
  

Mapping BoxTalk to Promela Model 
 

 

 

by 

 

 

Yuan Peng 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Mathematics 

in 

Computer Science 

 

 

 

Waterloo, Ontario, Canada, 2007 

 

 

©Yuan Peng, 2007 

 



 

 ii 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

A telecommunication feature is an optional or incremental unit of functionality, such as call display 

(CD) and call forwarding (CF). A feature interaction occurs when, in the presence of other 

features, the actual behavior of a feature becomes inconsistent with its specified behavior. This 

feature interaction problem is a long-existing problem in telephony, and it becomes an increasingly 

pressing problem as more and more sophisticated features are developed and put into use. It takes a 

lot of effort to test that the addition of a new feature to a system doesn’t affect any existing features in 

an undesired way.  

Distributed Feature Composition (DFC) proposed by Michael Jackson and Pamela Zave, is an 

architectural approach to the feature interaction problem. Telecommunication features are modeled 

as independent components, which we call boxes. Boxes are composed in a pipe-and-filter-like 

sequence to form an end-to-end call. Our work studies the behaviour of single feature boxes. We 

translate BoxTalk specifications into another format, that is more conducive to automated reasoning. 

We build formal models on the translated format, then the formal models are checked by a model 

checker, SPIN, against DFC compliance properties written in Linear Temporal Logic (LTL). From 

BoxTalk specifications to Promela models, the translation takes steps: 1) Explicating BoxTalk, which 

expands BoxTalk macros and presents its implicit behaviours as explicit transitions. 2) Define 

BoxTalk semantics in terms of Template Semantics. 3) Construct Promela model from Template 

Semantics HTS. Our case studies exercised this translation process, and the resulting models are 

proven to hold desired properties.  



 

 iv 

Acknowledgements 

I would like to express my deep gratitude to my supervisor, Professor Joanne M. Atlee, for her 

guidance, knowledge, patience, time and energy, which have been invaluable to my research and the 

writing of my thesis. It is rewarding to have her. Without her, I could not imagine that I could get this 

far and finally graduate.  

Special thanks to my committee members, Professor Daniel Berry and Professor Richard Trefler, for 

taking their precious time to review this thesis and provide valuable comments.  

I appreciate Professor Nancy A. Day, for her valuable inputs to my research work. I appreciate Dr. 

Pamela Zave, for her clear explanations and quick responses to my questions, and detailed reviews 

on the explication and Template Semantics. Thanks Jianwei Niu, for her help on Template Semantics 

and encouragement.  

Thanks to my friends, Yun Lu, Yun Xia, Yongsheng Yang and Heather Zhao, for listening and for their 

understanding. Thanks to Sandy Cheng and her husband Henry Du, for providing me a quiet place to 

write my thesis. Thanks to my manager Greg Balsdon and team lead Thomas Chang, for their 

support in terms of timing and schedule. 

Most of all, I thank my father and mother for their love, trust and taking care of my young kids. My 

mom is always there for me whenever I need her.  

None of this would have been possible without my husband, Ken. During the past Christmas season 

and on countless weekends, he showed great patience in playing with and taking care of the kids, so 

that I was able to work on the thesis.  

I dedicate my thesis to my dear daughters, Gloria and Alyssa, who bringing joy, strength, peace and a 

true meaning to my life.  



 

 v 

Table of Contents 

Chapter 1  Introduction .....................................................................................................................1 

1.1  Motivations ..............................................................................................................................1 

1.1.1  Feature Interactions ........................................................................................................1 

1.2  Related Work ..........................................................................................................................1 

1.2.1  Contributions of This Work..............................................................................................7 

1.3  Organization of This Document ..............................................................................................7 

Chapter 2  Background .....................................................................................................................8 

2.1  DFC.........................................................................................................................................8 

2.1.1  Calls and Usages ............................................................................................................8 

2.1.2  DFC Protocol...................................................................................................................9 

2.1.3 Box Classes: Free or Bound .........................................................................................10 

2.1.4 Calls, Call Variables, Port IDs.......................................................................................10 

2.1.5 Free Box Vs. Bound Box...............................................................................................11 

2.2 BoxTalk .................................................................................................................................12 

2.2.1 States ............................................................................................................................13 

2.2.2 Transitions.....................................................................................................................13 

2.2.3 Example: Call Waiting ...................................................................................................14 

2.2.4 Sending and Receiving Signals ....................................................................................15 

2.2.5 Conditions .....................................................................................................................15 

2.2.6 Assignments..................................................................................................................15 

Chapter 3 Explicating BoxTalk.......................................................................................................17 

3.1 .....................................................................................................................................................17 

Explicate BoxTalk – free box ............................................................................................................17 

3.1.1 ..............................................................................................................................................18 

Expand Macros .............................................................................................................................18 

3.1.1.1 Macros explicitly used in FTB .......................................................................................19 

3.1.1.2 Macros implicitly used in FTB .......................................................................................19 

3.1.1.3 Macros not used in FTB................................................................................................20 

3.1.2 ..............................................................................................................................................21 

Hold Queue ...................................................................................................................................21 

3.1.3 ..............................................................................................................................................21 

Signal Linked Calls .......................................................................................................................21 

3.1.4 ..............................................................................................................................................21 

Feature Termination......................................................................................................................21 



 

 vi 

3.1.5 error State..................................................................................................................... 22 

3.1.6 abandonConnection state............................................................................................. 22 

3.2 Explicate BoxTalk – bound box ............................................................................................ 22 

Chapter 4 Template Semantics..................................................................................................... 28 

4.1 Template Semantics............................................................................................................. 28 

4.1.1 Syntax of HTS............................................................................................................... 28 

4.1.2 Semantics of HTS......................................................................................................... 29 

4.2 BoxTalk Definition................................................................................................................. 31 

4.2.1 Syntactic Mapping ........................................................................................................ 31 

4.2.2 Semantic Mapping........................................................................................................ 32 

Chapter 5 Mapping BoxTalk to Promela Model ............................................................................ 35 

5.1 Model Checker ..................................................................................................................... 35 

SPIN ................................................................................................................................................. 35 

5.1.1.............................................................................................................................................. 35 

Promela ........................................................................................................................................ 35 

5.1.1.1 Processes ..................................................................................................................... 36 

5.1.1.2  Data Objects ............................................................................................................. 36 

5.1.1.3 Message Channels....................................................................................................... 37 

5.1.1.4 Rules of Execution........................................................................................................ 38 

5.1.1.5 Compound Statements................................................................................................. 39 

5.1.1.6 inline Functions............................................................................................................. 42 

5.2 The Promela Model .............................................................................................................. 42 

5.2.1 Free Error Interface ...................................................................................................... 43 

5.2.2 Type Definitions and Global Variable Declarations ...................................................... 44 

5.2.3.............................................................................................................................................. 46 

inline Functions............................................................................................................................. 46 

5.2.4 Processes ..................................................................................................................... 48 

5.2.4.1 Feature Box Process .................................................................................................... 49 

5.2.4.2 Environment Process ................................................................................................... 50 

5.2.5.............................................................................................................................................. 51 

Bound Transparent Box................................................................................................................ 51 

Chapter 6 Case Studies ................................................................................................................ 55 

6.1..................................................................................................................................................... 55 

Receive Voice Mail ........................................................................................................................... 55 

6.2 Answer Confirm .................................................................................................................... 59 



 

 vii 

6.3 .....................................................................................................................................................62 

Black Phone Interface.......................................................................................................................62 

6.4 Properties..............................................................................................................................66 

6.4.1 Properties to Prove .......................................................................................................66 

6.4.2 Property Language........................................................................................................67 

6.4.2.1 LTL ................................................................................................................................67 

6.4.2.2 Never Claim ..................................................................................................................67 

6.4.2.3 List of Properties ...........................................................................................................68 

6.4.2.3 Translation from English to Formula .............................................................................68 

6.4.3 ..............................................................................................................................................69 

Embed correctness variables........................................................................................................69 

6.4.4 Results of Verification ...................................................................................................69 

Chapter 7 Conclusions...................................................................................................................70 

7.1 Explicate BoxTalk Specificaton.............................................................................................70 

7.2 Template Semantics Definition .............................................................................................70 

7.3 Promela Model ......................................................................................................................71 

7.4 Case Studies and Results.....................................................................................................71 

Appendix A Promela model – Free Error Interface...............................................................................73 

Appendix B Promela model – Bound Transparent Box ........................................................................79 

Appendix C Receive Voice Mail............................................................................................................97 

Appendix D Answer Confirm...............................................................................................................115 

Appendix E Blace Phone Interface .....................................................................................................135 

Bibliography ........................................................................................................................................153 

 



 

 viii 

List of Figures 

Figure 1: Usage............................................................................................................................... 8 

Figure 2: Call setup ......................................................................................................................... 9 

Figure 3: Piecewise setup ............................................................................................................... 9 

Figure 4: Ports............................................................................................................................... 11 

Figure 5: Call teardown ................................................................................................................. 12 

Figure 6: Call Waiting.................................................................................................................... 14 

Figure 7: Sets -- portAllocated, known, active .............................................................................. 16 

Figure 8: FTB (Original specification)............................................................................................ 17 

Figure 9: FTB (Explicated model) ................................................................................................. 18 

Figure 10: FTB -- abandonConnection state................................................................................. 22 

Figure 11: BTB (Original specification) ......................................................................................... 23 

Figure 12: BTB (Explicated model) : main .................................................................................... 25 

Figure 13: BTB (Explicated model) : post-process ....................................................................... 26 

Figure 14: HTS.............................................................................................................................. 28 

Figure 15: Step semantics ............................................................................................................ 30 

Figure 16: Process Interleaving .................................................................................................... 39 

Figure 17: Atomic Step.................................................................................................................. 40 

Figure 18: Architecture.................................................................................................................. 42 

Figure 19: Architecture (bound feature box) ................................................................................. 43 

Figure 20: EI (Original specification) ............................................................................................. 43 

Figure 21: EI (Explicated model)................................................................................................... 44 

Figure 22: RVM (Original Specification)........................................................................................ 55 

Figure 23: RVM (Explicated Model) .............................................................................................. 57 

Figure 24: Answer Confirm (Original Specification) ...................................................................... 59 

Figure 25: AC (Explicated Model) ................................................................................................. 61 

Figure 26: BPI (Original Specification) .......................................................................................... 63 

Figure 27: BPI (Explicated Model) ................................................................................................ 65 

Figure 28: BPI (Post-Processing).................................................................................................. 65 

 



 

 ix 

List of Tables 

Table 1: Basic Feature Context (BFC) ............................................................................................2 

Table 2: Example Feature Models...................................................................................................3 

Table 3: Example Feature Composition ..........................................................................................4 

Table 4: Chisel -- Sequence of events for receiving a call ..............................................................5 

Table 5: Triggering Information Extraction ......................................................................................6 

Table 6: Macro expansion .............................................................................................................20 

Table 7: Template semantics ........................................................................................................30 

Table 8: Map BoxTalk to HTS -- States.........................................................................................31 

Table 9: Map BoxTalk to HTS -- Event..........................................................................................31 

Table 10: Map BoxTalk to HTS -- Variables ..................................................................................32 

Table 11: Map BoxTalk to HTS -- Explicit Transition.....................................................................32 

Table 12: Template Parameters for BoxTalk.................................................................................33 

Table 13: Promela Data Types......................................................................................................37 

Table 14: LTL.................................................................................................................................67 

 





  

1 

 

Chapter 1  Introduction 

1.1  Motivations 

1.1.1  Feature Interactions 

A telecommunication feature is an optional or incremental unit of functionality, such as Call Display 

(CD) and Call Forwarding (CF). A feature interaction occurs when, in the presence of other 

features, the actual behavior of a feature becomes inconsistent with its specified behavior. A simple 

example of a feature interaction is the combination of Call Waiting and Answer Call features. Call 

Waiting alerts subscriber A with a special tone when A is called while he is already on the phone. 

Answer Call directs the calling party to an answering service when subscriber A does not answer the 

phone after a designated number of rings, or when he is already on the phone. When A is already 

connected to a call and a second call comes in, should A be alerted about the incoming call or should 

the second call be forwarded to an answering service?   

This feature interaction problem is a long-existing problem in telephony, and it becomes an 

increasingly pressing problem as more and more sophisticated features are developed and put into 

use. It takes a lot of effort to test that the addition of a new feature to a system doesn’t affect any 

existing features in an undesired way.  

1.2  Related Work 

A number of attempts have been made to resolve the feature interaction problem. They mainly fall 

into three categories:  

§ Formal modeling of features, and analysis of feature compositions  

§ Architectural approaches that avoid feature interactions by restricting how features execute or 

communicate 

§ Detection and resolution of feature interactions at run-time 

F.Joe LIN and Yow-Jian LIN present a building block approach; features are modeled by Basic Call 

Models (BCMs) and Basic Feature Contexts (BFCs) [1].  

BCMs represent the protocols at the user-network interface of telephone switching systems for 

establishing basic telephone service. There are two BCMs: one for call origination, called Originating 

BCM (OBCM), and the other for call termination, called Terminating BCM (TBCM). The states in 

BCMs indicate the various stages that a call progresses through until its completion.  

BFCs represent compositions of environment (e.g., ORIG, TERM), and system modules (e.g., OBCM, 

TBCM, SYS). As shown in Table 1, there are three BFCs: 1) Originating BFC models the feature 



 

2 

context that involves only the user in the originating side. The feature context is decomposed into two 

blocks: Block ORIG models the originating user’s behavior, and block SYS represents an abstraction 

of the system environment. 2) Terminating BFC models the feature context that involves only the user 

on the terminating side. Likewise, the feature context is decomposed into two blocks: Block TERM 

models the terminating user’s behavior, and block SYS models how the environment my interact with 

the TBCM. 3) Two-party BFC models the feature context that involves both the originating side and 

the terminating sides users. One can see that a two-party BFC is effectively the composition of an 

originating BFC and a terminating BFC. In BFC models, the arrows between the blocks indicate the 

communication channels.  

FEATURE CONTEXT MODEL 

Originating BFC  

 

 

Terminating BFC  

 

 

Two-Party BFC  

 

 

Table 1: Basic Feature Context (BFC) 

A feature can be modeled by appending a block representing the feature logic to the appropriate 

BFC. Table 2 shows feature models of Originating Call Screening (OCS), Denied Termination (DT) 

and Call Waiting (CW). As the figure indicates, OCS applies only to an originating BFC, and DT 

applies only to a terminating BFC. With the CW feature, if the first call is an outgoing call, then it 

applies to both an originating BFC and a terminating BFC, which is the case shown in the figure. The 

dashed lines connect a feature’s logic with its interacting BCMs.  



 

3 

 

FEATURE DESCRIPTION MODEL 

Originating Call 

Screen 

The user defines a 

screening list of 

telephone numbers. 

All outgoing calls to 

those number will be 

blocked. 

 

 

 

 

Denied Termination The user denies the 

termination of all 

incoming calls. 

 

 

 

Call Waiting The user is notified of 

an incoming call when 

he is already on 

another call. Then, he 

can switch between 

the two calls by 

flashing the hook. 

 

 

 

Table 2: Example Feature Models 

To detect interactions among features, the features under study are composed into a single context. 

Table 3 shows a composition of the feature models in Table 2. Then the composite model is analyzed 

by verification tools.  



 

4 

 

 FEATURE COMPOSITION (SINGLE USER) 

Originating Call Screen 

+ 

Denied Termination 

+ 

Call Waiting 

 

Table 3: Example Feature Composition 

D.Amyot et al. use two complementary methodologies -- Use Case Maps (UCM) and LOTOS [2]-- to 

design features and detect feature interactions. UCM is a notation similar to Message Sequence 

Chart (MSC), without explicitly defining message exchanges between components. Instead, the 

causal relationships between functions from different components are captured. LOTOS is an 

executable notation, that has some similarities to SDL. In this method, feature designs are first 

captured in UCM, and are then hand-translated to LOTOS. This translation requires some 

formalization of the model, and experience shows that several potential design errors can be caught 

during this exercise. Then, the formal LOTOS model is executed to see its response to possible 

actions at each state, to see whether the specification accepts or rejects certain scenarios. The model 

can also be exhaustively analyzed by means of reachability analysis and model-checking tools.  

Glenn Bruns et al. present a specification approach to the feature interaction problem based on the 

idea of features as service transformers [10]. Services and features are the two main elements in 

their models. A service describes what is provided by a server. It is defined by concrete events, local 

variables, abstract events, and reaction statements. Concrete events are the input and output events 

of a service. When an input event is received by a service, the service interprets it as an abstract 

event. For example, the concrete event offhook may be interpreted as an abstract newcall or 



 

5 

answercall event. With a given abstract event, reaction statements define variable updates and 

concrete output events.  

A feature is defined as a service transformer. It transforms the service by defining new input events 

and new response events. The transformed service can then serve as the base of a subsequent 

service transformer.  

With a model described as above, two kinds of feature interactions can be detected: 1) order-

interaction, meaning that the order in which features are applied to a service affects the behaviour of 

the resulting system; and 2) output-interaction, meaning that a service can reach a state in which it 

outputs two events that conflict with each other. Checking for order-interaction is very expensive, as it 

involves checking that two systems in which features are applied in different orders are equivalent. 

Unless we know that order-interactions do not exist, checking for output-interactions is also very 

expensive. 

The Chisel specification language proposed by A. Aho et al. [11] defines a feature as a sequence of 

events that can occur when a feature is active. For example, the function of receiving a call can be 

captured by the sequences shown in Table 4:  

SEQUENCE OF EVENTS EXPLANATION 

StartRinging A B, Off-hook A, StopRinging A B, On-hook 

A, Disconnect A B 

The telephone rings, a user answers, and later hangs up 

to terminate the call 

StartRinging A B, Off-hook A, StopRinging A B, 

Disconnect A B, On-hook A 

As above, except that the calling party disconnects 

before the called party goes on-hook. 

StartRinging A B, Disconnect A B, StopRinging A B The telephone rings and the calling party disconnects 

before it is answered. 

Table 4: Chisel -- Sequence of events for receiving a call 

Each of the events in above table consists of an event type and one or more parameters. Most of the 

events are self-explanatory, like StartRinging A B, which says that subscriber A’s telephone rings for 

an incoming call from subscriber B. Disconnect A B says that the connection between A and B has 

been broken. 

Every feature in Chisel executes on a specified platform, which defines the set of event sequences 

that are allowed. Two operations, Projection and Union, can be applied to feature specifications. The 

union operation is used to combine sets of event sequences, and the projection operation restricts a 

set of event sequences to the event types that a feature recognizes. A feature interaction is detected 

if, after projecting the sequences in the union of two features’ event sequences onto the event types 

recognized by one of the features, the resulting set of sequences is different from the original set of 

sequences for the feature. For example, Features Three-Way Calling and Call Waiting both use the 

same event Flash. The following sequence illustrates a Call Waiting sequence whose projection is not 

a Three-Way Calling sequence. The events are recognized by both features and the events are 

recognized only by Call Waiting.  



 

6 

StartRinging m n, Off-hook m, StopRinging A B, CallWaitingTone m q, Flash m, Disconnect m 

n, On-hook m 

The above sequence represents a scenario in which subscriber m’s telephone rings, m answers, its 

telephone stops ringing, a call waiting tone alerts m that a second call is coming from q, m flashes the 

hook to switch to answer q, the first calling party n disconnects, and m hangs up eventually. 

When we project the above sequence onto Three-Way Calling’s events, the projection eliminates 

event CallWaitingTone m q , which is not recognized by the Three-Way Calling feature. However, the 

resulting sequence is not a valid event sequence for Three-Way Calling because Three-Way Calling 

expects a Dialtone event after a Flash event. 

Chisel is sufficiently precise to support automated translation to more formal languages, such as 

Message Sequence Chart, by ways of the translation tool SCF3/Sculptor. The converted formal 

language can be verified using formal methods.      

H. Jouve et al. presents a static analysis method for detecting interactions between two features [12]. 

A service specification comprises a diagram expressing exchanges between the network (the 

abstraction of the complete physical network and its components) and the connected phones. A state 

in the diagram represents the telephone status. For example, idle(A) means that telephone A is not in 

use. Every transition between two states is labelled by a phone message and a network answer. A 

phone message such as A.call(B) means that telephone A calls telephone B. A network message like 

start(disctone).A means that the network issues a disconnect tone to telephone A.  

The detection method combines two major steps: 1) extract the triggering information of features, and 

2) analyze if two features share the same triggering messages (direct interaction) or one feature’s 

intentional message (an actual action) coincides with the second feature’s triggering message. 

Consider two features Call Forward on Busy (CFB) and Terminating Call Screening (TCS). CFB 

forwards incoming calls to another phone when its subscriber’s phone is busy. TCS prevents 

incoming calls from phones chosen by the subscriber. Table 5 illustrates the interactions:  

CALL 

CONFIGURATION 

TRIGGERING 

MESSAGE 

TRIGGERING 

CONDITION 

INTENTIONAL 

MESSAGE 

STATE CONDITION  

B: CFB(C) A. call(B) ~ idle(B) dialing(A) A. call(C) Idle(C) dialing(A) 

B: TCS(A) A. call(B) dialing(A) none none 

C: TCS(A) A. call(C) dialing(A) none none 

Table 5: Triggering Information Extraction 

The call configurations B: CFB(C) and B: TCS(A) share the same triggering message, which reveals 

a direct interaction scenario: Telephone B subscribes to both CFB and TCS features. CFB forwards 

its incoming calls to phone C when B is in use, while TCS plays a refusal message to incoming calls 

from phone A. Then, how should telephone B respond to calls from A when telephone B is busy?  

The intentional message of call configuration B: CFB(C) coincides with the triggering message of call 

configuration C: TCS(A), which reveals an indirect interaction scenario: B’s CFB feature forwards 



 

7 

incoming calls for telephone B to telephone C when B is in use, and C’s TCS feature plays a refusal 

message to incoming calls from phone A. Then, how should phone C responds to a call forwarded 

from B, and originally from A?  

Distributed Feature Composition (DFC) proposed by Michael Jackson and Pamela Zave[3], is an 

architecutural approach. Telecommunication features are modeled as independent components, 

which we call boxes. Boxes are composed in a pipe-and-filter-like sequence to form an end-to-end 

call. More detailed information about DFC will be given in the next chapter. 

1.2.1  Contributions of This Work 

Our work studies the behaviour of single feature boxes. We translate BoxTalk specifications [4] into 

another format, that is more conducive to automated reasoning. We build formal models of the 

translated format, which are then checked by a model checker, SPIN, against DFC compliance 

properties written in Linear Temporal Logic (LTL). From BoxTalk specifications to Promela models, 

the translation takes steps: 1) Explicating the BoxTalk model, which expands BoxTalk macros and 

presents its implicit behaviours as explicit transitions. 2) Define BoxTalk semantics in terms of 

Template Semantics [5]. 3) Construct a Promela model from Template Semantics. Our case studies 

exercise this translation process, and the resulting models are proven to hold desired properties. By 

guaranteeing good behavior of components, our work allows the feature box developer to focus more 

on coordinating components. 

1.3  Organization of This Document 

The rest of the document is organized as follows. Chapter 2 describes the background knowledge of 

DFC and BoxTalk. Chapter 3 presents the process of explicating BoxTalk. Chapter 4 explains 

Template Semantics and presents a Template Semantics definition for BoxTalk. Chapter 5 introduces 

background on Promela and SPIN and presents Promela models of feature boxes. Chapter 6 

concludes with case studies. Chapter 7 summarizes our work.  



 

8 

Chapter 2  Background 

In this chapter, we provide the background needed to understand this thesis. In particular, we briefly 

introduce some relevant concepts of Distributed Feature Composition and BoxTalk. The model 

checker SPIN and its input language Promela are introduced in later chapters.  

2.1  DFC 

The Distributed Feature Composition (DFC) architecture decomposes complex behavior into multiple 

simpler features, that are coordinated by the DFC protocol. DFC is designed for feature modularity, 

structured feature composition and analysis of feature interactions. It has a pipe-and-filter 

architectural style, features are developed independently and behave individually, and the system is a 

composition of the features.  

2.1.1  Calls and Usages 

A traditional customer call is referred to as a usage. Telecommunication features are viewed as 

boxes in DFC. A usage is built up by chaining feature boxes together with internal calls -- a 

featureless, point-to-point connection with a two-way signaling channel and any number of media 

channels. An internal call is like a plain old-fashioned telephone call. Besides representing features, 

boxes also represent interfaces to devices (e.g., telephones), trunks and other resources. An internal 

call is shown as an arrow from the box that placed the call to the box that received the call. So, a 

usage in DFC will look like Figure 1:  

 

Figure 1: Usage 

This usage involves two features and three internal calls. Line interfaces a and b provide interfaces to 

the caller’s and callee’s telephone devices, respectively. We refer to the caller and callee interface 

box as the source interface box and target interface box, respectively. Upstream and 

downstream represent relative positions between boxes along the flow of the pipeline. From the 

reference of any box F in usage, an upstream box is closer to the source interface box than box F is. 

For example, feature1 is upstream of feature2. Hereafter, we use the term call to refer the internal 

call placed between consecutive boxes.  

 
 

caller

 
 

calleeIine Interface a feature 1 Iine Interface bfeature 2



 

9 

2.1.2  DFC Protocol 

A usage, as shown in Figure 1, is dynamically assembled. Each box sets up and tears down its 

internal calls by using the DFC protocol. The router embedded in the DFC architecture is responsible 

for setting up usages. 

The primary DFC signals are setup, upack, teardown and downack. To initiate a call, a box sends a 

setup signal to the router. The router determines the next box in the usage and then forwards the 

setup signal to that box. Callee box accepts this call by sending an upack signal back and then 

propagates the setup signal to the router. Again, the router determines the next box in the chain. At 

this point, a call is set up between two boxes and a bi-directional signal channel between these two 

boxes has been established. Boxes can pass any signals along calls in both directions. A call setup is 

illustrated by Figure 2: 

1 . s e tu p 2 . s e tu p

3 . u p a c k

 

 
 

F e a tu re  B o x  1  

 
 

F e a tu re  B o x  2  

 

Figure 2: Call setup 

One might notice that call setup in DFC is piecewise. That is, each internal call is completed before 

the next call in the pipeline is started.   

 

    

    setup

upack

 

 

 

 

 

 

setup

setup

upack

upack

IB IBFB FB

 

Figure 3: Piecewise setup 



 

10 

 

Behaving this way allows more autonomy to each component (box). Imagine that each feature box 

doesn’t acknowledge a setup message immediately, but rather waits to receive an outcome from the 

rest of the call setup process. Then all feature boxes would be frozen until the usage reaches its 

endpoint. None of the boxes would receive or send message until an outcome message is sent back 

from the downstream boxes. Features would not be able to respond to the caller hanging up until 

after the end-to-end call is established or is determined to have failed.  

Similarly, to actively terminate a call, box sends a teardown signal to its neighbor(s) in the usage. The 

receiving box sends back a downack signal and then propagates the teardown signal further down 

the chain. Upon receiving a downack signal, a box terminates and is freed from the usage. 

The teardown signals may crossover. That is, box may receive and react to an incoming teardown 

signal while waiting for an acknowledgement of a previously sent teardown. We will see more 

discussion of this in later chapters.  

Besides the basic signals for setting up and tearing down calls, there are four status signals: 

unknown, avail, unavail, and none. Different from signals for setting up and tearing down calls, status 

signals are generated by the target interface box and are linearly send back upstream along the 

established usage. Together, they cover different outcomes of a call setup: unknown indicates an 

invalid target address(i.e., the dialed number does not match a valid address), unavail represents a 

callee who is already connected in another usage, avail indicates that the call has successfully 

reached the callee’s interface box, and none cancels the effect of any of the three previous signals on 

a user interface.  

2.1.3 Box Classes: Free or Bound    

Boxes are categorized into two classes: Free and Bound. Most features are implemented as free 

feature boxes. This means that a new run-time instance of this feature is spawned each time the 

feature is included in a usage. In contrast, there is only one instance of each bound feature, and it is 

permanently associated with the user.  That one instance of the feature is included in every usage 

involving its subscriber.  

Bound feature boxes are needed to implement features that coordinate multiple usages, like Call 

Waiting (CW). This feature works by coordinating all of the signals that flow along all of the usages in 

which its subscriber is involved.  

2.1.4 Calls, Call Variables, Port IDs 

Calls are internal calls between boxes. The ports of a box are referred by Call variables. Port IDs 

are the identifiers of allocated communication channels. Abstractly, we think of a call variable as 

being assigned the value of a call, but technically, it is assigned the value of a port ID.   

Internal calls are channels that connect named ports of consecutive boxes. In addition, every box has 

a special boxport for receiving setup requests from the router. Figure 4 shows two feature boxes, 

each with three ports: boxport, callee port in and caller port out. When feature box 1 receives a setup 



 

11 

message from the router, it allocates port in to participate in the requested internal call by sending 

back acknowledgement upack to its upstream neighbour. Then, port out sends out a new setup signal 

to the router to continue the usage. The router determines the next downstream neighbor, feature box 

2, and forwards to it the setup signal, along with box 1’s address. Feature box 2 sends an upack 

directly to feature box 1 via this address. At this point, a connection is established between port out of 

box 1 and port in of box 2. Behaving the same way as box 1, box 2 continues to extend the usage.    

2. upack

(to upstream)

boxport

in out

1. setup (from router)

boxport

in

4. setup (from router)

out

3. setup (to router)

5. upack

(to upstream)

FeatureBox1 FeatureBox2
 

Figure 4: Ports 

Bound boxes have more ports. For example, a CW feature box has four ports that enable it to be 

engaged in three calls; A conference feature box has n ports which enable it to handle n-1 conference 

calls at one time. Like free boxes, a bound box has a reserved boxport for receiving setup signal from 

the DFC router.  

2.1.5 Free Box Vs. Bound Box 

With respect to setup and teardown processes, free and bound box behave differently. A free box 

accepts one setup signal during its lifetime. Actually, it is spawned in response to a setup signal, and 

processing the setup signal is the first thing it does. Subsequent setup signals are rejected by 

sending signal sequence: upack, unavail, teardown. Unlike free boxes, a bound box may receive and 

accept multiple setup signals. When a new setup signal comes from the subscriber, all old calls are 

torn down and the new setup is propagated. When a new setup signal comes from the far party while 

this box is involved in a usage, then depending on the feature, the box may reject the new setup by 

sending upack, unavail, teardown, or it may accept the new setup and alert the subscriber, as in Call 

Waiting feature. 

 



 

12 

 

Figure 5: Call teardown 

The call-teardown process starts when a teardown signal is received from a neighbouring feature (as 

shown in Figure 5) or when the feature initiates a teardown signal. The process ends when teardown 

signal has propagated to all of the feature box’s calls, and all of the signals have been acknowledged. 

In Figure 5a, the feature box is involved in a usage with calls a and b connecting it to its neighbours. 

In Figure 5b, the box responds to a teardown signal from call a with a downack signal on call a. At 

this point, call a is considered torn down, and the box is disconnected from its one side neighbour. 

Then, the box propagates the teardown signal to its other neighbouring feature, If there is any 

teardown signal cross-over, the box responses with a downack signal. In Figure 5c, the box receives 

a downack signal. At this point, call b is considered torn down as well, and the box is disconnected 

from both neighbours.  

A free box dies when it is freed from a usage. As a bound box, as soon as a teardown signal is issued 

on each of its calls, it is ready to be included in a new usage. The rest of the teardown process 

(waiting for downack) is processed in the background.  

In summary, the DFC architecture offers great independency to its feature boxes, so that each feature 

can be developed, enhanced, and verified separately. It also provides a clean and structured means 

to study the feature-interaction problem. 

In the next section, we discuss the contents of a box. 

2.2 BoxTalk 

BoxTalk is a high-level, domain-specific programming language for programming DFC feature boxes. 

BoxTalk defines features in terms of extended finite state machines, with typed variables, but without 

concurrency or state hierarchy. A box receives signals through named ports, performs local actions 

(eg. changing state, setting local variables), and outputs signals to named ports.  

Although a box can have an unlimited number of ports, it may be awkward to refer to a call by means 

of specific ports, as different situations may call for different ports. BoxTalk introduced a higher-level 

concept, call variable, that refers to ports. A box program declares some number of call variables. A 

call variable either has a distinguished initial value noCall or a unique ID, which refers to a port. Call 

variables and ports are at different levels and serve for different purposes. Ports are more concrete, 

they are physically located on boxes. Like all other variables, call variables are more abstract and 

flexible, they may refer to different calls at different times. For example, Call Waiting has call variable 

w that refer to the call that is currently on hold. We will see the convenience of call variables in later 

examples.  



 

13 

2.2.1 States 

BoxTalk has five types of states: initial, stable, transient, termination and final states. The first four 

types of states have graphical representations, while the last type, final state, exists only 

semantically.  

An initial state is represented as a small black circle. There is exactly one initial state for each 

feature box instance.  A feature box in an initial state is ready to receive new calls. 

Stable states are represented as rectangles. A feature box rests in a stable state until a new signal is 

received from the environment.  

Transient states are represented as large clear circles. Transient states are used to decompose a 

complex transition into a sequence of transition segments that execute at the same time.  As such, 

transient states are intermediate states rather than real execution states. A box does not read new  

input when in a transient state. However, transitions out of a transient state may lead to different next 

states based on the evaluation of the box’s local variables. At least one transition out of a transient 

state should  always be possible - execution should never be blocked in a transient state.  

Termination states are represented as heavy bars. A box transitions to a termination state on receipt 

of a teardown signal if the default action is not overridden by any explicit transition. When in a 

termination state, a box may react to teardown signals from other named ports by responding with a 

downack signal but throws away all other signals except downack.  

Final states have no graphical representation. There is exactly one final state for each free box. It is 

reached from a termination state upon receipt or sending of a downack signal. In a final state, all 

active calls have been ended and the box is freed from any usage.  

2.2.2 Transitions 

Transitions reflect state changes. They are depicted as arrows from the current state to a destination 

state. Transitions out of an initial or stable state have labels whose format is “trigger / actions”. 

Transitions leaving transient states have labels whose format is “guard / actions”. The guard and 

actions are optional.  

A trigger of a transition could be a simple receive event: one input signal read on one input queue, 

which is depicted as callVariable ? signal; or a macro that combines the receipt of a signal and a 

sequence of actions, and has the form macroName(callVariable). For example, c? teardown means 

that a teardown signal is read by the port associated with call variable c; rcv(c) means that a setup 

signal arrives and the new call is allocated a new port ID, which is assigned to call variable c.  

Similarly, actions could be simple send actions, which are depicted as callVariable ! signal; or 

assignments that change the values of call variables; or macros that combine signal sending and 

other actions; or any combination of the above. The execution of an action shouldn’t be blocked if its 

precondition is satisfied.  

A guard is a predicate on the state of the box. Which transition to take from a transient state is 

determined by the evaluation of the transitions’ guards. Guards on branches are not necessarily 



 

14 

exclusive. However, the disjunction of the transitions’ guards must evaluate to true to ensure 

executability.  

Thus, a complete transition is triggered by an input signal, may enabled by guard predicates, and 

may be followed by one or more transition segments out of transient states, and ending in a stable or 

termination state.  

2.2.3 Example: Call Waiting 

Let us look at the Call Waiting (CW) feature box as an example. CW is a feature that allows a user to 

be notified of another incoming call while a call is already in progress, and gives the user the ability to 

answer the second call while the first call remains on hold.   

  

  

 

s_from_subscriber / ctu (s, a)

s_from_afar / s, a = -, s; ctu (a, s)

s? switch

transparent :

(s, a)

call_waiting:

(s, a), w

rcv (w) / s !  cw_indicator

s? switch /

a, w  = w, a

w ? tdn

s? tdn

/ end(a);  a, w  =  w, -

all_held:

s, w

a ? tdn

s? switch /

a, w  = w, -

 
 

 

 
a_from_subscriber / ctu (a, s) {reverse}

a_from_afar / ctu (a, s)

rcv (c)

 

Figure 6: Call Waiting 

The observable behaviours of the CW box are presented in three stable states: transparent, 

call_waiting and all_held. The box executes via transitions. Transitions may cause the box to change 

to a new state, or may return execution to the same state.  

In state transparent, the CW feature is inactive. The subscriber participates in a call as usual, until the 

receipt of another call request. Then the subscriber hears a special tone that indicates the presence 

of a new call. In the meantime, the box transitions into the call_waiting state.  State call_waiting 

represents an active CW feature. The called subscriber may answer the new call by flashing the hook 

to put on hold the original conversation. By flashing hook repeatedly, the subscriber is able to switch 

back and forth between the two calls. Any party may hang-up in the call_waiting state. If the call that 

is on hold hangs up, it is not noticeable by the two parties who are speaking and the box transitions to 

the transparent state. If the connected call hangs up, the box transitions to the all_held state. The 

remaining two calls cannot talk to each other unless the subscriber flashes the hook. This action 

leads the box back to the transparent state.  



 

15 

2.2.4 Sending and Receiving Signals 

We have touched the sending and receiving of signals in earlier sections. Simply, there is a call 

variable associated with each port. The call variable stores the port identifier assigned to the port at 

run-time. All signals sent to or received from a call variable are actually sent to or received from the 

variable's associated port. However, a call variable is able to efficiently represent the idea of role 

change during a usage. For example, in the call_waiting state, the event of flashing hook represented 

as s? switch causes the feature to swap port identifiers stored in the connected and on-hold call 

variables a (active) and w (waiting), respectively. Physically, the ports connected to each call remain 

unchanged.  

We have discussed previously the signals for setting up and tearing down calls and for 

communicating status. In addition, some signals are feature specific, like the switch signal in CW. The 

switch signal is generated by flashing the hook, and is meaningful to the CW feature box only.   

Signals pass between boxes along internal calls. How do signals pass through boxes? If two ports 

are signal-linked, represented as a tuple of two call variables inside a parentheses in a stable state, 

then signals can pass between the signal-linked ports, from the input port to the output port. This 

represents the default behavior of feature boxes. This default behavior can be overridden by 

transitions triggered by specific input signals under specific conditions (expressed as guards). For 

example, in the call_waiting state, a switch signal will cause a role change of call variables a and w. 

While in the transparent state, a switch signal doesn’t cause any change in observable behaviour of 

the box; switch signal will be thrown away after a self-transition.  

2.2.5 Conditions 

Conditions are predicates over local variables or over data parameters in received signals. For 

example, on receiving a setup signal, the CW box needs to determine from which direction the setup 

signal is travelling. A True evaluation of predicate s_from_subscriber
1
 represents a call originated by 

the subscriber. In contrast, a true evaluation of s_from_afar represents a call originated by a far party. 

Based on the value of these predicates, the feature either propagates the setup signal towards the far 

party (if the setup signal was received from the subscriber), or propagates it to the subscriber (if the 

setup signal was received from the far party). When the subscriber terminates a conversation while a 

third call is on hold, box will call the subscriber back. In this case, the predicate a_from_subscriber 

and a_from_afar are used to configure the new setup fields.  

2.2.6 Assignments 

Call variables hold port identifiers. In the CW example, call variable a stands for active: it stores the 

port ID associated with the far party that is actively connected to the subscriber; call variable w stands 

for waiting: it holds the port ID of the far party that is on hold.  If the subscriber switches between the 

two remote parties, that switch can be realized by swapping the values of call variables a and w, 

syntactically represented as 

                                                      
1
 S_from_subscriber – The “s” in the condition refers to the source field of the received input message. 



 

16 

a, w = w, a;  

so that variable a refers to the newly active call and variable w  refers to the call now on hold.   

Some other statements also change the value of call variables: rcv(c) receives a new call, and the 

port identifier of the new call is assigned to call variable c; new(c) and ctu(c0,c) place new calls, and 

the port identifier of the new call is assigned to call variable c.  

Call variables can be classified in sets portAllocated, known, and active. The set portAllocated 

contains the call variables associated with all calls currently allocated to ports. The set known is the 

union of calls that are accessible. The set active contains the identifiers of all active calls. They have 

subtle differences. A call becomes active immediately upon the receipt of or the start of a new setup 

signal. If the call that a call variable refers to has been torn down and this call variable hasn’t yet been 

assigned a new value, then this call variable is in known, but not in portAllocated.  

The set variables portAllocated, known and active are not used in our explicated models. 

Figure 7 further illustrates the differences between sets: 

setup upack teardown

started

teardown

finished

may or may not be known, depending on 

whether call variable is assigned to a new 

value

Lifetime of a call:

portAllocated

active

known

 

Figure 7: Sets -- portAllocated, known, active 



 

17 

Chapter 3 Explicating BoxTalk 

There is a lot of implicit, unexpressed behaviour in a BoxTalk model. Behaviour that is common to all 

BoxTalk models is abstracted away to accentuate each model's unique behaviour. Examples of such 

abstractions include:  

§ Macros, such as rcv(i) that implement a sequence of read, write, and assignment actions; 

ctu(i, o) that represent one or more intermediate states
2
 and a sequence of transitions. They 

are implicit by default. Their behavior can be overridden by explicit transitions.  

§ Hold queue. When a feature box sends out a new or propagated setup signal, a hold queue 

is constructed for the caller port. All subsequent signals sent to that port are queued in the 

hold queue, until the port receives an acknowledgement that the call is successfully setup. 

For example, in ctu(i, o), a setup signal is sent through named port o to the router, to 

continue the usage. A hold queue o.hold is constructed to hold the subsequent signals sent 

out on port o until an upack signal is received on port o.   

§ Signal linkage. In some stable states, the feature box is connected to two neighbouring 

features, each via an active call. Signals from either neighbouring feature will be passed on 

to the other neighbour if not reacted to by transitions. This behaviour is the default reaction 

to receiving an input signal, but it can be overridden by explicit transitions.  

§ Feature termination. A free feature box transitions from a termination state to a final state 

on certain conditions.  

Such implicit behaviour must be explicitly represented in a feature box model, in order to model check 

the model. This process is called explication. We will explain this process by way of examples.  

3.1 Explicate BoxTalk – free box 

Consider the feature box Free Transparent Box (FTB). Figure 8 shows its original BoxTalk 

specification.  

 

Figure 8: FTB (Original specification) 

FTB has two states(initial state and transparent state) and one transition from initial state to 

transparent state. Upon receiving a new call i, the feature box places new call o and transitions from 

the initial state (represented as a small black circle) to transparent state. Once call o is established, 

FTB acts as a signal-linkage between the two calls. That is, whenever the feature receives a signal 

                                                      
2
 An intermediate state may be either stable or transient.  



 

18 

from either call, the feature forwards the signal to the other call -- as if the feature were transparent 

and were simply a pipe connecting calls i and o. 

 

 

Figure 9: FTB (Explicated model) 

Figure 9 shows the result of explicating the specification from Figure 8. In explicated models, we use 

a rounded rectangle to represent a states without distinguishing graphically between stable or 

transient states. A double black circle represents the final state. We use a black circle to represent 

the initial state.  

The explicated FTB specification contains eight states and almost twenty transitions. We will discuss 

the explication process in detail, starting with the transition from the initial state. 

3.1.1 Expand Macros 

BoxTalk use macros, such as new() and rcv() to combine a sequence of read and write actions, which 

builds moderate complexity into BoxTalk semantics. Handling complexity this way makes the box 

programmer’s life easier: he doesn’t have to program the full detailed behaviour himself. In addition, it 

enables a more reliable and consistent implementation, as the semantics of BoxTalk need only be 

verified and implemented once.  

We discuss macros in the following order:  

§ macros explicitly used in FTB – rcv() and ctu() 

§ macros implicitly used in FTB – gone() and end() 



 

19 

§ macros not used in FTB – new() 

3.1.1.1 Macros explicitly used in FTB 

In original specification of FTB, macros rcv() and ctu() are explicitly used.  

Macro rcv(i) combines a guard and action. It sets up a new call on receiving a setup signal. The new 

call is identified as i. The macro maps to boxport ? setup / i ! upack. 

The boxport is a reserved port that is designated for setup signals from the DFC router. When the 

router has a setup to process, it determines the next box in the usage. In case of free boxes, the 

router spawns a new instance of the next box and then forwards the setup signal to the box’s boxport. 

In case of bound boxes, the router simply forwards the setup signal to box’s boxport. Upon a setup 

signal arriving on boxport, a box allocates a port for this new call, known by the box as call i. The 

acknowledgement upack is sent on the newly established call i. The setup signal contains the name 

of the sending port, the box knows to whom to send the upack signal. At this point, a call between the 

box and its upstream caller box has been established.  

Macro ctu() is an action that propagates an input request to set up a usage, by sending a setup signal 

to the router to create the next call segment of the usage. We expand the macro into two transitions, 

one that sends the setup signal and waits in an intermediate state, and a second transition receives 

the corresponding upack signal. 

Referring to the FTB example, ctu(i, o) maps to the state connecting, with call variable i and o, 

transition o!setup to connecting state, and transition o?upack from connecting state.  

The box doesn't know the next box in the usage, but it knows that port o will be the port to the 

resulting call, so the setup signal is sent out via port o to the router.  The router uses information 

about the subscriber’s feature subscriptions to identify the next box in the usage, and to forward the 

setup signal to that target box. Box transitions from the intermediate state to transparent state once 

upack is received at port o. 

3.1.1.2 Macros implicitly used in FTB 

Besides the macros discussed above, macros gone()and end() are implicitly used in FTB.  

In original specification of FTB, there is no explicit out-transitions of transparent state. Instead, the 

receipt of a teardown signal from an active call at any stable state terminates the entire box program, 

which includes ending all other active calls. Syntactically, the process we just described is expressed 

by BoxTalk macros gone() and end(). 

Macro gone(c) implements behaviours in reaction to the box receiving its first teardown signal, on call 

c, assuming that the box has not sent out any teardown signals. The macro causes the box to 

transition to a termination state. The macro is fully expanded as c?teardown / c!downack; if there is 

any other active call, say c0, that is signal-linked with call c, then gone(c) will trigger macro end(c0). 

Macro end(c0) initiates the teardown of call c0. It begins with sending a teardown signal; however, the 

teardown phase is not completed until the other end of the call acknowledges the teardown via a 



 

20 

downack signal. Similar to ctu(), end(c0) maps to an intermediate state, with transitions entering and 

leaving the state, labeled with c ! teardown and c ? downack, respectively. 

In transparent state of the original FTB specification, both gone(i) and end(o) are implicit. Macro 

gone(i) represents the receipt of a teardown signal on call i, the sending of a downack signal, and, the 

propagation of the teardown signal to end call o. 

State terminatingO is the intermediate state introduced by end(o). The box sends a teardown signal 

on call o, and then waits in the intermediate state until acknowledgement downack arrives on call o.  

Symmetrically, in transparent state of the original FTB specification, an implicit gone(o)/end(i) maps to 

state terminatingI with incoming transition labeled with o?teardown/o!downack/i!teardown, and 

outgoing transition to final state labeled i?downack.  

3.1.1.3 Macros not used in FTB 

Macro new(c) is used to initiate a new usage, via a setup signal to set up the first internal call of that 

usage. This new call is assigned to port c.  

The semantics of new() is much like that of ctu(). The difference is that new() indicates initiative, 

whereas ctu() emphasizes propagating. To implement new(c), the feature box sends a setup signal to 

the DFC router and allocates port c to wait for the upack signal.  

Like ctu(), the macro new(c) expands to two transitions and an intermediate state. c ! setup transitions 

the box from initial state to the intermediate state, and transition c ? upack leads the box from the 

intermediate state to transparent state. 

Table 4 summarizes macro expansion we described above.  

 

MACRO EXPANSION 

rcv(i) 

 

ctu(i, o) 

 

gone(o) 

 

end(i) 

 

new(c) 

 

Table 6: Macro expansion 



 

21 

3.1.2 Hold Queue 

Setting up a call consists of two phases: 1) sending a setup signal; and 2) receiving an 

acknowledgement signal upack. The setup signal is sent to the router, which forwards the signal to 

next box. Until the acknowledgement signal is received, the call is not yet established, and there is no 

“call” to send signals to. Instead, any signals destined for an unestablished call are held locally, in a 

hold queue we constructed that preserves the order in which the signals to the call were issued. 

Once the call is established, as evidenced by the upack signal, the held signals are forwarded to the 

call.  

In the explicated FTB model, at the connecting state, call i is active while call o is not fully setup. 

Instead, a hold queue o.hold holds the signals sent to call o. This hold queue becomes active when 

the box sends the setup signal out on call o. Once call o is fully established, evidenced by the arrival 

of an upack signal on call o, the contents in the hold queue are output to call o, preserving the order 

in which signals were to sent to call o. The hold queue may overflow, in which case the box 

transitions to the error state, which we discuss in a later subsection.  

3.1.3 Signal Linked Calls 

A two-way signal linkage exists between pairs of calls at some states of the box. At such states, when 

a signal arrives from either call, the default behavior is that the signal does not trigger any action; 

instead, the box simply passes the signal to the other call. A state at which signal linkage is the only 

function is usually named “transparent state”, and we refer its behaviours as “transparent 

behaviours”. In other words, the presence of the feature box that is behaving transparently acts as if it 

were not in the usage, and instead, the two neighbouring features were directly connected to each 

other.  

In the explicated FTB model in Figure 9, signal_linkage is represented as a pair of parenthesized call 

variables, (i,o), in a stable state. Transparent behaviour is realized by two transitions i?sig / o!sig and 

o?sig / i!sig, in which, sig represents any signal other than teardown. The teardown signal will trigger 

the feature box to transition to a termination state.  

3.1.4 Feature Termination  

In the termination states of feature boxes, all calls become inactive, but calls that are not fully torn 

down still have ports allocated to them. That means that the box still receives signals from those ports 

and discards them, except for signal teardown and downack. The box responds with a downack 

signal when it receives a teardown signal. The receipt of a downack signal indicates the completion of 

the teardown process: the ports allocated are disassociated, free box transitions to its final state, 

while bound box transitions to its initial state. 

The explicated FTB specification has two termination states, terminatingO and terminatingI, and one 

final state. State terminatingO is reached by gone(i) from state transparent. In this state, the FTB box 

has no active calls. However, a port is still allocated for call o while the box waits for a downack 

acknowledgement on call o. The box reacts to a teardown signal on call o with a downack signal, and 

it ignores other signals. Symmetrically, state terminatingI is reached by gone(o) from state 



 

22 

transparent. The box waits for a downack acknowledgement on call i and reacts to a teardown signal 

with a downack signal. The final state is reached only when all ports are freed on receiving a 

teardown signal or a downack signal for each teardown signal sent. This feature box is terminated 

and withdrawn from the usage when it transitions to the final state. 

3.1.5 error State 

Error states are not part of the syntax and semantics of BoxTalk. We introduce error states to keep 

the size of the model finite, and to enable finite state analysis (like model checking). For example, we 

put a limit on the capacity of hold queues. When a hold queue is over-full, the box transitions to an 

error state. Error states are final states.  

3.1.6 abandonConnection state 

As a side effect of introducing a connecting intermediate state, more intermediate states might be 

introduced. State abandonConnection is such a state. It is reached when a teardown signal is 

received from call i in state connecting. To understand this scenario, we consider call i that is 

connected to the caller end, and the call o to the callee end being established. Before call o is 

established, the caller changes his mind and hangs up. Thus, the box receives setup and teardown 

signals in sequence from call i. The box propagates teardown to call o (i.e., saves the signal in hold 

queue o.hold). When call o is established on receiving the upack signal, the contents of the hold 

queue  including the teardown signal are propagated to call o; call o responds with a downack signal. 

This sequence is depicted in Figure 10.  

 

Figure 10: FTB -- abandonConnection state 

3.2 Explicate BoxTalk – bound box 

In this section, we present the explication of bound boxes. A bound box has some unique 

explications, which we will explain in detail when walking through the Bound Transparent Box (BTB) 

example. Figure 11 shows its original specification.  



 

23 

 

Figure 11: BTB (Original specification) 

 

BTB has four states: initial state, orienting state, transparent state, and receiving state. The 

transparent state is a stable state, while orienting and receiving are transient states. The transient 

states are decision-making states: Depending on the evaluation of a local variable, the box takes 

different actions. Let us look at BTB starting from the initial state. 

In the initial state of  BTB, upon receiving a new setup signal, the box allocates a port for the call, 

stores the port ID in call variable t, and then transitions to the orienting state.  

State orienting is a transient state. When sitting in this state, the box won’t take new signals from the 

environment. Instead, it tests predicate t_from_sub, which is true if the call originates from the 

subscriber of the feature box. The symbol ! stands for negation of the disjunction of other predicates 

on outgoing transitions (similar to an “else” clause). Thus, the box transitions from orienting to 

transparent state, and the box is added to a usage regardless of whether the subscriber is the original 

caller. Different actions are performed in the two cases. If the predicate evalues to TRUE, the box 

associates the call with variable s, then continues the usage to far end. Otherwise, call variable f is 

associated with the port, and the usage extends to subscriber end.  

Statements like s, t = t, - change the values of the call variables. In this assignment, call variable s 

gets the value of call variable t, while call variable t gets the value nocall (which is the default value of 

calls).  

In the transparent state, a signal linkage is established between calls associated with variables s and 

f. A teardown signal from either end will lead the box to exit from the transparent state. Interestingly, 

the box goes to the initial state instead of to a termination state on teardown signals.  

Unlike free boxes, bound boxes may receive and react to a setup signal at any stable state. If a new 

call request arrives when the box is sitting in the transparent state, then, as before, the box will 

allocate a port, and store the port ID in call variable t, and then test the predicate t_from_sub at 

transient state receiving. If the new call is issued by the subscriber, the box tears down old calls s and 

f and establishes the new call: the box transitions to transparent state with the new established call. 

Otherwise, the box announces its unavailability: it sends out the status signal unavail to indicate the 

box is busy. When the box is unavailable, signals upack, unavail, and teardown are sent in sequence: 

signal upack is in response to the setup signal, and signals unavail and teardown are issued to 

terminate the connection. 



 

24 

Because the box needs to test whether the incoming call is from the subscriber end and must act 

accordingly, call t, a temporary call variable, is used to process new setup signals immediately. Right 

after sending back an acknowledgement, call variable t is evaluated with predicate t_from_sub and 

the box reacts accordingly. In summary, there are four situations:      

§ When receiving a setup signal in the initial state, and t_from_sub evaluates to true, call s 

(associated with the call from the subscriber) will take the value of call t. 

§ When receiving a setup signal in the initial state, and t_from_sub evaluates to false, call f 

(associated with the call from the far party) will take the value of call t.   

§ When receiving a new setup signal in any stable state other than initial, and t_from_sub 

evaluates to true, the box will tear down all current active calls and start over to establish 

new calls. 

§ When receiving a new setup signal in any stable state other than initial, and t_from_sub 

evaluates to false, the box will ignore the new setup signal by tearing down call t, and 

keeping other active calls.  

BTB reveals that the initial state of a bound box is the final state as well. As soon as the old call is 

terminated, the box is ready to accept new calls. 

 



  

25 

 

Figure 12: BTB (Explicated model) : main 



  

26 

 

 

Figure 13: BTB (Explicated model) : post-process 

Figure 12 together with Figure 13 show the explicated specification of BTB.  

BTB is explicated as two concurrent finite state machines: one main machine and one post-

processing machine. Whenever a teardown is sent out on a call variable in the main machine, this call 

variable is ready to take a new value. Thus, the post-processing machine is responsible for following 

through or tearing down the call associated with the variable’s port ID. In this way, BTB can deal with 

two usages asynchronously: the main machine can establish a new usage while the post-processing 

machine is tearing down the old one.  

The main machine of BTB in the explicated model has nine states, in which, state initial, orienting, 

transparent and receiving correspond to the states in original specification. States connecting_f , 

connecting_s, deciding_1 and deciding_2 are intermediate state. State error is added to ensure finite 

analysis.  

Just like state connecting in FTB, connecting_s and connecting_f are states in which the box waits for 

acknowledgement signals of a new call. However, the two states are stable states, in which a new 

setup signal could instead be received. States deciding_1 and deciding_2 are further introduced as 

decision-making states for reacting to new setup signals. They function as transient states, like state 

orienting in the original specification.  

All decision-making states work in this manner: If the new call request is issued by the subscriber, the 

box tears down all existing calls and establishes a new one; if the new call request is issued by a far 

party, the box announces its unavailability and frees the port allocated to the new call.  



 

27 

We construct a hold queue for call variables f and s at state connecting_f and connecting_s, 

respectively. The error state is reached when either hold queue overflows.  

The calls s and f are signal linked in the transparent state. Transparent behavior is realized in the 

explicated model by the pair of transitions s?sig / f!sig and f?sig / s!sig. When a teardown signal 

arrives from either call, the box transitions to the initial state, instead of to a termination state as in a 

free box. At the same time, a trigger to enable the post-processing machine is issued.    

The post-processing machine cleans up terminating calls, by waiting for upack and downack signals. 

The post-processing machine deals with one call at a time. For terminating call t, it transitions to 

t_work state and waits for a downack signal on call t. In the cases of call s and f, if the call is 

terminated before the upack signal is received from the callee, the post-processing machine will need 

to collect two acknowledgements: upack then downack. Local variable communicating is used to 

determine whether there is an outstanding upack signal to receive. 

A bound box is not involved in any usage if both machine sit in their respective initial states and the 

set portAllocated is empty. 



 

28 

Chapter 4 Template Semantics 

This work is part of a larger effort to map domain-specific notations to analysis tools, by way of 

template semantics. This chapter reviews template semantics, and expresses BoxTalk semantics in 

terms of template semantics models and semantic parameter values.   

4.1 Template Semantics 

Template semantics is a template-based approach to capture the semantics that are common 

among several model-based specification and design notations. By parameterizing notations’ 

common execution semantics, each notation can be described in terms of its parameters to the 

template semantics. Template semantics descriptions can also be the basis for tools that are 

configured using the semantic parameter values. In particular, we are interested in writing a translator 

from template-semantics models to SPIN, where the translator is configured using semantic 

parameter values. We can configure such a translator with semantic parameters that reflect BoxTalk 

semantics.  

4.1.1 Syntax of HTS 

The basic computation model is a nonconcurrent, hierarchical transition system (HTS). An HTS is an 

extended finite state machine, adapted from basic transition systems [7] and statecharts [8] 

 

 

Figure 14: HTS 

 

As shown in Figure 14, A hierarchical transition system (HTS) is an 8-tuple, < S, S
I
, S

F
, S

H
, E, V, 

V
I
, T>, where 

§ S is a finite set of states. 

§ S
I
 and S

F
 are predicates describing the sets of initial states and final states, respectively. 



 

29 

§ S
H
 defines the state hierarchy as a partial ordering on states. 

§ E is a finite set of events. 

§ V is a finite set of typed variables. 

§ V
I
 is a predicate that defines the possible initial values of variables. 

§ T is a finite set of transitions of the form <src, trig, cond, act, dest, prty>. 

src dest
trig [cond] /act, #prty

 
where src and dest are the transition’s source and destination states, trig represents triggering 

events, cond is the transition’s guard condition (a predicate over V), act is a sequence of actions that 

execute when the transition executes, and prty is the transition’s optional explicitly-defined priority. 

4.1.2 Semantics of HTS 

The semantics of an HTS is presented in terms of snapshot relations.  

A snapshot is an observable point in the execution of an HTS. Snapshots capture execution states 

that represent what control states the system is sitting in, what the current values of variables are, 

what internal events have been generated, and which transitions are enabled.  

A snapshot is an 8-tuple < CS, IE, AV, O, CSa, AVa, IEa, Ia >, where CS represents current states, IE 

represents current internal events, AV represents current variable values, O represents current 

outputs, and the rest four are auxiliary elements that accumulate data about states, variables values, 

and internal and external events, respectively.  

Template semantics classifies events into two classes: Internal events IE and external events Ia. In 

representing BoxTalk semantics, Ia represents an HTS’s set of input queues carrying signals from the 

environment (i.e., neighbouring features), and, IE represents the next signal to be processed – the 

signal at the head of a randomly chosen queue. In other words, only signals stored in IE directly 

impacts system’s behaviour.  

An execution step in an HTS represents the execution of zero or more transitions. A transition 

executes because it is triggered by an event or is enabled by a guard condition over system 

variables. A micro-step results from executing exactly one transition. A macro-step is a sequence of 

zero or more micro-steps that is initiated by new inputs from the environment. That is, only at the 

beginning of macro-step, is an HTS sensing inputs from its environment. In Figure 15, each rounded 

rectangle box represents a system state (i.e, snapshot). At snapshot SS0, an external input triggers a 

change to snapshot SS1. However, this state is not stable; it further transitions to SS2, and so on, until 

the execution reaches a stable snapshot, meaning that no more transitions are enabled unless new 

external events are received. The relation between micro-steps and macro-steps is shown in Figure 

15. 



 

30 

    
   

 

SS0 SS1 SS2 stable

Inputs

micro-step micro-step micro-step

   
macro-step

 

Figure 15: Step semantics 

The execution semantics are expressed in terms of a set of parameterized definitions that define 

allowable changes to snapshot values. 

In Table 5, italics is used to represent template semantic parameterized definitions, and bold font is 

used to represent template parameters.  

 
Template Definitions 

 
Template Parameters 

 
reset 

 
reset_CS, reset_IE, reset_AV, reset_O etc. 

 
enabled_trans 

 
en_states, en_events, en_cond 

 
apply 

 
next_CS, next_IE, next_AV, next_O etc. 

Table 7: Template semantics 

reset(ss, I): ss’ – resets the current snapshot ss with new input I at the beginning of a macro-step, 

returning a new snapshot ss’. reset() is defined in terms of eight reset_X parameters, each of which 

specifies how a snapshot element X is reset.  

enabled_trans(ss, T): T’ – computes the set of transitions enabled in the current snapshot ss by 

evaluating the source state(s), triggering event(s), and enabling condition(s) for each transition in the 

set T. The returned set T’ is a subset of T.  

apply(ss, τ, ss’) – applies the executing transitions τ’s actions(i.e, τ’s generated events and variable 

assignments) to the current snapshot ss, to derive the next snapshot ss’. apply() is defined in terms of 

eight next_X parameters, each of which specifies how a snapshot element X is updated.  

Template semantics users are expected to configure the semantics of their notation by providing 

values of template parameters.  

§ Up to eight reset_ X parameters are used in the template definition of reset(): each 

parameter is a function that resets one snapshot element, X, removing old data and 

incorporating new system inputs I. 

§ Three en_ states, en_ events, and en_ cond parameters are used in the template definition 

enabled_trans(). These predicates specify when a transition is enabled with respect to its 

source state(s), its triggering event(s), and its enabling condition(s), respectively. 



 

31 

§ Up to eight next_X parameters are used in the template definition apply(): each parameter is 

a predicate that constrains how one snapshot element X is updated with respect to a 

transition’s actions. 

§ Parameter pri defines a priority scheme among enabled transitions. 

§ Parameter macro-semantics determines what macro-step semantics is used.  Possible 

parameter values are simple or stable. In simple semantics, every macro-step is either a 

micro-step or an idle step, and new environmental inputs are sensed in every step. In stable 

semantics, a macro-step is a maximal sequence of micro-steps, starting with a reset() 

snapshot and ending with a stable snapshot, in which no transition is enabled. 

4.2 BoxTalk Definition 

BoxTalk can be defined in terms of Template Semantics. We first show how a BoxTalk syntactically 

maps onto a HTS, and then we present the semantic mapping. Providing a template semantics 

definition for BoxTalk integrates this work into a larger project, which maps domain-specific notations 

to analysis tools, including SMV [6] and SPIN. 

4.2.1 Syntactic Mapping 

As shown in Table 6, every BoxTalk state maps to an HTS state. Moreover, BoxTalk initial states map 

to HTS initial states, and BoxTalk final states map to HTS final states. There is no state hierarchy in 

BoxTalk. 

BOXTALK HTS 

Initial state 

Transient state 

Stable state 

Termination state 

Final state (from semantics) 

 

 

State 

Table 8: Map BoxTalk to HTS -- States 

BoxTalk signals map to HTS events. Signals from a BoxTalk feature’s environment map to HTS 

external events. Generated signals, such as those that trigger post-processing machines, map to 

HTS internal events. 

BOXTALK HTS 

Signal Event 

Table 9: Map BoxTalk to HTS -- Event 



 

32 

BoxTalk variables map to HTS variables. BoxTalk call variables hold port IDs and are initialized to a 

distinguished value noCall. BoxTalk signal variables store the most recently received message from 

each input queue, and are initialized to a distinguished value noSig.  

Each call variable is associated, at most, with three signal queues: in, out, and hold. Every signal 

queue is unidirectional:  Feature boxes receive signals from queue in, send out signals through queue 

out, and store outgoing signals in queue hold. In later this chapter, we will see how these queues are 

represented as snapshot elements, and manipulated by template parameters.  

For calls between feature boxes, variable communicating is associated with the caller port, and is 

used during the call set-up phase to indicate whether or not the call has been completely established. 

A call is not fully set-up until the signal upack is received.  

BOXTALK INITIAL VALUE HTS 

Call variable: port ID noCall 

Signal variable: signal noSig 

communicating: boolean  FALSE 

Feature-specific variable <feature -specific> 

 

 

 

Variable 

Table 10: Map BoxTalk to HTS -- Variables 

BoxTalk transitions map to HTS transitions, in HTS format <src, trig, cond, act, dest, prty>. All 

BoxTalk transitions have the same priority: H, which denotes High priority. BoxTalk transitions that 

originate from transient states don’t have triggering events, so their triggering events are empty.  

BOXTALK HTS 

src, trig [cond] / act, dest 

src ∈ responsive states 

<src, trig, cond, act, dest, H> 

src, [cond] / act, dest 

src ∈ transient state 

<src, ∅, cond, act, dest, H> 

Table 11: Map BoxTalk to HTS -- Explicit Transition 

4.2.2 Semantic Mapping 

We have discussed all syntactic mappings from BoxTalk models to HTS models. In this subsection, 

we talk about how to express BoxTalk execution semantics in terms of template semantics parameter 

values.  

BoxTalk has stable macro-step semantics. That is, an execution step in BoxTalk starts by reading 

input from some input port, and executes all enabled transitions until the execution reaches a 

snapshot in which there are no more enabled transitions. Then a new macro-step begins.  

A transition is enabled only when its source state belongs to the set of current states CS, its triggering 

event is at the head of the chosen input queue, and its guard condition is satisfied by current variable 



 

33 

values AV. Table 10 captures the definition of BoxTalk semantics in terms of template-semantics 

parameters. We explain the contents of Table 7, a row at a time. 

SNAPSHOT 

ELEMENT 

START OF MACRO-STEP EXECUTING TRANSITION ττττ 

CS’ CS dest(τ) 

IEa' choose c ∈ (portAllocated ∪ {boxport}) IEa 

IE’ head(IEa'.in) internal(gen(τ)) 

Ia’ {enQ(c.in, I) | c ∈ (portAllocated ∪ 

{boxport} \ IEa)} ∪ {deQ(enQ(IEa'.in,I))} 

Ia 

O’ {c.hold | AV  c.communicating = false } ∪ 

{emptyQ(c.out) | AV  c.communicating = true }∪     

{emptyQ(c.hold) | AV  c.communicating = true } 

{enQ(c.hold, gen(τ)) | AV’  c.communicating = false } ∪               

{enQ(c.out, gen(τ)) | AV’  c.communicating = true } ∪                     

{enQ(c.out, concatenate(c.hold, gen(τ)), |                                            

(AV  c.communicating = false) /\                                               

(AV’  c.communicating = true) } 

AV’ AV assign(AV, eval(AV,asn(τ)) 

 

 en_states(ss, τ) ≡ src(τ) ∈ CS  

 en_events(ss, τ) ≡ trig(τ) ∈ IE  

 en_cond(ss, τ) ≡ AV  cond(τ)   

 macro_semantics ≡ stable  

Table 12: Template Parameters for BoxTalk 

CS is the current state of each HTS. As there is no state hierarchy in BoxTalk, CS is always a single 

state. CS is updated only on execution of a transition τ, when  CS’ becomes the destination state of 

transition τ. 

Input signals can come potentially from multiple input queues. A macro-step starts by selecting one 

port and reading from its associated input queue.  We use snapshot element IEa to record the 

nondeterministically selected port from which the next input is read. This selection starts the macro-

step.  

IE stores the current event. At the start of the macro-step, it holds the front element of the selected 

input queue (IEa). At the end of each micro-step, IE holds the set of internal events generated during 

the macro step. 

Ia represents the HTS’s set of input queues. At the start of a macro-step, input events I received from 

the environment (i.e., on calls to the HTS’s neighbouring HTS’s), are appended to the input queue 



 

34 

associated with the signal’s associated call. For the input queue selected to be read from, the first 

element from its queue is removed. Ia remains unchanged by the execution of transitions.  

O represents the set of output queues and hold queues. A macro-step starts with an empty set of 

outputs, and with a hold queue that may have contents. When transition τ executes, any events it 

generates are appended to the appropriate hold queue if the target call is not active, and are 

appended to the appropriate output queue otherwise. As soon as a call becomes established, the 

contents of its hold queue, together with any generated events, are copied to the call’s output queue, 

and the corresponding hold queue is emptied at the start of the next macro-step. These cases can 

also be distinguished by variable communicating on each call: before and after transition executes, its 

value remains FALSE, TURE, or turns from FALSE to TURE, respectively.  

AV stores the current variable values. Variable values are updated at the end of each micro-step.  

This concludes our discussion on mapping BoxTalk to HTS. Hereafter, mapping BoxTalk to a 

Promela model is discussed in terms of mapping a HTS model.  



 

35 

Chapter 5 Mapping BoxTalk to Promela Model 

Starting from an explicated BoxTalk specification, a hand translation to an executable Promela model 

is implemented for both free and bound feature boxes. In this chapter, we introduce background on 

SPIN and Promela first, then talk about the structure of a generated Promela model in detail by 

walking through one free box and one bound box example. 

5.1 Model Checker SPIN 

In this subsection, we introduce our target model checker – SPIN. We will use SPIN to verify 

properties about BoxTalk specifications. After detailed discussions on its input language and property 

language, we explain that SPIN matches our needs. 

Like other model checkers, SPIN requires  

§ A formal model that describes the system specification or design. Promela (Process Meta-

Language) is the input language for SPIN. It is an intuitive, program-like notation. Promela 

models are relatively abstract and focus on the design's process interactions, rather than on 

implementation and computation details.  

§ The set of properties to be verified. SPIN accepts properties expressed as assertions, labels, 

never claims, and  Linear Temporal Logic (LTL) formula.  

Given an input model and property, SPIN exhausitive searches of all possible execution paths in the 

model, checking that the property holds in every execution state. If the property is violated in some 

execution state, an error trace leading to that state is displayed by the simulator. 

SPIN is efficient for verifying models of distributed software systems. It has been used to detect 

design errors in various applications. Typically, the errors include deadlock, violated assertions, 

reachable bad states, and unreachable good states.  

5.1.1 Promela 

A Promela model is constructed from three basic building blocks: 

§ Processes (asynchronous) -- used to model an object which has independent pre-defined 

behaviour, including reactions to messages  

§ Data objects (structured data) – used to model C-like variables that define the data associated 

within processes and message channels.  

§ Message channels (buffered and unbuffered) -- via which processes talk to each other  

Code excerpts below show a basic Promela model that has no message channels, where one 

process named main is defined. active and proctype are keywords in Promela. Within process main, 

a C-like statement printf is defined. When executed, this process will print “hello world” on the screen.  

active proctype main ( ) 



 

36 

{ 
 printf (“hello world\n”) 
} 

Promela offers a great number of constructs to build models. We discuss only those we adopted in 

our models. The interest reader can refer to [9] for a more thorough description of SPIN and Promela.  

5.1.1.1 Processes 

Processes are used to define behaviour. A process begins with keyword proctype. There must be at 

least one process in a model. There are two ways to instantiate processes in Promela:  

§ Prefix the process declaration with keyword active. This causes the process to be instantiated 

in the initial system state.  

§ Call the process from within the initial process init or any running process, using a predefined 

operator run.  

The two approaches are shown below. The two code fragments will have the same output, but the 

rightmost code fragment creates an extra process. 

-- Approach 1 --    -- Approach 2 -- 

active proctype main()  proctype main() 
{     { 
 printf(“hello world\n”)   printf(“hello world\n”) 
}     } 
 
      init 
      { 
       run main() 
      } 

We use the first approach in our models.  

5.1.1.2  Data Objects 

There are two levels of scope in Promela models: global and local to a process. Process types are 

always declared globally. Data objects and message channels can be declared either globally or 

locally.  

Basic data types along with their value ranges are summarized in Table 11.  

Type Typical Range 

bit 0, 1 

bool false, true 

byte 0..255 

chan 1..255 

mtype 1..255 



 

37 

pid 0.255 

short -2
15

..2
15

-1 

int -2
31

..2
31

-1 

unsigned 0..2
n
-1 

Table 13: Promela Data Types 

Most data types have counterparts in the C programming language with two exceptions: chan and 

mtype. chan is used for declaring message-passing channels. Variables of type mtype are used for 

declaring user-defined symbolic values. mtype declarations are usually made at the start of the 

specification.  

mtype = {sig1, sig2, sig3, sig4} 
mtype = {state1, state2, state3, state4} 

Multiple declarations of mtype are indistinguishable from a single mtype declaration. The above 

declarations, taken together, are equivalent to the following single declaration:  

mtype = {state1, state2, state3, state4, sig1, sig2 , sig3, sig4} 

We use multiple declarations in our models for a clearer presentation.  

array is a recognized data structure in Promela. It is used to organize multiple elements of the same 

type. It can be used with any data types listed in Table 13: Promela Data Types 

. The array elements are distinguished from one another by their array index. The first element in an 

array has index zero. The number of elements is specified in the array declaration. The declaration  

chan in [5] 

declares an array whose name is in, and whose capacity is five message channels. 

Like the C programming language, Promela has a simple mechanism, typedef, for defining new 

structured types. We use typedef to define structured data types that correspond to constructs in our 

BoxTalk models. 

typedef Transition { 
mtype dest; 
chan in_chan; 
chan out_chan; 
bool en_flag = false; 

} 

A structured type Transition is composed of an mtype, two chan, and one bool element. It groups 

information such as the transition’s destination state dest; the trigger signal stored at the head of 

message channel in_chan; one or more output channels out_chan for output signals, if any; and the 

evaluation of the transition’s guard predicate en_flag.  

5.1.1.3 Message Channels 

Processes exchange data through message channels. In the declaration  

chan in = [5] of {mtype} 



 

38 

a channel named in is declared, and it is capable of storing up to 5 messages of type mtype. Note 

that this declaration is distinct from an array declaration. The declaration 

chan in [5] = [5] of {mtype} 

declares an array of five channels, each with capacity of five messages. Operations send and 

receive on channels are expressed as 

in ! sig1 
in ? sig2   

respectively.  

SPIN provides other more complex send and receive operations, like sorted send and random 

receive, which are not used in this work and thus are beyond the scope of our discussion.  

Rendezvous communication is of special interest. It is realized by communication over a channel 

declared to have zero capacity; such a channel can pass but cannot store messages. We use 

rendezvous communication to enforce synchronous communication between processes.  

Rendezvous communication is binary: only two processes, a sender and a receiver, can meet in a 

rendezvous handshake. Adopting rendezvous communication is a simplification and abstraction that 

allows us to better understand how processes execute and work together.  

5.1.1.4 Rules of Execution 

Semantics of execution define how processes execute, and define what constitutes an execution 

step. Any statement in Promela model is either executable or blocked. Executable means passable, 

runable. Blocked means unexecutable. Executable statements include: 

§ All print statements and assignments 

§ Any expression that evaluates to true 

§ Any send statement for which there is space in the message channel to write 

§ Any receive statement for which there are messages in the message channel to read 

§ A rendezvous communication, where both the sender and receiver process are ready to 

handshake 

 Blocked statements include 

§ Any expression that evaluates to false 

§ Any send statement that writes to a full message channel 

§ Any receive statement that reads from an empty message channel 

§ A rendezvous communication, where either the sender or receiver is not ready to handshake 

Promela has an interleaving semantics. At any point of execution, there is only one process 

executing, and the scheduling algorithm, which determines which process will execute and for how 

long, is nondeterministic. For example, the code fragment  

active proctype P1( ){t1a; t1b} 



 

39 

active proctype P2( ){t2a; t2b} 

defines two processes: P1 and P2, each of which consists of two statements. Each individual 

statement, like t1a, executes atomically; such execution is called a execution step. The two 

statements induce three execution states in each individual process:  

§ State 0, before any statement executes  

§ State 1, after the first statement executes but before the second executes 

§ State 2, after the second statement executes 

The execution state space of P1 and P2 together is the Cartesian product of the processes’ individual 

state space, from state (0,0) to state (2,2) as shown in Figure 16.  

(0, 0)

(2, 0)

(1, 0)

(1, 1)

(2, 1)

(0, 1)

(2, 2)

(1, 2)

(0, 2)

t1
a

t1
a

t1
a

t1
b

t1
b

t1
b

t2a

t2a

t2a

t2b

t2b

t2b

 

Figure 16: Process Interleaving 

Suppose that the Promela model’s execution state is (0,0). If both t1a and t2a are executable, then 

the system randomly picks one to run. If t1a blocks, process P2 takes control to execute t2a. When 

the execution of t2a is complete and t1a becomes executable again, control may pass back to 

process P1, or process P2 may continue executing and run t2b. Thus, there is a non-deterministic 

choice at each execution point.  

5.1.1.5 Compound Statements 

Promela has five types of compound statements, four of which we use in our models:  

§ Atomic sequence 

§ Selections 



 

40 

§ Repetitions 

§ Escape sequence 

An atomic sequence is used to group a sequence of statements so that all statements are executed 

indivisibly, like a single statement, without being interleaved with statements from other processes. 

The code fragment

active proctype P1( ){atomic{t1a; t1b}} 
active proctype P2( ){t2a; t2b} 

defines two processes: P1 and P2, where each process consists of two statements. Different from the 

previous example, an atomic wraps around statements t1a and t1b. Thus, process P1 semantically 

has only one transition. As shown in Figure 17, statements t1a and t1b execute in an un-interrupted 

manner, unless t1b blocks inside of the atomic step. In that case, the atomicity is lost, and the 

intermediate states, such as (1,0), might be visited. We use dotted arrows to denote the execution 

paths that are taken only when the atomicity is lost.  

(0, 0)

(2, 0)

(1, 0)

(1, 1)

(2, 1)

(0, 1)

(2, 2)

(1, 2)

(0, 2)

t1
a,

 t1
b

t1
a,

 t1
b

t1
a,

 t1
b

t2a

t2a

t2b

t2b
t2a

t2b

 

Figure 17: Atomic Step 

For example, the code fragment 

chan q = [0] of {bit} 
active proctype X( ) {atomic { A; q!0; B }} 
active proctype Y( ) {atomic { q?0 -> C }} 

defines a rendezvous channel q and two process X and Y, which communicate through that channel. 

Inside each process, an atomic sequence is defined. As there is nothing in channel q for process Y to 

fetch in the system initial state, execution starts in process X with statement A. When the rendezvous 

handshake is executed, the atomic sequence in X is broken, and control passes to process Y, which 



 

41 

now starts the execution of statement C. When process Y terminates, control returns and execution 

resumes on B. 

We use atomic sequence to wrap state transitions in our models, to reflect the idea that transitions 

between states are atomic. All statements that make up a state transition execute in sequence within 

one Promela step. As we just discussed, if blocked statements are encountered, exceptional behavior 

will take place.  

The selection statement is used for selecting non-deterministically one option from a collection of 

conditional statements. Each conditional statement consists of a guard and an action. A conditional 

statement is enabled if its guard evaluates to true at the start of the selection statement. When the 

selection statement is reached, all of the guards on all of its branches are evaluated. If more than one 

evaluates to true, then some enabled conditional statement is non-deterministically selected and its 

actions are executed. If no guard evaluates to true, then the whole selection statement is blocked 

until one guard becomes true. Its syntax has the form:  

if 
:: a à  option1; 
:: !a à  option2; 
fi 

The guards need not be mutually exclusive. We use the selection structure to implement non-

determinism in our model.  

A repetition structure (do statement) is used to repeatedly select from a collection of conditional 

statements. With respect to the choices, a do statement behaves in the same way as an if statement, 

except that the branches are repeatedly evaluated and one is chosen for execution, until a break 

statement is encountered. In that case, control is transferred to the end of the loop.  

The following two code fragments have the same effect: 

label1: 
   if     do 
  :: a --> option1;   :: a --> option1; 
  :: !a --> option2;  :: !a --> option2; 
   fi     od 
goto label1; 

We model environmental behaviour as one repetition structure that repeatedly selects for execution 

one of the environment’s possible actions. 

The fourth compound statement, an escape sequence, is used to distinguish between high and low 

priority transitions within a single process. It has the syntax:  

{ P } unless { E } 

where P and E represent arbitrary Promela fragments. Before each execution of P, the executability 

of E is checked. P executes only if E is blocked. We use escape sequences to prioritize the 

behaviours of the environment process.  



 

42 

5.1.1.6 inline Functions 

Promela supports inline functions, as a means of providing some of the structuring mechanisms of a 

traditional procedure call without introducing any overhead.  

inline has a syntax of  

inline name( parameter){ 
 body 
} 

The Promela parser textually replaces each invocation of an inline function with the function’s body. 

Parameters are optional. If used, the parameters’ actual values textually replace the formal 

parameter’s placeholders in the function’s body.  

5.2 The Promela Model 

A feature box is represented as one or more SPIN processes. The environment is also modeled as a 

process that has rendezvous communication with the box process(es). Every port p on the box is 

associated with one p_in channel and one p_out zero-capacity channel. Both channels are 

unidirectional. p_in passes signals from the environment to the box. p_out passes signals from the 

box to the environment. As the box has multiple ports, array of in and out channels exist between box 

and environment.  

 

Figure 18: Architecture 

Free and bound feature boxes have different Promela models. A free feature box is represented as 

one process. A bound feature box is represented as one main process and one post-processing 

process, with a unidirectional internal channel that sends signals from the main process to the post-

processing process. Signals passed through channel internal invoke the post-processing process 

which does clean-up work. 



 

43 

Enviroment Process

Array of OUT
channels

Array of IN channels

main
Process

post-
processing

Process

IN
T

E
R

N
A

L

c
h

a
n

n
e

l

Box Process

 

Figure 19: Architecture (bound feature box) 

In accordance with this design, an array of in-channels and out-channels are declared globally. In 

addition, all variables that are accessible by multiple processes are declared globally. The snapshot 

variable is global in nature by its definition.  

A typical Promela model contains three parts:  

§ type definitions and global variable declarations  

§ inline functions  

§ processes  

Before we look into each part, we introduce a free feature box Error Interface (EI). Then, we will use 

EI’s Promela model to explain our work.  

5.2.1 Free Error Interface 

Error Interface (EI) box handles address errors that arise during routing. The router routes to EI if the 

target address is not a valid telephone number. 

The EI feature simply accepts a call, sends signal unknown upstream, and tears down the call.  

Figure 20 shows its original specification: 

 

Figure 20: EI (Original specification) 

The associated explicated model is shown below:  



 

44 

 

Figure 21: EI (Explicated model) 

We fully expand the macro rcv(c) in the original specification into boxport ? setup / c ! upack. 

According to the DFC protocol, feature boxes send a teardown signal immediately, following the 

status signals to reject a call: the signal sequence upack, unknown and teardown transitions EI to the 

terminating state. In the terminating state, the box waits for an acknowledgement signal. In the mean 

time, it is still responsive to a crossover teardown signal. The box transitions to final state when its 

teardown signal is acknowledged with a downack signal. 

The corresponding Promela model is attached as appendix A. We will walk through the code in the 

following discussions. 

 5.2.2 Type Definitions and Global Variable Declarations 

At the top of a Promela model, signals, states and user-defined types that represent template 

semantics are defined. 

Signals : mtype of relevant signals. We also include a fake signal other, which represents signals that 

the feature box under study doesn’t respond to. The signals for EI are declared as 

4   mtype = { teardown, downack, other, setup, upac k, unknown }; 

States : mtype, whose values are the names of all the feature’s states. The states for EI are declared 

as 

5   mtype = { initial, terminating, final }; 

The snapshot element Ia from template semantics contains sets of input queues. In our Promela 

model, instead of declaring channels directly inside Ia, we organize the in-channels to the box 

process as an array glob_ins and statically assign call variables an array index statically inside 

Ia_type:  

36  chan glob_ins[2] = [0] of {mtype}; 
 
14  typedef Ia_type { 
15   byte box_in = 0; 
16   bool box_in_ready = true; 
17   byte c_in = 1; 
18   bool c_in_ready = false; 
19   byte selected 
20  }; 

In the above code, the channel array glob_ins contains two zero-capacity channels which pass mtype 

messages. The in-channel associated with boxport and call variable c are given index 0 and 1, 

respectively.  



 

45 

The boolean variables callVariable_ready is introduced to optimize the verifications, which indicate if 

the feature is in a state that it reads from a specified channel. For free feature boxes, the channel 

box_in is ready only in the box’s initial state. Thus, we deactivate this channel once the first setup 

signal has been received on this channel.  

 
184  :: ss.Ia.box_in_ready -> 
185  ss.Ia.box_in_ready = false; 
186   glob_ins[ss.Ia.box_in] ! setup; 

The channel c_in is different. It is inactive in the box’s initial state, and becomes active once the call 

request is acknowledged, and the environment process can write to it.  

94    ::(n==0) ->  
95    ss.Ia.c_in_ready = true; 
96    t[0].out_chan!upack; 

At times when more than one in-channel is active and has signals arriving, the indicator selected 

records the randomly selected channel to be read. This selection is done in the inline function reset(), 

which will be discussed in the next subsection. 

Similarly, we organize the out-channels from the box process as an array glob_outs and statically 

assign call variables an array index inside O_type:  

37  chan glob_outs[2] = [0] of {mtype}; 
 
22  typedef O_type { 
23   byte box_out = 0; 
24   byte c_out = 1; 
25  }; 

In the above code, the channel array glob_outs contains two zero capacity channels which pass 

mtype messages. The out-channel associated with boxport
3
 and call variable c are given index 0 and 

1, respectively.  

A template semantics Snapshot represents an observable execution state. We capture current state 

cs, in-channels Ia, and out-channels O with a user-type Snapshot in Promela:  

27  typedef SnapShot { 
28   mtype cs; 
29   Ia_type Ia; 
30   O_type O 
31  }; 

Thus, with declaration  

39  SnapShot ss; 

channels within glob_ins and glob_outs can be accessed by variable names, rather than numbers. 

For example, glob_ins[ss.Ia.box_in] is equivalent to glob_ins[0]. Thus, call variables are actually 

indices into the channel array.  

                                                      
3
The out-channel of boxport is not actually used. It is declared so that call variable assignments are symmetric with in-channel assignments. 



 

46 

Transition : user-type definition. A state transition in BoxTalk is triggered by the arrival of a signal on 

a port, and may cause signal generations on ports. The definition Transition groups the destination 

state, in-channel, out-channels, and a flag. Transition in EI is defined as 

7   typedef Transition { 
8    mtype dest; 
9    chan in_chan; 
10   chan out_chan; 
11   bool en_flag = false; 
12  }; 

The mtype dest represents the transition’s destination state. The uni-directional message channels 

in_chan and out_chan passes signals into and out of the box, respectively. The boolean variable 

en_flag indicates whether this transition is selected to execute. All transitions of the feature box are 

organized in an array. They are declared and instantiated inside of the EI process: 

129   Transition t[3]; 
130  
131  … 
132  
133  //statically declare transitions 
134  t[0].dest = terminating; 
135  t[0].in_chan = glob_ins[ss.Ia.box_in]; 
136  t[0].out_chan = glob_outs[ss.O.c_out]; 
137  
138  t[1].dest = final; 
139  t[1].in_chan = glob_ins[ss.Ia.c_in]; 
140  
141  t[2].dest = terminating; 
142  t[2].in_chan = glob_ins[ss.Ia.c_in]; 
143  t[2].out_chan = glob_outs[ss.O.c_out]; 

Each transition has one deterministic destination state, one in_chan, and zero or more out_chans 

associated with call variables. In the case where there is no signal generated by a transition, the 

out_chan member is undefined. In the case where generated signals are sent on different channels, 

more than one out_chan is defined.  

The value of en_flag is set in the inline function en_trans(), which is discussed in next subsection.  

This concludes our discussion of type declarations, signals, states, type Transition, Ia_type, O_type 

and Snapshot. In summary, the static information of a BoxTalk feature is expressed by the 

declaration of signals and states, while dynamic information about a BoxTalk feature’s execution is 

expressed in Transition and snapshot elements: cs captures current states, Ia captures signals 

waiting to be read, O capture signals being output, and Snapshot combines cs, la and O. 

5.2.3 inline Functions 

Promela inline functions provide some of the structuring mechanism of a traditional procedure call, 

without introducing any overhead during the verification process. Compared to C-style macros, inline 

functions are preferable: when an error is reported in an inline function, the reported line number 

refers to the actual location of the false statement; with a macro, the reported line number refers to 

the point of invocation of the macro.  



 

47 

We use inline functions to simplify our process models, and to separate out code that implements the 

semantics of  individual template-semantics parameters. Common inline functions used in our 

Promela models are reset(), en_events(), en_cond(), en_trans(), and next_trans(). 

reset() : In each non-transient state, the box randomly selects an input queue to be read from, and 

flags the specific channel been chosen. This behaviour is realized in the Promela model using the if 

construct. In addition, the boolean variables rcvd_x and sent_x, used for reasoning about certain 

properties, are reset to false. We will revisit them when talking about properties. 

57  inline reset() { 
58   
59  rcvd_setup = false; 
60  sent_upack = false; 
61   
62  rcvd_teardown = false; 
63  sent_downack = false; 
64   
65  sent_teardown = false; 
66  rcvd_downack = false; 
67   
68  sent_unknown = false; 
69   
70   
71   if 
72   :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selecte d = ss.Ia.box_in; 
73   :: glob_ins[ss.Ia.c_in]?sig -> ss.Ia.selected = ss.Ia.c_in;  
74   fi; 
75  }; 

en_events() : The Box evaluates the triggers of each transition to determine if it is enabled. 

en_events() is true when the channel being selected matches the in-channel of the transition being 

evaluated. In the case where no input is expected (e.g., in a transient state), en_events() defaults to 

value true.  

78  inline en_events(n){ 
79   glob_ins[ss.Ia.selected] == t[n].in_chan; 
80  }; 

en_cond() : The box evaluates the guard condition of each transition to determine if it is enabled. 

en_cond() is true when the signal type and data parameters of the input signal match the transition’s 

trigger event signature. In the case where no input is expected (e.g., in a transient state), a guard 

condition is evaluated.  

83  inline en_cond(n){ 
84    if 
85    ::(n==0) && sig == setup; 
86    ::(n==1) && sig == downack; 
87    ::(n==2) && sig == teardown; 
88    fi; 
89  } 

The inline en_cond() for EI says that transition 0 expects signal setup, transition 1 expects signal 

downack, and transition 2 expects signal teardown.  



 

48 

en_trans() : A transition executes only when the expected signal arrives on the specified input 

channel, as represented by the transition’s trigger event. A true evaluation of en_events( ) and 

en_cond( ) will set the flag of en_trans().  

inline en_trans(n){ 
  if 
  :: en_events(n) && en_cond(n) -> t[n].en_flag = t rue; 
  :: else -> t[n].en_flag = false; 
  fi; 
 } 

Unfortunately, an inline function cannot be used as the operand of an expression (as in the above 

code). Instead, we use two nested if constructs to achieve the same effect:  

112 inline en_trans(n){ 
113   if 
114   :: en_events(n) -> 
115  if 
116  :: en_cond(n) -> t[n].en_flag = true; 
117  :: else -> t[n].en_flag = false; 
118  fi; 
119   :: else -> t[n].en_flag = false; 
120   fi; 
121 } 

next_trans() :  realizes the execution of an enabled transition. This inline function transitions the 

execution to the destination state, updates variable values and writes signals on out-channels.  

92  inline next_trans(n){ 
93    if 
94    ::(n==0) -> rcvd_setup = true; 
95    ss.Ia.c_in_ready = true; 
96    t[0].out_chan!upack; 
97    sent_upack = true; 
98    t[0].out_chan!unknown; 
99    sent_unknown = true; 
100   t[0].out_chan!teardown; 
101   sent_teardown = true; 
102   ss.cs = t[0].dest; 
103   ::(n==1) -> rcvd_downack = true; 
104   ss.cs = t[1].dest; 
105   ::(n==2) -> rcvd_teardown = true; 
106   t[2].out_chan!downack; 
107   sent_downack = true; 
108   fi; 
109 }; 

5.2.4 Processes 

The Promela model for the EI feature has two processes: the box process and environment process. 

Both processes are declared as active. That is, they are required to be running in the initial system 

state. 



 

49 

5.2.4.1 Feature Box Process 

The feature box process reflects the structure of the corresponding BoxTalk HTS model. The process 

is decomposed to states. Each state is identified by a state-name-label. A state label leads to an 

atomic structure that is executed as an indivisible unit. Each atomic structure is organized into 4 

phases: 1) randomly select a nonempty in-channel, and then read from this, 2) evaluate every 

possible transition out of this state, to set/unset flags, 3) Nondeterministically execute one enabled 

transition, and 4) transfer control to its destination state.  

Let us take state terminating as an example: 

157 terminating_state: 
158  
159 atomic{ 
160  reset(); 
161   
162  en_trans(1); 
163  en_trans(2); 
164   
165  if 
166  :: t[1].en_flag -> next_trans(1); goto final_s tate; 
167  :: t[2].en_flag -> next_trans(2); goto termina ting_state; 
168  :: else -> goto terminating_state; 
169  fi; 
170 } 

terminating_state is a label to identify a unique control state within a process. Any statement or 

control-flow construct can be preceded by a label. A label name doesn’t need to be declared, but it 

has to be unique within the surrounding process. Moreover, no label name should be the same as 

any declared mtype variable. In EI, we have declared terminating as a mtype variable, so we use 

terminating_state as the label name to avoid confusion.  

Because transitions are atomic, we use atomic to surround all of the statements that follow a state 

label. However, because there are rendezvous send statements in next_trans(), atomicity is lost and 

control passes from sender to receiver. Control can return back later and allow atomic execution of 

the rest of the sequence. Atomicity is lost also when a goto statement passes control out of the 

atomic sequence; but in the above case, the goto statement is the last to execute anyways.  

Phrase 1 is implemented by inline function reset(), and phrase 2 is implemented by inline function 

en_trans(). The if selection construct on line 165 makes a non-deterministic choice between enabled 

transitions. That is, if both t[1].en_flag and t[2].en_flag are true, either transition 1 (next_trans(1); goto 

final_state) or transition 2 (next_trans(2), goto terminating_state) executes. In the case where neither 

of them is enabled, an else statement is used to prevent potential deadlocks. It returns control back to 

the state label, in effect causing no transition to execute. The else statement executes only if no other 

statement within the if construct is executable. 

We use goto statements to change the flow of control between state labels. For the purpose of 

changing states, a goto statement is always executable and has no other effect, and thus fits in our 

model perfectly. 



 

50 

A box process consists of the code fragments associated with each state in the HTS. We insert a 

dummy skip action at the final state(s), so that at least one statement follows the label.  

172 final_state: 
173  
174  skip; 

5.2.4.2 Environment Process 

The environment process models the expected context in which a feature box executes. The 

expected context is the router and its neighboring feature boxes. The router sends the box setup 

signals and receives the box’s continue signals. The neighboring feature boxes pass along the 

unknown signal EI box generates, absorb upack and downack signals, respond to teardown signals 

with downack signals immediately,  and passes signals to the EI box. The environment process 

mimics the environment of a feature and exercises all possible input that the feature might receive.  

The environment process  of EI is provided below:   

181 active proctype env() { 
182  
183 end: do 
184  :: ss.Ia.box_in_ready -> 
185  ss.Ia.box_in_ready = false; 
186   glob_ins[ss.Ia.box_in] ! setup; 
187  :: ss.Ia.c_in_ready ->  
188  if 
189   :: glob_ins[ss.Ia.c_in] ! teardown; 
190   :: glob_ins[ss.Ia.c_in] ! other; 
191   fi; 
192  od  
193  unless { 
194  if 
195   :: glob_outs[ss.O.c_out] ? upack;  
196     :: glob_outs[ss.O.c_out] ? unknown;  
197     :: atomic { glob_outs[ss.O.c_out] ? teardow n ->  
198     glob_ins[ss.Ia.c_in] ! downack; 
199      }  
200   :: glob_outs[ss.O.c_out] ? downack; 
201    fi; 
202  } 
203  goto end; 
204 } 

A Promela do repetition construct (opening at line 183 and closing at line 192) is used to allow the 

environment process to keep running until the box process stops at a valid end state. Inside the do 

construct, we have two choices: put signals on the in-channel of boxport or on the in-channel of port c 

when their flags are set. The only allowable signal for boxport is setup, and the setup signal is put on 

the boxport channel only once. The environment might put signal teardown or any other signal on the 

in-channel of c. 

The normal way to terminate the repetition construct is with a break statement. In our model, we 

marked the do repetition construct with an end-state label end, indicating that it is an acceptable 

termination point. 



 

51 

The Promela unless construct is used to prioritize statements. Its syntax has the form that two 

arbitrary Promela fragments are separated by unless. The first fragment is called the main sequence 

and the second fragment is called the escape sequence. The semantics of the statement are that the 

main sequence is executable only if the escape sequence is blocked.  

Construct unless (at line 193) reflects other environment actions: receive outputs from the feature 

box, send signals in response to a previously received signal. In the EI example, the environment 

absorbs signals upack, unknown and downack, and responds to a received teardown signal with a 

downack signal.  

Why do we prioritize receiving operations over sending operations? As we stated earlier in this 

chapter, an array of zero-capacity (rendezvous) channels are defined between the environment 

process and the box process. That is, the channel can pass, but cannot store messages. Message 

interactions via such rendezvous ports are by definition synchronous, which means that deadlock is 

possible.  

In the case that both the box process and the environment process are trying to send a signal (that is, 

the box process is executing a next_trans() while the environment has determined that an in-channel 

is active and is trying to put a signal on it), both processes wait for the remote party to be ready to 

receive the signal; as a consequence, both processes are blocked. 

By assigning higher priority to receiving operations, the environment is always ready to receive the 

box’s output signals. The environment process sends out signals only if there is no message to 

receive.  

The goto statement at the bottom of the environment process ensures that the process executes 

repeatedly.  

This concludes our discussions of translating a free feature box into a Promela model. Mapping a 

bound feature box is similar. We focus only on the differences in the next subsection. 

5.2.5 Bound Transparent Box 

A bound box is uniquely associated with a subscribing address. The Bound Transparent Box (BTB) is 

a simple feature that demonstrates the properties of bound boxes. It accepts a setup signal in every 

responsive state. Instead of transitioning to a final state and dying after a usage ends, a bound box 

returns to its initial state, ready to participate in the next call.  

A Bound feature box may receive multiple setup signals in its lifetime. There are two cases to 

consider: (1) the feature needs to deal with setup signals that the feature cannot accept, and (2) the 

feature needs to finish dealing with a teardown signal, while accepting a new setup signal. In the first 

case, the box rejects the new call request by responding with signal sequence upack, unavail, and 

teardown, and continuing with its previous usage. In this case, who waits for the acknowledgement of 

teardown? In the second case, the box tears down all the old calls it was involved in and, accepts the 

new setup request, and continues with the new usage. In this case, who ensures that the old calls are 

completely torn down?  



 

52 

To solve these problems, we construct a post-processing machine, that runs in parallel with the 

feature box, to deal with the clean-up work. Thus, BTB maps to two processes; one main process and 

one post-processing process. The post-processing process fulfills the feature box's obligation to 

adhere to the DFC protocol, while the main process implements the feature's essential behaviour. 

The post-processing process has the same structure as the main process: static information of 

transitions is initialized, followed by state-name-labels. The behaviours at a state are wrapped in an 

atomic sequence, appended to each state-name-label. In the idle state, the post-processing process 

reads from channel internal instead of from the environment. In all other states, it only reads from a 

specific set of in-channels to avoid consuming signals destined for the main process. 

Like free boxes, signals and states are mapped to mtype. States and signals for the main process 

and the post-process are declared separately, for clearer representation: 

4   mtype = { teardown, downack, other, setup, upac k, unavail }; 
5   mtype = { post_process_t, post_process_f, post_ process_s }; 
6    
7   mtype = { initial, orienting, connecting_f, con necting_s, 
transparent,  
8    deciding_1, deciding_2, error, receiving }; 
9   mtype = { idle, t_work, s_wait_up, s_work, f_wa it_up, f_work }; 

In BTB, call variables take different values from time to time. Three variables are used in BTB: t, s 

and f. Call variable s refers to a call connecting the box to its subscriber. In contrast, call variable f 

refers to a call connecting the box to a far party. Call variable t is merely a place holder; s or f take its 

value later on.  

As in free boxes, call variables are indices into arrays of channels. There are times when call 

variables take on new values, while the post-processing process finishes the termination of old calls. 

We implement separate in-channels for the main process and the post-processing process. We use 

old_callVariable to hold indices to the old channels for post-processing. 

20  typedef Ia_type { 
21   byte box_in = 0; 
22   byte old_t_in = 1; 
23   byte old_s_in = 2; 
24   byte old_f_in = 3; 
25   byte t_in = 4;//never used 
26   byte s_in = 5; 
27   byte f_in = 6; 
28   bool box_in_ready = true; 
29   bool old_t_in_ready = false; 
30   bool old_s_in_ready = false; 
31   bool old_f_in_ready = false; 
32   bool s_in_ready = false; 
33   bool f_in_ready = false; 
34   byte selected; 
35  }; 

In addition, we define t_pp( ) for bound boxes: 

124 inline reset_pp() { 
125  if 



 

53 

126  :: glob_ins[ss.Ia.old_s_in]?sig -> ss.Ia.selec ted = 
ss.Ia.old_s_in; 
127  :: glob_ins[ss.Ia.old_f_in]?sig -> ss.Ia.selec ted = 
ss.Ia.old_f_in; 
128  :: glob_ins[ss.Ia.old_t_in]?sig -> ss.Ia.selec ted = 
ss.Ia.old_t_in; 
129  fi; 
130 }; 

Symmetrically,  we also separate the out-channels of the main process and the post-processing 

process. The hold queues are temporary signal holders for their out-channels. The capacity of the 

hold queues is our choice.  

37  typedef O_type { 
38   byte box_out = 0; 
39   byte old_t_out = 1;//never used 
40   byte old_s_out = 2; 
41   byte old_f_out = 3; 
42   byte t_out = 4; 
43   byte s_out = 5; 
44   byte f_out = 6; 
45   chan s_hold = [1] of {mtype}; 
46   chan f_hold = [1] of {mtype}; 
47  }; 

A bound box has a unique user-type IE_type, which is an internal channel to pass signals from the 

main process to the post_processing process. Channel internal has zero capacity. This approach 

ensures that the main process is blocked until the post-processing has completed processing one 

task, and returned back to its idle state.   

49  typedef IE_type { 
50   chan internal = [0] of {mtype}; 
51  }; 

BTB has a feature-specific predicate, t_from_sub, which is declared as a bool variable in our model. If 

t_from_sub is true, then call t is actually from the subscriber, and model assigns the value of call 

variable t to s, and uses call variable f to propagate this call to the downstream neighbour. The model 

does the opposite if the value of t_from_sub is false: it assigns the value of t to call variable f, and use 

call variable s to propagate this call to the subscriber. As call variable t stores different calls at 

different times, we use current_t_from_sub to record the new value and variable t_from_sub to record 

the previous value.    

BTB uses boolean variables callVar_communicating to mark status of a call. Such a variable is true if 

an acknowledgement upack has been received. When a call is passed to the post-processing 

process, the value of callVar_communicating is copied to old_callVar_communicating, which will help 

the post-processing process to correctly terminate calls: either wait for a downack signal only, or wait 

for both upack and downack signals.  

A few new inline functions have been abstracted in order to keep code simple and neat:  

§ setup_initial (b), where b is the predicate t_from_sub. This inline is called whenever a new setup 

is accepted and b is evaluated. It sets the flag on both subscriber and far-party sides, according 



 

54 

to value of b, and sets values of the corresponding callVar_communicating variables 

appropriately.  

81  inline setup_initial(b){ 
82    ss.Ia.s_in_ready = true; 
83    ss.Ia.f_in_ready = true; 
84    if 
85    :: (b) ->  f_communicating = false; 
86    s_communicating = true; 
87    :: (!b) ->  s_communicating = false; 
88    f_communicating = true; 
89    fi 
90  }; 

§ teardown_cleanup (c), where c is a integer variable whose value indicates a call. Once the box 

issues a teardown signal, control transfers to the post-processing process. teardown_cleanup (c) 

actives the appropriate in channel, to receive the corresponding downack signal.  

93  inline teardown_cleanup(c){ 
94    if 
95    :: (c==0) ->  ss.Ia.old_t_in_ready = true; 
96    :: (c==1) ->  ss.Ia.s_in_ready = false; 
97    ss.Ia.old_s_in_ready = true; 
98    old_s_communicating = s_communicating; 
99    :: (c==2) -> ss.Ia.f_in_ready = false; 
100   ss.Ia.old_f_in_ready = true; 
101   old_f_communicating = f_communicating; 
102   fi 
103 }; 

§ dump (c1, c2), where c1 and c2 are two different channels. This inline function dumps the 

contents of c1 into c2. Before a call is established, signals from upstream will be stored in a hold 

queue. The contents of the hold queue will be dumped to the downstream out channel once an 

upack signal is received.   

106 inline dump(c1, c2){ 
107 byte aSig; 
108   do 
109   :: c1?aSig -> c2!aSig; 
110   :: empty(c1) -> break; 

111   od; 
112 }; 

Unlike the inline functions we introduced previously, the above three don’t match any Template 

Semantics definition. Their sole purpose is to avoid code duplication in our models. 

The Promela model of BTB is presented as Appendix B.  



 

55 

Chapter 6 Case Studies 

In this chapter, we go through the Promela models for free feature boxes Receive Voice Mail(RVM) 

and Answer Confirm(AC), and bound feature box Black Phone Interface (BPI). The feature boxes that 

make up the case studies were all of features provided by AT&T researcher Dr. Pamela Zave, as 

example features on which to evaluate our translation.  

A usage generated by the DFC routing algorithm can be divided into source regions and target 

regions. A feature box is incorporated into a usage in a source region if the source address has 

subscribed to this feature. Similarly, a feature box is incorporated into a usage in a target region if the 

target address has subscribed to this feature. If a feature box is found only in source regions, like 

Speed Dialing, it is a source feature. If a feature box is found only in target regions, like Call 

Forwarding, it is a target feature.  

6.1 Receive Voice Mail 

Receive Voice Mail (RVM) is a target feature that records for its subscriber voice mail from callers.  

 

Figure 22: RVM (Original Specification) 

As shown in Figure 22, the feature’s essential functionality is triggered by the receipt of an unavail 

signal from downstream on call o. A voice server, which logs voice messages for its subscribers, is 

accessible through new call r.  

RVM has four states: initial, transparent, dialogue and termination states. When RVM is involved in a 

usage but is not yet activated, it stays in the transparent state. When signal unavail arrives on call o, 

which indicates the un- availability of the callee, the box absorbs the unavail signal (i.e., it does not 

propagate the signal to the rest of the features in the usage), and issues the signal avail upstream 

instead (otherwise, if signal unavail reaches the caller, the caller will hang-up). Then, the box tears 

down the call to the callee and issues a new call r to the voice server. In the dialogue state, the caller 

and the voice server are signal linked, and a voice channel is opened between them. The box 

transitions to termination state when the caller finishes leaving a message and hangs up. 

For simplicity, we assume ideal server behaviour. That is,  



 

56 

§ A connection to the voice server can always be established. The server will accept every 

setup request issued by the box.  

§ The server always responds to setup and teardown signals with upack and downack signals, 

respectively.  

§ When the server determines that the message recording is completed, it tears down call r.  

§ The server does not issue any unexpected signals. 

RVM embeds all of the behaviours that a Free Transparent Box has. The explicated model of RVM is 

shown in Figure 23.



  

57 

 

Figure 23: RVM (Explicated Model)



  

58 

First, the following expansions are similar to those for a Free Transparent Box(FTB): 

§ In between the initial state and the transparent state, an intermediate state connecting is 

introduced, in which the box waits for an upack signal on call o. Call variable i and o are not 

signal linked in the connecting state.  

§ State error is reached from the connecting state when the hold queue overflows. This allows 

finite analysis.  

§ State terminatingI and terminatingO are intermediate states within the two-phase teardown 

process, in which the box waits for a downack signal from the later terminated call.  

§ State final is reached from the terminating states when all allocated port have been freed (i.e., 

teardown or downack signals have been received on all allocated ports). Reaching this state 

indicates that a usage is over.  

§ State abandonConnection is introduced to model the situation in which the caller hangs up 

before the call is fully setup. In this state, the box has sent out signal setup and teardown in 

sequence, and expects to receive upack and downack signals in sequence in a DFC 

compliant environment. 

In addition to the above, a number of feature-specific states are introduced in the explicated model: 

State switching is an intermediate state, in which the box waits for the call to the callee to be fully torn 

down, and the call to the voice server to be fully set up. Upon reaching this state, the caller has been 

notified of the availability of the callee, but no call is connected to the caller. The box responds to a 

teardown signal from the caller by sending a downack signal and transitioning to the abandoning 

state, and throwing away any other signals from the caller. The box transitions to state connectingR 

on receiving a downack signal from the callee, and ignores all other signals except teardown signals. 

On receiving an upack signal from the voice server, the box transitions to state waitingOdown.    

As the signals 1) downack from call o and 2) upack from call r  may be received in any order, the two 

intermediate states connectingR and waitingOdown are used to record each possible ordering.  

In the connectingR state, the box waits for an upack signal from call r, which indicates that the 

connection to the voice server has been established; then, the box transitions to state dialogue. In the 

meantime, the caller may hangup. The box responds to a teardown signal by sending a downack 

signal, propagating the teardown signal to call r, and transitioning to waitingRup state.  

In waitingOdown state, the caller is connected to the voice server. However, the box won’t pass along 

any unexpected signal to server, because signal linkage is not established until state dialogue is 

reached. If signal teardown is received from the caller, the box transitions to state endOnR. As call o 

is not completely torn down, the box may receive signals, besides downack, from it. The box 

responds to a possible teardown signal and ignores all signals other than downack. Signal downack 

on call o causes the box to transition to state dialogue. We assume that the server connection is 

stable; that is, call r does not issue a teardown signal in this state.  

State dialogue represents a connected usage between the caller and the voice mail service. The 

caller may leave a voice message on the server through a voice channel. The caller may hangup at 

any time in this state. Or, if the voice server determines that the message recording is completed, the 



 

59 

server may issue a teardown signal along call r. In response to the above actions, the box transitions 

to state terminatingR or terminatingI, respectively.  

The remaining states abandoning, endingOnR, waitingRup and terminatingR are not observable by 

the user. In those states, the caller has hung up already, but the remain calls that need to be torn 

down.  

In the state abandoning, the box waits for two events to happen: 1) a downack signal from call o, and 

2) an upack signal from call r. These two signals may be received in any order. On receiving signal 

sequence upack, downack, the box transitions through state endingOnR to state terminatingR. On 

receiving signal sequence downack, upack, the box transitions through state waitingRup to state 

terminatingR. In the state abandoning, the box responds only to teardown and downack signals from 

call o, and ignores all other signals. The box will not receive any unexpected signals from the call 

connected to the voice server.  

In the state endingOnR, the box waits for a downack signal from both calls o and r. Again, if the 

downack signal from call o is received first, then the box transitions to state terminatingR; if the 

downack signal from call r is received first, then the box transitions to state terminatingI. In the state 

endingOnR, the box responds to a possible teardown signal from call o and ignores all other signals.   

In the state waitingRup, the box waits for an upack signal from call r only. On receiving this signal, the 

box transitions to state terminatingR.  

The box behaviour in state terminatingR is similar to that in states terminatingI or terminatingO. On 

receiving a downack signal from call r, the box transitions to the final state.  

The Promela model of RVM is presented in Appendix C for reference.  

6.2 Answer Confirm 

The feature Answer Confirm (AC) ensures the success of a call by demanding that the callee press 

a button to confirm receiving the call. If the button is not pressed, AC will suppress the success 

outcome. The feature excludes the activation of voice mail as a successful call.  

 

Figure 24: Answer Confirm (Original Specification) 



 

60 

Like all other feature boxes, AC enters in a usage when it receives a setup signal on its boxport. It 

continues the usage by propagating the setup signal and stays in state trying, waiting for outcome 

signals from downstream. If a signal indicating an unsuccessful outcome (unavail or unknown) is 

received on call o, then AC passes the outcome signal upstream and terminates. AC’s essential 

function activates when a status signal avail is received from downstream. To further confirm that the 

success outcome is the result of reaching the callee, and not his voice mail, the AC feature connects 

to a server via call r and transitions to state confirming. AC holds the previously success outcome 

signal received until a special confirmation is received by the server. Then, the avail status is 

propagated upstream, the connection to the AC server is terminated, and the AC box transitions to 

state transparent; its presence in the usage is not observable from then on. The signal confirm is a 

feature-specific pseudo signal. We introduce signal nonconfirm as the opposite (i.e., lack of 

confirmation) in the explicated model.  



  

61 

 

Figure 25: AC (Explicated Model) 

 



  

62 

The explicated model for feature box AC is shown in Figure 26. In between the initial and trying 

states, state connectingO is the intermediate state brought by the new call on o (expressed as ctu(i, 

o)). In this state, the new call o is not fully setup, and signals passed from upstream are stored in a 

hold queue until an upack signal is received. The feature box may go to a non-recovery error state if 

the hold queue overflows. If the caller hangs up in this state, the box transitions to state 

abandonConnection and waits for acknowledgement signals. 

The state connectingR is the intermediate state introduced by the new call on r (expressed as 

new(r)). In state connectingR, call i and o are signal linked, so signals that do not trigger any action in 

the AC box are copied from one call to the other. We assume ideal server behaviour, which means 

that there is no hold queue constructed for call r, and the AC server is assumed to respond in a timely 

manner. That is, if the server is reached by call r and does not receive confirmation from the user 

within a reasonable time period, the server will give up and tear down call r.  

In state confirming, call o and r are signal linked. That is, the user is able to respond to the server’s 

request (to press a certain button); signals passed from the caller side are ignored.  

The state confirmed is the intermediate state that models BoxTalk macro end(r), in which the box 

waits for a downack signal on call r. The caller and the callee are signal linked again. When call r is 

fully torn down, the box transitions to the transparent state, in which the feature box is invisible.  

The feature box handles three calls i, o and r at most. Termination of a feature box has three phases: 

1) All calls need to be torn down, as represented by state endingAll, in which the signal teardown has 

been sent out on each call, and any received downack signal transitions the box to the next phase. 2) 

Two calls still need to be torn down, as represented by states endingInO, endingOnR, and endingInR, 

in which the box responds to teardown signals and ignores other signals. Any received downack 

signal cause the box to transition to the next phase. 3) One call still needs to be torn down, as 

represented by states terminatingI, terminatingO, and terminatingR, in which the box responds to 

crossover teardown signals and ignore others. The final downack signal causes the box to transition 

to its final state.  

The Promela model for the explicated AC model is presented in Appendix D for reference. 

In the environment process, we used a nested unless structure to enforce priorities:  

§ High – the environment receives a signal from the box. The signal is recorded if it is setup or 

teardown 

§ Medium – the environment sends signals to respond to a previously received setup or 

teardown signal 

§ Low – the environment sends other signals 

6.3 Black Phone Interface  

Black Phone Interface (BPI) is a bound box. It generates the different tones that the user of the 

phone hears. As an interface box, BPI translates between the DFC protocol and the telephone 

device.  



  

63 

 

 

Figure 26: BPI (Original Specification) 



  

64 

BPI involves only one call c. However, there is a great deal of signaling redundancy in the BPI 

BoxTalk specification. The box reacts not only to call level signals, but also to media channels and 

user actions. c[v] represents a voice channel on call c. User actions include offhook, dialed and 

onhook. The names of the states indicate the tones that the user should be hearing. The path that 

passes through state ringing models the tones on an incoming call. The path that passes through 

state dialing models the tones on an outgoing call. Among states talking, silent, ringback, busytone 

and errortone, the box transitions from one state to another on specified signals:  

§ On accepted(c[v]) or signal avail, the box transitions to the talking state.  

§ On nullified(c[v]) or signal none, the box transitions to the silent state. That is, all previous 

tones generated are cancelled.  

§ On waiting(c[v]), the box transitions to the ringback state.  

§ On rejected(c[v]) or signal unavail, the box transitions to the busytone state.  

§ On signal unknown, the box transitions to the error state. 

The box transitions to the disconnected state on receiving the gone(c) signal. However, the box 

cannot go back to a tone-generation state from there; it transitions to the final state on receiving an 

onhook signal. The final state can be reached only on the user-action onhook.  



 

65 

 

Figure 27: BPI (Explicated Model) 

 

Figure 28: BPI (Post-Processing) 

Prior to the BPI feature, all of our feature models had only signal channels. The BPI feature involves a 

voice channel by which voice data may be transmitted in an internal call. BPI uses call v to model the 

voice channel and introduces pseudo signals accepted, waiting, rejected and nullified. Among these 

signals, accepted and avail, rejected and unavail, nullified and none have the same effect in most 

cases, but they are not equivalent. For example, on the transition from state ringing to talking, the 

signal accepted is the trigger while avail is the outcome. The waiting pseudo signal doesn’t have a 

counterpart in the DFC protocol.  



 

66 

Call a senses user input to the telephone device. The pseudo user-action signals are offhook, dialed, 

onhook and other. 

Different from the BTB feature box, the original specification of BPI has a final state. That is, the user 

action onhook leads to the termination of the box program. In our explicated model, we let the box 

return to the initial state on receiving a teardown signal and we initiate the post-processing machine 

to do cleanup.  

We introduce an intermediate state connecting, which is not a tone-generating state. It simply divides 

call setup into two phases, and the box waits for an upack signal in this state.  

The Promela model for the explicated BPI feature is presented in Appendix E for reference.  

6.4 Properties 

6.4.1 Properties to Prove 

Our purpose for translating from BoxTalk to SPIN is to check that a feature specification conforms to 

the DFC protocol. Generally, we expect the following properties to hold in our Promela models:  

1. A received teardown signal is eventually acknowledged by a downack signal sent in response 

(For calls connected to upstream, downstream, and/or server) 

2. A received setup signal is eventually acknowledged by an upack signal sent in response (For 

call connected to upstream) 

3. No port sends a status signal before sending an upack signal when the port is allocated 

4. No port sends a status signal after sending a teardown signal, terminating the call 

A bound box participates in multiple calls during its lifetime. For example, if the BTB feature 

progresses through states initial, orienting, connecting_f, and deciding_1, then the box will have 

received two setup signals on its boxport, one when in the initial state and the other when in the 

connecting_f state. We expect property 5 to hold in a BTB model: 

5. Each received setup signal is eventually acknowledged by a corresponding upack signal sent 

in response 

We sometimes need to reason about a property at a specific state of a specific process. For example, 

we expect the following property to hold in the feature box BTB: 

6. If the main process is in orienting_state and the post-processing process is in a non-

idle_state, then the post-processing process is tearing down the previous call. That means 

that the main process has received a new setup signal, and has advanced to orienting state.  

Similarly, we expect the following property to hold in bound feature box BPI: 

7. If the main process stays is in its initial state and the post-processing process is in a non-idle 

state, then the post-processing process is terminating the current call.  



 

67 

6.4.2 Property Language 

Properties written in English are prone to misunderstanding. In order to express properties precisely, 

we use the formal language Linear Temporal Logic (LTL) and never claims. 

6.4.2.1 LTL 

A formal language is a language that is defined by precise mathematical or machine processable 

formulas. LTL is built up from a set of proposition variables, logic connectives and temporal operators. 

LTL formulae are used to specify liveness properties. A liveness property is a property stating that 

something good will eventually happen. For example, statement If a user requests access to the 

critical section, he will eventually be granted access is a liveness property.  

Given expressions a and b, the following are LTL expressions: 

! a ≡ not a 

a ∧ b ≡ a and b 

a ∨ b ≡ a or b 

a → b ≡ a implies b 

An LTL formula is evaluated in states with respect to a sequence of future states. Given expressions 

Φ  and Ψ , and an execution sequence s0, s1, … sn, the following are LTL expressions:  

LTL FORMULA EXPLANATION 

ΧΦ   ΧΦ  is true in si if Φ  holds in state si+1 

�Φ  �Φ  is true in si if Φ  holds on the entire subsequent 

path si, si+1, … sn 

◊Φ  ◊Φ  is true in si if Φ  holds in some state sj (j ≥ i) 

Ψ UΦ  Ψ UΦ  is true in si if Φ  holds at sj (j ≥ i), and Ψ  holds 

at states si, si+1, … sj-1  

Table 14: LTL 

6.4.2.2 Never Claim 

Among correctness claims in SPIN, a never claim is very expressive. It is commonly used to express 

finite or infinite system behaviour that should never happen.  Most conveniently, never claims can be 

generated mechanically from LTL formula.  

Syntactically, a never claim is presented as  

never { statements } 
We will discuss more in the following subsections.   



 

68 

6.4.2.3 List of Properties 

The properties written in English in section 6.4.1 are formalized as: 

1. □ (rcvd_teardown → ◊ sent_downack)  

2. □ (rcvd_setup → ◊ sent_upack) 

3.  

a. □ (rcvd_setup → (!sent_avail U sent_upack)) 

b. □ (rcvd_setup → (!sent_unavail U sent_upack)) 

c. □ (rcvd_setup → (!sent_unknown U sent_upack)) 

4.  

a. □ ((sent_teardown ∨ rcvd_teardown) → □ (!sent_avail)) 

b. □ ((sent_teardown ∨ rcvd_teardown) → □ (!sent_unavail)) 

c. □ ((sent_teardown ∨ rcvd_teardown) → □ (!sent_unknown)) 

5. □ ((rcvd_teardown ∧ (current_call = = num1))→ ◊ (sent_downack ∧ (current_call = = num1))) 

6. never { (BTB@ orienting_state && ! (pp@ end_idle_state)) && ! (pp_call = = last_call) } 

7. never { (BPI@ end_initial_state && ! (pp@ end_idle_state)) && ! (pp_call = = current_call) } 

The translation from English to formulae for properties 1, 2, 3 and 4 is straightforward. In next 

subsection, we explain how the translations are made for properties 5, 6 and 7. 

6.4.2.3 Translation from English to Formula 

To check whether each teardown signal is followed by a corresponding downack signal, as we stated 

in property 5, we associate each usage with a unique numeric label. Properties are augmented with 

additional clauses that check these label values. Note that current_call is an integer variable, and 

num1 can be of any positive integer value. 

In properties 6 and 7, we introduce symbol @ to relate processes to their current state, with syntax 

 processName @ stateLabel 

Then, BTB@ orienting_state represents that the main process is at orienting_state. Variable pp_call 

holds the most recent call that the post-processing process is tearing down, variable current_call 

holds the most recent call that the main process is processing, and variable last_call holds the call 

that the main process has handed over to the post-processing process. Then, pp_call = = last_call 

captures the property the post-processing is tearing down the previous call.  

To better understand how property 6 is transformed to a never claim, let us do some simplification 

first. Let  

p represent BTB@ orienting_state 

q represent pp@ end_idle_state 



 

69 

r represent pp_call = = last_call 

The English description is expressed directly as (p ∧ ! q) → r. Thus, 

(p ∧ ! q) → r 

⇔! (p ∧ ! q)  ∨  r 

⇔! ((p ∧ ! q) ∧ ! r) 

Taken from here, with ! represented by never and p, q, r replaced, the property statement and never 

claim are equivalent. This also explains the transformation of property 7. 

6.4.3 Embed correctness variables 

As a last step before using SPIN to verify the properties, we need to embed correctness requirements 

into Promela model.  

Correctness properties can refer only to elements (like variables, labels) in the Promela model, but 

the correctness properties that we want to prove refer to the sending or receipt of specific signals. To 

solve this dilemma, we define global boolean variables for any event that is referred to in a 

correctness property. The variables are initialized to false. They are set in a next_trans( ) clause if the 

specified signal is received or sent within the transition, and then are unset in the reset( ) function 

invoked at the destination state.  

For example, to verify property □ (rcvd_teardown → ◊ sent_downack) in RVM, we introduce  

bool rcvd_setup, sent_upack = false; 
 

which are defined and initialized at line 56. They are set to true in next_trans(0) at line 168 and 171 

respectively, and then set to false in reset() at line 79 and 80.  

6.4.4 Results of Verification 

Our Promela models are well structured to modularize the Promela representations of each template-

semantics parameter (to make it easier to translate models written in other notations into Promela).  

As such, our models are not optimized for BoxTalk models or SPIN verification, and each run takes 

several minutes.  

Among free boxes, the EI box generates the status signal unknown, we have proved that properties 

1, 2, 3c and 4c hold; The RVM box generates status signal avail, we have proved that properties 1, 2, 

3a and 4a hold; With the AC feature, box generates all three status signal avail, unavail, and 

unknown on different conditions, we have proved that properties 1, 2, 3a, 3b, 3c, 4a, 4b and 4c hold.  

With bound boxes, we also proved that properties 5 and 6 hold for the BTB box, and property 7 holds 

for the BPI box.  



 

70 

Chapter 7 Conclusions 

We summarize what work we did for model checking BoxTalk specifications in this chapter. To build a 

Promela model, which is model checked by the SPIN model checker, we performed the following 

steps on a BoxTalk specification: 

§ Explicate the BoxTalk model 

§ Define explicated BoxTalk models in terms of Template Semantics 

§ Map BoxTalk-relevant Template Semantics to Promela model 

7.1 Explicate BoxTalk Specification 

There is a lot of implicit, unexpressed behaviour in a BoxTalk model. In order to model check the 

model, the implicit behaviour must be explicitly represented in a feature box model. Thus, explicating 

the BoxTalk specification is our first step. We start with expanding macros in BoxTalk, such as new() 

and rcv(), which are used to combine a sequence of read and write actions. Then, as setting up a call 

consists of two phases ( (1) sending a setup signal and (2) receiving an acknowledgement signal 

upack), we introduce hold queues and intermediate states to model this process. Before a call is fully 

established, the feature box waits in an intermediate state, any signals destined for an unestablished 

call are held locally in a hold queue. Once the call is established, as evidenced by the upack signal, 

the held signals are forwarded to the call. Regarding feature termination, we distinguish between 

termination states and final states. In the termination states of feature boxes, all calls become 

inactive, but calls are not considered fully torn down until they have no ports allocated. That means 

that the box still receives signals from those ports and discards them, except for signals teardown and 

downack. The box responds with a downack signal when it receives a teardown signal. The receipt of 

a downack signal indicates the completion of the teardown process: the ports allocated are 

disassociated, a free box transitions to its final state, while a bound box transitions to its initial state. 

In addition, we introduce error states to keep the size of the model finite, which enables finite state 

analysis.  

A bound feature box is explicated as two concurrent finite state machines: one main machine and one 

post-processing machine. The main machine is ready to participate in a new usage as soon as the 

previous usage is terminating, and the post-processing machine cleans up the terminating calls in the 

background by waiting for upack and downack signals.  

7.2 Template Semantics Definition 

Template Semantics captures the semantics that are common among several model-based 

specification and design notations. By parameterizing notations’ common execution semantics, each 

notation can be described in terms of parameters to the template semantics. Template semantics 

descriptions can also be the basis for tools that are configured using the semantic parameter values. 

In particular, we are interested in writing a translator from template-semantics models to SPIN, where 



 

71 

the translator is configured using semantic parameter values. We can configure such a translator with 

semantic parameters that reflect BoxTalk semantics. Thus, defining a BoxTalk specification in terms 

of Template Semantics integrates our work into a larger project.  

This step includes two aspects: syntactic mapping and semantic mapping. We first showed how a 

BoxTalk model syntactically maps onto an HTS (the basic computation model of Template 

Semantics), and then presented the semantic mapping.  

7.3 Promela Model 

Starting from an explicated BoxTalk specification, a hand translation to an executable Promela model 

is implemented for both free and bound feature boxes. 

A feature box is represented as one or more SPIN processes. A free feature box is represented as 

one process. A bound feature box is represented as one main process and one post-processing 

process, with a unidirectional internal channel that sends signals from the main process to the post-

processing process. The environment is also modeled as a process that has rendezvous 

communication with the feature-box process(es).  

In detail, the feature-box process reflects the structure of the corresponding BoxTalk HTS model. The 

process is decomposed to states. Each state is identified by a state-name-label. A state label leads to 

an atomic structure that is executed as an indivisible unit. The environment process mimics the 

environment of a feature and exercises all possible input that the feature might receive. 

Inside processes, we used inline functions to simplify our process models, and to separate out code 

that implements the semantics of  individual template-semantics parameters. 

7.4 Case Studies and Results 

We built Promela models for free feature boxes Error Interface (EI), Receive Voice Mail (RVM) and 

Answer Confirm (AC), bound feature boxes Bound Transparent Box (BTB) and Black Phone Interface 

(BPI) .  

We used the SPIN model checker to verify that each of the features in the case studies adhered to 

the DFC protocol. In particular, we proved that the following properties hold: 

1. A received teardown signal is eventually acknowledged by a downack signal sent in response 

(For calls connected to upstream, downstream, and/or server) 

2. A received setup signal is eventually acknowledged by an upack signal sent in response (For 

call connected to upstream) 

3. No port sends a status signal before sending an upack signal when the port is allocated 

4. No port sends a status signal after sending a teardown signal, terminating the call 

5. In bound boxes, each received setup signal is eventually acknowledged by a corresponding 

upack signal sent in response 



 

72 

6. In bound feature box BTB, if the main process is in orienting_state and the post-processing 

process is in a non-idle_state, then the post-processing process is tearing down the previous 

call. That means that the main process has received a new setup signal, and has advanced 

to orienting state.  

7. In bound feature box BPI, if the main process stays is in its initial state and the post-

processing process is in a non-idle state, then the post-processing process is terminating the 

current call.  

Our Promela models are well structured to modularize the Promela representations of each template-

semantics parameter (to make it easier to write Promela models for other notations in the future).  As 

such, our models are not optimized for BoxTalk models or SPIN verification, and each run takes 

several minutes.  



 

73 

 

Appendix A 

Promela model – Free Error Interface 





  

75 

/*=============================================================*/ 1 
/* type definitions */ 2 
 3 
mtype = { teardown, downack, other, setup, upack, unknown }; 4 
mtype = { initial, terminating, final }; 5 
 6 
typedef Transition { 7 
 mtype dest; 8 
 chan in_chan; 9 
 chan out_chan; 10 
 bool en_flag = false; 11 
}; 12 
 13 
typedef Ia_type { 14 
 byte box_in = 0; 15 
 bool box_in_ready = true; 16 
 byte c_in = 1; 17 
 bool c_in_ready = false; 18 
 byte selected 19 
}; 20 
 21 
typedef O_type { 22 
 byte box_out = 0; 23 
 byte c_out = 1; 24 
}; 25 
 26 
typedef SnapShot { 27 
 mtype cs; 28 
 Ia_type Ia; 29 
 O_type O 30 
}; 31 
 32 
/*==============================================================*/ 33 
/* global variable declarations */ 34 
 35 
chan glob_ins[2] = [0] of {mtype}; 36 
chan glob_outs[2] = [0] of {mtype}; 37 
 38 
SnapShot ss; 39 
 40 
/* global monitor variables */ 41 
 42 
bool rcvd_setup = false; 43 
bool sent_upack = false; 44 
 45 
bool rcvd_teardown = false; 46 
bool sent_downack = false; 47 
 48 
bool sent_teardown = false; 49 
bool rcvd_downack = false; 50 
 51 
bool sent_unknown = false; 52 
 53 



 

76 

/*==============================================================*/ 54 
/* inline functions */ 55 
 56 
inline reset() { 57 
 58 
rcvd_setup = false; 59 
sent_upack = false; 60 
 61 
rcvd_teardown = false; 62 
sent_downack = false; 63 
 64 
sent_teardown = false; 65 
rcvd_downack = false; 66 
 67 
sent_unknown = false; 68 
 69 
 70 
 if 71 
 :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selected = ss.Ia.box_in; 72 
 :: glob_ins[ss.Ia.c_in]?sig -> ss.Ia.selected = ss.Ia.c_in;  73 
 fi; 74 
}; 75 
 76 
 77 
inline en_events(n){ 78 
 glob_ins[ss.Ia.selected] == t[n].in_chan; 79 
}; 80 
 81 
 82 
inline en_cond(n){ 83 
  if 84 
  ::(n==0) && sig == setup; 85 
  ::(n==1) && sig == downack; 86 
  ::(n==2) && sig == teardown; 87 
  fi; 88 
} 89 
 90 
 91 
inline next_trans(n){ 92 
  if 93 
  ::(n==0) -> rcvd_setup = true; 94 
  ss.Ia.c_in_ready = true; 95 
  t[0].out_chan!upack; 96 
  sent_upack = true; 97 
  t[0].out_chan!unknown; 98 
  sent_unknown = true; 99 
  t[0].out_chan!teardown; 100 
  sent_teardown = true; 101 
  ss.cs = t[0].dest; 102 
  ::(n==1) -> rcvd_downack = true; 103 
  ss.cs = t[1].dest; 104 
  ::(n==2) -> rcvd_teardown = true; 105 
  t[2].out_chan!downack; 106 



 

77 

  sent_downack = true; 107 
  fi; 108 
}; 109 
 110 
 111 
inline en_trans(n){ 112 
  if 113 
  :: en_events(n) -> 114 
 if 115 
 :: en_cond(n) -> t[n].en_flag = true; 116 
 :: else -> t[n].en_flag = false; 117 
 fi; 118 
  :: else -> t[n].en_flag = false; 119 
  fi; 120 
} 121 
 122 
/*===============================================================*/ 123 
/* free error interface box process */ 124 
 125 
active proctype EI() { 126 
 127 
  mtype sig; 128 
  Transition t[3]; 129 
 130 
 ss.cs = initial; 131 
 132 
 //statically declare transitions 133 
 t[0].dest = terminating; 134 
 t[0].in_chan = glob_ins[ss.Ia.box_in]; 135 
 t[0].out_chan = glob_outs[ss.O.c_out]; 136 
 137 
 t[1].dest = final; 138 
 t[1].in_chan = glob_ins[ss.Ia.c_in]; 139 
 140 
 t[2].dest = terminating; 141 
 t[2].in_chan = glob_ins[ss.Ia.c_in]; 142 
 t[2].out_chan = glob_outs[ss.O.c_out]; 143 
 144 
initial_state: 145 
atomic{ 146 
 reset(); 147 
  148 
 en_trans(0); 149 
 150 
 if 151 
 :: t[0].en_flag -> next_trans(0); goto terminating_state; 152 
 :: else -> goto initial_state; 153 
 fi; 154 
} 155 
 156 
terminating_state: 157 
atomic{ 158 
 reset(); 159 



 

78 

  160 
 en_trans(1); 161 
 en_trans(2); 162 
  163 
 if 164 
 :: t[1].en_flag -> next_trans(1); goto final_state; 165 
 :: t[2].en_flag -> next_trans(2); goto terminating_state; 166 
 :: else -> goto terminating_state; 167 
 fi; 168 
} 169 
 170 
final_state: 171 
 skip; 172 
}; 173 
 174 
 175 
/*=================================================================*/ 176 
/* environment process */ 177 
 178 
active proctype env() { 179 
 180 
end: do 181 
 :: ss.Ia.box_in_ready -> 182 
  ss.Ia.box_in_ready = false; 183 
  glob_ins[ss.Ia.box_in] ! setup; 184 
 :: ss.Ia.c_in_ready ->  185 
  if 186 
  :: glob_ins[ss.Ia.c_in] ! teardown; 187 
  :: glob_ins[ss.Ia.c_in] ! other; 188 
  fi; 189 
 od  190 
 unless { 191 
  if 192 
  :: glob_outs[ss.O.c_out] ? upack;  193 
    :: glob_outs[ss.O.c_out] ? unknown;  194 
    :: atomic {  glob_outs[ss.O.c_out] ? teardown ->  195 
    glob_ins[ss.Ia.c_in] ! downack; 196 
     }  197 
  :: glob_outs[ss.O.c_out] ? downack; 198 
    fi; 199 
 } 200 
 goto end; 201 
} 202 

 203 



  

79 

Appendix B 

Promela model – Bound Transparent Box 





  

81 

/*=============================================================*/ 1 
/* type definitions */ 2 
 3 
mtype = { teardown, downack, other, setup, upack, unavail }; 4 
mtype = { post_process_t, post_process_f, post_process_s }; 5 
 6 
mtype = { initial, orienting, connecting_f, connecting_s, transparent,  7 
 deciding_1, deciding_2, error, receiving }; 8 
mtype = { idle, t_work, s_wait_up, s_work, f_wait_up, f_work }; 9 
 10 
typedef Transition { 11 
 mtype dest; 12 
 chan in_chan; 13 
 chan out_chan; 14 
 chan out_chan2; 15 
 chan out_chan3; 16 
 bool en_flag = false; 17 
}; 18 
 19 
typedef Ia_type { 20 
 byte box_in = 0; 21 
 byte old_t_in = 1; 22 
 byte old_s_in = 2; 23 
 byte old_f_in = 3; 24 
 byte t_in = 4;//never used 25 
 byte s_in = 5; 26 
 byte f_in = 6; 27 
 bool box_in_ready = true; 28 
 bool old_t_in_ready = false; 29 
 bool old_s_in_ready = false; 30 
 bool old_f_in_ready = false; 31 
 bool s_in_ready = false; 32 
 bool f_in_ready = false; 33 
 byte selected; 34 
}; 35 
 36 
typedef O_type { 37 
 byte box_out = 0; 38 
 byte old_t_out = 1;//never used 39 
 byte old_s_out = 2; 40 
 byte old_f_out = 3; 41 
 byte t_out = 4; 42 
 byte s_out = 5; 43 
 byte f_out = 6; 44 
 chan s_hold = [1] of {mtype}; 45 
 chan f_hold = [1] of {mtype}; 46 
}; 47 
 48 
typedef IE_type { 49 
 chan internal = [0] of {mtype}; 50 
}; 51 
 52 
typedef SnapShot { 53 



 

82 

 mtype cs; 54 
 mtype cs_post_process; 55 
 Ia_type Ia; 56 
 O_type O; 57 
 IE_type IE; 58 
}; 59 
 60 
/*==============================================================*/ 61 
/* global variable declarations */ 62 
 63 
chan glob_ins[7] = [0] of {mtype}; 64 
chan glob_outs[7] = [0] of {mtype}; 65 
 66 
SnapShot ss; 67 
mtype sig; 68 
mtype inter_sig; 69 
bool s_communicating = true; 70 
bool f_communicating = true; 71 
bool old_s_communicating = true; 72 
bool old_f_communicating = true; 73 
bool t_from_subs = true; 74 
bool current_t_from_subs = true; 75 
Transition t[36]; 76 
 77 
/* global monitor variables */ 78 
 79 
bool rcvd_setup = false; 80 
bool sent_upack = false; 81 
bool sent_unavail = false; 82 
bool sent_teardown = false; 83 
bool s_rcvd_teardown = false; 84 
bool s_sent_downack = false; 85 
bool f_rcvd_teardown = false; 86 
bool f_sent_downack = false; 87 
byte last_call = 0; 88 
byte current_call = 0; 89 
byte pp_call = 0; 90 
byte counter = 0; 91 
 92 
/*==============================================================*/ 93 
/* inline functions */ 94 
 95 
inline setup_initial(b){ 96 
  ss.Ia.s_in_ready = true; 97 
  ss.Ia.f_in_ready = true; 98 
  if 99 
  :: (b) ->  f_communicating = false; 100 
  s_communicating = true; 101 
  :: (!b) ->  s_communicating = false; 102 
  f_communicating = true; 103 
  fi 104 
}; 105 
 106 



 

83 

 107 
inline teardown_cleanup(c){ 108 
  if 109 
  :: (c==0) ->  ss.Ia.old_t_in_ready = true; 110 
  :: (c==1) ->  ss.Ia.s_in_ready = false; 111 
  ss.Ia.old_s_in_ready = true; 112 
  old_s_communicating = s_communicating; 113 
  :: (c==2) -> ss.Ia.f_in_ready = false; 114 
  ss.Ia.old_f_in_ready = true; 115 
  old_f_communicating = f_communicating; 116 
  fi 117 
}; 118 
 119 
 120 
inline dump(c1, c2){ 121 
byte aSig; 122 
  do 123 
  :: c1?aSig -> c2!aSig; 124 
  :: empty(c1) -> break; 125 
  od; 126 
}; 127 
 128 
 129 
inline reset() { 130 
 rcvd_setup = false; 131 
 sent_upack = false; 132 
 sent_unavail = false; 133 
 sent_teardown = false; 134 
 s_rcvd_teardown = false; 135 
 s_sent_downack = false; 136 
 f_rcvd_teardown = false; 137 
 f_sent_downack = false;  138 
 139 
 if 140 
 :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selected = ss.Ia.box_in; 141 
 :: glob_ins[ss.Ia.s_in]?sig -> ss.Ia.selected = ss.Ia.s_in;  142 
 :: glob_ins[ss.Ia.f_in]?sig -> ss.Ia.selected = ss.Ia.f_in;  143 
 fi; 144 
}; 145 
 146 
 147 
inline reset_pp() { 148 
 if 149 
 :: glob_ins[ss.Ia.old_s_in]?sig -> ss.Ia.selected = ss.Ia.old_s_in; 150 
 :: glob_ins[ss.Ia.old_f_in]?sig -> ss.Ia.selected = ss.Ia.old_f_in; 151 
 :: glob_ins[ss.Ia.old_t_in]?sig -> ss.Ia.selected = ss.Ia.old_t_in; 152 
 fi; 153 
}; 154 
 155 
 156 
inline en_events(n){ 157 
  if 158 
  ::(n==0) && ss.Ia.selected == ss.Ia.box_in; 159 



 

84 

  ::(n==1) && true; 160 
  ::(n==2) && true; 161 
  ::(n==3) && ss.Ia.selected == ss.Ia.f_in; 162 
  ::(n==4) && ss.Ia.selected == ss.Ia.s_in; 163 
  ::(n==5) && ss.Ia.selected == ss.Ia.s_in; 164 
  ::(n==6) && ss.Ia.selected == ss.Ia.f_in; 165 
  ::(n==7) && ss.Ia.selected == ss.Ia.box_in; 166 
  ::(n==8) && true; 167 
  ::(n==9) && true; 168 
  ::(n==10) && ss.Ia.selected == ss.Ia.s_in; 169 
  ::(n==11) && ss.Ia.selected == ss.Ia.box_in; 170 
  ::(n==12) && true; 171 
  ::(n==13) && true; 172 
  ::(n==14) && ss.Ia.selected == ss.Ia.s_in; 173 
  ::(n==15) && ss.Ia.selected == ss.Ia.f_in; 174 
  ::(n==16) && ss.Ia.selected == ss.Ia.box_in; 175 
  ::(n==17) && true; 176 
  ::(n==18) && true; 177 
  ::(n==19) && ss.Ia.selected == ss.Ia.f_in; 178 
  ::(n==20) && ss.Ia.selected == ss.Ia.s_in; 179 
  ::(n==21) && ss.Ia.selected == ss.Ia.f_in; 180 
  ::(n==22) && true; 181 
  ::(n==23) && ss.Ia.selected == ss.Ia.old_s_in; 182 
  ::(n==24) && ss.Ia.selected == ss.Ia.old_s_in; 183 
  ::(n==25) && true; 184 
  ::(n==26) && ss.Ia.selected == ss.Ia.old_s_in; 185 
  ::(n==27) && true; 186 
  ::(n==28) && ss.Ia.selected == ss.Ia.old_f_in; 187 
  ::(n==29) && ss.Ia.selected == ss.Ia.old_f_in; 188 
  ::(n==30) && true; 189 
  ::(n==31) && ss.Ia.selected == ss.Ia.old_f_in; 190 
  ::(n==32) && true; 191 
  ::(n==33) && ss.Ia.selected == ss.Ia.old_t_in; 192 
  ::(n==34) && ss.Ia.selected == ss.Ia.s_in; 193 
  ::(n==35) && ss.Ia.selected == ss.Ia.f_in; 194 
  fi; 195 
}; 196 
 197 
 198 
inline en_cond(n){ 199 
  if 200 
  ::(n==0) && sig == setup; 201 
  ::(n==1) && current_t_from_subs; 202 
  ::(n==2) && !current_t_from_subs; 203 
  ::(n==3) && sig == upack; 204 
  ::(n==4) && sig == upack; 205 
  ::(n==5) && (sig == teardown) && !ss.Ia.old_f_in_ready; 206 
  ::(n==6) && (sig == teardown); 207 
  ::(n==7) && sig == setup; 208 
  ::(n==8) && current_t_from_subs; 209 
  ::(n==9) && !current_t_from_subs; 210 
  ::(n==10) && (sig != teardown) && nfull(t[10].out_chan); 211 
  ::(n==11) && sig == setup; 212 



 

85 

  ::(n==12) && current_t_from_subs; 213 
  ::(n==13) && !current_t_from_subs; 214 
  ::(n==14) && (sig != teardown) && full(t[14].out_chan); 215 
  ::(n==15) && sig != teardown && nfull(t[15].out_chan); 216 
  ::(n==16) && sig == setup; 217 
  ::(n==17) && current_t_from_subs; 218 
  ::(n==18) && !current_t_from_subs; 219 
  ::(n==19) && sig != teardown && full(t[19].out_chan); 220 
  ::(n==20) && (sig == teardown) && !ss.Ia.old_f_in_ready; 221 
  ::(n==21) && sig == teardown; 222 
  ::(n==34) && sig != teardown; 223 
  ::(n==35) && sig != teardown; 224 
  // conditions for post-processing machines 225 
  ::(n==22) && (inter_sig == post_process_s) && !old_s_communicating; 226 
  ::(n==23) && sig == upack; 227 
  ::(n==24) && sig == downack; 228 
  ::(n==25) && (inter_sig == post_process_s) && old_s_communicating; 229 
  ::(n==26) && sig == teardown; 230 
  ::(n==27) && (inter_sig == post_process_f) && !old_f_communicating; 231 
  ::(n==28) && sig == upack; 232 
  ::(n==29) && sig == downack; 233 
  ::(n==30) && (inter_sig == post_process_f) && old_f_communicating; 234 
  ::(n==31) && sig == teardown; 235 
  ::(n==32) && inter_sig == post_process_t; 236 
  ::(n==33) && sig == downack; 237 
  fi; 238 
} 239 
 240 
 241 
inline next_trans(n){ 242 
  if 243 
  ::(n==0) -> rcvd_setup = true; 244 
  current_t_from_subs = t_from_subs; 245 
  last_call = current_call; 246 
  current_call = counter; 247 
  t[0].out_chan!upack; 248 
  sent_upack = true; 249 
  ss.cs = t[0].dest; 250 
 251 
  ::(n==1) -> setup_initial(current_t_from_subs); 252 
  t[1].out_chan!setup; 253 
  ss.cs = t[1].dest; 254 
 255 
  ::(n==2) -> setup_initial(current_t_from_subs); 256 
  t[2].out_chan!setup; 257 
  ss.cs = t[2].dest; 258 
 259 
  ::(n==3) ->  dump(ss.O.f_hold, glob_outs[ss.O.f_out]); 260 
  f_communicating = true; 261 
  ss.cs = t[3].dest; 262 
 263 
  ::(n==4) -> dump(ss.O.s_hold, glob_outs[ss.O.s_out]); 264 
  s_communicating = true; 265 



 

86 

  ss.cs = t[4].dest; 266 
 267 
  ::(n==5) -> s_rcvd_teardown = true; 268 
  t[5].out_chan!downack; 269 
  s_sent_downack = true; 270 
  pp_call = current_call;  271 
  t[5].out_chan2!teardown; 272 
  ss.IE.internal!post_process_f;  273 
  ss.cs = t[5].dest; 274 
 275 
  ::(n==6) ->  f_rcvd_teardown = true; 276 
  t[6].out_chan!downack; 277 
  f_sent_downack = true; 278 
  pp_call = current_call;  279 
  t[6].out_chan2!teardown; 280 
  ss.IE.internal!post_process_s;  281 
  ss.cs = t[6].dest; 282 
 283 
  ::(n==7) -> rcvd_setup = true; 284 
  current_t_from_subs = t_from_subs; 285 
  last_call = current_call; 286 
  current_call = counter; 287 
  t[7].out_chan!upack; 288 
  sent_upack = true; 289 
  ss.cs = t[7].dest; 290 
 291 
  ::(n==8) -> pp_call = last_call; 292 
  t[8].out_chan!teardown; 293 
  ss.IE.internal!post_process_s;  294 
  t[8].out_chan2!teardown; 295 
  ss.IE.internal!post_process_f;  296 
  setup_initial(current_t_from_subs); 297 
  t[8].out_chan3!setup; 298 
  ss.cs = t[8].dest; 299 
   300 
  ::(n==9) -> t[9].out_chan!unavail; 301 
  sent_unavail = true; 302 
  t[9].out_chan!teardown; 303 
  sent_teardown = true; 304 
  ss.IE.internal!post_process_t; 305 
  ss.cs = t[9].dest; 306 
 307 
  ::(n==10) -> t[10].out_chan!sig; 308 
  ss.cs = t[10].dest; 309 
 310 
  ::(n==11) -> rcvd_setup = true; 311 
  current_t_from_subs = t_from_subs; 312 
  last_call = current_call; 313 
  current_call = counter; 314 
  t[11].out_chan!upack; 315 
  sent_upack = true; 316 
  ss.cs = t[11].dest; 317 
 318 



 

87 

  ::(n==12) -> pp_call = last_call; 319 
  t[12].out_chan!teardown; 320 
  ss.IE.internal!post_process_s;  321 
  t[12].out_chan2!teardown; 322 
  ss.IE.internal!post_process_f;  323 
  setup_initial(current_t_from_subs); 324 
  t[12].out_chan3!setup; 325 
  ss.cs = t[12].dest; 326 
 327 
  ::(n==13) -> t[13].out_chan!unavail; 328 
  sent_unavail = true; 329 
  t[13].out_chan!teardown; 330 
  sent_teardown = true; 331 
  ss.IE.internal!post_process_t; 332 
  ss.cs = t[13].dest; 333 
 334 
  ::(n==14) -> ss.Ia.s_in_ready = false; 335 
  ss.Ia.f_in_ready = false; 336 
  ss.cs = t[14].dest; 337 
 338 
  ::(n==15) -> t[15].out_chan!sig; 339 
  ss.cs = t[15].dest; 340 
 341 
  ::(n==16) -> rcvd_setup = true; 342 
  current_t_from_subs = t_from_subs; 343 
  last_call = current_call; 344 
  current_call = counter; 345 
  t[16].out_chan!upack; 346 
  sent_upack = true; 347 
  ss.cs = t[16].dest; 348 
 349 
  ::(n==17) -> pp_call = last_call; 350 
  t[17].out_chan!teardown; 351 
  ss.IE.internal!post_process_s;  352 
  t[17].out_chan2!teardown; 353 
  ss.IE.internal!post_process_f;  354 
  setup_initial(current_t_from_subs); 355 
  t[17].out_chan3!setup; 356 
  ss.cs = t[17].dest; 357 
 358 
  ::(n==18) -> t[18].out_chan!unavail; 359 
  sent_unavail = true; 360 
  t[18].out_chan!teardown; 361 
  sent_teardown = true; 362 
  ss.IE.internal!post_process_t; 363 
  ss.cs = t[18].dest; 364 
 365 
  ::(n==19) -> ss.Ia.s_in_ready = false; 366 
  ss.Ia.f_in_ready = false; 367 
  ss.cs = t[19].dest; 368 
 369 
  ::(n==20) -> t[20].out_chan!downack; 370 
  pp_call = current_call; 371 



 

88 

  t[20].out_chan2!teardown; 372 
  ss.IE.internal!post_process_f;  373 
  ss.cs = t[20].dest; 374 
 375 
  ::(n==21) -> t[21].out_chan!downack; 376 
  pp_call = current_call; 377 
  t[21].out_chan2!teardown; 378 
  ss.IE.internal!post_process_s;  379 
  ss.cs = t[21].dest; 380 
 381 
  ::(n==22) -> ss.cs_post_process = t[22].dest; 382 
 383 
  ::(n==23) -> ss.cs_post_process = t[23].dest; 384 
 385 
  ::(n==24) ->  ss.Ia.old_s_in_ready = false; 386 
  ss.cs_post_process = t[24].dest; 387 
 388 
  ::(n==25) -> ss.cs_post_process = t[25].dest; 389 
 390 
  ::(n==26) -> t[26].out_chan!downack; 391 
  ss.cs_post_process = t[26].dest; 392 
 393 
  ::(n==27) -> ss.cs_post_process = t[27].dest; 394 
 395 
  ::(n==28) -> ss.cs_post_process = t[28].dest; 396 
 397 
  ::(n==29) ->  ss.Ia.old_f_in_ready = false; 398 
  ss.cs_post_process = t[29].dest; 399 
 400 
  ::(n==30) -> ss.cs_post_process = t[30].dest; 401 
 402 
  ::(n==31) -> t[31].out_chan!downack; 403 
  ss.cs_post_process = t[31].dest; 404 
 405 
  ::(n==32) -> ss.cs_post_process = t[32].dest; 406 
 407 
  ::(n==33) -> ss.Ia.old_t_in_ready = false; 408 
  ss.cs_post_process = t[33].dest;   409 
 410 
  ::(n==34) -> t[34].out_chan!sig; 411 
  ss.cs = t[34].dest; 412 
 413 
  ::(n==35) ->  t[35].out_chan!sig; 414 
  ss.cs = t[35].dest; 415 
  fi; 416 
}; 417 
 418 
 419 
inline en_trans(n){ 420 
  if 421 
  :: en_events(n) -> 422 
 if 423 
 :: en_cond(n) -> t[n].en_flag = true; 424 



 

89 

 :: else -> t[n].en_flag = false; 425 
 fi; 426 
  :: else -> t[n].en_flag = false; 427 
  fi; 428 
}; 429 
 430 
/*===============================================================*/ 431 
/* bound transparent box process */ 432 
 433 
active proctype BTB() { 434 
 435 
 ss.cs = initial; 436 
 437 
 //statically declare transitions 438 
 t[0].dest = orienting; 439 
 t[0].in_chan = glob_ins[ss.Ia.box_in]; 440 
 t[0].out_chan = glob_outs[ss.O.t_out]; 441 
  442 
 t[1].dest = connecting_f; 443 
 t[1].out_chan = glob_outs[ss.O.box_out]; 444 
 445 
 t[2].dest = connecting_s; 446 
 t[2].out_chan = glob_outs[ss.O.box_out]; 447 
 448 
 t[3].dest = transparent; 449 
 t[3].in_chan = glob_ins[ss.Ia.f_in]; 450 
 451 
 t[4].dest = transparent; 452 
 t[4].in_chan = glob_ins[ss.Ia.s_in]; 453 
 454 
 t[5].dest = initial; 455 
 t[5].in_chan = glob_ins[ss.Ia.s_in]; 456 
 t[5].out_chan = glob_outs[ss.O.s_out]; 457 
 t[5].out_chan2 = glob_outs[ss.O.f_out]; 458 
 459 
 t[6].dest = initial; 460 
 t[6].in_chan = glob_ins[ss.Ia.f_in]; 461 
 t[6].out_chan = glob_outs[ss.O.f_out]; 462 
 t[6].out_chan2 = glob_outs[ss.O.s_out]; 463 
 464 
 t[7].dest = receiving; 465 
 t[7].in_chan = glob_ins[ss.Ia.box_in]; 466 
 t[7].out_chan = glob_outs[ss.O.t_out]; 467 
 468 
 t[8].dest = connecting_f; 469 
 t[8].out_chan = glob_outs[ss.O.s_out]; 470 
 t[8].out_chan2 = glob_outs[ss.O.f_out]; 471 
 t[8].out_chan3 = glob_outs[ss.O.box_out]; 472 
 473 
 t[9].dest = transparent; 474 
 t[9].out_chan = glob_outs[ss.O.t_out]; 475 
 476 
 t[10].dest = connecting_f; 477 



 

90 

 t[10].in_chan = glob_ins[ss.Ia.s_in]; 478 
 t[10].out_chan = ss.O.f_hold; 479 
 480 
 t[11].dest = deciding_1; 481 
 t[11].in_chan = glob_ins[ss.Ia.box_in]; 482 
 t[11].out_chan = glob_outs[ss.O.t_out]; 483 
 484 
 t[12].dest = connecting_f; 485 
 t[12].out_chan = glob_outs[ss.O.s_out]; 486 
 t[12].out_chan2 = glob_outs[ss.O.f_out]; 487 
 t[12].out_chan3 = glob_outs[ss.O.box_out]; 488 
 489 
 t[13].dest = connecting_f; 490 
 t[13].out_chan = glob_outs[ss.O.t_out]; 491 
  492 
 t[14].dest = error; 493 
 t[14].in_chan = glob_ins[ss.Ia.s_in]; 494 
 t[14].out_chan = ss.O.f_hold; 495 
 496 
 t[15].dest = connecting_s; 497 
 t[15].in_chan = glob_ins[ss.Ia.f_in]; 498 
 t[15].out_chan = ss.O.s_hold; 499 
 500 
 t[16].dest = deciding_2; 501 
 t[16].in_chan = glob_ins[ss.Ia.box_in]; 502 
 t[16].out_chan = glob_outs[ss.O.t_out]; 503 
 504 
 t[17].dest = connecting_f; 505 
 t[17].out_chan = glob_outs[ss.O.s_out]; 506 
 t[17].out_chan2 = glob_outs[ss.O.f_out]; 507 
 t[17].out_chan3 = glob_outs[ss.O.box_out]; 508 
 509 
 t[18].dest = connecting_s; 510 
 t[18].out_chan = glob_outs[ss.O.t_out]; 511 
  512 
 t[19].dest = error; 513 
 t[19].in_chan = glob_ins[ss.Ia.f_in]; 514 
 t[19].out_chan = ss.O.s_hold; 515 
 516 
 t[20].dest = initial; 517 
 t[20].in_chan = glob_ins[ss.Ia.s_in]; 518 
 t[20].out_chan = glob_outs[ss.O.s_out]; 519 
 t[20].out_chan2 = glob_outs[ss.O.f_out]; 520 
 521 
 t[21].dest = initial; 522 
 t[21].in_chan = glob_ins[ss.Ia.f_in]; 523 
 t[21].out_chan = glob_outs[ss.O.f_out]; 524 
 t[21].out_chan2 = glob_outs[ss.O.s_out]; 525 
 526 
 t[34].dest = transparent; 527 
 t[34].in_chan = glob_ins[ss.Ia.s_in]; 528 
 t[34].out_chan = glob_outs[ss.O.f_out]; 529 
 530 



 

91 

 t[35].dest = transparent; 531 
 t[35].in_chan = glob_ins[ss.Ia.f_in]; 532 
 t[35].out_chan = glob_outs[ss.O.s_out]; 533 
 534 
end_initial_state: 535 
atomic{ 536 
 reset(); 537 
  538 
 en_trans(0); 539 
 540 
 if 541 
 :: t[0].en_flag -> next_trans(0); goto orienting_state; 542 
 :: else -> goto end_initial_state; 543 
 fi; 544 
} 545 
 546 
orienting_state: 547 
atomic{ 548 
 en_trans(1); 549 
 en_trans(2); 550 
  551 
 if 552 
 :: t[1].en_flag -> next_trans(1); goto connecting_f_state; 553 
 :: t[2].en_flag -> next_trans(2); goto connecting_s_state; 554 
 fi; 555 
} 556 
 557 
connecting_f_state: 558 
atomic{ 559 
 reset(); 560 
 561 
 en_trans(3); 562 
 en_trans(10); 563 
 en_trans(11); 564 
 en_trans(14); 565 
 en_trans(20); 566 
 567 
 if 568 
 :: t[3].en_flag -> next_trans(3); goto transparent_state; 569 
 :: t[10].en_flag -> next_trans(10); goto connecting_f_state; 570 
 :: t[11].en_flag -> next_trans(11); goto deciding_1_state; 571 
 :: t[14].en_flag -> next_trans(14); goto error_state;    572 
 :: t[20].en_flag -> next_trans(20); goto end_initial_state; 573 
 :: else -> goto connecting_f_state; 574 
 fi; 575 
} 576 
 577 
connecting_s_state: 578 
atomic{ 579 
 reset(); 580 
 581 
 en_trans(4); 582 
 en_trans(15); 583 



 

92 

 en_trans(16); 584 
 en_trans(19); 585 
 en_trans(21); 586 
 587 
 if 588 
 :: t[4].en_flag -> next_trans(4); goto transparent_state; 589 
 :: t[15].en_flag -> next_trans(15); goto connecting_s_state; 590 
 :: t[16].en_flag -> next_trans(16); goto deciding_2_state; 591 
 :: t[19].en_flag -> next_trans(19); goto error_state;    592 
 :: t[21].en_flag -> next_trans(21); goto end_initial_state; 593 
 :: else -> goto connecting_s_state; 594 
 fi; 595 
} 596 
 597 
deciding_1_state: 598 
atomic{ 599 
 en_trans(12); 600 
 en_trans(13); 601 
 602 
 if 603 
 :: t[12].en_flag -> next_trans(12); goto connecting_f_state; 604 
 :: t[13].en_flag -> next_trans(13); goto connecting_f_state; 605 
 fi; 606 
} 607 
 608 
deciding_2_state: 609 
atomic{ 610 
 en_trans(17); 611 
 en_trans(18); 612 
 613 
 if 614 
 :: t[17].en_flag -> next_trans(17); goto connecting_f_state; 615 
 :: t[18].en_flag -> next_trans(18); goto connecting_s_state; 616 
 fi; 617 
} 618 
 619 
transparent_state: 620 
atomic{ 621 
 reset(); 622 
  623 
 en_trans(5); 624 
 en_trans(6); 625 
 en_trans(7); 626 
 en_trans(34); 627 
 en_trans(35); 628 
 629 
  if  630 
 :: t[5].en_flag -> next_trans(5); goto end_initial_state; 631 
 :: t[6].en_flag -> next_trans(6); goto end_initial_state; 632 
 :: t[7].en_flag -> next_trans(7); goto receiving_state; 633 
 :: t[34].en_flag -> next_trans(34); goto transparent_state; 634 
 :: t[35].en_flag -> next_trans(35); goto transparent_state; 635 
 :: else -> goto transparent_state; 636 



 

93 

 fi; 637 
} 638 
 639 
receiving_state: 640 
atomic{ 641 
 en_trans(8); 642 
 en_trans(9); 643 
 644 
 if 645 
 :: t[8].en_flag -> next_trans(8); goto connecting_f_state; 646 
 :: t[9].en_flag -> next_trans(9); goto transparent_state; 647 
 fi; 648 
} 649 
 650 
error_state: 651 
 skip; 652 
}; 653 
 654 
 655 
/*=================================================================*/ 656 
/* post-processing process */ 657 
 658 
active proctype pp() { 659 
  byte inter_sig; 660 
 661 
 ss.cs_post_process = idle; 662 
 663 
 t[22].dest = s_wait_up; 664 
 665 
 t[23].dest = s_work; 666 
 t[23].in_chan = glob_ins[ss.Ia.old_s_in]; 667 
 668 
 t[24].dest = idle; 669 
 t[24].in_chan = glob_ins[ss.Ia.old_s_in]; 670 
 671 
 t[25].dest = s_work; 672 
 673 
 t[26].dest = s_work; 674 
 t[26].in_chan = glob_ins[ss.Ia.old_s_in]; 675 
 t[26].out_chan = glob_outs[ss.O.old_s_out]; 676 
 677 
 t[27].dest = f_wait_up; 678 
 679 
 t[28].dest = f_work; 680 
 t[28].in_chan = glob_ins[ss.Ia.old_f_in]; 681 
 682 
 t[29].dest = idle; 683 
 t[29].in_chan = glob_ins[ss.Ia.old_f_in]; 684 
 685 
 t[30].dest = f_work; 686 
 687 
 t[31].dest = f_work; 688 
 t[31].in_chan = glob_ins[ss.Ia.old_f_in]; 689 



 

94 

 t[31].out_chan = glob_outs[ss.O.old_f_out]; 690 
 691 
 t[32].dest = t_work; 692 
 693 
 t[33].dest = idle; 694 
 t[33].in_chan = glob_ins[ss.Ia.old_t_in]; 695 
  696 
end_idle_state: 697 
atomic{ 698 
 ss.IE.internal?inter_sig; 699 
 700 
 en_trans(22); 701 
 en_trans(25); 702 
 en_trans(27); 703 
 en_trans(30); 704 
 en_trans(32); 705 
 706 
 if 707 
 :: t[22].en_flag -> next_trans(22); goto s_wait_up_state; 708 
 :: t[25].en_flag -> next_trans(25); goto s_work_state; 709 
 :: t[27].en_flag -> next_trans(27); goto f_wait_up_state; 710 
 :: t[30].en_flag -> next_trans(30); goto f_work_state; 711 
 :: t[32].en_flag -> next_trans(32); goto t_work_state; 712 
 :: else -> goto end_idle_state; 713 
 fi; 714 
} 715 
 716 
s_wait_up_state: 717 
atomic{ 718 
 reset_pp(); 719 
 720 
 en_trans(23); 721 
  722 
 if 723 
 :: t[23].en_flag -> next_trans(23); goto s_work_state; 724 
 :: else -> goto s_wait_up_state; 725 
 fi; 726 
} 727 
 728 
s_work_state: 729 
atomic{ 730 
 reset_pp(); 731 
 732 
 en_trans(24); 733 
 en_trans(26); 734 
 735 
 if 736 
 :: t[24].en_flag -> next_trans(24); goto end_idle_state; 737 
 :: t[26].en_flag -> next_trans(26); goto s_work_state; 738 
 :: else -> goto s_work_state; 739 
 fi; 740 
} 741 
 742 



 

95 

f_wait_up_state: 743 
atomic{ 744 
 reset_pp(); 745 
 746 
 en_trans(27); 747 
  748 
 if 749 
 :: t[27].en_flag -> next_trans(27); goto f_work_state; 750 
 :: else -> goto f_wait_up_state; 751 
 fi; 752 
} 753 
 754 
f_work_state: 755 
atomic{ 756 
 reset_pp(); 757 
 758 
 en_trans(29); 759 
 en_trans(31); 760 
 761 
 if 762 
 :: t[29].en_flag -> next_trans(29); goto end_idle_state; 763 
 :: t[31].en_flag -> next_trans(31); goto f_work_state; 764 
 :: else -> goto f_work_state; 765 
 fi; 766 
} 767 
 768 
t_work_state: 769 
atomic{ 770 
 reset_pp(); 771 
 772 
 en_trans(33); 773 
  774 
 if 775 
 :: t[33].en_flag -> next_trans(33); goto end_idle_state; 776 
 :: else -> goto t_work_state; 777 
 fi; 778 
} 779 
 780 
} 781 
 782 
 783 
/*=================================================================*/ 784 
/* environment process */ 785 
 786 
active proctype env() { 787 
 788 
end: 789 
  do 790 
  :: ss.Ia.box_in_ready && !ss.Ia.old_s_in_ready &&  791 
     !ss.Ia.old_f_in_ready &&!ss.Ia.old_t_in_ready -> 792 
 if 793 
 :: atomic{ t_from_subs = true; counter = counter+1; glob_ins[ss.Ia.box_in]!setup; } 794 
 :: atomic{ t_from_subs = false; counter = counter+1; glob_ins[ss.Ia.box_in]!setup; } 795 



 

96 

 fi; 796 
  :: ss.Ia.s_in_ready && !ss.Ia.old_t_in_ready -> 797 
 if 798 
   :: glob_ins[ss.Ia.s_in] ! other;  799 
   :: glob_ins[ss.Ia.s_in] ! teardown;  800 
 fi; 801 
  :: ss.Ia.old_s_in_ready && !ss.Ia.old_t_in_ready -> 802 
 if 803 
   :: glob_ins[ss.Ia.old_s_in] ! downack; 804 
   :: glob_ins[ss.Ia.old_s_in] ! upack; 805 
 fi; 806 
  :: ss.Ia.f_in_ready && !ss.Ia.old_t_in_ready -> 807 
 if 808 
   :: glob_ins[ss.Ia.f_in] ! other;  809 
   :: glob_ins[ss.Ia.f_in] ! teardown; 810 
 fi; 811 
  :: ss.Ia.old_f_in_ready && !ss.Ia.old_t_in_ready -> 812 
 if  813 
   :: glob_ins[ss.Ia.old_f_in] ! downack; 814 
   :: glob_ins[ss.Ia.old_f_in] ! upack; 815 
 fi; 816 
  :: ss.Ia.old_t_in_ready -> glob_ins[ss.Ia.old_t_in] ! downack; 817 
  od  818 
  unless{ 819 
  if  820 
  :: glob_outs[ss.O.box_out] ? setup -> 821 
 if 822 
 :: (current_t_from_subs) -> glob_ins[ss.Ia.f_in]!upack; 823 
 :: else -> glob_ins[ss.Ia.s_in]!upack; 824 
 fi 825 
  :: glob_outs[ss.O.t_out] ? upack; 826 
  :: glob_outs[ss.O.t_out] ? unavail; 827 
  :: atomic{ glob_outs[ss.O.t_out] ? teardown -> teardown_cleanup(0);}   828 
  :: glob_outs[ss.O.s_out] ? other; 829 
  :: atomic{ glob_outs[ss.O.s_out] ? teardown -> teardown_cleanup(1);} 830 
  :: glob_outs[ss.O.s_out] ? downack -> ss.Ia.s_in_ready = false; 831 
  :: glob_outs[ss.O.f_out] ? downack -> ss.Ia.f_in_ready = false; 832 
  :: glob_outs[ss.O.f_out] ? other; 833 
  :: atomic{ glob_outs[ss.O.f_out] ? teardown -> teardown_cleanup(2);} 834 
  :: glob_outs[ss.O.old_s_out] ? downack; 835 
  :: glob_outs[ss.O.old_f_out] ? downack; 836 
  fi; 837 
  } 838 
  goto end; 839 
}; 840 

 841 



  

97 

Appendix C 

Receive Voice Mail 





  

99 

/*=============================================================*/ 1 
/* type definitions */ 2 
 3 
mtype = { teardown, downack, other, setup, upack, avail, unavail, unknown }; 4 
mtype = { initial, transparent, connecting, abandonConnection,  5 
 terminatingO, terminatingI, final, error, switching,  6 
 waitingOdown, connectingR, abandoning, dialogue, endingOnR, 7 
 waitingRup, terminatingR }; 8 
 9 
typedef Transition { 10 
 mtype dest; 11 
 chan in_chan; 12 
 chan out_chan; 13 
 chan out_chan2; 14 
 chan out_chan3; 15 
 bool en_flag = false; 16 
 17 
}; 18 
 19 
typedef Ia_type { 20 
 byte box_in = 0; 21 
 byte i_in = 1; 22 
 byte o_in = 2; 23 
 byte r_in = 3; 24 
 bool box_in_ready = true; 25 
 bool i_in_ready = false; 26 
 bool o_in_ready = false; 27 
 bool r_in_ready = false; 28 
 byte selected 29 
}; 30 
 31 
typedef O_type { 32 
 byte box_out = 0; 33 
 byte i_out = 1; 34 
 byte o_out = 2; 35 
 byte r_out = 3; 36 
 chan o_hold = [5] of {mtype}; 37 
}; 38 
 39 
typedef SnapShot { 40 
 mtype cs; 41 
 Ia_type Ia; 42 
 O_type O 43 
}; 44 
 45 
/*==============================================================*/ 46 
/* global variable declarations */ 47 
 48 
chan glob_ins[4] = [0] of {mtype}; 49 
chan glob_outs[4] = [0] of {mtype}; 50 
 51 
SnapShot ss; 52 
 53 



 

100 

/* global monitor variables */ 54 
 55 
bool rcvd_setup, sent_upack = false; 56 
bool o_sent_setup, o_rcvd_upack = false; 57 
bool r_sent_setup, r_rcvd_upack = false; 58 
bool i_sent_teardown, i_rcvd_downack = false; 59 
bool o_sent_teardown, o_rcvd_downack = false; 60 
bool r_sent_teardown, r_rcvd_downack = false; 61 
bool o_rcvd_teardown = false; 62 
bool o_rcvd_status = false; 63 
 64 
/*==============================================================*/ 65 
/* inline functions */ 66 
 67 
inline dump(c1, c2){ 68 
byte aSig; 69 
  do 70 
  :: c1?aSig -> c2!aSig; 71 
  :: empty(c1) -> break; 72 
  od; 73 
}; 74 
 75 
 76 
inline reset() { 77 
 78 
 rcvd_setup = false; 79 
 sent_upack = false; 80 
 81 
 o_sent_setup = false; 82 
 o_rcvd_upack = false; 83 
 84 
 r_sent_setup = false; 85 
 r_rcvd_upack = false; 86 
 87 
 i_sent_teardown = false; 88 
 i_rcvd_downack = false; 89 
 90 
 o_sent_teardown = false; 91 
 o_rcvd_downack = false; 92 
 93 
 r_sent_teardown = false; 94 
 r_rcvd_downack = false; 95 
 96 
 o_rcvd_teardown = false; 97 
 o_rcvd_status = false; 98 
 99 
 if 100 
 :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selected = ss.Ia.box_in;  101 
 :: glob_ins[ss.Ia.o_in]?sig -> ss.Ia.selected = ss.Ia.o_in;  102 
 :: glob_ins[ss.Ia.i_in]?sig -> ss.Ia.selected = ss.Ia.i_in; 103 
 :: glob_ins[ss.Ia.r_in]?sig -> ss.Ia.selected = ss.Ia.r_in;  104 
 fi 105 
}; 106 



 

101 

 107 
 108 
inline en_events(n){ 109 
 glob_ins[ss.Ia.selected] == t[n].in_chan; 110 
}; 111 
 112 
 113 
inline en_cond(n){ 114 
  if 115 
  ::(n==0) && (sig==setup); 116 
  ::(n==1) && (sig!=teardown) && nfull(t[1].out_chan); 117 
  ::(n==2) && (sig==upack);  118 
  ::(n==3) && (sig!=teardown); 119 
  ::(n==4) && (sig!=teardown); 120 
  ::(n==5) && (sig==teardown); 121 
  ::(n==6) && (sig==teardown); 122 
  ::(n==7) && (sig==teardown); 123 
  ::(n==8) && (sig==upack); 124 
  ::(n==9) && (sig==teardown); 125 
  ::(n==10) && (sig!=teardown) && (sig!=downack); 126 
  ::(n==11) && (sig==downack); 127 
  ::(n==12) && (sig==teardown); 128 
  ::(n==13) && (sig!=teardown) && (sig!=downack); 129 
  ::(n==14) && (sig==downack); 130 
  ::(n==15) && (sig!=teardown) && full(t[15].out_chan); 131 
  ::(n==16) && (sig==unavail); 132 
  ::(n==17) && (sig==avail); 133 
  ::(n==18) && (sig==unknown); 134 
  ::(n==19) && (sig==upack); 135 
  ::(n==20) && (sig==downack); 136 
  ::(n==21) && (sig==teardown); 137 
  ::(n==22) && (sig!=teardown) && (sig!=downack); 138 
  ::(n==23) && (sig==teardown); 139 
  ::(n==24) && (sig!=teardown); 140 
  ::(n==25) && (sig==downack); 141 
  ::(n==26) && (sig==teardown); 142 
  ::(n==27) && (sig!=teardown) && (sig!=downack); 143 
  ::(n==28) && (sig==teardown); 144 
  ::(n==29) && (sig!=teardown); 145 
  ::(n==30) && (sig==upack); 146 
  ::(n==31) && (sig==teardown); 147 
  ::(n==32) && (sig!=teardown); 148 
  ::(n==33) && (sig==upack); 149 
  ::(n==34) && (sig==downack); 150 
  ::(n==35) && (sig==teardown); 151 
  ::(n==36) && (sig!=teardown) && (sig!=downack); 152 
  ::(n==37) && (sig==teardown); 153 
  ::(n==38) && (sig==teardown); 154 
  ::(n==39) && (sig!=teardown); 155 
  ::(n==40) && (sig==downack); 156 
  ::(n==41) && (sig==downack); 157 
  ::(n==42) && (sig==teardown); 158 
  ::(n==43) && (sig!=teardown) && (sig!=downack); 159 



 

102 

  ::(n==44) && (sig==upack); 160 
  ::(n==45) && (sig==downack); 161 
  fi; 162 
} 163 
 164 
 165 
inline next_trans(n){ 166 
  if 167 
  ::(n==0) ->  rcvd_setup = true; 168 
  ss.Ia.i_in_ready = true; 169 
  t[0].out_chan!upack; 170 
  sent_upack = true; 171 
  t[0].out_chan2!setup; 172 
  o_sent_setup = true; 173 
  ss.Ia.o_in_ready = true; 174 
  ss.cs = t[0].dest; 175 
  ::(n==1) -> t[1].out_chan!sig;  176 
  ss.cs = t[1].dest; 177 
  ::(n==2) -> o_rcvd_upack = true; 178 
  dump(ss.O.o_hold, glob_outs[ss.O.o_out]); 179 
  ss.cs = t[2].dest; 180 
  ::(n==3) ->  t[3].out_chan!sig;  181 
  ss.cs = t[3].dest; 182 
  ::(n==4) -> t[4].out_chan!sig;  183 
  ss.cs = t[4].dest; 184 
  ::(n==5) -> t[5].out_chan!downack; 185 
  ss.Ia.i_in_ready = false;  186 
  t[5].out_chan2!teardown; 187 
  o_sent_teardown = true;  188 
  ss.cs = t[5].dest; 189 
  ::(n==6) ->  o_rcvd_teardown = true; 190 
  t[6].out_chan!downack; 191 
  ss.Ia.o_in_ready = false;  192 
  t[6].out_chan2!teardown; 193 
  i_sent_teardown = true;  194 
  ss.cs = t[6].dest; 195 
  ::(n==7) -> t[7].out_chan!downack; 196 
  ss.Ia.i_in_ready = false; 197 
  t[7].out_chan2!teardown; 198 
  o_sent_teardown = true; 199 
  ss.cs = t[7].dest; 200 
  ::(n==8) -> o_rcvd_upack = true; 201 
  dump(ss.O.o_hold, glob_outs[ss.O.o_out]); 202 
  ss.cs = t[8].dest; 203 
  ::(n==9) -> o_rcvd_teardown = true; 204 
  t[9].out_chan!downack; 205 
  ss.cs = t[9].dest; 206 
  ::(n==10) -> ss.cs = t[10].dest; 207 
  ::(n==11) -> o_rcvd_downack = true; 208 
  ss.Ia.o_in_ready = false;  209 
  ss.cs = t[11].dest; 210 
  ::(n==12) -> t[12].out_chan!downack; 211 
  ss.cs = t[12].dest; 212 



 

103 

  ::(n==13) -> ss.cs = t[13].dest; 213 
  ::(n==14) -> i_rcvd_downack = true; 214 
  ss.Ia.i_in_ready = false; 215 
  ss.cs = t[14].dest; 216 
  ::(n==15) -> ss.cs = t[15].dest; 217 
  ::(n==16) -> o_rcvd_status = true; 218 
  t[16].out_chan!avail; 219 
  t[16].out_chan2!teardown; 220 
  o_sent_teardown = true; 221 
  t[16].out_chan3!setup; 222 
  r_sent_setup = true; 223 
  ss.Ia.r_in_ready = true; 224 
  ss.cs = t[16].dest; 225 
  ::(n==17) -> o_rcvd_status = true; 226 
  t[17].out_chan!avail; 227 
  ss.cs = t[17].dest; 228 
  ::(n==18) -> o_rcvd_status = true; 229 
  t[18].out_chan!unknown; 230 
  ss.cs = t[18].dest; 231 
  ::(n==19) -> r_rcvd_upack = true; 232 
  ss.cs = t[19].dest; 233 
  ::(n==20) -> o_rcvd_downack = true; 234 
  ss.Ia.o_in_ready = false;  235 
  ss.cs = t[20].dest; 236 
  ::(n==21) -> o_rcvd_teardown = true; 237 
  t[21].out_chan!downack; 238 
  ss.cs = t[21].dest; 239 
  ::(n==22) -> ss.cs = t[22].dest; 240 
  ::(n==23) -> t[23].out_chan!downack; 241 
  ss.Ia.i_in_ready = false; 242 
  t[23].out_chan2!teardown; 243 
  r_sent_teardown = true; 244 
  ss.cs = t[23].dest; 245 
  ::(n==24) -> ss.cs = t[24].dest; 246 
  ::(n==25) -> o_rcvd_downack = true; 247 
  ss.Ia.o_in_ready = false;  248 
  ss.cs = t[25].dest; 249 
  ::(n==26) -> o_rcvd_teardown = true; 250 
  t[26].out_chan!downack; 251 
  ss.cs = t[26].dest; 252 
  ::(n==27) -> ss.cs = t[27].dest; 253 
  ::(n==28) -> t[28].out_chan!downack; 254 
  ss.Ia.i_in_ready = false; 255 
  t[28].out_chan2!teardown; 256 
  r_sent_teardown = true; 257 
  ss.cs = t[28].dest; 258 
  ::(n==29) -> ss.cs = t[29].dest; 259 
  ::(n==30) -> r_rcvd_upack = true; 260 
  ss.cs = t[30].dest; 261 
  ::(n==31) -> t[31].out_chan!downack; 262 
  ss.Ia.i_in_ready = false; 263 
  t[31].out_chan2!teardown; 264 
  r_sent_teardown = true; 265 



 

104 

  ss.cs = t[31].dest; 266 
  ::(n==32) -> ss.cs = t[32].dest; 267 
  ::(n==33) -> r_rcvd_upack = true; 268 
  ss.cs = t[33].dest; 269 
  ::(n==34) -> o_rcvd_downack = true; 270 
  ss.Ia.o_in_ready = false;  271 
  ss.cs = t[34].dest; 272 
  ::(n==35) -> o_rcvd_teardown = true; 273 
  t[35].out_chan!downack; 274 
  ss.cs = t[35].dest; 275 
  ::(n==36) -> ss.cs = t[36].dest; 276 
  ::(n==37) -> t[37].out_chan!downack; 277 
  ss.Ia.r_in_ready = false; 278 
  t[37].out_chan2!teardown; 279 
  i_sent_teardown = true; 280 
  ss.cs = t[37].dest; 281 
  ::(n==38) -> t[38].out_chan!downack; 282 
  ss.Ia.i_in_ready = false; 283 
  t[38].out_chan2!teardown; 284 
  r_sent_teardown = true; 285 
  ss.cs = t[38].dest; 286 
  ::(n==39) -> t[39].out_chan!sig; 287 
  ss.cs = t[39].dest; 288 
  ::(n==40) -> r_rcvd_downack = true; 289 
  ss.Ia.r_in_ready = false; 290 
  ss.cs = t[40].dest; 291 
  ::(n==41) -> o_rcvd_downack = true; 292 
  ss.Ia.o_in_ready = false;  293 
  ss.cs = t[41].dest; 294 
  ::(n==42) -> o_rcvd_teardown = true; 295 
  t[42].out_chan!downack; 296 
  ss.cs = t[42].dest; 297 
  ::(n==43) -> ss.cs = t[43].dest; 298 
  ::(n==44) -> r_rcvd_upack = true; 299 
  ss.cs = t[44].dest; 300 
  ::(n==45) -> r_rcvd_downack = true; 301 
  ss.Ia.r_in_ready = false; 302 
  ss.cs = t[45].dest; 303 
  fi; 304 
}; 305 
 306 
 307 
inline en_trans(n){ 308 
  if 309 
  :: en_events(n) -> 310 
 if 311 
 :: en_cond(n) -> t[n].en_flag = true; 312 
 :: else -> t[n].en_flag = false; 313 
 fi; 314 
  :: else -> t[n].en_flag = false; 315 
  fi; 316 
} 317 
 318 



 

105 

/*===============================================================*/ 319 
/* free receive voice mail box process */ 320 
 321 
active proctype RVM() { 322 
 323 
  mtype sig; 324 
  Transition t[46]; 325 
 326 
 ss.cs = initial; 327 
 328 
 //statically declare transitions 329 
 t[0].dest = connecting; 330 
 t[0].in_chan = glob_ins[ss.Ia.box_in]; 331 
 t[0].out_chan = glob_outs[ss.O.i_out]; 332 
 t[0].out_chan2 = glob_outs[ss.O.box_out]; 333 
 334 
 t[1].dest = connecting; 335 
 t[1].in_chan = glob_ins[ss.Ia.i_in]; 336 
 t[1].out_chan = ss.O.o_hold; 337 
 338 
 t[2].dest = transparent; 339 
 t[2].in_chan = glob_ins[ss.Ia.o_in]; 340 
 341 
 t[3].dest = transparent; 342 
 t[3].in_chan = glob_ins[ss.Ia.i_in]; 343 
 t[3].out_chan = glob_outs[ss.O.o_out]; 344 
 345 
 t[4].dest = transparent; 346 
 t[4].in_chan = glob_ins[ss.Ia.o_in]; 347 
 t[4].out_chan = glob_outs[ss.O.i_out]; 348 
 349 
 t[5].dest = terminatingO; 350 
 t[5].in_chan = glob_ins[ss.Ia.i_in]; 351 
 t[5].out_chan = glob_outs[ss.O.i_out]; 352 
 t[5].out_chan2 = glob_outs[ss.O.o_out]; 353 
 354 
 t[6].dest = terminatingI; 355 
 t[6].in_chan = glob_ins[ss.Ia.o_in]; 356 
 t[6].out_chan = glob_outs[ss.O.o_out]; 357 
 t[6].out_chan2 = glob_outs[ss.O.i_out]; 358 
 359 
 t[7].dest = abandonConnection; 360 
 t[7].in_chan = glob_ins[ss.Ia.i_in]; 361 
 t[7].out_chan = glob_outs[ss.O.i_out]; 362 
 t[7].out_chan2 = glob_outs[ss.O.o_out]; 363 
 364 
 t[8].dest = terminatingO; 365 
 t[8].in_chan = glob_ins[ss.Ia.o_in]; 366 
 367 
 t[9].dest = terminatingO; 368 
 t[9].in_chan = glob_ins[ss.Ia.o_in]; 369 
 t[9].out_chan = glob_outs[ss.O.o_out]; 370 
 371 



 

106 

 t[10].dest = terminatingO; 372 
 t[10].in_chan = glob_ins[ss.Ia.o_in]; 373 
 374 
 t[11].dest = final; 375 
 t[11].in_chan = glob_ins[ss.Ia.o_in]; 376 
 377 
 t[12].dest = terminatingI; 378 
 t[12].in_chan = glob_ins[ss.Ia.i_in]; 379 
 t[12].out_chan = glob_outs[ss.O.i_out]; 380 
 381 
 t[13].dest = terminatingI; 382 
 t[13].in_chan = glob_ins[ss.Ia.i_in]; 383 
  384 
 t[14].dest = final; 385 
 t[14].in_chan = glob_ins[ss.Ia.i_in]; 386 
 387 
 t[15].dest = error; 388 
 t[15].in_chan = glob_ins[ss.Ia.i_in]; 389 
 t[15].out_chan = ss.O.o_hold; 390 
 391 
 t[16].dest = switching; 392 
 t[16].in_chan = glob_ins[ss.Ia.o_in]; 393 
 t[16].out_chan = glob_outs[ss.O.i_out]; 394 
 t[16].out_chan2 = glob_outs[ss.O.o_out]; 395 
 t[16].out_chan3 = glob_outs[ss.O.box_out]; 396 
 397 
 t[17].dest = transparent; 398 
 t[17].in_chan = glob_ins[ss.Ia.o_in]; 399 
 t[17].out_chan = glob_outs[ss.O.i_out]; 400 
 401 
 t[18].dest = transparent; 402 
 t[18].in_chan = glob_ins[ss.Ia.o_in]; 403 
 t[18].out_chan = glob_outs[ss.O.i_out]; 404 
 405 
 t[19].dest = waitingOdown; 406 
 t[19].in_chan = glob_ins[ss.Ia.r_in]; 407 
 408 
 t[20].dest = connectingR; 409 
 t[20].in_chan = glob_ins[ss.Ia.o_in]; 410 
  411 
 t[21].dest = switching; 412 
 t[21].in_chan = glob_ins[ss.Ia.o_in]; 413 
 t[21].out_chan = glob_outs[ss.O.o_out]; 414 
 415 
 t[22].dest = switching; 416 
 t[22].in_chan = glob_ins[ss.Ia.o_in]; 417 
 418 
 t[23].dest = abandoning; 419 
 t[23].in_chan = glob_ins[ss.Ia.i_in]; 420 
 t[23].out_chan = glob_outs[ss.O.i_out]; 421 
 t[23].out_chan2 = glob_outs[ss.O.r_out]; 422 
 423 
 t[24].dest = switching; 424 



 

107 

 t[24].in_chan = glob_ins[ss.Ia.i_in]; 425 
 426 
 t[25].dest = dialogue; 427 
 t[25].in_chan = glob_ins[ss.Ia.o_in]; 428 
 429 
 t[26].dest = waitingOdown; 430 
 t[26].in_chan = glob_ins[ss.Ia.o_in]; 431 
 t[26].out_chan = glob_outs[ss.O.o_out]; 432 
 433 
 t[27].dest = waitingOdown; 434 
 t[27].in_chan = glob_ins[ss.Ia.o_in]; 435 
 436 
 t[28].dest = endingOnR; 437 
 t[28].in_chan = glob_ins[ss.Ia.i_in]; 438 
 t[28].out_chan = glob_outs[ss.O.i_out]; 439 
 t[28].out_chan2 = glob_outs[ss.O.r_out]; 440 
 441 
 t[29].dest = waitingOdown; 442 
 t[29].in_chan = glob_ins[ss.Ia.i_in]; 443 
 444 
 t[30].dest = dialogue; 445 
 t[30].in_chan = glob_ins[ss.Ia.r_in]; 446 
 447 
 t[31].dest = waitingRup; 448 
 t[31].in_chan = glob_ins[ss.Ia.i_in]; 449 
 t[31].out_chan = glob_outs[ss.O.i_out]; 450 
 t[31].out_chan2 = glob_outs[ss.O.r_out]; 451 
  452 
 t[32].dest = connectingR; 453 
 t[32].in_chan = glob_ins[ss.Ia.i_in]; 454 
 455 
 t[33].dest = endingOnR; 456 
 t[33].in_chan = glob_ins[ss.Ia.r_in]; 457 
 458 
 t[34].dest = waitingRup; 459 
 t[34].in_chan = glob_ins[ss.Ia.o_in]; 460 
 461 
 t[35].dest = abandoning; 462 
 t[35].in_chan = glob_ins[ss.Ia.o_in]; 463 
 t[35].out_chan = glob_outs[ss.O.o_out]; 464 
 465 
 t[36].dest = abandoning; 466 
 t[36].in_chan = glob_ins[ss.Ia.o_in]; 467 
  468 
 t[37].dest = terminatingI; 469 
 t[37].in_chan = glob_ins[ss.Ia.r_in]; 470 
 t[37].out_chan = glob_outs[ss.O.r_out]; 471 
 t[37].out_chan2 = glob_outs[ss.O.i_out]; 472 
 473 
 t[38].dest = terminatingR; 474 
 t[38].in_chan = glob_ins[ss.Ia.i_in]; 475 
 t[38].out_chan = glob_outs[ss.O.i_out]; 476 
 t[38].out_chan2 = glob_outs[ss.O.r_out]; 477 



 

108 

 478 
 t[39].dest = dialogue; 479 
 t[39].in_chan = glob_ins[ss.Ia.i_in]; 480 
 t[37].out_chan = glob_outs[ss.O.r_out]; 481 
 482 
 t[40].dest = terminatingO; 483 
 t[40].in_chan = glob_ins[ss.Ia.r_in]; 484 
 485 
 t[41].dest = terminatingR; 486 
 t[41].in_chan = glob_ins[ss.Ia.o_in]; 487 
 488 
 t[42].dest = endingOnR; 489 
 t[42].in_chan = glob_ins[ss.Ia.o_in]; 490 
 t[42].out_chan = glob_outs[ss.O.o_out]; 491 
 492 
 t[43].dest = endingOnR; 493 
 t[43].in_chan = glob_ins[ss.Ia.o_in]; 494 
  495 
 t[44].dest = terminatingR; 496 
 t[44].in_chan = glob_ins[ss.Ia.r_in]; 497 
 498 
 t[45].dest = final; 499 
 t[45].in_chan = glob_ins[ss.Ia.r_in]; 500 
 501 
 502 
initial_state: 503 
atomic{ 504 
 reset(); 505 
  506 
 en_trans(0); 507 
 508 
 if 509 
 :: t[0].en_flag -> next_trans(0); goto connecting_state; 510 
 :: else -> goto initial_state; 511 
 fi; 512 
} 513 
 514 
connecting_state: 515 
atomic{ 516 
 reset(); 517 
  518 
 en_trans(1); 519 
 en_trans(2); 520 
 en_trans(7); 521 
 en_trans(15); 522 
  523 
 if 524 
 :: t[1].en_flag -> next_trans(1); goto connecting_state; 525 
 :: t[2].en_flag -> next_trans(2); goto transparent_state; 526 
 :: t[7].en_flag -> next_trans(7); goto abandonConnection_state; 527 
 :: t[15].en_flag -> next_trans(15); goto error_state; 528 
 :: else -> goto connecting_state; 529 
 fi; 530 



 

109 

} 531 
 532 
transparent_state: 533 
atomic{ 534 
 reset(); 535 
  536 
 en_trans(3); 537 
 en_trans(4); 538 
 en_trans(5); 539 
 en_trans(6); 540 
 541 
  if  542 
 :: t[3].en_flag -> next_trans(3); goto transparent_state; 543 
 :: t[4].en_flag -> next_trans(4); goto transparent_state; 544 
 :: t[5].en_flag -> next_trans(5); goto terminatingO_state; 545 
 :: t[6].en_flag -> next_trans(6); goto terminatingI_state; 546 
 :: t[16].en_flag -> next_trans(16); goto switching_state; 547 
 :: t[17].en_flag -> next_trans(17); goto transparent_state; 548 
 :: t[18].en_flag -> next_trans(18); goto transparent_state; 549 
 :: else -> goto transparent_state; 550 
 fi; 551 
} 552 
 553 
abandonConnection_state: 554 
atomic{ 555 
 reset(); 556 
  557 
 en_trans(8); 558 
 559 
 if 560 
 :: t[8].en_flag -> next_trans(8); goto terminatingO_state; 561 
 :: else -> goto abandonConnection_state; 562 
 fi; 563 
} 564 
 565 
terminatingO_state: 566 
atomic{ 567 
 reset(); 568 
 569 
 en_trans(9); 570 
 en_trans(10); 571 
 en_trans(11); 572 
 573 
 if 574 
 :: t[9].en_flag -> next_trans(9); goto terminatingO_state; 575 
 :: t[10].en_flag -> next_trans(10); goto terminatingO_state; 576 
 :: t[11].en_flag -> next_trans(11); goto final_state; 577 
 :: else -> goto terminatingO_state; 578 
 fi; 579 
} 580 
 581 
terminatingI_state: 582 
atomic{ 583 



 

110 

 reset(); 584 
 585 
 en_trans(12); 586 
 en_trans(13); 587 
 en_trans(14); 588 
 589 
 if 590 
 :: t[12].en_flag -> next_trans(12); goto terminatingI_state; 591 
 :: t[13].en_flag -> next_trans(13); goto terminatingI_state; 592 
 :: t[14].en_flag -> next_trans(14); goto final_state; 593 
 :: else -> goto terminatingI_state; 594 
 fi; 595 
} 596 
 597 
switching_state: 598 
atomic{ 599 
 reset(); 600 
  601 
 en_trans(19); 602 
 en_trans(20); 603 
 en_trans(21); 604 
 en_trans(22); 605 
 en_trans(23); 606 
 en_trans(24); 607 
 608 
 if 609 
 :: t[19].en_flag -> next_trans(19); goto waitingOdown_state; 610 
 :: t[20].en_flag -> next_trans(20); goto connectingR_state; 611 
 :: t[21].en_flag -> next_trans(21); goto switching_state; 612 
 :: t[22].en_flag -> next_trans(22); goto switching_state; 613 
 :: t[23].en_flag -> next_trans(23); goto abandoning_state; 614 
 :: t[24].en_flag -> next_trans(24); goto switching_state; 615 
 :: else -> goto switching_state; 616 
 fi; 617 
} 618 
 619 
waitingOdown_state: 620 
atomic{ 621 
 reset(); 622 
  623 
 en_trans(25); 624 
 en_trans(26); 625 
 en_trans(27); 626 
 en_trans(28); 627 
 en_trans(29); 628 
 629 
 if 630 
 :: t[25].en_flag -> next_trans(25); goto dialogue_state; 631 
 :: t[26].en_flag -> next_trans(26); goto waitingOdown_state; 632 
 :: t[27].en_flag -> next_trans(27); goto waitingOdown_state; 633 
 :: t[28].en_flag -> next_trans(28); goto endingOnR_state; 634 
 :: t[29].en_flag -> next_trans(29); goto waitingOdown_state; 635 
 :: else -> goto waitingOdown_state; 636 



 

111 

 fi; 637 
} 638 
 639 
connectingR_state: 640 
atomic{ 641 
 reset(); 642 
  643 
 en_trans(30); 644 
 en_trans(31); 645 
 en_trans(32); 646 
 647 
 if 648 
 :: t[30].en_flag -> next_trans(30); goto dialogue_state; 649 
 :: t[31].en_flag -> next_trans(31); goto waitingRup_state; 650 
 :: t[32].en_flag -> next_trans(32); goto connectingR_state; 651 
 :: else -> goto connectingR_state; 652 
 fi; 653 
} 654 
 655 
abandoning_state: 656 
atomic{ 657 
 reset(); 658 
  659 
 en_trans(33); 660 
 en_trans(34); 661 
 en_trans(35); 662 
 en_trans(36); 663 
 664 
 if 665 
 :: t[33].en_flag -> next_trans(33); goto endingOnR_state; 666 
 :: t[34].en_flag -> next_trans(34); goto waitingRup_state; 667 
 :: t[35].en_flag -> next_trans(35); goto abandoning_state; 668 
 :: t[36].en_flag -> next_trans(36); goto abandoning_state; 669 
 :: else -> goto abandoning_state; 670 
 fi; 671 
} 672 
 673 
dialogue_state: 674 
atomic{ 675 
 reset(); 676 
  677 
 en_trans(37); 678 
 en_trans(38); 679 
 en_trans(39); 680 
 681 
 if 682 
 :: t[37].en_flag -> next_trans(37); goto terminatingI_state; 683 
 :: t[38].en_flag -> next_trans(38); goto terminatingR_state; 684 
 :: t[39].en_flag -> next_trans(39); goto dialogue_state; 685 
 :: else -> goto dialogue_state; 686 
 fi; 687 
} 688 
 689 



 

112 

endingOnR_state: 690 
atomic{ 691 
 reset(); 692 
  693 
 en_trans(40); 694 
 en_trans(41); 695 
 en_trans(42); 696 
 en_trans(43); 697 
 698 
 if 699 
 :: t[40].en_flag -> next_trans(40); goto terminatingO_state; 700 
 :: t[41].en_flag -> next_trans(41); goto terminatingR_state; 701 
 :: t[42].en_flag -> next_trans(42); goto endingOnR_state; 702 
 :: t[43].en_flag -> next_trans(43); goto endingOnR_state; 703 
 :: else -> goto endingOnR_state; 704 
 fi; 705 
} 706 
 707 
waitingRup_state: 708 
atomic{ 709 
 reset(); 710 
 711 
 en_trans(44); 712 
 713 
 if 714 
 :: t[44].en_flag -> next_trans(44); goto terminatingR_state; 715 
 :: else -> goto waitingRup_state; 716 
 fi; 717 
} 718 
 719 
terminatingR_state: 720 
atomic{ 721 
 reset(); 722 
 723 
 en_trans(45); 724 
 725 
 if 726 
 :: t[45].en_flag -> next_trans(45); goto final_state; 727 
 :: else -> goto terminatingR_state; 728 
 fi; 729 
} 730 
 731 
error_state: 732 
final_state: 733 
progress: 734 
 735 
 skip; 736 
}; 737 
 738 
 739 
/*=================================================================*/ 740 
/* environment process */ 741 
 742 



 

113 

active proctype env(){ 743 
  mtype i_sig, o_sig, r_sig; 744 
 745 
end: do 746 
 :: ss.Ia.box_in_ready -> 747 
  ss.Ia.box_in_ready = false; 748 
  glob_ins[ss.Ia.box_in]!setup; 749 
 :: ss.Ia.i_in_ready -> 750 
  if 751 
  :: glob_ins[ss.Ia.i_in]!teardown; 752 
  :: glob_ins[ss.Ia.i_in]!other; 753 
  fi unless{ 754 
   (i_sig == teardown) -> 755 
    glob_ins[ss.Ia.i_in]!downack; 756 
    i_sig = 0 757 
  } 758 
    759 
 :: ss.Ia.o_in_ready -> 760 
  if 761 
  :: glob_ins[ss.Ia.o_in]!teardown; 762 
  :: glob_ins[ss.Ia.o_in]!other; 763 
  fi unless{ 764 
   (o_sig == teardown) -> 765 
    glob_ins[ss.Ia.o_in]!downack; 766 
    o_sig = 0 767 
  } 768 
 :: ss.Ia.r_in_ready -> 769 
  if 770 
  :: ss.cs == dialogue -> glob_ins[ss.Ia.r_in]!teardown; 771 
  fi unless{ 772 
   (r_sig == teardown) -> 773 
    glob_ins[ss.Ia.r_in]!downack; 774 
    r_sig = 0 775 
  } 776 
 777 
 od  778 
 unless{ 779 
  if 780 
  :: atomic{ glob_outs[ss.O.box_out]?setup -> 781 
    if 782 
    :: ss.cs == connecting -> 783 
     if 784 
     :: glob_ins[ss.Ia.o_in]!upack; 785 
        glob_ins[ss.Ia.o_in]!avail; 786 
     :: glob_ins[ss.Ia.o_in]!upack; 787 
        glob_ins[ss.Ia.o_in]!unavail; 788 
     :: glob_ins[ss.Ia.o_in]!upack; 789 
        glob_ins[ss.Ia.o_in]!unknown; 790 
     fi; 791 
    :: ss.cs == connectingR -> 792 
     glob_ins[ss.Ia.r_in]!upack; 793 
    fi; 794 
  } 795 



 

114 

  :: glob_outs[ss.O.i_out]?upack; 796 
  :: glob_outs[ss.O.i_out]?downack; 797 
  :: glob_outs[ss.O.i_out]?teardown -> i_sig = teardown; 798 
  :: glob_outs[ss.O.i_out]?avail; 799 
  :: glob_outs[ss.O.i_out]?unavail; 800 
  :: glob_outs[ss.O.i_out]?unknown; 801 
  :: glob_outs[ss.O.i_out]?other; 802 
  :: glob_outs[ss.O.o_out]?downack; 803 
  :: glob_outs[ss.O.o_out]?teardown -> o_sig = teardown; 804 
  :: glob_outs[ss.O.o_out]?other; 805 
  :: glob_outs[ss.O.r_out]?downack; 806 
  :: glob_outs[ss.O.r_out]?teardown -> r_sig = teardown; 807 
  :: glob_outs[ss.O.r_out]?other; 808 
  fi; 809 
 } 810 
 goto end; 811 
} 812 

 813 



  

115 

Appendix D 

Answer Confirm 





  

117 

/*=============================================================*/ 1 
/* type definitions */ 2 
 3 
mtype = { other, teardown, downack, setup, upack, avail, unavail, 4 
 unknown, confirm, nonconfirm }; 5 
mtype = { initial, connectingO, abandonConnection, trying,  6 
 connectingR, confirming, confirmed, transparent,  7 
 terminatingO, terminatingI, endingAll, endingOnR,  8 
 endingInR, endingInO, terminatingR, final, error }; 9 
 10 
typedef Transition { 11 
 mtype dest; 12 
 chan in_chan; 13 
 chan out_chan; 14 
 chan out_chan2; 15 
 chan out_chan3; 16 
 bool en_flag = false; 17 
 18 
}; 19 
 20 
typedef Ia_type { 21 
 byte box_in = 0; 22 
 byte i_in = 1; 23 
 byte o_in = 2; 24 
 byte r_in = 3; 25 
 bool box_in_ready = true; 26 
 bool i_in_ready = false; 27 
 bool o_in_ready = false; 28 
 bool r_in_ready = false; 29 
 byte selected 30 
}; 31 
 32 
typedef O_type { 33 
 byte box_out = 0; 34 
 byte i_out = 1; 35 
 byte o_out = 2; 36 
 byte r_out = 3; 37 
 chan o_hold = [5] of {mtype}; 38 
}; 39 
 40 
typedef SnapShot { 41 
 mtype cs; 42 
 Ia_type Ia; 43 
 O_type O 44 
}; 45 
 46 
/*==============================================================*/ 47 
/* global variable declarations */ 48 
 49 
chan glob_ins[4] = [0] of {mtype}; 50 
chan glob_outs[4] = [0] of {mtype}; 51 
 52 
SnapShot ss; 53 



 

118 

 54 
/*==============================================================*/ 55 
/* inline functions */ 56 
 57 
inline emptyChannel(c){ 58 
byte aSig; 59 
  do 60 
  :: c?aSig; 61 
  :: empty(c) -> break; 62 
  od; 63 
}; 64 
 65 
 66 
inline reset() { 67 
 if 68 
 :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selected = ss.Ia.box_in; 69 
 :: glob_ins[ss.Ia.o_in]?sig -> ss.Ia.selected = ss.Ia.o_in;  70 
 :: glob_ins[ss.Ia.i_in]?sig -> ss.Ia.selected = ss.Ia.i_in; 71 
 :: glob_ins[ss.Ia.r_in]?sig -> ss.Ia.selected = ss.Ia.r_in; 72 
 fi; 73 
}; 74 
 75 
 76 
inline en_events(n){ 77 
 glob_ins[ss.Ia.selected] == t[n].in_chan; 78 
}; 79 
 80 
 81 
inline en_cond(n){ 82 
  if 83 
  ::(n==0) && sig == setup; 84 
  ::(n==1) && sig == upack; 85 
  ::(n==2) && sig == teardown; 86 
  ::(n==3) && (sig != teardown) && nfull(t[3].out_chan); 87 
  ::(n==4) && (sig != teardown) && full(t[4].out_chan); 88 
  ::(n==5) && sig == upack; 89 
  ::(n==6) && sig == avail; 90 
  ::(n==7) && sig == teardown; 91 
  ::(n==8) && sig != teardown; 92 
  ::(n==57) && sig == teardown; 93 
  ::(n==58) && (sig!=teardown)&&(sig!=avail)&&(sig!=unavail)&&(sig!=unknown); 94 
  ::(n==59) && sig == unavail; 95 
  ::(n==60) && sig == unknown; 96 
  ::(n==9) && sig == upack; 97 
  ::(n==10) && sig == teardown; 98 
  ::(n==11) && sig == teardown; 99 
  ::(n==12) && sig != teardown; 100 
  ::(n==13) && sig != teardown; 101 
  ::(n==14) && sig == confirm; 102 
  ::(n==15) && sig == nonconfirm; 103 
  ::(n==16) && sig == teardown; 104 
  ::(n==17) && sig == teardown; 105 
  ::(n==18) && sig != teardown; 106 



 

119 

  ::(n==19) && sig != teardown; 107 
  ::(n==20) && sig == downack; 108 
  ::(n==53) && sig == teardown; 109 
  ::(n==54) && sig == teardown; 110 
  ::(n==55) && sig != teardown; 111 
  ::(n==56) && sig != teardown; 112 
  ::(n==21) && sig == teardown; 113 
  ::(n==22) && sig == teardown; 114 
  ::(n==23) && sig != teardown; 115 
  ::(n==24) && sig != teardown; 116 
  ::(n==25) && sig == downack; 117 
  ::(n==26) && sig == teardown; 118 
  ::(n==27) && (sig != teardown) && (sig != downack); 119 
  ::(n==28) && sig == downack; 120 
  ::(n==29) && sig == teardown; 121 
  ::(n==30) && (sig != teardown) && (sig != downack); 122 
  ::(n==31) && sig == downack; 123 
  ::(n==32) && sig == downack; 124 
  ::(n==33) && sig == downack; 125 
  ::(n==34) && sig == teardown; 126 
  ::(n==35) && (sig != teardown) && (sig != downack); 127 
  ::(n==36) && sig == teardown; 128 
  ::(n==37) && (sig != teardown) && (sig != downack); 129 
  ::(n==38) && sig == downack; 130 
  ::(n==39) && sig == downack; 131 
  ::(n==40) && sig == teardown; 132 
  ::(n==41) && (sig != teardown) && (sig != downack); 133 
  ::(n==42) && sig == downack; 134 
  ::(n==43) && sig == downack; 135 
  ::(n==44) && sig == teardown; 136 
  ::(n==45) && (sig != teardown) && (sig != downack); 137 
  ::(n==46) && sig == downack; 138 
  ::(n==47) && sig == downack; 139 
  ::(n==48) && sig == teardown; 140 
  ::(n==49) && (sig != teardown) && (sig != downack); 141 
  ::(n==50) && sig == teardown; 142 
  ::(n==51) && (sig != teardown) && (sig != downack); 143 
  ::(n==52) && sig == downack; 144 
  fi; 145 
} 146 
 147 
 148 
inline next_trans(n){ 149 
  if 150 
  ::(n==0) ->  ss.Ia.i_in_ready = true; 151 
  t[0].out_chan!upack; 152 
  t[0].out_chan2!setup; 153 
  ss.Ia.o_in_ready = true; 154 
  ss.cs = t[0].dest; 155 
  ::(n==1) -> emptyChannel(ss.O.o_hold); 156 
  ss.cs = t[1].dest; 157 
  ::(n==2) -> t[2].out_chan!downack; 158 
  ss.Ia.i_in_ready = false; 159 



 

120 

  t[2].out_chan2!teardown; 160 
  ss.cs = t[2].dest; 161 
  ::(n==3) ->  t[3].out_chan!sig;  162 
  ss.cs = t[3].dest; 163 
  ::(n==4) -> ss.Ia.i_in_ready = false; 164 
  ss.Ia.o_in_ready = false; 165 
  ss.cs = t[4].dest; 166 
  ::(n==5) -> ss.cs = t[5].dest; 167 
  ::(n==6) ->  t[6].out_chan!setup; 168 
  ss.Ia.r_in_ready = true; 169 
  ss.cs = t[6].dest; 170 
  ::(n==7) -> t[7].out_chan!downack; 171 
  ss.Ia.i_in_ready = false; 172 
  t[7].out_chan2!teardown; 173 
  ss.cs = t[7].dest; 174 
  ::(n==8) -> t[8].out_chan!sig; 175 
  ss.cs = t[8].dest; 176 
  ::(n==57) -> t[57].out_chan!downack; 177 
  ss.Ia.o_in_ready = false; 178 
  t[57].out_chan2!teardown; 179 
  ss.cs = t[57].dest; 180 
  ::(n==58) -> t[58].out_chan!sig; 181 
  ss.cs = t[58].dest; 182 
  ::(n==59) -> t[59].out_chan!unavail; 183 
  t[59].out_chan!teardown; 184 
  t[59].out_chan2!teardown; 185 
  ss.cs = t[59].dest; 186 
  ::(n==60) -> t[60].out_chan!unknown; 187 
  t[60].out_chan!teardown; 188 
  t[60].out_chan2!teardown; 189 
  ss.cs = t[60].dest; 190 
  ::(n==9) -> ss.cs = t[9].dest; 191 
  ::(n==10) -> t[10].out_chan!downack; 192 
  ss.Ia.i_in_ready = false; 193 
  t[10].out_chan2!teardown; 194 
  ss.cs = t[10].dest; 195 
  ::(n==11) -> t[11].out_chan!downack; 196 
  ss.Ia.o_in_ready = false; 197 
  t[11].out_chan2!teardown; 198 
  ss.cs = t[11].dest; 199 
  ::(n==12) -> t[12].out_chan!sig; 200 
  ss.cs = t[12].dest; 201 
  ::(n==13) -> t[13].out_chan!sig; 202 
  ss.cs = t[13].dest; 203 
  ::(n==14) -> t[14].out_chan!avail; 204 
  t[14].out_chan2!teardown; 205 
  ss.cs = t[14].dest; 206 
  ::(n==15) -> t[15].out_chan!unavail; 207 
  t[15].out_chan!teardown; 208 
  t[15].out_chan2!teardown; 209 
  t[15].out_chan3!teardown; 210 
  ss.cs = t[15].dest; 211 
  ::(n==16) -> t[16].out_chan!downack; 212 



 

121 

  ss.Ia.i_in_ready = false; 213 
  t[16].out_chan2!teardown; 214 
  t[16].out_chan3!teardown; 215 
  ss.cs = t[16].dest; 216 
  ::(n==17) -> t[17].out_chan!downack; 217 
  ss.Ia.o_in_ready = false; 218 
  t[17].out_chan2!teardown; 219 
  t[17].out_chan3!teardown; 220 
  ss.cs = t[17].dest; 221 
  ::(n==18) -> ss.cs = t[18].dest; 222 
  ::(n==19) -> t[19].out_chan!sig; 223 
  ss.cs = t[19].dest; 224 
  ::(n==20) -> ss.Ia.r_in_ready = false; 225 
  ss.cs = t[20].dest; 226 
  ::(n==53) -> t[53].out_chan!downack; 227 
  ss.Ia.i_in_ready = false; 228 
  t[53].out_chan2!teardown; 229 
  ss.cs = t[53].dest; 230 
  ::(n==54) -> t[54].out_chan!downack; 231 
  ss.Ia.o_in_ready = false; 232 
  t[54].out_chan2!teardown; 233 
  ss.cs = t[54].dest; 234 
  ::(n==55) -> t[55].out_chan!sig; 235 
  ss.cs = t[55].dest; 236 
  ::(n==56) -> t[56].out_chan!sig; 237 
  ss.cs = t[56].dest; 238 
  ::(n==21) -> t[21].out_chan!downack; 239 
  ss.Ia.i_in_ready = false; 240 
  t[21].out_chan2!teardown; 241 
  ss.cs = t[21].dest; 242 
  ::(n==22) -> t[22].out_chan!downack; 243 
  ss.Ia.o_in_ready = false; 244 
  t[22].out_chan2!teardown; 245 
  ss.cs = t[22].dest; 246 
  ::(n==23) -> t[23].out_chan!sig; 247 
  ss.cs = t[23].dest; 248 
  ::(n==24) -> t[24].out_chan!sig; 249 
  ss.cs = t[24].dest; 250 
  ::(n==25) -> ss.Ia.o_in_ready = false; 251 
  ss.cs = t[25].dest; 252 
  ::(n==26) -> t[26].out_chan!downack; 253 
  ss.cs = t[26].dest; 254 
  ::(n==27) -> ss.cs = t[27].dest; 255 
  ::(n==28) -> ss.Ia.i_in_ready = false; 256 
  ss.cs = t[28].dest; 257 
  ::(n==29) -> t[29].out_chan!downack; 258 
  ss.cs = t[29].dest; 259 
  ::(n==30) -> ss.cs = t[30].dest; 260 
  ::(n==31) ->  ss.Ia.i_in_ready = false; 261 
  ss.cs = t[31].dest; 262 
  ::(n==32) -> ss.Ia.o_in_ready = false; 263 
  ss.cs = t[32].dest; 264 
  ::(n==33) -> ss.Ia.r_in_ready = false; 265 



 

122 

  ss.cs = t[33].dest; 266 
  ::(n==34) -> t[34].out_chan!downack; 267 
  ss.cs = t[34].dest; 268 
  ::(n==35) -> ss.cs = t[35].dest; 269 
  ::(n==36) -> t[36].out_chan!downack; 270 
  ss.cs = t[36].dest; 271 
  ::(n==37) -> ss.cs = t[37].dest;       272 
  ::(n==38) -> ss.Ia.o_in_ready = false; 273 
  ss.cs = t[38].dest; 274 
  ::(n==39) -> ss.Ia.r_in_ready = false; 275 
  ss.cs = t[39].dest; 276 
  ::(n==40) -> t[40].out_chan!downack; 277 
  ss.cs = t[40].dest; 278 
  ::(n==41) -> ss.cs = t[41].dest; 279 
  ::(n==42) -> ss.Ia.i_in_ready = false; 280 
  ss.cs = t[42].dest; 281 
  ::(n==43) -> ss.Ia.r_in_ready = false; 282 
  ss.cs = t[43].dest; 283 
  ::(n==44) -> t[44].out_chan!downack; 284 
  ss.cs = t[44].dest; 285 
  ::(n==45) -> ss.cs = t[45].dest; 286 
  ::(n==46) -> ss.Ia.i_in_ready = false; 287 
  ss.cs = t[46].dest; 288 
  ::(n==47) -> ss.Ia.o_in_ready = false; 289 
  ss.cs = t[47].dest; 290 
  ::(n==48) -> t[48].out_chan!downack; 291 
  ss.cs = t[48].dest; 292 
  ::(n==49) -> ss.cs = t[49].dest; 293 
  ::(n==50) -> t[50].out_chan!downack; 294 
  ss.cs = t[50].dest; 295 
  ::(n==51) -> ss.cs = t[51].dest; 296 
  ::(n==52) -> ss.Ia.r_in_ready = false; 297 
  ss.cs = t[52].dest; 298 
  fi; 299 
}; 300 
 301 
 302 
inline en_trans(n){ 303 
  if 304 
  :: en_events(n) -> 305 
 if 306 
 :: en_cond(n) -> t[n].en_flag = true; 307 
 :: else -> t[n].en_flag = false; 308 
 fi; 309 
  :: else -> t[n].en_flag = false; 310 
  fi; 311 
} 312 
 313 
/*===============================================================*/ 314 
/* free answer confirm box process */ 315 
 316 
active proctype AC() { 317 
 318 



 

123 

  mtype sig; 319 
  Transition t[61]; 320 
 321 
 ss.cs = initial; 322 
 323 
 //statically declare transitions 324 
 t[0].dest = connectingO; 325 
 t[0].in_chan = glob_ins[ss.Ia.box_in]; 326 
 t[0].out_chan = glob_outs[ss.O.i_out]; 327 
 t[0].out_chan2 = glob_outs[ss.O.box_out]; 328 
 329 
 t[1].dest = trying; 330 
 t[1].in_chan = glob_ins[ss.Ia.o_in]; 331 
 t[1].out_chan = ss.O.o_hold; 332 
 333 
 t[2].dest = abandonConnection; 334 
 t[2].in_chan = glob_ins[ss.Ia.i_in]; 335 
 t[2].out_chan = glob_outs[ss.O.i_out]; 336 
 t[2].out_chan2 = glob_outs[ss.O.o_out]; 337 
 338 
 t[3].dest = connectingO; 339 
 t[3].in_chan = glob_ins[ss.Ia.i_in]; 340 
 t[3].out_chan = ss.O.o_hold; 341 
 342 
 t[4].dest = error; 343 
 t[4].in_chan = glob_ins[ss.Ia.i_in]; 344 
 t[4].out_chan = ss.O.o_hold; 345 
 346 
 t[5].dest = terminatingO; 347 
 t[5].in_chan = glob_ins[ss.Ia.o_in]; 348 
 349 
 t[6].dest = connectingR; 350 
 t[6].in_chan = glob_ins[ss.Ia.o_in]; 351 
 t[6].out_chan = glob_outs[ss.O.box_out]; 352 
 353 
 t[7].dest = terminatingO; 354 
 t[7].in_chan = glob_ins[ss.Ia.i_in]; 355 
 t[7].out_chan = glob_outs[ss.O.i_out]; 356 
 t[7].out_chan2 = glob_outs[ss.O.o_out]; 357 
 358 
 t[8].dest = trying; 359 
 t[8].in_chan = glob_ins[ss.Ia.i_in]; 360 
 t[8].out_chan = glob_outs[ss.O.o_out]; 361 
 362 
 t[57].dest = terminatingI; 363 
 t[57].in_chan = glob_ins[ss.Ia.o_in]; 364 
 t[57].out_chan = glob_outs[ss.O.o_out]; 365 
 t[57].out_chan2 = glob_outs[ss.O.i_out]; 366 
 367 
 t[58].dest = trying; 368 
 t[58].in_chan = glob_ins[ss.Ia.o_in]; 369 
 t[58].out_chan = glob_outs[ss.O.i_out]; 370 
 371 



 

124 

 t[59].dest = endingInO; 372 
 t[59].in_chan = glob_ins[ss.Ia.o_in]; 373 
 t[59].out_chan = glob_outs[ss.O.i_out]; 374 
 t[59].out_chan2 = glob_outs[ss.O.o_out]; 375 
 376 
 t[60].dest = endingInO; 377 
 t[60].in_chan = glob_ins[ss.Ia.o_in]; 378 
 t[60].out_chan = glob_outs[ss.O.i_out]; 379 
 t[60].out_chan2 = glob_outs[ss.O.o_out]; 380 
 381 
 t[9].dest = confirming; 382 
 t[9].in_chan = glob_ins[ss.Ia.r_in]; 383 
 384 
 t[10].dest = terminatingO; 385 
 t[10].in_chan = glob_ins[ss.Ia.i_in]; 386 
 t[10].out_chan = glob_outs[ss.O.i_out]; 387 
 t[10].out_chan2 = glob_outs[ss.O.o_out]; 388 
 389 
 t[11].dest = terminatingI; 390 
 t[11].in_chan = glob_ins[ss.Ia.o_in]; 391 
 t[11].out_chan = glob_outs[ss.O.o_out]; 392 
 t[11].out_chan2 = glob_outs[ss.O.i_out]; 393 
 394 
 t[12].dest = connectingR; 395 
 t[12].in_chan = glob_ins[ss.Ia.i_in]; 396 
 t[12].out_chan = glob_outs[ss.O.o_out]; 397 
 398 
 t[13].dest = connectingR; 399 
 t[13].in_chan = glob_ins[ss.Ia.o_in]; 400 
 t[13].out_chan = glob_outs[ss.O.i_out]; 401 
 402 
 t[14].dest = confirmed; 403 
 t[14].in_chan = glob_ins[ss.Ia.r_in]; 404 
 t[14].out_chan = glob_outs[ss.O.i_out]; 405 
 t[14].out_chan2 = glob_outs[ss.O.r_out]; 406 
 407 
 t[15].dest = endingAll; 408 
 t[15].in_chan = glob_ins[ss.Ia.r_in]; 409 
 t[15].out_chan = glob_outs[ss.O.i_out]; 410 
 t[15].out_chan2 = glob_outs[ss.O.o_out]; 411 
 t[15].out_chan3 = glob_outs[ss.O.r_out]; 412 
 413 
 t[16].dest = endingOnR; 414 
 t[16].in_chan = glob_ins[ss.Ia.i_in]; 415 
 t[16].out_chan = glob_outs[ss.O.i_out]; 416 
 t[16].out_chan2 = glob_outs[ss.O.o_out]; 417 
 t[16].out_chan3 = glob_outs[ss.O.r_out]; 418 
 419 
 t[17].dest = endingInR; 420 
 t[17].in_chan = glob_ins[ss.Ia.o_in]; 421 
 t[17].out_chan = glob_outs[ss.O.o_out]; 422 
 t[17].out_chan2 = glob_outs[ss.O.i_out]; 423 
 t[17].out_chan3 = glob_outs[ss.O.r_out]; 424 



 

125 

 425 
 t[18].dest = confirming; 426 
 t[18].in_chan = glob_ins[ss.Ia.i_in]; 427 
 428 
 t[19].dest = confirming; 429 
 t[19].in_chan = glob_ins[ss.Ia.o_in]; 430 
 t[19].out_chan = glob_outs[ss.O.r_out]; 431 
 432 
 t[20].dest = transparent; 433 
 t[20].in_chan = glob_ins[ss.Ia.r_in]; 434 
  435 
 t[53].dest = endingOnR; 436 
 t[53].in_chan = glob_ins[ss.Ia.i_in]; 437 
 t[53].out_chan = glob_outs[ss.O.i_out]; 438 
 t[53].out_chan2 = glob_outs[ss.O.o_out]; 439 
 440 
 t[54].dest = endingInR; 441 
 t[54].in_chan = glob_ins[ss.Ia.o_in]; 442 
 t[54].out_chan = glob_outs[ss.O.o_out]; 443 
 t[54].out_chan2 = glob_outs[ss.O.i_out]; 444 
 445 
 t[55].dest = confirmed; 446 
 t[55].in_chan = glob_ins[ss.Ia.i_in]; 447 
 t[55].out_chan = glob_outs[ss.O.o_out]; 448 
 449 
 t[56].dest = confirmed; 450 
 t[56].in_chan = glob_ins[ss.Ia.o_in]; 451 
 t[56].out_chan = glob_outs[ss.O.i_out]; 452 
 453 
 t[21].dest = terminatingO; 454 
 t[21].in_chan = glob_ins[ss.Ia.i_in]; 455 
 t[21].out_chan = glob_outs[ss.O.i_out]; 456 
 t[21].out_chan2 = glob_outs[ss.O.o_out]; 457 
 458 
 t[22].dest = terminatingI; 459 
 t[22].in_chan = glob_ins[ss.Ia.o_in]; 460 
 t[22].out_chan = glob_outs[ss.O.o_out]; 461 
 t[22].out_chan2 = glob_outs[ss.O.i_out]; 462 
 463 
 t[23].dest = transparent; 464 
 t[23].in_chan = glob_ins[ss.Ia.i_in]; 465 
 t[23].out_chan = glob_outs[ss.O.o_out]; 466 
 467 
 t[24].dest = transparent; 468 
 t[24].in_chan = glob_ins[ss.Ia.o_in]; 469 
 t[24].out_chan = glob_outs[ss.O.i_out]; 470 
 471 
 t[25].dest = final; 472 
 t[25].in_chan = glob_ins[ss.Ia.o_in]; 473 
 474 
 t[26].dest = terminatingO; 475 
 t[26].in_chan = glob_ins[ss.Ia.o_in]; 476 
 t[26].out_chan = glob_outs[ss.O.o_out]; 477 



 

126 

 478 
 t[27].dest = terminatingO; 479 
 t[27].in_chan = glob_ins[ss.Ia.o_in]; 480 
 481 
 t[28].dest = final; 482 
 t[28].in_chan = glob_ins[ss.Ia.i_in]; 483 
 484 
 t[29].dest = terminatingI; 485 
 t[29].in_chan = glob_ins[ss.Ia.i_in]; 486 
 t[29].out_chan = glob_outs[ss.O.i_out]; 487 
 488 
 t[30].dest = terminatingI; 489 
 t[30].in_chan = glob_ins[ss.Ia.i_in]; 490 
  491 
 t[31].dest = endingOnR; 492 
 t[31].in_chan = glob_ins[ss.Ia.i_in]; 493 
 494 
 t[32].dest = endingInR; 495 
 t[32].in_chan = glob_ins[ss.Ia.o_in]; 496 
  497 
 t[33].dest = endingInO; 498 
 t[33].in_chan = glob_ins[ss.Ia.r_in]; 499 
 500 
 t[34].dest = endingAll; 501 
 t[34].in_chan = glob_ins[ss.Ia.i_in]; 502 
 t[34].out_chan = glob_outs[ss.O.i_out]; 503 
 504 
 t[35].dest = endingAll; 505 
 t[35].in_chan = glob_ins[ss.Ia.i_in]; 506 
 507 
 t[36].dest = endingAll; 508 
 t[36].in_chan = glob_ins[ss.Ia.o_in]; 509 
 t[36].out_chan = glob_outs[ss.O.o_out]; 510 
 511 
 t[37].dest = endingAll; 512 
 t[37].in_chan = glob_ins[ss.Ia.o_in]; 513 
 514 
 t[38].dest = terminatingR; 515 
 t[38].in_chan = glob_ins[ss.Ia.o_in]; 516 
 517 
 t[39].dest = terminatingO; 518 
 t[39].in_chan = glob_ins[ss.Ia.r_in]; 519 
 520 
 t[40].dest = endingOnR; 521 
 t[40].in_chan = glob_ins[ss.Ia.o_in]; 522 
 t[40].out_chan = glob_outs[ss.O.o_out]; 523 
 524 
 t[41].dest = endingOnR; 525 
 t[41].in_chan = glob_ins[ss.Ia.o_in]; 526 
 527 
 t[42].dest = terminatingR; 528 
 t[42].in_chan = glob_ins[ss.Ia.i_in]; 529 
 530 



 

127 

 t[43].dest = terminatingI; 531 
 t[43].in_chan = glob_ins[ss.Ia.r_in]; 532 
 533 
 t[44].dest = endingInR; 534 
 t[44].in_chan = glob_ins[ss.Ia.i_in]; 535 
 t[44].out_chan = glob_outs[ss.O.i_out]; 536 
 537 
 t[45].dest = endingInR; 538 
 t[45].in_chan = glob_ins[ss.Ia.i_in]; 539 
 540 
 t[46].dest = terminatingO; 541 
 t[46].in_chan = glob_ins[ss.Ia.i_in]; 542 
 543 
 t[47].dest = terminatingI; 544 
 t[47].in_chan = glob_ins[ss.Ia.o_in]; 545 
 546 
 t[48].dest = endingInO; 547 
 t[48].in_chan = glob_ins[ss.Ia.i_in]; 548 
 t[48].out_chan = glob_ins[ss.O.i_out]; 549 
 550 
 t[49].dest = endingInO; 551 
 t[49].in_chan = glob_ins[ss.Ia.i_in]; 552 
 553 
 t[50].dest = endingInO; 554 
 t[50].in_chan = glob_ins[ss.Ia.o_in]; 555 
 t[50].out_chan = glob_ins[ss.O.o_out]; 556 
 557 
 t[51].dest = endingInO; 558 
 t[51].in_chan = glob_ins[ss.Ia.o_in]; 559 
 560 
 t[52].dest = final; 561 
 t[52].in_chan = glob_ins[ss.Ia.r_in]; 562 
 563 
 564 
initial_state: 565 
atomic{ 566 
 reset(); 567 
  568 
 en_trans(0); 569 
 570 
 if 571 
 :: t[0].en_flag -> next_trans(0); goto connectingO_state; 572 
 :: else -> goto initial_state; 573 
 fi; 574 
} 575 
 576 
connectingO_state: 577 
atomic{ 578 
 reset(); 579 
  580 
 en_trans(1); 581 
 en_trans(2); 582 
 en_trans(3); 583 



 

128 

 en_trans(4); 584 
  585 
 if 586 
 :: t[1].en_flag -> next_trans(1); goto trying_state; 587 
 :: t[2].en_flag -> next_trans(2); goto abandonConnection_state; 588 
 :: t[3].en_flag -> next_trans(3); goto connectingO_state; 589 
 :: t[4].en_flag -> next_trans(4); goto error_state; 590 
 :: else -> goto connectingO_state; 591 
 fi; 592 
} 593 
 594 
abandonConnection_state: 595 
atomic{ 596 
 reset(); 597 
  598 
 en_trans(5); 599 
 600 
 if 601 
 :: t[5].en_flag -> next_trans(5); goto terminatingO_state; 602 
 :: else -> goto abandonConnection_state; 603 
 fi; 604 
} 605 
 606 
trying_state: 607 
progress: 608 
atomic{ 609 
 reset(); 610 
 611 
 en_trans(6); 612 
 en_trans(7); 613 
 en_trans(8); 614 
 en_trans(57); 615 
 en_trans(58); 616 
 en_trans(59); 617 
 en_trans(60); 618 
 619 
 if 620 
 :: t[6].en_flag -> next_trans(6); goto connectingR_state; 621 
 :: t[7].en_flag -> next_trans(7); goto terminatingO_state; 622 
 :: t[8].en_flag -> next_trans(8); goto trying_state; 623 
 :: t[57].en_flag -> next_trans(57); goto terminatingI_state; 624 
 :: t[58].en_flag -> next_trans(58); goto trying_state; 625 
 :: t[59].en_flag -> next_trans(59); goto endingInO_state; 626 
 :: t[60].en_flag -> next_trans(60); goto endingInO_state; 627 
 :: else -> goto trying_state; 628 
 fi; 629 
} 630 
 631 
connectingR_state: 632 
atomic{ 633 
 reset(); 634 
 635 
 en_trans(9); 636 



 

129 

 en_trans(10); 637 
 en_trans(11); 638 
 en_trans(12); 639 
 en_trans(13); 640 
 641 
 if 642 
 :: t[9].en_flag -> next_trans(9); goto confirming_state; 643 
 :: t[10].en_flag -> next_trans(10); goto terminatingO_state; 644 
 :: t[11].en_flag -> next_trans(11); goto terminatingI_state; 645 
 :: t[12].en_flag -> next_trans(12); goto connectingR_state; 646 
 :: t[13].en_flag -> next_trans(13); goto connectingR_state; 647 
 :: else -> goto connectingR_state; 648 
 fi; 649 
} 650 
 651 
confirming_state: 652 
progress0: 653 
atomic{ 654 
 reset(); 655 
 656 
 en_trans(14); 657 
 en_trans(15); 658 
 en_trans(16); 659 
 en_trans(17); 660 
 en_trans(18); 661 
 en_trans(19); 662 
 663 
 if 664 
 :: t[14].en_flag -> next_trans(14); goto confirmed_state; 665 
 :: t[15].en_flag -> next_trans(15); goto endingAll_state; 666 
 :: t[16].en_flag -> next_trans(16); goto endingOnR_state; 667 
 :: t[17].en_flag -> next_trans(17); goto endingInR_state; 668 
 :: t[18].en_flag -> next_trans(18); goto confirming_state; 669 
 :: t[19].en_flag -> next_trans(19); goto confirming_state; 670 
 :: else -> goto confirming_state; 671 
 fi; 672 
} 673 
 674 
confirmed_state: 675 
atomic{ 676 
 reset(); 677 
 678 
 en_trans(20); 679 
 en_trans(53); 680 
 en_trans(54); 681 
 en_trans(55); 682 
 en_trans(56); 683 
 684 
 if 685 
 :: t[20].en_flag -> next_trans(20); goto transparent_state; 686 
 :: t[53].en_flag -> next_trans(53); goto endingOnR_state; 687 
 :: t[54].en_flag -> next_trans(54); goto endingInR_state; 688 
 :: t[55].en_flag -> next_trans(55); goto confirmed_state; 689 



 

130 

 :: t[56].en_flag -> next_trans(56); goto confirmed_state; 690 
 :: else -> goto confirmed_state; 691 
 fi; 692 
} 693 
 694 
transparent_state: 695 
progress1: 696 
atomic{ 697 
 reset(); 698 
  699 
 en_trans(21); 700 
 en_trans(22); 701 
 en_trans(23); 702 
 en_trans(24); 703 
 704 
  if 705 
 :: t[21].en_flag -> next_trans(21); goto terminatingO_state; 706 
 :: t[22].en_flag -> next_trans(22); goto terminatingI_state; 707 
 :: t[23].en_flag -> next_trans(23); goto transparent_state; 708 
 :: t[24].en_flag -> next_trans(24); goto transparent_state; 709 
 :: else -> goto transparent_state; 710 
 fi; 711 
} 712 
 713 
terminatingO_state: 714 
atomic{ 715 
 reset(); 716 
 717 
 en_trans(25); 718 
 en_trans(26); 719 
 en_trans(27); 720 
 721 
 if 722 
 :: t[25].en_flag -> next_trans(25); goto final_state; 723 
 :: t[26].en_flag -> next_trans(26); goto terminatingO_state; 724 
 :: t[27].en_flag -> next_trans(27); goto terminatingO_state; 725 
 :: else -> goto terminatingO_state; 726 
 fi; 727 
} 728 
 729 
terminatingI_state: 730 
atomic{ 731 
 reset(); 732 
 733 
 en_trans(28); 734 
 en_trans(29); 735 
 en_trans(30); 736 
 737 
 if 738 
 :: t[28].en_flag -> next_trans(28); goto final_state; 739 
 :: t[29].en_flag -> next_trans(29); goto terminatingI_state; 740 
 :: t[30].en_flag -> next_trans(30); goto terminatingI_state; 741 
 :: else -> goto terminatingI_state; 742 



 

131 

 fi; 743 
} 744 
 745 
endingAll_state: 746 
atomic{ 747 
 reset(); 748 
 749 
 en_trans(31); 750 
 en_trans(32); 751 
 en_trans(33); 752 
 en_trans(34); 753 
 en_trans(35); 754 
 en_trans(36); 755 
 en_trans(37); 756 
 757 
 if 758 
 :: t[31].en_flag -> next_trans(31); goto endingOnR_state; 759 
 :: t[32].en_flag -> next_trans(32); goto endingInR_state; 760 
 :: t[33].en_flag -> next_trans(33); goto endingInO_state; 761 
 :: t[34].en_flag -> next_trans(34); goto endingAll_state; 762 
 :: t[35].en_flag -> next_trans(35); goto endingAll_state; 763 
 :: t[36].en_flag -> next_trans(36); goto endingAll_state; 764 
 :: t[37].en_flag -> next_trans(37); goto endingAll_state; 765 
 :: else -> goto endingAll_state; 766 
 fi; 767 
} 768 
 769 
endingOnR_state: 770 
atomic{ 771 
 reset(); 772 
 773 
 en_trans(38); 774 
 en_trans(39); 775 
 en_trans(40); 776 
 en_trans(41); 777 
  778 
 if 779 
 :: t[38].en_flag -> next_trans(38); goto terminatingR_state; 780 
 :: t[39].en_flag -> next_trans(39); goto terminatingO_state; 781 
 :: t[40].en_flag -> next_trans(40); goto endingOnR_state; 782 
 :: t[41].en_flag -> next_trans(41); goto endingOnR_state; 783 
 :: else -> goto endingOnR_state; 784 
 fi; 785 
} 786 
 787 
endingInR_state: 788 
atomic{ 789 
 reset(); 790 
 791 
 en_trans(42); 792 
 en_trans(43); 793 
 en_trans(44); 794 
 en_trans(45); 795 



 

132 

  796 
 if 797 
 :: t[42].en_flag -> next_trans(42); goto terminatingR_state; 798 
 :: t[43].en_flag -> next_trans(43); goto terminatingI_state; 799 
 :: t[44].en_flag -> next_trans(44); goto endingInR_state; 800 
 :: t[45].en_flag -> next_trans(45); goto endingInR_state; 801 
 :: else -> goto endingInR_state; 802 
 fi; 803 
} 804 
 805 
endingInO_state: 806 
atomic{ 807 
 reset(); 808 
 809 
 en_trans(46); 810 
 en_trans(47); 811 
 en_trans(48); 812 
 en_trans(49); 813 
 en_trans(50); 814 
 en_trans(51); 815 
  816 
 if 817 
 :: t[46].en_flag -> next_trans(46); goto terminatingO_state; 818 
 :: t[47].en_flag -> next_trans(47); goto terminatingI_state; 819 
 :: t[48].en_flag -> next_trans(48); goto endingInO_state; 820 
 :: t[49].en_flag -> next_trans(49); goto endingInO_state; 821 
 :: t[50].en_flag -> next_trans(50); goto endingInO_state; 822 
 :: t[51].en_flag -> next_trans(51); goto endingInO_state; 823 
 :: else -> goto endingInO_state; 824 
 fi; 825 
} 826 
 827 
terminatingR_state: 828 
atomic{ 829 
 reset(); 830 
 831 
 en_trans(52); 832 
 833 
 if 834 
 :: t[52].en_flag -> next_trans(52); goto final_state; 835 
 :: else -> goto terminatingR_state; 836 
 fi; 837 
} 838 
 839 
error_state: 840 
final_state: 841 
 skip; 842 
}; 843 
 844 
 845 
/*=================================================================*/ 846 
/* environment process */ 847 
 848 



 

133 

active proctype env() { 849 
 850 
  mtype i_sig, o_sig, r_sig; 851 
 852 
{ 853 
end: do 854 
 :: ss.Ia.box_in_ready -> 855 
  ss.Ia.box_in_ready = false; 856 
  glob_ins[ss.Ia.box_in]!setup; 857 
 :: ss.Ia.i_in_ready -> 858 
  if 859 
  :: glob_ins[ss.Ia.i_in]!teardown; 860 
  :: glob_ins[ss.Ia.i_in]!other; 861 
  fi unless{ 862 
   (i_sig == teardown) -> 863 
    glob_ins[ss.Ia.i_in]!downack; 864 
    i_sig = 0;  865 
  } 866 
 867 
 :: ss.Ia.o_in_ready -> 868 
  if 869 
  :: glob_ins[ss.Ia.o_in]!teardown; 870 
  :: glob_ins[ss.Ia.o_in]!other; 871 
  fi unless{ 872 
   if 873 
   ::(o_sig == teardown) -> 874 
    glob_ins[ss.Ia.o_in]!downack; 875 
    o_sig = 0; 876 
   ::(o_sig == setup) -> 877 
    o_sig = 0; 878 
    if 879 
    :: glob_ins[ss.Ia.o_in]!upack; 880 
       glob_ins[ss.Ia.o_in]!avail; 881 
    :: glob_ins[ss.Ia.o_in]!upack; 882 
       glob_ins[ss.Ia.o_in]!unavail; 883 
       glob_ins[ss.Ia.o_in]!teardown; 884 
    :: glob_ins[ss.Ia.o_in]!upack; 885 
       glob_ins[ss.Ia.o_in]!unknown; 886 
       glob_ins[ss.Ia.o_in]!teardown; 887 
    fi; 888 
   fi; 889 
 890 
  } 891 
 :: ss.Ia.r_in_ready -> 892 
  if 893 
  :: (r_sig == teardown) ->  894 
   glob_ins[ss.Ia.r_in]!downack; 895 
   r_sig = 0; 896 
  :: (ss.cs == confirming) -> 897 
   if 898 
   :: glob_ins[ss.Ia.r_in]!confirm; 899 
   :: glob_ins[ss.Ia.r_in]!nonconfirm; 900 
   fi; 901 



 

134 

  fi; 902 
 od 903 
} unless{ 904 
  if 905 
  :: glob_outs[ss.O.box_out]?setup -> 906 
    if 907 
    :: ss.cs == connectingO -> 908 
     o_sig = setup; 909 
    :: ss.cs == connectingR -> 910 
     glob_ins[ss.Ia.r_in]!upack; 911 
    fi; 912 
  :: glob_outs[ss.O.i_out]?upack; 913 
  :: glob_outs[ss.O.i_out]?downack; 914 
  :: atomic{ glob_outs[ss.O.i_out]?teardown -> 915 
    i_sig = teardown; 916 
     } 917 
  :: glob_outs[ss.O.i_out]?avail; 918 
  :: glob_outs[ss.O.i_out]?unavail; 919 
  :: glob_outs[ss.O.i_out]?unknown; 920 
  :: glob_outs[ss.O.i_out]?other; 921 
  :: glob_outs[ss.O.o_out]?downack; 922 
  :: atomic{ glob_outs[ss.O.o_out]?teardown -> 923 
    o_sig = teardown; 924 
     } 925 
  :: glob_outs[ss.O.o_out]?other; 926 
  :: glob_outs[ss.O.r_out]?downack; 927 
  :: atomic{ glob_outs[ss.O.r_out]?teardown -> 928 
    r_sig = teardown; 929 
     } 930 
  :: glob_outs[ss.O.r_out]?other; 931 
  fi; 932 
 } 933 
 goto end; 934 
} 935 

 936 



  

135 

Appendix E 

Blace Phone Interface 





  

137 

/*=============================================================*/ 1 
/* type definitions */ 2 
 3 
mtype = { teardown, downack, setup, upack, avail, unavail, unknown, none }; 4 
mtype = { offhook, dialed, onhook, other }; 5 
mtype = { accepted, waiting, rejected, nullified }; 6 
mtype = { post_process }; 7 
 8 
mtype = { initial, ringing, dialing, connecting, silent, ringback,  9 
 busytone, errortone, talking, disconnected }; 10 
mtype = { idle, work }; 11 
 12 
typedef Transition { 13 
 mtype dest; 14 
 chan in_chan; 15 
 chan out_chan; 16 
 bool en_flag = false; 17 
}; 18 
 19 
typedef Ia_type { 20 
 byte box_in = 0; 21 
 byte c_in = 1; 22 
 byte v_in = 2; 23 
 byte a_in = 3; 24 
 byte old_c_in = 4; 25 
 bool box_in_ready = true; 26 
 bool c_in_ready = false; 27 
 bool a_in_ready = true; 28 
 bool old_c_in_ready = false; 29 
 byte selected; 30 
}; 31 
 32 
typedef O_type { 33 
 byte box_out = 0; 34 
 byte c_out = 1; 35 
}; 36 
 37 
typedef IE_type { 38 
 chan internal = [0] of {mtype}; 39 
}; 40 
 41 
typedef SnapShot { 42 
 mtype cs; 43 
 mtype cs_post_process; 44 
 Ia_type Ia; 45 
 O_type O; 46 
 IE_type IE; 47 
}; 48 
 49 
/*==============================================================*/ 50 
/* global variable declarations */ 51 
 52 
chan glob_ins[5] = [0] of {mtype}; 53 



 

138 

chan glob_outs[2] = [0] of {mtype}; 54 
 55 
SnapShot ss; 56 
mtype sig; 57 
mtype inter_sig; 58 
Transition t[53]; 59 
 60 
byte counter = 0; 61 
 62 
/*==============================================================*/ 63 
/* inline functions */ 64 
 65 
inline setup_initial(){ 66 
  ss.Ia.c_in_ready = true; 67 
}; 68 
 69 
 70 
inline teardown_cleanup(){ 71 
  ss.Ia.c_in_ready = false; 72 
  ss.Ia.old_c_in_ready = true; 73 
}; 74 
 75 
 76 
inline reset() { 77 
 if 78 
 :: glob_ins[ss.Ia.box_in]?sig -> ss.Ia.selected = ss.Ia.box_in; 79 
 :: glob_ins[ss.Ia.c_in]?sig -> ss.Ia.selected = ss.Ia.c_in; 80 
 :: glob_ins[ss.Ia.v_in]?sig -> ss.Ia.selected = ss.Ia.v_in; 81 
 :: glob_ins[ss.Ia.a_in]?sig -> ss.Ia.selected = ss.Ia.a_in;  82 
 fi; 83 
}; 84 
 85 
 86 
inline reset_pp() { 87 
 if 88 
 :: glob_ins[ss.Ia.old_c_in]?sig -> ss.Ia.selected = ss.Ia.old_c_in; 89 
 fi; 90 
}; 91 
 92 
 93 
inline en_events(n){ 94 
  if 95 
  ::(n==0) && ss.Ia.selected == ss.Ia.box_in; 96 
  ::(n==1) && ss.Ia.selected == ss.Ia.a_in; 97 
  ::(n==2) && ss.Ia.selected == ss.Ia.v_in; 98 
  ::(n==3) && ss.Ia.selected == ss.Ia.a_in; 99 
  ::(n==4) && ss.Ia.selected == ss.Ia.a_in; 100 
  ::(n==5) && ss.Ia.selected == ss.Ia.c_in; 101 
  ::(n==6) && ss.Ia.selected == ss.Ia.c_in; 102 
  ::(n==7) && ss.Ia.selected == ss.Ia.a_in; 103 
  ::(n==8) && ss.Ia.selected == ss.Ia.v_in; 104 
  ::(n==9) && ss.Ia.selected == ss.Ia.v_in; 105 
  ::(n==10) && ss.Ia.selected == ss.Ia.v_in; 106 



 

139 

  ::(n==11) && ss.Ia.selected == ss.Ia.c_in; 107 
  ::(n==12) && ss.Ia.selected == ss.Ia.c_in; 108 
  ::(n==13) && ss.Ia.selected == ss.Ia.c_in; 109 
  ::(n==14) && ss.Ia.selected == ss.Ia.c_in; 110 
  ::(n==15) && ss.Ia.selected == ss.Ia.a_in; 111 
  ::(n==16) && ss.Ia.selected == ss.Ia.v_in; 112 
  ::(n==17) && ss.Ia.selected == ss.Ia.v_in; 113 
  ::(n==18) && ss.Ia.selected == ss.Ia.v_in; 114 
  ::(n==19) && ss.Ia.selected == ss.Ia.c_in; 115 
  ::(n==20) && ss.Ia.selected == ss.Ia.c_in; 116 
  ::(n==21) && ss.Ia.selected == ss.Ia.c_in; 117 
  ::(n==22) && ss.Ia.selected == ss.Ia.c_in; 118 
  ::(n==23) && ss.Ia.selected == ss.Ia.c_in; 119 
  ::(n==24) && ss.Ia.selected == ss.Ia.a_in; 120 
  ::(n==25) && ss.Ia.selected == ss.Ia.v_in; 121 
  ::(n==26) && ss.Ia.selected == ss.Ia.v_in; 122 
  ::(n==27) && ss.Ia.selected == ss.Ia.v_in; 123 
  ::(n==28) && ss.Ia.selected == ss.Ia.c_in; 124 
  ::(n==29) && ss.Ia.selected == ss.Ia.c_in; 125 
  ::(n==30) && ss.Ia.selected == ss.Ia.c_in; 126 
  ::(n==31) && ss.Ia.selected == ss.Ia.c_in; 127 
  ::(n==32) && ss.Ia.selected == ss.Ia.a_in; 128 
  ::(n==33) && ss.Ia.selected == ss.Ia.v_in; 129 
  ::(n==34) && ss.Ia.selected == ss.Ia.v_in; 130 
  ::(n==35) && ss.Ia.selected == ss.Ia.v_in; 131 
  ::(n==36) && ss.Ia.selected == ss.Ia.v_in; 132 
  ::(n==37) && ss.Ia.selected == ss.Ia.c_in; 133 
  ::(n==38) && ss.Ia.selected == ss.Ia.c_in; 134 
  ::(n==39) && ss.Ia.selected == ss.Ia.c_in; 135 
  ::(n==40) && ss.Ia.selected == ss.Ia.c_in; 136 
  ::(n==41) && ss.Ia.selected == ss.Ia.a_in; 137 
  ::(n==42) && ss.Ia.selected == ss.Ia.v_in; 138 
  ::(n==43) && ss.Ia.selected == ss.Ia.v_in; 139 
  ::(n==44) && ss.Ia.selected == ss.Ia.v_in; 140 
  ::(n==45) && ss.Ia.selected == ss.Ia.c_in; 141 
  ::(n==46) && ss.Ia.selected == ss.Ia.c_in; 142 
  ::(n==47) && ss.Ia.selected == ss.Ia.c_in; 143 
  ::(n==48) && ss.Ia.selected == ss.Ia.c_in; 144 
  ::(n==49) && ss.Ia.selected == ss.Ia.a_in; 145 
  ::(n==50) && ss.Ia.selected == ss.Ia.a_in; 146 
  ::(n==51) && true; 147 
  ::(n==52) && ss.Ia.selected == ss.Ia.old_c_in; 148 
  fi; 149 
}; 150 
 151 
 152 
inline en_cond(n){ 153 
  if 154 
  ::(n==0) && sig == setup; 155 
  ::(n==1) && sig == offhook; 156 
  ::(n==2) && sig == accepted; 157 
  ::(n==3) && sig == dialed; 158 
  ::(n==4) && sig == onhook; 159 



 

140 

  ::(n==5) && sig == upack; 160 
  ::(n==6) && sig == teardown; 161 
  ::(n==7) && sig == onhook; 162 
  ::(n==8) && sig == waiting; 163 
  ::(n==9) && sig == accepted; 164 
  ::(n==10) && sig == rejected; 165 
  ::(n==11) && sig == unknown; 166 
  ::(n==12) && sig == unavail; 167 
  ::(n==13) && sig == avail; 168 
  ::(n==14) && sig == teardown; 169 
  ::(n==15) && sig == onhook; 170 
  ::(n==16) && sig == accepted; 171 
  ::(n==17) && sig == rejected; 172 
  ::(n==18) && sig == nullified; 173 
  ::(n==19) && sig == unknown; 174 
  ::(n==20) && sig == unavail; 175 
  ::(n==21) && sig == avail; 176 
  ::(n==22) && sig == none; 177 
  ::(n==23) && sig == teardown; 178 
  ::(n==24) && sig == onhook; 179 
  ::(n==25) && sig == waiting; 180 
  ::(n==26) && sig == accepted; 181 
  ::(n==27) && sig == nullified; 182 
  ::(n==28) && sig == unknown; 183 
  ::(n==29) && sig == avail; 184 
  ::(n==30) && sig == none; 185 
  ::(n==31) && sig == teardown; 186 
  ::(n==32) && sig == onhook; 187 
  ::(n==33) && sig == waiting; 188 
  ::(n==34) && sig == accepted; 189 
  ::(n==35) && sig == rejected; 190 
  ::(n==36) && sig == nullified; 191 
  ::(n==37) && sig == unavail; 192 
  ::(n==38) && sig == avail; 193 
  ::(n==39) && sig == none; 194 
  ::(n==40) && sig == teardown; 195 
  ::(n==41) && sig == onhook; 196 
  ::(n==42) && sig == waiting; 197 
  ::(n==43) && sig == rejected; 198 
  ::(n==44) && sig == nullified; 199 
  ::(n==45) && sig == unknown; 200 
  ::(n==46) && sig == unavail; 201 
  ::(n==47) && sig == none; 202 
  ::(n==48) && sig == teardown; 203 
  ::(n==49) && sig == onhook; 204 
  ::(n==50) && sig == onhook; 205 
  ::(n==51) && inter_sig == post_process; 206 
  ::(n==52) && sig == downack; 207 
  fi; 208 
} 209 
 210 
 211 
inline next_trans(n){ 212 



 

141 

  if 213 
  ::(n==0) -> setup_initial(); 214 
  t[0].out_chan!upack; 215 
  ss.cs = t[0].dest; 216 
 217 
  ::(n==1) -> ss.cs = t[1].dest; 218 
 219 
  ::(n==2) -> t[2].out_chan!avail; 220 
  ss.cs = t[2].dest; 221 
 222 
  ::(n==3) ->  setup_initial(); 223 
  t[3].out_chan!setup; 224 
  ss.cs = t[3].dest; 225 
 226 
  ::(n==4) -> ss.cs = t[4].dest; 227 
 228 
  ::(n==5) -> ss.cs = t[5].dest; 229 
 230 
  ::(n==6) ->  t[6].out_chan!downack; 231 
  ss.Ia.c_in_ready = false;  232 
  ss.cs = t[6].dest; 233 
 234 
  ::(n==7) -> t[7].out_chan!teardown; 235 
  ss.IE.internal!post_process; 236 
  ss.cs = t[7].dest; 237 
 238 
  ::(n==8) -> ss.cs = t[8].dest; 239 
   240 
  ::(n==9) -> ss.cs = t[9].dest; 241 
 242 
  ::(n==10) -> ss.cs = t[10].dest; 243 
 244 
  ::(n==11) -> ss.cs = t[11].dest; 245 
 246 
  ::(n==12) -> ss.cs = t[12].dest; 247 
 248 
  ::(n==13) -> ss.cs = t[13].dest; 249 
 250 
  ::(n==14) -> t[14].out_chan!downack; 251 
  ss.Ia.c_in_ready = false;  252 
  ss.cs = t[14].dest; 253 
 254 
  ::(n==15) -> t[15].out_chan!teardown; 255 
  ss.IE.internal!post_process; 256 
  ss.cs = t[15].dest; 257 
 258 
  ::(n==16) -> ss.cs = t[16].dest; 259 
 260 
  ::(n==17) -> ss.cs = t[17].dest; 261 
 262 
  ::(n==18) -> ss.cs = t[18].dest; 263 
 264 
  ::(n==19) -> ss.cs = t[19].dest; 265 



 

142 

 266 
  ::(n==20) -> ss.cs = t[20].dest; 267 
 268 
  ::(n==21) -> ss.cs = t[21].dest; 269 
 270 
  ::(n==22) -> ss.cs = t[22].dest; 271 
 272 
  ::(n==23) -> t[23].out_chan!downack; 273 
  ss.Ia.c_in_ready = false;  274 
  ss.cs = t[23].dest; 275 
 276 
  ::(n==24) ->  t[24].out_chan!teardown; 277 
  ss.IE.internal!post_process; 278 
  ss.cs = t[24].dest; 279 
 280 
  ::(n==25) -> ss.cs = t[25].dest; 281 
 282 
  ::(n==26) -> ss.cs = t[26].dest; 283 
 284 
  ::(n==27) -> ss.cs = t[27].dest; 285 
 286 
  ::(n==28) -> ss.cs = t[28].dest; 287 
 288 
  ::(n==29) ->  ss.cs = t[29].dest; 289 
 290 
  ::(n==30) -> ss.cs = t[30].dest; 291 
 292 
  ::(n==31) -> t[31].out_chan!downack; 293 
  ss.Ia.c_in_ready = false;  294 
  ss.cs = t[31].dest; 295 
 296 
  ::(n==32) -> t[32].out_chan!teardown; 297 
  ss.IE.internal!post_process; 298 
  ss.cs = t[32].dest; 299 
 300 
  ::(n==33) -> ss.cs = t[33].dest;   301 
 302 
  ::(n==34) -> ss.cs = t[34].dest; 303 
 304 
  ::(n==35) ->  ss.cs = t[35].dest; 305 
 306 
  ::(n==36) -> ss.cs = t[35].dest; 307 
 308 
  ::(n==37) -> ss.cs = t[37].dest; 309 
 310 
  ::(n==38) -> ss.cs = t[38].dest; 311 
 312 
  ::(n==39) -> ss.cs = t[39].dest; 313 
 314 
  ::(n==40) -> t[40].out_chan!downack; 315 
  ss.Ia.c_in_ready = false;  316 
  ss.cs = t[40].dest; 317 
 318 



 

143 

  ::(n==41) ->  t[41].out_chan!teardown; 319 
  ss.IE.internal!post_process; 320 
  ss.cs = t[41].dest; 321 
 322 
  ::(n==42) -> ss.cs = t[42].dest; 323 
 324 
  ::(n==43) ->  ss.cs = t[43].dest; 325 
 326 
  ::(n==44) -> ss.cs = t[44].dest; 327 
 328 
  ::(n==45) -> ss.cs = t[45].dest; 329 
 330 
  ::(n==46) -> ss.cs = t[46].dest; 331 
 332 
  ::(n==47) -> ss.cs = t[47].dest; 333 
 334 
  ::(n==48) -> t[48].out_chan!downack; 335 
  ss.Ia.c_in_ready = false;  336 
  ss.cs = t[48].dest; 337 
 338 
  ::(n==49) ->  t[49].out_chan!teardown; 339 
  ss.IE.internal!post_process; 340 
  ss.cs = t[49].dest; 341 
 342 
  ::(n==50) ->  ss.cs = t[50].dest; 343 
 344 
  ::(n==51) ->  ss.cs_post_process = t[51].dest; 345 
 346 
  ::(n==52) -> ss.Ia.old_c_in_ready = false; 347 
  ss.cs_post_process = t[52].dest; 348 
  fi; 349 
}; 350 
 351 
 352 
inline en_trans(n){ 353 
  if 354 
  :: en_events(n) -> 355 
 if 356 
 :: en_cond(n) -> t[n].en_flag = true; 357 
 :: else -> t[n].en_flag = false; 358 
 fi; 359 
  :: else -> t[n].en_flag = false; 360 
  fi; 361 
}; 362 
 363 
/*===============================================================*/ 364 
/* bound black phone interface box process */ 365 
 366 
active proctype BPI() { 367 
 368 
 ss.cs = initial; 369 
 370 
 //statically declare transitions 371 



 

144 

 t[0].dest = ringing; 372 
 t[0].in_chan = glob_ins[ss.Ia.box_in]; 373 
 t[0].out_chan = glob_outs[ss.O.c_out]; 374 
  375 
 t[1].dest = dialing; 376 
 t[1].in_chan = glob_outs[ss.Ia.a_in]; 377 
 378 
 t[2].dest = talking; 379 
 t[2].in_chan = glob_ins[ss.Ia.v_in]; 380 
 t[2].out_chan = glob_outs[ss.O.c_out]; 381 
 382 
 t[3].dest = connecting; 383 
 t[3].in_chan = glob_ins[ss.Ia.a_in]; 384 
 t[3].out_chan = glob_outs[ss.O.box_out]; 385 
 386 
 t[4].dest = initial; 387 
 t[4].in_chan = glob_ins[ss.Ia.a_in]; 388 
 389 
 t[5].dest = silent; 390 
 t[5].in_chan = glob_ins[ss.Ia.c_in]; 391 
 392 
 t[6].dest = disconnected; 393 
 t[6].in_chan = glob_ins[ss.Ia.c_in]; 394 
 t[6].out_chan = glob_outs[ss.O.c_out]; 395 
 396 
 t[7].dest = initial; 397 
 t[7].in_chan = glob_ins[ss.Ia.a_in]; 398 
 t[7].out_chan = glob_outs[ss.O.c_out]; 399 
 400 
 t[8].dest = ringback; 401 
 t[8].in_chan = glob_ins[ss.Ia.v_in]; 402 
 403 
 t[9].dest = talking; 404 
 t[9].in_chan = glob_ins[ss.Ia.v_in]; 405 
 406 
 t[10].dest = busytone; 407 
 t[10].in_chan = glob_ins[ss.Ia.v_in]; 408 
 409 
 t[11].dest = errortone; 410 
 t[11].in_chan = glob_ins[ss.Ia.c_in]; 411 
 412 
 t[12].dest = busytone; 413 
 t[12].in_chan = glob_ins[ss.Ia.c_in]; 414 
 415 
 t[13].dest = talking; 416 
 t[13].in_chan = glob_ins[ss.Ia.c_in]; 417 
  418 
 t[14].dest = disconnected; 419 
 t[14].in_chan = glob_ins[ss.Ia.c_in]; 420 
 t[14].out_chan = glob_outs[ss.O.c_out]; 421 
 422 
 t[15].dest = initial; 423 
 t[15].in_chan = glob_ins[ss.Ia.a_in]; 424 



 

145 

 t[15].out_chan = glob_outs[ss.O.c_out]; 425 
 426 
 t[16].dest = talking; 427 
 t[16].in_chan = glob_ins[ss.Ia.v_in]; 428 
 429 
 t[17].dest = busytone; 430 
 t[17].in_chan = glob_ins[ss.Ia.v_in]; 431 
 432 
 t[18].dest = silent; 433 
 t[18].in_chan = glob_ins[ss.Ia.v_in]; 434 
  435 
 t[19].dest = errortone; 436 
 t[19].in_chan = glob_ins[ss.Ia.c_in]; 437 
 438 
 t[20].dest = busytone; 439 
 t[20].in_chan = glob_ins[ss.Ia.c_in]; 440 
 441 
 t[21].dest = talking; 442 
 t[21].in_chan = glob_ins[ss.Ia.c_in]; 443 
 444 
 t[22].dest = silent; 445 
 t[22].in_chan = glob_ins[ss.Ia.c_in]; 446 
 447 
 t[23].dest = disconnected; 448 
 t[23].in_chan = glob_ins[ss.Ia.c_in]; 449 
 t[23].out_chan = glob_outs[ss.O.c_out]; 450 
 451 
 t[24].dest = initial; 452 
 t[24].in_chan = glob_ins[ss.Ia.a_in]; 453 
 t[24].out_chan = glob_outs[ss.O.c_out]; 454 
 455 
 t[25].dest = ringback; 456 
 t[25].in_chan = glob_ins[ss.Ia.v_in]; 457 
 458 
 t[26].dest = talking; 459 
 t[26].in_chan = glob_ins[ss.Ia.v_in]; 460 
 461 
 t[27].dest = silent; 462 
 t[27].in_chan = glob_ins[ss.Ia.v_in]; 463 
  464 
 t[28].dest = errortone; 465 
 t[28].in_chan = glob_ins[ss.Ia.c_in]; 466 
 467 
 t[29].dest = talking; 468 
 t[29].in_chan = glob_ins[ss.Ia.c_in]; 469 
 470 
 t[30].dest = silent; 471 
 t[30].in_chan = glob_ins[ss.Ia.c_in]; 472 
 473 
 t[31].dest = disconnected; 474 
 t[31].in_chan = glob_ins[ss.Ia.c_in]; 475 
 t[31].out_chan = glob_outs[ss.O.c_out]; 476 
 477 



 

146 

 t[32].dest = initial; 478 
 t[32].in_chan = glob_ins[ss.Ia.a_in]; 479 
 t[32].out_chan = glob_outs[ss.O.c_out]; 480 
 481 
 t[33].dest = ringback; 482 
 t[33].in_chan = glob_ins[ss.Ia.v_in]; 483 
 484 
 t[34].dest = talking; 485 
 t[34].in_chan = glob_ins[ss.Ia.v_in]; 486 
 487 
 t[35].dest = busytone; 488 
 t[35].in_chan = glob_ins[ss.Ia.v_in]; 489 
 490 
 t[36].dest = silent; 491 
 t[36].in_chan = glob_ins[ss.Ia.v_in]; 492 
 493 
 t[37].dest = busytone; 494 
 t[37].in_chan = glob_ins[ss.Ia.c_in]; 495 
 496 
 t[38].dest = talking; 497 
 t[38].in_chan = glob_ins[ss.Ia.c_in]; 498 
 499 
 t[39].dest = silent; 500 
 t[39].in_chan = glob_ins[ss.Ia.c_in]; 501 
 502 
 t[40].dest = disconnected; 503 
 t[40].in_chan = glob_ins[ss.Ia.c_in]; 504 
 t[40].out_chan = glob_outs[ss.O.c_out]; 505 
 506 
 t[41].dest = initial; 507 
 t[41].in_chan = glob_ins[ss.Ia.a_in]; 508 
 t[41].out_chan = glob_outs[ss.O.c_out]; 509 
 510 
 t[42].dest = ringback; 511 
 t[42].in_chan = glob_ins[ss.Ia.v_in]; 512 
 513 
 t[43].dest = busytone; 514 
 t[43].in_chan = glob_ins[ss.Ia.v_in]; 515 
 516 
 t[44].dest = silent; 517 
 t[44].in_chan = glob_ins[ss.Ia.v_in]; 518 
 519 
 t[45].dest = busytone; 520 
 t[45].in_chan = glob_ins[ss.Ia.c_in]; 521 
 522 
 t[46].dest = busytone; 523 
 t[46].in_chan = glob_ins[ss.Ia.c_in]; 524 
 525 
 t[47].dest = silent; 526 
 t[47].in_chan = glob_ins[ss.Ia.c_in]; 527 
 528 
 t[48].dest = disconnected; 529 
 t[48].in_chan = glob_ins[ss.Ia.c_in]; 530 



 

147 

 t[48].out_chan = glob_outs[ss.O.c_out]; 531 
 532 
 t[49].dest = initial; 533 
 t[49].in_chan = glob_ins[ss.Ia.a_in]; 534 
 t[49].out_chan = glob_outs[ss.O.c_out]; 535 
 536 
 t[50].dest = initial; 537 
 t[50].in_chan = glob_ins[ss.Ia.a_in]; 538 
 539 
end_initial_state: 540 
atomic{ 541 
 reset(); 542 
  543 
 en_trans(0); 544 
 en_trans(1); 545 
 546 
 if 547 
 :: t[0].en_flag -> next_trans(0); goto ringing_state; 548 
 :: t[1].en_flag -> next_trans(1); goto dialing_state; 549 
 :: else -> goto end_initial_state; 550 
 fi; 551 
} 552 
 553 
ringing_state: 554 
atomic{ 555 
 reset(); 556 
 557 
 en_trans(2); 558 
  559 
 if 560 
 :: t[2].en_flag -> next_trans(2); goto talking_state; 561 
 :: else -> goto ringing_state; 562 
 fi; 563 
} 564 
 565 
dialing_state: 566 
atomic{ 567 
 reset(); 568 
 569 
 en_trans(3); 570 
 en_trans(4); 571 
 572 
 if 573 
 :: t[3].en_flag -> next_trans(3); goto connecting_state; 574 
 :: t[4].en_flag -> next_trans(4); goto end_initial_state; 575 
 :: else -> goto dialing_state; 576 
 fi; 577 
} 578 
 579 
connecting_state: 580 
atomic{ 581 
 reset(); 582 
 583 



 

148 

 en_trans(5); 584 
 en_trans(6); 585 
 en_trans(7); 586 
 587 
 if 588 
 :: t[5].en_flag -> next_trans(5); goto silent_state; 589 
 :: t[6].en_flag -> next_trans(6); goto disconnected_state; 590 
 :: t[7].en_flag -> next_trans(7); goto end_initial_state; 591 
 :: else -> goto connecting_state; 592 
 fi; 593 
} 594 
 595 
silent_state: 596 
atomic{ 597 
 reset(); 598 
 599 
 en_trans(8); 600 
 en_trans(9); 601 
 en_trans(10); 602 
 en_trans(11); 603 
 en_trans(12); 604 
 en_trans(13); 605 
 en_trans(14); 606 
 en_trans(15); 607 
 608 
 if 609 
 :: t[8].en_flag -> next_trans(8); goto ringback_state; 610 
 :: t[9].en_flag -> next_trans(9); goto talking_state; 611 
 :: t[10].en_flag -> next_trans(10); goto busytone_state; 612 
 :: t[11].en_flag -> next_trans(11); goto errortone_state; 613 
 :: t[12].en_flag -> next_trans(12); goto busytone_state; 614 
 :: t[13].en_flag -> next_trans(13); goto talking_state; 615 
 :: t[14].en_flag -> next_trans(14); goto disconnected_state; 616 
 :: t[15].en_flag -> next_trans(15); goto end_initial_state; 617 
 :: else -> goto silent_state; 618 
 fi; 619 
} 620 
 621 
ringback_state: 622 
atomic{ 623 
 reset(); 624 
 625 
 en_trans(16); 626 
 en_trans(17); 627 
 en_trans(18); 628 
 en_trans(19); 629 
 en_trans(20); 630 
 en_trans(21); 631 
 en_trans(22); 632 
 en_trans(23); 633 
 en_trans(24); 634 
 635 
 if 636 



 

149 

 :: t[16].en_flag -> next_trans(16); goto talking_state; 637 
 :: t[17].en_flag -> next_trans(17); goto busytone_state; 638 
 :: t[18].en_flag -> next_trans(18); goto silent_state; 639 
 :: t[19].en_flag -> next_trans(19); goto errortone_state; 640 
 :: t[20].en_flag -> next_trans(20); goto busytone_state; 641 
 :: t[21].en_flag -> next_trans(21); goto talking_state; 642 
 :: t[22].en_flag -> next_trans(22); goto silent_state; 643 
 :: t[23].en_flag -> next_trans(23); goto disconnected_state; 644 
 :: t[24].en_flag -> next_trans(24); goto end_initial_state; 645 
 :: else -> goto ringback_state; 646 
 fi; 647 
} 648 
 649 
busytone_state: 650 
atomic{ 651 
 reset(); 652 
 653 
 en_trans(25); 654 
 en_trans(26); 655 
 en_trans(27); 656 
 en_trans(28); 657 
 en_trans(29); 658 
 en_trans(30); 659 
 en_trans(31); 660 
 en_trans(32); 661 
 662 
 if 663 
 :: t[25].en_flag -> next_trans(25); goto ringback_state; 664 
 :: t[26].en_flag -> next_trans(26); goto talking_state; 665 
 :: t[27].en_flag -> next_trans(27); goto silent_state; 666 
 :: t[28].en_flag -> next_trans(28); goto errortone_state; 667 
 :: t[29].en_flag -> next_trans(29); goto talking_state; 668 
 :: t[30].en_flag -> next_trans(30); goto silent_state; 669 
 :: t[31].en_flag -> next_trans(31); goto disconnected_state; 670 
 :: t[32].en_flag -> next_trans(32); goto end_initial_state; 671 
 :: else -> goto busytone_state; 672 
 fi; 673 
} 674 
 675 
errortone_state: 676 
atomic{ 677 
 reset(); 678 
 679 
 en_trans(33); 680 
 en_trans(34); 681 
 en_trans(35); 682 
 en_trans(36); 683 
 en_trans(37); 684 
 en_trans(38); 685 
 en_trans(39); 686 
 en_trans(40); 687 
 en_trans(41); 688 
 689 



 

150 

 if 690 
 :: t[33].en_flag -> next_trans(33); goto ringback_state; 691 
 :: t[34].en_flag -> next_trans(34); goto talking_state; 692 
 :: t[35].en_flag -> next_trans(35); goto busytone_state; 693 
 :: t[36].en_flag -> next_trans(36); goto silent_state; 694 
 :: t[37].en_flag -> next_trans(37); goto busytone_state; 695 
 :: t[38].en_flag -> next_trans(38); goto talking_state; 696 
 :: t[39].en_flag -> next_trans(39); goto silent_state; 697 
 :: t[40].en_flag -> next_trans(40); goto disconnected_state; 698 
 :: t[41].en_flag -> next_trans(41); goto end_initial_state; 699 
 :: else -> goto errortone_state; 700 
 fi; 701 
} 702 
 703 
talking_state: 704 
atomic{ 705 
 reset(); 706 
 707 
 en_trans(42); 708 
 en_trans(43); 709 
 en_trans(44); 710 
 en_trans(45); 711 
 en_trans(46); 712 
 en_trans(47); 713 
 en_trans(48); 714 
 en_trans(49); 715 
 716 
 if 717 
 :: t[42].en_flag -> next_trans(42); goto ringback_state; 718 
 :: t[43].en_flag -> next_trans(43); goto busytone_state; 719 
 :: t[44].en_flag -> next_trans(44); goto silent_state; 720 
 :: t[45].en_flag -> next_trans(45); goto busytone_state; 721 
 :: t[46].en_flag -> next_trans(46); goto busytone_state; 722 
 :: t[47].en_flag -> next_trans(47); goto silent_state; 723 
 :: t[48].en_flag -> next_trans(48); goto disconnected_state; 724 
 :: t[49].en_flag -> next_trans(49); goto end_initial_state; 725 
 :: else -> goto talking_state; 726 
 fi; 727 
} 728 
 729 
disconnected_state: 730 
atomic{ 731 
 reset(); 732 
 733 
 en_trans(50); 734 
 735 
 if 736 
 :: t[50].en_flag -> next_trans(50); goto end_initial_state; 737 
 :: else -> goto disconnected_state; 738 
 fi; 739 
} 740 
 741 
}; 742 



 

151 

 743 
 744 
/*=================================================================*/ 745 
/* post-processing process */ 746 
 747 
active proctype pp() { 748 
  byte inter_sig; 749 
 750 
 ss.cs_post_process = idle; 751 
 752 
 t[51].dest = work; 753 
 754 
 t[52].dest = idle; 755 
 t[52].in_chan = glob_ins[ss.Ia.old_c_in]; 756 
 757 
end_idle_state: 758 
atomic{ 759 
 ss.IE.internal?inter_sig; 760 
 761 
 en_trans(51); 762 
 763 
 if 764 
 :: t[51].en_flag -> next_trans(51); goto work_state; 765 
 :: else -> goto end_idle_state; 766 
 fi; 767 
} 768 
 769 
work_state: 770 
atomic{ 771 
 reset_pp(); 772 
 773 
 en_trans(52); 774 
 775 
 if 776 
 :: t[52].en_flag -> next_trans(52); goto end_idle_state; 777 
 :: else -> goto work_state; 778 
 fi; 779 
} 780 
 781 
} 782 
 783 
 784 
/*=================================================================*/ 785 
/* environment process */ 786 
 787 
active proctype env() { 788 
end: 789 
  do 790 
  :: ss.Ia.box_in_ready && (ss.cs == initial) ->  791 
 counter = counter + 1;  792 
 glob_ins[ss.Ia.box_in]!setup; 793 
  :: ss.Ia.a_in_ready -> 794 
 if 795 



 

152 

 :: (ss.cs == initial) -> glob_ins[ss.Ia.a_in] ! offhook; 796 
     glob_ins[ss.Ia.a_in] ! dialed; 797 
   :: !(ss.cs == initial) && !(ss.cs == ringing) && !(ss.Ia.old_c_in_ready) ->  798 
  glob_ins[ss.Ia.a_in] ! onhook; 799 
 :: else -> glob_ins[ss.Ia.a_in] ! other; 800 
 fi;  801 
  :: ss.Ia.c_in_ready && !(ss.cs == ringing) -> 802 
 if 803 
   :: glob_ins[ss.Ia.c_in] ! teardown; 804 
   :: !(ss.cs == errortone) -> glob_ins[ss.Ia.c_in] ! unknown; 805 
 :: !(ss.cs == busytone) -> glob_ins[ss.Ia.c_in] ! unavail; 806 
 :: !(ss.cs == talking) -> glob_ins[ss.Ia.c_in] ! avail; 807 
 :: !(ss.cs == silent) -> glob_ins[ss.Ia.c_in] ! none; 808 
 :: !(ss.cs == talking) -> glob_ins[ss.Ia.v_in] ! accepted; 809 
 :: !(ss.cs == ringback) -> glob_ins[ss.Ia.v_in] ! waiting; 810 
 :: !(ss.cs == busytone) -> glob_ins[ss.Ia.v_in] ! rejected; 811 
 :: !(ss.cs == nullified) -> glob_ins[ss.Ia.v_in] ! nullified; 812 
 fi; 813 
  :: ss.Ia.old_c_in_ready -> glob_ins[ss.Ia.old_c_in] ! downack; 814 
  od  815 
  unless{ 816 
  if  817 
  :: atomic{ glob_outs[ss.O.box_out] ? setup -> glob_ins[ss.Ia.c_in] ! upack;} 818 
  :: atomic{ glob_outs[ss.O.c_out] ? upack -> glob_ins[ss.Ia.v_in] ! accepted;} 819 
  :: glob_outs[ss.O.c_out] ? avail; 820 
  :: glob_outs[ss.O.c_out] ? downack; 821 
  :: atomic{ glob_outs[ss.O.c_out] ? teardown -> teardown_cleanup();}   822 
  fi; 823 
  } 824 
  goto end; 825 
}; 826 

 827 



  

153 

Bibliography 

[1] F.Joe LIN and Yow-Jian LIN, A Building Block Approach to Detecting and Resolving Feature 

Interactions, In Proceedings of Feature Interactions in Telecommunications and Software Systems II, 

IOS press, 1994 

[2] D.Amyot et al., Feature Description and Feature Interaction Analysis with Use Case Maps and 

LOTOS, In Proceedings of Feature Interactions in Telecommunications and Software Systems VI, IOS 

press, 2000 

[3] Michael Jackson and Pamela Zave. Distributed feature composition: A virtual architecture for 

telecommunications services. IEEE Transactions on Software Engineering XXIV (10): 831-847, 

October 1998 

[4] P. Zave and M. Jackson. A call abstraction for componet coordination. In Proceedings of Int. Coll. 

on Automata, Languages, and Programming: Workshop on Formal Methods and Component 

Interaction, June 2002 

[5] J. Niu, J. M. Atlee, and N. A. Day. Template semantics for model-based notations. IEEE Trans. on 

Soft. Eng., 20(10):866-882, Oct. 2003 

[6] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer 

Academic, 1993 

[7] L. Blair and G. Blair. Composition in multi-paradigm specification techniques. In Proceedings of 

Int. Workshop on Formal Methods for Open Object-based Dist. Syst., pages 401-417. Kluwer 

Academic, 1999 

[8] D. Harel. Statecharts: A visual formalism for complex systems. Sci. of Comp. Prog., 8:231-274, 

1987 

[9] Gerard J. Holzmann, The SPIN model checker – Primer and Reference Manual, Addison-Wesley, 

2003 

[10] Glenn Bruns et al., Feature as Service Transformers, In Proceedings of Feature Interactions in 

Telecommunications and software Systems V, IOS press, 1998 

[11] A. Aho et al., SCF3/Sculptor with Chisel: Requirements Engineering for Communications 

Services, In Proceedings of Feature Interactions in Telecommunications and Software Systems V, 

IOS Press, 1998 

[12] H. Jouve et al., An automatic off-line feature interaction detection method by static analysis of 

specifications, In Proceedings of Feature Interactions in Telecommunications and Software Systems 

VIII, IOS Press, 2005 

[13] Gregory W. Bond, Franjo Ivancic, Nils Klarlund, and Richard Trefler. ECLIPSE feature logic 

analysis. In Proceedings of the Second IP Telephony Workshop, pages 49-56. Columbia University, 

New York, New York, April 2001 



 

154 

[14] A. Pnueli, The Temporal Logic of Programs, Proc. 18
th
 IEEE Symp. Foundations of Computer 

Science, Providence, R.I., pp. 46-57, 1977 

[15] E.M. Clarke and E.A. Emerson. Design and Synthesis of synchronization skeletons using 

branching time temporal logic. In Proc. Workshop on Logic of Programs. Springer-Verlag, 1981 


