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Abstract
Problems involving mechanical behavior of materials with microstructure

are receiving an increasing amount of attention in the literature. First of all,
it can be attributed to the fact that a number of recent experiments shows
a significant discrepancy between results of the classical theory of elasticity
and the actual behavior of materials for which microstructure is known to be
significant (e.g. synthetic polymers, human bones). Second, materials, for which
microstructure contributes significantly in the overall deformation of a whole
body, are becoming more and more important for applications in different areas
of modern day mechanics, physics and engineering.
Since the classical theory is not adequate for modeling the elastic behavior

of such materials, a new theory, which allows us to incorporate microstructure
into a classical model, should be used.
The foundations of a theory allowing to account for the effect of material

microstructure were developed in the beginning of the twentieth century and
is known as the theory of Cosserat (micropolar, asymmetric) elasticity. For
the last forty years significant results have been accomplished leading to a bet-
ter understanding of processes occurring in Cosserat continuum. In particular,
significant progress has been achieved in the investigation of three-dimensional
problems of micropolar elasticity, plane and anti-plane problems, bending of
micropolar plates. These problems can be effectively solved in a very elegant
manner using the boundary integral equation method.
However, the boundary integral equation method imposes significant restric-

tions on properties of boundaries of domains under consideration. In particu-
lar, it requires that the boundary be represented by a twice differentiable curve
which makes it impossible to apply the method for domains with reduced bound-
ary smoothness or domains containing cuts or cracks. Therefore, the rigorous
treatment of boundary value problems of Cosserat elasticity for domains with
irregular boundaries has remained untouched until today.
A mathematically sophisticated, but very effective approach which allows

to overcome the difficulty relating to the boundary requirement consists of the
formulation of the corresponding boundary value problems in terms of the dis-
tributional setting in Sobolev spaces. In this case the appropriate weak solution
may be found in terms of the corresponding integral potentials which perfectly
works for domains with reduced boundary smoothness.
The objective of this work is to develop such a method that allows us to

describe and solve the boundary value problems of plane Cosserat elasticity for
domains with non-smooth boundaries and for domains weakened by cracks. We
illustrate the method by establishing the analytical solutions for boundary value
problems of plane Cosserat elasticity, which plays an important role as a pilot
problem for the investigation of more challenging problems of three-dimensional
theory of micropolar elasticity. We show that the analytical solutions derived
in this work may be successfully approximated numerically using the bound-
ary element method and that these solutions can be extremely important for
applications in engineering science.
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One of the important applied problems considered herein is the problem of
stress distribution around a crack in a human bone. The bone is modeled under
assumptions of plane Cosserat elasticity and the solution derived on the basis
of the method developed in this dissertation shows that material microstructure
does indeed have a significant effect on stress distribution around a crack.
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Chapter 1

Introduction

The classical theory of elasticity is based on an ideal model of the elastic con-

tinuum in which the transfer of loading through any interior surface element

occurs only by means of the (force) stress vector. This assumption leads to a

description of the strain of the body in terms of symmetric strain and stress

tensors.

Results from analytical models derived on the basis of classical elasticity

are in good agreement with experiments performed within the elastic range on

numerous structural materials for example such as concrete, steel or aluminium.

The classical theory of elasticity, however, fails to produce acceptable results

when the microstructure of the material contributes significantly to the overall

deformation of the body, for example, in the case of granular bodies with large

molecules (e.g. polymers) or human bones (see, for example, Kruyt [1], Rothen-

burg [2], [3], and Lakes [4] and [5]). These cases are becoming increasingly

important in the design and manufacture of modern day advanced materials as

small-scale effects become paramount in the prediction of the overall mechanical
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behavior of these materials.

An attempt to eliminate these shortcomings was first made by Voigt [6] in

1886 who assumed that the transfer of the interaction between two elements of

the body through a surface element occurs not only by means of a force (stress)

vector but also by means of an independent moment (couple-stress) vector.

However, the first more or less harmonious theory was introduced only in

1909 by the brothers E. and F. Cosserat [7-9]. In their theory, the Cosserat

brothers made further developments of the Voigt’s theory. They suggested that

deformation of the body should be described by the displacement vector u(x, t)

and independent microrotation vector φ(x, t). The assumption that a material

element has six degrees of freedom leads to the description of deformation of the

body in terms of asymmetric strain and stress tensors unlike the classical theory

of elasticity in which deformations can be described by only one symmetric stress

tensor.

In spite of these new ideas Cosserats’ work remained unnoticed for a signif-

icant period of time. The major drawbacks of the theory could have been that

first, the theory had already been non-linear, secondly it was formulated in a

very unclear manner and thirdly and probably the most important reason, the

theory contained many problems lying very far from the framework of elasticity

theory. In addition to problems related to the theory of elasticity the authors

considered problems of non-ideal fluids, some problems related to electrodynam-

ics and magnetism, in other words, they made an attempt to create a unified

theory containing mechanics, optics and electrodynamics. No wonder that the
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theory was found to be very complicated and was not heeded.

However, the investigations in the area of solid mechanics and mechanics of

fluids in the middle of the twentieth century demonstrated that the behavior of

certain classes of materials and fluids cannot be described in terms of classical

theory, hence the Cosserat theory was rediscovered and drew attention of many

workers.

The investigations first have been concentrated on the simplified Cosserat

theory, i.e. on the asymmetric elasticity in so-called Cosserat pseudocontin-

uum, sometimes this theory is also called couple-stress elasticity. In a Cosserat

pseudocontinuum there is still a possibility of the generation of asymmetric

stresses and couple stresses during deformation of the body, but at the same

time the whole deformation of the body is described only by the displacement

field. In other words, for reasons of simplicity it is assumed that the microro-

tation vector φ and the displacement vector u are dependent as in the classical

theory of elasticity (see for example [10]) by means of the following relation

φ =
1

2
curl u.

Among the papers on the couple-stress theory of elasticity, first of all it is

necessary to notice the works of Toupin [11], [12] and Truesdell and Toupin [13],

on the linear and non-linear elasticity of Cosserat pseudocontinuum. This work

was further developed by Grioli [14], Mindlin [15-17] and Mindlin and Thiersten

[18].

However, like almost any simplified theory, the couple-stress theory of elas-

ticity could not entirely and precisely describe the deformations of granular
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bodies. The series of more recent experiments [19-23] clearly confirmed this fact

once again. Mostly, the theory was represented only for the reason of simplicity,

for example, the governing equations of the theory are just Navier’s equations

with respect to three unknown displacements - exactly as in the classical the-

ory of elasticity. No wonder, that soon after appearance of the first papers

on couple-stress theory, the general stipulations of the mathematically rigorous

more general theory of Cosserat elasticity were introduced.

The foundations of the theory of a Cosserat continuum, when the microrota-

tions and displacements are no longer dependent, were formulated by Gunther

[24] and Schaefer [25], [26] in the late fifties and early sixties of the twenti-

eth century. The first author examined the three-dimensional model of the

Cosserat continuum and emphasized the importance of the Cosserat contin-

uum for dislocation theory. The second author rediscovered the foundations of

Cosserat theory for the state of plane strain. Then, several years later Aero

and Kuvshinsky [27] and Palmov [28], [29] presented constitutive relations and

governing equations of the general theory of Cosserat elasticity.

The interesting exposition of the theory of Cosserat elasticity was given by

Eringen and his colleagues [30-32] who introduced the new name for the theory —

the theory of micropolar or asymmetric elasticity. Eringen has also formulated

the general provisions of the theory of micropolar plates [32]. An extensive

description of the work that has been done in this field including the extensive

bibliography, may be found in the book by Nowacki [33].

Parallel to the works in the area of Cosserat elasticity, investigations have
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also been conducted in the area of Cosserat fluids. A relatively complete bibli-

ography in this field can be found, for example, in [34] and [35].

However, in spite of the importance of all afore-mentioned work, none of

these papers or monographs dealt with both the mathematically rigorous for-

mulation of the boundary value problems arising in the theory of micropolar

elasticity and the methods of their solutions. Mostly it can be explained by the

fact that methodology, methods and approaches of the classical theory of elas-

ticity (for example, theory of analytical functions, Fredholm’s theory of integral

equations, theory of one-dimensional singular integral equations) are inadequate

for the rigorous mathematical analysis of the governing equations and bound-

ary conditions of such complicated structure. Fortunately, this situation is now

changing mostly due to the important work in the area of three-dimensional

classical elasticity carried out in the last 40 years.

Three-dimensional problems of classical elasticity can be worked out by a

variety of means. Some of these approaches may be further successfully applied

to the analysis of the boundary value problems of micropolar elasticity. The

first possibility is the theory of multidimensional singular potentials and singular

integral equations. The second one is the modern theory of generalized solutions

of differential equations (the method of Hilbert spaces, variational methods).

The first direction based on the rapidly developing theory of singular inte-

grals and integral equations is a direct extension of the concepts of the theory of

potentials and Fredholm equations which are, as known, the prevailing concepts

of the classical mechanics. This approach, being not so general as the one to
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be discussed below, allows to investigate in detail cases most important for the

theory and applications, retaining the efficiency of the methods of the classical

mechanics of continua. The breakthrough in this direction occurred after the

pioneering work of Muskhelishvili on singular integral equations [36]. Further

this approach has been extensively developed and applied to the rigorous inves-

tigation of the boundary value problems of three-dimensional theory of elasticity

in the works by Kupradze and his colleagues [37], [38] and to the analysis of the

bending of plates with transverse shear deformation in the work by Constanda

[39].

The work of Kupradze has provided researchers with effective tools for in-

vestigations in the micropolar theory of elasticity. Iesan [40], using the ap-

proach proposed by Kupradze for the treatment of three-dimensional problems

of micropolar elasticity, formulated uniqueness and existences theorems for the

boundary-value problems of a micropolar state of plain strain. However, the

analysis presented in [40] overlooks certain differentiability requirements to es-

tablish the rigorous solution to the problem. In a series of recent works by

Schiavone and Constanda [41-44] and Potapenko [45-51] the framework of sin-

gular integral equations has been successfully adapted for establishing analytical

solutions and analysis of boundary value problems of the theory of micropolar

plates, plane micropolar elasticity and to the problem of torsion of cylindrical

beams with microstructure. In addition, in [44] the boundary integral equation

method was extended for the rigorous treatment of plane strain problems of

micropolar elasticity allowing to overcome deficiency represented in [40].
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The second direction — based on the ideas of the modern functional analysis

which are novel to the classical mechanics — is characterized by the distribu-

tional approach. The distributional approach is preferable to the classical one

because it allows the technique to work in domains with a relatively low degree

of smoothness - for example, domains containing cuts or cracks. In addition, it

facilitates the close monitoring of the performance of numerical schemes in such

domains. Thus, to find out how fast the rate of convergence deteriorates near a

corner, one needs to apply the Bramble-Hilbert lemma, which is formulated in

terms of distributional solutions [52]. Generally, error bounds are expressed in

a natural way by means of Sobolev space norms.

Since this approach is relatively new in the classical mechanics, there are

very few works in this area that consider fundamental boundary value problems

in conjunction with both variational and potential methods for finite and infinite

domains. There should be mentioned here works by Dafermos [53] and Fichera

[54], [55] and certainly a very recent book by Chudinovich and Constanda [56]

that gives a very interesting exposition of the treatment of boundary value

problems of the theory of plates in terms of weak solutions in Sobolev spaces.

In the present work we apply the distributional approach to the investigation

of the boundary value problems of plane Cosserat elasticity. In [44] such solu-

tions have been obtained in terms of integral potentials using boundary integral

equation method in L2-space. However, in L2 such solutions can be found only

if the boundary is sufficiently smooth and cannot be obtained in the case of

the reduced boundary smoothness or if the domain contains cracks. Considera-
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tion of the case when the boundary of the domain is not smooth enough is, to

the author’s knowledge, still absent from the literature. Since the classical ap-

proach demonstrated in [44] does not allow to accommodate the problems with

reduced boundary smoothness we reformulate these boundary value problems in

a Sobolev space setting and employ the distributional approach to obtain exact

analytical solutions in the closed form.

Plane strain deformation is a very important particular case of deforma-

tions solids can undergo. In the case of plain deformations the field quantities

e.g. displacements, stresses depend only on two coordinates (x1, x2) and the

boundary conditions are imposed on a curve f(x1, x2) = 0 in the x1x2− plane.

Consequently, we assume that the solid body is a surface bounded by a curve

f(x1, x2) = 0 with a thickness that can be neglected.

In this sense, certainly, there are no strictly two-dimensional problems in

elasticity i.e. there are circumstances in which the stresses or displacements are

independent of the x3 coordinate but all real bodies must have some bounding

surfaces which are not represented by a line in the plane.

There is however a distinct class of problems which can be dealt with in the

context of plane strain elasticity. Such a simplification of a three-dimensional

problem is possible when the dimension of the body in the x3-direction is large

in comparison with the dimensions of coordinates (x1, x2). For example, if a long

cylindrical body is loaded by forces that are perpendicular to the longitudinal

direction and do not vary along the length, it may be assumed that all cross-

sections behave in the same way. It is simplest to suppose at first that the
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end sections of the cylinder are confined between fixed smooth rigid planes —

so that displacement in the x3-direction is not allowed — then, since there is

no axial displacement at the ends and, by symmetry, at the midsection, it

may be assumed that the same holds at every cross-section i.e. the vertical

displacement is equal to zero or constant e.g. a retaining wall with lateral

pressure, a cylindrical tube with internal pressure etc., see, for example, [57].

In recent years, considerable attention has been paid to the analysis of plane

deformations within the context of various constitutive theories (linear and non-

linear) of solid mechanics. Such studies were largely motivated by the promise

of relative analytic simplicity compared with the three-dimensional problems

since the governing equations are a system of two second-order partial differen-

tial equations instead of a system of three equations in the three-dimensional

case. Thus the plane problem plays a useful role as a pilot problem, within

which various aspects of solutions in solid mechanics may be examined in a

particularly simple setting.

Unlike its classical counterpart, however, the theory describing plane defor-

mations of a linearly elastic Cosserat solid is not marked by its relative analytic

simplicity. The governing equations and fundamental boundary value prob-

lems describing the plane deformations of a linearly elastic, homogeneous and

isotropic Cosserat elastic solid have been formulated by Nowacki [33] and later

analyzed by Iesan [40] and Schiavone [44] in a classical L2-setting by means of

the boundary integral equation method. In fact, in the case of a Cosserat solid,

the theory reduces to a coupled system of three partial differential equations
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for three unknowns: two describing the in-plane displacements and one more

representing the microrotation.

The importance of studying this system is rigorously twofold. In the first

place, its ’hybrid’ nature (three equations for three unknown functions depend-

ing on only two independent variables) makes it a desirable object of analytic

investigation in its own right. Second, a full mathematical analysis is necessary

to answer the question of existence, uniqueness and stability of the solution of

the model before numerical approximation algorithms are constructed. Such

questions are handled particularly well through the use of variational and po-

tential methods, which are general, powerful and elegant.

In this work we consider a number of important problems arising in the

theory of plane Cosserat elasticity such as interior and exterior Dirichlet and

Neumann boundary value problems and problems for domains weakened by

cracks. In each case we give a variational formulation of the problems and

discuss their solvability in spaces of distributions. Then we seek the solutions

in the form of integral potentials and reduce the problems to integral equations

on the contour of the domain. These equations are solved by means of specially

constructed boundary operators, whose mapping properties in Sobolev spaces

are studied in details.

The approach we use in this thesis has a number of certain advantages over

that applied in [40] and [44]. First of all, it allows to extend the boundary in-

tegral equation method to the consideration of problems with irregular bound-

aries, second it makes it possible to obtain closed form analytical solutions for
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domains containing cracks and notches and third it offers a very efficient fast

converging numerical scheme that provides an opportunity to use the obtained

solutions in numerous engineering applications.

As a result of the investigation performed in this thesis, the following works

[58-61] of the author have been recently published.

The thesis is organized as follows.

In Chapter 2 we provide a brief overview of the three-dimensional theory of

micropolar elasticity, presented in details in [33]. The purpose of this chapter is

to introduce the governing equations describing three-dimensional deformations

of a linearly elastic Cosserat solid and to formulate the basic constitutive and

kinematic relations that will be used for derivation of corresponding relations

of the theory of plane Cosserat elasticity in the subsequent chapters.

Chapter 3 is devoted entirely to the plane problems of micropolar elasticity.

On the basis of the governing equations and constitutive relations of the three-

dimensional Cosserat theory, we derive the governing equations and formulate

interior and exterior Dirichlet and Neumann problems of plane micropolar elas-

ticity in Sobolev spaces. We prove the existence, uniqueness and continuous

dependence on the data of weak solutions to these problems.

In Chapter 4 we show that weak solutions can be found in terms of specially

constructed integral potentials with distributional densities and we prove the

existence and uniqueness of solutions of corresponding boundary integral equa-

tions. The approach we introduce in Chapters 3 and 4 allows to extend the

area of applications of the boundary integral equation method to domains with
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non-smooth boundaries. However, it is not the only case and the method can be

further applied to the consideration of problems for domains containing cracks.

In Chapter 5 we formulate the boundary value problem for a domain weak-

ened by a crack . We show that the solution to this problem exists and can be

found in terms of integral potentials with distributional densities by means of

the boundary integral equation method.

Since the solutions in the form of integral potentials may not be convenient

for applications, in Chapter 6 we introduce the boundary element method by

means of which we can approximate the solutions obtained in Chapter 5 numer-

ically. We provide the evidence that the constructed solutions converge rapidly

to the exact solutions of the corresponding boundary-value problem and demon-

strate importance of the presented theory for applications. As an example, we

consider the problem of stress distribution around a crack in a human bone.

Such problem is very important for applications in orthopedic biomechanics.

It is well-known that a human bone (both trabecular and cortical) is a highly

organized composite material in which various geometrical features appear in

a wide range of length scales and work jointly to give a bone its mechanical

properties. Accurate mechanical models should include an interaction between

different length scales. It has been shown in a series of works [4], [5], [62-64]

that Cosserat theory can be advantageously applied to the investigation of de-

formations in a bone. In addition, the recent studies by Bouyge, Jasiuk and

Ostoja-Starzewski [65-67] have demonstrated that elastic behavior of a bone

may be very well modelled under assumptions of the plane strain theory. Us-
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ing theory developed in the previous chapters, in Chapter 6 we construct the

approximate solution using boundary element method and obtain the stress dis-

tribution around a crack. This example confirms the importance of the effect

of material microstructure on the stress distribution around a crack.

Finally, in Chapter 7 we make several important conclusions and recommen-

dations for future work.
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Chapter 2

The Basic Foundations of

Three-Dimensional Theory

of Cosserat Elasticity

The purpose of this chapter is to present a brief overview of the general provi-

sions of the three-dimensional theory of Cosserat elasticity. Since, this chapter

summarizes only what has been done before, we skip certain details related to

the derivation of constitutive equations and methods of solutions of the sys-

tem of governing equations. Detailed description of three-dimensional theory of

Cosserat elasticity can be found in [33].

In this chapter, Latin indices take the values 1, 2, 3, the convention of

summation over repeated indices is understood.
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Let an elastic isotropic Cosserat body occupy a domain V in R3 and be

bounded by surface S. Assume that the body undergoes deformation due to

the action of external forces X = (X1,X2,X3)
T and external moments Y =

(Y1, Y2, Y3)
T . The elastic properties of the body can be characterized by elastic

constants λ, µ, α, β, γ, ε, where λ and µ are classical Lame coefficients as in the

classical theory of elasticity and α, β, γ, and ε are micropolar elastic constants,

representing the contribution of material microstructure to the elastic properties

of the body. The state of deformation is characterized by a displacement field

u (x) = (u1 (x) , u2 (x) , u3 (x))
T

and a microrotation field

φ (x) = (φ1 (x) , φ2 (x) , φ3 (x))
T ,

where x = (x1, x2, x3) is a generic point in R3. This leads to the description

of deformation of the body in terms of asymmetric strain , torsion, stress and

couple-stress tensors [33] of the form

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 , κ =


κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

 , (2.1)

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , ( =


(11 (12 (13

(21 (22 (23

(31 (32 (33

 , (2.2)

where ε is the strain tensor, κ the torsion tensor, σ the stress tensor, ( the

couple-stress tensor.
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Following the procedure given in detail in [33] and [31] we can derive the

equations of equilibrium in terms of stresses and couple stresses of the form

σji,j +Xi = 0, (2.3)

�ijkσjk + (ji,j + Yi = 0.

where �ijk− alternating symbol.

Note, that in case of micropolar media, the equilibrium equations are more

complicated than in the classical case because of the appearance of the extra

system of equations due to the presence of couple stresses. It leads to a descrip-

tion of the elastic behavior of a Cosserat solid in terms of asymmetric stress and

couple-stress tensors. It can be easily shown that if we set all couple stresses

equal to zero we again obtain a symmetric stress tensor as in the classical case.

Consequently, the presence of couple stresses prevents the symmetry of the stress

tensor.

Using the constitutive relations [33]

σji = (µ+ α)εji + (µ− α)εij + λεkkδji (2.4)

(ji = (γ + ε)κji + (γ − ε)κij + βκkkδji, (2.5)

where δji is the Kronecker symbol,

and the kinematic relations

εji = ui,j − �kjiφk, κji = φi,j , (2.6)

we can formulate the equilibrium equations in terms of displacements and mi-
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crorotations in the following vector form

(µ+ α)∆u+ (λ+ µ− α) grad div u+ 2α curl φ+X = 0,

[(γ + ε)− 4α]∆φ+ (β + γ − ε) grad div φ+ 2α curl u+ Y = 0, (2.7)

where ∆ is the Laplace operator.

As it can be seen from (2.7), the governing equations of micropolar elasticity

have much more complicated structure than those of classical elasticity. In the

case of a Cosserat solid, the system of governing equations is a system of coupled

partial differential equations with six unknowns: three usual displacements as

in the classical theory of elasticity and three more representing independent

microrotations. We can conclude that the theory of Cosserat elasticity is much

more general in comparison with the classical one. If we assume, that micropolar

elastic constants α, β, γ, ε are equal to zero, we can easily see that the governing

equations are reduced to the well-known Navier’s equations : the governing

equations of classical theory of elasticity.

In [37] the boundary value problems corresponding to (2.3) and (2.7) were

shown to be well-posed and solved rigorously by means of the boundary integral

equation method. In [33], [68-71] system (2.7) was integrated by means of the

method of potentials under different sets of boundary conditions. Since our goal

is to investigate plane problems of Cosserat elasticity we will not pay significant

attention to the integration of equations (2.7) but we will use them to derive

the governing equations for the plane-strain state.
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Chapter 3

Weak solutions to the

Boundary Value Problems

of Plane Cosserat Elasticity

In this chapter we first derive the governing equations of plane micropolar elas-

ticity on the basis of the general three-dimensional theory presented in Chap-

ter 2. After that we will formulate the corresponding Dirichlet and Neumann

boundary value problems in the Sobolev space setting and show that they are

well-posed by means of establishing existence and uniqueness theorems.
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3.1 Basic definitions

In what follows we assume that the convention of summation over repeated

indices is understood, Greek and Latin indices take the values 1, 2 and 1, 2, 3,

respectively,Mm×n is the space of (m×n)- matrices, En is the identity element

inMn×n, the columns of a (3×3)-matrix P are denoted by P (i), a superscript

T indicates matrix transposition, the generic symbol c denotes various strictly

positive constants, and (...),α≡ ∂(...)/∂xα. Also, if X is a space of scalar

functions and v is a matrix, v ∈ X means that every component of v belongs to

X.

Let S be a domain in R2 occupied by a homogeneous and isotropic linearly

elastic micropolar material with elastic constants λ, µ, α, γ and ε, and ∂S is its

boundary. We use the notations k · k0;S and h·, ·i0;S for the norm and inner

product in L2(S) ∩Mm×1 for any m ∈ N. When S = R2, we write k · k0 and

h·, ·i0 .

The state of plane micropolar strain is characterized by a displacement field

u (x0) = (u1 (x0) , u2 (x0) , u3 (x0))T

and a microrotation field

φ (x0) = (φ1 (x
0) , φ2 (x

0) , φ3 (x
0))T

of the form

uα (x
0) = uα (x) , u3(x

0) = 0, (3.1)

φα (x
0) = 0, φ3(x

0) = φ3 (x) ,
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where x0 = (x1, x2, x3) and x = (x1, x2) are generic points in R3 and R2, respec-

tively. The equilibrium equations of plane micropolar strain written in terms of

displacements and microrotations are given by [40], [44]

L(∂x)u(x) + q(x) = 0, x ∈ S, (3.2)

in which now, denoting φ3 by u3, we have u(x) = (u1, u2, u3)
T , the matrix

partial differential operator L(∂x) = L(∂/∂xα) is defined by

L (ξ) = L (ξα)

=


(µ+ α)∆+ (λ+ µ− α)ξ21 (λ+ µ− α)ξ1ξ2 2αξ2

(λ+ µ− α)ξ1ξ2 (µ+ α)∆+ (λ+ µ− α)ξ22 −2αξ1

−2αξ2 2αξ1 (γ + ε)∆− 4α

 ,

where ∆ = ξαξα, and vector q = (q1, q2, q3)
T represents body forces and body

couples.

Together with Lwe consider the boundary stress operator T (∂x) = T (∂/∂xα)

defined by

T (ξ) = T (ξα)

=


(λ+ 2µ) ξ1n1 + (µ+ α) ξ2n2 (µ− α)ξ1n2 + λξ2n1 2αn2

(µ− α)ξ2n1 + λξ1n2 (λ+ 2µ) ξ2n2 + (µ+ α) ξ1n1 −2αn1

0 0 (γ + ε)ξαnα

 ,

where n = (n1, n2)
T is the unit outward normal to ∂S. To guarantee the

ellipticity of system (3.2), in what follows we assume that

λ+ µ > 0, µ > 0, γ + ε > 0, α > 0.
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The internal energy density is given by

2E (u, v) = 2E0 (u, v)

+µ(u1,2 + u2,1)(v1,2 + v2,1)

+α(u1,2 − u2,1 + 2u3)(v1,2 − v2,1 + 2v3)

+(γ + ε)(u3,1v3,1 + u3,2v3,2),

2E0 (u, v) = (λ+ 2µ) (u1,1v1,1 + u2,2v2,2) + λ(u1,1v2,2 + u2,2v1,1).

Clearly, E(u, u) is a positive quadratic form.

The space of rigid displacements and microrotations F is spanned by the

columns of the matrix

F =


1 0 −x2

0 1 x1

0 0 1


from which it can be seen that LF = 0 in R2, TF = 0 on ∂S and a general rigid

displacement can be written as Fk, where k ∈M3×1 is constant and arbitrary.

Let S+ be a domain in R2 bounded by a closed curve ∂S, and S− = R2\S+.

Using the same technique as in the derivation of the Betti formula [44], it is easy

to show that if u is a solution of (3.2) in S+, then for any v ∈ C2(S+)∩C1(S+)

Z
S+

vT qdx = −
Z
S+

vTLudx = 2

Z
S+

E(u, v) dx−
Z
∂S

vTTu ds, (3.3)

A Galerkin representation for the solution of (3.2) when q(x) = −δ(|x− y|),

where δ is the Dirac delta distribution, yields the matrix of fundamental solu-
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tions [44]

D(x, y) = L∗(∂x)t(x, y), (3.4)

where L∗ is the adjoint of L,

t(x, y) =
a

8πk4

n
[k2 |x− y|2 + 4] ln |x− y|+ 4K0(k|x− y|)

o
, (3.5)

K0 is the modified Bessel function of order zero and the constants a, k2 are

defined by

a−1 = (γ + ε)(λ+ 2µ)(µ+ α), k2 =
4µα

(γ + ε)(µ+ α)
.

In view of (3.4) and (3.5)

D(x, y) = DT (x, y) = D(y, x).

Along with matrix D(x, y) we consider the matrix of singular solutions

P (x, y) = (T (∂y)D(y, x))T . (3.6)

It is easy to verify that D(i)(x, y) and P (i)(x, y) satisfy (3.2) with q(x) = 0 at

all x ∈ R2, x 6= y.

We introduce class A of vectors u ∈M3×1 whose components in terms of

polar coordinates, as r = |x|→∞, are of the form

u1(r, θ) = r−1 (βm0 sin θ +m1 cos θ +m0 sin 3θ +m2 cos 3θ) +O(r−2),

u2(r, θ) = r−1 (m3 sin θ + βm0 cos θ +m4 sin 3θ −m0 cos 3θ) +O(r−2),

u3(r, θ) = r−2 (m5 sin 2θ +m6 cos 2θ) +O(r−3),

where

β =
3µ+ λ

λ+ µ
,
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and m0, . . . ,m6 are arbitrary constants. Also, let

A∗ =
©
u : u = Fc+ σA

ª
,

where c ∈M3×1 is constant and arbitrary and σA ∈M3×1 ∩A.

For exterior domain the Betti formula [44] is as follows. If u is a solution of

(3.2) in S−, then for any v ∈ C2(S−) ∩ C1(S−) ∩A∗

Z
S−

vT qdx = −
Z
S−

vTLudx = 2

Z
S−

E(u, v) dx+

Z
∂S

vTTu ds. (3.7)

Further, we introduce the corresponding area, single layer, and double layer

potentials given respectively by

(Uϕ)(x) =

Z
R2

D(x, y)ϕ(y) dy,

(V ϕ)(x) =

Z
∂S

D(x, y)ϕ(y) ds(y),

(Wϕ)(x) =

Z
∂S

P (x, y)ϕ(y) ds(y),

where ϕ ∈M3×1 is an unknown density matrix.

It is not difficult to check that L(Uq) = q in R2.

We recall the properties of single and double layer integral potentials in the

following theorem, which has been proved in [44].

Theorem 1 (i) If ϕ ∈ C(∂S), then V ϕ, Wϕ are analytic and satisfy L(V ϕ) =

L (Wϕ) = 0 in S+ ∪ S−.

(ii) If ϕ ∈ C0,α(∂S), α ∈ (0, 1), then the direct values V0ϕ,W0ϕ of V ϕ, Wϕ

on ∂S exist (the latter as principal value), the functions
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V +(ϕ) = (V ϕ)|
S
+ , V −(ϕ) = (V ϕ)|

S
− are of class C1,α(S

+
) and

C1,α(S
−
), respectively and

TV +(ϕ) = (W ∗0 +
1
2I)ϕ, TV −(ϕ) = (W ∗0 − 1

2I)ϕ on ∂S, where

W ∗0 is the adjoint of W0 and I - the identity operator.

(iii) If ϕ ∈ C1,α(∂S), α ∈ (0, 1), then the functions

W+(ϕ) =


(Wϕ)|S+ , in S+,

(W0 − 1
2I)ϕ, on ∂S,

, W−(ϕ) =


(Wϕ)|S− , in S+,

(W0 +
1
2I)ϕ, on ∂S,

are of class C1,α(S
+
) and C1,α(S

−
), respectively, and TW+(ϕ) = TW−(ϕ) on

∂S.

For any m ∈ R, let Hm(R2) be the standard real Sobolev space of three-

component distributions, equipped with the norm

k u k2m=
Z
R2
(1 + |ξ|2)m|eu(ξ)|2dξ,

where eu is the Fourier transform of u. In what follows we do not distinguish

between equivalent norms and denote them by the same symbol; thus, the norm

in H1(R2) can be defined by

k u k21=k u k20 +
3X

i=1

k ∇ui k20 .

The spaces Hm(R2) and H−m(R2) are dual with respect to duality induced by

h·, ·i0 .

We introduce the space L2ω(R2) of (3×1)-vector functions u = (u, u3)T , where

u = (u1,u2)
T , such that

k u k20,ω=
Z
R2

|u(x)|2

(1 + |x|)2(1 + ln |x|)2 dx+
Z
R2

|u3(x)|2

(1 + |x|)4(1 + ln |x|)2 dx <∞.
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We consider the bilinear form b(u, v) = 2
R
R2 E(u, v) dx. Let H1,ω(R2) be the

space of three-component distributions on R2 for which

k u k21,ω=k u k20,ω +b(u, u) <∞,

H−1,ω(R2) is dual to H1,ω(R2) with respect to duality generated by h·, ·i0 . The

norm in H−1,ω(R2) is denoted by k · k−1,ω .

Let
◦
Hm(S

+) be the subspace of Hm(R2) consisting of all u which have

a compact support in S+. Hm(S
+) is the space of the restrictions to S+ of

all u ∈ Hm(R2). Denoting by π± the operators of restrictions from R2 to

S±, respectively, we introduce the norm of u ∈ Hm(S
+) by k u km;S+=

infv∈Hm(R2):π+v=u k v km . If m = 1, then the norms of u ∈
◦
H1(S

+) and

u ∈ H1(S
+) are equivalent to(

k u k20;S+ +
3X
i=1

Z
S+
|∇ui(x)|2dx

)1/2
.

The spaces
◦
Hm(S

+) and H−m(S+) are dual with respect to duality induced by

h·, ·i0;S+ .

Let
◦
H1,ω(S

−) be the subspace of H1,ω(R2) consisting of all u which have

compact support in S−. H1,ω(S
−) is the space of the restrictions to S− of all

u ∈ H1,ω(R2). The norm in H1,ω(S
−) is defined by

k u k1,ω;S−= inf
v∈H1,ω(R2):π−v=u

k v k1,ω .

From the definition it follows that H1,ω(S
−) is isometric to H1,ω(R2)\

◦
H1(S

+).

It can be shown that the norm of u ∈ H1,ω(S
−) is equivalent to

n
k u k20,ω;S− +b−(u, u)

o1/2
,
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where

k u k20,ω;S−=
Z
S−

|u(x)|2

(1 + |x|)2(1 + ln |x|)2 dx+
Z
S−

|u3(x)|2

(1 + |x|)4(1 + ln |x|)2 dx

and b±(u, v) = 2
R
S± E(u, v) dx. This norm is compatible with asymptotic class

A.

The dual of
◦
H1,ω(S

−) with respect to the duality generated by h·, ·i0;S− is the

space H−1,ω(S−), with norm k · k−1,ω;S− ; the dual of H1,ω(S
−) is

◦
H−1,ω(S−),

which can be identified with a subspace of H−1,ω(R2). It can be shown that if

u ∈
◦
H−1(S−) and has compact support in S−, or if

Z
S−
|u(x)|2 (1 + |x|)2(1 + ln |x|)2dx+

Z
S−
|u3(x)|2 (1 + |x|)4(1 + ln |x|)2dx <∞,

then u ∈
◦
H−1,ω(S−).

Let Hm(∂S) be the standard Sobolev space of distributions on ∂S, with

norm k · km;∂S . Hm(∂S) and H−m(∂S) are dual with respect to the duality

generated by the inner product h·, ·i0;∂S in L2(∂S).

We denote by γ+ and γ− the trace operators defined first on C∞0 (S±) and

then extended by continuity to the surjections γ+ : H1(S
+) −→ H1/2(∂S),

γ− : H1,ω(S
−) −→ H1/2(∂S). This is possible because of the local equivalence

of H1,ω(S
−) and H1(S

−). We also consider a continuous extension operators

l+ : H1/2(∂S) −→ H1(S
+), l− : H1/2(∂S) −→ H1(S

−), the latter, since norm in

H1(S
−) is stronger than that in H1,ω(S

−), can also be regarded as a continuous

operator from H1/2(∂S) into H1,ω(S
−).

To proceed further we will need the following well-known fact from the func-

tional analysis.
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Theorem 2 (Lax-Milgram Lemma) Let H be a Hilbert space and b(u, v) be a

bilinear functional defined for every ordinate pair u, v ∈ H, for which there exist

two constants h and k such that:

|b(u, v)| 6 h kuk kvk , kuk2 6 k |b(u, u)| ∀u, v ∈ H,

in this case we say that b(u, v) is coercive. Then however we assign the bounded

linear functional L(v) on H there exists one and only one u such that

b(u, v) = L(v), ∀v ∈ H, kuk 6 c kLk∗ ,

where k·k∗ is the norm on the dual H 0 of H.

The proof of this lemma can be found in [72].

3.2 Interior boundary value problems

We consider Dirichlet and Neumann interior boundary value problems.

The (interior) Dirichlet problem is formulated as follows.

Find u ∈ C2(S+) ∩C1(S+) satisfying (3.2) such that u |∂S = f, (D+)

where f is prescribed on ∂S.

Let (D+0 ) be the interior Dirichlet problem with f = 0. From (3.3) we see

that a solution u of (D+0 ) satisfies

b+(u, v) = hq, vi0,S+ ∀v ∈ C∞0 (S
+), (3.8)

Since C∞0 (S
+) is dense in

◦
H1(S

+), it is clear that (3.8) holds for any v ∈
◦
H1(S

+).

Obviously, any u ∈ C2(S+) ∩ C1(S
+
) satisfying (3.8) for any v ∈

◦
H1(S

+)
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and u|
∂S
= 0 is a classical (regular) solution of (D+0 ). Hence, the variational

formulation of (D+0 ) is as follows.

Find u ∈
◦
H1(S

+) such that

b+(u, v) = hq, vi0,S+ ∀v ∈
◦
H1(S

+). (3.9)

Theorem 3 There exists a constant c = c(S+) > 0 such that

b+(u, u)+ k u k20;S+> c k u k21;S+ ∀u ∈ H1(S
+). (3.10)

Proof. In view of the condition on α, λ, γ, ε and µ, E(u, u) is a positive

quadratic form. Consequently, we may introduce the space G of all (3×1)-vector

functions u on S+ with norm

k u k2G= b+(u, u)+ k u k20;S+ .

Let {u(n)} be a Cauchy sequence in G. From the definition of b+(u, v) it follows

that there are β11, β22, β12, β13, β31, β32, β ∈ L2(S+) such that

u
(n)
1,1 → β11, u

(n)
2,2 → β22, u

(n)
1,2 + u

(n)
2,1 → β12,

u
(n)
2,1 − u

(n)
1,2 − 2u

(n)
3 → β13, u

(n)
3,1 → β31, u

(n)
3,2 → β32, u

(n) → β

in L2(S+). Then

u
(n)
1,1 → β11 = β1,1, u

(n)
2,2 → β22 = β2,2,

u
(n)
1,2 + u

(n)
2,1 → β12 = β1,2 + β2,1,

u
(n)
2,1 − u

(n)
1,2 − 2u

(n)
3 → β13 = β2,1 − β1,2 − 2β3,

u
(n)
3,1 → β31 = β3,1, u

(n)
3,2 → β32 = β3,2
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in the sense of distributions, hence, also in L2(S+). This implies that β, β1,1,

β2,2, β1,2 + β2,1, β2,1 − β1,2 − 2β3, β3,1, β3,2 ∈ L2(S+) and k u(n) − β kG→ 0,

which means that G is complete. For any u ∈ G we have

u1,21 = (u1,1),2 ∈ H−1(S+),

u1,22 = (u1,2 + u2,1),2 − (u2,2),1 ∈ H−1(S+),

u1,2 ∈ H−1(S+),

so u1,2 ∈ L2(S+) [73]. Since u1 ∈ L2(S+), u1,1 ∈ L2(S+) and, as we have just

seen, u1,2 ∈ L2(S+), the same argument yields u1 ∈ H1(S
+). The fact that

u2 ∈ H1(S
+) is shown similarly. Finally,

u3,1 ∈ L2(S+), u3,2 ∈ L2(S+),

u3 =
1

2
(u2,1 − u1,2 − (u2,1 − u1,2 − 2u3)) ∈ L2(S+),

so u3 ∈ H1(S
+). This indicates that G is a subset of H1(S

+). The converse

statement being obvious, we conclude that G and H1(S
+) coincide as sets. The

imbedding operator I : H1(S
+) → G is bijective and continuous, therefore, by

Banach’s theorem [72] on the inverse operator I−1 is continuous; in other words,

k u k2G> c k u k21,S+ , which is the same as (3.10).

Theorem 4 There exists a constant c = c(S+) > 0 such that

b+(u, u) > c k u k21 ∀u ∈
◦
H1(S

+). (3.11)

Proof. We claim that there is a c = c(S+) > 0 such that

b+(u, u) > c k u k20,S+ ∀u ∈
◦
H1(S

+). (3.12)
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Indeed, if the opposite is true, then we can construct a sequence {u(n)} in
◦
H1(S

+) such that

b+(u
(n), u(n))→ 0, k u(n) k0,S+= 1 for all n. (3.13)

By (3.10), {u(n)} is bounded in H1(S
+) so, by Rellich’s lemma, it contains a

convergent subsequence (again denoted by {u(n)}, for simplicity); that is, there

is a u ∈ L2(S+) such that u(n) → u in L2(S+). This means that, in view of

(3.13),

u
(n)
1,1 → 0 = u1,1, u

(n)
2,2 → 0 = u2,2,

u
(n)
1,2 + u

(n)
2,1 → 0 = u1,2 + u2,1,

u
(n)
2,1 − u

(n)
1,2 − 2u

(n)
3 → 0 = u2,1 − u1,2 − 2u3,

u
(n)
3,1 → 0 = u3,1, u

(n)
3,2 → 0 = u3,2

in L2(S+). These equalities imply that u is a rigid displacement. Since u = 0 on

∂S, it follows that u = 0 in S+ which contradicts the corollary k u k0,S+= 1 of

(3.13). Hence, (3.12) holds, and the statement of the theorem is now obtained

from (3.12) and (3.10).

Theorem 5 Problem (3.9) has a unique solution u ∈
◦
H1(S

+) for every q ∈

H−1(S+), and this solution satisfies the estimate

k u k16 c k q k−1,S+ . (3.14)

Proof. SinceH−1(S+) is the dual of
◦
H1(S

+) with respect to duality induced

by h·, ·i0,S+ , it follows that hq, vi0,S+ is continuous linear functional on
◦
H1(S

+)
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for every q ∈ H−1(S+). By Theorem 3, b+(u, v) is a continuous bilinear form

on
◦
H1(S

+)×
◦
H1(S

+). By Theorem 4, b+(u, u) is coercive on
◦
H1(S

+). We now

apply the Lax-Milgram lemma to complete the proof.

The variational formulation of (D+) is as follows.

Find u ∈ H1(S
+) such that

b+(u, v) = hq, vi0,S+ ∀v ∈
◦
H1(S

+) (3.15)

and

γ+u = f. (3.16)

Theorem 6 Problem (3.15)-(3.16) has a unique solution u ∈ H1(S
+) for any

q ∈ H−1(S+) and any f ∈ H 1
2
(∂S), and this solution satisfies the estimate

k u k1,S+6 c
³
k q k−1,S+ + k f k 1

2 ,∂S

´
. (3.17)

Proof. The substitution u = u0 + l+f reduces (3.15)-(3.16) to a new varia-

tional problem, consisting in finding u0 ∈
◦
H1(S

+) such that

b+(u0, v) = hq, vi0,S+ − b+(l
+f, v) ∀v ∈

◦
H1(S

+). (3.18)

Clearly, b+(u, v) is continuous on H1(S
+)×H1(S

+), which implies that

hq, vi0,S+ − b+(l
+f, v)

is a continuous linear functional on
◦
H1(S

+). Also,

| hq, vi0,S+ − b+(l
+f, v) | 6 k q k−1,S+k v k1 +c k l+f k1,S+k v k1(3.19)

6 c
¡
k q k−1,S+ + k l+f k1,S+

¢
k v k1 .
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The statement now follows from Theorem 5, with (3.17) obtained from (3.19)

and the continuity of l+.

The (interior) Neumann problem is formulated as follows.

Find u ∈ C2(S+) ∩C1(S+) satisfying (3.2) and Tu = g on ∂S, (N+)

where g is prescribed on ∂S.

In this case (3.3) leads to the following variational formulation.

Find u ∈ H1(S
+) such that

b+(u, v) = hq, vi0,S+ +
­
g, γ+v

®
0,∂S

∀v ∈ H1(S
+). (3.20)

It is clear that, in view of the properties of rigid displacements,

D
q,F(i)

E
0,S+

+
D
g, γ+F(i)

E
0,∂S

= 0 (3.21)

is a necessary solvability condition for (N+). In what follows we assume (3.21)

holds.

Theorem 7 There is a c = c(S+) > 0 such that for any u ∈ H1(S
+)

b+(u, u) +
3X

i=1

D
u,F(i)

E2
0,S+

> c k u k21,S+ , (3.22)

b+(u, u) +
3X

i=1

D
γ+u, γ+F(i)

E2
0,∂S

> c k u k21,S+ . (3.23)

Proof. If either (3.22) or (3.23) does not hold, then, by repeating the

argument in the proof of Theorem 4, we find that there is a u ∈ F such that­
u,F(i)

®
0,S+

= 0 in the case of (3.22) or
­
γ+u, γ+F(i)

®
0,∂S

= 0 in the case of

(3.23), while k u k1,S+= 1, which is an obvious contradiction. Inequalities (3.22)

and (3.23) hold.
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Theorem 8 Problem (3.20) is solvable for any q ∈
◦
H−1(S+) and g ∈ H− 1

2
(∂S).

Any two solutions differ by a rigid displacement, and there is a solution u0 that

satisfies the estimate

k u0 k1,S+6 c
³
k q k−1,S+ + k g k− 1

2 ,∂S

´
. (3.24)

Proof. We introduce the factor space H1(S+) = H1(S
+)\F , the bilinear

form

B+(U, V ) = b+(u, v) on H1(S+)×H1(S+),

and the linear functional

L(V ) = hq, vi0,S+ +
­
g, γ+v

®
0,∂S

on H1(S+),

where u and v are arbitrary representatives of the classes U, V ∈ H1(S+). We

define the norm in H1(S+) by

k U kH1(S+)= inf
u∈H1(S

+)
u∈U

k u k1,S+ .

Instead of (3.20) we now consider the new variational problem of finding

U ∈ H1(S+) such that

B+(U, V ) = L(V ) ∀V ∈ H1(S
+). (3.25)

In view of the definition of B+(U, V ), we see that for any U, V ∈ H1(S+) and

any u ∈ U, v ∈ V

|B+(U, V )| = |b+(u, v)| 6 c k u k1,S+k v k1,S+ ,

therefore

|B+(U, V )| 6 c inf
u∈H1(S

+)
u∈U

k u k1,S+ inf
v∈H1(S

+)
v∈U

k v k1,S+= c k U kH1(S+)k V kH1(S+),
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which shows that B+(U, V ) is continuous on H1(S+)×H1(S+).

Next, we can choose
∼
u ∈ U such that

D
∼
u,F(i)

E
0,S+

= 0. Then, by Theorem

7,

B+(U,U) = b+(
∼
u,
∼
u) > c k ∼u k21,S+> c inf

u∈H1(S
+)

u∈U

k u k1,S+= c k U kH1(S+),

so B+(U,U) is coercive on H1(S+).

Finally, since γ+ is continuous on H1(∂S), for any V ∈ H1(S+)

L(V ) 6 k q k−1,S+k v k1,S+ + k g k− 1
2 ,∂S

k γ+v k 1
2 ,∂S

6 c
³
k q k−1,S+ + k g k− 1

2 ,∂S

´
k v k1,S+ ,

which shows that L is continuous linear functional on H1(S+).

By the Lax—Milgram lemma, problem (3.25) has a unique solution U ∈

H1(S
+), and this solution satisfies the estimate

k U kH1(S+)6 c
³
k q k−1,S+ + k g k− 1

2 ,∂S

´
.

Clearly, any u ∈ U is a solution of (3.20), and u0 ∈ U such that

k u0 k1,S+=k U kH1(S+)

satisfies (3.24).

3.3 Exterior boundary value problems

We consider Dirichlet and Neumann exterior boundary value problems.

The (exterior) Dirichlet problem is formulated as follows:

Find u ∈ C2(S−) ∩ C1(S−) ∩A∗ satisfying (3.2) such that u |∂S = f, (D−)
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where f is prescribed on ∂S.

Let (D−0 ) be the exterior Dirichlet problem with f = 0. From (3.7) we see

that a solution u of (D−0 ) satisfies

b−(u, v) = hq, vi0,S− ∀v ∈ C∞0 (S
−). (3.26)

Since C∞0 (S
−) is dense in

◦
H1,ω(S

−), it is clear that (3.26) holds for any v ∈
◦
H1,ω(S

−). Obviously, any u ∈ C2(S−) ∩ C1(S−) ∩A∗ satisfying (3.26) for any

v ∈
◦
H1,ω(S

−) and u |∂S = 0 is a classical (regular) solution of (D−0 ). Hence, the

variational formulation of (D−0 ) is as follows.

Find u ∈
◦
H1,ω(S

−) such that

b−(u, v) = hq, vi0,S− ∀v ∈
◦
H1,ω(S

−). (3.27)

Let K−R =
©
x ∈ R2 : |x| > R

ª
, R > 1, and ∂KR =

©
x ∈ R2 : |x| = R

ª
.

Theorem 9 There are ci(R) = const > 0 such that

k u k2
0,ω;K−R

6 c1bK−R
(u, u) + c2 k u k21/2,∂KR

+c3 k u3 k20,∂KR
∀u ∈ H1,ω(K

−
R ),

(3.28)

where k · k0,∂KR
and k · k1/2,∂KR

are the norms in L2(∂KR) and H1/2(∂KR),

respectively.

Proof. Since C∞0 (K
−
R) is dense in H1,ω(K

−
R ), it suffices to consider u ∈

C∞0 (K
−
R). We write u(x) = v(ρ, ϕ) in terms of polar coordinates with the pole

in the centre of the circle ∂KR.
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We fix ϕ for the moment. We recall the generalized Hardy inequality [74].

If

Z b

a

|w(ρ)|2λ(ρ) dρ <∞, λ(ρ) > 0, Λ(ρ) =

Z ρ

a

dη

λ(η)
, W (ρ) =

Z ρ

a

w(η)dη,

then Z b

a

|W (ρ)|2

λ(ρ)Λ2(ρ)
dρ 6 4

Z b

a

|w(ρ)|2λ(ρ) dρ.

We use the generalized Hardy inequality with a = R, b = ∞, λ(ρ) = ρ, and

w(ρ) = ∂ρv3(ρ, ϕ), where ∂ρ(. . .) = ∂(. . .)/∂ρ, it follows that

Z ∞
R

|v3(ρ, ϕ)− v3(R,ϕ)|2

ρ ln2(ρ/R)
dρ 6 4

Z ∞
R

|∂ρv3(ρ, ϕ)|2 ρ dρ. (3.29)

Thus, from (3.29) we find

Z ∞
R

|v3(ρ, ϕ)|2

(1 + ρ)4(1 + ln ρ)2
ρ dρ 6 2

Z ∞
R

|v3(ρ, ϕ)− v3(R,ϕ)|2

(1 + ρ)4(1 + ln ρ)2
ρ dρ

+2

Z ∞
R

|v3(R,ϕ)|2

(1 + ρ)4(1 + ln ρ)2
ρ dρ

6 8

Z ∞
R

|∂ρv3(ρ, ϕ)|2 ρ dρ

+
2

R2 lnR
|v3(R,ϕ)|2 .

Integration with respect to ϕ ∈ (0, 2π) now yields

Z
K−R

|u3|2

(1 + |x|)4(1 + ln |x|)2 dx 6 8

Z
K−R

|∇u3|2 dx (3.30)

+
2

R3 lnR

Z
∂KR

|u3|2 ds.

We use the generalized Hardy inequality again with a = R, b = ∞, λ(ρ) = ρ,

and w(ρ) = ∂ρvα(ρ, ϕ), to obtainZ ∞
R

|vα(ρ, ϕ)− vα(R,ϕ)|2

ρ ln2(ρ/R)
dρ 6 4

Z ∞
R

|∂ρvα(ρ, ϕ)|2 ρ dρ,
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from which

Z ∞
R

|vα(ρ, ϕ)− vα(R,ϕ)|2

(1 + ρ)2(1 + ln ρ)2
ρ dρ 6 4

Z ∞
R

|∂ρvα(ρ, ϕ)|2 ρ dρ.

Hence,

Z ∞
R

|vα(ρ, ϕ)|2

(1 + ρ)2(1 + ln ρ)2
ρ dρ 6 8

Z ∞
R

|∂ρvα(ρ, ϕ)|2 ρ dρ

+2 |vα(R,ϕ)|2
Z ∞
R

ρ

(1 + ρ)2(1 + ln ρ)2
dρ

6 8

Z ∞
R

|∂ρvα(ρ, ϕ)|2 ρ dρ+
2

lnR
|vα(R,ϕ)|2 .

Integrating this inequality with respect to ϕ ∈ (0, 2π), we obtain

Z
K−R

|uα|2

(1 + |x|)2(1 + ln |x|)2 dx 6 8
Z
K−R

|∇uα|2 dx+
2

R lnR

Z
∂KR

|uα|2 ds

(3.31)

From (3.30) and (3.31), it follows that

k u k2
0,ω;K−R

6 8
2X

α=1

Z
K−R

|∇uα|2 dx+
2

R lnR

2X
α=1

Z
∂KR

|uα|2 ds

+8

Z
K−R

|∇u3|2 dx+
2

R3 lnR

Z
∂KR

|u3|2 ds.
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Next,

2X
α=1

Z
K−R

|∇uα|2 dx

=

Z
K−R

¡
|u1,1|2 + |u1,2|2 + |u2,1|2 + |u2,2|2

¢
dx

=

Z
K−R

¡
|u1,1|2 + |u2,2|2 + |u1,2 + u2,1|2

¢
dx− 2

Z
K−R

u1,2u2,1 dx

=

Z
K−R

¡
|u1,1|2 + |u2,2|2 + |u1,2 + u2,1|2

¢
dx− 2

Z
K−R

u1,1u2,2 dx

−
Z
K−R

[(u2u1,2 − u1u2,2),1 + (u1u2,1 − u2u1,1),2] dx

6 2

Z
K−R

¡
|u1,1|2 + |u2,2|2 + |u1,2 + u2,1|2

¢
dx+ 2

Z
K−R

u1,1u2,2 dx

+

Z
∂KR

[n1(u2u1,2 − u1u2,2) + n2(u1u2,1 − u2u1,1)] ds

= 2

Z
K−R

¡
|u1,1|2 + |u2,2|2 + |u1,2 + u2,1|2

¢
dx+ 2

Z
K−R

u1,1u2,2 dx

+

Z
∂KR

(u2∂τu1 − u1∂τu2) ds,

where τ = (−n2, n1) is the unit tangent to ∂KR and ∂τ (. . .) = ∂(. . .)/∂τ . Con-

sequently, taking into account the continuity of the operator ∂τ : H1/2(∂KR)→
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H−1/2(∂KR), we obtain

k u k2
0,ω;K−R

6 16
Z
K−R

¡
|u1,1|2 + |u2,2|2 + |u1,2 + u2,1|2

¢
dx

+16

Z
K−R

u1,1u2,2 dx+ 8

Z
∂KR

(u2∂τu1 − u1∂τu2) ds

+
2

R lnR

2X
α=1

Z
∂KR

|uα|2 ds+ 8

Z
K−R

|∇u3|2 dx+
2

R3 lnR

Z
∂KR

|u3|2 ds

6 16

λ+ 2µ
(λ+ 2µ)

Z
K−R

¡
|u1,1|2 + |u2,2|2

¢
dx+

16

µ
µ

Z
K−R

|u1,2 + u2,1|2 dx

+
8

λ
2λ

Z
K−R

u1,1u2,2 dx+
8

γ + ε
(γ + ε)

Z
K−R

|∇u3|2 dx

+α

Z
K−R

|u2,1 − u1,2 − 2u3|2 dx

+8a1(ku2k1/2;∂KR
ku1k1/2;∂KR

+ ku1k1/2;∂KR
ku2k1/2;∂KR

)

+
2a22

R lnR
kuk21/2;∂KR

+
2

R3 lnR
ku3k20;∂KR

,

where a1 is the norm of ∂τ in H1/2;∂KR
and a2 is the norm of (continuous)

imbedding operator I : H1/2;∂KR
→ L2(∂KR). Inequality (3.28) is obtained by

setting

c1 = max

½
16

λ+ 2µ
,
16

µ
,
8

λ
,
8

γ + ε
, 1

¾
; c2 = 16a1 +

2a22
R lnR

, c3 =
2

R3 lnR
.

Theorem 10 There is a c = c(S−) = const > 0 such that any u ∈ H1,ω(S
−)

satisfies the estimates

k u k21,ω;S−6 c

"
b−(u, u) +

¯̄̄̄Z
Γ0

u ds

¯̄̄̄2#
, (3.32)

k u k21,ω;S−6 c

"
b−(u, u) +

3X
i=1

D
u, γ−F(i)

E2
0,∂S

#
, (3.33)

where Γ0 ⊆ ∂S, measure of Γ0 is larger than zero.
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Proof. We claim that for any u ∈ H1,ω;S−

k u k20,ω;S−6 c

"
b−(u, u) +

¯̄̄̄Z
Γ0

u ds

¯̄̄̄2#
, (3.34)

k u k20,ω;S−6 c

"
b−(u, u) +

3X
i=1

D
u, γ−F(i)

E2
0,∂S

#
, (3.35)

First suppose that the opposite of formula (3.34) is true. Then we can construct

a sequence {u(n)} ⊂ H1,ω(S
−) such that

b−(u(n), u(n))→ 0,

Z
Γ0

u(n)ds→ 0 (3.36)

while

k u k20,ω;S−= 1. (3.37)

Let ∂KR be a circle with the center at the origin and of radius R > 1 sufficiently

large so that ∂S is contained inside ∂KR. We write SR = S− ∩K−R . Since SR

is bounded, we may repeat the proof of Theorem 4 to deduce that there is a

cR = const > 0 such that

k u k21;SR6 cR

"
bSR(u, u) +

¯̄̄̄Z
Γ0

u ds

¯̄̄̄2#
∀u ∈ H1(SR). (3.38)

Then, by Theorem 9,

k u(n) k20,ω;S−=k u(n) k20,ω;SR + k u
(n) k2

0,ω;K−R

6 k u(n) k20,SR + k u
(n) k2

0,ω;K−R

6 cR

"
bSR(u

(n), u(n)) +

¯̄̄̄Z
Γ0

u(n) ds

¯̄̄̄2#
+ c1bK−R

(u(n), u(n))

+c2 k v
u
(n)
k21/2,∂KR

+c3 k u(n)3 k20,∂KR
.

From (3.38) for u(n) we now conclude that u(n) → 0 in H1(SR). Then u(n) → 0

inH1/2(∂KR), hence in L2(∂KR). Consequently, from the last inequality we find
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that limn→∞ k u(n) k20,ω;S−= 0, which contradicts (3.37). Formula (3.35) is

proved similarly.

Theorem 11 The variational problem (3.26) has a unique solution u ∈
◦
H1,ω(S

−)

for every q ∈ H−1,ω(S−), and this solution satisfies the estimate

k u k1,ω6 c k q k−1,ω;S− .

Proof. By Theorem 10,

k u k21,ω6 cb−(u, u) ∀u ∈
◦
H1,ω(S

−),

which means that b−(u, u) is coercive on
◦
H1,ω(S

−). Since b−(u, u) is clearly

continuous on
◦
H1,ω(S

−) ×
◦
H1,ω(S

−), we apply the Lax—Milgram lemma to

complete the proof.

The variational formulation of (D−) is as follows.

Find u ∈ H1,ω(S
−) such that

b−(u, v) = hq, vi0,S− ∀v ∈
◦
H1,ω(S

−) (3.39)

and

γ−u = f. (3.40)

Theorem 12 Problem (3.39)-(3.40) has a unique solution u ∈ H1,ω(S
−) for

any q ∈ H−1,ω(S−) and any f ∈ H 1
2
(∂S), and this solution satisfies the estimate

k u k1,ω;S−6 c
³
k q k−1,ω;S− + k f k 1

2 ,∂S

´
.

Proof. The substitution u = u0 + l−f reduces (3.39)-(3.40) to a new varia-

tional problem, consisting in finding u0 ∈
◦
H1,ω(S

−) such that

b−(u0, v) = hq, vi0,S− − b−(l−f, v) ∀v ∈
◦
H1,ω(S

−). (3.41)

41



Since for any v ∈
◦
H1,ω(S

−)

| hq, vi0,S− − b−(l−f, v) | 6 k q k−1,ω;S−k v k1,ω +
£
b−(l−f, l−f)

¤1/2
[b−(v, v)]

1/2

6
¡
k q k−1,ω;S− + k l−f k1,ω;S−

¢
k v k1,ω

6 c
¡
k q k−1,ω;S− + k f k1/2,∂S

¢
k v k1,ω,

the linear form hq, vi0,S−−b−(l−f, v) is a continuous linear functional on
◦
H1,ω(S

−).

The statement of the theorem now follows from the Lax—Milgram lemma applied

to the auxiliary problem (3.41) and the estimates

k u0 k1,ω6 c
¡
k q k−1,ω;S− + k f k1/2,∂S

¢
k u k1,ω;S−6k u0 k−1,ω;S− + k l−f k1,ω;S−6 c

³
k q k−1,ω;S− + k f k 1

2 ,∂S

´
.

The (exterior) Neumann problem is formulated as follows.

Find u ∈ C2(S−) ∩ C1(S−) ∩A satisfying (3.2) and Tu = g on ∂S, (N−)

where g is prescribed on ∂S.

In this case (3.7) leads to the following variational formulation.

Find u ∈ H1,ω(S
−) such that

b−(u, v) = hq, vi0,S− −
­
g, γ−v

®
0,∂S

∀v ∈ H1,ω(S
−). (3.42)

In view of the properties of rigid displacements,

D
q,F(i)

E
0,S−

−
D
g, γ−F(i)

E
0,∂S

= 0 (3.43)

is a necessary solvability condition for (3.42). In what follows we assume (3.43)

holds.
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Theorem 13 Problem (3.42) is solvable for any q ∈
◦
H−1,ω(S−) and g ∈

H− 1
2
(∂S). Any two solutions differ by a rigid displacement, and there is a solu-

tion u0 that satisfies the estimate

k u0 k1,ω;S−6 c
³
k q k−1,ω + k g k− 1

2 ,∂S

´
. (3.44)

Proof. We introduce the factor spaceH1,ω(S−) = H1,ω(S
−)\F , the bilinear

form

B−(U, V ) = b−(u, v) on H1,ω(S−)×H1,ω(S−),

and the linear functional

L(V ) = hq, vi0,S− −
­
g, γ−v

®
0,∂S

on H1,ω(S
−),

where u and v are arbitrary representatives of the classes U, V ∈ H1,ω(S−). We

define the norm in H1,ω(S−) by

k U kH1,ω(S−)= inf
u∈H1,ω(S

−)
u∈U

k u k1,ω;S− .

Instead of (3.42) we now consider the new variational problem of finding

U ∈ H1,ω(S−) such that

B−(U, V ) = L(V ) ∀V ∈ H1,ω(S−). (3.45)

In view of the definition of B−(U, V ), we see that for any U, V ∈ H1,ω(S−) and

any u ∈ U, v ∈ V

|B−(U, V )| = |b−(u, v)| 6 c k u k1,ω;S−k v k1,ω;S− ,
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therefore

|B−(U, V )| 6 c inf
u∈H1,ω(S

−)
u∈U

k u k1,ω;S− inf
v∈H1,ω(S

−)
v∈U

k v k1,ω;S−

= c k U kH1,ω(S−)k V kH1,ω(S−),

which shows that B−(U,V ) is continuous on H1,ω(S−)×H1,ω(S−).

Next, we can choose
∼
u ∈ U such that

D
γ−

v
u, γ−F(i)

E
0,∂S

= 0. Then, by

(3.33),

B−(U,U) = b−(
∼
u,
∼
u) > c k ∼u k21,ω;S−> c inf

u∈H1,ω(S
−)

u∈U

k u k21,ω;S−= k k U k2H1,ω(S−),

so B−(U,U) is coercive on H1,ω(S−).

Finally, since γ− is continuous on H1,ω(S
−), for any V ∈ H1,ω(S−)

L(V ) 6 k q k−1,ωk v k1,ω;S− + k g k− 1
2 ,∂S

k γ−v k 1
2 ,∂S

6 c
³
k q k−1,ω + k g k− 1

2 ,∂S

´
k v k1,ω;S− ,

which shows that L is continuous linear functional on H1,ω(S−).

By the Lax—Milgram lemma, problem (3.45) has a unique solution U ∈

H1,ω(S
−), and this solution satisfies the estimate

k U kH1,ω(S−)6 c
³
k q k−1,ω + k g k− 1

2 ,∂S

´
.

Clearly, any u ∈ U is a solution of (3.42), and u0 ∈ U such that

k u0 k1,ω;S−=k U kH1,ω(S−)

satisfies (3.44).
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3.4 Summary

In this chapter we have formulated interior and exterior Dirichlet and Neumann

problems of plane Cosserat elasticity in Sobolev spaces and established existence,

uniqueness and continuous dependence on the data results for these problems.

This is a necessary step to deal with such problems from the practical point of

view, since it validates the subsequent application of numerical procedures such

as finite element method.
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Chapter 4

Boundary Integral

Equations

In this chapter we will show that the variational problems formulated in Chapter

3 can be solved using the boundary integral equation method and corresponding

weak solutions can be represented in the form of specially constructed integral

potentials with unknown distributional densities. First, we introduce boundary

operators which associate with the displacement field u on ∂S the correspond-

ing boundary moments and forces known as Poincaré-Steklov operators, and

boundary operators corresponding to the integral potentials. Then we employ

them to reduce boundary value problems to boundary integral equations with

respect to the integral densities and show a unique solvability of boundary in-

tegral equations.
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4.1 Poincaré—Steklov operators

Let f ∈ H1/2(∂S), and let u ∈ H1(S
+) be the (unique) solution of the variational

problem (D+) (3.15)-(3.16) with q = 0

b+(u, v) = 0 ∀v ∈
◦
H1(S

+), γ+u = f.

We consider an arbitrary α ∈ H1/2(∂S) and write w = l+α. Using Riesz repre-

sentation theorem [72], we can define an operator T + on H1/2(∂S) by

­
T +f, α

®
0;∂S

= b+(u,w). (4.1)

The definition is consistent, for if
v
w ∈ H1(S

+) is another extension of α, then

w − v
w ∈

◦
H1(S

+) and b+(w −
v
w,u) = 0, ∀α ∈ H1/2(∂S).

Let f ∈ H1/2(∂S), and let u ∈ H1,ω(S
−) be the (unique) solution of the

variational problem (D−) (3.36)-(3.37) with q = 0

b−(u, v) = 0 ∀v ∈
◦
H1,ω(S

−), γ−u = f.

We consider an arbitrary α ∈ H1/2(∂S) and write w = l−α. Using Riesz repre-

sentation theorem [72], we can define an operator T − on H1/2(∂S) by

­
T −f, α

®
0;∂S

= −b−(u,w). (4.2)

The definition is consistent, for if
v
w ∈ H1,ω(S

−) is another extension of α, then

w − v
w ∈

◦
H1,ω(S

−) and b−(w −
v
w,u) = 0, ∀α ∈ H1/2(∂S).

T ± are known as the Poincaré-Steklov operators corresponding to (3.2).

Denoting the space of the rigid displacements on ∂S by F(∂S), let H1/2(∂S)

be the subspace of H1/2(∂S) of all u such that

hu, zi0;∂S = 0 ∀z ∈ F(∂S),
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and let H−1/2(∂S) be the subspace of H−1/2(∂S) of all g such that

hg, zi0;∂S = 0 ∀z ∈ F(∂S).

Theorem 14 (i) T ± are continuous operators from H1/2(∂S) to H−1/2(∂S).

(ii) T ± are self-adjoint in the sense that

­
T ±f, v

®
0;∂S

=
­
f, T ±v

®
0;∂S

∀f, v ∈ H1/2(∂S). (4.3)

(iii) The kernels of T ± coincide with F(∂S).

(iv) The ranges of T ± coincide with H−1/2(∂S).

Proof. (i) By the definition of T ±, for f, v ∈ H1/2(∂S)

­
T ±f, v

®2
0;∂S

= b±(u, l±v)2 ≤ b±(u, u)b±(l±v, l±v).

Since

b+(l
+v, l+v) ≤ c k l+v k21,S+≤ c k v k21/2;∂S ,

and

b−(l−v, l−v) ≤ c k l−v k21,ω;S−≤ c k v k21/2;∂S ,

it follows that ­
T ±f, v

®2
0;∂S
≤ cb±(u, u) k v k21/2;∂S ;

therefore, T ±f ∈ H−1/2(∂S) and

k T ±f k2−1/2;∂S≤ cb±(u, u) = ±c
­
T ±f, f

®
0;∂S

≤ c k T ±f k−1/2;∂Sk f k1/2;∂S ,
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from which

k T ±f k−1/2;∂S≤ c k f k1/2;∂S .

(ii) We take l± to be the operators that associate with v ∈ H1/2(∂S) the

solutions of the corresponding problems (D±), and (4.3) follows from (4.1) and

(4.2).

(iii) If z ∈ F(∂S), then z is the solution of (D±) and we have

­
T ±z, v

®
0;∂S

= ±b±(z, l±v) = 0 ∀z ∈ F(∂S);

hence,

T ±z = 0.

Conversely, if T ±f = 0, then

­
T +f, f

®
0;∂S

= b+(u, u) = 0;

therefore, u ∈ F and f ∈ F(∂S).

(iv) By (4.2), for any f ∈ H1/2(∂S) and z ∈ F(∂S)

­
T ±f, z

®
0;∂S

= ±b±(u, z) = 0,

so T ±f ∈ H−1/2(∂S) for any f ∈ H1/2(∂S). We define operators
f
T ± on the

factor space H1/2(∂S)\F(∂S) by

f
T ±f0 = T ±f, f0 ∈ H1/2(∂S)\F(∂S),

where f is any representative of the class f0. Clearly,
f
T ± are injective and their

ranges coincide with the ranges of T ±, correspondingly. We now show that
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inverse operators
µ f
T ±
¶−1

are continuous. Let f0 ∈ H1/2(∂S)\F(∂S), let f be

representative of f0 such that

hf, zi0;∂S = 0 ∀z ∈ F(∂S),

and let u be the solution of (D+) with boundary data f and q = 0. By Theorem

7, we have

k f0 k2H1/2(∂S)\F(∂S)≤k f k
2
1/2;∂S≤ c k u k21,S+

≤ cb+(u, u) = c
­
T +f, f

®
0;∂S
≤ c k T +f k−1/2;∂Sk f k1/2;∂S .

Now let u be the solution of (D−) with boundary data f and q = 0. By Theorem

10, we have

k f0 k2H1/2(∂S)\F(∂S)≤k f k
2
1/2;∂S≤ c k u k21,S+

≤ cb−(u, u) = −c
­
T −f, f

®
0;∂S
≤ c k T −f k−1/2;∂Sk f k1/2;∂S .

From which it follows that

k f0 kH1/2(∂S)\F(∂S)≤k f k1/2;∂S≤ c k T ±f k−1/2;∂S= c k
f
T ±f k−1/2;∂S .

To prove that the ranges of T ± coincide with H−1/2(∂S), it suffices to establish

that these ranges are dense in H−1/2(∂S). Suppose that this is not true. Then

we can find non-zero Φ in the dual H1/2(∂S)\F(∂S) of H−1/2(∂S) such that

­
T ±f, ϕ

®
0;∂S

= 0 ∀f ∈ H1/2(∂S),

where ϕ is any representative of Φ. Taking f = ϕ, we arrive at

­
T ±ϕ,ϕ

®
0;∂S

= 0;
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therefore, ϕ ∈ F(∂S) and Φ = 0. This contradiction completes the proof.

In the proof of assertion (iv) the following result has been established.

Corollary 15
f
T ± are homeomorphisms from H1/2(∂S)\F(∂S) to H−1/2(∂S).

Let N± be the restriction of T ± to H1/2(∂S).

Theorem 16 The operators N± and N+ − N− are homeomorphisms from

H1/2(∂S) to H−1/2(∂S).

Proof. The bijectivity and continuity ofN± were established in the previous

theorem, while the continuity of the inverse operators (N±)−1 follows from

Banach theorem [72]. The statement for N+ −N− is proved similarly.

4.2 Integral potentials

Theorem 17 V ϕ ∈ H1,ω(S
−) if and only if ϕ ∈ H−1/2(∂S).

Proof. The asymptotic behavior of V ϕ(x) as |x| → ∞ is given by the

formula V ϕ = M∞Φ + σA, where M∞ ∈ M3×3, M∞ = O(ln |x|), Φ =³­
F (1), ϕ

®
0;∂S

,
­
F (2), ϕ

®
0;∂S

,
­
F (3), ϕ

®
0;∂S

´T
(see [44]), and σA ∈ H1,ω(S

−). In

view of the definition of the norm in H1,ω(S
−), it is clear that V ϕ ∈ H1,ω(S

−)

if and only if Φ = 0, which, in turn, is equivalent to ϕ ∈ H−1/2(∂S).

Let
½
∼
z
(i)
¾
be the basis for F obtained from

©
F(i)

ª
by orthonormalization

in L2(∂S). We define a modified single layer potential of density ϕ ∈ C∞(∂S)

by

(Vϕ) (x) = (V ϕ) (x)−
¿
V0ϕ,

∼
z
(i)
À
0;∂S

∼
z
(i)
(x), x ∈ R2,
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and its boundary operator V0 by V0ϕ = (Vϕ)|∂S .

Theorem 18 The operator V0, extended by continuity from C∞(∂S) toH−1/2(∂S),

is a homeomorphism from H−1/2(∂S) to H1/2(∂S).

Proof. If ϕ ∈ C∞(∂S) ∩ H−1/2(∂S), then V ϕ belongs to both H1(S
+)

and H1,ω(S
−); consequently, so does Vϕ. The jump formulae (Theorem 1) yield

N+V0ϕ−N−V0ϕ = (N+−N−)V0ϕ = ϕ, which means that V0 is injective and

V−10 = N+ −N−. (4.4)

Given that γ−Vϕ = V0ϕ ∈ H1/2(∂S), we see that

k V0ϕ k21/2;∂S6k Vϕ k21,ω;S−6 cb−(Vϕ,Vϕ) 6 c [b+(Vϕ,Vϕ) + b−(Vϕ,Vϕ)] .

Since b+(Vϕ,Vϕ) + b−(Vϕ,Vϕ) = h(N+ −N−)V0ϕ,V0ϕi0;∂S = hϕ,V0ϕi0;∂S ,

we conclude that k V0ϕ k21/2;∂S6 c hϕ,V0ϕi0;∂S 6 c k V0ϕ k1/2;∂Sk ϕ k−1/2;∂S ,

or

k V0ϕ k1/2;∂S6 c k ϕ k−1/2;∂S . (4.5)

Hence, V0 can be extended by continuity to H−1/2(∂S) with estimate (4.5)

remains valid on the latter space. The continuity of V−10 follows from (4.4) and

Theorem 16.

To complete the proof, it suffices to show that the range of V0 coincides

with H1/2(∂S). Assuming the opposite, we can find f ∈ H1/2(∂S) that does not

belong to the range of V0 and set ϕ = (N+ −N−)f, V0ϕ = g. Then from (4.4)

it follows that ϕ = (N+ −N−)g, which contradicts Theorem 16.

We now turn to the properties of the double layer potential.
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Since L(∂y)D(i)(y, x) = 0 for x ∈ S+ ∪ S−, x 6= y, we may write the double

layer potential as

(Wψ)(x) =


­
T +D(i)(·, x), ψ(·)

®
0;∂S

ei, x ∈ S−,­
T −D(i)(·, x), ψ(·)

®
0;∂S

ei, x ∈ S+,

where ei are the unit coordinate vectors.

We fix a point x ∈ S− and consider y to be the argument of the functions

below. Let u ∈ H1(S
+) be the (unique) solution of variational problem

b+(u, v) = 0, ∀v ∈
◦
H1(S

+), γ+u = ψ.

Then b+(u,D(i)) =
­
T +ψ,D(i)

®
0;∂S

=
­
ψ, T +D(i)

®
0;∂S

, which leads to V T +ψ =

Wψ in S−. From this we conclude that for smooth functions ψ on ∂S

W− = V0T +, (4.6)

where W± are the operators of the limiting values of the double layer potential

on ∂S from within S± and V0 is the boundary operator defined by V0ϕ =

(V ϕ)|∂S .

We now define a modified double layer potential by

(Wψ) (x) =


(Wψ) (x)−

¿
W+ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)
(x), x ∈ S+,

(Wψ) (x)−
¿
W−ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)
(x), x ∈ S−,

and the operators W± of its limiting values on ∂S by

W±ψ =W±ψ −
¿
W±ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)
.

Theorem 19 W± can be extended by continuity to H1/2(∂S) by setting

W±ψ = V0N∓ψ, ψ ∈ H1/2(∂S),
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and these extensions are homeomorphisms from H1/2(∂S) to H1/2(∂S).

Proof. The equality W−ψ = V0N+ψ is proved for smooth densities ψ by

means of (4.6). The full statement for W− follows from the properties of N+

and V0 established in Theorems 16 and 18.

Using (4.4), we find that

W+ψ = W+ψ −
¿
W+ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)
= −ψ +W−ψ −

¿
W−ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)

= −ψ + V0T +ψ −
¿
V0T +ψ,

∼
z
(i)
À
0;∂S

∼
z
(i)
= −ψ + V0T +ψ = V0T −ψ,

which completes the proof.

4.3 Solvability of boundary integral equations

We now show that (D±) can be reduced to similar problems for the homogeneous

equilibrium equation by means of the area potential.

Let H−1,ω(R2) be the subspace of H−1,ω(R2) consisting of all q such that

hq, zi0 = 0 for all z ∈ F . We can describe H−1,ω(R2) explicitly. If we define

Def u = (∂1u1, ∂2u2, ∂2u1 + ∂1u2)
T , Div u = (∂1u1 + ∂2u3, ∂2u2 + ∂1u3)

T ,

Gradσ = (∂2σ,−∂1σ)T , where σ ∈M1×1,

R =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 ,
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then we can write

Lu =

 Div (RDef u) + αGrad(2u3 − (curl u)3)

(γ + ε)div∇u3 − 2α(2u3 − (curl u)3)

 (4.7)

and

b(u, v) = hRDef u,Def vi0+αh2u3−(curl u)3, 2v3−(curl v)3i0+(γ+ε)h∇u3,∇v3i0.

Theorem 20 H−1,ω(R2) consists of all q = (qT , q3)
T , where q = (q1, q2)

T , of

the form

q = Div P +GradQ, q3 = div V − 2Q, (4.8)

where P ∈ L2(R2) ∩M3×1, Q ∈ L2(R2) ∩M1×1, V ∈ L2(R2) ∩M1×1. Also

there are constants c1 > 0 and c2 > 0 such that

c1 k q k−1,ω6k P k0 + k Q k0 + k V k06 c2 k q k−1,ω .

Proof. Let q ∈ H−1,ω(R2), and let u0 ∈ H1,ω(R2) be the solution of equi-

librium problem in R2 which satisfies ku0k1,ω 6 c kqk−1,ω . We set

−R Def u0 = P ∈ L2(R2) ∩M3×1,

−α(2u3 − (curl u)3) = Q ∈ L2(R2) ∩M1×1,

−(γ + ε)∇u3 = V ∈ L2(R2) ∩M2×1.

From (4.7) it follows that

q = Div P +GradQ, q3 = div V − 2Q.

Also,

k P k20 + k Q k20 + k V k206 cb(u0, u0) 6 c k u0 k21,ω6
1

3
c22 k q k2−1,ω .
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Conversely, let q be of the form (4.8). We claim that q ∈ H−1,ω(R2). Indeed,

for any v ∈ C∞0 (R2)

hq, vi0 = hDiv P +Grad Q, vi0 + hdiv V − 2Q, v3i0 (4.9)

= − hP,Def vi0 − hQ, 2v3 − (curl v)3i0 − hV,∇v3i0 ;

therefore,

|hq, vi0| 6 c−11 (k P k0 + k Q k0 + k V k0) kvk1,ω .

which shows that q ∈ H−1,ω(R2) and

k q k−1,ω6 c−11 (k P k0 + k Q k0 + k V k0) .

Finally,for any z ∈ F , form(4.9) it follows that

hq, zi0 = 0,

consequently, q ∈ H−1,ω(R2).

We choose an L2ω(R2)-orthonormal basis {z(i)}3i=1 for F and introduce a

modified area potential of density ϕ ∈ C∞0 (R2) ∩H−1,ω(R2) by

(Uϕ)(x) = (Uϕ)(x)−
D
Uϕ, z(i)

E
0,ω

z(i)(x), x ∈ R2,

where h·, ·i0,ω is inner product in L2ω(R2). Clearly, Uϕ ∈ H1,ω(R2) and satisfies

b(U(−q), v) = hq, vi0 ∀v ∈ H1,ω(R2). (4.10)

The defined operator U can be extended by continuity from C∞0 (R2)∩H−1,ω(R2)

toH−1,ω(R2). The extended operator U is continuous fromH−1,ω(R2) toH1,ω(Ω).

For any q ∈ H−1,ω(R2), U(−q) is a solution of (4.10).We start with (D+). Let
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u ∈ H1(S
+) be the solution of the problem

b+(u, v) = hq, vi0,S+ ∀v ∈
◦
H1(S

+)

γ+u = f,

where q ∈ H−1(S+) and f ∈ H1/2(∂S) are given. Repeating the proof of

Theorem 20, we see that any q ∈ H−1(S+) can be represented in the form

q = Div P +GradQ, q3 = div V − 2Q, (4.11)

where P ∈ L2(R2)∩M3×1, Q ∈ L2(R2)∩M1×1, V ∈ L2(R2)∩M2×1, and (4.11)

is understood as an equality of distributions in S 0(S+). The norms kqk−1;S+ and

k P k0 + k Q k0 + k V k0 are equivalent. Let

bP (x) =


P (x), x ∈ S+,

0, x ∈ S−,

bQ(x) =


Q(x), x ∈ S+,

0, x ∈ S−,

bV (x) =


V (x), x ∈ S+,

0, x ∈ S−,

and

bq = Div bP +Grad bQ, bq3 = div bV − 2 bQ, (4.12)

where (4.12) is understood as an equality of distributions in S 0(R2). Clearly,

bq = ³bqT , bq3´T ∈ H−1,ω(R2) and bq = q in S 0(S+).

We represent solution in the form

u = U(−bq) + w.
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Then w ∈ H1(S
+) is a solution of the problem

b+(w, v) = 0 ∀v ∈
◦
H1(S

+)

γ+w = f + γ+ (Ubq) .
Since γ+ (Ubq) ∈ H1/2(∂S), we arrive at (D+) for the homogeneous equilibrium

equation. So, without loss of generality, instead of the original problem we may

consider the problem (D+) with q = 0 of finding u ∈ H1(S
+) such that

b+(u, v) = 0 ∀v ∈
◦
H1(S

+) (4.13)

γ+u = f.

The general problem (D−) can similarly be reduced to the problem of finding

u ∈ H1,ω(S
−) such that

b−(u, v) = 0 ∀v ∈
◦

H1,ω(S
−) (4.14)

γ−u = f.

We represent the solution of (4.13) and (4.14) in the form

u = Vϕ+ z in S±, (4.15)

where the density ϕ ∈ H−1/2(∂S) and z ∈ F are unknown. Representation

(4.15) leads to the system of boundary equations

V0ϕ+ z = f. (4.16)

Representing the weak solution of (4.13) and (4.14) in the form

u =Wψ + z in S±, (4.17)
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where ψ ∈ H1/2(∂S) and z ∈ F are unknown, we obtain the following system

of boundary equations

W±ψ + z = f. (4.18)

Theorem 21 Systems (4.16) and (4.18) have unique solutions

{ϕ, z} ∈ H−1/2(∂S)×F(∂S),

{ψ, z} ∈ H1/2(∂S)×F(∂S),

respectively, for any f ∈ H1/2(∂S), and

k ϕ k−1/2;∂S≤ c k f k1/2;∂S , (4.19)

k ψ k1/2;∂S≤ c k f k1/2;∂S .

In this case, (4.15) and (4.17) are the solutions of problems (D±) with q = 0,

and they satisfy the estimates

k u k1,S+≤ c k f k1/2;∂S , (4.20)

k u k1,ω;S−≤ c k f k1/2;∂S

Proof. In both cases we choose z ∈ F(∂S) defined by

z = −
D
f,F(i)

E
0;∂S

F(i).

Then it is obvious that f − z ∈ H1/2(∂S) and

k f − z k1/2;∂S≤ c k f k1/2;∂S . (4.21)

The solvability of systems (4.16) and (4.18), and estimates (4.19), now follow

from the Theorems 18, 19 and (4.21). To prove uniqueness, let {ϕ1, z1} and
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{ψ1, z1} be other solutions of (4.16) and (4.18), respectively. Then, writing

v
ϕ = ϕ− ϕ1,

v
ψ = ψ − ψ1,

v
z = z − z1,

we see that

V0
v
ϕ+

v
z = 0,

W±vψ +
v
z = 0.

Since V0
v
ϕ and

v
z belong to L2-orthogonal subspaces of H1/2(∂S), it follows that

V0
v
ϕ = 0,

v
z = 0;

therefore, we also have
v
ϕ = 0.

The proof that
v
ψ = 0 and

v
z = 0 in the second case is similar.

Since any rigid displacement belongs to both H1(S
+) and H1,ω(S

−), to show

that functions u constructed from (4.15) and (4.17) by means of the solutions

of (4.16) and (4.18) are the solutions of (D±) with q = 0, it is enough to verify

that Vϕ andWψ also belong to both H1(S
+) and H1,ω(S

−) for ϕ ∈ H−1/2(∂S)

and ψ ∈ H1/2(∂S).

In the proof of Theorem 18, we showed that

k Vϕ k21,ω;S−6 c [b+(Vϕ,Vϕ) + b−(Vϕ,Vϕ)] = c hϕ,V0ϕi0;∂S .

The same theorem gives

k Vϕ k1,ω;S−6 c k ϕ k−1/2;∂S . (4.22)

In the interior problem, since V0ϕ ∈ H1/2(∂S), formula (3.23) enables us to
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write

k Vϕ k21;S+6 cb+(Vϕ,Vϕ) 6 c [b+(Vϕ,Vϕ) + b−(Vϕ,Vϕ)] (4.23)

= c hϕ,V0ϕi0;∂S 6 c k ϕ k2−1/2;∂S ;

consequently, Vϕ belongs to both H1(S
+) and H1,ω(S

−) for ϕ ∈ H−1/2(∂S).

Let ψ ∈ H1/2(∂S) be a smooth density. Since W±ψ ∈ H1/2(∂S), it follows

that k Wψ k21;S+6 cb+(Wψ,Wψ) and k Wψ k21,ω;S−6 cb−(Wψ,Wψ); therefore,

k Wψ k21;S+ + k Wψ k21,ω;S−6 c [b+(Wψ,Wψ) + b−(Wψ,Wψ)]

= c
h­
N+W+ψ,W+ψ

®
0;∂S
−
­
N−W−ψ,W−ψ

®
0;∂S

i
= c

h­
T +W+ψ,W+ψ

®
0;∂S
−
­
T −W−ψ,W−ψ

®
0;∂S

i
.

But from Theorem 1, it follows that T +W+ = T −W−, so

k Wψ k21;S+ + k Wψ k21,ω;S−6 −
­
T +W+ψ,ψ

®
0;∂S

6 c k ψ k21/2;∂S . (4.24)

Since this is valid for any ψ ∈ H1/2(∂S), we conclude that Wψ belongs to both

H1(S
+) and H1,ω(S

−).

Estimates (4.20) follow from (4.21)-(4.24).

We now proceed with Neumann problems. First, we show that (N±) can be

reduced to similar problems for the homogeneous equilibrium equation by means

of the area potential. We note that if g ∈ H−1/2(∂S), then
¯̄̄
hg, γ+vi0,∂S

¯̄̄
6

c kgk−1/2;∂S kγ+vk1/2;∂S . But the trace theorem [56] implies that

¯̄̄­
g, γ+v

®
0,∂S

¯̄̄
6 c kgk−1/2;∂S kvk1;S+ .

Consequently, hg, γ−vi0,∂S defines a bounded linear functional on H1(S
+) and

can be written in the form heq+, vi0;S+ with some eq+ ∈ ◦H−1(S+), and let Q+ =
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q+eq+. Then the problem (N+) can be rewritten as follows. We seek u ∈ H1(S
+)

such that

b+(u, v) =
­
Q+, v

®
0,S+

∀v ∈ H1(S
+),

where Q+ ∈
◦

H−1(S+) satisfies

­
Q+, z

®
0,S+

= 0 ∀z ∈ F .

Since the norms on H1(S
+) and H1,ω(S

+) are equivalent, it follows that so are

the norms on their duals
◦
H−1(S+) and

◦
H−1,ω(S+); hence, Q+ ∈ H−1,ω(R2).

Similarly, hg, γ−vi0,∂S defines a bounded linear functional on H1,ω(S
−) and

can be written in the form heq−, vi0;S+ with some eq− ∈ ◦
H−1,ω(S−), and let

Q− = q − eq−. So, the solution u ∈ H1,ω(S
−) of (N−) satisfies

b−(u, v) =
­
Q−, v

®
0,S− ∀v ∈ H1,ω(S

−),

where Q− ∈
◦
H−1,ω(S−) and such that hQ−, zi0,S− = 0 ∀z ∈ F , in other words,

Q− ∈ H−1,ω(R2)

We represent the solution of (N+) in the form

u = w + πS+(UQ+),

where πS+ is the operator of restriction from R2 to S+. Clearly, w ∈ H1(S
+)

satisfies

b+(w, v) =
­
Q+, v

®
0,S+
− b+(πS+(UQ+), v) ∀v ∈ H1(S

+).

We now show that

L(v) =
­
Q+, v

®
0,S+
− b+(πS+(UQ+), v)
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can be regarded as a bounded linear functional on H1/2(∂S). Indeed, let v1, v2 ∈

H1(S
+) be such that γ+v1 = γ+v2. Since v1 − v2 ∈

◦
H1(S

+) ⊂ H1,ω(R2) and

UQ+ ∈ H1,ω(R2) satisfies

b(U(−Q+), v) =
­
Q+, v

®
0
∀v ∈ H1,ω(R2),

it follows that

L(v1 − v2) =
­
Q+, v1 − v2

®
0,S+
− b+(πS+(U(−Q+)), v1 − v2)

=
­
Q+, v1 − v2

®
0,S+
− b((U(−Q+)), v1 − v2)

=
­
Q+, v1 − v2

®
0,S+
−
­
Q+, v1 − v2

®
0,S+

= 0

This means that definition of L(v) on H1/2(∂S) is consistent. If f ∈ H1/2(∂S)

and v = l+f ∈ H1(S
+), then

|L(v)| ≤ c k Q+ k−1k v k1,S+≤ c k Q+ k−1k f k1/2;∂S .

This shows that L(v) can be written in the form hg, vi0,∂S with some g ∈

H−1/2(∂S).

The case of the exterior problem is treated similarly.

We remark that since Q± ∈ H−1,ω(R2), from the definition of L(v) it follows

that

hg, zi0;∂S = 0 ∀z ∈ F(∂S);

that is, the necessary solvability condition for (N±) is satisfied, so instead of

(N±) we may consider without loss of generality their version for the homoge-

neous equilibrium equations.

63



In the problem (N+) with q = 0 we seek u ∈ H1(S
+) such that

b+(u, v) = hg, vi0;∂S ∀v ∈ H1(S
+). (4.25)

In the problem (N−) with q = 0 we seek u ∈ H1,ω(S
−) such that

b−(u, v) = hg, vi0;∂S ∀v ∈ H1,ω(S
−). (4.26)

We represent the solutions of problems (4.25) and (4.26) in the form

u = Vϕ+ z in S±, (4.27)

where z ∈ F(∂S). Representation (4.27) leads to the systems of boundary equa-

tions

T ±V0ϕ = g, (4.28)

where g must satisfy the necessary solvability condition, g ∈ H−1/2(∂S).

If we represent the solutions as

u =Wψ + z in S±, (4.29)

then we arrive at the system of boundary equations

T ±W±ψ = g. (4.30)

Theorem 22 Systems (4.28) and (4.30) have unique solutions ϕ ∈ H−1/2(∂S)

and ψ ∈ H1/2(∂S) for any g ∈ H−1/2(∂S), and

k ϕ k−1/2;∂S≤ c k g k−1/2;∂S , (4.31)

k ψ k1/2;∂S≤ c k g k−1/2;∂S . (4.32)
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In this case, (4.27) and (4.29) are the solutions of problems (N±) with q = 0,

and they satisfy the estimates

k u k1,S+≤ c k g k−1/2;∂S , (4.33)

k u k1,ω;S−≤ c k g k−1/2;∂S .

Proof. The unique solvability of (4.28) and (4.31) follows from properties

of operators N± and V0 established in the Theorems 16 and 18. The unique

solvability of (4.30) and (4.32) follows from properties ofW± given by Theorem

19. Finally, estimates (4.33) are obtained from Theorems 7 and 10.

4.4 Summary

In this chapter we have shown that weak solutions of boundary value problems

of plane Cosserat elasticity can be found in terms of integral potentials with

distributional densities and the corresponding boundary integral equations are

uniquely solvable with respect to these densities. Since it is very hard, if not

impossible, to find the densities analytically they can be approximated numeri-

cally, for example, by means of generalized Fourier series following the procedure

given in details in [39], [45]-[46], [49]-[50]. After the integral densities have been

found the quantitative characteristics of the solution may be used for practical

purposes.

The method introduced in Chapters 3 and 4 is a generalization of the bound-

ary integral equation method in regular (L2) form in Sobolev spaces. It is ap-

plicable to domains with irregular boundaries, for example, domains with cuts.
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This result is extremely important for application itself. However, we further

plan to extend this result to develop a method allowing us to find a solution to

the boundary value problem for a domain weakened by a crack.
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Chapter 5

Stress Distribution Around

a Crack in Plane

Micropolar Elasticity

In the case when a domain is weakened by a crack the nature of the boundary

conditions across the crack region presents formidable difficulties in the bound-

ary integral analysis in a classical setting. Several studies of a crack problem in

two-dimensional Cosserat elasticity have been undertaken in the classical elas-

tic setting using the finite element method [75] and under assumptions of a

simplified theory of plane Cosserat elasticity when displacements and microro-

tations are constrained (couple-stress elasticity) [76-77]. Also there has been

some activity in the area of crack analysis in three-dimensional Cosserat elastic-
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ity [78-81]. The rigorous analysis of the corresponding crack problem in plane

Cosserat elasticity in the general case, to the author’s knowledge, still remains

absent from the literature.

Recently, Chudinovich and Constanda [56] used the boundary integral equa-

tion method in a weak (Sobolev) space setting to obtain the solution for several

crack problems in a theory of bending of classical elastic plates. In spite of the

fact that the methods used are extremely complicated (mathematically) they

seem to be very effective and give very good results for applications. We con-

tinue to study the effectiveness of these methods with a view to the analysis

and solution of the plane problems of Cosserat elasticity.

In this chapter we formulate boundary value problems for both finite and

infinite domains weakened by a crack in the case of plane micropolar elasticity

when displacements and microrotations or stresses and couple stresses are pre-

scribed along two sides of the crack in Sobolev spaces and find the corresponding

weak solutions in terms of integral potentials with distributional densities.

5.1 Basic definitions

First, we consider an infinite domain with a crack modelled by an open arc Γ0.

We assume that Γ0 is a part of a simple closed C2-curve Γ that divides R2 into

interior and exterior domains Ω+ and Ω−. In what follows we denote by the

superscripts + and − the limiting values of functions as x→ Γ from within Ω+

or Ω−.We define Ω = R2\Γ0 and Γ1 = Γ\Γ0. Regarding definition of Ω, we can

68



also use k · k0 and h·, ·i0 for the norm and inner product in L2(Ω).

Let Hm(Γ) be the standard Sobolev space of distributions on Γ, with norm

k · km;Γ . Hm(Γ) and H−m(Γ) are dual with respect to the duality generated

by the inner product h·, ·i0;Γ in L2(Γ). We denote by
◦
Hm(Γ0) the subspace

of all f ∈ Hm(Γ) with a compact support on Γ0, and by Hm(Γ0) the space

of the restrictions to Γ0 of all f ∈ Hm(Γ). Let π0 and π1 be the operators

of restriction from Γ to Γ0 and Γ1. The norm of f ∈ Hm(Γ0) is defined by

k f km;Γ0= infv∈Hm(Γ):π0v=f k v km;Γ . For any m ∈ R,
◦
Hm(Γ0) and H−m(Γ0)

are dual with respect to the duality generated by the inner product h·, ·i0;Γ0 in

L2(Γ0).

Let γ+ and γ− be continuous trace operators from H1(Ω
+) and H1,ω(Ω

−)

to H1/2(Γ). Also, let γ
±
i = πiγ

±, i = 0, 1. For any u defined in Ω (or R2) we

write u = {u+, u−}, where u± = π±u.

Let H1,ω(Ω) be the space of all u = {u+, u−} such that u+ ∈ H1(Ω
+),

u− ∈ H1,ω(Ω
−) and γ+1 u+ = γ−1 u−. The norm in H1,ω(Ω) is defined by

k u k21,ω;Ω=k u+ k21;Ω+ + k u− k21,ω;Ω− .

◦
H1,ω(Ω) is the subspace ofH1,ω(Ω) consisting of all u such that γ

+
0 u+ = γ−0 u− =

0; therefore,
◦
H1,ω(Ω) can be identified with a subspace of H1,ω(R2).

We denote by H−1,ω(Ω) and
◦
H−1,ω(Ω) the duals of

◦
H1,ω(Ω) and H1,ω(Ω)

with respect to the duality induced by h·, ·i0 . The norms in H−1,ω(Ω) and
◦
H−1,ω(Ω) are denoted by k · k−1,ω;Ω and k · k−1,ω .
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5.2 Boundary value problems

We consider two types of boundary values problems: Dirichlet and Neumann

boundary value problems. The first one consists of seeking u ∈ C2(Ω) ∩ C(Ω),

u− ∈ A∗ such that

Lu(x) + q(x) = 0, x ∈ Ω, (D)

u+(x) = f+(x), u−(x) = f−(x), x ∈ Γ0,

where f+ and f− are prescribed on Γ0.

The second problem consists of finding u ∈ C2(Ω) ∩ C1(Ω), u− ∈ A such

that

Lu(x) + q(x) = 0, x ∈ Ω, (N)

(Tu)+(x) = g+(x), (Tu)−(x) = g−(x), x ∈ Γ0,

where g+ and g− are prescribed on Γ0. Asymptotic classes A∗ and A were

introduced in Section 3.1.

The variational formulations are based on the Betti formulae (3.3) and (3.9).

The variational formulation of (D) is as follows. We seek u ∈ H1,ω(Ω) such that

b(u, v) = hq, vi0 ∀v ∈
◦
H1,ω(Ω), (5.1)

γ+0 u+ = f+, γ−0 u− = f−,

where q ∈ H−1,ω(Ω) and f+, f− ∈ H1/2(Γ0) are given.

The variational formulation of (N) is as follows. We seek u ∈ H1,ω(Ω) such

that

b(u, v) = hq, vi0 +
­
g+, γ+0 v+

®
0;Γ0
−
­
g−, γ_0 v−

®
0;Γ0

∀v ∈ H1,ω(Ω), (5.2)
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where q ∈
◦
H−1,ω(Ω) and g+, g− ∈ H1/2(Γ0) are given.

In what follows we write δf = f+ − f− and δg = g+ − g− for the jump of

these quantities across the crack.

Theorem 23 Problem (5.1) has a unique solution u ∈ H1,ω(Ω) for any q ∈

H−1,ω(Ω) and any f+, f− ∈ H1/2(Γ0) such that δf ∈
◦
H1/2(Γ0), and this solu-

tion satisfies the estimate

k u k1,ω;Ω6 c
¡
k q k−1,ω;Ω + k f+ k1/2;Γ0 + k δf k1/2;Γ

¢
. (5.3)

Proof. Assume first that f+ = f− = 0. To prove this assertion it is sufficient

to verify that b(u, v) is coercive on
◦
H1,ω(Ω). In Theorems 4 and 10 it was

shown that any u = {u+, u−} ∈
◦
H1,ω(Ω) satisfies k u+ k21;Ω+6 cb+(u+, u+) and

k u− k21,ω;Ω−6 cb−(u−, u−), where b±(u, v) = 2
R
Ω± E(u, v)dx; consequently,

k u k21,ω;Ω=k u+ k21;Ω+ + k u− k21,ω;Ω−6 c [b+(u+, u+) + b−(u−, u−)] = cb(u, u).

By the Lax-Milgram lemma, (D) with f+ = f− = 0 has a unique solution

u ∈
◦
H1,ω(Ω) and

k u k1,ω6 c k q k−1,ω;Ω . (5.4)

In the full problem (D), we consider an operator l0 of the extension from

Γ0 to Γ, which maps H1/2(Γ0) continuously to H1/2(Γ). Let F+ = l0f
+, and

let F− be the extension of f− to Γ such that π1F+ = π1F
−. We denote by

l± operators of extension from Γ to Ω±, which map H1/2(Γ) continuously to

H1(Ω
+) and H1,ω(Ω

−), respectively. Let w+ = l+F
+ ∈ H1(Ω

+) and w− =

l−F− ∈ H1,ω(Ω
−). Clearly, w = {w+, w−} ∈ H1,ω(Ω). We seek a solution to
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(D) of the form u = u0 + w, where u0 ∈
◦
H1,ω(Ω) satisfies

b(u0, v) = hq, vi0 − b(w, u) ∀v ∈
◦
H1,ω(Ω). (5.5)

Since for all v ∈
◦
H1,ω(Ω)

|b(w, v)| 6 |b+(w+, v+)|+ |b−(w−, v−)| 6 c(k w+ k1;Ω+ + k w− k1,ω;Ω−) k v k1,ω

6 c(k F+ k1/2;Γ + k F− k1/2;Γ) k v k1,ω

6 c(k f+ k1/2;Γ0 + k f− k1/2;Γ0) k v k1,ω

6 c(k f+ k1/2;Γ0 + k δf k1/2;Γ) k v k1,ω,

the right-hand side L(v) = hq, vi0−b(w,u) in (5.5) defines the continuous linear

functional on
◦
H1,ω(Ω), and k L k−1,ω;Ω6 c

¡
k q k−1,ω;Ω + k f+ k1/2;Γ0 + k δf k1/2;Γ

¢
;

therefore (5.5) has a unique solution u0 ∈
◦
H1,ω(Ω), and

k u0 k1,ω;Ω6 c
¡
k q k−1,ω;Ω + k f+ k1/2;Γ0 + k δf k1/2;Γ

¢
.

The theorem now follows from this inequality and the estimate

k w k1,ω;Ω6 c(k f+ k1/2;Γ0 + k δf k1/2;Γ).

We proceed with problem (5.2). It is clear that, in view of the properties of

rigid displacements,

hq, zi0 +
­
g+, z

®
0;Γ0
−
­
g−, z

®
0;Γ0

= 0 ∀z ∈ F (5.6)

is a necessary solvability condition for (N).
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Theorem 24 Problem (5.2) is solvable for any q ∈
◦
H−1,ω(Ω) and any g+, g− ∈

H−1/2(Γ0) such that δg ∈
◦
H−1/2(Γ0) satisfying (5.6). Any two solutions differ

by a rigid displacement, and there is a solution u0 that satisfies the estimate

k u0 k1,ω;Ω6 c
¡
k q k−1,ω + k δg k−1/2;Γ + k g− k−1/2;Γ0

¢
. (5.7)

Proof. We notice that the expression

L(v) =
­
g+, γ+0 v+

®
0;Γ0
−
­
g−, γ_0 v−

®
0;Γ0

=
­
δg, γ+0 v+

®
0;Γ0

+
­
g−, δv

®
0;Γ0

, ∀v ∈ H1,ω(Ω),

where δv = γ+0 v+ − γ
_
0 v−, defines a continuous linear functional on H1,ω(Ω).

Consequently, there is q1 ∈
◦
H−1,ω(Ω) such that L(v) = hq1, vi0 for all v ∈

H1,ω(Ω), and

k q1 k−1,ω6 c
¡
k g− k−1/2;Γ0 + k δg k−1/2;Γ

¢
. (5.8)

We set q+ q1 = eq and write (5.2) in the form b(u, v) = heq, vi0 , v ∈ H1,ω(Ω).We

consider the factor space H1,ω(Ω) = H1,ω(Ω)\F with the norm k U kH1,ω(Ω)=

infu∈H1,ω(Ω),u∈U k u k1,ω;Ω and define on it a bilinear form B(U, V ) and a linear

functional L(V ) by

B(U, V ) = b(u, v), L(V ) = L(v) = heq, vi0 , (5.9)

where u and v are arbitrary representatives of the classes U, V ∈ H1,ω(Ω). Since

b(z, z) = 0 and heq, zi0 = 0 for any z ∈ F , definitions (5.9) are consistent.
We now consider the problem of finding U ∈ H1,ω(Ω) such that

B(U,V ) = L(V ), ∀V ∈ H1,ω(Ω). (5.10)
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We claim that (5.10) has a unique solution. First, from (5.8) it follows that

|L(V )| 6 c
¡
k q k−1,ω + k δg k−1/2;Γ + k g− k−1/2;Γ0

¢
k v k1,ω;Ω v ∈ V,

which gives |L(V )| 6 c
¡
k q k−1,ω + k δg k−1/2;Γ + k g− k−1/2;Γ0

¢
k V kH1,ω(Ω);

this means that L(V ) is continuous. The continuity of B is clear. In every class

U we choose a representative u such that
­
γ+0 u+, z

®
0;Γ0

= 0 for all z ∈ F . By

Theorems 7 and 10,

k u− k21,ω;Ω−6 c
£
b−(u−, u−)+ k γ−1 u− k20;Γ1

¤
6 c

£
b−(u−, u−)+ k γ+1 u+ k20;Γ1

¤
6 c

h
b−(u−, u−)+ k u+ k21;Ω+

i
and k u+ k21;Ω+6 cb+(u+, u+), where k · k0;Γ1 is the norm in L2(Γ1). Hence,

k U kH1,ω(Ω)6k u k21,ω;Ω6 B(U, V ), which proves that B is coercive on H1,ω(Ω).

By the Lax-Milgram lemma, (5.10) has a unique solution U ∈ H1,ω(Ω) and

k U kH1,ω(Ω)6 c
¡
k q k−1,ω + k δg k−1/2;Γ + k g− k−1/2;Γ0

¢
.

Clearly, any element u in U is a solution of (5.2). If u1 and u2 are two solutions

of (5.2), then w = u1 − u2 satisfies

b(w,w) = 0, w ∈ H1,ω(Ω).

We conclude that w ∈ F . To complete the proof, we choose u0 ∈ U such that

k u0 k1,ω;Ω=k U kH1,ω(Ω) .

Theorem 25 H−1,ω(Ω) consists of all q = (qT , q3)
T , where q = (q1, q2)

T , of

the form

q = Div P +GradQ, q3 = div V − 2Q, (5.11)
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where P ∈ L2(R2) ∩M3×1, Q ∈ L2(R2) ∩M1×1, V ∈ L2(R2) ∩M2×1, Div

and Grad were introduced in Section 4.3. Also there are constants c1 > 0 and

c2 > 0 such that

c1 k q k−1,ω;Ω6k P k0 + k Q k0 + k V k06 c2 k q k−1,ω;Ω .

The proof of this theorem repeats the proof of Theorem 20.

We now show that (D) and (N) can be reduced to similar problems for the

homogeneous equilibrium equation by means of the area potential.

We start with (D). By Theorem 25, any q ∈ H−1,ω(Ω) can be represented in

the form (5.11), where the equality is understood in S 0(Ω). Let bq ∈ H−1,ω(R2)
be defined by the same formula (5.11), in which the equality is understood

in S 0(R2). We represent solution of (D) in the form u = U (−bq) + w. Since

b(U (−bq) , v) = hbq, vi0 = hq, vi0 for v ∈ ◦H1,ω(Ω), we conclude that w ∈ H1,ω(Ω)

satisfies

b(w, v) = 0 ∀v ∈
◦
H1,ω(Ω)

γ+0 w+ = f+ − γ+0 (U (−bq))+ , γ−0 w− = f− − γ−0 (U (−bq))− .
Let γ0 be the trace operator defined on H1,ω(Ω) by γ0v = {γ+0 v+, γ+0 v+ −

γ−0 v−}. It is clear that γ0 is continuous from H1,ω(Ω) to H1/2(Γ0)×
◦
H1/2(Γ0).

Consequently, without loss of generality, in what follows we consider the problem

(D) that consists in finding u ∈ H1,ω(Ω) such that

b(u, v) = 0 ∀v ∈
◦
H1,ω(Ω), γ0u = {f+, δf}. (5.12)
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In problem (N) we seek u ∈ H1,ω(Ω) such that

b(u, v) = heq, vi0 , ∀v ∈ H1,ω(Ω), (5.13)

where eq ∈ ◦H−1,ω(Ω) was defined in Theorem 24 and satisfies

heq, zi0 = 0 ∀z ∈ F . (5.14)

Since H1,ω(R2) is a subspace of H1,ω(Ω), we may consider eq which belongs to
H−1,ω(R2); in addition, from (5.14) it follows that eq ∈ H−1,ω(R2).We represent
the solution of (5.13) in the form u = Ueq + w, then (5.13) becomes

b(w, v) = heq, vi0 − b(Ueq, v) ∀v ∈ H1,ω(Ω).

Lemma 26 For all eq ∈ ◦H−1,ω(Ω) satisfying (5.14), the expression
L(γ0v) = heq, vi0 − b(Ueq, v), v ∈ H1,ω(Ω), (5.15)

defines a continuous linear functional on H1/2(Γ0)×
◦
H1/2(Γ0); therefore, L(γ0v)

can be written in the form

heq, vi0 − b(Ueq, v) = ­δg, γ+0 v+®0;Γ0 + ­g−, δv®0;Γ0 , v ∈ H1,ω(Ω),

where {δg, g−} ∈
◦
H−1/2(Γ0)×H−1/2(Γ0).

Proof. Let v1, v2 ∈ H1,ω(Ω) such that γ0v1 = γ0v2. The difference v1 −

v2 ∈
◦
H1,ω(Ω) ⊂ H1,ω(R2), and since b(Ueq, v1 − v2) = heq, v1 − v2i0 , we find

that L(γ0v1) = L(γ0v2).This means that definition (5.15) of L on H1/2(Γ0) ×
◦
H1/2(Γ0) is consistent. Let {f+, δf} ∈ H1/2(Γ0) ×

◦
H1/2(Γ0). Repeating the

proof of Theorem 23, we choose v ∈ H1,ω(Ω) so that γ0v = {f+, δf} and
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k v k1,ω;Ω6 c(k f+ k1/2;Γ0 + k δf k1/2;Γ). We have

¯̄
L
¡
{f+, δf}

¢¯̄
6 c k eq k−1,ωk v k1,ω;Ω6 c k eq k−1,ω (k f+ k1/2;Γ0 + k δf k1/2;Γ),

which shows that L is continuous on H1/2(Γ0) ×
◦
H1/2(Γ0); since

◦
H−1/2(Γ0) ×

H−1/2(Γ0) is the dual of H1/2(Γ0)×
◦
H1/2(Γ0), this completes the proof.

Lemma 26 implies that, without loss of generality, we may consider (N) only

for the homogeneous equilibrium equation; that is, we seek u ∈ H1,ω(Ω) such

that

b(u, v) =
­
δg, γ+0 v+

®
0;Γ0

+
­
g−, δv

®
0;Γ0

∀v ∈ H1,ω(Ω). (5.16)

We remark that (5.16) is solvable only if

hz, δgi0;Γ0 = 0 ∀z ∈ F . (5.17)

5.3 Poincaré—Steklov operator for the crack prob-

lem

For F = {f+, δf} ∈ H1/2(Γ0) ×
◦
H1/2(Γ0) and G = {δg, g−} ∈

◦
H−1/2(Γ0) ×

H−1/2(Γ0) we use the notation

[F,G]0;Γ0 =
­
f+, δg

®
0;Γ0

+
­
δf, g−

®
0;Γ0

.

We define the Poincaré-Steklov operator T on H1/2(Γ0)×
◦
H1/2(Γ0) by

[T F,Ψ]0;Γ0 = b(u, v) ∀Ψ ∈ H1/2(Γ0)×
◦
H1/2(Γ0), (5.18)

F ∈ H1/2(Γ0)×
◦
H1/2(Γ0),
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where u is the solution of (5.12) and v is any element in H1,ω(Ω) such that

γ0v = Ψ = {ψ+, δψ}. The definition is independent of the choice of v. In

particular, we may take v = lΨ, where l is an operator of extension from Γ0 to

Ω which maps H1/2(Γ0)×
◦
H1/2(Γ0) continuously to H1,ω(Ω).

We identify F with the subspace of H1/2(Γ0) ×
◦
H1/2(Γ0) consisting of all

Z = {z, 0}, z ∈ F . We also introduce the spaces

bH1/2(Γ0) = {F ∈ H1/2(Γ0)×
◦
H1/2(Γ0) :

­
f+, z

®
0;Γ0

= 0 ∀z ∈ F},

bH−1/2(Γ0) = {G ∈
◦
H−1/2(Γ0)×H−1/2(Γ0) : hδg, zi0;Γ0 = 0 ∀z ∈ F},

Theorem 27 (i) T : H1/2(Γ0) ×
◦
H1/2(Γ0) →

◦
H−1/2(Γ0) ×H−1/2(Γ0) is self-

adjoint and continuous.

(ii) The kernel of T coincides with F .

(iii) The range of T coincides with bH−1/2(Γ0).
(iv) The restriction N of T to bH1/2(Γ0) is a homeomorphism from bH1/2(Γ0)

to bH−1/2(Γ0).
Proof. (i) If u is the solution of (5.12) and v = lΨ, then, by the definition

of T , for F,Ψ ∈ H1/2(Γ0)×
◦
H1/2(Γ0)

|[T F,Ψ]|2 = |b(u, v)|2 ≤ b(u, u)b(v, v) 6 cb(u, u) k Ψ k2
H1/2(Γ0)×

◦
H1/2(Γ0)

.

Consequently, T F ∈
◦
H−1/2(Γ0)×H−1/2(Γ0) and

k T f k2◦
H−1/2(Γ0)×H−1/2(Γ0)

≤ cb(u, u) = c [T F,F ]0;Γ0 (5.19)

≤ c k T f k ◦
H−1/2(Γ0)×H−1/2(Γ0)

k F k
H1/2(Γ0)×

◦
H1/2(Γ0)

.
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From (5.19) it follows that

k T F k ◦
H−1/2(Γ0)×H−1/2(Γ0)

≤ c k F k
H1/2(Γ0)×

◦
H1/2(Γ0)

, (5.20)

which proves the continuity of T . The definition of T shows that it is self-adjoint

in the sense that

[T F,Ψ]0;Γ0 = [Ψ, T F ]0;Γ0 ∀F,Ψ ∈ H1/2(Γ0)×
◦
H1/2(Γ0).

(ii) It is clear that T Z = 0 for Z ∈ F . If F ∈ H1/2(Γ0)×
◦
H1/2(Γ0), T F = 0

and u is the solution of (5.12), then b(u, u) = 0; therefore, u ∈ F , which implies

that F = γ0u ∈ F . This also proves that N is injective.

(iii) By (5.20), the range of T is a subset of bH−1/2(Γ0). Let {ez(i)}3i=1 be an
L2(Γ0)-orthonormal basis for F . From Theorems 7 and 10 it follows that any

u ∈ H1,ω(Ω) satisfies

k u k21,ω;Ω6 c

"
b(u, u) +

3X
i=1

D
γ+0 u+, ez(i)E2

0;Γ0

#
. (5.21)

Let F ∈ bH1/2(Γ0). By the trace theorem [56] and (5.21),

k F k2
H1/2(Γ0)×

◦
H1/2(Γ0)

6 c k u k21,ω;Ω6 cb(u, u) = c [T F,F ]0;Γ0 ;

hence,

k F k
H1/2(Γ0)×

◦
H1/2(Γ0)

6 c k T F k ◦
H−1/2(Γ0)×H−1/2(Γ0)

,

which shows thatN−1 is continuous. If the range of T is not dense in bH−1/2(Γ0),
then there is a nonzero bF in the dual

·
H1/2(Γ0)×

◦
H1/2(Γ0)

¸
\F of bH−1/2(Γ0)

such that hT F,Ψi0;Γ0 = 0 for all representatives F of the class bF and all

Ψ ∈ H1/2(Γ0) ×
◦
H1/2(Γ0). Taking F ∈ bH1/2(Γ0) and Ψ = F, we find that
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[T F,F ]0;Γ0 = 0; therefore, F ∈ F and bF = 0. This contradiction proves the

third statement.

(iv) This assertion follows from preceding ones.

5.4 Boundary equations

We introduce single and double layer potentials on the crack defined by

(V ϕ)(x) =

Z
Γ0

D(x, y)ϕ(y) ds(y),

(Wϕ)(x) =

Z
Γ0

P (x, y)ϕ(y) ds(y),

Let
◦
H−1/2(Γ0) be the subspace of

◦
H−1/2(Γ0) of all g such that hg, zi0;Γ0 = 0

for all z ∈ F .

We define the modified single layer potential V of density ϕ ∈
◦
H−1/2(Γ0) by

(Vϕ)(x) = (V ϕ)(x)−
¿
(V ϕ)0,

∼
z
(i)
À
0;Γ0

∼
z
(i)
(x), x ∈ R2,

where V ϕ is the single layer potential, and V0 is the boundary operator de-

fined by (V ϕ)0 = γ±0 π
±V ϕ. Let V0ϕ be the operator defined on

◦
H−1/2(Γ0) by

ϕ→ (Vϕ)0 = γ±0 π
±Vϕ. From the results established in Section 4.2 V0 is contin-

uous from
◦
H−1/2(Γ0) to the subspace H1/2(Γ0) of all f+ ∈ H1/2(Γ0) such that

hf+, zi0;Γ0 = 0 for all z ∈ F . Let eV be the continuous operator from ◦
H−1/2(Γ0)

to bH1/2(Γ0) defined by eVϕ = {V0ϕ, 0}.
Theorem 28 The operator V0 is a homeomorphism from

◦
H−1/2(Γ0) toH1/2(Γ0).

Proof. The continuity of V0 is proved in Theorem 18. From the jump

formula for the normal boundary stresses and couple stresses of the single layer
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potential (Theorem 1) it follows that the first component of N eVϕ ∈ bH−1/2(Γ0)
is ϕ. By Theorem 27,

k ϕ k−1/2;Γ06k N eVϕ k ◦H−1/2(Γ0)×H−1/2(Γ0)
6 c k eVϕ k

H1/2(Γ0)×
◦
H1/2(Γ0)

= c k V0ϕ k1/2;Γ0 ,

which shows that V−10 is continuous. Next, we claim that the range of V0 is

H1/2(Γ0). Let f+ ∈ H1/2(Γ0) and F = {f+, 0} ∈ bH1/2(Γ0), and let u ∈ H1,ω(Ω)

be the solution of (5.12) with δf = 0.We take G = {δg, g−} = NF ∈ bH−1/2(Γ0)
and ϕ = δg ∈

◦
H−1/2(Γ0). Then w = u−V0ϕ satisfies γ0w = {f+−V0ϕ, 0} = Ψ.

By the jump formula, the first component ofNΨ is zero; consequently, b(w,w) =

[NΨ,Ψ]0;Γ0 = 0. This means that w ∈ F , so γ+0 w+ is a rigid displacement on

Γ0. Since γ+0 w+ = f+ − V0ϕ ∈ H1/2(Γ0), we have f+ = V0ϕ, and the assertion

is proved.

Also we introduce the modified double layer potential W of density ψ ∈
◦
H1/2(Γ0)

(Wψ)(x) = (Wψ)(x)−
¿
π0W

+ψ,
∼
z
(i)
À
0;Γ0

∼
z
(i)
(x), x ∈ Ω,

Clearly, if ψ ∈
◦
H1/2(Γ0), then Wψ ∈ H1,ω(Ω) and k Wψ k1,ω;Ω6 c k ψ k1/2;Γ .

Hence, for ψ ∈
◦
H1/2(Γ0) we can define the operators W± of the limiting values

of the modified double layer potential on Γ from within Ω±, by writing W±ψ =

γ±π±Wψ. It is obvious thatW± are continuous from
◦
H1/2(Γ0) to H1/2(Γ) and

satisfy the jump formula

W+ψ −W−ψ = −ψ. (5.22)
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For ψ ∈
◦
H1/2(Γ0), we now define the operator W0 of the limiting values of the

modified double layer potential on Γ0 from within Ω, by writing

W0ψ =
©
π0W+ψ, π0(W+ψ −W−ψ)

ª
=
©
π0W+ψ,−ψ

ª
.

Clearly, W0 is continuous from
◦
H1/2(Γ0) to bH1/2(Γ0).

Let eG = NW0. From the jump formula for the normal boundary stresses and

couple stresses of the double layer potential it follows that the first component

of eGψ is zero for any ψ ∈
◦
H1/2(Γ0); therefore, we can write eGψ = {0,Gψ} for

all ψ ∈
◦
H1/2(Γ0).

Theorem 29 G is a homeomorphism from
◦
H1/2(Γ0) to H−1/2(Γ0).

Proof. The continuity of G follows from the properties of W0 and N . We

claim that G−1 is continuous. Let ψ ∈
◦
H1/2(Γ0). By (5.22) and the trace

theorem [56],

k ψ k21/2;Γ=k W+ψ −W−ψ k21/2;Γ6 c k Wψ k21,ω;Ω

6 cb(Wψ,Wψ) = −c hGψ,ψi0;Γ0

6 c k Gψ k−1/2;Γ0k ψ k1/2;Γ;

consequently, k ψ k1/2;Γ6 c k Gψ k−1/2;Γ0 . If the range of G is not dense in

H−1/2(Γ0), then there is a nonzero ψ in the dual
◦
H1/2(Γ0) such that hψ,Gξi0;Γ0 =

0 for all ξ ∈
◦
H1/2(Γ0). We take ξ = ψ and obtain hψ,Gψi0;Γ0 = 0, which means

that Wψ ∈ F ; hence, ψ = W−ψ −W+ψ = 0. This contradiction completes

proof.

82



We represent the solution of (5.12) in the form

u = (Vϕ)Ω +Wψ + z, (5.23)

where ϕ ∈
◦
H−1/2(Γ0) and ψ ∈

◦
H1/2(Γ0) are unknown densities, (Vϕ)Ω is the

restriction of Vϕ to Ω and

z =

¿
f+ − π0W

+ψ,
∼
z
(i)
À
0;Γ0

∼
z
(i)
.

Representation (5.23) leads to the system of boundary equations

©
V0ϕ+ π0W

+ψ + γ+0 z,−ψ
ª
= {f+, δf}. (5.24)

Theorem 30 For any {f+, δf} ∈ H1/2(Γ0) ×
◦
H1/2(Γ0), system (5.24) has a

unique solution

{ϕ,ψ} ∈
◦
H−1/2(Γ0)×

◦
H1/2(Γ0)

respectively, and

k {ϕ,ψ} k ◦
H−1/2(Γ0)×

◦
H1/2(Γ0)

≤ c k {f+, δf} k
H1/2(Γ0)×

◦
H1/2(Γ0)

.

In this case, (5.23) is the solution of problem (5.12).

Proof. From (5.24) ψ = −δf ∈
◦
H1/2(Γ0), consequently the equation for ϕ

becomes

V0ϕ = f+ + π0W
+δf −

¿
f+ + π0W

+δf,
∼
z
(i)
À
0;Γ0

∼
z
(i)
. (5.25)

The right-hand side in (5.25) belongs to H1/2(Γ0). By Theorem 28, (5.25) has

a unique solution ϕ ∈
◦
H1/2(Γ0) and

k ϕ k−1/2;Γ6 c
¡
k f+ k1/2;Γ0 + k π0W+δf k1/2;Γ0

¢
6 c

¡
k f+ k1/2;Γ0 + k δf k1/2;Γ

¢
= c k {f+, δf} k

H1/2(Γ0)×
◦
H1/2(Γ0)

.
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We represent the solution of problem (5.16) in the form

u = (Vϕ)Ω +Wψ + z, (5.26)

where ϕ ∈
◦
H−1/2(Γ0) and ψ ∈

◦
H1/2(Γ0) are unknown densities, and z ∈ F is

arbitrary. Representation (5.26) leads to the systems of boundary equations

N eVϕ+ eGψ = {δg, g−}. (5.27)

Theorem 31 For any {δg, g−} ∈
◦
H−1/2(Γ0) × H−1/2(Γ0) satisfying (5.17),

system (5.27) has a unique solution {ϕ,ψ} ∈
◦
H1/2(Γ0)×

◦
H1/2(Γ0) and

k {ϕ,ψ} k ◦
H−1/2(Γ0)×

◦
H1/2(Γ0)

≤ c k {δg, g−} k ◦
H−1/2(Γ0)×H−1/2(Γ0)

.

In this case, (5.26) is the solution of problem (5.16).

Proof. Comparing first components on both sides of (5.27), we see that

ϕ = δg; therefore, (5.27) takes form

Gψ = g− −
³
N eVδg´− , (5.28)

where
³
N eVδg´− is the second component of N eVδg. By Theorems 27, 28 and

29, (5.28) has a unique solution ψ ∈
◦
H1/2(Γ0) and

k ψ k1/2;Γ6 c
¡
k g− k−1/2;Γ0 + k δg k−1/2;Γ

¢
.
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5.5 The boundary equations for a finite domain

Let ∂S be a simple closed C2-curve that divides R2 into interior and exterior

domains S+ and S−. We assume that S+ contains inside an auxiliary simple

closed C2-curve Γ = Γ0∪Γ1, where Γ0 is an open arc modeling crack. We write

Ω = S+\Γ0. Let Ω+ be the interior domain bounded by Γ, and let Ω− = S+\Ω+.

If u is defined in Ω, then we denote by u+ and u− its restrictions to Ω+ and

Ω−, respectively, and write u = {u+, u−}. The spaces H1(Ω
±) are introduced

in the usual way. The traces of the elements u± ∈ H1(Ω
±) on Γ are denoted by

γ+u+ and γ−u−.

We denote by πi, i = 0, 1, the operators of restrictions from Γ to Γi and

write γ±i = πiγ
±, i = 0, 1. The space H1(Ω) consists of all u = {u+, u−} defined

in Ω and such that u+ ∈ H1(Ω
+), u− ∈ H1(Ω

−) and γ+1 u+ = γ−1 u−. The norm

in H1(Ω) is defined by k u k21;Ω=k u+ k21;Ω+ + k u− k21;Ω− . Let γ0 be the trace

operator that acts on u ∈ H1(Ω) according to the formula γ0u = {γ+0 u+, γ+0 u+−

γ−0 u−}. Clearly, γ0 is continuous from H1(Ω) to H1/2(Γ0)×
◦
H1/2(Γ0). The trace

of u ∈ H1(Ω) on ∂S is denoted by γ+∂Su.
◦
H1(Ω) is the subspace of H1(Ω)

consisting of all u ∈ H1(Ω) such that γ0u = {0, 0} and γ+∂Su = 0.

Let bΓ = Γ0∪∂S. In what follows we make use of spacesH1/2(bΓ) = H1/2(Γ0)×
◦
H1/2(Γ0)×H1/2(∂S) of all bF = {F, f∂S}, where F = {f+, δf}, and H−1/2(bΓ) =
◦
H−1/2(Γ0)×H−1/2(Γ0)×H−1/2(∂S) of all bG = {G, g∂S}, where G = {δg, g−}.
It is clear that these spaces are dual with respect to the duality

h bF, bGi
0;Γ

=

[F,G]0;Γ0 + hf∂S , g∂Si0;∂S , where [F,G]0;Γ0 is the form defined in Section 5.3.

This duality is generated by the inner product [·, ·]0;Γ in L2(bΓ) = L2(Γ0) ×
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L2(Γ0)× L2(∂S).

We consider the following boundary value problems.

Given bF = {F, f∂S} ∈ H1/2(bΓ), we seek u ∈ H1(Ω) such that

bΩ(u, v) = 0 ∀v ∈
◦
H1(Ω), γ0u = F, γ+∂Su = f∂S , (5.29)

where bΩ(u, v) =
R
Ω
E(u, v)dx.

Given bG = {G, g∂S} ∈ H−1/2(bΓ), we seek u ∈ H1(Ω) such that

bΩ(u, v) = [G, γ0v]0;Γ0 + hg∂S , γ∂Svi0;∂S , ∀v ∈ H1(Ω). (5.30)

Clearly, (5.30) is solvable only if

hδg, zi0;Γ0 + hg∂S , zi0;∂S = 0, ∀z ∈ F . (5.31)

In what follows we assume that (5.31) holds. The proofs of the unique solvabil-

ity of (5.29) and (5.30) repeat those of Theorems 23 and 24 with the obvious

changes, so we omit them.

We introduce the Poincaré-Steklov operator bT by
hbT bF, bΨi

0;Γ
= bΩ(u, v),

where bF, bΨ ∈ H1/2(bΓ) are arbitrary, u is a solution of (6.1) and v ∈ H1(Ω) is

any extension of bΨ to Ω. Let F(bΓ) be the space of all bZ = {Z, z}, Z = {z, 0},

where z ∈ F is arbitrary. We define the spaces

H1/2(bΓ) =

½bF ∈ H1/2(bΓ) : h bF, bZi
0;Γ
= 0 ∀ bZ ∈ F(bΓ)¾ ,

H−1/2(bΓ) =

½bG ∈ H−1/2(bΓ) : h bG, bZi
0;Γ
= 0 ∀ bZ ∈ F(bΓ)¾ .

Theorem 32 (i) bT is self-adjoint and continuous from H1/2(bΓ) to H−1/2(bΓ).
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(ii) The kernel of bT coincides with F(bΓ).
(iii) The range of bT coincides with H−1/2(bΓ).
(iv) The restriction bN of bT from H1/2(bΓ) to H1/2(bΓ) is a homeomorphism

from H1/2(bΓ) to H−1/2(bΓ).
The proof of this theorem is identical to that of Theorem 27.

Let
◦
H−1/2(bΓ) be the subspace of ◦H−1/2(Γ0)×H−1/2(∂S) of all ϕ = {ϕ0, ϕ∂S}

such that hϕ0, zi0;Γ0 + hϕ∂S , zi0;∂S = 0 for all z ∈ F . bH1/2(bΓ) is the subspace
of H1/2(Γ0)×H1/2(∂S) consisting of all f = {f+, f∂S} such that hf+, zi0;Γ0 +

hf∂S , zi0;∂S = 0 for all z ∈ F .

We define the single layer potential of density ϕ ∈
◦
H−1/2(bΓ) by

(V ϕ)(x) = (V0ϕ0)(x) + (V∂Sϕ∂S)(x), x ∈ R2,

where V0ϕ0 and V∂Sϕ∂S are the single layer potentials defined on Γ0 and ∂S,

respectively. Let
nbZ(i)o3

i=1
be an L2(bΓ)-orthonormal basis for F(bΓ), where

bZ(i) = ©
Z(i), z(i)

ª
and Z(i) = {z(i), 0}. The rigid displacements z(i) satisfy

(5.29) with boundary data F = Z(i), f∂S = z(i). We introduce the modified

single layer potential

(Vϕ)(x) = (V ϕ)(x)−
·D
(V ϕ)0 , z

(i)
E
0;Γ0

+
D
(V ϕ)∂S , z

(i)
E
0;∂S

¸
z(i)(x), x ∈ R2,

where (V ϕ)0 and (V ϕ)∂S are the restrictions of V ϕ to Γ0 and ∂S. The corre-

sponding boundary operator VΓ is defined by VΓϕ =
©
γ+0 (Vϕ)+ , γ+∂S (Vϕ)Ω

ª
,

where (Vϕ)± are the restrictions of Vϕ to Ω±. We also introduce a boundary

operator bV by writing bVϕ = ©γ+0 (Vϕ)+ , 0, γ+∂S (Vϕ)Ω
ª
.
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Theorem 33 VΓ is a homeomorphism from
◦
H−1/2(bΓ) to bH1/2(bΓ).

Proof. From the properties of the single layer potential (Section 4.2) it

follows that (Vϕ)Ω ∈ H1(Ω), (Vϕ)S− ∈ H1,ω(S
−), and

k(Vϕ)Ωk
2
1;Ω 6 cbΩ((Vϕ)Ω , (Vϕ)Ω). (5.32)

Here (Vϕ)S− is the restriction of Vϕ to S−. The properties of the Poincaré-

Steklov operator T − are given in Section 4.1. For any ϕ = {ϕ0, ϕ∂S} ∈
◦
H−1/2(bΓ), the jump formula for normal boundary stresses and couple stresses
can be written as

ϕ0 =
³ bN bVϕ´

1
, ϕ∂S =

³ bN bVϕ´
3
− T −

¡
VΓϕ

¢
2
, (5.33)

where
³ bN bVϕ´

i
are the components of bN bVϕ and ¡VΓϕ¢α are the components

of VΓϕ. From (5.33) it follows that

bΩ((Vϕ)Ω , (Vϕ)Ω) + bS−((Vϕ)S− , (Vϕ)S−) (5.34)

=
­¡
VΓϕ

¢
1
, ϕ0

®
0;Γ0

+
­¡
VΓϕ

¢
2
, ϕ∂S

®
0;∂S

.

We claim that VΓ is continuous. Let ϕ = {ϕ0, ϕ∂S} ∈
◦
H−1/2(bΓ). By the trace

theorem [56],
°°VΓϕ°°H1/2(Γ0)×H1/2(∂S)

6 c k(Vϕ)Ωk1;Ω . By (5.32) and (5.34),

°°VΓϕ°°2H1/2(Γ0)×H1/2(∂S)
6 c

h­¡
VΓϕ

¢
1
, ϕ0

®
0;Γ0

+
­¡
VΓϕ

¢
2
, ϕ∂S

®
0;∂S

i
6 c

°°VΓϕ°°H1/2(Γ0)×H1/2(∂S)
kϕk ◦

H−1/2(Γ0)×H−1/2(∂S)
;

consequently,
°°VΓϕ°°H1/2(Γ0)×H1/2(∂S)

6 c kϕk ◦
H−1/2(Γ0)×H−1/2(∂S)

, which proves

the continuity of VΓ.
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If VΓϕ = 0, then bVϕ = 0 also, and (5.33) gives that ϕ = 0; therefore, VΓ is
injective. By (5.33) and Theorem 32,

kϕk ◦
H−1/2(Γ0)×H−1/2(∂S)

6 c
°°VΓϕ°°H1/2(Γ0)×H1/2(∂S)

,

which means that V−1
Γ
is continuous.

To complete the proof, it suffices to show that the range of VΓ is bH1/2(bΓ).
Let f = {f+, f∂S} ∈ bH1/2(bΓ) and F = {f+, 0} ∈ H1/2(Γ0)×

◦
H1/2(Γ0), and let

bF = {F, f∂S} ∈ H1/2(bΓ). We denote by uΩ ∈ H1(Ω) the solution of (5.29) and

by uS− ∈ H1,ω(S
−) the solution of problem

bS−(uS− , vS−) = 0 ∀vS− ∈
◦
H1,ω(S

−), γ−S−uS− = f∂S .

Let bT bV = bG = {δg, g−, g+∂S}, and let T −f∂S = g−∂S . We take ϕ0 = δg, ϕ∂S =

g+∂S − g−∂S and ϕ = {ϕ0, ϕ∂S}, and write wΩ = uΩ − (Vϕ)Ω ∈ H1(Ω) and

wS− = uS− − (Vϕ)S− ∈ H1,ω(S
−). Then

γ0wΩ = {f+ − γ+0 (Vϕ)+, 0},

γ+∂SwΩ = f∂S − γ+∂S(Vϕ)Ω,

γ−∂Sw∂S = f∂S − γ−∂S(Vϕ)S− = f∂S − γ+∂S(Vϕ)Ω.

From the jump formulae and the definition of ϕ it follows that

bΩ(wΩ, wΩ) + bS−(wS− , wS−)

=
D
g+∂S −

³ bN bVϕ´
3
, f∂S − γ+∂S(Vϕ)Ω

E
0;∂S

−
­
g−∂S − T −

¡
VΓϕ

¢
2
, f∂S − γ−∂S(Vϕ)S−

®
0;∂S

=
­
g+∂S − g−∂S − ϕ∂S , f∂S − γ+∂S(Vϕ)Ω

®
0;∂S

= 0;
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hence, bΨ = {f+− γ+0 (Vϕ)+, 0, f∂S − γ+∂S(Vϕ)Ω} ∈ F(bΓ). SincebΨ ∈ H1/2(bΓ), we
conclude that bΨ = 0, which completes the proof.
Let H1/2(∂S) be the subspace of H1/2(∂S) consisting of all f such that

hf, zi0;∂S = 0 for all z ∈ F . H−1/2(∂S) is the subspace of H−1/2(∂S) of all g

such that hg, zi0;∂S = 0 for all z ∈ F .

We define the double layer potential of density ψ = {ψ0, ψ∂S} ∈
◦
H1/2(Γ0)×

H1/2(∂S) by

(Wψ)(x) = (W0ψ0)(x) + (W∂Sψ∂S)(x), x ∈ Ω, x ∈ S−,

where W0ψ0 and W∂Sψ∂S are the double layer potentials defined on Γ0 and ∂S,

respectively. We introduce the modified double layer potential

(Wψ)(x) = (Wψ)(x)−
·D
(Wψ)

+
0 , z(i)

E
0;Γ0

+
D
(Wψ)

+
∂S , z

(i)
E
0;∂S

¸
z(i)(x),

x ∈ Ω, x ∈ S−,

where (Wψ)+0 and (Wψ)+∂S are the limiting values of Wψ on Γ0 and ∂S from

within Ω+ and S+.We also define the limiting valuesW± of the modified double

layer potential on Γ from within Ω±, by writing W±ψ = γ±π±Wψ. The corre-

sponding boundary operator cWψ =
©
π0 (W+ψ) , π0(W+ψ −W−ψ), γ+∂S (Wψ)Ω

ª
=©

γ+0 π
+ (Wψ) ,−ψ0, γ+∂S (Wψ)Ω

ª
.

Let bG = bNcW. From the jump formula for the normal boundary stresses and

couple stresses of the double layer potential it follows that the first component

of bGψ is zero for any ψ ∈
◦
H1/2(Γ0) ×H1/2(∂S); therefore, we can write bGψ =

{0,
³bGψ´− ,³bGψ´

∂S
} for all ψ ∈

◦
H1/2(Γ0)×H1/2(∂S).We also define boundary

operator GΓψ = {
³bGψ´− ,³bGψ´

∂S
} from

◦
H1/2(Γ0)×H1/2(∂S) to H−1/2(Γ0)×
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H−1/2(∂S).

Theorem 34 GΓ is a homeomorphism from
◦
H1/2(Γ0)×H1/2(∂S) to H−1/2(Γ0)×

H−1/2(∂S).

Proof. From the properties of the double layer potential (Section 4.2) it

follows that (Wψ)Ω ∈ H1(Ω), (Wψ)S− ∈ H1,ω(S
−), and

k(Wψ)Ωk
2
1;Ω 6 cbΩ((Wψ)Ω , (Wψ)Ω). (5.35)

Here (Wψ)S− is the restriction of Wψ to S−. For any ψ = {ψ0, ψ∂S} ∈
◦
H1/2(Γ0)×H1/2(∂S), the jump formula for double layer potential can be written

as

ψ0 = −
³cWψ

´
2
, ψ∂S = −

³³cWψ
´
3
− γ−∂S (Wψ)S−

´
, (5.36)

where
³cWψ

´
i
are the components of cWψ. From (5.36) it follows that

bΩ((Wψ)Ω , (Wψ)Ω) + bS−((Wψ)S− , (Wψ)S−) (5.37)

= −
­¡
GΓψ

¢
1
, ψ0

®
0;Γ0
−
­¡
GΓψ

¢
2
, ψ∂S

®
0;∂S

.

We claim that GΓ is continuous. Let ψ = {ψ0, ψ∂S} ∈
◦
H1/2(Γ0)×H1/2(∂S).

By Theorem 32, (5.35) and (5.37),

°°GΓψ°°2H−1/2(Γ0)×H−1/2(∂S) 6 c
°°°cWψ

°°°2
H−1/2(Γ)

6 c k(Wψ)Ωk
2
1;Ω

6 c {bΩ((Wψ)Ω , (Wψ)Ω) + bS−((Wψ)S− , (Wψ)S−)}

6 c
n¯̄̄­¡

GΓψ
¢
1
, ψ0

®
0;Γ0

¯̄̄
+
¯̄̄­¡
GΓψ

¢
2
, ψ∂S

®
0;∂S

¯̄̄o
6 c

°°GΓψ°°H−1/2(Γ0)×H1/2(∂S)
kψk ◦

H1/2(Γ0)×H1/2(∂S)
;
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consequently,
°°GΓψ°°H−1/2(Γ0)×H1/2(∂S)

6 c kψk ◦
H1/2(Γ0)×H1/2(∂S)

, which proves

the continuity of GΓ.

If GΓψ = 0, then from the properties of bN , cWψ = 0 also. Noting that

T −γ−∂S (Wψ)S− =
¡
GΓψ

¢
2
= 0, from (5.36) we obtain that ψ = 0; therefore, GΓ

is injective. By (5.36) and Theorem 32,

kψk ◦
H1/2(Γ0)×H1/2(∂S)

6 c
°°GΓψ°°H−1/2(Γ0)×H1/2(∂S)

,

which means that G−1
Γ
is continuous.

To complete the proof, it suffices to verify that the range of GΓ is dense

in H−1/2(Γ0) × H−1/2(∂S). If the range of GΓ is not dense in H−1/2(Γ0) ×

H−1/2(∂S), then there is a nonzero ψ in the dual
◦
H1/2(Γ0)×H1/2(∂S) such that­

ψ0,
¡
GΓβ

¢
1

®
0;Γ0

+
­
ψ∂S ,

¡
GΓβ

¢
2

®
0;∂S

= 0 for all β ∈
◦
H1/2(Γ0)×H1/2(∂S). We

take β = ψ and obtain
­
ψ0,

¡
GΓψ

¢
1

®
0;Γ0

+
­
ψ∂S ,

¡
GΓψ

¢
2

®
0;∂S

=
h
ψ, bGψi

0;Γ
= 0,

which means that cWψ ∈ F(bΓ); hence, ψ0 = − (π0W+ψ − π0W−ψ) = 0, ψ∂S =

−
¡
γ+∂S (Wψ)Ω − γ−∂S (Wψ)S−

¢
= 0. This contradiction completes the proof.

We represent the solution of (5.29) in the form

u = (Vϕ)Ω +W0ψ + z, (5.38)

where ϕ ∈
◦
H−1/2(bΓ), W0ψ is the double layer potential of density ψ ∈

◦
H1/2(Γ0),

z =

·D
f+ + γ+0 (W0δf)+, z

(i)
E
0;Γ
+
D
f∂S + γ+∂S(W0δf)Ω, z

(i)
E
0;∂S

¸
z(i),

(5.39)

and (W0δf)+ and (W0δf)Ω are the restrictions of W0δf to Ω+ and Ω. This

representation yields the system of boundary equations

bVϕ+ ©γ+0 (W0ψ)+,−ψ, γ+∂S(W0ψ)Ω
ª
= bF − {z, 0, z}. (5.40)
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Theorem 35 For any bF ∈ H1/2(bΓ), system (5.40) has a unique solution {ϕ,ψ} ∈
◦
H−1/2(bΓ)× ◦

H1/2(Γ0), which satisfies the estimate

k {ϕ,ψ} k ◦
H−1/2(Γ0)×H−1/2(∂S)×

◦
H1/2(Γ0)

6 c k bF kH1/2(Γ)
.

In this case, u defined by (5.38) is a solution of (5.29).

Proof. We take ψ = −δf and reduce (5.40) to the system

VΓϕ = {f
+, f∂S}+

©
γ+0 (W0δf)+, γ

+
∂S(W0δf)Ω

ª
− {z, z}. (5.41)

By (5.39), the right-hand side in (5.41) belongs to bH1/2(bΓ). The assertion now
follows from Theorem 33.

We represent the solution of (5.30) in the form

u = VΓ0ϕ+ (Wψ)Ω + z, (5.42)

where VΓ0ϕ is the modified single layer potential of densityϕ ∈
◦
H−1/2(Γ0), ϕ

and ψ ∈
◦
H1/2(Γ0) × H1/2(∂S) are unknown densities, and z ∈ F is arbitrary.

This representation yields the system of boundary equations

bN ©
γ+0 (VΓ0ϕ), 0, γ+∂S(VΓ0ϕ)Ω

ª
+ bGψ = bG. (5.43)

Theorem 36 For any bG ∈ H−1/2(bΓ), system (5.43) has a unique solution

{ϕ,ψ} ∈
◦
H−1/2(Γ0)×

◦
H1/2(Γ0)×H1/2(∂S), which satisfies the estimate

k {ϕ,ψ} k ◦
H−1/2(Γ0)×

◦
H1/2(Γ0)×H1/2(∂S)

6 c k bG kH−1/2(Γ) .
In this case, u defined by (5.42) is a solution of (5.30)
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Proof. From the jump formula for normal boundary stresses and couple

stresses of the single layer potential (Theorem 1) the first component of

bN ©
γ+0 (VΓ0ϕ), 0, γ+∂S(VΓ0ϕ)Ω

ª
is equal to ϕ. Comparing the first components on the both sides of (5.43) we

see that ϕ = δg. The assertion now follows from Theorems 32, 33 and 34.

Remark 37 In this chapter we have assumed that Γ and ∂S are C2-curves. It

can be shown that all the above results remain valid for piecewise-smooth C0,1-

curves that consist of finitely many C2-arcs [82].

5.6 Summary

In this chapter we have formulated Dirichlet and Neumann boundary value

problems for a domain weakened by a crack in Sobolev spaces and showed that

these problems are well-posed and depend continuously (in a suitable Sobolev-

type norm) on the data. This result is important for practical purposes, since

it validates further applications of numerical procedures. We have also shown

that the corresponding weak solutions can be represented in terms of modified

integral potentials with unknown distributional densities, which facilitate the

construction of appropriate boundary element methods for finding these distri-

butional densities and solving the problem numerically.
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Chapter 6

Example: Stress

Distribution Around a

Crack in a Human Bone

In Chapter 5 we have performed the rigorous analysis of Neumann boundary

value problem for a domain weakened by a crack in Cosserat continuum and con-

structed the corresponding solution in the form of modified integral potentials

with unknown distributional densities. Unfortunately, it is impossible to find

these densities analytically, consequently, we have to find a numerical technique

which will allow us to obtain a numerical approximation of the solution. One of

the most effective approaches to achieve this goal is to use the boundary element

method. This method has been developed by Brebbia [83] and has become very
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popular among researches in different areas including fracture mechanics (see,

for example, [84] for references on applications of the boundary element method

in science and engineering).

The boundary element method has originated from works on classical in-

tegral equations and finite elements and incorporates advantages of both tech-

niques. On one hand, it allows to reduce the dimension of a problem by one and

defines domains extending to infinity with a high degree of accuracy exactly as

the boundary integral equation method. On the other hand, the boundary ele-

ment method does not require the differentiation of shape functions, which is the

major requirement of the finite element method when we have to find stresses,

but allows us to differentiate the matrix of fundamental solutions instead, which

makes the calculation of stresses easier and more accurate.

In this chapter we use the boundary element method to find the solution for

an infinite domain weakened by a crack in Cosserat continuum, when stresses

and couple stresses are prescribed along both sides of the crack (Neumann

boundary value problem), and discuss its convergence. To illustrated the ef-

fectiveness of the method for applications we consider a crack in a human bone

which is modelled under assumptions of plane micropolar elasticity. We find the

numerical solution for stresses around the crack and show that the solution may

be reduced to the classical one if we set all micropolar elastic constants equal to

zero. We come to the conclusion that there is up to a 26 percent difference in

quantitative characteristics of the stress around a crack in the micropolar case

in comparison with the model when microstructure is ignored (classical case
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[85]).

6.1 Boundary element method

Consider problem (5.16). In Theorem 30, we have shown that the solution to

problem (5.16) can be represented in the form (5.26), i.e. u = (Vϕ)Ω+Wψ+ z,

and the corresponding boundary integral equations are uniquely solvable with

respect to distributional densities ϕ and ψ. As we stated above, these densities

cannot be found analytically. To approximate them numerically we use the

boundary element method [86] which makes use of the following classical result.

Lemma 38 (Somigliana formula) Using classical techniques, we can prove that

if u ∈ H1,ω(Ω) is a solution of Lu = 0 in Ω, then

Z
Γ0

[D(x, y)δ (T (∂y)u(y))− P (x, y)δu(y)] ds(y) =
1

2
δu(x), x ∈ Γ0, (6.1)

where δ (T (∂y)u(y)) denotes the jump of T (∂y)u(y) on the crack.

From Theorem 31, the density of the modified single layer potential is ϕ =

δ (T (∂y)u(y)) = δg. We need to find the density of the modified double layer

potential ψ = −δu. To achieve this goal we divide Γ0 into n elements Γ(k)0 , each

of which possesses one node ξ(k) located in the middle of the element. The

values of δg and δu are constant throughout the element and correspond to the

values at the node δg(ξ(k)) and δu(ξ(k)). Then (6.1) becomes

nX
k=1

Z
Γ
(k)
0

h
D(x, y)δg(ξ(k))− P (x, y)δu(ξ(k))

i
ds(y) =

1

2
δu(x), x ∈ Γ0.
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Placing x sequentially at all nodes, we obtain the linear algebraic system of

equations

nX
k=1

ÃZ
Γ
(k)
0

D(ξ(i), y) ds(y)

!
δg(ξ(k)) (6.2)

−
nX

k=1

ÃZ
Γ
(k)
0

P (ξ(i), y) ds(y)

!
δu(ξ(k))

=
1

2
δu(ξ(i)), i, k = 1, n

with respect to δu(ξ(i)).

We note that
R
Γ
(k)
0

D(ξ(i), y) ds(y) is defined for any i and k [44].

Solving (6.2) we construct the approximation to ψ. If we introduce the shape

function Φk(x) by

Φk(x) =


1, x ∈ Γ(k)0

0, x ∈ Γ0\Γ(k)0

then the approximated densities are ϕ(n)(x) =
Pn

k=1Φk(x)δg(ξ
(k)) and ψ(n)(x) =

−
Pn

k=1Φk(x)δu(ξ
(k)) and the approximate solution is u(n) = (Vϕ(n))Ω+Wψ(n)+

z, where z is arbitrary. Now we have to prove that approximate numerical so-

lution u(n) will converge to exact analytical solution u when n→∞.

Theorem 39 u(n) → u as n→∞.

Proof. Since we consider Neumann problem, rigid displacement terms are

not determined. Consequently, it is enough to show that V ϕ(n) → V ϕ and
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Wψ(n) →Wψ as n→∞. Consider V ϕ(n). For x ∈ Ω

¯̄̄
V ϕ(x)− V ϕ(n)(x)

¯̄̄
6

3X
i=1

¯̄̄̄
¯
Z
Γ0

D(i)(x, y)ϕ(y) ds(y)−
nX

k=1

ÃZ
Γ
(k)
0

D(i)(x, y) ds(y)

!
ϕ(ξ(k))

¯̄̄̄
¯

=
3X
i=1

¯̄̄̄
¯
nX

k=1

Z
Γ
(k)
0

h
D(i)(x, y)ϕ(y)−D(i)(x, y)ϕ(ξ(k))

i
ds(y)

¯̄̄̄
¯

=
3X
i=1

¯̄̄̄
¯
nX

k=1

Z
Γ
(k)
0

D(i)(x, y)
h
ϕ(y)− ϕ(ξ(k))

i
ds(y)

¯̄̄̄
¯

6
3X
i=1

nX
k=1

k D(i)(x, ·) k1,ω;Ω
¯̄̄
ϕ(y)− ϕ(ξ(k))

¯̄̄
hk

where hk is the length of the kth element assuming the elements are all equal

hk = h = L
n , where L is the length of Γ0, and

¯̄̄
ϕ(y)− ϕ(ξ(k))

¯̄̄
6
P3

i=1

¯̄̄
ϕi(y)− ϕi(ξ

(k))
¯̄̄
=P3

i=1

P2
α=1

¯̄̄
∂αϕi(ξ

(k))
¯̄̄
h+O(h2).Denote byM1 = maxα=1,2;i=1,3;k=1,n

¯̄̄
∂αϕi(ξ

(k))
¯̄̄
.

Since k D(i)(x, ·) k1,ω;Ω are uniformly bounded [40], that is, there exists M2 > 0

such that k D(i)(x, ·) k1,ω;Ω6M2 for any x ∈ Ω we may write

¯̄̄
V ϕ(x)− V ϕ(n)(x)

¯̄̄
6 18M1M2L

2

n
→ 0 as n→∞.

Repeating the proof for Wψ(n), we conclude that u(n) → u.

6.2 Example

As an example, we consider a longitudinal crack inside a bone in the case when

constant normal stretching pressure of magnitude p is applied on both sides of

the crack. If we consider a typical transversal cross-section of the bone and

assume that this cross-section is small enough then the deformation of each

cross-section under the prescribed load will be the same throughout the length
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of the bone and will develop in the plane of the cross-section. Consequently,

such deformations may be considered under assumptions of plane micropolar

elasticity. Such a model is not an idealization that lies far from reality, as it

may seem first, but, as shown, for example, in [65-67], can describe actual cracks

in bones very closely, since orthopedic biomechanics usually deals with cracks

of a very small size.

We model a crack as an open arc of the circle given by equations: x1 =

a cos θ, x2 = a sin θ, θ ∈ (0, π/6) (Figure 6.1). By changing the radius a of

the circle we will change the length of the crack. We are interested in how

the normal traction distributes at a distance from the crack tip along the line:

x1 = a, x2 < 0. Clearly, this problem can be considered as Neumann problem

described above.

Elastic constants for a human bone have been measured in [63] and take the

following values: α = 4000 MPa, γ = 193.6 N, ε = 3047 N, λ = 5332 GPa,

µ = 4000 MPa. In our example we construct solutions for cracks of lengths

equal to 0.26 mm, 0.52 mm, 0.75 mm, and 10 mm to show good agreement

of our results with the results presented in the experimental study by Lakes

and Nakamura [75] performed on human bone cracks of same lengths. We also

assume that normal stretching pressure p to take a value of 2 MPa.

Let the distance from the tip of the crack be ρ = |x2|. The numerical solution

for boundary tractions and moments is found to be accurate to exact solution

to five decimal place for n = 52 elements of Γ0 (see Table 6.1).
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Distance ρ (mm) 0.1 0.5 0.7 1

Tn (MPa) 0.983256 0.108643 0.082351 0.057282

n = 4 Ts (MPa) 1.175489 0.538926 0.213505 0.756437

M3 (N/m) 162.5682 91.24553 79.45362 70.64523

Tn (MPa) 0.569361 0.068735 0.052678 0.032536

n = 10 Ts (MPa) 0.634936 0.264282 0.091475 0.045343

M3 (N/m) 84.24634 49.86301 44.26856 36.09357

Tn (MPa) 0.427549 0.061862 0.039754 0.021830

n = 30 Ts (MPa) 0.506874 0.184756 0.075982 0.033547

M3 (N/m) 69.24764 34.25447 30.25879 24.62579

Tn (MPa) 0.398462 0.053918 0.030028 0.015244

n = 50 Ts (MPa) 0.454906 0.108063 0.061039 0.026688

M3 (N/m) 61.11549 29.69127 22.59611 15.80458

Tn (MPa) 0.398456 0.053910 0.030021 0.015239

n = 52 Ts (MPa) 0.454899 0.108054 0.061033 0.026678

M3 (N/m) 61.11542 29.69119 22.59604 15.80451

Table 6.1: Approximate solution for crack of 0.52 mm length: Tn — normal

traction, Ts — tangential traction, M3 — moment about x3-axis
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Figure 6.1: Crack in x1x2-plane. Length: 0.52 mm (a = 1 mm)

Let us now compare the results for the normal traction in the micropolar

case with the results of the classical theory for cracks of different lengths. This

comparison is given in Tables 6.2-6.5 and Figures 6.2-6.5. In Figure 6.2-6.5

there is a graphical representation of the distribution for the normal traction at

a distance from the lower crack tip for the cracks of lengths equal to 0.26 mm,

0.52 mm, 0.75 mm and 10 mm correspondingly. The bold curve characterizes

the stress distribution in the micropolar case while the classical case is plotted

by the normal curve. Tables 6.2-6.5 reflect values of the normal traction at

representative points at a distance from the lower crack tip in both micropolar

and classical cases. The distance between the first point, in which we measure

the normal traction, and the tip of the crack is equal to the one tenth of the
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radius of the circle denoted by a. It can be observed that the normal traction

is significantly higher in the vicinity of the crack tip in the micropolar case

in comparison with the case when microstructure is ignored (classical theory).

Depending on the crack length there can be up to a 26 % difference in the vicinity

of the crack tip between the two cases. The negative sign of the difference in

the value of the traction at representative points indicates that the value of the

traction obtained under assumptions of classical elasticity is lower than that of

the traction given by micropolar elasticity. As we move away from the tip of

the crack the traction in the micropolar case decays faster than in the classical

case so that approximately at a distance of one length of the crack the values

of the normal traction become equal to each other. Further, the traction in

the micropolar case becomes significantly lower than in the classical case and it

may be observed that at a distance of approximately three crack lengths from

the tip of the crack the effect of the crack on stresses is negligible according to

Saint-Venant’s principle.

Let lt =
q

γ
µ and lb =

q
γ+ε
4µ be the corresponding characteristic lengths of

the micropolar material for torsion and bending [75]. If we take the values for

elastic constants γ, ε, µ for a human bone as measured in [75], we obtain that

lt and lb are equal to 0.22 mm and 0.45 mm in our case, respectively. Lakes

and Nakamura [75] have shown experimentally that the difference in tractions

between the micropolar case and the classical case is the largest when the crack

length is comparable to the characteristic lengths.

As it may be seen from Tables 6.2-6.5 and Figures 6.2-6.5, the normal trac-
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tion in the vicinity of the crack tip is significantly higher in comparison with

that in the classical case for crack lengths of 0.26 mm, 0,.52 mm, 0.75 mm cor-

respondingly. In the case when the length of the crack is equal to 0.75 mm we

can observe that the normal traction in the vicinity of the crack tip is 26.8%

higher under assumptions of Cosserat elasticity in comparison with the classical

case. If the linear size of the crack is 10 mm, which is much longer than the

corresponding characteristic lengths (see Table 6.5 and Figure 6.5) the tractions

in the vicinity of the crack tip differ only by 13%. The fact that this difference

is significantly lower than in the case of the shorter cracks may be explained

by effect of the size of the crack opening, which is of the order of 10−5 for this

crack in comparison with that of 10−6 in the other cases.

When it comes to the consideration of stresses at a distance from the crack

tip, we can conclude that there is almost no difference in values of the tractions

at the distance of one crack length from the tip and further for the crack which

length is 10 mm for both micropolar and classical theories (Table 6.5 and Figure

6.5). However, for the crack lengths comparable to the characteristic lengths,

this difference is still drastic and may be up to 19.8 % as in the case when the

length of the crack is 0.26 mm (Table 6.2). At a distance from the crack tip

stresses decay faster in the micropolar case.

The numbers presented in Tables 6.2-6.5 are in good agreement with ex-

periments performed by Lakes and Nakamura [75]. However, they cannot be

compared directly because in [75] a crack is considered as a squashed ellipse ac-

cording to provisions of fracture mechanics. In our study, we represent a crack
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Point (mm) ρ (mm) Micropolar Tn (MPa) Classical Tn (MPa) Difference (%)

(0.5,-0.05) 0.05 0.408419 0.331982 -18.7

(0.5,-0.15) 0.15 0.114308 0.111620 -2.35

(0.5,-0.25) 0.25 0.049057 0.058788 19.8

(0.5,-0.3) 0.3 0.034377 0.045874 33.4

(0.5,-0.35) 0.35 0.024762 0.036911 49

Table 6.2: Approximate solution for normal traction. Length of the crack: 0.26

mm (a = 0.5 mm)

by a piece of a plane curve so the shape of the crack is likely to have an effect

on stress distribution in the vicinity and at a distance of the crack tip. Inves-

tigations relating to the effect of a crack shape on stress distribution is very

challenging, complicated and, therefore, deserve to be performed in a separate

work lying beyond the scope of this thesis.

Remark 40 Recall that the traction on the boundary, hence, the corresponding

displacements on the boundary depend on the outward normal to the boundary.

When we move along one side of the crack, the normal is continuous at every

point, consequently, the corresponding first derivatives of displacements on the

crack sides are also continuous. However, when we change the sides of the

crack, the normal has a jump, which generates a jump in the first derivatives of

displacements. Therefore, the edges of the open crack have sharp corners.
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Figure 6.2: Normal traction on the edge of the crack. Length: 0.26 mm.

(a) — micropolar, (b) — classical

Point (mm) ρ (mm) Micropolar Tn (MPa) Classical Tn (MPa) Difference (%)

(1,-0.1) 0.1 0.398456 0.303602 -23.8

(1,-0.5) 0.5 0.053910 0.053702 -0.4

(1,-0.7) 0.7 0.030021 0.033719 12.3

(1,-0.8) 0.8 0.023434 0.027777 18.5

(1,-1) 1 0.015239 0.019865 30.3

Table 6.3: Approximate solution for normal traction. Length of the crack: 0.52

mm (a = 1 mm)
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Figure 6.3: Normal traction on the edge of the crack. Length: 0.52 mm.

(a) — micropolar, (b) — classical

Point (mm) ρ (mm) Micropolar Tn (MPa) Classical Tn (MPa) Difference (%)

(1.42,-0.142) 0.142 0.394972 0.289178 -26.8

(1.42,-0.71) 0.71 0.056083 0.051118 -8.8

(1.42,-0.994) 0.994 0.032047 0.032097 0.1

(1.42,-1.136) 1.136 0.025338 0.026442 4.35

(1.42,-1.42) 1.42 0.016889 0.018912 12

Table 6.4: Approximate solution for normal traction. Length of the crack: 0.75

mm (a = 1.42 mm)
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Figure 6.4: Normal traction on the edge of the crack. Length: 0.75 mm.

(a) — micropolar, (b) — classical

Point (mm) ρ (mm) Micropolar Tn (MPa) Classical Tn (MPa) Difference (%)

(20,-2) 2 0.208185 0.180806 -13

(20,-10) 10 0.032258 0.031698 -1.7

(20,-14) 14 0.019928 0.019907 -0.1

(20,-16) 16 0.016324 0.016405 0.5

(20,-20) 20 0.011579 0.011744 1.4

Table 6.5: Approximate solution for normal traction. Length of the crack: 10

mm (a = 20 mm)
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Figure 6.5: Normal traction on the edge of the crack. Length: 10 mm.

(a) — micropolar, (b) — classical
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6.3 Summary

In this chapter we have illustrated the method introduced in Chapter 5 using

the example of a crack in a human bone. We came to the conclusion that

material microstructure does have a significant effect on the stress distribution

around a crack in a human bone. The effect of material microstructure depends

on the length of the crack and discovers the strongest influence in the vicinity

of the crack tip. Results obtained in this chapter using the boundary element

method are consistent with those obtained experimentally in [4-5] and by the

finite element method in [75].
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Chapter 7

Conclusions and

Recommendations for

Future Work

7.1 Conclusions

The present work has been devoted to investigation of the boundary value prob-

lems of plane Cosserat elasticity. In spite of the fact that the corresponding

three-dimensional, plane and anti-plane problems have been carefully investi-

gated for domains with smooth boundaries, the rigorous treatment of boundary

value problems for domains with irregular boundaries remained practically un-

touched until today. At the same time investigations of boundary value problems
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for domains with irregular boundaries play a significant role in the analysis since

they allow us to construct solutions for stresses and displacements in the vicinity

of cracks and notches, which is very useful for applications in various fields of

engineering science.

This dissertation is confined to the consideration of the statical problems of

plane micropolar elasticity with emphasis on the crack problem. As a result of

this work the following results have been obtained:

1. The interior and exterior Dirichlet and Neumann boundary value prob-

lems of plane micropolar elasticity have been formulated in Sobolev spaces,

shown to be well-posed and rigorously solved by means of the boundary in-

tegral equation method. The uniqueness and existence theorems have been

established and the exact analytical solutions have been obtained in the form

of the corresponding integral potentials with distributional densities. Similar

results have also been obtained for an infinite domain weakened by a crack.

2. As an example intended to demonstrate an important application of the

proposed theory, the problem of a crack in a human bone has been consid-

ered under assumptions of micropolar elasticity. An efficient numerical scheme,

based on the boundary element method has been developed, using which we

have constructed the approximate solution allowing us to make the following

important conclusions valuable for applications:

a. The normal traction in the vicinity of the crack tip is higher under

assumptions of the Cosserat elasticity than in the classical case. The results

can differ by up to 26 percent. This points to strong evidence that the material
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microstructure does have a significant effect especially in the case of domains

with reduced boundary smoothness.

b. The difference between results of two theories (micropolar and classical)

vary when we consider cracks of different sizes. For smaller cracks the difference

in the value of stresses is greater but for larger cracks it is almost negligible. The

fact that there can be up to 26 percent difference in normal traction between

the micropolar and classical case and that this difference depends on the size

of a crack is consistent with the results obtained by Savin [87] and Mindlin

[15] for stress-concentration around holes in micropolar media, by Weitsman

[88] and Hartranft [89] for stress concentration around inclusions in micropolar

media and by Potapenko [46] for values of the warping function in the problem

of torsion of cylindrical beams with significant microstructure. In addition, our

results confirm the data relating to the stress distribution around a crack in

Cosserat continuum obtained experimentally by Lakes and Nakamura [75].

7.2 Future Work

In this dissertation the main boundary value problems of plane micropolar elas-

ticity for domains with irregular boundaries or domains containing cracks have

been rigorously solved by means of the boundary integral equation method in

the weak (Sobolev space) setting. In order to demonstrate the importance of

the work for applications in mechanics we have also illustrated the effectiveness

of the theory on the example of a crack in a human bone. We have shown that
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the unknown density, the most important part of the analytical solution in the

form of an integral potential can be successfully approximated using boundary

element method since it cannot be found analytically.

The methodology, analytical and numerical technique introduced in this

work can be extended for the solution of a wide class of problems of micropo-

lar and classical elasticity dealing with structures, three-dimensional and two-

dimensional boundary value problems.

First of all, as a direct continuation of the work presented in this disser-

tation, the boundary element method can be applied for the derivation of a

numerical solution of interior and exterior boundary value problems of plane

micropolar elasticity. In spite of the fact that we have obtained an analytical

solution to both interior and exterior Dirichlet and Neumann problems in the

form of integral potentials in this work, we found it necessary to postpone the

direct derivation of the unknown density for future work. The reason is, that

in this dissertation we wanted to make an emphasis more on applications of the

technique to the crack problem.

Second, we can formulate mixed boundary value problems of plane microp-

olar elasticity, i.e. when we assume that we impose Dirichlet conditions for

two displacements and Neumann condition for microrotation. This particular

problem then can be extended to the consideration of the crack problem which

is reduced to the problem of displacement discontinuity and has a number of

engineering applications in geomechanics.

As a third step, it would be possible and at the same time important, to for-
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mulate boundary value problems of anti-plane micropolar elasticity in Sobolev

spaces. It has been shown in [45] that the problem of torsion of cylindrical

beams with significant microstructure, introduced as a generalization of the

Saint-Venant assumptions for the case of a classical beam [90], may be reduced

to the interior Neumann boundary value problem of anti-plane micropolar elas-

ticity. The major boundary value problems of anti-plane Cosserat elasticity for

domains with twice differentiable boundary have been formulated and solved

by means of boundary integral equation method in [45]. However, as we can

see from the current work, material microstructure has the strongest effect on

overall body’s deformation when the domain has some irregularities. After for-

mulating boundary value problems of anti-plane micropolar elasticity in Sobolev

spaces we can extend the result from [45] to the problem of torsion of micropolar

beams of more complicated cross-sections (for example, rectangular or square

cross-section).

Another direction of the future work could be an incorporation of ther-

moelastic components into the model. Kupradze [38] has formulated fundamen-

tal boundary value problems of three-dimensional thermoelasticity and shown

that they can be solved in a rigorous manner using the boundary integral equa-

tion method. Same technique has been applied to the investigation of two-

dimensional problems of micropolar thermoelasticity: plane in [91] and anti-

plane in [48]. This theory can be used to formulate the problem of thermoelastic

deformations in a weak setting which will allow us to consider domains of more

general form. In addition, the method can be applied for analysis of thermoelas-
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tic deformations of plates and shells.

In any case, this is the objective of the future work, as a result of which,

we will definitely obtain a deeper understanding of the effects of material mi-

crostructure on deformations, stress concentration factors and elastic behavior

of granular materials that will be very helpful for applications in the area of

structural mechanics and modern day advanced composite materials.

In general, the approach presented in this thesis, is very new and not tradi-

tional for classical mechanics. At the same time it is very elegant, effective and

has some certain advantages over the classical technique which has been in use

in mechanics and engineering so far. It allows to find analytical solutions for

a whole class of problems which could be worked out using only approximate

numerical methods, such as finite element method, before. The boundary ele-

ment method employed in this thesis for the consideration of a crack problem

in plane micropolar elasticity allows to obtain numerical solutions for a various

class of problems based on the exact analytical one, which is certainly a huge

advantage over the finite element method.
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