 1994.

[MB] Rachel Harrison Marc Bartsch. An evaluation of coupling mea-
sures for aspectj. In Workshop on Linking Aspect Technology
and Evolution (LATE) 2006 in Conjunction with AOSD 2006.

[MB06] Rachel Harrison Marc Bartsch. A coupling framework for as-
pectj. In Proceedings of the 10th Conference on Evaluation and
Assessment in Software Engineering (EASE), 2006.

[MK03a] H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-
oriented mechanisms. In Proceedings of ECOOP, 2003.

84

[MK03b] H. Masuhara and G. Kiczales. A modeling framework for aspect-
oriented mechanisms. In Proceedings of ECOOP2003, pages 2–
28, 2003.

[MSS06] U. Eibauer M. Storzer and S. Schoeffmann. Aspect mining for
aspect refactoring: An experience report. Workshop TEAM06,
held in conjunction with ECOOP06, 2006.

[NP] Zoltan Porkolab Norbert Pataki, Adam Sipos. Measuring the
complexity of aspect-oriented programs with multiparadigm
metric. In ECOOP 2006 Doctoral Symposium and PhD Work-
shop.

[oT] AjHotDraw Delft University of Technology.
http://ajhotdraw.sourceforge.net/.

[Pea] David J. Pearce. http://www.mcs.vuw.ac.nz/ djp/djprof/.

[Pro] AspectJ Eclipse AJDT Project. http://www.eclipse.org/aspectj.

[RV] R. Rajagopolan and K.D. Volder. Qjbrowser: A query-based
approach to explore crosscutting concerns. submitted for publi-
cation.

[Sha] AspectC Sharp. http://www.dsg.cs.tcd.ie/dynamic/?category id=168.

[SP04] D. Shepherd and L.L. Pollock. Ophir:a framework for automatic
mining and refactoring of aspects. Technical Report 2004-3, Uni-
versity of Delaware, 2004.

[Teaa] AJEFW Team. http://sourceforge.net/projects/ajefw/.

[Teab] Contract4J Team. http://www.contract4j.org/contract4j.

[TEO01] G. Kiczales K. Lieberherr T. Elrad, M. Aksit and H. Ossher. Dis-
cussing aspects of aop. Communications of the ACM, 44(10):33–
38, 2001.

[W3C] XML Schema W3C. http://www.w3.org/xml/schema.

[Wea] Weave.NET. http://www.dsg.cs.tcd.ie/dynamic/?category id=193.

[Zha] J. Zhao. Towards a metrics suite for aspect-oriented software.

[Zha04] J. Zhao. Measuring coupling in aspect-oriented systems, 2004.

[ZX04] J. Zhao and B. Xu. Measuring aspect cohesion, 2004.

85

Appendix A

AspectJ Quick Reference

A.1 Aspects

aspect A { }

defines the aspect A

privileged aspect A { }

A can access private fields and methods

aspect A extends B implements I, J { }

B is a class or abstract aspect, I and J are interfaces

aspect A percflow(call(void Foo.m())) { }

an instance of A is instantiated for every control flow through

calls to m()

general form:

[privileged] [Modifiers] aspect Id

[extends Type] [implements TypeList] [PerClause]

{ Body }

where PerClause is one of:

pertarget (Pointcut)

perthis (Pointcut)

percflow (Pointcut)

percflowbelow (Pointcut)

issingleton ()

86

A.2 Pointcut Definitions

private pointcut pc() : call(void Foo.m()) ;

a pointcut visible only from the defining type

pointcut pc(int i) : set(int Foo.x) && args(i) ;

a package-visible pointcut that exposes an int.

public abstract pointcut pc() ;

an abstract pointcut that can be referred to from anywhere.

abstract pointcut pc(Object o) ;

an abstract pointcut visible from the defining package. Any

pointcut that implements this must expose an Object.

general form:

abstract [Modifiers] pointcut Id (Formals) ;

[Modifiers] pointcut Id (Formals) : Pointcut ;

A.3 Advice Declarations

before () : get(int Foo.y) { ... }

runs before reading the field int Foo.y

after () returning : call(int Foo.m(int)) { ... }

runs after calls to int Foo.m(int) that return normally

after () returning (int x) : call(int Foo.m(int)) { ... }

same, but the return value is named x in the body

after () throwing : call(int Foo.m(int)) { ... }

runs after calls to m that exit abruptly by throwing an exception

after () throwing (NotFoundException e) : call(int Foo.m(int)) { ... }

runs after calls to m that exit abruptly by throwing a

NotFoundException. The exception is named e in the body

after () : call(int Foo.m(int)) { ... }

runs after calls to m regardless of how they exit

before(int i) : set(int Foo.x) && args(i) { ... }

runs before field assignment to int Foo.x. The value to be

assigned is named i in the body

before(Object o) : set(* Foo.*) && args(o) { ... }

runs before field assignment to any field of Foo. The value to be

assigned is converted to an object type (int to Integer, for

example) and named o in the body

int around () : call(int Foo.m(int)) { ... }

87

runs instead of calls to int Foo.m(int), and returns an int. In the

body, continue the call by using proceed(), which has the same

signature as the around advice.

int around () throws IOException : call(int Foo.m(int)) { ... }

same, but the body is allowed to throw IOException

Object around () : call(int Foo.m(int)) { ... }

same, but the value of proceed() is converted to an Integer, and

the body should also return an Integer which will be converted

into an int

general form:

[strictfp] AdviceSpec [throws TypeList] : Pointcut { Body }

where AdviceSpec is one of

before (Formals)

after (Formals)

after (Formals) returning [(Formal)]

after (Formals) throwing [(Formal)]

Type around (Formals)

A.4 Special Forms

thisJoinPoint

reflective information about the join point.

thisJoinPointStaticPart

the equivalent of thisJoinPoint.getStaticPart(), but may use

fewer resources.

thisEnclosingJoinPointStaticPart

the static part of the join point enclosing this one.

proceed (Arguments)

only available in around advice. The Arguments must be the

same number and type as the parameters of the advice.

A.5 Intertype Member Declarations

int Foo . m (int i) { ... }

a method int m(int) owned by Foo, visible anywhere in the

defining package. In the body, this refers to the instance of Foo,

not the aspect.

88

private int Foo . m (int i) throws IOException { ... }

a method int m(int) that is declared to throw IOException, only

visible in the defining aspect. In the body, this refers to the

instance of Foo, not the aspect.

abstract int Foo . m (int i) ;

an abstract method int m(int) owned by Foo

Point . new (int x, int y) { ... }

a constructor owned by Point. In the body, this refers to the new

Point, not the aspect.

private static int Point . x ;

a static int field named x owned by Point and visible only in the

declaring aspect

private int Point . x = foo() ;

a non-static field initialized to the result of calling foo(). In the

initializer, this refers to the instance of Foo, not the aspect.

general form:

[Modifiers] Type Type . Id (Formals)

[throws TypeList] { Body }

abstract [Modifiers] Type Type . Id (Formals)

[throws TypeList] ;

[Modifiers] Type . new (Formals)

[throws TypeList] { Body }

[Modifiers] Type Type . Id [= Expression] ;

A.6 Other Inter-type Declarations

declare parents : C extends D;

declares that the superclass of C is D. This is only legal if D is

declared to extend the original superclass of C.

declare parents : C implements I, J ;

C implements I and J

declare warning : set(* Point.*) && !within(Point) : "bad set" ;

the compiler warns "bad set" if it finds a set to any field of

Point outside of the code for Point

declare error : call(Singleton.new(..)) : "bad construction" ;

the compiler signals an error "bad construction" if it finds a call

to any constructor of Singleton

declare soft : IOException : execution(Foo.new(..));

89

any IOException thrown from executions of the constructors of

Foo are wrapped in org.aspectj.SoftException

declare precedence : Security, Logging, * ;

at each join point, advice from Security has precedence over

advice from Logging, which has precedence over other advice.

general form

declare parents : TypePat extends Type ;

declare parents : TypePat implements TypeList ;

declare warning : Pointcut : String ;

declare error : Pointcut : String ;

declare soft : Type : Pointcut ;

declare precedence : TypePatList ;

A.7 Primitive Pointcuts

call (void Foo.m(int))

a call to the method void Foo.m(int)

call (Foo.new(..))

a call to any constructor of Foo

execution (* Foo.*(..) throws IOException)

the execution of any method of Foo that is declared to throw

IOException

execution (!public Foo .new(..))

the execution of any non-public constructor of Foo

initialization (Foo.new(int))

the initialization of any Foo object that is started with the

constructor Foo(int)

preinitialization (Foo.new(int))

the pre-initialization (before the super constructor is called) that

is started with the constructor Foo(int)

staticinitialization(Foo)

when the type Foo is initialized, after loading

get (int Point.x)

when int Point.x is read

set (!private * Point.*)

when any non-private field of Point is assigned

handler (IOException+)

when an IOException or its subtype is handled with a catch block

90

adviceexecution()

the execution of all advice bodies

within (com.bigboxco.*)

any join point where the associated code is defined in the

package com.bigboxco

withincode (void Figure.move())

any join point where the associated code is defined in the method

void Figure.move()

withincode (com.bigboxco.*.new(..))

any join point where the associated code is defined in any

constructor in the package com.bigoxco.

cflow (call(void Figure.move()))

any join point in the control flow of each call to void

Figure.move(). This includes the call itself.

cflowbelow (call(void Figure.move()))

any join point below the control flow of each call to void

Figure.move(). This does not include the call.

if (Tracing.isEnabled())

any join point where Tracing.isEnabled() is true. The boolean

expression used can only access static members, variables bound

in the same pointcut, and thisJoinPoint forms.

this (Point)

any join point where the currently executing object is an instance

of Point

target (java.io.InputPort)

any join point where the target object is an instance of

java.io.InputPort

args (java.io.InputPort, int)

any join point where there are two arguments, the first an

instance of java.io.InputPort, and the second an int

args (*, int)

any join point where there are two arguments, the second of

which is an int.

args (short, .., short)

any join point with at least two arguments, the first and last of

which are shorts

Note: any position in this, target, and args can be replaced with a

variable bound in the advice or pointcut.

91

general form:

call(MethodPat)

call(ConstructorPat)

execution(MethodPat)

execution(ConstructorPat)

initialization(ConstructorPat)

preinitialization(ConstructorPat)

staticinitialization(TypePat)

get(FieldPat)

set(FieldPat)

handler(TypePat)

adviceexecution()

within(TypePat)

withincode(MethodPat)

withincode(ConstructorPat)

cflow(Pointcut)

cflowbelow(Pointcut)

if(Expression)

this(Type | Var)

target(Type | Var)

args(Type | Var ,)

where MethodPat is:

[ModifiersPat] TypePat [TypePat .] IdPat (TypePat | ..,)

[throws ThrowsPat]

ConstructorPat is:

[ModifiersPat] [TypePat .] new (TypePat | .. ,)

[throws ThrowsPat]

FieldPat is:

[ModifiersPat] TypePat [TypePat .] IdPat

TypePat is one of:

IdPat [+] [[]]

! TypePat

TypePat && TypePat

TypePat || TypePat

(TypePat)

92

Appendix B

Software System Schema

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="system" type="SoftwareSystemModel" />

<xs:complexType name="SoftwareSystemModel">

<xs:sequence>

<xs:element name="package" type="PackageModel"

minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="PackageModel">

<xs:sequence>

<xs:element name="class" type="ClassModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="aspect" type="AspectModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="ClassModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

93

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="extends" type="ExtendsModel"

minOccurs="0" maxOccurs="1" />

<xs:element name="implements" type="ImplementsModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="variable" type="VariableModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="constructor" type="ConstructorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="method" type="MethodModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="AspectModel">

<xs:complexContent>

<xs:extension base="ClassModel">

<xs:sequence>

<xs:element name="declare" type="DeclareModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypefield"

type="IntertypeFieldModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypemethod"

type="IntertypeMethodModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="intertypeconstructor"

type="IntertypeConstructorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="pointcut" type="PointcutModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="advice" type="AdviceModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

94

<xs:complexType name="ExtendsModel">

<xs:attribute name="class" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="ImplementsModel">

<xs:attribute name="interface" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="VariableModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

maxOccurs="unbounded" />

<xs:element name="type" type="TypeModel" maxOccurs="1" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="ConstructorModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="argument" type="TypeModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="throws" type="ThrowsModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="MethodModel">

<xs:complexContent>

<xs:extension base="ConstructorModel">

<xs:sequence>

<xs:element name="return" type="TypeModel" maxOccurs="1" />

</xs:sequence>

95

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="PointcutModel">

<xs:sequence>

<xs:element name="modifier" type="ModifierModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="argument" type="TypeModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="designator" type="DesignatorModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="match" type="MatchModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="AdviceModel">

<xs:sequence>

<xs:element name="kind" type="KindModel" maxOccurs="1" />

<xs:element name="pointcut" type="PointcutIDModel" />

<xs:element name="argument" type="TypeModel"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="return" type="TypeModel" maxOccurs="1" />

<xs:element name="exception" type="ThrowsModel"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="IntertypeFieldModel">

<xs:complexContent>

<xs:extension base="VariableModel">

<xs:sequence>

<xs:element name="ontype" type="OnTypeModel" maxOccurs="1" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

96

<xs:complexType name="IntertypeMethodModel">

<xs:complexContent>

<xs:extension base="MethodModel">

<xs:sequence>

<xs:element name="ontype" type="OnTypeModel" maxOccurs="1" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="IntertypeConstructorModel">

<xs:complexContent>

<xs:extension base="ConstructorModel">

<xs:sequence>

<xs:element name="ontype" type="OnTypeModel" maxOccurs="1" />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OnTypeModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="DeclareModel">

<xs:sequence>

<xs:element name="declaration" type="xs:string"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="extends" type="ExtendsModel"

minOccurs="0" maxOccurs="1" />

<xs:element name="implements" type="ImplementsModel"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

97

<xs:complexType name="DesignatorModel">

<xs:sequence>

<xs:element name="target" type="xs:string" maxOccurs="1" />

</xs:sequence>

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="ModifierModel">

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="TypeModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="ThrowsModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="KindModel">

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="MatchModel">

<xs:attribute name="id" type="xs:string"

use="required" />

<xs:attribute name="parent" type="xs:string"

use="required" />

<xs:attribute name="package" type="xs:string"

use="required" />

98

</xs:complexType>

<xs:complexType name="PointcutIDModel">

<xs:attribute name="id" type="xs:string"

use="required" />

</xs:complexType>

</xs:schema>

99

