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Abstract

Being able to explore a relationship between two life events is of great interest to scientists

from different disciplines. Some issues of particular concern are, for example, the connec-

tion between smoking cessation and pregnancy (Thompson and Pantoja-Galicia 2003), the

interrelation between entry into marriage for individuals in a consensual union and first preg-

nancy (Blossfeld and Mills 2003), and the association between job loss and divorce (Charles

and Stephens 2004, Huang 2003 and Yeung and Hofferth 1998).

Establishing causation in observational studies is seldom possible. Nevertheless, if one of

two events tends to precede the other closely in time, a causal interpretation of an association

between these events can be more plausible. The role of longitudinal surveys is crucial, then,

since they allow sequences of events for individuals to be observed. Thompson and Pantoja-

Galicia (2003) discuss in this context several notions of temporal association and ordering,

and propose an approach to investigate a possible relationship between two lifetime events.

In longitudinal surveys individuals might be asked questions of particular interest about

two specific lifetime events. Therefore the joint distribution might be advantageous for

answering questions of particular importance. In follow-up studies, however, it is possible

that interval censored data may arise due to several reasons. For example, actual dates of

events might not have been recorded, or are missing, for a subset of (or all) the sampled

population, and can be established only to within specified intervals.

Along with the notions of temporal association and ordering, Thompson and Pantoja-

Galicia (2003) also discuss the concept of one type of event ”triggering” another. In addition

they outline the construction of tests for these temporal relationships.

The aim of this thesis is to implement some of these notions using interval censored data

from longitudinal complex surveys. Therefore, we present some proposed tools that may be

used for this purpose.
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This dissertation is divided in five chapters, the first chapter presents a notion of a

temporal relationship along with a formal nonparametric test. The mechanisms of right

censoring, interval censoring and left truncation are also overviewed. Issues on complex

surveys designs are discussed at the end of this chapter.

For the remaining chapters of the thesis, we note that the corresponding formal non-

parametric test requires estimation of a joint density, therefore in the second chapter a

nonparametric approach for bivariate density estimation with interval censored survey data

is provided. The third chapter is devoted to model shorter term triggering using complex

survey bivariate data. The semiparametric models in Chapter 3 consider both noncensoring

and interval censoring situations. The fourth chapter presents some applications using data

from the National Population Health Survey and the Survey of Labour and Income Dynam-

ics from Statistics Canada. An overall discussion is included in the fifth chapter and topics

for future research are also addressed in this last chapter.
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Chapter 1

Introduction

Being able to explore a relationship between two life events is of great interest to scientists

from different disciplines. Some issues of particular concern are, for example, the connec-

tion between smoking cessation and pregnancy (Thompson and Pantoja-Galicia 2003), the

interrelation between entry into marriage for individuals in a consensual union and first preg-

nancy (Blossfeld and Mills 2003), and the association between job loss and divorce (Charles

and Stephens 2004, Huang 2003 and Yeung and Hofferth 1998).

Establishing causation in observational studies is seldom possible. Nevertheless, if one

of two events tends to precede the other closely in time, a causal interpretation of an

association between these events can be more plausible. The role of longitudinal sur-

veys is crucial, then, since they allow sequences of events for individuals to be observed.

Thompson and Pantoja-Galicia (2003) discuss in this context several notions of temporal

association and ordering, and propose an approach to investigate a possible relationship

between two lifetime events.

In longitudinal surveys, individuals might be asked questions of particular interest about

two specific lifetime events. Therefore the joint distribution might be advantageous for

answering questions of particular importance. In follow-up studies, however, it is possible

that interval censored data may arise due to several reasons. For example, actual dates of
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events might not have been recorded, or are missing, for a subset of (or all) the sampled

population, and can be established only to within specified intervals.

Along with the notions of temporal association and ordering, Thompson and Pantoja-

Galicia (2003) also discuss the concept of one type of event “triggering” another. In addition,

they outline the construction of tests for these temporal relationships.

The aim of this thesis is to implement some of these notions using interval censored data

from longitudinal complex surveys. Therefore, we present some proposed tools that may be

used for this purpose.

This dissertation is divided in five chapters, this being the introductory one. Sections 1.1

and 1.2 present a notion of a temporal relationship along with a formal nonparametric test.

An overview of the mechanisms of right censoring, interval censoring and left truncation is

given in Section 1.3. Issues on complex surveys designs are discussed in Section 1.4.

For the remaining chapters of the thesis, we note that the corresponding formal non-

parametric test requires estimation of a joint density; therefore in the second chapter a

nonparametric approach for bivariate density estimation with interval censored survey data

is provided. The third chapter is devoted to modeling shorter term triggering using complex

survey bivariate data. The semiparametric models in Chapter 3 consider both noncensored

and interval censored situations. The fourth chapter presents some applications using data

from the National Population Health Survey and the Survey of Labour and Income Dynam-

ics from Statistics Canada. An overall discussion is included in the fifth chapter and topics

for future research are also addressed in this last chapter.

1.1 Close Precursor

Let E1 and E2 be two types of lifetime events. Let T1 be the time to occurrence of event E1,

and T2 be the time to occurrence of event E2 considering a specified time origin. Knowledge

of the exact times of occurrence of each event would provide the appropriate elements to
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model a temporal relationship through their joint intensities.

From Thompson and Pantoja-Galicia (2003), a local association of T1 and T2 is implied

by the following concept:

T1 is a close precursor of T2 if for some positive numbers δ and κ(t1) we have

F2(t1 + κ(t1) | T1 = t1)

F2(t1 | T1 = t1)
<

F2(t1 + κ(t1))

F2(t1)
− δ. (1.1)

for all t1 in a specified interval (a, b), with a, b ∈ R. Here Fi(t) = Pr(Ti > t) for i = 1, 2.

In other words, T1 is a close precursor of T2 if the occurrence of the first event E1 at T1

decreases the probability of having to wait longer than κ(t1) to observe the occurrence of

the second event E2, and this happens with some uniformity in (a, b). The decrease is seen

relative to the analogous probability if T1, T2 are independent.

The interval length κ(t1) may be thought of as the duration of an effect and would

come from subject-matter considerations. We have allowed it to depend in general on t1,

anticipating that the effect of T1 on the hazard of T2 might not have constant duration.

Although we have given the definition of close precursor in terms of survivor functions,

it can be expressed approximately in terms of hazard functions, as follows:

T1 is a close precursor of T2 if for suitably chosen κ(s) and δ > 0,

h2(u | T1 = s) > h2(u) + δ,

for u ∈ (s, s + κ(s)).

Then δ is seen to correspond to an “additive” lower bound to a short term change in the

hazard function.

In either formulation, the motivation is that the more closely T2 tends to follow T1, the

greater the plausibility for a causal connection might be.
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Since (1.1) reflects approximately a short term raising of the hazard function for T2, it is

not difficult to formulate an analogue for point process intensities, giving us an alternative

way of modelling events less tied to a time origin. Blossfeld and Mills (2003) use interde-

pendent point processes to model interrelated family events, namely entry into marriage (for

individuals in a consensual union) and first pregnancy/childbirth. See also Lawless (2003a)

for some discussion of intensity models.

1.2 Nonparametric Test for Close Precursor

A formal test for a close precursor relationship between T1 and T2 as indicated in Section

1.1 (T1 a close precursor of T2) is given by the following:

For suitable κ(t1), let

Q =

∫

(

F̂2(t1 + κ(t1) | T1 = t1)

F̂2(t1 | T1 = t1)
− F̂2(t1 + κ(t1))

F̂2(t1)

)

dF̂1(t1), (1.2)

where the domain of integration is the interval (a, b).

Under the null hypothesis of independence of T1 and T2, the mean of Q will be close to

0. Thus in order to test the null hypothesis, the value of Q may be compared with twice its

estimated standard error se(Q). A discussion about the estimation of this standard error is

presented in Chapter 2 Section 2.4.

Note that the difference within (1.2) approximates the difference between the hazard

function conditional on T1 = t1 and the unconditional hazard.

To compute Q, we first would obtain an estimate of the joint density of (T1, T2).Then,

we would obtain numerically the corresponding marginal probability density functions and

consequently the respective survivor functions (conditional and unconditional versions).
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1.3 Censoring, time origin and left truncation

A particular characteristic of data which involves time until occurrence of an event is the

presence of censoring, which occurs when the value of the response variable is not observed.

There exist different types of censoring for duration time data. Features such as right

censoring, interval censoring and left truncation may arise when analyzing time to event

data and therefore are briefly introduced in this section.

1.3.1 Right censoring

Let X1, X2, . . . , Xn be random variables, where Xi denotes the time until an event E occurs

for the ith individual. Instead of having observed values for the time to occurrence of every

individual, right censoring is present when the reported time xi is either an observed time or

a censoring time. In other words x1, x2, . . . , xn are the observed times to either occurrence

of E or censoring. A status indicator variable can be defined to distinguish between these

two possibilities. Let δi = 1 if Xi = xi and 0 if Xi > xi. Therefore, δi = 1 indicates that xi is

an observed time to occurrence of event E and δi = 0 indicates that xi is a censoring time.

In the following subsections, we assume for simplicity that the duration times Xi are

independent and identically distributed.

Type 1 Censoring

Suppose each individual has a specified fixed potential censoring time Ci > 0 such that Xi

is observed if Xi ≤ Ci; otherwise the only information we have is that Xi > Ci. This type of

censoring occurs in studies conducted in a specified time period, such as clinical trials with

a predetermined date for terminating follow up.
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Type 2 Censoring

Consider n individuals who start on a study all at the same time knowing that the study

will be concluded as soon as r of them experience the occurrence of event E. The number of

complete observations that will be recorded is predetermined in this case. If r is established

in advance as the number of complete observations to be measured then only the r smallest

times x(1), x(1), . . . , x(r) are observed from a random sample of n. In this scenario r is an

integer between 1 and n, and the observed value of the censoring time Ci = C = X(r) is a

random variable.

Note that analysis of data obtained from this type of study design can be performed taking

advantage of the theory of order statistics. On the other hand, the fact of not knowing the

total time of the duration of the study at its initiation point puts this design at a practical

disadvantage.

Independent Random Censoring

For this type of censoring, let X and C represent the time to event and censoring time

respectively, with survivor functions F(x) and G(c) accordingly. Also assume the Ci values

are random variables that are independent of each other and of the response measurements

Xi for i = 1, . . . , n. In addition, assume that G(c) does not depend on any of the parameters

of F(x).

When subjects are removed from a study because of events such as accidental death,

death due to a cause unrelated to the occurrence of the event of interest E, migration,

patient withdrawal, etc., this type of censoring scheme may fit the process under study.

However, it is important to be aware of situations where the censoring process is connected

to the duration time process and in consequence, this censoring scheme would not apply.

Such circumstances are present in many situations.

For the previous censoring mechanisms, if the Xi’s have probability density function f(x)
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and survivor function F(x), the observed likelihood function reduces to the following form

(see Lawless 2003b, Chapter 2):

L =

n
∏

i=1

f(xi)
δiF(xi+)1−δi.

1.3.2 Interval censoring

The general setting for this type of censoring is as follows. The values of the duration time

X may not be directly observed, so let us assume a partition A = {a0, a1, . . . , am} of the

real line. These could be previously specified times or monitoring times, for example. The

observed data are of the form I = (A, B), where A = sup{aj : aj ≤ X} and B = inf{aj :

aj ≥ X}. In other words, I = (A, B) contains the unobserved duration time X. If event E

has not occurred by time am then we have the censoring case discussed in section 1.3.1 with

right censoring time A = am for X, and B = ∞.

Having n individuals, this scheme can be generalized to the following partition Ai =

{ai0, ai1, . . . , aimi
} for i = 1, . . . , n and hence Xi ∈ Ii = (Ai, Bi), where Ai = sup{aij : aij ≤

Xi} and Bi = inf{aij : aij ≥ Xi}.

Let Fi(t) denote the distribution function for Ti. The likelihood function from a sample

of n independent individuals under this observation scheme is the following (see Lawless

2003):

L =

n
∏

i=1

(

Fi(Bi) − Fi(Ai)
)

, (1.3)

assuming that Fi(0) = 0.

Some special cases of this general interval censoring scheme are:

Grouped data

The observation times are the same for all individuals. That is, aij = aj .
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Current status data

Suppose individual i is examined once, at time Ci, and at this point it is determined whether

event E has occurred (i.e., Xi ≤ Ci) or not (i.e., Xi > Ci). So the interval for the individual

is either (0, Ci] or (Ci,∞).

1.3.3 Time origin

According to Matthews (2003), three basic requirements define duration time measurements:

1. An unambiguous origin for the measurement of “time”

2. An agreed scale of measurement

3. A precise definition of “response”, or occurrence of the event of interest.

The time origin need not be the same calendar time for each study subject, but should

be precisely defined for each subject. All subjects should be as comparable as possible at

the origin.

If observation does not commence at the origin, special treatment of the data is required.

For example, left truncation may affect the distributions of the observed times.

1.3.4 Left truncation

If the current duration time at the moment of selection is not x = 0 but some value u > 0

then we say Xi is left truncated at ui. By way of illustration, if u denotes the calendar time

of the selection determining condition, and X is measured from 0, only subjects for which

X ≥ u can be observed. This is because subjects with X < u are automatically excluded

from the study population. Hence we say the study data are left truncated at the value u.

Lawless (2003b) reviews this topic in detail as well as the censoring mechanisms described

throughout this section.
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1.4 Complex Survey Data

1.4.1 Probability sampling designs

There exist different types of probability sampling designs. Some examples are: simple

random sampling, stratified sampling, cluster sampling, multi-stage sampling, etc. The

literature describing them is extensive. Some references are Lohr (1999) and Thompson

(1997).

Due to complexities of the sampling design such as without replacement sampling, strati-

fication, clustering or multi-stage sampling, complex survey data may violate the assumption

of independent and identically distributed (i.i.d.) data.

For the purpose of this work, in the following section we present the settings for a stratified

two-stage sampling design as described in Buskirk and Lohr (2005).

1.4.2 Stratified two-stage sampling design

The finite population is assumed to be divided into L strata. Stratum l has Nl primary

sampling units (psu’s); we sample nl of these psu’s. Let N =
∑L

l=1 Nl and n =
∑L

l=1 nl be

the total number of (psu’s) in the population and sample, respectively.

Cluster samples are taken independently from each stratum; the inclusion probabilities

are π
(l)
i = PD((psu) i from stratum l is included in the sample), with

∑Nl

i=1 π
(l)
i = nl. The

subscript D indicates the probability distribution induced by the design. The joint inclusion

probabilities are π
(l)
ij = PD(psu’s i and j from stratum l are included in the sample).

At the secondary sampling unit (ssu) level, (psu) i of stratum l has Qli secondary sampling

units (ssu’s); π
(l)
m|i is the conditional probability that (ssu) m of (psu) i is included in the

sample, given that (psu) i is included. The π
(l)
m|i satisfies

∑Qli

m=1 π
(l)
m|i = qli, where qli is the

number of (ssu’s) sampled from (psu) i of stratum l. We have Ql =
∑Nl

i=1 Qli, Q =
∑L

l=1 Ql,

and Wl = Ql/Q. Thus, Q is the total number of observation units in the population, and
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Wl is the stratum weight for stratum l.

1.4.3 Survey Weights

Motivation

If we consider a simple random sample s, each unit in the finite population has the same

probability of being sampled. The proportion of the population that is selected is the sample

size divided by the population size. For example, let us suppose we have a population of size

N(= 1000) and we want to obtain a simple random sample of size n(= 250). Let yi denote

the ith response variable in the sample s, with i ∈ s. In studying a human population, if our

interest is to estimate the population total Y =
∑N

i=1 yi, we would say that each individual

in the sample represents N
n
(= 4) individuals in the population and therefore we simply

assign a sampling weight of N
n
(= 4) to each one of the sampled individuals. In other words,

any sampled member’s response is taken to represent N
n
(= 4) identical responses in the

population. Let us denote wi to be the sampling weight of individual i in the sample. In our

example, wi = 4, for i ∈ s, and then the estimator of the total Y is Ŷ =
∑

i∈s yiwi = 4
∑

i∈s yi.

Due to the simple random sampling, all individuals have the same sampling weight.

In complex surveys, the sample is typically obtained using an unequal probability of

selection scheme. Consequently, unequal weights, wi, i = 1, . . . , n, are assigned to individuals

in the sample, with wi = π−1
i where πi is the probability for individual i to be included in

the sample s. Consequently, the ith individual in the sample represents wi individuals in

the population. Therefore, unbiased estimation of the population sum Y =
∑N

i=1 yi may be

obtained by the weighted sum Ŷ =
∑

i∈s yiwi. In general, the basic estimation method is to

replace population sums by weighted sample sums.

In practice, there may also be weight adjustments for nonresponse. In addition, auxiliary

information can be used to adjust the weights so that the survey estimates are consistent with

known population totals. Poststratification, for example, is employed to adjust the survey
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weights using a particular variable (e.g. sex) which is appropriate for stratification but was

not used at the design stage because the corresponding information was not available (or

because updated and more reliable information became available after the selection of the

sample). Furthermore, a method called calibration is used when the weighted sample totals

must agree with reference totals for more than one variable (Statistics Canada; 2003).

In summary, we can say that a survey weight, representing a certain number of individuals

(or units) in a finite population, is usually attached to each individual (or unit) in the

sample to account for various factors such as unequal probability of selection, nonresponse,

poststratification and calibration.

The following section depicts the process of computing longitudinal weights.

1.4.4 Longitudinal weighting

In longitudinal surveys, the target population associated with the longitudinal weight is

the population at the time of the panel selection. An example of the multi-step process

conducted by a statistical agency to derive weights (at a cycle after the first) for a national

longitudinal survey is presented in Naud (2004). A summary of this process is presented

next.

First, a classification of all individuals takes place according to whether they are re-

spondents, non-respondents or out of scope (for example, individuals who are deceased or

outside the country where the national survey is conducted). A nonzero longitudinal weight

is assigned to respondents and out-of-scope individuals, while a weight of zero is given to

non-respondents. Non-response adjustment is the next step. For this purpose a non-response

model is developed, and the weights of respondents are adjusted so that they represent non-

respondents as well. Out-of-scope individuals keep their initial weight, thereby representing

the portion of the target population that was present at the time of the panel selection and

subsequently left the country or died. Calibration is performed afterwards to ensure that
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certain totals computed with the weights match the population totals derived from other

sources. They apply to the longitudinal target population, which is the population at the

time the panel was selected. Completion of this process gives the final longitudinal weights

for the panel and those weights are produced for each reference year.

A discussion regarding survey weights is resumed in Section 2.3.

1.4.5 Bootstrap Weights

For the purpose of design-based variance estimation, a number of complex surveys conducted

by statistical agencies, such as Statistics Canada, generate bootstrap weights to accompany

their data.

A motivation for using the bootstrap method is the possibility of estimating the variance

of an estimated parameter by using a large number of somewhat different subsamples (also

called replicates) from the original sample. Each replicate is then used to estimate the

parameter and the variability among the resulting estimates is used to estimate the variance

of the “full sample” estimate. This basic idea is followed by other resampling methods which

may differ in the way the replicates are built.

In a simple description, bootstrap replicates are generated by randomly choosing, with

replacement, a sample of primary sampling units (psu’s) within each stratum and adjusting

the original sampling weights of the units in the selected (psu) to reflect the probability

of selection into the subsample. If a unit does not appear in the bootstrap replicate, its

bootstrap weight variable is set to zero. This process of selecting samples and reweighting

is repeated R times to arrive at R bootstrap samples (or replicates), R bootstrap weight

variables and consequently R bootstrap estimates.

As it was pointed out in Section 1.4.3, the sampling weight, which reflects the probability

of selection of a unit, can be thought of as the number of units in the survey population

represented by the sampled unit. This sampling weight is used to estimate a parameter of
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interest. On the other hand, the bootstrap weight is used for the purpose of estimating the

sampling error associated with such parameter of interest. Further discussion on this topic

is resumed in Section 2.4. Like the sampling weight, a bootstrap weight could be thought of

as the number of individuals in the survey population represented by a unit in the reduced

(bootstrap) sample.

Rao and Wu (1988), Rao, Wu and Yue (1992) and Yung (1997) are some references re-

garding bootstrap variance estimation for complex survey data.
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Chapter 2

Nonparametric Density Estimation

The formal nonparametric test of Section 1.2 requires estimation of a joint distribution,

therefore in this chapter a nonparametric approach for bivariate density estimation is pro-

vided using kernel and local likelihood density estimation techniques. This approach takes

into account the interval censored and complex survey data.

Estimation of univariate and multivariate density functions, in the case of independent

and identically distributed random variables, is presented for example by Silverman (1986),

Scott (1992), Wand and Jones (1995) and Simonoff (1996) with material on kernel density

estimation. Turnbull (1976), Gentleman and Geyer (1994) and Li, Watkins and Yu (1997)

have proposed nonparametric estimators for the distribution function with univariate interval

censored data. Density estimation for univariate interval censored data has been covered by

Duchesne and Stafford (2001) and Braun, Duchesne and Stafford (2005). In the context of

complex surveys research, density estimation is examined by Bellhouse and Stafford (1999),

Breunig (2001), Bellhouse, Goia and Stafford (2003), and Buskirk and Lohr (2005).

In Sections 2.1 and 2.2, using the methods proposed by Duchesne and Stafford (2001)

and Braun, Duchesne and Stafford (2005) as a starting point, we present an extension of

their procedures to the bivariate case to obtain a simple kernel density estimate as well as

local likelihood density estimates. The estimation methods consider the interval censored
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nature of the data. Since we deal with survey data that have been collected using a complex

design, in Section 2.3 we make adaptations to the methodology to account for some of these

complexities. An important element of the nonparametric test in (1.2) is the standard error

of the statistic Q which is assessed in Section 2.4. Bootstrap replicates of the survey weights

are used for this purpose. Asymptotic results from related problems in the literature dealing

with interval censoring are included in Section 2.6. Convergence results are discussed in

Section 2.7 and the corresponding theory and framework to establish asymptotic properties

of our estimators is presented in Section 2.8.

2.1 Kernel Density Estimation

2.1.1 Univariate case

For independent and identically distributed non-censored data Y1, Y2, . . . , Yn, the standard

kernel density estimate is given by the expression

f̂nc(y) =
1

n

n
∑

i=1

Kh(Yi − y), (2.1)

where nc stands for noncensored, and Kh(u) = h−1K(h−1u) is a kernel function with band-

width h. Note that in (2.1) f̂nc(y) = f̂nc(y; h), i.e. our notation suppresses the dependence

on the bandwidth h.

Duchesne and Stafford (2001) propose a natural approach to kernel density estimation

with randomly interval censored data Xi ∈ Ii = (Ai, Bi) and Ai, Bi ∈ R i = 1, ..., n. They

note that

f̂(x) =
1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

has the same expectation as f̂nc(x), where the conditional expectation is computed with

respect to the distribution for the true value Xi over its corresponding interval Ii.
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To estimate the required density, they propose to compute the following expression

f̂(x) =
1

n

n
∑

i=1

Ef̂

[

Kh(X − x)
∣

∣

∣
Xi ∈ Ii

]

,

which may be solved using the iteration

f̂j(x) =
1

n

n
∑

i=1

Ef̂j−1

[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

. (2.2)

The expectation in (2.2) is with respect to the conditional density

f̂j−1|Ii
(u) = δi(u)f̂j−1(u)/

∫

Ii

f̂j−1(s)ds

over Ii, where δi(u) = 1 if u ∈ Ii and 0 otherwise.

2.1.2 Bivariate case

In the presence of complete (non-censored) data Yi = (Yi,1, Yi,2), i = 1, . . . , n, the bivariate

kernel density estimator with kernel Kh(y), y = (y1, y2) and bandwidth h = (h1, h2) is given

by

f̂nc(y) =
1

n

n
∑

i=1

Kh(Yi − y).

In the context of interval censored data, Xi = (Xi,1, Xi,2) lies within the 2-dimensional in-

terval Ii = (Ai,1, Bi,1)×(Ai,2, Bi,2), and Ai,1, Bi,1, Ai,2, Bi,2 ∈ R. Therefore, for x = (x1, x2), a

generalization of the univariate approach proposed by Braun, Duchesne and Stafford (2005)

to the bivariate scenario gives the following estimator:

f̂(x) =
1

n

n
∑

i=1

Ef̂

[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

, (2.3)

which involves the conditional expectation of the kernel given that Xi lies within Ii (the
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information we know about Xi). Here, the conditional expectation is with respect to the

density f̂ .

Then, in terms of iterated conditional expectation, a solution to (2.3) should be

f̂j(x) =
1

n

n
∑

i=1

Ef̂j−1

[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

. (2.4)

The expectation in (2.4) is with respect to the conditional density

f̂j−1|Ii
(u) = δi(u)f̂j−1(u)/

∫

Ii

f̂j−1(s)ds

over Ii, where δi(u) = 1 if u ∈ Ii and 0 otherwise.

Equations (2.4) and (2.2) imply that the conditional expectation with respect to f̂j−1 is

employed to obtain f̂j. Note that, in both cases, we need to have an initial estimate f̂0 of

the density.

2.1.3 Conditional Expectation

In (2.4), computation of the corresponding conditional expectation for each interval censored

observation Xi is needed. Therefore we extend to the bivariate case the importance sampling

scheme used by Duchesne and Stafford (2001). Let us define

µj−1|I(x) = Ef̂j−1

[

Kh(X− x)
∣

∣

∣
X ∈ I

]

. (2.5)

So, we may estimate (2.5) by using

Ef̂

[

Kh(X− x)
∣

∣

∣
X ∈ I

]

= Eg [Kh(X − x)w(X)] , (2.6)

where g is a suitable distribution over the interval I, and w(X) = f̂j−1|I(X)/g(X) is the

importance sampling weight.
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The desired conditional expectation, (2.5), may be approximated by the following ex-

pression

µ̂j−1|I(x) =
B
∑

b=1

[Kh(Xu
b − x)wu

b ] . (2.7)

Here we let g(X) be a bivariate uniform density and therefore the Xu
b ’s are generated over the

interval I using a bivariate uniform sampling scheme (U sampling) derived from the orthogo-

nal array-based Latin hypercubes described by Tang (1993) and wu
b = w(Xu

b )/
∑B

k=1 w(Xu
k),

with b = 1, . . . , B. Tang’s procedure establishes that B has to be a perfect square, i.e.

B ∈ {12, 22, 32, . . . }. Figure 2.1 is reproduced from Tang (1993) to illustrate the case when

B = 4. It also shows the difference between a four-point Orthogonal Array-Based Latin

Hypercube design and a four-point Latin Hypercube design.

Figure 2.1: Orthogonal Array Based Latin Hypercube design (A) and Latin Hypercube
design (B).

At the jth step, an estimate of (2.4) may be obtained by

f̂j(x) =
1

n

n
∑

i=1

µ̂j−1|Ii
(x). (2.8)
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2.2 Local likelihood density estimation

Kernel density estimation may present increased bias at and near a boundary. Wand and

Jones (1995) present a discussion on this issue. One way to overcome this is by using a local

likelihood approach, which we present next.

2.2.1 Univariate case

Local likelihood density estimation was introduced by Hjort and Jones (1996) and Loader

(1996). In the presence of univariate non-censored data Y1, Y2, ..., Yn ∈ R, they defined

equivalent local log-likelihood functions for density estimation. These are based on the

concept of having an approximating parametric family, f(y) = f(y; a) = f(y; a0, a1, . . . , ap),

which may be locally estimated at y by maximizing the local log likelihood function.

Thus a = (a0, a1, . . . , ap) is chosen to maximize the local log likelihood given by

L =
1

n

n
∑

i=1

Kh(Yi − y) log f(Yi) −
∫

Kh(t − y)f(t)dt. (2.9)

where Kh(u) = 1
h
K(u

h
) is a kernel function with bandwidth h.

Maximization of (2.9) amounts to solving ∂L/∂a = 0, i.e.

1

n

n
∑

i=1

Kh(Yi − y)A(y, Yi, a) =

∫

Kh(t − y)A(y, t, a)f(t)dt, (2.10)

with

A(y, t, a) =

[

∂

∂a1
logf(t, a), . . . ,

∂

∂ap
logf(t, a)

]T

.

Furthermore, Loader (1996) supposes that log f(t) can be approximated by a low-degree

polynomial around y. That is

log f(t) ≈ P (t− y) =

p
∑

i=0

ai(t − y)i;
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therefore the local log likelihood (2.9) is

L ≈ 1

n

n
∑

i=1

Kh(Yi − y)P (Yi − y) −
∫

Kh(t − y) exp
(

P (t − y)
)

dt,

and the maximizing equation becomes

1

n

n
∑

i=1

Kh(Yi − y)A(y, Yi, a) =

∫

Kh(t − y)A(y, t, a) exp
(

P (t − y)
)

dt.

If ã = (ã0, ã1, . . . , ãp) is a solution that maximizes (2.9), then the density estimate of

f(y) using this procedure is given by f̃(y) = eã0 .

Braun, Duchesne and Stafford (2005) take this concept to the context of univariate in-

terval censored data X1, X2, ..., Xn ∈ R, proposing the following local log likelihood function

Lic =
1

n

n
∑

i=1

E
[

Kh(Xi − x) log{f(Xi)}
∣

∣

∣
Xi ∈ Ii

]

−
∫

Kh(t − x)f(t)dt,

where ic stands for interval censored. Using the polynomial approximation, ∂Lic/∂a = 0

leads to a system of local likelihood equations for the coefficients (a0, a1, . . . , ap):

1

n

n
∑

i=1

E
[

K(Xi − x)A(x, Xi, a)
∣

∣

∣
Xi ∈ Ii

]

−
∫

Kh(t − x)A(x, t, a) exp{P (t − x)}dt = 0.

Solving leads to a local EM algorithm.

2.2.2 Bivariate case

We generalize the local log likelihood function to the bivariate scenario as follows

Lic =
1

n

∑

E
[

Kh(Xi − x)P (Xi − x)
∣

∣

∣
Xi ∈ Ii

]

−
∫

Kh(t − x) exp
(

P (t− x)
)

dt,
(2.11)

20



with the assumption that log f(t) can be approximated locally by

log f(t) ≈ P (t− x) = a0 + a1(t1 − x1) + a2(t2 − x2). (2.12)

Then, maximization of (2.11) with respect to a0, a1 and a2 amounts to solving the three

equations

1

n

n
∑

i=1

E
[

Kh(Xi − x)A(x,Xi, a)
∣

∣

∣
Xi ∈ Ii

]

−
∫

Kh(t− x)A(x, t, a)eP (t−x)dt = 0,

(2.13)

where a = (a0, a1, a2) and the corresponding score function A(x, t, a) = (1, t1 −x1, t2 −x2)
T .

Solving this system of log likelihood equations for the coefficients of (2.12) leads to a

local EM algorithm as described in Braun, Duchesne and Stafford (2005).

Let us suppose that the logarithm of the density is locally constant, i.e. log f(t) = a0.

From equation (2.13), solving the system of one local likelihood equation with one unknown

coefficient a0 results in the following estimator for f(x):

1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

=

∫

Kh(t− x)eã0dt = eã0 = f̃(x).

This corresponds to the kernel density estimate in (2.4) which is estimated by (2.8).

If the polynomial approximation is taken as in (2.12) and the product normal kernel (see

Appendix A) is employed, we have to solve the following system of three local likelihood

equations with three unknown coefficients a0, a1, and a2:

1

n

n
∑

i=1

E
[

Kh(Xi − x)(1, Xi,1 − x1, Xi,2 − x2)
T
∣

∣

∣
Xi ∈ Ii

]

=

∫

Kh(t− x)(1, t1 − x1, t2 − x2)
T ea0+a1(t1−x1)+a2(t2−x2)dt.

(2.14)
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If the solutions are ã0, ã1 and ã2, the local likelihood density estimate of f(x) is given by

f̃(x) = eã0 . The first equation in (2.14) leads to

1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

=

∫

Kh(t − x)eã0+ã1(t1−x1)+ã2(t2−x2)dt.

Using the product gaussian kernel, this yields

1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

= eã0

∫

Kh1(t1 − x1)e
ã1(t1−x1)dt1

∫

Kh2(t2 − x2)e
ã2(t2−x2)dt2

or

1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

= eã0e
1
2
(h1ã1)2e

1
2
(h2ã2)2

or

1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

= eã0m(h1ã1)m(h2ã2), (2.15)

where m(·) is the moment generating function of yk = tk − xk, with yk ∼ N(0, h2
k), k = 1, 2.

This implies that

eã0 =
1

n

n
∑

i=1

E
[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

(m(h1ã1)m(h2ã2))
−1 ,

or

f̃(x) = f̂(x)e−
1
2
[(h1ã1)2+(h2ã2)2], (2.16)

where f̂(x) is obtained as in (2.8). To obtain ã1 and ã2, we proceed to solve the second and

third equations from (2.14). The second equation in (2.14) gives

1

n

n
∑

i=1

E
[

Kh(Xi − x)(Xi,1 − x1)
∣

∣

∣
Xi ∈ Ii

]

=

∫

Kh(t − x)(t1 − x1)e
ã0+ã1(t1−x1)+ã2(t2−x2)dt.
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This implies that

1

n

n
∑

i=1

E
[

Kh1(Xi,1 − x1)(Xi,1 − x1)Kh2(Xi,2 − x2)
∣

∣

∣
Xi ∈ Ii

]

= eã0

∫

Kh1(t1 − x1)(t1 − x1)e
ã1(t1−x1)dt1

∫

Kh2(t2 − x2)e
ã2(t2−x2)dt2

or

1

n

∂

∂x1

n
∑

i=1

E
[

Kh1(Xi,1 − x1)h
2
1Kh2(Xi,2 − x2)

∣

∣

∣
Xi ∈ Ii

]

= eã0h1m
′(h1ã1)m(h2ã2)

or

h2
1

∂

∂x1

f̂(x1, x2) = eã0h2
1ã1m(h1ã1)m(h2ã2). (2.17)

In the same way, the third equation in (2.14) leads to

h2
2

∂

∂x2
f̂(x1, x2) = eã0h2

2ã2m(h2ã2)m(h1ã1). (2.18)

Dividing (2.17) and (2.18) correspondingly by (2.15) we obtain the expressions to be used

in (2.16).
∂

∂x1
f̂(x1, x2)

f̂(x1, x2)
= ã1,

∂
∂x2

f̂(x1, x2)

f̂(x1, x2)
= ã2.

Therefore, in terms of iterated conditional expectation, the explicit expression for linear

adjustments to the kernel density estimate is as follows:

f̃j = f̂j(x) exp

[

−1

2

2
∑

k=1

h2
i

(

∂

∂xk

f̂j(x1, x2)/f̂j(x)

)2
]

, (2.19)
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which is parallel to the result of Hjort and Jones (1996) with the difference of having

∂

∂xk
f̂j(x1, x2) =

1

n

n
∑

i=1

Ef̂j−1

[

∂

∂xk
Kh(X − x)

∣

∣

∣
X ∈ Ii

]

. (2.20)

Let us define

µk
j−1|I(x) = Ef̂j−1

[

∂

∂xk
Kh(X − x)

∣

∣

∣
X ∈ I

]

. (2.21)

In the same way as in Section 2.1, (2.21) may be approximated by the following expression

µ̂k
j−1|I(x) =

B
∑

b=1

(

∂

∂xk
Kh(Xu

b − x)wu
b

)

,

where each wu
b and Xu

b are obtained as described in Section 2.1. Since an estimate of the

conditional expectation has been obtained using an importance sampling scheme, (2.20) can

be approximated by

1

n

n
∑

i=1

µ̂k
j−1|Ii

(x). (2.22)

2.3 Survey weights

The estimates in Sections 2.1 and 2.2 do not consider the complexities of the survey design.

The purpose of this section is to take into account some of these complexities by incorporating

the survey weights into these estimates.

Let wl
i be the longitudinal weight derived for individual i in the survey sample. This

weight is broadly interpretable as the number of subjects represented by subject i in the

population at the time of recruitment. Section 1.4.3 indicates that the survey weights are

constructed to compensate for nonresponse, selection bias, stratification and postratification.

An important feature of the longitudinal weights is that they add up to the size of the

population from which the longitudinal sample was selected.

Let w∗
i be the standarized weight for individual i on the survey sample so that

∑

i∈S w∗
i =
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1, where S corresponds to the longitudinal sample. By replacement of the population totals in

(2.8) by weighted totals, a kernel density estimate which accounts for some of the complexities

of the survey design is given in the following form

f̂w
j (x) =

∑

i∈S

µ̂j−1|Ii
(x)w∗

i . (2.23)

For the estimate (2.22), we propose the following weighted expression

f̂k,w
j (x) =

∑

i∈S

µ̂k
j−1|Ii

(x)w∗
i . (2.24)

Consequently, the corresponding weighted estimate for local linear adjustments to the kernel

density estimate in (2.19) is given by

f̃w
j = f̂w

j (x) exp

[

−1

2

2
∑

k=1

h2
i

(

f̂k,w
j (x)/f̂w

j (x)
)2
]

. (2.25)

The test statistic Q in (1.2) may be computed from (2.25) as outlined in Section 1.2.

2.4 Standard Error

To test the null hypothesis in Section 1.2, it is necessary to obtain an estimate of the standard

error of Q in (1.2). The method we use for estimation of the design-based variance of the

non-linear statistic (1.2) is the survey bootstrap as outlined in Rao, Wu and Yue (1992).

Statistics Canada, the statistical agency whose data will be analysed in Chapter 4, produces

a large number (500 and more) of bootstrap replicates of the survey weights for most of

its national longitudinal surveys. These bootstrap weights allow for calculation of correct

design-based variance estimators (Rao and Wu, 1988; Yung, 1997).

Let w
(r)
i be the normalized bootstrap weight of the rth replicate for individual i, such that

∑

i∈S w
(r)
i = 1. If we employ R of these bootstrap weight replicates, the required standard

25



error can be assessed as follows:

For each set r of replicates:

1. Obtain (2.25) using w
(r)
i (instead of w∗

i ) for i ∈ S. Let f̃w(r)

j be the corresponding

estimate.

2. Calculate (1.2) using f̃w(r)

j and call it Q∗
r .

Finally, compute var∗(Q) = 1
R−1

∑R
r=1(Q

∗
r − Q̄∗)2, where Q̄∗ = R−1

∑R
r=1 Q∗

r and obtain

se(Q) = 2
√

var∗(Q).

2.5 Estimation of density with a cusp or discontinuity

In this section, we work out the local likelihood density estimation method for a joint density

with a cusp or a discontinuity in a certain region. Figures 2.2, 2.3 and 2.3 depict some

examples of such densities in the univariate case. By way of illustration, we refer first to

a univariate and non-censored case. We develop a local likelihood estimator suitable for a

density which is believed to have a value greater than zero at and near a known boundary

as in the case of Figure 2.3. Then we generalize the idea to the bivariate case for estimating

a joint density with a discontinuity along the line y1 = y2 and indicate how the method can

be applied for interval censored and complex survey data.

The idea is to estimate the density on each side of the discontinuity point or line using

observations only from that side.

2.5.1 Univariate Case

Estimation at and near a Boundary

Let us suppose first that 0 is a boundary point and that near y(> 0) log f(t) may be locally

approximated by a constant

log f(t) ≈ a0+. (2.26)
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Figure 2.2: Cusp at zero.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.3: Discontinuity at zero.
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Figure 2.4: Discontinuity at zero.

Maximization of (2.9) amounts to solving ∂L/∂a = 0. An analogue using only positive

observations leads to the following equation for y > 0 :

1

n

∑

1(Yi ≥ 0)Kh(Yi − y) =

∫ ∞

0

Kh(t − y)ea0+dt. (2.27)

Let us denote the left hand-side of (2.27) by B(y, h). If ã0+ is a solution to (2.27), then we

have that

B(y, h) = eã0+

∫ ∞

0

Kh(t − y)dt.

Assuming the gaussian kernel we have

B(y, h) = eã0+
1√
2πh

∫ ∞

0

e−
1
2(

t−y

h )
2

dt

= eã0+
1√
2π

∫ ∞

−y/h

e−
1
2
s2

ds

28



where s = t−y
h

and ds = dt
h
. Therefore

B(y, h) = eã0+Φ
(y

h

)

, (2.28)

where Φ(·) is the standard normal cumulative distribution function.

Consequently a density estimate when log f is locally approximated by a constant is given

by

eã0+ =

(

B(y, h)

Φ
(

y
h

)

)

, (2.29)

where ã0+ depends on y and h.

Now, let us assume that log f(t) can be locally approximated by a polynomial (t near y,

t > 0) up to the linear term:

log f(t) ≈ P (t − y) = a0+ + a1+(t − y). (2.30)

Maximization of (2.9) which amounts to solving ∂L/∂a = 0 yields the following system of 2

local likelihood equations with 2 unknown coefficients a0+ and a1+ :

1

n

∑

1(Yi ≥ 0)Kh(Yi − y)(1, Yi − y)T =

∫ ∞

0

Kh(t − y)(1, t− y)Tea0++a1+(t−y)dt. (2.31)

The first equation leads to

1

n

∑

1(Yi ≥ 0)Kh(Yi − y) =

∫ ∞

0

Kh(t − y)ea0++a1+(t−y)dt. (2.32)

Let us again denote by B(y, h) the left hand-side of (2.32). Using the normal kernel we have

that

B(y, h) = eã0+
1√
2πh

∫ ∞

0

eã1+(t−y)e−
1
2(

t−y

h )
2

dt
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or

B(y, h) = eã0+
1√
2π

∫ ∞

−y/h

eã1+she−
1
2
s2

ds

where s = t−y
h

and ds = dt
h
. Let λ = a1+h. Then,

B(y, h) = eã0+
1√
2π

∫ ∞

−y/h

eλ̃se−
1
2
s2

ds

= eã0+e
1
2
λ̃2 1√

2π

∫ ∞

−y/h

e−
1
2
(s−λ̃)2ds

Let r = s − λ and dr = ds. Then,

B(y, h) = eã0+e
1
2
λ̃2 1√

2π

∫ ∞

− y

h
−λ̃

e−
1
2
r2

dr

= eã0+e
1
2
λ̃2

Φ
(y

h
+ λ̃
)

.

If we denote

m+(λ) =
1√
2π

∫ ∞

−y/h

eλse−
1
2
s2

ds = e
1
2
λ2

Φ
(y

h
+ λ
)

,

then we can also say that

B(y, h) = eã0+m+(λ̃). (2.33)

The second expression in (2.31) gives

1

n

∑

1(Yi ≥ 0)Kh(Yi − y)(Yi − y) =

∫ ∞

0

Kh(t − y)(t − y)eã0++ã1+(t−y)dt. (2.34)

Correspondingly, we denote the left hand-side of (2.34) by C(y, h). Using the normal kernel

we obtain

C(y, h) = eã0+
1√
2πh

∫ ∞

0

e−
1
2(

t−y

h )
2

(t − y)eã1+(t−y)dt.
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Let s = t−y
h

and ds = dt
h
. Then

C(y, h) = eã0+
1√
2π

∫ ∞

−y/h

e−
1
2
s2

sheã1+shds

or

C(y, h) = eã0+h
1√
2π

∫ ∞

−y/h

e−
1
2
s2

seλ̃sds

where λ̃ = ã1+h.

Note that

m
′

+(λ) =
d

dλ
m+(λ) =

1√
2π

∫ ∞

−y/h

e−
1
2
s2

seλsds.

Then,

C(y, h) = eã0+hm
′

+(λ̃). (2.35)

From (2.33) and (2.35) we respectively have that

eã0+ =
B(y, h)

m+(λ̃)
(2.36)

and

eã0+ =
C(y, h)

hm
′

+(λ̃)
. (2.37)

Therefore

C(y, h)

hm
′

+(λ̃)
=

B(y, h)

m+(λ̃)
, (2.38)

which implies that

C(y, h)

hB(y, h)
=

m
′

+(λ̃)

m+(λ̃)
. (2.39)

On the other hand note that integration by parts leads to

eλse−
1
2
s2|∞−y/h = λ

∫ ∞

−y/h

eλse−
1
2
s2

ds −
∫ ∞

−y/h

eλsse−
1
2
s2

ds (2.40)
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or

0 − e−λ(y/h)e−
1
2
(y/h)2 = λ

√
2πm+(λ) −

√
2πm

′

+(λ).

Thus

m
′

+(λ) =
1√
2π

(

e−(λ(y/h)+ 1
2
(y/h)2) + λ

√
2πm+(λ)

)

or

m
′

+(λ) = e
1
2
λ2

φ
(y

h
+ λ
)

+ λm+(λ), (2.41)

where φ(·) is the standard normal probability density function.

Let us denote C(y,h)
B(y,h)

by α(y, h). Then, using (2.39) and (2.41) we have that

α(y, h)

h
=

e
1
2
λ̃2

φ( y
h

+ λ̃) + λ̃m+(λ̃)

m+(λ̃)
. (2.42)

Solving for λ̃ leads to

λ̃ =
α(y, h)

h
− e

1
2
λ̃2

φ( y
h

+ λ̃)

m+(λ̃)
(2.43)

or

λ̃ =
α(y, h)

h
− e

1
2
λ̃2

φ( y
h

+ λ̃)

e
1
2
λ̃2

Φ( y
h

+ λ̃)
(2.44)

and consequently

λ̃ =
α(y, h)

h
− φ( y

h
+ λ̃)

Φ( y
h

+ λ̃)
. (2.45)

We can solve (2.45) for λ̃ and use the following expression, derived from (2.33), to obtain

eã0+ , the density estimate at y:

eã0+ =
B(y, h)

m+(λ̃)
. (2.46)

Note that if λ̃ is close to 0, (2.46) is close to (2.29) which was derived by assuming that the

density is locally constant to the right of the boundary.
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Example

Suppose we have a random sample Y = (Y1, Y2, . . . , Yn), which is distributed according to

an exponential probability density function with intensity 1. If we estimate the p.d.f. of

Y using a standard kernel density estimator, we observe bias at and near the boundary as

shown in Figure 2.5. This picture also depicts the estimate obtained by using the adapted

local likelihood method, which shows very little bias.

In Figure 2.5, the sample size is n = 1000. In addition, the kernel density estimate shown

in Figure 2.5 uses a gaussian kernel with bandwidth = 0.1754. The choice of this smoothing

parameter was according to Silverman’s rule of thumb which is presented in Silverman (1986,

page 48, equation 3.31). The smoothing parameter (= 1) for the adapted local likelihood

method was selected by using a least squares cross validation method (Silverman; 1986, page

49).
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y

f(
y)

Figure 2.5: Solid line: f(y) = exp(-y). Dotted line: kernel density estimate. Circles: adapted
local likelihood estimate.
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Besides the bias at and near zero, we observe that the kernel density estimate in Figure

2.5 shows an anomaly near y = 2, which is not present using the adapted local likelihood

density estimation approach.

2.5.2 Bivariate Case

We now proceed to generalize the previous idea to the bivariate case for estimating a joint

density with a discontinuity along the line y1 = y2. (Later this will be applied to event

times T1 and T2). We also indicate how the method can be applied for interval censored and

complex survey data.

Let us now consider the following transformation. Let

v1 = (y1 + y2)/
√

2 (2.47)

and

v2 = (y2 − y1)/
√

2. (2.48)

Assuming that log f(t) may be locally approximated by a constant a0+ for positive v2, the

corresponding estimating equation is given by

1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v) =

∫ ∞

−∞

∫ ∞

0

Kh(t − v)ea0+dt. (2.49)

Let us denote the left hand-side of (2.49) by B(v,h). If ã0+ is a solution to (2.49), then

assuming the product gaussian kernel, it can be shown that

eã0+ =





B(v,h)

Φ
(

v2

h2

)



 . (2.50)
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Now, consider the assumption that log f(t) can be approximated for example by

log f(t) ≈ P (t − v) = a0+ + a1+(t1 − v1) + a2+(t2 − v2). (2.51)

In this case, solving ∂Lbiv/∂a = 0 is equivalent to solving the following system in 3 equations

with 3 unknown coefficients a0+, a1+ and a2+:

1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v)(1, Vi,1 − v1, Vi,2 − v2)
T =

∫ ∞

−∞

∫ ∞

0

Kh(t − v)(1, t1 − v1, t2 − v2)
T ea0++a1+(t1−v1)+a2+(t2−v2)dt.

(2.52)

The first equation in (2.52) leads to

1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v) =
∫ ∞

−∞

∫ ∞

0

Kh(t− v)ea0++a1+(t1−v1)+a2+(t2−v2)dt.
(2.53)

Let us denote by B(v,h) the left hand-side of (2.53). Using the product normal kernel (with

respect to the new coordinates) it can be shown that

B(v,h) = eã0+m(λ̃1)m+(λ̃2), (2.54)

where λ1 = a1+h1 and m(λ1) is the moment generating function of W1, where W1 follows a

normal distribution with mean 0 and variance h2
1. Equation (2.54) implies that

eã0+ =
B(v,h)

m(λ̃1)m+(λ̃2)
. (2.55)

35



The second equation in (2.52) gives

1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,1 − v1) =
∫ ∞

−∞

∫ ∞

0

Kh(t − v)(t1 − v1)e
ã0++ã1+(t1−v1)+ã2+(t2−v2)dt.

(2.56)

Correspondingly, we denote the left hand-side of (2.56) by C(v,h). Using the product normal

kernel it can be shown that

C(v,h) = eã0+h1m
′

(λ̃1)m+(λ̃2). (2.57)

From (2.57) we have that

eã0+ =
C(v,h)

h1m
′(λ̃1)m+(λ̃2)

. (2.58)

Therefore from (2.57) and (2.54) we have that

C(v,h)

h1B(v,h)
=

m
′

(λ̃1)

m(λ̃1)
= λ̃1. (2.59)

The third equation in (2.52) yields

1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,2 − v2) =
∫ ∞

−∞

∫ ∞

0

Kh(t − v)(t2 − v2)e
ã0++ã1+(t1−v1)+ã2+(t2−v2)dt.

(2.60)

We denote the left hand-side of (2.60) by D(v,h). It can be shown by using the product

gaussian kernel that

D(v,h) = eã0+h2m
′

+(λ̃2)m(λ̃1). (2.61)

Therefore

D(v,h)

h2B(v,h)
=

m
′

+(λ̃2)

m+(λ̃2)
=

e
1
2
λ̃2
2φ( v2

h2
+ λ̃2) + λ̃2m+(λ̃2)

m+(λ̃2)
. (2.62)
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Solving for λ̃1 and λ̃2 leads to

λ̃1 =
C(v,h)

h1B(v,h)
. (2.63)

and

λ̃2 =
D(v,h)

h2B(v,h)
−

φ( v2

h2
+ λ̃2)

Φ( v2

h2
+ λ̃2)

. (2.64)

Solve (2.63) and (2.64) for λ̃1 and λ̃2 and use (2.55) to obtain the density estimate.

Interval censored and complex survey data

Recall the following notation from (2.49), (2.56) and (2.60):

B(v,h) =
1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v),

C(v,h) =
1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,1 − v1)

and

D(v,h) =
1

n

∑

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,2 − v2).

In the presence of interval censored data, we follow the ideas of Sections 2.1.2 and 2.1.3.

Therefore B(v,h),C(v,h) and D(v,h) may be substituted by

1

n

n
∑

i=1

Ef̂

[

1(Vi,2 ≥ 0)Kh(Vi − v)
∣

∣

∣
Vi ∈ I′i

]

, (2.65)

1

n

n
∑

i=1

Ef̂

[

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,1 − v1)
∣

∣

∣
Vi ∈ I′i

]

, (2.66)

and

1

n

n
∑

i=1

Ef̂

[

1(Vi,2 ≥ 0)Kh(Vi − v)(Vi,2 − v2)
∣

∣

∣
Vi ∈ I′i

]

, (2.67)
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where I′i is determined by the transformations in (2.47) and (2.48); in the (v1, v2) space, I′i

is the rotation of a rectangle aligned with the coordinates in the (y1, y2) space.

Correspondingly, using an importance sampling scheme, the conditional expectations in

(2.65), (2.66) and (2.67) may be approximated by the following expressions

µ̂B|I(v) =
R
∑

r=1

1(V u
r,2 ≥ 0)Kh(Vu

r − v)wu
r . (2.68)

µ̂C|I(v) =

R
∑

r=1

1(V u
r,2 ≥ 0)Kh(Vu

r − v)(Vr,1 − v1)w
u
r . (2.69)

µ̂D|I(v) =

R
∑

r=1

1(V u
r,2 ≥ 0)Kh(Vu

r − v)(Vr,2 − v2)w
u
r . (2.70)

where Vu
r is generated over the interval I′ using the previously mentioned bivariate U sam-

pling and wu
r = w(Vu

r )/
∑R

k=1 w(Vu
k), with r = 1, . . . , R and R ∈ {12, 22, 32, . . . }.

Taking into account some of the complexities of the design, the weighted versions of

(2.65), (2.66) and (2.67) are given by

Bw(v,h) =
∑

i∈S

µ̂B|Ii
(v)w∗

i (2.71)

Cw(v,h) =
∑

i∈S

µ̂C|Ii
(v)w∗

i (2.72)

and

Dw(v,h) =
∑

i∈S

µ̂D|Ii
(v)w∗

i (2.73)

where w∗
i are the survey weights of Section 2.3.

Therefore analogue expressions to (2.55), (2.63) and (2.64) for the interval censored and

complex survey data case may be given by

eã0+ =
Bw(v,h)

m(λ̃1)m+(λ̃2)
(2.74)
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λ̃1 =
Cw(v,h)

h1Bw(v,h)
(2.75)

and

λ̃2 =
Dw(v,h)

h2Bw(v,h)
−

φ( v2

h2
+ λ̃2)

Φ( v2

h2
+ λ̃2)

. (2.76)

Solve (2.75) and (2.76) for λ̃1 and λ̃2 and use (2.74) to obtain the density estimate.

2.6 Interval Censoring Asymptotic Theory

2.6.1 Univariate Case

In the context of interval censored data, nonparametric estimators for a univariate cumulative

distribution function have been proposed widely. Recall from Section 1.3.2 the general

setting for interval censored data. The value of the duration times, T , may not be directly

observed, but there exist observed inspection or monitoring times {a0, a1, . . . , am} such that

T ∈ I = (A, B), where A = sup{aj : aj ≤ T} (the last inspection time prior to occurrence of

event E) and B = inf{aj : aj ≥ T} (the first monitoring time after occurrence of E). Having

n individuals, the set of monitoring times generalizes to {ai0, ai1, . . . , aimi
} for i = 1, . . . , n

and hence Ti ∈ Ii = (Ai, Bi), where Ai = sup{aij : aij ≤ Ti} and Bi = inf{aij : aij ≥ Ti}.

Suppose that the inspection times and the duration times are independent, in order to

ensure that the censoring is noninformative. In addition, assume that no event time point

occurs with positive probability among the inspection times, so that it is ensured that the

occurrences of E cannot coincide with the monitoring times. Moreover, suppose T arises

from the cumulative distribution F (t). Then the likelihood conditional upon the observed

intervals is:

L =

n
∏

i=1

(F (Bi) − F (Ai)) . (2.77)

Let I = {[Ai, Bi], i = 1, . . . , n}. Peto (1973) and Turnbull (1976) defined a new set of
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disjoint intervals, J = {[cj , dj], j = 1, . . . , J}, of which the elements are the intersections of

the observed intervals in I. Specifically, the left endpoints of the disjoint set of intervals in J

lie in the set A = {Ai, i = 1, . . . , n}, the right endpoints lie in the set B = {Bi, i = 1, . . . , n},

and the intervals in J contain no other members of A and B except at their left and right

endpoints respectively. Also, c1 ≤ d1 < c2 ≤ · · · < cJ ≤ dJ . Turnbull (1976) proved that any

cumulative distribution function that has mass outside of the union of [cj , dj] for j = 1, . . . , J

cannot be a maximum likelihood estimate of the true cumulative distribution function.

The likelihood can be rewritten as follows:

L =

n
∏

i=1

(

J
∑

j=1

αi
jpj

)

, (2.78)

where pj = F (dj) − F (cj) and αi
j = 1 if [cj, dj] is a subset of [Ai, Bi] and 0 otherwise.

Therefore, the log likelihood is given by

l =

n
∑

i=1

log
(

J
∑

j=1

αi
jpj

)

. (2.79)

Let p = (p1, . . . , pJ). To find the nonparametric maximum likelihood estimate of p

Gentleman and Geyer (1994) maximized l with respect to p subject to the constraints

1 −
J
∑

j=1

pj = 0, (2.80)

and

pj ≥ 0(j = 1, . . . , J). (2.81)

They noted that for a concave programming problem with linear constraints, the Kuhn-

Tucker conditions (see Appendix A) are necessary and sufficient for optimality. In addition,

their resulting estimator convergences to a unique maximum if the log likelihood is strictly

concave, i.e. the Hessian H associated with the likelihood is strictly negative definite. They
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let A denote the n × J matrix with elements αi
j ; then H = A′DA, where D is the diagonal

matrix with elements −1/(
∑J

j=1 αi
jpj). Hence, H will be of full rank and the maximum

likelihood estimate will be unique if rank(A) = J (Gentleman and Geyer; 1994, section 2.3).

They also indicated that there may be situations in which the likelihood is concave, but not

strictly concave, and the maximum likelihood estimator is unique nevertheless. Therefore,

Gentleman and Geyer (1994, Theorem 1) provided a sufficient condition for uniqueness.

Gentleman and Geyer (1994, p. 621) stated that if the inspection time process samples

[0,∞) densely as the number of individuals increases, their corresponding estimator of the

cumulative distribution function converges strongly to the true distribution.

Yu, Schick, Li and Wong (1998) proved that if, on the other hand, the censoring vector

takes on finitely many values as the number of individuals increases, then under additional

assumptions their maximum likelihood estimator is asymptotically normally distributed.

It is important to mention that considering interval censoring, the convergence rate of

the nonparametric maximum likelihood estimator of the cumulative distribution function

is n1/3 in general. See Groeneboom and Wellner (1992), Geskus and Groeneboom (1997),

Geskus and Groeneboom (1999). However, considering partly interval censored data in

which the exact values of some duration times are observed in addition to interval cen-

sored observations, Huang (1999) showed that the corresponding convergence rate can be

n1/2.

Other Algorithms

Turnbull (1976) proposed a simple self-consistent estimator which is not necessarily the

maximum likelihood estimator.

Let p = (p1, . . . , pJ), where
∑

pj = 1 and pj ≥ 0. A self-consistent estimator of p is

defined to be any solution of the simultaneous equations (Turnbull; 1976):

pj = πj(p1, . . . , pJ)
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for j = 1, . . . , J , where πj(p) is the expected proportion of observations in [cj, dj], given A

and B. That is,

πj(p) =
1

n

n
∑

i=1

µi
j(p)

with

µi
j(p) =

αi
jpj

∑J
k=1 αi

kpk

.

Turnbull’s nonparametric estimator of F , which is a self-consistent estimator of F , can

be obtained by the following iterative procedure.

1. Obtain initial estimates by setting p0
j = 1/J, 1 ≤ j ≤ J .

2. Compute µi
j(p

0) for 1 ≤ i ≤ n and 1 ≤ j ≤ J .

3. Set p1
j = πj(p

0), 1 ≤ j ≤ J .

4. Return to step 2 with p1 replacing p0, and so on.

This algorithm is easy to implement but is known to have slow convergence. The algorithm

converges monotonically to an estimate of the weight vector p (at least for p0 close enough

to p̂). Another issue with this algorithm is that there can be self-consistency points other

than the maximum likelihood estimate (see Gentleman and Geyer (1994) for an example).

Turnbull’s nonparametric estimate F̂ (x) of the cumulative distribution function F (x) is

equal to:

0 if x < c1,

p̂1 + p̂2 + · · · + p̂j if dj < x < cj+1 (1 ≤ j ≤ J − 1),

1 if x > dJ ,

and is not defined for x ∈ [cj , dj] for 1 ≤ j ≤ J . It is noted that the plot of F̂ presents

a series of m + 1 horizontal lines of increasing heights with gaps in between. The location
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of the probability mass pj associated with [cj , dj] is left unspecified because we know only

the amount of weight on the intervals [cj , dj] but not the way the weights vary within these

intervals.

Designed to fill these gaps and due to the non-uniqueness of Turnbull’s estimator over

innermost intervals, members of J , Li, Watkins and Yu (1997) proposed an EM algorithm

which coincides with Turnbull’s where it is uniquely defined (outside of the union of [cj , dj]

for j = 1, . . . , J), but converges over the innermost intervals to a value that depends on the

starting point of the algorithm. The algorithm involves computing the conditional expecta-

tion of Fn, the empirical distribution function, at each step, that is

F̃k(x) = Ek−1{Fn(x) | Ii, i = 1, . . . , n}. (2.82)

where Ek−1 is expectation with respect to the distribution F̃k−1(x). Braun, Duchesne and

Stafford (2005) proved that for a vanishing bandwidth h, their algorithm coincides with that

of Li, Watkins and Yu (1997) and with Turnbull’s. They provide a theorem that shows that

at step j, (2.82) may be obtained as a limit of (2.2) as the bandwidth h of the kernel shrinks

to zero. And this happens at every step j. So, their proposed algorithm modifies the usual

self-consistency algorithms by introducing kernel smoothing at each step of the iteration

(Braun et al.; 2005). Moreover, the estimator obtained from (2.2) has an attractive shape, is

defined in regions of interest and is uniquely determined. However, the convergence of their

algorithm to a unique fixed point will depend critically on h. The convergence will be based

on having a sufficiently large bandwidth h (see Theorem 2 in Braun, Duchesne and Stafford

(2005) for sufficient conditions to assure existence of a fixed point). We discuss convergence

in more detail in Section 2.7.

Braun, Duchesne and Stafford (2005) pointed out that smoothing permits all data to

influence the estimate at any location. Hence probability massed on the innermost intervals

is smoothed repeatedly over the entire region and the extent to which this occurs depends
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on the size of the bandwidth h. The difficulty with Turnbull’s algorithm and Li, Watkins

and Yu’s, is that h = 0 and no smoothing takes place. Braun et al (2005) also mentioned

that their estimate may present the same difficulties as Turnbull’s as h goes to 0, namely,

convergence to a wrong fixed point, i.e. a fixed point other than the maximum likelihood

estimate. An example of this situation is given in Gentleman and Geyer (1994).

The consistency and asymptotic normality of the estimator of Braun et al (2005) appear

to be open questions. When no interval censoring is present, a gaussian kernel smoothed

estimate is consistent if the density function is well behaved and the bandwidth h → 0 and

nh → ∞ as n → ∞. These conditions imply that, while the size of the smoothing parameter

h must decrease as the sample size n increases, h must not converge to zero as rapidly as

n−1 (Silverman; 1986, p.71). In addition, the density estimator is asymptotically distributed

as a normal random variable if the density function is twice continuously differentiable and

the bandwidth h is proportional to n−1/5 (Härdle; 1990, p.62).

2.6.2 Bivariate Case

For the bivariate case, consider the estimation of a joint distribution function F0 of a bivariate

random vector Xi = (Xi,1, Xi,2) which is subject to interval censoring. That is, Xi lies within

the 2-dimensional interval Ii = (Ai,1, Bi,1) × (Ai,2, Bi,2).

Wong and Yu (1999) proposed nonparametric estimation of the distribution function

based on multivariate interval censored data. Their method generalized the concept of

Turnbull’s estimator to the multivariate case. They generalized the concept of innermost

intervals (they called them maximal intersections) to the multivariate case and proposed a

likelihood function equivalent to (2.79). Therefore, they also use Turnbull’s self-consistent

algorithm to obtain an estimate. In addition, their estimator may not be unique (they

provide an example of this situation).
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Wong and Yu (1999) established consistency and asymptotic normality of their estimator.

Essentially, strong consistency is guaranteed if F0 is continuous and G∗ is dense in [0,∞)2,

where G∗ is the set which contains the grid points generated by the multi-dimensional inter-

vals (Ii = (Ai,1, Bi,1) × (Ai,2, Bi,2) in the bivariate case). Asymptotic normality of the esti-

mator is obtained under an alternative assumption that G∗ contains finitely many elements.

Note that these conditions are in tune with the univariate results previously mentioned.

Betensky and Finkelstein (1999) extended the approach of Gentleman and Geyer (1994)

to the bivariate case. Hence, they also used the Kuhn-Tucker conditions as necessary and

sufficient for optimality. Their resulting estimator, as in the univariate case, is unique if the

log likelihood is strictly concave. Therefore their resulting estimator converges to a unique

maximum if the hessian associated with the likelihood is strictly negative definite. They also

use Gentleman and Geyer (1994, Theorem 1) to provide a sufficient condition for uniqueness

of their estimate.

In the bivariate case also, we may conjecture that a kernel smoothed density in the

interval censored case would be consistent and asymptotically normal if the conditions

of Wong and Yu (1999) are satisfied and if the conditions of (Silverman; 1986, p.71) and

(Härdle; 1990, p.62) are satisfied assuming that h = h1 = h2.

2.7 Convergence

At this point we would like to mention the following properties of the estimator proposed

by Braun, Duchesne and Stafford (2005) in the univariate i.i.d. case.

• Local EM algorithms are implemented by computing conditional expectations using

numerical integration (setting out an equal-spaced mesh for that purpose).

• Convergence to a unique estimate in the local constant case is proven (the fixed point

of their implementation does not depend on f̂0).
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• Convergence of the fixed point iteration for sufficiently large bandwidths is guaranteed.

• Their results are for kernels with compact support but can be extended to kernels with

noncompact support such as the gaussian kernel.

Braun, Duchesne and Stafford (2005) consider local EM algorithms (constant, linear and

quadratic) in an attempt to solve

f = G(f)

Note that in our case, the local EM algorithms are implemented by computing conditional

expectations using numerical integration by means of a Monte Carlo approach (importance

sampling). The attractiveness of our method relies on the implementation of a bivariate

uniform sampling scheme derived from the orthogonal array-based latin hypercubes described

by Tang (1993), also called U sampling. Below we assume for simplicity that the set of sample

points once chosen is fixed.

In this Section we generalize the convergence results of Braun, Duchesne and Stafford

(2005) to a bivariate scenario for the local constant case. First, we generalize the approach

of Braun, Duchesne and Stafford (2005) to compute the required conditional expectations by

using numerical integration over an equal spaced bivariate mesh. Second, we prove conver-

gence of the fixed point iteration using our method, which computes the desired conditional

expectations by means of the importance sampling approach. Third, the convergence of the

fixed point iteration when the survey weights are incorporated is established.

The contraction mapping theorem (Ortega; 1972) is employed to prove convergence re-

sults.

Definition 1 A function G from D ⊂ R
m into R

m has a fixed point at p ∈ D if p = G(p).

Theorem 1 Let D be a closed convex set. Suppose G is a continuous function from D ⊂ R
m

into R
m with the property that G(p) ∈ D whenever p ∈ D. Then G has a fixed point in D.
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Suppose in addition, that G is continuously differentiable on the convex set D and that

‖ G′(p) ‖∞≤ α < 1 (2.83)

whenever p ∈ D. Then the sequence {pj} defined by an arbitrarily selected p0 in D and

generated by

pj = G(pj−1),

converges to a unique fixed point pFP ∈ D.

In (2.83), ‖ · ‖∞ denotes the infinity-norm (i.e. the maximum row-sum of the absolute

values of the matrix entries) and G′(p) corresponds to the m × m Jacobian.

The framework of Braun, Duchesne and Stafford (2005) is extended to the bivariate sce-

nario in the following manner. Let Mk be a univariate mesh consisting of mk equidistant

points {xi
k}mk

i=1, with xi
k − xi−1

k = ∆k, for k = 1, 2. Let M = M1 × M2 be a bivariate

mesh consisting of points {xr = (x1, x2)
r}m

r=1, with m = m1 × m2 . Define f r = f(xr) with

f = (f 1, f 2, . . . , fm)T . Therefore for r = 1, . . . , m, the fixed point equation (2.3) is equivalent

to

f r =
1

n

n
∑

i=1

(
∑

v:xv∈Ii
Kh(xv − xr)f v∆1∆2

∑

v:xv∈Ii
f v∆1∆2

)

(2.84)

or

f r =
1

n

n
∑

i=1

(
∑

v:xv∈Ii
Kh(xv − xr)f v

∑

v:xv∈Ii
f v

)

. (2.85)

Note that this numerical integration method corresponds to a bivariate trapezoidal

quadrature rule (ignoring correction at interval endpoints).

A generalization of the convergence theorem of Braun, Duchesne and Stafford (2005,

p.51-52) to the bivariate case is given by the following.

If we denote G2 as the mapping with rth component as given by the right-hand side of

(2.85), Theorem 1 may be used to prove convergence of the fixed point iteration (2.3) for

fine enough grids and large enough bandwidths h1, h2. We consider the case h = h1 = h2.
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Theorem 2 Assume that K(u) is a continuous probability density function with compact

support in R
2, and such that K(u) is of the form K1(u1)K2(u2), where K1(u1) and K2(u2)

are non-negative and symmetric about 0. Let δ be a small positive number and let

D2

h =

{

(f1, . . . , fm) : 0 ≤ f r ≤ sup
u

Kh(u) = Kh(0) and
∑

r:xr∈Ii

f r ≥ Kh(0)(1 + δ) for i = 1, . . . , n

}

.

There exists a combination of mesh size m and bandwidth h (depending on I1, · · · , In) such

that G2(f) has a unique fixed point fFP2 in D2
h, and for any f0 ∈ D2

h, the corresponding fixed

point iteration converges to fFP2.

The proof is analogous to that in Braun, Duchesne and Stafford (2005) for the univariate

case.

Proof of Theorem 2. For any fixed h > 0, it can be shown that D2
h is a closed and convex

subset of R
m. We now proceed to show that the image of D2

h under the continuous mapping

given by G2 lies in D2
h. Suppose that f ∈ D2

h, the nonnegativity of Gr
2(f) for r = 1, . . . , m is

due to the nonnegativity of the kernel and of f . Also

Gr
2(f) ≤

1

n

n
∑

i=1

(
∑

v:xv∈Ii
sup

u
Kh(u)f v

∑

v:xv∈Ii
f v

)

≤ sup
u

Kh(u) = Kh(0).

Moreover, it can be noted that for a grid sufficiently fine (depending on h and I1, · · · , In)

that
∑

r:xr∈Ii

Kh(xv − xr) ≥ nKh(0)(1 + δ)

for each xv ∈ Ii, i = 1, · · · , n, and thus we have

∑

r:xr∈Ii

Gr
2(f) ≥

1

n

∑

v:xv∈Ii
f v
∑

r:xr∈Ii
Kh(xv − xr)

∑

v:xv∈Ii
f v

≥
∑

v:xv∈Ii
f vKh(0)(1 + δ)

∑

v:xv∈Ii
f v

= Kh(0)(1+δ).

Up to this point the existence of a fixed point has been guaranteed. To prove the convergence

of (2.3) to a unique fixed point, the Jacobian condition is checked in the following manner.
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Differentiating with respect to f at points in the mesh gives

∂Gr
2(f)

∂f j
=

1

n

n
∑

i=1

1(xj ∈ Ii)

{

∑

v:xv∈Ii
f v [Kh(xj − xr) − Kh(xv − xr)]

(
∑

v:xv∈Ii
f v)2

}

.

It follows that

∂Gr
2(f)

∂f j
≤ 1

n

n
∑

i=1

1(xj ∈ Ii)

{
∑

v:xv∈Ii
f vKh(0)

(
∑

v:xv∈Ii
f v)2

}

(2.86)

≤ 1

1 + δ
(2.87)

It can then be shown that α =‖ G
′

2(f) ‖< 1, for all f ∈ D2
h.

As the bandwidth h → 0, the mesh must be correspondingly finer and {f r} must stay

within D2
h, for the argument to remain valid.

Recall that M = M1 ×M2 is a bivariate mesh consisting of points {xr = (x1, x2)
r}m

r=1,

with m = m1 × m2, and f r = f(xr) with f = (f 1, f 2, . . . , fm)T .

The unweighted version of our method implements a bivariate uniform sampling (U

sampling) scheme derived from the orthogonal array-based latin hypercubes of Tang (1993).

In this case the iteration equation

f̂j(x) =
1

n

n
∑

i=1

(

∑B
b=1 Kh(Xu

i,b − x)f̂j−1(X
u
i,b)

∑B
k=1 f̂j−1(Xu

i,k)

)

is intended to solve the fixed point equation

f r =
1

n

n
∑

i=1

(

∑Bi

bi=1 Kh(xbi − xr)f bi

∑Bi

bi=1 f bi

)

, (2.88)

for r = 1, . . . , m, where Bi is the number of points xbi of the uniform sample over the interval

Ii. We assume for simplicity that the points of the uniform sample are also points of the

bivariate mesh.

49



If we denote by G3 the mapping with rth component as given by the right-hand side of

(2.88), Theorem 1 may be used to prove convergence of the fixed point iteration (2.3).

Theorem 3 Assume that K(u) is a continuous probability density function with compact

support in R
2, and such that K(u) is of the form K1(u1)K2(u2), where K1(u1) and K2(u2)

are non-negative and symmetric about 0. Let δ be a small positive number and let

D3

h =







(f1, . . . , fm) : 0 ≤ f r ≤ sup
u

Kh(u) = Kh(0),
∑

xbi∈Ii

f bi ≥ Kh(0)(1 + δ) for i = 1, . . . , n







.

There exists a combination of number of points Bi, i = 1, · · · , n, and bandwidth h (depending

on I1, · · · , In) such that G3(f) has a unique fixed point fFP3 in D3
h, and for any f0 ∈ D3

h, the

corresponding fixed point iteration converges to fFP3. Here m is the size of the mesh.

The proof is similar to the proof of Theorem 2.

Proof of Theorem 3. For any fixed h > 0, it can be shown that D3
h is a closed and convex

subset of R
m. We now proceed to show that the image of D3

h under the continuous mapping

given by G3 lies in D3
h. Suppose that f ∈ D3

h. The nonnegativity of Gr
3(f) for r = 1, . . . , m

is due to the nonnegativity of the kernel and of f . Also

Gr
3(f) ≤

1

n

n
∑

i=1

(

∑Bi

bi=1 supu Kh(u)f bi

∑Bi

bi=1 f bi

)

≤ sup
u

Kh(u) = Kh(0).

Moreover, it can be noted that for a sufficiently large number Bi (depending on h and

I1, · · · , In) that
Bi
∑

bi=1

Kh(xbi − xr) ≥ nKh(0)(1 + δ),

for each xbi ∈ Ii, i = 1, . . . , n, and thus we have

∑

r:xr∈Ii

Gr
3(f) ≥

1

n

∑Bi

bi=1 f bi
∑

r:xr∈Ii
Kh(xbi − xr)

∑Bi

bi=1 f bi

≥
∑Bi

bi=1 f biKh(0)
∑Bi

bi=1 f bi

= Kh(0)
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Therefore, (2.88) has a fixed point in D3
h. To prove the convergence of (2.88) to a unique

fixed point, we consider the following.

Differentiating with respect to f at points of the importance sample gives

∂Gr
3(f)

∂f b
=

1

n

n
∑

i=1

1(xb ∈ Ii)

{

∑Bi

bi=1 f bi
[

Kh(xb − xr) − Kh(xbi − xr)
]

(
∑Bi

bi=1 f bi)2

}

.

It follows that

∂Gr
3(f)

∂f b
≤ 1

n

n
∑

i=1

1(xb ∈ Ii)

{

∑Bi

bi=1 f biKh(0)

(
∑Bi

bi=1 f bi)2

}

≤ 1

n

n
∑

i=1

1(xb ∈ Ii)
Kh(0)
∑Bi

bi=1 f bi

≤ 1

(1 + δ)
.

It can then be shown that α′ =‖ G
′

3(f) ‖< 1, for all f ∈ D3
h.

As the bandwidth h → 0, the number of uniform sampling points Bi must increase and

{f r} must stay within D3
h, for the argument to remain valid.

Incorporation of the survey weights in both equations (2.85) and (2.88) is implemented

in following manner

f r,w =

n
∑

i=1

(
∑

v:xv∈Ii
Kh(xv − xr)f v,w

∑

v:xv∈Ii
f v,w

)

w∗
i (2.89)

and

f r,w =

n
∑

i=1

(

∑Bi

bi=1 Kh(xbi − xr)f bi,w

∑Bi

bi=1 f bi,w

)

w∗
i , (2.90)

for r = 1, . . . , m, where w∗
i = wi/(

∑

i∈S wi). Recall that Bi is the number of xbi ’s generated

over the interval Ii using a bivariate U sampling.

Let us denote by Gw,1 the mapping with rth component as given by the right-hand side

of (2.89), and by Gw,2 the mapping with rth component as given by the right-hand side of
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(2.90).

Theorem 4 Assume that K(u) is a continuous probability density function with compact

support in R
2, and such that K(u) is of the form K1(u1)K2(u2), where K1(u1) and K2(u2)

are non-negative and symmetric about 0. Let δ be a small positive number and let

D
w,1

h =

{

(f1,w, . . . , fm,w) : 0 ≤ f r,w ≤ sup
u

Kh(u) = Kh(0) and
∑

r:xr∈Ii

f r,w ≥ Kh(0)(1 + δ) for i = 1, . . . , n

}

.

There exists a combination of grid size m and bandwidth h (depending on I1, · · · , In) such

that Gw,1(f
w) has a unique fixed point fw

FP1 in Dw,1
h , and for any f0 ∈ Dw,1

h , the corresponding

fixed point iteration converges to fw
FP1.

Theorem 5 Assume that K(u) is a continuous probability density function with compact

support in R
2, and such that K(u) is of the form K1(u1)K2(u2), where K1(u1) and K2(u2)

are non-negative and symmetric about 0. Let δ be a small positive number and let

D
w,2

h =







(f1,w, . . . , fm,w) : 0 ≤ f r,w ≤ sup
u

Kh(u) = Kh(0),
∑

xbi∈Ii

f bi,w ≥ Kh(0)(1 + δ), i = 1, . . . , n







.

There exists a combination of number of points Bi, i = 1, · · · , n, and bandwidth h (depending

on I1, · · · , In) such that Gw,2(f
w) has a unique fixed point fw

FP2 in Dw,2
h , and for any f0 ∈ Dw,2

h ,

the corresponding fixed point iteration converges to fw
FP2. Proofs of theorems 4 and 5 are

similar to those of theorems 2 and 3 and are omitted here.

2.8 Asymptotics for Sample Survey Data

In Chapter 1, Section 1.2, we presented the test statistic Q for close precursor. We need

to justify the asymptotic distribution assumed for this test statistic. Therefore the aim of

this section is to outline a corresponding theory for this purpose. Since Q is a functional of

a bivariate density estimate, the focus will be on the asymptotic properties of the density

estimate itself.
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As it has been indicated in Section 1.4, the independent and identically distributed

assumptions used for model (2.1) are generally not valid for complex survey data. Strat-

ification can reflect a violation of the identically distributed assumption, while clustering

can violate the independence assumption. Considering univariate non-censored data from

stratified multistage samples, Buskirk and Lohr (2005) provided asymptotic properties of a

kernel density estimator that incorporates the sampling weights. They presented regular-

ity conditions which lead the sample estimator to be consistent and asymptotically normal

under various modes of inference used with sample survey data.

The settings used by Buskirk and Lohr (2005) for the stratified two-stage sampling design

are those specified in Section 1.4.2.

For design-based inference they used the following set-up from Isaki and Fuller (1982).

Let {U(t)} be a sequence of nested finite populations where U(i) is a subset of U(i +1). Let

s(t) denote the corresponding sample from U(t). Population U(t) has L(t) strata and a total

of N(t) primary sampling units (psu’s) and Q(t) secondary sampling units (ssu’s); similarly

the sample s(t) contains a total of n(t) psu’s and q(t) ssu’s. They examined properties of

the estimator as t → ∞.

Accordingly, from Section 1.4.2 we have that the corresponding inclusion probabilities

are π
(l)
i (t) = PD(psu i from stratum l is included in the sample), with

∑Nl

i=1 π
(l)
i (t) = nl(t).

Recall that the subscript D indicates the probability distribution induced by the design.

The joint inclusion probabilities are π
(l)
ij (t) = PD(psu’s i and j from stratum l are included

in the sample). At the secondary sampling unit (ssu) level, (psu) i of stratum l has Qli(t)

secondary sampling units (ssu’s); π
(l)
m|i(t) is the conditional probability that (ssu) m of (psu)

i is included in the sample, given that (psu) i is included.

Buskirk and Lohr (2005) pointed out that if each unit in the finite population were ob-
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served, then a density estimator corresponding to the i.i.d. estimator in (2.1) would be

f̂U(y; h) =
1

hQ

L
∑

l=1

Nl
∑

i=1

Qli
∑

k=1

K

(

y − Ylik

h

)

. (2.91)

The sample weighted kernel density estimator of Buskirk and Lohr (2005) is given by

f̂s(y; h) =
1

hQ̂

∑

(lik)∈s

wlikK

(

y − Ylik

h

)

, (2.92)

where Q̂ =
∑

(lik)∈s wlik. Note that Bellhouse and Stafford (1999) also used sampling weights

to estimate f̂U(y; h).

Buskirk and Lohr (2005) used the following assumptions for the kernel function K:

(1.k) K(u) ≥ 0 for all u and K is symmetric about zero.

(2.k)
∫

K(u)du = 1.

(3.k)
∫

u4K(u)du < ∞.

(4.k) There exists a constant m such that K(u) ≤ m for all u.

In stratified two-stage sampling, the conditions for consistency of the kernel density

estimator given by Buskirk and Lohr (2005) are the following:

(1.c) nl(t) ≥ 1 for all l, where l indexes the strata.

(2.c) There exists a constant B such that Qli(t) < B for all l, i, and t.

(3.c) There exists a constant δ > 0 such that δ < π
(l)
i (t) and δ < π

(l)
k|i(t) for all l, i, k, t.

(4.c) There exist sequences {αl(t)}, l = 1, . . . , L(t), such that

π
(l)
i (t)π

(l)
j (t) − π

(l)
ij (t) ≤ αl(t)π

(l)
i (t)π

(l)
j (t)

and max1≤l≤L(t)Nl(t)αl(t) = O(1).
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(5.c) The bandwidth satisfies N(t)h2(t) → ∞ and h(t) → 0 as t → ∞.

Buskirk and Lohr (2005) first showed that f̂s(y; h) is approximately unbiased for f̂U(y; h)

under the design. Then Buskirk and Lohr (2005, Theorem 2) proved design consistency of

the sample estimator of the finite population estimate under their conditions (1.c) to (5.c)

and (1.k) to (4.k). They did this by bounding the design mean square error (MSE) of the

sample estimate by a constant divided by N(t)h2(t). We note the fact that h(t) → 0 but in

such a way that N(t)h2(t) → ∞ as t → ∞.

We reproduce Buskirk and Lohr (2005, Theorem 2) as follows.

Theorem 6 (Buskirk and Lohr; 2005, Theorem 2). Suppose that conditions (1.c) to (5.c)

hold in stratified two-stage sampling and that the kernel function satisfies (1.k) to (4.k).

Then VD(f̂s(y; h)) → 0 as t → ∞, uniformly in y.

Here VD(f̂s(y; h)) refers to the design based variance of f̂s(y; h).

Furthermore, Buskirk and Lohr (2005, Theorem 6) proved design based asymptotic nor-

mality of the sample estimate as an estimator of the finite population estimate under basically

the same previous conditions except that (3.c) and (4.c) were replaced by assumptions that

guaranteed asymptotic normality of a weighted sample sum (see theorem below). They used

the following set-up for sampling with replacement. As before, there are L(t) strata. From

stratum l, nl(t) psu’s are sampled with replacement; on draw j (for j = 1, . . . , nl(t)), psu

(li) is sampled with probability pli, where
∑Nl(t)

i=1 pli = 1. They defined the random variable

Zlji to be 1 if psu i is selected on draw j and 0 otherwise. Since sampling is done with

replacement, Zlji and Zl′j′i′ are independent when (lj) 6= (l′j′).

Then, they let

Zlj(y, h) =

Nl
∑

i=1

Zlji

∑

k∈sli
Kh(y − Ylik)

nlpli
. (2.93)
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Their Zlj’s are independent with

ED[Zlj(y, h)] =
1

nl

Nl
∑

i=1

Qli
∑

k=1

Kh (y − Ylik) (2.94)

Then, they defined Z(y, h, t) =
∑L(t)

l=1

∑nl(t)
j=1 Zlj(y, h), and let the sample estimator of the

density be

f̂R(y; h) =
1

Q̂
Z(y, h, t) (2.95)

for Q̂ a design consistent estimator of Q; then f̂R(y; h) is approximately design unbiased for

f̂U(y; h) since ED[Q−1Z(y, h, t)] = f̂U(y; h). Also they defined σ2(t) = VD[Z(y, h, t)]. Their

theorem for asymptotic normality in this context is presented next.

Theorem 7 (Buskirk and Lohr; 2005, Theorem 6). Assume conditions (1.k) to (4.k), (1.c),

(2.c) and (5.c) hold. Suppose there exists a constant δ such that δ < Nl(t)pli and δ < π
(l)
k|i(t)

for all l, i and k. Further suppose that maxl Nl(t)/nl(t) is bounded and that limt→∞ h(t)σ(t) =

∞. Then, the distribution of

(

Z(y, h, t) − Qf̂U(y; h)
)

σ(t)
,

conditional on Yt = (Y111, . . . , YL(t),NL(t),QL(t),NL(t)
), approaches N(0, 1) as t → ∞.

In the proofs of both previous theorems, the bandwidth may be considered the same for

the sample estimate and the population estimate. Moreover, their conditions can be satisfied

if h(t) remains fixed (i.e. h(t) → 0 may not be regarded as necessary), as long as N(t) → ∞

and the sample size n(t) → ∞ in such a way that the assumption of maxl Nl(t)/nl(t) being

bounded holds.

For model based inference (i.e. assuming that Y111, . . . , YL(t),NL(t),QL(t),NL(t)
are distributed

according to some joint probability distribution and that ylik is a realization of Ylik that gives

the measurement in the tth finite population), and model-design inference, Buskirk and Lohr
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(2005) used conditions (1.r) to (5.r) in the survey sample setting. The corresponding regu-

larity conditions for f (the density of the superpopulation) are the following.

(1.r) For any ssu labels k and j, and psu label i within stratum l, (Ylik, Ylij) have joint

density gl, where gl satisfies
∫

gl(x, u)du =
∫

gl(u, x)du = fl(x). The marginal density

of Ylik, fl, has continuous second derivative f ′′
l that is square integrable and monotone in

both (−∞,−M) and (M,∞) for some M . The variables Ylik and Yrpj are independent

if (li) 6= (rp).

(2.r) f(x) =
∑L

l=1 Wlfl(x).

(3.r) supx max1≤l≤L(t)fl(x) = G(t) = O(1).

(4.r) supx max1≤l≤L(t) | f ′′
l (x) |= D(t) = O(h−1(t)).

(5.r) N(t)h(t) → ∞ and h(t) → 0 as t → ∞.

Note that (5.r) is implied by condition (5.c).

In Buskirk and Lohr (2005, Theorem 4), consistency in the combined model-design sense

is shown. In this theorem they did not require condition (5.c), but the condition in (5.r)

that the bandwidth h(t) → 0 was crucial. Explicitly, that theorem stated the following.

Theorem 8 (Buskirk and Lohr; 2005, Theorem 4). Assume that conditions (1.c) to (4.c)

and (1.r) to (5.r) hold and that the kernel function satisfies (1.k) to (4.k). Then

EM

{

ED[f̂s(y; h(t)) − f(y)]2|Yt

}

→ 0

as t → ∞.

Buskirk and Lohr (2005, Theorem 7), referring to the paper of Bleuer and Kratina (2000),

established asymptotic normality of the finite population estimate and the sample estimate

as an estimator of the model expectation of the finite population estimator. In this theorem
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they replaced conditions (3.c) and (4.c) by a further assumption on the superpopulation joint

distributions of Y. In their proof we noted that the bandwidth did not have to go to 0.

Having all these previous results, under further regularity conditions it is reasonable

to indicate that a test statistic which is a smooth functional of the density estimator

is also consistent and asymptotically normal. See Geskus and Groeneboom (1997) and

Geskus and Groeneboom (1999) for some examples.

Generalization of these results to the bivariate kernel density estimation case is straight-

forward. In the case of local density estimation, the theory that generalizes these results

is also straightforward since the idea involves replacing a single estimating equation with a

system of two or three similar estimating equations.

Consequently, once this apparatus is available we may conjecture that the test statistic

Q presented in Section 1.2, which is a smooth functional of the density estimator, is also

consistent and asymptotically normal.

However, when interval censoring is introduced, we need to add conditions to ensure the

following:

• Convergence of both the finite population and sample algorithms.

• Convergence of the finite population density estimate f̂U(x) to the true density f (i.e.

the density of the superpopulation).

• Asymptotic normality under the model assumptions in (1.r) − (5.r) of the finite pop-

ulation density estimate f̂U(x).

These are conditions on:

• The superpopulation density f .

• The superpopulation structure.

• The density of the endpoints of the censoring intervals.
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• The kernel function.

• The mesh M (and the number of U sampled points).

• The bandwidth, so that hi(t) → 0 as t → ∞, i = 1, 2.

We assume that these conditions may be satisfied, so that if we could establish design-

based consistency and normality of the sample estimator f̂s(x) as an estimate of the finite

population estimator f̂U(x), the apparatus for sample-based inference about f̂U(x) and f

would be complete.

Now, let us consider the finite population estimator f̂U(x). It satisfies the self-consistency

equation in Section 2.6, and it is obtained by iterations (see sections 2.1 and 2.2). In addition,

let us assume the following.

• The density f of the superpopulation satisfies conditions (1.r) − (5.r).

• The conditions of Buskirk and Lohr (2005) on the superpopulation hold.

• The interval endpoints become dense as t → ∞.

For the kernel function K we assume the following.

(1.k′) K is of the form K1(u1)K2(u2), where Ki(ui) is a non-negative probability density

function and symmetric about 0, i = 1, 2.

(2.k′)
∫

u4
i Ki(ui)dui < ∞ for i = 1, 2.

(3.k′) There exists a constant m such that K(u) ≤ m for all u.

We may conjecture that if the above conditions hold there will be an analogue of the

first statements in Buskirk and Lohr (2005, Theorems 3 and 7) which do not involve the

sampling design. The analogue we are referring to is as follows.
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Theorem 9 Assume conditions (1.k’)-(3.k’), (1.r)-(5.r), (1.c) and (2.c) hold. Then

MSEM [f̂U(x)] → 0

as t → ∞. Furthermore,

f̂U(x) − EM [f̂U(x)]
√

VM [f̂U(x)]
→D N(0, 1).

as t → ∞.

We will assume these conclusions as background conditions.

Recall from Sections 2.1.2 and 2.1.3 that at the population level

f̂j,U(x) =
1

Q

Q
∑

i=1

Ef̂j−1, U

[

Kh(Xi − x)
∣

∣

∣
Xi ∈ Ii

]

=
1

Q

Q
∑

i=1

Egj−1
[Kh(Xi − x)w(Xi)]

where g is a suitable distribution over the interval Ii, and w(X) = f̂j−1,U|I(X)/g(X) is the

importance sampling weight. Thus, f̂j,U(x) may be approximated by

1

Q

Q
∑

i=1

(

∑B
b=1 Kh(Xu

i,b − x)w(Xu
i,b)

∑B
k=1 w(Xu

i,k)

)

(2.96)

=
1

Q

Q
∑

i=1

(

∑B
b=1 Kh(Xu

i,b − x)f̂j−1,U(Xu
i,b)

∑B
k=1 f̂j−1,U(Xu

i,k)

)

(2.97)

Here we let g(X) be a bivariate uniform distribution density and therefore Xu
i,b is generated

over the interval Ii using a bivariate uniform sampling scheme derived from the orthogonal

array-based Latin hypercubes described by Tang (1993) for b = 1, . . . , B.

Consider the survey weights to be the inverse inclusion probability weights wi, i ∈ s.
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Incorporation of these weights yields a corresponding sample iteration

f̂ws

j (x) =
∑

i∈s

(

∑B
b=1 Kh(Xu

i,b − x)f̂ws

j−1(X
u
i,b)

∑B
k=1 f̂ws

j−1(X
u
i,k)

)

wi
∑

l∈s wl
.

Alternatively, this may be expressed as

f̂j,s(x) =
∑

i∈s

(

∑B
b=1 Kh(Xu

i,b − x)f̂j−1,s(X
u
i,b)

∑B
k=1 f̂j−1,s(Xu

i,k)

)

wi
∑

l∈s wl
. (2.98)

Thus,

f̂0,s(x) =
∑

i∈s

(

1

B

B
∑

b=1

Kh(Xu0
i,b − x)

)

wi
∑

l∈s wl
. (2.99)

Taking a sufficiently fine grid we may obtain f̂0,s(X
u1
i,b), for b = 1, . . . , B. Then,

f̂1,s(x) =
∑

i∈s

(

∑B
b=1 Kh(Xu1

i,b − x)f̂0,s(X
u1
i,b)

∑B
k=1 f̂0,s(X

u1
i,k)

)

wi
∑

l∈s wl
. (2.100)

Once again we take a sufficiently fine grid to obtain f̂1,s(X
u1
i,b) for b = 1, . . . , B, so we have

f̂2,s(x) =
∑

i∈s

(

∑B
b=1 Kh(Xu2

i,b − x)f̂1,s(X
u2
i,b)

∑B
k=1 f̂1,s(X

u2
i,k)

)

wi
∑

l∈s wl
.

In order to consider mean square error consistency under the probability distribution

induced by the sampling design, we then need to show that the variance of the estimator

under the sampling design goes to 0.

Therefore, in the same manner as Buskirk and Lohr (2005), suppose that conditions (1.c)

to (4.c) hold in stratified two-stage sampling and that the kernel function satisfies (1.k′) to

(3.k′). Suppose also the following condition:

(5.c ′) The bandwidth hi(t) satisfies N(t)h2
i (t) → ∞ and hi(t) → 0 as t → ∞, for i = 1, 2.

For convenience, let us take h1(t) ≡ h2(t) ≡ h(t).

Let us note that under the assumptions (2.c) and (3.c) of Buskirk and Lohr (2005), saying
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that A = O
(

(Q(t)h2(t))−1/2
)

is nearly the same as saying that A = O
(

(N(t)h2(t))−1/2
)

. We

may thus define R(t) = (Q(t)h2(t))−1/2.

Let us note that in (2.98) the characteristic of interest (for j ≥ 1) for the ith subject

actually depends on the rest of the sample. Here, our consistency result refers then to

convergence in probability.

At the sample level, equation (2.98) for j = 0 yields equation (2.99). Replacing weighted

sums in (2.99) by population sums yields the corresponding equation at the population level

given by

f̂0,U(x) =
∑

i∈U(t)

(

1

B

B
∑

b=1

Kh(Xu0

i,b − x)

)

1
∑

i∈U(t) 1
. (2.101)

Assuming (4.k) (note this becomes (3.k′) in our case), (2.c), (3.c) and (4.c), Buskirk

and Lohr (2005) showed that the sample estimator f̂0,s(x) is approximately unbiased for

its population counterpart f̂0,U(x), and that the design variance of the sample estimator

VD(f̂0,s(x)) is bounded by c0R
2(t), uniformly in x, with c0 ∈ R.

Therefore the maximum over any finite set of points {x} of the difference between the

sample estimate f̂0,s(x) and the population estimate f̂0,U(x) is Op(R(t)).

Let us consider the corresponding finite set of points {x} to be a mesh M which also

includes the points of the uniform sample, as in the convergence argument previous to

Theorem 3 in Section 2.7.

Now let us consider equation (2.100), that is the sample estimate in (2.98) at the first

iteration (i.e. j = 1), and also consider the corresponding population equation (2.97) at the

first iteration. Alternatively, the above referred equations may be respectively expressed as

follows.

f̂1,s(x) =

∑

s wiYi
∑

s wl
(2.102)
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and

f̂1,U(x) =

∑

U Zi
∑

U 1
, (2.103)

where

Yi =

∑B
b=1 Kh(Xu1

i,b − x)f̂0,s(X
u1

i,b)
∑B

k=1 f̂0,s(X
u1
i,k)

and

Zi =

∑B
b=1 Kh(Xu1

i,b − x)f̂0,U(Xu1

i,b)
∑B

k=1 f̂0,U(Xu1

i,k)
.

We want to bound the difference between f̂1,s(x) and f̂1,U(x). First, we break up the

difference between the right hand side in (2.102) and the right hand side in (2.103) into the

following two parts:

∑

s wi(Yi − Zi)
∑

s wl

(2.104)

∑

s wiZi
∑

s wl
−
∑

U Zi
∑

U 1
. (2.105)

Since the Zi’s come from the algorithm at the population level, they are not dependent

on the sample, and they have the same bound as on the kernel. Therefore, the proof of

Buskirk and Lohr (2005, Theorem 2) again applies directly to show that the design variance

of (2.105) is bounded by cR2(t), with c ∈ R.

Now, we may say that the difference between Yi and Zi must be bounded by the maximum

difference between the two densities normalized times the integral of the kernel over the

interval Ii, that is

max
b

(

f̂0,s(X
u1
i,b)

∑B
k=1 f̂0,s(X

u1
i,k)

−
f̂0,U(Xu1

i,b)
∑B

k=1 f̂0,U(Xu1
i,k)

)

∫

Ii

Kh(y − x)dy

with
∫

Ii
Kh(y − x)dy < 1. So essentially we have a bound on the magnitude of a weighted

sample ratio or mean where the maximum of the characteristic (Yi − Zi) of the numerator

in (2.104) is bounded in probability by c ′R(t), with c ′ ∈ R. The same bound c ′R(t) would
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apply to the whole sample average (2.104).

Thus we can conclude that the difference between f̂1,s(x) and f̂1,U(x) is bounded in

probability by c1R(t), uniformly in x, with c1 ∈ R.

Proceeding by induction, we can say the same after any finite number of iterations J .

The constant cj will tend to increase with each iteration j. We realize that the convergence

of the algorithm would be governed by the evolution of the population and the intervals as

well as the bandwidth. Therefore we want to re-emphasize that completion of the arguments

to prove consistency would have to consider these elements.

Let us note that in practice, between 4 and 7 iterations are required. This is the case

considering settings similar to those employed in Sections 4.4, 4.8.1 and 4.8.2. When we use

a finer mesh and increase the number of uniform sampled points within the intervals, the

number of required iterations decreases significantly (less than 3 for example).

For the asymptotic normality argument we note that the asymptotic normality of (2.105),

normalized, is a consequence of the argument of Buskirk and Lohr (2005, Theorem 6). The

asymptotic normality of

∑

s wi(Yi − Zi)
∑

s wl
+

∑

s wiZi
∑

s wl
−
∑

U Zi
∑

U 1

normalized would be clear if the Yi’s in the first term were not dependent on the rest of the

sample s. Since it also comes from a ratio, a way to proceed is clear in principle, because we

may iterate the linearization of (2.104) and, as in the convergence argument, this could be

carried out up to a fixed number of iterations J (which in practice is a small number).
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Chapter 3

Semiparametric Models

The present chapter introduces triggering models from Thompson and Pantoja-Galicia (2003).

A distinction between long term and short term triggering is presented in Section 3.1. In

Section 3.2 we derive likelihood functions that can be used to estimate the parameters of

these models considering interval censored times. Subsequently, in Section 3.3 we mention

the work on multi-state analysis of bivariate interval censored event times developed by

Cook, Zeng and Lee (2007).

Here E1 and E2 also denote two lifetime events. T1 denotes the time to occurrence of

event E1, and T2 denotes the time to occurrence of event E2 considering a specified time

origin.

3.1 Triggering Models

Thompson and Pantoja-Galicia (2003) establish that the concept of triggering is a special

case of temporal ordering, where a causal model is explicit. They provide the following

conditional formulation for triggering.
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3.1.1 Long term triggering

T1 triggers T2 if the occurrence of the end of duration T1 increases the hazard function of T2

immediately after T1.

In a simple example, suppose that if T1 were infinity (i.e. E1 never occurred), T2 would

have survivor function F02(t1) and hazard function λ02(u). However, if T1 = t1 (i.e. E1 does

occur at time T1), then T2 has hazard function λ02(u) before t1 and eβλ02(u) after t1, where

β > 0. This kind is a long term triggering property.

3.1.2 Short term triggering

The “local” formulation in terms of a short term scale change in the hazard of T2 is as

follows.

In a local sense, event E1 triggers event E2 if it increases (for a time) the conditional

intensity of E2, given recent history.

For example, let H(s−) denote the history of the joint process before time s. Then E1

triggers E2 if for some κ(s), we have

λ2(u | H(s−) and E1 at s) = eβλ2(u | H(s−)), (3.1)

for s < u < s + κ(s) (β > 0).

Note that here triggering induces a multiplicative change in the hazard function, whereas

the nonparametric expression of close precursor in Chapter 1 section 1.1 suggested an additive

change.

Suppose λ1(t) and λ02(τ) are respectively the hazard functions for T1 and for T2 when

T1 is ∞ (i.e. E1 never occurs). Suppose that λ12(u | t; β) is the hazard function for T2 at u,

given T1 = t, so that λ12(u | t; β) could be eβλ02(u) for u between t and t + κ(t), and λ02(u)

for other u.

An example of this situation would be to have, for example, λ1(t) = λ1, λ02(u) = λ02 and
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λ12(u) = eβλ02 for t ≤ u < t + κ(t) and λ02 for other u.

3.2 Likelihood Functions

In longitudinal surveys conducted at widely spaced time points, it is possible for the endpoint

of T1 or T2 to be interval censored. Let us suppose that T1 ∈ (T10, T11) and T2 ∈ (T20, T21),

and that the period between interviews is [0, a1] where a1 is a general endpoint.

The basic idea of the model in Section 3.1.2 is that the occurrence of E1 at time T1

changes the hazard for T2 for some time. If we have this simple model, we can deal with this

situation simply by calculating the appropriate likelihood function and using it to estimate

the corresponding parameters including β.

For simplicity, let us consider first the case when T1 is not interval censored. For subject

i, taking ti,20 to be a1 if T2 is unobserved, the likelihood function L looks like the following:

L =
∏

i

L(ti,1, ti,20, ti,21) (3.2)

where L(t1, t20, t21) =:

L1 = A(a1)

if a1 ≤ t1, t20

L2 = A(t1)λ1(t1)dt1B12(a1 | t1; β)

if 0 < t1 < a1 = t20

L3 =

∫ t21

t20

A(τ)λ02(τ)B01(a1 | τ)dτ

if 0 ≤ t20 < t21 ≤ a1 < t1

L4 =

∫ t1

t20

A(τ)λ02(τ)B01(t1 | τ)λ1(t1)dτdt1 + A(t1)λ1(t1)dt1 [1 − B12(t21 | t1; β)]

if 0 ≤ t20 < t1 < t21 ≤ a1
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L5 = A(t1)λ1(t1)dt1[B12(t20 | t1; β) − B12(t21 | t1; β)]

if 0 < t1 < t20 < t21 ≤ a1

L6 =

∫ t21

t20

A(τ)λ02(τ)B01(t1 | τ)λ1(t1)dτdt1

if 0 < t20 < t21 ≤ t1 < a1

with

A(t) = exp{−
∫ t

0

[λ1(u) + λ02(u)]du},

B01(τ | t) = exp{−
∫ τ

t

λ1(u)du},

B12(τ | t; β) = exp{−
∫ τ

t

λ12(u | t; β)du}.

Note that in complete data likelihood, L4 is not needed, L1 and L2 remain the same (using

the appropriate notation) and L3, L5 and L6 become as indicated in the following segment.

Therefore, in this case the likelihood function is equal to

L =
∏

i

L(ti,1, ti,2) (3.3)

where L(t1, t2) =:

L1 = A(a1)

if a1 ≤ t1, t2

L2 = A(t1)λ1(t1)dt1B12(a1 | t1; β)

if 0 < t1 < a1 ≤ t2

L3 = A(t2)λ02(t2)dt2B01(a1 | t2)

if 0 < t2 < a1 ≤ t1
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L5 = A(t1)λ1(t1)dt1B12(t2 | t1; β)λ12(t2)dt2

if 0 < t1 < t2 < a1

L6 = A(t2)λ02(t2)dt2B01(t1 | t2)λ1(t1)dt1

if 0 < t2 < t1 < a1.

Now, let us consider the case where both times T1 and T2 are interval censored, i.e. T1 ∈

(T10, T11) and T2 ∈ (T20, T21). Let [0, ai,1] be the period between interviews for subject i. Let

ti,10 = ai,1 if T1 is unobserved for subject i, and similarly ti,20 = ai,1 if T2 is unobserved for

subject i. Accordingly, we can form the following likelihood function:

L =
∏

i

L(ti,10, ti,11, ti,20, ti,21) (3.4)

where L(t10, t11, t20, t21) =:

L1 = A(a1)

if a1 ≤ t10, t20

L2 = A(t10)

∫ t11

t10

A(s)λ1(s)B12(a1 | s; β)ds

if 0 < t10 < t11 < a1 = t20

L3 =

∫ t21

t20

A(τ)λ02(τ)B01(a1 | τ)dτ

if 0 ≤ t20 < t21 ≤ a1 < t10
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L4 =

∫ t10

t20

A(τ)λ02(τ)B01(t10 | τ)dτ{
∫ t11

t10

B01(s | t10)λ1(s)ds}

+

∫ t11

t10

A(s)λ02(s){
∫ t11

s

B01(u | s)λ1(u)du}ds +

∫ t11

t10

A(s)λ1(s)[1 − B12(t21 | s; β)]ds

if 0 ≤ t20 < t10 < t11 < t21 ≤ a1

L5 =

∫ t11

t10

A(s)λ1(s)ds[B12(t20 | t11; β) − B12(t21 | t11; β)]

if 0 < t10 < t11 < t20 < t21 ≤ a1

L6 =

∫ t21

t20

A(τ)λ02(τ)B01(t10 | τ){
∫ t11

t10

B01(s | t10)λ1(s)ds}dτ

if 0 < t20 < t21 ≤ t10 < t11 < a1

L4′ =

∫ t20

t10

A(s)λ1(s)B12(t20 | s; β)ds[1− B12(t21 | t20; β)]

+

∫ t21

t20

A(s)λ1(s)[1 − B12(t21 | s; β)]ds +

∫ t21

t20

A(s)λ02(s){
∫ t11

s

B01(u | s)λ1(u)du}ds

if 0 < t10 < t20 < t21 < t11 ≤ a1

L5′ =

∫ t20

t10

A(s)λ1(s)B12(t20 | s; β)ds[1− B12(t21 | t20; β)]

+

∫ t11

t20

A(s)λ1(s)[B12(t21 | s; β)]ds +

∫ t11

t20

A(s)λ02(s){
∫ t11

s

B01(u | s)λ1(u)du}ds

if 0 < t10 < t20 < t11 < t21 ≤ a1

L6′ =

∫ t10

t20

A(τ)λ02(τ)B01(t10 | τ)dτ{
∫ t11

t10

B01(s | t10)λ1(s)ds}

+

∫ t21

t10

A(s)λ02(s){
∫ t11

s

B01(u | s)λ1(u)du}ds +

∫ t11

t10

A(s)λ1(s)[1 − B12(t21 | s; β)]ds

if 0 < t20 < t10 ≤ t21 < t11 < a1.

As it is pointed out in Thompson and Pantoja-Galicia (2003), more realistic models would

allow the hazards λ1, λ02 and λ12 to depend on appropriate covariates.

3.2.1 Estimation

If we assume the exponential distribution as the underlying distribution of our data, we

would be able to obtain a closed form for many parts of the expressions in Section 3.2, which
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can be supplemented by numerical integration.

The approach in Section 3.2 can become very complicated with a complex survey design.

In principle, this would not be hard to deal with as long as we have a single stage design,

so that individuals can be regarded as independent. In that case, the log likelihood at the

population level is a population sum, and the sample analogue is a weighted sample sum. For

example, considering (3.2), (3.3) and (3.4), we respectively have the following log likelihood

functions at the population level

N
∑

i=1

logL(ti,1, ti,20, ti,21) (3.5)

N
∑

i=1

logL(ti,1, ti,2) (3.6)

N
∑

i=1

logL(ti,10, ti,11, ti,20, ti,21) (3.7)

where N is the number of units in the finite population. Correspondingly, at the sample

level we have

∑

i∈s

wi logL(ti,1, ti,20, ti,21) (3.8)

∑

i∈s

wi logL(ti,1, ti,2) (3.9)

∑

i∈s

wi logL(ti,10, ti,11, ti,20, ti,21) (3.10)

where s refers to the sample and wi to the survey weight for subject i.
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3.3 Multi-state analysis

It is important to mention the work developed by Cook, Zeng and Lee (2007) who present

a multi-state analysis of bivariate interval censored event times. They propose an analysis

based on a four-state stochastic model, where they define the states as follows in terms of

the events E1 and E2 having occurred or not:

State 0: No occurrence of E1 nor E2.

State 1: Occurrence of E1, but not yet E2.

State 2: Occurrence of E2, but not yet E1.

State 3: Occurrence of E1 and E2.

With associated intensities λjk(t | H(t)) for the transitions from state j to state k, they

restrict consideration to flexible Markov models with piecewise constant transition intensities

λjkl, where l is the index associated with the lth break point. The break points are fixed.

Cook, Zeng and Lee (2007) derive the corresponding complete data log likelihood function.

And since interval censored data is a type of incomplete data, an EM algorithm can be

worked out for this scenario.

In our case, we also use the idea of piecewise constant hazards, but in our situation

the break point is not fixed (the break points would be T1 and T1 + κ if T1 occurs before

T2). Cook, Zeng and Lee (2007) express how one type of event alters the risk of another, by

allowing different intensities for the transitions from state j to state k. Our case involves a

more local influence, where we have the intensity for T2 affected in a certain way in the next

short interval of time.

To estimate the parameters we have worked out the required integration (see Chapter 4)

instead of following an EM algorithm. So a question would be whether the EM algorithm

would be easier.
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We would like to mention that in our situation, the main purpose is to model a shorter

term triggering using complex survey data. The semiparametric model in principle allows

us to make use of right censored as well as interval censored lifetimes.
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Chapter 4

Applications

The purpose of this chapter is to illustrate the application of the methodologies proposed

in Chapters 2 and 3 using data from two Statistics Canada’s national longitudinal surveys.

Our first application involves time to pregnancy and time to smoking cessation using data

from the National Population Health Survey (NPHS). The second application considers time

to job loss and time to divorce (or separation) using data from the Survey of Labour and

Income Dynamics (SLID).

The following section provides a brief introduction to the survey that supplied the data

for our first application.

4.1 The National Population Health Survey

The National Population Health Survey had been intended to collect both cross-sectional and

longitudinal information related to the health of the population in Canada. The first cycle of

data collection took place in 1994-1995. Subsequent cycles have been collected every second

year thereafter and this process is planned to continue for up to 20 years. It is important to

note that beginning with cycle 4 in 2000-2001, the survey became purely longitudinal.

The target population of the National Population Health Survey consists of three parts:
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the household, the institutional and the northern component respectively. Our focus will

be on the first component which includes household residents from every province, except

persons living on Indian Reserves, Canadian Forces Bases and some remote areas in Quebec

and Ontario (Statistics Canada; 1996).

During the first three cycles of the NPHS, in every household, a knowledgeable person

provided information related to demographic, socio-economic and limited health issues about

each household member. This cross-sectional part is contained in the general component of

the NPHS questionnaire. On the other hand, a randomly selected individual was asked to

answer more in-depth and detailed health questions. This information is catalogued in the

health component of the questionnaire. Every second year and for longitudinal purposes,

only the randomly selected person is followed up.

The sample design used outside Quebec is based on the Labour Force Survey of Statistics

Canada. In the province of Quebec, the NPHS utilised the design of a health survey organized

by Santé Québec: the 1992-93 Enquête sociale et de santé (ESS).

The NPHS considered a stratified two-stage design. Hence, homogeneous strata were

created in the first stage and independent samples of clusters were drawn from each stratum.

During the second stage, dwelling lists were prepared for each cluster and then households

were selected from these lists. The sampling design for the initial cycle selected one individual

at random from each of about 17,000 households across the country. Since only one member

in each sampled household responds to the in-depth health questions, the probability of

being selected as a respondent is inversely related to the number of people in the household.

For a detailed description of the design and other important features of this survey

Larry and Catlin (1995) and Swain, Catlin and Beaudet (1999) are useful references.

This survey yields important information for the purpose of investigating a relationship

between pregnancy and smoking cessation in the context that has been discussed in previous

chapters.
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4.2 Pregnancy and Smoking Cessation

The longitudinal nature of the NPHS makes possible to observe changes in the responses of

the surveyed people across cycles. We pay special interest to women’s responses to questions

related to pregnancy and smoking cessation. The following questions are taken from the

NPHS questionnaire.

• Have you ever smoked cigarettes at all?

• At the present time do you smoke cigarettes daily, occasionally or not at all?

• At what age did you stop smoking cigarettes daily?

• Are you currently pregnant?

• Have you given birth since last interview?

Therefore, at every cycle we are able to collect information such as: date of birth and gender

of every participant, date of interview, whether a female respondent is pregnant, and the

smoking status for each respondent (daily or occasional smoker and non-smoker). Also, each

former daily smoker states at what age she stopped smoking cigarettes daily.

The presence of a household (cross-sectional) file in the NPHS plays an important role at

providing information about age and date of birth of every member in the household from

the first to the third cycle.

Considering the time origin to be the date of the interview at cycle n, let T1 denote

the time until a pregnancy begins, and T2 the time until a smoking cessation occurs which

lasts until the next interview at cycle n + 1 to be reported. The way we determine these

times, which are interval censored for each subject, is revealed in subsection 4.3. The unit

of measurement for time is years.
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4.2.1 Subsample

Responses at two successive cycles, n and n + 1, are needed to determine the intervals for

the beginning of the pregnancy and the smoking cessation.

Our analysis is based in the following subsample of longitudinal respondents. For cycles

1, 2 and 3, we select individuals who at the moment of the interview in the nth cycle are

between the ages of 15 and 49, are regular daily smokers and are not pregnant . The second

inclusion criteria is that among these subjects, we select those who at the next cycle, n + 1,

report being pregnant or having given birth since the last interview; and having abandoned

cigarettes. This subsample is depicted in figure 4.1.

c y c l e n c y c l e n + 1a g e : 1 5 
 4 9 y e a r sn o t p r e g n a n td a i l y s m o k e r p r e g n a n t o r g i v e n b i r t hq u i t s m o k i n g
Figure 4.1: Sampled population of the first application using NPHS data.

4.3 Interval Censoring in the NPHS

4.3.1 Time to Pregnancy

We have previously mentioned that a household file has been helpful to obtain the date

of birth for every household member living with the longitudinal respondent. Therefore,

inferring the approximate dates of pregnancy for the longitudinal individual is possible by

simply subtracting 9 months to the date of birth of the appropriate child. More specifically,
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if we consider 280 days (or 40 weeks) to be the average duration of a pregnancy, plus or minus

14 days (or 2 weeks) (Taylor et al.; 2003, p. 67), the date of becoming pregnant belongs to

an interval which is 28 days in length. More specifically, let

• Dn be the date of the interview at cycle n (time origin);

• B be the date of birth of the appropriate child;

• P be the inferred date of pregnancy (B − 280 days);

• PL = P − 14 days.

• PR = P + 14 days (according to (Taylor et al.; 2003, p. 67)).

Therefore, T1 ∈ I1 = (PL − Dn, PR − Dn). Figure 4.2 illustrates this description.

According to Sections 4.2 and 4.2.1, note that the time origin is not at the same date

for every respondent. For some respondents it is D1 , for others it is D2, and D3 for some

others. 2 8 0 d a y sD P P P Bn L R
Figure 4.2: Time to Pregnancy

Due to the strictly longitudinal nature of the NPHS starting with cycle 4, the household

(also called cross-sectional) file for the year 2000-2001 does not exist. Therefore, for the

corresponding selected individuals, their respective time to becoming pregnant, T1, would

lie in a wider interval I1. By way of illustration, consider the time unit for T1 in months,

therefore an individual that in cycle 4 reported to have given birth since her last interview,

is assigned the interval I1 = (0, 15). This indicates that she could have become pregnant at

any time between the day of her interview in cycle 3, i.e. D3, and 15 months later. For a
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respondent that reported to be pregnant at the time of the interview in cycle 4, the interval

I1 = (15, 24) is assigned to her, indicating that she could have started her pregnancy any

time in the past 9 months.

4.3.2 Time to Smoking Cessation

At every cycle, subjects who became former daily smokers were asked the age at which they

quit smoking. The approximate duration between interviews is of two years. If smoking

cessation is reported, T2 is thus to be observed between two end points T20 and T21. T20 is

either 0, which corresponds to the date of the interview in cycle n (Dn), or the duration of

time between the date of the interview in cycle n and the corresponding birthday. On the

other side, T21 is either the time to a birthday or 2 (obtained using the date of the interview

in cycle n + 1).

By way of an example, and recalling the time units to be in years, let us consider the

case of a longitudinal individual who at cycle n is 24 years old and who has her interview

in cycle n + 1 exactly 2 years after the interview in cycle n. Let B25 denote the duration of

time between the date of her interview at cycle n and the date of her twenty-fifth birthday

(equivalently for B26). Depending on the reported age at which she quit smoking, T2 belongs

to the interval I2 which may be (0, B25) if the reported age of quitting is 24; (B25, B26) if the

age of smoking cessation is reported to be 25; or (B26, 2) if the subject responded 26 as her

age of abandoning cigarettes.

• (0, B25) if the reported age of quitting is 24;

• (B25, B26) if the age of smoking cessation is reported to be 25;

• (B26, 2) if the subject responded 26 as her age of abandoning cigarettes.

Figure 4.3 depicts this example.
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0 1B 2 5 B 2 6 2
Figure 4.3: An example of the determination of the time to smoking cessation

We note that the records of each respondent at the 4th cycle present the age at which

the individual stopped smoking as not stated. Therefore, the length of the time interval I2

for each of these individuals will be of about two years, which is the period of time between

the interviews at cycle 3 and 4.

4.4 Results

Recall that to compute the test statistic Q presented in (1.2), we first obtain an estimate,

within the observation window, of the joint density of (T1, T2) using (2.25). Figure 4.5

depicts the contour plot of such estimated joint density of (T1, T2) and shows the expected

ordering of T1 and T2. Subsequently, we obtain numerically the corresponding marginal

probability density functions and consequently the respective survivor functions (conditional

and unconditional versions).

The size of the sample satisfying the conditions described in Section 4.2.1 is of 57 indi-

viduals. These 57 respondents represent about 68, 000 people of our total target population.

For every subject the corresponding intervals I1 and I2 have been determined according to

the description in Section 4.3. To obtain (2.25) and figure 4.5, the following settings were

also employed. We let g(X) in (2.6) be a bivariate uniform density and considered B = 72

to be an appropriate choice for the value B required in (2.7). Therefore at every iteration

j that estimates f̂j, we generated 72 bivariate uniform random values within each rectangle

Ii. This value of B was also employed for the results in Sections 4.8.1 and 4.8.2.

The two modes on Figure (4.5) appear because the data subset being used contains two

groups of respondents. Group 1 are those who had children and quit smoking but did not
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T1

T2

Figure 4.4: Estimated joint density of T1 and T2.
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Figure 4.5: Contour plot of the estimated joint density of T1 and T2. Light-colored areas
indicate high density.

relapse between cycle n and n + 1. Group 2 represent those quitters who have become

pregnant and are still pregnant at cycle n + 1. A feature of the NPHS data means that

some of the intervals for these two groups are fixed. The visual representation given by the

estimated joint density is a useful tool for seeing the effect of this additional structure.
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Regarding the test for close precursor as discussed in Section 1.2, we let κ(t1) have a

constant value of about 2.5 months, assuming that smoking cessation might occur with

increased probability within the first trimester of pregnancy.

For each t1, we have that Q = 0.029 with se(Q) = (0.004). After comparing Q with

twice its estimated standard error, we reject the null hypothesis, which is effectively that the

mean of Q is 0. Therefore, we can argue that there is evidence that T1 is a close precursor

of T2, i.e. the occurrence of the pregnancy at time T1 decreases the probability of having to

wait longer than 2.5 months for the smoking cessation to occur.

The estimated standard error was obtained as discussed in Section 2.4, by using Statistics

Canada’s bootstrap weights replicates. The size of our domain is small, however, it is widely

dispersed. Therefore the chances of getting many people from a primary sampling unit

(cluster) are small. We examined Statistics Canada’s bootstrap weights replicates for the

domain and found that the distribution of the weights that are equal to zero is fairly uniform.

In addition, the corresponding coefficients of variation of the bootstrap weights replicates

are fairly uniform as well. A similar situation applies to the respective results of the SLID

application.

R code was written so that estimation of the joint density could be implemented according

to the methodology of Chapter 2. The corresponding figures and computation of the test

statistic were also obtained from this code.

To check the assumed null distribution for Q, we have performed simulations using models

and parameter settings appropriate to the NPHS application (time to pregnancy and time

to smoking cessation) and using our density estimation method. These show a mean for

Q under independence that is very close to 0 and thus validate the significance test of this

section.
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4.4.1 An illustration of estimation of a density with a discontinuity

Using the approach presented in Section 2.5.2 yields the following density estimate of (T1, T2)

in the case of the NPHS example. In Figure 4.6, the density is estimated separately using

the local likelihood method for positive and negative V2 = (T2 − T1)/
√

2.
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Figure 4.6: Contour plot of the estimated joint density with a discontinuity at T1 = T2.
Light-colored areas indicate high density. Time units: years.
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4.5 The Survey of Labour and Income Dynamics

The Survey of Labour and Income Dynamics (SLID) is a longitudinal survey composed of

panels of six years in length. The purpose of this survey is to track the experiences of

individuals in the labour market, their income and changes in family life. A longitudinal

panel of all persons belonging to the sample of households derived from the Labour Force

Survey is formed and kept for six years. Longitudinal respondents aged 16 years or older

are contacted twice a year. At the first interview, in January, they answer questions about

their labour activities. In May, information about their income is obtained either through a

second interview or by access with permission to the respondent’s tax return.

The longitudinal sample of the SLID is a stratified multistage sample, with strata defined

within provinces, and, generally, with two primary sampling units (psu ’s) selected from each

stratum with a probability proportional to size. A sample of households is chosen within

each (psu). So, the dwelling place is the last-stage sampling unit. The first panel started

in 1993 and consisted of about 15,000 households, which account for approximately 40,000

people (31,000 persons who are over 16 years of age). The second panel of approximately

the same size was selected in 1996, the third in 1999, etc. In this work we analyzed data

from the first and second panels.

Further details regarding design as well as other important issues of the Survey of Labour

and Income Dynamics can be found at Statistics Canada (1997) and Statistics Canada

(2005).

4.6 Job loss and divorce

According to reports from Marienthal, given in a classic book in unemployment research

(Jahoda, Lazarsfeld and Zeisel; 1933, p. 86), improvements in the relationship between hus-

band and wife as a result of unemployment are definitely exceptional. As it is a subject
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Figure 4.7: First three panels of SLID

of interest for social scientists, the topic of job loss and divorce has been examined more

recently by Yeung and Hofferth (1998), Huang (2003) and Charles and Stephens (2004).

Considering the time origin to be the date of the first interview of the respondent (day

zero), which takes place at the beginning of the life of the panel (some time in January of

1993 for panel 1), let T1 denote the time to the termination of the job of the subject, and

let T2 be the time to either separation or divorce (whichever comes first, as the result of

the termination of the marriage or common-law relationship of the individual). The unit of

measurement for time is years.

A vector of all the dates of changes of marital status for each respondent, along with

associated type of change, can be obtained from a panel of the SLID. In the same manner,

a vector of job history with dates of changes in employment status can be retrieved. With

this information, an appropriate data set can be generated for our own subsample, which is

described in the next section.

An in-depth description regarding the extraction and structure of the set of variables

to be used for this and the previous application is given by Pantoja-Galicia and Thompson

(2006). A summary description has been reproduced in Appendix B.
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4.6.1 Subsample

We take into account subjects from the second panel of the SLID with the following char-

acteristics: employed and married (or in a common-law union) at day zero; with only one

marriage (or common-law relationship) and one job during the life of the panel; and with

termination of the job and dissolution of the marital relationship occurring during the life

of the panel. We restrict further to cases where the job ended due to involuntary reasons.

We condition on observing both events during the time window from January 1993 to April

1999 (for the first panel). In other words, let

• DU be the date at which the union started. The union can be either marriage or a

common-law relationship. Consider whichever started first.

• DJ be the date at which the job started.

• DI be the date of the first interview.

• DT be the date of the termination of the panel.

• DE1 be the date of the occurrence of E1 (end of job).

• DE2 be the date of the occurrence of E2 (end of the relationship).

Then, according to the description of our subsample, these dates are restricted to

DU ≤ DI , DJ ≤ DI .

Also

DI < DE1 ≤ DE2 < DT

or

DI < DE2 ≤ DE1 < DT .
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4.7 Interval Censoring in the SLID

Memory plays an important role in survey responding. Whenever a date of an event is re-

ported, there exists the potential for dating errors. Forward telescoping is a type of memory

error which involves reporting the occurrence of events more recently than they actually hap-

pened. The events are seen as closer in time than they really are, according to the interview’s

vantage point. As stated by Tourangeau, Rips and Rasinski (2000), this phenomenon has

been studied by survey methodologists and cognitive psychologists since Neter and Waksberg

(1964) first documented it. In the opposite direction, Backward telescoping is another pos-

sibility for a dating error. Tourangeau, Rips and Rasinski (2000) present, in the fourth

chapter, a vast review of the literature documenting these sort of memory errors. From the

same source in page 11, we quote:

Reporting errors due to incorrect dating seem to arise through several distinct

mechanisms. People may make incorrect inferences about timing based on the

accessibility (or other properties) of the memory, incorrectly guess a date within

an uncertain range, and round vague temporal information to prototypical values

(such as 30 days).

These issues might be reflected in survey data as measurement error. In reports like those

from Huttenlocher, Hedges and Bradburn (1990) it is also shown that respondents round

estimates to times that are stand-ins for calendar units, that is seven days or thirty days.

This background justifies trusting the reported dates of the events to be within a certain

period of time instead of a specific day. This leads us to have times to occurrence which are

interval censored for the events of our interest.

By way of illustration, let TJ and TD be the reported times to occurrence of job ter-

mination and divorce (or separation) respectively. Therefore, we may say that T1 ∈ I1 =

(TJ − δ1, TJ + δ2) and T2 ∈ I2 = (TD − δ3, TD + δ4), where δk is a particular period of time,

for k = 1, . . . , 4. For instance, if the trusted period of time is of 30 days then δk = (15 days)
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for all k. Note that TJ = (DE1 − DI) and TD = (DE2 − DI).

4.8 Results

4.8.1 First Panel

Using data from the first panel of the SLID we found that the size of the sample population

satisfying the conditions described in Section 4.6.1 is of 70 individuals, who represent about

49,000 people of the total target population. The corresponding intervals I1 and I2 have

been determined for every subject in our sample according to Section 4.7.

Figure 4.8 shows an estimate of the joint density of (T1, T2) using (2.25). Recall that T1

is the time until the end of job (on the horizontal axis) and T2 is the time until separation

or divorce (on the vertical axis). This picture shows the expected ordering.
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Figure 4.8: Contour plot of the estimated joint density of T1 and T2. Time in years. Light-
colored areas indicate high density.

Concerning the test for close precursor from section 1.2, if we let κ(t1) to have a constant

value of 6 months, for every t1, the test statistic for close precursor Q will have a value

of 0.034 with a standard error of 0.0025. The comparison of Q with twice its estimated
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standard error, gives us evidence to reject the null hypothesis from Section 1.2. Therefore,

there exists evidence to argue that T1 is a close precursor of T2, i.e. losing a job at time T1

decreases the probability of having to wait longer than 6 months to observe a separation or

divorce.

4.8.2 Second Panel

Figure 4.9 shows an estimate of the joint density of (T1, T2) obtained according to (2.25).

In compliance with the conditions established in Section 4.6.1, 53 individuals were selected.

These represent about 40, 000 people of the total target population. In accordance with

Section (4.7), the intervals I1 and I2 were determined for each subject.

Figure 4.9: Contour plot of the estimated joint density of T1 and T2.

If we let κ(t1) have a constant value of about 6.5 months, for every t1, the test statistic

for close precursor Q from (1.2) results in a value of 0.0304 with a standard error of 0.0008.

The comparison of Q with twice its estimated standard error gives evidence to reject the

null hypothesis from Section 1.2. Therefore, there is evidence that T1 is a close precursor of
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T2, i.e. losing a job at time T1 decreases the probability of having to wait longer than 6.5

months to observe a separation or divorce.

We have selected 6.5 months as being a censoring half-interval plus one twelfth of the

length of a 6 year panel, and thus representing a short term in comparison with the panel

length.

4.8.3 Results from a semiparametric model

In Chapter 3, we presented short term triggering models and likelihood functions for the

case when T1 is not interval censored and T2 ∈ (T20, T21).

Assume

λ1(t) = λ1,

λ02(u) = λ02

λ12(t) = eβλ02, t ≤ u < t + κ(t).

In principle, we could maximize the log likelihood function (3.8) to obtain estimates of

λ1, λ02 and β. Note that the log likelihood function (3.8) includes the corresponding terms

Lk, k = 1, . . . , 6, depending on whether the data satisfies the following conditions:

L1 if a1 ≤ t1, t20

L2 if 0 < t1 < a1 = t20

L3 if 0 ≤ t20 < t21 ≤ a1 < t1

L4 if 0 ≤ t20 < t1 < t21 ≤ a1

L5 if 0 < t1 < t20 < t21 ≤ a1

L6 if 0 < t20 < t21 ≤ t1 < a1
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In the following implementation, however, we consider data for which both events E1 and

E2 are observed to occur within a time window, i.e. the same data that were used in the

previous applications. Due to this conditioning, the corresponding log likelihood function is

modified accordingly and includes only the terms L′
4, L

′
5 and L′

6, where

L′
4 =

L4
∫ t21

t20
L4dt1 +

∫ t20
t0

L5dt1 +
∫ a1

t21
L6dt1

if 0 ≤ t20 < t1 < t21 ≤ a1

L′
5 =

L5
∫ t21

t20
L4dt1 +

∫ t20
t0

L5dt1 +
∫ a1

t21
L6dt1

if 0 < t1 < t20 < t21 ≤ a1

L′
6 =

L6
∫ t21

t20
L4dt1 +

∫ t20
t0

L5dt1 +
∫ a1

t21
L6dt1

if 0 < t20 < t21 ≤ t1 < a1

Consequently, considering data from the second panel of SLID, the corresponding esti-

mates and standard errors are given by

λ̂1 = 0.6821 (0.4609)

λ̂02 = 0.2736 (0.4084)

β̂ = 1.4831 (0.7437).

4.9 Remarks

The density estimates from Sections 4.4, 4.8.1 and 4.8.2 were obtained for the data with

(T1, T2) interval censored. The null hypothesis we are testing is that T1 and T2 are indepen-

dent, given that both are within the observation window. This is a weaker null hypothesis

than global independence of T1 and T2, and is more appropriate in our context because

the data are extracted for joint density estimation conditional on being in the observation

window.

It can be noted that the selection criteria from Section 4.2.1 make it possible to select a
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respondent more than once over the four cycles of the NPHS. In fact, however, we did not

have respondents with more than one contribution to the data.

Some important specifications are considered in the selection of the sample for the second

application. First, we condition on being at risk for both events at the day of the first in-

terview. This eliminates the possibility of including individuals who become married and/or

employed after day 0, for whom different distributions will apply. Second, we observe both

events in the time window of the life of the panel. This conditioning is reasonable and gives

us a sensible estimate since we are looking at close following and therefore are interested in

events that are close in time. Third, we select those individuals whose job is reported to

have ended during the life of the panel due to involuntary reasons. This inclusion criteria is

intended to avoid as much as possible a potential effect of divorce as a trigger for job loss.

In Section 4.8.3 we employed the approach presented in Chapter 3 to estimate the pa-

rameters of interest using data which is conditioned to be within a time window, i.e. data

for which both events E1 and E2 are observed to occur within a time window (0, a1). In

principle, the log likelihood function from Chapter 3 can be used to estimate the parameters

of interest using data which is not conditioned to be within a time window.

4.10 Bandwidth Selection

An important aspect of local likelihood density estimation is the selection of the smoothing

parameter. When h is very large, the density estimate is oversmoothed and the bias of the

density estimate is large; when h is very small, the bias is small but the variance of the

estimate is large.

In some contexts, the selection of the smoothing parameter obtained in a subjective

manner is adequate (Silverman; 1986, p.44). Quoting Silverman:

A natural method for choosing the smoothing parameter is to plot out several

curves and choose the estimate that is most in accordance with one’s prior ideas
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about the density. For many applications this approach will be perfectly satis-

factory. Indeed, the process of examining several plots of the data, all smoothed

by different amounts, may well give more insight into the data than merely con-

sidering a single automatically produced curve.

However, for many purposes a more formal analysis is necessary. Sheather (2004) briefly

reviews and classifies some methods for choosing a global value of the window width according

to Rules of Thumb, Cross-Validation and Plug-in methods.

In the univariate context of nonparametric density estimation from clustered sample

survey data, Breunig (2001) examined an optimal bandwidth selection using a higher-order

kernel. A method using likelihood cross-validation was presented by Braun, Duchesne and

Stafford (2005) in the context of univariate local likelihood density estimation with interval

censored data. Faraway and Jhun (1990), Taylor (1989) and Hall (1990) have presented

bootstrap approaches to select the smoothing parameter in kernel density estimation.

We approached the problem in the following manner. Consider the use of a gaussian

kernel and that h = h1 = h2. According to Silverman (1986, p.86-87), assuming the under-

lying distribution to be the unit bivariate normal density and acting as though the sample

were i.i.d., then the smoothing parameter which minimizes the Asymptotic Mean Integrated

Square Error (AMISE) is given by

hsil
opt = 0.96n−1/(d+4), (4.1)

where d indicates the dimensionality of the data, which in our case is d = 2. Considering

the NPHS application, a preliminary bandwidth was estimated as 0.48.

Note that although this approach works well if the sample were i.i.d. and the population

really followed a unit bivariate normal density, it may oversmooth somewhat if the population

is multimodal, as result of the value of the curvature (integrated square second derivative)

being larger (Silverman; 1986). Therefore, in Figures 4.4 and 4.5, we reduced the bandwidth
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Figure 4.10: Contour plot of the estimated joint density. NPHS example. Bandwidth hsil
opt = 0.48.

to 0.25 so that we would not miss features of the density by possible oversmoothing (compare

Figure 4.5 with Figure 4.10).

We can also think of hsil
opt = 0.48 as a starting point for subsequent fine tuning of the

bandwidth.

An approach to using the bootstrap replicates of the survey weights (see Sections 1.4.5

and 2.4) to estimate the Mean Integrated Square Error (MISE) for a given bandwidth h

would be the following.

Let w
(r)
i be the normalized bootstrap weight of the rth replicate for individual i, such

that
∑

i∈S w
(r)
i = 1. If we employ R of these bootstrap weight replicates, the MISE may be

assessed as follows.

For each set r of replicates:

1. Obtain (2.25) using the standardized survey weights w∗
i for i ∈ S. Let f̃w∗

j be the

corresponding estimate.

2. Obtain (2.25) using w
(r)
i (instead of w∗

i ) for i ∈ S. Let f̃w(r)

j be the corresponding

estimate.
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3. Compute

BMISE(h) =
1

R

R
∑

r=1

∫

(f̃w(r)

j (x; h) − f̃w∗

j (x; h))2dx. (4.2)

We may select a bandwidth by minimizing BMISE(h) over h.

However, the estimate of the bias implicit in (4.2), vanishes. The component of bias

increases with h and can be of considerable importance. Since the bias term penalizes

oversmoothing, a small bandwidth would be favourable (to minimize the bias component).

This method considers only an estimate of the variance implicit in (4.2). The variance term

penalizes undersmoothing, so that a large bandwidth would be preferred. Consequently,

minimization of BMISE(h) over h would suggest to take h as large as possible.

An improvement to this method would then include a penalty function g(h) for over-

smoothing in (4.2). Therefore, we may proceed as follows.

For each set r of replicates:

1. Obtain (2.25) using the standardized survey weights w∗
i for i ∈ S. Let f̃w∗

j be the

corresponding estimate.

2. Obtain (2.25) using w
(r)
i (instead of w∗

i ) for i ∈ S. Let f̃w(r)

j be the corresponding

estimate.

3. Compute

PBMISE(h) =

{

1

R

R
∑

r=1

∫

(f̃w(r)

j (x; h) − f̃w∗

j (x; h))2dx

}

+ g(h) (4.3)

Finally, select the bandwidth ĥp by minimizing PBMISE(h) over h.

Considering the NPHS application and taking g(h) = h2, we obtained a value for ĥp

which is closer to the bandwidth employed in Figures 4.4 and 4.5 and thus further validates

our choice of smoothing parameter in the first place.
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Chapter 5

Discussion and Future Research

The new aspects of this thesis include an extension of nonparametric density estimation

methods for interval censored survey data to the bivariate case. Furthermore, we propose

a method for estimation of a density with a cusp or a discontinuity in a certain region.

Additional contributions cover the development of a semiparametric approach to deal with

interval censoring in two event times. The application of these methodologies to complex

surveys, using data from the National Population Health Survey and the Survey of Labour

and Income Dynamics, is also a new aspect of this dissertation.

Close precursor

As it has been mentioned in Section 1.1, the quantity κ(t1) , which may be thought of as

the duration of an effect, would come from subject-matter considerations. Although (1.1)

indicates it depends on t1 (anticipating that the effect of T1 on the hazard of T2 might not

have constant duration), in neither of our applications was there a clear reason not to take

κ to be constant.

In section 1.2 it has been pointed out that the difference within (1.2) approximates the

difference between the hazard function conditional on T1 = t1 and the unconditional hazard

(i.e. a local additive change).
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A topic for future research would examine the sensitivity to the assumption of the size

of κ. We could consider estimating Q(κ) for a range of different values of κ and check for

which values of κ there is evidence for a close precursor relationship of T1 and T2 and for

which values of κ there is no evidence to reject the null hypothesis of independence.

In a future stage, more extensive simulation studies may be conducted to check the

assumed null distribution for Q. These simulation studies may be implemented using dif-

ferent models and parameter settings which may be appropriate to the NPHS and SLID

applications.

In Section 1.1 we also mentioned that (1.1) reflects approximately a short term raising

of the hazard function for T2. In principle, it may be not difficult to formulate an analogue

for point process intensities, giving us an alternative way of modelling events less tied to a

time origin. This may be pursued in future work. Blossfeld and Mills (2003), for example,

used interdependent point processes to model interrelated family events, namely entry into

marriage (for individuals in a consensual union) and first pregnancy or childbirth.

Density estimation

Note that in our case, the local EM algorithms of Chapter 2 are implemented by computing

conditional expectations using an importance sampling technique. This method relies on the

implementation of a bivariate uniform sampling scheme derived from the orthogonal array-

based latin hypercubes described by Tang (1993), also called U sampling. This method is

appealing, particularly for nonparametric density estimation in higher dimensions.

The estimated joint density has an easily interpreted visual representation. We can also

observe whether the plot is consistent with the inference, and whether it is consistent with

the idea of triggering by comparing it with the contour plot under the null hypothesis.

Other topics for further research include the following.
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Semiparametric Models

In principle the semiparametric models of Chapter 3 allow us to make use of right censored

as well as interval censored lifetimes for estimation of the corresponding intensities. The

estimating equations may be derived respectively from the likelihood functions in Section

3.2 assuming underlying distributions for the lifetimes. Therefore, such implementation

constitutes material for future work.

In Chapter 3, we also indicated that more realistic models would allow the hazards to

depend on appropriate covariates. This could be implemented in future work as well.

We have mentioned that the approach in Section 3.2 can become very complicated con-

sidering a complex survey design. In principle this would not be hard to deal with as long as

we have a single stage design, so that individuals can be regarded as independent. In that

case the log likelihood at the population level is a population sum, and the sample analogue

is a weighted sample sum. We have the following open questions:

(a) Is this type of model the most appropriate for survey data, particularly when the

design has more than a single stage of sampling?

(b) Should some kind of mixture be considered to account for heterogeneity?

Convergence

Regarding local likelihood density estimation, the results in Chapter 2 related to convergence

of our algorithms to a unique density estimate refer to the locally constant case. Appropriate

conditions can be established to guarantee the existence of a fixed point density estimate in

the locally linear case. However, establishing conditions to guarantee the uniqueness of or

convergence to a fixed point density estimate requires further research.

A generalization of Theorems 2 and 3 for h1 not necessarily equal to h2 may be pursued

also.
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Asymptotic results considering that the survey weights are not only the inverse inclusion

probability weights may be implemented in further work.

Bandwidth selection methods in kernel and local likelihood density estimation

The development of procedures for an optimal choice of the smoothing parameter in kernel

density estimation and local likelihood density estimation is a topic for future research.

Faraway and Jhun (1990), Taylor (1989) and Hall (1990) have presented bootstrap ap-

proaches to select the smoothing parameter in kernel density estimation. Further research

on bootstrap procedures to select the smoothing parameter in the context of local likeli-

hood density estimation for multivariate interval censored and complex survey data may be

pursued.
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Appendix A

The Normal Kernel

The normal (gaussian) kernel with bandwidth h mentioned in Chapter 2 is the following:

Kh(u) =
1

h
K(u/h) =

1

h
√

2π
e−(1/2)(u/h)2 .

The Kuhn-Tucker Conditions

Recall the log likelihood given in (2.79)

l(p) =
n
∑

i=1

log
(

J
∑

j=1

αi
jpj

)

.

Let p = (p1, . . . , pJ). To find the maximum likelihood estimate of p Gentleman and Geyer

(1994) maximize l(p) with respect to p subject to the constraints

1 −
J
∑

j=1

pj = 0 (A.1)

and

pj ≥ 0. (A.2)
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A point p̂ is a maximum likelihood estimate if and only if there exist Lagrange multipliers λj

for j = 0, . . . , J such that the Kuhn-Tucker conditions (A.1) - (A.5) hold, for j = 1, . . . , J ,

where

λjpj = 0 (A.3)

λj ≥ 0 (A.4)

∂

∂pj

[

l(p) +
J
∑

j=1

pj(λj − λ0)

]

=
∂l

∂pk
+ λj − λ0 = 0 (A.5)

Note that λ0 = n, which is obtained by multiplying (A.5) by pj, summing over all j and

using the fact that

∂l

∂pk
=

n
∑

i=1

αi
k

∑J
j=1 αi

jpj

.
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Appendix B

NPHS Variables

For every longitudinal respondent a set of useful variables was obtained and according to the

description of our subsample, the appropriate data file was created using the software SAS

v8.

A list of the variables we have employed for each selected longitudinal individual is as

follows:

- Record identifier for the household: REALUKEY.

- Number identifying the person in the household: PERSONID.

- Longitudinal response pattern: LONGPAT.

- Sex: SEX.

- Day, month and Year of birth: DOB, MOB, YOB.

Day, month and year of the interview:

- AM54 BDD, AM54 BMM, AM54 BYY, (cycle 1).

- AM56 BDD, AM56 BMM, AM56 BYY, (cycle 2).

- AM58 BDD, AM58 BMM, AM58 BYY, (cycle 3).
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- AM60 BDD, AM60 BMM, AM60 BYY, (cycle 4).

Age of the respondent at the time of the interview:

- DHC4 AGE, DHC6 AGE, DHC8 AGE, DHC0 AGE, (cycles 1 to 4).

Whether the respondent gave birth since last interview:

- GHC6 21, GHC8 21, GHC0 21, (cycles 2 to 4)

Whether the individual is pregnant at the moment of the interview:

- HWC4 1, HWC6 1, HWC8 1, HWC0 1, (cycles 1 to 4).

Type of smoker (daily or occasional):

- SMC4 2, SMC6 2, SMC8 2, SMC0 2, (cycles 1 to 4).

Age at which stopped smoking daily (for the former daily smoker):

- SMC6 8, SMC8 8, SMC0 8, (cycles 2 to 4).

Reason for quitting smoking:

- SMC6 9, SMC8 9, SMC0 9, (cycles 2 to 4).

Our exercise employed demographic variables from the household (cross-sectional) files

of 1996-97 and 1998-99 (cycles 2 and 3). These were obtained from the general component

of the NPHS. This component is present only in the first three cycles and include:

Household and person identifiers:

- REALUKEY and PERSONID.

Gender of each household member:

- DHC6 SEX, DHC8 SEX, (cycles 2 and 3)
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Dates of birth (day, month and year of birth) of every individual in the household:

- DHC6 DOB, DHC6 MOB and DHC6 YOB, (cycle 2).

- DHC8 DOB, DHC8 MOB and DHC8 YOB, (cycle 3).

Age of each person in the household:

- DHC6 AGE, DHC8 AGE, (cycle 2 and 3).

Family identification code of every member in the household:

- DHC6 FID, DHC8 FID, (cycles 2 and 3).

SLID Variables

For every longitudinal respondent a set of useful variables was obtained from each of the

first and second panels of the survey.

SLID RETrieval Software Version 2.2 (SLIDRET v2.2) was used to extract a vector of

all dates of changes of the marital status (with associated type of change) for each person in

Panels 1 and 2. We employed entity number 4 (MARSTAT) for this purpose and the chosen

unit of analysis was: Marital status.

The type of analysis was indicated as: Longitudinal, with reference years covering waves

1 to 6 of the panel. Finally, according to the description of our subsample, the appropriate

data file was created using the software SAS v8.

For panel 1, the corresponding variables and their description are listed below.

• personid: Unique identifier for a person

• ilgwt26 1993: Internal longitudinal weight for the person for the reference year which

is 1993 in this case. ilgwt26 1994 to ilgwt26 1999 were also part of the output of the

SLIDRET query. Applicable to panel one of respondents.
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• stateid: Unique identifier for one marital state for one person.

• strdat4: Date on which the marital state began.

• enddat4: Date of termination of the marital state.

• ended4: Indicates whether marital state ended.

• state4: Marital status of respondent, which includes:

– Married.

– Common-law.

– Separated (persons separated from a common-law relationship are included here).

– Divorced.

– Widowed.

– Single (never married). This is the first state for all persons.

Similarly, for dates of employment (or dates of changes in employment status), a vector

of job history was also obtained using SLIDRET v2.2. We have utilized entity 9 (JOB) and

the unit of analysis was: Person-Job.

The type of analysis was also indicated as: Longitudinal, with reference years for retrieval

from 1993 to 1998.

A description of each variable follows its name:

• personid: Unique identifier for a person.

• ilgwt26 1993 : Internal longitudinal weight for the person for the reference year

(1993) in panel 1. Same as above.

• jobid: Unique identifier for a job or employment spell with an employer.

• strdat9 : Start date of job.
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• enddat9: End date of job.

• ended9 : Flag to indicate if job had ended by the end of the most current survey

reference period of the data file.

• jobdur9 : Duration of job expressed in months.

• endtyp9 : Reason why job was ended in processing.

• typjs9 : Type of job separation (voluntary or involuntary).

• reaend9 : Reason why work came to an end.

The reasons why the work came to an end that are considered to be involuntary job

separations are the following:

- Company moved.

- Company went out of business.

- Layoff/Business slowdown (not caused by seasonal conditions).

- Labour dispute.

- Dismissal by employer.

These involuntary reasons for job separation were included in our subsampling conditions

to avoid as much as possible a potential effect of divorce as a trigger for job loss. Some of

the voluntary job separations include:

- Caring for own children or elder relative(s).

- School.

- Found new job.

- Move to a new residence.
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- Poor pay.

- Not enough hours of work.

- Too many hours of work.

An equivalent list was obtained for panel 2. Further details concerning the variables and

methods of extracting data using SLIDRET v2.2 can be found at the SLID microdata user’s guide,

the SLID electronic data dictionary and the SLIDRET user’s manual (see bibliography).

107



Bibliography

Bellhouse, D. R. and Stafford, J. E. (1999). Density estimation from complex surveys,

Statistica Sinica 9: 407–424.

Bellhouse, D. R., Goia, C. M. and Stafford, J. E. (2003). Graphical displays of complex

survey data through kernel smoothing, in Chambers, R. and Skinner, C.J. (eds), Analysis

of Survey Data, pp. 133–150. John Wiley.

Betensky, R. and Finkelstein, D. (1999). A non-parametric maximum likelihood estimator

for bivariate interval censored data, Statistics in Medicine 18: 3089–3100.

Bleuer, S. J. and Kratina, I. S. (2000). Some issues in the analysis of complex survey data,

Proceedings of the Survey Research Methods Section, American Statistical Association,

Washington DC pp. 734–739.

Blossfeld, H. and Mills, M. (2003). A causal approach to interrelated family events, Pro-

ceedings of Statistics Canada Symposium 2002: Modelling Survey Data for Social and

Economic Research. Statistics Canada. 11-522-XIE, Ottawa.

Braun, J., Duchesne, T. and Stafford, J. (2005). Local likelihood density estimation for

interval censored data, The Canadian Journal of Statistics 33(1): 39–60.

Breunig, R. V. (2001). Density estimation for clustered data, Econometric Reviews 20: 353–

367.

108



Buskirk, T. and Lohr, S. (2005). Asymptotic properties of kernel density estimation with

complex survey data, Journal of Statistical Planning and Inference 128: 165–190.

Charles, K. K. and Stephens, M. J. (2004). Job displacement, disability and divorce, Journal

of Labour Economics 22: 489–522.

Cook, R. J., Zeng, L. and Lee, K.-A. (2007). A multistate model for bivariate interval cen-

sored failure time data, Technical Report. Department of Statistics and Actuarial Science.

University of Waterloo.

Duchesne, T. and Stafford, J. (2001). A kernel density estimate for interval censored data,

Technical Report No. 0106. University of Toronto.

Faraway, J. J. and Jhun, M. (1990). Bootstrap choice of bandwidth for density estimation,

Journal of the American Statistical Association 85: 1119–1122.

Gentleman, R. and Geyer, C. (1994). Maximum likelihood for interval censored data: Con-

sistency and computation, Biometrika 81: 618–623.

Geskus, R. and Groeneboom, P. (1997). Asymptotically optimal estimation of smooth func-

tionals for interval censoring, part 2, Statistica Neerlandica 51: 201–219.

Geskus, R. and Groeneboom, P. (1999). Asymptotically optimal estimation of smooth func-

tionals for interval censoring, case 2, The Annals of Statistics 27: 627–674.

Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maxi-

mum Likelihood Estimation, Birkhäuser, Boston.
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