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Abstract 

Area burned in boreal forests is increasing due to climate change effects and regional 

increases in fuels due to a history of successful fire suppression.  An increase in area burned 

threatens valuable resources and infrastructure in timber resources areas and communities.  

The ecological integrity of protected areas may also be threatened if fires increase in 

frequency and size beyond what would have occurred prior to effective fire suppression and 

the effects of climate change.  Fuel management is one strategy being tested by fire 

management agencies and researchers to address these concerns.  However the pattern of fuel 

management that best regulates area burned has yet to be determined.  This thesis 

investigates random fragmentation of highly flammable fuels in the boreal forests of North-

western Ontario.  A case study of Quetico Provincial Park is used.  Using the fire growth 

simulation model, Prometheus, I tested whether, under extreme fire behaviour conditions, 

fuel isolation (FI) and fuel conversion (FC) were effective at reducing average area burned in 

the park.  Through the simulation of over 21,000 large fires, I determined that FI and FC are 

effective in significantly reducing area burned for this case study.  Based on these findings, 

random FI and FC should be studied further on a regional basis and as a prescriptive, 

proactive method of reducing area burned in boreal forests.    
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Chapter 1 

Introduction 

The combination of increased fuel hazards, due to a history of fire suppression, and 

extreme weather events, due to climate change effects, is resulting in larger, more destructive 

wildfires in the boreal biome (Agee, 1998; Conard, Hartzel, Hilbruner & Zimmerman, 2001; 

Gillett, Weaver, Zwiers & Flannigan, 2004; Gollberg, Neuenschwander & Ryan, 2001; 

Moore, Covington & Fule, 1999; Omi & Martinson, 2004).   Extremely large wildfires could 

threaten lives, property and other resource values (Hirsch, Kafka & Todd, 2004; Omi, 2005).  

Due to a variety of conflicting resource management and land use pressures, economic 

interests and safety concerns, it is prudent to explore proactive fire management planning to 

reduce the potential of catastrophic wildfire events.   

Though fire is a necessary natural process within many ecosystems, catastrophic 

wildfires with extreme fire behaviour pose a significant threat to many values and are 

difficult to suppress through traditional methods (Hirsch et al., 2004; Omi, 2005).  Wildfires 

are any fires that are difficult to control and therefore burn across a landscape, consuming 

mainly vegetation in addition to infrastructure (Clarke, Brass & Riggan, 1994).    Extremely 

large wildfires threaten a wide variety of values including timber resources, critical 

infrastructure (power grids, drinking water supplies), buildings, Species at Risk, wildlife 

habitat, soil productivity and other ecological processes.   Firefighter and public health and 

safety are also at risk (Graham, McCaffrey & Jain, 2004; Loehle, 2004; Omi, 2005).   

My research examines how random fuel treatments in highly flammable fuels affect 

average fire size under extreme fire behaviour conditions, using a boreal forest case study.  It 
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is important to recognize that the ‗random‘ component of this study refers to a random 

selection of fuel polygons within targeted highly flammable fuels.  The fuel treatments are 

not randomly selected from all fuel types across the landscape, and therefore are only 

random in the sense of being scattered across a landscape, and are not strategic bulkhead fuel 

break treatments.  Fire occurrence and area burned has been increasing in the boreal biome 

due to extended and warmer fire seasons, frequent extreme weather events (Bergeron, 

Gauthier, Kafka, Lefort & Lesieur, 2001; Flannigan, Stocks & Wotton, 2000; McCoy & 

Burn, 2005; Weber & Flannigan, 1997; Westerling, Hildago, Cayan & Swetnam, 2006) and 

an accumulation of fuels (Suffling, 1992), therefore a reduction in area burned is desirable if 

we wish to restore a natural disturbance regime and protect values at risk.  This research will 

assist in identifying a minimum threshold for the percentage of random fuel treatments 

needed to significantly reduce average wildfire size under extreme fire behaviour conditions.  

Therefore my hypothesis is that randomly isolating and converting highly flammable fuels in 

the boreal forest will decrease average area burned under extreme fire behaviour conditions. 

Research objectives include simulating wildfires in Ontario boreal forests under 

extreme wildfire conditions, and testing the concept of using random fuel treatments to 

reduce wildfire size, which are on the rise due to fuel accumulation and climate change.   

Three research questions addressed are: 

1. Will randomly fragmenting (isolating) highly flammable boreal forest fuels decrease average 

wildfire size in Quetico Provincial Park? 

2. Can fuel conversion (from coniferous to deciduous) decrease average wildfire size in North-

western Ontario? 

3. Are fragmentation and fuel conversion worth researching further as a prescriptive, proactive 

method to reduce the potential of catastrophic wildfires in boreal forests? 
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Large wildfires are a natural component of many forest communities.  Political and 

economic fear has created the misconception that all large wildfires are ecologically 

catastrophic, when in fact it is the human losses that are catastrophic (Kauffman, 2004).  

However, planning and management practices, such as fire suppression, have resulted in 

wildfires occurring beyond their historical range of size and intensity (Kauffman, 2004).  

Making assumptions that all wildfires are unwanted can lead to further disruption of natural 

ecological functions.  For example, the Healthy Forest Initiative (2002) and the Healthy 

Forest Restoration Act (2003) were created in the United States with the intent of reducing 

catastrophic wildfires by restoring healthy forests (Kauffman, 2004).  This law is based on 

achieving healthy forests through thinning and other logging activities in an attempt to 

reduce all wildfires (Kauffman, 2004).  Yet scientists agree that restoring natural processes, 

such as fire, is critical to maintaining forest structure and health.   Fire management planning 

should be based on sound scientific research before wide-scale implementation. 

Natural resource extraction is of significant importance to northern economies that 

rely on timber harvesting and spin-off industries.  Forest fire frequency, intensity and area 

burned concern the forest industry, government agencies and local communities, as fires 

limit the availability for harvestable timber resources (Flannigan et al., 2000; Suffling, 1992; 

Weber & Flannigan, 1997).  A study by Martell (1994) found that Ontario‘s forest fire 

management system was effective at reducing timber lost to fire in the majority of the 

districts under study.  This was achieved through traditional fire suppression methods, the 

costs of which can be directly attributed to area burned each year. Yet this figure has been 

rising steadily, indicating an increased area burned (Weber & Flannigan, 1997).  It is 
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reasonable to expect increasing fire suppression measures, including proactive approaches, 

will be needed given the pressure of timber harvesting quotas in a shifting fire regime 

(Weber & Flannigan, 1997).   

This research focuses on one of the main objectives of FireSmart forest management: 

the reduction of average area burned from unwanted wildfire.  The word ―unwanted‖ is a 

deliberate choice; it is a normative term and the implication is that fire suppression may be 

justified when values at risk are threatened but it does not mean that all large wildfires 

should be suppressed everywhere. 

FireSmart principles are critical to the conceptual framework for this study, as there 

is potential to extrapolate concepts of fuel isolation and reduction outside of a community 

protection context.  There is an important distinction between the known FireSmart 

community protection strategies and the FireSmart forest management conceptual theory I 

studied.  Established FireSmart community protection approaches use strategic fuel isolation 

(fuel breaks) and fuel reduction to reduce wildfire risk surrounding an area with high values 

at risk.  This research studies the reduction of fuel hazards applied randomly across the 

landscape in order to decrease the overall size of catastrophic wildfires, thus decreasing the 

potential of wildfires escaping suppression controls and threatening values at risk.  This 

would allow fire to continue as a natural disturbance process without necessitating large-

scale suppression efforts for a large proportion of fires close to the wildland urban interface, 

timber resources and other ecological values.  

The effectiveness of FireSmart forest management landscape fuel treatments is still 
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under debate.  In this research I used fire growth modelling to run thousands of fires on a 

landscape of original fuels (the control) and subsequently on a series of treated landscapes.  

The treatments consisted of 16 landscapes with randomly fragmented highly flammable 

fuels.  The average area burned from these fires was statistically analyzed to determine if the 

fragmentation of fuels resulted in a reduction in fire size in a boreal forest case study.  It is a 

useful exercise to test fuel management planning concepts using realistic fuel and weather 

data, opposed to simulated landscapes.  This research uses real world data and realistic input 

parameters in order to maintain relevance to the Canadian boreal forest.     

As using field experiments to study the effects of fuel treatments under extreme fire 

behaviour conditions is difficult (Agee & Skinner, 2005), fire growth modelling can be used 

to predict and evaluate the impacts of fuel management strategies and plan for future 

management (Fernandes & Botelho, 2003).  There was high-quality data available for 

Quetico Provincial Park, located in North-western Ontario.  This is important in fire growth 

modelling because quality of input data considerably affects quality of modelling output.  A 

case study was important to this research as it provided a realistic vegetation mosaic for 

testing conceptual fuel fragmentation theories.   

This research does not provide a prescriptive method to reduce wildfire size, but 

rather a conceptual approach that may later be combined with stand and compartment level 

fuel management research to apply in the field.  The concepts of fuel isolation and 

conversion are studied as a theoretical model for the basis of future prescriptive research.  As 

this research focuses on the conceptual theory of using fragmentation to reduce area burned, 

the mechanical methods of achieving fuel isolation and conversion will not be explored. 
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Natural resource management planning is moving towards an integrated and co-

ordinated approach to cross-boundary resource issues.  Fire management is one issue that 

requires such cooperation between industry, government and private landowners.  Effective 

resource management planning that protects values at risk is needed, while continuing to 

maintain the natural disturbance role of fire in the boreal biome.   

Fire management planning must incorporate multiple spatial scales.  Spatial scale can 

be defined as both the resolution or grain size of the data and the landscape extent or size 

(Boychuk & Perera, 1997).  The context of the research defines the appropriate scale.  My 

research examines the landscape-level phenomena of a subsection of boreal forest fires in 

Quetico Provincial Park and a buffer area, which is approximately 5542 km² in size.  Though 

the conclusions from this study are specific to a region of North-western Ontario, the theory 

behind the application of random fuel fragmentation can be used as a planning component 

for fire management in other boreal regions.   

In the context of the following literature, it is clear that a fire management issue is 

arising out of a history of successful fire suppression, coupled with the effects of climate 

change: average area burned is increasing in comparison to historical fire regimes.  This 

equates to larger, more frequent catastrophic fire events that threaten the values inherent to 

protected areas, crown land and the wildland urban interface.  Planning methods to mitigate 

this risk are needed.  The risks associated with large wildfire events may potentially effect 

three areas: 1) Protected areas, 2) Timber resources, and 3) Interface communities.  The 

concerns specific to each area are: 
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 Stand-replacing fires are part of the boreal forest fire regime and should be 

reintroduced in protected areas.  However, large wildfires are difficult to suppress, 

may escape the park boundaries and threaten surrounding resource values and 

communities.  Resource planners should determine a way to allow some wildfires to 

occur in a park in an effort to restore ecosystem integrity, but limit risks normally 

associated with extreme large wildfire events.  This may be possible by reducing the 

average wildfire size through random fuel treatments.  

 Timber resources are frequently threatened by extreme wildfire events.  With an 

increase in these events, timber companies need new fire management strategies to 

protect their resources.  By limiting average area burned by incorporating random 

fuel treatment patterns into their strategic planning, they may help to protect timber 

resources.   

 Communities surrounded by boreal forests are at greater risk from extreme wildfire 

events as a result of climate change effects and potentially historic fire suppression 

activities.  FireSmart community protection may not sufficiently protect these 

communities from extreme wildfire events; therefore new fuel management strategies 

should be researched.   

To determine if average area burned can be reduced through randomly fragmenting 

highly flammable fuels, a case study of boreal forests typical to North-western Ontario was 

used.  Fire growth simulation modelling is used as a tool in an attempt to answer this 

question.  Specifically, a wave propagation model was used (vector modelling).  The batch 
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program Pandora was used to access the modelling engine of Prometheus, to simulate 

multiple iterations of fires on a control map and on 16 fuel treatments.   

In a brief synopsis, I shall explore the rise of the fire suppression era, and how this 

has led to an accumulation of fuel hazards thus affecting boreal forest fire regimes.  From 

there, I shall briefly review the concept of fuel management strategies used to mitigate risks 

associated with wildfires.  After exploring the effects of climate change on fire regimes, we 

will examine fire simulation modelling, a relatively new planning and research tool for 

studying fire management strategies.  Methods used for fire growth modelling and necessary 

data inputs will be outlined, followed by results of this research and a discussion of the 

importance of these findings. 
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Chapter 2 

Literature Review 

2.1 Fire Management in North America 

Fire is an important large-scale disturbance in many ecosystems worldwide (Anderson 

et al., 1998; Morgan, Hardy, Swetnam, Rollins & Long, 2001).  Fire management likely 

predates recorded history.  In North America, aboriginals may have used fire management 

for hunting, berry production and warfare as far back as c 11,000 BCE (post the last major 

glaciation period) (Heinselman, 1996; Martinson & Omi, 2003; Pyne, 1982).  This abruptly 

changed with the arrival of European settlers, which was generally characterized by an 

immediate increase of fire due to accidental ignitions, followed by a trend towards fire 

suppression by the early to mid 1900s for many regions in North America.  In the 1980s, 

policy and fire management standards in North America shifted towards a combination of 

fire use, fire tolerance and fire control, in an attempt to balance economic, social and 

ecological considerations.  The future of fire management will be determined by the 

interplay between political influence and scientific rigour. 

2.1.1 Pre-suppression era in North America 

Natural fire occurrence has always been an influential large-scale disturbance 

(Heinselman, 1996) in North America.  Through the combination of oral history and fire 

history studies, researchers have determined that native peoples used fire for thousands of 

years on all continents, except Antarctica, (Omi, 2005).  According to a meta-analysis by 

Martinson & Omi (2003) of North American fire history studies, native firings were a 
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substantial component of the fire regime in North America.  However, studies in Quetico 

Provincial Park are inconclusive as to whether native firings significantly influenced historic 

fire regimes (Suffling & Speller, 1998).   

2.1.2 Fire Suppression Era in North America 

North-western Ontario did not escape the fire suppression era, though the immediate 

impact of suppression would have been less catastrophic (in the sense of gradual ecosystem 

changes) because there was no mass prescribed burning by native peoples (Fritz, Suffling & 

Younger, 1993).  Suppression usually reduces the number of low and moderate-intensity 

fires, thus fundamentally changing the landscape pyrodiversity (Graham et al., 2004; 

Stephens, 1998).  Depending on the forest type and location, this can result in significant 

accumulations of biomass that inhibits ecosystem functioning (Conard et al., 2001; Gollberg 

et al., 2001; Pyne, 1982).  The additional biomass provides large fuel beds thereby 

increasing the risk for extremely large, intense catastrophic wildfires that threaten lives, 

property and neighbouring lands (Agee, 1998; Conard et al., 2001; Gollberg et al., 2001; 

Moore et al., 1999; Omi & Martinson, 2004), especially in the context of longer, warmer fire 

seasons as a result of global climate change (Conard et al., 2001).   

Though there has been limited research on the effects of fire suppression in boreal 

forests, it is reasonable to expect an increase in fuel hazards in regions where fire 

suppression has altered the fire regime (Omi & Martinson, 2004).  Woods and Day (1977) 

conducted a fire regime study of Quetico Provincial Park and found a substantial increase in 

fire return interval, from 78 to 870 years.  Therefore it is reasonable to believe fuel hazards 
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may be of concern for boreal forests of this region (Ontario Ministry of Natural Resources 

(OMNR), 1993).   

Boreal forests are generally characterized by large stand replacing fires.  Fire extent 

is induced by horizontal and vertical continuity of fuels (Fernandes & Botelho, 2003).  If fire 

suppression has limited the number and area burned of fires, it is reasonable to expect an 

increase in horizontal continuity of fuels and a shift from mixed species to more coniferous 

stands (Bergeron et al., 2001; Stocks et al., 1998).  Therefore when large fires do occur they 

are likely to become even larger than prior to historical fire suppression.   

A further consequence of suppression is the increasingly large proportion of forests 

succeeding into old-growth stands with conifers as the dominant vegetation (Bergeron et al., 

2001; Hély et al., 2000).  Old growth boreal forests are more volatile because of a shift from 

mixed fuels to more coniferous fuels (Hély et al., 2000), contributing to a higher level of 

flammability on the landscape, thus increasing the potential for large-scale catastrophic 

wildfires.  As well, a shift in forest composition may lead to a variety of insect and disease 

problems (Gollberg et al., 2001), further altering forest composition and increasing the 

horizontal availability of flammable fuels (Suffling & Perera, 2004).  Debate continues today 

regarding the regional impact of effective fire suppression during the past 80 years (see 

Miyanishi & Johnson, 2001; Ward, Tithecott & Wotton, 2001).  

In North American by the early 1970‘s, fire suppression was reevaluated by fire 

managers, ecologists and natural resource planners, with the realization that fire was 

ecologically integral to ecosystem sustainability, particularly in the boreal forest (Woods & 
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Day, 1975).  The United States fire management abruptly adopted wide-scale use of 

prescribed burns, demonstrating the policy shift to ‗black is beautiful‘.  This new fire 

paradigm was implemented to such a degree that area burned by prescribed burns was 

surpassing that of wildfires (Pyne, 1982).   

Globally, many fire agencies have now adopted prescribed burning as a fire 

management tool in an attempt to allow fire to function as a natural disturbance process.  

However when fires threaten significant values at risk, full fire suppression tactics pre-empt 

consideration for natural processes (Gollberg et al., 2001).  In addition to fire suppression 

altering historic fire regimes, operational fire suppression tactics may affect ecosystem 

structures and functions.  These impacts are not always considered in operational fire 

management decisions, and are often difficult to separate from the ecological impacts of fire 

(Backer et al., 2004).  Such considerations should include impacts on soil retention, species 

at risk concerns and water quality (Backer et al., 2004), hence many agencies developed an 

adapted fire suppression tactic called ‗light-on-the-land‘ to reduce negative ecological 

impacts (Backer, Jensen & McPherson, 2004).  Fire suppression is a necessary fire 

management strategy to ensure the protection of values at risk, however there is a need to 

balance traditional fire suppression techniques with other proactive techniques.  As a history 

of fire suppression has lead to the accumulation of fuel hazards, suppression can no longer 

be the only viable fire strategy. 

2.2 The Future of Fire Management: FireSmart Forest Management 

With an increase in catastrophic wildfires and the expansion of the wildland urban 
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interface, there is an increase in frequency and concern over interface fires.  To combat the 

risks of interface fires, we must manage fires at a landscape scale and recognize that 

effective protection from interface fires cannot rely solely on good fire control (Partners in 

Protection, 2003).  Traditional approaches to fire control are approaching the maximum 

effectiveness without addressing escaped wildfires (Hirsch et al., 2004), such as those 

experienced in Kelowna, British Columbia in 2003, resulting in significant loss of property 

(Filmon, 2003).   

FireSmart community protection was developed by Partners in Protection, an 

Albertan based coalition of professionals representing national, provincial and municipal 

associations and government departments responsible for natural resource management and 

planning (Partners in Protection, 2003).  The objective is to use fuel management in a 

proactive manner to reduce the area burned and risks associated with unwanted wildfires and 

prescribed burning strategies surrounding communities (Hirsch et al., 2004; Martell et al., 

2004).  FireSmart forest management aims to: 1) Decrease the potential landscape-level fire 

behaviour; 2) Reduce potential for ignitions; and 3) Improve fire suppression capability with 

existing resources (Bevers et al., 2004; Hirsch et al., 2004; Partners in Protection, 2003).  

The fire environment is assessed to identify fuel hazards and this knowledge is incorporated 

into strategic and operational fire management (Hirsch et al., 2004).   

FireSmart forest management is one approach to address the threat of wildfires to 

communities.  To combat the risks associated with wildfires, FireSmart forest management 

focuses on the prevention of fire spread through communities.  The concepts behind 

FireSmart community protection are not entirely new, as far back as the 1950‘s forms of fire 
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prevention focussed on the modification of the fire environment (Pyne, 1982).  The 

FireSmart community protection program has formalized a simple systematic approach to 

protect areas of high values at risk from wildfire events through the reduction and isolation 

of fuels surrounding these values.   

  As crown fire is more likely in dense coniferous forests, a central component of 

FireSmart forest management is to create an environment with low stand density, scattered 

surface vegetation and absent or scattered ladder fuels in a 10 km zone surrounding a 

community (Partners in Protection, 2003).  The landscape beyond this zone is not altered.  

This community-focussed approach does not reduce the potential of catastrophic wildfires 

within the surrounding landscape.  However the concepts of reducing fuel continuity can be 

extrapolated from a community context and applied across boreal landscapes, to reduce the 

potential for catastrophic wildfires that are burning outside of historic fire regimes and 

threaten other values at risk, such as timber values, critical infrastructure, and other 

ecological values. 

2.2.1 Fuel Management  

As the fire environment is the main influence on the final size of escaped fires, focus 

should be on those aspects of the fire environment that can be actively managed (Hirsch et 

al., 2004).  The three components of the fire triangle are fuel, weather and topography.  Fuel 

is the only component that can be effectively managed and strongly influences fire behaviour 

(Fernandes & Botelho, 2003; Graham et al., 2004; Hirsch et al., 2004; Pollet & Omi, 2002).    

The goal of fuel management is to make changes to the fuel complex to proactively 
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modify wildfire behaviour and indirectly facilitate suppression efforts, thereby limiting 

wildfire sizes and severity (Finney, 2001; Finney, McHugh & Grenfell, 2005; Hirsch et al., 

2004).  To be successful at limiting fire behaviour and area burned, fuel management should 

decrease fuel hazards through the reduction of surface fuels, ladder fuels and crown density, 

while leaving some larger trees (Agee & Skinner, 2005; Loehle, 2004), or by converting 

from highly flammable to less flammable fuels (Partners in Protection, 2003).   

The reduction of crown fuels is important as crown fires are more likely to develop 

into active crown fires (Graham et al., 2004), thus creating catastrophic wildfire events 

threatening values associated with the wildland urban interface, timber resource areas and 

protected areas (Graham et al., 2004).  The complete elimination of crown fires is neither 

feasible nor ecologically desirable as they are a natural component of many disturbance 

regimes (Weber & Stocks, 1998).  Limiting the extent and probability of these fires is 

important for public safety, resource protection and returning to historic fire regimes.   

Fuel management can be broken down into three categories: fuel reduction, fuel 

conversion and fuel isolation (Martell et al., 2004; Pyne, 1984).  Fuel reduction is achieved 

by reducing fuel loads by using periodic prescribed burns or thinning practices (Agee & 

Skinner, 2005; Martel et al., 2004).  Fuel conversion is the replacement of highly flammable 

coniferous fuels, with less flammable deciduous fuels (Martell et al., 2004; Partners in 

Protection, 2003).  This can be done through harvesting and/or prescribed burning followed 

by planting deciduous species.  Fuel isolation aims to fragment fuels through the use of 

roads, cut blocks and fuel breaks, thereby reducing the vertical and horizontal continuity of 

flammable fuels (Fernandes & Botelho, 2003; Martell et al., 2004).  
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Typical fuel treatment types that can reduce fire rates of spread and intensities are 

prescribed burning and thinning, or a combination of the two (Agee & Skinner, 2005; 

Finney, 2001; Finney et al., 2005; Graham et al., 2004; Pollet & Omi, 2002).   

For this research, methods of implementing fuel treatments are less relevant than the 

conceptual basis for landscape scale fuel treatments.  Approaching fuel management from a 

landscape perspective is likely to have more success on overall reduction of fire spread, 

intensity, perimeters and suppression capabilities, than in comparison to the treatment of 

isolated forest stands (Finney, 2001; Graham et al., 2004).  The spatial arrangement of fuels 

is critical in determining the growth of large fires (Finney, 2001; Graham et al., 2004; 

Loehle, 2004), therefore the spatial landscape pattern of fuel treatments and the forest is a 

significant factor in reducing area burned (Agee & Skinner, 2005; Fernandes & Botelho, 

2003).  This is because fire must burn around treated fuel patches, reducing fire intensity and 

rate of spread (Finney, 2001; Graham et al., 2004).  If this occurs within a certain proportion 

of an active fire perimeter, the potential to substantially reduce area burned is increased.  

Possible key areas for intervention management are those landscapes that are composed of a 

mosaic of alternate stable states and that connect or fragment areas in the same alternate state 

(Peterson, 2002), such as boreal forests that are often a mosaic of varying patches of stand 

types and ages.   

Landscape and plant heterogeneity will affect the extent of the fire.  Breaks in 

topography, such as surface hydrology, rock outcrops and certain plant communities act as 

fire barriers, thereby increasing fragmentation of fire extent (Whelan, 1995).  Though it is 

difficult to quantify changes in fragmentation, we can determine if fragmentation is 
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increasing or decreasing.  A study by Lefort et al. (2003) found that there is a likely 

correlation between decreased area burned and increased fragmentation in those areas that 

had been fragmented by agricultural development in Canada.   

Strategic fuel breaks (a fire management method that reinforces existing defensible 

locations used to stop fire spread) is another fuel management technique (Finney, 2001; 

Graham et al., 2004).  Strategic fuel breaks are usually easily accessible, inexpensive in 

comparison to random treatments and do help contain the fire perimeter.  However the 

effectiveness of changing fire behaviour from within the fire is limited (Graham et al., 2004), 

and if the containment line is breached, the fire will continue to grow in size and intensity, 

requiring continual direct attack measures.  These traditional fuel breaks are not effective in 

limiting the spread of crown fires (Loehle, 2004).  Others researchers have suggested the 

idea of strategic fuel breaks (Hirsch et al., 2004; Finney & Cohen, 2003), and found that they 

slow fire spread, but would require more systematic application to be successful at limiting 

landscape level fire size (Loehle, 2004).   

Using percolation theory (see Section 2.6.1), Bevers et al. (2004) studied the effects 

of random fuel treatments in simulated landscapes, with the hypothesis that a critical fraction 

of fuel fragmentation is needed to create a successful landscape-scale fuel break between 

wildland areas and development zones.  They found that random fuel treatments would be 

needed throughout the majority of the forest to be successful.  However in regions where 

long-distance spotting is common with extreme events, random disperse fuel treatments may 

be more effective than strategic and networked treatments at limiting fire growth by reducing 

ignition and growth potential (Fernandes & Botelho, 2003).   
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Loehle (2004) modelled the effect of random and strategic bulkhead fuel treatments 

on area burned using a cellular (percolation) model and found that a threshold does exist 

below which a landscape is essentially fireproof.  Though the strategic bulkhead strategy 

was more effective than random treatments, at 25% area treated the random fuel treatments 

were comparable to the strategic bulkheads.  At the 30% threshold the landscape could be 

considered theoretically fireproof, noting that these results were based on a conceptual study 

and therefore do not have prescriptive value.  Another study in a ponderosa pine forest in 

Arizona found this threshold to be 18%.  A lower percentage of treated area is possible if 

random treatments are concentrated in high hazard areas, such as coniferous fuels (Loehle, 

2004).  Fireproof should not mean that fire is completely excluded from the landscape, that 

instead fires are limited from becoming extremely large wildfires, thus allowing for natural 

and prescribed fires to burn more freely without fear of catastrophic events (Loehle, 2004).   

The challenge for landscape level treatments is to determine the percentage of the 

landscape that requires fuel treatment and the placement of these treatments to most 

effectively reduce wildfire hazards (Agee & Skinner, 2005).  We need to expand research 

from theoretical landscapes to realistic heterogeneous landscapes (Agee & Skinner, 2005), 

using socially and ecologically acceptable treatment methods in order to improve fuel 

management strategies.  

2.3 Fuel Treatment Prescriptions 

Prescribed burning and mechanical thinning are two options for fuel management 

prescriptions.  Prescribed burning is the deliberate application of fire in fuels, under 
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predetermined conditions in order to reach well-defined management goals (Fernandes & 

Botelho, 2003).  Prescribed burning is less precise in comparison to mechanical thinning, 

and potential of fires escaping can make prescribed burning a politically sensitive decision 

for planners (Graham et al., 2004; Hirsch et al., 2004).  Prescribed burns are effective in 

reducing fine fuels, duff, large woody fuels, rotten material, shrubs and other live surface 

fuels, thus drastically reducing fuel loads of treated areas (Finney et al., 2005; Graham et al., 

2004; Fernandes & Botelho, 2003) thereby reducing flammable continuity of fuels and 

effectively reducing fire behaviour (Agee & Skinner, 2005; Fernandes & Botelho, 2003).  If 

implemented randomly across the landscape in highly flammable fuels to mimic smaller fire 

events, prescribed burning might help reduce the size of extreme wildfire events.   

More field research is needed on the effectiveness of prescribed burning fuel 

treatments (Fernandes & Botelho, 2003), as treatments might not be sufficient on their own 

to achieve structural goals of forest restoration, but are likely a good first step in assisting in 

the long-term reintroduction of ecological disturbances (Finney et al., 2005).  To date there 

has not been a systematic field study of the effectiveness of prescribed burning as a fuel 

treatment in a fuels composition and structure similar to Northern Ontario.  There are several 

in the Western United States and Australia that generally demonstrate prescribed burning is 

effective in reducing fire intensity and extent.  See Fernandes and Botelho (2003) for a 

review of these studies. 

Mechanical thinning is more precise and effective in reducing vertical fuel 

continuity, thus reducing ladder fuels and the fire hazard for 10 or more years (Agee & 

Skinner, 2005; Graham et al., 2004; Loehle, 2004, Fiedler & Keegan, 2003).  However, 
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thinning can increase the surface fuel load depending on the method of yarding (Agee & 

Skinner, 2005), causing increased intensities (Finney, 2001; Graham et al., 2004).  Thinning 

can create gaps, and increase the amount of solar radiation that reaches the surface floor, 

thus increasing surface temperature, creating drier conditions suitable for ignition (Graham 

et al., 2004).  These gaps allow for increased surface winds to carry an ignition (Omi & 

Martinson, 2004).  The resulting reduction in fire behaviour from thinning treatments usually 

outweighs increases in fire weather factors, when thinning is followed by adequate treatment 

of surface fuels through prescribed burning (Weatherspoon & Skinner, 1996).  For this 

study, thinning was not modelled, as it is difficult to model forest thinning (i.e. fuel 

reduction) in comparison to fuel isolation and fuel conversion.  For details on silviculture 

options for fuel treatment see Graham et al., (1999), Peterson et al., (2003) and Stephens 

(1998).   

Fuel treatments have become controversial in the sense that some equate logging 

with fire as an ecological process or, more mildly, argue that thinning should precede fire.  

The assumption that forest thinning will help restore healthy forests is potentially flawed 

(Kauffman, 2004).  The concept of reducing area burned through fuel treatments is not 

synonymous with thinning replacing fire as a naturally occurring landscape level process.  

This is important because though fuel treatments may take the form of thinning or other 

logging practices to reduce the potential for large wildfires, they should not be applied 

universally to reduce area burned throughout an entire region.  Instead, these practices 

should only be used in those areas in which average area burned and intensity has increased 

beyond the historic range.   
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Prescribed burning and thinning practices as part of fuel treatment prescriptions can 

benefit other management objectives such as producing forage for wildlife, producing timber 

products, creating disease and insect resistant stands as well reducing fire behaviour 

(Graham et al., 2004), thus reducing area burned.  Habitat quality may be threatened by fuel 

treatment prescriptions that alter the stand structure, though extreme wildfires generally have 

a more extreme impact on wildlife than fuel treatment prescriptions (O‘Laughlin, 2005). 

A combination of prescribed burning and mechanical thinning should be considered 

for those areas in which both methods are feasible and desirable (Graham et al., 2004).  A 

study by Stephens (1998) found that multiple treatment type strategies were most effective in 

reducing rates of spread and area burned under 95
th

 percentile weather conditions.   

Multiple fuel treatments are usually required to maintain relative ‗fire-proofing‘ of 

initial treatments, as fuels build up as stands age (Agee & Skinner, 2005; Finney, 2001; 

Finney et al., 2005; Hessburg et al., 2005; Loehle, 2004; Whelan, 1995), although an 

increased canopy base height usually persists (Agee, 2003).  It is suggested that it is not the 

history of fuel treatments that determines fire behaviour, but instead time since last treatment 

and treatment size (Finney et al., 2005).  The key to determining fuel treatment frequency is 

to understand the regional fuel and weather context including the historic fire regime and the 

rate of vegetation growth, which is affected by local climatic conditions, soils and nutrient 

availability (Fernandes & Botelho, 2003; Graham et al., 2004; Stephens, 1998).   

Hirsch et al. (2004) suggest the following techniques as potential FireSmart forest 

management methods in active timber productive forests:  
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 Following natural fuel type changes, topography and hydrology for cut-block 

boundaries,  

 Orienting cut-blocks according to the prevailing wind, and  

 Prescribed burning to reduce fuel hazards in surrounding unproductive 

forests.   

How to treat fuels will depend on the composition, moisture content, amount and 

structure (size, distribution, depth, and age) of fuels, as these factors strongly influence how 

they burn and in turn how the fire effects the environment (Graham et al., 2004).  Altering 

the horizontal and vertical continuity of fuel strata can alter fire behaviour, and therefore 

understanding fuel conditions is key to developing fuel management strategies (Graham et 

al., 2004).  Short- and long-term ecological, economic and social values should also be 

considered when determining fuel treatment potential (Finney, 2001; Graham et al., 2004; 

Hirsch et al., 2004). 

2.4 Implications of a Changing Climate 

The debate over the effects of anthropogenic climate change is heated, but 

understanding the reality of climate change is paramount to the future of Canadian boreal 

forests.  It has been shown that human-induced climate change is likely altering fire regimes 

in Canada at various temporal and spatial scales, resulting in higher fire frequency, intensity 

and area burned (Weber & Flannigan, 1997).  Understanding climate change effects on 

boreal forests is critical to the future of fire management planning.  Three significant 

changes expected in boreal forest landscapes are: altered vegetation and landscape mosaics, 



 

 23 

altered fire occurrence potential, and changes in fire severity due to changes in the fire 

weather (Weber & Flannigan, 1997).   

2.4.1 Probable realities of climate change 

By the year 2100, it is estimated that the global mean surface temperature will 

increase by 1.1 to 6.4ºC (Alley et al., 2007), a change of magnitude and speed unprecedented 

in the past 10 000 years (Stocks et al., 1998; Weber & Flannigan, 1997).  Though 

atmospheric temperature changes have occurred throughout geologic history, the recorded 

changes post industrialization indicate an anthropogenic origin (Weber & Flannigan, 1997).  

Gillett et al. (2004) found that human emissions of greenhouse gases and sulphate aerosol 

have contributed to global climate warming, and has had a detectable influence on area 

burned in the past four decades in fire prone areas in Canada.  For a more detailed review of 

the impacts of human emissions of greenhouse gases and sulphate aerosols on detectable 

climate warming in North America see Lavender (1997), Zwiers and Zhang (2003), Allet et 

al. (2007) and Koroly et al. (2003).   

Along with winter and springtime warming (Stocks et al., 1998), projections indicate 

a 20% variation in regional precipitation in summer and winter as well as drier summer soils 

with an average of 2-8 mm less water (Reinhard, Rebetez & Schlaepfer, 2005; Weber & 

Flannigan, 1997).  A study by Reinhard, Rebetez and Schlaepfer (2005) found a decrease in 

cloudiness, causing an increase in sunshine hours thereby increasing the maximum 

temperatures, as well as decreasing precipitation in critical fire prone regions in southern 

Switzerland.  This could result in longer fire seasons characterized by longer series of hot 
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days without cooler interruptions, accompanied by greater precipitation variability due to an 

increased moisture-holding capacity of the warmer atmosphere (Overpeck, Rind & 

Goldberg, 1990). 

2.4.2 Fire regimes in a changing climate 

A fire regime integrates the influences of several fire behaviour characteristics, 

affected by weather, and landscape structure characteristics, expressed in the following 

components: fire frequency, size, intensity, seasonality, type (crown versus surface) and 

severity (depth of burn) (McLoughlin, 1998; Pyne, 1984; Weber & Flannigan, 1997; 

Whelan, 1995).  Whelan (1995) describes the importance of these components and the 

interactions of the resulting fire regime with the landscape.   

The forest structure and function, weather and climate strongly influence each fire 

regime component (Flannigan et al., 2000; Weber & Flannigan, 1997).  In fact, fire regime 

responds very quickly to climate changes (Weber & Flannigan, 1997), because fire 

behaviour responds immediately to fine fuel moisture, which is affected by precipitation, 

relative humidity, air temperature and wind speed (Van Wagner, 1987).  These factors can 

therefore be a limiting condition to fire growth or a primer for extreme wildfires (Flannigan, 

et al., 2000; Stocks et al., 1998).   

Scenarios of 2 x CO2 levels have been used in GCMs to represent plausible changes 

in greenhouse gases in the next century, with most studies suggesting a higher occurrence of 

extreme weather events and regionally elevated temperatures (Flannigan et al., 2000).  

Therefore if climate changes projections are realized in the next century, the effects of 
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altered fire regimes could be swift and far reaching across the boreal biome in Canada 

(Flannigan et al., 2000, Suffling & Speller, 1998).  The interaction between climate change 

and fire regime has the potential to overshadow the importance of the direct effects of global 

warming on species distribution, migration, substitution and extinction (Suffling & Speller, 

1998; Weber & Flannigan, 1997). 

Climate changed fire regimes could be represented by a doubling of annual area 

burned by the end of this century (Flannigan, Stocks & Wotton, 2000; McCoy & Burn, 

2005), because of an extended fire season, increased fire frequency and severity (Bergeron et 

al., 2001; McCoy & Burn, 2005; Weber & Flannigan, 1997; Westerling et al., 2006).  Area 

burned has increased over the past 40 years, as noted by Van Wagner (1988), Skinner, 

Tocks, Martell, Bonsal and Shabbar (1999), Suffling (1992) and Podur, Martell and Knight  

(2002).  Gillett et al. (2004) report that this is not an artefact of new technology such as 

satellite imagery. 

In the long term, temperature is a good predictor for area burned as it is most easily 

observed (Gillett et al., 2004).  Westerling et al. (2006) found that warmer fire seasons have 

resulted in a 600% increase in average area burnt and four times the fire frequency in the 

western United States.  Studies have generally shown that an increase in fire has been 

occurring at higher elevations, however Westerling et al. (2006) found that summer drought 

is more intense and longer in duration at lower elevations.  Regional projections show a 

likelihood of increased fire occurrence primarily in central and western Canada, potentially 

with decreasing occurrence in the eastern boreal area (Weber & Flannigan, 1997).  However 

more detailed, regional modelling is required to substantiate these results.  A study by Podur 
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et al. (2002) determined that although part of the increase in Canada and Ontario can be 

attributed to the inclusion of new protected areas, this is not the situation for the increase in 

fire occurrence for a case study northwest of Quetico Provincial Park.  The increases in fire 

activity may be attributed to other influences, such as climate change and other land uses 

changes.  However due to absence of complete data, disentangling the effects of historical 

fire suppression and climate change was difficult (Podur et al., 2002).  Munoz-Marquez 

Trujillo (2005) found in the comparison between climate change scenarios between 2010 

and 2060, the frequency of fires in North-western Ontario will slightly decrease though area 

burned will increase substantially, possibly indicating a greater frequency of extreme 

wildfires.   

Flannigan et al. (2000) found that with an increased seasonal severity index, annual 

area burned would increase by 25-50% in the United States by the middle of the 21
st
 century.  

Wotton and Flannigan (1993) also found that the fire season lengths will likely increase by 

22% or 30 days longer in Canada with an earlier annual start and end (Flannigan et al., 

2000).  In the western United States, Westerling et al. (2006) studied historical data from 

western United States and found that the average season-length increased by 78 days, mainly 

due to earlier ignitions in the spring and later end to the fire season.  These results cannot be 

applied universally across the US or Canada due to the coarse spatial and temporal 

resolution of the GCMs and due to regional variability; therefore regional climate models 

should be used (Flannigan et al., 2000; Weber & Flannigan, 1997).    

GCMs, paleo-evidence of fire regimes as they relate to climate change, ecological 

modelling and fire simulation modelling separately have limitations, leaving uncertainty 



 

 27 

about the future of fire regimes in Canada under changing climatic influence.  In order to 

resolve the shortcomings of any one method alone, a boreal forest open-air experiment is 

needed, combining field plots/greenhouses, outdoor microcosm, growth chambers and 

modelling components, similar to the Jasper Ridge CO² experiment by Field, Chapin, 

Chiariello, Holland and Mooney (1996) (Dale et al., 2000; Weber & Flannigan, 1997).  Field 

experiments are time consuming, very expensive and often not feasible.  Therefore fire and 

forest management should proactively address the potential of climate change effects 

through computer fire growth modelling and begin to address the likely implications on fire 

frequency and intensity. 

2.5 Fire Simulation Modelling  

Given the complexity of fire variables such as weather, fuels, fire behaviour, and land 

use patterns across scales (Gardner, Romme, Turner, 1999; Keane et al., 2004; Richards, 

1994), there has been greater interest in computer simulation models for fire management 

and planning in Canada in recent years.  They complement empirical evidence of fire history 

reconstruction, such as dendrochronological studies, and provide insight into the dynamics 

of ecological systems (Boychuk & Perera, 1997).  Simulation modelling is needed to build 

effective fire management planning and decision-making beyond fire history construction 

(Suffling et al. 2003).  It is important to recognize modelling as a tool to aid fire managers in 

assessing fire management strategies, but should not be used to replace local knowledge.  

Fire models are useful for assessing the range of conditions under which fuel treatments can 

modify fire behaviour (Graham et al., 2004). 
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Different simulation models are used for different case studies because of limited 

knowledge of physical and chemical processes in wildfires and cross-scale variation in 

natural fuel beds, topography, local to micro scale climatic conditions (Perry, 1998).  With 

this in mind, modelling can be best described by category. 

One approach to categorization is to examine the mathematical basis of models.  

Most commonly, models could be defined as deterministic or stochastic models and spatial 

or non-spatial models (Perera & Baldwin, 2000).  Deterministic models usually examine a 

single fire event for the duration of that fire.  Stochastic models focus on multiple fire events 

over long timeframe (He & Mladenoff, 1999), and therefore account for inherent variation in 

process and predict outcomes of known probabilities (Perera et al., 2003).   

In some cases, deterministic models can provide reliable results for site-specific 

conditions over a short time period, but generally become less reliable over larger spatial and 

temporal landscapes (Hargrove, Gardner, Turner, Romme & Despain, 2000; He & 

Mladenoff, 1999).  Rothermal (1972) is the basis for many deterministic models, and focuses 

on the estimation of fire behaviour characteristics, such as rate of spread.  Deterministic 

models require hourly and site-specific data inputs, such as fuel conditions, weather and 

topography, using mathematical equations to analyze and link the physical environment and 

disturbance under study (Hargrove et al., 2000; He & Mladenoff, 1999).  These models are 

potentially problematic if the goal is to predict broad-scale spatial patterns of large fires over 

longer time periods (Hargrove et al., 2000), due to the necessity to extrapolate short-term 

findings from site-specific scenarios to the long-term and large-scale.   
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Stochastic models combine random number generators and probability distributions 

to simulate forest fires, where most are based on Johnson‘s (1992) summary of fire 

frequency and probability theories (see He & Mladenoff, 1999).  These models are capable 

of examining how fire disturbances are an important source of forest heterogeneity at broad 

scales and the relationship between fire regimes and landscape structure overtime (He & 

Mladenoff, 1999).  Stochastic models are not capable of predicting daily fire spread, but 

rather focus on predicting the final pattern and broad-scale heterogeneity of a fire (Hargrove 

et al., 2000).   

Non-spatial models are physical and semi-physical models that study the physics and 

thermodynamics of fire behaviour.  Spatial models focus on the prediction of final shape of a 

forest fire (Perera, Baldwin, Schnekenburger, Osborne, & Bae, 1998; Perera et al, 2003).   

Spatially explicit models use geo-referenced inputs and produce geo-referenced outputs 

(Perera et al, 2003).  GIS and remote sensing have significant potential for the evaluation of 

fire danger and the predictive modelling of the spatial behaviour of fire (though 

comparatively little research has been done on this subject) (Perry, 1998).  Spatial resolution 

for modelling will continue to cause some difficulties in fire growth modelling.  A fire 

simulation model must function at a grain size which is fine enough to capture local 

variations of the fire environment, while still predicting fire spread at broad spatial scales 

(Hargrove et al., 2000).  Models can only be as good as the quality of input data.   
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The Canadian Forest Fire Danger Rating System (CFFDRS) 

Understanding the Canadian Forest Fire Danger Rating System (CFFDRS) system 

and associated sub-systems is relevant for fire modelling within Canadian landscapes.  This 

is because a good working knowledge of how the fire environment affects fire growth is 

critical to simulating realistic fires using a fire growth model.  The CFFDRS, originally 

issued in 1970, is a conceptual model for fire danger assessment that was derived from the 

earlier work of J.G. Wright and his colleague H.W. Beall beginning in 1925 (Van Wagner, 

1987).  This system can be broken down into two main components: the Fire Weather Index 

(FWI) and the Fire Behaviour Prediction (FBP) System (Van Wagner, 1998).   

The essential purpose of FWI system is to provide a series of relative indices of fire 

potential based on a standard pine fuel type, but has been used successfully as a measure of 

fire danger across Canada (Van Wagner, 1987).  It describes various weather conditions that 

can be translated into fuel moisture codes and indices, which are essential in the use of fire 

modelling programs (Li, Flannigan & Corns, 2000).  The system is based on the moisture 

content of these three classes of forest fuels and the effect of wind on fire behaviour (Van 

Wagner, 1987).  The fine fuel moisture code (FFMC), the duff moisture code (DMC) and the 

drought code (DC) represent daily changes in the moisture content of these classes of forest 

fuels, as each has different drying rates (Van Wagner, 1987).  The system relies on daily 

weather readings of dry bulb temperature, relative humidity, 10-metre open wind speed and 

24-hour accumulated precipitation from noon local standard time (LST), but represents the 

afternoon burning peak of approximately 1600 hours (Van Wagner, 1987).  Van Wagner 

(1987) describes the fuel moisture codes, sub-indexes of the FWI System, as: 
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1. FFMC: Represents moisture content of litter and other cured fine fuels in a 

forest stand. 

2. DMC: Represents moisture content of litter and decomposing organic matter. 

3. DC: Represents deep layer of compact organic matter. 

The effects of wind and the fuel moisture codes are combined in pairs to build three 

indexes of fire behaviour: 1) Initial Spread Index (ISI), a combination of wind and FFMC to 

representing a numeric rating of rate of fire spread; 2) Buildup Index (BUI), a combination 

of DMC and DC that represents total fuel available for combustion; and 3) FWI component 

that represents potential intensity of fire on flat terrain for the standard mature pine fuel type 

(Van Wagner, 1987; Forestry Canada Fire Danger Group, 1992).  For greater detail on the 

FWI system see Van Wagner (1987). 

The second major sub-system of the CFFDRS is the Fire Behaviour Predication 

(FBP) System.  This system, published in 1992, was tested against experimental fires, 

including the largest crown fire data set, and against well-documented wildfires (Forestry 

Canada Fire Danger Group, 1992).  This system helps operational fire managers assess daily 

fire hazards.  There are currently 16 benchmark fuel types used in the FBP System 

(Appendix C).  The FBP System provides quantitative estimates of potential forest fire 

behaviour including head fire spread rate (in m), fuel consumption (in kg/m²), and fire 

intensities (in kw/m) for flank, back and head fires and descriptions (Forestry Canada Fire 

Danger Group, 1992).  Coupled with a simple elliptical fire growth model, FBP can estimate 

fire area, perimeter, perimeter growth rate, and flank and backfire behaviour for 
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homogeneous landscapes (Forestry Canada Fire Danger Group, 1992).  The three-fuel 

moisture content codes area used, especially the FFMC, to calculate one of the primary 

products of the FBP system, the rate of fire spread (ROS) (Forestry Canada Fire Danger 

Group, 1992).   

Fuel conversion is the second concept under study in this research.  Therefore 

accuracy of fire spread in mixed-wood fuel types is critical to the reliability of the results of 

this research.  The Fire Behaviour Prediction (FBP) system calculates fire spread in mixed-

wood fuel types based on conifer and dead fir percentage content, which guides how the fire 

behaviour characteristics of boreal spruce and leafless aspen are combined.  As the FBP 

system is the basis for Prometheus, and the best method of classifying fuels in Canada, this 

research will not attempt to alter the FBP component of Prometheus.    . 

2.6 Conceptual Model Theories for Fire Growth Simulations 

Fire growth simulation models can be classified into either cellular or vector 

approaches (Finney, 1999).  In turn, these can be divided into elliptical, cellular automata 

(percolation), fire propagation in arrays, Markov chains, stochastic contagion, chaotic or 

wave propagation approaches.  The two main modelling theories I will focus on are cellular 

automata (CA) or percolation, and wave propagation modelling, as they are the two main 

modelling approaches used in fire growth modelling today for research purposes.   

2.6.1 Cellular Automata and Percolation Theory 

Exploring cellular automata (CA) models helps us to understand the progression of 

fire growth modelling.  CA models are dynamic, with discrete operations in time and space, 
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on a uniform, regular grid and characterized by local interactions with nearest neighbours in 

previous or present time steps.  For fire modelling, each cell represents a fixed surface area 

and has attributes that correspond to the fire environment, e.g. fuel type or topography 

(Bodrožić, Stipaničev & Šerić, 2006).  The majority of current fire growth models for 

research are based on CA, and therefore understanding the advantages and disadvantages of 

some of the models is useful in determining the effectiveness of modelling fire 

environments.  Different approaches of empirical simulation models, such as cellular 

automata grid systems based on percolation theory, are capable of predicting rates of spread 

and fire perimeter position for a spatially and temporally variable fire environment 

(Richards, 1994).  These models use sophisticated computer-based simulations of fire 

behaviour, such as the analytical elliptical fire shape model.   

Percolation theory is the basis for cellular automata modelling methods.  Percolation 

theory stems from mathematical physics that describes how a fluid propagates through a 

medium affected by the fluid (Redsun, 2006).  Applied to forest fires, a fire can move 

through a landscape by spreading from one patch of fuel to another (Green, Tridgell & Gill, 

1990).  This assumes that there is a path joining the patches and connected by a sequence of 

points to allow for fire spread, and can therefore be viewed as a percolation process (Green 

et al., 1990).  Fire spread depends on a critical density of available fuel in the landscape.  

The rate of spread changes in relation to variation in fuel continuities and types, weather and 

spatial scale (Green et al., 1990).   

Though there are several techniques for modelling fire growth using cellular 

automata, generally cellular models use fixed distances between evenly spaced cells to 
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determine the fire‘s arrival time between cells (Finney, 1999).  This can limit the use of 

cellular models to predict fire growth shape and size in heterogeneous landscapes (Finney, 

1999).  By determining the forward rate of spread (rate of spread in the direction of the 

wind), it is possible to predict the size and shape of a wildfire.  Growing from the ignition 

point, a fire spreading within spatially homogeneous fuel and uniform terrain achieves an 

elongated ellipse under the influence of the wind.  As the fire encounters alterations in fuels, 

topography and microclimatic conditions, localized changes in the rate of spread occurs 

causing changes to its shape (Perry, 1998).   

One difficulty with CA is that distortion of fire shape can occur as there are only a 

fixed number of directions to spread, and the effects of temporal variation from 

environmental variables, such as weather and wind because the fire perimeter is not 

continuously represented (Perry, 1998).  Reducing distortion might be possible by enlarging 

the search radius for interacting cells and decreasing the time step (Perry, 1998).  However, 

fire shape distortions may still result depending on the specific underlying algorithm used 

(Perry, 1998).  French, Anderson and Catchpole (1990) compared the strengths and 

weaknesses of a number of CA models.  Many of the concerns associated with CA models 

that area based on percolation theory have been addressed by the creation of wave 

propagation models.  Since the 1990‘s, there have been advancements in raster based 

modelling approach.  With finer resolution rasters, it may be possible to better represent 

local conditions.  A recent unpublished study compares fire shape between raster-based CA 

models and wave propagation models, which have shown that the raster approach, even with 

great resolution, are not as realistic as wave models (B.M. Wotton, pers. comm., 2007).   
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Cellular Automata Applications 

LANDIS, the Boreal Forest Landscape Dynamics Simulator (BFOLDS) and 

FIREMAP are examples of probabilistic CA fire spread models.  These models rely on user-

defined set of transitional probabilities between the cells; therefore they can define the 

probability of fire spreading from one pixel to the next (Anderson et al., 1998).  These types 

of CA models were designed to explore one or more specific parameters at various spatial 

and temporal scales associated with the forest fire.  However there is difficulty in predicting 

landscape scale effects of fire because of the fine-grained interactions between fuel, 

topography and weather (Gardner et al, 1999; Hirsch, 1996).   

LANDIS explores landscape disturbances over a long-term period (i.e. 100 years) in 

forested landscapes, initially focussing on spatial disturbances such as forest succession, 

wind and fire (Mladenoff, 2004).  LANDIS uses a repeating cycle of processes that operate 

on an initial input map and resulting time steps, using a raster GIS format (Mladenoff, 2004).   

LANDIS is frequently used to examine ecological theories, but can be used operationally 

due to the capability of using it in many geographic locations (Mladenoff, 2004).  

The Boreal Forest Landscape Dynamics Simulator (BFOLDS) uses fire disturbance 

and vegetation succession models to explore the influence of disturbance on landscape 

dynamics.  BFOLDS simulates fire over time using input from FBP and ignition 

probabilities that are calculated using a Poisson distribution with a mean variance of 

historical lightning occurrence for each day.   

FIREMAP was developed using CA based on Rothermal‘s fire equations and 

combined them with raster fuel and topographic data to calculate the burning characteristics 
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for each cell at each time step (Gardner et al, 1999).  It was designed to predict fire 

behaviour in spatially non-uniform environments (Perry, 1998).  Unfortunately it does not 

represent the stochastic nature of forest fires by not incorporating environmental variability.  

FIREMAP highlights the difficulty associated CA models as fire can only spread in the eight 

directions from the fire front cell (Gardner et al, 1999).  For a review of CA models see 

Gardner et al. (1999).  

2.6.2 Wave Models 

Wave models, or vector models, are the latest in the types of spatial fire simulation 

models.  Understanding the development of these models is critical to this research as.  

Vector models avoid problems associated with cellular automata models when calculating 

fire growth in spatial and temporal heterogeneity (Finney, 1999).  Wave models explore 

more complex aspects of fire behaviour on the landscape by using differential equations 

based on Huygens‘ Principle, a series of equations first proposed by Anderson et al. (1992) 

for the simulation of wildfires graphically (Anderson et al., 1998; Hargrove et al., 2000; 

Richards, 1994).  These models estimate the position in time of a fire perimeter for variable 

fuel and weather conditions (Richards, 1994).  This function of position in time is based on 

estimates of equilibrium forward, flank and back rates of spread, which result in fire 

propagation of elliptically shaped fire perimeters (Hargrove et al., 2000).  Wave models 

incorporate local variations of fuels and weather, possibly igniting many adjacent pixels in 

the same time step.  For an in depth review of the mathematical principles and equations 

behind wave models see Richards (1994) and Finney (1999). 
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The ellipse is the most commonly used fire shape for wavelet propagation, as it is 

mathematically simple and fits most empirical fire shape data (Finney, 1999).  Other basic 

shapes proposed are ovoid, egg-shaped or double ellipsed (Finney, 1999).  Richards (1994) 

studied a variety of fire shapes used for estimating fire spread and determined fire shapes 

tend towards the simple ellipse in landscapes with relatively uniform fuels, and without 

significant shifts in wind velocity.  This coupled with negligible advantages of using more 

complex fire shapes (Finney, 1999), has made the ellipse the shape of choice for fire 

prediction and spatial growth simulation models.   

The simple ellipse can be used manually to calculate fire spread in constant 

environmental conditions (Finney, 1999).  However, as environmental heterogeneity and 

time since ignition increases, complex simulation methods are required to capture the spatial 

patterns of fire growth (Finney, 1999).   

Wave models provide more realistic results for heterogeneous forests because the 

fuel, weather, topography at each vertex is incorporated, varying the shape and size of each 

new elliptical wavelet (Finney, 1999).  Simulation models must reflect the different fire 

behaviour characteristics that arise with surface, ground or crown fires, such as the rate of 

spread for active crown fires due to the abundance of finer fuels.   

A key problem is wave models tend to over predict the fire‘s behaviour weather, 

which can complicate the accuracy of the simulator (Finney, 1999) particularly with smaller 

fires (i.e. under 10 hectares).  Wave models can be computationally intensive (Hargrove et 

al., 2000).  As well, models are not currently capable of incorporating micro-climatic 
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conditions created by the fire itself; therefore models fail to capture some of the more subtle 

aspects of fire behaviour (Finney, 1999).  However, deterministic wave propagation fire 

growth models, such as Prometheus, have been successful at predicting fire growth patterns 

in the Canadian boreal forest environment.  

Wave Model Applications 

FARSITE is a spatial fire growth model that integrates fuels and topography with 

weather and fuel moisture data, therefore providing managers the capability of analyzing 

fuel changes under specified ignition and weather scenarios (Fernandes & Botelho, 2003).   

FARSITE expands the fire front in two dimensions with the fire perimeters being processed 

and stored in vector format, while using raster data to represent the underlying landscape 

(Finney, 1998).  This model is useful in the United States as it incorporates surface fire, 

crown fire, spotting, fire acceleration, and fuel moisture while allowing for the use 

interactive suppression tactics (Perry, 1998).  Using FARSITE to examine fire growth 

modelling in a Canadian context is not ideal as it is based on fuel and fire complexes found 

in the United States.  FIRE!, developed by Green, Finney, Campbell, Weinstein and 

Laudrum (1995) uses the vector approach, where the fire front propagates like a wave, 

shifting and moving continuously in time and space (Perry, 1998).  It is a GIS based model 

that uses the FARSITE fire spread model of Finney (1993) (Perry, 1998).  It was created to 

better model spotting and torching predictions, but as it also based on US fuel types, it is not 

necessarily applicable in a Canadian context.   

The Canadian Wildland Fire Growth Model (CWFGM) Prometheus was developed 
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in response to this need for a Canadian specific fire growth model.  It was designed to 

simulate fire growth using the FBP and FWI sub-systems of the CFFDRS and algorithms 

developed by Gwynfor Richards at Brandon University based on Huygens‘ principle of 

wave propagation (CWFGM Project Steering Committee, 2006).   The underlying 

mathematical and geometric template for fire growth is the simple ellipse, opposed to a 

double ellipse or egg shape.  Scientific review of Prometheus is difficult at this time as it is 

the only Canadian wave fire growth model propagation model.  However, the foundation 

components of the model have been tested.  The Fire Weather Index (FWI) System and Fire 

Behaviour Prediction (FBP) System components of Prometheus have been validated against 

the source code provided by the Canadian Forest Service.  These findings will be published 

as part of the Prometheus Technical Document as a Canadian Forest Service report later in 

2007.  Field validation is ongoing through cooperation with external fire management 

agencies, and there is hope to publish this material at a later date.   

Prometheus is capable of modelling three fire types: surface, ground and crown fires.  

Surface fires burn surface litter, such as grasses, forbs and shrubs.  Ground fires burn the 

duff and organic material in the soil beneath the surface litter.  Crown fires burn the crowns 

(tops) of trees or shrubs (Fuller, 1991).  A fourth type of fire behaviour is intermittent crown 

fire, which switch between crown and surface fire behaviour. 

Four specific objectives of Prometheus as outlined by the CWFGM Project Steering 

Committee (2006) are: 

1. ―Predicting the hourly or daily real-time growth of fires that have escaped initial attack‖; 
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2. ―Evaluating the potential threat of wildfire to values-at-risk (e.g., communities, recreational 

facilities, timber management units, etc.); 

3. ―Assessing the effectiveness of management strategies aimed at reducing wildfire threat of 

large fires‖; and 

4. ―Evaluating the risk of loss (or probability of wildfire) across landscapes altered by different 

forest management strategies and practices‖. 

 

Prometheus has the flexibility to model diurnal weather and allows for interactive 

modification of fuels and weather data, thus making it useful as a fire operational as well as a 

fire-planning tool.  It runs on a desktop and is free of charge to any user.  It uses grid ASCII 

raster data as the underlying input (CWFGM Project Steering Committee, 2006), yet the 

final fire shape is affected by the pixel resolution chosen by the modeller.  Finding a balance 

in the resolution is critical to the question being asked of Prometheus.  A standard pixel size 

cannot be determined, as each case study will require emphasis on different landscape 

features, thus determining the resolution.  The pixel size will also be based on the detail 

available from the input data.   Pixel size also indirectly determines computation time 

through the function of a fire engine setting, the distance threshold.  This threshold 

determines the distance between fire ellipse calculations.    

The quality of weather data is critical to the accuracy of Prometheus to grow fires 

under variable weather in a site-specific location.  The usefulness of fire growth simulations 

is partially a function of the accuracy of weather input data.  For best results, weather 

stations should be located in as close proximity to the study site as possible, to reduce the 

effects of terrain and meteorological differences as a function of distance on fire growth.  It 

is also possible to create hypothetical or forecasted weather streams interactively within the 
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user interface, making it potentially a useful tool for fire operation and planning.  A weather 

stream is a term that is used in fire modelling to indicate a period of time defined by a stream 

of hourly weather data.  Overall, as the foundation for Prometheus is the Canadian Forest 

Fire Behaviour Predication (FBP) System, and due to inherent built-in flexibility, 

Prometheus is an excellent fire growth model option for continental southern boreal forests.  

For a complete review of the programs capabilities and requirements see CWFGM Project 

Steering Committee (2006). 

It was necessary to use an associated batch program for this research in order to 

simulate multiple fire iterations in a reasonable timeframe.  BURN-P3 is a recently 

developed program that uses Prometheus as the fire growth engine to map burn probability 

(or wildfire susceptibility) for fire prone landscapes (Parisien, Kafka, Todd, Lavoie & 

Maczek, 2005).  It is capable of simulating the growth of large escaped fires (>200 ha) 

typically found in Canada.  This means that the model excludes the more numerous small 

fires, creating a more effective approach for landscape-scale fire modelling (Parisien et al., 

2005).  The model consists of three sub-modules: the ignitions module, the burning 

conditions module, and the fire growth module.  The ignitions and burning conditions 

modules are probabilistic as derivatives of historical data in the form of frequency 

distributions (Parisien et al., 2005).  However, there is a deterministic component to BURN-

P3, due to the fact that the fire growth module is based on fire spread empirical equations 

from the FBP system (Parisien et al., 2005).  As BURN-P3 is largely a probabilistic model, 

as the number of iterations increases, the more likely the outputs will fit within the frequency 

distributions of the ignitions and burning conditions modules.  The multiple iterations (500-
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1000) are done in a Monte Carlo fashion; thereby providing assessments of wildfire 

susceptibility based on static landscape conditions (Parisien et al., 2005). The final output is 

a cumulative map of area burned.  Therefore this model cannot be used to examine the 

characteristics, including fire extent, of individual fires. 

The recently developed Pandora is a Microsoft Windows based stand-alone 

executable that provides fire growth modellers the option of bypassing the Prometheus user-

interface when faced with the possibility of running numerous Prometheus simulations.  It 

was developed by the by the Canadian Forest Service (CFS) with support from Alberta 

Sustainable Resource Development.  The user interface consists of is a single dialog box, 

where the user specifies the parameters file name, and where progress information is 

displayed (Englefield, 2006).   

The basic required and optional data inputs are the same as in Prometheus, but these 

parameters are simply specified in a single text file, including the locations of the data input 

files (e.g. weather, fuels, terrain).  The required input fields are: a fuels raster file, a weather 

stream file, a parameters file, and a projection file.  Optional inputs are: fuel type lookup 

table, elevation, slope, aspect and ignition shape file.  Pandora is capable of outputting fire 

perimeters in ESRI shape file format, and FBP components such as fire intensity and spread 

rate (Englefield, 2006).     

Pandora can be accessed by other applications, thus simplifying potential multi-

model capabilities.  However, it does require a Prometheus COM licence, which is available 

upon request.  As Pandora can simulate an infinite number of fires, its primary uses are for 

http://cfs.nrcan.gc.ca/
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modelling fires as a batch process, and longer-term fire planning projects.  Pandora does not 

offer the complete set of options of Prometheus, but it does provide a batch process for those 

modellers interested in multiple fire iterations (Englefield, 2006).    

Some of the useful features Pandora currently offers are user specified grass curing 

%, the time step interval, burn period settings, angle and distance thresholds for calculating 

the fire perimeter, the method for calculating the hourly FFMC, a log file of all outputs, as 

well as offering single or multiple ignitions (Englefield, 2006).   

2.7 Justification of Fire Growth Simulation Model 

The choice between cellular automata or wave propagation models was easily made 

because CA models have difficulty predicting fire shape and size in heterogeneous 

landscapes (Finney, 1999) as they generally use fixed distances between evenly spaced cells 

to calculate fire spread and therefore do not incorporate fine-grained interactions between 

fuel, topography and weather (Gardner et al, 1999; Hirsch, 1996).  Furthermore, though 

BFOLDS is a useful model for Canadian boreal fuels, running it requires extensive 

knowledge of the modelling procedures, and specialized computer equipment.  As it was 

created for very large landscapes, approximately three times the size of Quetico Provincial 

Park, BFOLDS is not a valid option for this research (Perera et al., 2003).   

Wave models provide more realistic results for heterogeneous forests because the 

fuel, weather, topography at each vertex is incorporated, varying the shape and size of each 

new elliptical wavelet (Finney, 1999).  FARSITE and Prometheus were considered for this 

research.   
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FARSITE is a useful model in the United States as was designed for typical surface 

fire, crown fire, spotting, fire acceleration, and fuel moisture based on characteristics of 

American fuels and fuel classification systems.  FARSITE and Prometheus are very similar 

models, with the main difference being the fire behaviour predication system used at 

systems‘ cores: FARSITE relies on the US BEHAVE System, and Prometheus relies on the 

Canadian FBP System.  Using FARSITE to examine fire growth modelling in Canadian 

forest types is not ideal, though not impossible.   

Prometheus was chosen as the model as it was designed to simulate fire spread across 

Canadian landscapes for both strategic and operational applications.  It allows the user to test 

large wildfire mitigation strategies (CWFGM Project Steering Committee, 2006).   

Prometheus relies on the FBP fuel system, which can provide some drawbacks when 

attempting to accurately represent site conditions with fuels that do not fit within the 

categories.  Interest has been shown in creating new fuel types, however these would need to 

be field tested for accuracy.  This research is not concerned with the exact representation of 

conditions found in Quetico Provincial Park, but rather a realistic mosaic of fuels.   

Model validation is often difficult as most fires in Ontario have been subject to 

effective fire suppression.  Validation against a set of real fires has been begun for 

Prometheus, however to date have not been formally documented, though it appears to be a 

good representation of fire growth in heterogeneous fuels (CWFGM Project Steering 

Committee, 2006).  However Prometheus faces the difficulty of over-prediction of fire 

spread, a characteristic common to all fire spread models.  The modelling community has 
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not established methods to address this limitation.  However, it is possible to use operational 

fire behaviour knowledge to tailor weather data inputs to more accurately represent periods 

of fire growth, and eliminate hours in the weather stream that realistically represent times of 

little to no fire growth.     

Overall, Prometheus is the best wave model for this research as it is based on the 

Canadian FBP System for the predication of fire behaviour.  In order to simulated multiple 

iterations, two batch programs were considered: Burn-P3 and Pandora.  A batch process was 

necessary in order to the tens of thousands of simulations that were necessary for statistical 

rigour.   

Burn-P3 is a user-friendly model that is capable to examining fire on a landscape 

scale and has been used in Canadian boreal fuels, as it relies on the Prometheus fire growth 

engine and more fundamentally on fire behaviour predications made using the Canadian 

FBP system.  However, as it is mainly a probabilistic model with a final map- based on a 

summary of multiple fire iterations, it is not appropriate for this study.  This research 

requires the capability to look at the final area burned for each individual fire in order to 

statistically compare the differences of fuel treatments on final area burned.  Also, as Burn-

P3 assumes small fires are easily suppressed, it eliminates these fires from calculations, and 

therefore does not account for the influence of all fires on the landscape.  Though large 

wildfire events, not small fires, are the focus on this research, the ability to include small 

fires in the final analysis, is necessary to determine if fuel treatments significantly reduced 

fire extent of each fire. Therefore BURN-P3 was not a valid option. 
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Pandora is a batch application created to access Prometheus through the backdoor 

(Englefield, 2006).  Though Prometheus has been used to manually run thousands of 

iterations using a network of computers (see Doran, 2004), the vast equipment needs make 

this an unrealistic option.  This research was the first beta-test for Pandora, which meant 

some difficulties arose in getting the first successful batch process running.  It also meant 

that I was able to work with the programmer to request certain options be available within 

the program, making the process an informative and instructive experience. 

2.8 Literature Review Summary  

From this literature review, we can conclude that area burned will likely continue to 

increase in the boreal forest due to more catastrophic wildfire events.  This increase is 

occurring due to an accumulation of fuels from effective fire suppression, and longer and 

more severe fire seasons as a result of climate change.  This poses a significant problem for 

fire management planning, as catastrophic fires are difficult to suppress and therefore 

threaten a wide range of values at risk.  An increased frequency of these events would 

further alter fire regimes outside of the range of natural variability.  Fuel management is one 

approach to mitigate the potential for catastrophic wildfire events.  Fuel isolation 

(fragmentation) and fuel conversion applied randomly across a landscape could reduce area 

burned by reducing fire behaviour and creating effective fire barriers scattered throughout 

the boreal landscape.  The conceptual hypothesis is that random fragmentation of highly 

flammable fuels could reduce area burned substantially.  If implemented across many 

landscapes, this strategy could protect communities, timber resources, recreation and 

ecological values.  Fire growth modelling can be used to test this theory and determine the 
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percentage of a landscape needed to substantially reduce the average area burned.  Modelling 

is a powerful tool when reliable and high quality data are used, and combined with 

operational and experimental knowledge of fire behaviour.  After considering the fire growth 

models FARSITE, and Prometheus, I chose to use Prometheus for this research through the 

batch program Pandora.   





 49 

Chapter 3 

Site Description 

3.1 A boreal forest case study 

The boreal forest biome is one the world‘s two largest forest belts, covering 

approximately three billion square kilometres (Payette, 1992).  In North American boreal 

forests are floristically poor, being dominated by one of nine tree species with dense under-

canopies, with usually only one or two species dominating each forest (Payette, 1992, 

Shugart, Leemans & Bonan, 1992).  Generally, nutrient availability is low and reoccurring 

disturbances are common, including stand-replacing fires (Bonan, 1992), wind-throw events, 

insect infestations and logging operations.   

The boreal forest is the largest forest region in Canada, occupying approximately 315 

m ha.  Fire is a necessary catastrophic process releasing and redirecting nutrients including 

seed dispersal and is essential for natural renewal of boreal forests.  The boreal forest fire 

regime would have included large, high intensity, stand-replacing fires that returned every 

20-100 years on average, depending on stand type (Suffling, 1992; Woods & Day, 1977).  In 

Canada, the long-term average annual area burned is 1.3 m ha, with extreme fire years being 

common, covering up to 7 m ha in a single fire season (Weber & Stocks, 1998). Only 2% to 

3% of those fires cover more than 200 ha but contribute about 98% of the total area burned 

annually (Weber & Stocks, 1998).  

Boreal forests have similar temporal succession patterns after disturbance; therefore 

the landscape patterns appear similar in gross appearance globally, but exhibit regional and 
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local variations (Shugart et al., 1992).  Studying regional landscape patterns is of value to 

theoretical development of fire management strategies; however findings must be adjusted to 

the site-specific context.  This research focuses on Quetico Provincial Park to test fuel 

fragmentation and conversion concepts, but the methodology could be extrapolated to other 

boreal forest regions worldwide. 

A provincial park was used for two reasons.  Firstly, provincial parks frequently 

encompass large landscapes.  It is difficult to locate a site with a continuous natural 

landscape, as industry, communities and other infrastructure fragment much of the boreal 

forest ecotype.  Secondly, Ontario Parks as an organization has well documented the natural 

and cultural influences on many of their parks.   

Quetico Provincial Park is a useful case study site because: 1) The landscape is a 

large, relatively continuous tract of natural ecosystems; 2) It is managed by one agency: 

Ontario Parks; 3) It is surrounded by large expanses of forests managed as protected areas, 

crown land, timber parcels and private property.  If an extreme wildfire were to escape the 

park, it could threaten the variety of values at risk within this landscape; 4) The park is 

mandated to reintroduce fire into the park management planning and is unique in its 

proactive approach within the Ontario Parks system, thus potentially allowing experimental 

fire management strategies.  

3.2 Quetico Provincial Park 

Quetico Provincial Park, established in 1913, is a wilderness park of 476 000 ha, 160 

km west of Thunder Bay.  It is the third largest wilderness park in Ontario.  Quetico is 
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surrounded by crown land that is actively affected by timber harvesting, the Boundary 

Waters Canoe Area Wilderness, crown land and La Croix First Nation (Proescholdt, 

Raposon & Heinselman, 1995).  See Figure 3.1 for regional context.   

The park is a beautiful wilderness class park, comprised of a myriad of lakes and 

rivers, making it a canoeist‘s paradise.  With the combination of wildlife, waterfalls and 

breath-taking vistas, this protected area is a perfect destination for all nature enthusiasts.  The 

park also offers car camping, a visitor‘s centre and trails in the developed portion of the park.      

Ontario‘s provincial policy suggests that fire should be re-introduced into fire-

dependent systems in order represent natural heritage values (OMNR, 2003).  The re-

introduction of fire is a significant resource management concern.  However, balance is 

needed between the needs of recreational users, appropriate conservation targets and an 

agreement of co-existence with First Nations to protect their rights and values in 

management policies and boundary zone issues (OMNR, 2003).  

3.2.1 Physiography  

Quetico Provincial Park is a low plateau of modest relief, fragmented by many lakes 

and streams, steep cliffs and endless rock ridges (Heinselman, 1996).  Throughout geological 

history, erosion, several historic volcanic events and the continental glaciers of the 

Pleistocene Era 10,000 years ago shaped the present landscape (Heinselman, 1996).  As part 

of the Canadian Shield, the rocks are of Archaean age (OMNR, 1977).  The major rock types 

are greywacke, siltstone, slate, granite, syenite, pegmatite and migmatite (OMNR, 1977). 

The soils are largely glacial till (a mix of sand, silt and stones) and are generally low 
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in nutrients, thus the diversity of plants and animals is low (Heinselman, 1996; OMNR, 

1977).  Soil ranges from a few cm deep on ridge tops to approximately 3 m deep at the bases 

of slopes and in the lowland depressions (Heinselman, 1996).  The landscape is also dotted 

with eskers and organic soils from peat lands in the form of bogs, swamps and muskegs 

(Heinselman, 1996).  The Steep Rock Moraine is a large terminal moraine, of more than 30 

m high within Quetico Provincial Park continuing through into the Boundary Waters Canoe 

Area Wilderness (Heinselman, 1996).   

 

 

 

 

 

 

Figure 3.1 Regional context for Quetico Provincial Park. Author: Ontario Ministry of Natural 

Resources, n.d. 
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Figure 3.2 Geology of Quetico Provincial Park. Source: The Quetico Foundation, 2007. 

3.2.2 Climate 

In the Quetico-Superior Ecotone, the primary influence on large-scale structure is the 

confluence of three major air streams: tropical, arctic and pacific (Kronberg, Watt & 
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Polischuk, 1998).  The winters consist of long periods of clear, dry and cold arctic-air-mass 

weather, mingled with shorter periods of cloudy, warmer and snowy weather.  Large winter 

storms are typical, pushing the temperatures to -40ºC (Heinselman, 1996).  The summers are 

a mix of some hot and humid days, as a result of Gulf air masses, with more frequent clear, 

dry and cool arctic air periods.  High temperatures of 27ºC occur frequently in July and 

August, occasionally reaching a maximum of 34ºC (Heinselman, 1996).  The fall freeze up 

generally begins in late October, with a spring break-up beginning between mid-April and 

late May (Heinselman, 1996), although the shoulder seasons in boreal forests are extending 

due to global climate change (Stocks et al., 1998; Wotton & Flannigan, 1993).  The annual 

total precipitation (rain plus snowfall water equivalent) is approximately 70 cm for this 

region, with 40% falling in June and August, enhancing the summer forest growth 

(Heinselman, 1996; OMNR, 1977).  The average annual snow fall in the region ranges from 

140-180 cm, with the first snow fall beginning in late October and the last between the of 

April to early May, with nearly continuous snow cover until mid-April (Heinselman, 1996).  

Fire season is officially from April 1 until October 31
st
 each year.  These dates are 

based on the seasonality of fire activity.  During this time, the prevailing winds at the 

Atikokan Environment Canada weather station are south to northwesterly ranging from 6.8 

to 8.5 km/hr (Environment Canada, 2007).  Typically spring fires occur in boreal forests 

after snowmelt, and prior to deciduous green-up, as the needles of coniferous tree species are 

very dry until growth begins and due to the abundance of dry dead fuels from the previous 

season (Heinselman, 1996).  Of particular concern are those fires that occur during the foliar 

moisture dip, a short event that occurs prior to green-up characterized by a substantial 
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decrease in live fuel moisture.  During the spring, ignitions are more likely to be human-

caused, whereas lightning is more common from June to August (Heinselman, 1996).  

Thunderstorms accompanied by sufficient precipitation will extinguish most ignitions.  Dry 

lightning during drought periods in the late summer have potential to cause large fires 

(Heinselman, 1996).  Summer fires require longer periods of drought to dry out fuels and 

soils, as from mid-June to August the growing understorey and the deciduous forest 

component is moist and succulent (Heinselman, 1996).  By mid-August the dominant canopy 

species are going dormant and grasses begin curing, causing an increased fire hazard, 

particularly in combination with drought conditions.  With drought conditions, this hazard 

remains until approximately the beginning of October when the daily burning period is 

shortened (Heinselman, 1996).   

3.2.3 Forest Stands 

Quetico Provincial Park is part of the Quetico-Superior Ecotone, located in 

Northwestern Ontario and Northern Minnesota (48-50ºN, 89-90ºW), which is a regional-

scale ecotone between three major vegetation biomes (boreal forest, northern temperate 

forest, and prairie) (Kronberg et al.).  The forests have an east-west transition within the 

boreal biome from moist to dry forests (Kronberg et al., 1998).   

Forests in Quetico are mainly composed of mosaic of early successional and full 

successional, even and broadly-aged stands (Woods & Day, 1977).  The majority of the 

forests are dominated by Pinus banksiana (jack pine), Picea mariana (black spruce), Populus 

balsamifera (poplar), Betula papyrifera (white birch), Pinus resinosa (red pine) and Pinus 
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strobes (white pine), originating from large wildfires that occurred in the late 1880‘s and 

early 1900‘s (Kronberg et al., 1998; Rowe, 1972; Woods & Day, 1977).   

Jack pine is considered the most abundant forest community within Quetico 

Provincial Park, dominating over 30% of forests and commonly associated with poplar and 

black spruce.  Black spruce is the second most abundant community group, dominating over 

26% of the forests.  Approximately 20% of forests in Quetico are dominated by poplar, 

though it occurs in 70% of the forests as the dominant, secondary or tertiary species.  White 

birch dominates approximately 10% of the forests, commonly found with poplar and black 

spruce.  Red pine is dominant in less than 5% of the forests, and commonly associated with 

white pine, which dominates only 3% of the forests, but occurs as a secondary species in 

approximately 13% of the forests.  Balsam Fir can be found in approximately 16% of the 

forests, but only dominates in 3% (Woods & Day, 1977). 

3.2.4 Fire Regimes 

Historical fire regimes are thought to be similar between Quetico Provincial Park and 

Boundary Waters Canoe Area Wilderness (BWCAW), located adjacent to the park in the 

United States (Heinselman, 1996).  In BWCAW the fire cycle was approximately every 122 

years in the Pre-settlement era (Heinselman, 1996).  This era can be characterized as the 

period of early arrival of European settlers, when a regional increase of fire as a resulted due 

to an increase in accidental human-caused ignitions, but was coupled with greater 

suppression capabilities (Conard et al., 2001; Heinselman, 1996).  The fire cycle in the 

BWCAW was approximately every 87 to 100 years during the settlement period as fire 
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suppression became more effective (Heinselman, 1996; Kronberg et al., 1998).  From 1911-

1972, fire suppression capability increased, expanding the average fire cycle to an 800-2000 

years (Heinselman, 1996; Kronberg et all, 1998).  This equates to natural forest stands being 

replaced by balsam fir and hardwood shrubs, and humus accumulations to the point of 

impeding nutrient cycling (Van Wagner, 1978; Woods & Day, 1975).  

The historical fire regime varied significantly throughout Quetico Provincial Park, 

depending on the forest stand type, e.g. Jack Pine burns approximately every 80-150 years 

while White Pine burns every 180-250 years (Woods & Day, 1977).  In pre-suppression 

times, approximately 4,850 hectares would have burnt annually on average in Quetico 

Provincial Park (Woods & Day, 1977). 

Quetico Provincial Park followed the common pattern of fire management in Ontario.  

In 1917, the Forest Fire Prevention Act was passed.  The forest fire prevention system 

continued to expand, including the use of lookout towers, ranger stations and supply 

warehouses for fire fighting equipment (Li, 2000).  By 1960‘s fire suppression had become 

effective at reducing the number fires on the landscape through increasing effectiveness of 

detection and success of initial attack tactics.  The mean interval between fires prior to 

effective fire suppression was 78 years (Woods & Day, 1977).  The nearby Lake of the 

Clouds had a mean return interval of 66 years for the last 1000 years.  However, there is an 

increase in fire frequency from 1930-39, when drought conditions persisted and more fires 

escaped control.  In 1977, the statistics are drastically different, with a mean fire return 

interval of 870 years.  If we examine the percentage of area burned, we see that over 75% of 

93,078 ha burnt between 1860-1919.  From 1920-1939 17% burned, and only 4% burnt 
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1940-1977, which accounts for the maturing forest stands (Woods & Day, 1977).  In order to 

achieve pre-suppression fire return intervals, approximately 12,000 ha would need to be 

burned within each 93,000 ha area every 10 years, equating to 4856 ha/year (Woods & Day, 

1977).  With a change in fire management policy in Ontario parks that allows wildfires in 

extensive fire zones and supports the use of prescribed burns, the fire return interval has 

decreased.  However, the fire return interval has not returned to pre-fire suppression levels.  

For a thorough review of recent changes to the park‘s fire management policy, see OMNR 

(2002) and OMNR (1993).   
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Chapter 4 

Methodology 

Using a fire growth simulation model I tested whether changing highly flammable 

fuels to less flammable fuels reduces the overall landscape flammability.  A reduction in 

flammability would help to protect important values at risk such as communities and timber 

resources.  I used a deterministic fire growth simulation model to determine if random 

fragmentation of highly flammable fuels decreases average area burned under extreme fire 

behaviour conditions.  Fire growth models are data intensive.  The quality of data is critical 

to the creation of quality outputs from the model.  For an overview of data used for this 

research see Figure 4.1. 

Minimal required data for Prometheus and Pandora are: 

 Fuel type grid in grid ASCII format, based on FBP fuel types 

 Projection data indicating the projection information that each input file was created in 

(projection must be identical for all inputs) in an ASCII text file 

 FBP fuel lookup table that defines ASCII grid numbers as fuel types, and display properties 

 Weather data in ASCII text file 

 Fire ignition data in generate ASCII or shape file format 
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Figure 4.1 Fire Growth Modelling Methodology detailed flow chart.
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Figure 4.2 Major Thesis Methodology Components: This flow chart depicts the main 

components used to perform this research.  Each main area is described in more depth through 

Section 4.0, in addition to a detailed flow chart (Figure 4.1). 
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4.1 Control Fuels Map Creation 

  

 

 

 

 

 

 

Figure 4.3 Control Fuels Map Flow Chart: Fuels coverage from Quetico Provincial Park and a 

buffer area, based on a chosen spatial resolution, was used to create the Control Fuels Map. 

 

J. Caputo of the Ontario Ministry of Natural Resources provided fuel maps of 

Quetico Provincial Park.  The fuels coverage data was based on 1996 Landsat image data, 

classified together Forest Resource Inventory (FRI) data layers in order to convert vegetation 

data to FBP fuel types.  This map did not include those polygons that have been affected by 

spruce budworm infestations.  These patches, and other polygons with missing data, were 

interpolated using fuels data from Landsat images with vegetation classifications.  The 1995 

Fire 141, which burned 25,000 ha during high fire danger conditions, was reclassified as a 

slash fuel type.  A. Grant, a fellow University of Waterloo Graduate Student, conducted the 

interpolation and we worked collectively as team to gather Quetico Provincial Park data 

necessary for Prometheus simulations.     
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4.1.1 Spatial Resolution 

Prometheus, and by extension Pandora, can use any spatial resolution.  While a finer 

resolution typically yields more detailed fire growth, the user is advised to use a resolution 

commensurate with the resolution of the input data.  Geospatial landscapes for this research 

are divided into cells, or pixels.  Spatial resolution refers to the size of each pixel in the 

landscape.  I used a spatial resolution of 50m, because it was coarser than the original fuels 

resolution of 30 m, and significant linear features such as rivers continue to act as unbroken 

natural firebreaks.  It is important to use a resolution that is at least as coarse as the original 

input data in order to avoid over interpolating and thus degrading the quality of modelling 

data.  As well the computation time becomes onerous when thousands of iterations are 

necessary.   

Spatial extent was defined as a large subset of the central and north-eastern portion of 

Quetico Provincial Park and a buffer zone along the park boundaries, which allowed the 

model to grow large landscape level fires.  In caution one should note that this choice slowed 

down the modelling and used over 1GB RAM.  The fuels coverage used for this research 

was approximately 5542 km², which included the subset of Quetico Provincial Park and 

buffer zone to the north and east of the park.  This total included cells with no available data 

on the perimeter of the landscape.  After removing the area of these cells, the size of the 

landscape is 4742 km².  The CWFGM Project Steering Committee (2006) suggested that size 

of the fuel file should be 300-400 rows and 800-1200 columns.  The fuel file used in this 

research was 1811 rows and 1224 columns.  This helped to determine if a larger landscape 

scale approach could be modelled using Prometheus. Again, I caution that this slows 
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processing speed and requires more RAM. 

4.1.2 Fuels coverage of Quetico Provincial Park 

As Prometheus requires raster format, I used a simple toolbox command in ArcGIS 

9.0 to convert the fuels coverage from vector to raster format, with a specified 50 m 

resolution.  The fuels coverage was then exported in ASCII format.  The final step was to 

find and replace redundant fuel types based on the standard Prometheus Look-up Table, 

while in grid ASCII format.  For example gravel/roads were reclassified to non-fuel.   

Using a subset of Quetico Provincial Park as a realistic fuel mosaic (Figure 4.3), my 

research focuses on the conceptual basis for random fuel management, not a prescriptive fuel 

management strategy for this park.  Therefore extensive ground truthing of the fuels 

coverage was not necessary.   
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Figure 4.4 FBP Fuel Mosaic: Subsection of Quetico Provincial Park and buffer zone. 
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4.2 Random Fuel Treatments 

  

 

 

  

 

Figure 4.5 Using ArcView 3.3, the Control Fuels Map was used to create fuel treatments tests.  

Based on general observations from these tests, fuel isolation and fuel conversion treatments 

were created.     

 

Sample fuel treatment maps were created to test the minimum percentage fuel 

fragmentation needed to achieve at least a 50% reduction in wildfire size.  C-4 (Immature 

Jack or Lodgepole Pine) was chosen as the target fuel as it is a highly flammable fuel type 

found in southern continental boreal forests.  Though there are other flammable fuel types, 

such as S1 (Slash) or C-2 (Boreal Spruce), C-4 is found throughout most of Quetico 

Provincial Park.  S1 and C-2 are not found consistently throughout the park.  As well, C-4 

reaches its equilibrium rate of spread quickly in comparison to other conifer fuels under 

extreme fire behaviour conditions. 

Fuel treatments were created using the Spatial Analyst extension in ArcView 3.3.  

Within the control map‘s attributes table, I created three new attribute fields: square 

kilometres (built-in ArcView 3.3 function), a field of random numbers from 1-100 (using 

ArcView 3.3 Field Calculator), and a treatment field with the same FBP fuel values as the 

control map fuels field.   Using the query function, I selected all C-4 (Immature Jack or 
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Treatments 

Fuel Conversion (FC) 

Treatments 

Fuel 
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Lodgepole Pine) fuel polygons within the treatment field.  From within this selected set, 

using random numbers and square kilometres fields, I queried polygons to select the desired 

percent of area fragmentation (e.g. 1.2% of the total area).  These queried polygons were 

changed from C-4 to non-fuel.  This treatment map could then be added to the ArView 3.3 

file as a shape file (vector) and exported as a grid ASCII to be used by Prometheus and 

Pandora.   

The test fuel treatment treatments consisted of 1.2%, 1.8%, 2.3%, 3.0%, 3.5%, 4.1%, 

4.7%, 5.2%, 5.8%, 6.4%, 7.0%, 7.6%, 8.2%, and 8.8% of the total landscape area altered 

from C-4 to non-fuel.  These increases were based on incrementally adding polygons to the 

treated area.  A maximum of 8.8% was fragmented as C-4 fuel type composes 8.8% of the 

total landscape.  Non-fuel was chosen as a fuel isolation (fragmentation) treatment, with the 

assumption that a fuel treatment prescription would be effective at eliminating fire spread, 

representing a change to water, open gravel or bedrock.   

Running thousands of iterations for each fuel treatment is a time consuming process, 

particularly for simulating fires in extreme weather conditions.  Therefore I chose to 

determine a minimum % fragmentation needed to achieve a 50% reduction in area burned, 

thereby eliminating less effective fragmentation treatments.  Through simple linear 

regression of the test treatment results, I determined a minimum fuel treatment needed to 

begin rigorous testing of fuel treatments.   

Using ArcView 3.3, the fuels coverage maps were used, in vector format to create 

fuel treatment maps.  Fuel composition of the Control Fuels Map (in vector format) was 
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repeatedly fragmented to create ten fuel treatments.  This was achieved by converting a 

percentage of the randomly chosen polygons from Immature Jack Pine to non-fuel.  This 

equates to partial and complete conversion of Immature Jack Pine stands, depending on the 

size of polygon converted.  See Figure 4.5 for a sample treated landscape.    

4.2.1 Fuel Isolation (FI) Treatments 

I created 10 new fuel treatments using the same methods used to create the test 

treatments.  I randomly treated 7% (approximately 332.6 km²) of the C-4 in the original fuel 

map, converting it to non-fuel.  Multiple fuel isolation treatments with the same percent 

treated area was necessary to ensure the pattern of fragmentation was not the critical variable 

being tested, but rather the percentage of fragmentation that was significant to the end results 

(area burned).  

4.2.2 Fuel Conversion (FC) Treatments 

In addition to fuel isolation treatments, I tested fuel conversion treatments.  Through 

conversations with fire managers in Canada, interest has been expressed in developing a 

greater understanding of fuel conversion as a tool to limit the extent of wildfires.  In order to 

simulate fuel conversion on the landscape, highly flammable fuels must be converted to less 

flammable fuels, such as the deciduous D-1 (Leafless aspen) fuel type.  Seven fuel 

conversion treatments were created using similar methods as the fuel isolation treatments, 

with following differences:  

1. D-1 (Leafless aspen) was used as the fuel-conversion type instead of non-fuel for all 

seven scenarios.  
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2. A greater percentage of fuels were converted to reduce wildfire size as fuel 

conversion is less effective at reducing area burned than conversion to non-fuel 

(isolation); therefore other source flammable fuels were converted to obtain a larger 

percentage of total area conversion. 

  

For specific fuel conversions see Table 4.1. 

Table 4.1 Fuel conversion configurations for Treatments 11 to 17. 

Treatment # % Original Fuel Type New Fuel 

Type 

11 7 C-4 D-1 

12 8.8 C-4 D-1 

13 17.1 C-4, C-1 D-1 

14 21.9 C-4,C-1,C-2 D-1 

15 25.2 C-4,C-1,C-2,C-3 D-1 

16 38.2 C-1, C-2, C-3, C-4, M-3 D-1 

17 13.0 M-3 D-1 

 

Table 4.2 FBP Abbreviations and Descriptions 

FBP Fuel Type 

Abbreviation 

FBP Fuel Type Description 

C-1 Spruce-lichen Woodland 

C-2 Boreal Spruce 

C-3 Mature Jack or Lodgepole Pine 

C-4 Immature Jack or Lodgepole pine 

M-3 Dead Balsam Fir Mixedwood, 

leafless D-1 Leafless Aspen 
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Figure 4.6 Treated Fuels Map highlighting Fuel Isolation Treatment 1. 
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4.3 Fire Weather Stream Creation 

 

 

 

 

 

Figure 4.7 Weather Streams Flow Chart: Fire Weather Streams were created through 

combining hourly weather data with daily precipitation data. Extreme Fire Weather Rules 

were applied to this new dataset to determine periods of extreme fire behaviour weather, 

producing 14 weather streams.  The weather streams were reduced in length further by 

deleting periods of no and low fire growth potential.  Of the 14 weather streams, 6 were chosen 

for use in this research. 

Finney (2001) found that to reduce fire behaviour the fuel treatments should target 

fires burning under specific weather and fuel moisture conditions.  As fire intensity and size 

are increasing due to more extreme weather and fuel conditions, it is relevant to model fuel 

treatments under extreme fire weather conditions.  

Fire Weather data was provided by J. Caputo with Ontario Ministry of Natural 

Resources (OMNR) and by B. Mills with Environment Canada.  These two datasets were 

from the Atikokan OMNR weather station, which provided daily weather data from 1981-

1995, and the Atikokan Environment Canada weather station, which provided an hourly 

weather data set from 1994-2003.  This raw weather data were analyzed, reduced in length to 

represent the extreme weather conditions that were desired for this research and formatted to 
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Prometheus specifications.  The creation of weather streams required several steps, as 

follows. 

4.3.1 Precipitation  

Hourly weather data are preferable to daily weather as they capture a more realistic 

range of daily weather trends and how weather influences the fire environment on an hourly 

basis, affecting the overall fire growth.  Precipitation was available daily; therefore daily 

precipitation values were placed in the hourly weather data files.  How to apportion the 

precipitation by hour presented a new dilemma, as placing all the precipitation data in one 

hour would not usually represent realistic precipitation patterns.   

The following rules were created to be consistent and in an attempt to mimic how 

precipitation would occur in reality.   

1. Daily precipitation was apportioned evenly in all hours that had > 95% relative 

humidity, between the hours of 8am of the previous day to 7 am of the current day. 

2. If none of the hours from 8 am the previous day to 7 am of the current day had >95% 

RH, the full amount of rain was inserted in the hour with the highest relative 

humidity value. 

 

Using SAS (originally called Statistical Analysis System) software, B.M. Wotton 

created a program to systematically place the precipitation data according to these placement 

rules.   The SAS program was called ―Read EC daily wx format.sas‖.   

4.3.2 Extreme Fire Behaviour Weather Streams  

Fire indices and codes are needed to define extreme weather streams from within a 

larger data set.  However a continuous daily weather dataset is required to calculate the FWI 
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codes and indices.  The daily weather data set from the OMNR was discontinuous.  To fill in 

68 missing dates, data from the temporary daily Environment Canada Atikokan (20700) and 

the Sepawi (20713) weather stations was used.  These missing days were documented, as 

hourly weather streams containing these dates would not be used for modelling purposes in 

order to maintain data source consistency. 

The SAS program FWI.SAS, developed by B.M. Wotton, was used to calculate the 

FFMC, DMC, DC, ISI, BUI, and FWI for daily weather, using start-up FWI values from the 

OMNR Atikokan weather station.  The SAS program uses equations developed by Van 

Wagner (1987) and follows the Fortran calculation program as described by Van Wagner 

and Pickett (1985).  This SAS program used the continuous weather streams, as outlined 

previously, to produce a file with the FWI codes and indices from which to choose extreme 

fire weather. 

Extreme Fire Weather Rules 

From within the SAS output file with FWI codes and indices, weather stream dates were 

chosen with the following rules: 

 Start Date: Initial Spread Index (ISI) of >10.0 sustained for 2 days, AND 0.0 mm 

precipitation on the first day the ISI > 10.0 

 End Date: ISI of <2.2 sustained for 2 days AND precipitation of >5 mm 

 

These rules were based on fire indices and codes from Table 4.3 and applied to the 

daily weather data set to determine the start and end dates for extreme weather streams.  

Only weather streams without data gaps were chosen (no missing days and minimal hourly 

gaps).  This resulted in 14 weather streams of various lengths, approximately representing 
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the 90
th

 percentile of typical weather in this region. 

Table 4.3 Ontario Ministry of Natural Resources Fire Weather Index Fire Class. Source: J. 

Antoszek, Dryden OMNR (2005). 

ONTARIO FIRE WEATHER INDEX SYSTEM CATEGORIZATION 

                  

FWI CLASS FWI COMPONENTS 

    FFMC DMC DC ISI BUI FWI DAYS FIRES 

                  

LOW 0~80 0~15 0~140 0~2.2 0~20 0~3 58% 20% 

                  

MODERATE 81~86 16~30 141~240 2.3~5.0 21~36 4~10 27% 32% 

                  

HIGH 87~90 31~50 241~340 5.1~10.0 37~60 11~22 13% 33% 

                  

EXTREME 91+ 51+ 341+ 10.0+ 61+ 23+ 2% 15% 

4.3.3 Reduction of Weather Stream length 

As noted, the weather streams were shortened.  This was done for two reasons: 1) 

When using real weather data, fire growth models tend to over predict the size of fires with 

low fire behaviour, therefore fire growth time steps (hours) had to be further refined; and 2) 

When long weather streams are used in Prometheus, simulations can each take upwards of 

more than 24 hours.  Processing long weather streams often surpasses computer memory and 

therefore simulations abort before all time steps are completed.   

A decision was made to further refine the definition of a fire growth period.  The 

elimination of no to low growth fire periods was essential to reduce the length of weather 
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streams.  To do this, an hourly weather stream containing FFMC, DMC and DC was needed 

in order to apply further refined fire growth period rules.  A program named HFFMC.C was 

used to calculate FFMC values for the hourly weather data set (1994-2003).  This program is 

based on the Van Wagner (1977) methodology for calculating hourly FFMC.  DMC and DC 

values were manually added from the daily weather stream to the 14 weather stream files.   

Using rules based on general fire behaviour knowledge, I shortened the weather 

streams by eliminating time steps of low spread potential.  The elimination of these time 

steps decreased the problem of over prediction common to fire spread models.  The decision 

to use relative humidity and FFMC thresholds was based on the rationale that operational 

fire management recognizes minimal fire growth results in hours with an FFMC below 80 or 

an RH above 60% results.  R. Quenneville, a National Duty Officer and fire behaviour 

analyst with Parks Canada, agreed that when combined with ISI threshold values, these 

additional thresholds are conservative indicators of very low fire growth in the field (R. 

Quenneville, Pers.Comm, 2006).  In fire behaviour prediction scenarios, he and his 

colleagues created a set of rules to determine times of no fire spread.  These rules are as 

follows: 

Weather time steps will be deleted if: 

 Relative Humidity of > 40 %, or 

 Turn off the fire between 21:00 and 11:00, or  

 Precipitation > 2mm, or 

 FFMC < 85 

 

Based on Table 4.3, I chose a more conservative FFMC value of < 80, as this table 
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was created for the Dryden Fire Management Region, encompassing Quetico Provincial 

Park.  In addition, these added thresholds reduced fire growth computation time from 48+ 

hours to approximately one hour.  In early 1996, when I ran the fire iterations, Pandora was 

not capable of turning the fire off and on based on time of day.  The decision to eliminate 

hours below an FFMC of 80 is supported by one finding of Beck and Armitage (2004).  

They found that Van Wagner‘s hourly FFMC model does not accurately estimate the 

moisture content of feathermoss and jack pine needles within the lower FFMC ranges, with 

the differences decreasing and becoming small with an FFMC greater than 77.   

As determined by rigorous literature review and through consultation with field 

experts across the country, I determined that the literature does not adequately address this 

fire growth methodology issue.  Therefore the methods to determine realistic fire growth 

time steps are in its infancy and require further research.  As there is no consensus on 

appropriate FWI codes or indices and values to use, I chose weather values based on 

operational fire management knowledge and through consultation with Canadian fire 

experts. 

A code line in Microsoft Excel was used to determine the time steps with a relative 

humidity greater than 60% or an FFMC below 80.  These time steps were manually deleted 

from the hourly weather streams for the 14 weather streams, ensuring to keep a continuous 

hourly weather stream that Prometheus requires.     

The formula used was:    

=IF(OR(D2>60,H2<80),"YES","NO") 
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D2: represented the column with % relative humidity values 

H2: represented the column with FFMC values 

With the identified dates from the ISI and precipitation criteria, the 14 weather 

streams were extracted from the newly revised weather data set.    

Once the 14 weather streams were extracted from the hourly weather data set, I chose 

6 weather streams of the 14 that represented a variety of weather stream lengths, as the 

number of time steps affects the final area burned.  This step has allowed for a larger number 

of ignition iterations, thus increasing the statistical rigour. 

4.4 Other Inputs for Fire Growth Simulation Modelling 

 

 

 

 

 

 

Figure 4.8 Other Inputs Flow Chart: Additional inputs are needed in order to the fire growth 

simulation model, Prometheus, and it’s associated batch simulation program, Pandora.  These 

inputs are described in detail in sub sections 4.4.1, 4.4.2, 4.4.3, 4.4.4. 

4.4.1 Random Ignitions 

30,000 random ignition coordinates (X, Y) were created using a random number 
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generator in Microsoft Excel.  B.M. Wotton created a program called FindWater.exe to 

eliminate all ignitions that landed within water, bogs and non-fuel.  From this paired-down 

number of ignitions, each of the six weather streams were assigned 275 random ignitions 

that would be run on each fuel treatments, for a total of 1650 unique ignitions, on 17 fuel 

treatments and the control fuels map.  Of the 275 ignition coordinates, approximately 75 

were eliminated due to a malfunction in the Prometheus program.  The error occurred when 

an ignition coordinate was located on the borders of two fuel polygons, of which one 

polygon was a non-fuel.  The removal of this source of error was justifiable as the error was 

related to a geographic problem in the software, and was not an indication that fire growth 

would not occur in those locations.  This left approximately 200 ignitions that successfully 

ignited a fire for each weather stream, for each fuel treatment and control fuels map. 

4.4.2 Data Projection File 

A data projection file is necessary when using Pandora in order to import grid and 

vector data into the project.  This file tells Prometheus the projection and geospatial datum 

used to create the geographic coverage, and is used by Prometheus to display all the data in 

the same projection.  Data were projected in UTM 15, with World Geodetic System 1984 

(WGS84) datum.   WGS84 is the current reference system used by the Global Positioning 

System.  It is geocentric and globally consistent within ±1 m.  The CWFGM Project Steering 

Committee (2006) recommends using the North American Datum of 1983 for Prometheus, 

as this local datum (=provides a frame of reference to a local point of origin) is best suited 

for the earth‘s surface in North America.  The Quetico Provincial Park data were created 

using the geocentric datum WGS84 (=provides a frame of reference to the centre of the 
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earth), which can support geographic location measurements worldwide.   

4.4.3 Fuel Look-up Table 

Prometheus requires a Fuel Look-up Table (.lut) to read grid ASCII fuel maps.  A 

standard Prometheus LUT is available through a sample dataset on the website (Anonymous, 

2007).  An updated version of this LUT containing Quetico specific fuel type numbers was 

used for this research. 

4.4.4 DEM, Slope and Aspect 

At the time of fire growth modelling (December 2005-January 2006) the Digital 

Elevation Model (DEM) for Quetico Provincial Park was incomplete.  Prometheus and 

Pandora cannot use a DEM if there are gaps in the data coverage.   A new DEM version was 

not completed within the timeline of this research.  Through consultation with B.M. Wotton 

of the Canadian Forest Service and the University of Toronto, I decided that because Quetico 

Provincial Park has relatively flat terrain, there would not be a significant elevation effect on 

fire behaviour.  Fuel type differences as a result of elevation changes would likely account 

for elevation differences; particularly in comparison to the Canadian Mountain ranges where 

elevation has a drastic effect on fire behaviour and in a fire growth modelling environment. 

 Though it would have been preferential to use all possible data inputs, the timeline of a 

completed DEM was unknown.  Therefore the decision was made to not use the DEM, slope 

and aspect.   
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4.5 Pandora Batch Simulations 

 

 

 

 

 

 

 

 

Figure 4.9 Simulations Flow Chart: To use the Pandora Batch Program, each series of 

simulations requires a Pandora Parameters File.  This file identifies the location of the input 

data.  Pandora accesses the Prometheus engine in order to simulate the fires according to 

specifications in the Pandora parameters files.  This information is relayed back to Pandora to 

create a .log file with area burned in hectares for each simulation.  

 

Pandora was executed using parameters files that represented all unique 

combinations of the control fuels map or one of the 17 treatment maps, 1 of 6 weather 

streams representing realistic fire growth under fire behaviour conditions, and 1200 unique 

ignition coordinates.  With over 20,000 simulations at approximately 1-2 hours per 

simulation, computation time needed to be reduced further.   Reducing the angle threshold 

from 171.89 to 5, and increasing the distance threshold from 1 to 2 reduced computation 

time from several hours to a few minutes.  Through discussion with the Prometheus engine 

programmer, I determined that this adjustment in distance and angle thresholds is not a 

concern for resulting data quality for area burned.  These components of Prometheus are 

essentially smoothing factors for the ellipse calculations to represent more representative fire 
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shape at a small scale.  This feature is unique to the Prometheus fire growth engine, as 

FARSITE, the American fire growth simulation model, does not use angle or distance 

thresholds.   This adjustment was applied to all fire simulations, thus the reduction in area 

burned as a result of fuel treatments was not affected by this adjustment. 

After executing all Pandora parameter files, each containing 275 ignition coordinates, 

area burned for each ignition was stored within a LOG file.  The area burned was extracted 

for each ignition and tabled in an excel spreadsheet categorized by weather stream and fuel 

treatment scenario. 

4.5.1 Pandora Parameters File 

Pandora requires a ―parameters‖ file to direct the program to locate the input files and 

to access the Prometheus engine (Appendix B).  The user indicates the total number of 

iterations, weather station location data, number of hours in the hourly weather input file, 

initial FFMC, DMC, DC and hour data in the weather file, the method of calculating the 

FFMC, the percentage of cured grass, the ignition date and location, the angle and distance 

thresholds for calculating the fire perimeter, the time interval to calculate the fire perimeter, 

and the output requirements.  When Pandora was first developed, some difficulty arose with 

the fire perimeter shapefile output function of Pandora.  Therefore, for this research, I used a 

batch log file with final area burned for each ignition. 
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4.6 Statistical Analysis 

 

 

 

 

 

 

 

 

Figure 4.10 Statistics Flow Chart: Tukey’s HSD and Dunnett’s tests were used to analyze the 

differences between the area burned of the treatments from the control fuels map.   

 

The statistical analysis was designed in cooperation with E. Harvey, a statistician 

from the University of Waterloo.  I used two post hoc multiple comparison tests - Dunnett‘s, 

and Tukey‘s Honestly Significant Difference (HSD) - to compare average area burned 

results between a control fuels map and the 17 fuel treatments. Tukey‘s analysis performs all 

possible comparisons between every treatment.  It controls for Type 1 experiment-wise error 

rate, which was held at 5%.  Type 1 errors (false positive) occur when the null hypothesis 

(there is no effect) is incorrectly rejected (i.e. null hypothesis is true).  Type II (false 

negative) errors occur when a false null hypothesis is not rejected (i.e. the alternative to the 

null hypothesis is true).  Dunnett‘s test compares all treatments only to the control, i.e. the 

base map of original fuels (no fuel treatment).  In order to analyze all ignitions together and 

determine if characteristics of each weather stream were influencing the results, the results 

were blocked prior to the experiment (i.e. the treatments were matched by weather stream).  
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This was done to remove variation between the weather streams and then tested for the 

statistical differences between fuel treatments.  Variations associated with the block (the 

main effect and interaction) are isolated in the randomized block statistical analysis (Zolman, 

1993).  If blocking were not used when analyzing all weather streams together, the sources 

of variance between the weather streams would contribute to the error variance (Zolman, 

1993).   

The Tukey HSD test was used in addition to the Dunnett‘s test as it gives reasonably 

accurate results if sample sizes are nearly equal (Zolman, 1993).  This sample sizes were the 

same within each weather stream, however they differed slightly between weather streams.  

As well, the Tukey HSD allowed for testing between treatments to test whether the pattern of 

fuel treatment was significant, opposed to the percentage of fuel treatment as the main factor 

in reduction of average area burned.  Dunnett‘s is an appropriate test because the likelihood 

of making Type 1 errors increasing as the number of post hoc comparisons increases, and 

Dunnett‘s is a specialized comparison technique for familywise (FW) error rate that is 

designed to compensate for the increased number of Type 1 errors.  
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Chapter 5 

Results 

Seventeen treatment scenarios were created to test two concepts: fuel isolation and 

fuel conversion.  The ten fuel isolation treatments consisted of converting 7% of Immature 

Jack Pine to non-fuel.  The seven fuel conversion treatments consisted of incremental % of 

flammable fuels being converted to Leafless Aspen.  See Table 4.1 for fuel conversion 

configurations.  Fuel isolation and fuel conversion will be referred to as FI and FC 

respectively. 

A total of 28,050 ignitions coordinates were run in Pandora, resulting in 21,352 

successful fire simulations, after accounting for the ignition error as described previously.  

The area burned for each ignition was organized by weather stream, then by treatment 

scenario.  For an analysis of all the weather stream ignitions together, the data were 

organized by treatment scenario only.   

Area burned summary statistics by weather stream and blocked analyses are listed in 

Table 5.1.  Using Tukey‘s HSD and Dunnett‘s tests, overall there were considerable 

decreases in area burned between the control fuels map and the treatments.  All FI treatments 

were effective at reducing area burned from the control fuels map using both statistical tests.  

As a qualitative assessment, FC treatments were less effective at reducing area burned in 

comparison to FI treatments.  However converting a higher percentage and variety of 

flammable fuels resulted in statistically significant reductions in area burned.  It is important 

to note that the removal of 7% of fuels would result in a direct reduction of area burned of up 

to 7%.  However the reduction in area burned for fuel isolation treatments were above 50%, 
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thereby demonstrating that the presence of fuel treatments significantly affected area burned 

outside of this direct affect.    
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Figure 5.1 Fuel Isolation Treatment that resulted in considerable reduction in area burned. 
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Figure 5.2 Fuel Isolation Treatment that resulted in minimal reduction in area burned. 
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Figure 5.3 Fuel Conversion Treatment that resulted in considerable reduction in area burned. 

*Note: M-3 (75% dead fir (pdf)) was the fuel type converted in Treatment 17. All other M-3 

fuel types (% pdf) are dark blue.  
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Figure 5.4 Fuel Conversion Treatment that resulted in minimal reduction in area burned. 
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To demonstrate the effectiveness of FI treatments in reducing area burned under 

extreme fire behaviour conditions in Quetico Provincial Park see Figure 5.1.  The figure 

depicts one simulation run on the Control Fuels Map (Wildfire Perimeter) and on FI 

Treatment 7 (7% from Immature Jack Pine  non-fuel).  The reduction in area burned is 

substantial, demonstrating FI is effective at reducing area burned under the constraints of this 

research.  Figure 5.2 depicts the same ignition coordinate as Figure 5.1, with the Wildfire 

Perimeter from the Control Fuels Map and from FI Treatment 1.  The fire perimeter for 

Treatment 1 is less effective at reducing area burned, however some fire reduction is 

achieved on the east flank of the fire, suggesting that FI acted as a fire break preventing the 

fire from growing easterly.  Some fire perimeters have straight edges as a result of 2 factors:  

1) By using a low smoothing factor setting in the Prometheus fire engine.  As 

noted, all simulations were executed with identical fire engine settings; 

therefore the smoothing factor was not applied to any of the simulations.  It 

was not used because the smoothing factor substantially increases 

computation time.  The small-scale differences in shape when using the 

smoothing factor is not significant for this research, because this research 

focussed on the difference in area burned and not the shape of a fire 

perimeter. 

2) The second factor is related to how Prometheus creates fire perimeter 

shapefiles.  Prometheus, version 4.0.15, contained a problem with how fire 

perimeters were exported as shapefiles.  Prometheus created a shapefile for 

export by connecting active fire vertices (and those that were active within the 
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last 90 minutes of the fire), but did not incorporate inactive fire vertices.  For 

instance, if a fire reached a body of water, or non-fuel, the fire vertices were 

made ‗inactive‘, and were ignored when creating the shapefile.  This altered 

the final shape of the exported fire perimeter.  However, inactive vertices 

were used when calculating area burned statistics, and did not impact this 

research.  This is also the reason treated fire perimeters appear to have growth 

beyond the control fire perimeters in Figures 5.3 and 5.4.  This problem was 

fixed in later versions of Prometheus (version 4.2+). 

Figures 5.3 and 5.4 depict the effectiveness of FC on the reduction of area burned 

under extreme fire behaviour conditions in Quetico Provincial Park.  Figure 5.3 illustrates 

the effectiveness of Treatment 17 (13% from Dead Balsam Fir Mixedwood  Leafless 

Aspen).  These examples were chosen because the treatments are extremely effective at 

reducing area burned.  Figure 5.4 depicts Treatment 11 (7% from Immature Jack Pine  

Leafless Aspen) in comparison to the Wildfire Perimeter.  This treatment was chosen 

because it is less successful at reducing fire extent in comparison to Treatment 17.  Using 

maps to demonstrate effectiveness in reduction of area burned can be powerful, but single 

maps do not demonstrate statistical significance and overall effect of FI and FC treatments, 

and are therefore only used as a supplementary method of communicating observed results. 

 Figures 5.5 through 5.10 depict the distribution of wildfire size in the Control and 

Treatments 1 through 17 by weather stream.  The minimum fire sizes are not depicted on the 

maps as they are too small to view in conjunction with the other distribution statistics.   
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Figure 5.5 Distribution statistics of wildfire size for the April 9, 2003 Weather Stream. 
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Figure 5.6 Distribution statistics of wildfire size for the May 10, 1998 Weather Stream. 
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Figure 5.7 Distribution statistics of wildfire size for the August 20, 1995 Weather Stream. 
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Figure 5.8 Distribution statistics of wildfire size for the July 1, 2001 Weather Stream. 
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Figure 5.9 Distribution statistics of wildfire size for the May 14, 1999 Weather Stream. 
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Figure 5.10 Distribution statistics of wildfire size for the May 19, 1994 Weather Stream. 

 

5.1 Tukey’s HSD test 

In Tukey‘s HSD tests, all FI treatments for all weather streams and for the blocked 
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analysis were effective at reducing area burned (P < 0.0001) compared with the control fuels 

map.  See Table 5.1 and 5.2.  All fuel conversion treatments were effective at reducing area 

burned compared with the control fuels map for the July 7 weather stream and the blocked 

analysis (P < 0.0001).  All fuel conversion treatments were effective at reducing area burned 

compared with the control fuels map with the exception of Treatment 11 (FC from 7% 

Immature Jack Pine  Leafless Aspen) (P < 0.0001) for the April 9, May 10, May 14, May 

19 and August 20 weather streams.  See Table 5.1 and Table 5.2 Tukey‘s HSD and 

Dunnett‘s Tests results. 

Table 5.1 Summary statistics for area burned by weather stream and blocked analysis based on 

Tukey’s HSD and Dunnett’s Tests with a 95% simultaneous confidence limit. 

Weather Stream Source of Variation df Sums of Squares Type III F P 

Blocked Analysis Date 5 2.4 1760.1 <0.0001 

Blocked Analysis area burned 17 6.60E+11 144.2 <0.0001 

April 9, 2003 area burned 17 4.60E+11 35.4 <0.0001 

May 10, 1998 area burned 17 1.10E+10 29.8 <0.0001 

May 14, 1999 area burned 17 5.50E+09 32.1 <0.0001 

May 19, 1994 area burned 17 3.00E+11 38.1 <0.0001 

July 7, 2001 area burned 17 2.10E+11 51.2 <0.0001 

August 20, 1995 area burned 17 1.90E+10 37.2 <0.0001 
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Table 5.2 Reductions in area burned resulting from FI and FC treatments compared with the 

control fuels map, measured in hectares and % for blocked analysis. 

Treatment FI and FC fuels 

Difference 

from Control 

(ha) 

% Change 

from 

Control 

Tukey's 

HSD 
Dunnett's 

1 7% C-4 to non-fuel 15608.5 61 * * 

2 7% C-4 to non-fuel 14931.0 58 * * 

3 7% C-4 to non-fuel 15447.3 60 * * 

4 7% C-4 to non-fuel 15781.6 61 * * 

5 7% C-4 to non-fuel 15817.2 61 * * 

6 7% C-4 to non-fuel 15198.8 59 * * 

7 7% C-4 to non-fuel 14820.9 58 * * 

8 7% C-4 to non-fuel 14914.1 58 * * 

9 7% C-4 to non-fuel 15700.7 61 * * 

10 7% C-4 to non-fuel 15192.3 59 * * 

11 7% 4 to D-1 4098.5 16 ** *** 

12 8.8% C-4 to D-1 5563.1 22 * * 

13 17.1% C-4, C-1 to D-1 4875.8 19 * * 

14 21.9% C-4, C-1, C-2 to D-1 5552.3 22 * * 

15 25.2% C-4, C-1, C-2, C-3 to D-1 5542.9 22 * * 

16 38.2% C-4, C-1, C-2, C-3, M-3 to D-1 17275.1 67 * * 

17 13% M-3 to D-1 13200.7 51 * * 

*Indicates statistical significance at P<0.05.   

**Treatment 11 was significant for weather stream July 7, 2001 and for the blocked analysis in the 

Tukey‘s HSD test. 

***Treatment 11 was significant for all weather streams but May 19, 1994 for the Dunnett‘s test. 

5.2 Dunnett’s Test 

In Dunnett‘s tests, for all weather streams and the blocked analysis (except Treatment 

11 (FC from 7% Immature Jack Pine  Leafless Aspen for the May 19 weather stream (P < 
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0.0001)), both FI and FC are effective at reducing area burned compared with the control 

fuels map (P < 0.0001).  See Table 5.1 and Table 5.2. 

As a qualitative observation, FC becomes more effective in reducing area burned as 

more fuels are converted.  See Figure 5.11.  A substantial change in effectiveness does not 

occur until a 38.2% FC treatment in comparison to the 25.2% FC.  Treatment 16 (38.2% FC 

from all conifers and Dead Balsam Fir Mixedwood  Leafless Aspen) and Treatment 17 

(13% FC from Dead Balsam Fir Mixedwood  Leafless Aspen) are effective at reducing 

area burned compared with the control fuels map for all weathers streams and the blocked 

analysis (P < 0.0001).  The reduction of area burned from these two treatments is 

comparable to reductions caused by FI treatments.  See Figure 5.11 and 5.12. 

Tukey‘s HSD tests show FI treatment effects were not significantly different from 

each other (P < 0.0001).   This was expected, as there is a total of 8.8% Immature Jack Pine 

on the landscape.  Therefore there would be limited differences in the 7% FI treatment 

patterns between Treatments 1 through 10.  For this research, this implies the pattern of 

random fuel treatments likely did not substantially affect area burned.  Using the same test 

the 7%, 8.8%, 17.1%, 21.9% and 25.2% FC treatments were not significantly different from 

each other (P < 0.0001).  It was not possible to test whether the pattern of FC was a 

contributing factor to the reduction of area burned, due to the varying percentage of fuels 

converted for FC treatments.   
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Figure 5.11 The differences in area burned in hectares between treatments and the control 

fuels map based on results of Tukey’s HSD and Dunnett’s tests by weather stream dates and 

blocked analysis (All Burns). 

 

As a general observation, longer weather streams produced larger area burned.  

Though this may be common knowledge in the field, the effects of weather stream length 

have not been studied in fire growth modelling.  July 7 weather stream has 87 time steps 

(one of the longer weather streams used in this research).  Using both statistical tests, we see 

that a 7% FC treatment from Immature Jack Pine  Leafless Aspen is effective in reducing 

area burned (P < 0.0001).  This may indicate longer extreme wildfire events require a 

smaller percentage of FC to reduce area burned.  However, this would have to be 

substantiated with more treatment tests.   

Overall, FI treatments were effective at reducing average area burned from the 

control by about 53-65%.  FC treatments have a greater range of variation in percent 
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effectiveness, ranging from 18-73%.  The conversion from Dead Balsam Fir Mixedwood  

Leafless Aspen was most effective at reducing area burned from the control (73%).  This 

was expected due to the volatile nature of this fuel.  Treatment 11 (7% FC from Immature 

Jack Pine  Leafless Aspen) has the lowest percent change in area burned from the control 

for FC treatments (18%).  This is an important observation if any amount of area burned 

reduction is desirable. 
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Figure 5.12 Percentage change in average area burned between the control fuels mpa and 

treatments by weather stream dates. 
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Chapter 6 

Discussion 

This research examined whether randomly fragmenting highly flammable fuels in the 

boreal forests of Quetico Provincial Parks decreases average area burned under extreme fire 

behaviour conditions.  These conditions were simulated using a fire growth simulation 

model, with a particular emphasis on three research questions.   

First, I addressed whether isolating highly flammable boreal forest fuels decreases 

average wildfire size in Quetico Provincial Park under extreme fire behaviour conditions.  

Using both Tukey‘s HSD and Dunnett‘s tests, all FI treatments significant reduced area 

burned compared with the control, ranging from approximately 53-65% reduction in area 

burned.  Therefore the answer to the first question is yes, isolating fuels by converting 7% of 

the landscape from Immature Jack Pine to non-fuel is effective at reducing average area 

burned by at least 50% in Quetico Provincial Park under extreme fire behaviour conditions. 

The fuel treatments in this study were not strategic bulkhead treatments, nor were 

they completely random, as treatments were targeted in flammable fuels.  Forest stands do 

not grow randomly, as they are affected by such factors as ecological disturbances, nutrients, 

topography and microclimatic conditions.  Therefore targeting certain stand types (e.g. 

flammable coniferous fuels) partially removes the random component of treatment patterns.  

However, within the targeted fuel types (Immature Jack Pine), stands were randomly chosen 

for FI treatments.  FC Treatments targeted known types of flammable stands (all coniferous 

stands and Dead Balsam Fir Mixedwood) opposed to mixed stands and deciduous stands 

with lower flammability characteristics.  Thus treatments were not truly random, nor were 
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they strategic bulkhead (fire break) treatments.    

The second question was whether fuel conversion (from coniferous to deciduous) 

decreases average wildfire size in Quetico Provincial Park under extreme fire behaviour 

conditions.  Using both Tukey‘s and Dunnett‘s tests, fuel conversion is effective at reducing 

average area burned under extreme fire behaviour conditions, with a greater range of 

variation in effectiveness than with FI treatments, ranging from 18-73% reduction in area 

burned from the control.  Tukey‘s HSD test indicates Treatment 11 (FC 7% Immature Jack 

Pine  Leafless Aspen) was the only treatment that did not significantly decrease average 

area burned in five of the weather streams, as was the case with the Dunnett‘s test for the 

May 19 weather stream.   For Quetico Provincial Park, converting over 8.8% of the 

landscape from highly flammable fuels to less flammable fuels is effective at reducing 

average area burned in extreme fire behaviour conditions.    

In heterogeneous landscapes, gross fire spread rate and shape should be calculated 

based on properties of fuels and their topological arrangements as fires can burn laterally 

around obstacles (Finney, 2003).  The flammability of the fuels is critical to the development 

of the rate of spread, and therefore the fire extent, as fires progress more directly through 

highly flammable fuels due to a faster forward rate of spread.  They progress more slowly, 

by flanking around patches of less flammable fuels (Finney, 2003).  It is likely for this theory 

that fuel conversion confers success in reducing average wildfire extent in this study. 

 

In addition to conversion of Immature Jack Pine, other flammable fuels were 
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converted as outlined in the methodology in order to increase the % of flammable fuel 

conversion.  Of particular interest is that removal of M-3 (Dead balsam fir mixed-wood, 

leafless, 75% dead fir (pdf)) drastically reduced average area burned.  This fuel type 

constitutes 13% of Quetico Provincial Park's landscape.  It is often used to represent the 

resulting forest type after a major insect infestation such as spruce budworm in Quetico 

Provincial Park.  In this research, removal of this fuel resulted in approximately 73% 

reduction in area burned.  To put this in a different way, an increase in insect infestations 

would substantially increase area burned in Quetico Provincial Park.  With an increase in a 

variety of insect infestations across the boreal ecotone in Canada, area burned may increase 

substantially and development of new fuel management techniques will be critical.  With a 

warming climate due to climate change effects, the mountain pine beetle has begun moving 

easterly breaching the Rocky Mountain geo-climatic barrier (Carroll, 2007).  Due to an 

increase in suitable habitat, composed of hybridized lodgepole and jack pine stands, there is 

potential for a mountain pine beetle invasion into the boreal forests (Carroll, 2007), 

increasing concern over interaction between insect infestations and wildfire extent.  

Third, this research demonstrates that as a conceptual basis, fuel isolation and 

conversion are effective at reducing average area burned under extreme fire behaviour 

conditions in this region of North-western Ontario. This suggests that further research on 

fuel isolation and conversion as a prescriptive, proactive strategy is warranted.   

6.1 Fuel Isolation and Conversion can address Climate Change Effects on Fire 

Regime 

Climate change is affecting all ecosystems, including Canada‘s boreal forests with 
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both ecological and economic consequences.  Functional changes are expected in biomass 

production, decomposition, nutrient turnover rates, carbon sequestration and susceptibility to 

disturbances such as disease, insect infestations and alterations in fire regime (Overpeck, 

Rind & Goldberg, 1990; Weber & Flannigan, 1997).  

An altered fire regime due to a warming climate will cause immeasurable problems 

for land managers ranging in issues from adaptive fire management strategies, forest age 

mosaic alterations, biodiversity, carbon cycling and sequestration (Stocks et al., 1998; Weber 

& Flannigan, 1997).  Though climate change will directly affect other ecological functions 

and processes, the increasing changes in regional fire regimes will likely overshadow other 

implications (McCoy & Burn, 2005; Weber & Flannigan, 1997).   

With a likely increase in extreme weather events, and regional increases in fuel loads 

due to effective fire suppression, and increased insect outbreaks (Gollberg et al, 2001), 

situations that usually give rise to extreme fires; a doubling in area burned is a plausible 

(Gillett et al., 2004).  Debate over the degree of change exists (McCoy and Burn, 2005).  An 

increase in extreme fire behaviour conditions could result in fires with very high intensities 

and growth rates.  These fires are difficult if not impossible to suppress.  For instance, Hirsch 

and Martell (1996) found that suppression capabilities are futile beyond 10 000 kWmˉ¹.  

Extreme wildfire events frequently surpass this level, making fire control difficult using 

traditional fire suppression methods.  The concept of fuel isolation and conversion may 

prove useful in helping to address the increase of wildfire extent as a result of climate 

change.  Further research into the prescriptive applications is needed in order for natural 

resource planners to implement these strategies into policy and management programs. 
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6.2 Fuel Management for Protected Areas, Timber Resource Areas and the 

Wildland Urban Interface 

Managing wildfire risk effectively is of great value to society, as wildfires can cause 

significant loss of life and high economic damage (Clarke et al., 1994; Loehle, 2004).  The 

effects of wildfire can be viewed as either negative or positive, depending on the associated 

values at risk, and society‘s acceptance of resource management objectives (Hirsch et al., 

2004).  Public safety and timber values usually trump ecological values at risk; therefore the 

challenge facing fire and resource managers is to balance these risks and benefits on a site-

specific basis (Hirsch et al., 2004).   

Ecosystem resilience is an important concept natural resource planners must 

recognize, because as natural resilience declines ecosystems become vulnerable.  This can 

enhance the effect of small external events on the system, causing shifts in system processes 

and structures (Folke et al., 2004).  Ecosystem shifts are becoming more common as human 

activities continue to alter ecosystem processes and structures, through such activities as fire 

suppression and the effects of climate change.  These influences may cause a fire regime 

shift in the boreal forest ecotype.  Natural resource agencies frequently use pre-European fire 

regimes as a baseline for fire management goals.  This shift may include larger, more severe 

and intense wildfires, beyond those experienced prior to European settlement.   

Though large, stand replacing fires are ecologically desirable in boreal forests, 

striking the balance between the reintroduction of landscape level fires and limiting the 

negative effects of extreme wildfires caused by climate change and historical fire 

suppression is difficult.  The reality is that sometimes regime shifts are irreversible (Folke et 
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al., 2004).  It is difficult to determine if that is the situation in the forests of North-western 

Ontario.  However the precautionary principle dictates that we should act proactively to 

avoid such a shift.  To reiterate, a shift of this proportion would include extreme wildfire 

events beyond what was natural prior to the human influences of fire suppression and 

climate change.  The intent is not to limit all stand replacing fires across the landscape, but 

instead massive fire events that threaten ecological integrity and values at risk that are 

difficult to control with traditional fire suppression methods.   

With an increase in frequency of extreme fire events, pressure on fire management 

agencies will continue to mount to balance fire suppression costs, values at risk and 

ecological integrity.  To address these issues natural resource planners must look for 

alternatives to status quo fire management practices.  Random fuel isolation and conversion 

of highly flammable fuels may help protected area managers reestablish historic fire 

regimes, through proactive fuel treatments that reduce average wildfire size in their 

landscapes.  In theory, to return to historic fire regimes protected area managers could 

implement a fire management strategy that allows some wildfires to grow without using 

direct fire attack, thus reducing fire return intervals for the landscape, and assisting in the 

reintroduction of stand replacement fires.   

This research converted fuel polygons from highly flammable fuels to non-fuel or 

deciduous fuels.  The size and extent of these treatments varied considerably, based on the 

size of the polygons randomly (representing forest stands) chosen and the % of the landscape 

converted.  The large size of treatments and complete removal of some coniferous stands 

would have substantial ecological implications.  For this reason, further research is needed 
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using smaller treatments across the landscape prior to implementation of prescriptive fuel 

management strategies in protected areas.   

In the future, protected area planners may implement random fuel treatments through 

a series of prescribed fires of varying sizes targeting fire behaviour that favours the 

regeneration of deciduous species. This would reduce available fuel for combustion and 

break the continuity of fuel across a landscape.  Replanting deciduous species could follow 

to promote fuel conversion.  Timber harvesting is generally not an accepted practice within 

protected areas.  However in protected areas where harvesting is allowed, this method could 

be used in combination with prescribed fires and replanting could be used to achieve fuel 

isolation and conversion.  Direct fire suppression techniques would then be more effective if 

fire did reach values at risk or park boundaries, as the fires would be smaller in size.  By 

reducing area burned from extreme wildfire events, while still allowing stand-replacing fires, 

natural resource planners can assist boreal forests in returning to a pre-anthropogenic climate 

change and pre-fire suppression fire regime state.  This may lead to returning to a more 

natural range of disturbance effects, and act as a long term, landscape level restoration. 

Implementing fuel management at a landscape scale has evolved partly out of a 

response to timber shortages resulting from uncontrollable wildfires, as timber is 

increasingly becoming a limited resource in Canada (Hirsch et al., 2004).  Unwanted 

wildfires cause an estimated $2 B cdn in timber losses (de Groot, Bothwell, Carlsson & 

Logan, 2003), further threatening the livelihoods of many Canadians (Hirsch et al., 2004).  

Therefore the forestry sector should consider testing the use of scattered fuel treatments to 

protect valuable timber resources from extreme wildfire events.   
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Millar Western Industries (MWI) in Whitecourt, Alberta, is incorporating fuel 

management into their short-term forest management activities in order to address the issue 

of timber loss during extreme wildfire events (Hirsch et al., 2004).  Other timber companies 

might consider following this example, and adapt their current cut-block rotation and 

regeneration practices to include fuel isolation and conversion to reduce landscape 

flammability.   

Hirsch et al. (2004) describe a landscape level approach for reducing the spread of 

wildfires with the implementation of strategically located reductions of highly flammable 

fuels, which serve as anchor points for fire suppression.  The suggestion is to use fuel 

conversion to alter the flammability of these fuels, though this would be difficult to do 

nationwide (Amiro, Stocks, Alexander, Flannigan & Wotton, 2001).  If this was 

implemented throughout timber resource areas over time, a reduction in the size of wildfires 

under extreme weather conditions is possible (Hirsch et al., 2004).  My research shows that 

random fuel isolation and conversion are possible avenues for reducing landscape 

flammability in boreal forests.  Active timber resource areas provide an excellent field 

research opportunity to test these fuel management concepts.  If implemented as part of their 

overall replanting and regeneration plan, natural fire events would provide opportunities to 

study these concepts in the field.  

Fuel treatments, achieved through a series of thinning and harvesting operations of 

immature pine stands, could have a dual purpose: 1) A reduction in wildfire extent thus 

limiting the threat to mature timber resources, and 2) Providing timber for use as biomass 

feedstock in electric power production.  In 1992, the United States formed a National 
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Biofuels Roundtable partly to address the development of biomass production at a landscape 

scale (Turnbull, 1994).  Biomass production might help to address other environmental 

concerns by displacing significant amounts of fossil resources, thus reducing the amount 

atmospheric carbon dioxide that contributes to anthropogenic climate change effects 

(Turnbull, 1994).  Typical woody species for biofuels production are hybridized poplars, 

black locust and sliver maple.  The effectiveness of pine species for biofuels purposes should 

be studied in depth to determine if this is a viable spin off activity of fuel treatments in the 

forestry industry. 

A variety of fuel management may help mitigate threats of extreme wildfire events to 

interface communities.  Wildfires are increasingly threatening lives and infrastructures in 

wildland urban interfaces, such as the 2003 British Columbia Firestorm interface fires, which 

destroyed 334 homes, caused the evacuation of over 45,000 people and amassed damages 

estimated at $700 million (Filmon, 2003).  Fuel management based on a strategic bulkhead 

FireSmart community protection approach is being tested in a few Canadian interface 

communities.  However, the reduction of fuel immediately surrounding buildings and the 

community interface may not suffice to protect values at risk during extreme wildfire events.   

In theory, fuel isolation and conversion could be used surrounding communities and 

extending past the reach of traditional FireSmart community protection boundaries.  In 

addition to strategic bulkhead fuel management approaches of FireSmart community 

protection, this research demonstrates in theory that random treatments of surrounding 

forested landscape would help to reduce average wildfire size as it approaches a community.  

If a fire does reach the community, traditional suppression capabilities may be employed to 
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further protect the community.  Perhaps a combination of the FireSmart community 

protection approach with random fuel isolation or conversion treatments would provide the 

greatest level of protection for community interfaces.   

At a landscape scale, fuel treatments could be difficult due to limited funding, public 

controversy, inadequate road access, variable land ownership, and opposing regulations 

(Finney, 2001; Keane et al., 2003; Loehle, 2004).  Though this is not a strong enough 

argument to do nothing; extreme wildfires pose a real risk that needs to be addressed.  

Priorities of treatments could be based on local hazards, ecological objectives, convenience, 

cost, accessibility, and land ownership (Finney, 2001; Pollet & Omi, 2002; Stephens, 1998).     

Before this research can move from a conceptual approach to a prescriptive 

management strategy for protected areas and interface communities, further research is 

needed on the impacts of fuel management on other ecological components, such as water 

quality, habitat composition and fragmentation, soil compaction, biodiversity, essential 

ecosystem functions and alteration of forest composition and structure (Martell et al., 2004).  

How fuel management affects wildlife is unknown, particularly in regards to aquatic 

ecosystems, though progress has been made (Riemen, Luce, Gresswell & Young, 2003).  

The continued lack of understanding of the effects of fuel management strategies on fish and 

wildlife will impede the development of ecologically sound management practices (Bury, 

2004).  Future studies should consider full effects of fuel treatments on the quality and 

quantity of post-treatment habitat, including consideration of amount of leaf litter and 

downed wood after fire, and if wildlife concentrate in remaining usable habitat (Bury, 2004).   
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The risks of wildfire need to be weighed against these potential negative effects of 

fragmentation.  Martell et al. (2004) studied the effects of fuel fragmentation on wildlife in 

relation to timber harvesting, and found that FireSmart forest management may produce 

more habitat than current forestry practices, but not as much habitat as not allowing timber 

harvesting at all in some forests.  Further research is needed to examine the effects of fuel 

management strategies on ecological health and wildlife species, on a site-specific basis.  A 

significant challenge of fuel treatments will be shifting the perception of these practices, and 

implementing effective ecosystem management by balancing ecological integrity and 

economic development (Hirsch et al., 2004; Partners in Protection, 2003).   

6.3 Future Research 

The results of this conceptual research suggest the need for further research into 

random fuel treatments prescriptions in boreal forests across Canada.  This research should 

be replicated for sites that are representative of regional boreal forest fuel structures to 

determine if fragmentation is effective at reducing average wildfire size in other landscape 

contexts.  For instance, Quetico Provincial Park is naturally fragmented by a diverse system 

of lakes and waterways, which likely had an affect on the percentage of fuel isolation and 

conversion needed to significantly reduce average wildfire size.  Repeating this research in 

areas with more continuous boreal fuels, e.g. Wood Buffalo National Park, would be 

beneficial to the establishment of random fuel treatment theory and associated minimum 

thresholds.  Quetico Provincial Park is only one case study in a multitude of possible site 

locations that could benefit from implementing landscape level random fuel treatments.   
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Research should focus on how topography and existing landscape fragmentation 

affects the amount of fuel isolation and conversion needed to substantially reduce average 

area burned.  As well, this research could be applied in a more conceptual landscape to 

systematically determine which fuels, or fuel combinations, are most efficient at reducing 

area burned.  

If fire management planning is to be successful, the use of fire growth modelling 

should be incorporated in the planning environment (Hessberg, Agee & Franklin, 2005), in 

addition to large-scale field experiments.  However, further research is needed on how to 

define simulation start and end parameters as well as how to configure weather streams to 

mimic fire growth periods.  I have observed that the number of time steps may affect size of 

extreme fire events.  The pattern of change between area burned in the control and fuel 

treatments remains the same regardless of length of weather streams.  April 9 is the longest 

weather stream (153 time steps), and resulted in highest average area burned.  May 14 is the 

shortest weather stream (36 steps), and resulted in lowest average area burned.  Though it is 

obvious that longer weather streams result in greater area burned, further research is needed 

on determining weather stream parameters, including length, for use in deterministic 

modelling research.  Currently, Prometheus does not turn fires ―off‖ until the user ends the 

simulation or until the weather stream ends.  This important end date is determined for either 

tactical reasons, or based on user-defined rules developed to mimic the ebb and flow of fire 

growth.  The development of these rules requires further study.   

An increase in size of extreme wildfire events may also result in wildfires with 

extreme intensities.  Further research on this is needed because although fires can be 
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ecologically beneficial, fires that are very extreme in intensity can sterilize the soil of 

microorganisms, thereby impacting the ecological health of the area (Clarke et al., 1994).  A 

potential increase in wildfire size, frequency and intensity is also cause for concern as fires 

are a major source of gasses and particulates in the atmosphere, causing an increase in 

greenhouse gas effects (Clarke et al., 1994), thus potentially creating a positive feedback 

loop and enhancing the effects of climate change on fire regime.   

To summarize, future research is needed to validate the prescriptive basis for fuel 

isolation and conversion and to determine the extent to which these strategies could be 

applied.  Additional research should include: 

 Random fuel isolation and conversion should be studied in conjunction with strategic 

fuel treatments (FireSmart community Protection) for effectiveness of protecting 

timber resources and other values at risk near communities and infrastructure. 

 How random fuel treatments affect wildfire intensity and severity.  

 Developing rules to determine fire ignition and extinguishment parameters for the 

fire growth simulation environment.  

 Determining if random fuel treatments are effective at reducing average wildfire size 

under moderate and high fire behaviour conditions.  This would determine if 

treatments would help reduce the overall degree of direct fire suppression needed 

under all wildfire conditions, and if they would be detrimental to ecological values by 

limiting the effects of smaller wildfire events. 

 Future research should also focus on examining how fire shape and patchiness is 



 

 113 

altered by fuel treatments.  As well, the shape of the fuel treatments may influence 

the fire-spread capability and should be explored further using fire growth models. 

This research potentially had implications for the management of boreal forest 

landscapes, both for resource management and human safety.   

6.4 Conclusions 

Despite continued suppression efforts, wildfires have occurred on the landscape 

under extreme fire behaviour conditions over the past century (Agee & Skinner, 2005; 

Finney et al., 2005).  As fire suppression has limits in effectiveness, extreme large fires 

could escape control (Martell, 1996). With climate change potentially increasing these 

severe fire behaviour conditions, area burned is expected to increase substantially.  These 

fires potentially threaten 1) Ecological values in protected area landscapes, 2) Timber 

resources, and 3) Interface communities. 

Through the use of fire growth modelling, I tested the use of fuel isolation and 

conversion treatments in a subsection of the boreal forests of Quetico Provincial Park.  By 

converting 7% of the landscape from Immature Jack Pine to non-fuel, average area burned 

was reduced from the control by 53-65%.  Converting highly flammable fuels to Leafless 

Aspen saw a reduction in average fire size from the control of 18-73%. 

These results demonstrate that fuel isolation and conversion are effective fuel 

management concepts in the reduction of average area burned under extreme fire behaviour 

conditions.  These results, though specific to the Quetico Provincial Park region, indicate 

that random fuel isolation and conversion of highly flammable fuels should be studied 
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further as a prescriptive fire management strategy to reduce the risks of increased area 

burned.  As fuel treatments will not completely protect values at risk from wildfire, fuel 

management should be part of an integrated fire management strategy that includes 

prevention of human-caused fires, and efficient fire detection and suppression (Fernandes & 

Botelho, 2003). 

The following recommendations are based on the demonstrated success of random 

fuel treatments in this research: 

 Further research is needed on the use of random fuel treatments in protected areas.  

The size and extent of fuel treatments needs to be further refined before prescriptive 

implementation in protected areas.  However, protected area planning should not 

ignore the potential of random fuel treatments to reduce average wildfire size within 

park boundaries.  By limiting their size proactively, park managers may one day limit 

risk of wildfires escaping their boundaries while allowing stand-replacing fires within 

the interior of the park.  This would also reduce the necessity of direct fire 

suppression for a greater number of wildfires.    

 Timber production should consider the use of prescriptive random fuel treatments to 

reduce the potential loss of timber values to large wildfires.  By incorporating fuel 

treatments into their cut blocks through thinning and fuel conversion, they may limit 

the average area burned from escaped wildfire and reduce their economic risks. 

 Fuel treatments should be research further for implementation in landscapes 

surrounding communities and other values at risk to reduce the risk of wildfires 
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threatening human safety and infrastructure.  It is expected that the degree of reduced 

wildfire risk is proportional to the decrease in average extreme wildfire size.  

Therefore other fire management strategies should not be abandoned for random fuel 

treatments.  Instead a comprehensive, long-term planning strategy that includes 

random fuel treatments should be studied further and potentially implemented. 

Landscape scale management approaches may be applied across a large portion of 

Canada‘s boreal forest and potentially in other countries, as the boreal forest ecotype is far 

reaching.  Though fire growth modelling was done at the landscape scale in order to include 

the appropriate level of detail, the findings could have regional level implications for 

management.   

Fire management planning in Canada is an evolving applied science.  Fire 

management is beginning to bridge the gap between reactive fire strategies and progressive 

fire management planning.  To address the issue of increasing extreme wildfire events, it is 

imperative that planners consider alternatives to direct fire suppression.  Random fuel 

isolation and conversion area plausible management strategies that could be applied for a 

variety of resource protection initiatives.  Without effective, long-term planning for fuel 

management in boreal forests, extreme wildfires will continue to threaten human life, values 

at risk and potentially ecological integrity.  
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Appendix A 

Glossary 

 

Angle Threshold: The angle and distance threshold values control the number of vertices 

that are added between major vertices. As the angle threshold value (in degrees) decreases, 

more vertices are added. The end result is a smoother elliptical perimeter. However, more 

vertices will increase the number of calculations and reduce the overall speed of the model 

(Anonymous, 2007).  The point insertion technique is executed when the angle between a 

vertex and its two neighbouring vertices, divided by the distance between the two 

neighbouring vertices, is less than the angle threshold value.  

Insert Points When:   
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The angle threshold is applied to both convex and concave angles on a fire perimeter. This 

threshold forces more points to exist in areas of the fire perimeter exhibiting high angularity 

(McLoughlin, 2007).  This function is no longer used in the newer versions of Prometheus. 

Buildup Index (BUI): A numerical rating of the total amount of fuel available for 

combustion that combines DMC and DC (Van Wagner, 1987). 

 

Cellular automata (CA) for fire growth modelling: A grid cell based process that sends 

out firelets one at a time from the fire source.  The initial firelet (ignition) survives by ignites 

new fuel and moves in the direction determined by the fire environment (e.g. fuels, weather) 

(Clarke et al., 1994).   

 

Crown Fires: Crown fires burn the crowns (tops) of trees or shrubs (Fuller, 1991).  During 

intermittent crown fires, the fire switches between crown and surface fire behaviour.  

 

Distance Threshold: Prometheus allows the user to define a distance threshold (measured in 

grid cells). The default distance threshold is set at 1.00, which is equivalent to the fuel grid 

resolution. The distance threshold is the maximum distance allowed between any two 

adjacent vertices on a fire perimeter before the point insertion technique is executed. More 

vertices will be added along a given fire perimeter as the user decreases the distance 

threshold value. This results in a smoother elliptical perimeter. However, adding more 

vertices increases the number of calculations and reduces the overall speed of the model. 
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e.g.) the distance threshold is set at 1.00 and the fuel grid resolution is 25 meters. New 

vertices will be added at the end of a given time step wherever the distance between 

neighbouring vertices is 25 meters or greater (McLoughlin, 2007). 

Drought Code (DC): A numerical rating of the average moisture content of deep, compact, 

organic layers.  This code is a useful indicator of seasonal drought effects on forest fuels, and 

amount smoldering in deep duff layers and large logs (Van Wagner, 1987). 

 

Duff Moisture Code (DMC):  A numerical rating of the average moisture content of loosely 

compacted organic layers of moderate depth.  The code gives an indication of fuel 

consumption in moderate duff layers and medium-size woody material (Van Wagner, 1987). 

 

Ecological Risk:  The risk of loss of fire dependent species and vegetation communities.  

Measured indirectly by comparing the current fire cycle with the long-term fire cycle as 

measured through fire history studies.  An assumption is made that the closer the current fire 

cycle is to the long-term fire cycle the less risk there is of loss of fire dependent species and 

communities (Anonymous, 2007). 

 

Ecosystem Resilience: The ability of an ecosystem to recover from disturbances caused by 

natural and human-induced means.  It may be measured as the magnitude of disturbance that 

can be absorbed before the ecosystem changes its structure by changing the variables and 
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processes that control behaviour.   It can also be described as the measure of resistance to 

disturbance and speed of return to the ecosystem‘s equilibrium state. 

 

Extreme or Catastrophic Wildfire Events: These events are typically characterized by 

extremely high drought and high fine fuel moisture codes, thus contributing to 

uncontrollable fire behaviour conditions.  Wildfires in this category are likely to escape 

tactical fire suppression efforts and therefore potentially threaten values at risk.  There are 

often significant economic implications of such fires in the wildland urban interfaces.  

 

Fine Fuel Moisture Code (FFMC):  A numerical rating of the moisture content of litter and 

other cured fuels.  This code is an indicator of the relative ease of ignition and flammability 

of fine fuel (Van Wagner, 1987). 

 

Fire Cycle: The number of years required to burn over an area equal to the entire area of 

interest (Anonymous, 2003). 

 

Fire Interval: The average number of years between the occurrences of fires at a given point 

(Anonymous, 2003). 
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Fire Regime: The kind of fire activity or pattern of fires that generally characterize a given 

area (Anonymous, 2003). A fire regime is the combination of a fire history (fire behaviour 

and occurrence) and a certain complex of fuel (biota) (Pyne, 1984).  It is dependent on the 

rate of spread, shape, intensity, frequency (time between fires), season of burning, the extent 

(patchiness), type of fire (fire behaviour), fuel source and moisture level, weather, and 

ignition source (McLoughlin, 1998; Pyne, 1984; Whelan, 1995).  Some important elements 

of the characteristic pattern include fire cycle or fire interval, fire season, and the number, 

type, and intensity of fires (Anonymous, 2003). 

 

Fire Season: The period(s) of the year during which fires are likely to start, spread, and do 

damage to values -at-risk sufficient to warrant organized fire suppression; a period of the 

year set out and commonly referred to in fire prevention legislation. The fire season is 

usually further divided on the basis of the seasonal flammability of fuel types (e.g. spring, 

summer, and fall) (Anonymous, 2003).  

 

Fire Severity: A general term most commonly describe the combined affects of both 

flaming combustion and smouldering combustion on either a wildfire or prescribed fire site 

as manifested in various fire behaviour characteristics (e.g. fire intensity, flame height and 

length, residence and burn-out times, etc.); this is quite inferred after-the fact from the fire 

impact(s) (Anonymous, 2003). 
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Fire Weather Index (FWI): A numerical rating of fire intensity that combines ISI and BUI.  

It is suitable as a general index of fire danger throughout the forested areas of Canada (Van 

Wagner, 1987). 

 

Fuel Hazards: The amount and condition of fuels available for combustion. 

 

Ground Fires: This fire type burns the duff and organic material in the soil beneath the 

surface litter.  They are typically slow moving fires that are difficult to fully extinguish. 

 

Initial Spread Index (ISI): A numerical rating of the expected rate of fire spread.  It 

combines the effects of wind and FMC on rate of spread without the influence of variable 

quantities of fuel (Van Wagner, 1987). 

 

Interface Fires: Fires within the wildland urban interface (Partners in Protection, 2003). 

 

Pyrodiversity: (the variety in intervals between fires, seasonality, and fire characteristics at 

various scales) (Graham et al., 2004; Stephens, 1998) 

 

Raster versus Vector Data Formats: A raster data format consists of a grid of cells in 

which each pixel represents one unique value.  Raster data is commonly found in remotely 

sensed images or representing a continuous surface of information.  A vector data format 
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consists of points, lines, or polygons that are made up from individual or combination 

Cartesian coordinates. The advantage of vector data is many attributes can be associated with 

them, while raster data represents one value per pixel.   

 

Random versus Strategic Fuel Treatments: For the purpose of this research, random fuel 

treatments are those treatments that are have not been strategically designed and are 

therefore scattered across the landscape.  Treatments are randomly chosen from a subset of 

targeted flammable fuels and are therefore not truly random (i.e. they are not chosen 

randomly from all fuels in the landscape).  Strategic fuel treatments are those treatments that 

are designed as large barriers to fire spread, such as bulkhead firebreaks.  These treatments 

are currently used by most fire management agencies in Canada. 

 

Seasonal Severity Index: The seasonal severity index is used to represent the severity of the fire 

season, as an accumulation of all the fire weather that has occurred during a fire season.   

 

Surface Fires: Surface fires burn the fine fuels such as the surface litter, grasses, forbs and 

shrubs.  They do not burn into the crown (tops of trees) nor burn into the duff and organic 

material beneath the surface litter.   
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Values at Risk:  The specific or collective set of natural resources and human made 

improvements/developments that have measurable or intrinsic worth and that could or may 

be destroyed or other wise altered by fire in any give area (Anonymous, 2007). 

 

Wavelet Resolution Settings: Wavelet (Vertex) Resolution Settings control how new 

vertices are added to a fire perimeter in the Prometheus fire growth model. Angle and 

distance thresholds are used to specify the models Wavelet Resolution Settings. The point 

insertion technique is used to add new vertices to a fire front. New vertices are only added 

along the active portion of a fire front.  New vertices are added at a mid-point between 

existing vertices when threshold conditions are appropriate. The point insertion technique is 

an iterative routine that can introduce a maximum of five new vertices every time a threshold 

condition is detected. This limitation is imposed to avoid an unreasonably large number of 

vertices from being introduced at any given time step (which would otherwise happen at 

extremely sharp turns along the fire front). However, there is no upper limit to the number of 

vertices that the entire fire perimeter can contain (McLoughlin, 2007). 

 

Wildfire Risk:  The risk of wildfire negatively affecting human safety, infrastructure, 

ecological and cultural resources (Values at Risk).  Wildfire risk can be mitigated in three 

ways, by having sufficient fire suppression resources to extinguish all wildfires, by limiting 

the spread of wildfires towards values at risk with strategic prescribed fires, and by limiting 

the spread of fire towards values at risk through fuel management (Anonymous, 2007). 
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Wildland urban interface: can be defined as any area where industrial, agricultural, or 

recreational developments or homes are intermixed with flammable natural vegetation 

(Partners in Protection, 2003).   
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Appendix B 

Sample Pandora Parameters File 

  Explanation of Parameters 

NumberofRuns 75 # of simulations in this batch file 

BatchRun# 1 The simulation number 

Fire_Name Quetico_scen13_50m Name of final file for the simulation 

Projection_File C:\batch\Projection.prj Projection File location 

FBP_GridFile C:\batch\scen13.asc FBP Fuels grid ASCII location 

Elev_GridFile None Elevation file location 

Slope_GridFile None Slope file location 

Aspect_GridFile none None Aspect file location 

WxStation_Lat 48.6999 Latitude of weather station used 

WxStation_Lon -91.4779 Longitude of weather station used 

WxStation_Elev 389.3 Elevation of weather station used in m 

Wx_File C:\batch\ws_July7_2001_NEW

.txt 

Weather file location 

Init_FFMC 80.1 Initial FFMC value used 

Init_DMC 18 Initial DMC value used 

Init_DC 178 Initial DC value used 

Init_hour 0 Initial hour in the weather file 

FFMC_Method 0 Van Wagner vs Lawson Hourly wx 

calculation 

 

Grass_curing% 90 % of grass curing used in fire engine 

Ign_DateTime 07/07/2001:02:00:00 Ignition date and time 

Ign_X 256 Ignition X coordinate 

Ign_Y 687 Ignition Y coordinate 

Fuel_Table None Location of fuel lookup table 

Angle_Distance 5 2 Angle (º) and Distance (grid cells) thresholds 

Option1 None Program line for future options 

Option2 None Program line for future options 

Option3 None Program line for future options 

Time_Interval 180 Time between each fire front calc (sec) 

Time_Steps 87 # of hours in weather stream 

Out_Perimeters 0 # of fire perimeters (.shp) to be exported 

Out_ShapeFiles C:\batch\Output\ws6_19scen1 Location and name for exported file 

Out_GridFiles None # of grids to be exported (.asc) 

Out_Components None Identify other parameters to output 

End_Batch 999 End of the simulation run in the batch file 
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Appendix C 

16 benchmark fuel types of the Fire Behaviour Predication (FBP) 

System.  Bolded fuel types were used in this research. 

Fuel Type Fuel Type Description 

C-1: Spruce-lichen 

Woodland 

Open, park-like black spruce stands in well-drained 

uplands in the subarctic zone of western and northern 

Canada. Forest cover occurs as widely spaced individuals 

and dense clumps. Tree heights vary considerably, but bole 

braches extend to the forest floor and layering development 

is extensive. Light and scattered accumulation of woody 

surface fuel. Shrub cover is exceedingly sparse. The 

ground surface is fully exposed to the sun and covered by a 

nearly continuous mat of reindeer lichens, averaging 3-4 

cm in depth above mineral soil. 

C-2: Boreal Spruce Pure, moderately well-stocked black spruce stands on 

lowland (excluding Sphagnum bogs) and upland sites. Tree 

crowns extend to or near the ground, and dead branches are 

typically draped with bearded lichens. Low to moderate 

volumes of down woody material, with Labrador tea the 

major shrub component. The forest floor is dominated by 

feather mosses and/or ground-dwelling lichens. A 

compacted organic layer commonly exceeds a depth of 20–

30 cm. 

 

C-3: Mature Jack or 

Lodgepole Pin 

Pure, fully stocked (1000–2000 stems/ha) jack pine or 

lodgepole pine stands, matured with complete crown 

closure. The base of live crown is well above the ground. 

Dead surface fuels are light and scattered. Ground cover is 

feather moss over a moderately deep (approximately 10 

cm), compacted organic layer. A sparse conifer understory 

may be present. 

C-4: Immature Jack or 

Lodgepole Pine 

Pure, dense jack pine or lodgepole pine stands (10 000–30 

000 stems/ha) with natural thinning mortality resulting in 

large quantity of standing dead stems and dead downed 

woody fuel. Vertical and horizontal fuel continuity, with 

surface fuel loadings greater than in fuel type C3, and 

organic layers are shallower and less compact. Ground 

cover is mainly needle litter suspended within a low shrub 

layer. 
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C-5: Red and White Pine Mature stands of red pine and eastern white pine in various 

proportions, with small components of white spruce and 

old white birch or aspen. Moderate understorey red maple 

or balsam fir. Shrub layer, usually beaked hazelnut, may be 

present in moderate proportions. The ground surface cover 

is a combination of herbs and pine litter. The organic layer 

is usually 5–10 cm deep. 

C-6: Conifer Plantation Pure, fully stocked conifer plantations with closed crowns 

and no understory or shrub layer. The forest floor is 

covered by needle litter with an underlying duff layer up to 

10 cm deep. The crown base height is taken into account in 

predicting fire spread rate and crowning. 

C-7: Ponderosa Pine and 

Douglas Fir 

Uneven-aged stands of ponderosa pine and Douglas-fir in 

various proportions. Western larch and lodgepole pine may 

be significant stand components on some sites and at some 

elevations. Stands are open, with occasional clumpy 

thickets of multiaged Douglas-fir and/or larch as a 

discontinuous understory. Canopy closure is less than 50% 

overall, although thickets are closed and often dense. 

Woody surface fuel accumulations are light and scattered. 

Except within Douglas-fir thickets, the forest floor is 

dominated by perennial grasses, herbs, and scattered 

shrubs. Within tree thickets, needle litter is the 

predominant surface fuel. Duff layers are nonexistent to 

shallow (<3 cm). 

D-1: Leafless Aspen Pure, semimature trembling aspen stands before bud break 

in the spring or following leaf fall and curing of the lesser 

vegetation in the autumn. A conifer understory is 

noticeably absent, but a well-developed medium to tall 

shrub layer is typically present. Principal fire-carrying 

surface fuel are deciduous leaf litter and cured herbaceous 

material directly exposed to wind and solar radiation. In 

the spring the duff mantle (F and H horizons) seldom 

contributes to available combustion fuel because of its high 

moisture content. 

S-1: Jack or Lodgepole Pine 

Slash 

Sslash resulting from tractor or skidder clear-cut logging of 

mature jack pine or lodgepole pine stands. Typically one or 

two seasons old, retaining up to 50% of the foliage, 

particularly on branches closest to the ground. No 

postlogging treatment, and slash fuels are continuous. Tops 

and branches left on site result in moderate fuel loads and 

depths. Ground cover is continuous feather moss mixed 
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with discontinuous fallen needle litter. Organic layers are 

moderately deep and fairly compact. 

S-2: White Spruce-Balsam 

Slash 

Slash resulting from tractor or skidder clear-cut logging of 

mature to overmature stands of white spruce and alpine fir 

or balsam fir. Typically one or two seasons old, retaining 

from 10% to 50% of foliage on the branches. No 

postlogging treatment. Fuel continuity may be broken by 

skid trails unless the site was logged in winter. Tops have 

been left on site, and most branch fuels have broken off 

during skidding of logs to landings, which results in 

moderate fuel loads and depths. Quantities of shattered 

large and rotten woody fuels may be significant. Ground 

cover is feather moss with considerable needle litter fallen 

from the slash. Organic layers are moderately deep and 

compact. 

S-3: Coastal Cedar-Hemlock-

Douglas Fir Slash 

Slash resulting from high-lead clear-cut logging of mature 

to overmature coastal British Columbia mixed conifer 

stands. Predominant species are western red cedar, western 

hemlock, and Douglas-fir. Typically one season old, with 

the cedar component retaining all its foliage in a cured 

condition on the branches, whereas the hemlock and 

Douglas-fir components will have dropped up to 50% of 

their foliage. Slash fuels tend to be continuous and 

uncompacted. Very large loadings of broken and rotten 

unmerchantable material may be present, depending on 

degree of stand decadence. Slash fuel depths may range 

from 0.5 to 2.0 m. Ground cover of feather moss or 

compact old needle litter under significant quantities of 

recent needle litter fallen from the slash. Organic layers are 

moderately deep to deep and compact. Minor to moderate 

shrub and herbaceous understory components may be 

present. This fuel type designation may also be applied to 

wet belt cedar–hemlock slash of coastal and interior British 

Columbia where the Douglas-fir component is absent. 

O1: Grass Continuous grass cover, with no more than occasional trees 

or shrub clumps that do not appreciably affect fire 

behaviour. Two subtype designations are available for 

grasslands; one for the matted grass condition common 

after snowmelt or in the spring (O1-a) and the other for 

standing dead grass common in late summer to early fall 

(O1-b). The proportion of cured or dead material in 

grasslands has a pronounced effect on fire spread there and 
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must be estimated with care. 

M-1: Boreal Mixedwood 

Leafless 

This fuel type (and its "green" counterpart, M2) is 

characterized by stand mixtures consisting of the following 

coniferous and deciduous tree species in varying 

proportions: black spruce, white spruce, balsam fir, 

subalpine fir, trembling aspen and white birch. On any 

specific site, individual species can be present or absent 

from the mixture. In addition to the diversity in species 

composition, stands exhibit wide variability in structure 

and development, but are generally confined to moderately 

well-drained upland sites. M1, the first phase of seasonal 

variation in flammability, occurs during the spring and fall. 

The rate of spread is weighted according to the proportion 

(expressed as a percentage) of softwood and hardwood 

components. 

M-2: Boreal Mixedwood-

Green 

M2, the second phase of seasonal variation in flammability 

(of M1), occurs during the summer. The rate of spread is 

weighted according to the proportion (expressed as a 

percentage) of softwood and hardwood components. In the 

summer, when the deciduous overstory and understory are 

in leaf, fire spread is greatly reduced, with maximum 

spread rates only one-fifth that of spring or fall fires under 

similar burning conditions. 

M-3: Dead Balsam Fir 

Mixedwood-Leafless 

This fuel type (and its "green" counterpart, M4) is 

characterized by mixedwood stands in which balsam fir 

grows, often as an understory species, in a heterogeneous 

mix with spruce, pine, and birch. These stands are found in 

the Great Lakes – St. Lawrence and Boreal Forest regions 

of Canada and are not to be confused with the pure balsam 

fir stands typical of Nova Scotia and New Brunswick. 

Repeated annual defoliation (due to spruce budworm 

attack) causes balsam fir mortality, followed by peeling 

bark, draped lichen development, top breakage, and 

windthrow, peaking 5–8 years after mortality. The volume 

of down woody material is initially low but increases 

substantially with progressive stand decomposition 

following mortality. The forest floor is a mixture of feather 

mosses, conifer needles, and hardwood leaves. The organic 

layer is moderately compacted and 8–10 cm deep. After 

mortality, spring fires in this fuel type behave extremely 

vigorously, with continuous crowning and downwind 

spotting. The rate of spread is weighted according to the 



 

 154 

proportion (expressed as a percentage) of dead fir present 

on the site (pdf). 

M-4: Dead Balsam Fir 

Mixedwood-Green 

Leafed Counterpart to M-3. 

 Source: Canadian Forest Service, 2007.  
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