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Abstract

IFSM, Wavelets and Fractal-Wavelets:
Three Methods of Approximation

This thesis deals with representations and approximations of functions using iterated
function systems (IFS), wavelets and fractal-wavelets.

IF'S use self-similarity to approximate a function by contracted and translated copies of
itself. Results covered include the Banach Contraction Mapping Principle, the complete-
ness of IFS space and the Collage Theorem. IFS on grey-level maps (IFSM) are defined to
generalize IFS to real-valued functions.

Wavelets are discussed, using multiresolution analysis. Stronger convergence results are
shown to hold for wavelet expansions than for Fourier expansions. An application of the
Mallat algorithm to compression is given.

Fractal-wavelets use the fact that given an orthonormal basis of L?(R), the mapping
which sends a function in L?(R) to its sequence of basis coefficients is an isometry. An
identification is made between IFSM and operators on coeflicients. Local IFS on wavelet

coefficients are defined and shown to induce [FSM-type operators.
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Introduction

From the beginning, mathematicians have been interested in nature. Indeed, it has been
nature in many instances which either inspired or provided ideas for such fields as algebra,
geometry, and more recently fractal geometry [9, 10, 33].

Since the discovery of the Cantor set over a century ago, mathematicians have been
working with fractals. It is the invention of the computer, in the mid twentieth century,
which has enabled us to calculate the fractal objects which would have required years of
human computation time previously. However, this same machine has demanded constant
input from mathematicians in terms of new theory and algorithms. One such example is
the focus of this thesis.

Each day, vast quantities of data are generated by the millions of computers worldwide,
data which could never have been generated before the advent of the computer. The need
to store this information is critical and has required mathematicians to develop methods
of compression. The goal of this thesis is to present three methods of mathematics which
have allowed compression of the data representing signals and images. The three topics
presented are fractals, wavelets and fractal-wavelets.

Chapter 1 describes iterated function systems (IFS). This method utilizes the inherent

self-similarity of an object (set, signal, image) to define maps on it, which in turn allow



the reconstruction of the object. For compression, it is the maps that are stored rather
than the original object.

The first section of Chapter 1 introduces basic definitions and theorems of metric spaces,
including the pivotal Banach Contraction Mapping Principle (BCMP) for complete spaces.
upon which rests the entire theory of IFS. Sections 1.2 and 1.3 define the concept of IFS
and the space }(X) where IFS live. This space is shown to be complete, which allows the
application of the BCMP. The following section contains examples of some attractors of
IFS.

From IFS we move to IFS with grey-level maps (IFSM). This results from the realization
that, from a nature perspective, IFS act on black and white images and are inadequate to
model the real world. In Section 1.6, IFSM are made more concrete and conditions are
given under which they are contractive. Section 1.7 presents a formal solution of the Inverse
Problem for IFSM and illustrates an example where IFSM fail to give good approximations.
This leads to Section 1.8 where the theory of local IFSM (LIFSM) is presented. It is shown
that LIFSM resolve the problems encountered with the initial [FSM method.

The second chapter deals with wavelets. In this thesis, they are considered, for sim-
plicity, to be special types of Hilbert space bases of L?(R). Basic notions from Hilbert
space theory are given in Section 2.1. In Section 2.2 the concept of a multiresolution
analysis (MRA) associated with a scaling function is defined, with a couple of example
wavelet bases being presented. Sections 2.3 and 2.4 motivate the study of wavelets given
the large amount of theory which has been developed in Fourier analysis [43, 55, 56]. It is
shown that wavelet series often converge in better ways and much more rapidly than their

trigonometric counterparts.



Section 2.5 describes the Mallat algorithm for the decomposition and reconstruction of
scaling and wavelet coefficients between levels of a MRA. It is then shown in Section 2.6
how this algorithm can be viewed as a pair of quadrature mirror filters for implementation
in digital circuitry. The chapter concludes with some applications of the algorithm in signal
compression.

The final chapter combines the ideas of IFS and wavelets, creating fractal-wavelets.
Section 3.1 describes the relation between IFSM and wavelets. This leads to local IFS on
wavelet coefficients (LIFSW) which are defined in Section 3.2. The following section gives
a few examples of LIFSW. The inverse problem for LIFSW is discussed in Section 3.4 with
an application to compression being given there.

Appendix A describes a normalized version of the IFSM operator, which is the the-
oretical generalization of the IFS operator, but which is more difficult to implement in
compression methods.

A glossary of notation, list of common abbreviations and index are provided at the end
of the thesis. A definition or major reference to a term is indicated by a bold page number.

The source code for the applications used in this thesis are available for downloading at

http://links.uwaterloo.ca/-dgpiche

D. G. Piché

dgpiche@links.uwaterloo.ca



Chapter 1

Fractal Transforms

In order to understand the idea behind fractal image compression, we study the subject of

iterated function systems.

1.1 Topological Background

We begin with some basic notation and definitions from metric spaces. Other topics not

covered here may be found in {28, 54].

Notation 1.1.1 We will use the following notation to denote certain classical sets:

N = {0,1,2,...}

Nt = {1,2,...};

Z = the integers;

R = the set of real numbers.

Notation 1.1.2 Throughout the text, (X, d) will denote a metric space where X is the set
and d is the metric. Special properties, such as completeness, will be specified as needed.
We will denote a sequence in X by (Zn)nea, where A C N. A sequence will be written
as (z,) if the range of the subscripts is clear from the context. If (z,) converges to z, we
write (z,,) — z.
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Other notation will be defined as needed.

Definition 1.1.3 A metric space (X, d) is totally bounded if for each ¢ > 0, there is a
finite set F, (called an e-net) of X such that

X =|J{N(=zie):z € F}

where N(z;e€) is the open ball of radius € centered at z.

Definition 1.1.4 A metric space (X, d) is complete if and only if every Cauchy sequence
converges in X with respect to the metric d.

Definition 1.1.5 A function f : X — X is said to be Lipschitz if and only if there exists
an s € [0,00) such that Vz,y € X we have

d(f(z), f(y)) < sd(z,y).

We call s a Lipschitz constant of f. If there exists such an s < 1, we say f is contractive
or is a contraction and call s a contractivity factor of f. In this case we say that f has
contractivity at least s. We denote the set of all Lipschitz functions on (X,d) by L(X,d)
and write Con(X,d) to mean the set of all contractive maps f : X — X. If X = R, write
simply Lip(R).

Proposition 1.1.6 If f € L(X,d), then f is uniformly continuous.

Proof Let ¢ > 0. We can assume f is not constant, hence let s > 0 be a contractivity
factor of f. If we let § = £, then Vz,y € X,

d(z,y) <0 = d(f(z), f(y)) < sd(z,y) <e. N
Proposition 1.1.7 Let f € Con(X,d). Define c; by

cs = inf{s : s is a contractivity factor of f}.
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Then ¢f is a contractivity factor of f.

Proof Let z,y € X and let S be the set of contractivity factors of f. Then, for each
s € S, d(f(z), f(y)) < sd(z,y). Hence,

d(f(z), f(y)) < inf(S) d(z, )
= cfd(xa y)!

and since Cf<1, CfGS. [ ]

Notation 1.1.8 We call ¢; the contractivity of f. We note that c; = 0 if and only if f is

constant.

Example 1.1.9 Consider the function f : R = R by f(z) = ;z+ } vz € R Then for

r,y €R,
@) - 1) = }(-;.“ 3 - (L %)’

= lla*: ~yl-
2
Therefore, f is contractive with contractivity %

Notation 1.1.10 For z € X, we define the n-fold composition of a function f at z recur-
sively by

£ (z) = f(z);
(@) = f(f (2))-

We call f°"(z) the n-th iterate of f at z.

Definition 1.1.11 We say that y € X is the attractor of f : X — X if and only if

nlingof“(z) =y VzeX.
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Example 1.1.12 Consider the function f from Example 1.1.9. Then for any z € R, we

have

1 1
1/1 1 1
02 S - = -
f (z)—2(2z+2)+2
_z,.1.1
T 22 2 4

and for a general n > 1,
on _ T .1
k=1
Hence, lhm f™(z) =1Vz € R and z = 1 is the attractor of f.
n—00

Definition 1.1.13 Let f : X — X. If for some z € X, f(z) = z, we call z a fixed point
of f.

Example 1.1.14 Consider the function f from Example 1.1.9. Then

1 1
fz)=z = §x+§—x
=> =1

Hence z =1 is a fixed point of f.

This is not a coincidence, as the next proposition shows.

Proposition 1.1.15 If a continuous function f : X — X has an ettractor z € X, then z
is a fized point of f.

Proof Suppose z € X is the attractor of f. Then, since f is continuous,

z=limf(z) = f (lm /(=) = f).
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We now prove the result upon which the entire theory of iterated function systems is

founded. It is the Banach Contraction Mapping Principle, or BCMP for short [54].

Theorem 1.1.16 (Banach Contraction Mapping Principle) Suppose (X,d) is a
complete metric space and let f € Con(X,d) with contractivity factor s. Then f has
a unique fized point Ty € X. Furthermore, Z; is the attractor of f.

Proof Let z € X and set z, = f°*(z) for n € N*. We will first show (z,) is a Cauchy
sequence. Let m > n € N*. Then

d(Zn, Tm) = d(f*(z), F™(z))

< sd(f7H(z), f(z))

and inductively,

d(Zn, Tm) < s"d(z, £ 7"(z)). (1.1)
Now, for k € N*,

d(z, f*(z)) < d(z, f(2)) +d(f(2), fP(z)) + ... +d(f*(z), f*(z))
< d(z, f(z)) + sd(z, f(2)) + ... + $*"d(z, f(z))

k-1

= " s'd(z, f(z))

=0

ok
Tz £(2)

1
iz, f(z)).

1-—s

<

Thus, by Equation (1.1),

sn

d(Tn,zm) <
(Zn, 7 )"l—s

d(z, f(z))-
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Since s < 1, d(zn,zm) — 0 as n, m — oo. Hence (z,) is a Cauchy sequence. Therefore, by
the completeness of X, let Z; € X with (z,) — Z;. Hence, le fr(z) = z4.
Now, suppose f has another fixed point y € X. Then

d(ih y) = d(f(ff)f f(y)) < Sd(ff’ y)-

However, s < 1 hence d(Zs,y) = 0. Therefore Z; is the unique fixed point, and by
Proposition 1.1.15, the unique attractor of f. ]

If f is contractive, we write Z5 to denote its fixed point.
We will now define a metric on Con(X, d) and show that fixed points vary continuously

with respect to contractive maps. The following discussion is a variation of [13].

Proposition 1.1.17 Define d(f, g): Con(X,d) = [0, o0} by
d(f.9) = ::Ed(f(z),g(z)) Vf,g € Con(X,d)

and let

dm(f,9) = min{d(f,g),1} Vf,g € Con(X,d).

Then d.,(f,g) is @ metric on Con(X,d). Furthermore, if (X,d) is compact, d is a metric
on Con(X,d).

Proof The only problem with d is that the distance between certain functions might be
infinite, a problem which is eliminated if (X, d) is compact. Let f,g,h € Con(X,d). Then

i) 0=dn(f,g) <> d(f,9) =0 < f=g.
ii) dp is symmetric by the symmetry of d.

ili) To prove the triangle inequality for d,,, it is enough to consider the case when
dm(f,9) +dm(g,h) < 1 since dn.(f, g) is always < 1. Therefore suppose d..(f,g) +
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dm(g,h) < 1. Then as d satisfies the triangle inequality, we have
d(f,h) <d(f,g) +d(g,h) < 1.

Hence,

dm(f, k) = d(f,h)
< d(f,9) +d(g,h)

=dm(f,9) +dm(g, h),

since both d(f, g) and d(g,h) are lessthan1. @

Theorem 1.1.18 (Continuity of Fixed Points) Define F: Con(X,d) - X by F(f) =
Zy for each f € Con(X,d). Then F is continuous with respect to d,,. If X is compact, F’

is continuous with respect to d.

Proof Let € > 0 and let f,g € Con(X,d). Without loss of generality, we assume
¢ = ¢y < ¢s. Suppose d,(f, g) < min(e(1 — ¢),1). Then

d(Zq, Z5) = d(9(Z,), f(Zy))

< d(g(Z,), 9(Z5)) + d(g(Zy), f(Z¢))- (1.2)

By the hypothesis on d.,(f, g), we have d(g, f) <1 and d(g, f) < €(1 — ¢). Hence,

d(g(z;), f(Zf)) < d(g, f)

< €(1-c).



CHAPTER 1. FRACTAL TRANSFORMS 11

Therefore, by Equation (1.2),

d(Z4,Z¢) < cd(Z,,Z7) +€(1 — ¢

= d(Z4,Tf) <e. W
Corollary 1.1.19 If (X,d) is a compact metric space and f,g € Con(X,d), then
d(z;.2,) < ——d(f, g)
f' 9 1 —c !g 3

where ¢ = min(cy, ¢;).

Intuitively, if the given maps f and g are close to each other, then their respective fixed
points Z; and Z, are also. This is the fundamental principle behind the fractal-based

methods of approximation.

Now, suppose we are given z € X. Is it always possible to construct f € Con(X, d)
such that z = Z;? In simple cases we might guess at such a function (as in Example 1.1.9).
One might indeed think to take the constant function f(y) = z for all y € X. The goal
however is to approximate z using a function which is easy to describe, and this constant
function would most often necessitate the complete description of z! However, suppose we
would be satisfied to find an f with a fixed point close to z? If this is the case, how would
we proceed to find f? We can reformulate this problem as follows:

Question 1.1.20 Given (Y,dy) a metric space, y € Y and ¢ > 0, can we find f €
Con(Y,dy) such that dy(y,5s) < €?

This problem is called the Inverse Problem of Approzimation by Fized Points of Contrac-
tion Maps, or the Inverse Problem for short. Detailed discussions can be found in [21]
and [49]. Indeed, whether such an f can be constructed, or whether it even exists is un-
certain at this stage. The question raised might be “Is {Z; : f € Con(Y,dy)} dense in

Y”? We will attempt to address this question shortly. In practice, Y could be any one of a
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large number of relevant spaces: compact subsets of [0, 1]*; probability measures on [0, 1];
LP(R); fuzzy set functions.
For the moment, consider the proof of Theorem 1.1.18 and ask: “Giveny €Y, f €

Con(Y,dy), how close is y to 77" ? The following proposition lends an answer:

Proposition 1.1.21 Let y,Y and f be as above. Then

1
1-—

d(9,37) < T——dv(y, F@))-
f

Proof We have

dy (v, 9r) < dv(y, f()) +dv(f(y), Tf))
=dy(y, f(W)) + dv (f(v), f(Ts))
< dy(y, f(y)) + crdy (y, Ty))

——dy (3, /). ™ (13)
cr

This is often called the Collage Theorem. In the light of this new proposition, we see that
if f(y) is close to y, then #¢ is also close to y. Of course, if ¢y &~ 1, the right hand side
of Equation (1.3) might not be very small. This thus gives some insight into finding our
desired function. We should find an f € Con(Y,dy) which takes y close to itself. We
remember from the BCMP that 7y is the attractor of f if Y is complete. Hence we can
iterate f to retrieve §j; and get the desired approximation to y. Therefore, we can restate
the Inverse Problem as

Question 1.1.22 (Inverse Problem) Let (Y,dy) be a complete metric space, and let
y €Y. Given € >0, can we find f € Con(Y,dy) such that dy(y, f(y)) < €?
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1.2 Iterated Function Systems: The Idea

The concept we wish to develop in this chapter is that of iterated function systems (IFS)
which were first developed by Hutchinson [26]. They were independently discovered by
Barnsley and Demko [6] who gave them their name. To motivate their development, we
must enter the realm of fractals. We begin with the famous construction of the Cantor
“middle-thirds” set [23, pp.114-116].

We construct the Cantor set by induction. Let I = =[0,1] C R Let [; = Ip\(3, 3),

that is, the interval [0, 1] with the open middle-third removed.

Iy L
= { i —d
0 1 0 3 2 1

Construct I, from I; by removing the open middle-thirds from the two remaining closed

intervals.
I]_ 12
———vy F | — —_
1 2 121 278
0 3 3 1 0353 399!

Inductively, construct I,,; by removing the open middle-thirds from the 2" closed intervals
of I,. We define the Cantor set to be C= (., Ix-

Suppose that you were asked to describe €. At this point, it might be difficult without
giving the argument for its construction. Returning to the ideas presented at the end of
Section 1.1, we would like to find a function f, on some appropriate space, for which @ is
the attractor. This function could then be iterated to find €.

To understand what we wish to do in general, let us look at two characteristics of €.

By construction, € is compact. A second characteristic is the self-similarity we find within
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it. This is one of the reasons € is called a fractal. A general definition of self-similarity has
been given in [30].

Definition 1.2.1 Let (X,d) be a complete metric space and A be a compact topological
space. If A is finite, it is assumed to have the discrete topology. Suppose that for each

A € A, there is a contraction wy on X. Assume that not all the w, are constant and that
each has contraction factor s. Define the mapw : A x X — X by

w(, z) = wyi(z).

Define Q to be the ordered triple ((X,d),w,A) and Fo= {wy : A € A}. Then Q is called a
contraction system.
A set A is self-similar under Fq if it is @ non-empty compact subset of X such that

A=|J{ws(4): A€ A}

Definition 1.2.2 Let (X, d) be a complete meiric space. Then A C X is called self-similar
if there is a contraction system Q such that A is self-similar under Fgq.

To see the self-similarity in €, let € = €N [0, 1] and let €; = €N [2,1]. Intuitively, if
we were to “zoom in” on C; or C,, we could not distinguish either from €. Mathematically,
we see that the maps w; : € — €, defined by z — £ and w, : € — €; defined by z +— 5§+ 2
are metric equivalences under the induced topology of R. Indeed, € is the disjoint union

of two metrically equivalent subsets:
(i' = (‘31 U ('32.

We wish € to be the fixed point of a certain function. We motivate the following

definition by the fact that € is a subset of I.
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Definition 1.2.3 Let X and Y be sets and f : X — Y. We define the set mapping
f:P(X)— P(Y) by

f(A)={f(a):a € A} VA€ P(X),
where P(X) denotes the power set of X.

We see that €; = ,;(€C) and €, = 1;(€C). Therefore,
€ = 3, (€) U w2(€). (1.4)

Hence, C can be written as a union of contracted copies of itself. This is what we wish

to do in general. Given a set A, try to write A as a union of contracted copies of itself.

Definition 1.2.4 Let X andY be setsand fy : X = Y, A € A, where A is some indezing
set. Let f= {f\}. We define f= U,\GAfA, that is for A C X, we have

f(4) = | JAM).

A€A

If we now set w = {wy, w,}, we see by Equation (1.4), that € is the fixed point of w.
Now, for this w to be useful, we would need € to be its attractor in some appropriate
space. Intuitively we might think this is true since I, = W(I,), for each n € N. Hence,
in a way, w is an exact description of €. In general, the desired approximations would be
obtained by iterating maps of the form given in Definition 1.2.4. This is the concept of an

iterated function system, or IFS [5].

Definition 1.2.5 An iterated function system, or IFS, consists of a complete metric
space (X,d) together with o finite set of contraction mappings w,: X — X with re-
spective contractivity factors c,, n = 1,2,...,N. ! Such an IFS, denoted by w, where

1 This definition can be eztended to an infinite number of maps [30].
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Figure 1.1: Closeness of sets.

w={w, :n=1,2,..., N}, is called an N-map IFS. The IFS is said to have contractivity
c=max{c,:n=1,2,... N}

The meaning of the contractivity of an IFS will be made clear in the following section.
For this it will be necessary to define an appropriate complete space, the elements of which

are to be approximated.

1.3 A Complete Space for IFS

We will use the example of € C R to motivate the search for a space consisting of subsets
of a complete metric space. Given a complete space (X, d), the goal is to find a complete
space (Y,dy) with Y C P(X). We will first construct a distance function dy on P(X) and
use the conditions needed for it to be a metric to help us determine Y. To begin, consider
the three pairs of sets in R? pictured in Figure 1.1.

Each case consists of two sets, one bounded by the solid line and one by the dashed
line. In which case do the two sets seem “closest”? Probably not in (a). In (b), the dashed

set certainly seems close to the solid one; it is part of the solid set. However, many points
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of the solid set seem distant from the dashed set. Case (c) seems intuitively right. Most
points of the solid are close to the dashed, and vice-versa. More precisely, each set overlaps
the other set rather well. We use these ideas to begin to construct our metric.

Unless otherwise specified, (X, d) will denote a metric space with no other properties.

Notation 1.3.1 Let z € X, B C X. Define the distance from z to B by
d(z,B) = '}gg d(z,b).

Hence, if z € B, d(z, B)=0.

Notation 1.3.2 Let A, B C X. Define the distance from A to B by

d(A, B) =sup d(a, B).

a€A

This seems reasonable since if A C B, A should be close to B and by this definition
we would have d(A, B)= 0. Unfortunately, this function is not a metric. For example,
d([0,1],[1,1)) = } but d([3,1],[0,3]) = }. Symmetry is lacking, which motivates the

following construction [5, 17, 26]:

Definition 1.3.3 Let A, B C X. Define the Hausdorff distance between A and B by
h(A, B) =d(A,B) vd(B, A),

where £ Vy = max{z, y}.

This is the function dy we seek. It satisfies the intuitive notion of two sets being close,
which was found in (c) on page 16. The function A is almost a metric; we use the following

table to help rule out certain sets from P(X):
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Problem: A(9, [0, 1]) =? Solution: Only consider non-@ sets.
Problem: k([0,1),[0,1]) =0 Solution: Only consider closed sets.

Problem: h([0,1], [0,00)) = o0 Solution: The closed sets must be compact.

Notation 1.3.4 Define H(X) to be the set of all non-empty, compact subsets of X.

Theorem 1.3.5 Let (X,d) be a metric space. Then (H(X),h) is a metric space.

Proof The proof will generally follow the one in [5]. Let A, B,C € 3{(X). As the sets in
question are compact, we can change sup to max in the definition of d. We see that

h(A, A) = d(A, A) = max{d(a,A):a € A} =0.
If A # B, then without loss of generality let a € A\ B. Therefore,

h(A,B) > d(A, B) definition of h(A, B)
> d(a,B) definition of d(A, B)
>0 definition of d(a, B).

By definition, & is symmetric and we are left to verify the triangle inequality. For a € A

we have

d(a, B) = min{d(a,d) : b € B}
< min{d(ae,c) +d(c,b) :be B} VceC
= d(a, c) + min{d(c,b) : be B} VceC.

Therefore,

d(a, B) < min{d(a,c) : ¢ € C} + max{min{d(c,b) : b € B} : c€ C}
= d(a,C) +d(C, B).
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Hence,

max{d(a, B) : a € A} < max{d(a,C) : a € A} +d(C, B)
== d(A, B) < d(A,C) +d(C, B).

By an argument symmetric in A and B, d(B, A) < d(B,C) +d(C, A). Thus we obtain

h(A, B) = d(A, B) v d(B, A)
< [d(A,C) +d(C,B)] v [d(B,C) + d(C, A)]
< [d(A,C) v d(C, A)] + [d(B,C) v d(C, B)]
= h(A,C) +h(B,C). ®

We are almost at our goal. We have the metric space (}(X), &); all that remains is to

show it is complete. For this, we follow the development in [5].

Notation 1.3.6 Let S C X and let r > 0. Then let S+r= {z € X :d(z,s) < r for some
s € S}. We call S + r the dilatation of S by a ball of radius r.

Lemma 1.3.7 Let A, B € H(X) and let ¢ > 0. Then
h(A,B)<e & ACB+e¢and BCA+e

Proof This is the idea of overlapping as seen in c) on page 16. We will show d(A, B) <
€ &< ACB+e

(=) Suppose d(A, B) < e. Then max{d(a,B) : a € A} < e. Therefore, by definition of
B+e,acB+eVae A Hence, AC B +e.

(¢«=) Suppose A C B + €. For each a € A,3b € B such that d(a,b) < e. Hence, Va € A,
d(a, B) < € and thus d(A,B) <e.
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Therefore, by definition of h,

h(A,B)<e <= d(A,B)<eandd(B,A)<e
< ACB+eand BC A+e a

The goal is to show the completeness of (}(X), h) when (X, d) is complete. The complete-

ness of X is essential, as the following example demonstrates:

Example 1.3.8 Let X = [0, 1) with the usual Euclidean metric. Then ({1—1}) — {1} ¢
H(X). Hence H(X) is not complete.

It will be necessary to consider the convergence of Cauchy sequences in (H(X),h). If
(A,) is a Cauchy sequence in (3H{(X), k), then by Lemma 1.3.7, given € > 0, 3N such that
Ym,n > N,A, C A, +€and A, C A,, + € As the completeness of (F}(X),h) relies
upon that of (X, d), we need the following lemma which allows the extension of a Cauchy

subsequence (T.; € A,;) to a Cauchy sequence (z. € 4,).

Lemma 1.3.9 (The Extension Lemma) Suppose (A,) is a Cauchy sequence in
(H(X), h) and let (n;) be an infinite, strictly increasing, sequence of positive natural num-
bers. Suppose that (z,; € Ay;) is a Cauchy sequence in (X,d). Then there exists a Cauchy
sequence (T, € A,) such that Z,, = z,, Vj € N.

Proof Construct the sequence (£, € A,). Foreach 1 < n < n,, pick Z, € {z € A4, :
d(zn,,x) = d(z,,, An)}. Such a point exists, since each A, is compact. Proceed in a similar
fashion for n; +1 < n < njyq Vj = 1,2,... . That is, choose &, € {z € A, : d(zn, ) =
d(Zn,, An)}. The claim is that (£,) is a Cauchy sequence in X.

To see this, let € > 0. Since (z,;) is a Cauchy sequence, let M € N such that Vn,,n; >
M, d(Zpn,,Zq;) £ 5. Then, choose N > M such that Ym,n > N, d(Am, As) < 5. Let
m,n > N. Pick nj.; <m < nj, and ne—; < n < . Since h(Am, Aq;) < §, there is a
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Y € A N ({zn;} + ), thus d(Tmm, T,;) < 5. Similarly d(z,,,Z,) < §. Therefore

d(imy in) S d(im: xﬂj) + d(zn,' ’ zﬂk) + d(x"k ’ 5"')

<€ ELE
-3 3 3
<e [ |

The main result now follows:

Theorem 1.3.10 If (X,d) is complete, then (H(X),h) is also. Moreover, if (A,) is a
Cauchy sequence in H(X), then A = lim A, € H(X) is given by
n—00

A = {z € X : 3 a Cauchy sequence (z, € A,) that converges to z}.

Proof The proof will follow the one given in [5]. Let (4,) be a Cauchy sequence in }(X)
and let A be as in the statement of the theorem. We break the proof up into five parts:

a) A#0;

b) A is closed, hence complete since X is complete;
c) for € > 0,3N such that Vn > N, A C A, +¢;

d) A is totally bounded, hence by b) is compact;

e) limA, = A.

n—-»00

Proof of a): We use the Extension Lemma to find a Cauchy sequence (a; € A;) in X.
Then lima; = a € A by definition of A. Therefore A # 0.

Since (A;) is a Cauchy sequence, get a strictly increasing sequence (/V;) such that
h(Am, An) < & Ym,n > N;. Let zy, € Ay,. Given that h(Ay,, An,) < }, get zy, € Ay,
such that d(zy,,zy,) < 1. Suppose (zn, € Ay,)%; is a sequence such that d(zn,_,,zx;) <
s=t- Then, since h(An,, An,,,) <3, choose zy,,, € Ay,,, such that d(zn,,zn,,,) < 5.
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The claim is that (zy) is a Cauchy sequence in X. To see this, let € > 0 and choose N
such that 32 5 <e€. Then form >n >N,

d(szv an) < d(sz’ me-(-l) + d(me-u ? sz+2) +...+ d(an-u 2"Nu)

[o ]
<y 1
> 2

i=N

<E€.

Now, by the Extension Lemma, let (a; € A;) be a Cauchy sequence such that ay, = zy;.
By the completeness of X, lima; exists. Hence A # 0.

Proof of b): Suppose (a; € A) — a. For i € N*, get a sequence (z;, € A,) with
nl_lgo Z;n, = a;, by definition of A. Since (a;) — a, let (V;) be an increasing sequence of
positive integers such that d(ax;,a) < 1. Then let (m;) € Z such that d(zy, m;,an;) < ;-
Therefore d(zn;m;,a) < 2. Now let Y, = Zn, ;. Then by definition of Zy, m;, Ym; € Am,

Vi and limy,,, = a. By the Extension Lemma, let (z; € A;) be a sequence such that

i—00
Zm. = Ym, With (2;) — a. Hence A is closed, and by the completeness of X, is itself
complete.

Proof of c): Let € > 0. Choose N; such that Ym,n > Ny, h(A,, Am) <e. Let n > Ni.
By Lemma 1.3.7, Vm > n, A,, C A, + € Now let a € A and suppose there is a sequence
(a; € A;) — a. Choose N > Nj such that Ym > N,d(an,a) < €. Then a, € A, + ¢, since
Am C A, + €. As A, is compact, A, + € is closed. Hence as a.,, € A, +€¢ Ym > N, the
limit @ € A, + €. Since a was arbitrary, A C A, + €.

Proof of d): Suppose A is not totally bounded. Then by definition of total boundedness,
for some € > 0, there does not exist a finite e-net of A. Thus, choose (z;) C A such that
d(z:,z;) = € Vi # j. By c), get n such that A C A, + 5. Then, Vz;, pick y; € A, such that
d(z;,y:) < 5. Since A, is compact, some (yn,) C (y:;) converges. Therefore, let n; # n;
such that d(yn;,yn;) < §. But then,

d(zﬂil xﬂ_-,') ..<- d(xﬂ-;" yﬂ.‘) + d(yn.‘! yﬂj) + d(y‘nja xﬂj)
< € + € + €
3 3 3
= €.
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This contradicts the hypothesis on (z;), hence A is totally bounded, and by b) is compact.
Therefore by a), A € H(X).

Proof of e): As A € H(X), by c) and Lemma 1.3.7, the result will be proven if for
€ > 0,3N such that Vn > N, A, CA+e

Let € > 0. Choose N such that Vm,n > N, h(Ap, As) < §. Then, form,n > N, A, C
An+%. Let I > N. We claim A; C A+ €. Let y € A; and choose an increasing sequence
(N:;) € N such that I < Ny < N; < ... and such that Vm,n > N;, A,, C An + 557-

By the choice of [, A; C Ay, + 5. Since y € Ay, get Tn, € A, such that d(y,zn,) < £
As zy, € An, we get, by compactness of Ay,, an zy, € Ay, with d(zy,,zy,) < 3z~ By
induction, choose zy; € Ay; such that d(zy;,zn;,,) < 5%- Hence

—

j
d(y,zn;) < d(y,zn,) + Y d(Tn,, Ty,

i=1

J
+ E 2:4—1

i=1

<

N m

<e VYjeN'.

For j > 1,

j-1
d(xN.'v xNj) < z d(xNIﬂ x”k-q—l)

k=i
j-1

€
s Z 2k+1
k:i
<eE
Therefore, (z;) is a Cauchy sequence. By construction, Ay, C A,+3. Suppose (zy;) — z.
Since A, + § is closed, this implies z € A, + £, and since d(y, Tx;) < € Vj € N*, we have

d(y,z) < e. Thus A, C A+ ¢ Vn > N. Combining this with c), H-I&A“ = A and hence
(H(X), h) is complete. |

We will now prove a few properties about the Hausdorff metric which will enable us to
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justify the contractivity of an iterated function system as seen in Definition 1.2.5. Again,
let (X, d) be a metric space.

Notation 1.3.11 Let Con(X,d, s) denote the set of all contractive maps with contractiv-
ity at least s.

Lemma 1.3.12 Let w € Con(X,d, s), then we Con(H(X), h,s).

Proof Since w is continuous, it takes compact sets to compact sets. Hence w : H(X) —
H(X). Let B,C € H(X). Then

d(w(B), H(C)) = max{min{d(w(b), w(c)) : c € C} : b € B}
< max{min{sd(b,c) : c€ C}: b€ B}
= sd(B,C).

By a symmetric argument, d(w@(C), w(B)) < sd(C, B). Therefore

h(w(B), w(C)) = d(w(B), w(C)} v d(@(C), ¥(B))
< (sd(B,C)) v (sd(C, B))
= s(d(B,C) Vv d(C, B))
=sh(B,C). R
The following lemmas have proofs similar to the above.

Lemma 1.3.13 Let B,C € H(X). Then BCC = d(z,C) <d(z,B) Vz € X.

Lemma 1.3.14 Let (X,d) be complete. If A,B,C € H(X), and B C C, then
d(A,C) < d(A, B).
Lemma 1.3.15 Let A, B,C be as above. Then d(AU B,C) =d(A,C) Vv d(B,C).

Lemma 1.3.16 Let A, B,C, D € H(X). Then h(AU B,C U D) < h(A,C) Vv h(B, D).
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Hence, we may prove the following result:

Proposition 1.3.17 Let (X, d) be a metric space and let
w = {w, € Con(X,d,c,) :n=1,2,... ,N}.

Then w € Con(H(X), h,c), where c = max{c, : n=1,2,... ,N}.

Proof The proof is by induction on N, the case IV = 1 having been done in Lemma 1.3.12.
Suppose for 2 < N < k, h(Ww(B),w(C)) < sh(B,C). Let W = _Lkglu“l and s = max{ec, :
n=12,...,k}. Then

h(w(B), W(C)) = h(Wi(B) U ti41(B), We(C) U wk41(C)) by definition of w;
< h(Wi(B), Wi(C)) V h(Wr+1(B), Wk+1(C)) by Lemma 1.3.16
< sh(B,C) V ci4+1h(B,C) by hypothesis on W,
< ch(B,C). [ |

Proposition 1.3.17 implies a crucial result for IFS.

Theorem 1.3.18 (BCMP for IFS) Let w be an N-map IFS with contractivity c. Then
w € Con(H(X), h,c). Furthermore W has a unique fized point As€ H(X) which is also

its attractor.

Proof This follows directly from Proposition 1.3.17 and Theorem 1.1.16. [

Definition 1.3.19 The fized point of W is called the attractor of w.

This yields the following version of Proposition 1.1.21 for iterated function systems [5]:

Theorem 1.3.20 (The Collage Theorem) Let w be an N-map IFS with contractivity
0 <c < 1. Suppose L € H(X) and ¢ > 0 are such that h(L,W(L)) < e¢. * Then

h’(Lv AW) S 1_62'

2 The distance h(L,W(L)) is often called the collage distance.
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Proof See the proof of Proposition 1.1.21. |

The Collage Theorem is important for the Inverse Problem of approximating sets seen
in Section 1.1. By the Collage Theorem, one could try to construct an IFS w which takes
L close to itself. The attractor of w would then be close to L.

It is possible that ¢ &~ 1 which, in turn, implies that the constant ¢/(1 — ¢) can be
large. Thus there is no guarantee that the collage distance is small and the approximation
may be quite poor. To make ¢ = 0, one can use maps with small contractivity factors.
However, this might increase the number of maps needed to describe the approximation
(hence reducing the compression). This fact is relevant when compression is a principal
factor.

In order to calculate fractal images using the theoretical machinery that has been
developed, one can use the following algorithm, a consequence of Theorem 1.3.18 [5]:
Corollary 1.3.21 (The Deterministic Algorithm) Let w be an N-map IFS with w =
{wj:j=1,2,...,N}. Let Ay € H(X). Compute A, = W™(A) by Apy = j_élw,.(A,,) for

n=12,.... Then the sequence (A,) C H(X) converges to the attractor of the IFS in
H(X).

1.4 Examples of IFS Attractors

In practice, affine IFS contraction maps are used to simplify calculations. Let M, (R)

denote the set of all n x n matrices on R, where R" is the usual Euclidean n-space.
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Definition 1.4.1 Let X CR*, n € N*. A map w: X — R" is called an affine transfor-
mation if 3A € M,(R) and b € R* such that

w(r) =Az+b Vze X.

In general, given vector spaces X and Y, an affine transformation f : X = Y s a map of

the form
f(z)=Az+b
where A is a linear transformation from X toY andbe Y.
Example 1.4.2 Let X =[0,1] and let wi(z) = }(z + 2i),i=0,1. Then Ay = C.

Example 1.4.3 Let X = [0, 1]°. Define the following maps:

w(zy) = (33),

z ly
wa(z,y) = (5 + 3’ 5) )
and

r ly
wi(z,y) = (§+Z’5+

> S

) |

To find the attractor of w, we use the Deterministic Algorithm. We are allowed to make
any choice of Ag. Therefore, let Ay be the following triangle:

Lﬁ)
2 2

(0,0 (1,0)

Then, using the algorithm, we obtain the following sequence of sets:
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A — £ &M—’

0,0) (1L0) (0,0) (1L0) (0.0)
Ay A, A;

This sequence converges to the Sierpinski gasket [33].
An affine IFS w = {w;} is an IFS where each w; is affine. Often, affine IFS in R? will

be written in a table to facilitate their description. Consider an IFS consisting of the maps

a; b\ [z e;
wi(z,y) = + i=12,...,N.

¢ dif \y fi
Instead of writing them as above, they are written in a table such as:

aa b ¢ d e fi
az by ¢ dy e f

ay by ey dnv exn fn
We now recall the definition of a similitude.

Definition 1.4.4 A transformation w : R2 — R? is called a similitude if it is an affine
transformation of the form

w(z,y) =r cosf +sind\ [z " e
v = sin@ Fcos@/ \y f

where (e, f) € R2,r # 0,0 € [0,2r). The constant r is called the scaling of w or its scale
factor and @ is called its angle of rotation.
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Proposition 1.4.5 Ifw(z) = Az +b,A € M, b,z € R? is a similitude in R?, then its
contractivity factor is |detA|.

Proof This is simply a matter of calculating
d(w(xla yl)y 'lD(Z‘z, yZ))
for the points (z1,¥1), (z2, ¥2) and using the definition of detA in M. [ |

Notation 1.4.6 Define the following three sets:

Cony(X,d)={w € Con(X,d) : w is 1-1};
Sim(X,d) ={w : w is a similitude on X};
Simy (X, d)=Sim(X,d) N Con (X, d).

Corollary 1.4.7 If w : R?2 — R? is a similitude as above and |detA| < 1, then w €
Con(X,d).

Proof Use Proposition 1.4.5. [

We now wish to apply this theory to images, i.e. computer images. One can think of an
image as being a compact subset of R*. One can model a computer screen by X = [0, 1]
and define an image on the screen to be a set A in X, with points being screen pixels. If
z € A, the associated pixel is plotted white. If = ¢ A, leave the pixel black. Hence a white
screen represents A = [0, 1]2.

Suppose an IFS acts on the screen. When the IFS is iterated, the points of A move
about the screen. Looking at w(A), we see that £ € w(A) if 3¢ € 1,2,..., N such that

z = w;(y) for some y € A. Hence, after one iteration of W, a pixel is plotted white if there
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is a white pixel mapped to it by the IFS. We can therefore think of IFS as mapping black
and white images to black and white images.

Unfortunately, as they say, the world is not black and white. What is needed is an
IFS-type method which allows for, say, greys?! We might want maps which move pixels
around and then scale their grey-levels. These thoughts lead to IFSM [20].

1.5 From IFS to IFSM

The idea of applying IFS methods to grey-level (grey-scale) images was developed by Forte
and Vrscay {19, 20, 21]. They formulated an IFS-type method which allows the creation
of grey-scale images. Let us consider a compact subset A of R? to stimulate some ideas.
It is necessary to formulate a definition of A being a grey-scale image. One possible way
to do this is to think of the image as a function, rather than a set. What might work is
to formulate an IFS method on functions, functions from sets to grey-levels. The question
remaining is how?

Following [49], we first formulate this idea for the IF'S case. In this case, one finds a
simple association to functions. Here, points in images can take on two values: black and
white. Therefore, the function associated with a set A is X ,, the characteristic function
on A, where

1 z€A
XA(“’)‘——'

0 z¢A.

The sets considered for IFS are compact, hence it would be natural to consider functions

which are characteristic functions of compact sets [49]. Once again, let (X, d) be a metric
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space.

Notation 1.5.1 Let f be a function from a set A to R Then inv(f) is defined as
inv(f) = f71(1).

Notation 1.5.2 Let Fpw(X)= {f : X = {0,1}] inv(f) € H(X)}, be the black and white
functions on X.
We write “BW” to emphasize the fact that we are considering functions which take only
two values, 0 (black) and 1 (white).

Recall, for an IFS w = {w; : i =1,2,... , N}, the map w : H(X) — H(X) is given by

N
w(S) = Jiu(S) VS e H(X).

=1
It might therefore be of interest to consider for 4; € H(X),7 = 1,2,...,N, and

w € Con(X, d),
N
i) X, in terms of X, ,...,X,, where A= U A;, and

ii) Xz, in terms of X ,.

w

N
Proposition 1.5.3 Let X be a set and A; C X fori=1,2,... ,N. Then if A= EIAi:

X = .
4(z) max | X,.(z)

Proof If z € A, choose ¢ such that z € A;. Hence RHS=LHS. If z ¢ A, then Vi,z ¢ A;
and X, (z) = 0. This implies that max;<12.. v X,.(z) =0. Hence RHS=LHS. @

Proposition 1.5.4 Let AC X andw: A — X be 1-1. Then

Xaoea)(®@) = X4(w™(z)) Vzeb(X)
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Proof Let z € w(X). Then

Xga)(F) = {1 = € ld)

0 z¢w(A.
and
_ 1 wil(z)ed
X, (w™H(z)) =
0 wl(z) ¢ A
However, since w is 1-1, w™!(z) € A <= z € w(A). [

Proposition 1.5.5 Let A C X and w = {wy,ws,... ,wy}, with w; being 1-1 for all
1 i< N. Then Xg4)(T) = maxg;cn X4(w; Y(z)) Vz € X. The notation max’' indicates
that only subscripts i, where z € w;(X), are considered, using the convention max® = 0.

Proof The proof follows from Propositions 1.5.3 and 1.5.4. [

Therefore, given an IFS w = {w;,w,, -.. ,wx}, there is an associated operator T2"W:

Few (X) = Fpw(X) defined on f € Fgw(X) by
T" f(z) = max'f(w;'(z)) VzeX.

The goal is to develop a “black and white” IFS theory on Fpw(X), hence a complete

metric must be defined on this space. For insight, consider the next proposition.

Proposition 1.5.6 Let (X,d) be complete, wi,w,,... ,wy € Comy(X,d) and v €
EBW(X)- Then

inv(T2% u) = w(inv(u)),

mew=gmmmwemm.
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Proof Given u € Fpw(X),

z €inv(TEVu) <= TEWy(z) =1
< 3 wouw l(z)=1
< F wl(z) €inv(u)
<> F =z € w;(inv(u))
< zew(inv(y)). B

It is therefore natural to define the following metric on Fgw (X ):
Definition 1.5.7 Let dgw(u,v)= h(inv(u),inv(v)) Vu,v € Few(X).
Theorem 1.5.8 If (X, d) is complete, then (Fpw(X),dpw) is also.

Proof We first show dgy is a metric. Let u,v € Fpw(X). Then

dpw(u,v) =0 < invu =invy

< (Vz,u(z) =1 <= v(z) =1).

Since u and v only take on values of 0 or 1, this happens if and only if © = v. The symmetry
property and the triangle inequality follow since A is a metric. Therefore dgy is a metric.

Now, let (u,) be a Cauchy sequence in Fgw(X). By definition of dpw, (inv(u,)) is a
Cauchy sequence in J(X). Hence by completeness of H(X), A = nli_ggo inv(u,) € H(X).
Let u = X,. Then v € Fpw(X) since A is compact. Given € > 0, choose N such that
Vn > N, h(inv(u),inv(u,)) < €. Thus dpw(u,un) < €, which implies (u,) — © in dgw.
Hence (Fpw(X),dsw) is complete. [ ]

This leads to the next theorem.

Theorem 1.5.9 Let w; € Cony(X,d) fori = 1,2,...,N. Then TBW is contractive on
(Faw(X),dsw) and craw = c.



CHAPTER 1. FRACTAL TRANSFORMS 34

Proof For u,v € Fpw(X),

dew (TEY u, TEW v) = h(inv(TEW u), inv(TEW v))
= h(W(inv u), W(inv v))

by Proposition 1.5.6. Therefore, as u and v were arbitrary, T2% is contractive and, by the
last equality, craw = cq.- [ |
Corollary 1.5.10 Let w; € Cony(X,d) for i = 1,2,... ,N. Then TE¥ has a unique,
attracting, fized point irsw € Fpw(X). Furthermore W(inv(@rsw)) = inv(izsw).

We are now in a position to extend this work to grey-level maps; that is, functions
u: X =+ R We write F(X) for the set of grey-level maps on X. Hence, letting u € F(X),

and using our previous work, we could define an operator T by
_ /] -1
Tu(z) = [ u(w, (z)) VzeX.

This was fine in the IF'S case since u only took on two values. In a sense, an IFS changes
u only in physical space. We wish to allow this new operator to modify the grey-level values

when the function is displaced physically. For this, a grey-level component is added [20].

Definition 1.5.11 Let (X, d) be a metric space. Let w = {wy}i_, where w, € Con, (X, d)
for k =1,2,... ,N. Then, let = {¢s}i_, where ¢ : R -+ R fork =1,2,... ,N. The
pair (w, ®) will be called an iterated function system with grey-level maps, or IFSM for

short.
Define the IFSM operator T(373,: F(X) — F(X), on u € F(X), by

Tawayu(®) = max'de(u(wi'(z))) VzeX.

Now, when u is displaced in space, its grey-level values are also modified. When viewing

IF'S as IFSM, this definition reduces to the case when ¢; = idg Vi =1,2,... ,N.



CHAPTER 1. FRACTAL TRANSFORMS 35

Since the grey-level function u will be allowed to assume values between O and 1, we
note the following: In the IFS case, if z € w;(X) Nw;(X) forsome 1 < 7 # j < N,
i.e. when there is overlapping, then T(3’3,u(z) = 1, since both ¢i(u(w; 1(z))) =1 and
qu(u(w}'l(z))) = 1. This was fine since the function u assumed only values of 0 or 1.
In the IFSM case, where T3, u(z) can assume values between 0 and 1, the grey-level
mappings ¢; and ¢; could be more general.

Suitable operators for both non-overlapping and overlapping cases have been stud-
ied [20, 21]. We will focus our attention here on the more general and probable situation
where the sets w;(X) do overlap. One way to accommodate the problem of overlap is to
consider taking a linear combination of the ¢y o u o wg'. We therefore define the operator

Tiw.#) on u € F(X) by:

N
Twau(z) =) '$e(u(wi'(z)) VzeX, (1.5)

k=1
where ¥’ indicates that the sum runs over the indices k with z € w(X). We use the
convention that an empty sum has a value of 0.

It should be noted that Tiw,s) is not an exact generalization of TZW. It has been chosen
in this way since it will allow us to find a nice solution the Inverse Problem. We refer the
reader to Appendix A for a discussion on the generalization of T2ZW for the IFSM case. The
following section will focus on Tiw.s) as defined in Equation (1.5). Further generalizations

may be found in [22].
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1.6 IFSM on LP(X,p)

Let (w,®) be an IFSM on a complete metric space (X, d) where w = {wy, w,, ... ,wnx},
wy € Cony(X) and @ = {¢1,02,--- ,¥n}, & : R = R. When it is understood that
a specific IFSM is being considered, write T for T(w.s), to denote the associated IFSM
operator.

The theory of [IFSM was developed for L?(X, 1) by Forte and Vrscay in [20]. We present
a few of their results here.

Proposition 1.6.1 Let (w,®) be an N-map IFSM and let T be the associated [FSM

operator. Suppose:
i) Vu € LP(X,p),uow;' € LP(X,p),1 <k < N and
i) ¢ € Lip(R),1 <k < N.
Then for 1<p<oo,T: LP(X,u) - LP(X, ).
Proof Let 1<p<ocandu € L[P(X,u). Let 1<k < NI.vBy i), uowg' € LP(X,u), and

hence by #i) ¢rouow;! € LP(X, ). Therefore Tiw gyu = Y ‘drouvow;' € L(X,pu). A
k=1

We now show contractivity of Tw,s) under certain conditions. Let M(X) denote the

set of finite measures on B(X), the Borel sets of X.

Proposition 1.6.2 Let (w,®) be an N-map IFSM such that ¢i(t) = ar €R for allt € R
and 1 < kK < N. Then Vp € [1,00) and p € M(X), the associated IFSM operator T is
contractive on LP(X, u), with contractivity factor cr = 0. Furthermore, its fized point ar

s

N
i =) 0Xa,(xy
k=1
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Proof Let u,v € LP(X,u). Then

N
’ -1
Tu=§ &r o uowg

k=1
N
=Y _0Xg(x)
k=1
Therefore,
N P 1%
7w~ Toll, = [ [ [ elww @) - otz @) due)
X k=1

-

|

]

) Xk = ‘liIk(X)

N
<3 [ [ Iouatwr @) - sutotwr @I dute)
k=1 k

=3 [l - auPdu(a)

k=1

=0. |

Proposition 1.6.3 Let X C R?, D € N*, and let p = m'D) be the Lebesque measure on
R? and d be the usual Euclidean metric. Let (w,®) be an N-map IFSM such that, for
1<k<N,

i) wi € Sim,y (X, d) with contractivity factor ¢ and
i) ¢r € Lip(R), with Lipschitz constant K.

Then for p € [1,00) and u,v € LP(X, u), we have

[|Tw — T'U”p < C(D,p)“u - ””pv

N o
where C(D,p) = 3¢, "PK.
k=1



CHAPTER 1. FRACTAL TRANSFORMS 38

Proof Let u,v € LP(X, u). Then

L 10

P
dr

N
ITu — Toll, = [ 3 e (ulwit (@) — de(v(wi (@)
X k=1

Yl

N -
s Z [ | e (u(wi () — de(v(wi (=) d:n-
D/p [ |6e(u(y)) -—¢k(v(y))|"dy]

< Zc"’*’m[ u(a) —v(y)l"dy]

k=1

=D, plu—-vl, ™

Hence, if C(D,p)< 1, T is contractive on LP(X, 1) and has a unique, attracting fixed

point. It is not necessary that all [FS maps be contractive (in the base space X) for T to
be contractive. The contractivity of the ¢, (in the grey-level range) can contribute in this
aspect [20].
Example 1.6.4 Let X = [0,1] and g be the Lebesgue measure on X. Let wi(z) =
Hr+i-1),1=1,2,3. Let ¢1(t) = 3t,da(t) = },03(t) = 5t + 3, for t € R. The fixed
point of this IFSM is the Devil’s staircase, which is continuous almost everywhere on X
and differentiable on X\ €. The attractor @ is shown in Figure 1.2.

Given two N-map IFSM (w,®;), ¢ = 1,2, where ®&; = {¢;,,és,,-.- ,di,}, define the

distance ? between the grey-level components by

dg (®1,9;) = sup sup [pue(t) — dar(t)].
1<k<N teR

3This function will be a metric when X is compact.
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Figure 1.2: The Devil’s staircase. This is also the distribution function F(z) = j: dp of
the Cantor-Lebesgue measure u.

The following result from [20] establishes the continuity of fixed points for IFSM (c.f.
Theorem 1.1.18).

Proposition 1.6.5 Let (w,®,) be an N-map IFSM with fized point 4, € LP(X,u). Then
given € > 0, 30 > O such that for all N-map [FSM (w,®;) with dY(®,,®;) < 8, then
|Z1 — #2llp < €, where @, is the fized point of (w, ®2).

Proof Let Y = L?(X, u) and T; be the IFSM operators of (w, ®;), ¢ = 1,2 with contrac-
tivity factors ¢;. Then

d(T,Ty) = sup [|1T1u — Thul|,
uc

= sup ( /
ucY X

P 1/p
da:)

N [
Y du(u(wi(z))) — por(u(wi(2)))
k=1
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N 1/p
< ﬁggg ( /x | (uw (@) - ¢2,,(u(w,:1(:c)))|pd2:) , Xe=wil(z)

N
<Y u(Xi)PdE (81, 8,)

k=1

=M.

The result then follows by setting § = €(1 — ¢)/M, where ¢ = min{c;,c;} and using
Corollary 1.1.19 on page 11. |

1.7 Inverse Problem Using IFSM

In this section we present a formal solution to the Inverse Problem for IFSM. Consider the

following formulation:

Question 1.7.1 Forv € LP(X,p) and € > 0, can we find an [FSM (w, ®) with associated
operator T such that ||v — Tv||, < €?

A formal solution was obtained in [20] by constructing sequences of N-map IFSM

(wV, @), N =1,2,3,... where w” is chosen from a fixed set W of contraction maps.

Definition 1.7.2 Let W = {w,, ws, ...} be an infinite set of contraction maps on X. Then
W generates a pu-dense and non-overlapping, or u-d-n, family of subsets of X if Ve > 0
and VB C X, there erists a finite set of integers i > 1, 1 < k < N such that

i) A=Ul w;, (X)C B;
it) u(B\A) < € and

) p(w; (X) Nw;, (X)) =0 whenever k #1.
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e

—1
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‘0 1

Figure 1.3: The set B is the union of the solid lines on the vertical axis. The set A is the
union of the lines (projected onto the vertical axis).

o

Example 1.7.3 Let X = [0,1] with Lebesgue measure. Let w;;(z) = 27%(z + j — 1),
i=1,2,...,1<j < 2. For each i > 1, the set of maps {w;;,1 < j < 2} is a set of 2
contractions of [0, 1] which tile [0,1]. Then W = {w;;} is y-d-n. Figure 1.3 illustrates the
idea.

Now, suppose W = {w;}, with w; € Con, (X, d), generates a y-d-n family of subsets of
X. Let

wNz{wlvw%“'in} N=1a21-*-1

denote the N-map truncations of W. Assume that for each k € N+, ¢, € Lip(R) is the

associated grey-level map of w; and let

Y = {¢1,¢2,... . dx}-
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Let TV : LP(X,u) — LP(X, us) be the associated IFSM operator of (w",®"). Then the
following result holds:

Theorem 1.7.4 Let v € LP(X,u), 1 < p < 0o and W as above. Then
. . _ TN —
Nh_xgomfllv T%v||, =0.
Proof A proof can be found in [20]. @

Using this result and Example 1.7.3, we are now in a position to develop an algorithm
for the construction of IFSM approximations of target functions v € LP(X,g). Then,

given an N-map IFSM (w, ®) on (X, d) with associated operator T', we have the squared

L? distance
A? = |lv — T3
. 2
-/ (): "x(v(wi(2))) ~ v(z)) du(z). (L6)
X \k=1

With the formal solution in mind, we assume the IFS maps w; are fixed and search
for grey-level maps ¢, which minimize A2 for the given target v. This is the key idea for
[FSM [20].

For computational simplicity, assume the maps w; and ¢ are affine. The pair (w, &)
will be called an affine IFSM. Assuming that ¢x(t) = axt + B Vt e Rk =1,2,... N,
then

N

Tuz) =Y ' [a,,u(w,;l(x)) + mxwk(x)(x)] . (1.7)

k=1
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If X € RP, then by Proposition 1.6.3 on page 37, Yu,v € LP(X, u),

|Tu — Tvll, < C(D,p)lle—vllp

N
with C(D,p) = Zc,?/ Pai. Hence, if C(D,p) < 1, T is contractive on LP(X, ) and has a
k=1
unique fixed point .
Example 1.7.5 If 8y =0 for 1 <k < N, then @y =0.

Example 1.7.6 If X = [0,1], wi(z) = axz + b, 1 < k < N, and T is contractive with
fixed point @p, then by Equation (1.7),

N
, _ fxz—b
ur(z) = Z axiir ( k) + BeX oy, () (2)
k=1

G
N
= Z 'akzb,,(:r.) + ﬁk(bk(z)'
k=1

Therefore, ir is a linear combination of piecewise constant functions ¢, and functions
e, which are dilations and translations of #r. * This idea is reminiscent of the wavelets
relations and will be discussed in Chapter 2.

By the following theorem, it is sufficient in practical situations to study the subclass of

affine IFSM [20].

Theorem 1.7.7 Let X = RP and let p € M(X). Given p > 1, let L}, (X, u) C LP(X, p)
be the set of fized points of contractive N-map affine IFSM on X. Then L% (X, p) is dense
in LP(X, p).

Proof For simplicity, we prove the result for D = 1. Let S be the set of step functions
on X. Then, given ¢ € S, get N, with 1 < NV < oo, a set of numbers & € R and intervals

4If f : R — R, then given a € R, f(a-) is called a dilation of f and f(- — a) is called a translation of f.
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Je = [ar, 0] € [0,1], k=1,2,..., N such that

N
o= &X, .
k=1
Then, ¢ is the attractor of the N-map affine [FSM (w, ®) with

wk(z) = (bk - a,,):c + Qg
¢k(t)=€k1 ]-SkSN—

Thus, S C L% (X, p). But, since S is dense in LP(X, 1), the result follows. The argument in
higher dimensions follows in a similar manner, by replacing the intervals J; by appropriate

rectangles in R°. &

Now, suppose (w, ®) is an N-map affine IFSM with

i) wi € Cony(X) with contractivity factors ¢, >0 for1 <k < N;
i) UY we(X) =X, and
iii) ¢x : R = R, where ¢p(t) =t + G, tER, 1 < k< N.

Then, going back to Equation (1.6),

A2 =<v~Tv,v~Tv>

N N

= Z Z(( Ve, Y1 > aran + 2 < Y, Xp. > arfSi+ < X, X, > BrBr)
k=1 =1
N

=2 (< 0,9 > ot <0,%,> Bo)+ <v,v >,
k=1

where ¢, = vow;! and X, = Xy (x)- Then A? can be written as a quadratic form in the

parameters oy and G as
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A% =xTAx +bTx +c,

where xT = (a1,... ,an, b1, --. ,Bn) € R®¥. Minimizing A? is a quadratic programming
(QP) problem in the oy and Gi. A detailed discussion is given in [20, 49].

We end this section with a few examples of approximations which demonstrate the
application of IFSM. The second example reveals a problem with this method.
Example 1.7.8 Let u(z) = sin(z) and X = [0,1]. The approximations of u are given in
Figure 1.4. The maps w; map X to evenly divided subintervals. For example, in the case

of 2 maps, w1(z) = z/2 and wa(z) = /2 + 1/2. The following table gives the L? distance
between u and the approximations.

Number of maps Distance File size (bytes) Computation time (sec.)

u 0.0 30878 n.a.
2 0.0199362 42 1.17
4 0.0191687 82 1.17
16 0.0188445 320 1.17

In this case, the results are quite nice. This happens since the parts of the function on the
subintervals are similar to the entire function.

Example 1.7.9 Let u(z) = sin(nz) and X = [0,1]. Consider the approximations in
Figures 1.5. The following table gives the L? distance between u and the approximations.

Number of maps Distance File size (bytes) Computation time (sec)

u 0.0 30768 n.a.
2 0.307759 39 1.13
4 0.158104 82 1.13
16 0.0400456 339 1.17

Here, it is difficult to get a good approximation since the best fits are given by piecewise
constant functions.
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Figure 1.4: IFSM approximations of u(z) = sin(z).
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Figure 1.5: IFSM approximation of u(z) = sin(rz) with 2, 4 and 16 range blocks.
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The problem described above arises in most situations, when the smaller portions of
an image are not similar to the entire image. However, this situation can be remedied by

considering local IFSM.

1.8 LIFSM
A method, which in general yields better approximations than IFSM, is the method of
local IFSM (LIFSM) [20].
Definition 1.8.1 Let X CRP and u=m'?) . Let . c X, k=1,2,... ,N, such that
i) UX_ Ji = X (covering condition) and
i7) p(J;N Jx) =0 when j # k (n-non-overlapping condition).

Suppose also that VJi, 3;) C X with an associated map wigyx € Con(X,d) with con-
tractivity factor cj)x such that

Witk) & (Lik) = Ji-

The set Ji is called the range block of the domain block I;k). ® For each Wjk)k, let
o1 : R — R be an associated grey-level map. Then define

Wioe = {wig)15-- - winyn}  and @ ={¢,...,¢n}.

The pair (Wise, ®) is called an N-map local IFSM, or LIFSM. The associated operator
T sy~ F(X) = F(X) is defined by

o de(u(wyy ) € J\ U, Ji(X),
ﬂw,&)“(x) = (k)& ,I#
T otherwise.

5 Often, one calls the domain blocks “parent” blocks and the range blocks “child” blocks.
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A result similar to Proposition 1.6.3 can then be obtained:

Proposition 1.8.2 Let X C R and pp = mP). Let (Wioe, ®) be a LIFSM as above with
#: € Lip(R) for 1 < k < N and let T"* be the associated LIFSM operator. Then, for
u,v € LP(X, p),

“Tlocu - Tloc”p S Cloc(Ds p)”u - v“Pa

N 1/p
where Cio(D,p) = (ECj(k)'kKZ) . Thus, if Ciwe(D,p) < 1, T'¢ is contractive on
k=1

LP(X,p) and has a uni;q_ue fized point.
Proof The proof is similar to that of Proposition 1.6.3 on page 37 and is omitted. ®

Now, suppose X = [0,1}?, u = m(P} and v € L*(X, u). Then, given an N-map LIFSM

as above, the squared collage distance is given by

A = [T ~ |}

N
=3 [ et @) - voPds

k=1 Yk

N
= Ak

k=1
It is therefore sufficient to minimize the A%, , individually for each range block J. In

the case where the maps ¢ are affine, this becomes a QP problem [20].

To apply this idea to the Inverse Problem, consider the following:
i) X C RP, u=mP d usual Euclidean metric;
i) wp € Simy(X,d), with X = UY_, X, where Xi = wi(X) (covering condition);

iii) u(X:N X;) =0 when ¢ # j (u-non-overlapping condition) and
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iv) @ : R — R are affine with ¢x(t) = axt + G, t €R

Then

Al = / [arv(w i (z)) + B — v(z)]du
Xk
= [ fowv(e) + B~ v(wi @)
As before, with the formal solution of the Inverse Problem in mind, assume that the w;

are fixed, and hence for each k£, A, can be viewed as a quadratic form in the parameters

oy and Bi:

CI:DAz = ||v|]§ai + 20l |v] 1 +ﬁ£ —2<v,vouwr > ax

— 2||v 0 wi||1 Bk + |[v o w3

The problem can be viewed as a least squares minimization of A; with respect to a;

and . Set

ony _ ong _
aa,,-aﬂk -

Then

llvl3ax + ||[v]]18k =< v o wk,v >,

[lv[lyax + Be = [|v 0 we|y,

fork=1,2,...,N.
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Then, if D, = [|v||? — |[v]|3 # O, the solutions are given by

ar = DY (< vowg, v > —||vowl ||v]1)

B = D7 (Ilvllz llv o welly ~ llull < v o we, v >),

for1<k<N.

When considering images, the condition that ¢; : R¥ — R* would be needed. This
forces ag, B 2> 0. It is not guaranteed that the a; and G; given by the above method will
be nonnegative. However, if we consider an image to be a function defined on a compact
subset A of R, the condition on the a) and S could be relaxed, with ¢ (v(zx)) still being
nonnegative on A.

Hence, given v € L?(X, u), fix N; range blocks J, 1 < k < N;, and N; domain blocks
I;, 1 < j £ Nr. For each range block Ji, minimize the distance AZ,, for each domain
block I;, 1 < j < Ni. Then, let I be the domain block for which Aj) . is minimized
over the domains. The values of I;), and the associated parameters ax and G, are then
stored, for 1 < k < N;. These values are called an [FSM approximation of v.

Example 1.8.3 Consider the function u(z) = sin(rz) for £ € X = [0,1]. Some approxi-

mations to u using the LIFSM method are shown in Figure 1.6. The following table gives
the L? distance between © and the approximations.

Domains Ranges Distance File size (bytes) Computation time (sec)

u n.a. 0.0 30768 n.a.
2 4 0.0266135 82 1.16
2 8 0.0144324 162 1.18
2 16 0.00762873 322 1.18
4 16 0.00131272 324 1.24



CHAPTER 1. FRACTAL TRANSFORMS

08

06 |

04}

02t

08

06

04

02 r

- < -
24
e ™~
Ve N
/ \
4 y
-~ ~N
Vg N
I, \\
/ 5
Vs ~
I A Y
1 A
Id \‘
02 0.4 06 0.8
< 2:16

0.6

52

1 ~T / \ T ve
s~ ™
08} //
7 ~N
06 } / A\
/ \
!
14
04 ¢ ." Y
Val ~N
/ Y
02} / k
4
/ Y
0 / L L N . B
0 02 0.4 0.6 0.8 1
1 — .
4:16
o8} ]
06}
04} ;
02} \ :
o s e L r
0 02 0.4 06 0.8 1

Figure 1.6: LIFSM approximation of sin(rz) with block ratio (D:R) from left to right, top

to bottom, 2:4, 2:8, 2:16 and 4:16.

Comparing these results with the IFSM case shown in Example 1.7.9, the strength of
LIFSM is revealed.



Chapter 2

Wavelets

This chapter will deal with function approximation in a different way, using wavelets (c.f.
Example 1.7.6). Our general goal is the representation or approximation of arbitrary target

functions by functions which we know. An often used method is through bases.

2.1 Hilbert Space Background

Notation 2.1.1 Let (H, <-,->) denote a Hilbert space over R with inner product <-,->.
The norm of f € H is ||f|| = /<[, f>. The distance between f,g € H is d(f,g) =

If = gll-
For simplicity, the Hilbert space of focus in this thesis will be L2(R), the square inte-

grable functions on R, with the usual inner product.
Definition 2.1.2 Two elements f,g € H are orthogonal if < f,g>= 0. Write flg to
denote this fact. An element is called normalized if it has norm 1. A set {h,} C H is

orthogonal if all pairs of distinct elements are orthogonal. It will be called orthonormal if
it is orthogonal and all its elements are normalized.

Example 2.1.3 Let H = L?(0,x). For n € N, let h,(z) = sin(nz) for z € (0,7). Then
{h,} is an orthogonal set.

53
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Example 2.1.4 Let H = L?[0,00). Forn € N, let h, = X, ... Then {h,} is an
orthonormal set.

Definition 2.1.5 If M is a subspace of H, define M*, the orthogonal complement of M,

as
M*={feH:<fm>=0 Vme M}.

Proposition 2.1.6 If M is a subspace of H, then M is a subspace of H and if M is
closed, H = M & M*, the direct sum of M and M*.

Recall the definition of a projection:

Definition 2.1.7 Let {h,} be an orthonormal set in H and let M = (h,), where (h,)
denotes the linear span of the set {h,} and A denotes the closure of the set A. Then, the
function Py: H — M defined by

Puf=) <fiha>ha

is called the orthogonal projection of H onto M.

The following proposition lists a few basic facts about Py:

Proposition 2.1.8 The function Py is well-defined, linear, continuous and idempotent
with respect to composition. In addition, Pyf = f <= f€ M and Pyf =0 < f ¢
M*.

Recall the following important theorems from Hilbert space theory. Standard proofs
can be found in [4, 8, 44].

Theorem 2.1.9 (Pythagorean Theorem) If f,g € H and fLlg, then

Lf +gll> = LA + llgll? -
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Theorem 2.1.10 (Bessel’s inequality) Suppose (h,) is an orthonormal sequence in H
and f € H. Then ||fI* > 53| <f,ha> .

n=1

Corollary 2.1.11 If {h,} is orthonormal and f € H, then }__, < f,ho > h, converges. In
addition, if f =" caha, then co =< f,ho>.

Definition 2.1.12 A basis of H is a mazimal orthonormal set in H. That is, {ho} C H
is a basis if no element f € H, f # 0, is orthogonal to each of the h,. A basis is also
called a complete orthonormal set.

Theorem 2.1.13 (Parseval’s equality) Suppose {h,} is a complete orthonormal set
and f,g € H. Then

< frg>=)_ cadn,

n=0

where ¢, =< f,h, > and d, =< g, h,, >. Therefore,

FIP = leal®.

n=0

Example 2.1.14 The trigonometric system {;-e"*},¢z is a complete orthonormal set on
L (~m, 7).

Theorem 2.1.15 Every Hilbert space has a basis {ho} and H = {(h,).

Definition 2.1.16 If {h,} is a set such that

H = (ha)a
but is not orthonormal then {h,} is called complete.

The next example will be important in motivating the definition of a large class of bases

for L?(R). This example is the Haar basis [51).
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Example 2.1.17 (The Haar Wavelets) Let H = L*(R) and let ¢ = X5 ,). We wish to
use ¢ to construct a basis of L?(R). For each nonzero n € Z, ¢(t —n) Lé(t). This is trivial
since the supports of the two functions are disjoint. The set {¢(t — n)} is not a basis of
L?(R) since the set

Vo = (¢(t—n):n € Z)
consists of piecewise constant functions with jumps only on Z.

Consider the dilated and translated versions of ¢(t)
#(2"t—n), m,neZ.

Given m € Z, the set {2™/2¢(2™t — n) : n € Z} is orthonormal, since the supports of any

two distinct functions in it are disjoint. For m € Z, let V,,,

Vi = (2™2¢(2™t — n) : n € Z).

Then, the space V = Upn,ezVin consists of piecewise constant functions with jumps at dyadic
rationals. As these functions are dense in L?(R), we have that V = L?(R).

Define ¢mq(t) = 2™/2¢(2™t — n) for m,n € Z. Then {@mn} is complete in L2(R).
However, < g0, @10 >= 715, therefore, {¢ .} is not orthonormal. To solve this problem,
let Y(t) = ¢(2t) — #(2t — 1). Then {9(t — n)} is orthonormal and (2t — k) Ly(t — n)
Vn, k € Z. Therefore, we obtain the following theorem:

Theorem 2.1.18 Let Y, n(t) = 2™/24(2™t —n) for m,n € Z. Then {Ym .} is a complete
orthonormal system in L*(R).

Proof The proof for general functions of this type will be given later (see Proposi-
tion 2.2.11). ]
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' (t)

Figure 2.1: The mother wavelet ¥(t) of the Haar system.

The set {{ynn} is called the set of Haar wavelets. The function 7 is called the mother

wavelet and is shown in Figure 2.1. We see that V,, = (¥, :k,n€ Z,k <m —1). The
standard approximation of a function f € L?(R) is

m—1 co

fm= z Z <f:¢k,n.>¢k,n~

k=—ocon=-co

Therefore, f, € V,,. By Parseval’s equality, we have

m-]1 o

<fm!¢m,n>= Z Z <fawkj><¢k,jy¢m.n>

k=—o00j=—00

=<f, dmn>.

Hence, f = Py, f, that is

o0

fm = Z </ ¢m,n> ¢m,n-

n=-—o0c
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We therefore obtain a strong result on the convergence of the approximations.

Proposition 2.1.19 Let f be continuous on R with compact support; then f, — f uni-
formly.

Proof Since f has compact support, it is uniformly continuous. Therefore, Ve > 0 we can
find an m such that

|f(z) = f(y)| <€ when [z —y| <27™

Now, for each n € Z and = € [n2™™,(n + 1)2™™) we have

2" (n+1)

fulz) = 27 / F(§)2"2 4™z — n)dt

2—™mn

by definition of ¢,, - Then, by the Mean Value Theorem,

fm(z) = 2™2(f(c)27™)2™2(2™ 2 — n)
= f(o),

for some ¢ € [n2™™, (n+1)2™™). Since |z —¢c| < 2™, |fm(z) — f(z)| < €, as required. [

The Haar system is an example of a wavelet basis of L2(R).

2.2 Multiresolution Analysis

A wavelet has been defined by Meyer [38] as an integrable function ¥ whose integral is

zero such that
I e , _ |
0 t

for all £ # 0 where 4 is the Fourier transform of ¥. Recall the following definitions:
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Definition 2.2.1 The (infinite) Fourier transform of the function f € L'(R) is
fw) = /R f(t)e=dt, weR
If the transform is in L'(R), then the inverse is given by
£ =5 /R fw)etdw, teR

For f € L?(R), Parseval’s equality yields the following two relations:

| B 1 z
2 _ 2 — -
AP = lfIF and < fig>=5-<f3>
Example 2.2.2 The Fourier transform of the Haar mother wavelet given in Section 2.1 is

Bw) = = [2e 1 -]

A complex parametric plot is given in Figure 2.2.

Orne way to obtain wavelet bases like the Haar basis is through multiresolution analysis.

Begin by considering regular functions [51].
Definition 2.2.3 Let S be the space of all C*(R) functions 0 such that

69)()| < Cor(L+[t)® pkENLER, (2.1)
where %) denotes the k-th derivative of 6, with convergence given by the semi-norms

Yok = sup(1 + [£])” 6% (2.

The space S is called the space of rapidly decreasing or regular C*(R) functions on R. !

1 This is sometimes called the Schwartz class.
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The Fourier transform of ¥, the mother wavelet of the Haar system.
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In S, 6, — 6 whenever
(1+ [¢])*D*(8.(t) — 6(2)) — 0

uniformly in ¢ Vp,k € N as v — oo. Here, D is the derivative operator.

Example 2.2.4 Hermite functions on R, defined by
8—33/2

N

and (£ — D)hn(z) = V2n +2hai1(z),n € N,z € R, are in S. Therefore, since these
functions form an orthonormal basis in L*(R), S = L*(R) [4]-

ho(z) = z€eR

Example 2.2.5 All C*(R) functions of compact support are regular.

The Haar scaling function does not satisfy Equation (2.1), but satisfies a less restrictive

condition.

Definition 2.2.6 Forr € N, let S, be the space of all § € C™(R) satisfying Equation (2.1)
for all k < r and for all p € N, with the topology restricted by k < r. Functions in S, are
called r-regular.

Example 2.2.7 The function ¢ of the Haar system is in Sy.

We now define the concept of a multiresolution analysis, or MRA of L?(R). This
will allow us to construct more wavelet bases. More general definitions can be found
in [7, 32, 35, 38].

Definition 2.2.8 Let ¢ € S,. The function ¢ defines a multiresolution analysis, or MRA,

of L*(R), and is called a scaling function, if there is a nested sequence of closed subspaces
{Vin }mez satisfying the following conditions:

i) {¢(t — n)}nez is an orthonormal basis of Vj;
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i) ...cVacVWcacWc...c AR);
i) fEV, = f(2-)eVau VYmeZ;

3 TV = r2
iv) and mUesz = L*(R).

The map T : V; — V; defined by f — 2f(2-) is an isometric isomorphism from V; to
V1, hence {v2¢(2t — n)} is a orthonormal basis for V;. Therefore, since ¢ € V4,
#(t) = hV26(2t—k) VteR, (2.2)
keZ
where {hi} € £2(Z). Equation (2.2) is called the dilation equation and the coefficients {h;}
are called the dilation coefficients of ¢.
Usually, the condition that
n Vi = {0}
mez
is included in the definition. It was shown in [31] that this property follows from the

definition given above.

By what was shown earlier, the Haar system satisfies this definition for r = 0. Another

example is the Shannon system.

Example 2.2.9 (The Shannon Wavelets) Let ¢ be the Fourier transform of a function
resembling the scaling function of the Haar system. That is

é(w)z{l if~-a<w<rm

0 otherwise.
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Then

_..i 7 iwt
80 = 57 [ Hwlev
1 T
=g -2——1; .
__sinwt

=

e“tdy

Then for 0 #n € Z,

[ s0dE=mar = 5 [ d)d)emas
— l "
=
__sinwn
- n

=0.

e“"dw

Notation 2.2.10 Let f be a function from a set A to R. Then the support of f, supp(f),
is defined as

supp(f) = {a € A: |f(a)| > 0}.

Let f € L*(R) with supp f C [—«,7]. Then

fw)=Y cie™ |w| <,

neZ
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where ¢, = & [7_ f (w)e ™"dw = f(—n) by the Fourier integral theorem. By the same
theorem,
R PN
fO)=5-] fw)e*dw
~5 S f(nlere s
Zf(_ sm1r(t+n)

= “w(t+n)

The last equality is often referred to as the Shannon Sampling Theorem. Hence Vy =

(#(t —n) : n € Z) is the set of all such functions. Therefore V; is a closed subspace of
L?(R) and 7) of Definition 2.2.8 is satisfied.

Now consider g(z) = f(2z), where 2z = t. Let V} be the space of all functions g
such that f € V5. These functions have Fourier transforms vanishing outside of [—2, 2x].
In this manner, construct an increasing sequence of spaces V,, = {V2f(2-) : f € Vin_1}-
Functions f € V;, have Fourier transforms which vanish outside [—2mn, 2m=]. Similarly,
by letting = /2, we can construct a decreasing sequence of spaces V;, for m < 0. These
spaces will contain functions with Fourier transforms vanishing outside [—n/(2m), 7/(2m)].
Hence properties iz} and #4i) of Definition 2.2.8 are satisfied. We obtain condition iv) since
the supports of the Fourier transforms expand to R as m — oo.

In a similar fashion to the Haar system, we can construct the function v in V; which
is orthogonal to ¢(- ~— n) for all n € Z by letting 9 (t) = 24(2t) — ¢(t). Figure 2.3 shows
the graphs of ¢ and v. These form the Shannon system. 2

Three general approaches have been used to construct MRA [51]:

2A smoothed version of the Shannon wavelets are the Meyer wavelets and are given in [38, p.66].
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i) Begin with an existing MRA {V,,}mez then try to find an orthonormal basis. For
example, let V; be defined by a Riesz basis of translates of a fixed function {#(t—n)}.

Then use the orthogonalization procedure of Lemarié and Meyer to find an orthogonal

system {¢(t —n)} [29].

ii) Choose dilation coefficients (ki) such that all the requirements of a MRA are satis-

fied [51, pp.32-33].

iii) Choose the Fourier transform of ¢(t) such that it has compact support and the
transformed versions of i)-iv) and of the dilation equation are satisfied [51, pp.30-
32].

Once a scaling function ¢(t) has been found, we wish to use it to construct a mother
wavelet, P(t). We want ¥(t) to satisfy the property that {¢(¢ — n)} is an orthonormal
basis of Wy = VOLV‘, where A12 denotes the orthogonal complement of A in B. Then

W1 = Vp & Wp, hence we want the functions
Vmn(t) = 2™2H(2™t — n)
to form an orthonormal basis of W,, = V,,J." Ym+l The following property is therefore satis-
fied:
Proposition 2.2.11 @ W,, = L*(R).

meZ
Proof We have for m € Z,

Vm+1=Vm®Wm
=VieWoW,...0W,..
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Since Lejzv"‘ is dense in L?(R), then

% (8 W) = L'(R).
Similarly

Ww=V,0eW_,
=V.eoW_ .. dW_,.

Taking the limit as £ — oo, an recalling that rng,,. = {0}, V_x — {0}. Therefore
m!

P W, = L3(R). .
meZ
Hence the following corollary is obtained:

Corollary 2.2.12 The set {{n}mnez is an orthonormal basis of L*(R).

As in the case of ¢(t), there are two methods for constructing a mother wavelet (t).

The first is similar to the construction of the Franklin scaling function [51, p.34-35]. The

second is to note that
¥(t) = V2 ho(~1)*6(2t ~ k) (2.3)

satisfies the necessary orthogonality conditions [15, p.135].

2.3 Convergence of Wavelet Expansions

Before going further in our study of wavelets, we must see whether they are indeed worth
our attention. In view of our goal of approximating functions, we would like to have

nice results for the convergence of wavelet expansions. Recall the large amount of work
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necessary to get nice convergence results for trigonometric series. Even then, one finds

examples such as the following:

i) There is a continuous function f : [—m, 7] — R such that its Fourier series S(f)=

m -
Y. cqe™ is pointwise divergent at a dense set of points [55, p.300].

n=-—00
ii) Even with summability methods, convergence for smooth functions is not much more

rapid than for other continuous functions [55, p-122].

Proposition 2.1.19 on page 58 suggests that wavelet expansions might have much nicer
convergence properties than those of trigonometric series. We will demonstrate some
of these in this section. Much of classical approximation theory is based on delta se-

quences [51, p.116]. For convenience, we make the following definition:
Definition 2.3.1 A tempered distribution is an element of S*, the dual of S.

Example 2.3.2 Let f be a locally integrable function of polynomial growth. Then we can
view f € S* by defining, for 8 € S,

(f.0) = /R f(2)0(t)dt.

Another example is the delta function.

Example 2.3.3 The delta function, or more correctly delta distribution, d,, a € R is the
element of S* satisfying

(ba f) = fa) VfeS.
Denote §y by 4.

Definition 2.3.4 A delta sequence is a sequence (0m(:,y)) C S* such that 6.(-,y) — &,
in S*.
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Example 2.3.5 The Dirichlet kernel D,,(-, y):

sin [(m +3) (z ~ y)]
2msin (25%)

Du(z,y) = X x)(T — ¥)-

We consider a subclass of such sequences, namely quasi-positive delta sequences, and

derive some interesting convergence results.

Definition 2.3.6 A quasi-positive delta sequence, or QPDS, is a sequence (6 (-, y)) C
L'(R),y € R such that

i) 3C > 0 such that

/IJm(x,y)|dz§C VyeRmeN;
R

#7) 3¢ > 0 such that

y+e
f Om(z,y)dz > 1
v

—c
uniformly on compact subsets of R as m — oo.
i) Yy > 0,

sup |[Om(z,y)| >0
[z—yl>y

as m —» 00.

Example 2.3.7 Let F,,(-,y) be the Fejér kernel. That is

sin? [("‘.._'H-) (z — y)]
2(m + 1;1r sin? (%) x[—w,ﬂ(x —y).

Fm(.’.!:, y) =

In fact, the Fejér kernel satisfies the stronger conditions of a positive delta sequence [51,

p.132]. It will be shown later that the Dirichlet kernel is not a QPDS.
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The following result indicates that QPDS may be useful for approximations:

Proposition 2.3.8 Let (0n(-,y)) be a QPDS and f € L}(R) be continuous on (a,b). Then

fmly) = fk bn(z, ) F(2)dz = f(3)

as m — oo uniformly on compact subsets of (a,b).

Proof A proof may be found in [51, p.118-119]. @&

To see the relevance of these sequences for wavelets, consider for m € Z the approxi-

mation f,, to f € L*(R):

fa@) = < Fibmn > bmnl)

=2 UR f(z)2m2¢(2mz — ")dw] 2™/24(2my — n)
= ‘/R [2"' Z ¢(2mz — n)p(2™y — n)] f(z)dz. (2.4)

Let gm(z,y) = 2™, #(2™z ~ n)¢(2™y — n). If f € V,, then f,, = f. This implies that
each of the spaces V;, is a reproducing kernel Hilbert space. For a more detailed discussion

see (2, 52]. The reproducing kernel, or RK , of V, is
a(z,t) = ¥ FE = me(e - n).
By Equation (2.4), the RK of V,, is

gm(z,t) = 2™g(2™z, 2™¢).
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Similarly W, has RK

rm(z, t) =2 thﬁ@mt - n).
By the regularity of ¢, the series defining q(z,t), and its derivatives with respect to ¢ of

order < r, converge uniformly for z € R

Example 2.3.9 For the Haar system, ¢ = X(0,1)> SO

q(z,t) = Z Xio.1)(T — ")X[o.1) (t —n)

_ 0 ifz,t¢[n,n+1)forsomene€Z
1 otherwise, that is z — [t] € [0,1),

where [t] is the greatest integer < t. Therefore ¢(z,t) = ¢(z — [t]) for z,t € R.
It will be shown that (g (-, 7)) is a QPDS. In this aim, consider the following result [51):

Theorem 2.3.10 Let ¢ € S, generate a MRA {V,.} and q,.(z,t) be the reproducing kernel
of Vin. Let 8y, denote the Kronecker delta. If $(0) > 0, then

i) [ro(y)dy=1;
i) $(2mk) = or, k € Z;
i) ). dlz—n)=1lLz€eR;

w) [ra(z.y)dy=1,z€R



CHAPTER 2. WAVELETS 72
Proof Proof of i): Let m € N and f(w) = Xjo,1j(w). Then
@ = [ am(a Of 1
R
1 .
= 55 L tn(@ ) flw)do
-1 / ' 2"‘Z¢(2’"1: - n) [ o2t —n)e“"‘"dt] dw
21 Jo ~ R
1 [t o (g=mysg—
- = oMy _ —~iw(2~"y+2 "‘n)d ] dw
[, Toanz—m | [ swe y
1 [t f2 =y w2
_ = 9me —iw2™ My ~iw2 "‘nd J dw
g [ Some =) [ [ st mrersaray
1 [T - -
=5 /0 Z¢(2"‘x —n)p(w2 ™)e ¥ " duw.
Let

A =< frrn ¢k,l >

1 22—
= / (g / Z<J5(cd2‘"‘)e"““2 "¢(2”‘x—-n)dw) dri(z)dz

1
21r

1 ~m
= [21r/ 2-m/2¢(w2—m) —in2 ""dw] Jm&m

2—m/2¢(w2—m) —in2~ "‘wdaJZ/2m/2¢(2mx n)zk/2¢(2k )dx
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Hence, by Parseval’s equality,
£l =Y lawl?
kl
= Z Iam.n|2
" 1\2 1 S 2
B ) ([

1 2mr N e-—iu2""‘w 2
-1 ~m) Flw) e dw
2m & /_2.,., $w2™) f(w) V2mHiy

However, since {e~™2 "%/y/2m+lr} is orthonormal on [~2™w,2™n], we use Parseval’s
equality to get

2mr

falP = 5 [ |Bwr ™) )] d

—omy
L[5 2| dw
= fo l¢(w )| .
Then, since ¢ is bounded and continuous,
L (130 dw = lim 2
3 | [P0 dw= lim 115
= || £II?

1 1 2 2
= — dw
5 | 17

1

—

2%

Hence, as 45(0) >0, q3(0) =1, and

fR b(y)dy = $(0) = 1.
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Proof of i): By the orthonormality of {$(t — n)}, we have
Som = [R 8(t — n)(t)dt
= 37 | d)emd(u)aw
~ 51; ; /o 7 6w + 2k Pe

1 2r R )
=3z= . E |p(w + 21k) e ™ dw. (2.5)
k

Let [¢3(w)[? = 3¢ [f(w + 27k)|2. Then Equation (2.5) gives the Fourier coefficients of
($3(w)[?. Hence

B3W)F = cne™ =1,
and therefore
3 p(w + 2mk)[F = 1.
k

Since $(0) = 1, then ¢(2rk) = 0 Vk # 0. Therefore i) is proved.
Proof of #i): Consider the Fourier series of

Z ¢z -n) = Z dpe’?™ =,
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Then

1
di = — ~2mikx d:
ke /0 ; #(z —n)e T

= j ¢(z)e~2"* =z
R
= (2nk)

= 60’:1

whence ) #(z —n) =1
Proof of iv): This follows immediately from :) and i) since

[R o(z, y)dy = [R 5 ote ~ m)oly ~ iy
=Xz —n) /R b(y — n)dy

=Y o= | sttt
=Y #(z-n)

=1. [ ]
Lemma 2.3.11 Let ¢ € S,, then Vm € N,3C,, € R such that

6200q(z, y)l S Cm(Q + [z —y)™ VO<La,B< T
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Proof Leta,8,me N with 0< «a,8 <r. Then

19295 a(z, )| < Z 192 ¢(z — n)|F é(y — n)|

Z m+2a Cm+2,ﬂ
T & (1+ |z —nf)m+2 (1+ly n|)m+2

Cm+za m+2,8 Z 1
T+ -y (1+l$ n|)2(1+ |y —n|)?’

where 8% denotes the a-th partial derivative with respect to z. The last sum is uniformly
bounded hence we can get C,, > 0 such that

10500q(z,9)| S Cu(L+[z—y))™ W

It now follows that (¢gm(-,¥)) is a QPDS:

Proposition 2.3.12 Suppose ¢ € S, generates a MRA and let g,, be the RK of V,,,. Then
(gm (-, y)) is @ QPDS.

Proof Use the previous lemma and Theorem 2.3.10.

1) We have

/ g (2, ¥)|dz = 2™ / 1a(2™z, 2™y)dx
R R
= / lo(z, 2™y)ldz
R
<G [ (1 + |z — 2™y|)%ds
R

=C, /l;(l + |z|)%dz

=C.
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iz) Let ¢ > 0, then for y € R,

y+c 2™ (y+c)
f gm(z, y)d = /2 oz, 2™y)dz

y—c ™ (y—c)
t42™c
= g(z, t)dz
t—-2mc
] t—2™¢c
=1- / q(z, t)dz — [ g(z, t)dz.
t+2™c —00

Now

e 1
<c / 1
2 Jorame 1+ (t — 7)?

© 1
= C. dr — 0
2/2n.cl+x2

o0
[ q(z, t)dz
t+2mc

as . — 0o. A similar argument shows that f::mc g(z,t)dr — 0 as m — oo.

1) Let v > 0, then for z,y € R with |z - y| > v,

lgm(z, y)| = 2™|q(2™z, 2™y)|

< 2”‘C’2

~ (14 2™z — 2my|)?

= BT+ o))
C;

< -
- 22m(2—m + .-y)2 0

as m — oo. [ |

An immediate corollary follows:

Corollary 2.3.13 Let f € L'(R) N L3*(R) be continuous on (a,b) and let f, = Py_f.
Then

fm——}fw
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as m — 0o, uniformly on compact subsets of (a,b).

Proof It was shown on page 70 that

fmly) = fR dm(2,9) f (¥)d.

The result now follows immediately from Propositions 2.3.8 and 2.3.12. [
It is of interest to compare this result with the following from Fourier analysis:

Theorem 2.3.14 Let f satisfy a uniform Lipschitz condition of order a > 0 in (a,b).
Then the Fourier series S,, — f uniformly in any subinterval [c,d] C (a,b).

Proof See [51,p.53]. @

Recall that the partial sums of the Fourier series of f are given by

Sn(z) = /R Don(z,9)f(w)dy,

where D,,(z, y) is the Dirichlet kernel given in Example 2.3.5 and that f satisfies a Lipschitz

condition of order a, a > 0 at z if there exists C > 0 such that

|f(y) - f(@)| < Cly — z|*

in some neighbourhood of z. The function f satisfies a uniform Lipschitz condition if the
condition holds with the same C for all z. 3

The Lipschitz condition cannot be relaxed since there are many continuous functions
with Fourier series converging everywhere, but not uniformly, and also some with divergent

Fourier series [55, p.298]. This leads to the investigation of summability methods like

3The name Lipschitz is often replaced by Hélder.
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Cesaro summability and Abel summability. These methods yield kernels which are QPDS.
and even positive delta sequences, which is a stronger condition [12, 51]. For the moment
then, it still seems that Fourier analysis yields the same type of convergence results as does
wavelet analysis. Our next goal will be to study the rate of convergence of the expansions

fm- It is here that we will see a major advantage of wavelets.

2.4 Rate of Convergence

We will need to introduce the Zak transform [25] and the concept of Sobolev spaces in

order to study the rate of convergence of the wavelet approximations.

Definition 2.4.1 Let ¢ € S,. The Zak transform Z¢ of ¢ is defined by
Zo(t,w) = e g(t ~n),

fort,w e R

Given ¢ € S,, it follows that Z¢(¢t,-) € C=(R) V¢ € R. By part iii) of Theorem 2.3.10,
Z¢(t,0) = 1, thus

e“t Z¢(t,w) = 1+ O(|w|).

In some cases, ¢(w) = 1 in a neighbourhood of w = 0, and ¢(w) = 1 + O(jw|*) for A
arbitrarily large. The same holds for Z¢. Thus for some A > 1, the following definition is

satisfied:
Definition 2.4.2 Let ¢ € S, be @ scaling function. Then ¢ satisfies property Z, if

i) d(w) =1+O0(jw|*) asw — 0;
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it) Z¢(t,w) = e (1 + O(|w|*) uniformly as w — 0.

In fact, it can be shown that if ¢ € S, then ¢ satisfies Z, if r > A — 1 and ¢%)(0) = 0,
k=1,2,...,A—1[51].

The rate of convergence of the expansions f,, to f will be studied using Sobolev norms.

Definition 2.4.3 Let a € R. The Sobolev space H* consists of all functions f € S* such
that

/ 1F(@)[2(w? + 1)*dw < oo,
R

Example 2.4.4 For o =0, H® = L*(R).

Example 2.4.5 Let o € N*, then H* consists of functions in L?(R) which are (a — 1)
times differentiable and whose a-th derivative is in L?*(R) [1].

The inner product of f,g € H* is defined by

<f.9>0= 5 [ F)TEIW + 1o

The space H* is complete with respect to this inner product, and is therefore a Hilbert
Space. We write || - ||, to denote the Sobolev norm on H*. The dual of H* is H~=. For a
more detailed discussion of Sobolev Spaces, see [44, 45).

We now come to our first convergence result [51].

Theorem 2.4.6 Let ¢ € S, be a scaling function satisfying property Z for some X > 0.
If qn(z,t) s the reproducing kernel of V,,, then

llgm (-, ¥) = (- = Y)||-a = O(27™)

uniformly for y € R, when a > A + 1.
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Proof The proof uses the following two lemmas [51]:

Lemma 2.4.7 Let ¢ € S,, with {Yma(z) = 2™*Y(2™z — n)} an orthonormal system in
L*(R). Then the k-th moment * of ¥,

/z"«,b(x)d:r: =0, 0<k<r.
R

Proof Proceed by induction on k. For k = 0, let N be a dyadic rational such that
¥(N) # 0. This is possible since 1 is continuous and since dyadics are dense in R. Choose
m > 1 sufficiently large such that 2™ N € Z. Then, by the orthogonality of the ¥, 5,

=2m /Rtp(:z:)tﬁ(Z”‘z: — 2™ N)dz
= f $(27™t + N)yp(t)dt. (2.6)
R

Since ¥ € S,, ¥(2~™t + N) is uniformly bounded, hence the integrand is dominated by a
multiple of [4(¢)|. Therefore, by the Lebesgue Dominated Convergence Theorem,

f

0

m~—0oo

lim / $(27™t + N)(t)dt
R

= | lim $(27™t + N)y(t)dt
R m—ro0

= o) [ wit)ae
Thus the case k& = 0 is proved.

Assume the theorem holds for £ < n < r. Choose N such that %™ (N) # 0. Then, by
Taylor’s Theorem,

n _ k _ n
#) = Sy E )

* Moments are used in many fields including branches of Fractal theory [24, 48].
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where 7,(z) is uniformly bounded and lim,_,y r,(z)(z — N)® = 0. Then by substituting
into Equation (2.6), we have

_ > (2-™t)* —m (2*"‘t)"
0= fx (g«p("’(N) 7t N) )w(t)

2 -mn tn

tﬂ
= y™(N) / 2~ —y(t)dt + / (2™t + N) P(t)dt
R n: R
Now, multiplying both sides by 2™"n! and letting m — oo,
0 =™ (N) / " (t)dt + / lim r,(27™t + N)t"y(t)dt
R R m—»0o0
= ypM(N) / t"y(t)dt + 0.
R
As p™(N) #0, [pt*p(t)dt=0. W
Lemma 2.4.8 Forn=0,1,...,r,
f Im(z,y)y"dy =z" VYmeZ.
R
Proof By Lemma 2.4.7, fork€Z and 0 <n <,
/ ¥(y — k)y"dy =0.
R
Therefore

/R r(z,y)y"dy = Zk: Y(z — k) /R Y(y — k)y"dy =0,

where r(z,y) is the reproducing kernel of %. Since V; = V5 & Wy, the RK of V] is also
given by

a(z,y) = q(z,y) +r(z,9).
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Therefore,

/ a(z,y)y"dy = / q(z, y)y"dy + f r(z,y)y" dy
R R R

=/;q(z, y)y"dy, (27)

hence [ gm(z, y)y"dy does not change with m.
Now, consider x € R with [z| < 1. Let § € S, with 0 < f#(y) < 1forally € R and
6(y) = 1 when |y| < 2. Then

[anz 0wty = [ an@ v 60) + @ - 0u))dy.
By definition of 8, y"8(y) € S., hence by Proposition 2.3.8,
/R am(z,y)y"0(y)dy — z"0(z) = ="
The remaining integral becomes
-2 00
[ oz —owhds= [+ [7) antovisma - e

Examining the second part gives

Lo o] [« <] C
m(Z,9)y" (1 — 0(y))|d g/ nt2 y*d
|| ante @ - oy < [ty
y" e dy
<
S G =2 ﬂ.‘é’f/z 1+ 2"y -1))?
jzi<1
9n oo dy
=C, : 2.8
*2(1+2m(2—1))"/2 A+ 2m(y - 1)) (28)

Therefore,

f2 N gm(z,y)y"(1 - 0(y))dy — 0
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uniformly for |z| < 1. The other integral can be bounded similarly. Thus, by changing the
scale, the condition |z| < 1 can be removed, and hence

[R gm(z, ¥)y dy — ",

as m — oo, for all z € R and 0 # n < r. By Equation (2.7), since the integral does not
change with m, the result follows. [ ]

Proof of Theorem 2.4.6: Note that
2"‘/Rf(a:)6(2"‘z —2My)dz = Lf(2"’"z + y)8(z)dz
= f(v)-
Therefore
2m6(2™x — 2™y) = 6(z — y)- (2.9)
Now, define ¢(z,y) = q(z,y) — (z — y) and let
em(z,y) = 2e(2™z, 2™y).
By Equation (2.9), €m(Z,y) = gm(z,y) — 6(z — y). Therefore,

llgm (- %) — 8C ~ P)l-a = ll€m (-, 9){|-e-
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Now, consider ||em(-, ¥)![24:

lem( 9 = [ (14 ) 2lém(w,4) P
R
pL / (1 -+ 22m) (€, 27y) [Pde
R
=2m 1 22m2—-a- ,2m 2
{fm;fmx}( 4 2mg2)ale(€, 2my) e
= I1 + Iz.
Since
(w y) = Y_ dw)e ™ ¢(y — n)
= d(w)Z¢(y, w)

and since ¢ satisfies Z,,

d(w,y) = e™¥(1+ O(lw|")),
then

éw,y) = e Y1+ O(|w|")) —e™¥
= O(lw}Y).

Hence

1
Ihl<2.2m / (1+22m€2) = (Cle[*)de

2"!
= 2C*? (1 +w?) ]2 "w|Pdw
1]

2"'
= 27mA\C, / (1+ wz)“"wz"dw
0

— 0(2—2m4\) .

85
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For the second integral, we have

L] < 2™ / (1 +22™E2)~2|g(€, 2™y) — e~ "9 Pdg
l€I>1
<o / (22me?)~= - 2(|G(€, 2™y) |2 + 1)dE
fel>1
= gm-ze1 / E12=(1d(E, 2™9)|? + 1)de
l€l>1

= gma-za)+1 [lf Rz ) + Vs

< gma-2a)+1 |1t f (€12 Z (2™, €) [2d€ + IEI‘2°d€]
- lel>1 &>t
}:“’ ™ |2g(2my,w + 1) =
< 9m(1-2a)+1 . / I ? . / —2a
s2 l161l: -2 [w+1+21rk|2° dw+2 1 &

(120 2 1
<2 (1-2a)+2 ||¢lef |1+2 k[z" 2a-1

1
< 2m(1—-2a)+2 Z ll + 21?’57[‘2& }
= 2a—-1

=0 (2—m(2a—1)) .

Since a > A + 1,
9-m(2a~1) - 2—m(2(,\+§)-1)
thus || = O (27™(>~1)). Therefore,

llem(-, 9)I24 = O(275™)
= |lem(-9)ll-a =0(27*"). ®

The following corollary is immediate:
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Corollary 2.4.9 Let f € H®, ¢ € S, satisfy Z) for some A >0, and let a > A+ . Then
the projections fn of f onto V,, satisfy

IIf = frmllo = O(2™™).
Proof By the Sobolev inequality, if f € H* and g € H™ then
| < g, f > < lgll-allflla-

Since H* C HP for B < a, f. € H™*. Therefore, given y € R,

If(W) = fm@l=1< £,0(- —y) — am(-,y) > |
S Ifllallo(- = ¥) — @m (9o
=0(2™™). N

We can compare this to a similar result for Fourier series. Let Hb, be the space of all
periodic f € S* such that
[o o]
Z lenf2(n? +1)* < 00
n=—o

where ¢, are the Fourier coefficients of f.

Proposition 2.4.10 Let f € Hz'a,, , B > }, then the Fourier series of f converges to f
uniformly at a rate of O(n=5+3).

Proof See [51,p.54]. @

Even with summability methods (using the Abel or Fejér kernels), this rate of conver-

gence cannot be improved in general, even if f is smooth (55, p.122].
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2.5 The Mallat Algorithm

We now construct an algorithm, developed by Mallat [32], which relates coefficients at
different scales in a MRA. Let ¢ € S, generate a MRA {V,,}. Then f € V; can be written

in two forms

flz)=3_av24(2z —n
= Zaﬂ¢(z -n)+ beaﬁ(x —n

since V; = Vo & W,.
By the dilation equations

d(z-1)= \/_2_2 hid(2z — 2l — k)
and

Y -1) = \/Ezgm(zx — 2~ k).
k
Making the choice g = (—1)*h;-; from Equation (2.3) on page 67,
flz)= Za?f Z he(2z — 20— k)
+ Zb"f Z( ~1)*h1-x (22 ~ 2 — k)
= \/—Z Z hn—ZJa ¢(2"B n)
+v2 Z Z( ~1)"hy_ns2;b26(22 — n).
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By the orthogonality conditions, for n € Z,
an =3 hn2j6) + Y _(—1)*A1_ns2ib].
i j
This relation can be derived at each scale in an analogous way, hence
ap =3 hnzial ™ + Y (—1) h1_nszib]
j J
The coefficients 22 and b2 can be found in terms of the al as follows:

= [ f@ele—n)is
= /R F@VES hed(2z — 2m — k)
k
= ghk /;f(:c)\,@d)@z —2n — k)
= Z hka%n-{-k
k

1
= E he_onay,
k

and similarly

B = fR f(@)0(z - n)
= Z gk-—Znalt
k

= z(-l)khl-k-}-znallc-
Iy
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Therefore,
-1 Z
a;n = a':lhk—2n
3

and

bt = Z 2 (—1) Ry k4 2n-
k

The above algorithm is called the Mallat algorithm. We can interpret these results by
viewing the MRA as a sequence of varying resolutions of L?(R). Given f€ V{, f = fi =
fo+ e, where e is the projection of f onto Wj. One can think of f; as a coarser version of
f.and eg as the error in the approximation; that is, {V;,} contains approximations of L?(R)
functions and {W,,} contains the error in their approximations. Therefore, the first part
of the algorithm consists of the decomposition of f into its scaling coeflicients (aI"') and its
wavelet coefficients (bT*) at a selected level m < 1. The function can then be reconstructed
by applying the second part. Figure 2.4 shows the two parts of the algorithm. This is a fast
algorithm in practical applications, being of complexity O(N) as opposed to O(N log N)
for the Fast Fourier Transform [7, pp.80-81].

2.6 Filters

The Mallat algorithm is a useful tool for approximating discrete-time signals. It will be

shown that it acts like a pair of quadrature mirror filters (QMF). Recall from Section 2.2
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br—l b:l—Z b’,';“"’

//// ///’ ///’ /////
a:l a:?-l. —_ a:t—2 —_— a:l—3 —_—— -
bz-l b:‘n—Z b:l—-'i

7
a:x a;"-l — a:l-—2 -—_— a;:l—3 —e e n

Figure 2.4: Above: decomposition algorithm. Below: reconstruction algorithm.

on page 64 that for f € L*(R) with supp f C [—, 7], we have

_ sinw(t —n)
flt)= ;f(n)m»

Such a function f is called a bandlimited function [15, p.20]. We can therefore consider a

sequence (a,) € £2(Z) as a sequence of sampled values of a function f € L?(R) with

fe) = Zan%—t_;;);

flw) = E ane ™.
Consider a function g defined by

g=hxf,
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where A(w) =H(w)= Y., hne™™ is 2m-periodic. Then

§(w) = h(w)f(w)
- z hke—ikw z aﬂe—inu
=Y €™ " hmntn

and

o(t) = Zzhm-n sm7r(a: ~m)

Tz —m)

In the case of a discrete signal (z,) € £2(Z), the convolution becomes

Un = Z hn—kxky
k

hence the Fourier series of (y,) is

Y(w)=) tgne™"
= Z Y hnoszien
- et
= i hfefw' > zeet
= 1!11(w)x(w)l.c

Definition 2.6.1 The above operation is called a continuous linear system. The function
H(w) is called the system transfer function end h(t) is called the impulse response. If
H(w) = 0,|w| > wy then H is called a low-pass filter. If H(w) = 0, |w| < w; then H is
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called a high-pass filter. If H(w) =0,wy < |w| < w, then H is called a band-pass filter.

Consider the Mallat algorithm. For the decomposition algorithm we have

0 __ E t 1
k

0 __ § : 1

bn - gk-2ﬂak
k

=Y _(~1)*h1_rs2n;.
k
This can be decomposed into a filter
eg = Z h,,_,,a,lc
k

followed by decimation

For the wavelet coefficients, let

.fr? = ng-—nall:

k
= Z(" 1) k_ﬂhl-k+nallc
k

with decimation

0 0
n = f2n'

Let E(w) =Y, ele®™. Then
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Ew) = Z Z hi_naie™™
n k
— Z h_e™t 2 al eiwk
t k
= H(w)A(w),

hence the filter has an impulse response (h_,) with system transfer function H(w) =
3 h_ne™m [51).

The dilation equation for ¢ may be written in terms of Fourier transforms as
- 1 -~ fW .
—_ 2\ p—iwm/2
d(w) = \/2';”’4’(2) e
w ~ W
=mo(3)4(3),
thus H(w) = mo(w)/V2.

For the Meyer wavelets (38, p.66], mg (%) = 3_, ¢(w+4rk). On the interval w € [—, 7],

the support of H(w) is |w| < &f<, for some € > 0. That is, H(w) is a low-pass filter [51].

For the b}, let

Fw)=)_ foe"r
= f_" Z(-—l)"“"hl_k.,.na},e"“’"
~ i i(—1)‘h1+,a},efw(’+ﬂ
= El:(jl)'hl+le“' D ageik
, v

= G(w)A(w).
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Then

Gw) =Y _(—1)hype™
1
= Z hl—f-tei(”ﬂu
= Z[: h_ e {@+m)n+1)
= e:‘(“’“) 3 h_penieten
D (w4 )).
Therefore, for w € [~m,7], G(w) = 0, for [w| < %* and some ¢ > 0. Hence (gx) =

((—1)*hy—) is the impulse response of a high-pass filter.

In a similar way, we can consider the reconstruction algorithm as a pair of filters. Recall

ar =Y ho ol + > gn-aibl.
% k

If (c3) is a sequence, define (c%°) to be the sequence obtained from (c?) by interlacing

43

zeros; that is, let

Pl

00 _ ) 3

0 ifrisodd.

if n is even

Then, let

e =) hniay’
k
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and

f 3‘ = Zgn—kbg'o
k
= Z(—l)""‘hx_nﬂb%".
E

Hence, b}, = €2 + f2*. The Fourier series of (¢2*) and (f%*) are, respectively,

E*(w) = E elrefm
n
00 i
— § : § :h,.-ka,c‘oe"‘"‘
n k
— § : h( ewl § : aok,o ewk
{ k

= H*(w)A*(w)

and

Frw)=)_ firen
— Z Z(“l)n_khI_n+kbg'0€m
n  k
=Y (1) he™ Y bptek
4 k

= G*(w)B* ().
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Therefore, H*(w) is a low-pass filter, and

G W) =) _(~1)h1_re™
I
— Z hi ei(w+dl’)l
1
- Z b, el +m)(1-n)
= gilwtm) Z h., e—i(w+1r)n
= @ H* (—(w + 7)),

hence is a high-pass filter. The filters H* and G* are called the conjugate filters of H and
G respectively. The Mallat algorithm can be represented schematically by Figure 2.5.

2.7 Applications

The goal now is to use the Mallat algorithm to approximate functions. First, consider the
following result of Daubechies [15, pp.202-204]:

Theorem 2.7.1 Suppose ¢ has compact support. If f is continuous on R then Vz € R,
Jim [ (o +9)2" Gy = ().

If f is uniformly continuous then the convergence is uniform. If f is Lipschitz continuous

with ezponent «, then

f@) - /R £(z + )2 gmn(@)dy| = O(2~™). (2.10)
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enm—-l ar—l a:;-l.o e'r:u—l.l]

]

H——2\——2/ ——

ay a

/ N
N
]

-1 ~1 -1,0 ~1,0
I b7 b f

Figure 2.5: The Mallat algorithm. The left half denotes the decomposition and the right
denotes the reconstruction. The symbols 2 \, and 2 " represent decimation and inter-
leaving by zeros respectively.
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Proof Let m € N, then

f(z) - /R fz + y>2m/2_“‘¢m.n(y)dy’ - | [ (@ = s+ 2+ )50

<ligll sup I(f(z) = f(z +27"(t +n)))|

where supp ¢ C [—K, K]. Since f is continuous, we can find M such that Ym > M, the
right hand side is arbitrarily small. If f is uniformly continuous, then the choice of M can
be made independent of z, hence the convergence is uniform. If f is Lipschitz continuous,
Equation (2.10) follows immediately.

Hence, we have a way of computing ¢. Suppose ¢ is continuous, or Lipschitz continuous

with exponent a. Let £ =2~ N, M, N € N. Then, by Theorem 2.7.1,

¢(z) = lim 2™ /R ¢ (27MN + y) 6(2™y)dy

m—o0

1

lim 2™/2 /R O(L) Prm gm~1t v (2) dt

m—o0

= lim 2™? < ¢, pppom-mpy > .

m—ro0
In addition, we can find My such that vm > M,,

|p(2~MN) — 2™ < ¢, ppom-un >| < C27™, (2.11)

where C and M, depend on M or N.

Assuming (@o ) are orthonormal, then ¢ is the unique function f satisfying

<fs¢0,n>=60n7

< fitma>=0 VYm>0,n€Z.
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We can use this, along with the filtering scheme in Section 2.6, to compute ¢ given a set of
filter coefficients (k,). For each n € Z, let a% = &y, be the low-pass sequence and at each

level m, let ' = 0 be the high-pass sequence. Then

ah =) hn_zal
k
= h,.

Therefore, for each m, a' =< ¢,é¢m, >. By Equation (2.11) the algorithm converges
to the values of ¢ at the dyadics. Defining fi(2~™n) = 2™/2 < ¢, dmn >, With fi being
piecewise constant on [2~™(n — 1/2),2"™(n + 1/2)), for n € Z, we have the following:

Proposition 2.7.2 If ¢ is Lipschitz continuous with exponent a, then there ezists a C > 0
and My € N such that Vm > M,

”¢ - fm“oo < c27™.
Proof A proof can be found in [15, p.205]. W

Therefore, to compute approximate values of ¢(z) we have the cascade algorithm (15,

p-205].

i) Start with a sequence (fp(n)) with fy(n) = d¢a.

ii) Compute f(2"™n),n € Z using a7 = Y, hn—zal'!. At every step, the number of

values doubles: values at “even points”, 2~™(2n) by

fm(2-—m2n) = Z h2(n—-lc)fm—1 (2—mk)
k
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and “odd points”, 27™(2n + 1) by

fa2™(2r +1)) = Y hauoiys1 fm1 (27K
k

iii) Interpolate the f,,(27™n) to get f.(z) for non-dyadic z.

Similarly, we could calculate 1 by starting with the low-pass sequence a2 = 0 and high-
pass sequence b2 = J, or moreover, calculate ¢m, Or Ymn, by choosing the appropriate
initial sequences. Figure 2.6 shows the Daubechies-4 scaling function and mother wavelet.

They are given by the filter coefficients

by,
0.4829629131445341

n

0

1 0.8365163037378079
2 0.2241438680420134
3

-0.1294095225512604

Finally, the Mallat algorithm can be used for compression. Start with a function f

which, by Theorem 2.7.1, can be approximated by assuming, for large enough m, that

f@ ™) =22 < f,¢mn >
= 2™/2q7.
Then, use the decomposition algorithm to compute the wavelet coefficients of f.

For finite sequences, suppose we start with a signal f consisting of 2* samples on [0, 1]

at the dyadics £ = 2~Mn,0 < n < 2M. By Theorem 2.7.1 we assume these values are the



CHAPTER 2. WAVELETS 102

Figure 2.6: Daubechies-4 scaling function and mother wavelet.

scaling coefficients of f, that is
f(27Mn) = 2™/2q™.

We then periodize f by assuming it has period one. This means that we assume f = f*,
where
f{(z)=>_flz—n).
neZ

For simplicity in coding, we adopt a new notation for the coefficients, letting
mpn = a, and by, = b

By the first application of the decomposition algorithm, we obtain M/2 wavelet co-
efficients (bm-1,n) and M/2 scaling coefficients (an-1,). Continuing in this manner, we
obtain 2% — 1 wavelet coefficients (b, ), m = 0,1,...M,0 < n < 2™ — 1 and one scaling

coefficient agg. The set of wavelet coefficients and the scaling coefficient is called the Fast
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20,0

bo o
b10 b1
b2.0 b2, b2 b2.3
bso | bay | bso [ b33 | b3a | b3s | b3s | b3z

Figure 2.7: The wavelet tree of a function. The horizontal axis indicates a displacement
in time, or location, whereas the vertical axis is a change in frequency.
Wavelet Transform of f. The coeflicients can be arranged in a meaningful structure, called
the wavelet tree, as shown in Figure 2.7.

This technique can be used to plot both periodized wavelets and scaling functions.
Figure 2.8 shows the Daubechies-4 periodized scaling functions. Figure 2.9 shows some of
the periodized Daubechies-4 wavelets. Recall from Theorem 2.3.10 that

$'(z) =) é(z—n)=1, z€R

Hence, the periodized scaling function ¢*(¢) =1, V¢t € R, for any given MRA.

One method of compression consists of pruning branches of the tree by assuming that if
a wavelet coefficient has absolute value below some threshold, the coeflicients below it can
be pruned (set to zero). Figure 2.10 shows a sequence of approximations of u(z) = sin(z)
with varying threshold values for the wavelet coefficients. The Coifman-6 wavelets are

determined by the following filter coefficients:
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2
L5 Daubechies-4: @] o
1+
0.5
0
-0.5 - \/7
1 1 o 1 ! 1 ! 1 L

15 Daubechies-4: @7 ;

N

-1 ! 1 L 1 ! I L 1 |

0 01 02 03 04 05 06 07 08 09 1

-0.5

T

Figure 2.8: Daubechies-4 periodized scaling functions. The functions ¢] 4 and ¢}, form an
orthonormal basis of V{* [51, p.106].
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Figure 2.9: Daubechies-4 petiodized wavelets, ¥}, ..

n h,
0 0.22658426510

1 0.74568755880
2 0.60749164120
3 -0.07716155548
4 -0.12696912540
5 0.03858077774

From Figure 2.10, it is evident that the majority of the information about u is contained
in the lower frequency coefficients. This method, called the zero-tree method, is similar
to the method of JPEG compression [7, 27, 41]. The second method consists of using the

fractal methods developed in Chapter 1.
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Figure 2.10:

Fast Wavelet Transform approximation of u(z)
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sin(rz) (top-left) using

Coifman-6 wavelets with thresholds from .5 to .0001. The original function is at the top

left.



Chapter 3

Fractal Wavelet Compression

3.1 Relations

We have seen in Chapter 1 the method of [IFSM which allows the construction of functions
through an iterative process. Given an N-map IFSM (w, ®), the associated operator T
was defined by

N

Tu =Z'¢kouow;1,

k=1
for all v € L?(R) (see Equation (1.5) on page 35). Under certain conditions, T was
contractive and had a unique fixed point @y, which was also the attractor of T. In the
light of the results of Chapter 2, one might consider an operator M, associated to T, which
acts on wavelet coefficients of functions (19, 37].

Let (g,) be an orthonormal basis of L?*(R). Then a function u € L?*(R) can be written

u= Z Ungn (3.1)
n

107
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where u, =< u, ¢, >.
Let F : L*(R) — #2(Z) be the transform Fu = (u,). By Plancherel’s Theorem, F is an
isometry. Its inverse is F~Y(c,) = Y, cagn, (c.) € (Z). In general, write u = Fu. Now

define the operator M given by the commutative diagram
L*(R) ——~ £(2)
T M
[*(R) —— £(Z)

Theorem 3.1.1 Let (q,) be an orthonormal basis of L*(R) and F be its associated trans-
form as given above. Then T is a contractive operator on L*(R) with fixed point @r if and
only if the operator M = F o T o F! is contractive on ¢*(Z) with fized point ii,s, where
iy = Fir.

Proof Letu,v € L*(R) with basis coefficient sequences u and v respectively. By Parseval’s
equality, ||| = ||u]|, hence

ITw ~ Tv|| < elju - v]|
<= [|Mu— Mv|| < c|lu— V|-

Hence T is contractive <=> M is contractive. Furthermore,
M(Fiar) = F(T4r) = Fiur,
therefore by the BCMP, Fiur = tiy,. [

Consider the case when T is the associated IFSM operator of an N-map affine [FSM
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on X =R Then given u € L3(R), if v = Tu,

v= E Umdm
m

where

Un =< V,Qm >

=< Tu, qy, >

N N
=3 e <o > 43 < Xy >
k=1 k=1

Therefore, by Equation (3.1) on page 107,

N N
U =D D Un <GnOW  gm >+ B < X, (x))Gm >
=1 n k=1

=" Gmntin +€m (3-2)
n

N N
where a,,, = Zak < gn© w,:l,qm > and e, = Zﬂk < ka(x),qm >.
k=1 k=1

By Equation (3.2), we get the following result [19]:

Proposition 3.1.2 Let (g,) be an orthonormal basis of L*(R) with associated transform
F. IfT is an affine IFSM on L*(R), then M = FoT o F~! is an affine IFS on coefficients
(IFSC) on ¢2(Z) and has the form Mu = Au+e, where A = (@) ande = (en,), m,n € Z
are given above.

In general, the matrix A is not sparse, for example with the Discrete Cosine Transform [37].

However, due to the localization properties of wavelets, many of these elements will vanish.
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Example 3.1.3 Let X = [0,1] and T be the operator defined by
1, .1
Tu(z) = 511(2:::; + 51:(2:1: -1) z€(0,1].

This is the IFSM operator of the affine IFSM given by w;(z) = iz, ws(z) = 3(z + 1) and
¢1(t) = ¢2(t) = 5t. The fixed point of T is &y = 0. Consider the operator M given when
(¢,) is chosen to be the Haar basis on L?*[0,1]. We assign the following ordering to the
basis elements:

q-1=¢;
Qipjor =%ij, 1ENOLFj<2 -1

Then the operator A is

(V2 00000000 ..\
0 00000000
0 10000000
0 10000000
0 01000000
0 00100000
0 01000000
0 00100000
1 |0 00010000
A=37|o 00001000
0 00000100
0 00000010
0 00010000
0 00001000
0 00000100
0 00000010
0 00000001 ..
\: i iiiioo0 -
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For the moment at least, the above proposition only works one way. The question
remaining is, given an affine [FSC M on £*(Z), is the operator T an affine IFSM. ! The

question is therefore:

Question 3.1.4 Given an affine IFSC M on 3(Z), defined by Mu = Au + e with A =
(@mn) and e = (e), does there ezist an N-map IFSM (w,®), for some orthonormal basis
(g.) of L*(R), such that

N
Gmn =Zak <gn Ow,:l,qm >
k=1
and
N
€m = Zﬂk < ka()()v Gm >
k=1

form,neZ?

A case where this question has been solved is for LIFSW.

3.2 LIFSW

We present the general method of the 1-dimensional case of local IFS on wavelet coefficients
(LIFSW) presented in {19, 37]. The 2-dimensional extension can be found in [47].
Let ¢ be a scaling function with MRA (V,,) and ¢ be the standard associated mother

wavelet (see Equation (2.3) on page 67). We focus our attention on functions f € L3(R)

!By an IFSC, we mean an operator which acts on sequences in some “IFS”-type manner.
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which have expansions
oo 2—1
f =aepd + Zzbi,j"pij
i=0 j=0
where agg =< f,¢ > and b;; =< f,v¥;; >. Assume ¥ has compact support on R. The

expansion coefficients can be written in a meaningful way in the form

Bio | Bk | .-. | Begey

where B;; represents the branch of coefficients with node b; ;, and is called the block B; ;.
We say that the coefficients b; ; are on level 7, and aqy is at level -1. The above diagram is
called the wavelet (coefficient) tree of f and is denoted by BY.

Definition 3.2.1 Consider the operator W defined on wavelet trees as follows: > Suppose

there is a k > 0,k* > k,a;, |a;] < 2-¥)2 0 < j < 2¥° — 1 such that given a wavelet tree
Bgo, W(Bug) = Bgg, where the coefficients of By, are given by

a(‘),():a0,0?
by ; = bij 0<i<k"—1,0<j;<2 ~1,
Bi.,=a;Bey; 0<j<2¥ -1,1(j)e{o0,1,...,2F -1}

Then W will be called a local IFS on wavelet coefficients, or LIFSW. The blocks By ;,0 <
j < 2% —1 are called the domain blocks. The blocks B. ;,0 < j < 2" — 1 are called the
range blocks. The parameters a; are called the scaling factors of W.

2The condition on the a; guarantees that W : €3(Z) — £2(Z). These a; will correspond to grey-level
maps ¢;(t) = 20+ =8)/2q;(¢).
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Q9,0 Qo0
bo,0 bo,o
bo | by w ho | b1y
. — :
be—1,0 : b 1,0 :
Bio | Biy | --- | Biars Bieo | Bien | ... | Bregeoy

Figure 3.1: Action of W on a wavelet tree.

Definition 3.2.2 Given f € L*(R), with wavelet ezpansion
o0 281

[ = ag 0600 + Zzbi,jwi.ja

i=0 j=0
define the function fip, forp >0, by

co 26-1
fep = Zzbkﬁ,2"p+j¢k+i.2‘p+j'
i=0 j=0
The action of W on the tree Bf is given in Figure 3.1. Consider the function v; =
(T f)ke1- By the definition of W, all its wavelet coefficients are equal to 0 except that

B = o B s Therefore,

o 2-1

v = Z Z biee 44,2651y +n Ve 420t 4n-

=0 n=0
However, notice that
co 26-1

Sejoy) = Z z br+:,24 (1) +n Yk ti,265(1)+ns

i=0 n=0
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and that
ke 4k 24 = Qb e K 20,00 < 2¥ ~ 1. (3.3)

We can thus use the scaling and dilation relations between the ; ; to write v; as a multiple

of frjwyow; ! for some appropriate function w;. The function w; can be calculated as follows:

Wiy () = 229 (25 — j(1)),
Y- g(z) = 26 Pyp(2Fz - 1)

= (R ~R)/29k/2y k=1 () — j(1)).

Equating the arguments of 1 we have

i) -1 (3.4)

wl(z) = 28" Fz + TR

and hence by Equations (3.3) and (3.4),

- . __ . _ j l —l
v (z) = ok k)/szd(z) (2k kr + %) .

Therefore T is a recurrent vector IFSM with condensation (c.f. [11]). By this we mean
that T acts between orthogonal components of the wavelet tree and has condensation

function

k*—-12°—1

Z Z bi j¥: 5.

t=k j=0

A useful space, over which T is contractive, was constructed in [19]. Let u € L?(R) and
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let W be as above. Let

Co(u, k%) = {800,6:5,8 2 0,0<F <2 —1: ) [bijl* <00

with bij =< u, Y >,0<1 < EF—1,0<5< 2 — 1}.
Consider the metric d,, on C,, by

dy(c,d) = max A2

where
o 28

2 c _pd 2
Ap = Z Z(bk+k',2"'l+l' bk+k’,2"l+l') ’

k=0 U'=0

where b° and b? refer to the wavelet coefficients of ¢ and d respectively. Note that since
k >0, dy(c,d) is always independent of ago. By the completeness of £3(Z) it follows that

Proposition 3.2.3 The metric space (Cy(u,k*),dy) is complete.
In addition

Proposition 3.2.4 For c,d € C,,(u, k"),

dw(Wec,Wd) < cudw(c,d) ¢, = max |a.

0<I<2%* —1
Therefore, the BCMP yields the following result:
Corollary 3.2.5 Ifc, <1, there ezists a unique @ € Cy(u,k*) such that Wia = a.

Corollary 3.2.6 Let € > 0 and ¢ € C,(u,k*). Suppose there ezists an LIFSW, with
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associated transformation W, such that d,(c,Wc) < e. Then

€
1—c¢,’

dy(c, i) <

where Wa = a.

Proof The result follows directly from Proposition 1.1.21 on page 12. [ ]

3.3 Examples of LIFSW

We present here a few examples of LIFSW and their attractors [37, 47].

Example 3.3.1

boo
agBgo | a1Bog

WIBQOI-‘)

where |o;| < 25. We have k = 0,4* = 1,5(0) = j(1) = 0. Therefore

wyl(z) =2 + ;0 =2z

0-1
wl‘l(x)=2a:+——iﬁ—-=2z-—1.

Also, f = fo, hence

T f(z) = bootoo(z) + V200 i) © w3 (2) + V2arf. 1) © wi ()
= byotoo(z) + V2a0f(22) + V20, f(2z — 1).

116

In general, for kK = 0, T is an IFSM with condensation (see [5] for a discussion on IFS
with condensation). The attractors of T, using the Coifman-6, Daubechies-4 and Haar
wavelets, are shown in Figure 3.2, where aop = 0, boo = 1, @3 = 0.2 and a; = 0.3. Note
the dependence of the attractor on the basis chosen. However, the attractor of W is basis

independent.
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aﬁwi‘.agoﬁ-ﬁ

25
0 01 02 &3 04 Q5 06 07 08 09 1 0 0% 02 03 04 05 06 07 08 09

0 a1 02 03 04

a5 08 07 08 09 1

Figure 3.2: The LIFSW attractors of 7' in Example 3.3.1 using Coifman-6, Daubechies-4

and Haar wavelets.

Example 3.3.2

bOO

W:Booi—)

bio

bll

o9 By

a1 B

a2z By

a3By;

We have k = 1,k* = 2,5(0) = 7(2) =0, 5(1) = (3) = 1. Therefore

T f(z) = bootao(z) + vo + 01

where

vo(z) = brotho(z) + V2a0fo0(22) + V201 fo1(22)

and

1 (2) = b (z) + V202f01(22 ~ 1/2) + V23 foo(2z — 3/2).

The attractors of T' are given in Figure 3.3, where agg = 0, b9 = b19 = 1, bp,;1 = 0.1 and

a; =0.5,fori=0,1,2,3.
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b A 4 & =« N W s o
——y—y

0 Ot 02 03 04 05 06 07 08 09 1

Figure 3.3: The attractors of T in Example 3.3.2 using, from left to right, Coifman-6,

Daubechies-4 and Haar wavelets.

Example 3.3.3

boo
W : By — bio b1
agBy | B az By | a3Byy
In this case
T f = boo¥oo(T) + vo + 0

where

vo(z) = brotho(T) + V200 fo,0(22) + V20 fo1(2z)
and

v1(z) = buvn (z) + V2azfop(2z — 1) + V203 fo1(2z — 1).

The LIFSW attractors of T are given in Figure 3.4 with the same parameters as in Exam-

ple 3.3.2 above.
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Figure 3.4: The attractors of T using, from left to right, Coifman-6, Daubechies-4 and
Haar wavelets.

3.4 Inverse Problem and Compression

Given a target function v € L%(R), we can use Corollary 3.2.6 to construct an LIFSW on

its coefficient tree [19]. The squared L? distance associated with each range block B;.

and domain block By ; is given by

o 281

2 _ 2
Al.j = § : E :(Ck‘+k'.2"'l+l' - alck+k',2"'j+l') :
k=0 U'=0

The optimal scaling factor &;; given by the least square minimization is

_ Ske kg
Q= ——
Sk, kg
where
- -} 2"' -1
Saped = 2 : 2 : Cotie? 28 bl Cotk? 2K dplt -

k=0 I'=0

The minimized collage distance is then

in _. —~ 1/2
0 = [Ske pked — @1 Ske 1 ]2
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Thus, as with LIFSM, for each range block B;. |, choose the domain block B ;) for which
AP, is minimized. Then, iterate the associated operator W on any initial ¢ € C,(v. k).
For simplicity, one can let ¢ be the sequence with ¢;; = 0 for all ¢ > k*. The function @
associated to the fixed point @ of W is then given by

) 2"—1‘

@ =8og¢ + zzbij¢ij-
i=0 j=0
To apply this method to compression, assume we are given a discrete signal f consisting

of 2M samples on [0, 1] at the dyadics z = 2~Mn,0 < n < 2M. By Theorem 2.7.1 we assume

these values are the scaling coefficients of f, that is
f(2Mn) =2mq,, .

Then assume f has period one as in Section 2.7, page 102 and generate the wavelet coef-
ficients (b ,) for m = 0,1,... ,M,0 <n < 2™ — 1. Choose a level k in the tree for the
domain blocks, and k* for the range blocks. For each range block, calculate the distances
AP® for each 0 < j < 2% — 1. Choose j(I) to be the index of the domain block for which
i is minimized over 0 < j < 2F — 1. The LIFSW approximation to the target will then
consist of the set of coefficients {ag0,b;;/ 0 <7 < k* —1,0 < j < 2 — 1}, and the set of
pairs {(as,j())] 0 <! < 2¥ —1}. These two sets are called the Fractal Wavelet Transform
of f.
To obtain the approximation to the original signal, iterate W on any initial tree, such
as c given above. Use the reconstruction algorithm of the Mallat algorithm to construct

the scaling coefficients (a}s,), 0 < n < 2™ — 1. Finally, use these coefficients as the values
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of the approximation f* by

fr(27Mn) = 2™/%a},,,.

Example 3.4.1 Let u(z) = sin(7z) on X = [0, 1]. Figure 3.5 shows successive approxi-
mations of u using the LIFSW method with M = 10, hence 1024 samples. The following
table gives the L? error in the approximations. In each case, the computation time involved
was approximately 1 second. The original file for u was 18335 bytes.

Domain level (k) | Range level (k) Error File size (bytes)
0 1 0.07836540 42
0 2 0.03548420 88
0 3 0.01179280 188
0 4 0.00401203 396
0 5 0.00140071 845
1 2 0.00972692 84
1 4 0.00102580 374
2 S 0.00024186 788
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Figure 3.5: LIFSW approximation of u(z) = sin(rz) (top-left) using Coifman-6 wavelets

going between levels (k, k*).



Appendix A

A.1 Generalization of T5W

Given an N-map IFSM (w, ®), the IFSM operator T(w,¢) Was defined by

N
Tiw.e)u(z) = Z'tﬁk(u(w;‘(z))) zeX.
k=1

This is a useful form since it permits a simple formulation and solution to the inverse
problem. Unfortunately, this is not a generalization of T.2%. This can be seen by noting
that, given an N-map IFS w, we may obtain an IFSM (w',®') by defining w! = w;
Vi =1,2,...,N and setting ¢; = idg Vi = 1,2,...,N. Then, for v € Fgw(X), Vi =
1.2,...,N, ¢souow!™ = uow ™ € Faw(X). However Tiu 4)(u) and TB¥(u) are
not necessarily the same. Indeed, T(w’ 4/)(u) may take on values other than 0 or 1. It
would therefore be reasonable to introduce a normalized version of T(w,#), T4, Such that
Tis) [ Few(X) = TJW. With this in mind, we return to the introduction of T5%. The

reasoning behind its construction was that
X 4u5(7) = max{X ,(z), Xp(z)}.

Instead, consider X, g(z) with Tiws) in mind, as a weighted sum.

123
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Proposition A.1.1 Let X beasetand A; C X,i=1,2,...,N. Let A = il_.__lle,-. Define

oalz) = i:lx 4,(z). Then,

N
> X4, (7)

X q(z) = Ei:(x—)— Vz € X,

using the convention that 0 - co = 0.

Given that the numerator and denominator are equal, this result is rather trivial. We
are simply dividing the sum by o4(z), the number of sets A; which contain z. This number
is precisely the numerator. However, we can also interpret the numerator as a sum of grey-
level values.

Recalling Proposition 1.5.3 and Proposition 1.5.4, we obtain the following result:

Proposition A.1.2 Let (X,d) be a metric space and w; € Cony(X,d),i = 1,2,...,N.
Then letting o(z) = ow(a)(x), for z € X, we have

N
X (w7 (2))

_ =1
Xaay() = @) V€ X.

Proof The proof follows directly from Proposition 1.5.3 and Proposition 1.5.4. |
N
Hence, we can associate with the IFS w, defined by w(A) = _glu“z,-(A), the operator

wa : ?gw(X) — 3-BW(X) by

5 fw(z))
TEW f(z) = i‘—;(—x)—— Vz € X,

where f(z) = X ,(z).
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This new operator is the same as the one previously defined on Fpw (X ), simply written
in a different form. As such, it can be directly extended to an IFSM operator as follows:

Definition A.1.3 Let (X,d) be complete, wi € Coni(X,d) and ¢ : R = R for k =
1,2,...,N. Let (w,®) be the associated IFSM. We define the operator T()%, on a function
u: X - R by

N
> b (u(w (2)))

or — k=1
Terayu(e) = S zeX.

where the 3" indicates that the sum is taken over indices k for which w;'(z) ezists. The
convention is that an empty sum has value zero and that 0- oo = 0.

We call T, the IFSM operator associated with (w,P).

A.2 IFSM on L?(X,p)

We will show that T™,, has the same properties as the operator Tiw. s) defined in Sec-
tion 1.5 on page 35. Note that T = T(w,#) When the set X; are non-overlapping.

Let (w, ®) denote the IFSM, on the complete metric space (X,d), associated to w =
{wy,ws, ... ,wx}, w; € Cony(X,d) and & = {¢1,02,... ,0n}, ¢: : R > R The important
step is to show its associated operator T{ [y, : LP(X,p) - LP(X,u). Hence, for u €
LP(X, pu), we must show (,;"'Q)u is still measurable and integrable. To accomplish this, we

make the following definition:

Definition A.2.1 Given an [FSw = {w,,w,,... ,wy}, let

A; = X\w(X) and let A; = wy(X).
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Recursively, for2 <n < N —1, let
Aiiy i1 =Aigigcin \Wn 1 (X)
and let
Aiyiy. 2= Abyis..in N Wt (X)),
fori;=1,2and j =1,2,... ,n. We define
An ={Aii.i. 2 15;,=1,2;5=1,2,... ,n}.

Finally, set Ay = Ax. We call Ay the w-cover of X.

Proposition A.2.2 A,, ts a collection of disjoint sets.

Proof We proceed by induction on n, with n=1 being clear. For n > 1, assume {A;,;, ;. :
i; = 1,2;7 = 1,2,...,n} is a disjoint collection. Let A = Ay, s,i,,, and let B =
Ajijaininer € Ans1. By definition, Ak, knknrr C Akjko..kn, hence if for some 1 < m <
n,im 7# Jm, then by the induction hypothesis, A;;, i, N Ajjp.j. =0, and AN B = 0.
Otherwise, 1,41 # jn+1 and A and B are disjoint by construction. Therefore, by induction,
A, is a disjoint collection and the result follows. [

We note certain characteristics of A,,.
a) Some members of A, may be empty.
b) ow(x) is constant on each A, iy. Define ow(x)(Z) = Ciyip..in for z € Asjiy iy

c) If (X, p) is a measure space with o-algebra generated by open sets, and the w; are

bi-continuous, then each member of A is measurable.

Q) fy fdis = T aenn S fdus



APPENDIX A. FRACTAL WAVELET COMPRESSION 127

We therefore obtain a version of Proposition 1.6.1.

Proposition A.2.3 Let (w,®) be an N-map IFSM on (X,d) and let T be its associated
normalized I[FSM operator. Suppose:

i) Yu € IP(X,pu),uow;? € LP(X,u),1 <k <N and
i) ¢r € Lip(R),1 <k < N.
Then for 1 <p < oo, T : LP(X,pu) = LP(X, p)-

Proof Let 1<p<ooandletue LP(X,pu). Let L< k< N. Byi), uow,' € LP(X,pu),
N

hence by ), ¢ ou o wg' € LP(X, ). Therefore 3 ‘¢ ouowy? € LP(X, ). By b) and
k=1

c) above, Tula, ;, ., is measurable for each i; = 1,2 and j = 1,2,...,N. Hence, Tu is

N
measurable.

Suppose 1 < p < oo. Then, by ¢) and d),

[ 1Tute)F duta) = S [

11,124.-- BN =1 i1ig..in

P

3 b (ulwi )| dute).

k=1

§192- 8N

N
The last integrals exist since Y '@ o w o wy 1 € [?(X, p) and since each A;,;, ;, is mea-
k=1
surable. Hence, Tu € LP(X, p)-

Suppose p = co. By ii), Z’q&,, cuowyt € L*®(X,u), 1 < k < N. Hence by
b), Tulaiy..y € L2(X, 1) Therefore since Tu is a finite sum of L*°(X, ) functions,
Tu € L=(X, p). |

Proposition A.2.4 Let (w,®) be an N-map [FSM such that ¢r(t) =ck € R, 1 <k < N.
Then Vp € [1,00) and p € M(X), the associated operator T is contractive on LP(X, 1),
with contractivity factor cr = 0. Furthermore, its fized point Gr is

N
2 c"x'ﬁk(x ) (z)

ﬁT(z) =5 a(:z:) vz € X.
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Proof Let u,v € LP(X, u). Then

- N P 1/p
17w ~ Tol|, = fx [Z'm(u(w;‘(x))) -¢k(u(w;1(z)))] o(z) ! du(z)]

k=1
b4 1/p
du(z)]

[ N
< fx g'm(u(w;‘(z)))-¢k(v(w;‘(x)))

=0 as in Proposition 1.6.2.
Also,Vu € LP(X,u) and z € X,

N
> "tk (u(w;'(2)))

Tu(z) = =2

a(z)

N

o(z)

Proposition A.2.5 Let X ¢ R?,D € N*, and let p = mP). Suppose (w,®) is an
N-map IFSM such that

i) we € Simy (X, d) with contractivity factors ci, and
i1) ¢ € Lip(R), with Lipschitz constants K., for 1<k < N.

Then, for p € [1,00) and u,v € LP(X, p), we have

ITw ~ T|l, < C(D, p)llu - vll5,

N o
where C(D,p) = Y. ¢, '*Kk.

k=1
Proof Let u,v € LP(X,pn). Use the fact that o(z) > 1 and the proof follows as in
Proposition 1.6.3 on page 37. [
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Hence, if C(D,p) < 1, T is contractive on L?(X, 1) and has a unique, attracting fixed
point. In addition, if there is a lot of overlapping in the w;, for example if each z € w(X)
is in at least two wi(X), then o(z) > 1. In this case, the new operator T will be more

contractive than the previous one, leading to faster convergence to its fixed point.



Bibliography

[1] R. A. Adams. Sobolev Spaces. Pure and applied mathematics. Academic Press, 1975.

[2] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337-404,
1950.

[3] R. B. Ash. Measure, Integration, and Functional Analysis. Academic Press, New

York, 1972.
[4] G. Bachman and L. Narici. Functional Analysis. Academic Press, 1966.
[5] M. F. Barnsley. Fractals Everywhere. Academic Press, Boston, 2nd edition, 1993.

[6] M. F. Barnsley and S. Demko. Iterated function systems and the global construction
of fractals. Proc. R. Soc. Lond. A, 399:243-275, 1985.

[7] J. J. Benedetto and M. W. Frazier, editors. Wavelets: Mathematics and Applications.
Studies in Advanced Mathematics. CRC Press, 1994.

[8] B. Bollobas. Linear Analysis: An Introductory Course. Cambridge University Press,
1992.

[9] J. Burke. Connections. Macmillan, London, 1978.

130



BIBLIOGRAPHY 131

[10] J. Burke. The azemaker’s gift: a double-edged history of human culture. G.P. Putnam’s
Sons, 1995.

[11] C. Cabrelli, U. Molter and E. R. Vrscay. Recurrent iterated function systems: Invariant
measures, a collage theorem and moment relations. In H.-O. Peitgen, J. M. Henriques
and L. F. Penedo, editors, Fractals in the Fundamental and Applied Sciences, pages
71-80, North-Holland, Amsterdam, 1991.

[12] C. Canuto and A. Quarteroni. Approximation results for orthogonal polynomials in
Sobolev spaces. Math. Comp., 38:67-86, 1982.

[13] P. M. Centore and E. R. Vrscay. Continuity of attractors and invariant measures for

iterated function systems. Canadian Mathematical Bulletin, 37(3):315-329, 1994.
[14] J. B. Conway. A Course in Functional Analysis. Springer-Verlag, New York, 1985.

[15] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in
Applied Mathematics. SIAM, Philadelphia, 1992.

[16] N. Dunford and J. T. Schwartz. Linear Operators Part I: General Theory. John Wiley
and Sons, New York, 3rd edition, 1996.

[17) K. J. Falconer. The Geometry of Fractal Sets. Cambridge University Press, Cambridge,
U. K., 1985.

[18] Y. Fisher, editor. Fractal Image Compression. Springer-Verlag, 1995.



BIBLIOGRAPHY 132

[19] B. Forte and E. R. Vrscay. Inverse problem methods for generalized fractal transforms.
In Y. Fisher, editor, Fractal Image Encoding and Analysis, Proceedings of the NATO
Advanced Study Institute, Trodheim, Norway, July 8-17, 1995.

[20] B. Forte and E. R. Vrscay. Solving the inverse problem for function and image ap-
proximation using iterated function systems. Dynamics of Continuous and Impulsive

Systems, 1:177-231, 1995.

[21] B. Forte and E. R. Vrscay. Theory of generalized fractal transforms. In Y. Fisher,
editor, Fractal Image Encoding and Analysis, Proceedings of the NATO Advanced
Study Institute, Trodheim, Norway, July 8-17, 1995.

[22] M. Ghazel. Fractal, Function and Image Approzimation Using [terated Transformation
Systems. PhD thesis, Department of Applied Mathematics, University of Waterloo,
1994.

(23] D. Gulick. Encounters with Chaos. McGraw Hill, 1992.

[24] C. Handy and G. Mantica. Inverse problems in fractal construction: Moment method

solution. Physica, D43:17-36, 1990.

[25] C. E. Heil and D. F. Walnut. Continuous and discrete wavelet transforms. STAM
Review, 31:628-666, 1989.

(26] J. E. Hutchinson. Fractals and self-similarity. Indiana University Journal of Mathe-
matics, 30:713-747, 1981.

[27] J. J. Hwang and K. R. Rao. Techniques and Standards for Image, Video and Audio
Coding. Prentice Hall, 1996.



BIBLIOGRAPHY 133

[28] R. H. Kasriel. Undergraduate Topology. Saunders, 1986.

[29]

(30]

31]

[32]

[33]

34]

[35]

[36]

G. Lemarié and Y. Meyer. Ondelettes et bases Hilbertiennes. Revista Matematica

Iberoamericana, 2:1-18, 1986.

G. B. Lewellen. Self-similarity. Rocky Mountain Journal of Mathematics, 23(3):1023-
1040, Summer 1993.

W. R. Madych. Multiresolution analyses, tiles, and scaling functions. In Probabilistic
and Stochastic Methods in Analysis, with Applications, pages 233—243. Kluwer Aca-
demic Publishers, 1992.

S. Mallat. Multiresolution approximation and wavelet orthonormal bases of L?*(R).

Trans. AMS, 315:69-88, 1989.

B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company, New
York, 1977.

J. T. Marti. Introduction to Sobolev Spaces and Finite Element Solution of Elliptic
Boundary Value Problems. Computational mathematics and applications. Academic

Press, 1986.

P. R. Massopust. Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press,

San Diego, 1994.

F. Mendivil. A generalization of IFS with probabilities to infinitely many maps. To

appear in Rocky Mountain Journal of Mathematics, 1996.



BIBLIOGRAPHY 134

[37] F. Mendivil and E. R. Vrscay. Correspondence between fractal-wavelet transforms
and iterated functions systems with grey level maps. To appear in the Proceedings of

Fractals in Engineering Conference, Arcachon, France, June 25-27, 1997.
[38] Y. Meyer. Ondelettes et opérateurs I. Herman, Paris, 1990.

[39] A. Mukherjea and K. Pothoven. Real and Functional Analysis Part A: Real Analysis.
Plenum Press, New York, 2nd edition, 1984.

[40] A. Mukherjea and K. Pothoven. Real and Functional Analysis Part B: Functional
Analysis. Plenum Press, New York, 2nd edition, 1984.

[41] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, New York, 1993.

[42] H. L. Royden. Real Analysis. Macmillan, 3rd edition, 1988.
[43] W. Rudin. Fourier Analysis on Groups. Interscience Publishers, New York, 1962.
[44] W. Rudin. Functional Analysis. McGraw-Hill, 1973.

[45] R. Strichartz. A Guide to Distribution Theory and Fourier Transforms. Studies in
Advanced Mathematics. CRC Press, 1994.

[46] H. E. Taylor and T. L. Wade. University Calculus. John Wiley & Sons, 1962.

[47) E. R. Vrscay. A new class of fractal-wavelet transforms for image representation
and compression. To appear in the Proceedings of ImageTech 97 Conference on

Multimedia Imaging Technology and Applications, Atlanta, GA, April 13-16, 1997.



BIBLIOGRAPHY 135

{48] E. R. Vrscay. Moment and collage methods for the inverse problem of fractal con-
struction with iterated function systems. In H.-O. Peitgen, J. M. Henriques and L. F.
Penedo, editors, Fractals in the Fundamental and Applied Sciences, pages 443-461.
North-Holland, Amsterdam, 1991.

[49] E. R. Vrscay. Iterated function systems: Theory, applications and the inverse problem,

Spring 1995. A course in Fractal Image Compression, University of Waterloo.

[50] E. R. Vrscay. Mathematical theory of generalized fractal transforms and associated
inverse problems. In /mageTech Conference on the Mathematics of Imaging and its

Applications, March 1996.

[51] G. G. Walter. Wavelets and Other Orthogonal Systems with Applications. CRC Press,
1994.

[52] H. L. Weinert, editor. Reproducing Kernel Hilbert Spaces. Benchmark papers in

electrical engineering and computer science. Hutchinson Ross, 1982.

[53] R. L. Wheeden and A. Zygmund. Measure and Integral: An Introduction to Real
Analysis. Marcel Dekker, Inc., 1977.

[54] S. Willard. General Topology. Addison-Wesley, 1970.
(55] A. Zygmund. Trigonometric Series, volume I. Cambridge University Press, 1959.

[56] A. Zygmund. Trigonometric Series, volume II. Cambridge University Press, 1959.



Glossary

(X,d),w,A), 14 0, 95

(Cw(u, k*),dy), 115 Con(H(X), h, s), 24

(F(X),h), 18 Con(X,d), 5

(H,<-->), 53 Con(X,d,s), 24

(X,d), 4 Cony (X, d), 29

(w, ®), 34 C"(R), 61

(Wioe, @), 48 Cw(u, k*), 115

(Few(X),daw), 33

(zn) =z, 4 9’ 61

<-->, 53 d(f.9),9

2 7 98 d, 4

2<, o8 d(A, B), 17
d¥(®,, ®,), 38

A, 15 d(z,B), 17

Ay, 126 Oa, 68

A, 54 dpw(u,v), 33

Aw, 25 A2 42

Amny 102 Alzr 115

Als 66 A%, 119
AFR, 119

g ()3’536 Sm(-1y), 68

}_ Omn, 71

B/, 112 detA, 29

B;;, 112 o, 76

ban, 102 Dum(,y), 69

€ 13 Inifr9). 8

g(,zg,p ), 38,128 du(c,d), 115

X4, 30 e, 95

C>(R), 59

CloC(Dap)r 49 F’ 10

136



GLOSSARY

f, 15
[1£1], 53
F(X), 34
Few(X), 31
f*, 102
F..5

f, 15

f. 15,59
frp, 113
Fm(°a y)r 69
f°n1 6

Fo, 14
flg, 53

G(w), 95
G*(w), 96
Yok 59

h(A, B), 17
H(w), 92
H(X), 18
H*(w), 96
HS , 87
H<*, 80
(ha), 54

inv(f), 31

L(X,d), 5
L*(R), 53
A, 14
Li(xa 1), 43
Lip(R), 5
LP(X,u), 36

M, 107
m(P) 37
M(X), 36
myg, 94
M,, 29

max’, 32
M,(R), 26
M+, 54
Mo M+, 54

N 4
N(z;¢), 5
N+ 4

Q,14

P(X), 15
#, 56, 61

d, 34

¢m,n1 56
Py, 54

¥, 56, 67
P, 56, 66

q('vt)v 70
am(-,t), 70

R, 4

R2, 16
rm(-t), T1
R", 26, 27

S, 59

s, 9

S(f), 68

S*, 68

S+r, 19
Sa.b,c,da 119
Sim(X,d), 29
Sz'ml(X, d), 29
S, 61

5, 35
supp(f), 63

T, 110
[t], 71



- GLOSSARY 138

Tiw, ), 35, 123
TEW, 32, 123, 124
9k, 59

Iﬁ§9,48
Ty 34

Grg)s 125

u, 108
iy, 108
ap, 107

Vin, 56, 61, 71

W, 112
W, 40
w(A, z), 14
w, 16

w, 25

w, 24

Wioe, 48
Wn, 15

X, 4

Zs, 9
(xn)v 4
(Zn)nea, 4
zVvy, 17

Z, 4
Zy, 79
Z¢, 79



Abbreviations

BCMP
Banach Contraction Mapping Princi-
ple, 8

IFS

iterated function system, 15
IFSC

IF'S on coefficients, 109
[FSM

IFS with grey-level maps, 34

LIFSM
local [FSM, 48
LIFSW
local IFS on wavelet coefficients, 111

MRA

multiresolution analysis, 61
u-d-n

p-dense and non-overlapping, 40

QMF
quadrature mirror filters, 90

QP

quadratic programming, 45
QPDS

quasi-positive delta sequence, 69

RK
reproducing kernel, 70

139



Index

Bold page numbers indicate a definition Haar, 55, 110
or major reference. Riesz, 66
BCMP, 2, 8, 115
A IFS, 25
LIFSW, 108
affine Bessel’s inequality, 55
IFS, 28 black and white
IFSM, 42 function, 31
transformation, 27 image, 30
angle of rotation, 28 block, 112
approximation, 11 domain, 48, 112
classical, 68 range, 48, 49, 112, 119
IFSM, 42, 51
LIFSM, 51 C
LIFSW, 120 Cantor set, 13
mother wavelet, 101 cascade algorithm, 100
periodized wavelet, 103 Cauchy
scaling function, 101 extension of a subsequence, 20
standard in V,,, 57 sequence, 5
wavelet, 90, 103 closure, 54
attractor, 6, 25 coefficient
Cantor set, 15 dilation, 62
IFS, 25, 27 expansion, 112
IFSM, 107 scaling, 90
L.IF SW’ %16 wavelet, 90
Sle.rpmskl gasket, 28 collage distance, 25, 49
uniqueness, 8 minimized, 42, 119
B Collage Theorem, 12, 25
compact, 9
bandlimited, 91 complete, 55, 115
basis, 55 metric space, 5

140



INDEX

orthonormal set, 55
composition, 6
compression, 26, 101, 120
computer, 1

screen, 29
condensation, 114
continuity

of fixed points, 10

uniform, 5
continuous linear system, 92
contraction, 5, 15

infinite set of maps, 40

system, 14
contractive, 5

maps, 24
contractivity, 6, 16

factor, 5, 29, 36, 128
convergent

sequence, 4

uniformly, 58, 78
covering condition, 48, 49

D

decomposition algorithm, 93, 98
delta
distribution, 68
function, 68
Kronecker, 71
sequence, 68
positive, 69, 79
quasi-positive, 69
Deterministic Algorithm, 26
Devil’s staircase, 38
dilatation of a set by a ball, 19
dilated, 56
dilation, 43
coefficient, 62
equation, 62

relation, 114
direct sum, 54
Discrete Cosine Transform, 109
discrete signal, 90, 92, 120
dual

H=, 80

S, 68

E

e-net, 5, 22
Extension Lemma, 20

141

extension of a Cauchy subsequence, 20

F

Fast Wavelet Transform, 103
filter
band-pass, 93
coefficient, 100
conjugate, 97
Fourier transform, 94
high-pass, 93, 95
low-pass, 92, 94
Mallat algorithm, 93
fixed point, 7, 25, 107
unique, 8
Fourier
fast transform, 90
integral theorem, 64
series, 68
transform, 59
inverse, 59
fractal, 13, 14, 26
Fractal Wavelet Transform, 120
function
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zero-tree, 105

144





