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Abstract

In drug discovery, thousands of compounds are assayed to detect activity against a

biological target. The goal of drug discovery is to identify compounds that are active

against the target (e.g. inhibit a virus). Statistical learning in drug discovery seeks

to build a model that uses descriptors characterizing molecular structure to predict

biological activity. However, the characteristics of drug discovery data can make

it difficult to model the relationship between molecular descriptors and biological

activity. Among these characteristics are the rarity of active compounds, the large

volume of compounds tested by high-throughput screening, and the complexity of

molecular structure and its relationship to activity.

This thesis focuses on the design of statistical learning algorithms/models and

their applications to drug discovery. The two main parts of the thesis are: an

algorithm-based statistical method and a more formal model-based approach. Both

approaches can facilitate and accelerate the process of developing new drugs. A

unifying theme is the use of unsupervised methods as components of supervised

learning algorithms/models.

In the first part of the thesis, we explore a sequential screening approach, Cluster

Structure-Activity Relationship Analysis (CSARA). Sequential screening integrates

High Throughput Screening with mathematical modeling to sequentially select the

best compounds. CSARA is a cluster-based and algorithm driven method. To

gain further insight into this method, we use three carefully designed experiments

to compare predictive accuracy with Recursive Partitioning, a popular structure-

activity relationship analysis method. The experiments show that CSARA outper-

forms Recursive Partitioning. Comparisons include problems with many descriptor

sets and situations in which many descriptors are not important for activity.
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In the second part of the thesis, we propose and develop constrained mixture

discriminant analysis (CMDA), a model-based method. The main idea of CMDA

is to model the distribution of the observations given the class label (e.g. active

or inactive class) as a constrained mixture distribution, and then use Bayes’ rule

to predict the probability of being active for each observation in the testing set.

Constraints are used to deal with the otherwise explosive growth of the number

of parameters with increasing dimensionality. CMDA is designed to solve several

challenges in modeling drug data sets, such as multiple mechanisms, the rare target

problem (i.e. imbalanced classes), and the identification of relevant subspaces of

descriptors (i.e. variable selection).

We focus on the CMDA1 model, in which univariate densities form the building

blocks of the mixture components. Due to the unboundedness of the CMDA1 log

likelihood function, it is easy for the EM algorithm to converge to degenerate solu-

tions. A special Multi-Step EM algorithm is therefore developed and explored via

several experimental comparisons. Using the multi-step EM algorithm, the CMDA1

model is compared to model-based clustering discriminant analysis (MclustDA).

The CMDA1 model is either superior to or competitive with the MclustDA model,

depending on which model generates the data. The CMDA1 model has better

performance than the MclustDA model when the data are high-dimensional and

unbalanced, an essential feature of the drug discovery problem!

An alternate approach to the problem of degeneracy is penalized estimation. By

introducing a group of simple penalty functions, we consider penalized maximum

likelihood estimation of the CMDA1 and CMDA2 models. This strategy improves

the convergence of the conventional EM algorithm, and helps avoid degenerate

solutions. Extending techniques from Chen et al. (2007), we prove that the PMLE’s

of the two-dimensional CMDA1 model can be asymptotically consistent.
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Chapter 1

Drug Discovery and Data Sets

1.1 Drug Research

Drug discovery is a multidisciplinary endeavor occurring at the interface of biology,

chemistry, computer science, statistics and informatics. Its history can be traced

back over one hundred years. Drug research began when chemistry had reached

a degree of maturity that allowed its principles and methods to be applied to

problems outside of chemistry, and also when pharmacology had become a well-

defined scientific discipline.

1.1.1 The Evolution of Drug Discovery

By the 1870’s, drug research was affected heavily by some of the essential founda-

tions of chemical theory, such as Avogadro’s atomic hypothesis, the periodic table

of elements, the theory of acids and bases, and especially August Kekule’s pioneer-

1
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ing theory on the structure of aromatic organic molecules. Analytical chemistry,

in particular the isolation and purification of the active ingredients of medicinal

plants, also demonstrated its value for medicine in the 19th century. Between 1871

and 1918, as a series of new institutions were created to support interdisciplinary

drug research and development, a new way of finding, characterizing, and develop-

ing medicines led to the formation of a new industry, i.e. drug discovery (Drews

2000).

During the first half of 20th century, drug research was shaped and enriched by

several new technologies, all of which left their imprint on drug discovery and on

therapy (Drews 2000). For instance, microbiology, biochemistry and pharmacology

helped shape the course of drug discovery and bring it to a level where new drugs are

no longer generated solely by the imagination of chemists but result from a dialogue

between biologists and chemists. Also the main effect of molecular biology for drug

discovery lies in the potential to understand disease processes at the molecular or

genetic level and to determine the optimal molecular targets for drug intervention.

1.1.2 High-throughput Screening

With the advent of genomic sciences, rapid DNA sequencing, combinatorial chem-

istry and cell-based assays, drug discovery has entered into a new period. In this

new period, the critical problem is an ever-increasing number of targets and com-

pounds. Pharmaceutical companies participating in drug discovery measure (assay)

the activity of various chemical compounds against a biological target (e.g. a dis-

ease). With recent scientific and technological advances, such as larger chemical
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libraries (chemical groupings of compounds) and robotic systems, assays of tens of

thousands of compounds can be performed in a single day. This process is known

as high-throughput screening (HTS).

In the HTS process, a number of compounds are screened against a given target

and the compounds showing the biggest positive effect (e.g. hindering the develop-

ment of diseases) are carried forward for more detailed analysis. Compounds with

a positive effect above a predetermined threshold will be called active compounds

or hits. With the prospect of many potential targets, the efficient design of bio-

chemical assays is increasingly important. Methods for choosing compounds are

an essential part of this design process. Also HTS creates new opportunities for

structure-activity relationship (SAR) analysis and increases the need for effective

statistical methods to identify trends and relationships in the data. Further, al-

though the cost of testing a single chemical compound against a biological target is

small, testing hundreds of thousands of compounds can become quite costly. Hence,

sequential screening has been developed to help reduce costs and create a more ef-

ficient strategy to determine SAR models. Sequential screening will be described

in the next section.

1.1.3 The Sequential Screening Paradigm

In today’s drug discovery, HTS is unable to screen all possible compounds as the

estimated number of possible drug molecules is roughly 1040 (Valler & Green 2000).

Hence sequential screening (Engels & Venkatarangan 2001) has been developed

to help reduce costs and make HTS more efficient. Sequential screening combines
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HTS and virtual screening (a screening model) in one integrated screening process.

Instead of testing an entire chemical library against a biological target, only a

fraction of the library, known as the initial sample set, is assayed. The purpose

of the initial sample set is not to find as many actives as possible, but simply

to collect data on a diverse set of compounds in the chemical space, so that a

computational analysis of these data can identify trends and help to select a further

set of compounds to be screened.

The sequential screening process is described in Figure 1.1. The flow of the

process is as follows: The experiment starts with the initial sample of compounds,

which is run through the HTS process. A quantitative structure-activity relation-

ship (QSAR) analysis of the data is performed to identify descriptors (variables

that quantify the structure of molecules) relevant to the biological activity. In this

step, a model capable of predicting activity using descriptor values is fit using the

data from the initial set screened. On the basis of the first QSAR, the whole data

inventory is virtually screened in order to get a more focused set of compounds

(i.e. the compounds predicted to be active) for a second round of HTS. Virtual

screening of compounds consists of using the fitted model to predict activity for the

untested compounds. Depending on the success of the HTS on the focused set, the

project budget, and the available resources, one or more iterations of the HTS →

QSAR → virtual screen cycle may be undertaken before the final QSAR analysis.

The QSAR analysis in the sequential screening process is a supervised learning

problem, which uses both descriptors and biological activity of compounds to learn

a predictive model. In Section 1.2, several descriptor sets will be introduced.
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Figure 1.1: The Sequential Screening Paradigm.

1.2 Chemical Descriptors and Data Sets Used in

the Thesis

Computational chemists have been able to qualify a compound’s structure with

many different sets of descriptors. Todeschini & Consonni (2000) list many of

the available descriptors in their Handbook of Molecular Descriptors. Calculating

descriptors is far less expensive than assaying the entire library of compounds, and

as long as a set of descriptors can be generated, even compounds that do not yet

exist or are not part of the company’s chemical library can be virtually screened. In

this section, we focus on introducing two drug discovery assays and five descriptor

sets used in the thesis.
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Assay Descriptor Variables

Name Measurement # Compounds Set # Source

Yeast binary 75,873 BCUT 6 GlaxoSmithKline

continuous 75,873 BCUT 6 GlaxoSmithKline

AIDS binary 29,812 BCUT 6 GlaxoSmithKline

binary 29,374 BCUT 64 Feng et al. (2003)

binary 29,374 Constitutional (CON) 46 Feng et al. (2003)

binary 29,374 Property (PROP) 212 Feng et al. (2003)

binary 29,374 Topological (TOP) 261 Feng et al. (2003)

Table 1.1: Data sets used in the thesis.

1.2.1 Data Sets

Two assays are used in the thesis with a variety of descriptor sets, as summarized

in Table 1.1.

The first assay is from the National Cancer Institute (NCI) Yeast Anticancer

Drug Screen (Simon, Dunstan, Lamb, Evans, Cronk & Irvine 2000), and will be

referred to here as the Yeast data. The Yeast assay measures inhibition of human

tumor cancer growth. For a tumor to develop, there must be a series of mutations,

which cause cells to multiply uncontrollably. Because of the high degree of func-

tional homology in biological activity between yeast and mammalian cells, many

mutations can be modeled in yeast. Simon et al. (2000) carried out a screen of

over 100,000 compounds from the repository at the NCI’s Developmental Thera-

peutics Program to identify compounds that can inhibit the growth of the mutated

cells. Hence, the Yeast assay data measure the percentage growth inhibition of the

assayed compounds. Among 100,000 compounds screened, 75,873 are used in the
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final analysis after three stages of screening. For most analyses we will convert

the percentage inhibition to a binary inactive/active response. Of the 75,873 com-

pounds, 6,834 are considered active, because they have growth inhibition of at least

70% (Simon et al. 2000); the proportion of active compounds is 8.2%. The Yeast

data can be downloaded from http://dtp.nci.nih.gov/yacds (accessed April 26,

2003).

The second assay, from the NCI Developmental Therapeutics Program, re-

lates to the HIV/AIDS virus and will be called the AIDS data. A description

of this assay is provided by Lam, Welch & Young (2002). The original AIDS data

(about 32, 000 compounds) can be downloaded from http://dtp.nci.nih.gov/

docs/aids/aids data.html (accessed April 26, 2003). Some observations with

poor structure representations that are usually considered as non-drug candidates

have been deleted from the original data (Lam et al. 2002), leaving us about 29, 812

compounds in the data. Feng, Lurati, Ouyang, Robinson, Wang, Yuan & Young

(2003) used a slightly different assay data set, which has 29, 374 compounds. In

the thesis, we use both of these assays. The biological activity is the amount of

protection a compound gives to human CEM (immunofluorescence and cryoim-

munoelectron microscopy) cells from HIV-1 infection. Two assay classifications,

“moderately active” and “confirmed active”, have been combined to form an “ac-

tive” class (Lam 2001). There are approximately 2% actives.

The data for both assays were generated by HTS. When converted to a binary

outcome, the Yeast data have a higher proportion of active compounds than found

in the AIDS data. In general, these compounds are representatives of those in
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pharmaceutical data sets. Although they are not completely typical as they include

“toxic” compounds, which may selectively kill cancer cells, they should still provide

useful information on the effectiveness of the QSAR sampling/analysis strategies.

In all experiments, we will treat the available data as if they were a compound

library, and pretend to observe activity for selected subsets of the library. This will

enable us to simulate the sequential screening process summarized in Figure 1.1.

Various descriptor sets, as summarized in Table 1.1, will be used to character-

ize chemical structure in the QSAR modeling. The next section describes these

descriptor sets.

1.2.2 Chemical Descriptor Sets

Throughout the thesis, we shall assume that all descriptors are numeric variables,

rather than categorical. Below we list various descriptor sets used in subsequent

chapters.

6 BCUT descriptors

There are mainly three persons or research groups that have contributed to the

evolution of BCUT descriptors. Burden (1989) originally suggested construct-

ing a modified connectivity matrix to represent the hydrogen-suppressed con-

nection table of the molecule. To build this connectivity matrix, the atomic

numbers of the elements were put on the diagonal and values describing bond-

type of each pair of atoms are put on the off-diagonal. The aim of his work was

to produce descriptors that are highly compact but with minimal redundancy.



Drug Research and Data Sets 9

Based on the assumption that the smallest eigenvalues contain contributions

from all the atoms and thus reflect topology of the molecule, the two smallest

eigenvalues of this matrix were used as chemical descriptors of the molecule.

The essence of the method is to solve the eigenvalue equation

BV = V e, (1.1)

where B is a real symmetric connectivity matrix to be defined. V is a matrix

of eigenvectors, and e is a diagonal matrix of eigenvalues. Elements of the

connectivity matrix are constructed so that the off-diagonal elements repre-

sent the strength of connection between atoms, and the diagonal elements the

size of the elements. The rules defining B used in Burden’s method are as

follows:

(a) Hydrogen atoms are not included.

(b) The rows and columns of the connectivity matrix are arbitrarily num-

bered according to the heavy atoms.

(c) The diagonal elements of B, Bii, are the atomic numbers of the atoms.

(d) The element of B connecting atoms i and j, Bij, is 0.1 for a single bond,

0.2 for a double bond, 0.3 for a triple bond, and 0.15 for an aromatic

delocalized bond.

(e) Elements of B corresponding to bonds to terminal atoms (i.e., atoms

with one connection only) are augmented by 0.01.

(f) All other elements of B are set at 0.001.
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Figure 1.2: Some fragment structures for formula C4H4.

According to the above rules, the different fragment structures with the same

formula can have different eigenvalues. For example, Figure 1.2 illustrates

several fragment structures for a formula C4H4. The first two lowest eigen-

values for these fragment structures are given in Table 1.2. It is clear that

even though these fragments have the same formula C4H4, but they have

different eigenvalues due to their different molecular structures. Figure 1.3

shows the scatter plot of these eigenvalue descriptors in Table 1.2 for C4H4. It

is interesting to see that (a) is close to (b); (d) is close to (e) and (f) is distant

from all other compounds. From the structures of these fragment, we notice

that (a) and (b), (d) and (e) are similar, while (f) is much more different from

others. Therefore, the similar structures have close BCUT descriptors.

Burden’s seemingly far-fetched ideas were successfully confirmed by Rusinko

and Kipkus (A. Rusinko and A. H. Kipkus, unpublished result obtained at

Chemical Abstract Service, Columbus OH) in 1993. They found structure

searches based on Burden’s suggestion were surprisingly comparable to the
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Smallest eigenvalue Second smallest eigenvalue

(a) 5.6593 5.9407

(b) 5.6847 5.9990

(c) 5.7010 5.8990

(d) 5.6391 5.8609

(e) 5.6010 5.7990

(f) 5.9000 5.9000

Table 1.2: Descriptors for some C4H4 fragments.

results of accepted similarity searching procedures. Pearlman & Smith (1999)

were inspired by the success of Rusinko and Kipkus, and extended Burden’s

approach of using one connectivity matrix to using multiple connectivity

matrices. They proposed constructing three classes of matrices: one class

with atomic charge-related values on the diagonal, a second class with atomic

polarizability-related values on the diagonal, and a third class with H-bond-

abilities on the diagonal. Also they put a variety of additional information on

the off-diagonal including functions of inter-atomic distance, overlaps, com-

puted bond-orders, etc. In addition to the smallest eigenvalue of each of the

three connectivity matrices (as Burden suggested) Pearlman & Smith (1999)

also used the largest eigenvalue of each matrix, which leave us in total 6 BCUT

descriptors. The advantage of six BCUT numbers over other descriptors is

their low dimensionality, which allows many statistical tools to be applied.

However, they are not easy to interpret in terms of chemical structure.
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Figure 1.3: Scatter plot of the formula C4H4 using the descriptors in Table 1.2.

64 BCUT descriptors

Feng et al. (2003) considered four connectivity matrices presenting atomic

properties — atomic mass, van der Waals volume, atomic electronegativity,

and atomic polarizability. Instead of using the largest and smallest eigenvalues

of each connectivity matrix, they used the eight largest and the eight smallest

eigenvalues of each atomic property matrix, which give in total 16× 4 = 64

BCUT descriptors.

46 Constitutional descriptors (CON)

The Constitutional descriptors are the measurements of the “constitution”

of a compound. The 46 descriptors include information such as molecular
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weight, atomic weight, atomic counts, etc. They depend only on the atoms

in a molecule but not specifically on the connections between the atoms. For

instance, the molecular weight of a compound is calculated as the sum of the

atomic weight of all the atoms that make up one molecule of the compound

without looking at their connectivity. Generally speaking, larger molecules

will have higher values for all of the Constitutional descriptors. Many different

molecules might have the same values of constitutional descriptors as there are

many ways that the same atoms can be connected to make a valid molecule.

212 Property/Fragment Descriptors (PROP)

Property descriptors reflect physicochemical properties of molecules, like log P

(the octanol-water partition coefficient, a measure of the hydrophobicity and

hydrophilicity of a substance. In the context of drug-like substances, hy-

drophobicity is related to absorption, bioavailability, hydrophobic drug-receptor

interactions, metabolism and toxicity), aromatic index, etc. They also include

fragment descriptors, which indicate the kinds of fragments in a molecule

and their frequencies. The fragments include atom/bond sequences and aug-

mented atoms.

261 Topological Index (TOP)

The molecules are treated as topological objects where atoms become the

vertices, and the bonds the edges of a molecular graph. The TOP descrip-

tors, such as atomic order, relative eletronegativity, length of covalent radius,

atomic mass, atomic and adjacent hydrogen mass, atomic polarity, atomic

radius, and atomic eletronegativity etc, can be easily calculated. The TOP
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descriptors can be used to evaluate structural similarity and diversity, making

them widely used in QSAR analysis.

Ideally the descriptors should contain relevant information on the compounds

and be few in number so that the subsequent analysis will not be too complex, but

larger descriptor sets are very popular in drug discovery.

1.3 Challenges of Drug Discovery Data

The characteristics of drug discovery data generate many challenges for QSAR

modeling:

1. Unbalanced response: although the data generated by HTS may have an

enormous number of tested compounds, active compounds are often very

rare.

2. Multiple mechanisms: the compound structure is complicated and may imply

many mechanisms leading to activity.

3. Subspace-governed activity: the multiple mechanisms are usually determined

by the low-dimensional subspaces of descriptors.

4. Nonlinear relationship: drug discovery data often involve threshold and non-

linear effects when the chemical structure is represented by a set of descriptors.

5. Measurement errors: large random or systematic measurement errors may be

present in the assays.
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As an open research area, QSAR modeling attracts researchers on many statis-

tical methods and techniques including simple methods such as linear regression,

and more advanced methods like neural networks (NN), Partial Least Squares and

recursive partitioning (RP, e.g. trees). Feng et al. (2003) built NN, PLS and RP

using four different sets of chemical descriptors (64 BCUT variables, 46 Constitu-

tional variables, 212 Property variables and 261 Topological variables in Table 1.1)

and compared their performance.

It is well accepted that more complicated methods (e.g. NN, PLS and RP)

should have more prediction power than linear regression to model a QSAR. Young

& Hawkins (1998) applied a recursive partitioning procedure, FIRM, to a large,

structure-activity data set and showed that different mechanisms of the data can

be discovered. A later study (Wang 2005) using the same data set compared K-

nearest neighbour classification (KNN), trees, neural networks, MARS (Friedman

1991), generalized additive models and logistic regression, concluding that KNN is

one of the best methods.

Due to the difficulty of data and variety of the problems, QSAR modeling con-

tinues to inspire people to find better predictive models.

1.4 Structure of the Thesis

In this thesis, two QSAR models are developed. Chapter 2 describes an algorithm-

based drug mining method: Cluster Structure-Activity Relationship analysis (CSARA).

Comparisons between CSARA and Recursive Partitioning are conducted to evalu-

ate the performance of CSARA. The second QSAR model is based on the idea of
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mixture discriminant analysis, which is described in Chapter 3. The motivations for

designing our special Constrained Mixture Discriminant Analysis (CMDA) model

are also given in Chapter 3. In Chapter 4, the first order CMDA model (CMDA1)

is discussed in detail. The degeneracy issue during the parameter estimation of

the CMDA1 model is our focus. A Multi-step Expectation-Maximization (EM)

algorithm is designed to handle the degeneracy problem. The other model-based

solution to degeneracy, Penalized Maximum Likelihood Estimation (PMLE), is in-

troduced in Chapter 5. The asymptotic consistency of the CMDA1 model is proved

and confirmed by some simulation examples. Chapter 6 describes future research.



Chapter 2

CSARA: An Algorithm-based

Drug Mining Method

2.1 QSAR Approaches: CSARA and RP

In theory, chemical compounds with similar structures will react with a biological

target in a similar way (Lajiness 1997). Further, if the compounds with similar

values of critical chemical descriptors can be grouped into one cluster, informa-

tion about the activity of all compounds in the cluster may be obtained by sim-

ply assaying one or a few compounds randomly picked from the cluster. Engels

& Venkatarangan (2001) suggested such a cluster-based approach for sequential

screening experiments, namely Cluster Structure-Activity Relationship Analysis

(CSARA). Even though Engels & Venkatarangan (2001) used several examples to

show how useful the CSARA method is in the process of active compound selection

compared to random selection, they did not compare CSARA with other QSAR

17
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methods, like recursive partioning (RP). As RP is a very popular QSAR approach

in drug discovery, it provides a good benchmark for comparison. In this chapter, we

follow the same basic CSARA algorithm, but our focus is to deepen understanding

of CSARA and explore its efficiency for screening drug data relative to RP.

The sequential screening framework described in Section 1.1.3 is applied here,

with both CSARA and RP taking the role of supervised learning approaches. With

the exception of Section 2.5, the response is assumed to be binary (active/inactive).

2.1.1 CSARA

The CSARA procedure is illustrated in Figure 2.1 and described as an algorithm

below.
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CSARA Algorithm

A. The entire compound library is available for sequential

screening.

B. Compounds are clustered using descriptors and one com-

pound is randomly selected from each cluster (shown in

black in Figure 2.1(B)).

C. The randomly selected compounds, one from each cluster,

are tested for biological activity. In Figure 2.1(C), the

compounds shown in black are active and those in gray

are inactive.

D. All the compounds in the clusters with an active compound

from (C) are assayed to get more accurate estimation of

their biological activities.

The CSARA algorithm is based on the belief that compounds with similar

chemical structures react with targets in a similar way. In Figure 2.1, CSARA

partitions the entire compound library into six clusters, and one representative of

each cluster is randomly selected and tested. If the selected compound is active,

we place all other compounds belonging to that cluster in the focused library for

the second round of HTS. However, if the selected compound is inactive, this would

suggest that the remaining compounds in the cluster are also inactive, and they are

not included in the second HTS. Although the illustration in Figure 2.1 has only

six clusters, CSARA would typically use hundreds or thousands of clusters.

In fact, CSARA is a two-stage sequential screening process. Steps B, C, and

D in the CSARA algorithm correspond to the key boxes in Figure 1.1: CSARA’s



Algorithm-based Drug Mining Method 20

(D)(C)(B)(A)

Figure 2.1: The CSARA process. Adapted from Engels and Venkatarangan (2001).

Step B is selecting an initial sample of compounds or training data; Step C is HTS

to measure the activities of the initial sample; Step D combines QSAR analysis and

virtual screening in order to get the focused library.

In Step B, the whole compound library is partitioned into groups by a clustering

algorithm, using descriptors. The partitioned groups are then partly tested (here,

only one compound each group) and used to determine the activities of untested

compounds. CSARA uses both descriptors and biological activities of compounds

to analyze the relationship between molecular structures and biological activity, so

CSARA is a supervised learning algorithm.

K-means Algorithm

A critical part of CSARA is cluster analysis (Step B). Partitioning the entire com-

pound library into clusters can be approached with a wide variety of clustering
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algorithms (Dunbar 1997). Available algorithm-based methods of seeking clusters

can be categorized broadly as hierarchical methods and partitioning methods. In

this chapter, we use one popular partitioning method, K-means (MacQueen 1967).

For the K-means algorithm, K represents the required number of clusters that

must be supplied by the user. In general, the K-means algorithm works as follows:

1. Randomly choose K unique compounds with descriptor vectors, m1, . . . ,mK,

which serve as “centres” or “means” for the K clusters. Let C(1), . . . , C(K)

represent a partition of data indices 1, . . . , n into clusters 1, . . . , K.

2. Iterate the following steps until the cluster centres do not change with an

update:

(a) Update cluster memberships C(1), . . . , C(K) by allocating each compound

to the cluster with the closest centre.

(b) Recompute the K cluster centers, m1, . . . ,mK, by averaging the points

within clusters:

mk =
1

nk

∑

i∈C(k)

xi for k = 1, . . . , K, (2.1)

where nk is the number of points in C(k) and xi is a vector representing

descriptor variables of the ith point.

The aim of the K-means algorithm is to divide n points in p-dimensions into K

clusters so that the within-cluster sum of squares is minimized. The within-cluster

sum of squares criterion is

min
C(1),...,C(K);m1,...,mK

K
∑

k=1

∑

i∈C(k)

‖xi −mk‖2. (2.2)
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where ‖ • ‖2 denotes squared Euclidean distance. The K-means algorithm is not

guaranteed to find the global minimum sum of squares (2.2). Instead, the K-means

algorithm will find a local optimum. Hartigan & Wong (1979) propose an improved

version of K-means such that the movement of a point from one cluster to another

will not reduce the within-cluster sum of squares. Although Hartigan & Wong’s

algorithm does not guarantee a global optimum, it tends to find better local optima.

Compared to other clustering algorithms, K-means is a fast algorithm because

distance calculations are only made from each point to the centers m1, . . . ,mK

rather than considering all pairwise distances. Also finding the nearest cluster for

each compound via Euclidean distance is a fast calculation. Due to its very quick

computability, K-means is an appealing method when dealing with large data sets,

especially those arising from HTS.

There are several issues needed to be considered when K-means is applied.

(1) Scaling

The K-means algorithm usually uses Euclidean distance to determine the cluster

center to which a compound is closest. The scaling of the descriptors does have an

effect on Euclidean distances. For the purposes of this thesis, the descriptors were

standardized by dividing them by their standard deviations.

(2) Unique starting values

A characteristic typical of HTS data can result in difficulty with the K-means

algorithm. According to Young, Lam & Welch (2002), HTS is an imprecise exercise,

which results in some compounds being assayed repeatedly. The replicated com-

pounds in the data set are a potential difficulty in the application of the K-means
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algorithm. The following scenario illustrates what can happen when replication is

present. Suppose compound i is assayed twice. In step 1 of the K-means algorithm,

it is possible to choose compound i to represent two different cluster centers. For

simplicity, we say cluster 1 and cluster 2 have center i. In step 2 of the algorithm,

the compound in cluster 1 will be reallocated to cluster 2 resulting in cluster 1

being empty. In this case, there are now only K − 1 clusters instead of the desired

K. To overcome this problem, only unique compounds should be selected as initial

centers. Then the replicated compounds can be allocated to the same clusters in

which their replicates reside.

(3) Multiple runs

Since the K-means algorithm gives different results for different starting values,

multiple runs are needed to find better optima. The random selection of initial

values make it likely that different runs will find different local optima.

2.1.2 Recursive Partitioning

Recursive Partitioning (RP) uses a tree-structured set of questions about the de-

scriptor variables to recursively divide the data into groups in which the response

variable is as homogeneous as possible. To build an RP model, the descriptor

space is recursively subdivided into nodes of a tree. To identify the best split for a

specific node, the algorithm considers all possible binary splits for each descriptor

variable and chooses the optimal one by some criterion (Breiman, Friedman, Ol-

shen & Stone 1984). This splitting is carried out recursively until some stopping

condition is reached. Stopping criteria can be employed directly to choose tree size
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(Hawkins & Kass 1982), or a large tree can be grown and then pruned (Breiman

et al. 1984).

An Example

Recursive partitioning can be visualized as a tree. Each segment of the tree is called

a node. Usually, a parent node is split into 2 descendant nodes. In Figure 2.2,

checkboard training data (Welch 2002) and a tree grown to this data are plotted.

The original node in which all of the data lie is called the root node. Class 0 has

40 of the 55 cases, i.e. 73%. If the tree growing algorithm is stopped at the root

node, the root node would be classified as class 0, the majority class. The root

node is split into two descendant nodes, which have X2 < 7.015 and X2 ≥ 7.015,

respectively. Ideally, the split should make each node as pure as possible. Here, the

descendants do not show much improvement in purity of the response, so another

split is needed before a big jump in purity appears.

The two descendants of the root node are themselves split to create their de-

scendants. The two descendants of the root’s left node, for example, are split based

on the value of X1: they have X1 < 6.39 and X1 ≥ 6.39, respectively, with 10%

and 62% class 1 objects, respectively. These nodes are closer to the ideal of all class

0 or all class 1. Neither of these needs further splitting; they are called terminal

nodes. Similarly, the root’s right descendant is split into two terminal nodes. Each

terminal node is classified according to its majority class. Note that the two de-

scendants of the root node are split using different cut-offs for X1 depending on the

value of X2, indicating that the tree can include interaction effects automatically.
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Figure 2.2: Top: The scatter plot and partitioning of the checkerboard explanatory

variable space by the bottom tree. Class 0 and Class 1 training data are denoted

by “0” and “+”, respectively. Bottom: Classification tree for the checkerboard

training data.
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The top plot in Figure 2.2 also portrays the partitioning of the explanatory

variable space of the checkerboard training data. Each rectangle corresponds to

a terminal node. For example, the bottom-left rectangle corresponds to the first

terminal node with 27 Class 0 and 3 Class 1 cases.

Tree Size Selection

Our research initially considered a pruning approach. When pruning a tree, a

variety of criteria, including misclassification rate, the Gini index and entropy,

can be employed. For unbalanced classification problems such as drug discovery,

where one class (i.e. active class) is rare, misclassification rate is an inappropriate

pruning criterion. This is because we desire a tree that can rank compounds by the

probability that they will be active, rather than just classify them as active/inactive.

The performance measure we will use to assess tree performance is the hit

rate, which is the percentage of hits among those compounds selected. In order to

facilitate comparisons with CSARA, the number of compounds selected is matched

in each experiment with the number selected by CSARA.

Ideally, a tree would be grown and pruned according to the hit rate. However,

our goal is to compare “off-the-shelf” versions of tree growing algorithms with

CSARA, and hit rate is not a standard criterion for growing or pruning a tree. Thus

we choose the Gini index,
∑n

i=1 p̂i(1− p̂i), where p̂i is the predicted probability of

activity for observation i, as a surrogate measure for tree growing and pruning. The

Gini index is among the most appropriate measures since it encourages models to

accurately predict pi, the probability of activity for observation i, rather than just
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predict a class label.

Once a sequence of pruned trees has been generated using the surrogate pruning

criterion, predictions can be generated and the hit rate (our preferred performance

measure) can be evaluated for all trees in the sequence. Thus a cross-validated

measure of the hit rate will be obtained for each tree in the nested sequence of

trees. We explore two different ways of generating this hit rate: either calculating a

hit rate separately for each of the ten folds, and averaging them, or combining the

predictions from all ten validation sets, then ranking the compounds and generating

a single hit rate. Similar results were obtained using either strategy. All calculations

were carried out in R (R Development Core Team 2006), using the rpart library

(Therneau & Atkinson 2006).

In experiments with the AIDS Antiviral data with 64 BCUT descriptors (Sec-

tion 1.2.1), we made two unexpected discoveries with respect to pruning and tree

size:

1. Cross-validation, the most common method of selecting tree size, appears to

select a tree with too few nodes in unbalanced-class problems.

2. The largest trees yield the best (or near-optimal) out-of-sample predictive

accuracy.

In the remainder of this section, we outline the ideas behind these findings. A

consequence is that for the remainder of the chapter, we choose a large tree size

rather than use cross-validation, since this seems to produce the most competitive

RP models.
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To understand the two results, we first review cross-validation and cost-complexity

pruning. Breiman et al. (1984) presented a cross-validated cost-complexity pruning

approach to selecting the best tree size. Given a tree with size ‖T‖ (‖T‖ represents

the number of terminal nodes), the pruning criterion Rα is defined as:

Rα = C(T ) + α‖T‖ (2.3)

where C(T ) is a smaller-the-better measure such as the Gini index and α is called

the cost-complexity parameter. The term α‖T‖ is a penalty for the size of the

tree. Large values of α penalize big trees and lead to more pruning. Breiman et al.

(1984) showed that as α increased, there exists a well defined nested sequence of

pruned trees that optimize (2.3).

The tree with the best cross-validated cost-complexity would be chosen as fol-

lows: First, a large tree is grown using the training data. A nested sequence of

m pruned trees (with s1 < s2 < ... < sm terminal nodes) is generated, minimiz-

ing a cost-complexity criterion. In fact, we choose the cost-complexity parameters

to generate the nested sequence of trees. Since each cost-complexity parameter

corresponds to a specific tree size si, the sequence of the tree sizes is used in the

rest of the chapter for easier understanding. The goal is then to choose one tree

from this nested sequence (that is, choose s∗ ∈ s1, ...sm). This is accomplished by

cross-validation. For example, with 10-fold cross-validation, 10 different large trees

are grown and pruned, yielding 10 nested sequences, with sizes corresponding to

s1, ..., sm. Each of the 10 different trees is grown using 90% of the training data,

and holding out a different validation set of 10% of the training data. For each tree

size si, prediction errors are averaged across the 10 validation folds, and the best
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tree size s∗ is chosen so as to minimize this cross-validation error.

For the AIDS assay data and 64 BCUT descriptors, we generated 20 training

sets of 15,000 observations, about half of the data set, and for each set chose the

optimal tree size according to cross-validated hit rate. In order to see whether we

are choosing the right size, we “cheat” by also using the remaining (approximately

15,000) observations as a test set to choose the right tree size. The tree sizes chosen

by these two strategies are displayed in Figure 2.3. Cross-validation typically selects

a tree with between 1 and 100 terminal nodes, occasionally selecting a tree with

around 150 terminal nodes. In contrast, the test set reveals that the best tree size

is never below 60 terminal nodes, and is usually greater than 150 terminal nodes.

The choice by cross-validation of a too-small tree results in a decrease in prediction

accuracy for the test set, in comparison to the optimal tree size. Note that the use

of a test set to choose tree size is generally inappropriate, and is used here simply

to illustrate that cross-validation seems to select an inappropriate sized tree.

A possible reason for this discrepancy is the large number of “ties” that a

tree produces in its predictions for the probability of activity. All observations

falling in a specific terminal node of the tree will receive the same prediction.

Tie structure among the predictions can affect predictive accuracy in unbalanced

response problems where ranking is the goal. In cross-validation, since only 10%

of the data are predicted by a tree corresponding to each fold, and the trees are

slightly different for each fold, there are fewer ties in the predictions. This may

make a small tree appear to be a better performer under cross-validation, where

it seems to generate fewer ties, than for an independent test set, where one tree is
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Figure 2.3: Histograms of the tree sizes chosen by (a) cross validation and (b)

performance on an independent test set.

generated from all the training data, with more ties in predictions.

2.2 Evaluation Plan for CSARA and RP

In Section 2.2.1 we describe three strategies for data sampling/analysis based on

CSARA, RP, and a hybrid method. We also discuss a performance metric for their

evaluation.

2.2.1 Three Sampling/Analysis Strategies and Their Eval-

uation

All three strategies to be described will be evaluated in terms of their performance

in identifying active compounds in the second round of HTS.
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Specifically, we will use the hit rate (HR), which is the proportion of compounds

identified as biologically active via an assay among a specified group of compounds

selected for screening, i.e. active ÷ selected. As CSARA is a two-stage process of

sequential screening, hits (active compounds) and hence the hit rate come from

both the first and the second screens. A tree generated by RP, however, is used to

make predictions and hence choose compounds for only the second screen. Thus, all

comparisons of HR will be made only for the second screen. The assay results from

the first screen are treated as “training” data, and those from the second screen

are treated as “test” data. Nonetheless, the performance of RP will depend on the

training data used to fit it. Thus, we will also consider the role of training data in

defining strategies.

Two distinct methods are used to sample training data:

Methods for Sampling Training Data

Cluster: The compound collection is clustered into K clusters,

and one compound is randomly chosen from each cluster.

This is Step B of the CSARA algorithm, illustrated in

Figure 2.1(B).

Random: K compounds are chosen completely at random

(without replacement) from the collection.

The Cluster method is a component of CSARA, but it can also be used to

generate training data for RP. It allows us to evaluate the differences between

CSARA and RP when the same training data are used in modeling the QSAR. The

Random method can be used only for RP. It will allow us to assess the usefulness
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of a training sample designed to be diverse versus a random selection.

Hence, there are three different data sampling/analysis strategies:

Three Sampling/Analysis Strategies

CSARA: All steps of the CSARA method as described in Sec-

tion 2.1.1.

Cluster/RP: The Cluster sampling method is used to select

the initial sample set, an RP tree is trained on this set,

and predictions from the tree model are used to choose

the follow-up sample.

Random/RP: The Random sampling method is used to se-

lect the initial sample set, an RP tree is trained on this set,

and predictions from the tree model are used to choose

the follow-up sample.

The comparisons of interest are CSARA versus Cluster/RP and Random/RP,

to understand the impact of the QSAR modeling method, and Cluster/RP versus

Random/RP to understand the impact of the sampling of the training set.

2.3 Experiments and Results

2.3.1 Yeast Data

First, we apply CSARA, Cluster/RP and Random/RP to the Yeast data. We need

to specify K, the number of clusters used to generate the first screen. Since one
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First Screen Second Screen (CSARA) Cluster/RP Random/RP

Trial Hits HR (%) # compounds Hits HR (%) Hits HR (%) Hits HR (%)

1 243 8.1 5,648 874 15.5 819 14.5 676 12.0

2 250 8.3 5,720 861 15.1 870 15.2 753 13.2

3 261 8.7 6,060 841 13.9 678 11.2 788 13.0

4 262 8.7 6,272 1020 16.3 917 14.6 777 12.4

Ave. 254 8.47 5,925 899 15.2 821 13.9 749 12.6

Table 2.1: Results for the Yeast data and K = 3, 000 clusters

compound from each cluster will be assayed, the resultant training set will have K

observations to be used for training data: We take K = 3, 000, 7,000 and 15,000.

Because all methods considered rely on some form of randomization to select the

training data, four trials are run at each of the three levels of K. The six BCUT

descriptors described in Section 1.2 are used.

The results are presented in Tables 2.1–2.3. As the results follow similar patterns

across values of K and the four trials, we explain in detail only the first row of Table

2.1. The first column is the trial index. The second and third columns correspond

to the first screen using Steps A–C of the CSARA method. After the first screen,

there are 243 hits in the training set, giving a hit rate of 243/3, 000 = 8.1%.

The fourth to sixth columns give results from the second HTS using Step D of

CSARA: All compounds in the active clusters (not including those in the first

screen) are treated as the test data for the second round HTS. In this example,

5648 compounds are in the test data, there are 874 hits, and consequently the hit

rate is 874/5, 648 = 15.5%.

The seventh and eighth columns give results from the second screen using Clus-
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ter/RP. In the first row of Table 2.1, Cluster/RP selects the 5,648 compounds with

highest predicted probabilities of being active (the size of the test set is matched to

CSARA’s). Roughly 819 or 14.5% are active. The same technique of selecting for

the second screen is used for Random/RP in columns 9–10, but the training data

are K = 3, 000 randomly chosen compounds. The last row of Tables 2.1–2.3 gives

average values across the four trials/test splits.

For tree models, calculation of the number of hits is complicated by the presence

of many tied predictions. All test points falling in the same terminal node will

receive the same predicted probability of activity. For example, suppose the best

14 nodes give us 5,448 compounds from the test set, and the 15th best node has an

additional 300 test set compounds. We need to select 200 of these 300 compounds

to give the desired 5,648 compounds. We deal with this problem by reporting an

expected number of hits under random sampling of 200 compounds from the 300

available in the node. This is equivalent to linear interpolation of number of hits

between the two nodes.

In Tables 2.1–2.3, within each row, CSARA and Cluster/RP can be compared

since they have the same training data set. Comparing Random/RP with CSARA

or Cluster/RP is not meaningful within a row because they have different training

sets. Comparisons using the “average” row are valid between all three methods.

The results given in Tables 2.1–2.3 can be summarized as follows:

• As K increases, the hit rate in the test set also increases. This makes intuitive

sense because a larger training set gives more information to the tree and

clustering algorithms, enabling them to uncover the QSAR within the HTS
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First Screen Second Screen (CSARA) Cluster/RP Random/RP

Trial Hits HR (%) # compounds Hits HR (%) Hits HR (%) Hits HR (%)

1 584 8.3 5,783 1,056 18.3 888 15.4 960 16.6

2 584 8.3 5,785 1,069 18.5 938 16.2 857 14.8

3 580 8.3 5,515 1,023 18.6 872 15.8 809 14.7

4 583 8.3 5,735 1,053 18.4 890 18.4 877 15.3

Ave. 583 8.3 5705 1,050 18.4 897 16.4 876 15.3

Table 2.2: Results for the Yeast data and K = 7, 000 clusters

First Screen Second Screen (CSARA) Cluster/RP Random/RP

Trial Hits HR (%) # compounds Hits HR (%) Hits HR (%) Hits HR (%)

1 1,182 7.9 4,771 1,066 22.3 898 18.8 845 17.7

2 1,321 8.8 5,417 1,110 20.5 928 17.1 955 17.6

3 1,259 8.4 5,197 1,064 20.5 871 16.8 894 17.2

4 1,286 8.6 5,099 1,057 20.7 871 17.1 860 16.9

Ave. 1,262 8.4 5,121 1074 21.0 892 17.5 889 17.4

Table 2.3: Results for the Yeast data and K = 15, 000 clusters
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CSARA Cluster/RP Random/RP

K Mean HR (se) Mean HR (se) Mean HR (se)

3,000 20.3% (.6%) 15.6% (.7%) 15.6% (.8%)

5,000 24.5% (.7%) 19.5% (.8%) 18.0% (.6%)

7,000 26.4% (.4%) 21.3% (.8%) 20.6% (.5%)

10,000 31.6% (.5%) 26.7% (.7%) 22.5% (.5%)

15,000 36.6% (.5%) 30.0% (.5%) 24.7% (.5%)

Table 2.4: Results for the AIDS data

data. Also, as K increases the change in the hit rate is larger for CSARA

than for Random/RP and Cluster/RP.

• Whatever K is chosen, CSARA always has a higher hit rate than Cluster/RP

and Random/RP. This indicates that CSARA outperforms Cluster/RP and

Random/RP.

2.3.2 AIDS Data

A similar analysis is carried out for the AIDS data, but with K = 3, 000, 5000,

7,000, 10,000 and 15,000, and 20 trials (training sets) are used. The descriptor set

is six BCUTs and there are 29, 812 compounds.

Instead of presenting results for each trial, as in Tables 2.1–2.3, we report in

Table 2.4 averages and standard errors across the 20 test sets. Since each row

represents an average over multiple training sets, all three methods can be compared

within a row.

Table 2.4 shows that:
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• The standard errors of the hit rate are very small, implying that 20 trials

are sufficient to compare the mean hit rates of the three sampling/analysis

strategies.

• For all values of K considered, the mean hit rate of CSARA is consistently

larger than that of Cluster/RP or Random/RP. Thus, CSARA method is

competitive and efficient relative to RP for identifying active compounds here.

• Cluster/RP outperforms Random/RP, particularly for larger values of K: A

diverse training set is advantageous here.

Formal statistical tests, i.e., paired t-tests for CSARA versus Cluster/RP and

unpaired t-tests for the other comparisons, confirm the above findings at a 5% sig-

nificance level. The differences in mean HR are statistically significant for CSARA

against either RP competitor for all values of K, and for Cluster/RP against Ran-

dom/RP for K = 10, 000 and 15, 000.

2.3.3 Adding Irrelevant Descriptors

In order to test the stability of CSARA and RP methods, we carry out a new ex-

periment on the AIDS data adding several irrelevant or “junk” descriptor variables

to the six BCUT descriptors when modeling the AIDS data. The values of the first

new, irrelevant descriptor are generated by randomly permuting the values of the

first BCUT, the second irrelevant variable is generated in the same way from the

second BCUT, and so on. Different permutations are used for each variable. We

take K = 15, 000 in this experiment.
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# Irrelevant CSARA Cluster/RP Random/RP

Descriptors Mean HR (se) Mean HR (se) Mean HR (se)

0 36.6 (0.531) 30.0 (0.522) 24.7 (0.453)

1 26.2 (1.93) 28.7 (1.50) 24.1 (0.85)

2 20.5 (0.53) 26.8 (0.74) 23.8 (1.68)

3 14.0 (1.84) 23.7 (0.42) 22.8 (1.82)

4 12.1 (0.59) 23.2 (0.69) 25.7 (1.51)

5 9.5 (0.68) 23.6 (2.41) 21.3 (1.55)

6 8.2 (0.97) 19.5 (2.05) 20.5 (0.59)

Table 2.5: Mean hit rates and standard errors (%) for the AIDS data and K =

15, 000 when irrelevant descriptors are added to the six BCUTs

Table 2.5 illustrates the effect of adding 1–6 junk variables. The hit rates re-

ported are means over four trials. With more irrelevant descriptors, the mean hit

rate of CSARA decreases much more quickly than that of Cluster/RP or Ran-

dom/RP. Among these three methods, Random/RP is the most stable. RP has

built-in variable selection due to choosing a variable at each split according to an

optimality criterion (here the gini index). CSARA has no such capability, as all

descriptors are included in the distance metric for clustering. Similarly, the ben-

efit due to clustering in selection of a training set for RP diminishes with more

irrelevant variables.
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2.4 Experiments with High-dimensional Descrip-

tor Sets

In order to understand how CSARA performs with higher-dimensional descriptor

sets, we make comparisons between CSARA, Cluster/RP, and Random/RP using

the AIDS assay data and four further descriptor sets. The four sets, summarized

earlier in Table 1.1, are BCUT (64 variables), Constitutional (46 variables), Prop-

erty (212 variables) and Topological (261 variables).

As before, we run 20 trials for different values of K and calculate the mean hit

rates. Mean hit rates are plotted against K in Figure 2.4

Figure 2.4 shows that CSARA outperforms Cluster/RP and Random/RP. These

high-dimensional results may seem to conflict with the experiment in Section 2.3.3,

where CSARA performance degraded quickly with the addition of further, irrele-

vant descriptors. CSARA’s strong performance here with high-dimensional sets is

probably a reflection of the quality of the sets, where all variables may be at least

weakly informative. In contrast, irrelevant variables are completely unrelated to

activity.

Table 2.6 displays the significance levels for tests of a difference in mean HR,

comparing CSARA, Cluster/RP, and Random/RP pairwise for each of the four de-

scriptor sets. It is clear that CSARA has a significantly larger mean HR than Clus-

ter/RP or Random/RP, and that Cluster/RP performs better than Random/RP

as K increases. A paired t-test was used to compare CSARA with Cluster/RP, and

a two-sample t-test for other comparisons.
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Figure 2.4: Mean hit rate versus K for CSARA (⋆ · · · ⋆), Cluster/RP (◦ · · · ◦), and

Random/RP (⋄ · · · ⋄) for the AIDS data with four high-dimensional descriptor sets.

2.5 Application of CSARA to a Continuous As-

say Response

As mentioned in Section 1.2.1, growth inhibition (potency) of compounds was orig-

inally measured as a continuous response for the Yeast assay. “Active” and “inac-

tive” labels were obtained by thresholding the response. Here, we adapt CSARA

for a continuous response, and compare performance with RP methods.

Step D of the CSARA algorithm in Section 2.1.1 is adapted as follows. Each

cluster is scored according to the potency of the compound randomly sampled from
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CSARA vs. Cluster/RP CSARA vs. Random/RP Cluster/RP vs. Random/RP

K BCUT CON PROP TOP BCUT CON PROP TOP BCUT CON PROP TOP

3,000 *** *** *** *** *** *** *** ***

5,000 *** *** *** *** *** *** *** ***

7,000 *** *** *** *** *** *** *** ***

10,000 *** *** *** *** *** *** *** *** ** *

15,000 *** *** *** *** *** *** *** *** *** *** *** ***

Table 2.6: Hypothesis tests comparing mean HR for three sampling/analysis strate-

gies when applied to the AIDS data with four descriptor sets: 64 BCUT descrip-

tors, 46 Constitutional descriptors, 212 Property descriptors and 261 Topological

descriptors. Differences in mean HR significant at the 5%, 1%, and 0.1% levels are

denoted by *, **, and ***, respectively.

it for assay. All compounds in the highest scoring cluster are chosen first for the

second-round assay, then those in the second-highest scoring cluster, and so on.

Building an RP regression tree for a continuous response is well known (Breiman

et al. 1984). Comparisons are carried out with the six BCUT descriptors and

K = 3, 000.

The results are shown graphically in Figure 2.5. The average potency of the

selected compounds is plotted against the number of compounds selected. A curve

that is high at the left and decreases gradually would indicate good ability to

identify high potency compounds.

Several observations can be made on the basis of Figure 2.5:

• Up to about 1000 compounds selected, there is substantial improvement over

random selection, which would correspond to a horizontal line at a height of

approximately 8%.
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Figure 2.5: Average potency (%) of selected compounds versus the number of

compounds selected for CSARA, Cluster/RP, and Random/RP, when K = 3, 000.

The symbols on the curves show where selection would stop if a predicted potency

larger than 70% inhibition is required.
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• Compared with the RP methods, performance of CSARA falls off faster with

the number of compounds selected.

• If 70% predicted inhibition is used as a cut-off, CSARA chooses more com-

pounds for the second screen compared with the RP strategies.

Similar results (not shown) are obtained for K = 10, 000, except that all strategies,

not surprisingly, return higher average potencies for the first 10,000 compounds

selected with a larger K.

2.6 Discussion

The main aim of this chapter is exploring the properties of CSARA. Two data

sets are analyzed to help evaluate the differences between CSARA and RP. The

results suggest that CSARA outperforms RP models in selecting more hits. RP

trees are trained to give overall good prediction, giving equal weight to both active

and inactive compounds. In contrast, in its very simple analysis of the first-round

training data, CSARA gives heavy weight (100%) to active compounds and no

weight to inactive compounds. Thus, CSARA may be a more appropriate method

for drug discovery data sets where actives are rare.

However, the largest limitation with CSARA is its instability. When there are

many irrelevant descriptors, the effectiveness of CSARA decreases. In the presence

of many potential irrelevant descriptors, variable selection may need to be carried

out first. Here the term “irrelevant” variable refers to those that have no relation-

ship with the biological assay and hence have a negative impact on QSAR model
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training and prediction. For the AIDS assay data and the four high-dimensional

descriptor sets used in the chapter, some experiments have been done to test if there

is any performance improvement of CSARA, Cluster/RP, and Random/RP using

the important variables identified by Partitionator from www.goldenhelix.com. No

significant improvements were found for the three approaches. It is not surprising

that the performance of Cluster/RP and Random/RP is not improved by variable

selection, as trees can automatically select important variables at each split. Here

we need to emphasize that the variables that are not chosen as important are not

necessarily irrelevant. They seemingly do not help in the prediction of biological

activity, but they are not harmful to prediction either, possibly because of cor-

relations with other variables. This may explain why variable selection does not

improve CSARA for these descriptor sets.

One potential shortcoming of CSARA is the lack of control over the number of

compounds selected for a second HTS. In applications where the categorical activity

is formed from an underlying continuous response, the methods in Section 2.5 may

circumvent this difficulty.

The results in Section 2.5 also provide much insight into the comparisons be-

tween CSARA and the RP methods. RP trees may be effective in choosing a

relatively small number of second-screen (test) compounds. In most of the experi-

ments in this chapter, however, we matched the number of test compounds across

CSARA and the RP methods, forcing RP to select a large number of compounds

if CSARA does. When control over the size of the second screen is made possible

for CSARA too (by working with a continuous assay measurement), RP methods
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can become more competitive for smaller screens.



Chapter 3

Introduction To Mixture

Discriminant Analysis

In Chapter 2, CSARA successfully separated data into different classes and out-

performed tree models. An essential component of CSARA is its use of clustering

to subdivide the data into groups more likely to be active. This motivates us to

consider using mixture models, a model-based clustering technique, to classify data.

Although mixture models are an unsupervised learning technique, they can be used

in discriminative models, in which the joint distributions of descriptors are modeled

as a mixture, conditioned on the response class.

Section 3.1 gives an overview of discriminant analysis approaches. Since mix-

ture models will be used as a component of a discriminant analysis method, an

introduction to mixture models is given in Section 3.2. An introduction to mixture

discriminant analysis is presented in Section 3.3, and some motivation for the use

of mixture discriminant analysis method in drug discovery is given in Section 3.4.

46
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3.1 Overview of Discriminant Analysis

Discriminant Analysis refers to a variety of models designed for classification (i.e.

the assignment of the data into predefined classes). In general, the number of

classes is assumed to be known. Many discriminant analysis methods are proba-

bilistic, based on the assumption that the observations in the kth class are generated

by a probability distribution specific to that class f(x;Ψk), also called the class-

conditional distribution. Discriminant analysis models differ essentially in their

assumptions about the class-conditional distribution.

If τk is the proportion of members of the population that are in class k, Bayes’

theorem says that the posterior probability that an observation with feature vector

x belongs to class k is

Pr[Class k|x] =
τkf(x;Ψk)

∑K
l=1 τlf(x;Ψl)

, (3.1)

where K is the total number of classes in the data. Then x is assigned to the class

with the highest posterior probability.

The most common discriminant analysis method, linear discriminant analysis

(LDA), assumes that the class conditional distributions are P -variate normal with

mean vectors µk and common covariance matrix Σ. When the covariance matrices

Σk’s are not assumed equal, the method is called quadratic discriminant analysis

(QDA). The parameters µk and Σk are unknown and must be estimated from a

training set consisting of (xi, yi), i = 1, . . . , n, where xi is a vector-valued measure-

ment and yi ∈ {1, 2, . . . , K} is a class indicator for observation i. The parameters

are generally chosen to maximize the likelihood of the training sample. This leads
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to the maximum likelihood estimates

µ̂k = xk =

∑

yi=k xi

nk

, 1 ≤ k ≤ K. (3.2)

where nk =
∑n

i=1 I(yi = k). For LDA,

Σ̂ =
S

n
=

∑K
k=1

∑

yi=k(xi − x̄k)(xi − x̄k)
T

n
; (3.3)

for QDA,

Σ̂k =
Sk

nk

=

∑

yi=k(xi − x̄k)(xi − x̄k)T

nk

, 1 ≤ k ≤ K. (3.4)

Friedman (1989) considered linear and quadratic discriminant analysis in a small

sample, high-dimensional setting. He proposed Regularized Discriminant Analysis

(RDA), which employs an alternative to the usual maximum likelihood estimates for

the covariance matrices. RDA specifies the value of a complexity parameter and

of a shrinkage parameter to design an intermediate classifier between the linear,

the quadratic, and the nearest-means classifiers. RDA performs well but does not

provide easily interpretable classification rules.

Bensmail & Celeux (1996) proposed an alternative approach for discriminant

analysis problem, Eigenvalue Decomposition Discriminant Analysis (EDDA). EDDA

is based on the reparameterization of the covariance matrix Σk of class k in terms of

its eigenvalue decomposition Σk = λkDkAkDk
T (Banfield & Raftery 1993). Here

λk specifies the volume of density contours of class k; Ak, the diagonal matrix of

eigenvalues, specifies the shape of class k; and Dk, the eigenvectors, specifies its ori-

entation. Variations on constraints concerning volumes, shapes and orientations λk,

Ak and Dk lead to 14 discrimination models of interest. After the class-conditional



Introduction To Mixture Discriminant Analysis 49

distributions are determined, observations are assigned to the class with the largest

posterior probability (3.1).

3.2 Mixture Models

Finite mixture models have wide applications in the scientific literature. They

provide a mathematical approach to the statistical modeling of a wide variety of

random phenomena. Mixture distributions are typically used to model data in

which each observation is assumed to have arisen from one of J different groups,

each group being modeled by a probability density belonging to a parametric fam-

ily. Membership in the groups is not observed. Mixture models are suitable for

clustering observations together into groups.

The first attempts to analyze mixture models are often attributed to Pearson

(1894), who applied mixture models to data on the dimensions of crabs. Since

then, mixture models have been used in a large range of applications. McLachlan

& Basford (1988) highlighted the important role of mixture models in the field

of cluster analysis. In the cluster analysis framework, the data is supposed to be

sampled from some population described by a probability density function. This

density function is characterized by a parameterized model that is a mixture of

component density functions and each component density function describes one of

the clusters.

In general, let f(x;Ψ) be a parametric density function with respect to some σ-

finite measure and parameter space ⊖, which is usually a subset of some Euclidean
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space. The density function of a finite mixture model is given by

f(x;Ψ) =
J

∑

j=1

πjf(x;Φj) (3.5)

where J is the number of components or the order of the model, and Ψ represents all

the parameters in the above density function and includes {π1, . . . , πJ−1;Φ1, . . . ,ΦJ}.

Φj is the parameter of the jth component density, and πj is the mixing proportion

of the jth component density.

There are several approaches to the estimation of the parameters of mixture

models. As discussed by McLachlan & Peel (2000), such approaches include graph-

ical methods, methods of moments, minimum-distance methods, maximum likeli-

hood estimation (MLE) and Bayesian methods. Maximum likelihood estimation

is by far the most commonly used approach. Such popularity is mainly due to

the advent of the Expectation-Maximization (EM) algorithm (Dempster, Laird &

Rubin 1977), which is an iterative method that locally maximizes the likelihood

function in an efficient way. The EM algorithm not only considerably simplifies the

MLE approach to mixture parameter estimation by viewing it as an incomplete-

data problem, but also gives a theoretical basis for the convergence properties of

mixture problems.

Therefore, maximum likelihood estimation via the EM algorithm is the approach

we consider in the following chapters.

A popular choice of component density is the normal distribution. The earlier

researchers who have studied mixtures of normal distributions include Day (1969),

Wolfe (1970), Marriott (1975) and Symons (1981). Mixtures of other distributions

that have been considered by other researchers include exponential (Rider 1961),
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Beta (Bremmer 1978), Weibull (Kao 1959) and Binomial (Blischke 1962, Rider

1962, Blischke 1964). In the following chapters, mixtures of normal distributions

will be our focus.

In the next section, we will focus on discussion of mixture discriminant analysis,

in which mixtures are used within each response class.

3.3 Mixture Discriminant Analysis

An alternative model-based approach to generalizing LDA and QDA is to allow the

density for each class itself to be a mixture of normals, namely

f(x;Ψk) =

Jk
∑

j=1

πjkMV N(x; µjk,Σjk). (3.6)

Here k indexes class and j the mixture component within class. Ψk represents all

the parameters within class k, i.e. Ψk = {π1k, . . . , πJk−1k; µ1k, . . . , µJkk;Σ1k, . . . ,

ΣJkk}. Here, and throughout the remainder of the thesis, we denote a multivariate

normal density with MV N(x; µ,Σ). A univariate normal density will be denoted

N(x; µ, σ). The idea of mixture models has been suggested a number of times in

the literature (McLachlan 1992), and is the basis of Mixture Discriminant Analysis

or MDA (Hastie & Tibshirani 1996). In developing MDA, Hastie & Tibshirani

(1996) made two assumptions: (i) that all of the component covariance matri-

ces are the same, i.e. Σjk = Σ for each j, k; and (ii) that the number of mixture

components is known in advance for each class. Hastie & Tibshirani (1996) also pro-

posed several extensions of the model under these assumptions. Moreover, Fraley
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& Raftery (2002) extended MDA by relaxing assumptions (i) and (ii) and apply-

ing model-based clustering to the members of each class in the training set. This

would allow the component covariance matrices to vary, both within and between

classes. The data would then determine which parametrization of the covariance

matrix and which number of mixture components is best suited to each class. This

generalization of MDA is refered as Model-based Clustering Discriminant Analysis

(MclustDA).

The basic idea of the model-based discriminant analysis methods described here

is to allow more flexibility than the traditional methods, LDA and QDA. Also

mixture-based MDA and MclustDA further improve on EDDA by expanding the

discriminant model from a single Gaussian component to a mixture.

However, none of the above discriminant methods considers exploring subsets

of predictors, which is becoming critical for higher-dimensional drug discovery data

due to the subset-governed activities. In our new form of mixture discriminant

analysis, µjk and Σjk share some common parameters, called global parameters in

our model. Each component is dominated by one element of the descriptor vector,

so the structure of the new mixture discriminant analysis model is designed to

explore subsets of descriptor space.
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3.4 Motivation of Application of Mixture Model

in Drug Discovery

There are numerous papers on the application of mixture models, but there are

fewer applications of mixture models in drug discovery. There are several consid-

erations motivating us to use mixture models to model drug discovery data.

These considerations come from the HTS data sets themselves. Although we

have mentioned these ideas in Section 1.3, we develop them further here:

(1) Because of the complicated relationship between descriptors and biological ac-

tivity of compounds, it is difficult to use a single mathematical model to

capture the characteristics of the entire data set. As we have discovered in

the first part of the thesis, the active compounds can usually be divided into

several clusters. The active compounds do have the same effect on the drug

target, but across clusters, they can have very different descriptors leading

into activities. Special models, such as mixture models are needed to model

several different mechanisms simultaneously. This is the multiple mechanism

problem.

(2) The biological activity is usually governed by a small number of descriptors.

Due to the flexibility of mixture models, making some modifications on mix-

ture models would allow us to explore subsets of descriptors.

(3) There are many descriptors, which are often highly correlated. Again, CSARA

and tree models can not take into account the covariance of descriptors, but
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mixture models can. For example, the covariance matrix of a multivariate

normal distribution can describe such properties of descriptors.

In the thesis, we focus on the first and second considerations. Chapter 4 presents

our specially designed mixture discriminant analysis model, Constrained Mixture

Discriminant Analysis (CMDA). The CMDA first order model or CMDA1 is dis-

cussed in detail. A frequently-occurring problem arises, in which the EM algorithm

can produce “degenerate” estimates with some variances equal to zero. This occurs

because the likelihood for a mixture model with unknown scale parameters is un-

bounded. Therefore, a Multi-step EM algorithm is designed to solve this problem

in Chapter 4. In Chapter 5, penalized maximum likelihood estimation approach to

solve the degeneracy problem is suggested and discussed. A consistency proof of

the penalized maximum likelihood estimate (PMLE) for the CMDA1 model with a

two-dimensional descriptor space is provided in Chapter 5.



Chapter 4

Constrained Mixture

Discriminant Analysis

4.1 Introduction

Statistical learning in drug discovery seeks a good classifier that separates chemical

compounds into active and inactive classes. However, the characteristics of drug

data imply many challenges for structure modeling and identification of active com-

pounds (Section 1.3 and Section 3.4). Due to the characteristics of drug discovery

data sets, we develop the Constrained Mixture Discriminant Analysis (CMDA)

model, which is designed to catch multiple mechanisms that lead to activity, ex-

plore the subsets of descriptors and be easily interpreted (e.g. identify important

descriptors).

The approach to classification taken here is to model the within-class densities

of the predictors f(x|Class k) by constrained mixture models. Then the class pos-

55
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terior probabilities f(Class k|x) can be obtained via Bayes’ theorem as described

in Section 3.1.

Before the model is given, we review some notation introduced earlier in Chap-

ter 3:

• y is the response variable taking K categorical levels, which is biological

activity in drug discovery. Usually, in drug discovery, K = 2, i.e. the active

and inactive classes.

• x is a vector of descriptors from an observation, which is assumed to come

from a P -dimensional real-valued sample space, i.e. x = (x1, . . . , xP ) ∈ ℜP .

• k = 1, . . . , K indexes the K classes.

• j = 1, . . . , Jk indexes components in each class. Jk is the total number of

components in kth class.

• i = 1, . . . , n indexes observations in the sample.

The CMDA model is based on the belief that the influence of descriptor vector x

on biological activity y is through low-dimensional subspaces (Lam 2001). We shall

express the class-conditional density of descriptor vector x as an additive model

including low-dimensional functions. This is designed to explore the subspaces of

descriptors and identify the multiple mechanisms that may cause activity.

A general form of mixture models for the density function of class k is given by

f(x;Ψk) =

Jk
∑

j=1

πjkf(x;Φjk), (4.1)
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where πjk’s are the mixing proportions of components in class k, and satisfy
∑Jk

j=1 πjk

= 1.

In the CMDA model, the multivariate density of any component f(x;Φjk) will

be composed of products of univariate or bivariate density functions. Types of

f(x;Φjk) that could be considered, when P = 4 and the normal densities are used,

include:

1. f(x;Φjk) = N(x1; µ1j, σ1j)N(x2; µ2j, σ2j)N(x3; µ3j , σ3j)N(x4; µ4j, σ4j). The

components of x (xl’s) are independent and unrelated to the class label k.

2. f(x;Φjk) = N(xj ; µjk, σjk)
∏4

m6=j N(xm; µm, σm), i.e. one element of the de-

scriptor vector is conditionally independent of other elements given the class

label k and the mixture component label j. Also N(xj ; µjk, σjk) is a class

specific density with parameters depending on both j and k. There is a

connection between variables and the component in this type of component

density, i.e. component f(x;Φjk) is determined by variable xj via the func-

tion N(xj ; µjk, σjk).

3. f(x;Φjk) = MV N(xl, xl′ ; µjk,Σjk)
∏

m6=l&l
′ N(xm; µm, σm), which means there

are two elements of the descriptor vector that have a jointly dependent rela-

tionship given the class label k. Here, j corresponds to the pair (l, l
′

).

4. f(x;Φjk)’s can be a combination of above forms, for example

f(x;Φjk) = N(x1; µ1, σ1)N(x2; µjk, σjk)MV N(x3, x4; µjk,Σjk) . . . (4.2)

Our primary focus will be on model of form 2. Form 3 will also be considered.

Although we use bivariate distributions to represent joint dependence in Form 3, in
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general, these need not be bivariate. More explicit parameterizations will be given

in the next section.

We first consider the CMDA First Order Model, or the CMDA1 model,

f(x;Ψk) = π1kN(x1; µ1k, σ1k)
P

∏

j=2

N(xj ; µj, σj)

+ π2kN(x2; µ2k, σ2k)
∏

j 6=2

N(xj ; µj, σj) + . . .

+ πPkN(xP ; µPk, σPk)
∏

j 6=P

N(xj ; µj, σj).

In the following section, a detailed discussion of the CMDA1 model is given.

4.2 The CMDA First Order Model (CMDA1)

For a general case, including the parameters in the density function, the CMDA1

mixture density for class k is

f(x;Ψk,ΨG) =

P
∑

j=1

πjkh(xj ; Φ̄jk)
∏

l 6=j

h(xl; Φ̄l), (4.3)

where h is some univariate density function with parameters Φ̄ and

Ψk = (π1k, . . . , π(P−1)k, Φ̄1k, . . . , Φ̄Pk)T

represents all the unknown parameters specific to class k. The model also has

global parameters ΨG = (Φ̄1, . . . , Φ̄P )T , which are used within all classes. For

later notational convenience, we use a “G” subscript on Ψ to denote a collection

of “global” parameters, and a “k” subscript on Ψ to index parameters specific
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to class k. Here and throughout the thesis, we use a single subscript (e.g. Φ̄l) to

denote “global” parameters and double subscripts (e.g. Φ̄jk) to denote class-specific

parameters. Then all parameters are denoted as Ψ = (Ψ1, . . . ,ΨK, ΨG)T .

There are some interpretations for the CMDA1 model:

• Each component density is a product of P univariate density functions, which

suggests the CMDA1 model is based on an assumption that all the descriptors

are independent given a class and a component. These components could be

thought of as corresponding to specific mechanisms.

• Since the CMDA1 model explores all the 1-dimensional subsets of the de-

scriptors, the number of components in each class equals P , the dimension

of x. That is, in the general form of the mixture model (4.1), Jk = P for

k = 1, . . . , K. Each component is primarily identified by only one element of

x, whose distribution depends on class labels, via the term h(xj ; Φ̄jk).

• There are two parts in each component density function: “h(xj ; Φ̄jk)”, the

class specific part and “h(xl; Φ̄l)”, the global part. In (4.3), h(xj ; Φ̄jk) varies

across both mixture components and classes while the h(xl; Φ̄l) terms in the

product remain the same across classes. The concept of global parameters

comes from the reality that the active compounds are rare in typical drug data.

It is hard to accurately estimate the parameters for the density function of

the rare class due to the small samples of active compounds. Using global

densities allows the estimation for the rare class to borrow strength across

classes.
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• There are fewer parameters to be estimated for the CMDA1 model compared

to an unconstrained case, in which each component has distinct parameter

values. For instance, if h(·) in (4.3) are assumed to be normal density distri-

butions, then the CMDA1 model is:

f(x;Ψk,ΨG) =

P
∑

j=1

πjkN(xj ; µjk, σjk)
∏

l 6=j

N(xl; µl, σl). (4.4)

There are in total (3P − 1)×K + 2P parameters (there are (P − 1)×K π’s,

P ×K class specific µ’s, P ×K class specific σ’s, P global µ’s and P global

σ’s). In comparison, the traditional mixture model has (2P 2 + P − 1) × K

parameters to be estimated under the same independence assumption. The

traditional mixture model with the same independence assumption is

f(x;Ψk) =

P
∑

j=1

πjkMV N(x; µjk,Σjk), (4.5)

There are no constraints on the mean vectors (µjk’s), and the covariance

matrices (Σjk’s) are assumed to be diagonal.

Figure 4.1 illustrates the basic idea behind the CMDA1 model. The two-

dimensional data are simulated from a CMDA1 model. The blue and red points

represent two different classes. Consider the two clusters (one red and one blue) in

the top-left corner of the plot: these two clusters share a common mean (µ2) along

the x2 direction, and different means (µ11, µ21) along the x1 direction. Hence these

two clusters can be distinguished using only the descriptor x1. The parameter µ2

is called a global parameter, while µ11 and µ21 are local parameters. The same

interpretation is applied to the other two clusters, with the global parameters in
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Figure 4.1: Example of the CMDA1 model. Red and blue points indicate class

membership.

dimension x1. For illustrative purpose, this plot focuses on the location parameters

of the CMDA1 model. As (4.4) indicates, the variances are similarly parameterized.

4.3 The Expectation-Maximization (EM) Algo-

rithm and Mixture Models

The asymptotic efficiency of maximum likelihood estimation makes it one of the

most commonly used estimation approaches (Lindsay 1995). Maximum likelihood



Constrained Mixture Discriminant Analysis 62

estimation became popular especially after Dempster et al. (1977) introduced the

EM algorithm, which can solve difficult MLE problems. Since its inception, the EM

algorithm has attracted considerable attention and has been the subject of much

research. The EM algorithm greatly stimulated interest in the use of finite mixture

distributions to model heterogenerous data. This is because the fitting of mixture

models by maximum likelihood is simplified considerably by the EM algorithm.

Since the EM algorithm will be used extensively in estimating the CMDA1

model, we review it for the simpler case of a g−component mixture, i.e. f(x;Ψ) =

∑g
j=1 πjf(x;Φj) where Ψ = (π1, . . . , πg−1;Φ1, . . . ,Φg). The CMDA1 model will be

considered later in Section 4.4.

In the EM framework, the observed data x = (xT
1 , . . . ,xT

n )T is viewed as being

incomplete. We introduce an associated component-label vector z = (zT
1 , . . . , zT

n )T ,

which is assumed unknown. Each xT
i is conceptualized as having arisen from one

of the components of the mixture model. If the mixture model has g components,

zi is a g−dimensional vector with zij = (zi)j = 1 or 0, according to whether xi did

or did not arise from the jth component of the mixture (i = 1, . . . , n; j = 1, . . . , g).

Exactly one element of zi will be 1. The complete-data is defined as

xc = (xT , zT )T , (4.6)

where z = (zT
1 , . . . , zT

n )T .

Then the complete-data log likelihood for Ψ, lc(Ψ), is given by

lc(Ψ) =

g
∑

j=1

n
∑

i=1

zij{log πj + log f(xi;Φj)}. (4.7)
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4.3.1 E-Step

The EM algorithm is applied to this problem by treating the zij as missing data.

It proceeds iteratively in two steps, E (for expectation) and M (for maximization).

The missing data (zij) are handled by the E-step, which takes the conditional

expectation of the complete-data log likelihood, lc(Ψ) in (4.7), given the observed

data x, using the current estimate for Ψ. Let Ψ̂
(m)

be the value of Ψ after the mth

EM iteration. Then on the (m+1)th iteration, the E-step requires the computation

of the conditional expectation of lc(Ψ) given x, using Ψ̂
(m)

for Ψ, which can be

written as

Q(Ψ; Ψ̂
(m)

) = E{lc(Ψ)|x, Ψ̂
(m)}. (4.8)

In the expectation, we take Ψ = Ψ̂
(m)

. The expectation is with respect to the

unobserved zij .

As the complete-data log likelihood, lc(Ψ), is linear in the unobservable data

zij , the E-step (on the (m + 1)th iteration) simply requires the calculation of the

current conditional expectation of Zij given the observed data x, where Zij is the

random variable corresponding to zij . Now

E(Zij |x, Ψ̂
(m)

) = p{Zij = 1|x, Ψ̂
(m)} (4.9)

≡ ẑij ,

where

ẑij = π̂
(m)
j f(xi; Φ̂

(m)

j )/

g
∑

l=1

π̂
(m)
l f(xi; Φ̂

(m)

l ), (4.10)
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for i = 1, . . . , n; j = 1, . . . , g. According to (4.10), ẑij can take values between 0

and 1. Using (4.10), (4.8) can be written as

Q(Ψ; Ψ̂
(m)

) =

g
∑

j=1

n
∑

i=1

ẑ
(m)
ij {log πj + log f(xi;Φj)}. (4.11)

4.3.2 M-Step

The M-step on the (m+1)th iteration requires the global maximization of Q(Ψ; Ψ̂
(m)

)

with respect to Ψ over the parameter space ⊖ to give the updated estimate Ψ̂
(m+1)

.

That is, we seek the estimates of π’s and Φ’s using ẑ
(m)
ij in (4.11). One nice feature

of the EM algorithm is that for many common component densities fj, the solution

in the M-step often exists in closed form. Since the solution to the M-step depends

on the form of density chosen, we delay further details until the next section.

4.4 EM for the CMDA1 Model

The EM algorithm can be generalized to mixture discriminant analysis problems.

In this section, we derive the EM algorithm for the CMDA1 model using univariate

normal densities to construct the component densities, as in (4.4). The derivation

is similar to Section 4.3, but it will be more complicated because of the form of the

CMDA1 model.

Knowing that observation i is in the kth class, zi = (zi1k, . . . , ziPk)
T is a P -

dimensional vector such that

zijk =







1 if xi belongs to the jth component of the kth class,

0 otherwise.
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Here
∑

j zijk = 1 for an observation i in a given class k. If yi = k, we assume

zijl = 0 for all l 6= k. The observations x = (xT
1 , . . . ,xT

n )T are called incomplete

data, while (xT
i , zT

i )T with i = 1, . . . , n are called complete data (see Section 4.3).

Hence the log likelihood for the incomplete data is

ln(Ψ) =
n

∑

i=1

log f(xi;Ψ|yi), (4.12)

where yi is the class label for observation i and f is defined in (4.3). As before,

we refer to the collection of all model parameters as Ψ. That is, in the CMDA1

model, Ψ = {Ψ1, . . . ,Ψk,ΨG}. For the completed data, the log likelihood is

lc(Ψ) =
K

∑

k=1

P
∑

j=1

∑

i∈Ck

zijk{log πjk + log h(xij ; Φ̄jk) +
∑

l 6=j

h(xil; Φ̄l)}, (4.13)

where xij is the jth element of the vector xi, xi = {xi1, . . . , xiP}. The notation
∑

i∈Ck
means summing over all observations belonging to the kth class.

In the derivations below and later in applications (Section 4.7.1), we assume

that the h(·) are univariate Gaussian densities. In the EM algorithm at iteration

a, we need to take the expectation of (4.13) given the observations and the current

estimates of parameters. That is, we need

Q(Ψ; Ψ̂
(a)

) = E

[

∑K
k=1

∑P
j=1

∑

i∈Ck
zijk{log πjk + log N(xij ; µjk, σjk)

+
∑

l 6=j N(xil; µl, σl)}|x, Ψ̂
(a)

]

. (4.14)

In the E-step, we calculate the expectation of zijk, assuming Ψ = Ψ̂
(a)

:

ẑ
(a)
ijk =

π̂
(a)
jk N(xij ; µ̂

(a)
jk , σ̂

(a)
jk )

∏

l 6=j N(xil; µ̂
(a)
l , σ̂

(a)
l )

∑P
m=1 π̂

(a)
mkN(xim; µ̂

(a)
mk, σ̂

(a)
mk)

∏

l 6=m N(xil; µ̂
(a)
l , σ̂

(a)
l )

. (4.15)
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Here, ẑijk is the posterior probability that the ith observation belongs to the jth

component of the kth class. Then

Q(Ψ; Ψ̂
(a)

) =
∑K

k=1

∑P
j=1

∑

i∈Ck
ẑ

(a)
ijk{log πjk + log N(xij ; µjk, σjk)

+
∑

l 6=j N(xil; µl, σl)}. (4.16)

and the M-step seeks to maximize Q with respect to Ψ for fixed zijk. Differenti-

ating (4.16) with respect to the parameters, and equating these derivatives to zero

yields a system of equations that can easily be solved, giving:

π̂
(a+1)
jk =

∑

i∈Ck
ẑ

(a)
ijk

∑p

j′=1

∑

i∈Ck
ẑ

(a)

ij′k

, (4.17)

µ̂
(a+1)
jk =

∑

i∈Ck
ẑ

(a)
ijkxij

∑

i∈Ck
ẑ

(a)
ijk

, (4.18)

σ̂2
jk

(a+1) =

∑

i∈Ck
ẑ

(a)
ijk(xij − µ̂

(a)
jk )2

∑

i∈Ck
ẑ

(a)
ijk

, (4.19)

µ̂
(a+1)
l =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a)
ijkxil

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a)
ijk

, (4.20)

σ̂2
l
(a+1) =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a)
ijk(xil − µ̂

(a)
l )2

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a)
ijk

. (4.21)

Finally, by plugging in the parameter estimates, the estimates of posterior class

probabilities are (by Bayes’ theorem)

P̂ (y = k|X = x) ∝ τk

P
∑

j=1

πjkN(xj ; µ̂jk, σ̂jk)
∏

l 6=j

N(xl; µ̂l, σ̂l) (4.22)

K
∑

k=1

P̂ (y = k|X = x) = 1. (4.23)

where τk is a prior probability for the class k.
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4.5 Application Issues of the EM Algorithm

In this section, we identify two technical problems with using the EM algorithm

to estimate the CMDA1 model. These problems will motivate the multi-step EM

algorithm proposed in Section 4.6.

4.5.1 Degeneracy

When applying the EM algorithm to the CMDA1 model, we notice that the EM

algorithm can converge to degenerate solutions. That is, the estimates of some

variances are zero or very close to zero. Usually this occurs because a mixture com-

ponent has only one observation associated with it. Figure 4.2 shows one example.

The data are plotted in (a). The highlighted green point in (b) is in a cluster with

only itself at the last iteration of the algorithm. As the EM algorithm proceeds,

σ̂12 → 0 and µ̂12 approaches the observed value of x for the highlighted point. As

σ̂12 → 0, the log likelihood goes to infinity. The reason for this problem is that the

MLE is not well defined in mixture models as the likelihood function of mixture

models is unbounded for any given sample size.

To see how such a degenerate solution can occur, consider a mixture of g uni-

variate N(µj , σj) densities. The log likelihood function is given by

ln(Ψ) =

n
∑

i=1

log f(xi;Ψ)

=
n

∑

i=1

log{
g

∑

j=1

πj

σj

φ(
xi − µj

σj

)},

where Ψ = {π1, . . . , πg−1; µ1, . . . , µg; σ1, . . . , σg}, and φ(·) is a standard normal
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Figure 4.2: The EM algorithm converges to a degenerate solution. (a): the data

set; (b): one observation x∗ with the green triangle is the one that causes the

degenerate solution. (c): the parameter estimate of log(σ12) decreases to −∞; (d):

the corresponding log likelihood diverges toward infinity. The initial values of the

parameters in this example are selected by K-means. The log likelihood at iteration

7 is ∞, σ̂
(6)
12 = 0, and µ̂

(6)
12 = x∗.
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distribution. By letting µ1 = xi and σ1 → 0 with other parameters fixed, it is

easily seen that ln(Ψ)→∞.

The problem of degenerate solutions can occur quite often. For example, later

in Section 4.7.2, we show a simulated example in which 200 realizations of a data

set are generated, and EM leads to a degenerate solution every time.

4.5.2 Starting Values

In mixture modeling, it is well-known that the choice of good starting values for

parameters is very important in the EM algorithm (McLachlan & Krishnan 1997).

Good starting values can lead the EM algorithm to converge to good local optima.

Starting values can be chosen for either Ψ or zijk. In the thesis, the K-means

algorithm is used to choose starting values for the component labels, ẑ
(0)
ijk’s. As

different starting values can give very different results, we use multiple starting

values in our Multi-step EM algorithm. This will help the EM algorithm identify

good parameter estimates. A detailed discussion of the choice of starting values for

the Multi-step EM algorithm is given in Section 4.6, and assessment of estimate

quality is given in Section 4.7.

4.6 Multi-step EM Algorithm

We develop a special Multi-step EM algorithm, which is designed to improve the

chances of finding good local optima and avoiding degenerate estimates. The Multi-

step EM algorithm has three important features:



Constrained Mixture Discriminant Analysis 70

(1) Multiple trials for K-means are used to identify good starting points.

(2) During an intermediate stage of the algorithm, variances are enlarged to pre-

vent degenerate solutions.

(3) The algorithm first optimizes the location parameters while holding the vari-

ance parameters fixed. Then the variances and location parameters are si-

multaneously optimized. Section 4.5 provides motivation for this by noting

that a poor µ estimate (e.g. µ = xi for some i) can lead to degeneracy in σ.

Because the Multi-step EM algorithm is sensitive to the starting points, (1) is

used to identify good starting values. Features (2) and (3) are combined to avoid

the degeneracy problem. The pseudo code of the Multi-step EM algorithm is listed

below:

Step 1 Goal: get initial values of π̂
(0)
jk , µ̂

(0)
jk , µ̂

(0)
l , σ̂2

jk
(0) and σ̂2

l
(0)

• For t=1 to trial

(a) Run the K-means algorithm to obtain the cluster labels (1, . . . , P ) for each obser-

vation given class k;

(b) Match ẑ
(0)
ijk and the cluster labels obtained from (a);

(c) Calculate π̂
(0)
jk , µ̂

(0)
jk , µ̂

(0)
l , σ̂2

jk
(0) and σ̂2

l
(0) in (4.17)-(4.21);

(d) Calculate incomplete log likelihood (4.12) log.valuet given π̂
(0)
jk , µ̂

(0)
jk , µ̂

(0)
l , σ̂2

jk
(0)

and σ̂2
l
(0);

• Identify the estimates giving the best log.valuet, t∗ = arg maxt log.valuet as the initial

values for Step 2;

• Let σ̂2
jk

(0) ← σ̂2
jk

(0) × multiplier and σ̂2
l
(0) ← σ̂2

l
(0) × multiplier.

Step 2 Goal: find the best µ̂jk, µ̂l while holding σ̂2
jk

(0) and σ̂2
l
(0) fixed

• Repeat, for m = 0, 1, 2...,

(a) Calculate ẑ
(m+1)
ijk in (4.15) given π̂

(m)
jk , µ̂

(m)
jk , µ̂

(m)
l , σ̂2

jk
(0) and σ̂2

l
(0);
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(b) Calculate π̂
(m+1)
jk , µ̂

(m+1)
jk , µ̂

(m+1)
l in (4.17), (4.18) and (4.20);

(c) Calculate log.value(m+1) using π̂
(m+1)
jk , µ̂

(m+1)
jk , µ̂

(m+1)
l , σ̂2

jk
(0) and σ̂2

l
(0);

(d) If log.value(m+1) is finite and log.value(m+1)
−log.value(m)

log.value(m) < 0.0001, stop;

If log.value(m+1) is infinite, stop, and return “The Algorithm Converged to A

Degenerate Solution”;

otherwise go to (a);

• The final set of π̂
(m∗)
jk , µ̂

(m∗)
jk , µ̂

(m∗)
l , σ̂2

jk
(0) and σ̂2

l
(0) is identified as the initial values

for Step 3.

Step 3 Goal: find the best local optima of µ̂jk, µ̂l, σ̂2
jk and σ̂2

l

• Repeat, for m = 0, 1, 2...,

(a) Calculate ẑ
(m+1)
ijk in (4.15) given π̂

(m)
jk , µ̂

(m)
jk , µ̂

(m)
l , σ̂2

jk
(m) and σ̂2

l
(m);

(b) Calculate π̂
(m+1)
jk , µ̂

(m+1)
jk , µ̂

(m+1)
l , σ̂2

jk
(m+1) and σ̂2

l
(m+1) in (4.17)-(4.21);

(c) Calculate log.value(m+1) using π̂
(m+1)
jk , µ̂

(m+1)
jk , µ̂

(m+1)
l , σ̂2

jk
(m+1) and σ̂2

l
(m+1);

(d) If log.value(m+1) is finite and log.value(m+1)
−log.value(m)

log.value(m) < 0.0001, stop;

If log.value(m+1) is infinite, stop, and return “The Algorithm Converged to A

Degenerate Solution”;

otherwise go to (a);

Here, trial is a user-specified constant, which means how many sets of starting

values one wants to use. In the thesis, trial = 100 is employed. The initial values

of ẑ
(0)
ijk are either 0 or 1. Step 3 is the conventional EM algorithm. Thus the multi-

step EM can be considered as a sophisticated technique for finding good starting

values for the EM algorithm.

Before the beginning of Step 2, a tuning parameter multiplier is introduced to

adjust small estimates of variances, which usually result in singularity (degenerate

solutions). The label assignment of K-means is very sensitive to the outliers, each of

which can be a cluster with only a single point. The role of multiplier is to enlarge
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small variances and recruit more points for small clusters. In the thesis, multiplier

initially takes values of 2, 3, 4. For each multiplier, the three steps (Step 1 to

Step 3) in the Multi-step EM algorithm are run to identify the best parameter

estimates. If the algorithm could not converge to a local optima after running all

multiplier’s provided, then Step 2 is re-run with new multiplier value equal

to 1.5 × multiplierc, where multiplierc is the current one (in our experiment,

we begin with multiplierc = 4), then so on until the algorithm converges to a

local optimum. So a possible sequence of multiplier can be 2, 3, 4, 6, 9, 13.5, . . ..

The multipliers are no larger than 200. The algorithm will return a warning

“converged to a degenerate solution” if all multiplier’s fail to result in good

solutions.

Step 2 is designed to avoid degenerate solutions. Fixing the enlarged local and

global variances reduces the possibility that the algorithm moves towards a singular

solution too early and allows the algorithm to explore more parameter space before

converging to an estimate.

Why do we use K-means as a strategy to choose the starting values for the

multi-step EM algorithm? Initially, two kinds of strategies, hierarchical clustering

(Fraley & Raftery 2002) and K-means, were compared on the basis of their ability

to select better starting values. Using the starting values chosen by K-means,

the Multi-step EM algorithm always gave better performance on testing sets than

using starting values chosen by hierarchical clustering. In this experiment, the data

were simulated from the CMDA1 model, and “performance” was measured using

Average Hit Rate, a ranking measurement that will be discussed later in Section
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4.8.1. Therefore, K-means is used as the strategy to choose starting values in the

thesis.

When applying the Multi-step EM algorithm to real data sets in drug discovery,

outliers can still cause difficulties with degenerate solutions. We adapt the Multi-

step EM algorithm so that in each iteration outliers are identified and removed.

For example, if an observation contributes large log likelihood (usually ∞), this

observation can be viewed as an outlier and removed from the data set. Here

the outliers are not due to any type of measurement errors, and they are just

compounds with very different structure from other compounds. Here, an outlier

is defined operationally, i.e. the algorithm behaviour determines what an outlier

is. They are likely to be far from other points, but they are defined in terms of

likelihood contributions and degeneracy. In the remaining of the thesis, all outliers

are defined the same way.

4.6.1 Illustrative Example

A two-dimensional data set simulated from the CMDA1 model is presented to help

us understand how the Multi-step EM algorithm proceeds from one step to the next

one and the influence of the initial values chosen by K-means. The data are plotted

in Figure 4.3. In this example, only one multiplier is used, i.e. multiplier = 2.

Choosing the initial values of ẑ
(0)
ijk, i.e. the probability that observation i be-

longs to the jth component of the kth class, is handled in Step 1 of the Multi-step

EM algorithm (Section 4.6). In Chapter 5, we prove that the CMDA1 model is

identifiable and does not have the label switching problem. The cluster labels of
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observations from K-means are considered as the initial values of zijk. Since label-

switching can occur with K-means, the cluster labels may not correspond to the

component labels of the CMDA1 model. In a regular mixture model, swapping

labels will not change the model, but it is not true for the CMDA1 model as cluster

j has cluster-specific parameters for xj .

We illustrate convergence of the multi-step EM algorithm in two scenarios,

corresponding to whether there is a good match between the initial values from

K-means and the final estimates. Figure 4.4 illustrates both good and bad matches

between the initial values from K-means. In the right side of Figure 4.4, it is clear

that the cluster labels in the real class are switched since the red “•” and “o”

plotting symbols are reversed from Figure 4.3.

A Run With “Good” Starting Values from K-means

The convergence of the parameters from the good starting values are plotted in

Figure 4.5 (a). The green symbols represent the estimates of µ’s (the class specific

and global means) and black symbols are the estimates of σ’s. The green symbols

at the right of the plot are the true means. The lines represent the true variances.

In Step 2, the Multi-step EM algorithm searches for optimal location parameters,

which do not change very much in Step 3. Then both the location and scale

parameters start converging to the true parameters in Step 3. The changes of the

log likelihood are plotted in Figure 4.5 (b). The comparisons between the true

cluster means and the estimates at various stages of the multi-step EM algorithm

are given in Table 4.1. In this case, both the K-means initial values of the µ’s and
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Figure 4.3: Illustrative example of the CMDA1 model in two dimensions. Class is

indicated by red/blue, and matching mixture components have the same plotting

symbol.

the 1-step EM values are close to the true values.

With “Bad” Starting Values from K-means

When the starting values are not that promising for the Multi-step EM algorithm,

it takes the algorithm a little bit longer to converge. The convergence performance

of the parameters from the “bad” starting values chosen by K-means is presented

in Figure 4.6 (a) and the log likelihood versus the iterations is plotted in Figure 4.6

(b). This example also shows that the Multi-step EM algorithm can automatically
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Figure 4.4: Matching of the initial values from K-means: left, a good match; right,

a bad match. Plotting symbols and colour are the same as in Figure 4.3.
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Figure 4.5: when the starting values are “good”. (a): Convergence of the parameter

estimates; (b): Log likelihood versus iterations. Green symbols on the right of plot

(a) represent the means.
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Good Match Bad Match

True cluster Initial K-means Centre for Initial K-means Centre for

mean centre 1EM step centre 1EM step

Cluster 11 (Red •) (4.09, 9.67) (3.91, 9.66) (4.11, 9.64) (7.04, 9.35) (6.58,9.41)

Cluster 12 (Red ◦) (7.11, 9.06) (7.09, 9.08) (6.97, 9.12) (5.57, 9.68) (5.89,9.53)

Cluster 21 (Blue •) (-1.03, 9.67) (-1.04, 9.66) (-1.04, 9.64) (-1.04, 9.35) (-1.04,9.41)

Cluster 22 (Blue ◦) (7.11, 0.70) (7.09, 0.70) (6.97, 0.70) (5.57, 0.70) (5.89,0.70)

Table 4.1: The comparisions between the true cluster means and the centre esti-

mates for both good and bad matches.

adjust the “bad” starting values and converge to the optimal solutions. The “cross-

over” of the largest four means in Figure 4.6 (a) is an indication of a correction of

initially poor µ values. The comparisons between the true cluster means and the

estimates are given in Table 4.1. The x, coordinates of the initial K-means centres

are reversed between clusters 11 and 12. After 1 EM step, the estimates are already

beginning to move toward the correct values.

This example also illustrates an additional advantage of Step 2. By fixing scale

parameters, Step 2 focuses on adjusting location parameters in instances where the

initial match is poor.

4.6.2 Parallel Computation

Large drug data sets usually make computations very intensive. In the imple-

mentation of the two EM algorithms, parallel computing is employed to speed up

computations. A parallel computer is a kind of computer with multiple processors

acting to achieve some common goal. In this section, we discuss parallel computing

for the EM algorithm.
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Figure 4.6: when the starting values are “bad”. (a): Convergence of the parameter

estimates; (b): Log likelihood versus iterations. Green symbols on the right of plot

(a) represent the means.
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The first question for parallel computing is what can or can not be made parallel?

A fundamental issue is whether the code is dependent or not. For example the

assignments, a ⇐ b and a ⇐ c are not parallelizable since the value of a depends

on both b and c. However, a ⇐ b and c ⇐ d are parallelizable as two codes are

independent.

Figure 4.7 shows two kinds of parallel computing: (a) embarrassingly parallel

and (b) non-embarrassingly parallel. In “embarrassingly parallel” computing, each

iteration of code inside a loop is independent of other iterations. Many statistical

computations belong to this category, e.g. bootstrapping and cross-validation. In

Figure 4.7, the rectangular boxes represent a controlling processor (also called “mas-

ter”) and the circles represent slave processors or slaves. The controlling processor

sends jobs to each slave processor and collects results from each slave processor.

Figure 4.7: Parallel Computing: (a) embarrassingly parallel; (b) non-

embarrassingly parallel.

The EM algorithm is not an embarrassingly parallel algorithm since each itera-
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tion depends on the previous one as in Figure 4.7 (b). After timing each step in the

Multi-step EM algorithm, we find that E-step in the EM algorithm is computation-

ally intensive since this step involves calculation of the membership zijk for each

observation given class k. To determine membership, the normal density function

must be evaluated. This is an expensive operation due to calculation of a natural

exponent. Therefore, we decide to use the following parallel computing diagram

to speed up the process. Figure 4.8 illustrates how the parallel computing works

in the EM algorithm. The large data set has been split across each processor, e.g.

the first slave processor has observations from 1 to 100, the second slave processor

has observations from 101 to 200, etc. At the iteration m, the controlling processor

sends the current parameter estimates (µjk’s, µj’s, σjk’s, σj’s and πjk’s) to each

slave in order to calculate cluster labels for observations. Then the slave processors

send the values of ẑijk back to the controlling processor, which will conduct the

M-step of the EM algorithm, i.e. calculate the parameter estimates. The process

continues until some stopping rule is reached.

Therefore, for jobs that are not embarrassingly parallel, it is possible to do

parallelization by having processors communicate data. The speed-up from this

parallelization is less than linear, i.e., doubling the number of processors does not

make the algorithm run twice as fast. Usually speed-up is either the logarithm of

the number of processors or converges towards a value.
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Figure 4.8: Parallel computing for the EM algorithm. Usually, there are more

than four processors used in computations, and more than two sending-receiving

procedures.
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Factor Level 1 Level 2

1 Dimensionality 2 10

2 Covariance Structure same different

3 Sample Size small large

4 Proportion balanced unbalanced

5 Mean well separated not well separated

Table 4.2: 5 factors and their levels for the CMDA1 model. See text for precise

specifications of the levels used.

4.7 Performance of the Multi-step EM Algorithm

In this section, we compare the Multi-step EM algorithm to the EM algorithm

when both algorithms are used to estimate the parameters of the CMDA1 model.

Here and in the remainder of the thesis, we refer to these algorithms as “Multi-step

EM” and “EM”. All the simulated data sets used in the remainder of this chapter

are assumed to have two classes: active and inactive.

4.7.1 Design of the Simulation

All data will be simulated from CMDA1 models with a variety of parameter settings.

Five factors representing important properties of the CMDA1 model are carefully

chosen. Each of these factors has two levels. The factors and levels are summarized

in Table 4.2.

The interpretations of the five factors, their levels and how to simulate param-

eters are as follows:



Constrained Mixture Discriminant Analysis 83

• Dimensionality: the number of descriptors in the data set. In the simulation,

either 2 or 10 dimensions are used. When dimensionality= 2, the model is a

simple model with only 14 parameters to be estimated. When dimensionality=

10, there are 78 parameters to be estimated. Here, we want to explore the

performance of Multi-step EM in two extreme situations.

• Covariance Structure: the within class covariance structures. The CMDA1

model is a mixture of multivariate normal densities with diagonal covariance

matrices. Each entry in the covariance matrices is a variance of a univariate

normal density function. The within class covariance structures for different

components can be the same or different. If Covariance Structure is the same

within classes, all the clusters share the same covariance, i.e. σ1 = σ11 = σ21,

σ2 = σ12 = σ22, and σ3 = σ13 = σ23 etc. This is the traditional con-

strained mixture model having a common diagonal covariance matrix. In

the simulation, we draw global parameters σj ∼ U(0.01, 1.5), j = 1, . . . , P .

When Covariance Structure is different both within and between classes, we

draw σj ∼ U(0.01, 1.5) and class specific variances σjk ∼ U(0.01, 1.5) for

j = 1, . . . , P and k = 1, . . . , K. Simulated data plotted in Figure 4.9 illus-

trates the two different levels of Covariance Structure while other factors are

the same.

• Sample Size: small (5×# of parameters) and large (10×# of parameters).

• Proportion: the proportions of active and inactive compounds in the data.

When Proportion is balanced, the active and inactive classes have the same

number of compounds. If Proportion is unbalanced, the total sample size is
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Figure 4.9: Covariance Structure: same (left) and different (right) while other

factors are fixed.

divided in a 1 : 9 ratio of active:inactive. The actual numbers of active and

inactive compounds in different cases are summarized in Table 4.3.

• Mean: the location parameters for each component. By carefully selecting

values for both local and global means, the clusters between classes can be

“Well Separated” or “Not Well Separated”. When Mean is well separated,

we draw µj1 ∼ U(−9,−3), µj2 ∼ U(−2, 4) and µj ∼ U(4, 10), j = 1, . . . , P .

When Mean is not well separated, we draw µjk ∼ U(−3, 3) and µj ∼ U(−3, 3),

j = 1, . . . , P and k = 1, . . . , K. Figure 4.10 shows two data sets: the left one

is well separated and the right one is not well separated.

We note that two of these factors (Covariance and Mean) involve simulations of

random values of the parameters of the CMDA1 model. The within-class mixture

weights (πjk’s) are set to be equal in all cases.
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Sample Size

Dimension Size Proportion Active Inactive Total

2 Small 1 : 1 35 35 70

2 Small 1 : 9 7 63 70

2 Large 1 : 1 70 70 140

2 Large 1 : 9 14 126 140

10 Small 1 : 1 195 195 390

10 Small 1 : 9 39 351 390

10 Large 1 : 1 390 390 780

10 Large 1 : 9 78 702 780

Table 4.3: The number of active and inactive compounds generated in the simula-

tion for all combinations of Dimension, Sample Size and Proportion.
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Figure 4.10: Clusters between two classes are Well Separated (left) or Not Well

Separated (right) while other factors are fixed.
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A full-factorial experiment in these five factors, each of which has two levels,

gives us a total of 32 combinations listed in Table 4.4.

In order to effectively compare Multi-step EM to EM, the total number of

starting sets for EM is taken as the product of the number of initial value sets

(trials) and the number of multiplier’s used in Multi-step EM. Therefore, the

total number of starting sets for EM varies, as the number of multiplier’s used in

the Multi-step EM may change in different simulations. By allowing EM and Multi-

step EM a comparable number of restarts, we hope that differences in performance

are mostly due to fixing σ’s and using multiplier’s in Step 2.

The experiment is carried out as follows:

• For each combination from 1 to 32 in Table 4.4, a model is simulated. These

models may share some parameters. For instance, combination 1 and 3 have

exactly the same numeric values of µ’s and σ’s.

• Holding the models fixed, 200 data sets are generated from each model ac-

cording to combinations 1 to 16. For combinations 17 to 32, 20 data sets

are simulated from each model to reduce the amount of computation. The

number of data sets is chosen to give small variation in average results, while

being computationally feasible.

We have in total 32 runs, and for each run, there are multiple replicates. We em-

phasize that a model is randomly sampled from each combination first, and then the

data sets are independently generated from each model. There is not considerable

variability in sampling a model due to our specified simulation procedure.
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Dimension Covariance Size Proportion Means

1 2 Same Small Balanced Well Separated

2 2 Same Small Balanced Not Well Separated

3 2 Same Small Unbalanced Well Separated

4 2 Same Small Unbalanced Not Well Separated

5 2 Same Large Balanced Well Separated

6 2 Same Large Balanced Not Well Separated

7 2 Same Large Unbalanced Well Separated

8 2 Same Large Unbalanced Not Well Separated

9 2 Different Small Balanced Well Separated

10 2 Different Small Balanced Not Well Separated

11 2 Different Small Unbalanced Well Separated

12 2 Different Small Unbalanced Not Well Separated

13 2 Different Large Balanced Well Separated

14 2 Different Large Balanced Not Well Separated

15 2 Different Large Unbalanced Well Separated

16 2 Different Large Unbalanced Not Well Separated

17 10 Same Small Balanced Well Separated

18 10 Same Small Balanced Not Well Separated

19 10 Same Small Unbalanced Well Separated

20 10 Same Small Unbalanced Not Well Separated

21 10 Same Large Balanced Well Separated

22 10 Same Large Balanced Not Well Separated

23 10 Same Large Unbalanced Well Separated

24 10 Same Large Unbalanced Not Well Separated

25 10 Different Small Balanced Well Separated

26 10 Different Small Balanced Not Well Separated

27 10 Different Small Unbalanced Well Separated

28 10 Different Small Unbalanced Not Well Separated

29 10 Different Large Balanced Well Separated

30 10 Different Large Balanced Not Well Separated

31 10 Different Large Unbalanced Well Separated

32 10 Different Large Unbalanced Not Well Separated

Table 4.4: The 32 combinations of the five factors with two levels.
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Run 1 2 3 4 5 6 7 8

Multi-step EM 0 0 0 20 0 0 0 1

EM 103 200 174 200 3 200 44 199

Run 9 10 11 12 13 14 15 16

Multi-step EM 0 1 0 14 0 0 0 1

EM 24 145 77 157 0 68 1 83

Table 4.5: Degenerate solutions from the Multi-step EM and EM algorithms. In

runs 17-32, all EM solutions are degenerate.

In the following sections, three comparisons between Multi-step EM and EM

will be made: degeneracy, parameter estimation and prediction accuracy via the

likelihood.

4.7.2 Degenerate Solutions

Compared to EM, one advantage of Multi-step EM is significantly reducing the

possibility that the algorithm converges to degenerate solutions. When the dimen-

sionality is 2, the hardest classification problem is probably the 12th combination,

i.e. the covariance structure is “Different”, the sample size is “Small”, the data are

“Unbalanced” and the clusters from different classes are “Not Well Separated”. For

combination 12, Multi-step EM converges 14 times to degenerate solutions, while

EM converges 157 times over 200 replicates. The number of degenerate solutions

for combinations 1-16 in Table 4.4 are summarized in Table 4.5.

From Table 4.5, although Multi-step EM sometimes still converges to degenerate

solutions, it has significantly reduced the amount of degenerate solutions. The
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Run 17 18 19 20 21 22 23 24

Multi-step EM 0 2 0 13 0 0 0 1

Run 25 26 27 28 29 30 31 32

Multi-step EM 0 1 0 16 0 1 0 1

Table 4.6: Degenerate solutions from the Multi-step EM for runs 17-32, while all

EM solutions are degenerate.

same experiments are also applied to high-dimensional cases (combinations 17 to

32). However, EM fails completely, always converging to degenerate solutions.

The degenerate solutions from the Multi-step EM algorithm for runs 17-32 are

summarized in Table 4.6. Thus, runs 17-32 will not be studied further in subsequent

comparisons.

4.7.3 Parameter Estimation Accuracy

We first consider the 200 replicates of model 12. Figure 4.11 displays histograms

of the four local standard deviation estimates σ̂jk, j = 1, 2, and k = 1, 2, obtained

via Multi-step EM and EM. Degenerate solutions are included in this plot, and

correspond to one or more σ̂jk being equal to zero. Figure 4.12 is similar but

for global σ̂j ’s, j = 1, 2. Figure 4.11 and Figure 4.12 indicate that Multi-step EM

gives more accurate parameter estimates than EM, since the estimates are generally

closer to the true values. The Multi-step EM estimates for both local and global

standard deviations have less variance than those estimated by EM. Moreover, for

most of the standard deviations, the estimates from EM are biased.

Mean square errors (MSE) for all the parameter estimates in combination 12
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Figure 4.11: The estimates of four local standard deviations (σ̂jk) estimated by

Multi-step EM (left column) and EM (right column) based on 200 realizations of

model 12. The vertical dotted lines indicate the true parameter values.
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Figure 4.12: The estimates of two global standard deviations (σ̂j) estimated by

Multi-step EM (left column) and EM (right column) based on 200 realizations of

model 12. The vertical dotted lines indicate the true parameter values.
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Parameters Multi-step EM EM

µ11 0.09181 1.64753

µ12 0.11417 0.07589

µ21 0.03222 4.98514

µ22 0.01971 1.73415

µ1 0.03014 2.35141

µ2 0.00014 1.55863

σ11 0.08255 0.07405

σ12 0.09484 0.08572

σ21 0.01559 0.50813

σ22 0.01026 0.29383

σ1 0.01366 0.39069

σ2 0.00065 0.91055

Table 4.7: The estimated MSEs for the parameters of combination 12, over 200

realizations. Degenerate solutions are included in these calculations.

are listed in Table 4.7.

The MSE’s for the estimates of σ11 of the first 16 low-dimensional cases are

plotted in Figure 4.13, which shows that Multi-step EM gives more accurate pa-

rameter estimates than EM overall. Plots for other 13 parameters (not shown here)

are similar.

4.7.4 Prediction Accuracy via Log Likelihood

We also compare the algorithms in terms of their prediction ability. Usually we

would like to know the performance of our model on some testing sets, as it is

a good measurement of how well a model predicts future data sets. Using the
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Figure 4.13: The plot of MSE’s for the estimates of σ11 for combinations 1 to 16.

The x-axis and y-axis are in different scales. The line in the plot is the 45 degree

line, on which the MSE’s are equal.
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test set, we will evaluate ln(Ψ̂), the log likelihood of the parameter values, esti-

mated from the training set via EM or Multi-step EM. An additional advantage

of using the test set is that unless one observes a test point exactly equal to a

training point, ln(Ψ̂) will be less than ∞, enabling us to access the quality of

prediction for both degenerate and non-degenerate solutions. A large testing set

(100 ∗ sample size of the training data) is generated.

For combination 12 in Table 4.4, the differences of the log likelihood from the

log likelihood of the true parameters for the 200 testing sets are calculated using the

estimates from EM and Multi-step EM respectively. The testing size in this case is

7, 000. The differences are obtained by subtracting the true log likelihood from the

log likelihood estimated by each algorithm. The difference of the log likelihood is

denoted by

∆ = ln(Ψ̂)− ln(Ψ0). (4.24)

We expect ∆ < 0 since Ψ̂ maximizes the training likelihood, not the test likeli-

hood. The smaller the absolute difference is, the closer the estimated log likelihood

is to the truth. Figure 4.14 shows ∆ pairs corresponding to Multi-step EM and

EM. The absolute differences of log likelihood calculated by the Multi-step EM

algorithm are usually smaller than those calculated by the EM algorithm. In the

scatter plot of Figure 4.14, the line represents equal performance; points below the

line mean Multi-step EM is better than EM; those above the line mean Multi-step

EM is worse than EM. There are 150 points out of 200 under the line, i.e., Multi-

step EM has better prediction ability than EM. The frequency of such “wins” of

the Multi-step EM for combinations 1-16 are summarized in Table 4.8. For all 16
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low-dimensional combinations in Table 4.4, the same kind of pattern can be found

in the differences of the log likelihood compared between EM and Multi-step EM.
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Figure 4.14: A comparison log likelihood differences for EM and Multi-step EM

based on 200 testing sets generated from the model 12. The line is a 45 degree line.

The plot includes degenerate solutions.

4.7.5 Conclusions for the Multi-step EM Algorithm

From the above experiments, Multi-step EM has the following advantages compared

to EM:

• Multi-step EM can give accurate estimates for the parameters of the CMDA1

model.



Constrained Mixture Discriminant Analysis 96

Combination 1 2 3 4 5 6 7 8

Wins 135 169 174 135 102 196 133 197

Combination 9 10 11 12 13 14 15 16

Wins 156 156 178 150 177 176 193 154

Table 4.8: Number of replicates (out of 200) in which Multi-step EM has test set

log likelihood that is superior to EM, for combinations 1-16.

• The estimates from Multi-step EM have lower MSE’s than those estimated

by EM.

• Multi-step EM is superior to EM in the prediction ability of the estimated

model.

• Multi-step EM significantly reduces the number of degenerate solutions.

Since Multi-step EM still cannot totally avoid degeneracy, another approach,

Penalized Maximum Likelihood Estimation (PMLE), is considered in the next chap-

ter.

4.8 Performance as Classifiers: CMDA1 vs. MclustDA

In this section, the CMDA1 model will be compared to the popular model-based

discriminant approach, MclustDA (Fraley & Raftery 2002). In MclustDA, the

density of x within each class is modeled as a mixture of multivariate normal

densities. In the form of MclustDA used here, we assume the multivariate normal

mixture components have diagonal covariance matrices, and allow both the mean
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vector and the covariance matrix to vary across mixture components. CMDA1 will

be estimated via the multi-step EM algorithm described in Section 4.6. Methods

will be compared on the basis of their predictive performance as classifiers.

Two scenarios are carefully considered to compare the CMDA1 model and the

MclustDA model: (1) the true model is the CMDA1 model (Section 4.8.2), and

(2) the true model is the MclustDA model (Section 4.8.3). For both scenarios,

the comparison between the CMDA1 model and the MclustDA model focuses on

prediction accuracy for testing sets. In order to compare the CMDA1 model and the

MclustDA model on a fair basis, the number of components in each model is made

the same as P (the dimensionality of the data). For example, if the dimensionality of

the data is 6, the number of components in both of the CMDA1 and the MclustDA

models is 6.

The next section introduces the Average Hit Rate (AHR), a performance crite-

rion for unbalanced data.

4.8.1 Comparison Criteria: Misclassification Rate and Av-

erage Hit Rate

Consider the common classification problem with 2 classes y ∈ {0, 1} (or the ac-

tive and inactive classes in drug discovery). Often, the misclassification rate and

log likelihood (or the equivalent measurement, deviance) are used as criteria for

model building (with training data) or for model assessment (with testing data).

The misclassification rate is simply the proportion of observations assigned to the

wrong classes. Since the misclassification rate is more straightforward than the log



Constrained Mixture Discriminant Analysis 98

likelihood, the misclassification rate is preferred here. Pursuing a low misclassifi-

cation rate is a common strategy for solving the classification problem. However,

the misclassification rate is not always an appropriate standard, especially in drug

discovery, where the active compounds are rare. When the proportion of active

compounds in the test data is small, even a “bad” classifier, which classifies all

active compounds in the testing set as inactive, still can return a small misclassifi-

cation rate. The reason is that the misclassification method is easily dominated by

the majority groups of data set. Hence the misclassification rate is not a reasonable

model assessing criterion for the rare target problems. We will use misclassification

rate, but only in the scenarios where response classes are balanced.

Wang (2005) developed the Average Hit Rate (AHR) as a criterion for drug

discovery problems. AHR measures the ability of classifiers to give the best ranking

of compounds. Suppose n compounds have been ranked according to some measure

of how likely a compound is to be active. Denote the response values for such an

ordered list of compounds by y(1), . . . , y(n), with y(1) corresponding to the compound

predicted to be the most likely to be active. y(i) equals 1 if the ith compound is

active, otherwise 0. The AHR is defined as

AHR =

∑n
i=1

y(i)

Pi
l=1 y(l)

i

A
(4.25)

where A =
∑n

i=1 y(i), i.e. the number of actives in the list. Table 4.9 is a simple

example to show how to calculate AHR. There are three different rankings. The

best ranking ranks all three active compounds before the two inactive ones, so the

AHR of this ranking is 1 (i.e.
1× 1

1
+1× 2

2
+1× 3

3
+0× 3

4
+0× 4

5

3
= 1). The worst ranking

gives a higher ranking to the inactive compounds than the active ones, yielding
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Best Ranking Middle Ranking Worst Ranking

List y(i)

∑i

l=1
y(l)

i
y(i)

∑i

l=1
y(l)

i
y(i)

∑i

l=1
y(l)

i

1 1 1 1 1 0 0

2 1 1 1 1 0 0

3 1 1 0 0.67 1 0.33

4 0 0.75 1 0.75 1 0.5

5 0 0.6 0 0.6 1 0.6

AHR 1+1+1
3 = 1 1+1+0.75

3 = 0.92 0.33+0.5+0.6
3 = 0.48

Table 4.9: Example of calculating average hit rate.

AHR= 0.48. The middle ranking gives one of the active compounds lower priority

than one inactive compounds, and then has AHR equal to 0.92. Thus, AHR is a

good indicator of how well a classifier ranks active compounds.

In the following sections, misclassification rate is applied only when the sim-

ulated data sets are balanced, i.e. the active class has an equal amount of data

as the inactive class. The AHR will be used as a comparison criterion when the

simulated data sets are imbalanced. In Section 4.9, the AHR will be used in the

NCI Antiviral AIDS data, in which active compounds are only 2% of the whole

data set.

4.8.2 Data Simulated from CMDA1

Experimental Design

The 32 different CMDA1 models used in Section 4.7 are also used here to generate

data. For the combinations with balanced samples (runs 1, 2, 5, 6, 9, 10, 13, 14, 17,
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18, 21, 22, 25, 26, 29, 30), the misclassification rate is used to measure performance.

For the other 16 unbalanced combinations, AHR is the performance measurement.

Results

Table 4.10 summarizes the average misclassification rates and their standard errors

for Bayes’, the CMDA1 model and the MclustDA model. In the Bayes’ misclassifi-

cation rate, predictions are generated using the true values of all model parameters.

Table 4.11 summarizes the average AHR and their standard errors for Bayes’, the

CMDA1 model and the MclustDA model. In both tables, the average performance

measurement (misclassification rate or AHR) is calculated over 200 samples for

two-dimensional data, and 20 samples for 10-dimensional data. In all combina-

tions, CMDA1 is superior to MclustDA, with a lower misclassification rate (Table

4.10) and a higher AHR (Table 4.11).

A two-sample t-test for equal means is conducted to test if there is a significant

performance difference between CMDA1 and MclustDA for average misclassifica-

tion rate. In this test, unequal variances are assumed. For the average misclassi-

fication rate (see Table 4.12), there is a statistically significant difference between

CMDA1 and MclustDA at a 1% significance level, which indicates CMDA1 per-

forms significantly better than MclustDA in both low and high dimensional bal-

anced cases.

The same t-test with unequal variances assumed is also conducted for the aver-

age AHR’s (see Table 4.11, the unbalanced model) between CMDA1 and MclustDA.

The same conclusion can be made: CMDA1 has a significantly better performance
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Bayes CMDA1 MclustDA

Combination Ave. Mis. Rate (se) Ave. Mis. Rate (se) Ave. Mis. Rate (se)

1 0.00 (0.00) 0.00 (0.00) 0.05 (0.00)

2 4.21 (0.02) 4.86 (0.09) 5.43 (0.08)

5 0.00 (0.00) 0.00 (0.00) 0.05 (0.00)

6 4.19 (0.01) 4.41 (0.02) 4.63 (0.01)

9 0.17 (0.00) 0.24 (0.00) 0.38 (0.00)

10 3.79 (0.02) 4.15 (0.00) 5.28 (0.07)

13 0.17 (0.00) 0.20 (0.00) 0.23 (0.01)

14 3.80 (0.01) 3.94 (0.02) 4.29 (0.04)

17 0.97 (0.00) 1.09 (0.00) 4.30 (0.00)

18 12.47 (0.00) 19.46 (0.14) 24.78 (0.15)

21 0.97 (0.01) 1.03 (0.01) 1.19 (0.02)

22 12.52 (0.03) 20.77 (0.18) 23.07 (0.09)

25 0.01 (0.00) 0.04 (0.00) 0.52 (0.00)

26 13.23 (0.00) 15.99 (0.06) 21.15 (0.18)

29 0.01 (0.00) 0.02 (0.00) 0.12 (0.00)

30 13.23 (0.02) 20.02 (1.27) 19.96 (0.27)

Table 4.10: Average Misclassification Rate (%) calculated for Bayes, CMDA and

MclustDA when the true model is the CMDA1 model. Standard errors are given

in parentheses.
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Bayes CMDA1 MclustDA

Combination Ave. AHR (se) Ave. AHR (se) Ave. AHR (se)

3 100 (0.00) 99.8 (0.12) 95.4 (0.68)

4 86.6 (0.08) 79.4 (0.54) 64.3 (0.09)

7 100 (0.00) 100 (0.00) 99.5 (0.00)

8 86.6 (0.05) 84.6 (0.16) 81.2 (0.28)

11 99.9 (0.00) 99.4 (0.20) 92.1 (0.85)

12 92.6 (0.04) 87.7 (0.48) 73.7 (1.14)

15 99.9 (0.00) 99.9 (0.00) 99.8 (0.01)

16 92.6 (0.03) 91.4 (0.17) 89.3 (0.21)

19 98.9 (0.01) 96.8 (0.43) 91.1 (0.12)

20 67.2 (0.04) 46.3 (1.32) 26.9 (0.87)

23 98.9 (0.00) 98.6 (0.05) 95.1 (0.11)

24 67.4 (0.02) 47.7 (1.09) 41.0 (0.90)

27 100 (0.00) 99.3 (0.35) 94.43 (0.08)

28 79.7 (0.02) 58.6 (0.32) 52.1 (0.68)

31 99.99 (0.00) 99.99 (0.00) 99.81 (0.04)

32 79.64 (0.01) 64.13 (0.24) 55.01 (0.39)

Table 4.11: Average AHR calculated (%) for Bayes, CMDA and MclustDA when

the true model is the CMDA1 model. Standard errors are given in parentheses.
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than MclustDA for unbalanced data.

4.8.3 Data Simulated from MclustDA

Experimental Design

When the true model is the MclustDA model, we perform a different experiment.

Five factors, each of which has two levels, are chosen to represent the properties

of the MclustDA model. The five factors and their levels are listed in Table 4.14.

Here, the MclustDA model shares some of the same assumptions as the CMDA1

model:

• The number of clusters in each class is the same as the dimensionality of the

data.

• The independence assumption of the descriptors still holds for the MclustDA

model, i.e. the within class covariance matrices are diagonal.

Most of the five factors and their levels are the same as in Section 4.7.1, except

Covariance Structure is constructed differently for MclustDA. Unlike CMDA, there

are no global parameters used in MclustDA. The interpretations for these factors

and their levels are:

• Dimensionality: the number of descriptors in the data set. There are two

choices for Dimensionality: either 2 and 10. As in the CMDA1 model, we

assume that the number of components in each class is equal to the dimen-

sionality. When the dimensionality is 2, there are two clusters in each class,

while for 10-dimensional data, there are 10 clusters in each class.
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t-test

Combination P-value Significance

1 < 2.2e-16 ***

2 2.070e-06 ***

5 < 2.2e-16 ***

6 8.66e-10 ***

9 1.683e-10 ***

10 < 2.2e-16 ***

13 8.258e-05 ***

14 1.321e-15 ***

17 < 2.2e-16 ***

18 0.006858 **

21 1.048e-06 ***

22 2.801e-04 ***

25 6.516e-09 ***

26 7.461e-08 ***

29 < 2.2e-16 ***

30 0.001086 **

Table 4.12: Two sample t-test for CMDA and MclustDA when the true model is

the CMDA1 model. Differences in mean AHR significant at the 5%, 1%, and 0.1%

levels are denoted by *, **, and ***, respectively.
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t-test

Combination P-value Significance

3 1.659e-09 ***

4 < 2.2e-16 ***

7 < 2.2e-16 ***

8 < 2.2e-16 ***

11 8.096e-15 ***

12 < 2.2e-16 ***

15 2.975e-11 ***

16 1.265e-13 ***

19 4.799e-12 ***

20 8.748e-14 ***

23 < 2.2e-16 ***

24 2.964e-05 ***

27 8.619e-12 ***

28 0.003107 **

31 8.387e-05 ***

32 0.001178 **

Table 4.13: Two sample t-test for CMDA1 and MclustDA when the true model is

the CMDA1 model. Differences in mean AHR significant at the 5%, 1%, and 0.1%

levels are denoted by *, **, and ***, respectively.

Factor Level 1 Level 2

1 Dimensionality 2 10

2 Covariance Structure same different

3 Sample Size small large

4 Proportion balanced unbalanced

5 Mean well separated not well separated

Table 4.14: Five factors and their levels for the MclustDA model.
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• Covariance Structure: the within and between class covariance structures. Un-

der our independence assumption, the covariance matrices are diagonal. Two

extreme situations are considered here: the covariance matrices are either

the same or different within and between classes. If Covariance Structures

are the same within and between classes (i.e. Σjk = Σ, for j = 1, . . . , P

and k = 1, . . . , K), a vector with a length being equal to the dimensionality

is randomly sampled from a uniform distribution U(0.01, 2), and then the

values of the vector are assigned to the diagonal values of the covariance ma-

trix Σ. When Covariance Structures are different, the diagonal vectors of all

covariance matrices will be independently and randomly sampled from the

same uniform distribution U(0.01, 2). Figure 4.15 illustrates these different

scenarios.
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Figure 4.15: Variance Structure: (a) same or (b) different while other factors are

the same.
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• Sample Size: small (5×# of parameters) and large (10×# of parameters).

• When Proportion is balanced, the active and inactive classes have the same

number of compounds. If Proportion is unbalanced, the active class has only

1/10 of the whole data set. The actual numbers of active and inactive com-

pounds in different cases are summarized in Table 4.15.

• Mean: the mean vector for each cluster. By carefully selecting values of mean

vectors, the classes can be either “Well Separated” or “Not Well Separated”.

When Mean is well separated, the elements of mean vectors for the active

class will be independently sampled from U(−9,−3) and those for the inac-

tive class will be independently sampled from U(−3, 3). When Mean is not

well separated, all the means are randomly and independently sampled from

U(−3, 3). Figure 4.16 shows two data sets: (a) is well separated and (b) is

not well separated.

Results

Here, only the average performance measurements (misclassification rate or AHR)

and their standard errors, and hypothesis tests of equal average performance are

listed. Both Table 4.16 and Table 4.17 indicate that in the low-dimensional cases

(combinations 1-16), MclustDA outperforms CMDA1. In most of the high-dimensional

cases, the CMDA1 model is surprisingly superior to the MclustDA model, return-

ing smaller misclassification rates and higher AHR’s. We hypothesize that in these

cases, MclustDA performs poorly because of the large number of parameters (rel-



Constrained Mixture Discriminant Analysis 108

Sample Size

Dimension Size Proportion Active Inactive Total

2 Small 1 : 1 45 45 90

2 Small 1 : 9 9 81 90

2 Large 1 : 1 90 90 180

2 Large 1 : 9 18 162 180

10 Small 1 : 1 1045 1045 2090

10 Small 1 : 9 209 1881 2090

10 Large 1 : 1 2090 2090 4180

10 Large 1 : 9 418 3762 4180

Table 4.15: The number of active and inactive compounds generated in the simu-

lation for all combinations of Dimension, Sample Size and Proportion.
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Figure 4.16: Clusters between two classes are: (a) Well Separated or (b) Not Well

Separated while other factors are same.
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CMDA1 MclustDA Difference t-test

Comb. Ave. Mis. Rate (se) Ave. Mis. Rate (se) CMDA1 vs MclustDA P-value Significance

1 0.02 (0.00) 0.00 (0.00) 0.02 0.003555 **

2 18.47 (0.02) 12.88 (0.02) 5.59 < 2.2e-16 ***

5 0.00 (0.00) 0.00 (0.00) 0.00 0.003130 **

6 18.32 (0.01) 12.77 (0.01) 5.55 < 2.2e-16 ***

9 0.07 (0.00) 0.00 (0.00) 0.07 6.1e-07 ***

10 17.99 (0.03) 16.19 (0.03) 1.80 4.683e-15 ***

13 0.05 (0.00) 0.00 (0.00) 0.05 3.355e-09 ***

14 17.75 (0.02) 15.85 (0.02) 1.90 < 2.2e-16 ***

17 0.00 (0.02) 0.00 (0.00) 0.00 0.0002437 ***

18 25.23 (0.25) 41.11 (0.01) -15.88 8.21e-15 ***

21 0.11 (0.02) 0.00 (0.00) 0.11 3.054e-05 ***

22 25.17 (0.20) 41.04 (0.87) -15.87 3.397e-14 ***

25 0.34 (0.01) 0.44 (0.13) -0.10 0.4304

26 25.80 (0.26) 50.29 (0.86) -24.49 < 2.2e-16 ***

29 0.34 (0.00) 0.62 (0.13) -0.28 0.04395 *

30 25.86 (0.12) 49.76 (0.86) -23.9 < 2.2e-16 ***

Table 4.16: Mean misclassification rate for CMDA1 and MclustDA when the true

model is the MclustDA model. Differences in mean misclassification rate significant

at the 5%, 1%, and 0.1% levels are denoted by *, **, and ***, respectively.

ative to available data). For example, with 10 dimensions, the CMDA1 model has

78 parameters, while MclustDA model would have 418 parameters.

In such situations, CMDA1 makes more parsimonious use of data and seems to

offer superior performance as a result.
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CMDA1 MclustDA Difference t-test

Comb. Ave. AHR (%) (se %) Ave. AHR (%) (se %) CMDA1 vs MclustDA P-value Significance

3 100 (0.00) 100 (0.00) 0.00 0.99

4 70.80 (0.19) 80.40 (0.10) -9.60 5.693e-15 ***

7 100 (0.00) 100 (0.00) 0.00 0.99

8 71.66 (0.09) 81.29 (0.05) -9.63 < 2.2e-16 ***

11 100 (0.00) 99.99 (0.00) 0.01 0.442

12 53.61 (0.25) 62.57 (0.25) -8.96 1.469e-09 ***

15 100 (0.00) 100 (0.00) 0.00 0.8467

16 54.08 (0.28) 66.71 (0.10) -12.63 1.166e-12 ***

19 100 (0.00) 100 (0.00) 0.00 0.99

20 53.82 (1.29) 14.98 (0.49) 38.84 < 2.2e-16 ***

23 100 (0.00) 100 (0.00) 0.00 0.03097 *

24 53.82 (1.30) 15.54 (0.84) 38.28 < 2.2e-16 ***

27 99.99 (0.00) 99.22 (0.21) 0.77 0.001590 **

28 31.52 (1.08) 10.59 (0.29) 20.93 8.06e-15 ***

31 99.99 (0.00) 98.92 (2.67) 1.07 0006772 ***

32 31.91 (1.21) 9.58 (1.91) 22.33 7e-14 ***

Table 4.17: Average AHR (%) calculated for CMDA and MclustDA when the true

model is the MclustDA model. Two sample t-test of mean misclassification rate for

CMDA1 and MclustDA when the true model is the MclustDA model. Differences

in mean AHR significant at the 5%, 1%, and 0.1% levels are denoted by *, **, and

***, respectively.
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Split CMDA1 MclustDA

1 11.87 2.28

2 13.09 4.41

3 11.34 2.06

4 10.22 7.92

Average 11.63 4.17

Table 4.18: NCI data: AHR (%) calculated for CMDA and MclustDA.

4.9 Application to the NCI Antiviral AIDS Data

We apply both the CMDA1 model and the MclustDA model to the NCI Antiviral

AIDS Data. The data set is randomly split using stratified sampling into a training

set and a test set, each with n = 14, 906 compounds, of which 304 are active

compounds. We conduct four experiments (4 splits), which will be referred to as

“Split 1”, . . ., “Split 4” in the text below. Performance is assessed by the AHR on

the test set. The AHR’s returned from both approaches for the 4 splits are listed

in Table 4.18. It is clear that the CMDA1 model returns higher AHR’s than the

MclustDA model. Over the four replications, a paired t-test concludes that the

CMDA1 model significantly outperforms MclustDA at a 5% significance level.

We also plot the densities of each BCUT descriptor for the active class and the

inactive class in Figure 4.17. It clearly indicates that the estimated means match

the centres of the densities.

The mixing proportions estimated from Split 2 are: the active class (π11, π21,

π31, π41, π51, π61) = (0.16, 0.37, 0.05, 0.17, 0.14, 0.12) and the inactive class (π12,

π22, π32, π42, π52, π62) = (0.03, 0.09, 0.23, 0.21, 0.23, 0.21). The values of these
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Figure 4.17: The plot of densities of the BCUT descriptors for the active class (the

first row) and the inactive class (the second row). The vertical line in each density

plot is the estimated local mean from Split 2.

estimates indicate how important each BCUT is in the active and inactive classes.

The larger values mean the corresponding BCUT descriptors are important for the

discriminant analysis. For instance, using 0.15 as a threshold, BCUT3, BCUT4,

BCUT5, and BCUT6 in the inactive class may distinguish inactive clusters from

active clusters along the four descriptor dimensions. Wang (2005, Chapter 6) found

that BCUT4 and BCUT6 are important variables. She used a subset K-nearest

neighbour technique to identify the important variables.

Selecting important variables is an important topic. Since our focus here is to
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explore multiple-mechanisms of drug data sets and subsets of descriptors, selecting

important variables has not been carefully and systematically studied. In the future,

we will focus on how to select important variables.

4.10 The CMDA Second Order Model (CMDA2)

We also consider the CMDA Second Order model (CMDA2), which is based on

two-dimensional subspaces of descriptors. In the CMDA2 model, two variables can

be simultaneously discriminate between classes. That is, activity is determined

by interactions between two predictors. The CMDA2 model provides flexibility to

identify this type of pattern. In this section, we will only present the EM derivations

for the CMDA2 models, and one simulation example. The CMDA2 model will be

applied to the NCI data later in Section 5.6.

This model explores the two-dimensional subsets of descriptors. For P descrip-

tors, there are P (P −1)/2 components in each class, as each component is specified

by a pair of descriptors. The second order model in the normal case can be written

as

f(x;Ψk, ΨG|y = k) =

P (P−1)/2
∑

j=1

πjkMV N(xj; µjk,Σjk)
∏

l 6=j

N(xl; µl, σl), (4.26)

where Ψk represents local parameter for class k and ΨG is global parameter.

A difference from the notation used in the CMDA1 model is that here j in-

dexes a pair of descriptors, i.e. j = {1, 2, . . . , P (P − 1)/2} corresponds to pairs

{(1, 2), (1, 3), . . . , (P − 1, P )}. We also note that the global terms (N(xl; µl, σl) in

(4.26)) remain univariate for reasons of parsimony.
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As before, the zijk’s represent the memberships of observations. The complete-

data log likelihood for the second order model is

lc(Ψ) =

K
∑

k=1

P (P−1)/2
∑

j=1

∑

i∈Ck

zijk[log πjk + log MV N(xj; µjk,Σjk) + (4.27)

∑

l 6=j

log N(xl; µl, σl)],

where,

log MV N(xj; µjk,Σjk) = − log 2π − 1

2
log det(Σjk)−

1

2
(xj − µjk)TΣ−1

jk (xj − µjk)

and

log N(xl; µl, σl) = −1

2
log 2π − 1

2
log(σ2

l )−
(xl − µl)

2

2σ2
l

.

Therefore the estimates in EM framework are:

E-Step:

ẑijk =
π̂jkMV N(xj; µjk,Σjk)

∏

l 6=j N(xl; µl, σl)
∑p(p−1)/2

j∗=1 π̂j∗kMV N(xj∗ ; µj∗k,Σj∗k)
∏

l 6=j∗ N(xl; µl, σl)
; (4.28)

M-Step:

π̂jk =

∑

i∈Ck
ẑijk

∑P (P−1)/2
l=1

∑

i∈Ck
ẑilk

; (4.29)

µ̂jk =

∑

i∈Ck
ẑijkxij

∑

i∈Ck
ẑijk

; (4.30)

Σ̂jk =

∑

i∈Ck
ẑijk(xij − µ̂jk)(xij − µ̂jk)T

∑

i∈Ck
ẑijk

; (4.31)

µ̂l =

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijkxil

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk

; (4.32)

σ̂2
l =

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk(xil − µ̂l)

2

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk

. (4.33)
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4.10.1 A Simulation Study

The simulation for the CMDA2 model is as follows:

• The simplest CMDA2 model is considered, P = 3, which means the data are

3-dimensional, and the CMDA2 model has 3 components. For class k, the

3-dimensional CMDA2 model in normal densities is written as

f(x;Ψk, ΨG|y = k) = π1kMV N((x1, x2); µ1k,Σ1k)N(x3; µ3, σ3)

+π2kMV N((x1, x3); µ2k,Σ2k)N(x2; µ2, σ2)

+π3kMV N((x2, x3); µ3k,Σ3k)N(x1; µ1, σ1). (4.34)

• Each element of the class specific means, µjk’s, is independently sampled

from U(−10, 10).

• Global means are independently sampled from U(−10, 10).

• Class specific covariance matrices, Σjk’s, are assumed to have equal off-

diagonal covariance (e.g. σx1x2) that is 0.5. Diagonal entries (e.g. σ2
x1

and σ2
x2

) for each class specific covariance matrix are independently sam-

pled from U(0.01, 2). These diagonal and off-diagonal entries have to satisfy

0.5 = σx1x2 ≤ σx1σx2 , since |cov(X1, X2)| ≤ σX1σX2 . Simulated parameter

values that do not satisfy this constraint are discarded.

• The global variances are independently sampled from U(0.01, 2).

• The training sample size is 360, while the testing size is 3600.

• The active:inactive balance is 1 : 9.
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Ave. AHR Se

Bayes 99.00 0.23

CMDA2 98.34 0.55

MclustDA 70.06 0.86

Table 4.19: Average AHR (%) and standard errors (%) calculated for Bayes,

CMDA2 and MclustDA for the simulated data.

• Holding the parameters sampled fixed, 200 runs are implemented to get the

average of parameter estimates and standard errors.

Since the data are unbalanced, AHR is used as comparison measurement be-

tween the CMDA2 model and the MclustDA model when the data are simulated

from the CMDA2 model. The average parameter estimates and corresponding stan-

dard errors over 200 runs are summarized in Table 4.19. A hypothesis test indicates

that CMDA2 has a significantly higher AHR than MclustDA.

Our simulation results show the CMDA2 model performs better than the MclustDA

model, but further research needs to be done in order to explore the properties of

the CMDA2 model.

We also apply the CMDA2 model to the NCI Antiviral AIDS data. First,

however, the algorithm always converges to the degenerate solutions for the un-

constrained CMDA2 model and secondly, it is very difficult to identify good local

maxima even after the degenerate solutions are removed for a type of CMDA2

model with diagonal covariance matrices. Hence, a penalized CMDA2 model will

be discussed in Section 5.6.
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4.11 Discussion and Conclusion

In this chapter, a new mixture discriminant analysis model (CMDA) is introduced

and discussed. The primary goal in drug discovery is to identify active compounds.

However, the rareness of active compounds makes this difficult. A method like

LDA, which assumes equal covariance matrices within each class is not very flexible.

Approaches like QDA and MclustDA that assume different covariance matrices for

different classes could suffer from the poor estimates of parameters for the active

class due to the fewer active compounds in the data. The CMDA model is more

flexible than LDA as different covariance matrices are assumed in each class, and

more parsimonious than QDA and MclustDA as covariance matrices share some

global parameters.

Comparisons between the CMDA first order model and the MclustDA model are

conducted in two carefully designed scenarios: the true model is the CMDA1 model

and the true model is the MclustDA model. The CMDA1 model outperforms the

MclustDA model when the simulated data is generated from the CMDA1 model.

When the true model is the MclustDA model, the MclustDA model is superior in

low-dimensional cases and the CMDA1 model is superior in the high-dimensional

cases, especially when the data are imbalanced.

In order to handle the degeneracy problem arising from estimating the param-

eters for the CMDA1 model, the Multi-step EM algorithm is designed to avoid

degenerate solutions and converge to the best local optima. Compared to the EM

algorithm, the Multi-step EM algorithm has significantly reduced the number of

degenerate solutions. Since the Multi-step EM algorithm can not totally avoid
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the degenerate solutions, however, a penalized and model-based approach will be

discussed in the next chapter.



Chapter 5

Penalized Maximum Likelihood

Estimation for the CMDA1 and

CMDA2 models

In this chapter, we seek to use penalization as a way of avoiding degenerate so-

lutions. Section 5.1 gives the notation used in this Chapter. The definition and

proof of identifiability for the CMDA1 model is given in Section 5.2. The proof

of asymptotic consistency of the penalized maximum likelihood estimate (PMLE)

for the CMDA1 model is presented in Section 5.3. A simulation study using two

penalty functions is given in Section 5.4 and the application of the PMLE on a drug

data set is shown in Section 5.5. The PMLE approach is extended to the CMDA2

model in Section 5.6, and illustrated on the NCI data. Finally, conclusions are

made in Section 5.7.

119
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5.1 Introduction

Before discussing penalized estimation, let us recall the CMDA1 model and some

notation used in Chapter 4. In general, the CMDA1 model specifies the density of

feature vector x given class k as:

f(x;Ψk,ΨG|y = k) =

P
∑

j=1

πjkh(xj ; Φ̄jk)
∏

l 6=j

h(xl; Φ̄l) (5.1)

where Ψk = (π1k, . . . , π(p−1)k, Φ̄1k, . . . , Φ̄Pk)T is the vector containing all the un-

known parameters specified in this mixture model for class k. Denote the global

parameters ΨG = (Φ̄1, . . . , Φ̄P )T . The full set of parameters for all K classes is

Ψ = (Ψ1, . . . ,ΨK,ΨG)T . As in Chapter 4, we assume h(·) is a univariate normal

density.

Some notation used in the model is as follows:

• The observations are represented by (xi, yi), i = 1, . . . , n, where xi ∈ ℜP and

yi is a categorical variable with values 1, . . . , K. K is the total number of

classes.

• k = 1, . . . , K indexes the K classes.

• j = 1, . . . , P indexes the P components in each class.

5.2 Identifiability

The estimation of Ψ on the basis of the observations (xi, yi) is only meaningful if

Ψ is identifiable. In general, a parametric family of densities f(x;Ψ) is identifiable
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if distinct values of the parameter Ψ determine distinct members of the family of

densities f(x;Ψ) : Ψ ∈ Ω, where Ω is the specified parameter space; that is

f(x;Ψ) = f(x;Ψ∗), (5.2)

if and only if

Ψ = Ψ∗.

However, for mixture models, the above definition of identifiability of Ψ is not

suitable. For instance, suppose f(x;Ψ) has two component densities, f(x;Φa) and

f(x;Φb), that belong to the same parametric family. Then (5.2) will still hold

when the component label a and b and corresponding mixture weights πa and πb

are interchanged in Ψ. That is, Ψ is not identifiable. Indeed, if all the g component

densities belong to the same parametric family, then f(x;Ψ) is invariant under the

g! permutations of the component labels in Ψ.

Let

f(x;Ψ) =

g
∑

j=1

πjf(x;Φj)

and

f(x;Ψ∗) =

g∗
∑

j=1

π∗
j f(x;Φ∗

j
)

be any two members of a parametric family of mixture models. This parametric

family is said to be identifiable for Ψ ∈ Ω if

f(x;Ψ) ≡ f(x;Ψ∗)
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if and only if g = g∗ and the component labels are permuted so that

πj = π∗
j and f(x;Φj) = f(x;Φ∗

j) (j = 1, . . . , g). (5.3)

So, there are two distinct definitions of identifiability: the identifiability of Ψ

and the identifiability of a parametric family. For the CMDA1 model, the inter-

changing of component labels will result in a different parametric density, so Ψ is

identifiable in this model. Therefore, the identifiability of the CMDA1 model as a

parametric family is our focus.

Identifiability for the CMDA1 model with K classes is defined in a slightly

different way as we need to show that K conditional mixture distributions are

jointly identifiable:

f(x;Ψ1|y = 1) ≡ f(x;Ψ∗

1
|y = 1),

f(x;Ψ2|y = 2) ≡ f(x;Ψ∗

2
|y = 2), (5.4)

. . .

f(x;ΨK|y = K) ≡ f(x;Ψ∗

K
|y = K).

if and only if Ψ1 = Ψ∗

1
,Ψ2 = Ψ∗

2
, . . . and ΨK = Ψ∗

K
.

For the case of univariate mixtures, we first construct a family of 1-dimensional

component densities from which univariate mixtures are to be formed, i.e.

F = {f(x;Φ);Φ ∈ Rm, x ∈ R}, (5.5)

where f(x;Φ) is a component density. Then the class of finite mixtures of F with
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the appropriate class of density functions, H, is defined by

H = {H(x) : H(x) =

k
∑

j=1

cjf(x;Φj), cj > 0, (5.6)

k
∑

j=1

cj = 1, f(x;Φj) ∈ F , k = 1, 2, . . .}

Before proving the identifiability of the CMDA1 model with 2 classes, we list

several theoretical results necessary for the proof.

Theorem 1 (Yakowitz & Spragins (1968)) A necessary and sufficient condi-

tion that the class H of all finite mixtures of the family F of (5.5) be identifiable is

that F be a linearly independent set over the field of real numbers R.

Corollary 1 (Yakowitz & Spragins (1968)) A necessary and sufficient condi-

tion that the class H of all finite mixtures of the family F of (5.5) be identifiable is

that the image of F under any vector isomorphism on < F > (the span of F) be

linearly independent in the image space.

Corollary 2 (Teicher (1963)) The class of all finite mixtures of univariate nor-

mal distributions are identifiable.

Proof: Let (µ, σ2) denote the mean and variance of a typical member of F , and

φ(z; µ, σ) = exp(µz + 1
2
σ2z2) be the moment-generating functions of members of F .

According to Corollary 1, we want to prove that if H is identifiable, then

k
∑

j=1

cj exp(µjz +
1

2
σ2

j z
2) ≡ 0, (5.7)
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must give cj = 0, j = 1, 2, . . . , k.

First, we order σ2
j , j = 1, . . . , k, and choose the largest one, say, σ2

j∗. The

term having σ2
j∗ dominates the left side of (5.7). We divide both sides of (5.7) by

exp(µj∗z + 1
2
σ2

j∗z
2) and let z →∞, then we obtain

|cj∗| = lim
z→∞
| 1

exp(µj∗z + 1
2
σ2

j∗z
2)
||

k
∑

j=1&j 6=j∗

cj exp(µjz +
1

2
σ2

j z
2)| = 0.

Hence cj∗ = 0 and we remove this term from the left side of equation (5.7).

If the largest σ is not unique, e.g. σj1 = σj2, then we compare µj1 and µj2. If

µj2 < µj1, the same technique as above will be used to get cj1 = 0. If µj1 = µj2, these

two terms can be combined, and then we repeat a similar procedure: compare σ’s,

compare µ’s, prove cj = 0 for some j and remove the terms with zero coefficient

from (5.7).

Therefore, we prove that the class of all finite mixtures of univariate normal

distributions are identifiable as all the coefficients cj of equation (5.7) are 0.

The above proof is slightly different from the original proof given in Teicher

(1963) as we use the moment generating function, which provides a more direct

proof.

We now use two methods to prove the identifiability of CMDA1 model: the

first proves the theorem in terms of the product of univariate normal distributions

and the second uses multivariate normal distributions. The second proof is on the

basis that the CMDA1 model can be viewed as a mixture of multivariate normal

distributions with diagonal covariance matrices.
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Theorem 2 (Identifiability of the CMDA1 model) The CMDA1 model is iden-

tifiable under the assumption that the descriptors (i.e. the x’s) are independent

within component densities.

Proof: This proof is similar to the proof of Corollary 2.

First, we define the sets F and H for the CMDA1 model in class k.

F = {f(x;Ψ) = N(xj ; µjk, σjk)
∏

l 6=j

N(xl; µl, σl)}, (5.8)

H = {H(x) =

J
∑

j=1

cjN(xj ; µjk, σjk)
∏

l 6=j

N(xl; µl, σl), cj > 0,

J
∑

j=1

cj = 1, J = 1, 2, . . .} (5.9)

Let φ(z;Ψ) be the moment-generating function of f(x;Ψ), then

φ(z;Ψ) = exp{(µjkzjk +
∑

l 6=j

µlzl) +
1

2
(σ2

jkz
2
jk +

∑

l 6=j

σ2
l z

2
l )} (5.10)

If H is identifiable, then according to Corollary 1,

J
∑

j=1

cj exp{(µjkzjk +
∑

l 6=j

µlzl) +
1

2
(σ2

jkz
2
jk +

∑

l 6=j

σ2
l z

2
l )} ≡ 0 (5.11)

must give c1 = c2 = . . . = cJ = 0.

The same technique as in Corollary 2 is employed here to prove all the coef-

ficients are zero in equation (5.11). Find the largest σ2
∗, and divide both sides of

equation (5.11) by the term with the largest σ2
∗. Then the coefficient of that term

is zero. If the largest σ2
∗ is not unique, the other σ2’s in the terms with the largest

σ2
∗ will be compared. If the σ2’s are also the same, then identify the largest of the
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corresponding µ∗’s. If the µ∗’s compared are equal, they can be combined. The same

process is repeated until all terms of (5.11) are eliminated.

Therefore, we prove that the CMDA1 model is identifiable as all the coefficients

of equation (5.11) are zero.

5.3 Asymptotic Consistency of the PMLE for the

CMDA1 Model

As discussed in Section 4.5, the likelihood function of mixture models is unbounded

for any given sample size. Hence, the ordinary maximum likelihood estimators

(MLE) of mixture models are not consistent. This suggests that MLE’s of the

CMDA1 model are not consistent either.

In order to solve this problem, researchers commonly consider estimates on con-

strained parameter spaces. For example, Redner (1981) proved that the maximum

likelihood estimate of Ψ exists and is globally consistent in every compact sub-

parameter space containing the true parameter Ψ0. Hathaway (1985) proposed to

estimate Ψ by maximizing the likelihood function with a restricted parameter space

defined by the following constraint:

⊖c = {Ψ : min
i,j

σi

σj
≥ c > 0}

for some constant c. Hathaway’s constrained MLE

Ψ̂n = arg max
Ψ∈⊖c

ln(Ψ)
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is shown to be strongly consistent provided that the true mixing distribution Ψ0

belongs to ⊖c. Despite the elegant results of Redner (1981) and Hathaway (1985),

these methods all suffer, at least theoretically, from the risk that the true mixing

distribution Ψ0 may not satisfy the constraint imposed (Chen, Tan & Zhang 2007).

Chen et al. (2007) suggested that the approach of adding a penalty term to the

ordinary log-likelihood function can avoid the above concern. They defined the

penalized log likelihood as

P ln(Ψ) = ln(Ψ) + pn(Ψ) (5.12)

so that pn(Ψ) → −∞ as min{σj : j = 1, . . . , p} → 0. Then the estimate of Ψ is

the penalized maximum likelihood estimator (PMLE)

Ψ̃n = arg max
Ψ

P ln(Ψ). (5.13)

In this section, we introduce a family of simple penalty functions on the vari-

ances (especially class-specific variances) in the CMDA1 model. We will prove that

the PMLE of the two-dimensional CMDA1 model is asymptotically consistent. The

proof in Section 5.3.3 is based on Chen et al. (2007), which proved asymptotic con-

sistency for penalized univariate normal mixtures. The proofs in this chapter are for

two-dimensional multivariate normal mixtures with diagonal covariance matrices.

In the following sections, we first borrow two technical lemmas from Chen et al.

(2007) to assess the number of observations falling in a small neighborhood of the

location parameters. Then we prove the asymptotic consistency of Ψ̃n for general

two-dimensional multivariate normal mixtures with diagonal covariance matrices.

Since the two-dimensional CMDA1 model is a special case of a two-dimensional
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multivariate normal mixture with diagonal covariance matrices, it is easy to con-

clude that the two-dimensional CMDA1 model is also asymptotically consistent.

5.3.1 Technical Lemmas

Two lemmas are borrowed from Chen et al. (2007) to prove the asymptotic con-

sistency of the PMLE of the CMDA1 model. Please note that these lemmas are

used for one dimension, i.e. P = 1 and a single group of mixtures (i.e. there are no

classes). Thus the data are x1, . . . , xn. We first give some definitions and quantities.

A P−component one-dimensional normal mixture model is written as

f(x;Ψ) =
P

∑

j=1

πjf(x;Φj), (5.14)

where the mixing distribution is Ψ = (π1, . . . , πP−1;Φ1, . . . ,ΦP ).

The basic idea of PMLE is to counter the effect of observations close to those

location parameters with small scale parameters. For this purpose, assessing the

number of observations falling in a small neighborhood of the location parameters

in Ψ is important. The lemmas will aid in such assessments.

We first define

Ωn(σ) = sup
µ

n
∑

i=1

I(0 < xi − µ < −σ log σ) (5.15)

which is the supremum (or least upper bound) of the number of observations falling

into the positive side of a small neighborhood of all possible µ’s. We are only

interested in Ωn(σ) when σ is very small, so we can assume −σ log(σ) > 0. The

number of observations falling into the negative side of µ can be assessed in a similar
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way. Let Fn(x) = n−1
∑n

i=1 I(xi ≤ x) be the empirical distribution function. Then

we have

Ωn(σ) = n sup
µ

[Fn(µ− σ log σ)− Fn(µ)].

Let F = E(Fn) be the true cumulative distribution function.

We now define two quantities

T = max{sup
x

f(x;Ψ0), 8}, and δn(σ) = −Tσ log(σ) + n−1,

where Ψ0 is the true mixing distribution. T is either the highest point in the true

density or the constant 8, which is chosen for the convenience of the proof.

The following lemma uses Bahadur’s representation to give an order assessment

of n−1Ω(σ).

Lemma 5.3.1 (Chen et al. (2007)) Under the finite normal mixture model as-

sumption, as n→∞ and almost surely, we have:

1. For each given σ between 8
nT

and exp(−2). We have

sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≤ 2δn(σ); (5.16)

2. For each given σ between 0 and 8
nT

,

sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≤ 2(log n)2/n. (5.17)

Chen et al. (2007) use the same proof as below. We reproduce this proof here

since a similar strategy will later be used in Section 5.3.3.
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Proof:

1. Let η0, η1, . . . , ηn be some real numbers such that

η0 = −∞; F (ηi) = i/n, i = 1, . . . , n− 1; ηn =∞.

We have

sup
µ

[Fn(µ− σ log σ)− Fn(µ)]

≤ max
j

[Fn(ηj − σ log σ)− Fn(ηj−1)]

≤ max
j

[{Fn(ηj − σ log σ)− Fn(ηj−1)} − {F (ηj − σ log σ)− F (ηj−1)}]

+ max
j

[F (ηj − σ log σ)− F (ηj−1)]. (5.18)

By the mean value theorem and for some ηj ≤ ξj ≤ ηj − σ log σ, we have

F (ηj − σ log σ)− F (ηj−1) = F (ηj − σ log σ)− F (ηj) + n−1

= f(ξj;Ψ0)|σ log σ|+ n−1

≤ T |σ log σ|+ n−1 = δn(σ). (5.19)

Then, we have maxj [F (ηj − σ log σ)− F (ηj−1)] ≤ δn(σ). Further, for j = 1, . . . , n,

define

∆nj = |{Fn(ηj − σ log σ)− Fn(ηj−1)} − {F (ηj − σ log σ)− F (ηj−1)}|.

By the Bernstein inequality (Serfling, 1980), for any t > 0, we have

P{∆nj ≥ t} ≤ 2 exp{− n2t2

2nδn(σ) + 2
3
nt
}. (5.20)

Since |σ log σ| is monotone in σ, for exp(−2) > σ > 8/(nT ),

|σ log σ| ≥ | 8

nT
log

8

nT
| = 8

nT
log

nT

8
≥ 8 log n

nT
.



Penalized Maximum Likelihood Estimate 131

By letting t = δn(σ) in (5.20), we obtain

P{∆nj ≥ δn(σ)} ≤ 2 exp{−3

8
nδn(σ)}

≤ 2 exp{−3

8
Tn|σ log σ|}

≤ 2n−3. (5.21)

Thus for any σ in this range,

P{max
j

∆nj ≥ δn(σ)} ≤
n

∑

j=1

P{∆nj ≥ δn(σ)} ≤ 2n−2. (5.22)

Linking the above inequality back to supµ[Fn(µ− σ log σ)− Fn(µ)] (5.18), we get

P{sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≥ 2δn(σ)} ≤ P{max
j

∆nj ≥ δn(σ)} ≤ 2n−2.(5.23)

Then according to the Borel-Cantelli Lemma, supµ[Fn(µ−σ log σ)−Fn(µ)] ≥ 2δn(σ)

infinitely does not exist. So

sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≤ 2δn(σ). (5.24)

Hence we have proven the first part of the Lemma.

2. When 0 < σ < 8
nT

, by using the Bernstein inequality again, we have

P{∆nj ≥ t} ≤ 2 exp{− n2t2

2nδn(σ) + 2
3
nt
}.

Let t = n−1(log σ)2

P{∆nj ≥ n−1(log σ)2} ≤ 2 exp{−(log σ)2} ≤ n−3.

Thus for any σ in this range,

P{max
j

∆nj ≥ n−1(log σ)2} ≤
n

∑

j=1

P{∆nj ≥ n−1(log σ)2} ≤ n−2, (5.25)
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So

P{sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≥ 2n−1(log σ)2} ≤ (5.26)

P{max
j

∆nj ≥ n−1(log σ)2} ≤ 2n−2.

Then according to the Borel-Cantelli Lemma, supµ[Fn(µ − σ log σ) − Fn(µ)] ≥

2n−1(log σ)2 does not infinitely exist. So supµ[Fn(µ−σ log σ)−Fn(µ)] ≤ 2n−1(log σ)2,

i.e. we have proven the second part of Lemma 5.3.1.

The following Lemma strengthens the conclusions in Lemma 5.3.1, as the bounds

can be violated by a zero-probability event for each σ and the union of zero-

probability events may have non-zero probability as there are uncountable σ in

the range. Here, we list Lemma 5.3.2 without proof. A proof is given in Chen et al.

(2007).

Lemma 5.3.2 (Chen et al. (2007)) Except for a zero-probability event not de-

pending on σ, and under the same normal mixture assumptions, we have, for all

large enough n,

1. For each given σ, which satisfies 8
nT

< σ < exp(−2). We have

sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≤ 4δn(σ); (5.27)

2. Uniformly for σ, 0 < σ < 8
nT

,

sup
µ

[Fn(µ− σ log σ)− Fn(µ)] ≤ 2(log n)2/n. (5.28)
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5.3.2 Penalized Likelihood and Penalty Functions

The penalized likelihood-based method is used to counter the unboundedness of

ln(Ψ) while keeping the parameter space ⊖ unaltered. An important consideration

is what kind of penalty function pn(Ψ) is eligible. Ridolfi & Idier (1999, 2000) pro-

posed a class of penalty functions based on a Bayesian conjugate prior distribution,

but the asymptotic properties of the corresponding PMLE were not discussed. Un-

der some conditions on pn(Ψ), Ciuperca, Ridolfi & Idier (2003) attempted a proof

of strong consistency of the PMLE of Ψ under the normal mixture model. Chen

et al. (2007) noted that the proof contains a few loose steps which are difficult

to tighten. Chen et al. (2007) employed a very different tactic in establishing the

strong consistency of the PMLE for a class of penalty functions. In addition, they

had shown that PMLE is asymptotically efficient.

In the thesis, we employ techniques of Chen et al. (2007) and expand their

approach to the proof of the asymptotic consistency of PMLE for the CMDA1

model.

The penalty function pn(Ψ) in (5.12) for the CMDA1 model must satisfy the

following conditions:

C1. pn(Ψ) =
∑P

j [
∑K

k=1 p̃n(σjk)+p̃n(σj)], where σjk’s are the class specific variances

and σj’s are the global variances;

C2. p̃n(σ)→ −∞ as σ → 0;

C3. supσ>0 max{0, p̃n(σ)} = o(n), and p̃n(σ) = o(n) at any fixed σ > 0.
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C4. p̃n(σ) ≤ 4(log n)2 log σ, when σ ≤ 8/(nT ) as n is large enough.

In C1, penalty function pn(Ψ) is expressed as a sum of univariate penalty func-

tions, a form that is convenient for numerical computation by the EM algorithm.

Although each p̃n(·) in pn(Ψ) could use a different penalty, for notational conve-

nience we assume all penalties are of a single form p̃n(σ). To counter the effect

of an unbounded density function of the CMDA1 model as σ → 0, we must have

pn(Ψ) → −∞ as σj → 0 or σjk → 0 for each j = 1, . . . , P and k = 1, . . . , K. C3

rules out functions that substantially elevate or depress the penalized likelihood at

any parameter value. At the same time, C3 allows the penalty to be very severe

in a shrinking neighborhood of σ = 0. C4 determines the growth rate of penalty

functions, insuring that the penalized log-likelihood can not be infinite for any given

sample size. These four conditions are flexible and functions satisfying these condi-

tions can be easily found and constructed. Some examples will be given in Section

5.4.

5.3.3 Asymptotic Consistency of the PMLE for Two-Dimensional

Multivariate Mixture Models with Diagonal Covari-

ance Matrices

We first prove the asymptotic consistency of the PMLE for two-dimensional multi-

variate normal mixtures, with diagonal covariance matrices and two mixture com-

ponents. Since each class density of the two-dimensional CMDA1 model is a con-

strained case of multivariate normal mixtures, the theorem directly is applicable to

the two-dimensional CMDA1 model.
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We denote the two-dimensional multivariate normal mixture model as:

f(x;Ψ) =
π

σ1σ2

φ(
x1 − µ1

σ1

)φ(
x2 − µ2

σ2

) (5.29)

+
1− π

δ1δ2

φ(
x1 − ν1

δ1

)φ(
x2 − ν2

δ2

),

which is based on some conditions: π 6= 0, 1 and (µ1, µ2, σ1, σ2) 6= (ν1, ν2, δ1, δ2).

Hence we rewrite the log likelihood

ln(Ψ) =
∑

i

log{ π

σ1σ2
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ2

σ2
) (5.30)

+
1− π

δ1δ2
φ(

xi1 − ν1

δ1
)φ(

xi2 − ν2

δ2
)},

and the penalty function

pn(Ψ) = p̃n(σ1) + p̃n(σ2) + p̃n(δ1) + p̃n(δ2), (5.31)

where Ψ = {π, µ1, µ2, ν1, ν2, σ1, σ2, δ1, δ2}. We penalize only variances. Here, the

penalty function is a little different from that in Section 5.3.2 as there are no global

parameters (σj ’s) in this unconstrained model. C2, C3 and C4 still hold for this

penalty function, and C1 is rewritten as C1∗:

C1∗. pn(Ψ) =
∑2

l=1 p̃n(σl) +
∑2

l=1 p̃n(δl);

We also define the penalized log-likelihood function as

P ln(Ψ) = ln(Ψ) + pn(Ψ). (5.32)

We partition the parameter space into three regions. Figure 5.1 illustrates the

partition of the parameter space in the variance component.



Penalized Maximum Likelihood Estimate 136

Figure 5.1: Partition of the parameter space Γ.

First, we define some constants that will be used later in the proof. Let K0 =

E0 log f(X;Ψ), where E0(·) means expectation with respect to the true density

f(X;Ψ0), i.e. K0 =
∫

log f(X;Ψ0)f(X;Ψ0)dx. It is seen that |K0| <∞. Also we

redefine the constant T in Section 5.3.1 as T = max{supx f(x;Ψ0), 8}, i.e. f(x;Ψ0)

now is a mixture of multivariate normal distributions. Let ǫ0 be a small positive

constant such that

• 0 < ǫ0 < exp(−2),

• 16Tǫ0(log ǫ0)
2 ≤ 1,

• − log ǫ0 − (log ǫ0)
2/2 ≤ 2K0 − 4,

It is easy to see that as ǫ0 goes to 0, the inequalities are satisfied. Hence, the exis-

tence of ǫ0 is assured. For some small τ0, we define three regions for the parameter
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space in Figure 5.1

Γa = {Ψ : σ1σ2 < δ1δ2 < ǫ0},

Γb = {Ψ : σ1σ2 ≤ τ0, δ1δ2 ≥ ǫ0},

Γc = Γ− (Γa ∪ Γb).

The exact size of τ0 will be specified in the proof of Theorem 4. The three

regions represent three situations. In Γa, the mixing distributions have at least one

of the scale parameters along each dimension (X1 and X2) close to zero. In this

case, the observations near any small location parameters contribute significantly

to the log likelihood ln(Ψ), but will be countered by the penalty. The log likelihood

contributions of the other observations can not exceed the likelihood at the true

mixing distribution. Hence, the PMLE of Ψ has diminishing probability to be in

Γa. In the second situation, at least one of the two mixing component distribu-

tions has one element of the scale parameter vector along X1 dimension close to

0. When the mixing distribution has some of the scale parameters close to zero,

the likelihood has two major sources: the observations near location parameters

with corresponding small scale parameters, and the remaining observations. The

first source is countered by the penalty. We will show that the likelihood from

the second source is not large enough to exceed the likelihood at the true mixing

distribution. Hence, the PMLE of Ψ also has diminishing probability to be in Γb.

Once the possibility of the first two regions is eliminated, the consistency for the

PMLE of Ψ in the third scenario Γc is established via the application of Kiefer &

Wolfowitz (1956)’s consistency proof.

Theorems 3 and 4 will prove that asymptotically the PMLE cannot fall in the
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Figure 5.2: Defined regions A and B. The centre of the region A is (µ1, µ2), and

the centre of the region B is (ν1, ν2).

first two regions. Theorem 5 shows that the PMLE must fall in the final region,

Γc, and is thus consistent.

Theorem 3 (Γa): Under the assumptions that the data are a random sample from

the model (5.29), and with P ln(Ψ) defined as in (5.32), we have that almost surely

when n→∞,

sup
Ψ∈Γa

P ln(Ψ)− P ln(Ψ0)→ −∞.

Proof: Let σmin = min{σ1, σ2} and A = {i : (xi1−µ1

σ1
)2 + (xi2−µ2

σ2
)2 ≤ log2(σmin)}

and similarly B = {i : (xi1−ν1

δ1
)2 + (xi2−ν2

δ2
)2 ≤ log2(δmin)}. Figure 5.2 illustrates the

regions of (xi1, xi2) for i ∈ A and i ∈ B in a two-dimensional space.
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For any index set, say S, we define,

ln(Ψ; S) =
∑

i∈S

log{ π

σ1σ2
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ2

σ2
) +

1− π

δ1δ2
φ(

xi1 − ν1

δ1
)φ(

xi2 − ν2

δ2
)}.

So ln(Ψ) = ln(Ψ; A) + ln(Ψ; AcB) + ln(Ψ; AcBc). We investigate the asymptotic

order of these three terms. Let n(A) be the number of observations in set A. From

the fact that the mixture density is no larger than 1
σ1σ2

, we have

ln(Ψ; A) ≤ −n(A) log(σ1σ2), (5.33)

and

ln(Ψ; AcB) ≤ −n(AcB) log(δ1δ2) ≤ −n(B) log(δ1δ2). (5.34)

Let A∗
1 = {i : (xi1−µ1

σ1
)2 ≤ log2(σmin)} and A∗

2 = {i : (xi2−µ2

σ2
)2 ≤ log2(σmin)} re-

spectively. It is clear that A ⊂ A∗
1 and A ⊂ A∗

2. Hence, n(A) ≤ min{n(A∗
1), n(A∗

2)}.

By Lemma 5.3.2, except for a zero probability event, as n→∞, we have

n(A∗
1) ≤







−4(log n)2 if 0 < σ1 < 8
nT

−8 + 8Tnσ1 log σ1 if 8
nT

< σ1 < ǫ0,

and

n(A∗
2) ≤







−4(log n)2 if 0 < σ2 < 8
nT

−8 + 8Tnσ2 log σ2 if 8
nT

< σ2 < ǫ0.

The above two bounds imply

n(A) ≤ min{n(A∗
1), n(A∗

2)} (5.35)

≤







−4(log n)2 when 0 < σmin < 8
nT

−8 + 8Tnσmin log σmin when 8
nT

< σmin < ǫ0.
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Therefore

ln(Ψ; A) ≤







−4(log n)2 log(σ1σ2) if 0 < σmin < 8
nT

(−8 + 8Tnσmin log σmin) log(σ1σ2) if 8
nT

< σmin < ǫ0.

From the two above inequalities and the conditions on the penalty functions, we

obtain that

ln(Ψ; A) + p̃n(σ1) + p̃n(σ2) < 0, (5.36)

when 0 < σmin < 8
nT

. Also, when 8
nT

< σmin < ǫ0, based on the choice of ǫ0, almost

surely, we arrive at the following bound:

ln(Ψ; A) + p̃n(σ1) + p̃n(σ2) ≤ (−8 + 8Tnσmin log σmin) log(σ1σ2)

≤ 8Tnǫ0(log ǫ0)
2 + 9 log n. (5.37)

Similarly, we have

ln(Ψ; AcB) + p̃n(δ1) + p̃n(δ2) ≤ 8Tnǫ0(log ǫ0)
2 + 9 log n. (5.38)

For the observations that fall outside of both A and B, their likelihood contribu-

tions are bounded by

log{ π

2σ1σ2
exp(−1

2
(log(σ1σ2))

2) +
1− π

2δ1δ2
exp(−1

2
(log(δ1δ2))

2)}

≤ log{ π

2ǫ0
exp(−1

2
(log ǫ0)

2) +
1− π

2ǫ0
exp(−1

2
(log ǫ)2)}

≤ − log ǫ0 −
1

2
(log ǫ0)

2, (5.39)

which is negative. At the same time, we also have

n(A) + n(B) ≤ 2(log n)2/n + 2(log n)2/n = 4(log n)2/n <
n

2
,
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for large n. This shows that n(A) + n(B) ≤ n
2
, which means there are always less

than half of the observations falling near location parameters (µ1, µ2) and (ν1, ν2).

Then, we get the third bound

ln(Ψ; AcBc) ≤ n

2
{− log ǫ0 − (log ǫ0)

2/2}. (5.40)

Then, combining the three bounds (5.37), (5.38) and (5.40), and recalling the choice

of ǫ0, we conclude that when Ψ ∈ Γa,

P ln(Ψ)

= ln(Ψ) + pn(Ψ)

= [ln(Ψ; A) + p̃n(σ1) + p̃n(σ2)] + [ln(Ψ; AcB) + p̃n(δ1) + p̃n(δ2)] + [ln(Ψ; AcBc)]

≤ 16Tnǫ0(ǫ0)
2 + 18 log n +

n

2
(2K0 − 4)

≤ n(K0 − 1) + 18 log n, a.s.. (5.41)

At the same time, by the strong law of large numbers

n−1P ln(Ψ0)→ K0 almost surely. (5.42)

Hence,

sup
Ψ∈Γa

P ln(Ψ)− P ln(Ψ0) ≤ −n + 18 log n→ −∞ (5.43)

almost surely as n→∞.

Theorem 3 tells us that the PMLE can not be in Γa.

Now we move to the second scenario, which requires results for the second region

Γb. Unlike Γa, we have an unbounded Γb. Our first step is to compactify it. Define
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a distance on Γb by

d(Ψ,Ψ
′

) = arctan |π − π
′ |+

2
∑

l=1

arctan |µl − µ
′

l|+
2

∑

l=1

arctan |σl − σ
′

l |

+

2
∑

l=1

arctan |νl − ν
′

l |+
2

∑

l=1

arctan |δl − δ
′

l |. (5.44)

Under this distance, Γb is a totally bounded finite dimensional set, so it can be

compactified. For convenience, we use the same notation Γb for the compact set.

Define

g(x;Ψ) = a1
π

2
φ(

xi1 − µ1√
2σ1

)φ(
xi2 − µ2√

2σ2

) (5.45)

+a2
1− π

δ1δ2
φ(

xi1 − ν1

δ1
)φ(

xi2 − ν2

δ2
).

on Γb, with a1 = I(µ1 6= ±∞, σ1 6= 0; µ2 6= ±∞, σ2 6= 0) and a2 = I(ν1 6= ±∞; ν2 6=

±∞). The function g(·) is well defined over the entire space with some continuity.

The changes in the normal densities of g(·) ensure that the integral of g(·) is no

larger than 1 in order to use Jensen’s inequality in the following proof.

Let K(Ψ) = E0 log g(X;Ψ), which has the following property.

Lemma 5.3.3 For any {Ψn, n = 1, 2, . . .} ⊆ Γb, such that Ψn → Ψ, we have

limn→∞K(Ψn) ≤ K(Ψ). (5.46)

Proof: For any ρ > 0, define

g(x;Ψ, ρ) = sup{g(x;Ψ
′

); d(Ψ,Ψ
′

) < ρ,Ψ
′ ∈ Γb}.

Note that limρ→0 g(x;Ψ, ρ) = g(x;Ψ), and sup{g(x;Ψ);Ψ ∈ Γb} ≤ 1
ǫ0

.
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By the dominated convergence theorem,

lim
ρ→0

E0 log g(x;Ψ, ρ) = E0 log g(x;Ψ) = K(Ψ).

Let ρn = d(Ψ,Ψn), we have K(Ψn) ≤ E0 log g(x;Ψ, ρn), therefore,

limn→∞K(Ψn) ≤ limn→∞E0 log g(x;Ψ, ρn) = E0 log g(x;Ψ) = K(Ψ).

Theorem 4 (Γb): Under the assumptions that the data are a random sample from

the model (5.29), and with P ln(Ψ) defined as in (5.32), we have that almost surely

when n→∞,

sup
Ψ∈Γb

P ln(Ψ)− P ln(Ψ0)→ −∞.

Proof: Lemma 5.3.3 tells us that there is Ψ∗ ∈ Γb such that K∗ = K(Ψ∗) =

sup{K(Ψ) : Ψ ∈ Γb}. Let δ = δ(τ0) = −E0 log{ g(x;Ψ∗

)

f(x;Ψ0)
} = K0 − K∗. The

dependence of δ(τ0) on τ0 is due to the dependence of Ψ∗ on boundary τ0. δ(τ0) is

a decreasing function of τ0.

For small τ0, we have

g(x;Ψ) ≤ a1
π

2σ1σ2
φ(

xi1 − µ1√
2σ1

)φ(
xi2 − µ2√

2σ2

) (5.47)

+a2
1− π

δ1δ2
φ(

xi1 − ν1

δ1
)φ(

xi2 − ν2

δ2
).

By Jensen’s inequality, we have δ(τ0) > 0. We can find τ0 such that

1. τ0 < ǫ0,

2. 8Tτ0(log τ0)
2 < 2δ(ǫ0)/5 < 2δ(τ0)/5.
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We now proceed to show that the PMLE can not be in Γb. For any Ψ ∈ Γb

lim
ρ→0

E0 log g(x;Ψ, ρ) = E0 log g(x;Ψ) ≤ K∗.

Hence for each Ψ ∈ Γb, there exists a ρ(Ψ) > 0, such that

E0 log g(x;Ψ, ρ(Ψ)) < K∗ +
δ(τ0)

10
= K0 −

9δ(τ0)

10
.

Let B(Ψ; ρ(Ψ)) = {Ψ′ ∈ Γb : d(Ψ,Ψ
′

) < ρ(Ψ)}, then B(Ψ; ρ(Ψ)) forms an open

cover of Γb. From the compactness of Γb, there are a finite number of Ψk, ρk, with

k = 1, 2, . . . , K, such that

K
⋃

k=1

B(Ψk, ρk) = Γb.

Hence,

sup{
n

∑

i=1

log g(xi;Ψ) : Ψ ∈ Γb} ≤ max
k
{

n
∑

i=1

log g(xi;Ψk, ρk)}.

For each k, by the law of large numbers,

n
∑

i=1

log g(xi;Ψk, ρ(Ψk)) ≤ n{K0 −
9δ(τ0)

10
+ o(1)}.

Consequently

sup{
n

∑

i=1

log g(xi;Ψ) : Ψ ∈ Γb} ≤ n{K0 −
9δ(τ0)

10
+ o(1)}.

The likelihood contribution of observations in A is no larger than − log(σ1σ2) +

log g(x;Ψ). For other observations, their likelihood contributions are less than

log g(x;Ψ). This is seen by the fact that when (xi1−µ1

σ1
)2 + (xi2−µ2

σ2
)2 ≥ log2(σmin),

and σ1σ2 are sufficiently small,

1

σ1σ2
exp{−(x1 − µ1)

2

2σ2
1

} exp{−(x2 − µ2)
2

2σ2
2

}

≤ exp{−(x1 − µ1)
2

4σ2
1

} exp{−(x2 − µ2)
2

4σ2
2

}. (5.48)
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Hence, combined with the properties of the penalty function (C1-C4) and (5.48),

we have

sup
Γb

P ln(Ψ)− P ln(Ψ0)

≤ sup
σ1σ2<τ0

{
∑

i∈A

(− log(σ1σ2) + p̃n(σ1) + p̃n(σ2))}+ sup
Γb

n
∑

i=1

log{ g(xi;Ψ)

f(xi;Ψ0)
} − pn(Ψ0)

≤ 8Tnτ0(log τ0)
2 + 9 log n− 9nδ(τ0)

10
− pn(Ψ0)

≤ −nδ(τ0)

10
+ 9 log n− pn(Ψ0)→ −∞ as n→∞. (5.49)

We now claim the strong consistency of the PMLE.

Theorem 5 Under the assumptions defined before, for any mixing distribution

Ψn = Ψn(X1, . . . ,Xn), satisfying

P ln(Ψn)− P ln(Ψ0) > c > −∞, (5.50)

we have that Ψn → Ψ0 almost surely as n→∞.

Proof: By Theorem 3 and Theorem 4, with probability one, Ψn ∈ Γc as n →

∞. Confining the mixing distribution Ψ in Γc is equivalent to placing a positive

constant lower bound for the variance parameters. Thus, the consistency is covered

by the result in Kiefer & Wolfowitz (1956). Note that their proof can be modified

to accommodate a penalty of size o(n) due to the conditions of their proof.

Let Ψ̂n be the PMLE that maximizes P ln(Ψ). By definition, P ln(Ψ̂n) −

P ln(Ψ0) > 0 and therefore Ψ̂n → Ψ0 almost surely. Hence we have proved that

PMLE Ψ̂n is strongly consistent in the Γc space.
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5.3.4 Asymptotic Consistency of PMLE for the CMDA1

Model in Two Dimensions

Now we can apply the above theorems to the two-dimensional CMDA1 model with

two classes. We put penalties on both class-specific and global variances. The log-

likelihood of this model can be written in terms of standard normal distributions

ln(ΨCMDA) =

∑

i∈C1

log{π1
1

σ11σ2
φ(

xi1 − µ11

σ11
)φ(

xi2 − µ2

σ2
) + (1− π1)

1

σ1σ12
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ12

σ12
)}

+
∑

i∈C2

log{π2
1

σ21σ2
φ(

xi1 − µ21

σ21
)φ(

xi2 − µ2

σ2
) + (1− π2)

1

σ1σ22
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ22

σ22
)}

and the penalty function as

pn(ΨCMDA) = p̃n(σ11) + p̃n(σ12) + p̃n(σ21) + p̃n(σ22) + p̃n(σ1) + p̃n(σ2). (5.51)

In order to prove the asymptotic consistency of the PMLE, we divide the log-

likelihood function into two parts, each of which represents one sample group (class

1 or class 2).

ln(ΨCMDA) = ln1(Ψ1) + ln2(Ψ2) (5.52)

where

ln1(Ψ1) =

∑

i∈C1

log{π1
1

σ11σ2
φ(

xi1 − µ11

σ11
)φ(

xi2 − µ2

σ2
) + (1− π1)

1

σ1σ12
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ12

σ12
)},

ln2(Ψ2) =

∑

i∈C2

log{π2
1

σ21σ2
φ(

xi1 − µ21

σ21
)φ(

xi2 − µ2

σ2
) + (1− π2)

1

σ1σ22
φ(

xi1 − µ1

σ1
)φ(

xi2 − µ22

σ22
)}.
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and

Ψ1 = {µ11, µ12, σ11, σ12, µ1, µ2, σ1, σ2},

Ψ2 = {µ21, µ22, σ21, σ22, µ1, µ2, σ1, σ2}.

We define

P ln1(Ψ1) = ln1(Ψ1) + pn1(Ψ1), (5.53)

P ln2(Ψ2) = ln2(Ψ2) + pn2(Ψ2). (5.54)

Here, pn1(Ψ1) and pn2(Ψ2) are the penalty functions for the parameters in class

1 and class 2, respectively. Recall that the penalized MLE is the parameter value

(multi-dimensional) that maximizes the penalized log-likelihood function. From the

proof in Section 5.3.3, it is seen that the maximum point of both P ln1 and P ln2

are in the small neighborhood of the true parameter value. In fact, outside of any

small neighborhood, the suprema of two penalized log-likelihoods are smaller than

the penalized log-likelihoods at the true parameter value by an order of n. Thus,

the maximum of the sum of these two penalized log-likelihood must be inside any

small neighborhood of the true parameter value as n→∞. That is, the penalized

maximum likelihood of the CMDA1 model is asymptotically consistent.

5.4 A Simulation Study Using Two Penalty Func-

tions

We suggest two kinds of penalty functions, each of which comes from different

perspectives. One theme in these penalty functions is that they are related to the
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inverse gamma distribution, which is the conjugate prior for the complete data

likelihood. Penalization by an inverse gamma distribution induces no structural

changes in the EM algorithm and explicitness of the estimates is maintained.

The penalized log likelihood increases after each iteration (Green 1990). Fur-

thermore, penalization does not increase the computational burden as Green (1990)

pointed out that the penalized EM algorithm converges as least as quickly as the

standard one.

Section 5.4.1 discusses a non-Bayesian penalty function, while Section 5.4.2

focuses on a penalty function from Bayesian framework. The EM derivations for two

penalty functions will be presented before carrying out simulations. The simulations

are similar to those in Section 4.7.1.

5.4.1 A Non-Bayesian Perspective

The first penalty function is motivated by Chen et al. (2007). Some modifications

have been made in order to account the structure of the CMDA1 model. From the

experiments in Chapter 4, we found that the global variances do not converge to

degenerate solutions. Therefore, we only penalize local variances.

For the CMDA1 model, the penalty function is

P1(Ψ) =
K

∑

k=1

{− 1

nk

P
∑

j=1

(
DjkSjk

σ2
jk

)− 1

nk

P
∑

j=1

log(
σ2

jk

Sjk

)}, (5.55)

where nk is the number of observations in class k; Sjk is the sample variance along

xj for the observations in the kth class between the first and third sample quartiles

and Djk is an arbitrary positive constant. Here we need to emphasize that the
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tuning parameter Djk is not a regularized parameter, but a constant that adjusts

the penalty functions. Since the within cluster variances are likely to be smaller

than the marginal sample variance of xj in class k, a trimmed variance Sjk is used.

This will also reduce sensitivity to outliers.

A desirable property of MLEs is their invariance: The MLE of a parameter can

be used to calculate the MLE of a one-to-one function of the parameter. PMLE’s do

not necessarily possess this functional invariance property. In order to incorporate

this nice feature, in the PMLE, Sjk’s are introduced in the penalty function. In the

following sections, the choice of Djk will be discussed in detail. It is not hard to

verify that this penalty function satisfies the four requirements (C1-C4) in Section

5.3.2.

EM Derivation of PMLE

The penalized complete data log-likelihood is

lpc(Ψ) =
K

∑

k=1

P
∑

j=1

{

∑

i∈Ck

zijk

[

log πjk − log σjk −
(xij − µjk)

2

2σ2
jk

+ (5.56)

∑

l 6=j

(− log σl −
(xil − µl)

2

2σ2
l

)

]

− 1

nk

DjkSjk

σ2
jk

− 1

nk

log
σ2

jk

Sjk

}

.

The closed form expressions for parameter estimates in the EM framework at

the (a + 1)th iteration are:

E-Step:

ẑ
(a+1)
ijk = p̂(the ith observation ∈ the jth component|the kth class)

=
π̂

(a)
jk N(xij ; µ̂

(a)
jk , σ̂

(a)
jk )

∏

l 6=j N(xil; µ̂
(a)
l , σ̂

(a)
l )

∑P
m=1 π̂

(a)
mkN(xim; µ̂

(a)
mk, σ̂

(a)
mk)

∏

l 6=m N(xil; µ̂
(a)
l , σ̂

(a)
l )

(5.57)



Penalized Maximum Likelihood Estimate 150

M-Step:

π̂
(a+1)
jk =

∑

i∈Ck
ẑ

(a+1)
ijk

∑p
j=1

∑

i∈Ck
ẑ

(a+1)
ijk

, (5.58)

µ̂
(a+1)
jk =

∑

i∈Ck
ẑ

(a+1)
ijk xij

∑

i∈Ck
ẑ

(a+1)
ijk

, (5.59)

σ̂2
jk

(a+1) =

∑

i∈Ck
ẑ

(a+1)
ijk (xij − µ̂

(a)
jk )2 + 2DjkSjk/nk

∑

i∈Ck
ẑ

(a+1)
ijk + 2/nk

, (5.60)

µ̂
(a+1)
l =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a+1)
ijk xil

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a+1)
ijk

, (5.61)

σ̂2
l
(a+1) =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a+1)
ijk (xil − µ̂

(a)
l )2

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(a+1)
ijk

. (5.62)

We note that the only change is the inclusion of extra terms in the numerator

and denominator of σ̂2
jk

(a+1) in (5.60).

Choice of Djk

We consider using the same constant for each Djk for convenience, i.e. D11 = . . . =

DPK = D. D is an adjusting parameter and corresponds to the prior mode. First, a

range of D values, (0.001, 0.005, 0.01, 0.05, 0.1, 2, 3, 4, 5, 6) is used to test sensitivity

to the tuning parameter D using the model from combination 7 in Table 4.4. The

true parameter values for this model are given in Table 5.1. The five factors of

the 7th combination are: dimensionality is 2, the class variances are the same, the

sample size is large, the data are unbalanced, and the means are well separated.

The ratio of active and inactive compounds in this example is 1 : 9. The true value

of σ11 is close to 0, i.e. σ11 = 0.1639. Figure 5.3 shows us that large D values push
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True Parameters

µjk µ11 = −4.4508 µ12 = −5.7968 µ21 = 2.4323 µ22 = 1.5012

µj µ1 = 4.4315 µ2 = 4.5122

σjk σ11 = 0.1639 σ12 = 0.1639 σ21 = 1.1383 σ22 = 1.1383

σj σ1 = 0.1709 σ2 = 1.0361

Table 5.1: The model corresponding to combination 7 in Table 4.4.

the PMLE far away from the true σ11, while the first several small D values have

little effect on the PMLE.

One further experiment is conducted to verify if D is scale-invariant. We multi-

ply x1 by 1000, and repeat the above experiment. The similar boxplot of PMLEs of

σ11 = 0.1639 obtained from the new experiment indicates that D does not depend

on data and gives consistent estimates in the range (0.001, 1). It is not surprising

that D is independent from data as Sjk and σ2
jk in the penalty function (5.57) can-

cel the scaling effect. In the remainder of this chapter, D = 0.1 is chosen for the

penalty function P1.

Degenerate Solutions

As in Section 4.7.2, we can study whether the EM and modified EM algorithms

(Multi-step EM) return degenerate PMLE’s. Models from the first 16 combinations

in Table 4.4 are used here to verify that the PMLE can avoid degenerate solutions.

Combining the results from the previous chapter, Table 5.2 clearly shows that the

PMLE totally avoids degenerate solutions no matter which algorithm is used. For

combinations 17-32, the same conclusion can be made, i.e. PMLE does not converge
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Figure 5.3: Boxplot of PMLEs of σ11 = 0.1639 vs. D (0.001, 0.005, 0.01, 0.05, 0.1,

2, 3, 4, 5, 6).

to degenerate solutions for high-dimensional cases.

Parameter Estimates

We report MSE’s for estimates of class-specific variances (σ2
ij , i = 1, 2, j = 1, 2) for

the first 16 simulation models in Table 4.4. Two algorithms are used to calculate

PMLE’s and MLE’s: the Multi-step EM algorithm and the EM algorithm. So there

are four different scenarios: PMLE/Multi-step EM, PMLE/EM, MLE/Multi-step

EM and MLE/EM.

MSE’s of both PMLE and MLE calculated via the conventional EM algorithm
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1 2 3 4 5 6 7 8

PMLE (Multi-step EM) 0 0 0 0 0 0 0 0

MLE (Multi-step EM) 0 0 0 20 0 0 0 1

PMLE (EM) 0 0 0 0 0 0 0 0

MLE (EM) 103 200 174 200 3 200 44 199

9 10 11 12 13 14 15 16

PMLE (Multi-step EM) 0 0 0 0 0 0 0 0

MLE (Multi-step EM) 0 1 0 14 0 0 0 1

PMLE (EM) 0 0 0 0 0 0 0 0

MLE (EM) 24 145 77 157 0 68 1 83

Table 5.2: Degenerate solutions from PMLE and MLE calculated by Multi-step

EM and the EM algorithm.

are plotted as pairs in Figure 5.4. Most points fall in the bottom half of the plot, i.e.,

the MSE’s of the MLE are larger than those of the PMLE. Therefore, PMLE gives

more accurate parameter estimates. MSE’s of both PMLE and MLE calculated via

Multi-step EM are plotted in Figure 5.5. Most MSE’s are on the 45−degree line,

which indicates that Multi-step EM has significantly improved estimation accuracy

for the MLE. The number of points above the diagonal are roughly equal to those

below, so there is no large difference in the parameter accuracy between the PMLE

and the MLE when Multi-step EM is used to do the parameter estimation.

The above discussion also tells us that even though Multi-step EM for MLE

can converge to degenerate solutions some time, this algorithm has improved the

accuracy of parameter estimation compared to the EM algorithm. Unlike the PMLE

that requires careful choice of tuning parameters, the Multi-step EM algorithm is

easily implemented.
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Figure 5.4: MSE of variances (σ2
ij , i = 1, 2, j = 1, 2) from PMLE and MLE calcu-

lated by EM for the first 16 simulation models. Degenerate solutions are included.

There are in total 64 points in the plot. Each point represents a pair of MSE from

PMLE and MLE of one variance parameter estimated via the EM algorithm.

In the following examples, the PMLE is estimated by the EM algorithm.

Consistency Testing

Since the number of components in the CMDA1 models is fixed, it is meaningful to

investigate the bias and variance properties of individual parts of the PMLE. In this

section, we generate data from two simulation models in Table 4.4 to illustrate the

consistency property of the PMLE. Example 1 is a two-dimensional example sim-
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Figure 5.5: MSE of variances from PMLE and MLE calculated by Multi-step EM

for the first 16 simulation models. Degenerate solutions are included.

ulated from the 12th combination in Table 4.4, and Example 2 is a 10-dimensional

example simulated from the 28th combination. Both examples are among the more

difficult classification problems in their own dimensionality. For Example 1, two

sample sizes, n = 70 and n = 280 are considered. Similar to Example 1, two differ-

ent sample sizes are also used to examine the consistency for Example 2: n = 390

and n = 1, 560.

Example 1: A two-dimensional CMDA1 model with Ψ = (π0
11, π

0
21, µ

0
11, µ

0
12, µ

0
21, µ

0
22,

µ0
1, µ

0
2, σ

0
11, σ

0
12, σ

0
21, σ

0
22, σ

0
1 , σ

0
2) = (0.5, 0.5, 1.432, 0.501,−1.705,−1.463,−0.900, 1.533,

0.164, 0.379, 0.171, 1.036, 0.775, 0.102). The mean biases and standard deviations
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Size µ11 µ12 µ21 µ22 µ1 µ2

70 -0.091∗ 0.027 0.001 -0.008 0.008 -0.008∗

(0.254) (0.235) (0.030) (0.189) (0.146) (0.027)

280 0.001 -0.007 0.000 0.003 0.001 -0.001

(0.079) (0.107) (0.016) (0.100) (0.070) (0.009)

σ11 σ12 σ21 σ22 σ1 σ2

70 0.078∗ -0.180∗ -0.004∗ -0.033∗ -0.023∗ 0.020∗

(0.260) (0.138) (0.021) (0.140) (0.092) (0.060)

280 -0.009 -0.023∗ -0.002∗ -0.002 0.000 0.000

(0.068) (0.077) (0.011) (0.067) (0.053) (0.016)

π11 π12 π21 π22

70 0.049∗ -0.049∗ 0.001∗ -0.001∗

(0.112) (0.112) (0.006) (0.006)

280 0.003 -0.003 0.001∗ -0.001∗

(0.033) (0.033) (0.002) (0.002)

Table 5.3: Biases and standard deviations (in brackets) of parameter estimates for

Example 1 using the PMLE with P1(Ψ). The biases that are significantly different

from zero at a 5% significance level are indicated by ∗.

(in brackets) of parameter estimates are calculated from the 200 data sets simu-

lated from the model and presented in Table 5.3.

The biases in Table 5.3 are computed in terms of µ11−µ0
11. When the sample size

increases, all the biases and standard deviations decrease indicating the consistency

of the PMLE for the CMDA1 model.

We are also interested in knowing which of these biases are significantly different

from zero, i.e. whether the average estimates of the parameters are significantly

different from the true parameters. With a large sample size (200 replicates) we
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simply use a t-test. Table 5.3 indicates that all biases for the estimates of σ’s and

π’s are significantly different from the true σ’s and π’s when the sample size is small.

As the sample size increases, fewer parameter estimates are significantly different

from the true parameters.

Example 2: A 10-dimensional CMDA1 model (the 28th combination in Table 4.4).

The parameters of true mixing distribution are listed in Table 5.4. All the π’s are

equal to 0.1 in this case. Due to the burden of computation, only 100 data sets are

generated from the model. We list the biases and standard deviations of the PMLE

of σjk’s and σj ’s in Table 5.5. As in the previous example, the bias and variance

of the parameter estimates decrease as the sample size increases. A similar pattern

may be seen in the location parameters and mixing proportions (not shown here).

Although we did not prove the asymptotic consistency for higher-dimensional

CMDA1 models, this example suggests that the higher-dimensional CMDA1 models

can be asymptotically consistent.

We also conduct the same hypothesis tests as in Example 1 to see if the biases

of the parameter estimates are significantly different from the true parameters. As

the sample increases, there are less biases that are significantly different from the

truth (28 when the sample size is 390 vs. 23 when the sample size is 1560).

5.4.2 A Bayesian Perspective

In this section, we focus on using proper inverse gamma priors for the local vari-

ances as the penalty function. The prior for σ2
jk is an inverse gamma distribution,

i.e. σ2
jk ∼ IG(ν/2, νλ/2), and this is equivalent to specifying νλ/σ2

jk ∼ χ2
ν with
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µ11 µ12 µ13 µ14 µ15

0.405 -2.702 0.370 2.797 0.060

µ16 µ17 µ18 µ19 µ110

1.206 -2.878 1.701 0.506 -1.096

µ21 µ22 µ23 µ24 µ25

2.977 0.186 -2.341 0.799 1.788

µ26 µ27 µ28 µ29 µ210

1.278 1.217 0.377 -1.447 0.042

µ1 µ2 µ3 µ4 µ5

1.361 1.092 -2.777 0.109 0.787

µ6 µ7 µ8 µ9 µ10

1.112 1.276 0.293 2.334 -0.098

σ11 σ12 σ13 σ14 σ15

0.164 0.379 0.057 0.345 0.258

σ16 σ17 σ18 σ19 σ110

0.034 0.369 0.292 0.108 0.128

σ21 σ22 σ23 σ24 σ25

0.525 1.133 0.476 1.299 1.146

σ26 σ27 σ28 σ29 σ210

0.109 0.739 0.953 0.127 0.876

σ1 σ2 σ3 σ4 σ5

0.244 1.207 0.434 0.108 0.822

σ6 σ7 σ8 σ9 σ10

1.015 0.678 1.236 0.136 0.183

Table 5.4: The true mixing distribution (µ’s and σ’s ) for Example 2.
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Sample σ11 σ12 σ13 σ14 σ15

390 -0.027 -0.007 -0.018∗ -0.105∗ -0.090∗

(0.169) (0.358) (0.021) (0.121) (0.213)

1560 0.088∗ -0.005 -0.001 -0.016∗ -0.037

(0.197) (0.260) (0.010) (0.071) (0.256)

σ16 σ17 σ18 σ19 σ110

390 0.089∗ -0.069∗ -0.035∗ -0.056∗ -0.106∗

(0.208) (0.202) (0.306) (0.051) (0.048)

1560 0.051∗ 0.005 0.021∗ -0.029∗ -0.111∗

(0.199) (0.187) (0.050) (0.044) (0.036)

σ21 σ22 σ23 σ24 σ25

390 -0.030∗ -0.655∗ -0.251∗ -0.422∗ -0.616∗

(0.077) (0.417) (0.194) (0.609) (0.454)

1560 -0.014∗ -0.258∗ -0.153∗ -0.333∗ -0.300∗

(0.041) (0.473) (0.193) (0.546) (0.395)

σ26 σ27 σ28 σ29 σ210

390 0.197∗ -0.499∗ -0.499∗ -0.005∗ -0.179∗

(0.388) (0.264) (0.405) (0.017) (0.408)

1560 0.044∗ -0.428∗ -0.355∗ 0.000 -0.033

(0.194) (0.280) (0.437) (0.007) (0.281)

σ1 σ2 σ3 σ4 σ5

390 0.008∗ 0.015∗ 0.008∗ 0.222∗ 0.028∗

(0.013) (0.058) (0.026) (0.302) (0.054)

1560 0.005∗ 0.011∗ 0.004∗ 0.158∗ 0.0176∗

(0.009) (0.043) (0.013) (0.256) (0.039)

σ6 σ7 σ8 σ9 σ10

390 -0.034∗ -0.009∗ -0.023∗ 0.034∗ 0.064∗

(0.056) (0.030) (0.058) (0.041) (0.067)

1560 -0.012∗ 0.001 -0.022∗ 0.025∗ 0.049∗

(0.029) (0.016) (0.031) (0.042) (0.047)

Table 5.5: Biases and standard deviations of the standard deviation estimates for

Example 2 using the PMLE with P1(Ψ). The biases that are significantly different

from zero at a 5% significance level are indicated by ∗.
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E(σ2
jk) = νλ

ν−2
when ν > 2 and V ar(σ2

jk) = 2ν2λ2

(ν−2)2(ν−4)
for ν > 4. This prior distribu-

tion is identical to the likelihood for σ2
jk arising from a data set with ν observations

and sample variance λ. Then, the penalty function is

P2(Ψ) =
K

∑

k=1

P
∑

j=1

{−(
νjk

2
+ 1) log σ2

jk −
νjkλjk

2σ2
jk

}, (5.63)

The penalized complete data log-likelihood is

lpc(Ψ) =

K
∑

k=1

P
∑

j=1

{

∑

i∈Ck

zijk

[

log πjk − log σjk −
(xij − µjk)

2

2σ2
jk

+ (5.64)

∑

l 6=j

(− log σl −
(xil − µl)

2

2σ2
l

)

]

− (
νjk

2
+ 1) log σ2

jk −
νjkλjk

2σ2
jk

}

.

Then the close form expressions for parameter estimates in the EM framework

at the (m + 1)th iteration are:

E-Step:

ẑ
(m+1)
ijk = p̂(the ith observation ∈ the jth component|the kth class)

=
π̂

(m)
jk N(xij ; µ̂

(m)
jk , σ̂

(m)
jk )

∏

l 6=j N(xil; µ̂
(m)
l , σ̂

(m)
l )

∑P
m=1 π̂

(m)
mk N(xim; µ̂

(m)
mk , σ̂

(m)
mk )

∏

l 6=m N(xil; µ̂
(m)
l , σ̂

(m)
l )

(5.65)
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M-Step:

π̂
(m+1)
jk =

∑

i∈Ck
ẑ

(m+1)
ijk

∑p
j=1

∑

i∈Ck
ẑ

(m+1)
ijk

, (5.66)

µ̂
(m+1)
jk =

∑

i∈Ck
ẑ

(m+1)
ijk xij

∑

i∈Ck
ẑ

(m+1)
ijk

, (5.67)

σ̂2
jk

(m+1) =

∑

i∈Ck
ẑ

(m+1)
ijk (xij − µ̂

(m)
jk )2 + νjkλjk

∑

i∈Ck
ẑ

(m+1)
ijk + (νjk + 2)

, (5.68)

µ̂
(m+1)
l =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(m+1)
ijk xil

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(m+1)
ijk

, (5.69)

σ̂2
l
(m+1) =

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(m+1)
ijk (xil − µ̂

(m)
l )2

∑K
k=1

∑P
j=1&j 6=l

∑

i∈Ck
ẑ

(m+1)
ijk

. (5.70)

The fact that E(σ2
jk) =

λjkνjk

νjk−2
for νjk > 2 suggests that λjk should be chosen

near the expected class specific variance σ2
jk. In the absence of expert knowledge,

some fraction of the sample variance along jth direction of the kth class could be

used to choose λjk. We propose that

λjk = s2
jk/25 = [

∑

i∈Ck
(xij − x̄j)

2

nk − 1
]/25. (5.71)

This represents the prior belief that standard deviation of the class specific variance

will be roughly 1/5 of the sample standard deviation along jth direction. Chipman

(2006) used a similar idea when specifying a prior on the residual variance σ2 in

linear regression.

We choose νjk = 5, for j = 1, . . . , P and k = 1, . . . , K. This represents our

belief that the prior distribution does not have a long tail and is centered around

λjk. for νjk = 5, the prior (0.1, 0.5, 0.9) quantiles for σ2
jk are 0.54, 1.15 and 3.10

times λjk respectively.
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For the penalty P2, the same experiments as in the penalty P1 are conducted

to verify that the PMLE from P2 does not converge to any degenerate solution.

The comparisons between PMLE/Multi-step, MLE/Multi-step, PMLE/EM and

MLE/EM gives the same conclusion as in P1, i.e. there is no difference between

PMLE/Multi-step and PMLE/EM; the PMLE gives more accurate parameter es-

timates than the MLE.

For the consistency testing of the PMLE under the penalty function P2, the

same Example 1 (combination 12) is used in the simulation. The simulation results

(the biases and standard deviations of the parameter estimates of the PMLE) are

presented in Table 5.6. The fact that all biases and standard deviations have

gotten smaller with the larger samples suggests that MSE drops with increasing

sample size and that PMLE’s should be asymptotically consistent. Therefore, the

PMLE of the CMDA1 model under the penalty P2 is also asymptotically consistent.

We also considered Example 2 for this penalty function. Results were similar to

Section 5.4.1, and are not reproduced here.

5.5 Drug Discovery Data

We use the EM algorithm to estimate the PMLE of the CMDA1 model for the real

drug data: NCI Antiviral AIDS Data using the first penalty P1. The same 4 splits of

the random samples as in Chapter 4 are used here. Performance is assessed by the

AHR on the test set. The two different results (MLE/Multi-step and PMLE/EM)

are presented in Table 5.7. Over the four replications, a paired t-test concludes

that there is no significant difference between MLE/Multi-step and PMLE/EM at
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Size µ11 µ12 µ21 µ22 µ1 µ2

70 -0.139∗ 0.058∗ 0.784∗ 2.935∗ -0.722∗ -2.619∗

(0.485) (0.328) (0.192) (0.445) (0.133) (0.421)

280 -0.024∗ 0.000 0.004∗ 0.034∗ 0.046∗ -0.194∗

(0.121) (0.115) (0.018) (0.139) (0.069) (0.081)

σ11 σ12 σ21 σ22 σ1 σ2

70 -0.068∗ -0.319∗ -0.072∗ -1.002∗ -0.416∗ 1.197∗

(0.020) (0.017) (0.018) (0.015) (0.181) (0.199)

280 -0.006∗ -0.314∗ -0.057∗ -0.947∗ -0.007 0.702∗

(0.003) (0.013) (0.001) (0.001) (0.050) (0.201)

π11 π12 π21 π22

70 0.0183∗ -0.018∗ 0.013∗ -0.013∗

(0.067) (0.067) (0.019) (0.019)

280 0.013∗ -0.013∗ 0.002∗ -0.002∗

(0.041) (0.041) (0.003) (0.003)

Table 5.6: Biases and standard deviations (in brackets) of parameter estimates for

Example 1 using the PMLE with P2(Ψ). The biases that are significantly different

from zero at a 5% significance level are indicated by ∗.
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Split MLE/Multi-step PMLE/EM

1 11.87 10.02

2 13.09 10.89

3 11.34 11.97

4 10.22 11.26

Average 11.63 11.03

Table 5.7: NCI data: AHR (%) for MLE/Multi-step and PMLE/EM.

Class π1k π2k π3k π4k π5k π6k

Active 0.13 0.25 0.08 0.20 0. 16 0.18

Inactive 0.04 0.07 0.25 0.27 0. 19 0.18

Table 5.8: The penalized estimates of mixing proportions estimated from Split2.

a 5% significance level.

Some interpretations of the model parameters may be possible. For example,

large mixing proportions may be interpreted as evidence of the importance of the

associated predictors. Consider the mixing proportions estimated from Split 2

shown in Table 5.8. It is interesting to see that both the active and inactive classes

identify BCUT4 and BCUT6 as important variables, which are the same as the

finding from Wang (2005).

Since both Multi-step EM and EM algorithms only give point estimates, it is

difficult to do inference on the estimates. In future research, we can use some

techniques to calculate standard errors for the estimates, which will be discussed

in Chapter 6.
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5.6 PMLE for the Second Order Model (CMDA2)

In this section, we consider a penalized maximum likelihood estimator for the

CMDA2 model. As in Section 5.3.3, the penalized likelihood function is written as

P ln(Ψ) = ln(Ψ) + pn(Ψ). (5.72)

Before discussing the form of penalty term pn, we review the form of the CMDA2

model, originally described in Section 4.10.

5.6.1 The CMDA2 Model

This model explores the two-dimensional subsets of descriptors. For P descriptors,

there are P (P − 1)/2 components in each class, as each component is specified by

a pair of descriptors. The second order model can be written as

f(x;Ψk, ΨG|y = k) =

P (P−1)/2
∑

j=1

πjkMV N(xj; µjk,Σjk)
∏

l 6=j

N(xl; µl, σl), (5.73)

where Ψk = {µjk,Σjk}P (P−1)/2
j=1 is the local parameter for class k and ΨG =

{µl, σl}Pl=1 is the global parameter. Here j indexes a pair of descriptors, i.e. j =

1, . . . , P (P − 1)/2 corresponds to pairs {(1, 2), (1, 3), . . . , (P − 1, P )}.

5.6.2 The Penalty Function for the CMDA2 Model

According to the multivariate analogues of Chen & Tan (2007), the penalty func-

tion for the CMDA2 model should have the following properties in order that the

parameter estimates are asymptotically consistent:
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C1. pn(Ψ) =
∑K

k=1

∑P (P−1)
j=1 p̃n(Σjk).

C2. At any fixed Ψ such that |Σjk| > 0 for all j = 1, . . . , P and k = 1, . . . , K, we

have pn(Ψ) = o(n), and supΨ max{0, pn(Ψ)} = o(n). pn(Ψ) is differentiable

with respect to Ψ and as n → ∞, p
′

n(Ψ) = o(
√

n) at any fixed Ψ such that

|Σjk| > 0 for all j = 1, . . . , P and k = 1, . . . , K.

C3. For large enough n, p̃n(Σ) ≤ 4(log n)2 log |Σ|, when |Σ| is smaller than cn−2

for some c > 0.

An additive function is used as the penalty function, so C1 simplifies the numer-

ical computation. C2 limits the effect of penalty. C3 means that the penalty will

counteract both σj = 0 and Σ that are degenerate such as a Σ corresponding to

variables with correlations of ±1. This is a new kind of degeneracy not encountered

in the CMDA1 model.

5.6.3 PMLE for the NCI Antiviral AIDS Data

In the section, the penalized CMDA2 model is applied on the NCI Antiviral Aids

data to obtain the penalized maximum likelihood estimates. We use the Wishart

distribution to generate a penalty function for Σjk taking pn(Ψ) as the log of a

W2(Sjk, nk) =
|Σjk|

(nk−3)/2

2nk |Sjk|
nk/2Γ2(nk/2)

exp(−1
2
tr(Sjk

−1Σjk)). That is,

pn(Ψ) = −
K

∑

k=1

Dk

P (P−1)/2
∑

j=1

{tr(Sjk
−1Σjk) + log |Σjk|}, (5.74)

where Sjk is the mode of the prior distribution. Dk ∈ ℜ+ is a tuning parameter,

whose increasing values implies a stronger concentration of the density near Sjk.
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The penalized maximum likelihood estimates in EM framework are:

E-Step:

ẑijk =
π̂jkMV N(xj; µjk,Σjk)

∏

l 6=j N(xl; µl, σl)
∑p(p−1)/2

j∗=1 π̂j∗kMV N(xj∗ ; µj∗k,Σj∗k)
∏

l 6=j∗ N(xl; µl, σl)
; (5.75)

M-Step:

π̂jk =

∑

i∈Ck
ẑijk

∑P (P−1)/2
l=1

∑

i∈Ck
ẑilk

; (5.76)

µ̂jk =

∑

i∈Ck
ẑijkxij

∑

i∈Ck
ẑijk

; (5.77)

Σ̂jk =

∑

i∈Ck
ẑijk(xij − µ̂jk)(xij − µ̂jk)T + 2DkSjk

∑

i∈Ck
ẑijk + 2Dk

; (5.78)

µ̂l =

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijkxil

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk

; (5.79)

σ̂2
l =

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk(xil − µ̂l)

2

∑K
k=1

∑

i∈Ck

∑P (P−1)/2
j 6=l ẑijk

. (5.80)

In the application, we assume Dk = D, k = 1, . . . , K. A sequence of D, i.e.

D = (1.5, 2, 3, 4, 5, 6, 7, 8), is used to identify the best one, which gives highest AHR

for the testing set. We find that D in the range of (1.5, 8) returns similar values of

AHR, so D = 1.5 is chosen in the computation. We choose Sjk to be the sample

covariance matrix of the two class-specific descriptors of the jth component. That

is, training data with y = k are used for the sample covariance of xj1 and xj2, when

j = (j1, j2).

As before, the CMDA2 model is applied on the NCI antiviral AIDS Data with

four splits. The data are transformed using normal distribution transformation,

i.e. 1
s
φ(x−x̄

s
), where x̄ is the sample mean and s is the sample standard deviation.
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Figure 5.6: Normal transformation of the subspace (x4, x6) of the NCI data with

300 active and 300 inactive compounds: Left, before transformation; Right, after

transformation. Red and blue represent two classes.

Figure 5.6 shows the data before and after the transformation. It is clear that after

transformation, outliers are pushed toward the centre of the data, so the effect of

outliers can be reduced through transformation.

We apply both the CMDA2 model and the MclustDA model with 15 compo-

nents to the NCI Antiviral AIDS Data with the 4 same training-testing splits as in

previous sections. The training and test sets each have n = 14, 906 compounds, of

which 304 are active compounds. We conduct four experiments (4 splits), which will

be referred to as “Split 1”, . . ., “Split 4” in the text below. Performance is assessed

by the AHR on the test set. The AHR’s returned from both approaches for the 4

splits are listed in Table 5.9. A paired t-test is conducted and the p−value = 0.521

indicates that there is no statistically significant difference between the penalized
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CMDA2 and MclustDA.

Compared to the AHR’s returned by the CMDA1 model, the CMDA2 model has

higher AHR’s for the four different splits. Therefore, the CMDA2 model does have

a better performance than the CMDA1 model. A paired t-test is also performed

and the p−value = 0.036 confirms the previous conclusion that the CMDA2 model

outperforms the CMDA1 model.

Furthermore, the CMDA2 model may give insight into the data. For example,

mixture components with large weights represent large proportions of the data.

Since each component is associated with a two-dimensional subspace, a large weight

π implies that data are concentrated in this subspace, and that the subspace may

be useful for discriminating active compounds. Table 5.10 lists the estimates of

the mixing proportions for the second split of the NCI data. The active class

identifies the descriptor pairs (1, 4), (2, 4) and (3, 4) as important mechanisms, and

the inactive class identifies (1, 2), (2, 4) and (3, 4) as important mechanisms.

It is interesting to note the prevalent role that x4 plays in the active components,

as this was identified previously by Wang (2005) as the most important predictor.

5.7 Discussion

In this chapter, the PMLE for the two-dimensional CMDA1 model has been proven

to be asymptotically consistent, which is confirmed by the simulations. Although

the consistency for higher-dimensional CMDA1 models has not been proved, the

simulation results suggest that high-dimensional CMDA1 models may also be asymp-
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Split CMDA1 CMDA2 MclustDA(15)

1 11.87 17.76 22.14

2 13.09 14.64 16.27

3 11.34 16.91 13.49

4 10.22 19.20 21.39

Average 11.63 17.13 18.32

Table 5.9: AHR (%) for the CMDA1 model, the PMLE of the CMDA2 model and

the MclustDA model with 15 components.

Subspaces (x1, x2) (x1, x3) (x1, x4) (x1, x5) (x1, x6)

Active 0.078 0.043 0.211 0.028 0.063

(x2, x3) (x2, x4) (x2, x5) (x2, x6) (x3, x4)

0.095 0.180 0.025 0.005 0.196

(x3, x5) (x3, x6) (x4, x5) (x4, x6) (x5, x6)

0.034 0.006 0.020 0.009 0.007

Subspaces (x1, x2) (x1, x3) (x1, x4) (x1, x5) (x1, x6)

Inactive 0.177 0.029 0.093 0.043 0.068

(x2, x3) (x2, x4) (x2, x5) (x2, x6) (x3, x4)

0.077 0.151 0.049 0.038 0.160

(x3, x5) (x3, x6) (x4, x5) (x4, x6) (x5, x6)

0.052 0.012 0.016 0.011 0.024

Table 5.10: The estimates of mixing proportions corresponding to each subspace

from Split2.
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totically consistent.

For the NCI data, the CMDA2 model has better performance than the CMDA1

model by generating higher AHR. This indicates that the CMDA2 model can rep-

resent the data better than the CMDA1 model. However, we also find that the

CMDA2 model is very sensitive to the initial values, i.e. different initial values give

different parameter estimates although the AHR’s obtained are very close. This

may occur because the CMDA2 model can only catch one mechanism in each sub-

space (i.e. a single normal mixture component). This may not be sufficient to catch

the whole structure of the NCI data.

Choosing reasonable values of the tuning parameters for the penalty functions

becomes an important question in the PMLE approach. The variances or covariance

matrices of the subspaces of the data and the assessment of sensitivity of results

to different penalization parameter values can provide guidance to choose the right

values for the tuning parameters.

The fact that the performance of the MclustDA model with 15 components is

much better than that of the MclustDA model with 6 components indicates that

adding extra components may improve the performance of the CMDA1 model.

Furthermore, the CMDA2 model performed better than the CMDA1 model. This

indicates that both the number of components and two-dimensional component

structure of the CMDA2 model are helpful in ranking active compounds.



Chapter 6

Future Research

This chapter is divided into three parts. Section 6.1 describes the future research

of Cluster Structure-Activity Relationship (CSARA) analysis. The future research

for the CMDA model and the PMLE are presented in Section 6.2 and Section 6.3

respectively.

6.1 CSARA

In the analysis of the CSARA method, the large number of clusters (e.g. 3, 000,

5, 000, 10, 000, etc) were used in the study. Exactly one compound was randomly

selected from each cluster to act as the training data regardless of cluster size. The

response from a single compound will be quite variable. A more stable approach

might be to reduce the number of clusters and select more compounds per cluster.

Also the approach will allow the number of compounds sampled to vary according

to cluster size. The modification will increase the chance of identifying more active
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compounds as a large sample from the cluster should provide more information on

cluster features. Therefore, the problem how to choose multiple compounds from

each cluster arises.

It is also interesting to note that with multiple samples per cluster, some rank-

ing of clusters may be possible. The current approach of assaying one compound

per cluster yields only a 0/1 activity label, which makes it impossible to predict

the probability of active compounds in each cluster and difficult to rank clusters

according to the predicted activity probabilities. However, sampling multiple com-

pounds can make it possible to estimate a proportion of actives and use this for

cluster ranking.

6.2 CMDA

The challenges presented by QSAR modeling have been listed in Section 1.3: (1)

unbalanced response or rare target problem, (2) multiple mechanisms, (3) subspace-

governed activity, (4) nonlinear relationship among descriptors and (5) measure-

ment errors. In Chapter 4, the primary focus was the CMDA1 model, which handles

the first three challenges. For the fourth challenge of nonlinear relationship, the

CMDA2 model may provide better representation of drug discovery data as it can

represent bivariate dependencies within mixture component. A more careful and

systematic simulation design is needed to explore the characteristics of the CMDA2

model. A challenge encountered with applying the current implementation of the

CMDA2 model to drug discovery data is the larger impact of outliers not due to

measurement errors. Modifications of the method capable of dealing with outliers
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will be an important extension. The large number of mixture components and

bivariate dependence structure of the CMDA2 model makes computations very

intensive. Efficient algorithms using parallel computing need to be developed.

We also want to test the order of CMDA models, i.e. the number of components

in each class. For example, the CMDA1 model can have more than P components.

Identifying the number of components in mixture models is an important topic,

which is related to model selection techniques. In the mixture context, such model

selection can be implemented by seeking to set some mixing proportions to be zero

or to constrain other parameters across mixtures. One possible approach is the

use of Lasso-type penalties (Tibshirani 1996 and Fan & Li 2001). In the future

research, we would like to include this feature into our current algorithm and do

model selection automatically.

We notice that selecting or identifying important variables for a drug discovery

data set is meaningful. This problem can be viewed as a kind of model selection.

The techniques described in the previous paragraph may be relevant, since each

component of both the CMDA1 and CMDA2 models is associated with one or two

particular variables.

In the thesis, the CMDA model has been applied only to two-class data. The

CMDA model may require slight changes in order to be applied to the data with

multiple classes. Further, in order to incorporate various descriptors (e.g. cate-

gorical, ordinal, etc.), the component densities can be discrete, and other types of

density functions.

Usually, drug discovery data can have hundreds descriptors. In such high di-
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mensions, the CMDA model may not work as well due to the large number of

parameters and the complexity of the model structure. So some sort of dimen-

sion reduction strategy may need to be used under this context. Some algorithms,

such as recursive partitioning and random forest, can preliminarily determine the

optimal subset of descriptors to reach the aim of dimension reduction.

6.3 Penalized Maximum Likelihood Estimation

Chapter 5 proves the asymptotic consistency of the PMLE for two-dimensional mul-

tivariate normal mixtures with diagonal covariance matrices. In future research, we

want to prove the asymptotic consistency of the PMLE for higher dimensional mul-

tivariate normal mixtures without independence constrains. The tentative approach

may be calculating the largest eigenvalue for each component given the class label

k, then counting the number of observations dropping in a small neighbourhood

of the local parameter along the dimension of the largest eigenvalue. The proof

should be similar to the approach taken in Chapter 5.

For both the PMLE and the MLE, the EM algorithm only gives point estimates

without any uncertainty measurements, so it is not currently possible to make

inference for the estimates from two approaches. Later, we will modify the multi-

step EM algorithm by adding one more step, i.e. calculating the covariance matrix

for the MLE or the PMLE. Bootstrap techniques can be also used to get empirical

uncertainty for parameter estimates. Finally, we also can try a Markov Chain Monte

Carlo (MCMC) approach to quantify parameter uncertainty (Bensmail, Celeux,

Raftery & Robert (1997) and Richardson & Green (1997)). Since PMLE’s can be
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viewed as the estimates using prior distributions, a Bayesian approach to inference

would be a natural extension.



Appendix A: Related Theories

Theorem 6 (Dominated Convergence Theorem) Lebesgue’s dominated con-

vergence theorem states that if a sequence {fn : n = 1, 2, . . .} of real-valued mea-

surable functions on a measurable space S converges almost everywhere, and is

“dominated” by some nonnegative function g in L′, then

∫

S

lim
n→∞

fn = lim
n→∞

∫

S

fn (6.1)

i.e. |fn(x)| ≤ g(x) for every n and almost every x (i.e. the measure of the set of

exceptional values of x is zero). g in L′ means
∫

S
|g(x)| <∞

Theorem 7 (Kolmogorov’s Strong Law of Large Numbers) Let {Xi} be I.I.D.

The existence of a finite constant c for which

1

n

n
∑

i=1

Xi →wp1 c (6.2)

holds if and only if E{Xi} is finite and equals c.

Theorem 8 (Bernstein’s Inequality) Let Y1, . . . , Yn be independent random vari-

ables satisfying P (|Yi − E{Yi}| ≤ m) = 1, each i, where m <∞. Then for t > 0

P (|
n

∑

i=1

Yi −
n

∑

i=1

E{Yi}| ≥ nt) ≤ 2 exp(− n2t2

2
∑n

i=1 var{Yi}+ 2
3
mnt

) (6.3)
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for all n = 1, 2, . . ..

Theorem 9 (Borel-Cantelli Lemma) (i) For arbitrary events Bn, if
∑

n P (Bn) <

∞, then P (Bn infinitely often) = 0.

(ii) For independent events Bn, if
∑

n P (Bn) = ∞, then P (Bn infinitely often) =

1.
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