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Abstract

Many important applications in the real world that can be modelled as combinatorial

optimization problems are actually dynamic in nature. However, research on dynamic

optimization focuses on continuous optimization problems, and rarely targets combinato-

rial problems. Moreover, dynamic combinatorial problems, when addressed, are typically

tackled within an application context.

In this thesis, dynamic combinatorial problems are addressed collectively by adopting

an evolutionary based algorithmic approach. On the plus side, their ability to manipulate

several solutions at a time, their robustness and their potential for adaptability make evo-

lutionary algorithms a good choice for solving dynamic problems. However, their tendency

to converge prematurely, the difficulty in fine-tuning their search and their lack of diversity

in tracking optima that shift in dynamic environments are drawbacks in this regard.

Developing general methodologies to tackle these conflicting issues constitutes the main

theme of this thesis. First, definitions and measures of algorithm performance are reviewed.

Second, methods of benchmark generation are developed under a generalized framework.

Finally, methods to improve the ability of genetic algorithms to efficiently track optima

shifting due to environmental changes are investigated. These methods include adapting

genetic parameters to population diversity and environmental changes, the use of multi-

populations as an additional means to control diversity, and the incorporation of local

search heuristics to fine-tune the search process efficiently.

The methodologies developed for algorithm enhancement and benchmark generation are

used to build and test evolutionary models for dynamic versions of the travelling salesman

problem and the flexible manufacturing system. Results of experimentation demonstrate

that the methods are effective on both problems and hence have a great potential for other

dynamic combinatorial problems as well.
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Chapter 1

Introduction

The last fifteen years have seen a growing interest in the use of evolutionary algorithms to

solve dynamic optimization problems. A substantial portion of existing research targets

continuous optimization problems, while a much lesser portion is directed to combinatorial

problems even though many real-world problems are both discrete and time-dependent.

Moreover, dynamic combinatorial problems are often discussed in an application based

context. However, many issues related to dynamism can be addressed in a general way

despite variations in the structure of the underlying problem.

1.1 Motivation

Many optimization problems of practical as well as theoretical importance seek to find

an optimal arrangement, grouping, ordering or selection of discrete objects often finite in

number. These problems are grouped into a class known as combinatorial optimization

problems (COPs). The importance of this class can be sensed from its broad range of

applications in engineering, operation research, and social sciences. Under the subclass

of the vehicle routing problem (VRP), we find the routing of passenger cars to transport

1
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seniors and disabled, the routing of mail and delivery trucks to customers, the routing

of automated vehicles to transport work in progress and hazardous items between work

stations in a factory. Under the subclass of scheduling problems, we find job shop scheduling

(JSS) in plants, maintenance planning in airline companies, and aircraft crew scheduling,

to name a few. Examples of other applications include timetabling, flexible manufacturing

systems, and facility location planning. Many of these applications are interrelated as well.

For example, the relatively new discipline supply chain management encompasses facility

location planning and network design, transportation and vehicle routing, product design

and development, warehouse management, E-commerce, E-logistics, E-manufacturing, and

more.

Efficient routes or schedules are beneficial not only to the individual organization, but to

the whole country as well. For example, the U.S. National Council of Physical Distribution

Study shows that transportation costs can be as high as 15% of the total gross national

product [Goetschalckx et al. 1999]. Indeed, benefits from optimizing transportation and

manufacturing processes are not limited to reducing the monetary costs. In the long run,

efficient utilization of the country’s resources and energy makes substantial contributions

towards improving air quality and other environmental conditions.

In addition to their practical importance, COPs can present two challenges: NP-

hardness and dynamism. The overwhelming majority of COPs is hard to solve [Rardin

1998], known as the NP-hard class. Exact algorithms that solve NP-hard problems to

optimality need exponential time growth in the worst-case and often can only solve small

problems in reasonable time. Therefore, for NP-hard problems with real world complexity,

non-exact algorithms and metaheuristics, especially in the case of problems of substantial

size, are often the method of choice. With the advances made in computer technology and

science, it is becoming possible to tackle larger and larger COPs. However, other advances

in computer and communication technology are behind the emergence of newer versions of

COPs that are more complex and larger in size than their predecessors. In particular, as
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real-time information and communication systems become increasingly available and the

processing of real-time data becomes increasingly affordable, more and more new versions

of highly dynamic real-world applications are created. In such applications, information on

the problem is not completely known a priori, but instead is revealed to the decision maker

progressively with time. Consequently, solutions to different instances of a typical dynamic

problem have to be found as time proceeds, concurrently with the incoming information.

With the static versions of most COPs hard to optimize, one would expect the presence

of time and the associated uncertainty in the dynamic versions to increase problem com-

plexity [Weicker and Weicker 1999], making the dynamic version even harder to solve than

its static counterpart. However, environmental changes in real life typically do not alter

the problem completely but affect only some part of the problem at a time. For example,

not all vehicles break down at once, not all pre-made assignments are cancelled, weather

changes affect only parts of roads, any other events like sickness of employees and machine

breakdown do not happen all at once. Thus, after an environmental change, there remains

some information from the past that can be used for the future. Such problems call for a

methodology to track their optimal solutions through time. The required algorithm should

not only be capable of tackling combinatorial problems but should also be adaptive to

changes in the environment. Evolutionary Algorithms (EAs) exhibit a number of potential

advantages for such purposes.

We first note that EAs are one of the most commonly used metaheuristics for solving

combinatorial problems as they proved to be effective solvers for a broad range of static

problems [Pham and Karaboga 2000]. Second, there are several characteristics inherent

and attributed to EAs that encourage their use for dynamic problems (see Figure 1.1 for

the growing interest in the subject). The underlying principle of EAs is based on natural

evolution, and hence they are expected to be capable of adaptation to environmental

changes. In addition, EAs have proved to be suitable for “noisy” environments [Mitchell

1996] due to their ability to exploit previous or alternate solutions. One of the most
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appealing features for dynamic environments is that, at any given instant, EAs deal with

a population of solutions rather than a single solution. Hence, even if the environment

changes, it is likely that some solutions in the population remain feasible and retain some

of their good quality. Furthermore, EAs have often proved to be easy to hybridize with

local search techniques. Thus, by using EAs, it is possible to formulate general techniques

to address the dynamic issues, while leaving issues of the particular (static) problem to

already developed relevant local search and repair heuristics.
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 Fig. 1.1: Publications on evolutionary optimization in dynamic environments

One final point worth mentioning is that developing a potentially good algorithm is not

enough; there should be some appropriate benchmarks to demonstrate its performance.

This need is widely appreciated in evolutionary optimization [Whitley et al. 1996; Holland

2000]. However, in dynamic optimization, a problem is characterized, in part, by scenarios

postulating a sequence of events. Thus, one is faced with the additional difficulty of incor-

porating the patterns of environmental changes in the dynamic benchmark. Fortunately,

there is a wealth of benchmarks for almost all static COPs. Therefore, research should be

devoted to developing dynamic benchmarks out of the available problems.
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1.2 Scope and objectives

This thesis is concerned with the use of evolutionary algorithms to tackle dynamic combi-

natorial problems. Although many real world problems can be viewed as dynamic we are

interested only in those problems where the decision maker does not have prior knowledge

of the complete problem, and hence the problem can not be solved ahead of time (see

Section 4.2 for a formal definition of the dynamic problem being considered in this thesis).

The thesis revolves around two fundamental aspects of dynamic optimization: devel-

oping adaptive algorithms and generating benchmarks to test them. By using robust

heuristics such as EAs on a representative problem such as the travelling salesman prob-

lem (TSP), the proposed approaches are expected to be easily generalized to a broad range

of applications.

 
 
 
 
 
 
 
 
 
 
 
 
 

   Phase I                                                            Phase II                                                                Phase III 

Linear Solver Benchmarking 

Literature Review 
 

Preliminary Experimentation 

Island EA 

Adaptive Diversity 

Generalized 

TSP Experimentation 

Tailoring to FMS 

FMS Experimentation 

Fig. 1.2: Research progress

The research presented in this thesis has progressed in three phases, as illustrated in

Figure 1.2. In the first phase, literature on the use of evolutionary algorithms to solve

dynamic problems is surveyed. Several outstanding issues are identified and are outlined

in Section 3.7. The second, the main phase, covers the development of adaptive algorithms

and dynamic benchmarks on the dynamic TSP. Relevant issues are also illustrated on the

knapsack problem and the flexible manufacturing systems (FMS) problem when deemed



6 Chapter 1. Introduction

necessary. The third phase aims to demonstrate the applicability of the developed ideas

to more complicated test problems. A dynamic FMS problem is used for this purpose. In

addition to its importance as a real-world problem, FMS can be used to represent dynamic

COPs with multiple objectives.

This thesis has generated several contributions in the field of evolutionary optimiza-

tion in dynamic environments: A framework for benchmark generation that treats the

dynamic problem as a time sequence of static instances is proposed. Several issues that

hinder benchmark generation in dynamic COPs are identified and addressed. A scheme to

generate dynamic benchmarks with known optima, without the need of re-optimization is

presented. Models of adaptive EAs are developed, including a model that employs time de-

pendent genetic parameters, a diversity controlled model, a local search hybridized model,

and an island model. These models employ novel methods to efficiently measure and con-

trol diversity throughout the search process, and schemes to adaptively regulate genetic

parameters and efficiently embed local search heuristics. Experimental results on dynamic

versions of FMS and TSP are presented to demonstrate the effectiveness of these models in

improving solution quality with limited increase in computation costs. Detailed discussion

of these contributions is given in Section 9.2.

1.3 Outline of the thesis

Chapter 2 gives a general overview on conventional techniques for solving a class of hard

problems and concentrates on metaheuristics, with the main aim of identifying the relative

benefits of using evolutionary algorithms to solve these hard problems. Readers familiar

with the basics of metaheuristics can skip this chapter and go directly to Chapter 3 which

contains a survey of how dynamic environments are tackled by EAs.

Chapter 4 is an overview of some basic concepts and measurements that are ambiguously

defined in the literature. It also includes new definitions and their usage in the thesis. The
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chapter ends by outlining the general scheme for experimentation and result reporting.

Chapter 5 addresses issues related to dynamically insignificant changes and misleading

patterns of changes that can hinder the generation and the effectiveness of benchmarks.

The chapter proposes a mapping based scheme for benchmark generation and presents a

framework for dynamic benchmark generation for COPs.

Chapter 5 deals with benchmark generation. It addresses issues related to dynami-

cally insignificant changes and misleading patterns, presents a mapping based scheme for

benchmark generation, and proposes a framework for dynamic benchmark generation for

COPs.

Chapter 6 details the preliminary experimentation carried out to investigate the merits

of adapting solutions to changes, relative to restarting the algorithm after environmental

changes.

Chapter 7 presents and investigates adaptive dynamic solvers that include a diversity

controlling EA model, an island model, and two local search hybridized model.

The main goal of Chapter 8 is to demonstrate that the adaptive models and bench-

marking schemes presented in this thesis can be applied to realistic problems. The dynamic

solvers of Chapter 7 are compared on benchmarks developed for dynamic TSP and dynamic

FMS.





Chapter 2

Background:

Solving Hard Problems

the very essence of good GA design is retention of diversity, furthering exploration, while

exploiting building blocks already discovered.

Holland [2000]

. . . schema theory tells us almost nothing about GA behaviour . . .

Vose [1999]

9
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2.1 Introduction

This chapter consists mainly of elementary background material on metaheuristics and

exact search methods. Readers familiar with the basics of metaheuristics and evolutionary

algorithms can skip this chapter and go directly to the next one.

This chapter gives an introductory overview of methods commonly used for hard op-

timization problems. It starts with a quick introduction to the theory of computational

complexity and commonly used techniques for accelerating enumeration, then it reviews

metaheuristic methods that are used as alternatives to exact methods. At the end, the

chapter focuses on traditional genetic algorithms, highlighting relevant theoretical and

implementation aspects.

For a more thorough yet concise overview of metaheuristic methods the reader is referred

to Blum and Roli [2003], and for implementation and code of simulated annealing, tabu

search and genetic algorithms the reader is referred to Pham and Karaboga [2000]. More

insight into evolutionary algorithms can be gained by consulting other references, such

as Beasley et al. [1993a,b] for an introduction to GAs, Michalewicz [1992] and Mitchell

[1996] for more details on genetic operators, Gen and Cheng [1999] for implementing GAs

on Engineering problems, and Reeves and Rowe [2002] and Whitley [2001] for theoretical

aspects.

2.2 Techniques of enumeration

Computational complexity is a measure used for quantifying the difficulty of a problem to

an algorithm in an absolute sense. The work of Cook [1971] and that of Karp [1972] on com-

plexity in discreet optimization have initiated the vast literature found today on complexity

and profoundly affected all phases of research on discrete optimization [Parker and Rardin

1988].
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It is common to describe computational complexity, relative to the worst case, as the

greatest number of elementary operations executed by the algorithm to solve an instance

of the problem. Accordingly, decision problems are classified in the P class if there exists

a polynomial-time algorithm that can solve them. Problems which cannot be solved by

a known polynomial-time algorithm but whose solutions can be verified by a polynomial

time algorithm are classified among the NP . A problem p is considered in the NP-complete

class (a subset of NP) if any problem in NP can be reduced to p in polynomial time. These

classes are pictured in Figure 2.1, which reflects the common belief that P 6= NP, although

whether P=NP is still an open question.

This thesis concentrates on combinatorial problems that are known to be NP-hard. An

NP-hard problem is an optimization problem that can be solved by a polynomial number of

solutions of an NP-complete problem. Thus, one will generally expect an NP-hard problem

to be harder than an NP-complete problem.

 

 

 

 

 

 

 

 

 

NP 

class 

NP-complete 

class 

  P  

class 

NP-hard 

class 

Fig. 2.1: Complexity sets.

In general, solving an integer programming (IP) problem can be much more difficult

than solving a (continuous) linear programming (LP) problem. The difficulty is basically

due to the integrality constraints of a COP where the feasible region is not convex—as

in the case of LP—but is a lattice of points in the case of pure IP problems or a set of
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disjoint line segments in the case of mixed integer programming problems. Thus, a COP is

a multimodal problem in which global optimality can not be proved by the “conventional”

derivative-based approaches.

Approaches used for COP can be divided into two general categories: exact and approx-

imate. The proposed research targets metaheuristics which are approximate approaches.

In principle, any combinatorial problem, whether NP-hard or not, can be solved by (exact)

exhaustive search. Unfortunately, this naive approach is not a practical way to solve prob-

lems of realistic sizes1, where the search space is forbiddingly large. There are at least two

exact methods that are frequently used in addition to direct enumeration, namely branch

and bound, and branch and cut.

2.2.1 Branch and bound

Branch and bound is a general method that aims to accelerate enumeration by ignoring

some regions of the search space, because it has already been implicitly determined that

those regions do not contain the optimal solution to the problem. The efficiency of this

method depends on two key elements: an intelligent way to divide the search space into

subregions and consequently the problem into subproblems (branching), and an efficient

technique to find tight lower bounds (we consider a minimization problem) on the optimal

solutions of the subproblems (bounding).

The most commonly used methods to compute lower bounds on the optimal value

depend on linear or Lagrangian relaxation.

The linear relaxation of a linear integer (pure or mixed) subproblem is obtained

by removing the integrality constraints in it. The resultant continuous linear programming

problem will be easier to solve than the IP problem. However, bounds obtained from

1However, many organizations, due to the lack of sophisticated optimization tools, still use manual

enumeration. Consequently, they are forced to be content with very low quality solutions. Often the

objective of optimization is reduced to the trivial requirement of finding any feasible solution.
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linear relaxations are often weak and can be arbitrary far from the optimal solution to the

problem.

Lagrangian relaxation is a method that removes some of the inequality constraints

rather than the integrality constraints. The constraints to remove are selected carefully so

that after dropping them from the problem, the resulting problem though still an integer

one is easier to solve than the original. At the same time, Lagrangian relaxation penalizes

any violation of the removed constraints in an attempt to force feasibility. This relaxation

method often produces bounds tighter than those of linear relaxation, but at the expense

of increased computation time. In addition, the technique is problem dependent requiring

sufficient understanding of the problem to determine which of the constraints are difficult

and ought to be relaxed in order to make the problem easier to solve.

2.2.2 Branch and cut

Branch and cut is a hybrid of the branch and bound method described earlier and cutting

plane methods. Cutting plane methods were first proposed by Gomory [1958], but they

were not strong enough to tackle large problems and their algorithms were very slow to

converge. Their success started in the early 1980’s, after the development of the polyhedral

theory [Hoffman and Padberg 1985, 1991, 1993; Padberg and Rinaldi 1991].

A cutting plane is an inequality that is added to the constraints of the LP relaxation in

order to remove non-integer optimal solutions from the feasible region of the LP relaxation

without removing any solution from the set of feasible solutions to the original problem.

With the additional cutting plane, the solution to the resultant LP relaxation becomes

closer to the optimal solution of the problem. Thus, the procedure is repeated until an

optimal solution to the original IP problem is found.

Branch and cut has been successfully applied to several COPs; however, it is problem

dependent and requires elaborate work to find the appropriate cuts for a given problem.

Good introductions to branch and cut methods can be found in Grötschel and Holland



14 Chapter 2. Solving Hard Problems

[1991] and Padberg and Rinaldi [1991].

Despite the great progress in exact methods, they can still take huge amounts of time to

solve many COPs [Glover and Kochenberger 2003]. Furthermore, being highly problem de-

pendent(relying heavily on identifying best ways to exploit the structure of the problem at

hand), exact methods are harder to apply to dynamic problems that change unpredictably

over time.

On the other hand, metaheuristics, though they may not guarantee optimal solutions,

are less problem dependent and can give high quality solutions at low costs. Furthermore,

metaheuristics are easy to implement, often requiring simple mathematical and algorithmic

knowledge. An overview of some of these methods is given in the next section.

2.3 Metaheuristics, an overview

During the last two decades, metaheuristics moved to the forefront of optimization tech-

niques gaining increasing popularity for solving complex optimization problems that arise

in business, engineering, industry, and many other disciplines.

Nowadays, there are many metaheuristics in use either in their simple forms or hy-

bridized with other optimization techniques or even with other metaheuristics. The fol-

lowing sections highlight their general characteristics and mechanisms, with some focus on

important ones.

Voβ et al. [1999] define metaheuristics as:

A metaheuristic is an iterative master process that guides and modifies the op-

erations of subordinate heuristics to efficiently produce high-quality solutions.

It may manipulate a complete (or incomplete) single solution or a collection

of solutions at each iteration. The subordinate heuristic may be high (or low)

level procedures, or a simple local search, or just a construction method.



2.3 Metaheuristics, an overview 15

This definition is by no means the only one. There are other definitions, such as those

given by Osman and Laporte [1996], Stützle [1999], and Hromkovic [2001]. Although these

definitions may seem different, they collectively outline certain common characteristics in

metaheuristics that make them stand out among other optimization techniques:

• Metaheuristics are robust techniques. The same metaheuristic can be applied to a

wide range of different problems, even if these problems have very different combi-

natorial structures. Their robustness combined with their ease of implementation is

behind their popularity with many researchers.

• Metaheuristics are non-exhaustive and efficient; nevertheless, they do not guarantee

the quality of their computed solutions.

• They guide the search in a systematic way, yet they take some random decisions from

time to time in order to promote exploration of new regions of the search space.

• Metaheuristics often guide some subordinate heuristic that otherwise would very

likely terminate with a low quality solution.

• They employ some essential mechanisms to escape local optima.

• They may use some combination of short-term, intermediate-term, and long-term

memories to prevent revisiting old solutions, store good quality solutions, and guide

the search towards new regions.

For a metaheuristic to be efficient, the algorithm must not search the solution space

exhaustively. Yet, to produce high quality solutions it is also necessary to fine-tune the

search. The conflict between both these requirements leads to a quality-efficiency tradeoff

that is a central aspect in the design and application of all metaheuristics, commonly

referred to as diversification-versus-intensification balance.
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Metaheuristics can be classified in different ways. Blum and Roli [2003] show that the

classification can be done according to the origin of the technique (nature inspired vs.

non-nature), the number of solutions manipulated at each iteration (single solution vs. a

population of solutions), the neighborhood or the objective function definition (constant,

varying), and memory usage (with memory, without memory). For the purpose of this the-

sis, we adopt a classification from Hertz and Widmer [2003], which classifies metaheuristics

according to their underlying principle into local search methods and population search

methods.

2.4 Local search methods

Local search methods (also known as trajectory methods) build one (or more than one)

initial solution then progressively enhance it by iteratively moving from the current solution

to a neighbor solution. This group includes the well known simulated annealing, tabu

search, GRASP, and variable neighborhood algorithms. Since these algorithms are basically

modified versions of the classical local search technique, a quick review of local search is

warranted.

The classical local search (LS) algorithm is based on the concept of exploring the vicinity

of the current solution. It accepts solutions that produce reductions in objective functions

(presuming a minimization problem), without making use of any information gathered

during the execution of the algorithm. Thus, LS will always terminate at the nearest local

optimal solution, which can be arbitrarily far from the global optimum. Consequently, the

effectiveness of LS in practice depends heavily on factors that influence the trajectory of

solution progression. These include:

The starting initial solution x0. Only if the initial solution is in the basin of attraction

of a local optimum, may the solution trajectory end at that local optimum.
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The definition of neighborhood structure N (.). The very same initial solution can

lead to different local optima if different neighborhood structures are used. Also, a

local minimum according to some neighborhood structure may no longer represent a

local optimum in another structure.

The Function to be minimized f(.). Ruggedness and smoothness of the landscape of

the search space is determined in the first degree by the objective function. Chang-

ing the definition of the objective function will change the relative attractiveness of

different solutions to the LS heuristic.

2.4.1 Simulated annealing

Simulated annealing (SA) [van Laarhoven and Aarts 1985; Gelfand and Mitter 1985;

Hajek 1988] can be viewed as a local search augmented with random decisions that lead

the search out of local minima. While simple LS stops when improvements are not possible

any more, SA accepts non-improving moves with a probability that favors the lesser dete-

riorating moves and hence it can climb up moderate hills to reach the basin of attraction of

another local optimum, as shown in Figure 2.2. Nevertheless, the probability of accepting

bad moves gradually decreases with the number of iterations until the algorithm eventually

reduces to a simple local search.

Simulated annealing has the potential of finding feasible solutions of high quality that

are not expected to be found through the use of a basic local search. This is because the

quality of SA output does not depend entirely on the choice of initial solutions. However,

substantial experimental work is necessary to tune the SA parameters for a particular

problem. A more serious disadvantage with SA is that it can be inefficient because, in

accepting bad moves, the algorithm may cycle back to old solutions.
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2.4.2 Tabu search

Similar to SA, Tabu Search (TS) [Glover and Laguna 1997] will accept bad moves to escape

local minima. However, TS makes use of a memory called the tabu list to store old solutions,

or their attributes, in order to discourage moves towards previously visited regions of the

search space, and hence avoids the greatest pitfall of SA. Currently, TS is among the most

commonly used metaheuristics for COPs, especially routing problems. However, parameter

tuning is a more difficult task in TS than in SA.

                 (a)                                                                               (b) 

Fig. 2.2: Local search, simulated annealing and tabu search. (a) LS terminates at the

first encountered local minimum. (b) SA and TS accept bad moves in order to escape a

local minimum.

2.4.3 Iterated local search

Iterated local search (ILS) [Stützle 1999; Lourenço et al. 2001; Lourenco et al. 2002]

employs a two-phase cycle: a local search and a solution perturbation. Once the local

search phase ends at a local minimum, the perturbation phase disturbs the solution to

produce a new solution, ideally, located in the basin of attraction of another local minimum

(see Figure 2.3(a)). Repeating the ILS cycle causes the algorithm to move from one local

optimum to another until it hopefully reaches the global minimum.

An important consideration with ILS is to balance the strength of perturbation to be
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strong enough to escape the current local minimum but not so strong as to reduce the

algorithm to a random restart LS.

2.4.4 Variable neighborhood search

Variable neighborhood search (VNS) [Hansen and Mladenović 1999; Hansen and Mladenovic

2001] and its variants adaptively change the definition of the neighborhood in order to es-

cape local optima. In doing that, previous solutions deemed bad because they lead to

inferior local optimum according to a certain definition of the neighborhood structure may

lead to a better local optimum under another neighborhood definition (see Figure 2.3(b)).

                     (a)                                                                      (b)

x1

x2

Fig. 2.3: Iterated local search and variable neighborhood search. (a) In ILS perturba-

tion of local minimizer can move it to another basin of attraction. (b) After redefining

the neighborhood structure, x1 is no longer a local minimum, and x2 ∈ N (x1).

2.4.5 Guided local search

In Guided local search (GLS) [Voudouris and Tsang 1999], the objective function is changed

adaptively. When a local minimum is reached, GLS gradually increases the objective func-

tion by penalizing some features to which the relative goodness of the current optimum is

attributed. For example, in the traveling salesman problem, edges of short length in the

local optimum are penalized in order to increase the total cost of the solution. Thus, the
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local optimum gradually loses its attraction until the algorithm is able to leave the whole

basin of attraction of the current minimum, as illustrated in Figure 2.4.

Fig. 2.4: Guided local search. In GLS, local minimum is made less attractive (direction

of arrow) so that the algorithm can escape it to the nearest basin of attraction.

2.4.6 Greedy randomized adaptive search procedure

The greedy randomized adaptive search procedure (GRASP) [Feo and Resende 1995] is

based on the idea that local search will more likely end up with a high quality solution if

it starts from a good initial solution.

GRASP first forms a candidate list of high-quality (according to some greedy function)

solution elements. Then, elements are selected randomly from the list to construct a good

initial solution. Once an initial solution is constructed, it is used to start a local search

until a local optimum is reached. The whole process repeats by constructing a different

initial solution, and storing the best found local optima.

In addition to the ease of implementation and the efficiency in the number of param-

eters to set and tune, GRASP has the advantage of producing quality solutions in low

computation time. The fundamental shortcoming in GRASP is the lack of memory, which

often leads to final solutions of comparatively low quality.
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The discussion on this group of metaheuristics can be summarized as follows: Local

Search heuristics stops at a local optimum, which is likely of inferior quality, and in order

for the heuristic to produce solutions of acceptable quality without exhaustively searching

the solution space, it is necessary to accept non-improving moves, change the starting

solution, or manipulate the definition of neighborhood structure or the objective function.

2.5 Population search methods

Unlike the trajectory methods, population search methods manipulate a set of solutions at

any instance during the search rather than a single solution, as illustrated in Figure 2.5.

These methods include evolutionary algorithms , scatter search and ant colony optimization.

In evolutionary algorithms (EAs) the generation of offspring (new) solutions from parent

(old) solutions resembles the mechanics of natural evolution. The best offspring of the

parent solutions are retained for the next generation (iteration), thereby proceeding in an

evolutionary fashion that encourages the survival of the fittest. Nowadays, EAs include

evolutionary programming by Fogel et al. [1966], evolution strategies by Rechenberg [1973],

and genetic algorithms by Holland [1975] and Goldberg [1989]. However, their differences

have so diminished during the last decade that it is hard to draw clear-cut lines between

them.

The main differences between scatter search and evolutionary algorithms are that scat-

ter search specifies stricter rules for recombining solutions, and borrows some memory

related ideas from tabu search (see Laguna and Marti [2003] for more discussion on gen-

eral principles and implementation of scatter search).

Ant colony optimization [Dorigo et al. 1996] has a solution construction phase and

a solution improvement phase. The probability of adding an element to the partially

constructed solution depends on the level of pheromone, which reflects the goodness of old

solutions constructed using that element. A key element in the ant colony algorithm is the
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14

                              (a)                                                                            (b)

Fig. 2.5: A trajectory metaheuristic versus a population heuristic. (a) trajectory

heuristic would likely terminate at a local minimum. (b) GA parent solutions (white)

combine to produce offspring solutions (dark).

rules that update pheromone values since these rules change the probability distribution

used to sample the search. Reducing pheromone values reduces the attractiveness of visited

solutions and leads the search towards new regions and thus helps to avoid early entrapment

in local optima that may happen with extremely large pheromone values. More details on

the principle of ant colony optimization and how it is engineered to optimization problems

can be found in Dorigo and Di Caro [1999].
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2.6 Genetic algorithms

Genetic Algorithms (GAs) are stochastic search techniques that seek improved performance

by sampling promising regions of the solution space, regions with a high probability for

leading to good solutions, Venkatasubramanian and Androulakis [1991]. The algorithms

were introduced by Holland in 1975 and were called genetic because in manipulating their

solutions they mimic mechanisms of natural selection.

The basic idea of these algorithms is to start from an initial, usually randomly created,

set of solutions. In every iteration, new solutions are generated from the existing set using

mechanisms modelled after those currently believed to apply in natural evolution of or-

ganisms. Some solutions are retained for the subsequent iteration, in which a new cycle of

genetic operations are performed; thereby, the algorithm proceeds in an evolutionary man-

ner where the fittest individuals survive. Figure 2.6 shows a traditional genetic algorithm,

where the set of solutions under consideration during the ith iteration of the algorithm is

called the population of the ith generation . In fact, this algorithm reflects the characteris-

tics of most evolutionary algorithms. Here it should be noted that, the terms EA and GA

are often used interchangeably; however, in referring to the algorithms developed in this

study, the term GA is used.

2.6.1 Algorithm components and terminology

In order to implement a genetic algorithm successfully, several issues have to be resolved.

These issues are briefly mentioned while discussing the major components of the genetic

algorithm.

Encoding

At the outset, there must be a scheme to encode candidate solutions into bit strings.

The encoded version of each parameter of a candidate solution is termed a gene, and
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Procedure GeneticAlgorithm

g = 0; // initiate generations counter

Generate(pop); // generate initial population;

Evaluate( pop );

repeat

g = g+1;

pop(1) = Select( pop );

pop(2) = Cross( pop(1) );

pop = Mutate( pop(2) );

Evaluate( pop );

until terminating condition

Return best individual ;

Fig. 2.6: General structure of a genetic algorithm

the encoding of the entire solution is termed genotype. Thus, a gene is the basic unit

of the genotype. In natural biology, a genotype consists of several chromosomes , each

chromosome consisting of a number of genes. GAs, however, often use a single chromosome

to represent a candidate solution. Hence, the terms individual, chromosome, and genotype

are used interchangeably. Still, we need to distinguish between the terms phenotype and

genotype. Whereas genotype refers to the representation of the solution in the chromosome,

phenotype refers to the problem version of the genotype, i.e., the actual solution. This is

important because genetic operators (selection , crossover, and mutation) work within a

genotypic space and manipulate chromosomes rather than the solutions themselves.

Traditionally GAs used binary encoding; nowadays, they also use real values, integers,

and permutations. The latter are often used in combinatorial problems.
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Fitness evaluation

In applying a genetic algorithm to any optimization problem one has to devise a particular

type of objective function called a fitness function or an evaluation function. This function

evaluates and ranks individuals in the population according to their fitness (i.e., how good

their solutions are) so that individuals producing the best solutions in the population

are retained. It is worth noting that nowhere except in the fitness function is there any

information (in the typical genetic algorithm) about the problem to be solved.

The term fitness landscape is commonly used to visualize the relation between fitness

values of all candidate solutions and distances between them as a structure of fitness hills

and valleys.

Selection

The term selection comes from the well known metaphor, natural selection, introduced

by Charles Darwin to refer to the process he believed to induce organisms to adapt to

their environments. In GAs selection operators perform the equivalent role to natural

selection; that is, they determine which individuals in the current population survive and

reproduce offspring. Individuals are selected for mating according to their relative fitness:

those with greater fitness are awarded more offspring than those with lesser fitness. There

exist many selection schemes in the literature, such as roulette wheel selection, stochastic

universal sampling, ranking selection, and tournament selection. Details on these schemes

and several others can be found in Michalewicz [1992] and Mitchell [1996].

Crossover

Crossover, also called recombination operator, is used to recombine genetic material in

parent chromosomes (usually two) to produce one or two child chromosomes sharing char-

acteristics of both parents. A single point crossover is a kind of crossover in which the
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parent strings are both bisected at same randomly chosen point. Then, one child string is

produced from the leftmost portion of one parent and the rightmost portion of the other

parent. If a second child is to be produced, it is made from the unused portion of both

parents. In a two point crossover , each parent chromosomes is bisected at two cut points.

Then, the outer portions of one chromosome are recombined with the inner portion of the

other chromosome to produce one child chromosome. The second child chromosome can

be constructed from the unused portion of the parents. Figure 2.7 illustrates one point

crossover and two point crossover.

P1 a1 a2 a3 a4 a5 a6 a7 a8 P1 a1 a2 a3 a4 a5 a6 a7 a8

P2 b1 b2 b3 b4 b5 b6 b7 b8 P2 b1 b2 b3 b4 b5 b6 b7 b8

C1 b1 b2 b3 a4 a5 a6 a7 a8 C1 a1 a2 b3 b4 b5 a6 a7 a8

C2 a1 a2 a3 b4 b5 b6 b7 b8 C2 b1 b2 a3 a4 a5 b6 b7 b8

    (a)         (b)     

Fig. 2.7: Single point and two point crossover. (a) In single point crossover, Each

of the parents P1 and P2 is split at one point into two portions. Children C1 and C2

are produced by recombining portions from different parents, and combined to produce

children. (b) In two point crossover, P1 and P2 are split at two points, the resulting

portions recombined to produce C1 and C2.

Besides these two means of crossover there exist several other techniques. If permutation

representation is used, then conventional crossover operators will produce infeasible solu-

tions. Order crossover [Davis 1985], partially mapped crossover [Goldberg and Lingle, Jr.

1985], and cycle crossover [Oliver et al. 1987] are examples of operators that are specif-

ically developed to recombine solutions into feasible children. A detailed description of
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these operators with many more can be found in Michalewicz [1992].

Mutation

The main function of mutation operators is to ensure that the population is supplied

with new genetic material throughout the search process. Mutation enables the GA to

maintain diversity in the population and introduces some random search behavior necessary

to explore new unvisited regions of the search space that may not be reached by crossover

only. Thus, mutation plays a complementary role to that of crossover, which works on

material already present in the population and thus cannot introduce new genetic material.

In other words, without a mutation operator, genetic material nonexistent in the initial

population or lost with discarded individuals can never be developed again.

Mutation works as a unary operator that transforms one parent chromosome into a

different child chromosome. In binary representations, the mutation operator replaces each

bit in the string by a randomly selected bit, if a probability test is passed. In real valued

representations, an individual can be mutated by slightly increasing or decreasing the value

of some of its genes. In permutation representations, mutation can be accomplished by

swapping two genes in the chromosome to produce a different permutation.

In the following chapters, the term Genetic Operators will be used to refer to the main

operators of the GA (selection, crossover, and mutation) collectively, and the term genetic

parameters to refer to their rates (or probabilities) of application.

Termination criteria

Unlike local search, which stops when a local optimum is encountered, GAs can in principle

evolve without stopping, thus it is often the case that a total number of generations is pre-

specified by the user at which the run terminates. Other less frequently used criteria

terminate the GA run when a best-so-far solution cannot be improved, pre-determined

solution quality is obtained, or a lower limit of population diversity is reached.
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2.6.2 Theoretical aspects of genetic algorithms

The schema theorem of Holland [1975] was the first rigorous attempt to explain how GAs

work [Beasley et al. 1993a]. Holland introduced the term schema to explain his theorem

in binary representation. A schema is a template made from the alphabet {0 1 #}, with

the “#” symbol matching 0 or 1. For example, the schema {0 1 1 # 0 0} matches the two

strings {0 1 1 0 0 0} and {0 1 1 1 0 0}, and the schema {# 1 1 0 # 0} matches the strings

{0 1 1 0 0 0}, {0 1 1 0 1 0}, {1 1 1 0 0 0}, and {1 1 1 0 1 0}. He defined the order of the

schema as the number of 0 ’s and 1 ’s it contains, and the defining length of the schema as

the distance between the two outer most non-# symbols in the schema. With these terms,

the schema theorem, can be stated as follows.

Theorem 2.1 (Schema Theorem) At a certain generation of the genetic algorithm, ex-

isting schemata that are of short defining length, low order, and above the average fitness

receive exponentially increasing trials in subsequent generations.

Goldberg gives a similar explanation as to how GAs work in his Building Block Hypoth-

esis [Goldberg 1989]: “Just as a child creates magnificent fortresses through the arrange-

ment of simple blocks of wood, so does a genetic algorithm seek near optimal performance

through the juxtaposition of short, low order, high-performance schemata, or building

blocks”.

These two widely known, but not so widely accepted, explanations are criticized by

many researchers. Both explanations presume that high quality solutions consist of good

“building blocks” where a good building block is a few genes in the chromosome that con-

tribute to the high fitness value of the individual. With these explanations, the success of a

GA in finding good solutions is primarily determined by its ability to discover, emphasize,

and recombine good building blocks from different chromosomes to construct final solu-

tions. At one time, these explanations were seen to be satisfactory, and many algorithms

were designed to exploit the building blocks and increase the good schemata.
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However, a contemporary view, that is shared by many researchers, is that building

blocks should be viewed as a dynamic entity that changes over the search process. Under

this view, the quest to detect and combine good building blocks makes little sense, since

what can be a good block at one generation might become less good in the next generation.

More refreshing analysis of the schema theorem and the building block hypothesis can

be found in Reeves and Rowe [2002]. At the present time there is no generally accepted

theorem that explains the GA behavior (nor the behavior of other metaheuristic methods).

2.6.3 Why genetic algorithms?

Over the last two decades, evolutionary algorithms have been successfully applied in many

fields, such as engineering, robotics, economics, chemistry, genetics, operations research,

art, and social sciences.

There are some characteristics of GAs to which their success as search procedures is

attributed. First, GAs manipulate a population of solutions at each generation; thus, the

probability of getting trapped in local optima is reduced compared with methods that pro-

ceed from point to point in the solution space. This characteristic also makes them suitable

for parallelization. Second, genetic operators make use of a coding of the parameter space

rather than the parameters themselves (only objective function information is used), which

simplifies implementation. Third, although they employ some stochastic components, they

make use of all the information that has been obtained during the search [Goldberg 1989].

However, to be effective on COPs, GAs are often hybridized with other local search based

techniques [Maniezzo V. 2002].

When considering dynamic problems, multiple objective problems or both , GAs have

additional advantages over other search methods. Their manipulation of a population of

solutions proves to be advantageous. Even when a change in the environment renders the

current best solution unacceptable, it is likely that the quality of some of the remaining

solutions in the population does not deteriorate. Furthermore, the population will be
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helpful for multiple objective problems where the goal is to provide several non-dominated

solutions to the decision maker for a final decision.

However, running a GA entails setting a number of parameter values, such as the

population size, mutation rate, and crossover rate. Finding the best setting for the problem

at hand is not a trivial task. A poor setting can lead to final solutions of unacceptable

quality. The main problem here is that these parameters affect each other in a non-linear

way that is also not clear; hence, they are often hard to optimize one at a time. This thesis

addresses this difficulty to some degree in a later chapter as it faces dynamic problems as

well.

2.7 Summary

An overview of the basic metaheuristics and exact search methods has been given in this

chapter. Metaheuristics in general involve sampling the search space, which helps them

produce solutions quickly; however, their main disadvantage is their inability to guarantee

solution quality.

Population-based metaheuristics tend to be more effective than local search based ones;

however, in terms of fine-tuning specific search areas, the latter group is known to be more

effective. In general, the degree of success of these methods on a given problem depends

largely on their ability to strike a balance between exploration and exploitation.

Theoretical foundations of evolutionary algorithms, and those of most metaheuristics,

are debateable. So far there is no robust theory that conclusively explains the behavior of

these algorithms. Practitioners depend mainly on empirical experiments to demonstrate

the potential of their implementations.

The ability of evolutionary algorithms to sample the search space and the fact that

they simultaneously manipulate a group of solutions increase their potential for dynamic

problems. Techniques which exploit theses qualities are reviewed in the he next chapter.
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Literature Review:

Evolutionary Algorithms in Dynamic

Environments

It is difficult to determine a useful amount of diversity: Too much will resemble restart,

while too little doesnt solve the problem of convergence.

Jin and Branke [2005b]
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3.1 Introduction

In this chapter, the use of evolutionary approaches to track shifting optima in dynamic

problems is surveyed. The literature is classified according to the underlying elementary

approaches in order to show the trends in recent research and more importantly to form a

basis for combining these approaches into more effective ones.

The chapter concludes with a highlight of the gaps in the literature that can be the

subject of future research, with emphasis on those issues that are addressed in this thesis.

3.2 Dynamic problems, an overview

Dynamism in real-world problems can be attributed to several factors: Some are natural

like wear and weather conditions; some can be related to human behavior like variation in

aptitude of different individuals, inefficiency, absence and sickness; and others are business-

related like the addition of new orders and the cancellation of old ones.

However, the mere existence of a time dimension in a problem does not mean that

the problem is dynamic. Problems that can be solved ahead of time are not dynamic

and not considered in this thesis even though they might be time dependent. Psaraftis

[1995] discusses three examples of such problems: In the “time-dependent TSP”, travel

times between cities change during the day (early morning, rush hour, late at night) in

a well-known manner. This problem can be solved in advance although it is changing

with time. In the “probabilistic TSP”, travel times are constant but demand at each city

occurs with a known probability. Again this problem is not dynamic because it calls for a

solution that is computed ahead of time. Although the actual city status might be given in

real time (i.e whether there is some demand at that city or not) the optimization process

has already been concluded. The pre-computed solution will be implemented regardless

of the actual demand; i.e., the vehicle will be dispatched on the computed route and will
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simply skip any cities that give zero demand while the vehicle is on the move. The third

example considers a stochastic VRP, where a set of solutions is pre-determined so that

some overall objective cost is minimized. Again, there is no need for re-optimization in

the future and thus the problem remains virtually static. Similar examples include the

scheduling of nurses and aircraft crews and the timetabling of faculty. In these problems

if the variations are limited to the seasonal considerations or days of the week, then these

problems, though time-dependent, are not considered dynamic. A different example is

the time-phased allocation and budgeting problem. If future demands are either known

in advance or predictable with sufficient accuracy, then the whole problem can be solved

ahead of time.

According to Psaraftis [1995],Bianchi [1990], and Branke [2001], the following features

can be found in most real-world dynamic problems:

• Time dependency: the problem can change with time in such a way that future

instances are not completely known, yet the problem is completely known up to the

current moment without any ambiguity about past information.

• A solution that is optimal or near optimal at a certain instance may lose its quality

in the next instance, or may even become infeasible.

• The goal of the optimization algorithm is to track the shifting optima through time

as closely as possible.

• Solutions cannot be determined ahead of time but should be found in response to

the incoming information.

• Solving the problem entails setting up a strategy that specifies how the algorithm

should react to environmental changes, e.g. to resolve the problem from scratch at

every change or to adapt some parameters of the algorithm to the changes.
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• The problem is often associated with advances in information systems and commu-

nication technologies which enable the processing of information as soon as received.

In fact, many dynamic problems have come to exist as a direct result of advances in

communication and real-time systems.

Techniques that work for static problems may therefore not be effective for dynamic

problems which require algorithms that make use of old information to find new optima

quickly. The next section is a survey of adaptive algorithms specifically developed to track

optima in changing environments.

3.3 Tracking optima

The main disadvantage of applying a conventional “static” algorithm in a dynamic environ-

ment is that once the algorithm starts to converge around some optimal or near-optimal

solution, it will very likely lose its ability to continue the search for new optima if the

environment shifts. Hence, the key point in optima-tracking approaches is to increase the

diversity of the search so that the algorithm retains its ability to explore the new search

space when the problem changes, even after it has converged or nearly converged to some

optimum.

The following sections review elementary tracking approaches reported in the literature.

The general idea is to study the approaches in their elementary form in order to develop

and analyze complex approaches for real-world problems.

3.3.1 Restart

The most straightforward approach to increase diversity of a GA search is to restart the

algorithm completely by reinitializing the population after each environmental change. If

the entire population is reinitialized, we have a complete restart, which indicates that the
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dynamic problem is treated as a series of static problems to be solved independently of each

other. As a consequence, any information gained in the past search will be discarded with

the old population after every environmental change. Thus, if changes in the problem are

frequent, this time consuming method will likely produce results of low quality. Further-

more, successive instances in the typical dynamic problem do not differ completely from

each other. Hence, some researchers use restart partially. With partial restart, rather than

reinitializing the entire population randomly, a fraction of the new population is seeded

with solutions that proved to be of good quality in the past. Louis and Xu [1996] re-

ported good results with partial restart (10% of the new population is replaced with old

solutions), nevertheless, their method failed to produce good results when more than 50%

of the individuals were seeded from the old run.

An interesting observation was made by Louis and Johnson [1997]. They noted that

when the change severity is large, it is better to select individuals with low fitness—

rather than individuals with high fitness—from the old run to seed the current population.

This observation could be attributed to the increase in diversity resulting from low fitness

individuals, which are expected to be located far from the optimum (while high quality

solutions tend to be located in the same basin).

Ramsey and Grefenstette [1993] proposed expressing the environment in terms of a few

variables so that a knowledge can be built by matching the values of these variables with

the optimal solutions found. This knowledge can be used later to determine the best seed

solutions for a new environment by comparing the environment variables with those stored

in the knowledge base. Although the idea seems interesting, a real world environment is

so complex that it is hard to represent even with all its variables. Nevertheless, for this

method to be effective it should use only a few expressive variables. The difficulty is then

to determine which variables to choose to represent the environment, and to determine

whether they will really be able to represent it fairly. Furthermore, the extra task of

comparing knowledge and environments is likely to be time consuming.
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It should be noted that in seeding new populations with old solutions it is assumed that

solutions remain feasible after the environment changes. However, environmental changes

can involve the problem constraints. In such cases, old solutions may no longer be feasible

and cannot be directly used as seeds. Bierwirth and Kopfer [1994a] and Bierwirth et al.

[1995a] consider the case of new job arrivals in a job shop scheduling problem. They modify

all solutions when the environment changes in a way that makes the solutions reusable as

seeds for the new population.

In summary, a complete restart provides the diversity necessary to continue the search

for new solutions, but fails to exploit historical information on the problem. Its computa-

tional cost makes it inappropriate for dynamic problems in which the changes are frequent

and with small severity. In such cases, alternative approaches that are capable of injecting

diversity and at the same time able to exploit old information are preferred.

3.3.2 Adapting genetic parameters

It is well known that changing the parameters of a GA can change the behavior of the

algorithm and consequently can affect the quality of the final solution. The general view

now is that there is no fixed set of parameters that remain optimal throughout the search

process—even in a static problem. Many researchers, such as Davis [1989] and Bäck [1992],

have explored the use of adaptive genetic operators in stationary environments. Other

researchers even investigated self-adapting parameters [Bäck 1997]. Self-adapting mutation

rates are also widely used in evolution strategies [Bäck and Schwefel 1993]. An extensive

survey and discussion of the method of parameter control in evolutionary algorithms in

static problems can be found in Eiben et al. [1999].

With variable parameters (self adapting or otherwise) finding some success on static

problems, it would be natural to investigate their use for applications where the prob-

lem environment is shifting. Now, many researchers do not use fixed parameter settings;

instead, they employ techniques to adapt the algorithm to changes, such as adapting se-
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lection pressure, mutation rate, and population size. This kind of parameter adaptation

basically aims to avoid the pitfalls of the restart methods while retaining a level of diversity

sufficient to maintain an effective search all the time.

Mutation, as the main diversity operator in GAs, is the most widely investigated pa-

rameter for adaptation. It works by introducing some change to the genes of an individual

to create another individual. The number of genes altered by mutation is directly pro-

portional to the rate of the mutation (probability that a given gene is altered). Thus, by

controlling the rate of mutation, it is possible to change distances between individuals in

the population and consequently manipulate the population diversity.

Cobb [1990] proposed a method called hypermutation to track optima in continuously

changing environments. Cobb’s approach measures the quality of the best performers over

time. When this measure worsens (indicating a shift in the environment), the mutation

rate is increased drastically. Morrison and Jong [2000] used what they call “Triggered

Hypermutation”. In effect, this approach re-initializes the population, but in a less drastic

manner than that of the restart approach.

Grefenstette [1992] proposed a method called random immigrants (randomly generated

individuals) to maintain diversity in the population without disturbing the current search.

Random immigrants work by replacing only a fixed percentage of the population at ev-

ery generation. Later, Cobb and Grefenstette [1993] investigated both methods. They

reported that hypermutation produced better results than those of random immigrants

when the severity of change is small, but random immigrants did better when environmen-

tal changes are severe.

Grefenstette [1999] investigated an interesting mutation model in which the rate of

mutation is controlled genetically. In this approach, the chromosome contains a “mutation

control gene”. The additional gene undergoes all normal GA operations but does not

contribute to fitness computation. Instead, the value decoded from the mutation control

gene is used to calculate the rate of mutation. He compared it with two other models
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(fixed mutation-rate and hypermutation) on abrupt and gradual changing environments.

He reported that results of traditional fixed mutation were the worst in all runs. The

genetically controlled mutation was slightly worse than the hypermutation model which

gave the best overall results.

Nevertheless, the manner in which the rate of mutation self changes in response to

environmental changes is of great interest as it can be used as a basis for designing dynamic

solvers with an adaptive mutation rate as we will see in the next chapter.

3.4 Enhancing algorithm performance

A crucial requirement of an adaptive algorithm working in real-time is its ability to respond

rapidly to environmental changes. In other words, the time spent to adapt a solution to

changes should be small. Hence, an increasing amount of research is aimed at improving

GA performance: reducing computation time as well as improving solution quality. Com-

mon approaches use memory, parallel GA, dedicated hardware, problem preparation, and

solution robustness.

3.4.1 Memory

In static applications, a typical role of memory is to maintain diversity by keeping track of

visited areas in the search space; consequently it guides the algorithm to unvisited areas

of the search space.

In dynamic problems, additional memory can be used to store old good solutions with

the assumption that the optimum may return to its former value. When certain aspects

of the problem exhibit some kind of periodic behavior, old solutions might be used to

bias the search in their vicinity and reduce computational time. Ng and Wong [1995] and

Lewis et al. [1998] are among the first who used memory-based approaches in dynamic

problems.
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It may seem that these uses of memories have conflicting roles, but actually they do not,

since information is not retrieved from these two kinds of memory at the same time. The

memory used to maintain diversity prevents the algorithm from unnecessary wandering as

long as the environment is stationary. As soon as an environmental change is detected,

this memory is reset (enabling the algorithm to search the entire search space including

visited areas); information is then retrieved from the memory used to store old solutions of

high quality (to bias the new search towards regions that proved to be good in the past).

Then, the memory used to maintain diversity regains control again.

The memory to store old solutions of high quality should be used with care as it may

have the negative effect of misguiding the GA and preventing it from searching new regions.

This is confirmed by Branke [1999b] who concludes that memory alone is not enough and it

should be combined with a diversification mechanism to keep exploring the search space for

new promising areas. This should be expected in dynamic environments where information

stored in memory becomes more and more obsolete as time proceeds.

3.4.2 Multiple population genetic algorithms

The inherent parallel structure of GAs makes them ideal candidates for parallelization.

Since the GA modules work on the individuals of the population independently, it is

straightforward to parallelize several aspects of a GA including the creation of initial pop-

ulations, individual evaluation, crossover, and mutation. Communication between the pro-

cessors will be needed only in the selection module since individuals are selected according

to global information distributed among all the processors.

The most common parallel model of GA is the Island Genetic Algorithm (IGA) by

Tanese [1989], and Whitley and Starkweather [1990]. IGA divides the population into sev-

eral subpopulations or islands allocated to one or more processors. These islands evolve

independently from each other for a period of time, called the isolation time, during which

no communication between processors is needed. At the end of each isolation time inter-
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val, the islands exchange individuals in a process which does not require a high level of

communication.

The IGA model not only alleviates the communication load but also has the advantage

of developing niches which lead to better solution quality at the expense of slight slower

convergence. In computational tests this model showed a speedup in computation time,

and in addition, it required fewer objective function evaluations, when compared to a single

population algorithm. Even if the IGA model is implemented in a serial manner (i.e. with

single processor), it was quicker than the standard GA in reaching the global optimum.

Recently, three multi-population implementations were specifically developed for dy-

namic environments: the shifting balance genetic algorithm (SBGA) by Oppacher and Wineberg

[1999], and Wineberg and Oppacher [2000]; the multinational genetic algorithm (MGA) by

Ursem [1999, 2000]; and the self-organizing scouts(SOS) by Branke et al. [2000]. These are

briefly described now.

Shifting balance genetic algorithm

In SBGA there is one large core population that contains the best found individual, and

several small colony populations that keep searching for new optima. The main function

of the core population is to track the shifting optimal solution. The colonies update the

core population by sending immigrants from time to time.

Self-organizing scouts

The SOS approach adopts an opposite approach to SBGA by allocating the task of search-

ing for new optima to the base (main) population and the tracking to the scout (satellite)

populations. The idea in SOS is that once a peak is discovered there is no need to have

many individuals around it; a fraction of the base population is sufficient to do the task

of tracking that particular peak over time. By keeping one large base population, SOS

behaves more like a standard GA—rather than an IGA—since the main search is allocated



3.4 Enhancing algorithm performance 41

to one population. This suggests that the method will be more effective when the environ-

ment is dynamic (many different optima arise through time) and hence the use of scouts

will be warranted. SOS is more adaptive than SBGA which basically maintains only one

good solution in its base.

Multinational genetic algorithm

MGA uses several populations of comparable sizes, each containing one good individual (the

peak of the neighborhood). MGA is also self-organizing since it structures the population

into subpopulations using an interesting procedure called hill-valley detection. Here, several

random points on the line between the two given end points are evaluated, and a valley is

detected if a sample point has lower fitness than that of both end points. The procedure

is used to determine if an individual is not located on the same peak with the rest of its

population and hence it should immigrate to a different population. The procedure can

also lead to the merging of two populations if it finds that they represent the same peak.

This method combines the advantage of SBGA (maintaining several search populations

that can be very effective for multimodal functions) with that of SOS (maintaining several

optima found through time). The main disadvantage of MGA is the frequent evaluations

done for valley detection.

Regardless of the specific application in which these multi-population approaches were

used, their use and testing was limited to continuous optimization problems. Hence, they

require further modification in order to make them useful to COPs.

3.4.3 Adapting search to population diversity

This section reviews some of the schemes used to enhance GA performance in dynamic

environments by using population diversity as a guide to control genetic parameters.

The idea of using diversity to guide evolutionary algorithms is adopted by several
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researchers in many recent publications. Zhu [2003] presents an adaptive GA for vehi-

cle routing problems. The population diversity is maintained at pre-defined levels by

adapting rates of GA operators to the problem dynamics. Zhu and Liu [2004] present

an empirical study of population diversity measures and adaptive control of population

diversity for a permutation-based genetic algorithm. Burke et al. [2004] examine several

measures of diversity in genetic programming. Ursem [2002] measures population diver-

sity as the sum of distances to an average point and uses it to guide the search process.

Riget and Vesterstroem [2002] use an approach similar to that of Ursem [2002] but on par-

ticle swarm optimization. Sörensen and Sevaux [2004] present a memetic algorithm with

population management to control population diversity. They use edit distance between

individuals in the population to measure its diversity. The edit distance, known also as

Levenshtein distance, between two strings is the smallest number of operations required to

transform one string into another, where an operation can be an insertion, a deletion, or a

substitution [Algorithms and Theory of Computation Handbook 1999].

These publications have targeted either static problems or dynamic continuous op-

timization problems, thus none can be used without modification for dynamic COPs.

Moreover, measuring diversity as the sum of distances between each individual and the

rest of the individuals in the population is computationally expensive. Computational

cost can be reduced by limiting the population size to a few individuals as proposed by

Sörensen and Sevaux [2004], but computational expense is not a sufficient reason for lim-

iting population size.

Another way of measuring diversity is to use a single aggregation point as a representa-

tive of the whole population, and thus reduce computation requirements of the diversity by

a factor of n, where n is the population size [Riget and Vesterstroem 2002; Ursem 2002].

However, this approach will not work for COPs, where there is no obvious choice for an

“average” point for the population.
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3.4.4 Dedicated hardware

Hardware implementations like field-programmable gate array chips of GAs are extremely

fast [Graham and Nelson 1996; Koza et al. 1998; Aporntewan and Chongstitvatana 2001].

Recently, Koonar et al. [2002] designed a new architecture for implementing GAa in hard-

ware. They reported more than 100 times improvement in processing speed over the

software implementations. Although their architecture was designed specifically to solve

the circuit partitioning problem for VLSI CAD design, some modules of their design can be

used for other problems. This is another advantage of using GAs where information spe-

cific to the problem at hand is processed in the evaluation function module only, allowing

other modules to be used with different problems.

The knowledge that specific hardware is beneficial to GAs encourages the investigation

of adaptive GAs on dynamic problems, with the assumption that the behavior of the final

algorithm can be further enhanced on such hardware.

3.5 Robust solutions

Practical considerations may make perturbing previous schedules undesirable, because of

commitments made to old solutions or due to the high costs of switching between different

solutions. As a result, the decision maker would have to adhere to the same solution

as long as possible even if the environment changes. The situation is more pronounced

in those applications where human beings are directly affected by the solution at hand.

For example, workers in a plant will be reluctant to move from one machine to another,

similarly aircraft crews would not be keen on having new schedules once they have arranged

their private lives to a certain schedule.

In these cases, the goal is to look for robust solutions, that is solutions that are expected

to retain some, if not all, of their good quality over a wide range of time and environmen-

tal change. In addition, robust solutions might also be desired in those cases when the
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environmental changes are too fast or when they cannot be detected quickly.

The objective function of the given problem will be modified to include minimization

of sensitivity to changes as an additional objective. One common approach measures ro-

bustness of an individual by evaluating several random solutions in its neighborhood and

taking their mean fitness as the fitness value for the individual. This approach is similar to

optimizing noisy functions; the main difference is that random disturbances are added to

the fitness value of a noisy function, whereas in measuring robustness, the individual rather

than its fitness is disturbed. Many researchers report successful results in various appli-

cations, such as flight control subject to changing weather conditions [Blythe 1998], wing-

box design optimization with manufacturing tolerances [McIlhagga et al. 1996], job shop

scheduling [Reeves 1992; Tjørnfelt-Jensen and Hansen 1999], and robot control [Jakobi

1997; Nordin and Banzhaf 1996]. However, this method suffers from the obvious increased

computation time due to the large number of evaluations.

Parmee [1996a,b] describes a method for measuring robustness in terms of sensitivity

to parameter changes. He suggests restricting the search for robust solutions to regions

of high performance only. This method aims to reduce computation time. However, it

does not deal with the objective function directly and hence may produce inferior results.

Furthermore, as it restricts the search to regions of high performance , it may miss some

robust solutions that are located in suboptimal regions. The latter observation is confirmed

by Wiesmann et al. [1998] who points out that robust solutions can be found even in regions

of low performance.

The work by Hart and Ross [1999a,b] and Hart et al. [1998] aims to accelerate the con-

struction of a robust schedule. They propose an artificial immune system that introduces

disturbances by combining building blocks of a solution in different ways.

The interested reader is referred to Jin and Branke [2005a] for a comprehensive survey

of the use of EAs in uncertain environments.
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3.6 Benchmark generation

One of the most crucial outstanding issues in dynamic optimization is the generation of

benchmark problems necessary to compare the ability of different algorithms to adapt to

a wide variety of environmental changes.

Definition 3.1 (Benchmark problem) By benchmark problems or simply benchmarks,

we mean standardized test problems designed to serve as a basis for algorithm evaluation

and comparison.

The usual reason for running an algorithm on such problems is to obtain results that

are comparable to studies on other algorithms and can, hence, attest to the superiority

(or inferiority) of the tested algorithm. Benchmarks can also help highlight strengths and

expose weaknesses of the optimizing algorithm and help in understanding the operation of

the algorithmic ideas. These different usages give rise to distinct benchmarks. However, the

focus in this thesis is on benchmarks intended for comparing the performance of competing

strategies or algorithms.

There are two basic types of data for benchmark construction: real life data and syn-

thetic data. Real life data produces cases that closely reflect real world problems, and can

thus attest to the algorithm ability to fulfill its ultimate goal (solving a particular real world

problem). They tend, however, to be very problem specific. The second type of data is

often randomly generated and produces artificial landscapes that are less problem specific

and typically unrelated to real world problems. This type is easy to obtain and analyze,

and their use enables the drawing of general conclusions about the algorithm performance.

Benchmark problems, though often constructed from synthetic data, should show some

justification to the real world in a way that enables meaningful conjecture to real problems.

In dynamic optimization, however, a real world problem is also characterized by scenarios

postulating the sequence of events (or environmental changes) in the problem. Thus, one
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would be faced by the additional difficulty of identifying the typical scenario(s), upon which

the benchmark should be based.

There exist a number of dynamic benchmark problems in the literature. Some are

intended for general use and are usually referred to as general-purpose test cases or bench-

marks. Others are specifically designed to test a particular algorithm. In most of the

surveyed literature, the authors use only one kind of benchmark. Users of benchmarks of

the first category focus on changing problem difficulty (to the solving algorithm) in order

to expose any weaknesses in the algorithm. The results from using this approach however

are generally too theoretical and have little or no bearing to the real world. On the other

hand, users of benchmarks from the second category typically target some specific problem

from the real world—attributing little significance to the first category.

3.6.1 General-purpose benchmark generators: Are they really

needed?

Having diverse test problems to evaluate and demonstrate the effectiveness of non-exact

algorithms is widely appreciated in static optimization. In dynamic optimization, test

problems have the additional requirement to cover wide ranges of environmental changes

so that they can pose as credible testers for dynamic solvers (DSs).

Researchers who introduced dynamic benchmarks have identified some fundamental

features which characterize an effective set of benchmarks. Combining the remarks of

Psaraftis [1995], Branke [2001], and Yang [2004], one can identify the following features:

• The benchmarks should not be too problem specific.

• They should be able to introduce dynamism to all elements of the optimization

problem, with controllable degrees of frequency of change, severity of change, and

other dynamics.
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• Optimal solutions to the test problems should be known.

These requirements motivated several researchers [Branke 1999b; Grefenstette 1999;

Morrison and De Jong 1999; Trojanowski and Michalewicz 1999] to introduce general pur-

pose benchmark generators (BGs) that can generate artificial dynamic landscapes with

controllable features.

The dynamic landscape presented by Grefenstette [1999] is specified as a set of compo-

nents where each component consists of a single n-dimensional Gaussian peak characterized

by three features: center, amplitude, and width. Of all peaks in the landscape, only one is

optimal with an amplitude of 100, while the remaining peaks have amplitudes between 10

and 50. All peaks move over time in randomly selected directions, while their amplitudes

are kept constant. Morrison and De Jong [1999] describe their problem generator as a two

step process. In the first step, a baseline static landscape with the desired complexity is

specified; In the second step, the desired dynamics are added. The function they use for

the static landscape is similar to the Gaussian used in Grefenstette [1999], but in their

implementation changes can be applied to any of the height, slope and position of selected

peaks. In a similar work, Branke [1999b] suggests a moving peaks function, which is ba-

sically a multimodal function with controllable height, width and position for each peak.

The moving peaks function, however, offers an additional parameter λ, ranging between

0.0 and 1.0 to quantify “how much a peak’s change in location depends on its previous

move”. Setting λ = 0.0 makes the peak’s change completely random, while the other ex-

treme, λ = 1.0, means the peak continues to shift in the same direction. The search space

of the test case generator presented by Trojanowski and Michalewicz [1999] is divided into

a number of disjoint subspaces, where for each subspace there is one unimodal function

defined within that subspace only. Thus, the number of these functions corresponds to the

total number of local optima in the overall function, and dynamism can be introduced by

changing the heights of some of the local optima.

Weicker and Weicker [1999] present a different BG in which the change in the dynamic
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problem takes place in the form of rotation of the coordinates of the underlying function,

rather than the usual translation of coordinates used by most other BGs. Unfortunately,

such changes reflect only a small portion of the environmental changes that are encountered

in reality.

Recently, Yang [2003] used a different approach to construct dynamic environments.

Instead of explicitly defining time varying functions, he constructs the dynamic problem

by continually introducing changes to a base stationary problem. He proposes using an

exclusive-or (XOR) operator to introduce changes to a binary-encoded stationary problem.

Yang and Yao [2003] use the XOR operator to generate a series of dynamic problems from

a randomly generated stationary knapsack problem.

Yang [2004] embarks on a different aspect of benchmark generation that aims to enable

the testing of genetic algorithms in dynamic environments with changing but controllable

difficulty levels. He builds on the work of Goldberg [2002], where problem difficulty for

GAs is attributed to three core elements: deception, scaling, and noise. By controlling the

three elements, it is possible to generate more complex dynamic environments with various

levels of problem difficulty.

Jin and Sendhoff [2004] have introduced a computationally efficient method based on

concepts from multi-objective optimization. They construct dynamic single objective and

multi-objective test problems by aggregating different objectives of a multiple objective

optimization problem and changing the weights dynamically.

Unlike the preceding examples, many researchers depend solely on problem specific

benchmarks [Branke 2001]. Others even downplay the usefulness of general-purpose BGs.

For example Ursem et al. [2002] note that the previous BGs create artificial dynamic prob-

lems where the shape and dynamics of the fitness landscape are introduced without any

justifying relationship to real problems. Perhaps this explains why many researchers use

problem specific generators only. There are clearly many applications where a dynamic

solver cannot be tested on the previous BGs unless it is modified so drastically that the
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new dynamic solver bears little resemblance to the original. Nevertheless, where applicable

these generators are handy tools for comparing algorithms, especially when environmental

changes of interest are not predictable.

The importance of general benchmark problems, which depend on synthetic and ran-

domly generated data, is evident for many reasons. First, synthetic data can be more

effective than real life data in comparing algorithms. With synthetic data, it is possible

to introduce variations of different degrees to the elements of the optimization problem

individually and in combination, whereas real life data is often too complex to evaluate

easily. Second, synthetic data might be the only way to detect deficiencies (in an algo-

rithm) that are not visible through the real world data available at the time of evaluation.

Third, the “No Free Lunch Theorems for Optimization” of Wolpert and Macready [1997]

imply that results of comparisons of competing algorithms are valid only within the class

of problems under consideration. Thus, the use of general benchmarks permits conjecture

to a wider variety of problems, and hence promotes portability of ideas to other problems.

Furthermore, it is well known that the use of GAs is often justified by their robustness,

and it is unreasonable to confine test cases of a general algorithm to problem-specific data.

In summary, the use of problem-specific test cases alone, at best confines the results of

testing to the particular optimization problem under consideration, and at worst hinders

the generalization of the results to problem instances other than those specifically used. In

any case, problem specific tests do not encourage using algorithmic ideas with other prob-

lems. Yet, most general benchmark generators available in the literature target continuous

optimization. As they stand, the available general generators have little use in discrete

optimization, except maybe for the limited cases discussed in the next section.

3.6.2 Representative dynamic combinatorial problems

Combinatorial problems typically assume distinct structures (for example vehicle routing

versus job shop scheduling). Consequently, benchmark problems for COPs tend to be very
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specific to the application at hand. The test problems used for dynamic scheduling and se-

quencing with evolutionary algorithms are typical examples [Bierwirth and Kopfer 1994b;

Bierwirth et al. 1995b; Bierwirth and Mattfeld 1999; Lin et al. 1997; Reeves and Karatza

1993]. However, the time-varying knapsack problem and the dynamic travelling sales-

man problem have static counterparts that are often considered representative of various

combinatorial problems. This reason partially explains the popularity of these bench-

marks [Alba and Saucedo 2005; Eyckelhof and Snoek 2002; Goldberg and Smith 1987;

Guntsch et al. 2001; Lewis et al. 1998; Mori et al. 1996, 1998; Younes and Basir 2002].

In what follows both problems are used as examples to illustrate some issues relevant to

all COPs.

Here, it should be mentioned that there exist other combinatorial test problems pri-

marily designed to help in understanding the operation of the optimizing algorithm. Ex-

amples of such test problems are the dynamic bit matching function [Stanhope and Daida

1999] used to predict GA performance, and the shaky ladder hyperplane-defined func-

tions [Rand and Riolo 2005] used to investigate the algorithm behavior. However, these

benchmarks are not covered in this thesis.

Knapsack problem

The knapsack problem (KP) models the problem of placing objects in a knapsack with a

limited capacity (weight or volume). As each object has its own value and weight, the

objective is to load the knapsack with the most valuable objects without violating the

maximum capacity constraint.

There exist several time-dependent variants of this problem used as benchmarks for

dynamic optimization. For instance, Goldberg and Smith [1987] present a dynamic bench-

mark using a seventeen-object knapsack with a weight capacity oscillating between two

values. Other researchers [Lewis et al. 1998; Mori et al. 1996, 1998] increase the number

of objects and make the weight vary over several values. The main idea of dynamism in
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these benchmarks is to vary the allowable weight limit with time. In this way, an optimal

solution becomes infeasible if the knapsack capacity is sufficiently reduced. These bench-

marks offer an additional feature over the conventional continuous benchmark generators

of Section 3.6.1 by including changes in the problem constraints. However, dynamism

in a KP should not be limited to changing the knapsack capacity since a comprehensive

dynamic KP should take into account the possibility of changing the number, value, and

weight of the objects.

Travelling salesman problem

Although the Travelling Salesman Problem (TSP) finds applications in science and engi-

neering, its real importance stems from the fact that it is typical of many COPs. Further-

more, it has often been the case that progress on the TSP has led to progress on other

COPs. The TSP is modelled to answer the following question: if a travelling salesman

wishes to visit exactly once each of a list of cities and then return to the home city, what

is the shortest route the travelling salesman can take?

As an easy to describe but a hard to solve problem, the TSP has fascinated many

researchers, and some have developed time-varying variants as dynamic benchmarks.

Guntsch et al. [2001] introduce a dynamic TSP where environmental change takes place

by exchanging a number of cities from the actual problem with the same number from

a spare pool of cities. They use this problem to test an adaptive ant colony algo-

rithm. Eyckelhof and Snoek [2002] test a new ants system approach on another version

of the dynamic problem. In their benchmark, they vary edge length by a constant incre-

ment or decrement to imitate the appearance and the removal of traffic jams on roads.

Younes and Basir [2002] introduce a scheme to generate a dynamic TSP in a more com-

prehensive way. In their benchmarks, environmental changes take place in the form of

variations in the edge length, number of cities, and what they term city-swap changes.
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3.6.3 Shortcomings of discrete benchmarks

Existing dynamic discrete benchmarks are limited both in the size of the basic static prob-

lem and in the applied dynamics. The cause of these limitations can be better addressed by

drawing a distinction between the generation of benchmarks for continuous optimization

and that for discrete optimization.

Benchmark generators for continuous optimization use functions with adjustable pa-

rameters to generate dynamic test problems with known optimal solutions. The generator

typically starts with a clearly defined static landscape then adds changes to some of the

peaks (location, height, and width) to create various landscapes in which optima shift

through time. The generator might even change the difficulty of the underlying static

function, as in Yang [2004], but the landscape at any instance of the dynamic problem

is still well defined in that values and locations of the local and global optima can be

(pre-)determined.

In discrete optimization, however, the metaphor of landscape (together with its related

terms such as hills, valleys, basins, etc.) remains indistinct until a neighborhood structure

is defined. (See Reeves and Rowe [2002] for an in-depth discussion of fitness landscapes).

Thus, a dynamic landscape in which local optima shift cannot be defined at the level of

benchmark construction. The dynamic benchmark is constructed as a time sequence of

static problems created according to some scenarios describing how changes can occur over

time, but it is often hard to—effectively and efficiently—implement these scenarios. These

deficiencies are addressed in Chapter 5

3.7 Summary

It appears that any self contained research work on dynamic optimization has to deal

with three issues: benchmarking, performance measures, and adaptation to environmental

changes.
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In general, the computation time allowed for a dynamic instance is limited, calling for

algorithms that adapt quickly to environmental changes. GAs have been successfully ap-

plied to most COPs and have the potential to be effective dynamic solvers. They combine

the advantages of manipulating several solutions simultaneously, robustness, and adapt-

ability. However, once a GA converges or nearly converges around some solution, it may

lose the ability to continue the search after an environment change. A simple remedy is to

restart the algorithm after each change but this may prove to be both expensive and ineffec-

tive, since valuable information about the search history is discarded with every restart. A

key element in the successful dynamic solver is its ability to maintain diversity throughout

the search process while retaining useful past information. This requirement adds another

dimension to the traditional issue of balancing diversification and intensification.

Several techniques have been used to enhance the performance of the standard GA in

dynamic environments. Examples can be found in adaptive genetic parameters, memory,

and parallel GAs.

For the purposes of this thesis, a promising scheme is to adopt techniques that have

proved successful for dynamic continuous optimization problems. In particular techniques

based on parameter adaptation and multiple populations seem to be the most promis-

ing. However, several issues have to be addressed in order to apply these techniques to

COPs, namely, inter-solution distance measures, diversity measures, a way to incorporate

neighborhood search techniques, benchmarking, and performance measures. Benchmark-

ing related issues are addressed in Chapter 5 and those related to adaptation and diversity

measures are addressed in Chapter 7. However, a number of basic definitions and mea-

surements of dynamism are not uniquely defined in the literature and have to be clarified

before other issues can be addressed.





Chapter 4

Basics of Dynamic Optimization,

Revisited

The measurement of performance is a critical issue when reporting computational results

obtained through the use of a heuristic method.

Barr et al. [1995]

55
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4.1 Introduction

Researchers still do not agree on what constitutes a good measure of performance for

dynamic solvers. Actually there is not even a unified clear cut definition to the dynamic

problem itself.

In this chapter, we give some basic definitions that are necessary to understand and

appreciate the work in this thesis. Most of these definitions are available in the literature

but with some ambiguity. Hence, definitions of dynamic COPs and performance measures

are reviewed and modified here. As well, issues related to performance measures and

algorithm comparison are addressed. The chapter ends by outlining the general scheme for

experimentation and result reporting.

4.2 Dynamic problems of interest

In discussing status and prospectives of the existing research on the dynamic vehicle routing

problem (VRP), Psaraftis gives a general rule for distinguishing a dynamic VRP from a

mere time-varying VRP [Psaraftis 1995]. This rule can be rephrased to include other COPs

as follows:

If the output of a certain formulation is a set of pre-determined solutions that

are not re-optimized and are computed from inputs that do not evolve in real-

time, the problem is static. If, on the other hand, the output is not a set of

solutions, but rater a policy that describes how the solutions should be obtained

as a function of those inputs that evolve in real-time, then the problem is

dynamic.

Based on this characterization, a terminology such as on-line problems or real-time prob-

lems is more appropriate than dynamic problems. However, in this thesis, the term dynamic

is used to describe such problems since it is the most common.
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To give a formal definition for the dynamic COP, a definition of a static COP is first

presented as given by Blum and Roli [2003].

Definition 4.1 Combinatorial Optimization Problem

A combinatorial problem P = {X, f} can be defined by the following ingredients:

⋆ a set of decision variables V = v1, . . . , vn with their respective domains Ω1, . . . , Ωn ;

⋆ an objective (cost) function f : Ω1 × · · · × Ωn → IR+ ;

⋆ constraints that restrict the feasible assignments to the set:

X = {x = {(v1, ω1), . . . , (vn, ωn)}| ωi ∈ Ωi , x satisfies all the constraints }

where X is often called the search space;

⋆ an aim of the optimization problem: to find an optimal solution x∗ such that f(x∗) ≤

f(x) ∀x ∈ X

Since any maximization problem can be rewritten as a minimization, the minimization

model above is, without loss of generality, used throughout this thesis. Also, the terms

minimum and optimum are used interchangeably.

Definition 4.2 Dynamic combinatorial problem

A dynamic combinatorial problem can be expressed as P (t) = {X(t), f(t)}, which is a time

augmented formulation of the previous definition of the static COP. That is, in the broadest

definition, any of the ingredients of the COP can change with time.

The definition captures the notion that any of the objective function, decision variables

and the constraints may change with time. This definition clearly indicates that the optimal

solution might change at any time due to changes in the environment. In other words, the

decision maker does not have a priori knowledge of the complete problem and hence the

problem cannot be solved in advance. Furthermore, the goal of the optimization process is
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no longer finding a single optimal solution but, rather, tracking the shifting optima through

time, since the optimal solution for one instance could be a poor solution or possibly even

infeasible for the next instance.

However, the view of a continuously changing problem in not practical. The environ-

ment in practice remains (or has to be considered) dormant between solution requests and

during the re-optimization process, since no dynamic solver adapts instantly to environ-

mental changes. Actually, a solver receives and handles not one dynamic problem that

changes with time but a series of static problems occurring over non-zero intervals of time.

Thus, a more practical treatment of the dynamic problem views the problem as a series

P of instances; each instance is a static problem that comes into effect at time t and must

be solved within a specific deadline t. The ingenuity of solving this problem is in finding

methods to exploit previously gathered information (often solutions of previous instances)

to speed up and enhance solution of the current instance.

Definition 4.3 Discrete-time dynamic combinatorial problem

A discrete-time dynamic combinatorial problem can be expressed as

P = {Pm = (Pm, tm, tm), m = 0, 1, . . . ,mmax}

With this formulation the duration of instance m is τm = tm+1 − tm, and the action of

the environmental change ∆m on the instance m is expressed by Pm+1 = Pm ⊕ ∆m. The

maximum number of instances mmax can be infinite if the problem is open ended.

We use this formulation in our handling of the benchmarks in Chapter 5 and in setting

measures of performance in the reminder of this chapter.
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4.3 Performance measures in dynamic environments

4.3.1 What makes a superior heuristic?

Barr et al. [1995] identify a superior heuristic method as “one that quickly identifies solu-

tions, identifies high-quality solutions, and is robust, performing well across a wide range

of problems and tuning-parameter settings (and is simple to implement?)”. What follows

is a discussion of these characteristics in the reverse order, and placed in the context of

evolutionary algorithms.

Simplicity of implementation

Simplicity of implementation of evolutionary algorithms is evident in the vast majority of

evolutionary research in diverse disciplines. One of the fundamental considerations in this

thesis is to maintain this quality in all the proposed adaptation strategies. We believe that

simplicity of implementation is one of the most valuable assets of evolutionary algorithms

that should be maintained as much as possible.

Robustness

Robustness can be defined as the ability of the algorithm to perform well over a wide

range of problems without readjusting the setting of the algorithm parameters. That is,

the input parameters are either kept constant for all the problems considered or allowed

to vary according to features of the problem.

The importance of robustness is clear, since an algorithm that produces high quality

solutions to only a few instances is of little use in practice. Yet, robustness is generally

difficult to assess, since it is closely related to two problematic issues: test problems and

parameter tuning. Both issues are addressed in this thesis. The generation of test problems

is covered in Chapter 5, and the issue of parameter tuning is covered in Section 4.4.
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Solution quality and speed of convergence

Evolutionary algorithms sample the search space alternating between focusing on high

quality regions and exploring new regions. Thus, the longer an EA is run the better the

quality of the final solution, but this practice necessitates a trade-off between run time

and solution quality. Consequently, the appropriate measure of performance should reflect

both quality and time. De Jong [1975] suggested two measures, online performance (ONP )

and offline performance(OFP ) , that are commonly used in comparing genetic algorithms

in static environments.

These two measures dynamically abstract the evolving search into a single value that at

any time assesses the algorithm performance up to that point, but whereas ONP provides

information on the convergence by addressing the population as a whole, OFP focuses on

the ultimate goal of the optimization process by focusing on the the best-so-far value only

[Grefenstette 1999].

At time step T both measures can be defined as follows:

ONP (T ) =
1

T

T
∑

t=1

et (4.1)

OFP (T ) =
1

T

T
∑

t=1

εt, εt = max {e1, e2, . . . , et} (4.2)

where et is the fitness of the individual evaluated at time step t.

4.3.2 Measures in use

In dynamic optimization, the typical goal is to track optima shifting through time. Solution

quality, therefore, is determined by how close the obtained solutions are to the shifting

optimal solutions. Consequently, an effective performance measure is one that abstracts
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the quality of solutions over time. Offline performance, as given in Equation 4.2, is of little

benefit in dynamic environments, since the value of previously found solutions is irrelevant

after an environmental change.

Several alternative measures have been devised. Mori et al. [1997] used an adapta-

tion performance that averages the ratios of the best found solution to the optimal so-

lution over the length of the entire search process [Trojanowski and Michalewicz 2000].

Hadad and Eick [1997] proposed using square error to the best value instead of simply the

error. Trojanowski and Michalewicz [2000] proposed an accuracy measure based on the

difference between the best found and the optimal value.

The majority of researchers use the best-of-generation value or the current best per-

formance (CBP ) value [Goldberg and Smith 1987; Cobb 1990; Dasgupta and McGregor

1992; Grefenstette 1992; Mori et al. 1996; Vavak et al. 1996; Angeline 1997; Lewis et al.

1998; Grefenstette 1999; Yang 2003].

If R runs are used, then CBP at generation g is given as:

CBP (g,R) =
1

R

R
∑

r=1

εr
g, εr

g = max
{

er | er ∈ popr
g

}

(4.3)

where popr
g is the set of fitness values of the individuals in the population at generation

g during run r. This measure is better suited to dynamic problems than the traditional

offline performance measure.

A common method for comparing algorithms is to plot CBP versus generations for each

algorithm and to compare the plots visually [Branke 2001]. However, such comparison is

neither easy nor conclusive, nor is it suitable for comparing more than two algorithms on

complex dynamic problems (in which the optimal value is not necessarily monotonically

changing). In such cases the resulting plots could be intermingled, such as those shown in

Figure 4.1, prohibiting the determination of which of the competing algorithms is perform-

ing best overall. Remember that because the problem is dynamic, we need to consider as

many solutions as the number of environmental changes.
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Fig. 4.1: Traditional comparison of best of generation curves. Two models M1 and

M2 are compared against the actual optimal solution. It is not easy to decide on which

model is performing better.

Branke [1999a] proposed a modified offline performance measure to overcome this short-

coming by resetting the computed best-so-far value at every environmental change. Still

the modified OFP does not mask out variations in the value of the solutions found, and

hence instances with large optimal values will dominate others. This shortcoming can

be avoided when testing benchmarks by normalizing the evaluations by dividing them by

their corresponding optimal solution values, which are usually known in advance in the

case of test problems. Younes et al. [2005] used a normalized modified offline performance

measure that takes into account changes in the optimal solutions and also averages the

results over the considered runs.

Morrison [2003] suggested a Collective Mean Fitness (FC) measure of the values of

the best-of-generation averaged over the number of generations and over the number runs.

Some researchers [Goldberg and Smith 1987; Dasgupta and McGregor 1992; Grefenstette

1992; Mori et al. 1996; Yang 2003] used measures based on the average of the population

usually in addition to those based on the population best. With such measures, high

values would indicate that the algorithm has identified a promising region and is keeping

the population largely centered around some high quality solution [Grefenstette 1999].
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Other measures are based on solution position rather than solution value. They require

knowledge of the position of the current optimal solution, which is often unavailable, and

thus their use is limited to test problems in which the optimal solutions are known a priori.

However, they have the advantage of being independent of fitness scaling [Weicker 2002],

hence some researches have opted to use them. For example, Salomon and Eggenberger

[1997] based their performance measure on distance from the population average point to

the optimal solution. This measure is analogous to the online performance measure, since

it considers the whole population instead of the best solution only. Weicker and Weicker

[1999] used a similar measure in which the distance measured was the minimal distance of

the individuals in the population to the current optimum. This measure is more appropriate

than the previous one, since the nearest individual to the optimum is often the best solution

in the population. More details on these measures can be found in the survey of Weicker

[2002], which also presents a systematic approach for examining performance measures

for dynamic optimization problems. This survey classifies performance measures by the

knowledge they need:

• Knowledge on the position of the optimum is available. These are the least used

measures since the required knowledge is only available in some benchmarks.

• Knowledge on the best fitness value is available. This knowledge is usually available

in benchmarks only.

• No global knowledge is available. This is the usual case when tackling a new problem.

4.3.3 Classification of performance measures

There are several publications that review performance measures such as Branke [2001],

Weicker [2002], and Morrison [2003]. However, no attempts at classifying the measures are

known to this author except the previously mentioned categorization of Weicker [2002].

This section offers a more direct and simple classification, as shown in Table 4.1.
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Table 4.1: Classification of performance measures

population based population-best based

genotypic I II

phenotypic III IV

Performance measures are divided into four groups: First the measure is classified

according to whether it targets the whole population or the best solution only. Then, the

measure is classified according to whether it is genotypical or phenotypical.

1. Entire population versus population-best

(a) Measures based on the entire population:

These measures reflect the the influence of the whole population on the search

process. Alone, they cannot be used as criteria for comparing competing algo-

rithms since they do not assess the algorithm ability in achieving the optimiza-

tion goal. Still, they can be used to assess the affectivity of operators that are

applied at high rates, such as crossover, but would not be useful in assessing,

for example, the effectiveness of mutation because mutation is often applied at

a very low rate.

(b) Measures based on the population-best:

These measures are mainly concerned with how good the best found solution

is and how close it is to the optimal solution. These measures are the most

convenient and the most commonly used, since they try to assess the success of

the algorithm in reaching its ultimate goal.

2. Genotypic versus phenotypic

(a) Genotypic based measures:

These measures are usually given in terms of distance to the optimal solution.
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They have the advantages of being immune to fitness scaling, thus their effec-

tiveness is not diminished when the optimal value changes from one instance

to another. However, they require that the position of the optimal solution be

known for each instance of the dynamic problem. Another disadvantage of these

measures is that although genotypic distance may reflect the closeness to the

optimal solution it does not reflect the optimization goal, since a solution that

is close to the optimal position may be inferior to another solution that is po-

sitioned farther from the optimal solution. In this case, the genotypic measure

will favor the inferior solution, which can adversely influence the results.

(b) Phenotypic based measures:

Phenotypic based measures are more goal oriented since they usually measure

the fitness of the solution. Examples are online performance, offline perfor-

mance, and best-of-generation. The main disadvantage when using these mea-

sures in dynamic problems is that they are biased to instances with large optimal

solutions.

In short, the most appropriate measures for this thesis are in class IV of Table 4.1;

Class III measures can be used too, but only to complement class IV measures. Further-

more, measures in both classes can be made to assess the speed of convergence of the

algorithm as well by accumulating the measures over time.

4.4 General considerations

This section highlights some issues that have to be addressed during experiment setup and

reporting.



66 Chapter 4. Basics of Dynamic Optimization, Revisited

4.4.1 Quality-speed tradeoffs

As mentioned earlier, a trade-off between run time and solution quality is often necessary.

The correct balance depends on the application at hand, and thus it is generally left

to the user to decide on the the best balance according to his/her understanding of the

problem circumstances. It will be rather pointless to argue which is the determining factor

in comparing algorithms. Instead, we propose basing the comparisons between various

strategies on solution quality only, while limiting the run time allowed for the dynamic

solver. For each instance of the dynamic problem, the dynamic solver will be allowed a

fraction of the time (number of generations or evaluations) taken by a static algorithm

to reach an acceptable solution of the same instance, as illustrated in Figure 4.2. There

are two additional advantages to limiting run time between instances. First, comparison

between competing algorithms will be more effective because differences in performance

between various algorithms tend to diminish with time, which render comparisons after

extended periods rather pointless. Second, using unequal intervals between environmental

changes in the problem will bias the final aggregate measure towards longer intervals.

4.4.2 Effects of stochastic sampling

Evolutionary algorithms, like most metaheuristics, incorporate some stochastic components

to sample the search space. Thus, an evolutionary algorithm may produce different results

with different seeds in the random function used. That is, running an algorithm several

times on the same instance can give different results. For this reason, we report not only

the best obtained results but also the average and the worst results obtained over the runs

conducted, together with their standard deviations.
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Fig. 4.2: Limited run time for dynamic Problems. (a) Static problems are first solved

independently and with relatively unlimited run times. (b) Instances in the dynamic

problem are solved consequently with limited time per instance. The closeness of DS

solutions (x̂0, x̂1, x̂2, x̂3, . . .) to static solutions (x0, x1, x2, x3, . . .) reflects both solution

quality and run time.

4.4.3 Changes in values of optimal solutions

One important factor that is not specifically addressed in the literature is the sensitivity

of performance measures to extreme solution values. Measures that sum up the algorithm

performance in a single value such as the modified offline performance measure and the

collective mean fitness measure do not take into account the difference between solution

values throughout the run. Such measures will be biased toward instances with large

optimal values. This shortcoming can be overcome in test problems, where optimal or

near optimal values are known in advance, using a simple normalization of the performance

measure before averaging [Younes et al. 2003, 2004, 2005]. However, in cases where a basis

for normalization cannot be pre-determined, it might be necessary to augment aggregate

performance measures by outputting the evolution of the measure from one instance to

another.
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4.4.4 Units of time

The time required to evaluate a single individual is traditionally taken as unit time in result

reporting. For example offline and online performance measures are usually expressed

in terms of the number of evaluations, which has the advantage of making results less

machine dependent. Still, this practice produces large amounts of data as there can be

many evaluations at every generation. Furthermore, it does not reflect the mechanism of

EAs, in which a generation is the basic iteration. In other words, the smallest time interval

in an evolutionary run that encompass all genetic operations is one generation. Thus, it

is more appropriate to report performance measures over a number of generations rather

than over a number of evaluations.

4.4.5 Parameter tuning

One of the major shortcomings of heuristic methods has to do with the tuning of parame-

ters. It is time-consuming, it can promote unfair comparisons between algorithms, and it

can counter claims of algorithm robustness.

In a traditional EA, the fundamental tunable parameters are population size, mutation

rate, and crossover rate, which would appear to be too few to constitute any difficulty.

However, they are interrelated in a way that is still not completely clear (another conse-

quence of lacking a proper theoretical background). This difficulty is more aggravated in

contemporary EAs which incorporate additional techniques such as multiple populations,

diversity controlling schemes, or even other hybridizing heuristics, with the consequence of

more parameters to tune, requiring more time and greater efforts for tuning.

In general, it is possible to tune the algorithm parameters on a specific problem so

that it produces very good results on the instance at hand. Such a practice raises several

questions that seem to be unanswered. What is the best way to do tuning? Should it be

done individually or collectively, randomly or deterministically? How much time and effort
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can be allocated to tuning? How far can one go on tuning without biasing fair comparison

between algorithms and without prejudicing claims to algorithm robustness?

Questions of this sort have been raised by many researchers [Barr et al. 1995; Hooker

1996; Johnson 2002]. Still, there do not seem to be any satisfactory answers. The amount

of parameter tuning that can be done is also a subject of trade-off between solution quality

from one side and experimentation time, algorithm robustness, and fairness of comparison

on the other side. Ultimately, the decision to the amount of time that can be allocated to

tuning is more or less left up to the the one carrying out the experiments.

On the other hand, there is the comforting findings of Grefenstette [1986], who in his

search for the optimal set of parameters, concluded that a GA is basically so robust that

the setting of parameters is not critical within quite wide margins.

Parameter tuning is addressed on two fronts in this thesis. First, experimentation

is generally carried out so that parameters are either pre-determined from preliminary

experiments or changed in a controlled manner without fine tuning (see the next section

for details). Second, diversity is used to control genetic parameters instead of having them

specified by the user. The details of this approach are presented in Chapter 7.

4.5 Experimentation scheme

Experiments in this thesis are carried out in three phases: preliminary, basic, and compar-

ative.

4.5.1 Preliminary experimentation phase

The preliminary phase of experimentation contains experiments to test wide ranges of

algorithm parameters, mostly on static instances. Most of these experiments are rather trial

and error involving a large number of parameter combinations and hence are not reported,

even though they had taken up a sizeable proportion of the overall experimentation time.
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The main purpose of these experiments, however, is to roughly establish working ranges

of the algorithm parameters by excluding values that tend to produce unreasonable results

(very low solution quality or excessive number of generations). In this way, efforts of

parameter tuning in experiments carried out on dynamic problems in the next phase are

reduced. Furthermore, biasing in dynamic tests is reduced and any claims to algorithm

robustness are more justified.

4.5.2 Basic experimentation phase

This phase constitutes the major experimental work. It consists of the experiments neces-

sary to investigate the contribution and the effect of the individual components within the

developed algorithm by monitoring the evolution of several variables over time (number

of generations). The main output variables are population best solution, population aver-

age and standard deviation, and the best-so-far solution. The evolution of genetic control

parameters and population diversity measures are also reported when needed. Algorithm

parameters are varied in a controlled way, within ranges established in the literature or

found during preliminary experiments. In other words, parameters are not fine-tuned but

are varied in a predetermined manner. In this way, the effect of parameter setting on al-

gorithm performance is also investigated. Where an individual parameter is investigated,

several values within the feasible range of the parameter are used. However, when several

parameters are investigated simultaneously, only three values (high, medium, low) of each

parameter are tested in order to reduce the number of combinations to test.

4.5.3 Comparative experimentation phase

This phase is mainly concerned with comparing algorithms on benchmark problems, thus

the performance measures used here are aggregate measures that abstract algorithm evolu-

tion over the entire run. The principal criterion for comparison is the normalized current-
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best performance over a limited number of generations—to reflect both solution quality

and time and to avoid bias to instances with long periods, as described earlier. As well,

to consider the effects of randomness, several runs are used. The results are reported in

terms of the runs-best solution, runs-average solution, and runs-worst solution.

The experiments are conducted either on fixed parameters (pre-determined from ex-

perimentation on other problems during the previous phases) or on variable parameters

(changing with time, diversity measures or environmental changes) to avoid problems as-

sociated with the use of fine-tuned parameters described in Section 4.4.

Since the test problems considered in this thesis are minimization of cost functions, the

related performance measures are directly based on the solution cost rather than on the

fitness. First, a mean best of generation (MBG) is defined after G generations of the rth

run as:

MBG(G, r) =
1

G

G
∑

g=1

(

εr
g

ĉg

)

, εr
g = min {er

θ | tg ≤ θ < tg+1} (4.4)

where er
θ is the fitness of the individual evaluated at time step θ and run r, tg is the time

step at which generation g started, and ĉg is the the optimal cost (or the best known cost)

to the problem instance at generation g.

Then, the algorithm’s performance on the benchmark over R runs can be abstracted

as follows:

RunsAverageMBG(G,R) =
1

R

R
∑

r=1

MBG(G, r) (4.5)

RunsWorstMBG(G,R) = max {MBG(G, r) | r ∈ R} (4.6)

RunsBestMBG(G,R) = min {MBG(G, r) | r ∈ R} (4.7)
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With these definitions, smaller values of the performance measure indicate improved

performance. Moreover, since MBG is measured relative to the value of the best solutions

found during benchmark construction, it will in general exceed unity. Less than unity

values if encountered indicate excellent performance of the corresponding model in that

the dynamic solver with limited (time per instance) budget outperforms a static solver

with virtually unlimited budget.

Statistical analysis

Statistical t-tests that are used to compare the means of two samples can be used to

compare the performance of two algorithms. The typical t-test is performed to build a

confidence interval that is used to either accept or reject a null hypothesis that both sample

means are equal. In applying this test to compare the performance of two algorithms, the

measures of performance are treated as sample means, the required replicates of each

sample mean are obtained by performing several independent runs of each algorithm, and

the null hypothesis is that there is no significant difference in the performance of both

algorithms.

However, when more than two samples are compared, the probability of multiple t-

tests incorrectly finding a significant difference between a pair of samples increases with

the number of comparisons Hochberg and Tamhane [1987]. Analysis of variance (ANOVA)

overcomes this problem by testing the samples as a whole for significant differences.

Therefore, in this thesis, ANOVA is performed to test the hypothesis that measures

of performance of all the evolutionary models under considerations are equal. Then, a

multiple post ANOVA comparison test, known as Tukey’s test, is carried out to produce

95% confidence intervals for the difference difference in the mean best of generation of each

pair of models.
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4.6 Summary

This chapter gave an overview of basic aspects of dynamic problems. As a still developing

field, dynamic optimization has some attributes that are vague, application dependent, or

simply flawed. Therefore, it is essential to review these attributes in a framework congruent

with this thesis.

The definition of the dynamic problem of interest and the criteria of performance mea-

sure were revised according to the goals of this thesis. This chapter also described schemes

used for experimentation and result reporting that take into consideration effects of stochas-

tic sampling, tradeoff between solution quality and cost, and fair algorithm comparison.

With the basic issues covered in this chapter, the next chapters focus on the main

aspects of the thesis: benchmark generation and algorithm development.





Chapter 5

Benchmark Generation

Every time an algorithm uses a particular operator, it can be seen as traversing an edge,

or taking a “step,” on the landscape defined by the operator in question. I call this the

“One Operator, One Landscape” . . .

Jones [1995]

75
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5.1 Introduction

Generating benchmarks for dynamic environments is considered an important goal in this

research for two reasons. One reason stems from the well-known implications of the ”no-

free-lunch” theorems of Wolpert and Macready [1997], which show that any comparison

between competing algorithms must be supported by a set of test problems [Grefenstette

1999]. The other reason is that there are still no agreed upon standard test sets for dynamic

optimization.

This chapter addresses two overlooked issues in the generation of dynamic COP bench-

marks: First, generating a sequence of instances that effectively test adaptability in al-

gorithms generally requires solving each instance explicitly or at least determining upper

bounds for solutions. Thus, computational costs can restrict the size of the base prob-

lem and length of sequence of the static instances constituting the dynamic benchmark.

Therefore, a scheme for benchmark generation that needs only solve the initial instance

of the dynamic problem is proposed. Second, since combinatorial problems assume dif-

ferent structures, their test cases tend to be too problem specific, and their results are

often considered application dependent. While this may hinder a general treatment for

static COPs and prevents the use of a general-purpose benchmark generator for dynamic

COPs, it does not prevent a general treatment of their dynamic issues. In fact, it makes

a general framework both interesting and challenging. To the author’s knowledge, there

exists no such framework in the literature. The closest work perhaps is that of Weicker

[2000], but that framework was specifically designed to encompass the general BGs in-

troduced a year earlier [Branke 1999b; Grefenstette 1999; Morrison and De Jong 1999;

Trojanowski and Michalewicz 1999; Weicker and Weicker 1999]. It uses their way of de-

scribing an overall function in terms of several elementary functions or peaks, each having

its own rule of dynamics (a rule of dynamics defines how the function coordinates and

values are varied). Since these BGs are not designed for dynamic COPs, their framework
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is also unsuitable for COPs. This chapter, therefore, presents a framework for dynamic

benchmark generation for COPs. The framework aims to establish a basis for benchmark

generation. It also enhances the ability of the benchmark problem to compare adaptability,

by restricting environmental changes to those inducing adaptation.

5.2 Analysis of environmental changes in COPs

Changes can take place in a dynamic problem in many ways; in fact there can be an infinite

number of scenarios in which changes can affect elements of an optimization problem.

However, some of these changes can be so insignificant for benchmarking purposes that

the resultant dynamic problem can still be considered static. Moreover, many scenarios,

though distinct from one another, have the same effect on the DS and, as such, can lead

to ambiguous results.

In this section, we start by categorizing environmental changes in order to isolate and

address relevant issues later. Environmental changes that constitute a dynamic optimiza-

tion problem can be divided into two basic categories: dimensionality changes and non-

dimensionality changes. Changes in the first category correspond to adding variables to

the optimization problem or removing variables from it. Examples of such changes are

the insertion or the cancellation of assignments in a vehicle routing problem, orders in a

job shop scheduling problem, cities in a TSP, and objects in a knapsack problem. These

changes require a corresponding alteration in solution representation.

Changes in the second category result from variations in the values of the parameters

and coefficients of the problem constraints and objective function. As some of these values

change from one instance to another, a one time optimal solution might lose quality relative

to another solution that was inferior to it in the past. Examples include changes in the

capacity of the knapsack problem or in the weights or the values of its objects. Other

examples can affect the travel time on some roads in a vehicle routing problem, and the
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processing time and ready dates of a scheduling problem.

Moreover, benchmark problems involving non-dimensionality changes are harder to

construct. Whereas the construction of benchmarks incorporating dimensionality changes

may involve simply adding or deleting variables, the construction of benchmarks incorpo-

rating non-dimensionality changes is not as straightforward and is potentially complicated

by what we will refer to as dynamically insignificant changes.

5.2.1 Dynamically significant changes

In applying non-dimensionality changes, the differences between successive instances can

inadvertently be made dynamically insignificant; that is, the introduced changes are so

trivial that any optimizing algorithm exhibits the same behavior whether the change is

made or not. A dynamically insignificant change can thus be defined as an environmental

change that does not alter the structure of the problem instance. Such a change would

keep the optimal solution unchanged and hence does not induce any adaptation from the

dynamic solver. In a knapsack problem, for example, reducing the value of an object that

is not in the optimal solution (or increasing the value of an object that is in the optimal

solution) will not alter the optimal solution. Furthermore, reducing the value of an object

in the optimal solution (or increasing the value of an object not in the optimal solution) will

not alter the optimal solution unless the changes are sufficiently large. Similarly, increasing

or decreasing travel time on a road in a TSP may not be significant.

Algorithm behavior due to insignificant changes can be clearly pictured with the help of

an example from continuous optimization, as shown in Figure 5.1. In this example, starting

from an initial solution x0, a hill climber should be able to climb f1(x) and eventually end

at the peak at x∗. A solver will consistently return the same solution with f2(x) and f3(x),

and with any similar function differing in peak’s height—regardless of the magnitude of

the difference as long as there is one local optimum in the search region. Clearly a dynamic

problem in which the environmental changes make the objective function oscillate among
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the functions f1(x), f2(x) and f3(x) is useless as a dynamic benchmark since even the

simple hill climber can play the role of a dynamic solver due to the fact that it need not

exhibit any kind of adaptation to changes taking place in this problem.

For continuous problems a BG can explicitly shift the location of the optima and

thereby make environmental changes dynamically significant. However, since one cannot

define a unique (algorithm independent) landscape as a COP benchmark (as was discussed

in Section 3.6.3) , one would not be able to identify which of the applied non-dimensionality

changes are dynamically insignificant. This suggests that a minimum requirement to ensure

dynamic significance is that the optimal solutions of all instances in the benchmark be

known. This requirement adds to the efforts of selecting the changing parameters and their

corresponding values, and might even necessitate solving newer instances before actually

adopting them as part of the benchmark.

x

f(
x)

x
0

x*

f
1
f
2
f
3

Fig. 5.1: Dynamically insignificant changes in a continuous function. Oscillating among

the three functions does constitute significant changes.



80 Chapter 5. Benchmark Generation

5.2.2 Misleading patterns of change

In addition to being of little value from a testing perspective, dynamically insignificant

changes give rise to misleading patterns in the measures of dynamics. A measure of dy-

namics is one that quantifies certain features of the change taking place in the dynamic

problem. The most frequently used measures of dynamics are severity and frequency of

change of the underlying parameters of the problem.

Measures of dynamics are varied in a benchmark problem to produce different patterns

of environmental changes that can be used to test the ability of the algorithm to adapt

in diverse environments. However, if these patterns are composed—even partially—from

dynamically insignificant changes, they will be less effective in inducing adaptation than

expected. In such cases, results of experimentation will be misleading if attributed to the

input pattern of change as is often done, since there actually are much simpler patterns

that produce the same effect on the the same DS. The following examples illustrate several

cases of non-dimensionality changes to show how the effective patterns can be considerably

different from the input patterns.

Example1: Changes affecting an optimal TSP edge

Consider a dynamic TSP where dynamism is introduced by changing the length of an edge

in the optimal tour. To ensure dynamic significance, the edge length must be increased

to a sufficiently large value that renders the current optimal solution suboptimal. Call

this value the level of significance. Figure 5.2 shows some possible changes in the edge

length, with p0 denoting the original edge length and f1, f2, and f3 denoting three possible

patterns of change in the edge length.

It can be seen that throughout the three patterns, the edge length never reaches its level

of significance. As environmental changes, these patterns do not differ from one another.

In fact, their effect on the dynamic solver is similar to that of the original static pattern p0,

and we describe these cases as dynamically equivalent to p0. There are an infinite number
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Fig. 5.2: Intricate but insignificant edge changes. Even the most complex input pattern

may not not be challenging; f1,f2, and f3 are in effect similar to the stationary pattern

p0

of patterns of this kind and though they might be very complex, they are worthless in

testing adaptation in algorithms.

In other cases, where edge length increases beyond the level of significance, the overall

pattern of change can still be misleading. In Figure 5.3 for example, the edge length in

the pattern f4 goes above the level of significant change. However, as an environmental

change, this patten is equivalent to that of the simple pattern f4e, since at any instance

in time the explicit edge length is not particularly important; moreover, if an increase in

length is dynamically significant at one time, subsequent increments in the same edge will

not constitute dynamically significant changes.

Example2: Changes affecting a non-optimal TSP edge

In this example, we examine cases in which the changing edge in a TSP is not on the

optimal tour. Change of this kind can only be dynamically significant if the new length is

sufficiently smaller than the previous length (i.e., below the level of significance). Figure 5.4

shows a possible pattern of change (f5) which is dynamically equivalent to the pattern of
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Fig. 5.3: Suppose that the dynamic solver is required to supply solutions to instances

specified by the vertical dashed lines. The change from f4(t0) to f4(t1) is dynamically

significant because it crosses the level of significant change. Subsequent values of f4

remain above the level and hence changes of f4 at t2, t3, t4 and t5 are not dynamically

significant. But at t6 there is a significant change while the changes of f4 at t7, t8, and

t9 are not significant. The pattern f4e shares the same dynamically significant changes

(at t1, t6) with f4 and hence both patterns are considered dynamically equivalent.

change labelled f5e.

Example3: Changes affecting knapsack capacity

Misleading patterns occur with non-dimensionality changes of the knapsack problem which

affect object value, object weight, and knapsack capacity. Changes in the first two param-

eters can be characterized in a manner similar to those discussed in the previous examples.

The third type of change—which is also a popular way of constructing dynamic knapsacks—

is more interesting since there are several levels of significance involved. In fact, there are

as many levels as there are objects in the problem. Increasing the capacity beyond the

highest level enables the knapsack to include all the objects whereas reducing the capacity

below the lowest level precludes all objects. Figure 5.5 shows a possible dynamic knapsack

constructed by varying the weight capacity f6 over time where p0, as before, denotes the
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Fig. 5.4: Partially significant change on an optimal edge. Only small enough decrements

in f5 are effective and hence show in f5e.

initial capacity. Four of the possible levels of significance are shown: level U1 indicates

the capacity at which the knapsack can admit an additional object, and level U2 indicates

the capacity that permits yet another object. The two other significant levels in the figure

have the opposite meaning. At L1 one object has to be removed and at L2 a second object

has to be removed. A change in capacity that yields a level between any two consecutive

levels does not constitute a dynamically significant change and only changes that cross a

level will be significant. Consequently, the input pattern f6 is effectively reduced to the

simpler one, f6e.

These examples used simple elementary changes to illustrate how patterns of change

can be misleading due to the presence of insignificant changes. This issue becomes more

complicated in the general cases where an individual change is composed of several com-

ponents involving different elements of the optimization problem. For example, Figure 5.6

shows the results of experiments done at the early stage of this thesis to compare the two

strategies (M1 and M2) of dynamic adaptation on a simple ten-city TSP problem. The

problem is made dynamic by randomly changing the cost of some edges, one at a time. At
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Fig. 5.5: Partially significant change in knapsack capacity. Only changes that cross L1,

L2, U1, or U2 will be effective and show in f6e

every environmental change a random edge is selected from the problem and its length is

changed randomly (increased by a factor of 1.5 or decreased by a factor of 0.5). At first, it

was expected that the optimal solution would also change randomly, either increasing or

decreasing at every environmental change. But, as can be seen in the figure, the optimal

solution did not increase. This is because increasing the length of the edge will affect the

optimum tour only if this edge happens to be part of the optimum tour. This has a low

probability of occurrence since the number of the edges on a single tour constitute only a

fraction of the total edges of the problem. (The probability of this event occurring in this

instance was 0.5*10/45 =0.11).

In cases with more complicated patterns, the effect of any existing significant com-

ponents of change may unwittingly be attributed to all components of the change—the

significant and the insignificant ones. Therefore, in order to study how dynamic solvers

tackle different patterns of change, one needs to determine the simplest effective pattern

by identifying insignificant changes in the input parameter. This is not a trivial task and

may require solving many candidate instances before actually adopting any of them as a
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Fig. 5.6: Random edge change in a TSP

part of the benchmark problem.

5.3 Benchmarks general requirements, revisited

Based on the discussion in the previous section, we re-define the general features desired

in an effective benchmark generator for dynamic combinatorial problems as follows:

• The generator should be able to vary all elements of the optimization problem.

• The generator should be able to provide a wide variety of dynamics; that is, varia-

tion of the changing element can take different patterns with controllable degrees of

complexity.

• The generator should be able to test adaptive performance of a tested solver by

ensuring that the environmental changes are dynamically significant.
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• The generator should produce test problems in such a way that the optimal values

are known, and ideally the optimal solutions are also known.

• The generator should not be too problem specific. Still, the static problems and

scenarios of environmental changes on which the benchmark is constructed should

permit conjecture to more realistic problems.

5.4 Mapping-based benchmark generation

It was noted previously that before a complete dynamic benchmark problem can be con-

structed it might be necessary to solve many problem instances. This requirement is very

expensive if not impossible, especially when the problem in question belongs to the NP-

hard class. Two options can be used to alleviate this difficulty. The first one limits the

number and the size of the static instances constituting the benchmark. Of course, using

small problem sizes may make the problem trivial, and using few instances may restrict

the dynamics that can be modelled. The second option uses results of previously estab-

lished algorithms to compare with those of the DS being testing. This option has two

disadvantages: first, evaluations would be of a relative nature (to the quality of other al-

gorithms). Second, as we do not have a wealth of results for other algorithms, the choice

of the comparing algorithms and the way they are run can severely change the outcome of

the evaluations.

These difficulties motivated the author to introduce a general scheme to generate bench-

marks of arbitrary number and size of instances. The scheme is based on the work of

Younes et al. [2003] who introduced a benchmark generator for a dynamic TSP with long

sequences of static instances and controllable characteristics of dynamics. In what follows,

we illustrate how the underlying concept can be generalized for COPs.

The main idea is centered on the fact that GAs do not handle solutions directly but

work on their encoding. Thus, an environmental change can be simulated at any time by
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manipulating the mapping function that encodes solutions into chromosomes: the actual

environment remains stationary, but any stored chromosomes (in the population or in any

other kind of memory) will map into new solutions. To the DS, the change in the stored

potential solutions amounts to an environmental change, and the DS will be compelled to

adapt to this change in order to track the shifting optima. To the benchmark user, the

entire sequence of instances has the same optimal solution, and only the initial instance has

to be solved. Consequently, by controlling the change in the mapping, the user can present

the DS with a dynamic benchmark with controllable dynamics without the usual limitation

on the problem size and the number of instances. The following examples illustrate the

idea and its applicability to some problems.

5.4.1 Example 1: dynamic knapsack problem

This example considers the seven-object knapsack problem illustrated in Figure 5.7. In this

setting, a candidate solution consisting of the objects O1, O4, O3, O2 and O7 is encoded

by a mapping function to the chromosome (B1 B4 B3 B2 B7). Then if, for example, the

objects associated with the labels B3 and B5 in the mapping function are swapped, the

same chromosome (B1 B4 B3 B2 B7) will represent a different individual, which consists

of the objects O1, O4, O5, O2 and O7. If all the chromosomes in the population are

treated in this way, they will point to different individuals, and any re-evaluation of the

population will reveal that it now consists of individuals which are actually different from

their predecessors—some of the new individuals might even turn out to be infeasible. By

repeatedly changing the encoding, a sequence of instances can be generated from a single

problem. A dynamic solver will treat the sequence as a dynamic problem in that it will

try to adapt to changes in the problem; whereas the benchmark designer knows the values

of the optimal solutions to all the generated instances, since they are actually the same.

Thus, in using this mapping-based scheme one needs only to optimize the initial instance

of the dynamic problem.
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Fig. 5.7: Mapping swap in a KP

The severity of change in the mapping-based benchmark can be expressed as the number

of interchanges imposed on the mapping function per environmental change. The change

frequency can be expressed in terms of the number of iterations or evaluations between

consecutive changes.

5.4.2 Example 2: dynamic traveling salesman problem

In a manner similar to that just described for the dynamic knapsack problem, benchmarks

for the dynamic TSP can be generated by swapping city labels in the mapping function.

With such a swap, every chromosome in the current population will decode into a new

solution. Figure 5.8 shows a possible tour in an example of an eight-city TSP and the

chromosome representing that tour. If the labels of cities 3 and 6 are interchanged, the

same chromosome will point to a different tour as shown in the figure. As in the previous

example, this mapping swap can be considered an environmental change, and the severity

of this change will be proportional to the number of underlying interchanges.

Although mapping-based change may not reflect real-world situations, the technique

serves the goal of generating dynamic test COPs with known optima without the usual lim-

itations on the sequence length and instance size. Other COPs can be treated in a similar

way to produce dynamic versions. For example, the mapping-based swap can be applied

to job shop scheduling or the labels of machines, parts or operations in ways that make
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Fig. 5.8: Mapping swap in a TSP. The chromosome in (a) represents the tour in (b)

and later the tour in (c).

a chromosome in a population represents a different solution. A facility location problem

can be made dynamic by interchanging locations labels or facility labels. Furthermore,

complicated test problems that are more real-world oriented can be constructed by com-

bining mapping-based procedures with dimensionality and non-dimensionality changes. In

any case, a mapping-based BG offers a simple, quick and easy way to generate problems

that can be used to test and compare dynamic solvers. The effectiveness of this technique

is compared with real-world environmental changes in Chapter 6, and its applicability to

more complex problems in demonstrated is Chapter 8.

5.5 Generalized framework for benchmark generation

The idea of constructing general combinatorial BGs similar to those available for continuous

optimization is appealing; however, it seems a distant goal, since COPs in their static

forms tend to take very distinct structures—too distinct to permit a single BG for the

diverse COPs we have. Still, this fact makes the idea of grouping dynamic combinatorial
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benchmarks under a common framework both interesting and challenging.

This section presents a framework to encompass different types of environmental

changes used currently to construct benchmarks for various COPs. The framework,

thereby, establishes a basis for benchmark generation. As well, by expressing severity

and period of change in terms of significant changes, the framework aims to make better

distinction to what constitute different environmental changes.

The general idea of the proposed framework is to start with an initial static benchmark

problem S0 taken from the literature or from available real life data. Then, changes are

repeatedly introduced to the problem in order to generate a sequence of static problems.

At any time, the introduced change should ensure that some exploitable similarity be-

tween any two succeeding instances is retained without rendering the change dynamically

insignificant; in other words, neither the problem changes completely nor is the change

trivial. The operation of the generator is divided into two stages: a sequence generation

stage that creates a pool of kmax static problems and a dynamism control stage that se-

lects problems from the pool to construct one dynamic problem with mmax instances, as

illustrated in Figure 5.9.

In the sequence generation stage, a controlled amount of change is applied to an element

of the optimization problem Pk to create the next problem Pk+1 in the sequence. We refer

to the controlled change as an elementary step δk. As there are three types of changes

(dimensionality, non-dimensionality, and mapping-based), the elementary step can take

one of the following three forms:

• A dimensionality step, i.e. the addition or the deletion of a single variable.

• A non-dimensionality step, which corresponds to a change in the value of the pa-

rameters or the coefficients of the problem. In this case, it should be dynamically

significant. If it affects problem constraints, it should also ensure feasibility of the

new problem instance; i.e., it may render some of the feasible solutions of the previous
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Fig. 5.9: Generalized benchmark generation. (a) Sequence generation stage (b) Dy-

namism control stage

instance infeasible but does make the new instance entirely infeasible.

• A mapping-based step, i.e. a single swap in the mapping function.
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The above process of adding an elementary step can be written as follows:

Pk+1 = Pk ⊕ δk, k = 0, 1, . . . , kmax − 1

Each newly created static problem is solved independently of the others. This stage finally

ends with a sequence of static problems Pk and their corresponding optimal or near optimal

solutions xk. The sequence generation stage can be defined as follows:

S = {Sk = (Pk, xk), k = 0, 1, . . . , kmax}

where

Pk = P0 ⊕ δ0 ⊕ δ1 ⊕ . . . ⊕ δk−1

xk = argopt(Pk)

In the second stage, a complete dynamic problem D is created by selecting some of

the static problems in the sequence S as instances of D. The selection is done in such

a way that the resultant dynamic problem has the required properties of dynamism. For

example, the severity of the change can be increased by skipping some of the intermediate

problems in the static sequence. Similarly the frequency of change can be specified by the

number of evaluations (or generations) between successive instances.

To further elaborate on this stage, let us first define an environmental shift ∆m as the

change applied to the mth instance of the dynamic problem to create the next instance.

That is,

Dm+1 = Dm ⊕ ∆m

Then the severity of change νm can be expressed as the number of elementary steps compris-

ing ∆m, and the period of change τm can be defined as the duration (number of generations

or evaluations between successive shifts) of the mth instance.

Once the required severity νm and period τm are specified, the dynamic problem can

be given as a sequence of problem instances Dm, points of time tm and target solutions ym

as follows:

D = {Dm = (Dm, tm, ym), m = 0, 1, . . . ,mmax}
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in which Dm and ym are actually Pk and xk in the sequence S respectively, where

k =
m−1
∑

i=0

νi

and instance m begins at time

tm =
m−1
∑

i=0

τi

The performance of a dynamic solver on the constructed benchmark will be assessed by

comparing solutions produced by the dynamic solver to the target solutions (ym) produced

by the benchmark generator.

Different test problems can be constructed under the generalized framework, by chang-

ing the static problem P0, the elementary steps δ, the severity ν or period τ . As well, a

second sequence of static problems can be added to the dynamic problem. The additional

sequence is constructed by reversing the changes introduced to the first sequence. Then,

by repeatedly adding and reversing changes, cycling environments can also be created.

We now give examples to illustrate how different environmental changes can be con-

structed in accordance with the generalized framework. These examples are based on the

three modes of the dynamic TSP benchmark generator that Younes et al. [2003] intro-

duced.

1. Edge Change Mode

This mode reflects the introduction and removal of traffic jams. Distances between

the cities are viewed as time periods or costs that may increase or decrease over time,

hence a problem change can be introduced by changing the distance between cities.

In this case, the elementary step of the change is the increase in the length of a single

edge.

2. Insert/Delete Mode
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In this mode, new assignments (cities) are added or deleted from the problem. The

elementary step is the addition (or the deletion) of one city. As mentioned earlier,

this mode might prove to be difficult to solve since it entails variable representation

to match variable number of cities over time.

3. Vertex Swap Mode

This mode, described earlier in Section 5.4, involves interchanging the locations of

two randomly selected cities. The length of the optimal tour remains the same but

the tour itself will be different. The elementary step is an interchange of the labels

of two cities.

The knapsack problem can be easily fit in this framework. Dimensionality changes

takes place as the addition or deletion of an object from the problem; the corresponding

elementary step is simply the addition or deletion of a single object. For non-dimensionality

changes, the elementary step can be any dynamically significant change in the value or

weight of a single object, or in the capacity of the knapsack. If the mapping swap operator

is used, the corresponding elementary step is an interchange of two objects (one pair).

5.6 Summary

General purpose benchmark generators, though important in continuous optimization, are

of little use to COPs. The concept of moving peaks, which is the basis of these generators,

is not applicable to COPs, where even the word peaks is ambiguous in a discrete problem.

Combinatorial benchmarks are best described as time sequences of static problems

strung together, where each static problem is explicitly solved one way or another. However,

existing benchmarks tend to be too problem specific to be of general interest. Furthermore,

the construction of the dynamic variant is computationally expensive especially if the
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base static problem is NP-hard. Fortunately, the mapping-based scheme presented in this

chapter considerably reduces computation costs incurring during benchmark construction.

The chapter also presented a generalized framework that aims to establish a basis

for benchmark generation for COPs. Recast in the generalized framework, application

specific benchmarks can be of interest even to those researchers who find problem specific

benchmarks too limiting.





Chapter 6

Merits of Adaptation

Since a genetic algorithm is an intrinsically dynamic and adaptive process, the use of

constant parameters is thus in contrast to the general evolutionary sprit.

Gen and Cheng [1999]

97
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6.1 Introduction

All metaheuristics have to deal with two interrelated issues that significantly influence the

search process and its outcomes: the balance between exploration and exploitation, and

the tuning of the algorithm input parameters. The way these issues relate to each other

is not completely understood—at least it is not straightforward. In dynamic optimization,

environmental changes add a new dimension to these issues, since the algorithm has to

react in a proper way to each change. This chapter examines these issues and investigates

a simple way to change genetic parameters in response to environmental changes.

6.2 Variable genetic parameters

The use of variable parameters is promoted by two beliefs: one belief is that genetic

parameters influence quality of final solutions in static environments; the other is that

genetic parameters can be made to delay undesirable population convergence in both static

and dynamic environments.

6.2.1 Genetic parameters and solution quality

It is well known that changing parameters of an EA can change the behavior of the al-

gorithm and, consequently, the quality of the final solution. Figure 6.1 and Figure 6.2

illustrate how rates of mutation and crossover affect the values of the the best solution

in the population and mean of the population for a 100-city TSP problem. Of course,

changing one parameter at a time is not a satisfactory approach either. The point is that

different genetic parameter settings can greatly influence the search process. For this rea-

son, developers spend substantial time searching for the best set of parameters for the

problem instance under consideration.

However, recent research suggest that no set of parameters remains the best throughout
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the run. That is, a certain set of parameters that proves to be good at a given generation

may become less effective during subsequent generations. The fact that EAs sample the

search space and that this sampling incorporates random components explains why the

search process should be regarded a dynamic process that changes from one generation to

another—even when the environment is static. Consequently, variable parameters, rather

than fixed parameters, are the appropriate choice for dynamic problems.
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Fig. 6.1: Effect of mutation rate on solution (K100 problem). Values in the legend give

mutation rate per thousand, e.g., M005 means mutation rate of 0.005
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Fig. 6.2: Effect of crossover rate on solution (K100 problem). Values in the legend give

crossover rate per ten; e.g., C06 means crossover rate of 0.6

6.2.2 Undesirable population convergence

Traditional GA operators work in a manner that reduces diversity of the search after a

promising region is discovered, to focus the search on that region. In an ideal search,

solution quality enhances with time while population diversity gradually decreases. The

double plots in Figure 6.3 show the evolution of solution quality and population diversity

for different values of genetic parameters. It can be seen that both measures go hand-in-

hand with time in almost all the subplots (except when the mutation rate is very large).

Thus, a reduction of population diversity is an indication of the EA achieving its goal of

finding the optimal solution. Some researchers even use diversity reduction as a criterion
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for terminating the search process.
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Fig. 6.3: Evolution of population best and diversity (k100).

However, the actual search is almost always non-ideal, and convergence takes place

around suboptimal solutions. This phenomenon makes promoting population diversity a

central issue both in static and in dynamic optimization. In static optimization, loss of

diversity is often blamed for what is known as premature convergence, which describes the

situation when the search terminates at suboptimal solutions. In dynamic optimization,

loss of diversity is blamed for the algorithm’s inability to further track the shifting optima.
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The latter situation will be termed obsolete convergence in this study, since it is outdated

by subsequent changes in environment .

Definition 6.1 (obsolete convergence) A state of the search process in which the pop-

ulation has converged around an optimal or suboptimal solution to an instance that is

replaced by a newer one due to some change in the environment.

It is important to note that real-world problems seldom change completely at once1;

hence, some of the information gathered from the past are re-usable in present and future

instances. Therefore, for a GA to be efficient in a dynamic environment, it should be able

to persevere after obsolete convergence and at the same time overcome premature conver-

gence. The DS should thus be able to transfer as much knowledge from one instance in

the dynamic problem to the next instance without biasing the search excessively around

old solutions. This can be achieved by adaptively balancing the GAs ability to exploit

old information with the much needed ability to explore the changing search space. This

balance can be manipulated by controlling the genetic operators that have some influence

on the population diversity; e.g, the selection and mutation operators. Hence, this chapter

investigates a model that changes genetic parameters specifically to tackle dynamic prob-

lems. The model reacts to environmental changes by biasing the search process towards

exploration. Once the environment becomes static again, the model reduces the explorative

forces gradually with time.

6.3 Linear model

The idea of using a linear model (LM) to change genetic parameters for dynamic envi-

ronments is intuited from the experiments of Grefenstette [1999] on genetically controlled

1In real life, events happen only to part of the problem. For example, vehicles do not break down all

at once and weather changes affect only parts of roads.
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mutation, where mutation rate is controlled by the algorithm itself rather than by the user.

He showed that the level of hypermutation increases significantly following an environmen-

tal change then reduces gradually with time, as shown in Figure 6.4. In this way, the

population is enabled to re-converge around a promising region of the search space after

every environmental change. The main problem, however, with genetic control is that the

algorithm might require an excessively large number of generations to evolve to its final

values. Although slow rates of adaptation might be acceptable in some static applications,

they are certainly unacceptable in dynamic applications. Hence, the proposed LM model

explicitly specify the rate of change of the mutation rate instead of leaving it up to the

genetic process. Furthermore, the LM model is not limited to controlling the mutation

rate only; it can be used to control other genetic parameters too.
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Fig. 6.4: Genetically controlled hypermutation in a problem that changes every 20

generations. Mutation rate rapidly increases after environmental changes (vertical dotted

lines) and gradually decreases during static phases of the problem [Grefenstette 1999]

6.3.1 Adaptive mutation

The LM model aims to diversify the search whenever an environmental change is detected,

and to progressively reduce diversification during quiescent phases. A simple way to achieve
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this is by linearly changing the mutation rate repeatedly. When the environment changes

(say at time t = tm), a cycle begins and the mutation rate µ(t) is set to an upper limit µ.

Subsequently, it is reduced with time until, after a period ρ, it reaches to a base value µ.

The current cycle terminates at the next environmental change (at time t = tm+1), and a

new cycle begins, as depicted in Figure 6.5.    

time 43210 ttttt

( )tµ

µ

µ

Fig. 6.5: Variable mutation rate

The following formula gives the variation of mutation rate µ(t) in the cycle between

two consecutive environmental changes; i.e., when tm ≤ t < tm+1.

µ(t) =











µ −
µ − µ

ρ
(t − tm), tm ≤ t < tm + ρ

µ, tm + ρ ≤ t < tm+1

(6.1)

6.3.2 Adaptive crossover

In addition to changing the mutation rate, the LM changes the rate of crossover and the

probability of selection. Crossover has effects similar to those of mutation on diversity, in

that higher rates of crossover tend to increase population diversity as shown Figure 6.6.

Thus, the LM changes the rate of crossover linearly in a similar manner to that of the

mutation. The following formula gives the variation of crossover rate χ(t) in the cycle
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between two consecutive environmental changes; i.e., when tm ≤ t < tm+1.

χ(t) =











χ −
χ − χ

ρ
(t − tm), tm ≤ t < tm + ρ

χ, tm + ρ ≤ t < tm+1

(6.2)

where χ and χ respectively are upper and lower limits of crossover rate.
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Fig. 6.6: Comparing the evolution of population best and diversity under different

rates of crossover. On each subplot crossover rate is given in tenths, e.g., C06 means

crossover rate =0.6.

6.3.3 Adaptive selection

In terms of selection, tournament selection is one of the widely used techniques. It works in

a manner similar to ranking selection (which avoids the pitfalls of proportionate selection

methods, such as roulette wheel) and at the same time is easier to implement and less
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time consuming than ranking methods which require sorting individuals according to their

fitness. A simple tournament scheme selects one individual from a group of individuals

(typically two) based on its relative fitness. This scheme is often modified by injecting it

with some degree of randomness that would lead to the selection of the less-fit individual

from time-to-time (instead of selecting the fitter individual all the time). In the modified

tournament selection scheme, the fitter individual is selected at a fixed probability s in the

range between 0.5 and 1.0. Thus, selection probability is an additional input parameter

that affects the outcome of the search process and hence has to be tuned with the rest

of the algorithm parameters. Figure 6.7 shows the influence of probability of selection on

the solution evolution through time on a typical COP. However, similar to other genetic

parameters, selection probability can not be directly related to solution quality.
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Fig. 6.7: Effect of selection probability on solution (K100 problem). Values in the legend

give selection probability per ten, e.g., S06 means the probability is 0.6

Still, we can have more direct relations between selection probability and population

diversity. The correlation between selection probability and population diversity is evident

in Figure 6.8, where increasing the probability of selection from one subplot to another
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Fig. 6.8: Comparing the evolution of population best and diversity under different

values of selection probability. Selection probability is given in tenths, e.g., S08 means

selection probability =0.8.

reduces diversity. Therefore, selection pressure and consequently the rate of population

convergence can be controlled by changing selection probability. Thus, the LM changes the

probability of selection linearly in a manner similar to that of of mutation and crossover

rates but in an opposite sense. The following formula gives the variation of selection

probability rate s(t) in the cycle between two consecutive environmental changes; i.e.,

when tm ≤ t < tm+1.

s(t) =











s +
s − s

ρ
(t − tm), tm ≤ t < tm + ρ

s, tm + ρ ≤ t < tm+1

(6.3)

where s and s respectively are upper and lower limits of selection probability.

With this scheme, the varying selection probability will have a typical shape like that
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of Figure 6.9.
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Fig. 6.9: Variable selection probability

6.3.4 Algorithm structure

The adaptive operators of the previous sections are combined in vector form by denoting

the the controlled genetic parameters by P(t), their respective explorative values by Pr,

and their respective exploitative values by Pt. Thus the complete linear model becomes

P(t) =











Pr −
t − tm

ρ
(Pr − Pt), tm ≤ t < tm + ρ

Pt, tm + ρ ≤ t < tm+1

(6.4)

where P(t) = [ µ(t) χ(t) s(t) ]T , Pr = [ µ χ s ]T , and Pt = [ µ χ s ]T .

This model is used to convert a standard genetic algorithm into a dynamic TSP solver as

shown in Figure 6.10. In this algorithm, chromosome representation is a straight forward

path representation, where values of the genes are the city numbers, and the relative

position of the genes represent city order in the tour.

The algorithm is generational in that the whole population is replaced by the new

offspring at every generation. A stochastic tournament selection is used to select surviving

individuals at every generation. The pseudo code for selection is given in Figure 6.11.
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Procedure LM

i = 0; // initiate instances counter

g = 0; // initiate generations counter

Generate(pop); // generate initial population

Evaluate( pop );

repeat

while quiescent environment

g = g+1;

TournamentSelect( pop );

Cross( pop );

Mutate( pop );

best of generation[g] = Evaluate( pop );

params = LinearlyAdaptParam( params , g ); // apply LM, Eqn 6.4

endwhile

i = i+1;

AdaptPopulation( pop , strategy ); // apply LM, case t = tm in Eqn 6.4

until terminating condition

Fig. 6.10: Pseudo code for a linear dynamic solver

Edge crossover [Whitley et al. 1991] is employed to recombine solutions in the popu-

lation. This operator has the advantage of preserving most edges of the parent solutions

without producing infeasible child solutions.

The mutation operator is a pair-wise node swap. It introduces changes in the chromo-

some by swapping the positions of two randomly selected nodes. This operator produces

little change in the individual, since no more than four edges are replaced in each mutation

step. More drastic changes can be applied by simply increasing the rate of mutation.
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Procedure TournamentSelect( pop )

a = 0; // initiate counter of individuals

while a < pop·size

b = rand( 0 , pop size-1 )

indA = pop·individual[a];

indB = pop·individual[b];

if rand(0,1) ≤ selection probability;

pop·individual[a] = Best( indA , indB );

else

pop·individual[a] = Worst( indA , indB );

endif

a = a+1;

endwhile

Fig. 6.11: Pseudo code for stochastic tournament selection

6.4 Experimentation

This section describes experiments carried out mainly to test the linear model against the

restart strategy.

6.4.1 Test problems

The dynamic test problems are based on a 100-city problem, kroA100, borrowed from the

TSP library Reinelt [1991]. Dynamic changes are introduced in three modes that reflect the

methods described in the generalized benchmark generator of Chapter 5: an edge change

mode (ECM), an insert/delete mode (IDM) and a vertex swap mode (VSM). Problem dy-

namics are basically controlled by two parameters: frequency and severity. The frequency

of change is determined by the number of generations between succeeding environmental

changes, and the severity of change is determined by the number of elementary steps ap-

plied at every environmental change. An elementary step is the smallest possible change



6.4 Experimentation 111

in the problem that causes the new instance to have a different optimal solution from the

previous one.

In ECM, the problem is changed by increasing the length of an edge randomly selected

from the best found tour, or decreasing the length of an edge randomly selected but not

from the best found tour. This scheme ensures that environmental changes affect optimal

solutions. The elementary step of the change is the change in the cost of a single edge.

In IDM, environmental changes are imposed by adding new cities to the problem or by

removing some of the existing cites. The elementary step of the change in this mode is the

addition (or the deletion) of a single city. This mode might prove to be the most difficult

since it entails variable representation to reflect the changing number of cities.

In VSM, the labels of two randomly selected vertices (cities) are interchanged in the

mapping function that maps the chromosome into solutions. VSM offers an efficient way

to create dynamic problems with known optima without the need of re-optimization.

In the current experimentation, each benchmark problem includes 200 successive

changes to the base problem, that is, there is a sequence of 200 static problems for each

of the three modes of environmental shifts. Each sequence of static problems is translated

into nine dynamic test problems, by combining three degrees of severity (1, 10, 100 steps

per shift) and three periods of change (10,100, 1000 generations between shifts). In short,

there are twenty-seven dynamic test problems each constructed from 200 static instances.

6.4.2 Competing strategies

The dynamic test problems are used to compare the performance of the LM model against

four other models: FM, RM, RIM10 and RIM20.

FM The ignore strategy is modelled by a fixed model (FM ). This model is basically a

traditional GA with fixed operator rates. It ignores environmental changes. That

is, it does not apply any specific measures to tackle dynamism in the problem and
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hence is expected to perform poorly. Still this strategy might produce good solutions

if changes in the dynamic problem are insignificant.

RM The restart strategy is the most straightforward strategy to handle dynamic problems.

This strategy depends totally on exploration to find new solutions and does not

make use of any past knowledge. The restart model (RM) randomly re-generates the

population whenever the problem changes. That is, the RM model regards each

change in the environment as a new problem to be solved independently of the

previous instances.

RIM10 The random immigrants strategy can be viewed as a partial restart, since only a

fraction of the population is re-initialized at every environmental change. In random

immigrant model (RIM10), only 10% of the population is replaced with random

immigrants (new individuals).

RIM20 This model also uses random immigrants but replaces 20% of the population at

each environmental change.

To make comparisons fair, all models use a population size of 50, a crossover rate of

0.9, a selection probability of 1, and a mutation rate of 0.025. For the LM model the lower

limits of mutation rate, crossover rate, and selection probability are 0.025, 0.9, and 0.9

respectively, and their respective upper limits 0.05, 1.0, and 1.0.

6.4.3 Results

Our primary goal is to compare the linear model with the restart model.

We investigate the behavior of an individual algorithm by plotting the evolution of the

best of generation through time, together with two additional curves that serve as lower and

upper bounds on the algorithm’s performance. The lower bound is the goal (values given

by the BG), and the upper bound is taken as the results from the RM model. Figures 6.12,
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6.13, and 6.14 show detailed tracking of optima through time by the adaptive mutation

model. Each figure considers both rapidly changing environments (every 10 generations)

and slowly changing environments (every 1000 generations). The environmental changes

are ECM type in Figure 6.12, IDM type in Figure 6.13, and VSM type in Figure 6.14.
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Fig. 6.12: Evolution of best of generation on the k100 problem in the ECM mode. In

subplots (a), (b), and (c) the problem changes every 10 generations with severities of 1,

10, and 100 steps per shift respectively. In subplots (d), (e), and (f) the problem changes

every 1000 generations with severities of 1, 10, and 100 steps per shift respectively.

It can be seen that the accuracy of the tracking of the optima depends both on the speed

and the severity of environmental changes. In rapidly changing environments (left hand

subplots in the three figures), the benefits of adapting old solutions are very clear when

contrasted with the restart strategy (the cost of a restart solution can be as much as four
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Fig. 6.13: Evolution of best of generation on the k100 problem in the ADM mode. In

subplots (a), (b), and (c) the problem changes every 10 generations with severities of 1,

10, and 100 steps per shift respectively. In subplots (d), (e), and (f) the problem changes

every 1000 generations with severities of 1, 10, and 100 steps per shift respectively.

times that of the adaptation strategies when the changes are small and the computation

time is limited). Since the restart strategy re-initializes the population completely after

each environmental change, the new population tends to be scattered over the search space

and is hence very likely to be away distant from optimal solutions. This explains why the

figures indicate a sudden deterioration in performance of the RM model after each change.

Unlike the RM model, the linear model does not disturb the entire population but rather

mutates a small part of it. Hence, even after a change in the environment, the population

retains some individuals that are very likely to be in the vicinity of good quality solutions
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Fig. 6.14: Evolution of best of generation on the k100 problem in the VSM mode. In

subplots (a), (b), and (c) the problem changes every 10 generations with severities of 1,

10, and 100 steps per shift respectively. In subplots (d), (e), and (f) the problem changes

every 1000 generations with severities of 1, 10, and 100 steps per shift respectively.

(unless the environmental changes are very drastic).

In the slowly changing environments (right hand subplots in the three figures), the

algorithms are given practically unlimited computation time, allowing even the relatively

slow restart strategy to display a better performance. Still it is inferior to the LM model,

where the difference between both strategies is the greatest when the severity of change is

small.



116 Chapter 6. Merits of Adaptation

As mentioned in Chapter 4, it is not practical to use curves of evolution to compare

several algorithm. Thus, the five competing models are compared using mean best of

generation. Selected results are shown in Figure 6.15 for different rates of base mutation

(i.e., upper limit for LM and conventional rate for other models). As well, different ranges

of severity of environmental changes and the three modes of changes (ECM, IDM, and

VSM) are investigated. Each point in these plots is the average of ten independent runs

using different random initial populations. In every run, the environment is kept quiescent

for the first 10000 generations, then allowed to change according to the specified severity

and period of change. The prolonged initial static phase gives the GA sufficient time to

reach initial convergence and thus make later performance less dependent on the initial

population. This scheme is essential since the major challenge to the dynamic solver is to

be able to explore the new search space after converging around some high quality solution

under the preceding environment. Since the solution values are likely to vary with time,

mean best of generation (MBG) values are reported as ratios of the solution to the base

problem.

It can be noted that adaptation strategies (LM, RIM10 and RIM20) tend to be closest

to the goal line, which is formed from the best solutions previously computed by the BG.

As well, it seems to be a good idea to keep rates of base mutation in the vicinity of 0.1. The

RM model shows the poorest performance when the problems change moderately. Indeed,

RM results are so large that they do not show in some subplots of the figure. Restart does

comparatively well only when the changes are relatively large, as in Figure 6.15(f) and

Figure 6.15(i).
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Fig. 6.15: Strategy comparison. Mean best of generation (vertical axis) is plotted

against base mutation rate (horizontal axis) using mean best of generation. Note that

the results from applying the restart strategy are of low quality (too large to appear with

other models in most figures).



118 Chapter 6. Merits of Adaptation

6.5 Summary

This chapter presented an EA model that changes genetic parameters to increase popula-

tion diversity at environmental changes and gradually changes the parameters towards low

population diversity during quiescent phases of the environment.

In order to enable fair comparisons, a dynamic solver was developed to track the moving

optima in dynamic problems. It can switch between different models that apply strategies

of tackling dynamic problems.

The mapping swap benchmarking scheme can be used to replace other modes. Since the

behavior of the dynamic solver was found to be similar in the three types of benchmarking.

The restart strategy produced solutions of low quality suggesting that it is very impor-

tant not to discard knowledge from past solutions.

The dynamics of the problem greatly influence the effectiveness of an algorithm. The

results of the previous experiments simply state that when the environmental changes are

slight, the problem can be treated as static (a fixed base rate of mutation address such

problems). At the other extreme, the restart strategy can produce the best results if the

problem changes completely. Between these extremes lie the majority of real world cases

that benefit most from adaptive strategies. Hence, adaptation is viewed as a tradeoff

between the restart strategy and the ignore strategy, as illustrated in Figure 6.16. In other

words, the level of diversity imparted to the dynamic problem should be proportional to

the severity of environmental change.
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Fig. 6.16: Tradeoff between restart and ignore strategies
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However, the developed model suffers a significant disadvantage. It aggravates the

difficulty of parameter tuning with the need of finding two values for each parameter

(upper and lower limits). Furthermore, one would naturally wonder: if a genetic parameter

produces better results when it varies linearly with time than when it is fixed, then it

might produce the best results when it varies in some nonlinear fashion. However, it would

be more perplexing, more time consuming, and generally more difficult to try to tune a

nonlinear function relating parameter to time.





Chapter 7

Adaptive Dynamic Solvers

Although all EAs possess the necessary operators for intensification and diversification,

many EA implementations lack a mechanism to control the balance between these two

factors.

Sörensen and Sevaux [2004]

121
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7.1 Introduction

In the previous chapter, it was asserted that deciding on an appropriate set of parameter

values for an evolutionary algorithm is a non-trivial task; what might seem to be an optimal

set of at one generation may become less good at another generation. Even if an acceptable

set was discovered (often after considerable effort of tuning) for a given problem instance,

this set is not guaranteed to work well with other problem instances. Thus, schemes that

seek to control genetic parameters in response to some feature of the search can be more

effective and certainly less demanding in terms of tuning efforts, especially in dynamic

problems where time for tuning is often limited.

The issue of parameter tuning is closely related to that of balancing exploration and

exploitation during the search process. A direct link to both issues is population diversity.

At one end of the link, increasing diversity drives the search towards exploration while

decreasing diversity focuses the search on a specific promising region. At the other end of

the link, genetic operators tend to either increase or decrease population diversity. Thus

genetic operators can be used to manipulate population diversity and consequently the

search status between exploration and exploitation.

The use of diversity to control evolutionary algorithms on dynamic COPs is investigated

in this chapter. Different measures of diversity are examined and compared in Section 7.2.

An adaptive diversity model in which genetic parameters vary in response to measured

diversity is introduced in Section 7.3. An adaptive islands model that extends the idea

of measuring and controlling diversity to multiple populations is presented in Section 7.4.

Both models are hybridized with local search into an adaptive hybridized diversity model

and an adaptive hybridized island model in Section 7.5.
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7.2 Investigating diversity measures

The term population diversity or simply diversity appears frequently in the literature of

evolutionary algorithms without definition [Burke et al. 2004]. Generally, diversity is taken

as a characteristic of the population that reflects how different the individuals in the pop-

ulation are. A common definition for population diversity is given by Barker and Martin

[2000] as “the sum over all pairwise distances between individuals in the population”. Such

a definition suggests that a diversity measure cannot be resolved unless the underlying dis-

tance measure is identified.

7.2.1 Distance measures

A distance measure can be thought of as a function that associates a non-negative real

value with a pair of solutions such that similarity between the solutions increases as the

their distance decreases. There are certain properties that are expected to exist in a proper

distance measure dist(x, y) between a pair of solutions x and y [Kapur and Kesavan 1992].

• Distance is non-negative.

dist(x, y)) ≥ 0 (7.1)

• Distance is symmetric.

dist(x, y) = dist(y, x) (7.2)

• Distance is zero between identical solutions.

dist(x, y) = 0 iff x = y (7.3)

• The distance between any two solutions can not exceed the sum of the distances

between each of them and a third solution.

dist(x, y) ≤ dist(x, v) + dist(v, y) (7.4)
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To measure population diversity, three types of distance measures come into consider-

ation, namely genotypic, phenotypic, and algorithmic measures.

Genotypic distance

Genotypic distance measures are based on the difference in the genome of the individu-

als under consideration. The most commonly used genotypic distance is the Hamming

distance, hamm dist(u, v) which compares corresponding genes in two strings u, v.

hamm dist(u, v) =
l

∑

i=1

abs( sgn(u[i] − v[i]) ) (7.5)

where u[i] is the ith gene in string u and v[i] is the ith gene in string v. However, the

Hamming distance is unsuitable for permutation-based representations where the relative

positions are important. For example in TSP and VRP, the edge distance is commonly used

to indicate the number of uncommon edges—not genes—in two tour strings. Denoting the

set of edges in a string u by arcs(u), edge distance can be given by the following formula:

edge dist(u, v) = |arcs(u)\arcs(v)| (7.6)

which translates as the number of edges in arcs(u) but not in arcs(v).

Phenotypic distance

Phenotypic distance measures use some features of the solution to measure differences

between solutions. They are usually based on values of a fitness or objective function. A

commonly used fitness-based measure is given by the following formula.

fitness dist(u, v) = abs( sgn(fitness(u) − fitness(v) )
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Algorithmic distance

Algorithmic distance measures give distance between solutions in terms of the number of

moves a certain algorithmic operator uses to skip from one solution to another. Given a

specific algorithmic operator, this measure most faithfully reflects the “efforts” or costs

needed to traverse between solutions. However, this kind of measure is not useful in

performing inter-algorithm comparisons and in addressing benchmarking issues, since both

its meaning and its value are algorithm dependent. Furthermore, this measure is not easy

to compute and can be expensive, except for simple algorithms that utilize single operators

to move between solutions. For these reasons, measures of algorithmic distance are not

considered in this thesis and discussion hereafter is limited to measures of genotypic and

phenotypic distance.

7.2.2 Genotypic or phenotypic diversity?

Depending on the underlying distance measure, there can be a genotypic diversity measure

(GD) and a phenotypic diversity measure (PD). The measures used in this thesis are

normalized so that they fall in the range between zero and one. A zero diversity means all

individuals in the population are similar (ideally identical) to each other, and a diversity of

one means that they are very (ideally completely) different from each other. For example,

normalized genotypic diversity based on the edge distance can be given as:

GD =
n−1
∑

i=1

n
∑

j=i+1

edge dist(vi, vj)

(l − 1)(n − 1)n/2
(7.7)

where n is the population size, l is the chromosome length, and vi and vj are the ith and

the jth individuals in the population. Similarly normalized phenotypic diversity based on

difference in solution fitness can be given as:
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PD =
n−1
∑

i=1

n
∑

j=i+1

fitness dist(vi, vj)

(n − 1)n/2
(7.8)

Phenotypic measures cannot provide the guidance we require, since they only tell

whether the individuals are different or not, without determining the amount of difference.

Furthermore, the idea of using fitness to measure diversity is debateable since solutions

having the same fitness would be considered identical even when the solutions themselves

are different. An operator like crossover can produce perfectly new solutions from same-

fitness parents. Thus it is improper to consider potential parent solutions identical just

because they have the same fitness. Still, distance between solutions is commonly mea-

sured in the fitness space [Sörensen and Sevaux 2004], probably because of the ease of the

computation. Given that fitness evaluation is part of the standard evolutionary algorithm,

phenotypic diversity measures require very little computation time in comparison with

genotypic diversity (respectively given by Zhu and Liu [2004] as O(n log n) and O(l2n2) ).

Compared with phenotypic diversity measures, genotypic measures are more distinct and

more intimate with genetic operators. They do not precisely reflect the actual algorithmic

distance between solutions, but as mentioned earlier it is neither easy nor cheap to compute

algorithmic distance.

The previous arguments are illustrated by plotting the evolution of diversity measures in

typical GA runs under different values of genetic parameters. Figure 7.1 compares the effect

of mutation rate on genotypic and phenotypic diversity while crossover rate and selection

probability are held constant. In this figure, population diversity generally declines with

the number of generations, as the promising regions are discovered. Increasing mutation

tends to increase diversity. However, while genotypic diversity declines consistently with

generations, phenotypic diversity evolves erratically.

The effect of crossover rate on genotypic and phenotypic diversity measures is compared

under constant mutation rate and selection probability as illustrated in Figure 7.2. Similar
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Fig. 7.1: Effect of mutation rate on measures of diversity. Values in the legend give

mutation rate per thousand, e.g., M005 means mutation rate of 0.005. Genotypic diver-

sity reflects the fact that the algorithm gradually converges with time to some solution.

However, phenotypic diversity is not distinct with most mutation rates.

to mutation, crossover is a diversification operator (though less a diversifier than mutation

since crossover cannot create new genetic material in the population).

The effect of selection probability on diversity is opposite to that of mutation and

crossover. The evolution of both diversity measures is compared in Figure 7.3 under

various selection probabilities and constant rates of crossover and mutation. Both measures

of diversity increase as probability of selection decreases; still, the inconsistency of the

evolution of phenotypic diversity is clear in this figure.
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In summary, genotypic measures not only are convenient to assess population diversity

but also reflect the values of genetic parameters more accurately than phenotypic measures.

7.2.3 Pair-wise versus population-best diversity measures

The main disadvantage of genotypic measures is their relative high computation costs. One

way to reduce their computational costs is to use a single aggregation point to represent

the whole population and thus reduce cost by a factor of n, where n is the population size.

Riget and Vesterstroem [2002] and Ursem [2002] use an average population point for their

real-value encoded individuals. However, this approach does not work for COPs, where it

is hard to define an average point for the population. Another approach is to use small

population size [Sörensen and Sevaux 2004], but cost reduction may not warrant the risk

of hindering the search by limiting population size.

In this thesis, the population-best is used as a reference point for measuring diversity.

By reserving individual vn for the population-best, the aggregated genotypic measure (d)

of a population of size n can be given as:

d =
n−1
∑

i=1

dist(vi, vn)

(l − 1)(n − 1)
(7.9)

This measure has two advantages. First, the use of a single aggregation point to

represent the population greatly reduces costs of computing diversity, without imposing

unnecessary limitations on the population size. Second, as evolutionary algorithms are

designed to converge around the population-best, it is reasonable to measure the population

diversity in terms of distances from the population-best solution rather than distances from

an average point.
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Fig. 7.2: Effect of crossover rate on measures of diversity. Values in the legend give

crossover rate per ten; e.g., C06 means crossover rate of 0.6. Genotypic diversity declines

smoothly with time whereas phenotypic diversity declines in a more erratic way.
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Fig. 7.3: Effect of selection probability on diversity measures. Values in the legend

give selection probability per ten; e.g., S06 means selection probability of 0.6. Genotypic

diversity declines smoothly with time whereas phenotypic diversity declines erratically.
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The validity of the proposed diversity measure (d) is demonstrated by comparing it

with the commonly used pair-wise measure GD. Comparisons are carried out by plotting

d against GD, by comparing the evolution of both measures, and by measures, and by

computing correlation coefficients. Different ranges of diversity are examined by using

different combinations of mutation rate, crossover rate, and selection probability. Each

parameter has three possible values labelled according to the diversity they tend to produce:

L for parameter value causing low diversity, M for parameter value causing medium diversity,

and H for parameter value causing high diversity. Thus, the combination LLL keeps the

diversity as low as possible while the combination HHH drives diversity to maximum values.

Parameter values used are given in Table 7.1. These values are selected so that a wide

range of diversity is considered while the parameters remain close to commonly used values.

Table 7.1: Values of genetic parameters combinations

L M H

Mutation 0.001 0.005 0.100

Crossover 0.0 0.3 1.0

Selection 1.0 0.55 0.50

Figures 7.4, and 7.5 show scatter plots of d against GD for ten runs of each of the 27

possible combinations of genetic parameter values. The 45◦ trend is unmistakeable in all

slides of these figures, which indicates a close correlation between both measures. Even in

those slides where the diversity is very large (indicating randomness) both measures tend

to give similar indications.
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Fig. 7.4: Population-best vs. Population diversity for the K100 problem Part1
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Fig. 7.5: Population-best vs. Population diversity for the K100 problem Part2
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The evolution of both measures on the K100 problem is shown in Figure 7.6. The

slides in the figure are the results of using three combinations of GA parameters for each

diversity measure. Each slide uses ten GA runs. The figure clearly indicates that diversity

diminishes as the search progresses, and that both measures of diversity give similar values

for the population diversity.
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Fig. 7.6: Comparison of evolution of genotypic measures of diversity for the K100

problem. Population-best diversity measure (upper row) exhibits similar behavior to

that of population pair-wise diversity measure (lower row)
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The previous experiments are made in a static environment, where the problem starts

from a random initial population that converges gradually with the number of generations.

Two additional special cases in which both diversity measures may differ are examined here.

In one case an environmental change takes place with the population already converged

around some solution, as shown in Figure 7.7b. This case is imitated by a population

that consists of duplicates of a good quality solution. In the other case the population

is converged around some solution and a new better solution is discovered, as shown in

Figure 7.7c. This case is imitated by a population in which the best solution is by far better

than the rest of the individuals which are identical to each other. Correlation between both

measures is compared on the three cases for different population sizes.

 

(a)                                              (b)                                             (c) 

Fig. 7.7: Three cases of initial populations. In slide (a) the algorithm starts from a

random initial population, in slide (b) the population is converged around a good quality

solution, and in slide (c) the population is converged around a solution far from the

population-best

The results are summarized in Table 7.2. The third column (pop0) gives the three cases

of the initial population, 1 for random, 2 for a population converged around the population-

best, and 3 for a population converged far from the population-best. The fourth column

gives the commonly used Pearson’s product moment-correlation coefficient (r), and the
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fifth column gives Spearman’s coefficient of rank correlation (rs) [Siegel 1956; Parkess

2005] . Both measures are used to quantify correlation between two variables x and y in a

sample of size n as follows:

r = 1 −
Sxy

√

SxxSyy

(7.10)

rs = 1 −
6
∑n

i=1 δ2
i

n(n2 − 1)
(7.11)

where Sxx =
∑n

i=1(xi−x)2, Syy =
∑n

i=1(yi−y)2, Sxy =
∑n

i=1(xi−x)(yi−y), x is the sample

mean of variable x, y is the sample mean of variable y and δi is the difference between the

sample’s rank of xi and rank of yi. Correlation coefficients can have values in the range from

-1 to 1. In general, correlation coefficients between 0 and .33 indicate a weak relationship

between measures, values between 0.34 and 0.66 indicate a medium strength relationship,

and values over 0.67 indicate strong relationship. Negative coefficients indicate negative

correlation.

Correlation between the averages of both diversity measures over a run is investigated in

Table 7.2, with the number of carried out runs corresponding to the statistical sample size.

The percentage correlations given in the table indicate strong correlation between both

measures of diversity. The only exception is the HHH showing weak correlation; however,

both diversity measures are so large, indicating a random search, because of the extreme

values of the genetic parameters. The same evidence can be seen in the last four columns

which show the average and standard deviation of both measures throughout the search

process.

In short, both measures of diversity can be used interchangeably to express genotypic

diversity within moderate ranges since the difference between both measures is very small

in all practical ranges of the genetic parameters. Therefore, the small computational costs

associated with population-best diversity measure advocate the use of this measure to

control the search process, as shown in the following sections.
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Table 7.2: Correlation between diversity measures under different states of convergence

for the k100 problem

setting correlation (%) Pop-best Population

popsize GA param pop0 Pearson Spearman avg sd avg sd

1 100 100 0.0006 0.02 0.0008 0.03

LLL 2 NaN NaN 0 0 0 0

3 88 100 0.0006 0.02 0.0004 0.01

1 99 81 0.0225 0.02 0.0384 0.03

5 MMM 2 93 94 0.0179 0.01 0.0348 0.01

3 89 94 0.0186 0.02 0.0353 0.02

1 38 38 0.697 0.11 0.754 0.05

HHH 2 58 38 0.6913 0.11 0.7508 0.05

3 31 36 0.6932 0.11 0.7518 0.05

1 100 96 0.0391 0.07 0.0361 0.08

LLL 2 69 80 0.0052 0 0.0085 0

3 72 81 0.0099 0.06 0.0112 0.03

1 99 95 0.0968 0.08 0.1259 0.09

20 MMM 2 94 93 0.0433 0.01 0.0766 0.02

3 66 92 0.0479 0.06 0.0788 0.04

1 32 34 0.9018 0.04 0.9199 0.01

HHH 2 93 30 0.8929 0.07 0.9164 0.05

3 -17 33 0.8992 0.04 0.9174 0.04

1 99 96 0.0965 0.12 0.0891 0.13

LLL 2 70 66 0.0076 0.01 0.0099 0

3 67 67 0.0268 0.12 0.0182 0.06

1 100 99 0.2443 0.15 0.287 0.15

50 MMM 2 98 90 0.0767 0.02 0.1279 0.03

3 55 86 0.1036 0.12 0.1452 0.07

1 26 26 0.9479 0.02 0.9559 0

HHH 2 96 27 0.9319 0.09 0.9472 0.07

3 -49 13 0.9481 0.02 0.9483 0.07
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7.3 Adaptive diversity model

The linear model of Chapter 6 focuses primarily on reactions to environmental changes

and is inflexible during static phases since the rate of parameter change is fixed a priori.

That is, it addresses obsolete convergence but ignores any premature convergence. This

shortcoming is alleviated in the adaptive diversity model (ADM) presented in this section.

In addition to being adaptive to environmental changes, the ADM model adapts to changes

in population diversity to direct the search towards unexplored regions of the search space

or towards partially tested regions that have shown promising results.

ADM is comparable in many ways to two diversity-based models from the literature,

namely the diversity-guided evolutionary algorithms (DGEA) proposed by Ursem [2002] for

continuous optimization and the diversity-controlling adaptive genetic algorithm (DCAGA)

proposed by Zhu [2003] for VRP. DGEA uses two diversity limits to alter the search between

an explorative phase and an exploitative phase; however, such an approach may not be

suitable for dynamic problems as it is likely to require comparatively more generations

and hence solution time. DCAGA uses one target diversity to control genetic parameters;

however, targeting one value for diversity does not seem the best idea for two reasons.

First, diversity measures are not distinct and their values carry some ambiguity. Second,

for the same reasons we believe that an optimal set of genetic parameters does not exist

(or at least changes during the run), we conclude that the optimal (target) diversity is

also dynamic. Consequently, ADM uses two diversity limits to regulate genetic parameters

during static phases of the search without reducing the search to pure exploitation or pure

exploration.

7.3.1 The diversity approach

Considering the mutation operator for a start, ADM can be described as follow. When

an environmental change is detected (at t = tm), the mutation rate is set to an upper
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limit µ as was done in the LM model. Subsequently (while the environment is static)

the ADM measures the population diversity d(t) and compares it to two reference values,

an upper limit dh and a lower limit dl. A mutation rate µ(t) for the current generation

can then be computed according to this comparison. The following formula gives the

variation of mutation rate in the cycle between two consecutive environmental changes

(i.e. tm ≤ t < tm+1):

µ(t) =



































µ, t = tm

Zl ·
(

µ − µ(t − 1)
)

+ µ(t − 1), t 6= tm, d(t) < dl

µ(t − 1) − Zh ·
(

µ(t − 1) − µ
)

, t 6= tm, d(t) > dh

µ(t − 1), t 6= tm, dl ≤ d ≤ dh

(7.12)

where Zl = min

{

dl − d(t)

D
, 1

}

, Zh = min

{

d(t) − dh

D
, 1

}

, D = dh − dl

The ADM is extended to include adaptive crossover rate and selection probability as

well. The formula for adaptive crossover rate χ(t) is similar to that of mutation and is

given by the following equation.

χ(t) =



































χ, t = tm

Zl ·
(

χ − χ(t − 1)
)

+ χ(t − 1), t 6= tm, d(t) < dl

χ(t − 1) − Zh ·
(

χ(t − 1) − χ
)

, t 6= tm, d(t) > dh

χ(t − 1), t 6= tm, dl < d(t) < dh

(7.13)

where χ and χ are the lower and the upper limits of crossover rate respectively. Zl and Zh

are as given earlier in the mutation formula 7.12.

The formula for adaptive selection s(t) is given by Equation 7.14. Here, selection

probability is changed in an opposite manner to that of mutation and crossover since high

selection pressure tends to reduce population diversity.
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s(t) =



































s, t = tm

s(t − 1) − Zl ·
(

s(t − 1) − s
)

, t 6= tm, d(t) < dl

Zh ·
(

s − s(t − 1)
)

+ s(t − 1), t 6= tm, d(t) > dh

s(t − 1), t 6= tm, dl < d(t) < dh

(7.14)

where s and s are the lower and the upper limits of selection probability respectively; and

Zl, and Zh are as given earlier in the mutation formula 7.12.

Figure 7.8 illustrates the general principle of the ADM, and how it drives genetic

parameters toward exploration or exploiting in response to measured diversity. In this

figure, P can be the value of any of the controlled genetic parameters µ, χ or s. Pr

corresponds to maximum exploration values; i.e., µ, χ or s, whereas Pt corresponds to

maximum exploitation values; i.e., µ, χ, or s.

The pseudo code for a dynamic solver using the ADM is given in Figure 7.9.

7.3.2 Diversity model investigation

Under the ADM model, diversity and the genetic parameters go hand-in-hand as shown

in Figure 7.10, which compares the evolution of population diversity and mutation rate in

the LM and ADM models. Thus, with the ADM model, one needs to specify two values

for population diversity (dl and dh), and two values (a minimum limit and maximum limit)

for each of the adaptive genetic parameters. The graphs in Figure 7.11 show the relation

between adjusted parameter values and old parameter values under different ranges of

unbiased diversity (dh - dl ) and measured diversity d.

This increase in the number of input parameters does not mean an increase in the efforts

and time of tuning. In fact, the use of ADM can help reduce tuning efforts. Actually, only

the two limits of diversity need to be tuned, while limits of genetic parameters can be

lenient, since their role now is to avoid extreme values of the corresponding parameter. In
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Fig. 7.8: Diversity range is divided into five regions. Low diversity maps the genetic

parameter into a more explorative value (e.g., P1) and high diversity maps it into a

less explorative value (e.g., P2). Diversity values between dl and dh do not change

the current values of the genetic parameters (the parameter is mapped into its original

value P0). The farther the diversity is from the unbiased range, the more change to the

genetic parameter. Diversity in the asymptotic regions maps the parameter into one of

its extreme values (Pmax.exploration or Pmax.exploitation) .

other words, since the primary factor in determining the values of genetic parameters is

diversity, efforts will be directed to the tuning of diversity limits rather than the tuning

of genetic parameters. Limits on the genetic parameters can be determined by conducting

controlled experiments using fixed parameter values to exclude parameter ranges where

performance deteriorates noticeably.

The effect of both limits of diversity on the performance of the ADM model is inves-
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Procedure ADM

i = 0; // initiate instances counter

g = 0; // initiate generations counter

pop = Generate(0); // generate initial population

Evaluate( pop );

repeat

while quiescent environment

g = g+1;

Select( pop );

Cross( pop );

Mutate( pop );

best of geration[g] = Evaluate( pop );

pop div = MeasureDiversity( pop );

params = DiversityAdaptParam( params , pop div ); // apply ADM Eqns

endwhile 7.12, 7.13, 7.14

i = i+1;

AdaptPopulation( pop , strategy );

until terminating condition

Procedure AdaptPopulation( pop , strategy )

Evaluate(pop);

Repair(pop);

ApplyDynamicStrategy(pop); // apply ADM, case t = tm in Eqns 7.12, 7.13, 7.14

Fig. 7.9: Pseudo code for a diversity controlled dynamic solver

tigated under different environmental dynamics. In order to apply the ADM model to a

specific dynamic problem, a static instance of the problem (or a few instances from similar

problems) is chosen to construct dynamic problems using the mapping swap scheme de-

scribed in Section 5.4. The dynamic problems are solved using different values of diversity

limits.

As an example, a 100-city TSP problem (K100) is used to construct nine dynamic
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Fig. 7.10: Diversity-controlled mutation rate. Under traditional constant mutation

rate (LH graph) diversity declines steadily with time. But with controlled mutation

(RH graph), large diversity at the beginning of the run drives the rate of mutation to

its lowest limit, and when diversity is small, the rate of mutation is increased. Thus

mutation rate closely follows population diversity throughout the search.

problems using three values of severity and three periods of change. Each dynamic problem

is solved by the ADM model using forty-eight combinations of diversity limits ( six values

of lower diversity limit ranging from 0.0 to 0.5 and eight values of upper diversity limits

ranging from just above the lower limit to 1.0 ). The results of these experiments are

summarized in Figure 7.12 for different levels of severity at an average period of change

and in Figure 7.13 for different periods at an average severity of change. These results

show that the ADM model gives the same performance under a wide range of diversity

limits.

As well, Figure 7.12 suggests increasing both limits with the severity of change. This

suggestion confirms the generally accepted view that population diversity should be in-

creased to higher levels to continue the search after an environmental change.

On the other hand, Figure 7.13 suggests reducing diversity limits with the period of

change. Therefore, instead of using fixed lower and upper diversity limits (dl and dh) in the
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Fig. 7.11: The four slides are for different sizes of unbiased diversity range with a target

diversity of 0.25. Graphs on these slides show the relation between the diversity-adjusted

value of the parameter and the parameter’s original value. Reducing the unbiased range

makes the search oscillate more severely between exploitation and exploration.

ADM genetic control formulae 7.12, 7.13, and 7.14, it is more promising to use variable

limits dl(t)) and dh(t)). That is, when the environment changes (say at time t = tm), the

lower diversity limit dl(t) is set to a large initial value dl0. Subsequently, it is reduced

with time until, after a period ρ, it reaches a final value dlf . The following formula gives

the variation of dl(t)) in the cycle between two consecutive environmental changes (i.e.,
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tm ≤ t < tm+1)

dl(t) =











dl0 −
dl0 − dlf

ρ
(t − tm), tm ≤ t < tm + ρ

dlf , tm + ρ ≤ t < tm+1

(7.15)

Similarly, dh(t)) is varied from a large initial value dh0 to a smaller final value dhf by

the following formula:

dh(t) =











dh0 −
dh0 − dhf

ρ
(t − tm), tm ≤ t < tm + ρ

dhf , tm + ρ ≤ t < tm+1

(7.16)

Under variable diversity limits, the ADM model is expected to work in a less random

way and with a better overall performance. Initial and final values of diversity limits

are set by controlled experimentation where the limits and period of change are varied

systematically to determine their appropriate values. It is worth noting here that unlike

the usual inconclusive tuning of genetic parameters, tuning of diversity limits is expected

to be easier and more accurate.

7.4 Adaptive island model

In this section, an adaptive island model (AIM) is introduced to enable the well known

island genetic algorithm to tackle dynamic problems. Traditionally an IGA divides the

population into several subpopulations or islands allocated to one or more processor. These

islands evolve independently from each other for a period of time, called the migration

interval. At the end of each migration interval, a few individuals are exchanged between

islands. IGAs reportedly gave better solution quality and less computation time even

when the model was implemented in a serial manner, as mentioned in Chapter 3. IGAs

can maintain population diversity without destroying individuals of good quality whereas



7.4 Adaptive island model 145

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

a
v
e
ra
g
e
 M
B
G

upper diversity limit 

sever 1 sever 5 sever 10 average 

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6

lower diversity limit 

a
v
e
ra
g
e
 M
B
G

Fig. 7.12: Tuning diversity limits at average period of change. Dotted lines are drawn

to show the trend of the variation of the best diversity limits.
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Fig. 7.13: Tuning diversity limits at average severity of change. Dotted lines are drawn

to show the trend of the variation of the best diversity limits.

techniques relying on large mutation rates often lose good quality individuals. Furthermore,

IGAs are more suitable to dynamic problems since they act as implicit memory by retaining

individuals found in the vicinity of peaks.

AIM shares many features with other multiple population evolutionary algorithms

that have been used successfully in dynamic problems. However, unlike SBGA
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[Oppacher and Wineberg 1999] and SOS [Branke et al. 2000], AIM uses a fixed number

of same size islands. As well, no specific island is given the role of base or core island in

AIM; the island that contains population-best is considered the current base island. AIM

maintains several good solutions at a time, each of which is the center of an island. In this

way all islands participate in exploring the search space and at the same time exploit good

individuals. AIM is more like MGA [Ursem 2000], but still does not rely on the continu-

ity nature of the variables to guide the search process. In addition, AIM uses controlled

diversity genetic operators, in a way similar to that described in the previous section. To

avoid of confusion, the term population hereafter is reserved to refer to all individuals in

all islands under consideration while the term island is used to refer to one subpopulation.

7.4.1 The island approach

The general idea of AIM is to use a fixed number of islands guided by two measures

that are based on the genotypic distance between individuals, an island diversity measure

and a population diversity measure. Island diversity is measured as the sum of distances

from individuals in the island to the island-best, whereas population diversity is based on

distances from island-best to global-best (the best individual in all islands).

Each island is basically a small population that evolves under the control of its own

diversity independently from other islands. In this way an island plays the role of a niche,

as it consists of individuals that are close to each other. The best individual in the island

is used as an aggregate point for measuring island diversity and as a representative of the

island in measuring inter-island diversity (or simply population diversity).

With the islands charged with maintaining population diversity, the algorithm becomes

less reliant on the usual (destructive) high rates of mutation. Furthermore, mutation now

is required to maintain diversity with individual islands (not within entire population),

thus lower rates of mutation are needed. Therefore, mutation rate in AIM, though still

diversity dependent, has now a lower upper limit.
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In order to avoid premature convergence due to islands being isolated from each other,

individuals are forced to migrate from one island to another at pre-defined intervals in

a ring-like scheme, as illustrated in Figure 7.14. This scheme helps impart new genetic

material to destination islands and increase survival probability of high fitness individuals.

island

base population 

population best

migrant 

Fig. 7.14: Ring migration scheme, with the best individuals migrating among islands

On the global level, AIM is required to keep islands in different parts of the search

space. This requirement is achieved by measuring inter-island diversity before migration

and by mutating duplicate islands. If two islands are found very close to each other, one

of them is considered duplicate, and consequently its individuals are mutated to cover a

different region of the search space. Elite solutions consisting of the best individual from

each island are retained throughout the isolation period. During migration, elite solutions

are not lost since best individuals are forced to migrate to new islands.

At environmental changes, each island is re-evaluated and its genetic parameters are

reset to their respective upper diversity values. During quiescent phases of the environment,

genetic parameters are changed in response to individual island diversity measures. That

is, the parameter control formulae (7.12 through 7.16) are applied to each island separately.

A pseudo code for AIM is given in Figure 7.15.
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Procedure AIM

i = 0; // initiate instances counter

g = 0; // initiate generations counter

pop = Generate(isl[1], isl[2], . . . , isl[n islands]);

Evaluate( pop );

repeat

while quiescent environment

EvoloveIslands( pop , g );

PerformMigration( pop );

endwhile

i = i+1;

AdaptPopulation( pop , strategy );

until terminating condition

Procedure EvoloveIslands( pop , g )

for (k=1 to n islands)

repeat

g = g+1;

Select( isl[k] );

Cross( isl[k] );

Mutate( isl[k] );

best of isl[k] = Evaluate( isl[k] );

isl div = MeasureDiversity( isl[k] );

diversity limits = LinearlyAdapt( diversity limits , g );

params[k] = DiversityAdaptParam( params[k] , isl div ); // apply ADM Eqns

until end of isolation period 7.12, 7.13, 7.14

pop best = Best(pop best, best of isl[k] );

endfor

Procedure AdaptPopulation( pop , strategy )

Evaluate(pop);

Repair(pop);

ApplyDynamicStrategy(pop); // apply ADM, case t = tm in Eqns 7.12, 7.13, 7.14

Procedure PerformMigration( pop )

pop div = MeasureDiversity( isl[1], isl[2], . . . , isl[n islands] );

for (k=1 to n islands)

MutateIsland( isl[k], pop-div); // mutate current island if it is too close to another island

Migrate( isl[k] );

endfor

Fig. 7.15: Pseudo code for AIM
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7.4.2 Island model investigation

The effectiveness of island models is commonly investigated with respect to three basic

parameters: migration rate (number of individuals sent from islands to the base popu-

lation), migration interval (number of generations between subsequent migrations), and

the number of islands constituting the entire population. In general, large intervals of

migration and small numbers of immigrants lead to isolated islands that may suffer pre-

mature convergence, whereas frequent migrations and large numbers of immigrants lead to

global mixing of individuals where the islands virtually reduce to a single large population.

Still, reports on static implementation of IGAs [Whitley et al. 1999] assert the difficulty of

tuning these parameters.

For dynamic problems, however, AIM relies on the notion that each island is represented

by its best individual, thus only the best individual in each island migrates. This restriction

on migration has the advantage of reducing computational costs and tuning efforts. Thus

investigations in this section are limited to the role of the number of islands and migration

interval. Two sets of experiments are reported here using a population of 50 individuals and

fixed genetic parameters. The first set uses various numbers of islands (ranging from 2 to

25) with a constant migration interval. The second set uses a fixed number of islands (five)

to investigate different intervals of migration (the smallest interval equals ten evaluations

and the largest interval equals the period of environmental change).

The results of these experiments on the k100 problem (made dynamic using a mapping

benchmark scheme) are reported in this section. Figure 7.16 shows the effect of changing

the number of islands on solution quality. We first note that problem dynamics have little

effect on the best number of islands. All slides in the figure suggest avoiding a large number

of islands (i.e., islands of small size). These figure suggests that the optimal number of

islands is five. Repeating the experiments on the be52 problem and the p442 problem

(see Section 8.2.2 for details of these problems) give nearly the same recommendation on

the best number of islands. Of course this number might change with other problems or
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if a different overall population size is used; however, experiments on p442 and be52 in

addition to those on k100 suggest that there is always an optimal number of islands that

can be found by tuning the number of islands with a mapping benchmark scheme as is

done in the current experiments.

Figure 7.17 shows the effect of changing the length of migration interval on solution

quality. All slides in this figure agree on avoiding intermediate intervals: For slowly chang-

ing environments, frequent migration outperforms rare migration, but for fast environmen-

tal changes, it is much better to prevent migration. These results can be explained as

follows. In a fast changing environment, it is important to quickly converge even at the

risk of premature convergence around a moderately good solution, thus the fewer migra-

tions the better. But in slowly changing environments frequent migrations help avoiding

premature convergence and give a better chance of finding good solution.

The experiments are repeated using different base problems but the previously described

trends of migration interval and number of islands are consistent. Hence, the implemen-

tations of AIM use five islands with adaptive migration. That is, migration is prevented

during the initial period following an environmental change. Once island diversity d be-

comes smaller than the lower diversity limit dl, migration is performed at every generation

until the next environmental change.

As well, this scheme will also be awarding if several processors are used. With each

island allocated to a single processor, the rate of migration is a primary factor that deter-

mines the cost of communication between processors. The proposed AIM model reduces

this cost when the environment is fast changing; i.e., when reduction in run time is very

desirable.
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Fig. 7.16: Effect of number of islands on solution quality under different problem dy-

namics. Each of the nine slide corresponds to a specific severity of change and period

of change, e.g., sev10 per5000 slide is for a problem with a severity of 10 shifts per

environmental change and 5000 evaluations per environmental change.
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Fig. 7.17: Effect of migration interval on solution quality under different problem dy-

namics. Migration interval is given in tens of individual evaluations. Dotted lines are

drawn to show the relatively good performance at small and large migration intervals in

contrast to poor performance at intermediated intervals. Each of the nine slide corre-

sponds to a specific severity of change and period of change, e.g., sev10 per5000 slide is

for a problem with a severity of 10 shifts per environmental change and 5000 evaluations

per environmental change.
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7.5 Adaptive hybridized models

One of the most important implications of the no-free-lunch theorems is that the effective-

ness of a general algorithm on a given problem can be increased by integrating problem-

specific knowledge in the algorithm. Indeed, the effectiveness of EAs on COPs can often

be greatly enhanced by hybridizing with some local search techniques [Maniezzo V. 2002].

Such hybrids are known as hybrid genetic algorithms [He and Mort 2000], genetic local

search [Merz and Freisleben 1997], or memetic algorithms (MAa) [Moscato 1999].

Typically, local search is used to enhance the solutions produced by crossover and

mutation before they are retained in the population, and most MAs in the literature

[Krasnogor and Smith 2005] apply local search to all individuals in the population. In

fact, Merz and Freisleben’s MAs, which are among the most successful metaheuristics, use

exhaustive local search, in which all individuals in the population undergo a local search

that terminate in a local optimum. Under this approach, the end-of-generation population

consists entirely of local optima. However, the user of an exhaustive local search approach

presumes that there is “unlimited” time for algorithm execution, since for a lot of COPs

the number of local search iterations to local optimality is not polynomially bounded

[Johnson et al. 1988]. Furthermore, this approach can rapidly lead to a profound loss of

diversity. Therefore, while exhaustive local search might be appropriate for solving static

problems, it does not seem to be the best choice for dynamic problems, where both time

and diversity are of utmost importance. Hence, it is worth investigating alternatives to

exhaustive local search.

Most MA design issues that are deemed important for static problems are centered on

finding the best tradeoff between global evolutionary search and embedded local search

[Krasnogor and Smith 2005]. The models presented in this section for dynamic problems

sidestep these issues by clearly specifying the task of the local search in contrast to that of

the evolutionary algorithm. The EA is charged with handling the dynamism at environ-
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mental changes whereas local search is employed in static phases to enhance the solutions.

In this way, the adaptive ability of ADM and AIM models is retained while abundant lit-

erature on local search is directly exploited. Consequently, of the design issues addressed

in in Krasnogor and Smith [2005], the allocation of local search iterations has the utmost

importance in the proposed methodology.

7.5.1 The hybrid approach

In this section, we propose to hybridize the evolutionary algorithm with local search heuris-

tics in the following manner: At the end of each generation individuals in the population

undergo a local search that uses the best-accept strategy; that is, the best solution in the

searched neighborhood of the individual under consideration is compared with the current

solution. Then, the best of the two solutions is retained as the current solution. Only a

fraction of the neighborhood of the current solution is explored, and only a limited number

of local search iterations per generation are executed.

Integrating local search with EA in this manner, two new models (AHDM, and AHIM)

can be built from the previously introduced ADM and AIM models (see Figure 7.18 for the

pseudo code of AHIM). In both models, the evolutionary algorithm adapts to environmental

changes in the same way suggested for the ADM and AIM models. Thus, the main task

in this section is to establish an efficient scheme to integrate local search in the host EA.

There are several ways to improve the efficiency of a local search heuristic. Merz [2004]

shows many techniques that use domain knowledge for improving the efficiency of a local

search. However, for dynamic problems there will always be a limit for the number of local

search iterations. The question that arises with this limitation is: What is the best way to

invest the available iterations? For example, should we distribute them evenly among all

individuals of the population or allocate them to the population-best individual only?
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Procedure AHIM

i = 0; // initiate instances counter

g = 0; // initiate generations counter

pop = Generate(isl[1], isl[2], . . . , isl[n islands]);

Evaluate( pop );

repeat

while quiescent environment

EvoloveIslands( pop , g );

PerformMigration( pop );

endwhile

i = i+1;

AdaptPopulation( pop , strategy );

until terminating condition

Procedure EvoloveIslands( pop , g )

for (k=1 to n islands)

repeat

g = g+1;

Select( isl[k] );

Cross( isl[k] );

Mutate( isl[k] );

LocalSearch( isl[k] );

best of isl[k] = Evaluate( isl[k] );

isl div = MeasureDiversity( isl[k] );

diversity limits = LinearlyAdapt( diversity limits , g );

params[k] = DiversityAdaptParam( params[k] , isl div ); // apply ADM Eqns

until end of isolation period 7.12, 7.13, 7.14

pop best = Best(pop best, best of isl[k] );

endfor

Procedure AdaptPopulation( pop , strategy )

Evaluate(pop);

Repair(pop);

ApplyDynamicStrategy(pop); // apply ADM, case t = tm in Eqns 7.12, 7.13, 7.14

Procedure PerformMigration( pop )

pop div = MeasureDiversity( isl[1], isl[2], . . . , isl[n islands] );

for (k=1 to n islands)

MutateIsland( isl[k], pop-div); // mutate current island if it is too close to another island

Migrate( isl[k] );

endfor

Fig. 7.18: Pseudo code for AHIM
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7.5.2 Allocating local search evaluations

Given a certain number of local search evaluations, we would like to determine a strategy

to allocate them. To this end, four local search strategies (LS0, LS1, LS2, LS3) are

integrated in the ADM model. Thus ADM+LS0 denotes a dynamic solver without local

search. ADM+LS1 applies local search to all individuals in the population. ADM+LS2

applies local search to best individual in the population. ADM+LS3 adaptively applies

local search, that is, uses LS1 at environmental changes to distribute the search on all

individuals in the population, and uses LS2 at static phases to concentrate on further

enhancing good individuals.

Experiments are carried out on different dynamics of the k100 problem using the same

settings described in the previous sections. The only exception here is the inclusion of

the well-known 2-opt heuristic within LS1, LS2 and LS3 strategies. The experiments

are repeated using different numbers of allowable local search evaluations. The results

summarized in Figure 7.19, which clearly shows that strategies employing local search

outperform the pure EA model regardless of the problem dynamics and the allowable

number of local search evaluations. Among the three local search strategies, LS2 is the

best. That is, with a limited number of iterations it is better to concentrate on fine-tuning

the search near the population best rather than “waste” valuable resources on the entire

population. Strategies LS1 and LS3 give comparable performance in all slides.

Repeating the experiments on the be52 problem and the p442 problem does not reveal

any new trends—only that differences between LS1 and LS3 are more distinguishable in

the case of p442 as shown in Figure 7.20.

In the comparative experiments of the next chapter, local search is applied to the best

individual in the island only, without pre-requiring local optimality to terminate. However,

if a local optimum is encountered, the excess local search budget (unused evaluations) is

evenly distributed among other individuals of the population.
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Fig. 7.19: Investigating local search on k100. Local search budget in evaluations: upper

raw =50, med raw=500, bottom raw=5000.
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Fig. 7.20: Investigating local search on p442. Local search budget in evaluations:

upper raw =50, med raw=500, bottom raw=5000. This problem was included because

the difference between strategies is more distinct. Nevertheless the trends do not differ

from the k100 problem
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7.6 Summary

This chapter has introduced several dynamic solvers that use diversity to control the evo-

lutionary search. The ADM model manipulates the evolutionary parameters in response

to measured diversity, and the AIM model enhances the ADM model through the use of

islands. To further enhance solution quality, the EA models were hybridized with local

search.

Efficiency of these models relies to a large degree on the methods they employ to

measure diversity, control parameters, migrate solutions, and embed local search. Hence,

a substantial amount of investigation and comparative tests was dedicated to finding the

proper methods. The final adaptive hybridized island model, AHIM, is expected to work

well on many dynamic COPs.

In the next chapter, the performance of the developed algorithms is compared on several

dynamic benchmarks that were developed in this thesis.





Chapter 8

Empirical study and analysis

We have saddled algorithmic researchers with the burden of exhibiting faster and better

algorithms in each paper, a charge more suited to software houses, while expecting them

to advance our knowledge of algorithms at the same time.

Hooker [1996]

161
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8.1 General

The benchmark generation schemes presented in Chapter 5 and the adaptive strategies

developed in Chapter 7 are applied to two dynamic combinatorial problems (TSP and

FMS). Mathematical formulation, test problems, modes of environmental changes, and

results of testing adaptive models on these problems are described in this chapter.

The two evolutionary models (ADM and AIM) and their hybridized counterparts (AHDM

and AHIM) are compared against FM, RM, and RIM. In order to reduce the number of

pair-wise combinations of models, comparisons are given in two groups. The first group

involves comparisons of ‘pure’ evolutionary models (ADM and AIM against FM, RM and

RIM). The second group involves comparisons against hybridized models (ADM and AIM

against AHDM and AHIM). This approach also helps in contrasting the results of these

models since the quality of results of ADM and AIM is midway between that of FM, RM,

and RIM (on one side) and AHDM and AHIM (on the other side).

The evolutionary algorithm code was developed on a DAYTEK CT6730-C27 machine,

AMD Athlon XP 2700+ (2.16 GHz). The code was written in C and compiled using

GNU/Linux gcc version 3.3.5.

The mean best of generation (MBG), which is based on the objective function rather

than on the fitness (see Chapter 4), is used as a basis of comparison for the numerical

results presented in this chapter.

8.2 The dynamic travelling salesman problem

Any task of sequencing objects with the objective of minimizing the total cost or time can

be regarded as a TSP instance, hence the wide range of application of TSP in science and

engineering. Furthermore, it has often been the case that progress on the TSP has led to

progress on other combinatorial problems. TSP can simply be stated as: if a travelling
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salesman wishes to visit each of a list of cities exactly once and then return to the home

city, what is the shortest route the travelling salesman can take?

8.2.1 Mathematical formulation

There are many different formulations for the travelling salesman problem. One common

formulation is the integer programming formulation, which is given in [Rardin 1998] as

follows:

min
∑

i

∑

j>i

di,jxi,j (8.1)

s.t.
∑

j<i

xj,i +
∑

j>i

xi,j = 2 for all i

∑

i∈S

∑

j /∈S,j>i

xi,j +
∑

i/∈S

∑

j∈S,j>i

xi,j ≥ 2 for all proper point subsets S, |S| ≥ 3

xi,j = 0 or 1 for all i; j > i

where xi,j = 1 if link (i, j) is part of the solution, and di,j is the distance from point i to

point j.

8.2.2 Dynamic benchmarks

Static problems of sizes comparable to those reported in the literature [Guntsch et al. 2001;

Eyckelhof and Snoek 2002; Younes et al. 2003] are used in the comparative experiments

of these section. These problems are given in the TSP library [Reinelt 1991] as berlin52,

kroA100, and pcb442. In this thesis they are referred to as be52, k100, and p442 respec-

tively. Dynamic versions are constructed from these problems in three ways (modes): an

edge change mode (ECM), an insert/delete mode (IDM) and a vertex swap mode (VSM).

Edge change mode This mode reflects one of the real-world scenarios, a traffic jam.

Here, the distance between the cities is viewed as a time period or cost that may
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change over time, hence the introduction and the removal of a traffic jam, respectively,

can be simulated by the increase or decrease in the distance between cities. The

change step of the traffic jam is the increase in the cost of a single edge. The strategy

is as follows: If the edge cost is to be increased then that edge should be selected

from the best tour. However, if the cost were to be reduced then the selected edge

should not be part of the best tour.

The BG starts from one known instance and solves it to find the best or the near best

tour. Then an edge is selected randomly from the best tour, and its cost is increased

by a user defined factor creating a new instance which will likely have a different best

tour.

Insert/delete mode IDM reflects the addition and deletion of new assignments (cities).

This mode works in a manner similar to the ECM mode. The step of the change in

this mode is the addition or the deletion of a single city. This mode generates the

most difficult problems to solve dynamically since they require variable chromosome

length to reflect the increase or decrease in the number of cities from one instance to

the next.

Vertex swap mode VSM is another way to create a dynamic TSP by interchanging city

locations. It offers a simple, quick and easy way to test and analyze the dynamic algo-

rithm. The locations of two randomly selected cities are interchanged; this does not

change the length of the optimal tour but does change the solution (this is analogous

to shifting the independent variable(s) of a continuous function by a predetermined

amount). The change step (the smallest possible change) in this mode is an inter-

change of costs between a pair of cities; this can be very large in comparison with

the change steps of the previous two modes.

In the experiments conducted, each benchmark problem is created from an initial se-

quence of 1000 static problems inter-separated by single elementary steps. Depending on
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the specified severity, a number of intermediate static problems will be skipped to construct

one test problem.

Each sequence of static problems is translated into 21 dynamic test problems by com-

bining seven degrees of severity (1, 5, 10, 15, 20, 25 steps per shift, and random) and three

periods of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50,

and 100 generations per shift based on a population of 50 individuals).

8.2.3 Algorithm settings

In all tested models, the underlying GA is generational with tournament selection in which

selection pressure can be altered by changing a selection probability parameter. Edge

crossover [Whitley et al. 1991] is used throughout. The mutation operator is a pair-wise

node swap. It sweeps down the list of bits in the chromosome, swapping each with a

randomly selected bit if a probability test is passed. That is, for a problem of size l and

a mutation rate of µ the expected number of swaps on an individual is µl. This operator

produces little change in the individual, since no more than four edges are replaced in each

swap. Nevertheless, more drastic changes can be applied by simply increasing the rate of

mutation.

A population of 50 individuals is used throughout. The FM, RM and RIM models

use a crossover rate of 0.9 and a selection probability of 1.0. These values are determined

by tuning on the be52 problem in the VSM mode. A mutation rate of 1
4l

is used. This

value corresponds to the commonly used rate of mutation [Gen and Cheng 1999; Mitchell

1996; Reeves and Rowe 2002] (inverse of the chromosome length) and to the number of

edges (four) replaced in each swap. For the ADM, AIM, AHDM, and AHIM models, the

previous values represent one limit on the corresponding operator. For these models, the

other limit is 1.0, 0.9, and 1
2l

on crossover, selection and mutation respectively.

Individuals in the population are assigned to five islands in the AIM and AHIM models.

The well-known 2-opt heuristic is used in the hybridized models (AHDM and AHIM) for
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local search, with the number of local search evaluations per generation limited to 50.

8.2.4 Results

The results of experiments on the be52, k100, and p442 problems in the three modes of

environmental change are given in Appendix A. In this section, we discuss the results of

the k100 problem, which are similar to those of the other two problems.

Comparison of evolutionary models

Experimental results on the dynamic k100 problem in the VSM mode under three differ-

ent periods of change are summarized in Figure 8.1, where the mean best of generation

(averaged over ten runs) is plotted against severity of change. The ADM and AIM models

outperform the other models in almost all cases. The other three models give compara-

ble results to each other in general, with differences tending to decrease as the severity

of change increases. Only when the change severity is 10 steps per shift or more, may

the other models give slightly better performance than ADM and AIM. Keeping in mind

that in this 100 vertex problem, a severity of 10 in the VSM mode amounts to changing

(4× 10) edges; that is, about 40% of the edges in an individual are replaced, which consti-

tutes a substantial amount of change. As we are interested in small environmental changes

(which are the norm in practice), we can safely conclude that the experiments attest to

the superiority of the ADM and AIM over the other three models in the range of change

of interest.

Running the benchmark generator in either the ECM mode or the IDM mode gives

similar results as illustrated in Figure 8.2 and Figure 8.3 respectively. It can be seen that

ADM and AIM outperform the other models in most considered dynamics.

The RM model produces the worst results in all conducted experiments (even though

this model has been modified to retain the best solution in the hope of obtaining better
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Fig. 8.1: Comparison of evolutionary models (k100 VSM)
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Fig. 8.2: Comparison of evolutionary models (k100 ECM)
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Fig. 8.3: Comparison of evolutionary models (k100 IDM)
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results than those obtained in Chapter 6).

It is not easy to definitely settle on which of the two models (ADM and AIM) is the

best, since both give very comparable results in almost all cases. However, where more

than one processor can be used, AIM is the best of the two models since it can be easily

parallelized by allocating different islands to different processors and consequently reducing

computation time drastically.

Comparison of hybridized models

Results of comparisons of AIM and ADM against their hybridized counterparts (AHIM

and AHDM) are shown in Figure 8.4, 8.5, and 8.6, where average MBG is plotted against

different values of severity. First, we observe that in general all hybridized models are by

far better than pure evolutionary models in the three modes of environmental change and

over all the considered dynamics.

As with the pure evolutionary models, the performance of AHIM is comparable to that

of AHDM. Therefore, the same argument of the previous section can be used to conclude

that AHIM is better than AHDM if several processors are used.

Individual model results

More details on the conducted experiments are given in Table 8.1 for the ADM model. The

number of evaluations needed to reach the best solution after an environmental change is

averaged for all instances of the problem. The adaptation columns give the average and the

standard deviation (over the conducted runs) of the number of evaluations per instance,

including those of the local search when applicable. The MBG columns give the worst,

the average, the best, and the standard deviation of the mean best of generation over

the conducted runs. The last column gives the mean CPU time per instance (from an

environmental change till the discovery of the best solution); mean CPU = T
R
× E

Et
, where

T is the total CPU time, R is the number of conducted runs, E is the average number
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Fig. 8.4: Comparison of hybridized models (k100 VSM)
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Fig. 8.5: Comparison of hybridized models (k100 ECM)
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Fig. 8.6: Comparison of hybridized models (k100 IDM)
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Table 8.1: Results of ADM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 312. 12.79 4.2544 4.1696 4.0287 0.08 0.02

5 363. 7.85 5.3227 5.2459 5.1925 0.04 0.02

10 353. 7.36 5.9298 5.8394 5.7440 0.06 0.02

10 15 339. 10.07 6.1893 6.1003 6.0180 0.06 0.02

20 332. 7.33 6.3907 6.2976 6.2411 0.05 0.02

25 334. 11.89 6.5481 6.3933 6.2391 0.08 0.02

rnd 351. 10.12 5.5935 5.5343 5.4797 0.04 0.02

1 1711. 53.35 3.0732 3.0133 2.9342 0.05 0.08

5 1918. 43.19 3.7874 3.7452 3.6892 0.03 0.09

10 1863. 36.44 4.3391 4.2801 4.2505 0.03 0.10

50 15 1814. 22.38 4.6390 4.5802 4.5202 0.04 0.10

20 1783. 32.59 4.8829 4.8245 4.8007 0.03 0.11

25 1733. 22.03 5.0818 5.0274 4.9780 0.04 0.11

rnd 1882. 21.65 4.0343 4.0005 3.9567 0.03 0.10

1 3614. 89.30 2.8018 2.7503 2.7136 0.03 0.17

5 3998. 66.90 3.3303 3.3027 3.2719 0.02 0.20

10 3910. 57.48 3.7088 3.6736 3.6406 0.02 0.20

100 15 3829. 38.00 3.9868 3.9355 3.8898 0.03 0.20

20 3791. 66.66 4.1625 4.1043 4.0576 0.03 0.21

25 3699. 44.49 4.3260 4.2796 4.2371 0.03 0.21

rnd 3935. 49.00 3.5032 3.4738 3.4230 0.02 0.19

Table 8.2: Results of AHDM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 893. 5.62 2.3349 2.2873 2.2261 0.03 0.02

5 878. 5.63 4.0525 4.0075 3.9159 0.04 0.02

10 851. 5.12 5.0538 4.9714 4.9032 0.04 0.02

10 15 836. 7.94 5.4601 5.3907 5.3143 0.05 0.02

20 824. 7.37 5.7285 5.6783 5.5756 0.04 0.02

25 812. 8.53 5.9179 5.8538 5.7898 0.05 0.02

rnd 866. 3.45 4.5445 4.5038 4.4536 0.03 0.01

1 4462. 25.81 1.3611 1.3482 1.3259 0.01 0.10

5 4442. 13.54 2.0160 1.9973 1.9785 0.01 0.11

10 4371. 11.74 2.6233 2.6044 2.5881 0.01 0.11

50 15 4353. 19.54 3.0398 3.0252 3.0139 0.01 0.11

20 4325. 17.30 3.3710 3.3453 3.2880 0.03 0.11

25 4308. 25.93 3.6641 3.6254 3.5791 0.03 0.11

rnd 4408. 11.12 2.3210 2.2894 2.2554 0.02 0.10

1 8605. 93.62 1.2079 1.1925 1.1767 0.01 0.20

5 8982. 41.58 1.6010 1.5833 1.5717 0.01 0.22

10 8841. 27.45 1.9616 1.9429 1.9190 0.01 0.21

100 15 8735. 22.78 2.2282 2.2129 2.1939 0.01 0.22

20 8686. 30.71 2.4622 2.4423 2.4218 0.01 0.22

25 8630. 35.90 2.6636 2.6367 2.6199 0.01 0.22

rnd 8921. 34.49 1.7668 1.7484 1.7342 0.01 0.21
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Table 8.3: Results of AIM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 408. 21.44 4.2992 4.1726 4.0818 0.08 0.02

5 474. 12.20 5.3547 5.3220 5.2555 0.03 0.02

10 481. 8.12 5.8915 5.8523 5.8206 0.02 0.02

10 15 486. 12.35 6.1579 6.0884 5.9828 0.06 0.02

20 480. 16.88 6.2926 6.2238 6.1508 0.04 0.02

25 485. 9.09 6.4055 6.3264 6.2265 0.05 0.02

rnd 480. 13.22 5.6800 5.5825 5.5110 0.04 0.02

1 2349. 49.00 2.9043 2.8517 2.8064 0.03 0.10

5 2632. 21.92 3.8977 3.8398 3.8178 0.03 0.11

10 2674. 20.50 4.4105 4.3847 4.3541 0.02 0.11

50 15 2691. 23.67 4.7632 4.7081 4.6559 0.04 0.10

20 2672. 14.27 5.0191 4.9500 4.8684 0.04 0.11

25 2670. 26.18 5.1663 5.0885 4.9842 0.05 0.11

rnd 2641. 35.28 4.1381 4.0995 4.0561 0.03 0.11

1 4802. 60.15 2.4715 2.4250 2.3379 0.05 0.19

5 5341. 35.45 3.3482 3.2904 3.2519 0.04 0.21

10 5415. 30.34 3.8214 3.7780 3.7408 0.02 0.22

100 15 5427. 41.46 4.1028 4.0575 4.0008 0.03 0.22

20 5440. 40.08 4.3082 4.2763 4.2107 0.03 0.22

25 5426. 35.96 4.4778 4.4356 4.3971 0.03 0.22

rnd 5369. 25.16 3.5473 3.5075 3.4733 0.02 0.22

Table 8.4: Results of AHIM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2684. 14.85 2.1390 2.1185 2.0809 0.02 0.02

5 2710. 6.55 3.8330 3.7872 3.7361 0.03 0.02

10 2698. 15.60 4.7669 4.7126 4.6497 0.03 0.02

10 15 2687. 15.03 5.2039 5.1646 5.1190 0.03 0.02

20 2677. 20.91 5.4836 5.4134 5.3489 0.05 0.03

25 2693. 24.25 5.6729 5.6164 5.5372 0.04 0.03

rnd 2705. 11.02 4.2872 4.2485 4.2051 0.03 0.02

1 14125. 174.61 1.2454 1.2370 1.2320 0.00 0.11

5 15022. 34.68 1.8466 1.8390 1.8283 0.01 0.12

10 15076. 18.75 2.3985 2.3856 2.3677 0.01 0.11

50 15 15071. 15.50 2.8249 2.7994 2.7693 0.02 0.12

20 15057. 10.54 3.1699 3.1255 3.0955 0.03 0.12

25 15026. 21.26 3.4111 3.3778 3.3336 0.02 0.12

rnd 15014. 22.89 2.1173 2.1010 2.0805 0.01 0.12

1 26499. 460.55 1.1218 1.1105 1.0996 0.01 0.20

5 30083. 63.61 1.4671 1.4528 1.4454 0.01 0.23

10 30356. 65.87 1.7877 1.7781 1.7674 0.01 0.24

100 15 30433. 42.68 2.0628 2.0377 2.0223 0.01 0.23

20 30444. 41.34 2.2736 2.2591 2.2436 0.01 0.24

25 30443. 41.28 2.4855 2.4556 2.4327 0.02 0.24

rnd 30017. 133.77 1.6091 1.6015 1.5939 0.01 0.23
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of evaluations to best per instance, and Et is the average total number of evaluations per

run.

An interesting observation here is that there are no significant differences between

values of the worst, average and best of runs. This is also evident in the small values of

standard deviation. The obvious explanation is that the number of instances involved is

large enough to give a reasonably accurate estimate of the algorithm’s performance with

a reduced number of runs.

Similar details can be found in Table 8.2 for AHDM, in Table 8.3 for AIM and in

Table 8.4 for AHIM. Examining these tables individually does not reveal new trends in

addition to those discussed in reference to Table 8.1. Pair-wise comparisons, however, show

that the instance runtime (CPU column) does not change significantly when local search is

embedded in the evolutionary model. The efficiency of local search is a result of the limita-

tions imposed on the number of local search evaluations, which when applied effectively (to

the population best) enhance the solution quality without significantly increasing runtime,

as can be seen from comparing Table 8.1 to Table 8.2, and Table 8.3 to Table 8.4.

Statistical Analysis

Statistical results reported in this section are obtained using a significance level of 5%

to construct 95% confidence intervals on the difference in the mean best of generation

(see Section 4.5.3 for details on how the statistical tests are carried out). Table 8.5, 8.6,

and 8.7 show the results of multiple post ANOVA comparison test for the three modes of

change (respectively, ECM, IDM, and VSM). Each table covers 21 combinations of problem

dynamics (three periods of change and seven levels of severity of change including one level

with a random severity).

Table 8.8, 8.9, and 8.10 show the results of multiple post ANOVA comparison test on

the hybridized models for the three modes of change and the 21 combinations of dynamics.

The entries in these tables are interpreted as follows. An entry of 1 signifies that the
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Table 8.5: Multiple comparison test of evolutionary models (k100-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 1 0 0 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 0 0 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1

RM−ADM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 0 0 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 0 0 0 -1 0 -1 0 0 0 1 0 -1 -1 -1 -1 0

Table 8.6: Multiple comparison test of evolutionary models (k100-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1

Table 8.7: Multiple comparison test of evolutionary models (k100-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

FM−ADM 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

RM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 -1 0 -1 -1 0 -1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0
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Table 8.8: Multiple comparison test of hybridized models (k100-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 0 0 0 0 0 0 0 1 -1 -1 -1 0 0 -1 1 0 -1 -1 -1 -1 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

Table 8.9: Multiple comparison test of hybridized models (k100-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.10: Multiple comparison test of hybridized models (k100-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 0 0 -1 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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confidence interval for the difference in performance measures of the corresponding pair

consists entirely of positive values, which indicates that the first model is inferior to the

second model. Conversely, an entry of −1 signifies that the confidence interval for the

corresponding pair consists entirely of negative values, which indicates that the first model

is superior to the second one. An entry of 0 indicates that there is no significant difference

between the two models.

Statistical analysis confirms the arguments made on the graphical comparisons in the

previous section. As can be seen in Table 8.5, 8.7, and 8.6, there are significant differences

between the performance of the adaptive models (ADM and AIM) and the other three

models (FM, RM, and RIM), while there is no significant difference between ADM and

AIM. As well, Table 8.8, 8.10, and 8.9 emphasize the superiority of the hybrid models over

the pure evolutionary models and indicate the relatively similar performance of AHIM and

AHDM.

8.3 Dynamic flexible manufacturing systems

The large number of combinatorial problems associated with manufacturing optimization

[Dimopoulos and Zalzala 2000] is behind the growth in the use of intelligent techniques,

such as flexible manufacturing systems, in the manufacturing field during the last decade.

A flexible manufacturing systems (FMS) produces a variety of part types that are flexibly

routed through machines instead of the conventional straight-line routing [Chen and Ho

2002]. The flexibility associated with this system enables it to cope with unforeseen events

such as machine failures, erratic demands, and changes in product mix.

Typically, an FMS is a production system consisting of a heterogeneous group of nu-

merically controlled machines (machines, robots, and computers) which are connected

through an automated guided vehicle system. Each machine can perform a specific set

of operations that may intersect with operation sets of the other machines. Production
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planning and scheduling is more complicated in an FMS than it is in traditional man-

ufacturing [Wang et al. 2005]. One source of additional complexities is associated with

machine-operation versatility, since each machine can perform different operations and an

operation can be performed on different alternative machines. Another source of complex-

ity is in the material handling systems. In scheduling these systems, a number of additional

decision points that affect the overall performance of the FMS are created. A third source

of complexity is associated with unexpected events, such as machine breakdown, change of

demand, or introduction of new products. A fundamental goal that is gaining importance

is the ability to handle such unforseen events. To illustrate the kind of FMS we are focusing

on, we give the following example.

Example

A simple flexible manufacturing system consists of three machines, M1, M2 and M3. The

three respective sets of operations for these machines are {O1, O6}, {O1, O2, O5}, and

{O4,O6}, where Oi denotes operation i. This system is to be used to process three part

types P1, P2, and P3, each of which requires a set of operations, respectively, given as {O1,

O4, O6}, {O1, O2, O5, O6}, and {O4, O6}.

Choice (a) For part P1: (O1 7→ M2, O4 7→ M3, O6 7→ M3); i.e, assign machine

M2 to process O1, and assign M3 to process O4 and O6. For part P2:

(O1 7→ M1, O2 7→ M2, O5 7→ M2, O6 7→ M1); i.e assign machine M1 to

process O1 and O6, and assign M2 to process O2 and O5. for part P3:

(O4 7→ M3, O6 7→ M3); i.e, assign machine M3 to process O4 and O6.

Choice (b) For part P1: (O1 7→ M2, O4 7→ M3, O6 7→ M1). For part P2:

(O1 7→ M1, O2 7→ M2, O5 7→ M2, O6 7→ M3). for part P3: (O4 7→

M3, O6 7→ M1).
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By comparing both choices, one notices that the first solution is biased towards min-

imizing transfer of parts between machines. On the other hand the second solution is

biased towards balancing the operations on the machines. However, we need to consider

both objectives at the same time, which may not be easy since they are conflicting.

The complexity and the specifics of the problem require revising several components

of the conventional evolutionary algorithm to obtain an effective implementation on the

FMS problem. In particular, we need to devise problem-oriented methods for encoding

solutions, crossover, fitness assignment, and constraint handling. Appendix C contains

detailed descriptions of the genetic operators and the algorithmic approach. We restrict

discussion in the following sections to those details necessary to follow the approach for

the dynamic problem.

8.3.1 Mathematical formulation

The assignment problem considered in this section is given in Younes et al. [2002] using

the following notations:

i,l : machine index (i,l = 1,2,3,...,nm)

j : part index (j = 1,2,3,...,np)

k̂j : is processing choice for part j (j = 1,2,3,....,np)

kj : is the number of processing choices of Pj

njik̂j
: is the number of necessary operations required by Pj on Mi in processing choice k̂j,

1 ≤ k̂j ≤ kj tjik̂j
: is the work-load of machine Mi to process part Pj in processing choice

k̂j.
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xjik̂j
=







1 if Pj requires Mi in processing choice k̂j

0 otherwise

qjk̂j
=







1 if processing choice k̂j is selected for part j

0 otherwise

Using this notation, the three objective functions of the problem (f1, f2, and f3) are

given as follows:

1. Minimization of part transfer (by minimizing the number of machines required to

process each part):

f1 = mink̂j

nm
∑

i=1

qjk̂j
xjik̂j

,∀j (8.2)

2. Load Balancing by minimizing the cardinality distance between the workload of any

pair of machines:

f2 = mink̂j

np
∑

j=1

qjk̂j

nm
∑

i=1

nm
∑

l=(i+1)

|xjik̂j
tjik̂j

− xjlk̂j
tjlk̂j

| (8.3)

3. Minimization of the number of necessary operations required from each machine over

the possible processing choices:

f3 = mink̂j

nm
∑

i=1

qjk̂j
xjik̂j

njik̂j
,∀j (8.4)

An overall multi-objective mathematical model of FMS can then be formulated as follows:

solvefor f1, f2, f3

s.t.
kj

∑

k̂j=1

qjk̂j
= 1
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xjik̂j
∈ {0, 1}; qjk̂j

∈ {0, 1}; njik̂j
≥ 1; tjik̂j

≥ 0

The above model is the basis of the scheme of solution encoding and evaluation de-

scribed in the next section.

8.3.2 Solution representation and evaluation

An individual solution is represented by a series of operations for all parts involved. Each

gene in the chromosome represents a machine type that can possibly process a specific

operation. Figure 8.7 illustrates a chromosome representation of a possible solution to

the example given in Section 8.3. The advantages of this representation scheme are the

simplicity and the capability of undergoing standard operators without producing infeasible

solutions (as long as parent solutions are feasible).

M! 
O6 O1 

M2 
O5 O2 O1 

P1 P2 P3 

M3 
O4 O6 

(a)

P1: O1 7→ M2, O4 7→ M3, O6 7→ M1

P2: O1 7→ M1, O2 7→ M2, O5 7→ M2, O6 7→ M1

P3: O4 7→ M3, O6 7→ M3
 

 

 

 

 

 

 

 

 

P1 

 

P2 P3 

O1 O4 O6 O1 O2 O5 O6 O4 O6 

2 3 1 1 2 2 1 3 3 
 

gene (machine) 

(b)

Fig. 8.7: Chromosome representation. A schematic diagram of the possible choice of

part routing in (a) is represented by the chromosome in (b)
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The effectiveness of a solution has to be measured in terms of minimizing part transfer,

balancing the workload of the machines and minimizing the number of different operations

per machine. These objectives are conflicting. A solution that minimizes one objective

function can be of poor quality for the other two objective functions. In what follows,

normalized formulas for the three objective functions are given in order to enable a weighted

sum approach for the evaluation of solutions.

Part transfer If γj is the number of different machines assigned to part Pj, then part

transfer for Pj is (γj −1). An upper bound on part transfer is (φj −1) where φj is the

number of operations for part Pj. Accordingly, a normalized part transfer function

for all the parts can be given as:

F1 =

∑np

j=1(γj − 1)
∑np

j=1(φj − 1)
(8.5)

where np is the total number of parts

Load balance Machine imbalance can be measured in terms of the sum of the squared

deviations ssd from the average number of operations.

ssd =
nm
∑

i=1

(λi −

∑nm

i=1 λi

nm

)2

where λi is the number of operations performed by machine Mi and nm is the total

number of machines. An upper bound for the sum of the squared deviations can be

computed by assuming a case in which one machine does all the operations and the

remaining machines are idle as follows:

ssdmax = (np −
np

nm

)2 + (nm − 1)(0 −
np

nm

)2

=
n − 1

n
· n2

p

Accordingly, a normalized measure of machine imbalance can be given by
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F2 =
ssd

ssdmax

(8.6)

Machine operations This objective can be expressed in terms of the sum Λ of the num-

ber of operations allocated to each machine; i.e., Λ =
∑nm

i=1(λi)

An upper bound Λmax on the machine operations can be computed by considering

the worst case, in which each machine performs all operations, Λmax = nm · np

For this objective function, a non-zero lower bound Λmin can also be computed for

the case when no operation overlap exists between machines; i.e, Λmin = np.

Accordingly, a normalized measure of machine operations can be given by

F3 =
Λ − Λmin

Λmax − Λmin

=

∑nm

i=1(λi) − np

nmnp − np

(8.7)

Based on these normalizations, the proposed fitness assignment uses a weighted cost

function C, which can be given for an individual v as follows:

C(v) = w1F1 + w2F2 + w3F3 (8.8)

where w1, w2, and w3 are the weights assigned to the three objective functions respectively,

and w1 + w2 + w3 = 1.

By varying the weights in the cost function (8.8), one can plot different solutions in

the objective function space. Figure 8.8 illustrates the conflicting behavior of the three

functions on the rnd1 problem (11 machines, 20 parts, and 9 operations).

In the current implementation, the three objectives are lexicographically ordered, such

that minimizing part transfer has the highest priority and minimizing the number of op-

erations has the lowest priority.
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Fig. 8.8: Solutions in the criterion space

8.3.3 Dynamic benchmarks

Four instances of sizes comparable to those used in the literature [Chen and Ho 2002;

Younes et al. 2002] are used in the comparative experiments of these section.

Three of these instances (20 agents, 200 jobs), (20 agents, 100 jobs) and (10 agents,

100 jobs) were used in Chu and Beasley [1997]. The data describing these problems can

be found in the gapd file in the OR-library [Beasley 1990]. In this thesis they are referred

to as gap1, gap2, and gap3 respectively. As described in Chen and Ho [2002], agents are

considered as machines, jobs are considered as operations, and each part is assumed to

consist of five operations. In these instances, a machine is assumed capable of performing

all the required operations. However, in general machines may have limited capabilities;

that is, each machine can perform a specific set of operations that may or may not overlap

with those of the other machines. To enable this feature, a machine-operation incidence

matrix is generated for each instance as follows: If the cost of allocating a job to an agent

is below a certain level, the corresponding entry in the new incidence matrix is equal to

one to indicate that the machine is capable of performing the corresponding operation.

Alternatively, if the cost is large, the corresponding entry in the incidence matrix is zero

to indicate that the job is not applicable to the machine. The final lists that associate
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parts with operations and machines with operations are used to construct the dynamic

problems. These lists are provided in Appendix D.

The forth problem instance is randomly generated. It was specifically designed and used

to test FMS systems with overlapping capabilities in Younes et al. [2002]. This instance

consists of 11 machines, 20 parts, and 9 operations. In this thesis, it will be referred to as

rnd1.

In terms of the number of part operations (chromosome length) and the number of

machines (alleles), the dimensions of these problems are 200× 20, 100× 20, 100× 10, and

62 × 11 for gap1, gap2, gap3, and rnd1 respectively.

Dynamic problems are constructed from these instances in three ways (modes): a ma-

chine delete mode (MDM), a part add mode (PAM), and a machine swap mode (MSM)

.

Machine delete mode This mode reflects one of the real-world scenarios in which a

machine suddenly breaks down. The change step of this mode is the deletion of a

single machine.

Part add mode This mode reflects the addition and deletion of new assignments (parts).

The step of change in this mode is the addition or the deletion of a single part. This

mode requires variable representation to reflect the increase or decrease in the number

of operations associated with the changing parts.

Machine swap mode This mode is a direct application of the mapping-based benchmark

generation scheme, which is introduced in Section 5.4. By interchanging machine

labels, a dynamic FMS can be generated easily and quickly. The change step in this

mode is an interchange of a single pair of machines. As a mapping change scheme,

this mode does not require computing a new solution after each change. We only

need to swap the machines of the current optimal solution to determine the optimum

of the next instance.
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In the current experimentation, each benchmark problem is created from an initial

sequence of 100 static problems inter-separated by single elementary steps. Depending on

the specified severity, a number of intermediate static problems will be skipped to construct

one test problem.

Each sequence of static problems is translated into 18 dynamic test problems by com-

bining seven degrees of severity (1, 2, 3, 5, 10 steps per shift, and random) and three

periods of change (500, 2500, and 5000 evaluations per shift, which correspond to 10, 50,

and 100 generations per shift based on a population of 50 individuals).

8.3.4 Algorithm settings

In all tested models, the underlying GA is generational with tournament selection in which

selection pressure can be altered by changing a selection probability parameter. Structured

crossover and simple mutation are used throughout (see Appendix C for more details on

the underlying genetic operator and the pseudo code specifically designed for the multiple

objective FMS).

A population size of 50 individuals is used throughout. For the FM, RM and RIM

models, a crossover rate of 0.9, a selection probability of 1.0, and a mutation rate of 1
l

are used. For the ADM, AIM, AHDM, and AHIM models, the previous values represent

one limit on the corresponding operator; the other limit is 1.0, 0.9, and 2
l

for crossover,

selection and mutation respectively.

Individuals in the population are assigned to five islands in the AIM and AHIM models.

AHDM and AHIM use a local search heuristic based on a simple neighborhood definition,

in which two individuals are considered neighbors if any one of them can be generated

by altering the value of one gene in the other individual. The number of local search

evaluations per generation is limited to 50.
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8.3.5 Results

The results of experiments conducted on the rnd1, gap1, gap2, and gap3 problems in the

three modes of environmental change are given in Appendix B. In this section, we focus

on the gap1 problem, the largest and presumably the hardest, and on the rnd1 problem,

the most distinct.

Comparison of evolutionary models

Results of comparisons among the pure evolutionary models on the rnd1 problem in the

MSM mode are shown in Figure 8.9, where the average MBG (over ten runs) is plotted

against different values of severity.

First, we notice that results of the RM model are inferior to those of the other models

when the change severity is small. As severity increases, RM results become comparatively

better, and at extreme severities RM outperforms the other models. This trend is consistent

over different periods of environmental change confirming our notion that restart strategies

are best used when the problem changes completely; i.e., when no benefits are expected

from re-using old information.

Starting with the ten generation period, we notice that models that reuse old infor-

mation (all models except for RM) give comparable performance. However, as the period

of change increases, differences between their performance become more apparent. This

trend can be explained as follows: when the environmental change is fast, the models do

not have sufficient time to converge, and hence they give nearly the same results. When

allowed more time, the models start to converge, and those using the best approach to

persevere after obsolete convergence produce the best results.

The inferior performance of the the RM model is more apparent in the larger problem

(i.e., gap1), as illustrated in Figure 8.10. Whereas the performance of the other models

deteriorates with change severity, the performance of the RM model is consistently poor
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Fig. 8.9: Comparison of evolutionary models (rnd1 MSM)
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Fig. 8.10: Comparison of evolutionary models (gap1 MSM)

across the problem dynamics. We note here that the performance of RM (relative to the

other models) seems worse than that of rnd1; this can be explained by examining change

severity. Although values of severity are numerically the same in both cases, relative to

problem size they are different, since gap1 is larger than rnd1. In other words, the severity

range used in the experiments on gap1 is virtually less than that used in the experiments

on rnd1.
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Fig. 8.11: Comparison of hybridized models (rnd1 MSM)
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Fig. 8.12: Comparison of hybridized models (gap1 MSM)

Comparison of hybridized models

Results of comparisons of AIM and ADM against their hybridized counterparts (AHIM

and AHDM) are shown in Figure 8.11 for the rnd1 problem in the MSM mode. First,

we observe that in general all hybridized models are by far better than pure evolutionary

models over all the considered dynamics. The superiority of the island models is noticeable

too (compare AIM to ADM and AHIM to AHDM).

Comparisons on the gap1 problem in the MSM mode are given in Figure 8.12. Whereas
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ADM and AIM give similar performance, AHDM and AHIM produce more distinct per-

formance.

The superiority of the AHIM model over all other models is obvious on all the dynamics,

modes, and instances considered. This good performance is not surprising since AHIM, in

addition to using local search to fine-tune the search, maintains diversity without destroying

individuals of good quality.

It is worth mentioning here that the previous discussion (on the results of the evolu-

tionary models and hybridized models) is based on the MSM mode only. It is sufficient to

use this mode to investigate relative performance of all models. This is another demon-

stration of the effectiveness of the mapping-based benchmarking scheme in generating test

problems. A quick glance at the figures in Appendix B.2 confirms this observation.

Individual model results

More details on the conducted experiments are given in Table 8.11 for the ADM model

and in Table 8.12 for its hybridized counterpart (AHDM). For the AIM and AHIM, the

results are given in Table 8.13 and 8.14.

The number of evaluations needed to reach the best solution after an environmental

change is averaged for all instances of the problem. The adaptation columns give the

average and the standard deviation (over the conducted runs) of the number of evaluations

per instance, including those of the local search when applicable. The MBG columns give

the worst, the average, the best, and the standard deviation of the mean best of generation

over the conducted runs. The last column gives the mean CPU time per instance (from an

environmental change till the discovery of the best solution); mean CPU = T
R
× E

Et
, where

T is the total CPU time, R is the number of conducted runs, E is the average number

of evaluations to best per instance, and Et is the average total number of evaluations per

run.

There are no significant differences between values of the worst, average and best of
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Table 8.11: Results of ADM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 753. 13.13 1.4053 1.3798 1.3546 0.02 0.09

2 754. 24.10 1.5971 1.5816 1.5653 0.01 0.09

3 741. 20.20 1.6788 1.6590 1.6338 0.02 0.09

10 5 758. 26.00 1.7786 1.7461 1.6975 0.03 0.10

10 753. 31.58 1.8484 1.8253 1.7780 0.03 0.10

rnd 755. 5.12 1.6401 1.5954 1.5516 0.04 0.09

1 3774. 68.96 .8528 .8109 .7740 0.04 0.41

2 3896. 48.27 1.0380 .9858 .9079 0.05 0.42

3 3968. 19.18 1.1349 1.1030 1.0588 0.04 0.43

50 5 3988. 44.99 1.2932 1.2780 1.2454 0.02 0.44

10 4015. 24.65 1.5033 1.4469 1.4055 0.04 0.45

rnd 3884. 90.99 1.0319 1.0089 .9635 0.03 0.42

1 7252. 189.67 .6728 .6524 .6360 0.01 0.77

2 7593. 113.62 .8226 .7914 .7463 0.03 0.81

3 7651. 302.99 .9214 .8610 .8038 0.04 0.83

100 5 7977. 99.09 1.0482 1.0237 1.0047 0.02 0.86

10 7979. 98.57 1.2247 1.1954 1.1743 0.02 0.87

rnd 7622. 371.17 .8287 .7897 .7278 0.04 0.82

Table 8.12: Results of AHDM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 1163. 25.56 .8336 .8075 .7810 0.02 0.06

2 1177. 27.67 .9944 .9637 .9186 0.03 0.07

3 1188. 49.02 1.0964 1.0483 1.0077 0.04 0.07

10 5 1201. 40.15 1.2431 1.1992 1.1670 0.03 0.07

10 1220. 31.61 1.3980 1.3577 1.3122 0.04 0.08

rnd 1156. 47.81 1.0151 .9606 .9178 0.04 0.06

1 4985. 448.03 .5518 .5408 .5248 0.01 0.26

2 5703. 203.83 .6273 .6077 .5810 0.02 0.30

3 5830. 318.43 .6542 .6457 .6351 0.01 0.31

50 5 6126. 151.12 .7691 .7301 .7004 0.03 0.33

10 5840. 379.96 .9042 .8495 .7961 0.04 0.32

rnd 5754. 98.76 .6408 .6129 .5691 0.03 0.30

1 8309. 942.71 .4767 .4510 .4063 0.03 0.43

2 9859. 461.59 .5477 .5213 .4560 0.04 0.51

3 10630. 732.22 .5584 .5428 .5325 0.01 0.56

100 5 11446. 632.88 .6339 .6072 .5570 0.03 0.60

10 12121. 1305.84 .7482 .7009 .6846 0.03 0.64

rnd 9797. 587.27 .5609 .5142 .4786 0.03 0.51
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Table 8.13: Results of AIM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 789. 11.28 1.3878 1.3623 1.3214 0.02 0.09

2 787. 21.99 1.6032 1.5758 1.5244 0.03 0.09

3 781. 18.08 1.7413 1.6733 1.6223 0.05 0.10

10 5 786. 33.80 1.8008 1.7883 1.7728 0.01 0.10

10 803. 18.81 1.8746 1.8483 1.8262 0.02 0.11

rnd 793. 15.57 1.6148 1.5779 1.5347 0.03 0.09

1 4099. 87.16 .8608 .8418 .8234 0.02 0.45

2 4184. 169.52 1.0168 .9958 .9677 0.02 0.46

3 4377. 75.73 1.1274 1.1070 1.0760 0.02 0.48

50 5 4370. 34.12 1.2700 1.2400 1.2166 0.02 0.49

10 4342. 57.53 1.5032 1.4476 1.4122 0.04 0.50

rnd 4291. 95.92 1.1069 1.0368 .9806 0.05 0.47

1 8286. 146.05 .7279 .6928 .6566 0.03 0.90

2 8400. 379.46 .8550 .7926 .7147 0.05 0.91

3 8595. 333.84 .9128 .8906 .8713 0.01 0.94

100 5 8941. 66.47 1.0680 1.0321 .9924 0.03 0.98

10 8870. 90.69 1.2499 1.1727 1.1364 0.05 0.98

rnd 8637. 211.30 .8982 .8406 .8230 0.03 0.94

Table 8.14: Results of AHIM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2796. 34.82 .7167 .6752 .6472 0.03 0.15

2 2868. 38.66 .8837 .8249 .7947 0.04 0.15

3 2906. 56.13 .9699 .9484 .9290 0.02 0.16

10 5 2935. 42.34 1.1282 1.1036 1.0569 0.03 0.16

10 2868. 83.99 1.3117 1.2786 1.2177 0.04 0.16

rnd 2897. 49.77 .9241 .8510 .8236 0.04 0.15

1 11930. 947.74 .4957 .4523 .4189 0.03 0.62

2 12577. 1686.69 .5385 .4996 .4684 0.03 0.65

3 14463. 822.84 .5490 .5243 .5029 0.02 0.75

50 5 14250. 1155.78 .6413 .6082 .5763 0.03 0.74

10 15311. 1002.54 .7652 .7025 .6791 0.04 0.80

rnd 12429. 1721.15 .5193 .5060 .4844 0.01 0.64

1 18911. 1014.74 .4117 .3943 .3834 0.01 0.98

2 20889. 3539.95 .4588 .4413 .4109 0.02 1.08

3 21604. 3869.70 .5032 .4758 .4429 0.03 1.12

100 5 23718. 3479.17 .5420 .5131 .4784 0.03 1.23

10 27449. 3629.76 .6332 .5862 .5467 0.04 1.43

rnd 18285. 1000.20 .4768 .4481 .4313 0.02 0.95
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runs. This is also evident in the small values of the standard deviation. The obvious

explanation is that the number of instances involved per run is large enough to give a

reasonably accurate estimate of the algorithm’s performance.

Examining instance run time with and without local search, we notice that run time

does not increase after local search is embedded, as can be seen by comparing the CPU

column of Table 8.11 against that of Table 8.12. Indeed, run time decreases in some cases,

which attests to the efficiency gained by employing local search heuristics. We further

note that the gains in run time occur despite the associated increase in the number of

evaluations per instance. This is not surprising since local search evaluations (which are

about half the total evaluations) are relatively cheap to perform. In local search, only the

difference between the fitness of the candidate solution and that of the current solution is

computed. Since only one gene is changed at a time by the local search operator, the cost

of computing fitness difference is in the order of 1
l
of that of evaluating an entire individual,

where l is the chromosome length.

Nevertheless, runtime of AHIM is considerably longer than that of AIM, as can be

seen by comparing Table 8.13 against Table 8.14. In AHIM, the number of local search

evaluations increases profoundly since each island-best undergoes local search, which raises

the number of allowable local search evaluations in AHIM to about five times (number of

islands) the number of local search evaluations in AHDM. However, we can still favor AHIM

because of the good MBG values obtainable with AHIM relative to AHDM. Moreover, if

several processors are available as mentioned in the discussion of the TSP results, the

AHIM model becomes absolutely the best choice, as it lends itself easily to parallelization.

Statistical Analysis

Statistical results reported in this section are obtained using a significance level of 5% to

construct 95% confidence intervals on the difference in the mean best of generation (see

Section 4.5.3 for details on how these tests are carried out).
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Table 8.15: Multiple comparison test of evolutionary models (rnd1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1

RM−ADM 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1

RM−AIM 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

ADM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 8.16: Multiple comparison test of evolutionary models (gap1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.15 gives the results of multiple post ANOVA comparison test for the rnd1

problem in the MSM mode of change. This table covers 18 combinations of problem

dynamics (three periods of change and six levels of severity of change including one level

with a random severity). Thus, each row corresponds to 21 comparisons between a pair of

models. An entry of 1 signifies that the confidence interval for the difference in performance

measures of the corresponding pair consists entirely of positive values, which indicates that
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Table 8.17: Multiple comparison test of hybridized models (rnd1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 8.18: Multiple comparison test of hybridized models (gap1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0

the first model is inferior to the second model. Conversely, an entry of −1 signifies that the

confidence interval for the corresponding pair consists entirely of negative values, which

indicates that the first model is superior to the second one. An entry of 0 indicates that

there is no significant difference between the two models.

Similarly, test results on gap1 in the MSM mode are given in Table 8.16. For the hy-

bridized models, the results are given in Table 8.17 for the rnd1 problem, and in Table 8.18

for the gap1 problem.

Collectively, the statistical tables confirm the graphical comparisons presented in the

previous section. As can be seen in Table 8.15, and 8.16, there are significant differences

between the performance of the RM model and all others. As well, Table 8.17 and 8.18

emphasize the superiority of the hybrid models over the pure evolutionary models, and
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confirm some of the cases in which AHIM outperforms AHDM.

8.4 Summary

In this chapter, results of experimentation on dynamic TSP and FMS are presented. The

four models (ADM, AIM, AHDM, and AHIM) developed in this thesis are tested on each

problem.

The benchmarks are constructed from available problem instances under several modes

of environmental change in accordance with the generalized framework of benchmark gen-

eration.

It is clear from the results that ADM and AIM are very competitive and can pro-

duce results better than those obtainable with traditional strategies. On the other hand,

their performance is clearly inferior to that of the hybridized models, which give superior

performance with little or no adverse effect on computational costs.

Although the diversity controlled models produce good results, their relative perfor-

mance on TSP differ from that on FMS. For example, AHDM and AHIM give comparable

results in the case of TSP, whereas AHIM outperforms AHDM on all FMS instances. Nev-

ertheless, it is clear that local search when properly embedded enhances the performance

of the host algorithm with negligible increase in computational cost.

The mapping-based scheme proved to be effective in producing test problems for com-

paring algorithm performance.

We also note that these results are obtained using conventional rates of mutation with-

out attempting to fine-tune this parameter. Most tuning efforts are directed to finding

appropriate limits of diversity.



Chapter 9

Conclusions and Future Work

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

From “Little Gidding”, T.S. Eliot 1963
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9.1 Conclusions

Real-world problems seldom change completely: changes, while frequent, remain suffi-

ciently small, and consequently, significant benefits can be gained by adapting solutions to

the changes. This thesis has concentrated on the application of evolutionary algorithms

to dynamic combinatorial problems. The vast amount of research on evolutionary algo-

rithms indicates that they have established themselves as an effective optimization tool

even though their theoretical foundations are still debated.

Tackling dynamic problems entails addressing several issues related to algorithm devel-

opment, implementation, and testing. Although a general treatment of static COPs may

be difficult, most dynamism related issues can be addressed in a unified way. In this thesis,

general methodologies of testing, benchmarking, and adaptation are developed. Results of

experimentation on dynamic versions of TSP and FMS demonstrate that the methods are

effective on both problems and hence have a great potential for other dynamic COPs as

well.

The research conducted in this thesis leads to the following conclusions:

A unified methodology to generate benchmarks for dynamic COPs is worth developing.

In this research, general methods for constructing benchmarks for different COPs have been

successfully devised. It was relatively easy to construct FMS benchmarks after constructing

TSP benchmarks. It should prove to be easy to apply these methods to other COPs.

Furthermore, by using the same measures of dynamics, results can be easily mapped from

one problem to another. existing benchmarks for combinatorial problems are of limited

use as they are typically described in a case-based or application-based context.

It is important to be able to adapt to environmental changes without inflicting extra

demands in terms of parameter tuning. One problem with evolutionary algorithms is

that their results often depend on a number of parameters. This problem is aggravated in

algorithms targeting dynamic environments, as a result of the increased problem complexity
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and the increased number of algorithm parameters. By using diversity to control the EA

parameters, the models developed in this thesis had significantly reduced tuning efforts.

The real issue is not just to react to environmental changes after convergence but also to

obtain this convergence in the first place during the allowable time. EAs in their standard

form suffer from the problem that once a population converges around an optimum it will

be unable to further explore the search space after the environment shifts. This difficulty

is commonly appreciated, and often cited as a main motive for seeking adaptive schemes.

However, this difficulty is not so pressing as is generally believed; our first priority should

be finding solutions quickly during static phases. Indeed, the results of this research show

that models which merely react to environmental changes are in general inferior to models

which exploit the static phases of the problem.

The purpose of measuring diversity is to assess the explorative state of the search

process to update the algorithm parameters, rather than precisely determining variety in

the population as a goal in itself. The models developed in this thesis measure population

diversity in order to control the parameters of the algorithm so that diversity can be

maintained within acceptable limits. However, while researchers agree on the importance

of maintaining diversity, both in static and dynamic environments, they do not agree

on how to maintain diversity, let alone measuring it. Some measures are accurate but

expensive; others are cheaper but less accurate. Thus, a tradeoff between accuracy and

cost of computation has to be sought.

Performance of evolutionary algorithms can be greatly improved by an appropriate hy-

bridization of these algorithms with local search heuristics. The common practice of using

exhaustive local search, in which each individual in the population undergoes local search

at every generation, is not an ideal choice for dynamic problems. In fact, one can de-

bate the use of exhaustive local search even in static problems in view of the associated

computational costs and the risk of losing diversity.
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9.2 Contributions

This thesis targets practical aspects in the field of evolutionary computation in dynamic

and uncertain environments. Issues that hinder algorithm implementation and testing

are considered of utmost importance. The treatment of these issues constitute the thesis’

main contributions, which are summarized in conjunction with relevant publications in this

section.

1. On the aspect of algorithm development, this thesis resulted in strategies to improve

the ability of the algorithm to adapt to environmental changes, and more importantly

to improve its efficiency at finding quality solutions:

• A model that employs time dependent genetic parameters is developed. Experi-

mental results demonstrate the benefits of proposed adaptation in enhancing the

overall performance without increasing computational costs. [Younes and Basir

2002; Younes 2002; Younes et al. 2004]

• Methods to measure diversity and to adaptively control genetic parameters

throughout the search process are developed [Younes et al. 2005, 2006a].

• A hybridized island model that seeks efficient implementation of local search in

a multiple population EA is derived [Younes et al. 2006b].

2. In addressing benchmark generation, this thesis resulted in procedures that consider

combinatorial problems collectively:

• A mapping based scheme to create dynamic test problems is presented and

applied [Younes and Basir 2002; Younes et al. 2003, 2005]. Unlike existing

schemes this scheme can produce problem instances with known optima, without

the need of solving the new instances.
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• Dynamically insignificant change and misleading patterns of change, which can

hinder the generation of effective benchmarks, are identified and addressed in

Younes et al. [2005, 2006].

• A framework for benchmark generation for dynamic COPs is proposed [Younes et al.

2005]. By viewing the dynamic problem as a time sequence of (static) instances,

dynamic benchmarks can be treated on two levels, one level to target the base

static problem and the other level to target patterns of environmental changes.

As the first level is well-covered in the literature of static optimization, the user

can devote efforts to the second level.

3. To demonstrate the applicability of algorithmic and benchmarking ideas to more

complex problems, a multiple objective dynamic FMS problem is used:

• An EA for a (static) two-objective FMS problem is developed [Younes et al.

2002]. The algorithm produces excellent results with respect to part transfer

and balancing the work among the machines.

• An EA for a dynamic FMS problem is developed [to be submitted to European

Journal of Operations Research Sept 2006]. The algorithm involves three con-

flicting objectives, benchmarks of different categories, and adaption strategies

developed in various stages of this thesis.

Nevertheless, there are some points that would have complemented this work but were

impossible to address in the given time frame. These points can be the subject of future

work as described in the next section.
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9.3 Future work

There are several ways to improve, extend, or apply the developed models. In this section,

we briefly discuss some of these prospects.

• Diversity controlled models can use operator-specific diversity measures so that each

operator is controlled by its respective diversity measure. Such measures are likely

to be computationally expensive. However, if they are implemented based on the

population-best, the increase in cost can be limited.

• Instead of local search, other metaheuristics can be imbedded in the evolutionary

algorithm. In particular, tabu search has proven to be one of the best methods for

many static COPs, and hence it is interesting to investigate its potential in dynamic

problems as well.

• Another idea to explore is to adaptively update limits of diversity for the models

presented in this thesis. Roughly, the idea is to use an additional processor that

executes the same algorithm on a problem instance that changes under the mapping

scheme. The task of the additional processor is to find the best diversity limits for

the current instance and update the main model on regular intervals.

• In evaluating the performance of an algorithm on a dynamic problem, it is customary

to output the performance criterion against severity of change, since severity can

influence the choice of the adaptation strategy. However, change severity is commonly

measured in terms of distance between solutions of successive problem instances.

While this practice can be effective on benchmarks, it is hard to apply to real-world

problems (with unknown solutions), where only the problem input parameters can

be measured. Change in input parameters does not necessarily induce proportional

change in problem solution. Hence, a possible aspect of future work is to employ tools
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of reinforced learning to predict change severity, or to conduct statistical tests to

determine correlation between solution-based severity and parameter-based severity.

• This thesis borrows several ideas from pioneering work on continuous optimization,

for which the author is grateful. Nevertheless, in applying those ideas to dynamic

COPs, several issues have been addressed, hence the developed techniques are also

useful for dynamic continuous optimization and also for static COPs. For example,

methods proposed to measure population diversity and to apply local search can be

used to obtain efficient implementations in static optimization.

• The ability of the developed models to retain good performance over a wide range

of mutation rate encourages investigating their use to reduce efforts of parameter

tuning in static problems. In fact, the treatment of a dynamic problem as a series

of static ones readily allows the application of the developed models to conventional

static problems.

• The generalized framework of benchmarking can be extended to other COPs. Ta-

ble E.1 summarizes all possible changes in three COP examples considered in this

thesis. It is hoped that in the future other interesting dynamic COPs are constructed

under the generalized framework and their corresponding properties are added to this

table.

• The effectiveness of the developed methods on the TSP and FMS problems encour-

ages their application to other dynamic problems, such as intelligent transportation

systems, engine parameter control, scheduling of airline maintenance, and dynamic

network routing. With these problems, however, several important application de-

pendent aspects may have to be investigated. Examples are the integration of solution

implementation cost in the the objective function and the the interaction between

implemented solutions and system states.
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• More importantly, the search of robust solutions is an integral part to the research

conducted in this thesis. Robust solutions are required for cases where the application

does not permit changing the solution frequently, when cost of switching between

solutions is large, or when simply the dynamic solver deliver new solutions within

the allowable time limits.

The ever-increasing dynamism in real world problems and competition among various

enterprizes are likely to bring about newer optimization problems in which adaptation is

absolutely essential while conventional methods such as re-starting after every environmen-

tal change are not an option any more.
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Appendix A

TSP Results

This appendix lists results of experiments conducted on the dynamic TSP problem. The

appendix contains sufficient detail for readers who want to replicate the work.
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A.1 Individual strategy results

Details on the conducted experiments on individual models are given in this section. The

number of evaluations needed to reach the best solution after an environmental change

is averaged for all instances of the problem. The adaptation columns give the average

and the standard deviation (over the conducted runs) of the number of evaluations per

instance, including those of the local search when applicable. The MBG columns give the

worst, the average, the best, and the standard deviation of the mean best of generation

over the conducted runs. The last column gives the mean CPU time per instance (from an

environmental change till the discovery of the best solution); mean CPU = T
R
× E

Et
, where

T is the total CPU time, R is the number of conducted runs, E is the average number

of evaluations to best per instance, and Et is the average total number of evaluations per

run.
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Table A.1: Results of ADM (be52 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 342. 11.02 2.2879 2.2437 2.1910 0.03 0.01
5 328. 6.18 3.0020 2.9172 2.8537 0.04 0.01
10 308. 6.06 3.2008 3.1650 3.1364 0.02 0.01

10 15 300. 8.06 3.3165 3.2686 3.2134 0.03 0.01
20 296. 5.22 3.3583 3.3209 3.2841 0.03 0.01
25 292. 7.75 3.4188 3.3584 3.3036 0.03 0.01

rnd 319. 7.96 3.0716 3.0204 2.9765 0.03 0.01

1 1740. 37.16 1.7068 1.6696 1.6316 0.03 0.03
5 1782. 27.78 2.1301 2.1077 2.0810 0.01 0.04
10 1688. 19.12 2.4294 2.4125 2.3969 0.01 0.03

50 15 1625. 23.05 2.5905 2.5641 2.5361 0.02 0.03
20 1582. 25.95 2.6950 2.6636 2.6301 0.03 0.03
25 1537. 21.38 2.7915 2.7550 2.7278 0.02 0.04

rnd 1738. 31.17 2.2625 2.2297 2.1776 0.03 0.04

1 3336. 108.11 1.5334 1.5162 1.5026 0.01 0.06
5 3730. 40.22 1.8784 1.8411 1.8093 0.02 0.07
10 3600. 40.91 2.0807 2.0649 2.0523 0.01 0.07

100 15 3503. 52.36 2.2117 2.1783 2.1339 0.02 0.07
20 3490. 31.38 2.3005 2.2755 2.2561 0.01 0.07
25 3421. 49.03 2.3757 2.3434 2.3099 0.02 0.07

rnd 3605. 65.50 1.9289 1.9170 1.9025 0.01 0.07

Table A.2: Results of AHDM (be52 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 802. 5.78 1.5364 1.4995 1.4720 0.02 0.01
5 781. 3.18 2.3179 2.2604 2.2136 0.03 0.01
10 761. 3.54 2.7029 2.6681 2.6319 0.02 0.01

10 15 749. 5.37 2.8549 2.8164 2.7557 0.03 0.01
20 745. 6.24 2.9797 2.9104 2.8698 0.03 0.01
25 739. 7.48 3.0170 2.9827 2.9576 0.02 0.01

rnd 772. 4.29 2.4473 2.4130 2.3715 0.02 0.01

1 3602. 54.31 1.1646 1.1565 1.1456 0.01 0.03
5 3818. 25.42 1.3916 1.3788 1.3704 0.01 0.04
10 3641. 18.16 1.6032 1.5934 1.5853 0.01 0.04

50 15 3546. 23.23 1.7386 1.7215 1.7021 0.01 0.04
20 3494. 15.78 1.8511 1.8261 1.8077 0.01 0.04
25 3455. 30.46 1.9241 1.9062 1.8751 0.01 0.04

rnd 3726. 36.13 1.4723 1.4620 1.4465 0.01 0.04

1 5899. 278.01 1.1122 1.1053 1.0974 0.01 0.05
5 7283. 100.13 1.2423 1.2324 1.2243 0.01 0.06
10 7402. 69.37 1.3544 1.3504 1.3452 0.00 0.06

100 15 7283. 62.60 1.4306 1.4196 1.4084 0.01 0.07
20 7297. 93.24 1.4987 1.4777 1.4695 0.01 0.07
25 7204. 56.03 1.5401 1.5243 1.5118 0.01 0.07

rnd 7020. 130.94 1.2824 1.2768 1.2649 0.00 0.06
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Table A.3: Results of AIM (be52 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 384. 12.43 2.4121 2.3564 2.2963 0.04 0.01
5 419. 9.54 2.9867 2.9229 2.8835 0.03 0.01
10 425. 5.35 3.1760 3.1545 3.1389 0.01 0.01

10 15 427. 13.43 3.2881 3.2294 3.1989 0.03 0.01
20 429. 11.73 3.3211 3.2695 3.2277 0.03 0.01
25 430. 19.46 3.3590 3.3131 3.2539 0.03 0.01

rnd 422. 7.52 3.0365 3.0078 2.9740 0.02 0.01

1 2155. 38.91 1.6786 1.6543 1.6137 0.02 0.03
5 2345. 19.85 2.1972 2.1692 2.1381 0.02 0.04
10 2358. 14.24 2.4638 2.4395 2.4186 0.01 0.04

50 15 2333. 22.36 2.6020 2.5770 2.5549 0.02 0.04
20 2334. 21.06 2.6954 2.6640 2.6139 0.03 0.04
25 2326. 23.84 2.7690 2.7390 2.7204 0.02 0.04

rnd 2329. 19.34 2.3045 2.2750 2.2478 0.02 0.04

1 4362. 86.14 1.4776 1.4637 1.4470 0.01 0.07
5 4771. 24.53 1.9002 1.8694 1.8431 0.02 0.08
10 4791. 30.95 2.1227 2.1020 2.0908 0.01 0.08

100 15 4769. 39.08 2.2423 2.2234 2.1938 0.02 0.07
20 4789. 58.07 2.3218 2.3023 2.2790 0.01 0.07
25 4750. 40.30 2.3770 2.3665 2.3371 0.01 0.07

rnd 4714. 57.45 1.9711 1.9426 1.9173 0.02 0.08

Table A.4: Results of AHIM (be52 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2601. 18.81 1.4369 1.4213 1.4013 0.01 0.01
5 2657. 14.67 2.1687 2.1457 2.1230 0.01 0.01
10 2653. 16.69 2.5533 2.5355 2.5128 0.01 0.01

10 15 2647. 18.09 2.7197 2.6951 2.6666 0.02 0.01
20 2646. 10.01 2.8218 2.8020 2.7931 0.01 0.01
25 2638. 11.80 2.8956 2.8665 2.8419 0.02 0.01

rnd 2661. 14.55 2.3099 2.2941 2.2750 0.01 0.01

1 11511. 371.90 1.1122 1.0954 1.0899 0.01 0.03
5 14105. 84.73 1.3136 1.3095 1.3060 0.00 0.04
10 14370. 41.20 1.5165 1.5094 1.5048 0.00 0.04

50 15 14439. 30.39 1.6374 1.6310 1.6222 0.01 0.04
20 14431. 49.94 1.7445 1.7335 1.7264 0.01 0.04
25 14415. 45.65 1.8297 1.8134 1.8014 0.01 0.04

rnd 13913. 107.91 1.3934 1.3860 1.3759 0.01 0.04

1 18507. 443.89 1.0683 1.0559 1.0477 0.01 0.05
5 25478. 389.34 1.1766 1.1710 1.1670 0.00 0.07
10 27030. 232.08 1.2887 1.2837 1.2796 0.00 0.08

100 15 27439. 228.56 1.3558 1.3491 1.3449 0.00 0.08
20 27865. 212.50 1.4200 1.4151 1.4070 0.00 0.08
25 27974. 319.42 1.4601 1.4547 1.4475 0.00 0.08

rnd 25034. 439.90 1.2179 1.2127 1.2073 0.00 0.07
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Table A.5: Results of ADM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 312. 12.79 4.2544 4.1696 4.0287 0.08 0.02

5 363. 7.85 5.3227 5.2459 5.1925 0.04 0.02

10 353. 7.36 5.9298 5.8394 5.7440 0.06 0.02

10 15 339. 10.07 6.1893 6.1003 6.0180 0.06 0.02

20 332. 7.33 6.3907 6.2976 6.2411 0.05 0.02

25 334. 11.89 6.5481 6.3933 6.2391 0.08 0.02

rnd 351. 10.12 5.5935 5.5343 5.4797 0.04 0.02

1 1711. 53.35 3.0732 3.0133 2.9342 0.05 0.08

5 1918. 43.19 3.7874 3.7452 3.6892 0.03 0.09

10 1863. 36.44 4.3391 4.2801 4.2505 0.03 0.10

50 15 1814. 22.38 4.6390 4.5802 4.5202 0.04 0.10

20 1783. 32.59 4.8829 4.8245 4.8007 0.03 0.11

25 1733. 22.03 5.0818 5.0274 4.9780 0.04 0.11

rnd 1882. 21.65 4.0343 4.0005 3.9567 0.03 0.10

1 3614. 89.30 2.8018 2.7503 2.7136 0.03 0.17

5 3998. 66.90 3.3303 3.3027 3.2719 0.02 0.20

10 3910. 57.48 3.7088 3.6736 3.6406 0.02 0.20

100 15 3829. 38.00 3.9868 3.9355 3.8898 0.03 0.20

20 3791. 66.66 4.1625 4.1043 4.0576 0.03 0.21

25 3699. 44.49 4.3260 4.2796 4.2371 0.03 0.21

rnd 3935. 49.00 3.5032 3.4738 3.4230 0.02 0.19

Table A.6: Results of AHDM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 893. 5.62 2.3349 2.2873 2.2261 0.03 0.02

5 878. 5.63 4.0525 4.0075 3.9159 0.04 0.02

10 851. 5.12 5.0538 4.9714 4.9032 0.04 0.02

10 15 836. 7.94 5.4601 5.3907 5.3143 0.05 0.02

20 824. 7.37 5.7285 5.6783 5.5756 0.04 0.02

25 812. 8.53 5.9179 5.8538 5.7898 0.05 0.02

rnd 866. 3.45 4.5445 4.5038 4.4536 0.03 0.01

1 4462. 25.81 1.3611 1.3482 1.3259 0.01 0.10

5 4442. 13.54 2.0160 1.9973 1.9785 0.01 0.11

10 4371. 11.74 2.6233 2.6044 2.5881 0.01 0.11

50 15 4353. 19.54 3.0398 3.0252 3.0139 0.01 0.11

20 4325. 17.30 3.3710 3.3453 3.2880 0.03 0.11

25 4308. 25.93 3.6641 3.6254 3.5791 0.03 0.11

rnd 4408. 11.12 2.3210 2.2894 2.2554 0.02 0.10

1 8605. 93.62 1.2079 1.1925 1.1767 0.01 0.20

5 8982. 41.58 1.6010 1.5833 1.5717 0.01 0.22

10 8841. 27.45 1.9616 1.9429 1.9190 0.01 0.21

100 15 8735. 22.78 2.2282 2.2129 2.1939 0.01 0.22

20 8686. 30.71 2.4622 2.4423 2.4218 0.01 0.22

25 8630. 35.90 2.6636 2.6367 2.6199 0.01 0.22

rnd 8921. 34.49 1.7668 1.7484 1.7342 0.01 0.21
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Table A.7: Results of AIM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 408. 21.44 4.2992 4.1726 4.0818 0.08 0.02

5 474. 12.20 5.3547 5.3220 5.2555 0.03 0.02

10 481. 8.12 5.8915 5.8523 5.8206 0.02 0.02

10 15 486. 12.35 6.1579 6.0884 5.9828 0.06 0.02

20 480. 16.88 6.2926 6.2238 6.1508 0.04 0.02

25 485. 9.09 6.4055 6.3264 6.2265 0.05 0.02

rnd 480. 13.22 5.6800 5.5825 5.5110 0.04 0.02

1 2349. 49.00 2.9043 2.8517 2.8064 0.03 0.10

5 2632. 21.92 3.8977 3.8398 3.8178 0.03 0.11

10 2674. 20.50 4.4105 4.3847 4.3541 0.02 0.11

50 15 2691. 23.67 4.7632 4.7081 4.6559 0.04 0.10

20 2672. 14.27 5.0191 4.9500 4.8684 0.04 0.11

25 2670. 26.18 5.1663 5.0885 4.9842 0.05 0.11

rnd 2641. 35.28 4.1381 4.0995 4.0561 0.03 0.11

1 4802. 60.15 2.4715 2.4250 2.3379 0.05 0.19

5 5341. 35.45 3.3482 3.2904 3.2519 0.04 0.21

10 5415. 30.34 3.8214 3.7780 3.7408 0.02 0.22

100 15 5427. 41.46 4.1028 4.0575 4.0008 0.03 0.22

20 5440. 40.08 4.3082 4.2763 4.2107 0.03 0.22

25 5426. 35.96 4.4778 4.4356 4.3971 0.03 0.22

rnd 5369. 25.16 3.5473 3.5075 3.4733 0.02 0.22

Table A.8: Results of AHIM (k100 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2684. 14.85 2.1390 2.1185 2.0809 0.02 0.02

5 2710. 6.55 3.8330 3.7872 3.7361 0.03 0.02

10 2698. 15.60 4.7669 4.7126 4.6497 0.03 0.02

10 15 2687. 15.03 5.2039 5.1646 5.1190 0.03 0.02

20 2677. 20.91 5.4836 5.4134 5.3489 0.05 0.03

25 2693. 24.25 5.6729 5.6164 5.5372 0.04 0.03

rnd 2705. 11.02 4.2872 4.2485 4.2051 0.03 0.02

1 14125. 174.61 1.2454 1.2370 1.2320 0.00 0.11

5 15022. 34.68 1.8466 1.8390 1.8283 0.01 0.12

10 15076. 18.75 2.3985 2.3856 2.3677 0.01 0.11

50 15 15071. 15.50 2.8249 2.7994 2.7693 0.02 0.12

20 15057. 10.54 3.1699 3.1255 3.0955 0.03 0.12

25 15026. 21.26 3.4111 3.3778 3.3336 0.02 0.12

rnd 15014. 22.89 2.1173 2.1010 2.0805 0.01 0.12

1 26499. 460.55 1.1218 1.1105 1.0996 0.01 0.20

5 30083. 63.61 1.4671 1.4528 1.4454 0.01 0.23

10 30356. 65.87 1.7877 1.7781 1.7674 0.01 0.24

100 15 30433. 42.68 2.0628 2.0377 2.0223 0.01 0.23

20 30444. 41.34 2.2736 2.2591 2.2436 0.01 0.24

25 30443. 41.28 2.4855 2.4556 2.4327 0.02 0.24

rnd 30017. 133.77 1.6091 1.6015 1.5939 0.01 0.23
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Table A.9: Results of ADM (p442 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 377. 18.78 6.4934 6.4200 6.3719 0.06 0.21
5 458. 22.80 6.8564 6.8273 6.8002 0.03 0.27
10 481. 13.16 7.1408 7.1338 7.1205 0.01 0.31

10 15 481. 25.32 7.4202 7.3518 7.2762 0.07 0.33
20 501. 25.09 7.6041 7.5647 7.5411 0.03 0.35
25 497. 17.91 7.6369 7.6348 7.6329 0.00 0.38

rnd 489. 9.17 7.0242 7.0063 6.9922 0.02 0.29

1 2494. 76.94 5.4427 5.4194 5.3884 0.03 1.24
5 2843. 10.49 6.0095 5.9864 5.9708 0.02 1.47
10 2936. 29.31 6.2442 6.2425 6.2398 0.00 1.57

50 15 2830. 40.06 6.3941 6.3588 6.3303 0.03 1.57
20 2850. 52.44 6.5515 6.5114 6.4479 0.06 1.62
25 2785. 45.24 6.6608 6.5968 6.5448 0.06 1.65

rnd 2873. 35.17 6.1355 6.1238 6.1105 0.01 1.50

1 5530. 193.42 5.0637 5.0556 5.0422 0.01 2.72
5 6119. 69.73 5.7512 5.7317 5.7153 0.02 3.07
10 6107. 27.00 5.9587 5.9274 5.8928 0.03 3.12

100 15 6040. 83.42 6.0760 6.0569 6.0224 0.03 3.17
20 5964. 36.77 6.1757 6.1614 6.1383 0.02 3.20
25 5960. 146.55 6.2517 6.2254 6.2007 0.03 3.26

rnd 6033. 98.69 5.8308 5.8207 5.8138 0.01 3.07

Table A.10: Results of AHDM (p442 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 1138. 7.09 3.6456 3.6271 3.6161 0.02 0.36
5 1127. 2.95 5.2628 5.2345 5.2068 0.03 0.35
10 1123. 3.31 6.2940 6.2088 6.1637 0.07 0.36

10 15 1110. 3.56 6.8911 6.7896 6.7370 0.09 0.37
20 1076. 5.45 7.2052 7.1554 7.1070 0.05 0.37
25 1065. 2.27 7.3662 7.3425 7.3163 0.03 0.38

rnd 1130. 4.58 5.9248 5.8936 5.8673 0.03 0.36

1 5886. 8.08 1.7203 1.7148 1.7055 0.01 1.71
5 5930. 6.35 2.6298 2.6213 2.6048 0.01 1.73
10 5921. 9.75 3.4151 3.3918 3.3678 0.02 1.73

50 15 5914. 3.90 4.0201 4.0137 4.0048 0.01 1.73
20 5885. 13.72 4.5239 4.5164 4.5033 0.01 1.75
25 5880. 25.35 4.9074 4.8994 4.8896 0.01 1.76

rnd 5927. 14.97 3.0782 3.0634 3.0474 0.02 1.73

1 11892. 32.06 1.3280 1.3099 1.2987 0.02 3.40
5 11945. 23.07 1.9930 1.9788 1.9708 0.01 3.44
10 11931. 6.40 2.5300 2.5212 2.5145 0.01 3.44

100 15 11907. 7.34 2.9773 2.9697 2.9652 0.01 3.45
20 11888. 6.26 3.3734 3.3590 3.3358 0.02 3.45
25 11895. 6.29 3.7218 3.6859 3.6514 0.04 3.46

rnd 11933. 5.62 2.2899 2.2833 2.2710 0.01 3.44
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Table A.11: Results of AIM (p442 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 443. 20.49 6.2371 6.1881 6.1080 0.07 0.21
5 600. 5.99 6.9325 6.8646 6.8169 0.06 0.28
10 654. 6.18 7.2245 7.1996 7.1717 0.03 0.31

10 15 657. 19.16 7.4225 7.3804 7.3159 0.06 0.31
20 656. 15.07 7.5709 7.5445 7.5110 0.03 0.33
25 671. 26.49 7.7202 7.6729 7.6411 0.04 0.32

rnd 625. 32.50 7.0681 7.0539 7.0432 0.01 0.28

1 2877. 101.86 5.1795 5.1498 5.1308 0.03 1.26
5 3468. 73.54 5.8826 5.8089 5.7249 0.08 1.53
10 3634. 27.69 6.2329 6.2045 6.1839 0.03 1.60

50 15 3719. 29.04 6.4098 6.4035 6.3929 0.01 1.65
20 3731. 47.51 6.6175 6.5901 6.5574 0.03 1.66
25 3700. 70.92 6.7467 6.7367 6.7308 0.01 1.71

rnd 3537. 104.93 6.0578 6.0483 6.0385 0.01 1.57

1 6142. 108.55 4.7536 4.6923 4.6022 0.08 2.66
5 7117. 172.87 5.5110 5.4340 5.3817 0.07 3.10
10 7429. 98.67 5.8303 5.8221 5.8107 0.01 3.21

100 15 7555. 78.67 6.0366 6.0341 6.0315 0.00 3.28
20 7591. 110.99 6.2268 6.1978 6.1687 0.03 3.32
25 7583. 54.26 6.3416 6.3255 6.3120 0.02 3.37

rnd 7240. 88.52 5.6955 5.6784 5.6498 0.03 3.17

Table A.12: Results of AHIM (p442 SW)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2954. 11.17 3.4193 3.3780 3.3336 0.04 0.36
5 2940. 10.18 5.0326 4.9843 4.9348 0.05 0.35
10 2944. 14.88 6.0024 5.9863 5.9719 0.02 0.36

10 15 2928. 8.77 6.6273 6.5774 6.5513 0.04 0.36
20 2924. 14.00 6.9389 6.9248 6.9137 0.01 0.36
25 2927. 48.48 7.1377 7.1193 7.0835 0.03 0.35

rnd 2940. 14.40 5.7369 5.6434 5.5701 0.09 0.35

1 16260. 15.09 1.5361 1.5322 1.5301 0.00 1.76
5 16620. 12.00 2.4020 2.3978 2.3944 0.00 1.80
10 16651. 7.60 3.1468 3.1428 3.1386 0.00 1.80

50 15 16654. 24.80 3.7847 3.7568 3.7187 0.03 1.82
20 16611. 21.56 4.2403 4.2371 4.2314 0.01 1.81
25 16601. 9.16 4.6184 4.5903 4.5746 0.02 1.83

rnd 16646. 21.55 2.8590 2.8446 2.8342 0.01 1.80

1 32522. 143.25 1.1784 1.1706 1.1661 0.01 3.48
5 33626. 27.90 1.7657 1.7507 1.7405 0.01 3.59
10 33767. 10.48 2.2978 2.2886 2.2781 0.01 3.60

100 15 33779. 54.34 2.7288 2.7208 2.7093 0.01 3.61
20 33797. 25.86 3.1126 3.1027 3.0962 0.01 3.63
25 33770. 42.46 3.4398 3.4228 3.3947 0.02 3.63

rnd 33702. 3.65 2.0462 2.0364 2.0231 0.01 3.60
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A.2 Comparison of evolutionary models

In this section, comparisons of the performance of evolutionary models are depicted graph-

ically in terms of the mean best of generation (averaged over ten runs).
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Fig. A.1: Comparison of evolutionary models (be52 VSM)

0 5 10 15 20 25
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Severity

A
ve

ra
ge

 M
B

G

 FM
RM
RIM
ADM
AIM

Period = 10 generations

0 5 10 15 20 25
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Severity

A
ve

ra
ge

 M
B

G

 FM
RM
RIM
ADM
AIM

Period = 50 generations

0 5 10 15 20 25
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Severity

A
ve

ra
ge

 M
B

G

 

FM
RM
RIM
ADM
AIM

Period = 100 generations

Fig. A.2: Comparison of evolutionary models (be52 ECM)
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Fig. A.3: Comparison of evolutionary models (be52 IDM)
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Fig. A.4: Comparison of evolutionary models (k100 VSM)
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Fig. A.5: Comparison of evolutionary models (k100 ECM)
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Fig. A.6: Comparison of evolutionary models (k100 IDM)
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Fig. A.7: Comparison of evolutionary models (p442 VSM)
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Fig. A.8: Comparison of evolutionary models (p442 ECM)
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Fig. A.9: Comparison of evolutionary models (p442 IDM)
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Fig. A.10: Comparison of hybridized models (be52 VSM)
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Fig. A.11: Comparison of hybridized models (be52 ECM)
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Fig. A.12: Comparison of hybridized models (be52 IDM)
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Fig. A.13: Comparison of hybridized models (k100 VSM)
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Fig. A.14: Comparison of hybridized models (k100 ECM)
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Fig. A.15: Comparison of hybridized models (k100 IDM)
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Fig. A.16: Comparison of hybridized models (p442 VSM)
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Fig. A.17: Comparison of hybridized models (p442 ECM)
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Fig. A.18: Comparison of hybridized models (p442 IDM)
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A.3 Multiple post ANOVA tests

Statistical tables contain the results of multiple post ANOVA comparison tests which are

obtained using a significance level of 5% as described in Section 4.5.3.

The entries in these tables are interpreted as follows. An entry of 1 signifies that the

confidence interval for the difference in performance measures of the corresponding pair

consists entirely of positive values, which indicates that the first model is inferior to the

second model. Conversely, an entry of −1 signifies that the confidence interval for the

corresponding pair consists entirely of negative values, which indicates that the first model

is superior to the first one. An entry of 0 indicates that there is no significant difference

between the two models.



A.3 Multiple post ANOVA tests 221

Table A.13: Multiple comparison test of evolutionary models (be52-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 0 0 0 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 0 -1 -1 -1 -1 -1 1 1 1 0 0 -1 1 1 1 1 1 1 1 1

FM−AIM 0 0 -1 -1 -1 -1 0 1 1 1 0 0 -1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1

RM−ADM 1 0 -1 -1 -1 -1 0 1 1 1 1 0 -1 1 1 1 1 1 1 1 1

RM−AIM 1 0 -1 -1 -1 -1 0 1 1 1 1 0 -1 1 1 1 1 1 1 1 1

RIM−ADM 1 0 -1 -1 -1 -1 -1 1 1 1 0 0 -1 1 1 1 1 1 1 1 1

RIM−AIM 1 0 -1 -1 -1 -1 -1 1 1 1 0 0 -1 1 1 1 1 1 1 0 1

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.14: Multiple comparison test of evolutionary models (be52-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.15: Multiple comparison test of evolutionary models (be52-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

RM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1

RM−AIM 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1

RIM−ADM 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.16: Multiple comparison test of evolutionary models (k100-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 1 0 0 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 0 0 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1

RM−ADM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 0 0 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 0 0 0 -1 0 -1 0 0 0 1 0 -1 -1 -1 -1 0

Table A.17: Multiple comparison test of evolutionary models (k100-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1

Table A.18: Multiple comparison test of evolutionary models (k100-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

FM−ADM 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

RM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 -1 0 -1 -1 0 -1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0
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Table A.19: Multiple comparison test of evolutionary models (p442-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM -1 -1 -1 0 -1 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

FM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 1 0 -1 0 0 0 -1 1 1 0 0 -1 -1 1 1 1 1 0 0 -1 1

Table A.20: Multiple comparison test of evolutionary models (p442-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table A.21: Multiple comparison test of evolutionary models (p442-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

FM−RM -1 -1 0 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 0 -1

FM−RIM 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0

FM−ADM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FM−AIM 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−AIM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
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Table A.22: Multiple comparison test of hybridized models (be52-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 -1 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.23: Multiple comparison test of hybridized models (be52-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Table A.24: Multiple comparison test of hybridized models (be52-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0

ADM−AHIM 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0

AIM−AHDM 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

where period in generations/shift, severity in steps/shift
r denotes a random severity between 1 and 25.
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Table A.25: Multiple comparison test of hybridized models (k100-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 0 0 0 0 0 0 0 1 -1 -1 -1 0 0 -1 1 0 -1 -1 -1 -1 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

Table A.26: Multiple comparison test of hybridized models (k100-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.27: Multiple comparison test of hybridized models (k100-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 0 0 -1 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.28: Multiple comparison test of hybridized models (p442-VSM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM 1 0 0 0 0 0 0 1 1 0 0 -1 -1 1 1 1 1 0 0 -1 1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.29: Multiple comparison test of hybridized models (p442-ECM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

Table A.30: Multiple comparison test of hybridized models (p442-IDM)

period 10 100 1000

severity 1 5 10 15 20 25 r 1 5 10 15 20 25 r 1 5 10 15 20 25 r

ADM−AIM -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

where period in generations/shift, severity in steps/shift
r denotes a random severity between 1 and 25.



Appendix B

FMS Results

This appendix lists results of experiments conducted on the dynamic FMS problem. The

appendix contains sufficient detail for readers who want to replicate the work.
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B.1 Individual strategy results

Details on the conducted experiments on individual models are given in this section. The

number of evaluations needed to reach the best solution after an environmental change

is averaged for all instances of the problem. The adaptation columns give the average

and the standard deviation (over the conducted runs) of the number of evaluations per

instance, including those of the local search when applicable. The MBG columns give the

worst, the average, the best, and the standard deviation of the mean best of generation

over the conducted runs. The last column gives the mean CPU time per instance (from an

environmental change till the discovery of the best solution); mean CPU = T
R
× E

Et
, where

T is the total CPU time, R is the number of conducted runs, E is the average number

of evaluations to best per instance, and Et is the average total number of evaluations per

run.
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Table B.1: Results of ADM (rnd1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 727. 28.82 1.3665 1.3398 1.3180 0.02 0.01

2 775. 66.95 1.4192 1.4008 1.3820 0.01 0.01

3 852. 44.25 1.4259 1.4110 1.3941 0.01 0.01

10 5 808. 51.98 1.4845 1.4495 1.4272 0.02 0.01

10 858. 95.17 1.4983 1.4725 1.4305 0.03 0.01

rnd 780. 49.97 1.4141 1.3923 1.3749 0.02 0.01

1 3927. 173.30 1.2206 1.2047 1.1894 0.01 0.06

2 4250. 320.77 1.2627 1.2509 1.2365 0.01 0.06

3 4154. 204.39 1.2684 1.2585 1.2463 0.01 0.06

50 5 4303. 330.08 1.3119 1.2889 1.2724 0.01 0.06

10 4183. 464.11 1.3248 1.3056 1.2886 0.02 0.06

rnd 4134. 206.80 1.2604 1.2407 1.2219 0.02 0.06

1 8321. 430.17 1.1619 1.1565 1.1431 0.01 0.12

2 8829. 204.67 1.2030 1.1938 1.1807 0.01 0.13

3 8778. 348.42 1.2200 1.2034 1.1760 0.02 0.13

100 5 8586. 1336.73 1.2291 1.2133 1.2028 0.01 0.13

10 8507. 654.40 1.2848 1.2385 1.1951 0.04 0.13

rnd 8471. 371.40 1.2006 1.1764 1.1559 0.02 0.13

Table B.2: Results of AHDM (rnd1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 897. 52.24 1.1283 1.1071 1.0874 0.02 0.01

2 1195. 69.56 1.1789 1.1466 1.1225 0.02 0.01

3 1125. 123.29 1.1662 1.1484 1.1352 0.01 0.01

10 5 1219. 99.89 1.2243 1.1916 1.1774 0.02 0.01

10 1174. 212.53 1.2331 1.2086 1.1696 0.03 0.01

rnd 1049. 73.53 1.1314 1.1177 1.0876 0.02 0.01

1 1802. 284.03 1.0533 1.0309 1.0111 0.02 0.02

2 2405. 498.92 1.0746 1.0585 1.0365 0.01 0.02

3 2575. 563.81 1.0813 1.0653 1.0459 0.01 0.02

50 5 2896. 1003.30 1.1105 1.0806 1.0475 0.03 0.02

10 2401. 681.06 1.1250 1.1008 1.0678 0.03 0.02

rnd 1858. 629.89 1.0608 1.0513 1.0417 0.01 0.02

1 3289. 504.33 1.0494 1.0194 .9980 0.02 0.03

2 4263. 1317.73 1.0483 1.0315 .9976 0.02 0.04

3 4155. 1590.94 1.0653 1.0547 1.0449 0.01 0.04

100 5 5084. 1572.73 1.1039 1.0702 1.0238 0.03 0.04

10 6762. 2424.68 1.1027 1.0698 .9887 0.05 0.06

rnd 3895. 1446.56 1.0433 1.0367 1.0161 0.01 0.03
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Table B.3: Results of AIM (rnd1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 815. 49.83 1.3158 1.2938 1.2759 0.01 0.01

2 859. 16.85 1.3917 1.3819 1.3731 0.01 0.01

3 891. 75.09 1.4144 1.4034 1.3915 0.01 0.01

10 5 850. 80.71 1.4601 1.4427 1.4218 0.01 0.01

10 912. 76.59 1.4816 1.4712 1.4628 0.01 0.01

rnd 851. 61.08 1.3735 1.3549 1.3406 0.01 0.01

1 4340. 108.22 1.1360 1.1149 1.0924 0.02 0.06

2 4627. 251.58 1.1829 1.1734 1.1603 0.01 0.07

3 4618. 271.32 1.2050 1.1870 1.1708 0.02 0.07

50 5 4634. 177.44 1.2383 1.2170 1.1996 0.02 0.07

10 4866. 345.55 1.2694 1.2502 1.2296 0.01 0.07

rnd 4643. 162.45 1.1770 1.1525 1.1204 0.02 0.07

1 9150. 324.43 1.0719 1.0617 1.0526 0.01 0.14

2 9339. 105.36 1.1055 1.0928 1.0646 0.02 0.14

3 9235. 547.56 1.1495 1.1174 1.1057 0.02 0.14

100 5 9804. 380.03 1.1622 1.1360 1.1254 0.02 0.15

10 9692. 492.43 1.1841 1.1623 1.1444 0.01 0.14

rnd 9030. 293.17 1.0941 1.0873 1.0724 0.01 0.13

Table B.4: Results of AHIM (rnd1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2350. 118.09 1.0365 1.0264 1.0121 0.01 0.02

2 2607. 105.82 1.0781 1.0675 1.0503 0.01 0.02

3 2803. 217.30 1.1284 1.1094 1.0947 0.01 0.02

10 5 2727. 212.68 1.1488 1.1376 1.1240 0.01 0.02

10 3031. 112.11 1.1838 1.1712 1.1468 0.02 0.02

rnd 2483. 184.13 1.0899 1.0717 1.0570 0.01 0.02

1 13262. 711.11 .9534 .9409 .9264 0.01 0.11

2 14193. 1019.11 .9788 .9675 .9629 0.01 0.11

3 14819. 942.17 .9765 .9669 .9594 0.01 0.12

50 5 13970. 1743.19 1.0082 .9842 .9728 0.01 0.11

10 14494. 2628.00 1.0097 .9937 .9751 0.01 0.12

rnd 14224. 1273.42 .9668 .9570 .9480 0.01 0.11

1 29397. 2165.13 .9164 .9090 .8957 0.01 0.23

2 29047. 2000.52 .9255 .9136 .9047 0.01 0.23

3 28580. 1927.21 .9320 .9232 .9102 0.01 0.23

100 5 29976. 2473.37 .9463 .9296 .9100 0.01 0.24

10 27164. 4428.04 .9548 .9325 .9162 0.02 0.22

rnd 27563. 2240.76 .9253 .9171 .9072 0.01 0.22



B.1 Individual strategy results 231

Table B.5: Results of ADM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 753. 13.13 1.4053 1.3798 1.3546 0.02 0.09

2 754. 24.10 1.5971 1.5816 1.5653 0.01 0.09

3 741. 20.20 1.6788 1.6590 1.6338 0.02 0.09

10 5 758. 26.00 1.7786 1.7461 1.6975 0.03 0.10

10 753. 31.58 1.8484 1.8253 1.7780 0.03 0.10

rnd 755. 5.12 1.6401 1.5954 1.5516 0.04 0.09

1 3774. 68.96 .8528 .8109 .7740 0.04 0.41

2 3896. 48.27 1.0380 .9858 .9079 0.05 0.42

3 3968. 19.18 1.1349 1.1030 1.0588 0.04 0.43

50 5 3988. 44.99 1.2932 1.2780 1.2454 0.02 0.44

10 4015. 24.65 1.5033 1.4469 1.4055 0.04 0.45

rnd 3884. 90.99 1.0319 1.0089 .9635 0.03 0.42

1 7252. 189.67 .6728 .6524 .6360 0.01 0.77

2 7593. 113.62 .8226 .7914 .7463 0.03 0.81

3 7651. 302.99 .9214 .8610 .8038 0.04 0.83

100 5 7977. 99.09 1.0482 1.0237 1.0047 0.02 0.86

10 7979. 98.57 1.2247 1.1954 1.1743 0.02 0.87

rnd 7622. 371.17 .8287 .7897 .7278 0.04 0.82

Table B.6: Results of AHDM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 1163. 25.56 .8336 .8075 .7810 0.02 0.06

2 1177. 27.67 .9944 .9637 .9186 0.03 0.07

3 1188. 49.02 1.0964 1.0483 1.0077 0.04 0.07

10 5 1201. 40.15 1.2431 1.1992 1.1670 0.03 0.07

10 1220. 31.61 1.3980 1.3577 1.3122 0.04 0.08

rnd 1156. 47.81 1.0151 .9606 .9178 0.04 0.06

1 4985. 448.03 .5518 .5408 .5248 0.01 0.26

2 5703. 203.83 .6273 .6077 .5810 0.02 0.30

3 5830. 318.43 .6542 .6457 .6351 0.01 0.31

50 5 6126. 151.12 .7691 .7301 .7004 0.03 0.33

10 5840. 379.96 .9042 .8495 .7961 0.04 0.32

rnd 5754. 98.76 .6408 .6129 .5691 0.03 0.30

1 8309. 942.71 .4767 .4510 .4063 0.03 0.43

2 9859. 461.59 .5477 .5213 .4560 0.04 0.51

3 10630. 732.22 .5584 .5428 .5325 0.01 0.56

100 5 11446. 632.88 .6339 .6072 .5570 0.03 0.60

10 12121. 1305.84 .7482 .7009 .6846 0.03 0.64

rnd 9797. 587.27 .5609 .5142 .4786 0.03 0.51
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Table B.7: Results of AIM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 789. 11.28 1.3878 1.3623 1.3214 0.02 0.09

2 787. 21.99 1.6032 1.5758 1.5244 0.03 0.09

3 781. 18.08 1.7413 1.6733 1.6223 0.05 0.10

10 5 786. 33.80 1.8008 1.7883 1.7728 0.01 0.10

10 803. 18.81 1.8746 1.8483 1.8262 0.02 0.11

rnd 793. 15.57 1.6148 1.5779 1.5347 0.03 0.09

1 4099. 87.16 .8608 .8418 .8234 0.02 0.45

2 4184. 169.52 1.0168 .9958 .9677 0.02 0.46

3 4377. 75.73 1.1274 1.1070 1.0760 0.02 0.48

50 5 4370. 34.12 1.2700 1.2400 1.2166 0.02 0.49

10 4342. 57.53 1.5032 1.4476 1.4122 0.04 0.50

rnd 4291. 95.92 1.1069 1.0368 .9806 0.05 0.47

1 8286. 146.05 .7279 .6928 .6566 0.03 0.90

2 8400. 379.46 .8550 .7926 .7147 0.05 0.91

3 8595. 333.84 .9128 .8906 .8713 0.01 0.94

100 5 8941. 66.47 1.0680 1.0321 .9924 0.03 0.98

10 8870. 90.69 1.2499 1.1727 1.1364 0.05 0.98

rnd 8637. 211.30 .8982 .8406 .8230 0.03 0.94

Table B.8: Results of AHIM (gap1 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2796. 34.82 .7167 .6752 .6472 0.03 0.15

2 2868. 38.66 .8837 .8249 .7947 0.04 0.15

3 2906. 56.13 .9699 .9484 .9290 0.02 0.16

10 5 2935. 42.34 1.1282 1.1036 1.0569 0.03 0.16

10 2868. 83.99 1.3117 1.2786 1.2177 0.04 0.16

rnd 2897. 49.77 .9241 .8510 .8236 0.04 0.15

1 11930. 947.74 .4957 .4523 .4189 0.03 0.62

2 12577. 1686.69 .5385 .4996 .4684 0.03 0.65

3 14463. 822.84 .5490 .5243 .5029 0.02 0.75

50 5 14250. 1155.78 .6413 .6082 .5763 0.03 0.74

10 15311. 1002.54 .7652 .7025 .6791 0.04 0.80

rnd 12429. 1721.15 .5193 .5060 .4844 0.01 0.64

1 18911. 1014.74 .4117 .3943 .3834 0.01 0.98

2 20889. 3539.95 .4588 .4413 .4109 0.02 1.08

3 21604. 3869.70 .5032 .4758 .4429 0.03 1.12

100 5 23718. 3479.17 .5420 .5131 .4784 0.03 1.23

10 27449. 3629.76 .6332 .5862 .5467 0.04 1.43

rnd 18285. 1000.20 .4768 .4481 .4313 0.02 0.95
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Table B.9: Results of ADM (gap2 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 731. 31.05 1.9834 1.9229 1.8608 0.05 0.04

2 745. 18.42 2.2697 2.2202 2.1335 0.06 0.04

3 749. 11.98 2.4828 2.3822 2.3085 0.08 0.04

10 5 758. 18.13 2.6732 2.6140 2.5609 0.05 0.05

10 747. 31.66 2.8340 2.7466 2.6682 0.07 0.05

rnd 752. 13.83 2.3162 2.2632 2.1897 0.05 0.04

1 3408. 226.57 1.2636 1.1438 1.0367 0.10 0.18

2 3670. 76.47 1.4217 1.3308 1.2215 0.09 0.20

3 3804. 95.10 1.5761 1.4985 1.4030 0.08 0.20

50 5 3789. 49.06 1.8533 1.7187 1.6206 0.11 0.21

10 3956. 59.17 2.0701 1.9861 1.9128 0.07 0.22

rnd 3634. 179.88 1.5719 1.3712 1.2768 0.12 0.19

1 6358. 482.71 1.0122 .9499 .8619 0.05 0.33

2 6767. 298.13 1.1822 1.0803 .8839 0.12 0.36

3 7233. 165.78 1.2671 1.1934 1.0206 0.10 0.38

100 5 7596. 228.02 1.5126 1.3890 1.1861 0.13 0.41

10 7782. 303.00 1.7477 1.6168 1.4126 0.13 0.42

rnd 7046. 325.96 1.1672 1.0797 .9662 0.10 0.37

Table B.10: Results of AHDM (gap2 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 1021. 63.25 1.1755 1.1121 1.0320 0.06 0.03

2 1088. 71.79 1.4172 1.3126 1.2299 0.07 0.03

3 1101. 70.07 1.5056 1.4250 1.3370 0.07 0.03

10 5 1181. 50.05 1.8081 1.6971 1.6311 0.07 0.03

10 1222. 31.05 2.0370 1.9239 1.8553 0.09 0.04

rnd 1118. 35.05 1.4195 1.3672 1.2922 0.06 0.03

1 3574. 318.25 .9655 .8506 .7182 0.12 0.09

2 4126. 729.18 1.0296 .9086 .6893 0.14 0.11

3 4491. 366.95 1.0256 .9474 .8135 0.09 0.12

50 5 5669. 413.41 1.2042 1.0488 .8605 0.12 0.15

10 5659. 238.47 1.2773 1.1915 1.0267 0.10 0.15

rnd 4490. 386.03 1.0260 .9178 .8102 0.08 0.12

1 4789. 1086.27 .8480 .7795 .6511 0.08 0.12

2 6078. 1463.02 .9685 .8326 .7274 0.10 0.16

3 7037. 729.10 .9069 .8269 .7193 0.07 0.18

100 5 9055. 438.71 1.0951 .9138 .7604 0.13 0.24

10 7262. 1490.42 1.1130 .9632 .8140 0.12 0.19

rnd 5784. 826.02 1.0059 .8285 .6956 0.12 0.15
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Table B.11: Results of AIM (gap2 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 740. 39.21 2.0810 1.9088 1.7791 0.12 0.04

2 780. 13.77 2.3078 2.2827 2.2393 0.03 0.05

3 767. 37.53 2.5508 2.4108 2.3211 0.10 0.05

10 5 795. 9.76 2.7275 2.6806 2.6416 0.04 0.05

10 728. 22.81 2.9153 2.8655 2.8097 0.04 0.05

rnd 770. 38.38 2.3872 2.3103 2.1908 0.08 0.04

1 3697. 110.55 1.2664 1.2034 1.1529 0.05 0.20

2 3898. 169.47 1.4409 1.3821 1.2487 0.08 0.21

3 4015. 68.60 1.6290 1.5760 1.4586 0.07 0.22

50 5 4225. 72.70 1.8759 1.7763 1.7247 0.06 0.23

10 4242. 95.34 2.0946 2.0663 2.0435 0.02 0.24

rnd 4094. 55.00 1.5054 1.4505 1.3867 0.04 0.22

1 7036. 254.63 1.0749 1.0267 .9772 0.04 0.38

2 7747. 380.14 1.2580 1.1634 1.0689 0.08 0.42

3 8169. 257.73 1.3481 1.2638 1.2072 0.07 0.44

100 5 8423. 217.11 1.5486 1.4888 1.3863 0.07 0.46

10 8386. 609.17 1.7487 1.6649 1.5615 0.07 0.46

rnd 7581. 184.97 1.2570 1.2007 1.1329 0.06 0.41

Table B.12: Results of AHIM (gap2 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2463. 137.22 1.0859 1.0329 .9957 0.04 0.06

2 2672. 64.69 1.1941 1.1558 1.0998 0.05 0.07

3 2712. 69.42 1.3606 1.2971 1.1754 0.07 0.07

10 5 2763. 162.23 1.6472 1.5270 1.4156 0.08 0.07

10 2868. 98.22 1.8742 1.7964 1.7071 0.06 0.08

rnd 2763. 118.75 1.2781 1.2003 1.0495 0.09 0.07

1 7836. 1935.93 .7899 .7009 .5246 0.10 0.20

2 9080. 1167.88 .9084 .7706 .5976 0.11 0.23

3 10802. 1459.10 .8764 .8034 .6991 0.07 0.28

50 5 11774. 1846.57 1.0423 .9068 .8137 0.08 0.30

10 11031. 2227.74 1.1007 1.0352 .9722 0.05 0.29

rnd 10787. 1119.13 .9816 .8365 .7548 0.09 0.28

1 11486. 2666.02 .7319 .6532 .5398 0.08 0.30

2 15429. 2848.33 .7332 .6758 .6422 0.04 0.40

3 16853. 2893.62 .7811 .7092 .6653 0.05 0.43

100 5 19024. 6491.95 .7968 .7743 .7243 0.03 0.49

10 23701. 5688.94 .9212 .8635 .7392 0.07 0.61

rnd 14917. 4627.47 .8116 .6992 .5197 0.11 0.38
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Table B.13: Results of ADM (gap3 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 740. 17.34 2.1353 2.0573 2.0225 0.05 0.03

2 763. 14.33 2.4173 2.3473 2.2460 0.06 0.03

3 765. 11.61 2.5545 2.5150 2.4469 0.04 0.03

10 5 755. 32.38 2.6502 2.5682 2.4721 0.09 0.03

10 767. 39.65 2.7463 2.6742 2.5847 0.06 0.03

rnd 748. 21.98 2.4984 2.3973 2.2977 0.07 0.03

1 3722. 111.33 1.3980 1.3550 1.3155 0.04 0.12

2 3875. 39.23 1.6000 1.5562 1.4908 0.04 0.12

3 3800. 103.85 1.7216 1.6916 1.6166 0.04 0.12

50 5 3916. 56.41 1.8666 1.8155 1.7625 0.04 0.13

10 3893. 82.33 2.0446 1.9649 1.9017 0.06 0.13

rnd 3859. 60.99 1.5960 1.5592 1.5414 0.02 0.12

1 6619. 208.30 1.1590 1.1252 1.0808 0.04 0.21

2 7215. 219.60 1.3322 1.2832 1.2445 0.04 0.23

3 7213. 290.17 1.4039 1.3478 1.2775 0.05 0.23

100 5 7634. 216.58 1.5648 1.4985 1.4411 0.05 0.24

10 7836. 111.56 1.7052 1.6578 1.5431 0.07 0.25

rnd 7178. 396.01 1.3338 1.2918 1.2546 0.03 0.23

Table B.14: Results of AHDM (gap3 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 1081. 48.88 1.3408 1.2834 1.2283 0.05 0.02

2 1105. 60.09 1.4637 1.4319 1.3887 0.04 0.02

3 1050. 50.94 1.5865 1.5535 1.5262 0.03 0.02

10 5 1016. 119.42 1.7539 1.6768 1.6087 0.05 0.02

10 1088. 125.72 1.9480 1.8434 1.7190 0.09 0.02

rnd 1135. 48.64 1.5198 1.4833 1.4379 0.04 0.02

1 3242. 253.45 1.0847 1.0052 .9429 0.05 0.05

2 4051. 344.21 1.1239 1.1039 1.0768 0.02 0.06

3 3797. 677.37 1.1749 1.1127 1.0185 0.06 0.06

50 5 4199. 788.84 1.2937 1.2222 1.1696 0.05 0.06

10 4732. 793.37 1.5047 1.3216 1.1962 0.11 0.07

rnd 3675. 242.33 1.1493 1.0701 1.0298 0.05 0.06

1 5612. 809.40 1.0358 .9798 .9387 0.04 0.08

2 5852. 762.15 1.0368 1.0164 .9876 0.02 0.09

3 5420. 1024.55 1.0644 1.0320 .9719 0.04 0.08

100 5 6903. 2038.51 1.2033 1.1192 1.0312 0.07 0.11

10 7734. 1599.45 1.2275 1.1689 1.0834 0.06 0.12

rnd 6240. 941.88 1.0918 1.0357 .9670 0.05 0.09
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Table B.15: Results of AIM (gap3 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 776. 17.89 2.1079 2.0689 2.0298 0.03 0.03

2 793. 8.34 2.3945 2.3586 2.3181 0.03 0.03

3 785. 18.64 2.5083 2.4725 2.4129 0.04 0.03

10 5 786. 26.33 2.6275 2.5497 2.4999 0.05 0.03

10 796. 8.97 2.7231 2.6689 2.6192 0.05 0.03

rnd 791. 15.82 2.3845 2.3112 2.1979 0.07 0.03

1 4018. 160.62 1.4591 1.3740 1.3193 0.06 0.13

2 4049. 83.95 1.5614 1.4962 1.4493 0.04 0.13

3 4191. 119.19 1.6558 1.6100 1.5419 0.05 0.14

50 5 4163. 160.46 1.8482 1.7477 1.6191 0.09 0.14

10 4179. 115.57 2.0272 1.9351 1.8435 0.07 0.14

rnd 4069. 135.19 1.6347 1.5613 1.4764 0.07 0.13

1 7842. 279.90 1.2202 1.1800 1.1429 0.03 0.25

2 8002. 412.63 1.3629 1.3175 1.2826 0.03 0.26

3 7933. 352.63 1.4421 1.3924 1.3326 0.05 0.26

100 5 8184. 493.36 1.5362 1.4926 1.4121 0.05 0.27

10 8393. 264.83 1.6828 1.6125 1.5126 0.07 0.27

rnd 8077. 336.30 1.3489 1.2979 1.2514 0.04 0.26

Table B.16: Results of AHIM (gap3 MSM)

Adaptation MBG CPU

Per. Sev. avg std worst avg best std (sec)

1 2648. 61.09 1.1250 1.1092 1.0920 0.01 0.04

2 2770. 91.76 1.3326 1.3186 1.2980 0.01 0.04

3 2828. 140.10 1.4686 1.3889 1.3400 0.05 0.04

10 5 2878. 58.35 1.5584 1.5290 1.4973 0.02 0.04

10 2954. 56.27 1.6957 1.6759 1.6359 0.03 0.05

rnd 2812. 122.92 1.3525 1.3176 1.2850 0.03 0.04

1 8759. 1042.89 .8602 .8354 .7849 0.03 0.13

2 9607. 2784.30 .9764 .9093 .8477 0.05 0.14

3 10316. 715.38 1.0411 .9611 .9012 0.06 0.16

50 5 9995. 906.21 1.0374 .9995 .9515 0.03 0.15

10 8648. 1640.83 1.1455 1.1079 1.0732 0.03 0.13

rnd 8769. 1124.89 .9749 .9235 .8774 0.04 0.13

1 15229. 2489.42 .8348 .7794 .7307 0.04 0.23

2 17372. 2368.61 .8722 .8250 .7381 0.05 0.26

3 15888. 6618.43 .9381 .8760 .7974 0.05 0.24

100 5 21418. 5246.58 1.0057 .9427 .8447 0.06 0.32

10 24104. 6905.96 1.0221 .9816 .9293 0.03 0.36

rnd 15263. 3732.81 .8729 .8296 .7646 0.04 0.23
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B.2 Comparison of evolutionary models

In this section, comparisons of the performance of evolutionary models are depicted graph-

ically in terms of the mean best of generation (averaged over ten runs).
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Fig. B.1: Comparison of evolutionary models (rnd1 MSM)
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Fig. B.2: Comparison of evolutionary models (rnd1 MDM)
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Fig. B.3: Comparison of evolutionary models (rnd1 PAM)
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Fig. B.4: Comparison of evolutionary models (gap1 MSM)
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Fig. B.5: Comparison of evolutionary models (gap1 MDM)
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Fig. B.6: Comparison of evolutionary models (gap1 PAM)
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Fig. B.7: Comparison of evolutionary models (gap2 MSM)

0 2 4 6 8 10
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Severity

A
ve

ra
ge

 M
B

G

 

FM
RM
RIM
ADM
AIM

Period = 10 generations

0 2 4 6 8 10
0.8

1

1.2

1.4

1.6

1.8

2

Severity

A
ve

ra
ge

 M
B

G

 

FM
RM
RIM
ADM
AIM

Period = 50 generations

0 2 4 6 8 10
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Severity

A
ve

ra
ge

 M
B

G

 

FM
RM
RIM
ADM
AIM

Period = 100 generations

Fig. B.8: Comparison of evolutionary models (gap2 MDM)
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Fig. B.9: Comparison of evolutionary models (gap2 PAM)
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Fig. B.10: Comparison of evolutionary models (gap3 MSM)
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Fig. B.11: Comparison of evolutionary models (gap3 MDM)
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Fig. B.12: Comparison of evolutionary models (gap3 PAM)
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Fig. B.13: Comparison of hybridized models (rnd1 MSM)
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Fig. B.14: Comparison of hybridized models (rnd1 MDM)
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Fig. B.15: Comparison of hybridized models (rnd1 PAM)
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Fig. B.16: Comparison of hybridized models (gap1 MSM)
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Fig. B.17: Comparison of hybridized models (gap1 MDM)
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Fig. B.18: Comparison of hybridized models (gap1 PAM)
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Fig. B.19: Comparison of hybridized models (gap2 MSM)
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Fig. B.20: Comparison of hybridized models (gap2 MDM)
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Fig. B.21: Comparison of hybridized models (gap2 PAM)
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Fig. B.22: Comparison of hybridized models (gap3 MSM)
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Fig. B.23: Comparison of hybridized models (gap3 MDM)
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Fig. B.24: Comparison of hybridized models (gap3 PAM)
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B.3 Multiple post ANOVA tests

Statistical tables contain the results of multiple post ANOVA comparison tests which are

obtained using a significance level of 5% as described in Section 4.5.3.

The entries in these tables are interpreted as follows. An entry of 1 signifies that the

confidence interval for the difference in performance measures of the corresponding pair

consists entirely of positive values, which indicates that the first model is inferior to the

second model. Conversely, an entry of −1 signifies that the confidence interval for the

corresponding pair consists entirely of negative values, which indicates that the first model

is superior to the first one. An entry of 0 indicates that there is no significant difference

between the two models.
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Table B.17: Multiple comparison test of evolutionary models (rnd1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 0 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1

RM−ADM 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1

RM−AIM 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

ADM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table B.18: Multiple comparison test of evolutionary models (rnd1-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0

RM−ADM 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1

RM−AIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

RIM−AIM 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1

ADM−AIM 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0

Table B.19: Multiple comparison test of evolutionary models (rnd1-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1

FM−RIM -1 0 0 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

RM−RIM 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1

RIM−AIM 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AIM 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1



248 AppendixB. FMS Results

Table B.20: Multiple comparison test of evolutionary models (gap1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.21: Multiple comparison test of evolutionary models (gap1-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.22: Multiple comparison test of evolutionary models (gap1-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
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Table B.23: Multiple comparison test of evolutionary models (gap2-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.24: Multiple comparison test of evolutionary models (gap2-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.25: Multiple comparison test of evolutionary models (gap2-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table B.26: Multiple comparison test of evolutionary models (gap3-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1

RM−ADM 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1

RM−AIM 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.27: Multiple comparison test of evolutionary models (gap3-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.28: Multiple comparison test of evolutionary models (gap3-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

FM−RM -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FM−RIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM−RIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−ADM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM−AIM 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RIM−ADM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RIM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table B.29: Multiple comparison test of hybridized models (rnd1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table B.30: Multiple comparison test of hybridized models (rnd1-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1

Table B.31: Multiple comparison test of hybridized models (rnd1-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
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Table B.32: Multiple comparison test of hybridized models (gap1-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0

Table B.33: Multiple comparison test of hybridized models (gap1-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0

Table B.34: Multiple comparison test of hybridized models (gap1-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1
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Table B.35: Multiple comparison test of hybridized models (gap2-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.36: Multiple comparison test of hybridized models (gap2-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.37: Multiple comparison test of hybridized models (gap2-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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Table B.38: Multiple comparison test of hybridized models (gap3-MSM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1

Table B.39: Multiple comparison test of hybridized models (gap3-MDM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1

Table B.40: Multiple comparison test of hybridized models (gap3-PAM)

period 10 100 1000

severity 1 2 3 5 10 r 1 2 3 5 10 r 1 2 3 5 10 r

ADM−AIM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0

ADM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AIM−AHDM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

AIM−AHIM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AHDM−AHIM 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0



Appendix C

A genetic algorithm for FMS

Most material in this appendix was published in Younes et al. [2002] as a part of a ge-

netic algorithm solution to a multiple objective problem in flexible manufacturing. In this

implementation a Pareto-based approach was combined with an adaptive weighted sum

technique for tackling the multi-objective flexible manufacturing systems problem. Exper-

imental results demonstrated the effectiveness of this approach for handling such complex

systems.

This section outlines the genetic operators and the algorithmic approach that are also

used in tackling the dynamic version of the problem. The interested reader is referred to

Younes et al. [2002] for the test problems used in the static implementation, the experi-

mental results, and more details of the employed algorithm.

C.1 Genetic operators

The adopted scheme of solution encoding enables the use of standard mutation and crossover

operators without producing infeasible solutions.

In applying the mutation operator to a bit string, it sweeps down the list of bits and

255
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replaces each, if a probability test is passed, by a randomly selected bit.
 

 

 

 Part 1 Part 2    Part 1 Part 2    Part 1 Part 2 

 O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3 

P1 1 5 3 1 1 4   P1 1 5 3 1 1 4   P1 1 5 3 1 1 4 

 

 

 O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3 

P2 3 1 1 1 5 5   P2 3 1 1 1 5 5   P2 3 1 1 1 5 5 

 

      

                    

 

 

 O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3 

C1 1 5 1 1 5 5   C1 1 1 3 1 1 5   C1 1 5 3 1 5 5 

 

 

 O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3    O2 O4 O2 O1 O4 O3 

C2 3 1 3 1 1 4   C2 3 5 1 1 5 4   C2 3 1 1 1 1 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a) simple crossover                        (b) uniform crossover                      (c) structured crossover 

 

Fig. C.1: Crossover operator

The three types of crossover operators implemented in this thesis are illustrated in

Figure C.1. In the simple crossover strategy the cut point is set at the part delimiter so

that whole parts are transferred from a parent to a child. In uniform crossover every other

gene is received from a different parent as seen in Figure C.1b. The structured crossover

operator begins by randomly choosing a cut point in the chromosome as described above

(see Figure C.1c).

If all initial solutions are feasible then these crossover strategies lead to complete feasible

solutions. Due to the mutation operator, some chromosomes may become infeasible (when

an operation is assigned to a machine that cannot handle it). In this situation a simple

heuristic technique is used to repair the chromosome by assigning the correct machine to

the designated operation.
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C.2 Algorithm structure

A weighted-sum approach is used to assign weights to each objective function and combine

the weighted objectives into a single objective function. To fully utilize the power of the

GA we use several approaches: (i) fixed-weight approach, (ii) random-weight approach,

and (iii) adaptive weight approach.

In the fixed-weight approach, weights are not changed during an entire evolutionary

process. Weights are determined a priori to give selective pressure towards the part transfer

objective function. In the random based implementation weights are randomly reset at each

step in the selection procedure to give an even chance to all possible combinations. Finally,

in the adaptive weight approach, weights are adjusted adaptively based on the current

generation to increase search pressure toward part transfer while balancing the work-load.

Figure C.2 shows a genetic algorithm implementation for flexible manufacturing systems.

The algorithm begins with an encoding and initialization phase during which each string in

the population is assigned a uniformly distributed random point in the solution space. In

the first phase the system assigns a large weight to the first objective function (i.e w1) and

the values of the objective functions f1 and f2 are calculated and set to fphase1
1 and fphase1

2

respectively. In the next few phases the weights of the objective functions are adjusted

adaptively such that the value of f1 is within a δ% tolerance of fphase1
1 . Each iteration of

the genetic algorithm begins by evaluating the fitness of the current generation of strings.

A new generation of offspring is created by applying crossover and mutation to pairs of

parents which have been selected based on their fitness. The algorithm terminates after

some fixed number of iterations.



258 AppendixC. A genetic algorithm for FMS

Procedure FMS GeneticAlgorithm

Encode Solution Space

set pop size, max gen, gen=0;

set cross rate, mutate rate;

Initialize Population.

For phase ≤ max phases

Adapt Weights of Obj Functions

While max gen ≥ gen

Evaluate Fitness

For (i=1 to pop size)

Select (mate1,mate2)

if (rnd(0,1) ≤ cross rate)

child = Crossover(mate1,mate2);

if (rnd(0,1) ≤ mutate rate)

child = Mutation();

Repair child if necessary

End For

Add offsprings to New Generation.

Save Best δ Solutions

gen = gen + 1

End While

Return best chromosomes.

Fig. C.2: A genetic algorithm for FMS



Appendix D

FMS Benchmarks

This appendix lists the instances used to construct dynamic FMS benchmarks. Instances

gap1,gap2 and gap3 are modifications of instances in gapd file in the OR-library. Instance

rnd1 is randomly generated.

D.1 gap1

Dimensions : machines = 20 parts = 40 operations = 200 part operations = 200 ;

Machines Info

1 : 1 2 3 6 7 8 9 10 11 12 13 14 15 17 19 20 21 22 25 26 27 28 29 30 31 33 34 35 37 38 39 40 42 43 44 45

46 47 48 49 50 51 53 54 57 58 59 61 62 63 64 65 66 67 68 69 71 73 74 76 77 78 79 80 81 82 83 84 85 86 87

88 89 90 91 92 93 95 96 97 98 99 100 101 103 104 105 106 108 109 110 112 113 114 115 116 117 118 119

120 121 122 123 124 125 127 128 129 130 131 132 133 134 135 136 137 138 139 141 142 143 144 145 146

148 149 150 151 153 154 155 157 159 160 163 164 165 166 167 168 169 171 174 175 176 177 178 179 181

182 183 184 185 186 188 189 190 193 194 195 196 197 198 199 200

2 : 1 2 3 4 5 6 7 8 10 11 14 15 17 18 19 20 25 26 27 28 29 30 31 32 34 35 36 37 40 41 42 44 46 47 49 50

51 52 53 54 55 56 57 58 59 60 61 62 66 67 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 99 101 102 103 105 106 107 108 109 110 111 112 114 116 117 118 119 120 121 122

123 124 125 128 129 130 131 132 133 134 135 136 137 138 139 141 142 143 144 145 147 148 151 152 153

154 155 156 157 158 159 160 161 162 163 164 165 166 168 169 170 171 172 173 174 175 176 177 178 179

180 181 182 183 184 185 187 188 190 191 192 193 194 195 196 197 198 199 200

3 : 1 2 3 4 5 6 7 8 9 11 12 13 16 17 18 19 20 23 24 25 26 27 28 29 30 31 32 34 36 37 38 39 40 41 42 45 47

259
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48 49 50 51 52 53 55 56 57 58 59 62 63 64 65 66 67 69 70 71 72 74 75 76 77 79 80 82 84 85 86 87 92 93 94

95 97 98 100 101 102 103 104 105 106 107 108 109 111 113 114 115 116 117 118 119 120 121 122 123 124

125 126 127 128 129 130 131 132 133 135 136 137 138 139 140 141 142 143 144 146 147 148 149 150 151

154 155 156 158 159 160 161 162 163 164 165 166 167 169 170 171 172 173 174 175 176 177 178 179 180

182 183 185 186 187 188 190 191 193 195 197 198 199 200

4 : 1 2 5 6 7 8 9 10 11 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69 70 71 72 73 74 75 76 77

78 81 82 83 85 86 87 88 89 90 91 92 93 94 95 96 97 98 101 102 103 104 105 107 108 109 110 111 112 113

114 116 117 120 121 122 123 124 125 126 127 128 129 130 131 133 134 135 136 137 138 139 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 158 159 160 161 162 163 164 165 166 167 168 169 170

172 173 174 175 176 178 179 180 181 182 183 184 185 186 187 188 189 191 192 194 196 199 200

5 : 1 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 31 32 33 34 35 37 38 39 40 41

42 43 44 47 48 49 51 52 53 54 55 56 57 59 60 61 62 63 64 65 66 67 68 69 71 72 73 74 76 77 79 80 82 83 84

85 86 87 88 89 90 91 92 93 95 96 97 98 99 101 102 103 104 105 107 108 109 110 111 113 114 116 117 118

119 120 121 122 123 124 125 126 127 128 129 130 131 133 134 135 136 138 139 140 141 143 144 145 146

147 148 150 151 153 154 155 156 157 158 159 160 161 163 165 166 167 168 169 170 172 173 174 175 176

177 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 199 200

6 : 2 3 4 5 6 7 8 9 10 12 14 15 16 18 19 20 21 22 24 25 26 27 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 45 46 48 49 50 51 52 53 54 55 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 74 75 76 78 79 80 81 82

83 84 85 87 88 89 90 91 92 94 95 96 97 98 99 100 101 102 104 105 106 107 108 109 110 111 112 113 114

115 118 119 120 121 122 123 124 126 127 128 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 148 149 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 169 170 172 173 174

176 178 180 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

7 : 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 23 24 25 26 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 48 49 51 52 53 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 74 75 77 78 79 84 85 87 89

90 92 93 94 95 96 97 98 99 100 101 102 104 105 107 108 109 110 113 114 115 116 117 118 119 120 121 122

123 124 125 126 127 128 129 132 133 134 135 136 137 138 139 140 141 142 143 144 146 147 148 149 150

151 152 153 155 156 157 158 159 161 162 163 164 165 166 167 168 169 170 171 173 174 176 177 179 180

181 182 183 184 185 190 191 193 194 195 196 198 199 200

8 : 1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 25 26 27 28 29 32 33 34 35 36 37 38 39 40 41 42 44 45

47 48 50 51 52 54 56 60 61 62 63 65 66 67 68 69 71 72 74 76 77 78 79 80 82 83 84 85 86 87 90 91 92 94 95

96 97 99 100 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 122 123 124

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 144 145 146 147 148 151 152 153 154

155 156 157 158 159 160 161 162 164 165 166 169 170 171 172 173 174 175 176 177 178 179 180 183 184

185 187 188 190 191 192 193 194 196 197 198 199 200

9 : 1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19 20 21 23 25 27 28 29 30 31 33 36 37 38 39 41 42 43 44 45 46 48

49 50 51 52 54 55 56 57 59 60 62 63 64 65 66 67 69 70 71 72 73 74 75 76 78 79 81 82 83 84 85 88 89 90 91

92 93 94 95 96 97 99 100 101 102 103 105 106 107 109 110 111 112 114 115 116 118 120 121 122 123 125
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126 127 130 131 132 133 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

154 155 156 159 160 161 162 163 164 165 166 167 168 171 172 173 174 175 176 177 178 179 180 182 183

186 187 188 189 190 191 192 193 194 196 197 198 199 200

10 : 1 2 3 4 6 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 26 27 28 29 31 32 33 34 36 37 38 39 41 42 43

45 46 47 51 52 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 105 106 108 111 112 113 114 116 117 118 120 122

123 124 126 128 129 130 131 132 133 134 135 137 138 139 140 141 142 143 144 145 146 149 150 151 152

153 154 155 156 157 158 159 160 161 162 163 164 166 167 168 169 172 173 174 175 176 178 179 180 181

183 184 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200

11 : 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 28 29 30 31 33 34 35 36 37 38 39 40

41 42 43 44 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 64 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 88 89 90 91 92 93 94 96 98 99 100 101 102 103 104 105 106 107 108 109 110 111 113

114 117 118 119 120 122 123 125 126 127 128 129 130 131 132 133 134 137 138 139 140 141 142 143 145

146 147 148 149 150 151 152 153 154 156 157 158 159 160 161 162 163 165 167 168 169 170 171 172 173

174 175 177 178 179 180 182 183 185 186 188 189 190 191 193 194 195 196 197 199 200

12 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38

39 40 42 43 44 45 46 47 48 49 50 51 52 53 54 56 57 58 59 60 61 63 64 65 66 68 70 71 72 73 74 77 78 79 80

81 82 84 86 89 90 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 109 110 111 112 113 114 115 116

117 118 119 120 121 122 123 126 127 128 130 131 134 135 136 137 138 139 140 141 142 143 144 145 147

148 149 150 154 157 158 159 160 161 162 163 164 166 167 168 169 170 171 172 173 174 175 176 178 179

180 182 183 184 186 187 188 189 190 192 193 194 195 196 197 198 199 200

13 : 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 40

41 44 45 46 47 48 49 50 51 52 53 54 55 56 58 59 60 61 62 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 80

81 82 84 85 86 87 88 89 91 92 94 96 97 98 99 100 101 102 104 105 106 107 108 109 110 111 113 115 116

117 118 119 120 121 122 123 124 126 127 128 129 132 133 134 135 137 138 139 140 141 143 145 146 147

148 149 150 151 152 153 155 156 157 159 160 162 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 198 200

14 : 1 3 4 5 6 8 9 12 13 14 16 17 18 19 21 22 23 24 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44

46 47 48 49 50 51 52 53 55 56 57 58 59 60 61 62 64 65 66 67 68 69 70 71 73 74 75 76 77 79 80 81 82 83 84

85 86 87 88 91 92 93 94 95 96 97 98 99 100 101 102 103 104 106 107 108 109 110 111 112 113 114 115 117

118 119 120 121 122 123 124 125 126 127 128 129 130 132 133 134 136 137 138 140 141 142 143 144 145

146 147 148 150 151 152 153 155 156 158 159 161 164 165 166 167 168 169 170 171 174 175 176 177 178

179 180 182 183 184 185 186 187 188 190 191 192 194 195 196 197 198 199 200

15 : 1 2 3 4 5 6 7 8 9 10 12 13 14 15 17 19 20 21 24 25 26 27 28 29 30 31 32 34 35 37 38 39 41 44 45 47 49

51 54 55 56 57 58 59 60 61 62 63 64 65 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 91 92

93 97 98 99 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 118 119 120 121 122 123

124 125 127 128 129 131 132 133 134 135 137 138 140 141 142 143 144 145 148 149 150 151 152 153 154

155 156 157 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 181
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182 183 186 187 188 189 191 192 193 195 198 199 200

16 : 1 2 3 4 5 7 8 10 12 13 14 15 16 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 51 52 53 54 55 56 57 58 61 62 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 93 94 95 98 99 100 101 102 103 104 105 107 108 109 110 111 112 113 114 115 116

117 119 121 123 125 128 131 132 133 134 135 137 138 139 140 141 142 144 145 146 147 148 149 150 151

152 153 154 155 156 158 159 160 161 162 163 164 165 166 167 168 169 173 174 175 176 178 179 180 181

182 183 185 186 187 188 189 190 191 192 193 196 198 199 200

17 : 1 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 33 34 35 36 37 38 39 40

41 42 44 45 46 47 49 50 52 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 77 78 79 81 82 83 85 86

87 88 89 90 91 92 93 95 96 97 98 99 100 101 102 103 104 105 106 107 108 110 111 112 113 115 116 117 118

119 121 122 123 124 125 126 127 128 129 130 131 132 133 134 136 137 138 139 140 141 143 145 146 147

148 150 151 152 153 154 155 156 157 158 159 161 162 163 164 166 167 168 169 170 171 173 175 176 177

178 179 180 181 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 198 199 200

18 : 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 23 24 25 26 27 28 30 31 32 33 35 36 37 38 40 41 42 43 44

45 46 47 48 49 50 51 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 69 70 71 72 73 75 76 77 78 79 80 81 82

83 84 85 86 87 89 90 91 92 93 94 96 97 98 99 100 101 102 103 104 105 106 107 108 109 112 113 114 115

116 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 142 143

144 145 147 148 149 150 151 154 155 156 157 158 160 161 162 163 164 165 167 168 170 171 172 173 174

175 176 178 179 180 181 183 184 185 186 187 188 189 190 192 193 194 195 196 197 198 199 200

19 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 23 24 27 28 30 31 32 33 34 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

82 83 84 85 86 87 88 89 90 93 94 95 96 97 99 100 101 102 103 104 105 106 108 109 111 112 113 114 115

117 118 119 120 121 122 123 124 127 128 130 131 132 134 135 136 139 140 141 144 145 146 147 148 150

151 152 153 154 155 157 158 159 160 161 162 163 164 165 166 167 169 170 171 172 173 174 175 176 177

179 180 181 182 183 184 185 186 188 189 190 191 192 193 194 195 196 197 198 199 200

20 : 1 3 4 5 6 7 10 11 12 13 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55 57 59 60 61 62 63 64 65 66 67 68 70 71 72 73 75 76 77 78 79 80 82

83 84 85 86 87 89 90 91 93 95 96 97 98 99 100 101 102 103 104 105 107 108 110 111 112 113 114 115 116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 165 166 167

168 169 172 173 175 176 177 178 179 181 182 183 184 185 186 189 190 191 192 193 194 195 196 197 198

199 200

;

Parts Info

1 : 141 160 19 83 25

2 : 65 93 9 125 96

3 : 146 4 24 115 105

4 : 98 59 26 10 60
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5 : 37 77 54 68 92

6 : 40 89 134 112 15

7 : 31 181 99 97 81

8 : 192 12 21 88 116

9 : 161 128 108 133 142

10 : 57 113 78 144 126

11 : 132 62 163 71 148

12 : 94 14 170 178 75

13 : 136 91 152 180 69

14 : 49 117 129 28 43

15 : 11 39 190 6 8

16 : 110 198 51 199 200

17 : 44 154 103 119 104

18 : 164 38 79 158 174

19 : 176 147 20 102 187

20 : 67 80 171 64 33

21 : 30 120 46 76 58

22 : 182 121 177 73 173

23 : 5 100 7 186 16

24 : 139 124 52 41 169

25 : 127 188 172 3 191

26 : 95 55 162 138 74

27 : 153 86 123 195 168

28 : 183 156 157 87 135

29 : 111 42 114 106 53

30 : 23 179 131 122 56

31 : 118 196 167 34 90

32 : 130 22 151 165 184

33 : 149 70 197 140 175

34 : 18 82 13 32 155

35 : 194 137 29 159 150

36 : 27 72 66 101 185

37 : 35 84 145 107 48

38 : 47 17 166 50 109

39 : 63 193 1 143 189

40 : 85 2 45 36 61

; END
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D.2 gap2

Dimensions : machines = 20 parts = 20 operations = 100 part operations = 100 ;

Machines Info

1 : 1 4 5 6 7 8 9 10 11 12 13 15 19 21 22 26 27 28 29 30 31 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48

49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 74 75 77 78 79 80 81 82 84 85 86 89

90 91 92 94 95 96 97 99 100

2 : 1 2 3 4 5 7 9 10 13 14 15 16 17 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 41 42 43 45

46 47 48 49 50 51 52 53 54 56 57 58 59 61 62 63 64 65 66 67 68 69 70 72 73 74 75 76 78 79 80 81 82 83 84

85 86 88 90 91 92 93 94 95 96 98 99 100

3 : 1 2 3 5 7 9 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 34 36 37 38 39 40 42 44 45

46 48 49 50 51 52 53 54 55 57 60 61 62 63 64 66 67 68 69 70 71 73 75 76 77 78 79 80 81 82 83 84 86 87 89

90 91 92 93 94 95 96 97 98 99 100

4 : 1 2 3 4 5 6 7 10 12 13 14 16 17 18 19 20 21 23 25 26 27 28 31 32 33 34 35 36 37 38 40 41 42 43 44 45

46 48 49 51 52 53 54 55 56 57 58 60 61 62 63 64 65 66 68 70 71 72 76 77 79 80 81 82 83 84 85 86 87 88 89

91 92 93 94 95 96 97

5 : 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 18 19 20 21 23 24 25 26 27 28 30 32 34 37 38 39 42 43 47 48 49 50

52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 68 69 71 72 73 74 76 77 79 80 81 83 84 85 88 89 90 91 94 96

97 98 99

6 : 1 2 3 4 5 6 7 8 10 11 13 14 15 16 17 18 20 21 22 23 24 25 26 29 30 31 32 33 34 36 38 40 41 42 43 44 45

47 49 51 52 53 55 57 58 59 60 61 62 63 64 65 67 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 86 87 88 90

93 95 96 97 98 99 100

7 : 1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41

42 43 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65 66 67 68 69 70 71 73 74 75 76 77 79 80

81 82 83 84 85 86 89 90 91 92 93 94 95 96 97 98 99 100

8 : 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 29 31 32 33 34 35 36 37 38 39 40 41

42 43 45 46 47 49 50 51 52 53 54 55 56 57 58 59 60 65 68 69 70 72 73 74 77 79 81 82 83 84 85 86 87 88 90

91 92 93 94 95 97 98 99 100

9 : 1 2 4 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42

43 46 47 49 50 51 53 54 55 56 57 59 60 61 62 63 65 66 68 72 73 74 75 76 77 78 79 80 81 82 84 85 86 87 88

89 90 91 92 93 94 95 97 99 100

10 : 1 2 4 5 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41

42 44 46 47 48 49 50 51 53 54 55 57 58 62 63 64 65 66 68 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

87 88 89 90 91 96 97 98 99 100

11 : 1 2 4 6 7 8 10 11 13 14 15 17 18 19 21 22 23 24 25 26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44

45 46 48 49 50 51 52 53 54 55 56 57 58 59 61 62 64 65 67 68 69 70 72 76 77 78 79 80 81 82 83 84 85 86 87

89 90 91 93 94 95 96 97

12 : 1 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 29 32 34 35 36 37 38 39 40 42 43 44
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45 46 47 48 50 52 53 54 55 57 59 60 61 62 63 64 65 66 68 70 71 73 74 76 77 78 79 80 81 82 83 84 87 88 90

91 92 93 94 95 96 97 98 99

13 : 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 18 19 20 23 24 25 26 27 29 30 31 33 34 36 37 38 39 40 41 42 43 44

45 46 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78 79 81 82

83 84 86 87 88 89 90 91 93 94 95 96 97 99

14 : 1 2 3 5 6 7 8 9 11 12 14 15 16 17 18 19 21 23 25 26 27 28 29 30 31 32 34 35 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 53 54 56 57 58 59 60 61 62 63 64 65 66 68 70 71 77 78 80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99 100

15 : 1 2 3 6 7 8 9 10 11 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 31 32 34 35 36 37 39 40 41 42 44

45 47 48 49 50 51 52 53 55 56 59 60 62 63 64 65 66 67 69 70 71 72 74 75 76 77 78 79 80 81 82 83 85 86 87

88 89 90 91 92 93 94 95 97 99 100

16 : 1 2 4 6 7 9 10 11 12 13 14 15 16 18 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 43

44 45 46 47 48 49 50 51 53 54 55 56 57 58 60 61 62 63 64 66 67 68 69 70 71 72 74 76 77 78 80 81 82 83 84

86 87 89 90 91 92 94 95 96 97 99 100

17 : 1 3 5 6 7 8 9 11 12 14 15 16 17 19 20 21 22 24 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 48 49 51 53 54 56 57 58 59 60 61 62 63 64 66 67 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 94 95 96 98 99 100

18 : 1 2 3 4 5 6 7 9 10 11 12 13 15 16 18 20 21 22 23 24 25 27 28 29 31 35 36 37 39 41 42 43 44 45 46 47

48 49 50 52 53 54 56 57 58 59 60 61 63 64 65 66 67 68 69 72 73 75 77 79 83 84 87 88 89 90 91 92 93 94 95

96 97 98

19 : 1 2 3 4 5 6 7 8 10 11 12 14 16 17 18 19 20 21 22 23 24 25 30 31 34 35 36 37 38 41 42 43 44 45 46 48

49 50 52 53 55 56 57 58 60 61 62 63 64 65 66 67 69 70 71 72 73 74 75 76 77 78 79 81 83 84 85 86 88 89 90

91 92 93 95 96 97 99 100

20 : 1 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 56 57 58 59 60 61 62 63 64 65 66 67 68 71 72 73 74 75 76 77 79 80 81

82 84 85 86 87 88 89 90 92 93 94 95 96 97 98 99

;

Parts Info

1 : 4 50 98 69 38

2 : 99 22 53 26 77

3 : 96 10 8 44 49

4 : 25 19 63 36 17

5 : 3 65 12 41 83

6 : 92 45 64 85 27

7 : 78 56 7 72 11

8 : 91 81 80 79 62

9 : 39 84 54 28 60

10 : 51 48 67 75 90
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11 : 95 97 74 14 94

12 : 5 55 57 18 100

13 : 61 73 46 16 71

14 : 31 24 89 33 40

15 : 15 37 21 42 87

16 : 30 32 35 59 47

17 : 86 82 6 58 34

18 : 88 76 29 1 70

19 : 93 2 52 43 68

20 : 13 23 66 9 20

; END
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D.3 gap3

Dimensions : machines = 10 parts = 20 operations = 100 part operations = 100 ;

Machines Info

1 : 1 2 3 4 5 9 10 12 13 14 15 16 17 18 19 21 22 24 25 26 27 28 29 31 33 35 36 37 40 41 43 45 47 48 49 50

51 52 53 57 58 59 60 62 64 65 66 67 68 69 71 72 74 76 77 78 79 80 82 83 85 86 87 88 89 91 94 96 97 98 100

2 : 1 2 3 4 5 7 8 11 12 19 21 22 23 24 27 29 31 32 33 35 36 37 39 43 44 45 46 48 51 54 55 60 65 67 68 71

72 73 74 75 77 78 80 81 82 83 84 85 86 87 88 89 91 93 94 95 96 97

3 : 1 2 4 5 7 9 11 12 13 15 16 17 18 20 21 24 25 27 30 32 33 34 35 37 38 39 43 44 45 47 48 49 50 51 53 54

56 59 60 61 67 68 70 71 72 73 74 75 77 79 80 82 83 84 86 87 89 90 91 93 95 96 97 98 100

4 : 1 4 5 6 9 10 11 13 14 15 16 18 19 20 21 23 25 26 27 29 30 31 32 33 34 35 38 40 41 45 46 48 49 52 53 57

58 59 61 64 67 70 71 73 74 77 78 79 80 81 82 83 84 86 90 91 92 93 94 96 98 99 100

5 : 1 2 4 7 8 10 11 12 13 16 17 18 20 22 23 24 25 28 29 30 31 33 35 36 37 40 41 42 43 44 45 46 48 49 50 52

54 55 59 60 61 62 67 69 71 75 79 80 81 82 84 85 86 87 88 89 91 92 93 94 95 98 100

6 : 1 2 3 4 5 6 7 8 13 14 15 17 18 19 21 25 26 28 29 34 37 39 40 41 42 43 45 47 51 53 54 55 56 57 58 59 62

63 64 65 67 68 70 71 77 78 79 81 82 83 85 86 87 88 89 90 91 92 93 94 95 96 97 98 100

7 : 2 3 4 6 7 8 9 11 12 13 14 15 16 17 19 22 23 24 25 26 29 30 33 34 35 39 40 41 42 43 44 45 50 51 52 54

55 56 57 58 61 62 65 66 70 72 73 74 79 83 84 85 86 89 90 92 94 95 96 97 100

8 : 1 3 5 6 7 8 9 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 37 39 41 44 45 46 47

48 50 51 52 54 55 57 59 60 61 62 63 64 65 68 69 70 71 72 73 74 77 78 79 80 82 84 85 86 89 90 91 94 95 96

97 98 99 100

9 : 3 4 5 8 9 10 11 13 16 17 19 20 24 25 26 27 28 30 32 33 38 39 41 42 45 46 47 49 50 51 52 54 56 57 58 59

60 62 63 64 65 66 67 68 70 73 74 77 78 82 84 86 88 92 93 95 97 98 99 100

10 : 2 3 4 5 6 8 10 11 12 13 15 16 18 20 22 23 24 26 30 33 34 35 36 37 38 41 42 44 46 49 50 53 55 56 57 58

59 60 61 62 63 64 65 67 69 75 76 77 79 81 82 83 84 86 87 89 90 91 92 95 96 97 99

;

Parts Info

1 : 80 14 52 83 78

2 : 82 16 79 96 30

3 : 44 41 24 97 55

4 : 70 86 74 47 11

5 : 36 94 65 25 57

6 : 35 54 9 90 23

7 : 48 49 98 64 85

8 : 8 7 27 92 10

9 : 37 71 46 17 62

10 : 2 67 5 58 39

11 : 69 63 32 91 59
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12 : 88 33 20 87 28

13 : 4 77 43 21 61

14 : 84 29 38 68 53

15 : 34 72 89 100 76

16 : 6 19 95 22 40

17 : 42 99 45 15 18

18 : 93 3 75 31 12

19 : 66 1 50 73 81

20 : 56 26 60 51 13

; END
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D.4 rnd1

Dimensions : machines = 11 parts = 20 operations = 9 part operations = 62 ;

Machines Info

1 : 1 2

2 : 3 4

3 : 5 6

4 : 7 8

5 : 1 2 3

6 : 3 4 9

7 : 5 6 7

8 : 7 8 9

9 : 1 2 3 4

10 : 5 6 7 8

11 : 1 2 3 4 9

;

Parts Info

1 : 1 2 3

2 : 1 2 4

3 : 1 2 5

4 : 3 6 7

5 : 4 7 8

6 : 5 8 9

7 : 6 7 9

8 : 4 5 9

9 : 6 8 9

10 : 5 7 9

11 : 7 8 9

12 : 3 4 5

13 : 4 5 6

14 : 6 7 8

15 : 2 4 6

16 : 1 3 5

17 : 1 3 7

18 : 1 3 9

19 : 2 5 7 9

20 : 1 3 5 7

; END
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Table E.1: Environmental changes in COPs

Problem Affected Element Elementary Step Type of Change

Inter-city distance Change on leg Non-dimensionality

TSP Number of cities Add/delete one city Dimensionality

Cities Swap one pair Mapping

Object value Change one value Non-dimensionality

Object weight Change one weight Non-dimensionality

KP Knapsack capacity Change capacity Non-dimensionality

Number of objects Add/delete one object Dimensionality

Objects Swap one pair Mapping

Number of machines Add/del one machine Non-dimensionality

FMS Number of parts Add/del one part Dimensionality

Machines Swap one pair Mapping
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