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Abstract

Semantic query optimization is an important issue in many contexts of databases

including information integration, view maintenance and data warehousing and can

substantially improve performance, especially in today’s database systems which con-

tain gigabytes of data. A crucial issue in semantic query optimization is query contain-

ment. Several papers have dealt with the problem of conjunctive query containment

[Cha92, KV98, LS97]. In particular, some of the literature admits SQL like query

languages with aggregate operations such as sum/count [Coh05, NSS98]. Moreover,

since real SQL requires a richer semantics than set semantics, there has been work on

bag-semantics for SQL, essentially by introducing an interpreted column. One impor-

tant technique for reasoning about query containment in the context of bag semantics

is to translate the queries to alternatives using aggregate functions and assuming set

semantics.

Furthermore, in SQL, order by is the operator by which the results are sorted

based on certain attributes and, clearly, ordering is an important issue in query op-

timization. As such, there has been work done in support of ordering based on the

application of the domain. However, a final step is required in order to introduce a

rich semantics in support.

In this work, we integrate set and bag semantics to be able to reason about real

SQL queries. We demonstrate an ordered bag semantics for SQL using a relational

algebra with aggregates. We define a set algebra with various expressions of interest,

then define syntax and semantics for bag algebra, and finally extend these definitions

to ordered bags. This is done by adding a pair of additional interpreted columns

to computed relations in which the first column is used in the standard fashion to

capture duplicate tuples in query results, and the second adds an ordering priority

to the output. We show that the relational algebra with aggregates can be used to

compute these interpreted columns with sufficient flexibility to work as a semantics

for standard SQL queries, which are allowed to include order by and duplicate pre-

serving select clauses. The reduction of a workable ordered bag semantics for SQL to

the relational algebra with aggregates - as we have developed it - can enable existing

query containment theory to be applied in practical query containment.
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Chapter 1

Introduction

A crucial issue in semantic query optimization is query containment. Several papers

have dealt with the problem of conjunctive query containment [Cha92, KV98, LS97].

In particular, some of literature admits SQL-like query languages with aggregate

operations such as sum/count [Coh05, NSS98]. Moreover, since real SQL requires a

richer semantics than set semantics, there have been works on bag-semantics for SQL,

essentially by introducing an interpreted column. One important way of reasoning

about query containment in the context of bag semantics is to translate to alternative

queries using aggregate functions and assuming set semantics.

Furthermore, in SQL, order by is the operator by which the results are sorted based

on certain attributes and clearly ordering is an important issue in query optimization.

As such, there have been some works done for support of ordering based on the ap-

plication of the domain, for instance those for order optimization in IBM’s DB2/CS

introduced in [SSM96] and those of supporting top-k queries in [LCIS05, LSCI05].

However, a final step for introducing some rich semantics for support of ordering is

demanded. In this work, we define an ordered bag semantics for first order queries

using a relational language with aggregates.

Moreover, database queries are investigated in set semantics, bag semantics, and

combined semantics. In set semantics, the results of queries are sets as well as the

databases. In bag semantics, both queries and databases are bags. In combined se-

mantics, the semantics is based on a combination of set and bag semantics. Since

our defined order bag semantics is based on set semantics, it is a support for query
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containment under combined semantics which is a fascinating topic in semantic query

optimization.

1.1 Our Contribution

In this work, similar to [CW93], based on directed graph models, we introduce three

domains of set, bag, and ordered bags. First, a syntax and semantics of a set algebra

are introduced. Then, syntax is extended for bag and ordered bag queries. This is

done by adding a pair of additional interpreted columns to computed relations in

which the first column is used in the standard fashion to capture duplicate tuples

in query results, and the second adds an ordering priority to output. To be able

to derive the semantics of bag and ordered bag domains, we introduce two mapping

functions B and OB, which map bag and ordered bag queries to those of set domain,

respectively. As a result, the semantics for bag and ordered bag domain are derived

from that of set domain.

1.2 Related Work

Simmen, et al., introduced the Reduce technique for order optimization [SSM96]. The

reduction method is used to avoid sorting whenever possible because of keys, func-

tional dependencies, indexes, or predicates. Moreover, the optimizer is able to realize

pushed down sorts in order to avoid insufficient sorts.

Li, et al., using aggregates, developed a framework for support of ranking (top-k)

queries as a first level expression [LCIS05]. Top-k queries are queries that provide

only the first k query results. For instance, in a simple scenario, selecting the mini-

mum value for an attribute such as A in a table such as R, is a form of top-k query

where we are interested in finding only the top 1 value for the attribute A in the

table R. The rules defined in [LCIS05] can be used by a query optimizer to do an

ordering operation interleaved with other expressions, rather than doing the ordering

uniformly after other operations. These defined rules can lead to more efficient pro-

cessing of order queries. Using a subset of first order queries in our syntax, we are

able to capture a subset of top-k queries, including the query mentioned above, and
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therefore a formal semantics for such queries can be derived in set semantics.

Coburn and Weddell introduced an algebra for representing SQL queries [CW93],

which they used to explore both high level queries (non- procedural queries), as well

as lower level query plans (procedural queries). Their work is based on directed graph

models, where vertices are used for representing objects of the domain, and names

and arcs for attributes of objects. Coburn and Weddell demonstrated the method of

using sets of lists for representing results of queries, where lists show the order of tu-

ples. More precisely, the order of appearance of the tuples in the list shows the order

of the results, and different lists in a set show the possible ordering of the results.

Moreover, Coburn and Weddell define a calculus for query rewriting for the purpose

of query containment. They show that their rules for query rewriting are sound.

Also, there have been works in bag semantics in the context of multi-set algebra.

In particular, Grefen and de By introduced a practical theoretical approach for bag

semantics in Relational Databases [GdB94] . They defined relational algebra expres-

sions of union, minus, cross product, selection, projection, intersection and join, as

well as some aggregate functions such as count, sum, average, min and max for multi-

sets. Moreover, the authors showed some expression equivalences in query rewriting,

as required for multi-set relational programs.

Furthermore, there have been also a number of works on combining set and bag

semantics. Cohen argued that real SQL queries combine set and bag-set1 semantics

and investigated query containment for combined semantics based on homomorphism

method for different class of queries, such as conjunctive and quasilinear queries.

1.3 Thesis Overview

The outline of the rest of the thesis is as follows. In Chapter 2, we briefly describe

the background knowledge needed for this work. Notions of concepts, attributes, and

databases are introduced. Moreover, we define well-formed and finite set, bag, and

ordered bag queries and outline the syntax for well-formed set, bag, and ordered bag

queries. Chapter 3 is the core of the thesis where we describe a semantics for well-

1In bag-set semantics, while the databases are sets, the result of quires are bags.
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formed set queries followed by two mapping functions for mapping of bag and ordered

bag queries to set queries. Ordered bag translation of order by and order preserving

select to the set semantic domain are described in detail in the last three subsections

of this chapter. In Chapter 4, we discuss our contribution followed by addressing the

future directions.
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Chapter 2

Syntax

In this chapter, we describe three algebras, Q, BQ, and OBQ, for set, bag, and or-

dered bag domains, respectively. We introduce our underlying domain of work and

describe notions of well-formed and finite queries to be able to outline the syntax of

well-formed queries for Q, BQ, and OBQ. Lastly, we demonstrate that our defined

syntax is capable of capturing relational algebra and expressing SQL-like queries.

2.1 Concepts, Attributes, and Databases

We take the natural numbers, N = {1, 2, . . .} , as a common universal domain. We

refer to the element of our underlying domain as objects which can be concepts of

the form Ci, each of which can have some attributes of the form A, B, Ai or Bi. The

two sets of C and A represent primitive concepts and attributes:

C = {C1, C2, . . . }

A = {A, B, A1, B1, A2, B2, . . .} ∪ {Cnt, Ord, Id}

Pf = Id | Ai.Pf

The notation Pf , used for path functions, is a finite number of attribute compositions

where Id is a reserved attribute for the identification of objects. Moreover, Cnt and

Ord are two reserved attributes that are used for count and order of results of a query,

which we describe more in detail later in this work.
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Table 2.1: Employee Table 1, EMP

Eno Sal

n1 3158 39000
n2 2467 39000

A database I is an interpretation function over concepts, attributes, and path

functions. We use, e.g., the notation (C)I vs. (C)(I) to refer to the interpretation of

C over database I:

(Ci)
I ⊆ N, in particular (Ci)

I is a finite subset of N
(Ai)

I : N→ N, in particular (Ai)
I is a total function over N

(Id)I ≡ {(e, e)|e ∈ N}
(A.Pf)I ≡ {(e1, e2)|(Pf)I((A)I(e1)) = e2}

In Chapter 3, we extend the definition of I to apply to queries.

Example 2.1.1 The Relation EMP(Eno, Sal) and two tuples n1 and n2 in Table 2.1

can be encoded in our domain as in Figure 2.1. We have the following:

{n1, n2} ⊆ (EMP)I ,

(Eno.Id)I(n1) = 3158,

(Sal.Id)I(n2) = 39000.

3158 39000 2467

n1 n2

EnoEno

Id Id

Id IdId

Sal
Sal

??

Figure 2.1: Employee Example
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Table 2.2: EMP

Eno Sal

n1 3158 39000
n2 2467 39000
n3 5688 30000

Table 2.3:
WORKSIN

Eno Dno

n4 3158 20
n5 3158 30
n6 2467 10
n7 5688 20

Table 2.4: DEPT

Dno Loc

n8 20 3
n9 30 1
n10 10 3

Question marks stand for some (unknown) natural numbers which, in turn, stand

for employee objects.

Example 2.1.2 Consider a database with relations EMP(Eno, Sal),

WorksIn(Eno, Dno), and Dept(Dno, Loc) and the database instance in Tables 2.2, 2.3,

and 2.4. In our domain the three relations can be thought of as three concepts, and

for this database instance, we have the followings for the interpretations of these three

concepts:

{n1, n2, n3} ⊆ (EMP)I ,

{n4, n5, n6, n7} ⊆ (WORKSIN)I ,

{n8, n9, n10} ⊆ (DEPT)I .

For interpretations of the attributes, for instance we have the followings:

(Eno.Id)I(n1) = 3158,

(Sal.Id)I(n1) = 39000,

(Eno.Id)I(n4) = 3158,

(Dno.Id)I(n4) = 20,

(Dno.Id)I(n8) = 20,

(Loc.Id)I(n8) = 3.

As the two examples reveal, we are able to encode relational databases and in-

stances in our domain based on the defined underlying domain that is based on di-

rected graph models. In this model, relations are encoded in concepts and attributes

in path functions of size two, i.e., attributes composed with the Id attribute. From

now on, whenever it is simpler to understand the syntax, we disregard the attribute

Id.
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2.2 Syntax of set Queries (Q), Bag Queries (BQ),

and Ordered Bag Queries (OBQ)

Conjunctive queries, a basic class of queries for relational databases, are a simple

class of queries that have properties of decidability for query containment [CGV05].

First order queries are a more general class of queries which can express negation in

addition to what can be expressed by conjunctive queries. We study three object-

relational languages: Q, BQ, and OBQ, for set, bag, and ordered bag first order

queries, respectively. Figure 2.2 shows domains of these three dialects where Q is a

subset of BQ, and BQ, in turn is a subset of OBQ.

Q

OBQ

BQ

Figure 2.2: Q, BQ, and OBQ Domains

In the following three subsections, we define well-formed and finite queries of Q,

BQ, and OBQ, respectively. Figure 2.3 shows the syntax of three dialects of well-

formed queries for Q, BQ, and OBQ. Checkmarks show the productions that form

the grammar for each of the dialects.

2.2.1 Well-formed and Finite Q

In this subsection, we provide mutual definitions for well-formed and finite queries.

Well-formed queries are a subset of queries which are allowed in the syntax, i.e., there

is a semantics for a well-formed query. Finite queries are a subset of queries which

produces finite number of elements as results. The set of well-formed queries (WQ)

and that of finite queries (FQ) is defined in Definitions 2.2.1 and 2.2.2, respectively.

Definition 2.2.1 The set of well-formed queries, denoted WQ, is the smallest set

satisfying the following conditions:

8



Q BQ OBQ α(Q)
Q ::=

1. (reference) C as A X X X {A}
2. (selection) | A1.Pf1 = A2.Pf2 X X X {A1, A2}
3. (projection) | elim {A1, . . . , An} Q X X X {A1, . . . , An}
4. (null tuple) | true X X X ∅
5. (natural join) | from Q1, Q2 X X X α(Q1) ∪ α(Q2)
6. (empty set) | empty {A1, . . . , An} X X X {A1, . . . , An}
7. (union) | Q1 union Q2 X X X α(Q1)
8. (difference) | Q1 minus Q2 X X X α(Q1)
9. (count aggregate) | cagg A {A1, . . . , An} Q X X X {A1, . . . , An} ∪ {A}
10. (sum aggregate) | sagg A {A1, . . . , An} A′ Q X X X {A1, . . . , An} ∪ {A}
11. (sum of two attributes) | plus A {A1, A2} Q X X X α(Q) ∪ {A}
12. (product of two attributes) | times A {A1, A2} Q X X X α(Q) ∪ {A}
13. (explicit precedence) | (Q) X X X α(Q)
14. (select) | select {A1, . . . , An} Q X X {A1, . . . , An}
15. (union all) | Q1 union all Q2 X X α(Q1)
16. (difference all) | Q1 minus all Q2 X X α(Q1)
17. (intersect all) | Q1 intersect all Q2 X X α(Q1)
18. (order by) | Q1 order by A asc|desc X α(Q1)

Figure 2.3: Syntax of WQ, WBQ, and WOBQ

1. Any query of the form “ C as A ”, “ A1.Pf1 = A2.Pf2 ”, “ empty {A1, . . . , An} ”,

and “ true ” occurs in WQ.

2. If Q, Q1, and Q2 ∈ WQ, then WQ also includes:

(a) elim {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q),

(b) from Q1, Q2 ,

(c) Q1 union Q2, if α(Q1) = α(Q2),

(d) Q1 minus Q2, if α(Q1) = α(Q2),

(e) cagg A {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q) and A 6∈ α(Q) and Q ∈

FQ,

(f) sagg A {A1, . . . , An} A′ Q, if {A1, . . . , An, A′} ⊆ α(Q) and A 6∈ α(Q)

and Q ∈ FQ,

(g) plus A {A1, A2} Q, if {A1, A2} ⊆ α(Q) and A 6∈ α(Q),

(h) times A {A1, A2} Q, if {A1, A2} ⊆ α(Q) and A 6∈ α(Q).

9



Definition 2.2.2 The set of finite queries, denoted FQ, is the smallest set satisfying

the following conditions:

1. Any query of the form “ C as A ”, “ empty {A1, . . . , An} ”, and “ true ”

occurs in FQ.

2. If Q, Q1, and Q2 ∈ FQ, and Q3 ∈ WQ, then FQ also includes:

(a) elim {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q),

(b) i. from Q1, Q2,

ii. from Q, Q3, if α(Q3) ⊆ α(Q),

iii. from Q, (A1.Pf = A2.Id), if A1 ∈ α(Q),

(c) Q1 union Q2, if α(Q1) = α(Q2),

(d) Q minus Q3, if α(Q) = α(Q3),

(e) cagg A {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q) and A 6∈ α(Q),

(f) sagg A {A1, . . . , An} A′ Q, if {A1, . . . , An, A′} ⊆ α(Q) and A 6∈ α(Q),

(g) plus A {A1, A2} Q, if {A1, A2} ⊆ α(Q) and A 6∈ α(Q),

(h) times A {A1, A2} Q, if {A1, A2} ⊆ α(Q) and A 6∈ α(Q).

Proposition 2.2.3 FQ ⊆ WQ.

Proof: To prove that finite queries are also well-formed, we should show that any

query of FQ also occurs in WQ. We prove by induction, i.e., start with simple

smaller cases and based on those gradually build up more complex cases.

Item 1 in Definition 2.2.2 shows that queries, “ C as A ”, “ empty {A1, . . . , An} ”,

and “ true ” are finite queries. Accordingly, Item 1 in Definition 2.2.1 shows that

these queries are also well-formed.

Item 2(a) in Definition 2.2.2 shows that “ elim {A1, . . . , An} Q ” is finite, if

{A1, . . . , An} ⊆ α(Q). This query is also in the set of well-formed queries with the

same condition (Item 2(a) of Definition 2.2.1).

Item 2(b)i. in Definition 2.2.2 demonstrates that query “ from Q1, Q2 ” is in FQ

if Q1 and Q2 are finite. Q1 and Q2 are smaller finite queries and by induction those

10



are well-formed. Thus, based on Item 2(b) in Definition 2.2.1, the query in Item 2(b)i.

of Definition 2.2.2 is well-formed.

Similarly, Item 2(b)ii. demonstrates that query “ from Q3, Q ” is in FQ, when Q3

is well-formed and Q is finite, and if α(Q3) is contained in α(Q). Since Q is a smaller

finite query, consequently by induction it is well-formed. Also Q3 is well-formed, and

consequently the query in Item 2(b)ii. is well-formed. Similarly, Item 2(b)iii. shows

that “ from Q, (A1.Pf = A2.Id) ” is in FQ if {A1} is contained in α(Q) and Q is

finite. Since A1.Pf = A2.Id is well-formed and Q is a smaller finite query, and con-

sequently by induction is well-formed, the query “ from Q, (A1.Pf1 = A2.Pf2) ” is a

form of query 2(b) in Definition 2.2.1. Thus, the query of Item 2(b)iii. is well-formed

as well.

Item 2(c) in Definition 2.2.2 shows that “ Q1 union Q2 ” is finite when Q1 and

Q2 are finite and if α(Q1) = α(Q2). Obviously the condition α(Q1) = α(Q2) is the

condition of Item 2(c) in Definition 2.2.1. Also, Q1 and Q2 are smaller finite queries

and therefore by induction are well-formed. So, the query in Item 2(c) of Definition

2.2.2 is well-formed.

Item 2(d) of Definition 2.2.2, “ Q minus Q3 ”, is similar to Item 2(c), but Q3

suffices to be well-formed. So, this query is well-formed as well based on Item 2(d) of

Definition 2.2.1.

Items 2(e) and 2(f) of Definitions 2.2.1 and 2.2.2 demonstrate that count and sum

aggregate queries occur in both WQ and FQ with the same conditions.

Items 2(g) and 2(h) in Definition 2.2.2 show that queries “ plus A {A1, A2} Q ”

and “ times A {A1, A2} Q ” are finite, if {A1, A2} is contained in α(Q), and A is not

in α(Q) and Q is finite. Items 2(g) and 2(h) in Definition 2.2.1 show that these two

queries also occur in WQ since the only difference of conditions for these queries to

be well-formed is that Q should be well-formed. As Q builds up from smaller finite

queries, these queries are also well-formed.

11



So, any query of FQ also occurs in WQ and it implies that FQ ⊆ WQ.

�

Figure 2.4 shows the domain of Q , well-formed Q, and finite Q where finite Q is

under well-formed Q and well-formed Q is under Q.

FQ

WQ

Q

Figure 2.4: Q, WQ, and FQ Domains

2.2.2 Well-formed and Finite BQ

In this subsection, we extend our definitions of well-formed and finite queries to bag

queries.

Definition 2.2.4 The set of well-formed bag queries, denoted WBQ, is the smallest

set satisfying the following conditions:

1. Any query of WQ also occurs in WBQ

2. If Q1 and Q2 ∈ WBQ and Q ∈ FBQ, then FBQ also includes:

(a) select {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q),

(b) Q1 union all Q2, if α(Q1) = α(Q2),

(c) Q1 minus all Q2, if α(Q1) = α(Q2),

(d) Q1 intersect all Q2, if α(Q1) = α(Q2).

Definition 2.2.5 The set of finite bag queries, denoted FBQ, is the smallest set

satisfying the following conditions:

1. Any query of FQ also occurs in FBQ
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2. If Q, Q1, and Q2 ∈ FBQ, and Q3 ∈ WBQ, then FBQ also includes:

(a) select {A1, . . . , An} Q, if {A1, . . . , An} ⊆ α(Q),

(b) Q1 union all Q2, if α(Q1) = α(Q2),

(c) Q minus all Q3, if α(Q) = α(Q3),

(d) Q intersect all Q3, if α(Q) = α(Q3).

Proposition 2.2.6 FBQ ⊆ WBQ

Proof: We should prove that any queries of FBQ occurs in WBQ. Similar to

Proposition 2.2.3, we prove this Proposition by induction.

From Definitions 2.2.4 and 2.2.5, it is straitforward that WBQ and FBQ have

all queries of WQ and FQ, respectively, as well as some other queries: select,

union all, minus all and intersect all. Clearly, we need to prove only that

select, union all, minus all and intersect all queries of FBQ also occur in

WBQ.

Query “ select {A1, . . . , An} Q ” is in FBQ if {A1, . . . , An} ⊆ α(Q), and when

Q is in FBQ. Since Q is constructed from smaller finite cases and by induction is well-

formed, query select of FBQ also occurs in WBQ. Similarly, queries union all ,

minus all and intersect all are well-formed as well.

So, any query of FBQ also occurs in WBQ and it implies that FBQ ⊆ WBQ. �

Figure 2.5 shows the domain of BQ , WBQ, and FBQ where FBQ is under WBQ

and WBQ is under BQ.

2.2.3 Well-formed and Finite OBQ

In this subsection, we extend our definitions of well-formed and finite queries to

ordered bag queries.

Definition 2.2.7 The set of well-formed ordered bag queries, denoted WOBQ, is the

smallest set satisfying the following conditions:
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FBQ

BQ

WBQ

Figure 2.5: BQ, WBQ, and FBQ Domains

1. Any query of WBQ also occurs in WOBQ,

2. If Q ∈ WOBQ, then WOBQ also includes:

(a) Q order by A asc|desc, if A ∈ α(Q).

Definition 2.2.8 The set of finite ordered bag queries, denoted FOBQ, is the small-

est set satisfying the following conditions:

1. Any query of FBQ also occurs in FOBQ,

2. If Q ∈ FOBQ, then FOBQ also includes:

(a) Q order by A asc|desc, if A ∈ α(Q).

Proposition 2.2.9 FOBQ ⊆ WOBQ

Proof: From the Definitions 2.2.7 and 2.2.8, it is straitforward that WOBQ and

FOBQ have all elements of WBQ and FBQ, respectively, and a common element,

that is, the order query. So, since from Proposition 2.2.6 WBQ includes FBQ, it

is straitforward that also WOBQ includes FOBQ and it implies that FOBQ ⊆

WOBQ. �

Proposition 2.2.10 WQ ⊆ WBQ ⊆ WOBQ

Proof: From the Definitions 2.2.1, 2.2.4, and 2.2.7, it is straitforward that WOBQ

includes all elements of WBQ and WBQ, in turn, includes all of the elements of WQ.

�
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Proposition 2.2.11 FQ ⊆ FBQ ⊆ FOBQ

Proof: From Definitions 2.2.2, 2.2.5, and 2.2.8, it is straitforward that FOBQ

includes all elements of FBQ and FBQ, in turn, includes all elements of the FQ.

�

Figure 2.6 shows the domain of WQ, WBQ, and WOBQ where WQ is under

WBQ and WBQ is under WOBQ.

WOBQ

WBQ

WQ

Figure 2.6: WQ, WBQ, and WOBQ

Figure 2.6 suggest that WQ is the smallest domain of well-formed queries. Well-

formed queries are the smallest set of queries for which there is a semantics. From

now on, we focus on well-formed queries, and we may occasionally refer to a well-

formed query simply as a query. As we introduced earlier in this chapter, Figure 2.3

shows the syntax of three dialects, WQ, WBQ, and WOBQ. Checkmarks show the

productions that form the grammar for each of the dialects. In this work, our main

contribution is to map the queries of WBQ and WOBQ to those of WQ in order to

derive the semantics for queries of WBQ and WOBQ from the defined semantics of

WQ.

Syntactic Sugar

For the purpose of readability of queries, in this subsection we define some syntactic

sugar:
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Relational Algebra Q

R Q

π{A1,...,An}(Q) elim {A1, . . . , An} Q

σA1=A2(Q) from Q, (A1.Id = A2.Id)
Q1 × Q2 from Q1, Q2

Q1 ∪ Q2 Q1 union Q2

Q1 − Q2 Q1 minus Q2

ρA1→B1(Q) rename A1 as B1 Q

Figure 2.7: Relational Algebra Equivalent Expressions in Q

1. select ∗ Q ≡ Q

2. select distinct A1, . . . , AnQ ≡ elim {A1, . . . , An} Q

3. Q1 where Q2 ≡ from Q1, Q2

4. Q1 and Q2 ≡ from Q1, Q2

5. from ≡ true

6. from Q1, . . . , Qn ≡ from (from Q1, Q2, . . .), Qn

7. rename A1 as B1 Q ≡ elim α(Q) ∪ {B1} − {A1} (from Q, (B1.Id = A1.Id))

8. dom A ≡ (A.Id = A.Id)

9. plustab {A1, A2, A3} ≡ plus A3 {A1, A2} (from dom A1, dom A2)

10. lesstab {A1, A2} ≡ elim {A1, A2} plustab {A1, A, A2}

11. eqtab {A1, A2} ≡ from dom A1, A2.Id = A1.Id

12. lesseqtab {A1, A2} ≡ (from lesstab {A1, A2} ) union (eqtab {A1, A2} )

13. minus A3 {A1, A2} Q ≡ from Q, plustab {A3, A2, A1}

14. mintab {A1, A2, A3} ≡ (from eqtab {A1, A2} A3.Id = A1.Id)union

(from lesstab {A1, A2} , A3.Id = A1.Id)union

(from lesstab {A2, A1} , A3.Id = A2.Id)

The first few expressions on the left side of the equivalences are similar to SQL expres-

sions. For instance, Rule 2 make it clear that select distinct expression is equiva-

lent to elim in our syntax, i.e., selecting distinct values for attributes A1, . . . , An.

Example 2.2.1 Figure 2.7 also shows common expressions of relational algebra such

as selection, projection, cross product, minus, union, and renaming and their trans-

lation in our syntax.

The first row of the table shows the query Q in our language which is correspondent

to results of an arbitrary query R in relational databases. Assume results of query R
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where α(R) = {A1, . . . , An}, tuples in the results of R can be referred to using the

query (R as A):

Q ≡ (elim {A1, . . . , An} (from (R as A), (A.A1.Id = A1.Id, . . . , A.An.Id = An.Id).

Example 2.2.2 Consider the database in Example 2.1.2. Suppose the query of deriv-

ing salaries of Employees who work in Location 3, ordered by salaries ascending. As

the database instance in Example 2.1.2 implicitly shows that employees may work in

several departments, but they have a single salary and also each department is located

in a single place. The query should return the correct number of results of duplicates

for the purpose of aggregate queries such as average (if there is a duplicate salary

in the result that is from different employees). One possible query for this example,

using some syntactic sugar rules, is as follows:

Q ≡ select {Sal, P}

from (select distinct {E, Sal,P}

from EMP as E, WorksIn as W, DEPT as D

where E.Eno = W.Eno

and W.Dno = D.Dno

and D.Loc =P

and E.Sal = Sal)

order by Sal asc

P in the above query is an input parameter, which is used to parameterize Loc at-

tribute. For instance, in this example P is assigned to 3.

This is an example of a query in which WQ, WBQ and WOBQ expressions are

combined. However, later in the next chapter, we see that the semantics for the

arbitrary combined queries are derived from the basic WQ semantics.
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Chapter 3

Semantics

In this chapter, we describe the semantics of WQ, WBQ, and WOBQ, introduced in

the last chapter. First, the semantics for WQ is declared which provides a background

for defining the semantics for WBQ and WOBQ. The semantics for two domains

of WBQ and WOBQ are derived through two mapping functions B and OB. As

a matter of fact, these functions map the queries of WBQ and WOBQ to those of

WQ, which in turn provide the semantics for WBQ and WOBQ from that of WQ.

α(t) ≡ set of attributes occurring in t

t@A ≡ element e ∈ N, such that “A:e” occurs in t
defined only when A ∈ α(t)

t[A1, A2, ..., An] ≡ {A1 : t@A1, A2 : t@A2, . . . , An : t@An}
defined only when {A1, A2, . . . , An} ⊆ α(t)

Figure 3.1: Operation on Tuples

3.1 Semantics of WQ

This section demonstrates what each component of WQ means. Formally, we define

a tuple t with attribute bindings for attributes {A1, . . . , An} over the database I as

the general form {A1 : e1, . . . , An : en} where {e1, . . . , en} ⊆ N. For the purpose

of operations on tuples, the operators α, @, and t[ ] have been defined (Figure 3.1).

Intuitively, α(t) returns the schema of the tuple t. As Figure 3.1 shows, operator @
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1. (C as A)I ≡ { {A : e} | e ∈ (C)I}

2. (A1.Pf1 = A2.Pf2)
I ≡ { {A1 : e1, A2 : e2} | e1 ∈ N, e2 ∈ N ∧ (Pf1)

I(e1) = (Pf2)
I(e2)}

3. (elim {A1, . . . , An} Q)I ≡ { t[A1, . . . , An] | t ∈ (Q)I}

4. (true)I ≡ {∅}

5. (from Q1, Q2)
I ≡ { t | α(t) = α(Q1) ∪ α(Q2) ∧

∃ t1 ∈ (Q1)
I , t2 ∈ (Q2)

I : t[α(t1)] = t1 ∧ t[α(t2)] = t2}

6. (empty {A1, . . . , An} )I ≡ ∅

7. (Q1 union Q2)
I ≡ (Q1)

I ∪ (Q2)
I

8. (Q1 minus Q2)
I ≡ (Q1)

I − (Q2)
I

9. (cagg A {A1, . . . , An} Q)I ≡ { t ⊎ {A : c} | t ∈ (elim {A1, . . . , An} Q)I

∧ c = | {t′ | t′ ∈ (Q)I ∧
∧

1≤i≤nt′@Ai = t@Ai} |
}

10. (sagg A {A1, . . . , An} A′ Q)I ≡ { t ⊎ {A : s} | t ∈ (elim {A1, . . . , An} Q)I

∧ s =
∑

t′∈ {t′′|t′′∈(Q)I∧
V

1≤i≤nt′′@Ai=t@Ai}

(t′@A′)

}

11. (plus A {A1, A2} Q)I ≡ { t ⊎ {A : (t@A1 + t@A2)} | t ∈ (Q)I}

12. (times A {A1, A2} Q)I ≡ { t ⊎ {A : (t@A1 × t@A2)} | t ∈ (Q)I}

13. ((Q))I ≡ (Q)I

Figure 3.2: Semantics of WQ

in t@A is defined only when A is an attribute in the schema of tuple t and returns

the value of attribute A for the tuple t. Also Figure 3.1 shows that t[A1, . . . , An] is

defined only when {A1, . . . , An} occurs in the schema of tuple t.

We generalize the definition of I for defining a set semantics for queries. The in-

terpretation of query Q under set semantics, (Q)I , is a function which maps databases

to sets of tuples (Figure 3.2). Informally, the meaning of each query is as follows:

Query 1, “ C as A ”, reference, creates a view with schema A for objects in the

19



interpretation of C i.e., (C)I .

Query 2, “ A1.Pf1 = A2.Pf2 ”, selection, returns tuple of the form {A1 : e1, A2 : e2}

where applying path function Pf1 on e1, and Pf2 on e2 leads to the same object.

Query 3, “ elim {A1, . . . , An} Q ”, projection, projects out the attribute bindings of

attributes {A1, . . . , An} of tuples of Q.

Query 4, “ true ” is a singleton set consisting of the null tuple.

Query 5, “ from Q1, Q2 ”, has the property of cross product if α(Q1) ∩ α(Q2) = ∅ ,

and projection, otherwise.

Query 6, “ empty {A1, . . . , An} ”, is an empty set, yet with schema {A1, . . . , An} .

Query 7 and 8, “ Q1 union Q2 ” and “ Q1 minus Q2 ”, are union and difference

queries, respectively.

Query 9, count aggregate query, groups tuples of Q by attributes {A1, . . . , An} and

counts the number of existing tuples for each group. Similarly, in 10, sum aggregate

query groups tuples of Q by attributes {A1, . . . , An}, sums up the values of attribute

A′ of all tuples in each group and names the accumulated value under the new at-

tribute A.

Queries 11 and 12, aggregate queries plus and times, are used for adding and mul-

tiplying two attribute values and naming the result under another new attribute.

Query 13 shows the explicit precedence of query Q.

Queries 14 to 18 are queries of domains BQ and OBQ which will be discussed later.

Example 3.1.1 Consider query dom A ≡ A.Id = A.Id introduced in syntactic sugar

in the last chapter. It creates query results with schema {A} and infinite number of

tuples (all natural numbers), i.e., {{A : 1}, {A : 2}, . . .}.
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Table 3.1: plustab, lesstab, lesseqtab, and mintab

A1 A2 A3 A1 A2 A1 A2 A1 A2 A3

1 1 2 1 2 1 1 1 1 1
1 2 3 1 3 2 2 2 2 2
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
2 1 3 2 3 1 2 1 2 1
2 2 4 2 4 1 3 1 3 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Example 3.1.2 The query, from A1.Id = A2.Id, creates results with schema

{A1, A2}, and infinite number of tuples, each of which has the same attribute bindings

for attributes A1 and A2, i.e., {{A1 : 1, A2 : 1}, {A1 : 2, A2 : 2}, . . .}.

Example 3.1.3 Consider queries plustab {A1, A2, A3} and lesstab {A1, A2} in-

troduced in syntactic sugar.

The results of these two queries can be thought of as relations of the form

plustab(A1, A2, A3) and lesstab(A1, A2) in the relational model. An instance of the

relation plustab consists of a countably infinite number of tuples where all natural

numbers occur in columns A1 and A2, permutations of two natural numbers, and their

summation in column A3 (Table 3.1). Similarly, an instance of the relation lesstab

consists of all pairs of natural numbers in which the first element is less than the

second (Table 3.1).

Table 3.1 also shows similar results for queries lesseqtab {A1, A2} and

mintab {A1, A2, A3}.

Proposition 3.1.1 The semantics of WQ is well-founded.

Proof: The only real issue is to show that the semantics of queries 9 and 10 (count

and sum aggregate) are well-founded.

To show that the semantics of Query 9, “ (cagg A {A1, . . . , An} Q)I ”, is well-

founded, we should prove that constant c in the definition of the semantics for Query
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9 is finite. c is the number of elements of the set “ {t′ | t′ ∈ (Q)I ∧
∧

1≤i≤nt′@Ai =

t@Ai} ”. It is straitforward that the number of elements of the set is at most the

number of elements of (Q)I . Q is finite by the definition of well-formed queries. So,

c is finite.

To show that the semantics of Query 10, “ sagg A {A1, . . . , An} A′ Q)I ”, is well-

founded, we should prove that constant s in the definition of the semantics for Query

10 is finite. s is equal to “
∑

t′∈ {t′′|t′′∈(Q)I∧
V

1≤i≤nt′′@Ai=t@Ai}

(t′@A′) ”. It is straitforward that s is

at most equal to “
∑

t′∈ {t′′|t′′∈(Q)I} (t′@A′) ”. Since Q is finite by the definition of

well-formed queries, s is finite. �

3.2 Semantics of WBQ

The difference between a bag and a set query is that the interpretation of queries

under bag semantics, preserves duplicates; whereas, the interpretation of queries un-

der set semantics ignores duplicates. In this section, we extend our semantics for bag

algebra. As we saw in the last chapter, the syntax for bag algebra consists of all

queries in the set algebra syntax, as well as a few more queries useful for work on

duplicates (Figure 2.3). These queries are union all, minus all, intersect all,

and duplicate preserving select. We define a function, B, B : WBQ → WQ which

maps a bag algebra query to one of an equivalent set algebra. By this method, the

semantics for the queries in WBQ is derived by means of the semantics of WQ. The

mapping function B preserves the number of tuples of the results of queries in the

auxiliary attribute, Cnt.

Figure 3.3 shows outputs of the mapping function B on each expression of WBQ.

For instance, consider the result of applying the mapping function B on “ C as A ”.

As the figure shows we will have “ from (C as A),B(true) ”. To derive the semantics

for this result, we use the defined semantics in Figure 3.2 for set algebra, therefore:
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1. B(C as A) = from (C as A),B(true)

2. B(A1.Pf1 = A2.Pf2) = from (A1.Pf1 = A2.Pf2),B(true)

3. B(elim {A1, . . . , An} Q) = from (elim {A1, . . . , An} B(Q)),B(true)

4. B(true) = cagg Cnt {} (true)

5. B(from Q1, Q2) = elim α(Q1) ∪ α(Q2) ∪ {Cnt}
(times Cnt {Cnt1, Cnt2}
(from (rename Cnt as Cnt1 B(Q1)),

(rename Cnt as Cnt2 B(Q2))))

6. B(empty {A1, . . . , An} ) = empty {A1, . . . , An, Cnt}

7. B(Q1 union Q2) = from ((elim α(Q1) B(Q1)) union (elim α(Q2) B(Q2))),B(true)

8. B(Q1 minus Q2) = from ((elim α(Q1) B(Q1)) minus (elim α(Q2) B(Q2))),B(true)

9. B(cagg A {A1, . . . , An} Q) = from (sagg A {A1, . . . , An} Cnt B(Q)),B(true)

10. B(sagg A {A1, . . . , An} A′ Q) = from (sagg A {A1, . . . , An} A′′ (times A′′ {A′, Cnt} B(Q))),B(true)
where A′′ /∈ α(B(Q))

11. B(plus A {A1, A2} Q) = plus A {A1, A2} B(Q)

12. B(times A {A1, A2} Q) = times A {A1, A2} B(Q)

13. B((Q)) = B(Q)

14. B(select {A1, . . . , An} Q) = rename Cnt1 as Cnt

elim {A1, . . . , An, Cnt1} (sagg Cnt1 {A1, . . . , An} Cnt B(Q))

15. B(Q1 union all Q2) = from (elim α(Q1) B(Q1 minus Q2)),B(Q1)
union

from (elim α(Q2) B(Q2 minus Q1)),B(Q2)
union

(elim α(Q1) ∪ {Cnt}
plus Cnt {Cnt1, Cnt2}
from (rename Cnt1 as Cnt B(Q1)), (rename Cnt2 as Cnt B(Q2))

16. B(Q1 minus all Q2) = from (elim α(Q1) B(Q1 minus Q2)), B(Q1)
union

elim α(Q1) ∪ {Cnt}
(minus Cnt {Cnt1, Cnt2} from

(rename Cnt as Cnt1 B(Q1)), (rename Cnt as Cnt2 B(Q2)))

17. B(Q1 intersect all Q2) = elim α(Q1) ∪ {Cnt}
(mintab {Cnt1, Cnt2, Cnt} from

(rename Cnt as Cnt1 B(Q1)), (rename Cnt as Cnt2 B(Q2)))

Figure 3.3: Semantics of WBQ
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(from (C as A),B(true))I ≡ { t | α(t) = α(C as A) ∪ α(B(true)) ∧

∃ t1 ∈ (C as A)I , t2 ∈ (B(true))I :

t[α(t1)] = t1 ∧ t[α(t2)] = t2

}

which is equal to:

(from (C as A),B(true))I ≡ { t | α(t) = {A} ∪ {Cnt} ∧

∃ t1 ∈ (C as A)I , t2 ∈ (B(true))I :

t[A] = t1 ∧ t[Cnt] = t2

}

(3.1)

Example 3.2.1 Suppose the interpretation of concept C under database I is {2, 4, 6}.

The interpretation of (C as A) under set semantics would be { {A : 2} , {A : 4} , {A :

6} }. To derive the interpretation of (C as A) in bag semantics, the interpretation

function ()I is applied to mapping function B on (C as A). From Equation 3.1 results

can be derived which is as follows: { {A : 2, Cnt : 1} , {A : 4, Cnt : 1} , {A : 6, Cnt :

1} }.

In the following, we informally describe the output of mapping function B for each

query of WBQ of Figure 2.3.

The outputs of B in queries 2 and 3 are similar to that of 1 described above.

The output of query 4 is { {Cnt : 1} }.

In query 5, Cnt of B(Q1) and B(Q2) are renamed Cnt1 and Cnt2 respectively. Then,

for each tuple, the results of the multiplication of Cnt1 and Cnt2 are stored under

attribute Cnt. Finally, the desired results, projecting α(Q1), α(Q2), and Cnt out.

The output of query 6 is the empty set, yet with schema {A1, . . . , An, Cnt}.

B acts similarly for queries 7 and 8. For instance, in 7, first Cnt(s) of B(Q1) and
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B(Q2) are dropped and union of the remained is taken; the results are grouped by

α(Q1), or equivalently α(Q2), and lastly their cross product with B(true) is taken

which adds count of 1 to each tuple.

B acts similarly for queries 9 and 10 as well. For instance, in query 9, the sum aggre-

gate of attribute Cnt for each group {A1, . . . , An} in B(Q) is taken and named under

the attribute A and cross product of the results from last step with B(true) is taken.

In queries 11 and 12, the sum and product of attributes A1 and A2 in B(Q) are taken,

respectively, and the results are stored under attribute A.

Query 13, explicit precedence which is straitforward.

Query 14 is the most important expression in WBQ. select query returns tuples

with the schema of {A1, . . . , An} in Q together with their counts. To do so, the sum

aggregate of Cnt for each group of {A1, . . . , An} in B(Q) should be taken and named

under attribute Cnt. However, in order to write a well-formed definition for Query

13, first the sum aggregate of Cnt for each group of {A1, . . . , An} in B(Q) is taken

and named under attribute Cnt1. After projecting {A1, . . . , An} ∪ {Cnt1} out, Cnt1

is renamed Cnt.

B also acts similarly for queries 15, 16 and 17. For instance, in query 15, union all is

taken in three steps. In step one and two, tuples which occur in just one of Q1 or Q2

are taken together with their counts. In step three, the tuples which occur in both

Q1 and Q2 are taken, their counts summed together, and their union with results of

step one and two is taken.

Proposition 3.2.1 For all Q ∈ WBQ,

1) {Cnt} 6∈ α(Q), and

2) α(B(Q)) = α(Q) ∪ {Cnt} .

Proof: For the first part, by the convention stated in the last chapter, the reserved

attribute Cnt does not occur in the schema of set queries. For the second part, it is

obvious that Cnt is in schema query 6. Also, as Figure 3.3 shows, query 4 produces

{Cnt : 1} which has the schema {Cnt}. Moreover, in the definition of queries 1, 2, 3,
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7, 8, 9, and 10, the cross product of the queries with query 4 is taken and consequently

Cnt occurs in their schema. Queries 5, 11, 12, 13, 14, 15, 16, and 17 are constructed

from small cases consists of B(Q) and by induction have Cnt in their schema. �

3.3 Semantics of WOBQ

In this section, we introduce the mapping function OB, which maps the domain

WOBQ to WQ. Tuples of the domain WOBQ have two additional reserved at-

tributes, Cnt and Ord, for the sake of preserving the number of duplicates and order

of attributes, respectively. As we saw in the last chapter, the main expression of

WOBQ is “Q order by A asc | desc”. This expression orders tuples of Q by at-

tribute A either ascending or descending, maintaining ordering in Ord attribute. The

mapping function OB, OB : WOBQ → WQ, allows us to derive the semantics for

the queries in WOBQ using the semantics of WQ.

Figures 3.4 shows the definition of function OB for all query inputs other than

order by and select. We describe details of OB on these two queries in the follow-

ing subsections.

For instance, consider the result of applying the mapping function OB on “ C as A ”.

As Figure 3.4 shows, we have “from (C as A),OB(true)”. To derive the semantics

for this result, we use the defined semantics for set algebra as follows:

from (C as A),OB(true) ≡ { t | α(t) = α(C as A) ∪ α(OB(true)) ∧

∃ t1 ∈ (C as A)I , t2 ∈ (OB(true))I :

t[α(t1)] = t1 ∧ t[α(t2)] = t2

}
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which is equal to:

(from (C as A),OB(true))I ≡ { t | α(t) = {A} ∪ {Cnt, Ord} ∧

∃ t1 ∈ (C as A)I , t2 ∈ (OB(true))I :

t[A] = t1 ∧ t[Cnt] = t2

}

(3.2)

Example 3.3.1 Consider concept C from Example 3.2.1. As Example 3.2.1 shows,

the interpretation of “ C as A ” under set and bag semantics are { {A : 2}, {A :

4}, {A : 6} }, and { {A : 2, Cnt : 1}, {A : 4, Cnt : 1}, {A : 6, Cnt : 1} }, respectively.

To derive the interpretation of “ C as A ” under ordered bag semantics, from Equation

3.3, we will have:

{ {A : 2, Cnt : 1, Ord : 1}, {A : 4, Cnt : 1, Ord : 1}, {A : 6, Cnt : 1, Ord : 1} }.

As the above example demonstrates, the order of tuples are maintained in the auxil-

iary attribute Ord. The example also reveals that the ordering of the tuples for the

reference query is destructive. As a matter of fact, ordering is stable for the sum and

product of two attributes (plus and times queries), as well as select and order by

queries, however, it is destructive for all other queries. In the following, we describe

the output of mapping function OB for each query of WOBQ of Figure 2.3.

The definition of OB in queries 2 and 3 are similar to that of query 1 explained above.

The output of query 4 would be { {Cnt : 1, Ord : 1} } .

OB’s behavior on query 5 is similar to that of B on query 5 (Figure 3.3), however, it

takes an additional step. That is cross product of the results with “(cagg Ord {} true)”

which adds {Ord : 1} to tuples.

The output of query 6 is the empty set, yet with schema {A1, . . . , An, Cnt, Ord}.

OB, like B, behaves similarly for queries 7 and 8, however, it takes the cross product

of the intermediate results with OB(true).
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OB, like B, acts similarly for queries 9 and 10, however, it takes the cross product of

the intermediate results with OB(true).

In queries 11 and 12, the sum and product of attributes A1 and A2 in OB(Q) are

taken, respectively, and the results are stored under attribute A.

select is one of the two most important queries in WOBQ. The output of OB on

select is described in detail in Subsections 3.3.3.

OB’s behavior on queries 15, 16 and 17 is similar to mapping function B on these

queries. However, the definition of OB for queries 15 and 16, first drops Ord attribute

generated in intermediate results and, at the end , the highest operation adds the Ord

attribute with the value of 1 to the final results.

Query order by is the other important query in WOBQ. The output of OB on

order by is described in Subsections 3.3.1 and 3.3.2.
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1. OB(C as A) = from (C as A),OB(true)

2. OB(A1.Pf1 = A2.Pf2) = from (A1.Pf1 = A2.Pf2),OB(true)

3. OB(elim {A1, . . . , An} Q) = from (elim {A1, . . . , An} OB(Q)),OB(true)

4. OB(true) = cagg Ord {Cnt} (cagg Cnt {} (true))

5. OB(from Q1, Q2) = from (cagg Ord {} true),
elim α(Q1) ∪ α(Q2) ∪ {Cnt}
(times Cnt {Cnt1, Cnt2}
(from (rename Cnt as Cnt1 OB(Q1)),

(rename Cnt as Cnt2 OB(Q2))))

6. OB(empty {A1, . . . , An} ) = empty {A1, . . . , An, Cnt, Ord}

7. OB(Q1 union Q2) = from ((elim α(Q1) OB(Q1)) union (elim α(Q2) OB(Q2))),OB(true)

8. OB(Q1 minus Q2) = from ((elim α(Q1) OB(Q1)) minus (elim α(Q2) OB(Q2))),OB(true)

9. OB(cagg A {A1, . . . , An} Q) = from (sagg A {A1, . . . , An} Cnt OB(Q)),OB(true)

10. OB(sagg A {A1, . . . , An} A′ Q) = from (sagg A {A1, . . . , An} A′′ (times A′′ {A′, Cnt} OB(Q))),OB(true)
where A′′ /∈ α(OB(Q))

11. OB(plus A {A1, A2} Q) = plus A {A1, A2} (OB(Q))

12. OB(times A {A1, A2} Q) = times A {A1, A2} (OB(Q))

13. OB((Q)) ≡ OB(Q)

15. OB(Q1 union all Q2) = from (cagg Ord {} true),
elim α(Q1) ∪ {Cnt}
(from (elim α(Q1) OB(Q1 minus Q2)),OB(Q1)
union

from (elim α(Q2) OB(Q2 minus Q1)),OB(Q2))
union

(elim α(Q1) ∪ {Cnt}
plus Cnt {Cnt1, Cnt2}
from (rename Cnt1 as Cnt OB(Q1)), (rename Cnt2 as Cnt OB(Q2))

16. OB(Q1 minus all Q2) = from (cagg Ord {} true),
elim α(Q1) ∪ {Cnt} from

(elim α(Q1) OB(Q1 minus Q2)), OB(Q1)
union

elim α(Q1) ∪ {Cnt}
(minus Cnt {Cnt1, Cnt2} from

(rename Cnt as Cnt1 OB(Q1)), (rename Cnt as Cnt2 OB(Q2)))

17. OB(Q1 intersect all Q2) = from (cagg Ord {} true),
elim α(Q1) ∪ {Cnt}
(mintab {Cnt1, Cnt2, Cnt} from

(rename Cnt as Cnt1 OB(Q1)), (rename Cnt as Cnt2 OB(Q2)))

Figure 3.4: Semantics of WOBQ
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Table 3.2: Order by Ex-

ample, OB(Q)

A A2 Cnt Ord

1 1 2 1
1 2 2 2
2 1 2 1
2 2 2 2

Table 3.3: Results of OB(Q order by {A} asc)

A A2 Cnt Ord

1 1 2 1
1 2 2 2
2 1 2 3
2 2 2 4

3.3.1 Translation of Q order by A asc

In this subsection, we show in detail the ordered bag translation of query order by,

OB(Q order by A asc). To clearly illustrate this translation, we give an example

and apply it in progressive subexpressions of OB on order by .

Example 3.3.2 Assume database I interprets the concept C as {1, 2}. Now, con-

sider the following query:

Q ≡ ((from C as A, C as A2) union all (from C as A, C as A2))

order by A2 asc

It turns out that (OB(Q))I computes the results shown in Table 3.2. As we define

OB(Q order by A asc), we illustrate the definitions by incrementally applying the

subexpressions that progressively define OB(Q order by A asc) on query Q of this

example. The desired final results are shown in Table 3.3.

Query “Q order by A asc” performs an ascending ordering on results of query Q.

We see that our definition of “Q order by A asc” accomplishes a stable sort on Q by

a major sort on attribute A and a minor sort on attribute Ord inherited to query Q,

i.e., whenever attribute A values of two objects are the same, they are sorted based on

their Ord values. The behavior of function OB(Q order by A asc) can be described

in six phases below. In our definitions, we assume temporary variables B, CM, and

NOrd do not occur in the schema of Q.

Phase 1:

In phase 1, OB groups Q by attributes A and for each group (with a distinct value

for attribute A, say c), the number of A values of the base table which are less than
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Table 3.4: Q4

A C

1 1
2 2

Table 3.5: Q9

M

2

Table 3.6: Q10

A CM

1 2
2 4

or equal to c is counted and named under attribute C. This can be derived by the

following four progressive subexpressions of OB function:

Q1 ≡ elim {A} OB(Q)

Q2 ≡ rename A as B Q1

Q3 ≡ from Q1, Q2, lesseqtab {B, A}

Q4 ≡ cagg C {A} Q3

Applying these four subexpressions on query Q in Example 3.2 reveals the results

shown in Table 3.4.

Phase 2:

In phase 2, the maximum Ord value of the base table (Table3.2) is found via the

following five subexpressions:

Q5 ≡ elim {Ord} OB(Q)

Q6 ≡ rename Ord as B Q5

Q7 ≡ from Q5, Q6, lesstab {Ord, B}

Q8 ≡ Q5 minus (elim {Ord} Q7)

Q9 ≡ rename Ord as M Q8

Applying these five subexpressions incrementally on results derived from the last

phase turns out results shown in Table 3.5.

Phase 3:

In phase 3, the maximum Ord value derived in the last phase (M) is multiplied by C

value of each group in Q4 and named under attribute CM:
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Table 3.7: Q11

A A2 Cnt Ord CM NOrd

1 1 2 1 2 3
1 2 2 2 2 4
2 1 2 1 4 5
2 2 2 2 4 6

Table 3.8: Q12

A A2 Cnt NOrd

1 1 2 3
1 2 2 4
2 1 2 5
2 2 2 6

Q10 ≡ elim {A,CM} (times CM {C, M} (from Q4, Q9))

This phase opens up enough room between major sort values for the purpose of adding

minor sort values in the following phase. Applying subexpression Q10 to the results

in Table 3.5 reveals the results shown in Table 3.6.

Phase 4:

In phase 4, a new ordering is derived by adding major sort attribute values (CM) and

minor sort attribute values (Ord):

Q11 ≡ plus NOrd {Ord,CM} (from OB(Q), Q10)

Applying this subexpression to the results in Table 3.6 reveals the results shown in

Table 3.7.

Phase 5:

In phase 5, interesting attributes are retained:

Q12 ≡ elim α(Q) ∪ {Cnt,NOrd} Q11

Applying this subexpression to the results in Table 3.7 reveals the results shown in

Table 3.8.

Phase 6:

In the last phase, the new ord values are normalized so that results have orderings

which start from 1 and successively increase to the maximum value. This is done

using the following five subexpressions:
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Table 3.9: Q17

A A2 Cnt Ord

1 1 2 1
1 2 2 2
2 1 2 3
2 2 2 4

Q13 ≡ elim {NOrd} Q12

Q14 ≡ rename NOrd as B Q13

Q15 ≡ from Q13, Q14, lesseqtab {NOrd, B}

Q16 ≡ cagg Ord {NOrd} Q15

Q17 ≡ elim α(Q) ∪ {Cnt, Ord} (from Q12, Q16)

Applying these five subexpressions to the results in Table 3.8 turns out the final

results shown in Table 3.9.

3.3.2 Translation of Q order by A desc

OB(Q order by A desc) performs a descending ordering on results of query Q. The

operation of OB for “ Q order by A desc ” is similar to what we presented in the

previous subsection. However, there is a slight change in step 1, that is, OB groups

Q by attributes A and for each group (with a distinct value for attribute A, say c),

the number of A values of the base table which are greater than c is counted and

named under attribute C. So, the only modification is in Q3 in which we change

“ from Q1, Q2, lesseqtab {B, A} ” to “ from Q1, Q2, lesseqtab {A, B} ”.

For example , consider the results of the query Q in Example 3.3.3. The results of

OB(Q) are presented in Table 3.10. The desired final results of OB(Q order by A desc)

are shown in Table 3.11. By applying this example in progressive subexpressions of

OB(Q order by A desc), we get Tables 3.12, 3.13, 3.14, 3.15, 3.16 and the final re-

sults in 3.17.

33



Table 3.10: Order by Ex-

ample, OB(Q)

A A2 Cnt Ord

1 1 2 1
1 2 2 2
2 1 2 1
2 2 2 2

Table 3.11: Results of

OB(Q order by {A} desc)

A A2 Cnt Ord

1 1 2 3
1 2 2 4
2 1 2 1
2 2 2 2

Table 3.12: Q4

A C

1 2
2 1

Table 3.13: Q9

M

2

Table 3.14: Q10

A CM

1 4
2 2

Table 3.15: Q11

A A2 Cnt Ord CM NOrd

1 1 2 1 4 5
1 2 2 2 4 6
2 1 2 1 2 3
2 2 2 2 2 4

Table 3.16: Q12

A A2 Cnt NOrd

1 1 2 5
1 2 2 6
2 1 2 3
2 2 2 4

Table 3.17: Q17

A A2 Cnt Ord

1 1 2 3
1 2 2 4
2 1 2 1
2 2 2 2
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Table 3.18: select Exam-

ple, OB(Q)

B A1 Cnt Ord

n1 1 1 2 1
n2 2 2 2 2
n3 3 2 1 3
n4 4 2 2 4
*n5 5 3 2 5
n6 5 2 1 5
n7 6 2 2 6

Table 3.19: Results of

OB(select {A1} Q)

A1 Cnt Ord

g1 1 2 1
g2 2 5 2
g3 2 1 3
g4 2 2 4
g5 3 2 3

3.3.3 Translation of select {A1, . . . , An} Q

In this subsection, we show the ordered bag translation of expression select in de-

tail. To illustrate this translation, we provide the following example and apply it in

progressive subexpressions of OB on the expression OB(select {A1, . . . , An} Q).

Example 3.3.3 Assume that (OB(Q))I computes the results in Table 3.18. For

instance, the first row can be derived from the following query:

((from C1 as B, C1 as A)

union all

(from C1 as B, C1 as A))

order by B

where (C1)
I = {1}.

Other rows of the table also can be derived from similar queries.

As we define the translation of OB on select, we illustrate the definitions by incre-

mentally applying subexpressions that progressively define OB(select {A1, . . . , An} Q)

on query Q in this example. The desired final results are shown in Table 3.19.

As the above example shows, OB(select {A1, . . . , An} Q) selects groups of tuples

with schema {A1, . . . , An} from Q together with their counts and orderings that have

been derived from a stable sort on Q. For instance, in the above example, tuples

n2, n3, and n4 are grouped in group g2 in the final results (Table 3.19) since they
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have the same value for attribute A1 and consecutive Ord values. Nevertheless, tuple

n5 causes tuple n6 to be situated in g3 (a different group from g2). The behavior of

function OB(select {A1, . . . , An} Q) can be described in five phases:

Phase 1:

Phase 1 is an intermediate state in which tuples with the potential of situating in one

group are placed in pairs together with their Ord values. That is, tuples with the same

A1, . . . , An values are set in pairs which is done by the following three subexpressions.

Q1 ≡ elim {A1, . . . , An, Ord} OB(Q)

Q2 ≡ rename A1 as B1 (. . . (rename An as Bn(rename Ord as BOrd(Q1))) . . .)

Q3 ≡ from Q1, Q2, lesseqtab {Ord, BOrd}, A1.Id = B1.Id, . . . , An.Id = Bn.Id

Since, for each pair, one Ord value is needed to build up the final ordering (in our

definitions, the maximum Ord value of each pair), lesseqtab {Ord, BOrd}, in subex-

pression three, removes extra pairs in which ordering of the first element (value of

attribute Ord in subexpression three) is less than that of the second (value of attribute

BOrd) since in our definitions the final ordering is derived from BOrd attribute.

Applying the four subexpressions on query Q in Example 3.3.3 reveals the results

shown in Table 3.20.

Phase 2:

In phase 2, some pairs from the results of Q3 have to be dropped, and they are the

following: 1) Those tuples, t, such that there exists a tuple with different A1 value and

greater/equal Ord value, which is also greater than the Ord value of some other tuple

with the same A1 value as t (i.e., a tuple in the same group as t). 2) Those tuples t

such that there exists a tuple with different A1 value and greater Ord value, which is

also greater/equal to the Ord value of some other tuple with the same A1 value as t.

This is done via the following five subexpressions where Q7 selects the tuples which

have to be removed based on the two conditions above. More precisely the first from
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Table 3.20: Q3

A1 Ord B1 BOrd
1 1 1 1
2 2 2 2
2 2 2 3
2 2 2 4

* 2 2 2 5
* 2 2 2 6

2 3 2 3
2 3 2 4

* 2 3 2 5
* 2 3 2 6

2 4 2 4
* 2 4 2 5
* 2 4 2 6

2 5 2 5
* 2 5 2 6

2 6 2 6
3 5 3 5

expression in Q7 is for the condition 1 above and the second for condition 2.

Q4 ≡ rename A1 as D1 (. . . (rename An as Dn(rename Ord as DOrd (Q1))) . . .)

Q5 ≡ from Q3, Q4

Q6 ≡ (Q5 minus (from Q5, A1.Id = D1.Id))

union

. . .

union

(Q5 minus (from Q5, An.Id = Dn.Id))

Q7 ≡ elim α(Q3)(

(from Q5, Q6, lesstab {Ord,DOrd}, lesseqtab {DOrd, BOrd})

union

(from Q5, Q6, lesseqtab {Ord,DOrd}, lesstab {DOrd, BOrd}))

Q8 ≡ Q3 minus Q7
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Table 3.21: Q8

A1 Ord B1 BOrd
1 1 1 1

+ 2 2 2 2
+ 2 2 2 3
* 2 2 2 4
+ 2 3 2 3
* 2 3 2 4

2 4 2 4
2 5 2 5
2 6 2 6
3 5 3 5

To illustrate this phase more visibly, we apply the five subexpressions incrementally

on results derived from the last phase in Table 3.20. As the example shows tuples

marked by “∗” in Table 3.20 are removed because of the tuple marked by “∗” in Table

3.18.

Phase 3:

As mentioned in Phase 1, for each group of tuples, the maximum ordering (in our

definitions maximum of BOrd) each group builds up the final ordering. So, in this

phase, the following three subexpressions remove tuples of each group which have

BOrd values less than the maximum BOrd of the group.

Q9 ≡ rename B1 as D1 (. . . (rename Bn as Dn(rename BOrd as DOrd(Q8))) . . .)

Q10 ≡ elim α(Q3)(from Q8, Q9, lesstab {BOrd,DOrd})

Q11 ≡ Q8 minus Q10

Applying these three subexpressions to the results in Table 3.21 reveals the results

shown in Table 3.22. As these two tables show, tuples marked with “+” in Table 3.21

are removed because of the tuples marked with “∗” in the same table.

Phase 4:

At this point, we have the groups of tuples with their relative orderings. This phase

joins the derived results from the last phase with the base table in order to compute
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Table 3.22: Q11

A1 Ord B1 BOrd
1 1 1 1
2 2 2 4
2 3 2 4
2 4 2 4
2 5 2 5
2 6 2 6
3 5 3 5

Table 3.23: Q14

A1 Cnt BOrd
1 2 1
2 5 4
2 1 5
2 2 6
3 2 5

Table 3.24: Q18

A1 Cnt Ord

1 2 1
2 5 2
2 1 3
2 2 4
3 2 5

the count of each group. This is done via the following three subexpressions.

Q12 ≡ from OB(Q), Q11

Q13 ≡ sagg NCnt {A1, . . . , An,BOrd} Cnt Q12

Q14 ≡ rename NCnt as Cnt Q13

Applying these three subexpressions to the results in Table 3.22 yields the results

shown in Table 3.23.

Phase 5:

In this phase, similar to the last phase in the last subsection, the new BOrd values are

normalized and stored under attribute Ord. Consequently, the results have orderings

which start from 1 and successively increase to the maximum value. This is done
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using the following five subexpressions:

Q15 ≡ elim {BOrd} Q14

Q16 ≡ rename BOrd as DOrd Q15

Q17 ≡ from Q15, Q16, lesseqtab {DOrd, BOrd}

Q18 ≡ cagg Ord {BOrd} Q17

Q19 ≡ elim α(Q) ∪ {Cnt, Ord} (from Q14, Q18)

Applying these five subexpressions to the results in Table 3.23 turns out the final

results shown in Table 3.24.
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Chapter 4

Conclusion

We demonstrated a practical semantics for ordered bag SQL queries using a relational

algebra with aggregates. We introduced the domain of finite and well-formed queries

and continued our work in the domain of well-formed queries and showed that our

defined semantics for well-formed queries is well-founded. Our method of defining

semantics for well-formed bag and ordered bag queries, introduced in Chapter 3,

enables us to reason about ordered bag queries using basic set semantics. To do so,

we needed to add two interpreted columns to the results for the count and order of the

results. We saw that relational algebra with aggregates can be used to compute the

interpreted columns with sufficient flexibility to be used as a semantics for standard

SQL-like queries, which may include order by and order preserving select clauses. In

fact, our method is able to derive the semantics of more complex queries composed

of any combination of set, bag, and order clauses from the simpler set semantics.

The reduction of a workable ordered bag semantics for SQL to the relational algebra

with aggregates can enable existing query containment theory, so that algebra can be

employed to reason about practical query containment.

4.1 Future Work

In this work, we observed that our defined syntax and semantics are capable of captur-

ing SQL-like queries with order by and duplicate preserving select clauses. However,

our method for translation of ordered duplicate preserving select is not transparent.

An area of future work could be to investigate alternative ways of defining semantics

for such expressions capable of more efficiently applying query containment in prac-
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Table 4.1: Outer Join Table

A Cnt Ord

1 1 1
2 1 1

Table 4.2: Inner Join Table

B Cnt Ord

1 1 1
2 1 2

Table 4.3: Nested Loop Join Results 1

A B

n1 1 1
n2 1 2
n3 2 1
n4 2 2

Table 4.4: Nested Loop Join Results 2

A B

n3 2 1
n4 2 2
n1 1 1
n2 1 2

tical query optimization.

In addition, using the introduced method, we are not able to capture lower query

language expressions such as nested loop joins. For instance, consider a nested loop

join which joins Table 4.1 and Table 4.2. Since the two tuples in the outer join table

(Table 4.1) have an equal ordering, there are two possible orderings (Table 4.3 and

Table 4.4). However, it is not possible to show these two possible orderings in a table

using the attribute Ord. To see this, for example, we pick the tuple n3. It occurs after

n2 in Table 4.3, while it occurs before n2 in Table 4.4. Clearly, it is not possible to

show these two possible orderings in one table using the Ord attribute. An interesting

future investigation would be to consider possible ways of resolving this problem.
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