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Abstract

We study two data structuring problems under the bit probe model: the dynamic

predecessor problem and integer representation in a manner supporting basic updates in

as few bit operations as possible. The model of computation considered in this paper is the

bit probe model. In this model, the complexity measure counts only the bitwise accesses to

the data structure. The model ignores the cost of computation. As a result, the bit probe

complexity of a data structuring problem can be considered as a fundamental measure

of the problem. Lower bounds derived by this model are valid as lower bounds for any

realistic, sequential model of computation. Furthermore, some of the problems are more

suitable for study in this model as they can be solved using less than w bit probes where

w is the size of a computer word.

The predecessor problem is one of the fundamental problems in computer science with

numerous applications and has been studied for several decades. We study the colored

predecessor problem, a variation of the predecessor problem, in which each element is

associated with a symbol from a finite alphabet or color. The problem is to store a subset

S of size n, from a finite universe U so that to support efficient insertion, deletion and

queries to determine the color of the largest value in S which is not larger than x, for a

given x ∈ U. We present a data structure for the problem that requires O(k k

√
log U

log log U
) bit

probes for the query and O(k2 log U
log log U

) bit probes for the update operations, where U is

the universe size and k is positive constant. We also show that the results on the colored

predecessor problem can be used to solve some other related problems such as existential

range query, dynamic prefix sum, segment representative, connectivity problems, etc.

The second structure considered is for integer representation. We examine the problem

of integer representation in a nearly minimal number of bits so that increment and decre-

ment (and indeed addition and subtraction) can be performed using few bit inspections and

fewer bit changes. In particular, we prove a new lower bound of Ω(
√

n) for the increment

and decrement operation, where n is the minimum number of bits required to represent

the number. We present several efficient data structures to represent integers that use a

logarithmic number of bit inspections and a constant number of bit changes per operation.
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Chapter 1

Introduction

To optimize algorithm efficiency, it is important to understand the complexity of the prob-

lem at hand and to design efficient data structures. We study two data structuring problems

under the bit probe model : the dynamic predecessor problem and integer representation in

a manner supporting basic updates in as few bit operations as possible.

Efficient algorithms tend to require basic building blocks and one of them is the pre-

decessor problem. The predecessor problem is to store a subset S of size n, from a finite

universe U so that to support efficient insertion, deletion and queries to determine the

largest value in S which is smaller than x, for a given x ∈ U. The predecessor problem is

one of the fundamental problems in computer science with numerous applications such as

locating the nearest neighbour, finding the rank of an element etc. and has been studied

for several decades [1, 5, 7, 18, 38, 52, 55, 56]. Along with a variation of the predecessor

problem, we study some other related data structure problems in this thesis. The problems

considered are mainly searching problems such as the colored predecessor problem [44, 48],

the existential range query problem [2, 40, 44], the segment representative problem [48],

the prefix sum problem [25, 38, 48], and graph problems such as the connectivity problem

[6, 19, 30, 41, 54] and the reachability problem [32, 53]. All these problems are extensively

studied, mainly in the cell probe model and the word RAM model, and we want to shed

some light on these problems from a different perspective by studying them in the bit probe

model.

The second structure considered is the integer representation. The data type integer

1



2 Data Structuring Problems in the Bit Probe Model

is fundamental in any computer system and any programming language. It is hard to

imagine any computer program without integers and operations on them. Therefore, the

representation of integers and operations on them are fundamental issues. We are interested

in representing integers in the range [0, 2n−1] in near minimal number of bits, where n is the

minimum number of bits required to represent an element of this set, so that increment

and decrement (and indeed addition and subtraction) can be performed using few bit

inspections and fewer bit changes.

The model of computation plays a central role in analyzing a problem. In this thesis,

we consider all the problems in the bit probe model. The bit probe model was introduced

by Minsky and Papert in the book Perceptrons [42], where they discussed the average-

case bit probe complexity of the Membership problem. In this model, the complexity

measure counts the bitwise accesses to the data structure, and ignores the other costs

of computation. As a result, the bit probe complexity of a data structure problem can

be considered as a fundamental measure of the problem, which focuses on a practical

bottleneck, as random memory access in real hardware are becoming orders of magnitude

slower than computational instructions. Lower bounds derived in this model are also lower

bounds in any realistic, sequential model of computation. Power consumption by processor

and memory chips are becoming serious concern with the advance of the semiconductor

technology, as more transistors are fitted in smaller area. As fewer bit accesses require less

power, the solutions with fewer bit probes has gained interest. Furthermore, some of the

problems are more suitable for study in the model as they can be solved using fewer bit

probes than the size of a computer word.

Yao generalized the bit probe model into the cell probe model [57], where the accesses

to the memory cells (words) are counted as a complexity measure. Although the cell probe

model is used more frequently for the data structures, the bit probe complexity measure

has been a persistent object of study in theoretical computer science. Now we present a

brief literature review of the bit probe model. Following the work of Minsky and Papert

[42], Elias et al. [16, 17] analyzed the worst case complexity of the membership problem

in the bit probe model. Fredman used the decision assignment tree to obtain the bit

probe lower bound to generate a quasi-gray code sequence [24]. The bit probe model is

appealing because of its architecture independence and overall cleanliness. Furthermore,
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it gives a more accurate idea of the complexity of a problem at the bit level such as the

number of bits of the data structure probed. In recent years, the bit probe model has

gained a lot of interest. Miltersen et al. analyzed the static data structure problems for

some explicitly and implicitly defined functions in the bit probe model [37]. Buhrman

et al. [10] considered the static membership problem in the bit probe model, for which

they were the first to apply the Monte Carlo style randomization. Radhakrishnan et al.

[49] presented some constructive schemes for the static membership problem. Miltersen

analyzed the redundancies of the rank and select type index structures [39]. Pätraşcu et

al. [48] considered predecessor like problems, partial sum problem and graph connectivity

problem in the bit probe model.

The thesis is organized as follows. In Chapter 2, we study the colored predecessor

problem, a variation of the predecessor problem, in which each element is associated with

a symbol from a finite alphabet or color. For each query only the color of the predecessor

needs to be returned. The key aspect of this variation is that, the answer no longer requires

log U bits and so sublogarithmic methods are explored in the bit probe model. Chapter

3 includes some applications of our solution of the colored predecessor problem. We show

that the result of the colored predecessor problem can be used to efficiently solve other

related problems such as existential range query, segment representative, dynamic prefix

sum, graph connectivity. These problems can be solved using fewer number of bit probes

than the size of a computer word. In Chapter 4, we study different representations of

integer and some basic operations on it. We present a new lower bound for the increment

and decrement operation in Chapter 5, and several efficient data structures to represent

integer that use a logarithmic number of bit inspections and a constant number of bit

changes per operation. Finally, the thesis ends with our conclusion and comments on

potential directions for future research.



Chapter 2

The Colored Predecessor Problem

2.1 The Predecessor Problem

The predecessor problem is a basic and heavily studied problem. It has numerous appli-

cations in other problems such as searching, sorting, range reporting, dictionary problem

etc.

The Predecessor Problem: The predecessor problem is to store a subset S of

size n, from a finite universe U under insertion and deletion of elements, in

order to support efficient queries to determine the largest value in S which is

at most x for x ∈ U. While the term predecessor implies a value strictly less

that the input parameter, it is notationally much more convenient to consider

an element to be a predecessor of itself.

The obvious solution is to use a balanced binary tree that requires O(n) words of space

and O(log n) time per query. Van Emde Boas et al. [18] presented a solution over the

universe [U ], i.e. with word size log U bits, with time complexity of O(log log U). The basic

form of the algorithm uses Θ(U) bits; but, using the y-fast trie of Willard [55], this can

be reduced to the optimal O(n) words. Along the same direction, Andersson [4] improved

the time complexity of queries to O(
√

log n). Miltersen generalized Ajtai’s technique of

probability amplification in product spaces [1] to get a lower bound of Ω(
√

log log U) on

query time [40]. Beame and Fich [7] improved the lower bound to show that the predecessor

4



The Colored Predecessor Problem 5

problem has a lower bound of time complexity Ω(min( log log U
log log log U

,
√

log n
log log n

)) with space

requirement nO(1) words in the cell probe model with the cell size O(log U). They presented

a matching upper bound data structure that uses polynomial space in the word RAM

model. The same lower bound was obtained independently by Xiao [56]. Sen [52] proved

the same lower bound using a different technique. Andersson and Thorup [5] presented a

structure that requires O(min( log log U
log log log U

log log n,
√

log n
log log n

)) time per operation using O(n)

words of space. The Q-heap structure of Fredman and Willard [28] offers a constant time

solution to the dynamic predecessor problem with n ≤ (log U)1/4 and word size O(log U).

The scheme requires a precomputed table of size O(U) words. The rank/select structure

solves the static case in O(1) time using U + o(U) bits [13, 45, 46, 47, 50, 51] under the

word RAM model.

2.2 The Colored Predecessor Problem

The predecessor problem has an inherent Ω(log U) lower bound under the bit probe model,

as log U bits are required for the output. But some constant information about the pre-

decessor (a representative or a color) can be retrieved in o(log U) time in this model. We

consider the colored predecessor problem, where every element in the set has a color chosen

from a constant size pool of colors. For a given number x, the color of x’s predecessor

has to be returned. The bit probe lower bound on time for the problem is Ω( log U
log log U

) as

shown by Fredman [25]. Pätraşcu and Pätraşcu [48] achieved O( log U
log log U

) upper bounds for

several dynamic predecessor-type problems in the bit probe model. Mortensen et al. [44]

have shown a lower bound trade-off of (Ω(log log U), Ω( log U
log log U

)) between the query time

and the update time of a simpler problem called the greater than problem, where the set

contains only one element and a query returns whether the element is greater than the

query element.

The Colored Predecessor Problem: The colored predecessor problem is to main-

tain a subset S of n elements from a finite universe U under insertion and dele-

tion of elements, in order to support efficient queries to determine the color of

the largest value in S which is equal or smaller than x for x ∈ U.
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The insert operation specifies a value from [U ] together with a color from a fixed

constant sized universe. If the value is already in the set the insert operation is taken to

mean that the color is changed. The known trade-off lower bounds in the bit probe model

for the greater than problem (also known which-side problem) are tq = Ω(log log U), tu =

Ω( log U
log log U

) and tq = Ω( log U
log log U

), tu = Ω(log log U), where tq and tu are the query and update

times respectively. Clearly the bounds hold for the dynamic predecessor problem as well.

We first consider a naive solution of the colored predecessor problem that requires

O(log U) bit probes for query and updates. Then we explore several improvements to

support queries in O(k2 k

√
log U

log log U
) bit probes and updates in O( k log U

log log U
) bit probes and

other trade-off between query time and update time, where k is a positive integer.

2.2.1 A Naive Solution

The set S is represented by a complete binary tree on the whole universe with U leaves.

For each element of the universe there is a leaf. An element of S is encoded by coloring the

corresponding leaf and all its ancestors. When a node has descendants of different colors,

it takes the color of the descendant with the largest value.

Consider first a query for the predecessor of x ∈ U. If x is in the set S, we simply look

up its color. Otherwise, consider the leaf-to-root path from the leaf corresponding to x. If

S contains at least one element, this path contains at least one colored node. Let u be the

lowest colored node on this path such that x is in the right branch of u. The answer to the

query is the color of the left child of u.

Updates proceed in a similar way. To insert an element x with color c, consider the

path from the leaf corresponding to x to the root. Let w be the lowest colored node on

the path such that x is in the left branch of w and the right child of w is colored. Set the

colors of the nodes on the path from the leaf x to the left child of w to color c. We have

a special case when x becomes the largest in S. In that case, there is no w satisfying the

condition. Set the colors of all nodes on the path, including the root, with the color of x.

To delete an element x ∈ S, consider the path from the leaf corresponding to x to the

root. Let u be the lowest node on the path such that x is in the right branch and the left

child of u has a color. Also, let w be the lowest node on the path such that x is in the left

branch and the right child of w has a color. If there is no u satisfying the condition or w is
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p sx p sx

v

u

w

w

u

v

Figure 2.1: A naive solution of the colored predecessor problem.

a descendant of u then, remove the colors of the node on the path from x to the left child

of w. On the other hand, if there is no w satisfying the condition or u is a descendant of

w then, let v be the left child of u. Remove the colors of all nodes on the path from x to

the right child of u and set the color of all nodes from u to the left child of w to the color

of v. We have a special case when x is the only element in S. In that case, there is no u

or w satisfying the conditions. To delete the element remove the colors of all nodes on the

path. This gives an O(log U) bit probe solution.

2.3 Colored Predecessor in O( log U
log log U ) Bit Probes

We now describe the solution provided by Pätraşcu and Pätraşcu [48]. Instead of a binary

tree, the set S is represented by a trie with branching factor b = Θ( log U
log log U

). So, the

height of the trie is h = O( log U
log log U

). As before, an element of S is encoded by coloring

the corresponding leaf and all its ancestors. An internal node is colored with the color of

the descendant with the largest value. Each node is associated with a bit vector of size b,
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one bit per child. The bit is set to ‘1’ if the corresponding child is the smallest among the

colored siblings. Similarly, another bit vector marks the largest among the colored siblings.

p x

u

v

p x

u

v w

Figure 2.2: A O( log U
log log U

) solution of the colored predecessor problem.

Consider a query for the predecessor of x ∈ U. If x is in the set S, we simply look up

its color. Otherwise, consider the leaf-to-root path from the leaf corresponding to x. If S

contains at least one element, this path contains at least one colored node. Let u be the

lowest colored node on this path and v be the child of u on the path. Check whether or

not there is any colored child of u to the left of the path by inspecting the colors of the

children of u. If there is no colored child of u to the left of the path, find w the lowest

colored node on the path which is not the smallest among the colored siblings. Since the

smallest colored sibling is marked by a bit vector, it takes one bit probe to determine

whether or not the current node is the smallest colored node among its siblings. The color

of the largest colored sibling to the left of the path is the answer. If x is smaller than any

element present in S then, there is no w satisfying the condition and we reach the root

without locating w on the path. Climbing the path requires O(h) bit probes. The colors

of the siblings are scanned at two levels at most and this requires O(b) bit probes. So, the
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query time is O(h + b) = O( log U
log log U

).

To insert an element x ∈ [U ] with color c, consider the path from the leaf corresponding

to x to the root. First consider an insertion of x not in the set S. Let u be the lowest

colored node on the path and v be the child of u on the path. Color each node from leaf

x up to and including v with color c. Also, set each node as the largest and the smallest

among the colored siblings. Scan the colors of the siblings of v to update the largest and

the smallest markings if necessary. The color of the ancestors of v might be changed due

to the insertion. Let w be the lowest ancestor of v such that w is not the largest among

the colored siblings. Change the color of each node from u, the parent of v, to the child of

w on the path to color c. On the other hand, consider the insertion of an element x ∈ S.

In that case, find w the lowest node on the path from x to the root such that w is not the

largest among the colored siblings. Change the color of each node on the path from x to

the root to the color of x. Traversing towards the root requires O(h) bit probes. Note that

we have to scan the color of the nodes at one level only. Scanning the colors of all siblings

at one level takes O(b) time. Changing the color of a node requires constant time. So, the

total insertion time is O(h + b) = O( log U
log log U

). Deletion can be done in a similar way.

We now describe several useful operations on the trie with branching factor b and height

h. These operations are useful in designing our data structures described in the following

sections.

2.3.1 Find the Largest Element

We have to find the largest element in the set (not only the color). Consider the path from

the root to the leaf corresponding to the largest element of the set. All nodes along the

path are colored with the color of the largest element. Also the nodes are marked as the

largest among the colored siblings. Start from root towards the leaf. At each node, scan

the children to find the largest colored child and move to that child. Scanning the nodes

at a level requires O(b) time. Total time to reach the leaf corresponding to the largest

element is O(hb) bit probes. In a similar way, the smallest element can be determined in

O(hb) bit probes.
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2.3.2 Change the Color of the Largest Element

To change the color of the largest element to a new color c, consider the leaf to root path

from the leaf corresponding to the largest element. All nodes on the path are colored with

the color of the largest element. Also, all nodes on the path are marked as the largest

among the colored siblings. Set the color of all nodes on the path to c. No other change in

the data structure required. So, this operation performs O(h) bit probes.

2.3.3 Existence of a Smaller Element in the Set

For a given element x, the query is asking whether or not there exists an element smaller

than x. Consider the path from the leaf corresponding to x to the root. Let u be the lowest

colored internal node on the path and v be the child of u on the path. Scan the siblings of

v to find the colored left sibling of v if one exists. Otherwise, find the lowest ancestor of

v which is not the smallest among the colored siblings using the bit vector used to mark

the smallest colored sibling. There is a smaller element if one such node exists. Scanning

the siblings is done at one level only. Checking whether a node is the smallest among the

colored sibling requires constant bit probes. So, total time for the query is O(h + b) bit

probes.

2.4 Colored Predecessor in O(
√

log U
log log U ) Bit Probes

We prove the following theorem in this section.

Theorem 2.4.1. There exists a data structure for the colored predecessor problem with

complexity tq = O(
√

log U
log log U

) and tu = O( log U
log log U

), where tq and tu are the number of bit

probes for the query and the update respectively.

We present a constructive proof for the above theorem. First, we present a data struc-

ture for the problem and then study the complexities of the operations on it.
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2.4.1 The Data Structure

The set S is represented by a trie D on the whole universe with U leaves, branching factor

B = Θ(2
√

log U log log U) and height H = O(
√

log U
log log U

). As before, an element of S is encoded

by coloring the corresponding leaf and all its ancestors. An internal node takes the color of

the descendant with the largest value. Each node is associated with a bit vector of size B,

one bit per child. A bit is set if the corresponding child is the smallest among the colored

siblings. Similarly, another bit vector marks the largest among the colored siblings.

Each internal node u is associated with a supporting data structure and denoted by

D′(u). The structure D′(u) is a trie with B leaves, branching factor b = Θ( log B
log log B

) and

height h = O( log B
log log B

). For each child of u ∈ D, there is a corresponding leaf in D′(u).

2.4.2 Colored Predecessor Query

p x

u

vw

w v

u

Figure 2.3: A multi-level structure for the solution of the colored predecessor problem.

Consider a query for the predecessor of x ∈ U. If x is in the set S, we simply look up

its color. Otherwise, consider the path from the leaf corresponding to x to the root in
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the main trie D. Let u be the lowest colored node on the path and v be the child of u

on this path. We need to find the left colored sibling of v if one exists. This itself is a

predecessor problem with small universe B. Unlike the solution mentioned in the previous

section, scanning exhaustively the colors of the siblings is prohibitively expensive. Instead,

the supporting data structure is used.

Once the lowest colored node u on the path from leaf x to the root in D is found, a

colored predecessor query of v is performed in the supporting structure D′(u), where v

is the child of u on the path in D. If there is a left colored sibling of v in D, the color

returned by the query using the supporting structure D′(u) is the answer. Otherwise, the

query in the supporting structure returns no color. In that case, we have to find w, the

lowest ancestor of v in D, which is not the smallest among the colored siblings. A colored

predecessor query in the supporting data structure provides the answer. So, the query time

is O(H + h + b) = O(H + log B
log log B

) = O(
√

log U
log log U

).

2.4.3 Insertion

To insert an element x ∈ [U ] with color c, consider the path from the leaf corresponding

to x to the root in the main trie D. Let u be the lowest colored internal node on the path

and v be the child of u on the path. Color each node from x to v with c and mark each

node except v as both the smallest and the largest among the siblings. In addition to this,

insert an element in the empty supporting structures associated with each of these nodes.

Check whether or not v becomes the new smallest or the largest colored node among the

siblings. In that case, the markings for the largest or the smallest must be updated. Using

D′(u), the largest (smallest) colored child of u in D can be determined. The color of the

ancestors of v in D might be changed due to the insertion when v becomes the new largest

node among the colored siblings. Let w be the lowest ancestor of v such that w is not the

largest among the colored siblings. Set the colors of the nodes on the path from u, the

parent of v, to w with the color of v. Each of these nodes, except w, is the largest among

their colored siblings. This results in changing the colors of the largest elements of the

corresponding supporting structures.

Inserting elements in O(H) supporting structures requires O((h+b)H) time. Updating

the largest or the smallest markings at one level requires O(hb) time. Finally, changing
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the color of the ancestors takes O(H + Hh) = O(Hh) time. In total, insertion requires

O(Hh + hb + Hb) = O( log U
log log U

) bit probes.

2.4.4 Deletion

To delete an element x ∈ S, consider the path from leaf x to the root in the main trie D.

Note that all nodes on the path are colored. Let u be the lowest node on the path that

has more than one colored child. Let v be the child of u on the path. All nodes on the

path from x to v except v are both the smallest and the largest among their siblings. The

nodes u and v can be determined easily by using the associated bit vectors that mark the

smallest and the largest child of its parent node. Erase the colors of all nodes on the path

from x to v. Also, erase their markings as the smallest and the largest among the siblings.

For all internal node a on the path from x to u, delete corresponding element from the

supporting structures D′(a).

If v is neither the smallest nor the largest child of u, then we are done. If v is the

smallest child of u then, use the structure D′(u) to find the new smallest child and update

the vector used to mark the smallest child of u. On the other hand, if v is the largest child

of u, use D′(u) to find the new largest child of u and update the markings accordingly.

Let w be the lowest ancestor of v which is not the largest among the siblings. Change the

color of all nodes on the path from u to w. Also, change the color of the largest element

in D′(a), for all nodes a on the path from u to w. So the time requires for deletion is

O(Hh + hb + Hb) = O( log U
log log U

) bit probes.

2.5 Further Improving the Query Time

Next we modify our data structure to support faster query while keeping the same asymp-

totic update time. We generalize the two-level structure, described in the previous section,

into a k level structure for some positive integer k. At the i-th level of recursion of the

data structure, we have a collection of tries with branching factor bi and height h such

that each internal node of a trie is associated with a level-(i + 1) trie with bi leaves. As

the height of the level-(i + 1) trie is h, the branching factor is, bi+1 = bi
1/h. Then, the
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condition bk
(hk) ≥ U must hold. The internal nodes of all the tries are supported with bit

vectors to mark the largest and the smallest colored child.

2.5.1 Colored Predecessor Query

For a given colored predecessor query of x ∈ [U ], we proceed as in the previous section.

If x is in the set then return the color of it. Otherwise, start from the level-1 trie. While

searching in a level-i trie, start from the respective search leaf. Consider the path from

the search leaf to the root of the trie. First find the lowest colored node u on this path.

Let v be the child of u on the path. Check whether or not there is any left colored sibling

of v. If not, continue towards the root to find the lowest node which is not the smallest

colored node among its siblings. Then perform a query in the corresponding level-(i + 1)

trie. Searching in a level-k trie is similar to the procedure mentioned in section 2.3. The

searching time in a level-i trie, for k > i ≥ 1, is given by the following equation

tq(i) = O(h) + tl?(i + 1) + tq(i + 1)

where tq(i) = time for a colored predecessor search in a level-i trie

tl?(i) = time to check the existence of a smaller colored leaf

of a given leaf in a level-i trie

Existence of a smaller colored leaf can be determined by following the path from the

given leaf to the root to find a the lowest colored node on the path. Recursive searching

in the next level trie associated with a determines whether there is a colored sibling to the

left of the path. If not, continue upward along the path until the current node is not the

smallest among siblings. Such a node exists if and only if there exists a smaller colored

leaf. Note that

tq(k) = O(h + bk)

tl?(i) = h + tl?(i + 1)

tl?(k) = O(h + bk).
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Total query time is tq = tq(1). Solving the recurrence, we get tq = O(hk2 + kbk).

2.5.2 Insertion

To insert an element x ∈ [U ] with color c, start from the level-1 trie. In general, while

inserting an element in a level-i trie, start from the respective leaf of the trie. Consider the

path from this leaf to the root. Find the lowest colored internal node u on the path. Let v

be the child of u on the path. Set the color of each node to c on the path from the leaf to

v. Also, mark the nodes, except v, as both the smallest and the largest among the colored

siblings. In addition to this, insert the relevant element in each of the corresponding level-

(i + 1) tries associated with each internal node on the path from the leaf to v. Note that

these level-(i + 1) tries were empty and we have to insert a single element in them. In

the level-i trie, we may have to update the smallest and the largest colored child of u in

case v becomes the new smallest or the largest colored child of u. Note that, the smallest

(largest) colored child of a node can be determined recursively and is the corresponding

leaf found by the recursive searching in the level-(i + 1) trie associated with the node.

Update the markings of the smallest or the largest colored child of u if necessary. The

color of the ancestors of v might be changed due to the insertion, if v becomes the new

largest node among the colored siblings. From node v continue upward traversal towards

the root. If the node ascended from is the largest among the colored siblings, set the color

of the node to c. Update the color of the largest element recursively in the level-(i + 1)

trie associated with the node. To do this, in the corresponding level-(i + 1) trie follow

the path from the leaf, which is also the largest colored leaf, to the root and update the

colors of the nodes along the way as well as recursively update the colors in the associated

trie. The complexity of this operation is the same as insertion of an element in an empty

trie. Continue ascending along the path in the level-i trie. The procedure is done when

either we ascend from a child which is not the largest among the colored siblings or when

we reach the root in the level-i trie. Time for an insertion in a level-i trie is given by the

following equation.

tu(i) = O(h) + ht0u(i + 1) + tu(i + 1) + tm(i + 1)
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where tu(i) = time to insert an element in a level-i trie

that contains at least one element

t0u(i) = time to insert the first element in a level-i trie

tm(i) = time to find the maximum (minimum) element of a level-(i) trie

Note that

t0u(i) = h + ht0u(i + 1)

tm(i) = htm(i + 1)

t0u(k) = O(h)

tu(k) = O(h + bk)

tm(k) = O(hbk)

The total update time is tu = tu(1). Solving the recurrence, we have tu = O(hk+bkh
k−1).

For a constant k, let bk = k

√
log U

log log U
and h = k

√
k log U

log log U
. Note that the condition

bk
(hk) ≥ U is satisfied with our choice of h and bk. So, the query time is tq = O(hk2 +

kbk) = O(k2 k

√
log U

log log U
), for some positive integer k, and the update time is tu = O(hk) =

O( k log U
log log U

). In particular, we have a trade-off between the query and update time of tq =

O(k2 k

√
log U

log log U
) and tu = O(k log U

log log U
). The query time decreases while the update time

increases with the larger value of k .

2.5.3 Deletion

To delete an element, start deletion from the level-1 trie. While deleting an element in a

level-i trie, consider the path from the corresponding leaf to the root. Note that all the

nodes on the path are colored. Let u be the lowest internal node on the path that has more

than one colored child. Let v be the child of u on the path. All nodes on the path from x

to v except v are both the smallest and the largest among their siblings. The nodes u and

v can be determined easily by using the associated bit vectors that mark the smallest and

the largest child of its parent node. Erase the colors of all nodes on the path from x to v.
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Also, erase their markings as the smallest and the largest among the siblings. In addition

to that, also delete recursively in the corresponding level-(i + 1) trie associated with each

internal node on the path from x to u.

If v is neither the smallest nor the largest colored child of u, then we are done. If v

is the smallest colored child of u, recursively find the new smallest child of u using the

level-(i+1) trie associated with u. Update the vector used to mark the smallest child of u.

On the other hand, if v is the largest child of u, find the new largest child of u recursively

and update the markings accordingly. Let w be the lowest ancestor of v which is not the

largest among the siblings. Change the color of all nodes on the path from u to w. Also,

change the color of the largest element recursively in the level-(i + 1) trie associated with

all nodes on the path from u to w. So deletion in the level-i trie uses td(i) bit probes and

is denoted by the following equation.

td(i) = O(h) + ht1d(i + 1) + td(i + 1) + tm(i + 1)

where td(i) = time to delete an element in a level-i trie

that contains more than one element

t1d(i) = time to delete the only element in a level-i trie

tm(i) = time to find the maximum (minimum) element of a level-i trie

Note that t1d(i) = t0u(i) and hence td(i) = tu(i). So, total time for the deletion is

td = td(1) = O( log U
log log U

) bit probes. Hence we have the following theorem.

Theorem 2.5.1. The colored predecessor problem can be solved with the trade-off time

complexity tq = O(k2 k

√
log U

log log U
) and tu = O(k log U

log log U
), where tq and tu are the number of

bit probes for the query and the update respectively, for some positive integer k.

2.6 Faster Queries with Slower Updates

Next we describe a scheme to improve the query time exponentially to achieve tq =

O(log log U) at the expense of a slight increase in the update time tu = O(log U). We
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use the properties of split tagged tree [9] to achieve the time bounds. The set is represented

by a complete binary trie with U leaves, where each element of S is encoded by coloring

the corresponding leaf and all its ancestors. A node has the color of its largest colored de-

scendant. A splitting node is a colored node whose both left and right children are colored.

A splitting node u is a right splitting node of v if v is in the right subtree of u. The left

splitting node is defined similarly.

Lemma 2.6.1. For a given element x, let p ∈ S be the predecessor of x. The lowest

common ancestor of x and p is either (a) the lowest colored node on the path from the leaf

corresponding to x to the root or (b) the lowest right splitting node of x.

Proof. Let v be the lowest common ancestor of x and p. As the leaf corresponding to p

and all its ancestors are colored, v is colored. We have x in its right subtree and p in its

left subtree. The left child of v, which is an ancestor of the leaf p, is colored. Let u be the

lowest colored node on the path from the leaf corresponding to x to the root. Either u and

v are the same or v is an ancestor of u. The lemma follows when u and v are the same.

Let v be an ancestor of u. Then u must be in the right subtree of v. As u is colored, the

right child of v is also colored. So, v is a splitting node. Since, x is in the right subtree of

v, it is the right splitting node of x. Now, v must be the lowest right splitting node of x.

Otherwise, let w be the lowest right splitting node of x. Then there must be an element y

in the left subtree of w such that p < y < x. This contradicts our assumption that p is the

predecessor of x.

The main result of this section is the following theorem. We present a data structure

for the problem and show that the query and the update operations require the time bound

mentioned in the theorem.

Theorem 2.6.2. There exists a data structure for the colored predecessor problem with

time complexities tq = O(log log U) and tu = O(log U), where tq and tu are the query and

update time in the bit probe model respectively.

2.6.1 The Data Structure

The set S is represented by the complete binary tree mentioned earlier in this chapter.

The complete binary tree is enhanced with jump nodes to find quickly the lowest right
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splitting node of a given node. A jump node is an internal node at level idlog log Ue for

any positive integer i. A jump node is associated with a jump pointer. A jump pointer at

a colored jump node u, points to the lowest right splitting node of u. Note that a jump

pointer points to an ancestor and that it stores the distance of the right splitting node in

O(log log U) bits. A jump pointer at a jump node without color contains no meaningful

information.

2.6.2 Colored Predecessor Query

For a given query x, the aim is to find the lowest common ancestor of x and its predecessor.

First find the lowest colored node on the path from the leaf corresponding to x to the root

using binary search along the path. As the tree is complete, the location of the i-th

ancestor of x is x
2i . So, this requires O(log log U) time. Check whether this node is the

lowest common ancestor of x and its predecessor. If not, find the lowest right splitting

node of x.

From the lowest colored node u on the path, climb up the tree at most dlog log Ue
levels. We reach either the lowest right splitting node or the lowest jump node. A node is

a right splitting node if we ascend from right branch and its both children are colored. It

requires a constant number of bits to be inspected. Otherwise, we reach a jump node and

follow the jump pointer to get the lowest right splitting node. The color of the left child

of this node is the answer. In total, the query needs O(log log U) bit probes.

2.6.3 Insertion

To insert an element x with color c, consider the path from the leaf corresponding to x to

the root. Let u be the lowest colored node on this path. Color each node from leaf x to the

child of u, which is an ancestor of x, with color c. If x is in the right branch of u, we have

to update the colors of u and its ancestors as done in the previous section. In addition to

that, we have to update the jump pointers on the path from x to u. They now should point

to u. On the other hand, if x is in the left branch of u, find v the lowest right splitting node

of u. Update the jump pointers on the path from x to u. They all now point to v. Also, the

jump pointers on the path from the leaf corresponding to the successor of x to u should
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be updated to point to u. Moving up or down along the path requires O(log U) bit probes.

There can be O( log U
log log U

) jump nodes on a path and each pointer contains O(log log U) bits.

Updating jump pointers requires O(log U) bit probes. The total insertion complexity is

O(log U).

2.6.4 Deletion

To delete an element x, consider the path from the leaf corresponding to x to the root. All

nodes on the path are colored. Let u be the lowest splitting node on this path. Let v be

the child of u on this path. Erase the color of each node on the path from x to v. If x is

in the right branch of u, then set the color of u to the color of its left child. On the other

hand, if x is in the left branch, then follow the path from u to the leaf that corresponds to

the successor of x. Along the path update all the jump pointers. All these jump pointers

should point to the lowest right splitting node of u. Moving up or down along the path

requires O(log U) time. There can be O( log U
log log U

) jump nodes on a path and each pointer

contains O(log log U) bits. Updating jump pointers requires O(log U) bit probes. So total

complexity for deletion is O(log U) bit probes.



Chapter 3

Application of the Colored

Predecessor Problem

The colored predecessor problem has numerous applications, especially in searching and

graph problems. In this chapter, we present some applications by showing that the solution

for the colored predecessor problem can be used to solve some other related problems

efficiently. The problems considered are the segment representative problem [48], existential

range query problem [2, 40, 44], dynamic prefix sum problem [25, 38, 48] and dynamic

connectivity problem [6, 19, 30, 41, 54].

3.1 Segment Representative Problem

The segment representative problem is a variation of the predecessor problem. A segment

is formed by two consecutive elements of S. The elements of S divide the universe into

n + 1 segments. The representative of a segment can be considered as a point inside the

segment.

Segment Representative Problem: The segment representative problem is to

store a dynamic set S of n elements from a universe U in order to support queries

to determine a representative of the segment containing the query element,

where the representative depends on the leading matching bits of the boundary

21
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elements of that segment and is independent of the query point.

The representative is not written down explicitly as it requires log U bits to write down

the segment representative completely. Rather, the query determines the matching leading

bits of the two boundary elements of the segment and indicates a point inside the segment

that does not depend on the query point. So, we provide more information than simply

returning the color of the predecessor of a query point. Insertion or Deletion of elements

splits or merges segments respectively. The representatives of the affected segments can

be changed without affecting the representatives of other segments.

We first define a canonical representative for each segment. The set is represented by

a complete tree with branching factor b and U leaves. A leaf corresponds to an element

denoted by the labels on the path from the root to this leaf. The elements of S are

encoded by coloring the corresponding leaf and all its ancestors as in the case of the colored

predecessor problem. Let a, b ∈ S be two consecutive elements. Then they form a segment.

Let u be the lowest common ancestor of a and b. Let v and w be two child of u such that

v and w are the ancestors of a and b respectively. The segment representative is formed

by the bits labelled on the path from root to u, followed by log b bits that distinguishes

between v and w, and finally padded with trailing ’0’s. Once we know u, v and w we can

construct the canonical representative in no time as the computations are free in the bit

probe model.

The data structure for the colored predecessor problem can be used to solve the segment

representative problem. The query and update becomes a little bit more complicated

than those of the colored predecessor problem since the output depends not only on the

predecessor but also on the successor of the query element.

The query proceeds in a similar way as in the case of the colored predecessor problem.

Find u the lowest colored node on the path from leaf x to the root. Let v be the child of

u on the path. Check whether or not v has a left colored sibling as well as a right colored

sibling. If there is no left (right) colored sibling, find the lowest ancestor of v which is not

the smallest (largest) among the colored siblings. The parent of this node is the lowest

common ancestor of the predecessor and the successor. Update is same as in the colored

predecessor problem. Hence, we have the following results.

Corollary 3.1.1. The segment representative problem can be solved with the trade-of time
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complexity of O(k2 k

√
log U

log log U
) bit probes for query and O(k log U

log log U
) bit probes for insertion

or deletion of an element, for some positive integer k.

3.2 Existential Range Queries

The range query problem is to store a set S of n elements from a finite universe U such

that the query report(a, b) returns all elements {x ∈ S|a ≤ x ≤ b}. One variation of the

problem is range counting problem that returns the number of elements within the range

(a, b) for the given query count(a, b). All these problems have inherent log U lower bound

under the bit probe model. To obtain a sub-logarithmic result, we considered another

variation of the range query problem, called existential range query problem.

Existential Range Query Problem: The existential range query problem is to

maintain a dynamic set S of n elements from universe U so that to determine

the presence of an element within a given range.

Husfeldt, Rauhe and others [3, 32, 33] studied the problem along with other problems

using refinement and extension of the chronogram method. They have shown a lower

bound of Ω( log n
log log n

) for the dynamic existential range query problem in the cell probe

model. Miltersen et al [40] presented a data structure for the static version with space

O(n log U) words with constant query time. Later Alstrup et al [2] presented an optimal

solution for the static case with linear space and constant query time in RAM model. For

the dynamic case, Van Emde Boas [18] structure requires O(log log U) time per operation

in RAM model. Mortensen et al [44] presented a linear space structure that requires

O(log log log U) for query and O(log log U) for updates in RAM model using bloomier

filters.

We first describe the general technique used to solve the problem. The set is represented

by a complete binary tree with U leaves as mentioned in earlier sections. Given a query

exists(a, b), asking whether or not there exists an element within the range (a, b), first

determine u, the lowest common ancestor of a and b. The query range can be divided into

two sub-ranges (a, t] and (t, b), where the ranges (a, t] and (t, b) are under the left and right

subtree of u respectively. Start from the leaf corresponding to b to find whether or not
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the predecessor of b lies within the range (t, b). Let v be the lowest common ancestor of b

and its predecessor. According to the lemma 2.6.1, v is either the lowest active node on

the leaf-to-root path of b or the lowest right splitting node of b. Note that both u and v

are ancestors of b. Based on the relation of u and v, we can answer whether or not the

predecessor of b lies within (t, b). If v is a descendant of u then the answer is ‘yes’ and we

are done. Otherwise, start from the leaf corresponding to a and determine whether or not

the successor of a lies within the range (a, t]. It can be answered using similar technique.

We can generalize the notion for a trie and get the following lemma.

Lemma 3.2.1. The lowest common ancestor of x and its predecessor is either the lowest

colored node on the leaf to root path from x or the lowest colored node on the path such

that it is not the smallest among the colored siblings. The lowest common ancestor of x

and its successor is either the lowest colored node on the leaf to root path from x or the

lowest colored node on the path such that it is not the largest among the colored siblings.

Let u be the lowest common ancestor of a and b. Let v and w be two child of u such

that v and w are the ancestors of a and b respectively. The range (a, b) is divided into

subranges (a, t1], (t1, t2), and [t2, b), where (a, t1] and [t2, b) are the ranges under the subtree

rooted at v and w respectively. Using lemma 3.2.1, find the lowest common ancestor of

b and its predecessor and determine whether or not the predecessor lies within the range

[t2, b). If not, determine whether or not the successor of a lies within the range (a, t1]. If

not, find recursively existence of an element within range (t1, t2) using next level structure

associated with u. At each level of the structure, we have to traverse at most two leaf to

root paths and one recursive range queries. As a result we have the following corollary.

Corollary 3.2.2. The existential range query problem can be solved with trade-off time

complexity of O(k2 k

√
log U

log log U
) bit probes for the queries and O(k log U

log log U
) bit probes for the

updates, where k is a positive integer.

3.3 Dynamic Prefix Sum Problem

Let M be a fixed finite monoid with an associative operator
⊕

and the identity operator.
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Dynamic Prefix Sum Problem: The dynamic prefix problem associated with a

monoid M is to maintain x ∈ Mn so that to support queries prefix(i) asking

to return
⊕i

j=1 xj and change(i, a) changing xi to a ∈ M.

As M is fixed there is an easy upper bound of O(log n) in the bit probe model and

O( log n
log log n

) probes in the cell probe model with cell size O(log n) [38].

Fredman [25] studied the dynamic problem with monoid integer mod 2. He showed a

Ω( log n
log log n

) bit probe lower bound using decision assignment tree technique. Fredman and

Saks [27] have shown that the same number of probes is required in the cell probe model

with cell size O(log n) using chronogram method. Pätraşcu and Pätraşcu [48] recently

proved a lower bound of Ω( log n
log log log n

) for the problem with monoid integer mod 2. A

classification of the complexity of the dynamic word and prefix problem based on the

algebraic properties of M was done by Frandsen et al [23]. They have presented several

upper and lower bound structures. Based on their work Pätraşcu and Pätraşcu [48] derived

an upper bound of O( log n
log log n

) for a group-free monoid in the bit probe model. The tools

used in their solution is the Krohn-Rhodes decomposition [34] and a data structure for

for the colored predecessor problem. A group-free monoid is decomposed under Krohn-

Rhodes decomposition and the prefix sum in each of these sub categories are solved using

the predecessor structure. The complexity of the solution depends on the efficiency of the

colored predecessor data structures. As a result, replacing the colored predecessor structure

in their solution by the structures developed in the previous sections, give us the following

corollary.

Corollary 3.3.1. The dynamic prefix sum problem can be solved in O(k2 k

√
log U

log log U
) bit

probes for the queries and in O( k log U
log log U

) bit probes for the updates, where k is a positive

constant.

3.4 Dynamic Connectivity Problem

Dynamic Connectivity Problem: The dynamic graph connectivity problem is

to maintain a directed or undirected graph with set of vertices V of size

n under operations insert(u, v) - inserting an edge between u and v in the
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graph, delete(u, v) - deleting an edge between u and v and query operation

connected(u, v) that answers whether or not u and v are connected.

Henzinger and King presented the best worst case solution is O(n1/3) time per operation

for the general graph [30]. Holm et al. [31] presented an amortized O((log n)2) time per

operation solution. Thorup [54] later improved it to O(log n log log n) amortized time.

Fredman and Henzinger [26] and Miltersen et al. [41] proved a lower bound of Ω( log n
log log n

)

using a reduction from a dynamic prefix problem. Eppstein [19] achieved a worst case time

complexity of O(log n) for the dynamic connectivity problem in plane graph with fixed

embedding. The lower bound of Ω( log n
log log n

) holds even for a grid graph where V forms a

grid and all edges must be grid edges. Mix Barrington et al. [6] presented upper bound

solution of O(log log n) time per operation on a word RAM with word size O(log n). They

also proved a lower bound Ω( log log n
log log log n

) in the cell probe model with cell size O(log n).

Husfeldt and Rauhe [32] show that the query time grows linearly with the graph width.

Other graph problems of interest are directed dynamic graph reachability problem, dy-

namic planarity testing, etc. Tamassia and Preparata [53] have shown that the dynamic

reachability can be solved in time O(log n). Husfeldt et al. [32, 33] show a lower bound

of Ω( log n
log log n

) for the reachability problem using chronogram method. Husfeldt and Rauhe

[32] have shown a lower bound of Ω( log n
log log n

) for the planarity testing problem.

We consider a restricted version of the dynamic graph connectivity problem, where V

forms a constant width grid and the edges must be grid edges. Mix Barrington et al.

[6] have shown that the problem can be reduced to dynamic prefix problem and achieved

upper bound O(log log n) and lower bound Ω( log log n
log log log n

) in the cell probe model.

We consider the dynamic connectivity problem in a grid graph with length n and

a constant width c in the bit probe model. As mentioned earlier, the problem can be

reduced to dynamic prefix sum problem. Using the data structure for the dynamic prefix

sum problem, we can present a data structure for the dynamic connectivity problem on a

constant width grid graph.

Corollary 3.4.1. The dynamic connectivity problem on a constant width grid graph can

be solved in O(k2 k

√
log U

log log U
) bit probes for the queries and in O( k log U

log log U
) bit probes for the

updates, where k is a positive constant.



Chapter 4

Integers and Their Representations

The data type integer is fundamental to any computer and any programming language.

Therefore, the representation of integers and operations on them are fundamental issues.

We study the problem of integer representation using a nearly minimal number of bits so

that basic operations can be done efficiently. The operations include increment, decrement,

addition and subtraction. In this chapter, we explore some alternatives for integer repre-

sentations and their efficiencies based on the number of bit probes required to perform the

basic operations on integers.

4.1 Preliminaries

We are interested in representing the integers in the range [0, 2n − 1], where n is the

minimum number of bits required to represent an element of this set, and we call n the

dimension of an integer in this range. Let x be an integer of dimension n. The increment

operation yields a representation of the value (x + 1) mod 2n. Similarly, the decrement

operation can be defined. The addition operation considered is of the form x ← x + y,

where x has a larger dimension than y. The number x is replaced with the sum. The

subtraction operation can be defined similarly.

The trivial way to represent integers is to use the standard binary number system that

uses n bits to represent an integer of dimension n. It requires n worst case bit probes per

operation. Frank Gray invented the Binary Reflected Gray Code (BRGC) while converting

27
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analog signals into digital signals [29]. A Gray code sequence of dimension n contains a

sequence of 2n elements, where each element of the sequence is a n-bit code, such that two

consecutive codes in the sequence differ only in one bit. In cyclic gray code, the first and

the last element in the sequence also differ in one bit. The BRGC is a cyclic gray code.

The BRGC uses n bits and the algorithm to generate the next code of the BRGC sequence

requires n bits inspections. But only one bit needs to be changed to get the next code.

The redundant binary system supports constant amortized time per operation [11, 12].

The scheme doubles the space usage. But the model considered in these schemes is not the

bit probe model. Frandsen et al. [23] gave a representation that requires O(log n) bit probes

for increment and decrement. Using the same time, the number can be tested to be equal

to a number chosen from a fixed set. Fredman used the decision assignment tree to obtain

the bit probe lower bound of Ω(log n) to generate a quasi-gray code sequence [24]. He used

a tree representation for redundant binary numbers that uses three times the minimum

space required while permitting constant bit changes for the increment operation.

4.2 Standard Binary Representation

The standard binary representation of an integer of dimension n requires n bits with no

additional bits. Let X be the n-bit integer number that contains a value x ∈ [0, 2n − 1]

and is denoted by X = xnxn−1 · · · x1, where xi ∈ [0, 1]. Each bit of the representation is

associated with a weight. The i-th bit has a weight of 2i−1. So, the standard representation

satisfies the equation x =
∑n

i=1 2i−1xi.

To increment, start scanning the bits from the right until the rightmost ‘0’. Flip this

bit to ‘1’ and flip all previous bits to ‘0’s. The decrement operation is similar. So, the

standard binary representation requires n worst case bit probes per operation. An example

is shown in figure 4.1.

The addition of two integers x and y of dimensions n and m, respectively, proceeds from

the rightmost bits of x and y. Add the corresponding bits with the proper propagation of

carry. Clearly, the operation requires n + m bit inspections and n + 1 bit changes in the

worst case, where n > m. We omit the details here as the details can be found in any

elementary book on number systems.
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0 1 1 0 0 0 (24) 0 1 1 0 0 1 (25)

0 0 1 1 1 1 (15) 0 1 0 0 0 0 (16)

(a)

X = 0 0 1 1 0 1 0 0 (52)
Y = 0 1 0 1 0 1 (21)

S = 0 1 0 0 1 0 0 1 (73)
C = 0 0 1 1 0 1 0 0

(b)

Figure 4.1: Increment and addition using standard binary representation.

4.3 Binary Reflected Gray Code

In 1953, Gray patented his Gray code [29]. Since then, many authors confirmed the

importance of the Gray code and its variants. For detailed survey on the Gray code, the

readers are referred to the paper by Doran [15]. In this section, we briefly review the

Gray code and its properties and the increment/decrement and the addition/subtraction

operations on them.

Binary Reflected Gray Code: The empty string is the sequence G(0), the Binary

Reflected Gray Code (BRGC) sequence of dimension 0. Let G(n − 1) be the

BRGC sequence of dimension n − 1. Then the following sequence: G(n) =

0.[G(n−1)], 1.[G(n−1)]R is the BRGC sequence of dimension n, where [G(n−
1)]R is the BRGC sequence of dimension n− 1 in the reverse order and 0 or 1

in the front denotes the concatenation of a bit ‘0’ or ‘1’ in front of each code

of the sequence.

A BRGC sequence of dimension 5 is shown in Figure 4.2. The generation of BRGC

has been studied extensively [14, 22, 36]. To get the next code, for an even parity code,

flip the rightmost bit. For an odd parity code, find the rightmost ‘1’ and flip the bit to
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00100

00101

00111

00010

00011

00000

00001

00110

01100

01101

01111

01010

01011
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01001

01110

11100

11101

11111

11010

11011

11000

11001

11110

10000

10001

10011

10110

10111

10100

10101

10010

Figure 4.2: The Binary Reflected Gray Code (BRGC) sequence of dimension 5.

its left. The only special case is when the last bit xn is the only ‘1’ in the code. This

is also the last code in the BRGC sequence. Note that the parity is odd. But in this

case, it is sufficient to flip bit xn to go back to the first code of the BRGC. Boothroyd’s

variant [8] calculates the parity and finds the last ‘1’ bit by a scan of the bits. With no

additional space, the algorithm to generate the next code of the BRGC sequence requires

n bits inspections, as it has to determine the parity of the code. But only one bit needs

to be changed to get the next code. One extra bit, to store the parity of the code [43],

improves the performance significantly on average. Misra [43] keeps the parity separately

and maintains a stack of indices of bits that are ‘1’s to get a very fast algorithm. Er [20]

presented some improvements on Misra’s [43] algorithm. None of the algorithms mentioned

above considers the problem in the bit probe model and these algorithms need to change

a logarithmic number of bits in the worst case.

Lucal proposed a modified Gray code where the parity bit is integrated into the code

[35]. It still requires n bit inspections in the worst case. To get the next code in the

sequence, we have to change two bits now — one bit of the code and the parity bit which

is also a part of the code.

4.4 The Tree Representation

Fredman showed that at least log n bits need to be inspected to determine which bit to flip

to get the next element in a quasi-Gray code sequence [24]. He presented a data structure
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that supports the increment operation using 2 log n bit inspections and 7 bit changes. The

data structure uses 5n − 2 bits in total, where n bits are used to store the Gray code

explicitly. But the structure does not efficiently support the decrement operation.

We extend and modify Fredman’s data structure in order to support both increment

and decrement operations. We first describe a representation that supports increment and

decrement using a logarithmic number of bit inspections and changes. Then we modify

the structure to support the operations using a constant number of bit changes.

Without loss of generality, we can assume that n = 2k for some positive integer k. If

not, we can always add leading 0’s to make it a power of 2. An integer is represented by a

complete binary tree with n leaves such that the bits of the standard binary representation

of this number are associated with the leaves of the tree. The key trick is to associate a ‘0’

or a ‘1’ with an internal node to indicate that its entire subtree implicitly has that value.

More formally, the leaves and the internal nodes are labelled as follows:

• A node has label ‘1’ if this is the highest node such that all bits corresponding to the

leaves in its subtree are ‘1’s.

• A node has label ‘0’ if this is the highest node such that all bits corresponding to the

leaves in its subtree are ‘0’s.

• All other nodes are labelled ‘?’ denoting a mix of ‘0’s and ‘1’s in the bits corresponding

to the leaves in its subtree, or that its value is given implicitly by an ancestor.

The Gray code is not stored explicitly. As a result the data structure uses 4n− 2 bits

to store an integer of dimension n. See Figure 4.3 for an example. Note that, if the label

of a node is ‘1’ then, the label of its sibling can not be ‘1’. Similarly, if a node has label

‘0’ then, its sibling can not have a label ‘0’. Moreover, if a node is labelled ‘1’ or ‘0’ then

all of its ancestors are labelled ‘?’. By inspecting the label of the root, one can test if the

number is 0, 2n − 1 or neither.

4.4.1 Increment Operation in a Logarithmic number of Bit Probes

Consider the increment in standard binary representation. The increment operation there

finds the rightmost ‘0’. It flips this rightmost ‘0’ into ‘1’ and the trailing ‘1’s into ‘0’s. Our
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1 0

0

1

1

0

1

?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ?

?

Figure 4.3: The tree representation of an integer with standard binary representation
1000011111111111.

increment algorithm proceeds along the same line.

1. Start from the root and follow the rightmost path down the tree until finding a node

with a non-‘?’ label. If the label is ‘1’ then, change it into ‘0’ and move to its left

sibling. Follow the rightmost path down the tree possible from that node. Continue

the process until a node with label ‘0’ is reached.

2. There can be two cases based on the position of this node with label ‘0’.

(a) If the node is an internal node then, the bits in its subtree are all ‘0’s. Only the

rightmost ‘0’ needs to be changed into ‘1’. Change the label of this node to ‘?’.

Follow the rightmost path down the subtree from this node. Change the labels

of all siblings of the nodes on the path to ‘0’s. Finally change the label of the

leaf to ‘1’.

(b) Otherwise, the node is a leaf and corresponds to a bit that needs to be flipped

from ‘0’ to ‘1’. If this leaf is a left child of its parent, simply change the label

to ‘1’. Otherwise, check whether or not the corresponding bit is going to be an

isolated ‘1’. Traverse upward the tree, check whether the label of the left sibling

of the current node is ‘1’ and change its label from ‘1’ to ‘?’. Continue until
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either we reach a node which is the left child of its parent or its left sibling has

a non-‘1’ label. Change the label of this node to ‘1’.

1 0

0

1

1

0

1

?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ?

?

1 0

0

1

?

0

1

?

? ? ? ? ? ? ? ? ? ? 1 0

? ? ? ? 1 ?

? ? 1 ?

?

1 0

0

0

0

1

0

?

? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ?

?

1 0

0

0

?

1

0

?

? ? ? ? ? ? ? ? ? ? 0 1

? ? ? ? 0 ?

? ? 0 ?

?

(a) (b)

(c) (d)

Figure 4.4: Increment operations using logarithmic number of bit changes.

Figure 4.4 shows an example of the algorithm mentioned above. Arrow signs show the

steps in increment operation. Figure 4.4(a) shows the tree representation of an integer with

standard binary representation 1000011111111110. An increment leads to Figure 4.4(b),

the tree representation of 1000011111111111. Subsequent increments leads to Figure 4.4(c)
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and Figure 4.4(d), the tree representations of 1000100000000000 and 1000100000000001

respectively. The decrement operation is similar.

4.4.2 Increment Using a Constant Number of Bit Changes

Next we modify the tree representation so that increment and decrement operations can be

performed using O(log n) bit inspections with a constant number of bit changes. First we

analyze the steps of the algorithm mentioned in the previous subsection. There are three

sequences of label changes in steps 1, 2(a), and 2(b) of the increment algorithm in the

preceding subsection. Steps 2(a) and 2(b) are mutually exclusive as only one takes place

during an increment operation. Instead of changing the labels of all nodes in a sequence,

a new label symbol ‘σ’ is used to denote that the changes in the subsequent nodes in a

sequence are pending. We call this type of update a lazy update. Since the representation

uses only four symbols, the labels uses two bits per node. As a result the space usage

remains the same. The following paragraphs describe the changes needed in the increment

algorithm to accommodate this new symbol so that increment (and decrement) operation

ca! n be performed using a constant number of bit changes.

1 0

0

1

1

0

1

?

0 ? 0 ? 0 ? σ ? 0 ? σ ?

? ? 0 ? 1 ?

? ? 0 ?

?

Figure 4.5: A valid labelling of the tree representation of 1000011111111111.

Let n1, n2, · · · , nk be the nodes considered in step 1 (of the increment algorithm in the
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preceding subsection) that get new label ‘0’. Note that each of these nodes is the right

child of its parent and previously labelled ‘1’. For a node ni, the next node in the sequence

ni+1 is in the subtree rooted at the left sibling of ni and can be reached following the

rightmost path possible down the tree from that left sibling. Instead of changing the labels

of all nodes in the sequence, the node n1 is labelled ‘σ’ and the node nk is labelled ‘0’.

The label ‘σ’ implies that this node and following nodes in the sequence should be labelled

‘0’. A subsequent decrement operation restores the labelling. On the other hand, when

an increment operation encounters the label ‘σ’, it propagates ‘σ’ to the next node in the

sequence.

Next consider the series of label changing performed in step 2(a). Let n1, n2, · · · , nk

be the sequence of nodes in step 2(a) that get the new label ‘0’. Each of these nodes is

the left child of its parent. For a node ni, the next node ni+1 in the sequence is the left

child of the right sibling of ni. Instead of changing the labels of all nodes in the sequence,

the node nk gets the label ‘σ’ to indicate pending changes in the sequence and the node

n1 gets the label ‘0’ to mark the end of the sequence. Note that, the ‘σ’ in this sequence

denotes that the corresponding node should be labelled ‘0’ and it moves to the previous

node in the sequence during a later increment operation.

Finally, let n1, n2, · · · , nk be the sequence of nodes in step 2(b) that get the new label

‘0’. Each of these nodes is the left child of its parent. For a node ni, the next node ni+1 is

the left sibling of its parent. Like the earlier two cases, the node n1 gets label ‘σ’ and the

node nk gets the label ‘0’. This label ‘σ’ moves upward to the next node in the sequence

during a later increment operation. In all these sequences, the label ‘σ’ denotes the start

of a lazy update. The end of a sequence is denoted by a node with label ‘0’. A decrement

operation undo the changes done by increment operation.

The lazy version of label updating considered in steps 1 and 2(a) are consistent with

the older version. But for step 2(b), the changes are slightly different. In the older version,

the nodes in the sequence got a new label ‘?’. But the modified algorithm suggests that

the nodes should be labelled ‘0’. Using lazy update, only the last node in the sequence is

labelled ‘0’ and the first node is labelled ‘σ’ to denote the pending changes. We now show

that the lazy update scheme leads to a consistent labelling for step 2(b) also.

Let n1, n2, · · · , nk be the sequence of nodes considered in step 2(b) and u be the parent
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Figure 4.6: Increment operations using a constant number of bit changes.
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of nk. After lazy update, we have label(n1) = ‘σ’, label(nk) = ‘0’ and label(u) = ‘1’. A

decrement restores the labelling. So, consider the next increment that will affect these

nodes. The bits in the binary representation corresponding to the leaves in the subtree

rooted at u are all ‘1’s now. After that later increment, all these bits should be ‘0’s. So,

only the label of u will be changed into ‘0’ or ‘σ’. All other labels remains unchanged.

Another later increment will find that u satisfies the conditions in step 2(a) and labels will

be changed as: label(u) = ‘?’, label(n1) = ‘σ’ and label(nk) = ‘0’. Note that the nodes in

concern already have these labels, and these new assignments overwrite the same labels on

these nodes. Thus, the lazy update leads to consistent labelling in step 2(b).

The label ‘σ’ moves up or down while incrementing. The upward or downward move-

ment of ‘σ’ depends on the type of sequence to which it belongs. The ‘σ’ in a type

1 sequence (sequence in step 1 of the increment algorithm in the preceding subsection)

moves downward to the next node in the sequence. On the other hand, label ‘σ’ in type

2(a) or 2(b) sequence moves upward. It can be easily identified whether a ‘σ’ should move

up or down: if the corresponding node is the right child of its parent, the ‘σ’ is part of a

type 1 sequence and should move downward. The ‘σ’ moves up when the corresponding

node is the left child of its parent and hence is part of a sequence of type 2(a) or 2(b). The

decrement algorithm mainly undo the changes done during a previous increment operation

that lead to the current value. Figure 4.6 shows an example of the increment operation

where arrow signs show the steps of the operation. The labels of the relevant nodes are

shown in the figure. The tree representation of an integer with standard binary represen-

tation 1000011111111110 is shown in Figure 4.6(a). An increment leads to Figure 4.6(b),

the tree representation of 1000011111111111. Subsequent increments lead to Figure 4.6(c)

and Figure 4.6(d), the tree representations of 1000100000000000 and 1000100000000001

respectively.
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Integers and Counting

We first present a new lower bound result for the increment operation of an integer with

dimension n that is represented with only n bits. Then we present several upper bound

solutions to the problem that use more space. The first solution requires n + log n + 3

bits of space. Using this representation, the increment and decrement operations require

at most 2 log n + 4 bit inspections and at most 4 bit changes per operation.

Our second structure uses n + log n + O(log log n) bits. The increment and decrement

operations require log n+O(log log n) bit inspections and a constant number of bit changes.

But these two structures do not support efficient addition or subtraction operations.

In the third solution, the data structure uses n + O((log n)2) bits to store an integer

number of dimension n and supports increment/decrement operations as well as addi-

tion/subtraction operations. The increment and decrement operations require O(log n) bit

inspections and at most 5 bit changes. On the other hand, the addition or subtraction be-

tween two integers of dimensions n and m with n > m requires O(m+log n) bit inspections

and O(m) bit changes.

5.1 The Lower Bound

In this section, we present a new lower bound for the increment operation of an integer

with dimension n. The Sunflower lemma is used to prove the lower bound. A sunflower

with p petals is a collection S1, S2, · · · , Sp of sets so that the intersection Si ∪ Sj is the

38
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same for each pair of distinct indices i and j. The intersection is called the center of the

sunflower. The following well-known lemma is due to Erdös and Rado [21].

Lemma 5.1.1. (Sunflower Lemma) Let S1, S2, · · · , Sm be a system of sets each of car-

dinality at most l. If m > (p − 1)l+1l!, then the collection contains as a subcollection a

sunflower with p petals.

Let M be a memory of size n bits. There can be m = 2n distinct memory configu-

rations. So, the memory M can contain an integer of dimension n. A counting sequence

s = c0c1 · · · cm−1c0 is a sequence of distinct memory configurations such that for any two

memory configurations ci and cj, if i 6= j then ci 6= cj. From the initial configuration c0,

the sequence can be generated by a sequence of increment operations. The increment al-

gorithm is denoted by a decision assignment tree where at each internal node a single bit

is inspected and at each leaf one or more bits are flipped, so that the algorithm is ignorant

of the current memory configuration.

Theorem 5.1.2. Consider an integer of dimension n represented in exactly n bits using

any representation of the values in the range. The increment operation on this representa-

tion requires Ω(
√

n) bit inspections in the worst case.

Proof. Fix a counting sequence s = c0c1 · · · cm−1c0. Let Si be the set of bits inspected while

switching from configuration ci to configuration c
(i+1) mod m

, for all i such that 0 ≤ i < m.

Build a decision assignment tree for the sequence s. For a memory configuration ci, follow

the root-to-leaf path and flip the bits mentioned at the leaf to get the memory configuration

ci+1. Let l be the height of the longest path of the decision assignment tree. Therefore,

|Si| ≤ l for all i such that 0 ≤ i ≤ m− 1.

Let p′ be the largest integer satisfying the inequality in the sunflower lemma. Therefore,

we can find a sunflower Si1 · · ·Sip′ with p′ petals for all j, such that 0 ≤ ij < m and

1 ≤ j ≤ p′. Let C be the center of the sunflower. Thus C is a set of bits.

The inequality in the sunflower lemma is not satisfied for the value p′ + 1, as p′ is the

largest integer that satisfies the inequality.
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So, we have, m ≤ {(p′ + 1)− 1}l+1l!

= (p′)l+1l!

⇒ log p′ ≥ log m

l + 1
−O(log l)

Consider two sets Si and Sj such that they correspond to two petals of the sunflower.

The sets Si and Sj corresponds to two root-to-leaf paths in the decision assignment tree.

Consider the bit inspected at the lowest common node of these two paths. The bit is in

C as it is a common bit of Si and Sj. Furthermore, the value of the bit must differ for Si

and Sj. Therefore, the content of C must uniquely identify a petal of the sunflower. Thus,

|C| ≥ log p′.

Therefore, |C| ≥ log p′

≥ log m

l + 1
−O(log l)

But, we know |C| ≤ l.

Therefore, l ≥ log m

l + 1
−O(log l)

⇒ l = Ω(
√

log m)

Since, m = 2n, we have l = Ω(
√

n).

5.2 Properties of Binary Reflected Gray Code Se-

quence

We examine some properties of the BRGC. These properties are used to design efficient

data structure for integer representation. Let X be the BRGC of dimension n that contains

a value x ∈ [0, 2n−1] and is denoted by X = xnxn−1 · · ·x1, where xi ∈ [0, 1]. The definition

of the BRGC sequence leads to the following observations.
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Observation: In the BRGC sequence of dimension n, the i-th bit is flipped 2n−i

times, for all i such that 1 ≤ i < n. The n-th bit is flipped 2 times.

Observation: In the BRGC sequence of dimension n, a transition from a code

in the sequence to the next code causes one bit flip. Consider the flip of bit xi.

• In each of the next 2i−1 − 1 transitions, a bit xj is flipped, where i > j.

• A bit xk is flipped in the 2i−1-th transition, where i < k.

• The distance (number of transitions) between two flips of xi is 2i.

The observations can be verified easily from the Figure 4.2. The distance between two

codes in the sequence, where the 3rd bit is flipped, is 23 = 8. Consider the code where the

3rd bit is flipped from the previous code. For the next 23−1 − 1 = 3 transitions, the bits

flipped are the bits numbered 1, and 2 (< 3). A code at distance 22 = 4, corresponds to a

code where a bit numbered > 3 is flipped.

5.3 Efficient Increment and Decrement

Our first data structure for efficient integer representation uses the properties of the BRGC.

The data structure uses n+log n+3 bits to represent an integer of dimension n and performs

increment or decrement operations in 2 log n+4 bit inspections and at most 4 bit changes.

5.3.1 The Data Structure

Store the BRGC of dimension n explicitly. Also store a parity bit for the gray code — the

parity bit is ‘1’ when the current code has even number of ‘1’s. The n bits of the code are

divided into two blocks — (i) the most active block: the rightmost log n bits of the code

denoted by XA = xlog n · · · x1, and (ii) the less active block: the remaining (n− log n) bits

of the code denoted by XL = xn · · · xlog n+1. A pointer P, requiring log n bits, points to the

rightmost ‘1’ in XL, when the pointer is ready. If there is no ‘1’ in XL then, P points to xn

after scanning all bits of XL. Let the pointer be denoted by the bit string P = plog n · · · p1.

The pointer P becomes invalid, when the position of the rightmost ‘1’ of XL is changed.
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Update P in the background by erasing the previous content of P and by checking one bit

of XL at a time. We use two status bits:

1. R : the ready bit, denotes whether the pointer P is pointing to the rightmost ‘1’ of

XL, and

2. E : the erase bit, denotes whether P is being initialized by erasing the previous

content.

So, the data structure requires n + log n + 3 bits, where n bits are used to store the

BRGC explicitly. To initialize the structure, write down n bits of the code explicitly and

hence the position of the rightmost ‘1’ of XL is known. Initialize pointer P accordingly. If

XL contains no ‘1’, then P points to bit xn.

Lemma 5.3.1. The position of the rightmost ‘1’ of XL is changed on an increment or

decrement operation only when the rightmost bit of XL is flipped, except for the special case,

where bit xn is flipped from ‘1’ to ‘0’ (‘0’ to ‘1’) in an increment (decrement) operation.

Proof. Let xi be the bit of XL to be flipped next by an increment (decrement) operation

in general. We have, i > log n. From the increment (decrement) algorithm of the BRGC,

we know that, xi is flipped only when the parity of the code is odd (even) and xi−1 is

the rightmost ‘1’ in the code. If i > log n + 1, then xi−1 remains the rightmost ‘1’ of

XL. Now, consider i = log n + 1. If the bit xi is flipped from ‘0’ to ‘1’ then, it becomes

the new rightmost ‘1’ of XL. Let xi is flipped from ‘1’ to ‘0’. Before the flip, xi was the

rightmost ‘1’ of XL. As the bit is changed to ‘0’, the position of the rightmost ‘1’ of XL is

also changed.

The pointer P is updated when the rightmost ‘1’ of XL is changed. By Lemma 5.3.1,

this happens only when the rightmost bit of XL is flipped. From the observations mentioned

earlier, we know that in a BRGC sequence, there are 2log n = n transitions between two

consecutive flips of two bits of XL. We use this property to update the pointer P in the

background.

A valid pointer P contains the distance of the rightmost ‘1’ of XL from xlog n+1, the

rightmost bit of XL. If xlog n+1 the rightmost bit of XL is flipped from ‘0’ to ‘1’, then P
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should point to it and hence P should contain all 0s. This is done by erasing the content

of P. To do that, reset all bits of P to ‘0’s, one bit at a time in the background. Consider

the case when the bit xlog n+1 is flipped from ‘1’ to ‘0’. Before this flip, the pointer P was

pointing to xlog n+1, the rightmost bit of XL and hence all the bits of P were ‘0’s. So,

there is no need to initialize P. After the flip, update P by inspecting the bits of XL in the

background, one bit at a time, starting from bit the rightmost bit of XL. Note that, either

we have to erase the previous content of P or construct P by advancing the pointer one

bit at a time, not both. So, the update of the pointer P requires at most n− log n steps.

As a result, there are sufficient transitions available to update P before another bit from

XL is flipped. We now describe the increment operation in detail.

5.3.2 The Increment Operation

The increment algorithm for our data structure is similar to the usual increment algorithm

of the BRGC. First check the parity bit. If the parity is even, then flip the rightmost bit

of X and the parity bit. Otherwise, find the rightmost ‘1’ of X. Let xs be the rightmost

‘1’ of the code. Read all bits of XA. If there is no ‘1’ in XA, then use the pointer P to find

xs, the rightmost ‘1’ of XL. Flip bit xs+1 and the parity bit.

Consider the special case when bit xn is the only ‘1’ in the code. The pointer P is ready

and points to xn. The increment algorithm reads all bits of XA and then follows P to find

the rightmost ‘1’ of XL. Flip bit xn from ‘1’ to ‘0’ and reset bit R to ‘0’. No other changes

are required. Note that after the changes take place, there is no ‘1’ in XL and P is still

pointing to xn with R = ‘0’. So pointer P can be considered at the end of the construction

mode.

The update procedure for P starts when XA = xlog n · · ·x1 = 10 · · · 0 and bit xlog n+1,

the rightmost bit of xL, is flipped to increment the value. To update P, either we have to

erase the content of P or construct P, but not both. Reset status bit R to ‘0’ to start the

procedure. If bit xlog n+1 is flipped from ‘0’ to ‘1’ then, set the E to ‘1’ to enter the erase

mode. Otherwise, bit xlog n+1 is flipped from ‘1’ to ‘0’ and pointer P enters construction

mode. The procedure runs in the background and takes at most n− log n steps.

In the erase mode, the content of P is erased one bit at a time. The bit of P to

be erased is determined by the BRGC denoted by the bits xlog log n · · · x1, the rightmost
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Figure 5.1: Increment operations using a constant number of bit changes.
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log log n bits of XA. When P enters the erase mode, we have xlog log n · · · x1 = 0 · · · 0. By

the definition of the BRGC, in the next log n transitions the contents of xlog log n · · · x1 go

through the sequence from 00 · · · 0 to 10 · · · 0, the BRGC sequence of dimension log log n

and of length log n. The status bit E is set to ‘0’ and bit R is set to ‘1’, once all bits of P

are erased.

In the construction mode, the content of XL is checked to locate the rightmost ‘1’ by

inspecting one bit at a time starting from bit xlog n+1. The pointer P points to the bit of

XL to be inspected next, if it is not ready yet. If the bit of the code is ‘1’, the rightmost

‘1’ of XL is found and the status bit R is set to ‘1’. Otherwise, P is incremented. So, the

pointer P is a counter and the BRGC of dimension log n is used for P. As we read all bits

of P, the increment of P requires only a single bit change.

Figure 5.1 shows some examples of increment operations. Figure 5.1(a) shows a se-

quence of increment operations where P is in erase mode and Figure 5.1(b) shows a se-

quence of increment operations where P is in construction mode. A detailed algorithm is

included in appendix.

It is clear from above discussion that the increment operation inspects 2 log n + 4 bits

and changes at most 4 bits. The pointer P can be updated in at most n − log n steps,

while we have n steps available to update P. As a result, a BRGC of dimension n + log n

can be maintained using log n + 3 additional bits so that the increment operation requires

2 log n + 4 bit inspections and at most 4 bit changes.

5.3.3 The Decrement Operation

The decrement algorithm for the BRGC is similar to the increment algorithm. First,

inspect the parity of the code. If the parity is odd, flip the rightmost bit of the code.

Otherwise, find the rightmost ‘1’ and flip the bit to its left. The algorithm is similar to

the increment algorithm except the role of the parity bit is reversed.

The special case is when all bits of the code are ‘0’s, the first code of the BRGC

sequence. There is no ‘1’ in XL and pointer P points to bit xn. In this case, flip bit xn and

set bit R to ‘1’ as P is ready without entering erase or construction mode.

Now consider the situation that supports both increment and decrement operation.

The complication arises when the pointer P enters the erase mode. In the erase mode,
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the bits xlog log n · · · x1 are used to denote which bit of the pointer P to be erased. When

only the increment or only the decrement is supported, these bits go through a counting

sequence of length log n and can be used to point to the bit of P to be erased.

Even though this counting sequence does not exist during a mix of increment and

decrement operations, the increment or decrement operation remains unaffected. Consider

the situation, when we start from a BRGC code that is obtained by the flip of bit xlog n+1

from the previous code and the pointer P enters the erase mode. Let we have a mix of

increment and decrement operations. Due to the reflected property of BRGC, bit pi is

erased before bit pi+1, for all i such that log n > i ≥ 1. The pointer P remains in the erase

mode as long as bit plog n doesn’t get a chance to be erased. But, in between only bit xi of

the code is flipped each time, for some i such that log log n > i. The pointer P needs to be

ready only when a bit in XL is to be flipped. By that time, the content of xlog log n · · · x1

go through all possible combinations to erase P completely.

So the same data structure supports both increment and decrement operations using

the same bit probe complexity. The result is summarized in the following theorem.

Theorem 5.3.2. An integer of dimension n can be represented by a data structure that

uses n + log n + 3 bits so that the increment and the decrement operations require at most

2 log n + 4 bit inspections and at most 4 bit changes per operation.

5.4 Increment and Decrement Using Fewer Bit In-

spections

Next we modify our data structure to support the increment and decrement operations

using fewer bit inspections. Our new data structure reduces the number of bit inspections

from 2 log n + 4 to log n + O(log log n). The following property of BRGC is important in

designing the data structure.

Observation: Let G(n) be the BRGC sequence of dimension n. Let Gi(n) be

the subset of G(n) such that the initial code of G(n) and the codes of G(n)

that are obtained by flipping the j-th bit from the previous code are in Gi(n),
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for all i and j, such that j ≥ i ≥ 1. The sequence Gi(n) is the BRGC sequence

G(n− i + 1), if the rightmost (i− 1) bits from each code are discarded.

0 0 0 0

0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0

0 1 1 1
0 1 0 1
0 1 0 0

1 1 0 0

1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0

1 0 1 1
1 0 0 1
1 0 0 0

(a)

0 0 0 0
0 1 1 0
1 1 0 0
1 0 1 0

(b)

0 0
0 1
1 1
1 0

(c)

Figure 5.2: (a) The BRGC sequence G(4). (b) The subset G3(4). (c) The BRGC sequence
G(2).

An example is shown in Figure 5.2, where Figure 5.2(a) shows the BRGC sequence

G(4) with the codes in G3(4) in bold. Discarding the rightmost 2 bits from G3(4) gives us

the BRGC sequence G(2) as shown in Figure 5.2(c).

5.4.1 The Data Structure

The dimension n BRGC code is divided into k blocks and denoted by X = Xk · · ·X1. The

block Xi contains ni bits and denoted by Xi = xli · · · xli−1+1, where l0 = 0 and li =
∑i

j=1 nj,

for all i such that k ≥ i ≥ 1. The rightmost block X1 contains a constant number of bits.

The size of the blocks are related by the equation ni = 2ni−1 , for all i such that k ≥ i > 1.

Since the dimension of the code is n, we have
∑k

i=1 ni = n. From the recurrence, it is clear

that k = log∗ n.

A pointer Pi is associated with block Xi along with two status bits Ei and Ri, for all

i such that k ≥ i > 1. Store the parity of X explicitly. When a pointer Pi is ready, it

points to the rightmost ‘1’ of Xi. If there is no ‘1’ in Xi then, pointer Pi points to xli after

scanning all bits of Xi.

So the size of a pointer Pi is |Pi| ≥ log ni = ni−1. Total space usage by the pointers is
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given by the following equation.

k∑
i=2

|Pi| =
k∑

i=2

ni−1

=
k−1∑
i=1

ni

= nk−1 + nk−2 +
k−3∑
i=1

ni

≤ log n + log log n +
k−3∑
i=1

ni

= log n + O(log log n)

The status bits require 2(k−1) = O(log∗ n) bits. So the total size of the data structure

is n + log n + O(log log n) bits.

P2
P3Pk

n1n2nk

Rk

Ek

R2

E2

R3

E3

n1n2nk−1

Figure 5.3: Data structure for integer representation that uses fewer bit inspections per
operations.

5.4.2 Increment and Decrement

During a sequence of increment operations, consider the transitions that changes the bits

only in Xi and Xi−1, for all i such that k ≥ i > 1. From the observations mentioned earlier,

it is clear that, there are 2ni−1 transitions between two bit changes in Xi, where bits in Xi−1
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are flipped. So, when a pointer Pi becomes invalid, we can use these 2ni−1 transitions to

reconstruct Pi in the background. Using a similar argument, as used for the data structure

mentioned in the previous section, it can be shown that a pointer Pi is always ready when

it is needed during a mix of increment and decrement operations.

To increment, first read the parity bit. If the parity is even, the rightmost bit x1 is to

be flipped. Otherwise, read all the bits of X1. If there is at least one ‘1’ in X1, then we

found xs, the rightmost ‘1’ of X. Otherwise, there is no ‘1’ in X1. In that case, find the

rightmost block Xi that contains at least a ‘1’. To do that, read the status bits Ej and

Rj, for all j such that i ≥ j > 1. Note that, there is no ‘1’ in Xj and none of the pointers

Pj is in the erase mode. If the pointer Pj is not ready, it points to bit xlj , the leftmost bit

of the block Xj. Read the pointer Pj and bit xlj to confirm that the block Xj contains no

‘1’. By the properties mentioned earlier, the pointer Pi either must be ready and points to

the rightmost ‘1’ of Xi or points to the leftmost bit of Xi and the lower order bits of Xi

are all ‘0’s. Read the pointer Pi to get the rightmost ‘1’ bit xs.

For the special case xs is the bit xn. Flip bit xn and set bit Rk to ‘0’. Otherwise, bit

xs+1 needs to be flipped to complete the operation. Let xs+1 ∈ Xt, where k ≥ t ≥ 1.

Before flipping bit xs+1, process pointer Pt+1, if it is not ready and t < k.. Read the

status bits Et+1 and Rt+1 associated with the pointer Pt+1 (only when t < k). Continue

the reconstruction work of Pt+1, if necessary, by erasing a bit of Pt+1 (in erase mode), or

by advancing the pointer one bit (in construction mode). To erase a bit of Pt+1, read the

rightmost log nt bits of Xt. Note that, we have to read only the corresponding bit of Pt+1

to erase that bit. Finally, flip the parity bit and bit xs+1. If xs+1 is the rightmost bit of Xt

then, switch the pointer Pt into erase mode or construction mode depending on the value

of xs+1 by changing the status bits Et and Rt appropriately.

In the worst case, we might have to read all the pointers. In total, we have to read at

most
∑k

i=2 ni−1 + O(k) = log n + O(log log n) bits. The number of bit changes required in

the worst case is 6. It happens when Pt+1 switches from erase mode to ready mode and

at the same time Pt enters erase mode. The decrement operation is similar. The results

can be summarized into the following theorem.

Theorem 5.4.1. An integer of dimension n can be represented by a data structure that

uses n+log n+O(log log n) bits so that the increment and the decrement operations require
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at most log n + O(log log n) bit inspections and at most 6 bit changes per operation.

5.5 Supporting Addition and Subtraction

The natural extensions of increment and decrement operations are addition and subtrac-

tion operations. In this section, we consider the addition and subtraction of two integer

numbers. The addition operation considered has the form X ← (X + Y ) mod 2n, where

X and Y are BRGCs of dimension n and m respectively such that n > m. The value of X

is replaced by the summation. First we review the serial addition algorithm for the BRGC

by Lucal [35].

5.5.1 Gray Code Addition

Let X = xn · · ·x1, Y = yn · · · y1, and S = sn · · · s1 be three BRGC of dimension n. The

following algorithm performs the addition of the form S ← (X + Y ) mod 2n [35].

Addition

E0 ← parity of X

F0 ← parity of Y

for i := 1 to n do

si ← (Ei−1 ∧ Fi−1)⊕ xi ⊕ yi

Ei ← (Ei−1 ∧ ¬Fi−1)⊕ xi

Fi ← (¬Ei−1 ∧ Fi−1)⊕ yi

end for

At the end of the loop, we must have En = 0 and Fn = 0 to get a valid addition.

5.5.2 Addition with Different Size Operands

Let X and Y have dimensions n and m respectively with n > m. The code Y can be

padded with ‘0’s to make it a code of length n. In that case yi = 0, for all i such that

n ≥ i > m.
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The addition can be done in two steps. In the first step, xm · · · x1 is added with

ym · · · y1 using the serial addition algorithm 5.5.1. In the second step, xn · · ·xm+1 is added

with yn · · · ym+1 quickly. We rewrite the formulae for the summation and carry bits as

follows:
si = (Ei−1 ∧ Fi−1)⊕ xi

Ei = (Ei−1 ∧ ¬Fi−1)⊕ xi

Fi = ¬Ei−1 ∧ Fi−1





, for all i such that n ≥ i > m

At the end of the step 1, we have the carry bits Em and Fm. There can be three different

cases possible based on the values of Em and Fm.

Case 1 — Fm = 0.

We have
Fi = 0,

si = xi

}
, for all i such that n ≥ i > m

In other words, if Fm = 0 then, the remaining n −m bits of the summation are same

as those bits of X. Note that once the carry bit Fi becomes 0 at i-th iteration, for some i

such that i ≥ m, it remains 0 in the later iterations.

Case 2 — Fm = 1 and Em = 1 :

We have the following formula for the summation and the carry bits

sm+1 = ¬xm+1

Em+1 = xm+1

Fm+1 = 0

As the carry bit Fm+1 becomes ‘0’, we know that Fi remains ‘0’ in the later iterations.

So, we have the following formulation for the summation bit.

Fi = 0

si = xi

}
for all i such that n ≥ i > m + 1

In other words, if Fm = 1 and Em = 1 then, the summation bit sm+1 is the opposite of

the bit xm+1. The other higher order bits of the summation are same as those bits of X.

Case 3 — Fm = 1 and Em = 0.
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Let xm+j be the rightmost ‘1’ of xn · · · xm+1. We have the following formula for the

summation and carry bits:

Fm+1 = ¬Em ∧ Fm = 1

Em+1 = (Em ∧ ¬Fm)⊕ xm+1 = xm+1

sm+1 = (Em ∧ Fm)⊕ xm+1 = xm+1

Proceeding in that way we can derive the following generalized formula:

Fm+i = 1

Em+i = xm+i = 0

sm+i = xm+1





, for all i such that j > i ≥ 1

Also, we have

Fm+j = 1

Em+j = xm+j = 1

sm+j = xm+j

This is similar to case 2. As a result we get the following formula

sm+j+1 = ¬xm+j

sm+j+t = xm+j+t, for t > 1

Overflow occurs when m + j = n. In that case, we have sn = ¬xn. Combining all the

formulae, we have the following complete formulae to compute the summation bits for the

case Em = 0, Fm = 1, where bit xm+j is the rightmost ‘1’ of xn · · · xm+1.

sm+i = xm+i, for j ≥ i ≥ 1

sm+j+1 = ¬xm+j+1

sm+j+t = xm+j+t, for t > 1
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In other words, when Em = 0 and Fm = 1, copy the bits xn · · · xm+1 into sn · · · sm+1,

find the rightmost ‘1’ of sn · · · sm+1 and flip the bit to its left. If sn is that ‘1’ then, flip sn.

5.5.3 The Data Structure

The data structure used in our first solution is not suitable to perform an addition operation

of the form X ← (X + Y ) mod 2n efficiently, where n and m are the dimensions of X and

Y respectively with n > m. The pointer P points to xj, the rightmost ‘1’ of XL. If j > m

then, addition can be done efficiently, as P points to the rightmost ‘1’ of xn · · · xm+1. Add

the lower m bits serially using the algorithm 5.5.1. Based on the contents of the carry

bits, use the pointer P to get the rightmost ‘1’ of xn · · · xm+1 and flip the appropriate

bit if necessary. On the other hand, if j ≤ m then, pointer P can not help in finding

the rightmost ‘1’ of xn · · · xm+1. The worst case may end up in inspecting all bits of XL.

So, the addition requires O(n + m) bits inspections and O(m) bit changes. For a similar

reason, the data structure used in the previous section does not support efficient addition

/ subtraction operation.

P1
P2Pk

n0n1nk

Rk

Ek

R1

E1

R2

E2

log n1log n2log nk

Zk Z1Z2

Figure 5.4: Data structure for integer representation that supports efficient addition and
subtraction.

We now present our data structure and first show that the increment and decrement

operations have the same complexity as the other two solutions. The n-bit BRGC num-

ber X = xn · · · x1 is divided into k + 1 blocks denoted by Xk, · · · , X1, X0 such that

X = Xk · · ·X1X0. Let ni be the number of bits in the block Xi and is denoted by
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Xi = xli · · · xli−1+1, where l−1 = 0 and li =
∑i

j=0 nj, for all i such that k ≥ i ≥ 0.

The lengths of the blocks are chosen according to the following recursive formula.

n0 = log n,

n1 = log n,

ni = 2ni−1, for all i, such that k ≥ i > 1

We know that
∑k

i=0 ni = n. From the recursion, it is clear that k = log n−log log n. With

each block Xi, for all i such that k ≥ i ≥ 1, there is a pointer Pi that points to the rightmost

‘1’ of Xi, when it is ready. If there is no ‘1’ in Xi, then Pi points to xli after scanning all

bits of Xi. In addition to Ei and Ri, each block Xi is associated with one more status bit

Zi that denotes whether or not there is a ‘1’ in Xi. Total space used by the data structure

is n+1+
∑k

i=1 log ni +3k = n+O((log n)2) bits. The increment and decrement operations

are performed in the same manner as mentioned in the pervious section. It can be shown

that increment/decrement operations require 3 log n − 2 log log n + O(1) = O(log n) bit

inspections and at most 5 bit changes.

5.5.4 Addition and Subtraction

Let t be the smallest integer such that lt ≥ m > lt−1. Addition proceeds in three steps.

1. In step 1, add xm · · ·x1 with ym · · · y1 using the serial addition algorithm 5.5.1. During

this process construct the pointers Pi and status bits Ei, Ri and Zi, for all the i, such

that t ≥ i ≥ 1.

2. Based on the value of the carry bits, in the second step, determine whether there is

a carry to forward. If not, we are done. Otherwise, follow step 3.

3. In step 3, find the rightmost ‘1’ of xn · · · xm+1, denoted by xs, and flip bit xs+1.

To find xs, the rightmost ‘1’ of xn · · ·xm+1, read bits xlt · · · xm+1 first. If there is any

‘1’, we are done. Otherwise, skip all blocks with no ‘1’ bits. This is done by checking the

zero status bits of these blocks. Let Xj be the rightmost block with some ‘1’ bits such that

k ≥ j > t.
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We claim that the pointer Pj is valid and points to the rightmost ‘1’ of Xj. The pointer

Pj becomes invalid when the rightmost bit of Xj is flipped. It might take at least nj

changes in Xj−1 to complete the update of Pj. The problem might arise when there is

an addition operation before the update phase of Pj is completed. But, when Pj becomes

invalid, bit xlj−1
, the leftmost bit of Xj−1, is ‘1’. It requires at least 2nj−1−1 > nj transitions

to get all ‘0’s in Xj−1, unless the first step of the addition/subtraction affects Xj−1. In that

case, the situation is handled by reading all bits of Xj, without increasing the asymptotic

complexity of the operation.

Let bit xs+1 be in Xr for some integer r ≥ t. Before the flip of bit xs+1 takes place, check

the status of pointer Pr+1. Perform the maintenance operations (in erase or construction

mode) of pointer Pr+1 as mentioned in the earlier sections. Finally, flip bit xs+1.

The only remaining concern is the rebuilding of a pointer in the background. There are

enough steps to rebuild an invalid pointer when the data structure supports only increment

or decrement operations. We have to make sure that even with the addition operation,

there remain enough steps to rebuild a pointer. Note that only pointer Pt+1 might be

affected adversely after an addition operation. This can be solved easily by reading all

the bits of Xt+1, in case of an invalid pointer Pt+1, and rebuild it from scratch. So, the

addition operation requires O(m + log n) bit probes. The subtraction operation is similar

except that F0 bit is set to the inverse of the parity of Y during the initialization of the

algorithm 5.5.1. Hence, we have our final result:

Theorem 5.5.1. An integer of dimension n can be represented by a data structure that

uses n + O((log n)2) bits so that the increment and the decrement operations require at

most O(log n) bit inspections and at most 5 bit changes per operation. The addition and

the subtraction between two integers of dimension n and m respectively with n > m requires

O(m + log n) bit probes per operation.
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Conclusion

The cell probe model is the most well known and widely used model of computation for

the lower bound study of a problem. The bit probe model is a variation of the cell probe

model. Even though, the bit probe model is less widely used, the use of the model yields

some quite interesting results. As a result, the model was never out of scene and comes to

the face from time to time.

We have considered several problems in the bit probe model. In the bit probe model,

we can achieve results on some problems that can break the barrier of the word size. In

other words, the problems can be solved using less bit probes than the number of bits in a

computer word. The predecessor problem is one of the fundamental problems in computer

science. We consider a variation of the problem called the colored predecessor problem.

We present a data structure for the problem that requires O(k2 k

√
log U

log log U
) bit probes for the

query and O( k log U
log log U

) bit probes for the update operations, where U is the universe size and

k is positive constant. This improves the results of [48] for the query time, while retaining

the same update time. We also have shown that the results on the colored predecessor

problem can be used to solve some other related problems such as existential range query,

dynamic prefix sum, segment representative, connectivity problems etc.

There is still a gap between the lower bound result of [44] and the upper bound results.

In [44], the authors proved a trade-off lower bound of (Ω(log log U), Ω( log U
log log U

)) for the

query and update time in the bit probe model. For a O( log U
log log U

) update time, we are able

to reduce the gap for the query time.
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We have examined the problem of integer representation using near minimum space

with few bit inspections and changes for some basic operations. The problem is only

suitable for study in the bit probe model, as in the cell probe model we get trivial constant

time solutions. We proved a new lower bound of Ω(
√

n) for the increment operation. That

means, in a counting sequence of dimension n, there exists at least one transition where

at least
√

n bits need to be inspected. With no additional space to store an integer of

dimension n, our conjecture on the lower bound for increment is Ω(n). It can be shown

that the lower bound holds for a small n by searching exhaustively. Future goal is to find

a lower bound of Ω(n) for the increment operation of a counting sequence of dimension n

using no additional space.

The addition of a moderate amount of extra space speeds up the operations. We present

several data structures that uses little extra space for efficient increment / decrement and

addition / subtraction operations. Our first solution uses log n + 3 extra bits that requires

2 log n + 4 bit inspections and at most 4 bit changes for the increment and decrement

operations. The second structure uses log n + O(log log n) extra bits that uses log n +

O(log log n) bit inspections and 6 bit changes for the increment and decrement operation.

Although these two structures support efficient increment / decrement operation, they

are not suitable for efficient addition / subtraction. Our third data structure requires

O((log n)2) additional bits to represent an integer of dimension n. The increment and

decrement operations on this structure have the same asymptotic complexity. The addition

or the subtraction between two numbers of dimensions n and m with n > m, performs

O(m + log n) bit probes. All these data structures use exponentially less space, compared

to the best known previous results, while improving or retaining the same time complexity

for the operations on them.



Appendix A

Increment Using a Constant Number

of Bit Changes

A detailed algorithm for increment operation using tree representation that requires a

constant number of bit changes is shown below:

Increment Algorithm - Tree representation

currentNode ← root

/* check for overflow. */

if label(currentNode) = ‘1’ then

label(currentNode) ← ‘0’

end if

first ← true

/* find the rightmost run of 1s */

while label(currentNode) 6= ‘0’ and label(currentNode) 6= ‘σ’

if label(currentNode) = ‘?’ then

/* follow the rightmost path */

currentNode ← rightChild(currentNode)

else

/* we have a sequence of type 1 */
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/* mark the first node of the sequence */

if first = true then

fnode ← currentNode

first ← false

end if

/* keep track of the nodes of the sequence */

lnode ← currentNode

currentNode ← leftSibling(currentNode)

end if

end while

/* label the first node ‘σ’ */

if fnode 6= lnode then label(fnode) ← ‘σ’

/* label the last node ‘0’ - end of sequence */

label(lnode) ← ‘0’

/* found the rightmost ‘0’- may be part of a run */

/* we have to do extra work for ‘σ’ */

if label(currentNode) = ‘σ’ then

/* we have to move ‘σ’ up or down. */

if currentNode is the left child of its parent then

/* ‘σ’ belongs to 2(a) or 2(b)type sequence */

/* move ‘σ’ upward */

if label(leftSibling(parent(currentNode))) 6= ‘0’ then

label(leftSibling(parent(currentNode))) ← ‘σ’

end if

else

/* ‘σ’ belongs to type 1 sequence. Move */

/* ‘σ’ downward to next node in the sequence */

u ← leftSibling(currentNode)

/* find the next node in type 1 sequence */

while label(u) = ‘?’

u ← rightChild(u)
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end while

/* label the next node with ‘σ’ */

if label(u) = ‘1’ then label(u) ← ‘σ’

end if

end if

if currentNode is not a leaf then

/* we have a run of 0s. */

/* change only the rightmost 0 into 1. */

label(currentNode) ← ‘?’

/* we have a sequence of type 2(a) */

/* mark the first node in the sequence */

fnode ← leftChild(currentNode)

/* keep track of the nodes in the sequence */

while currentNode is not a leaf

currentNode ← rightChild(currentNode)

lnode ← leftSibling(currentNode)

end while

/* mark the start of a sequence with ‘σ’ */

if fnode 6= lnode then

label(lnode) ← ‘σ’

end if

/* mark the end of sequence with label ‘0’ */

label(fnode) ← ‘0’

end if

/* the label can be ‘1’ or ‘?’ depending on */

/* whether or not if becomes part of a run of 1s */

/* currentNode is a leaf now */

if currentNode is the right child of its parent then

/* determine whether it is a part of a run of 1s */

/* in that case, we have a type 2(b) sequence */

first ← true
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while currentNode is the right child and

label(leftSibling(currentNode)) = ‘1’

/* mark the first node of the sequence */

if first = true then

fnode ← leftSibling(currentNode)

first ← false

label(currentNode) ← ‘?’

end if

/* keep track of the nodes in the sequence */

lnode ← leftSibling(currentNode)

currentNode ← parent(currentNode)

end while

/* mark the last node in the sequence */

if lnode not null then label(lnode) ← ‘0’

/* label the start of sequence with ‘σ’ */

if fnode 6= lnode then

label(fnode) ← ‘σ’

end if

end if

label(currentNode) ← ‘1’



Appendix B

Efficient Increment Algorithm

We now describe the increment algorithm of section 5.3.2 in detail.

Increment Algorithm

Determine the state of P by reading the status bits R and E

if P is in erase mode then

reset the bit pi+1 to ‘0’, where i is the BRGC number

denoted by the bits xlog log n · · · x1

if i = log n− 1 then

switch P to ready mode by setting E to ‘0’ and R to ‘1’

end if

else if P is in construction mode then

read the pointer P = plog n · · · p1

let j be the BRGC number denoted by P

read the bit xlog n+1+j from XL

if xlog n+1+j = ‘1’ then

switch P to ready mode by setting R to ‘1’

else if j < n− 1− log n then

increment P

end if

end ifLet the rightmost‘1’ of the code is denoted by xs
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if the parity is even then

s ← 0

else

read the bits XA = xlog nxlog n−1 · · · x1

if XA = 10 · · · 0 then

s ← log n

else if XA = xlog n · · · x1 = 0 · · · 0 then

pointer P is ready and points to the rightmost ‘1’ of XL

s ← log n + 1 + j, where j

is the BRGC number denoted by P

else

We have 1 ≤ s < log n, and

s can be determined from the bits of XA already read

end if

end if

flip the parity bit

if s = n then

flip bit xn

reset R to ‘0’

else

flip bit xs+1

if s = log n then

reset R to ‘0’

if xlog n+1 is ‘1’ then

switch P to erase mode by setting E to ‘1’

end if

end if

end if



Bibliography

[1] M. Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combi-

natorica, 8:235–247, 1988.

[2] S. Alstrup, G. Brodal, and T. Rauhe. Optimal static range reporting in one dimension.

In Proceedings of 33rd Annual Symposium on Theory of Computing, pages 476–482,

2001.

[3] S. Alstrup, T. Husfeldt, T. Rauhe, and S. Skyum. Marked ancestor problems. In

Proceedings of 39th Annual Symposium on Foundatons of Computer Science, pages

534–543, 1998.

[4] A. Andersson. Sublogarithimic searching without multiplications. In Proceedings of

36th Annual Symposium on Foundations of Computer Science, pages 655–665, 1995.

[5] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and

priority queues. In Proceedings of the 32nd Anjual ACM Symposium on Theory of

Computing, pages 335–342, 2000.

[6] D. A. Mix Barrington, C. J. Lu, P. B. Miltersen, and S. Skyum. Searching constant

width mazes captures the AC0 hierarchy. In STACS 1998, Lecture Notes in Computer

Science, volume 1372, pages 73–83, 1998.

[7] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related

problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.

[8] J. Boothroyd. Algorithm 246 Graycode. Communications of the ACM, 7(12):701,

1964.

64



Data Structuring Problems in the Bit Probe Model 65

[9] A. Brodnik, S. Carlsson, M. L. Fredman, J. Karlsson, and J. I. Munro. Worst case con-

stant time priority queue. In Proceedings of the 12th Annual ACM/SIAM Symposium

On Discrete Algorithms, pages 523–528, 2001.

[10] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors

optimal? SIAM Journal on Computing, 31(6):1723–1744, 2002.

[11] S. Carlsson, J. I. Munro, and P. V. Poblete. An implicit priority queue with constant

insertion time. In Proceedings of 1st Scandinavian Workshop on Algorithm Theory,

pages 1–13, 1988.

[12] M. J. Clancy and D. E. Knuth. A programming and problem-solving seminar. Tech

Report, Computer Science Dept, School of Humanities and Science, Stanford Univer-

sity, STAN-CS-77-606, 1977.

[13] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proceedings

of the 7th ACM/SIAM Symposium on Discrete Algorithms, pages 383–391, 1996.

[14] M. Cohn and S. Even. A Gray code counter. IEEE Transcations on Computers, pages

662–664, 1969.

[15] M. W. Doran. The Gray code. CDMTCS Research Report,

www.cs.auckland.ac.nz/CDMTCS//researchreports/304bob.pdf, 2007.

[16] P. Elias. Efficinent storage retrieval by content and address of static files. Journal of

the ACM, 21(2):246–260, 1974.

[17] P. Elias and R. A. Flower. The complexity of some simple retrieval problems. Journal

of the ACM, 22:367–379, 1975.

[18] P. Van emde boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient

priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[19] D. Eppstein. Dynamic connectivity in digital images. Tech Report 96-13, Univ of

California, Irvine, Dept of Info and Comp Sci, 1996.



66 Data Structuring Problems in the Bit Probe Model

[20] M. C. Er. Remark on algorithm 246 (Gray code). ACM Transactions on Mathematical

Software, 11(4):441–443, 1985.

[21] P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the

London Mathematical Society, 35:85–90, 1960.

[22] A. F. Fischman. A Gray code counter. IRE Transactions on Electronic Computers,

EC-6:120, 1957.

[23] G. S. Frandsen, P. B. Miltersen, and S. Skyum. Dynamic word problems. Journal of

the ACM, 44:257–271, 1997.

[24] M. L. Fredman. Observations on the complexity of generating quasi-Gray codes. SIAM

Journal on Computing, 7:134–146, 1978.

[25] M. L. Fredman. The complexity of maintaining an array and computing its partial

sums. Journal of the ACM, 29(1):250–260, 1982.

[26] M. L. Fredman and M. R. Henzinger. Lower bounds for fully dynamic connectivity

problems in graphs. Algorithmica, 22(3):351–362, 1998.

[27] M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures.

In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages

345–354, 1989.

[28] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum span-

ning trees and shortest paths. Journal of Compuer Systems Science, 48:533–551, 1994.

[29] F. Gray. Pulse code communications. In U.S. Patent 2632058, 1953.

[30] M. R. Henzinger and V. King. Maintaining minimum spanning trees in dynamic

graphs. In ICALP 1997, Lecture Notes in Computer Science, volume 1256, pages

594–604, 1997.



Data Structuring Problems in the Bit Probe Model 67

[31] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-

tivity. In Proceedings of 30th Annual ACM Symposium on Theory of Computing, pages

342–349, 1998.

[32] T. Husfeldt and T. Rauhe. Hardness results for dynamic problems by extension of

fredman and saks’ chronogram method. In ICALP 98, Lecture Notes in Computer

Science, volume 1443, pages 67–77, 1998.

[33] T. Husfeldt, T. Rauhe, and S. Skyum. Lower bounds for dynamic transitive closure,

planar point location, and parenthesis matching. In SWAT 96, Lecture Notes in

Computer Science, volume 1097, pages 198–211, 1996.

[34] K. Krohn and J. Rhodes. Algebraic theory of machines I. Prime decomposition theo-

rem for finite semigroups and machines. Transactions of the American Mathematical

Society, 116:450–464, 1965.

[35] H. Lucal. Arithmetic operations for digital computers using a modified reflected binary

code. IEEE Transactions on Computers, pages 449–458, 1959.

[36] J. C. Majithia. Simple design for up/down Gray-code counters. Electornis Letters,

7(22):658–659, 1971.

[37] P. B. Miltersen. The bit probe complexity measure revisited. In Proceedings of the

Symposium on Theoretical Aspects of Computer Science, pages 662–671, 1993.

[38] P. B. Miltersen. Cell probe complexity - a survey. In Pre-Conference Workshop on

Advances in Data Structures at the 19th Conference on the Foundations of Software

Technology and Theoretical Computer Science, 1999.

[39] P. B. Miltersen. Lower bounds on the size of selection and rank indexes. In Proceedings

of the 16th Annual ACM/SIAM Symposium On Discrete Algorithms, pages 11–12,

2005.



68 Data Structuring Problems in the Bit Probe Model

[40] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and

asymmetric communication complexity. journal of computer and system sciences,

57:37–49, 1998.

[41] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models

for incremental computation. Theoretical Computer Science, 130:203–236, 1994.

[42] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, 1969.

[43] J. Misra. Remark on algorithm 246:Graycode[Z]. ACM Transactions on Mathematical

Software, 1(3):285, 1975.

[44] C. W. Mortensen, R. Pagh, and M. Patrascu. On dynamic range reporting in one

dimension. In Proceedings of the 37th Annual ACM Symposium on Theory of Com-

puting, pages 104–111, 2005.

[45] J. I. Munro. Tables. In FSTTCS 1996, Lecture Notes in Computer Science, volume

1180, pages 37–42, 1996.

[46] J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees. Journal of Algo-

rithms, 39(2):205–222, 2001.

[47] R. Pagh. Low redundancy in static dictionaries with O(1) lookup time. In ICALP

1999, Lecture Notes in Computer Science, volume 1644, pages 595–604, 1999.
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