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Abstract

In Part I of this thesis, we present a new model of quantum cellular automata
(QCA) based on local unitary operations. We will describe a set of desirable prop-
erties for any QCA model, and show that all of these properties are satisfied by
the new model, while previous models of QCA do not. We will also show that the
computation model based on Local Unitary QCA is equivalent to the Quantum
Circuit model of computation, and give a number of applications of this new model
of QCA. We also present a physical model of classical CA, on which the Local
Unitary QCA model is based, and Coloured QCA, which is an alternative to the
Local Unitary QCA model that can be used as the basis for implementing QCA in
actual physical systems.

In Part II, we explore the quantum separability problem, where we are given
a density matrix for a state over two quantum systems, and we are to determine
whether the state is separable with respect to these systems. We also look at
the converse problem of finding an entanglement witness, which is an observable
operator which can give a verification that a particular quantum state is indeed
entangled. Although the combined problem is known to be NP-hard in general,
it reduces to a convex optimization problem, and by exploiting specific properties
of the set of separable states, we introduce a classical algorithm for solving this
problem based on an Interior Point Algorithm introduced by Atkinson and Vaidya
in 1995.

In Part III, we explore the use of a low-depth AQFT (approximate quantum
Fourier transform) in quantum phase estimation. It has been shown previously that
the logarithmic-depth AQFT is as effective as the full QFT for the purposes of phase
estimation. However, with sub-logarithmic depth, the phase estimation algorithm
no longer works directly. In this case, results of the phase estimation algorithm
need classical post-processing in order to retrieve the desired phase information. A
generic technique such as the method of maximum likelihood can be used in order
to recover the original phase.

Unfortunately, working with the likelihood function analytically is intractable
for the phase estimation algorithm. We develop some computational techniques
to handle likelihood functions that occur in phase estimation algorithms. These
computational techniques may potentially aid in the analysis of certain likelihood
functions.

il
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Preface

This thesis is presented in three separate parts, representing three research projects
which I undertook over the course of my doctoral studies. A summary of the main
research results of each project is given at the beginning of each of the three separate
parts of this thesis, in Sections 1.1, 7.1, and 10.1.

Part I, entitled Local Unitary Quantum Cellular Automata, represents joint work
with Carlos Prez-Delgado. In this research project, we develop a new framework
for exploring and understanding quantum cellular automata both as a model for
quantum computation, and as a tool for modelling homogeneous physical phenom-
ena. We also construct efficient simulations between quantum circuits and quantum
cellular automata in order to demonstrate their practical value. Both of these con-
structions are new.

Part II, entitled Algorithmic Search for Entanglement Witnesses, represents
joint work with Lawrence Ioannou and Ben Travaglione at the University of Cam-
bridge. Some results from this work has been published in [ITCEO04], while some
further details are described in [ITC06], available on the arXiv.org e-print server.
In this research, we explore the problem of detecting separability and entanglement
in terms of a convex optimization problem. We present a new algorithm for finding
an entanglement witness given the description of an entangled state, which in turn
also solves the problem of distinguishing separable and entangled states.

Part 111, entitled Classical Post-processing for Approximate QF T, includes joint
work with Jamie Batuwantudawe. This research is an extension of research con-
tained in my MMath thesis [Che03, Che04]. We present a new strategy for ap-
proaching phase estimation problems which attempts to use the maximum likeli-
hood method to extract as much information as possible from measurement results
by using classical post-processing. This strategy becomes useful when considering
using low-depth circuits to solve phase estimation problems.



Part 1

Local Unitary Quantum Cellular
Automata



Chapter 1

Introduction

Cellular automata are computational machines based on the idea of applying oper-
ations in parallel to an infinite lattice of cells, which are each in one of finitely many
states. The model of computation based on cellular automata has been a topic of
interest to computer scientists and physicists alike for a number of decades, due not
only to its simplicity, but also the ease with which cellular automata can be used
to model a wide variety of physical phenomena, including simple particle motion
and fluid dynamics.

In Part I of this thesis, we will explore various notions of quantum cellular
automata (QCA), with the eventual goal of introducing a new model of quantum
cellular automata based on applying local unitary operations on a lattice of cells
containing quantum information. Such a model has a strong relationship to both
physical systems which could be modelled using QCA and also possible physical
implementations of QCA, since it represents what local and homogeneous physics
can achieve in a discrete self-contained system. In Chapter 6, we will consider
expanding this model to open quantum systems with dynamics which are not nec-
essarily unitary. However, we will begin by motivating and developing the Local
Unitary QCA model.

1.1 Summary of Results

We present a new model of quantum cellular automata (QCA), based on applying
local unitary operators to a lattice of cells. We show that this new model has a full
range of natural and desirable properties, which are not all properties of previously
developed models. We detail how QCA expressed in this model can be efficiently
simulated with quantum circuits, and how universal quantum computation can
be performed within the model. We also discuss how physical phenomena can
be modelled using the Local Unitary QCA model. Finally, we present previously
developed models of quantum cellular automata, and describe their relationship to
the proposed Local Unitary QCA model.



We also present a model of QCA based on the Local Unitary model called the
Coloured QCA model, which has the added advantage of closely modelling some
specific potential physical implementations of QCA.

In developing this model of QCA, we also present a classical model of Physical
Reversible CA, and we present a theory of reversibility within this model which is
quantized to give us the Local Unitary QCA model.

Lastly, we present two methods of constructing valid QCA: The Active Config-
uration Method described in Section 5.2, and the Coloured QCA Method. To our
knowledge, these are the first generic constructive techniques for building QCA.

Chapter 2 will provide an introduction to classical notions of cellular automata
and some of the basic concepts and notations used in the study of classical CA.
Chapter 3 will introduce the notion of quantum cellular automata, and survey a
number of different models for QCA which have been developed.



Chapter 2

Classical Cellular Automata

In this chapter, we will give definitions for the classical Cellular Automaton model,
as well as a number of concepts related to classical CA which will be of use as we
develop quantum versions of CA.

2.1 Cellular Automata

In the classical model of cellular automata, we begin with a finite set of states,
Y and an infinite lattice of cells, each of which is in one of the states in X. We
have discrete time steps, and at each time step ¢, the state of the lattice evolves
according to a given rule. The rule gives the state of each cell at time t + 1 as a
function of the states of the cells of its neighbourhood, which is simply a finite set
of cells corresponding to a particular cell.

Definition 2.1.1. A Cellular Automaton (CA) is a 4-tuple (L, X, N, f) consisting
of a d-dimensional lattice of cells indexed by integers L = Z% , a finite set ¥ of
cell states, a finite neighbourhood scheme N C Z2, and a local transition function
f:Lx¥NXxZ—X.

The transition function f simply takes a lattice cell position, z € L, the states
of the neighbours of z, which are the cells indexed by the set = + N, and the
current time step, t € Z to determine the state of cell x at time ¢ 4+ 1. Usually, we
would like to restrict our attention to transition functions with certain properties.
In particular, we define a CA to be time-homogeneous if the transition function f
does not depend on the time step ¢, and we define a CA to be space-homogeneous
if f does not depend on the cell location x € L. When a CA is both space- and
time-homogeneous, we will simply call it a homogeneous CA. A diagram indicating
the action of a local transition function is given in Figure 2.1.

When a CA is homogeneous, the state of any cell at any time step depends
only on the states of its neighbour cells in the previous time step. The traditional



t+1

Figure 2.1: Local transition function of a cellular automaton during one time step

definition of CA restricts the model to homogeneous CA, so unless otherwise noted,
we will assume that a given CA is homogeneous. In this case, we can give the
transition function as f : ¥V — ¥.

We may also view the transition function as one which acts on the entire lattice,
rather than on individual cells. In this view, we denote the state of the entire CA as
a configuration C' € Q" which gives the state of each individual cell. This gives us
a global transition function which is simply a function which maps F : Q* — QF,
or F': QY x Z — Q¥ if the CA is not time-homogeneous.

2.2 Reversible Cellular Automata

Since our goal is to eventually quantize a model of cellular automata in which the
transition functions are unitary operations, it would be helpful to build this model
from a reversible classical CA model. In general, however, cellular automata are
not reversible. A simple counterexample would be a CA which simply overwrites
the entire lattice with one particular symbol.

A homogeneous CA is reversible if for any configuration C' € ¥, there exists
a unique predecessor configuration C” such that C' = F(C"), where F' is the global
transition operator associated with the CA. It is known that any Turing machine
can be efficiently simulated using a reversible CA [Tof77], so the computational
power of the CA model is not reduced by this restriction.

Note that the notion of reversibility defined above does not address the local
transition function. In general, the reverse of a reversible CA can be expressed as
a CA itself. However, the local transition function of the inverse may need a larger
neighbourhood as its domain.

While not all CA are reversible, it is possible to encode an non-reversible CA
over a d-dimensional lattice within a reversible CA over a (d + 1)-dimensional
lattice. In this construction, the extra dimension is simply used to store the entire
configuration history of the non-reversible CA.
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Figure 2.2: A Partitioned Cellular Automaton

2.3 Partitioned Cellular Automata

One method that is used to construct reversible cellular automata is that of parti-
tioning. In a partitioned CA, the transition function is composed of local, reversible
operations on individual units of a partitioning of the lattice.

While partitioned CA are neither time-homogeneous nor space-homogeneous in
general, they are periodic in both space and time, and thus we set both a time
period, T' € Z, with T" > 1 and a space period, given as a d-dimensional sublattice,
S of L = Z*. The sublattice S can be defined using a set {v;, : k =1,...,d} of d
linearly independent vectors from L = Z¢ as:

d
S = {Zakvk:ak EZ}.
k=1

Definition 2.3.1. For a given fized sublattice S C 7%, we define a block B C Z¢
as a finite subset of Z¢ such that (B + s1) N (B + s3) = 0 for any s1,s, € S with
S1 # S9, and such that

U(B+s) =74,

seS

The main idea of the partitioned CA is that at different time steps, we act
on a different block partitioning of the lattice. The interaction between different
partitions is required if the behaviour of the partitioned CA is to be non-trivial.
We are now ready to formally define the partitioned CA.



Definition 2.3.2. A Partitioned CA is a 6-tuple (L, S,T,>,B,F) consisting of a
d-dimensional lattice of cells indexed by integers L = 7.2, a d-dimensional sublattice
S C L, a time period T' > 1, a finite set X2 of cell states, a block scheme B, which
is a sequence {Bo, By, ..., Bp_1} consisting of T blocks relative to the sublattice
S, and a local transition function scheme F, which is a set {fo, f1,..., fr-1} of
reversible local transition functions which map f, : 8t — 2B,

At time step t + kT for 0 <t < T and k € Z, we perform f; on every block
B; + s, where s € S. In order to find the reverse of a partitioned CA, we simply
give the reverse block scheme, B = {Br_1,..., By, By}, and the reverse function
scheme, F = {f:',,....fi', fo'}. A diagram of a partitioned CA is given in
Figure 2.2. In particular, the Margolus Partitioning Scheme, described in [TM87],
is a partitioning scheme using the sublattice S = 2Z?, period T' = 2, and the block
scheme, B = { By, By}, where

By = {(z1,%,...,2a) € L: 0 < 1; < 1,1 < j < d},

which is simply a cube of size 2¢ with corners at cells 0 = (0,0,...,0) and 1 =
(1,1,...,1), and
By = By +1,

which is simply a translation of the cube Bj.

Although the partitioned CA is neither space- nor time-homogeneous, it can be
converted into a reversible homogeneous CA on the lattice S (which is isomorphic
to Z4), with cell states 7, where the new local transition function simulates T
time steps of the partitioned CA in one time step. Additionally, the inverse of this
reversible CA is also easy to construct using the reverse of the partitioned CA.
However, not all reversible CA can be constructed using a partitioned CA.

2.4 Symmetric Cellular Automata

Lastly, we will also describe the notion of a symmetric local transition function for
a CA. Essentially, a transition function is symmetric if the update rule depends
on the contents of the neighbouring cells, but does not distinguish between which
of the neighbouring cells actually contains any particular state. In this sense, the
transition function depends on the total number of surrounding neighbour cells in
each state from .

Definition 2.4.1. A local transition function f : YN — ¥ is symmetric if for any
configuration C € YN and any v,y € N, we have f(C) = f(SW AP, ,(C)), where
SW AP, , is the operator which swaps cells x and y.

A symmetric CA is simply a CA with a symmetric local transition function.
Recall that in our definition of a neighbourhood N, we generally include the central
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Figure 2.3: Four time steps of Conway’s Game of Life cellular automaton

cell z € MV,. We may also define a variant on the symmetric CA where the central
cell can be distinguished from the other cells in its neighbourhood. This is called
an outer-symmetric CA.

Definition 2.4.2. A local transition function f : YN — ¥ is outer-symmetric
if for any configuration C € YN, and any x,y € N \ {0}, we have f(C) =
f(SWAP, ,(C)), where SW AP, , is the operator which swaps cells x and y.

The classic example of such a CA is Conway’s Game of Life, introduced in 1970,
which features a two-symbol alphabet over 2-dimensional lattice. The state of each
cell at a time step depends only on how many of its 8 surrounding neighbours are
in one particular state at the previous time step. Specifically, we have two states
labelled “live” and “dead”, and at each time step, a “live” cell stays “live” if it has
exactly 2 or 3 neighbours, and becomes “dead” otherwise. A “dead” cell becomes
“live” if it has exactly 3 neighbours, and stays “dead” otherwise. Note that this
local transition rule is not reversible.



Chapter 3

Quantum Cellular Automata

In this chapter, we will explore a number of desirable properties that we may
want from a quantum model for cellular automata. We will also present a number
of models of quantum cellular automata that have been developed. We will pay
particular attention to the models developed by Watrous [Wat95], and Schumacher
and Werner [SW04].

3.1 Goals of a Quantum CA Model

In our discussion of models of quantum cellular automata (QCA), we should first
define a number of properties that we should reasonably expect from such a model.
The first and most natural property a reversible QCA model should have is that it
should be a natural extension of the classical model of reversible CA, so that each
reversible CA is also a valid QCA. Specifically, the model should include a lattice
of cells which contain quantum, rather than classical, information. As the cells of a
classical CA contain a state taken from a finite set 32, the cells of a quantum model
should likewise contain quantum states derived from X, in the form of the Hilbert
space of linear superpositions of these states, H>.

Because quantum mechanics gives a model of physical reality, it is reasonable
that a QCA model also be a model for realistic physical systems. Although it is
not possible to directly convert a local transition function from a classical CA into
a unitary operation in a quantum system since the domain and range are different,
it should still be possible to “implement” the global transition function using local
unitary operations. By this, we mean that it should be possible to build the global
transition function F' as a circuit of depth n, so that F' = f,f._1 ... fof1, where each
operation fj is a product of unitary operations on disjoint local neighbourhoods
of the lattice. Since the lattice contains an infinite number of cells, each of these
operations f; could be a product of infinitely many disjoint local unitary operations.
However, the depth of such a circuit must remain finite. Also, note that this model
allows us to simulate the action of the global transition function on any finite

10



subset of the lattice using a quantum circuit by restricting our attention to unitary
operations which affect the given subset.

Of course, it should be possible to perform universal quantum computation
with QCA, just as the classical CA allows for universal computation. It should be
possible to efficiently simulate any quantum circuit or quantum Turing machine,
using only polynomial overhead for such a simulation. To this end, a model of QCA
should be shown to be equivalent to either the quantum circuit or the quantum
Turing machine models of computation.

Finally, a model of QCA should be suitable for modelling space- and time-
homogeneous phenomena. Ideally, it would be possible to model phenomena with
discrete structure exactly. However, it should also be possible to approximate
continuous phenomena within this model.

3.2 Watrous QCA

The first attempt to define a quantized version of cellular automata was made by
Watrous [Wat95], whose ideas were further explored by van Dam [vD96]. The model
considers a one-dimensional lattice of cells and a finite set of basis states 3 for each
individual cell, and features a transition function which maps a neighbourhood of
cells to a single quantum state instantaneously and simultaneously. Watrous also
introduces a model of partitioned QCA in which each cell contains a triplet of
quantum states, and a permutation is applied to each cell neighbourhood before
the transition function is applied. The partitioned model will be discussed in the
Section 3.3.

Definition 3.2.1. A Watrous QCA, acting on a one-dimensional lattice indexed
by Z, consists of a 3-tuple (X, N, f) consisting of a finite set X of cell states, a
finite neighbourhood scheme N, and a local transition function f : XN — H>.

This model can be viewed as a direct quantization of the classical cellular au-
tomata model, where the set of possible configurations of the CA is extended to
include all linear superpositions of the classical cell configurations, and the local
transition function now maps the cell configurations of a given neighbourhood to
a quantum state. In the case that a neighbourhood is in a linear superposition of
configurations, f simply acts linearly. Also note that in this model, at each time
step, each cell is updated with its new value simultaneously, as in the classical
model.

Unfortunately, this definition allows for non-physical behaviour. It is possible to
define transition functions which do not represent unitary evolution of the cell tape,
either by producing superpositions of configurations which do not have norm 1, or
by not being injective, giving configurations which are not reachable by evolution
from some other configuration. In order to help resolve this problem, Watrous
restricts the set of permissible local transition functions by introducing the notion

11
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Figure 3.1: Local transition function of a Watrous Partitioned QCA

of well-formed QCA. A local transition function is well-formed simply if it maps
any configuration to a properly normalized linear superposition of configurations.
Because the set of configurations is infinite, this condition is usually expressed in
terms of the /5 norm of the complex amplitudes associated with each configuration.

In order to describe QCA which undergo unitary evolution, Watrous also intro-
duces the idea of a quiescent state, which is a distinguished element € € ¥ which has
the property that the local transition function f maps f : €V — ¢¥. We can then
define a quiescent QCA as a QCA with a distinguished quiescent state which acts
only on finite configurations, which are configurations consisting of finitely many
non-quiescent states. It can be shown that a quiescent QCA which is well-formed
and injective represents unitary evolution on the lattice. Drr, LThanh and Santha
give an efficient algorithm for deciding whether a given local transition function
yields a well-formed quiescent QCA [DS96, DLS97].

3.3 Watrous Partitioned QCA

In order to construct examples of valid QCA in this model, Watrous also introduces
a model of partitioned QCA in which each cell consists of three quantum states,
so that the set of finite states can be subdivided as ¥ = >; x ¥, X X,. Given a
configuration in which each cell, indexed by k € Z, is in the state (q,(f), q,(f), q,(:)),
the transition function of the QCA in one time step first consists of a permutation
which brings the state of cell & to (q,(fil, q]ic), q,(f_)l) for each k € Z, and then performs
a local unitary operation V}, on each cell. A diagram showing the action of the local

transition function of the Watrous partitioned QCA during one time step is given

12



in Figure 3.1.

Watrous shows that this model of partitioned QCA can be used to simulate
a universal quantum Turing machine with polynomial overhead, thereby showing
that this model is capable of universal quantum computation.

3.4 Schumacher-Werner QCA

Schumacher and Werner [SW04] take a different approach in the definition of their
model of QCA, working in the Heisenberg picture rather than the Schroédinger
picture. They introduce a comprehensive model of QCA in which we consider only
the evolution of the algebra of observables on the lattice, rather than states of the
cell lattice itself. By extending local observables of the cell lattice into a closed
observable algebra, the Schumacher-Werner model has a number of useful algebraic
properties. In this model, the transition function is simply a homomorphism of the
observable algebra which satisfies a locality condition.

In order to avoid problematic issues dealing with observables over an infinite
lattices, Schumacher and Werner make use of the quasi-local algebra. In order to
construct this algebra, we first start with the set of all observables on finite subsets
S C L of the lattice, denoted A(S), and extend them appropriately into observables
of the entire lattice by taking a tensor product with the identity operator over the
rest of the lattice. The completion of this set forms the quasi-local algebra.

In this setting, the global transition operator of a QCA is simply defined as a
homomorphism 7" : A(L) — A(L) over the quasi-local algebra which satisfies two
specific properties. First, a locality condition must be satisfied: T'(A(S)) C A(S +
N) for all finite S C L, so that any observable on the region S at a time step t+1 will
correspond exactly to some observable on the neighbourhood region S + N in the
previous time step t. Secondly, 7" must commute with lattice translation operators,
so that the QCA is space-homogeneous. Now, the QCA can be defined in terms of
the lattice L, the neighbourhood scheme N, the single-cell observable algebra, Ay,
which takes the place of the alphabet, and the global transition operator T'.

The local transition operator of a QCA is simply a homomorphism 7Tj : Ay —
A(N) from the observable algebra of a single distinguished cell, such as 0 € L, to
the observable algebra of the neighbourhood of that cell. Schumacher and Werner
show that a local homomorphism 7 will correspond uniquely to a global transition
operator 7' if and only if for each x € L, the algebras Ty(Ap) and 7,(7o(Ap))
commute element-wise. Here, 7, is a lattice translation by x. The global transition
operator T' given by Tj is defined by

T(A(S)) = [] T(A).

zeS
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3.5 Generalized Margolus Partitioned QCA

Schumacher and Werner also introduce a partitioned QCA in [SWO04], called the
Generalized Margolus Partitioned (QCA, as a generalization of the Margolus par-
titioning CA scheme, described in Section 2.3, in which the cell lattice itself is
partitioned. Schumacher and Werner present this model as a method of produc-
ing valid reversible QCA in their model. In order to describe this model, we will
proceed in the same manner as in the definition of the classical partitioned CA.

We start with the d-dimensional lattice L = Z< and we fix the sublattice
S = 279 as the set of cells of L with all even co-ordinates, as in the Margolus
partitioning scheme. We also fix the time period as T" = 2. Recall that the block
scheme, B is given as {By, B}, where

By = {(z1,79,...,25) € L: 0<2; < 1,1 < j <d},

which is simply a cube of size 2¢ with corners at cells 0 = (0,0,...,0) and 1 =
(1,1,...,1), and
Bl - BO -+ ]_,

which is simply a translation of the cube Bj.

Now, as in the regular Schumacher-Werner QCA model, we proceed in the
Heisenberg picture. For any block By + s, s € S, we have 2% intersecting blocks
from the partition B; + S. For each block B; + s’ which intersects with By + s,
there is a vector v € Z? representing the translation taking By + s to By + ', so
that B, + s’ = By + s + v. Indeed, these 2¢ intersecting blocks may be indexed by
the vectors v, which are simply all vectors of Z¢ whose entries are each +1. Hence,
we will set B = By + s +v.

For each block quo), we will fix an observable algebra B as a subalgebra of
the observable algebra A(Béo)) for the entire block. Then, for each block BQ(,S),
the observable algebra B is simply the appropriate translation of B, Note in
particular that A(B@), which is the observable algebra for the block By +s = Bi‘s),
contains each of the observable algebras BE. In order for an assignment of
subalgebras to be considered valid, these subalgebras BE ) must commute and
span .A(B:(ls)). This occurs if and only if the product of the dimensions of these

algebras is |22

The transition function then consists first of an isomorphism

77 ABY) — [ B,

followed by the isomorphism

T TIBE - A,
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Note that since Ty and 77 are isomorphisms between observable algebras of equal
dimension, with an appropriate choice of basis, they can be represented by unitary
operators Uy and U; which map vectors from a complex vector space to another
complex vector space of equal dimension. However, they do not represent local uni-
tary evolution, since these complex vector spaces are used to describe two different
quantum systems.

3.6 Quantum Lattice Gases

Meyer [Mey96] explored the idea of using QCA as a model for simulating quantum
lattice gases. As classical CA are used to model classical physical systems, it is
natural to develop QCA models which are capable of modelling quantum physical
systems. In order to simulate lattice gases, Meyer uses a model of QCA in which
each lattice cell is represented by a computational basis state in a Hilbert space,
and the set of states which a given cell can take is replaced with a complex number
representing the amplitude of the basis state corresponding to that cell.

This particular model is quite restrictive, as the cells of the lattice do not inde-
pendently carry quantum information, but are components of one quantum system
marking the location of one particle instead. However, this model is sufficient for
the task of modelling the evolution of a single particle in a lattice gas, and can be
generalized to model certain discrete-time quantum walks.

3.7 Pulse-Driven Spin Chains

Lloyd [L1093] proposed a model of physical computation based on a chain consisting
of a repeating sequence of a fixed number of distinguishable states. In this model,
pulses are programmed which are capable of distinguishing the states and perform-
ing nearest-neighbour unitary operations. Lloyd also showed that this model is
sufficient for implementing universal quantum computation. Although this model
does not provide a theoretical descriptive model of all local homogeneous processes
that we may wish to classify as QCA, the physical scheme potentially provides a
natural platform for implementing QCA.

15



Chapter 4

Local Unitary QCA

Unfortunately, none of the previous proposed models of QCA satisfy all of the
desired properties given in Section 3.1. In this chapter, we will explore why this is
the case, and then explore a new model for QCA which does satisfy these properties.

4.1 The Shift-Right QCA

In this section, we will explore one particular QCA which highlights the importance
of the use of local unitary operators in defining a model for QCA in general. The
Shift-Right QCA is defined over a 1-dimensional lattice of qudits. For each lattice
cell z € L, we associate with it a quantum state [¢),) € H™. Although in general,
the configuration of a QCA may not be separable with respect to each cell, the
configuration can still be described in terms of a linear superposition of these sep-
arable configurations. Thus, it suffices to consider such configurations to describe
the global transition function of this QCA.

At each time step we wish to have all of the quantum information from each cell
in the lattice transferred one cell to the right. In other words, after the first update,
each cell z should now store the state |1, _1). After k steps each cell z should contain
the state |¢,_x). This QCA is clearly reversible, with the inverse QCA being the
analogous Shift-Left QCA. We can also see that this QCA is an extension of an
analogous classically reversible Shift-Right CA. We will show that, in fact, such
a global transition function cannot be implemented by any local unitary process,
including ones which are not space-homogeneous.

Theorem 4.1.1. The Shift-Right QCA cannot be implemented by any local unitary
Process.

Proof. We decompose the global transition function for the Shift-Right QCA in

the local unitary model as described in Section 3.1. Let F' be this global transition
function, which is decomposed as F' = f, f._1... faf1, such that each operator f
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Figure 4.1: An example local unitary implementation of the Shift-Right QCA

is the product of potentially infinitely many local unitary operators on disjoint
local neighbourhoods of the 1-dimensional lattice. This gives us the most general
description possible of a depth-n quantum circuit implementation of this linear
QCA using only local unitary operators. Now, consider an individual cell xy3. By
considering the dependencies of the individual local unitary operators which make
up the transition function f, it is possible to find a range of cells, P = {z : a <
x < b} for some a,b € Z such that xy € P, and the value of the quantum state
at cell z( after the application of the transition function depends only on the cells
of P. Clearly, this value must be the value of the quantum state in the cell to the
immediate left of xy before the transition function is applied.

We may also find a minimal set of local unitary operators from F' such that
the new value of the quantum state at cell xg is computed without violating any
of the dependency relationships between the local operators. We now divide the
transition function F' into two functions, F' = hg, where g is the product of these
local operators in the correct order. Then, h simply applies the remainder of the
local unitary operators, as appropriate. Note that since g necessarily contains
all local unitary operators from f which operate on the cell xy, the operation h
cannot does not include any such operators. Now, let P; be the set of cells to
the left of zg, P, = {z : * < x0}, and let P, be the cells to the right of x,
Py = {x:x > xo}. Figure 4.1 gives an example diagram of such a construction.
Suppose that in an implementation of the global transition function F', that g is
performed first, followed by h. We consider the state of the cell lattice immediately
after g is performed.

Since h does not operate on the cell x, it cannot include any local operation
which acts on both cells from P; and cells from P,. Also, since the operation g
did not operate on any cells outside of the set P, the cells in P, must contain all
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of the information necessary after ¢ is applied in order to reconstruct all of the
quantum data from the cells g and P,. The notion of |P,| cells containing the
quantum information from 1 + |P| cells is impossible. We must conclude that
constructing the Shift-Right QCA using only unitary operators which act on local
neighbourhoods bounded by a fixed size is not possible. U

If we wish to consider QCA on finite one-dimensional structures, such as a ring,
in which the cell zq does not necessarily divide the structure into two disconnected
regions, we may still adapt this theorem to show that it is still impossible to con-
struct circuits with fixed depth and fixed local neighbourhood size which perform
the Shift-Right QCA for arbitrarily large rings.

Finally, note that as an extension of this theorem, it is also not possible to
implement Shift-Right on a classical reversible CA, using only local reversible op-
erations applied to the lattice. However, to make this notion rigorous, we need to
retool the definition of the classical reversible CA to include the considerations of
a physical implementation. To do this, we will develop the Physical Reversible CA
model.

4.2 Implementing Classical CA

Because we are looking to build a model of QCA based on local unitary operations,
we must examine why a QCA as simple and natural as the Shift-Right QCA cannot
be implemented in such a model. To resolve this problem, observe that the local
unitary model upon which we would like to build our model of QCA is a model of
physical implementation. If we look now at the classical model of reversible CA,
we note that the model itself does not explicitly address implementation concerns.
In particular, a local transition function needs to be applied in parallel to each cell
of the lattice in such a way that the information contained within the lattice is
updated instantaneously, so that information in one cell is not overwritten before
it needs to be read for the local transition function for a neighbouring cell.

In order to be able to implement a CA in a classical setting, for each local
transition function that we wish to apply to some local neighbourhood, we must
ensure that we copy any cell state information which is needed for any other local
neighbourhood to which we have not yet applied the local transition function. Since
we wish to be able to implement the global transition function as a finite-depth
classical circuit consisting of these local transition functions, we cannot construct
an implementation of a CA in general with only a finite amount of additional
“memory” contained within a computational machine.

The simplest way to achieve this physical model for classical CA is to use a
second lattice L’ of the same dimension as the first lattice. The local transition
function is applied to the original lattice L, as before, but the output of the function
is written to the second lattice L’. After the local transition function has been
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applied to every local neighbourhood, the original lattice still contains the original
configuration, while the second lattice contains the new configuration. At this
point, we simply copy the information from L’ into L by applying an appropriate
single-cell update operation to each cell. While we describe the “workspace” of
the physical reversible CA as a second lattice, it is more convenient to represent
it as one single lattice, in which each cell contains two symbols, one representing
the state of the cell, and the other acting as memory for computing the transition
function.

If we aim to build a quantum CA model based on local unitary operations from
this physical model for reversible CA, we should ensure that the operations which
are being applied are reversible. Specifically, both the local transition function
and the cell update function should be reversible. However, reversibility raises the
question of the initial state of the memory lattice, since this memory cannot be
reset in a reversible model. This issue would be resolved if every configuration C' €
Y of a given reversible CA could be matched with a dual memory configuration
C'" € ¥ such that the reversible local transition function for the implementation
of the reversible CA would preserve this dual condition. In order to implement the
reversible CA in this model, we would simply need to ensure that the memory is
appropriately initialized for the given configuration. We show such a construction
below.

We say that a given reversible CA A = (L, X, N, f) with global transition
function I : ¥ — XF is implemented by a physical reversible CA A’ with global
transition function F” : LF x 2F — SE xS if there exists a bijection D : £F — BV
such that F'(C, D(C)) = (F(C), D(F(C)).

Now, we present a simple construction for implementing a reversible CA A in
this model. We will let our duality relation simply be the reverse of the global
transition function: D = F~!. We will also need an addition relation on the al-
phabet, + : X — ¥, which can be defined by using some bijection from ¥ to Zy.
Essentially, the global transition function F’ will clear the memory lattice by com-
puting the reverse configuration F’(C') and subtracting it from the memory space,
then computing the next configuration F(C'). The cell update operation simply
swaps the two configurations, and the dual property is preserved. Specifically, we
will need the local transition function g from the reversible CA which implements
the reverse global transition function of A. The local transition function of A’ then
simply applies g to the local neighbourhood of a given cell, subtracting the answer
from the corresponding memory cell. Then, it applies f to the local neighbourhood,
adding the answer to the memory cell. Finally, after this has been done for each cell
in the lattice L, the cell update operation swaps each cell with its corresponding
memory cell. Note that the local neighbourhood scheme for the local transition
function of A" must contain the neighbourhood schemes of both A and its reverse.

Note that one very important property of the local transition function for the
physical reversible CA is that while it reads all of the data from a local neigh-
bourhood, it alters only the data of a single memory cell. In this way, the local

19



—
9
—

t+1

Figure 4.2: Local transition function of a Physical Reversible CA

transition functions may be applied to the lattice in any order. We may generalize
this notion slightly, in order to help remove the need to distinguish the data of a
cell from its additional memory space, and to allow us to define the local transition
function as a function mapping f : ¥V — XV rather than f : ¥V — . As long
as the local transition functions may be applied in any order, they do not need to
conform to any further requirements. To this end, we introduce the property of
translate commutativity.

Definition 4.2.1. A lattice function F : ¥¥ — ¥ is translate commutative if for
any lattice translation 7, [F,7Ft~'] = 0. A local transition function f : YN — ¥V
1s translate commutative if the corresponding lattice function is translate commuta-
tive.

We can now consider the data and extra memory of a cell to be part of a com-
bined state space, and give a formal definition for the classical Physical Reversible
CA model that we have been developing in this section:

Definition 4.2.2. A Physical Reversible Cellular Automaton (PRCA) is a 5-tuple
(L,3,N, f,g) consisting of a d-dimensional lattice of cells indexed by integers, L =
74, a finite set 2 of cell states, a finite neighbourhood scheme N C Z¢, a translate
commutative reversible local transition function f : XN — SN and a reversible cell
update function g : > — 2.

A diagram representing the local transition function and the cell update function
being applied to a Physical Reversible CA is given in Figure 4.2.

With the Physical Reversible CA, we can resolve the problem of the classical
Shift-Right CA. While it is still not possible to shift all of the data within a cell to
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the right, we can implement a Shift-Right CA by extending the alphabet to include
cell memory. Note that the data in the cell memory will not be shifted right. In
fact, by necessity, it is shifted left.

4.3 Quantizing the CA Model

We now use the Physical Reversible CA to develop a unitary quantum model of
cellular automata. In this model, we will again begin with a d-dimensional lattice
L = 72 of cells, each of which now contains a qudit |z) € H* from a Hilbert space
over a finite set of basis states ¥. We will also use the notation H(S) to indicate
the Hilbert space of quantum states over the cells in a subset of the lattice S C L.

In other words, H(S) = (H2)®S.

Now, we need an analogous definition of translate commutativity for unitary
operators:

Definition 4.3.1. A unitary operator U : H(N) — H(N) over a local neigh-
bourhood is translate commutative if for any lattice translation 7, [U, TUT™1] =0,
where T 1s the quantum operator corresponding to performing the lattice translation
T on a lattice of qudits.

For each cell z € L, we will use the notation U, to indicate the unitary operator
which performs U over the local neighbourhood N, centred at cell . In this
notation, Uy is translate commutative if [U,,U,| = 0 for all z,y € L.

Now we can define the local transition operator of a QCA simply as a translate
commutative operator Uy : H(N) — H(N). The cell update operator is simply a
single-qudit operator V, : H* — H*. We finally give a formal definition for the
Local Unitary QCA:

Definition 4.3.2. A Local Unitary Quantum Cellular Automaton (LUQCA) is
a 5-tuple (L, X, N, Uy, V) consisting of a d-dimensional lattice of cells indexed by
integers, L = 7%, a finite set X of orthogonal basis states, a finite neighbourhood
scheme N' C Z%, a translate commutative local transition function Uy : H(N) —

H(N), and a local update function Vg : H* — H*.

It should be noted that, as with the classical model of cellular automata, the
infinite nature of the lattice raises issues of constructibility and computability. For
the purposes of finite simulation, there are two simple methods to address these
issues. For simulating a closed cyclic system, such as a closed ring of qudits, we may
restrict the set of allowable configurations to those which are periodic with respect
to a fixed sublattice. To simulate a finite system, we may consider the addition
of a quiescent state |¢) € ¥, which has the property that for the local transition

function, we have
U (19") = 10"
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and for the local update function, we have

Volg) = la) -

Note that the quiescent state has the property that for any cell x € L at time step
t, if each cell y such that x € N (y) is in the quiescent state |¢), then z will be in the
quiescent state at time step ¢ + 1. In other words, if each cell which can influence
the state of cell x at time step ¢ + 1 is quiescent, then x will be quiescent. This is
compatible with the classical definition of quiescence.

We now restrict the set of allowable basis configurations to those in which all
but a finite number of qudits are in state |¢), and the set of allowable configurations
to superpositions of such basis configurations, with the restriction that the f5-norm
of the amplitudes is 1. Note that the availability of a quiescent state assures that
this is possible. However, in general, such a construction may be made with any
countable set of basis configurations, so long as the set of allowable configurations
is closed under the global transition function and the global update function.
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Chapter 5

Algorithms for Local Unitary
QCA

Using the Local Unitary QCA model presented in Chapter 4, we can now proceed
to show that it indeed has all of the desirable properties listed in Section 3.1.

5.1 Simulating QCA with Quantum Circuits

In showing equivalence between the Local Unitary QCA model and other models
of quantum computation, we must first define what it means for a QCA to perform
a computation. Specifically, if we wish to compute a function, we should be able
to encode a finite input state onto a lattice of cells for some QCA, then perform
a finite number of time steps after which the desired answer will be in some finite
predetermined region of the lattice. Therefore, for any computation that we may
wish to perform using a QCA, we need to be able to simulate the action of the QCA
on a sufficiently large region to correctly determine the final state of the desired
pre-determined region. The scope of this simulation is therefore finite. However,
depending on the computation, it may be arbitrarily large. If the final output of
a QCA is to be located in a finite region S C L at time step T, then we must
know the state of the QCA in the region P(S) at time step 7" — 1, where P(S) is
the union of all local neighbourhoods intersecting .S. Thus, every cell whose value
is used in computing the state of the region S is in P(S). Continuing backwards,
we see that it is sufficient to consider the region PT(S) at time step 0 in order to
perform the desired computation.

In order to construct a quantum circuit which simulates the region S of a Local
Unitary QCA for T time steps, we start by assigning one qudit to each cell of the
region PT(S). Since the local transition function Uy is translate commutative, they
may be applied to the local neighbourhoods of PT(S) in any order. In particular,
by fixing a (potentially incomplete) tiling of the lattice L using disjoint local neigh-
bourhoods, and using translations of this tiling, we can ensure that there exists a
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Figure 5.1: Simulation of a finite region of a QCA

fixed circuit depth for the simulation of the transition function Uy, = [],., U, on
any finite region. We finish the simulation of a single time step by performing the
single-qudit operation V, on each qudit. We repeat this procedure for 7" time steps.
A circuit implementation of one time step is illustrated in Figure 5.1. If necessary,
we can convert this circuit into a quantum circuit over qubits which applies opera-
tors from a fixed universal set of gates. To do this, we encode each qudit as [log |X]]
qubits, and use appropriate implementations of Uy and Vj using operators from the
fixed universal gate set. It may be necessary to use approximate implementations
of Uy and Vj. However, given a desired precision for the final state of the region S
of the QCA, we may construct such implementations with polynomial overhead.

Although the quantum circuit used to simulate a given finite region S C L
depends on the region in question, this construction still provides us with a family
of circuits, indexed by the finite subsets S C L and the number of time steps being
simulated. This gives us a simulation of a finite subregion of a QCA using a binary
circuit with O(log |X|) overhead in the number of qubits, and poly(1/e) circuit
depth for simulating each time step, for a given error parameter e. Conveniently,
we may also consider an “infinite” circuit for simulating the QCA over the entire
lattice, where for any finite region S, the corresponding quantum circuit can be
constructed simply as the appropriate subset of operations and qubits from this
infinite circuit.

5.2 Simulating Quantum Circuits with QCA

We would now like to construct a QCA which can simulate a given quantum circuit
encoded as an initial state. Specifically, we will consider quantum circuits operating
on qubits, where the universal set of gates consists of a finite number of single-qubit
gates and the controlled NOT (CNOT) two-qubit gate operating only on adjacent
qubits.

First, we will describe a generic technique for constructing translate commuta-
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tive operators which can be of use in the construction of many QCA in general. We
begin by dividing cell data into registers, which are independent pieces of quantum
information within the cell. For an n-register cell, we will have separate alphabets
1,29, ..., 5, for each register, while the set of all possible states for the complete
cell will be ¥ =37 X Mg X -+ X 2,.

For now, it suffices to consider a three-register cell, ¥ = ¥»; x 35 x Y3, where
Y1 will be a data register, X5 will be a control register, and X3 will be a clock
register. For practical purposes, these registers may be subdivided further into
more registers, but this three-register cell is sufficient to describe our construction.

The alphabet of the clock register will have two symbols: X3 = {0,1}. The
intention is that all of the control registers in a lattice will be in the same state at
any particular moment. If this is not true, we must still ensure that the QCA fails
properly, by ensuring that the local transition function remains translate commu-
tative even with bad clock data. Note that to ensure this, it suffices to consider the
Y3 basis states of the clock registers.

For the control register ¥y, we will define a QCA Q) = (L, %y, N, UéQ), 0(2))
which operates only on the control registers. The idea here is to use the clock
register to interleave a set of actions on the data registers with one transition of
the control register. To achieve this, we define a set of active configurations of the
control registers Y, to be a set of basis configurations N>2 over the control registers
with the additional restriction that it is not possible to have intersecting local
neighbourhoods N, and A, be in a basis configuration (N, UN,)*? in such a way
that the configurations N>2 and ./\/yz2 are both active. A simple example would be
the set 3y = {0, 1} over a one-dimensional lattice, with the neighbourhood scheme
N = {0,1} consisting of neighbouring pairs of cells. The set of configurations
{]10)} is active, since it is not possible for two intersecting neighbouring pairs of
cells to each be in the state |10). Now, given a set of active configurations, any
operation on the registers ¥; x ¥y which does not alter the state of the control
register Yo, and acts non-trivially on >; only if the state of X5 is active must be a
translate commutative operation. We never attempt to apply non-trivial operations
to intersecting local neighbourhoods.

We may also consider active configurations for the clock register. Specifically,
the set of configurations N2, consisting of the all-0 configuration [0)*V and the
all-1 configuration [1)®V forms a set of active configurations. Now, we can define
a translate commutative local transition function Uy for the whole QCA.

Consider a neighbourhood N,. If the clock configuration of the neighbourhood
is |0>®N , then we perform a non-trivial operation on the data register only if the
control register is in an active configuration. Otherwise, if the clock configuration
is [1)®V we perform the local transition function USQ) from the QCA Q® corre-
sponding to the control register. Finally, the cell update register V; performs the
cell update function Vo(z) if the clock is in the state |1), and then performs a NOT
operation on the clock register.

If the QCA is correctly configured so that the clock registers of the lattice are
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Figure 5.2: Local neighbourhood of a QCA simulating a quantum circuit

either all in the state 0 or all in the state 1, then we see that this QCA alternates
between performing operations on the data register, and updating the control reg-
ister. However, if the QCA is not correctly configured, the local transition function
remains translate commutative, even if the computation becomes meaningless.

Now, we will apply this Active Configuration Method to the problem of simu-
lating quantum circuits. We will use a 2-dimensional lattice, where one dimension
will represent the qubit wires of the circuit, while the second dimension represents
individual time steps of the simulation, proceeding from left to right.

The data register ¥ = {0, 1} will simply contain contain qubit data correspond-
ing to a particular wire at a particular time step. The control register >y will be
subdivided into two registers, ¥o = ¥4 x ¥ . The first control register ¥4 = {0, 1}
will indicate whether the current cell is being actively simulated during the current
time-step. The second control register state set g will consist of the finite univer-
sal set of single-qubit gates which we are using, including the identity I, along with
four other special states, C’NOTO(A), C’NOTI(A), C’NOT(SB), and C’NOTI(B), with
the subscripts 0 and 1 indicating that the current qubit is respectively the control
or the target of a controlled NOT operation. Finally, the clock register 35 = {0, 1}
is defined as before.

In describing the initial state corresponding to a quantum circuit, we will use
the co-ordinates (x,t), where z indicates a specific qubit wire, indexed from 1 to
n, and t indicates the current time-step, beginning at 0. We may think of the
qubits of the circuit as being passed from cell to cell at each time step, and having
an operation performed as indicated by the control register. To accomplish this,
we simply encode the initial state of the circuit in the cells (1,0) to (n,0). If a
single-qubit operation (including the identity operation) is to be performed on cell
J at time step ¢, we encode this in the control register of cell (j,¢). If a controlled
NOT is to be performed on neighbouring qubits 7 and j + 1, we encode that using
the special states C'N OTéA) and C'N OTlA) if qubit j is controlling qubit j + 1, and
CNOT? and CNOTSP) if qubit j is being controlled by qubit j + 1.

Now we need to describe the operation on the data register. We will use
neighbourhoods of size 2 x 2, and will label the cells of a given neighbourhood
as A = (z,t), B=(z,t+1),C = (z+1,t) and D = (z + 1,t + 1) (see Figure
5.2). We operate only if the cells A, B, C', and D have their first control registers
in the states 1, 0, 1 and 0, respectively. If the second control register of cell A
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indicates a single-qubit operation, we perform the operation on the data register of
cell A, and then swap the data registers of cells A and B. If the second control reg-
isters of cells A and C' indicate a controlled NOT operation by being respectively
in states CNOTO(A) and CNOTl(A), or in states CNOTl(B) and CNOTO(B), then we
perform the appropriate controlled NOT operation on the data cells of A and C,
and then swap their data registers with that of cells B and D, respectively. Any
other configurations of operations will be ignored.

Note that this is not technically an active configuration. However, note that if
two overlapping neighbourhoods overlap and both have first control registers in the
configuration 1, 0, 1, 0, we only perform an operation on all four cells in the case
that we are performing a controlled NOT', and by construction, it is not possible
for both overlapping neighbourhoods to be correctly configured for a controlled
NOT operation. Without using four separate states to indicate the two different
orientations for the controlled NOT' gate, ambiguities may arise which violate this
overlap rule. It is also not possible for single-qubit operations to overlap with a
controlled NOT operation. In other words, the effective set of operations we wish
to perform on the entire lattice is still disjoint.

Now, during the update of the control register, we simply shift the first control
registers to the right, so that the operations for the next time step will be performed
next. Note that in order to shift this information to the right, we require a third
control register ¥ = {0, 1}, containing information which will not be used, to have
its information shifted leftwards in order to maintain the local unitary property.

The clock register is initialized all in the state 0, and drives the data and control
update procedures as described above.

5.3 Previous QCA Models

In this section, we will compare the Local Unitary QCA model with previous QCA
models. In particular, we will look at the models proposed by Watrous [Wat95]
and Schumacher and Werner [SW04].

The original QCA model as defined by Watrous, described in Section 3.2, is
capable of describing a Shift-Right QCA, and therefore includes QCA which can-
not be implemented in the Local Unitary model. Furthermore, because the local
transition function maps basis configurations to quantum states over a single cell,
it is not possible to construct entangled states from basis configurations. In the
Local Unitary QCA model, we can achieve this by simulating a quantum circuit
which constructs an entangled state.

The partitioned QCA model given by Watrous can be expressed in the Local
Unitary QCA model, as long as in the partitioning of the cell alphabet ¥ = ¥; x
Y. X X, we have |X;| = |X,|. To achieve this, we separate the permutation into an
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Figure 5.3: Watrous QCA expressed in the Local Unitary QCA model
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operation P; which operates on two consecutive cells, mapping

l c r
P ((q£)>qxi g, (qzilpqzilpqzill))

((CJI(C)? 0t i) (@ a4 q,ﬁi))

followed by an operation P, which operates on a single cell, mapping

Py (a0 0) = (@ a q).
Note that P, P, performs the desired permutation, and also that P; commutes with
any lattice translation of P;. Now, we can express the Watrous partitioned QCA in
our QCA model by setting U’ = P, and V' = V P, as shown in Figure 5.3 (compare
with Figure 3.1).

In general when |¥;| # |%,|, it is possible to construct automata which cannot
be implemented using local unitary operators. In particular, when |¥;| = [3.| = 1,
and V = I, we have the Shift-Right QCA.

In the Schumacher-Werner QCA model, every Local Unitary QCA yields a
global transition function which is unitary and invariant under lattice translations,
so the transition function give us a valid homomorphism over the quasi-local alge-
bra of observables over the lattice. Also, by the very nature of the neighbourhood
scheme in their Generalized Margolus Partitioning QCA, we cannot express arbi-
trary Local Unitary QCA within this model.

However, both Schumacher-Werner models are capable of constructing Shift-
Right QCA. Figure 5.4 illustrates the relationships between all of these various
models of QCA.



5.4 Quantum Spin Chains

In this section, we will explore the use of QCA in simulating space- and time-
homogeneous physical phenomena. In particular, we will be looking at two cases
of the Quantum Spin Chain model.

A Quantum Spin Chain consists of a 1-dimension lattice of identical quantum
systems, each of which can be in one of some finite number of spin states. For
our purposes, we will restrict our attention to the spin—% spin chain, where each
quantum system is a two-state system: they can have a spin of either % or —%.
The coupling between a spin at location n and the neighbouring spin at local n+ 1
can be described as a coupling Hamiltonian H, ,41), and the Hamiltonian for the

entire chain, of length N is

N-1
H=>Y H"",
n=1

This Hamiltonian is for an open chain. The chain may also be closed, in that the
final qubit is connected to the first qubit, giving the Hamiltonian as

N-1
H = H(N,l) + Z H(n,n+1).

n=1

Either of these models can easily be expressed in terms of a 1-dimensional
infinite lattice of cells L = Z. For an open chain, we introduce a third, quiescent
state € € X in addition to the spin states of each particle. The quiescent state
indicates the absence of a particle. Now, we simply use € as the initial state for any
cell which does not correspond to a quantum system of the spin chain. For a closed
chain, we simply use an initial state of period N, where each period contains the
state of the entire closed spin chain.

Although the evolution of the Hamiltonian over the spin chain occurs in con-
tinuous time, we may discretize this evolution by defining a fixed time step At.
Then, we may give a unitary operator which evolves the system according to the
Hamiltonian H for time At. This becomes the basis for a discrete-time simulation
of the spin chain. Specifically, we have

_ _—tHAt
UL =€ )

using the convention of setting the constant A = 1 for convenience.

We first explore the Ising spin chain, given by the Ising interaction

H(TLJH-I) _ Jo,gn)o_gn-l—l)

on neighbouring spins, where J is a coupling strength constant, and the Pauli
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operators are given as

(01 (0 =i (1 0
2=\ 1 0) %=\ o) %27 \o0 —1)"

The Hamiltonian for the entire chain will be

H — ZH(n,nJrl) — Z JO'gn)O"gn+1).

neL neL

Note that in this system, we have the convenient fact that [H ™"+ [ mm+1)] =
0 for all n,m € L. In other words, the local interaction between spins is translate
commutative. This allows us to simplify the modelling greatly. Because these local
interaction Hamiltonians commute with each other, for a fixed time step At, we
have

Up, = exp(—iHAt) = exp (—z’ Z H(”’”+1)At> = H exp(—iH ™" DAL,

ner nel

Let U, = exp(—iH™"*YAL). Since H™"+1 is translate commutative, it follows
that U, must also be. This convenient fact allows us to define our QCA immediately.
We use the lattice L = Z, & = {+3, -3}, N' = {0,1}, Uy = exp(—iH "V At), and
Vo = I. This QCA simulates the evolution of an Ising Spin Chain to as fine a
resolution as we wish to fix.

In general, the local interaction Hamiltonians ™"+ are not translate commu-

tative. We will now examine the problem of simulating the Heisenberg Spin Chain,
which has the local interaction Hamiltonian

H(n,n+1) _ J(O_(n)o,(n+l) + O_(n)a,g(/n+l) + Ugn)0§n+l) —1® ]1)

T T Y

Unfortunately, in this case, the local interaction Hamiltonian is not translate com-
mutative. However, we may still approximate the evolution of this Hamiltonian on
a spin chain by making use of the Suzuki-Trotter Decomposition, which makes use
of the fact that for Hermitian operators A and B and some small constant § > 0,

we have
”eé(AJrB) — eéAeéBH = 0(52)” [B7 A] ”

This formula follows from the Baker-Campbell-Hausdorff (BCH) formula, which
gives an expansion of log(e4e?) in terms of a power series for non-commuting
operators A and B.

For our application, we will let

Ha — Z H(?n,?n—f—l)

ner
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and
H, = Z H(Zn—l,Zn)’

neL

and set A = —iH,At, B = —iH,At and § = % for some integer constant k. We can
rewrite the Suzuki-Trotter formula as

o—i(Ha+Hp) AL _ (efiHa(At/k)efiHb(At/k))k s (%) |[Hy, H,) ||At2.

This means simulating the evolution of a Heisenberg spin chain for a time period of
At within a given error tolerance simply requires finding a sufficiently large k. To
accomplish this simulation, we need to alternate evolving the spin chain according
to the Hamiltonian e~ (8% and the Hamiltonian e~ #«(8t/k) 4 total of k times.

Since H, and Hj, are constructed as sums of local interaction Hamiltonians on
disjoint neighbourhoods, they are pairwise commuting, and so we have, for some

, At
—iHq(At/k) ¢ (2n,2n+1)
U,=¢e = exp <__k E H ) = | | Us,,

neL neL

and

U, = e (AR — oxpy <_% Z H(Qnmn)) - H Uan—,

nel ner

where U, = exp(—iH™"*)(At/k)). Unfortunately, U, is not a translate com-
mutative operator. In order to set this procedure within the Local Unitary QCA
framework, we proceed according to the Active Configuration Method, introduced
in Section 5.2. We use the local neighbourhood scheme A" = {0, 1}, and we intro-
duce a control register 3y = {0, 1} which is initialized to |0) for even-indexed cells
2n, and |1) for odd-indexed cells 2n — 1. Note that the set {|01)}is a valid set of
active neighbourhood control configurations. This means that the operation U,,
which applies the operation exp(—i%H (”’”“)) only if the control configuration is
|01), is translate commutative. The single-cell update operation V;, simply flips the
control bit. Now, the global transition function alternates between applying U, and
Uy, as desired. And as before, if the control registers are not properly initialized,
we do not get the desired simulation. However, U,, remains translate commutative,
so the evolution is still based on the Local Unitary model.

5.5 Coloured QCA

First, we will define the notion of a symmetric transition function for QCA. It is the
quantum analog of symmetric CA, introduced in Section 2.4, in which the transition
function depends only on the total number of neighbourhood cells in each of the
possible cell states. Essentially, a transition update function is symmetric when it
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affects only the value of the target cell in a manner which depends only on how
many of the cells in its neighbourhood are in particular states, rather than on the
state that any particular neighbour is in.

Definition 5.5.1. Given a QCA Q = (L, X, N, Uy, Vi), we call the update function
Uy : N — N symmetric if we have tripyUy = Ipnngoy, and Uy commutes with
every operator SW AP, ,,, which simply swaps the contents of cells x and y, where
z,y € N\ {0}. If Q has a symmetric update function, then we call Q a symmetric

QCA.

Note that this definition of a quantum symmetric operation is actually analogous
to the classical definition of an outer-symmetric transition function. In order to
ensure that the operation is unitary, we cannot use the information in the target
cell to control the operation being applied.

Next, we wish to formalize the notion of a colored QCA. For this model, we
will fix the neighbourhood scheme to include only directly adjacent cells. That is,
N ={z € Z: |z|, < 1}, so that the a neighbourhood contains the target cell and
2d adjacent cells. However, first we will define the set of permissible colourings of
a lattice.

Definition 5.5.2. Given a lattice L = Z¢, and a neighbourhood scheme N we define
a correct k-colouring for a lattice as a periodic mapping C': L — 0,1,...,k — 1 such
that no two adjacent cells in L are assigned the same colour.

With our fixed neighbourhood N, we may define adjacency to mean that one
cell is in the neighbourhood of the other cell.

Definition 5.5.3. Now, given a neighbourhood scheme N and a correct k-colouring
of the lattice, we call an update function Uy : N — N colour-symmetric if the
following properties hold:

1. Uy acts only on the target cell: tripyUs = I oy,

2. There exists a specific colour j, 0 < j < k such that U, acts non-trivially only
if the target cell has colour C(x) = j, and

3. Uy commutes with every operator SWAP,,, such that x,y € N\ {0} and
C(z) = C(y).

The final condition means that the transition function U, essentially cannot
distinguish between cells of the same colour within its neighbourhood. We can now
finally give a definition for the colored QCA. Recall that the neighbourhood scheme
N is fixed.
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Definition 5.5.4. A Coloured QCA or CQCA is a 4-tuple (L, C, X, U) consisting of
a lattice L = 72, a correct k-colouring C, a finite set ¥ of cell states, and a sequence
of T' colour-symmetric unitary operators U = {Uéo), Uél), cee UéTﬁl)}, which each
map Uéj) D (HZ)®N — (H®)®N. The local transition operation consists of applying
Uéj)to each cell x, at time step t = j +nT', where 0 < 7 <T andn € Z.

Note that since C'is a correct k-colouring, no two operators U9 act non-trivially
on the same cell at the same time ¢. This means that, assuming a correct k-
colouring, the operators Uggj ) are translate commutative. We will show that the
Coloured QCA and Local Unitary QCA models can simulate each other.

Theorem 5.5.1. For every Coloured QCA Q) there exists a Local Unitary QCA Q)
that simulates the same evolution exactly.

Proof. We add an extra register to each cell which contains its colour information
C(z). Then, we add one extra clock register to each cell, initialized to 0. The
update operator U, simply applies U conditional on both C(z) and the clock
register of cell x being set to j. In order to ensure that U, commutes with its
translates, the operator U, also does not act non-trivially unless the colours of all
the neighbours of x are consistent with the colouring C'. The read operator V,
simply increments the clock register, modulo 7. Il

Theorem 5.5.2. For every Local Unitary QCA Q there exists a Coloured QCA Q'
that simulates the same evolution exactly.

Proof. Given the QCA Q = (L, X, N, Uy, Vi), we will use the same lattice L and
alphabet ¥. The neighbourhood scheme for the CQCA, N’ is fixed by definition.
We also need to provide a correct k-colouring of the lattice. To this end, it suffices
to provide a colouring C' with the property that that no neighbourhood N, of Q) or
N of @' contains two cells with the same colour. Now, we need to construct a se-
quence U of update operators. Note that conditional on a cell x having a particular
colour, single-qudit operations on x, and the controlled-NOT operation targetting
x are colour-symmetric operations. Because we insisted on a colouring such that
no neighbourhood N contains two cells of the same colour, such controlled-NOT
operations can always be controlled by a single neighbouring qubit. Now, given
an implementation of the unitary update operation U, of () using single-qudit and
nearest-neighbour controlled-NOT' operations, we can give a sequence of colour-
symmetric operations which perform U, on a neighbourhood N, of a cell z of a
specific colour. By performing a similar sequence of operations for each colour in
our colouring C, we effectively perform U, for each cell x. Since each update oper-
ation U, commutes with the other update operations, we have effectively simulated
the update transition operation of (). Finally, we can perform the single-qudit
operations V, for each cell colour. O

Besides providing us with another technique with which to construct Local
Unitary QCA, the Colour QCA model also accurately models the pulse-driven
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spin chain, used by Lloyd [L1093] in his proposed implementation of a quantum
computer. Combining these techniques with implementations within the Colour
QCA model, it may be possible to build physical implementations of Local Unitary
QCA, assuming the availability of the appropriate resources.

5.6 Quantum Walks and Quantum Lattice Gases

It is also possible to simulate discrete-time quantum walks, described in [AAKVO01],
on a lattice L = Z% using a quantum cellular automaton. However, in a quantum
walk, the permissible states correspond to the lattice nodes themselves, rather than
having each cell carry its own quantum information, as in the QCA. Meyer [Mey96]
also uses this technique as the basis for his simulation of a quantum lattice gas.

In order to simulate such a restriction, we consider a binary QCA over the
lattice L = Z?. We represent the state corresponding to a particular cell z using
the QCA configuration corresponding to having each cell contain the state |0), with
the exception of the cell z, which contains the state |1). This configuration will
correspond to the logical state |z), corresponding to the given cell. Now, we need to
construct a valid local transition function which gives a global transition function
which is closed with respect to linear superpositions of these logical states. In other
words, the transition function maps logical states |z) to linear superpositions of
other logical states.

In order for the local transition function to be valid, it should act correctly when
the configuration is a valid logical state, and act in a manner which remains trans-
late commutative when it is not. In order to do this, we can use a local transition
function which operates non-trivially only if the target cell is in the configuration
1), and the remaining cells of its neighbourhood are in the configuration [0). At
this point, we should distinguish the neighbourhood of a vertex of the graph used
in the quantum walk from the neighbourhood of the corresponding cell in the sim-
ulating QCA. Since we need to ensure that we do not have a situation where we
need to apply two non-trivial operations on the same cell, the neighbourhood of a
cell in the simulating QCA must contain all cells corresponding to vertices in the
graph which have a common neighbour with the vertex corresponding to the target
cell. Finally, when the local transition function acts non-trivially, the result must
be a linear superposition of valid configurations, which have exactly one cell in the
configuration |1).

It is also possible to simulate discrete-time quantum walks which use “coin”
information to affect the transition function. To do this, we add a coin register for
each cell, where the active coin information is stored in the coin register correspond-
ing to the active cell which is in the configuration |1). The local transition function
will be responsible for ensuring that this information remains with the active cell.
This can be accomplished using controlled-SWAP operations on the coin registers.

It should also be noted that the neighbourhood scheme in the original graph
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needs to be transitive with respect to translations in order for this construction
to work. However, if this is not the case, we may also store information about
the neighbourhood of each vertex in the graph within each corresponding cell. In
such a simulation, the local transition function does not alter this neighbourhood
information.
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Chapter 6

Further Directions

In this chapter, we will discuss some natural extensions of the Local Unitary QCA
model, and speculate on further possible applications of QCA theory to other areas
of quantum information science.

6.1 General Local QCA

It is possible to define a model of QCA based on an open quantum system which
include dynamics that are not necessarily unitary, including full or partial measure-
ments of cell information, and other general interactions with the external environ-
ment. The simplest way to augment the Local Unitary model of QCA to include
such operations is to allow the single-cell operator V' to be an arbitrary single-cell
completely positive map. We may view this operation as a circuit consisting of
unitary operations and partial measurements of the information contained within
each single cell. We may also use the idea of dissipation as a primitive operation,
where some register within a cell is set to a specific ground state through interaction
with the environment.

Using dissipation, we may express any non-reversible CA as a General Local
QCA, by using a memory register, as in the Physical Reversible CA model described
in Section 4.2. After each time step, the single-cell operation V' simply dissipates
the memory register of each cell.

General Local QCA may also form the basis for constructing fault-tolerant forms
of QCA, since fault tolerance in quantum circuits can be achieved using local unitary
operations and dissipation [Sho96]. Fault-tolerant constructions for classical CA
were introduced by Harao and Noguchi [HN75], Toom [Too76], and Ges [G4c83], and
are fairly complicated. It is reasonable to guess that corresponding constructions
for QCA will be at least as complicated.
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6.2 Non-Lattice QCA

In the application of QCA to implementations on specific physical systems, it may
be desirable to consider QCA acting on lattice structures which are not cubic.
Although it is always possible to consider embeddings of such structures in lattices
L = 7%, we may also wish to consider QCA over a generic class of structures called
Cayley graphs.

In a Cayley graph, the set of vertices corresponds to the elements of a group
G, and a neighbourhood scheme is given as a set of group elements N' C G. For
a given cell corresponding to the vertex g € G, the local transition function is a
unitary translate commutative operation acting on the cells corresponding to the
vertices gN = {gh : h € N'}. This definition allows us to explore both finite and
infinite structures G. The lattice L = Z¢ itself can be represented by the free
Abelian group generated by d independent elements g1, g, .. ., gq-

We may also use these structures in the context of Coloured QCA, introduced
in Section 5.5, where we may use separate neighbourhood schemes for each different
cell colour. In this context, we may generalize the definition of a correct colouring
by fixing a particular subgroup H < G, which would correspond to the sublattice in
the previous definition of a correct colouring. For each right-coset of the subgroup
H, we assign each cell corresponding that coset with the same colour. However, it
is not necessary that different cosets are assigned different colours.
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Chapter 7

Introduction

There has been much interest in the study of the entanglement and the separability
of quantum states, both from a theoretical and a practical viewpoint. Entanglement
is a key phenomenon which differentiates quantum theory from classical theory,
and can be viewed as a resource which enables quantum computation to supersede
classical computation.

In Part IT of this thesis, we will examine the problem of determining whether or
not a given quantum state contains entanglement from a theoretical viewpoint. We
will show how this problem can be framed as a problem in convex optimization, and
explore entanglement witnesses, which are operators which can potentially verify
the presence of entanglement in a given quantum state.

7.1 Summary of Results

We will discuss the quantum separability problem, and explore its relationships to
other known problems. In order to do this, we describe a setting of the quantum
separability problem in terms of a convex optimization problem. Specifically, by
using some structural properties of the set of separable states, we develop a new
classical algorithm that solves the quantum separability problem more efficiently
than the natural algorithm which arises from the definition of separability. This
algorithm requires a polynomial number of calls to an oracle which solves an opti-
mization problem over the set of separable states.
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Chapter 8

Quantum Separability and
Entanglement

In this chapter, we will review some of the theoretical background behind the study
of quantum separability and entanglement of states.

8.1 Bipartite Quantum State Separability

Given two disjoint quantum systems represented by the finite-dimensional Hilbert
spaces H; and Hs, we say that a given pure state |[¢)) € H; ® Hs is separable
if the state can be considered as two separate states on the two Hilbert spaces,
[91) € Hy and |19) € Ha, with |¢) = |11) ® |1h2). In order to define separability
more generally for mixed quantum states, we represent quantum states as density
matrices, so that a pure state given in vector notation as |¢) is given as the matrix
p = |Y)Xv|. In general, density matrices are Hermitian positive semidefinite matrices
with trace 1. We can also express mixed quantum states as convex combinations of
corresponding pure states. Specifically, given a basis |¢;), j = 1...d, of a Hilbert
space H of dimension d, we can represent a mixed quantum state as

d
p=> piltil,
=1

where we have p; > 0 for each j =1...n, and

d

J=1

This represents a mixed quantum state consisting of a classical mixture of basis
states |1;) with corresponding probabilities p;. A given mixed state p € Hy ® Ho
is separable if for each index j with p; # 0, the corresponding basis state [1;)v;| €
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H1 ® Hs is a separable pure state. Note that this means that the set of separable
quantum states is simply the convex hull of the set of separable pure quantum states.
Thus, given two Hilbert spaces H; of dimension d; and Hy of dimension ds, we can
describe the set of separable quantum states of the Hilbert space H = H; ® Hs, of
dimension d = dydy as a convex region of the set of d x d Hermitian matrices.

We may represent the set of d x d Hermitian matrices over the complex numbers
C as a vector of size d* over the real numbers R by use of the generalized Gell-Mann
basis. The generalized Gell-Mann matrices consist of d? —1 Hermitian matrices with
trace 0, and are a generalization of the Pauli matrices in dimension d = 2:

(01 (0 =i (1 0
2=\ 1 0 D=\ o0 %=\ 0 -1

and the regular Gell-Mann matrices in dimension d = 3:

010 001 000
GLQ - ]. O 0 G173 = O 0 O G273 = 0 0 ].
0 00 100 010

0 — 0 00 —2 00 O
GQJI 1 0 0 Gg’lz 0 0 0 G32— 0 0 —2
0 0 O 1 0 0 0 2 O

1 0 0 1 10 O

G171: O —1 0 GQ,Q—_ O ]. O

0 0 O V3 00 =2

For higher dimensions, we may construct the generalized Gell-Mann matrices as
follows. Let e, be the d x d matrix with 1 as the (j, k)-th entry, and 0 as every
other entry. Then, the generalized Gell-Mann matrices consist of

Gk = €jk + €k

for1 <j<k<d,
Gjr =ilejr — erj)

for 1 <k < j <d, and finally

[ 2 d .
G]v] - j(] + 1) ((; ekvk> —]€j+17]‘+1>
for 1 <j<d.

The generalized Gell-Mann matrices form an R-basis for the set of d x d trace-0
Hermitian matrices. In other words, the set of real linear combinations of these
matrices span the trace-0 Hermitian matrices. By including a normalized identity
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Figure 8.1: The set of separable states Sy, 4, as a region of R% !

matrix ]
Gd,d = chh

with trace 1, we form an R-basis which spans all of the d x d Hermitian matrices.
This gives us a representation of all d x d Hermitian matrices over the complex
numbers C as a d?-dimensional real vector space. Furthermore, since all density
matrices corresponding to quantum states on H have trace 1, they must all lie
on the corresponding hyperplane spanned by only the trace 0 generalized Gell-
Mann matrices. Also, since convex combinations of positive semidefinite matrices
with trace 1 remain positive semidefinite while preserving trace, the region on this
hyperplane corresponding to the density matrices must also remain convex. We may
either consider the set of density matrices as a convex region on this hyperplane,
or alternatively, as a convex region on the vector space R¥* -1 corresponding to the
matrices p — %1[d represented in the generalized Gell-Mann basis for each density
matrix p. Note that the vector 0 € R¥~! corresponds to the density matrix 114,
which gives the maximally mixed state.

Finally, note that since this transformation is linear, the set of separable quan-
tum states as represented in R%~! remains a convex set. Given the quantum system
H = Hi ® Hy where dim(H;) = d; and dim(Hs) = dy, we will denote the set of
separable states of H relative to H; and Hs represented in the vector space R% 1
as Sagy.d, C R¥-! This set is illustrated as a generic convex set in Figure 8.1.
However, the actual structure of the set &y, 4, itself is quite complicated, and has
been the subject of much study.

8.2 Conditions for Separability

Given a quantum state p € H = H; ® H,y, we say that p is entangled if it is not
separable. Although there is currently no known set of necessary and sufficient
conditions for efficiently testing the separability of a given quantum state, there
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are numerous partial results which give either necessary or sufficient conditions for
separability.

One such condition is called the Positive Partial Transpose (PPT) criterion
[HHH96, Per96], which gives a necessary condition for separability. The partial
transpose is given by the map

p" =T &T)(p),

where T : p — p’ maps a matrix p to its transpose p?. In other words, given a
block matrix representation of p € H = H; ® Hy in terms of matrices p;; € Ha:

P Pidy
p=1 i S
Pdi1 * Pdida
the partial transpose is given as
P Pla,
T . )
p?=
T T
pdll T pd1d1

We can similarly define the partial transpose p’* = (T ® I)(p). However, p't is
simply the transpose of p’2. The PPT criterion states that if the density matrix of
a given quantum state p € 'H = H; ® Hs is separable, then its partial transpose
p’2 must be positive semidefinite. However there do exist entangled states which
satisfy the PPT condition in the case that d = d;dy > 6. Otherwise, for d < 6, the
PPT condition characterizes the set of separable states.

It is also possible to give sufficient conditions for separability. We may consider
the distance between a separable state p and the maximally mixed state é[d using
the Hilbert-Schmidt norm resulting from the Hilbert-Schmidt inner product on H,
given by (A, B) = tr(A'B). In particular, we may consider the radius of the largest
possible ball centered on the maximally mixed state é]d which lies within the set
of separable density matrices. It was shown in [GB02] that all density matrices p

which satisfy
1\° 1
=[tr | p— —]) < —
HS \/ ( d’ d(d—1)

are separable. Furthermore, this is indeed the size of the largest separable ball with
respect to the Hilbert-Schmidt norm. This provides us with a sufficient condition
for separability. However, many separable states will not satisfy this condition.

1

-

There are many other criteria which have been formulated to determine either
entanglement or separability of a given quantum state. In particular, [EHGC04]
gives an approach in which the separability problem is formulated as an optimiza-
tion problem. A efficient hierarchy of either necessary or sufficient conditions can
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be formed by considering a series of relaxations of this optimization problem as
semidefinite programs which approximate the original optimization problem.

8.3 Entanglement Witnesses

Recall that the set of separable density matrices may be expressed in the gener-
alized Gell-Mann basis as the region Sy, 4, € R¥~! lying on a hyperplane of R%
corresponding to Hermitian matrices with trace 1. We may extend the notion of
separability to all Hermitian matrices by defining the Hermitian matrix p to be
separable if there exists a separable density matrix ¢ with tr(c) = 1 such that

p=ao

for some real scalar « > 0. With this extended definition of separability, the set
of separable Hermitian matrices expressed in the generalized Gell-Mann basis is
simply the cone corresponding to Sy, 4, in R%. This cone is also a convex set.

Since the set of separable Hermitian matrices forms a convex set, for any Her-
mitian matrix p which is entangled (not separable), it should be possible to find
a hyperplane which separates p from the set of separable Hermitian matrices. At
this point, we should distinguish the different notions of separable matrices, as de-
scribed in Section 8.1, and the separation of two sets by means of a hyperplane.
Specifically, for an entangled Hermitian matrix p, there must exist a Hermitian
operator W and a real number « such that

(W, p) >«

and
(W,o) <a

for all separable Hermitian matrices o.

We may adjust the constant « until the hyperplane (W, x) = « is tangent to
set of separable Hermitian matrices. Since the matrix 0 is separable, we must have
(W,0) = 0 > a. Moreover, if (W,0) < 0 for some separable Hermitian matrix o,
then (W, z) is unbounded from below for separable Hermitian matrices x, since any
positive multiple of ¢ is also separable. Thus, it suffices to search for Hermitian
operators W such that

(W.p) >0

and
(W,o) <0

for all separable Hermitian matrices o. Such an operator is called an entanglement
witness.

Finally, we need to consider how to represent an entanglement witness in the
generalized Gell-Mann basis. Note that for any two distinct matrices G, G5 in the

45



Gell-Mann basis, we have (G, G5) = 0. This means that the generalized Gell-Mann
basis is an orthogonal basis with respect to the Hilbert-Schmidt inner product. We
may normalize the elements of the Gell-Mann basis to construct an orthonormal
basis. Given two d x d matrices A and B, the Hilbert-Schmidt inner product
(A, B) can be thought of as a dot product of vectors of length d? corresponding to
the entries of the matrices A and B. In other words, indexing the entries of A and
B as Aj, and Bjy, respectively,

(A,B) =) > AjBj.

d
j=1 k—1
Thus, given the vectors a, b € R corresponding to the matrices A and B expressed
in the normalized generalized Gell-Mann basis, we have

(A, B) = a'b,

since a and b are real-valued vectors.

As a result, a hyperplane in the space of Hermitian matrices over the complex
number C will correspond exactly to a hyperplane in the real vector space R% using
the real-valued dot product as the inner product. Thus, given a vector p € RY
corresponding to an entangled Hermitian matrix expressed in the generalized Gell-
Mann basis, we can construct a corresponding hyperplane given by a vector w € RY
such that

wlp >0

and
wle <0

for all vectors z € R® in the convex cone corresponding to all separable Hermitian
matrices. We may also restrict our attention to the set of Hermitian matrices with
trace 1. In this case, the generalized Gell-Mann basis represents such matrices as
vectors in the real vector space RdQ_l, and an entanglement witness can be expressed
as a hyperplane given by a vector w € R¥~1 and a real scalar o € R such that

wip >«

for the vector p € R% -1 corresponding to the density matrix of an entangled quan-
tum state in H = H; ® Hs, and
wlx <

for all x € Sy, 4,-

If we so desire, we can also consider an entanglement witness for Hermitian
matrices corresponding to a hyperplane w € R¥~1. This yields an alternative
definition of entanglement witnesses, restricted to the set of Hermitian matrices
with trace 1, where an entanglement witness for the entangled density matrix p is
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Figure 8.2: Sy, 4, and an entangled state p separated by (W, z) = «

defined as a Hermitian operator W with tr(W) = 0 and a real scalar « such that
(W.p) > a

and

(W,o) < «

for all separable Hermitian matrices 0. We will use this alternative definition for
entanglement witnesses in our discussion. It should be noted that although we
will be using Hermitian matrices with complex entries in our notation, any actual
computation will be done in the normalized generalized Gell-Mann basis, using real
vectors from R%~!. Figure 8.2 illustrates an entanglement witness separating Sd, dy
and an entangled state.

8.4 Search Problems Related to Separability

By formulating entanglement witnesses as hyperplanes which separate points from
the convex set Sy, 4,, we may relate problem of searching for entanglement witnesses
to a number of other problems related to convex optimization. First, we shall
formally define the Quantum Separability Problem:

Definition 8.4.1 (Quantum Separability Problem). Given a density matriz p cor-
responding to a quantum state in H = Hy @ Ha and a precision 6 > 0, we either
assert that there exists a separable state o such that ||p — o|| < 0 or that there exists
an entangled state T such that ||p — 7| < 0.

Note that these two options are not mutually exclusive, and that a quantum
state which is sufficiently close to the boundary of Sy, 4, Will satisfy both statements.
This is necessary to ensure that the precision requirements for solving the Quantum
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Separability Problem remain bounded. This problem has been shown to be NP-
hard [Gur03].

In order to find a witness which can verify that a given state is separable, we need
to find a set of at least d? pure separable states such that o is a convex combination
of these states. In general, there is no efficient method to do this. However, we may
apply a basic algorithm derived from the definition of separability by considering
the set of pure separable states to precision §. Formally, such a set would simply
include sufficiently many pure separable states so that any pure separable state is
within 0 of an element of this set. Let {25 be the number of pure separable states
required to form such a set. Then, we may consider the (S}j) different ways of
selecting d? pure separable states. For each such subset, we need to check whether
o lies within the (d? — 1)-dimensional convex polytope formed by the convex hull
of these d? states. This can be checked by examining the position of o with respect
to each of the (d? — 2)-dimensional facets on the boundary of this polytope. Since
there are d? such facets, this task can be accomplished in poly(d?,log(1/d)) time,
giving a total run time of

(2;5 ) x poly(d”, log(1/9)).

In order to verify that a given state is entangled, we need to find an entanglement
witness W as defined in Section 8.3. Note that a density matrix 7 represents an
entangled state if and only if such an entanglement witness exists. Technically, we
may restrict our search to entanglement witnesses W with Hilbert-Schmidt norm
|W]| ;75 = tr(W?) = 1, since a positive scalar multiple of an entanglement witness
remains an entanglement witness. However, in order to formulate the search for
an entanglement witness as a search within a convex region, we will define our
entanglement witness search space as the (d? — 1)-dimensional unit ball

W= {AcCh*% AT = A tr(A) = 0,tr(A?) < 1}.

However, note that this verification process does not place the problem of deciding
whether a given state is entangled in the complexity class NP. This is because there
is no known polynomial-time process for verifying that the set of separable states
is separated from the entangled state by the witness.

Now, we can define the Entanglement Witness Problem:

Definition 8.4.2 (Entanglement Witness Problem). Given a density matriz p cor-
responding to a quantum state in H = Hy @ Ha and a precision 6 > 0, we either
assert that there exists a separable state o such that ||p — ol < 6 or we find an
operator W € W such that tr(Wo) < tr(Wp) + 0 for every o € Sa, a,-

Note that because of issues of precision, we are searching for an approximate en-

tanglement witness. In the case that our given state p is too close to the boundary of
Sdy.dy, 1t s permissible to return an incorrect answer. Also, finding a solution to the
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Figure 8.3: A convex set K with S(K,¢) and S(K, —0)

Entanglement Witness Problem also gives a solution to the Quantum Separability
Problem.

We may relate the Entanglement Witness Problem to a number of convex body
problems. Given a bounded convex set K, and some fixed parameter o > 0 we
define S(K,0) to be the union of all balls of radius § with centres belonging to
the set K. Conversely, we define S(K,—0) to be the union of the centres of all
balls of radius § which are completely contained in the set K. Figure 8.3 gives an
illustration of these three sets. We may define the following convex body problems:

Definition 8.4.3 (Weak Membership Problem). Given a rational vector p € R,
either assert that p € S(K,€), or assert that p & S(K, —¢).

Definition 8.4.4 (Weak Feasibility Problem). Given rational € > 0 either find a
vector y € S(K,€), or assert that S(K, —e€) is empty.

Definition 8.4.5 (Weak Optimization Problem). Given a rational vector ¢ € R"
and rational € > 0, either find a rational vector y € S(K, €) such that ¢’z < cTy+e
for every x € K, or assert that S(K, —e) is empty.

Definition 8.4.6 (Weak Separation Problem). Given a rational vector p € R"™ and
rational § > 0, either assert that p € S(K,6) or find a rational vector ¢ € R"™, with
lcll, =1 such that "z < c''p for every x € K.

We may also define strong versions of each of these problems by setting ¢ = 0
and S(K,¢) = S(K, —e€) = K. Furthermore, for quantum states, it may be more ap-
propriate to work with real algebraic numbers, rather than rational numbers, since
algebraic numbers are more convenient for the formal definition of these problems
as they relate to quantum states. The complexity of representing real numbers
within a given precision § using algebraic numbers is still O(log(1/6)). However,
from a practical standpoint, such a distinction is unimportant.

We may relate these convex body problems to problems related to quantum
state separability and entanglement using the fact that both the set of separable
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states Sy, 4, and the set of potential entanglement witnesses ¥V are convex. For a
given density matrix p corresponding to a quantum state in the Hilbert space H,
we can also define VW, to be the set of entanglement witnesses which verify that p
is an entangled state. If p is separable, we simply take W, = (.

The Weak Membership Problem is simply the Quantum Separability Problem
applied to the convex set K = S, 4,, while the Weak Separation Problem becomes
the Entanglement Witness Problem. The Weak Feasibility Problem applied to
K =W, is also equivalent to the Entanglement Witness Problem. However, these
reductions require the use of an oracle which can determine membership in Sy, 4,
and W, respectively. For example, verifying that a given Hermitian operator W is
an entanglement witness in W, also requires that we verify that (W, o) is bounded
by an appropriate constant for all o € &y, 4,. This either requires some structural
knowledge concerning Sg, 4, or some application of the Weak Optimization Problem.

50



Chapter 9

Finding Entanglement Witnesses

In this chapter, we will propose a deterministic algorithm for solving the Entan-
glement Witness Problem for a mixed quantum state, given in terms of a density
operator, p € H = H; ® Hs. This also gives us an algorithm for solving the Quan-
tum Separability Problem. These problems were described first in Section 8.4.
The algorithm we present will be an efficient reduction from the Weak Separation
Problem to the Weak Optimization Problem for &y, 4,, which will also give us an
algorithm for the Entanglement Witness Problem. Although this algorithm is only
polynomial-time relative to a Weak Optimization oracle, such an oracle may be
simulated by solving corresponding global optimization problems on functions over
2(dy + dy) — 4 variables.

9.1 Solving Separation via Optimization

In order to verify that a given Hermitian operator W € W is indeed an entanglement
witness for a given entangled state p, we need to produce a real value a such that
the hyperplane (W,z) = « separates the set of separable states Sy, 4, from the
state p. We should note that the inner product (A, B) we use here is the one
given by the dot product of the representations of A and B in R%~1 by using the
trace 0 elements of the Gell-Mann basis. In particular, the zero element of this
space in fact corresponds to the density matrix }ild corresponding to the maximally
mixed state. Although we will use retain the Hermitian matrix notation for all of
the states and operators, it should be understood that any all computations are
actually performed on real vectors in R,

We can achieve this verification by solving the related problem of finding the
maximum value of (W, o) for o € Sy, 4,, which, after taking precision considerations
into account, becomes an instance of the Weak Optimization Problem. This means
that we can use an oracle which solves the Weak Optimization Problem for the set
Say.4, in order to test whether a given operator W is in the set W,.
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In order to solve this optimization problem, note that (W, x) is a linear function,
and that we wish to optimize it over a convex region. This means that there will
exist a value of x which optimizes (W, z) on the boundary of the set Sy, 4,. In fact,
since Sy, 4, is the convex hull of the set of pure separable states on H; ® Ho, it is
sufficient to restrict our search to these states, since no convex combination of these
states will yield a better value of (W, x). Pure states on H; can be represented by
complex vectors of size d;. However, since pure states are restricted to vectors with
norm 1, and since pure states are unaffected by global phase factors, it is in fact
possible to parameterize a pure state on H; using d; — 1 complex numbers, or equiv-
alently, 2(d; — 1) real numbers. Similarly, pure states on Hs can be parameterized
by 2(ds — 1) real numbers, meaning that separable pure states on H = H; ® Ha
can be parameterized by 2(d; + dy) — 4 variables. This allows us to reduce the
problem of optimizing (W, x) on the set Sy, 4, to a global optimization problem on
a function with 2(d; + dg) — 4 variables. Although there are no universally efficient
techniques for this, there exist heuristic techniques that generally perform well. At
the worst case, we require {25 evaluations of (W, z), where Qs, defined in Section
8.4, is the number of pure separable states required to form d-net, where each pure
separable set is within ¢ of an element of the d-net. This gives us a complexity of

Qs x poly(d?,log(1/9)).

We now have an algorithm which solves the Weak Membership Problem with
respect to W,, as well as a method of verifying that there is indeed separation
between an entangled state p and Sy, 4, given an entanglement witness W € W,

9.2 Solving the Entanglement Witness Problem

Now, we consider the problem of solving the Entanglement Witness Problem using
an oracle which solves the Weak Optimization Problem for Sy, 4, Recall that
the Entanglement Witness Problem is essentially the Weak Membership Problem
applied to the set W,, and an algorithm for performing this task is given in Section
9.1. However, this alone will not give an efficient reduction from the Entanglement
Witness Problem to the Weak Optimization Problem. What we need is a method
by which we can take each guess W € W and use it to reduce our search space.
Otherwise, it would be necessary to perform a complete search of set W for potential
elements of W,. Fortunately, such a method exists, and for the rest of this chapter,
we will develop this algorithm and give a pseudocode description at the end of
Section 9.3. We begin by establishing the following Lemma:

Lemma 9.2.1. Suppose we have E € W, and W € W\W, for a given entangled
state p. Let ow € Sg,a, be the solution to the Weak Optimization Problem for
the function (W, x) over S4, 4,. Define C = (p — ow) — Projy,(p — ow). Then, if
(E,W) >0, then we also have (E,C) > 0.
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Proof. Since Projy, (p — ow) = (W, p — ow )W, we have
(E,C)=(E,p—ow)— (W,p—ow)(E,W).
Since I is an entanglement witness for p, and ow € Sy, 4,, We have
(E,p) > (E,ow) = (E,p—ow)>0.
Similarly, since W is not an entanglement witness, and oy is maximal, we have

(W,p—ow) <0

Thus, if (E,W) > 0, we have (E,C) > 0, as desired. O

This means that if we find a Hermitian operator W which is sufficiently close
to the set of entanglement witnesses W, so that (E, W) > 0 for all E € W,, the
we also get a cutting plane (C, x) = 0 which guarantees that the set W, lies on the
hemisphere given by (C,z) > 0. At this point, we need to find an initial vector W,
which satisfies (E, W;) > 0 for all E € W,, and we need to find a procedure for
taking all of the information about W, derived from a set of guesses and producing
a new guess W, which satisfies (E, Wj) > 0 for all E € W,.

For the initial vector, we will take W; = p/ ||p||. By construction, each element
E € W, is an entanglement witness for p, and thus (E,p) > (E,o) for each
o € S84, ,4,- In particular, o = éfd, which acts as the zero of the space of trace 1
Hermitian operators represented in the Gell-Mann basis, yields (F, o) = 0, giving
us (&, p) > 0 for all E € W,, as desired.

Finally, let us suppose that at some point during the algorithm, we are able to
restrict our search space using n relations of the form (C;, x) > ~;, where each C;
is obtained by use of Lemma 9.2.1. This gives us the search space

wr =wn (ﬁ{az : (Cy,x) > 7j}> .

Jj=1

Since each Cj satisfies (E,C;) > 0 for each E' € W,, any conic combination

W = Zn: )\jCj
j=1

where \; > 0 for each j = 1,...,n also satisfies (E,w) > 0. Any such point w
which also lies within YW would be a valid new guess.

It would be ideal to use the volumetric centre of the region W™ as the next
guess, since it would guarantee that each successive cut to the search region will
decrease its volume by one-half. However, in practice, the volumetric centre cannot
be computed efficiently in general. Instead, we will use the analytic centre, which
is close to the volumetric centre, but is much easier to compute.
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Given a set of n constraints (C},z) > +;, along with the constraint (z,z) <1,
which defines the ball W of potential entanglement witnesses, we define the analytic
centre w of the feasible region W™ to be the unique minimizer of the real convex
function

Fx) = —log (1 — (z, 7)) — Zlog ({Cj2) =),

called the logarithmic barrier function, in the region W™. Observe that F(x)
approaches infinity when z approaches the boundary of W™, as some constraint
bounding W will near equality. We may also show that w is a conic combination
of the vectors C; by solving VF(w) = 0, which gives us

1 — (W, w) & C;

Given that w must satisfy all of the constraints which define W, the coefficients

1 —(w,w)
2((Cj,w) =)

must be non-negative, meaning that Lemma 9.2.1 can be applied.

9.3 Modified Atkinson-Vaidya Algorithm

Atkinson and Vaidya [AV95] give an algorithm which solves the Weak Membership
Problem for a bounded convex set K, given an oracle which takes a given input
point =, and either asserts that x € K, within precision, or finds a hyperplane
which separates x and K. This algorithm uses the analytic centre of the current
bounding constraints, called cutting planes, as a test point at each iteration of the
search. In Section 9.2, we established an algorithm which exactly implements such
an oracle for the set W, for a given quantum state expressed as a density matrix
p € H = "H; ® Hy, with the assumption that the given test point satisfies the
preconditions of Lemma 9.2.1. Fortunately, we also established that the analytic
centre of the constraints defining W™ do indeed satisfy these preconditions. The
Atkinson-Vaidya algorithm is efficient with respect to the oracle, in that for a convex
set in a d-dimensional space, it requires poly(d?, log(1/d)) calls to the oracle, and
poly(d?,1log(1/§)) arithmetic operations for each iteration associated with an oracle
call. The key to achieving this efficient performance is in the management of the
cutting planes which bound the search space. Rather than using every cutting plane
generated by the oracle, the algorithm occasionally discards cutting planes which
are not as useful as the others, in order to place a bound on the total number of
cutting planes. Also, instead of using the separating hyperplanes generated by the
oracle, which go through the test point x and the origin 0, the algorithm relaxes
the cutting plane by shifting it away from the convex set, producing a shallow cut.
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The shallowness of the cut is determined by a parameter k.

However, the Atkinson-Vaidya algorithm, as presented in [AV95], assumes that
the region of interest containing the convex set K is bounded within a box, defined
using hyperplanes expressed as linear constraints. In our application, the set W, is
bounded by the unit hypersphere in Rd2_1, which gives us one quadratic constraint.
Thus, it is necessary to modify the Atkinson-Vaidya algorithm to work with a
quadratic constraint.

To initialize the algorithm, recall that the first test point of the algorithm is the
vector Wi = p/ ||p||. This yields the first cutting plane (C},x) > 0, where

01 - (p - JWl) - PI‘Ole (p - JW1)7

recalling that oy, is the value which maximizes the function (Wp,z) over the set
of separable states Sy, 4, We normalize C) so that ||Cy]| = 1, and set our initial

search space
WO =wn{z: (Cy,z) >0}

We can also explicitly find the analytic centre w of this region as Cy/y/3. For
the purposes of describing this algorithm, we will say that the procedure Find
Cutting Plane takes a vector W and a precision 0 and returns a normalized
vector C' corresponding to the cutting plane separating W from W,

Next, recall the definition of the analytic centre w as the unique value which
minimizes the function

F(z) = —log (1 — (z,2)) — Zlog ({Cj, ) =)

in the region W or equivalently, the fixed point solution to the equation

1 — {w,w) « C;
W = .

In order to approximate the analytic centre at a given iteration, we use Newton’s
method, using the previous analytic centre as the initial value. The update step
for Newton’s method assigns

Whnew < Wold — <v2F(W0ld))—IVF<W0ld)'

To determine whether a given approximate analytic centre is sufficiently close to
the true analytic centre, we use the function

Nz) = /VF(z)T(V2F (x)) 'V F(z).

Note that since VF(w) = 0, we also have A\(w) = 0. Therefore, we will give an
upper bound for A(z) to check whether the current Newton iterate is sufficiently
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close. This upper bound is given as a parameter \y to the algorithm. Also, in order
to ensure that we can detect a situation where the feasible region is too small with
respect to the precision o, we continue iterations of Newton’s method until

1—\3/1—3A<W)§5L_'_5‘

We will use the name Update Analytic Centre to indicate the procedure of up-
dating the analytic centre given an updated set of cutting planes by using Newton’s
Method.

£

S

Finally, we describe how the Atkinson-Vaidya algorithm manages the set of
cutting planes. This is done by considering the variational quantities

(G (PF@)G)
i = 2
(Cj,w) =)
for each cutting plane relation (C},z) > 7;, where w is the current approximate

analytic centre. This quantity is related to the distance from the hyperplane
(C;,x) =, to the Hessian ellipsoid,

E={z eR" " (z—w, (V2F(w) 'z —w)) <1},

which is properly contained in the feasible region W . The smaller s; is, the
farther it is from £. If s; is smaller than a threshold sg, given as a parameter to
the algorithm, then its effect on the feasible region W is small, and is discarded.
However, checking s; is a computationally expensive task, and performing this
check for each cutting plane at each iteration of the algorithm makes the algorithm
inefficient. Atkinson and Vaidya give a simple test which will trigger a check of o;
for a particular cutting plane (C},z) > ~;. For each hyperplane (C;,x) = v;, we
associate with it a value ;, which is initialized to (C},w) —~;, which is the distance
from the current approximate analytic centre to the hyperplane. At each iteration,
we check the ratio
o) = 2
R

using the current value of w for each hyperplane. If the distance between some
hyperplane and the analytic centre has more than doubled, that is, if

max p;(w) > 2,
j

then we check s; for each hyperplane to see if there is one we can discard. If there
is not, we reset the values x; which triggered the check.

We now present pseudocode for the whole Modified Atkinson-Vaidya algorithm.
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Modified Atkinson-Vaidya Algorithm

1. Input: precision § > 0
2. Parameters: sg, ko, v

3. Initialize:

e (1 —Find Cutting Plane on p with precision g

ize: G
e Normalize: C] «— oA
o W — Q

V3

1
.I{1:7§

4. If max; p;(w) > 2:

(a) If there is an index j such that p;(w) > 2 and s;(w) < so:
e Discard the hyperplane (C;, x) > v;

e Decrement n < n — 1 and re-index remaining hyperplanes
e w «—Update Analytic Centre

(b) Else:

e For each hyperplane such that p;(w) > 2: Reset r; «— (Cj,w) — v,

Increment n «—n + 1
C, < Find Cutting Plane on w with precision g

)
)
(c) (If Find Cutting Plane returns £ € W, instead then HALT)
(d) Find ~, so that

(Cn, (V?F(w)) ' C)

((Cnyw) = 7)*

(e) Add (C,,x) >, to the list of cutting planes
(f) w <+ Update Analytic Centre
(&) fn = (C,w) =M

_ 2.

6. Stopping Condition: If n > vd?(1/§) for some parameter v, (too many hy-

perplanes), or if the volume of an ellipsoid containing the feasible region is
too small:

o Assert: p € S(S4.a,,0) (p is within distance 0 of the set of separable
states)

o HAILT
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7. Go to Step 4.

Atkinson and Vaidya show that given proper parameters, this procedure is a
polynomial-time algorithm with respect to the oracle Find Cutting Plane. Recall
that this oracle solves a global optimization problem on the set Sy, 4, to precision ¢
and, in the worst case, checks ()5 pure separable states for optimality. This means
that the Modified Atkinson-Vaidya Algorithm can solve the Entanglement Witness
Problem in

Qs x poly(d?,1og(1/6))

steps. We can compare this to the natural algorithm which arises from applying
the definition of separability, which runs in

(25) x poly(d2,log(1/8)) = O (Qﬁf)

steps. Finally, we can also give an estimate for €25 based on a volumetric argument,
where we estimate the volume of the set of pure separable states on the boundary
of S4,.4, and divide it by the volume of a hypersphere of diameter §. This yields

O(dy +d2)
w5
o

which grows exponentially with the dimension of the Hilbert spaces H; and Ho.
Thus, the Modified Atkinson-Vaidya algorithm represents an exponential improve-
ment on the order of
19) <Qd2_1>
d

over the basic search algorithm. Although this still does not yield an efficient
algorithm in general, an improvement of this magnitude means that for small, but
non-trivial values of d; and ds, this Entanglement Witness Search Algorithm can
be of assistance in exploring the properties of separable and entangled states.
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Part 111

Classical Post-processing for
Approximate QFT
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Chapter 10

Introduction

Quantum phase estimation is the cornerstone of many of the quantum algorithms
that have been discovered to date. In phase estimation, we are given a unitary
operator, U, with the ability to perform the controlled-U operation as needed.
Then, given an eigenvector of U, we are to estimate the corresponding eigenvalue.
The standard algorithm for the quantum phase estimation algorithm makes use of
the Quantum Fourier Transform (QFT), which is a quantum circuit that performs
a Fourier transform on the amplitudes of a given quantum register.

The idea of using an approximate version of the QFT was first introduced
by Coppersmith in 1994 [Cop94]. Barenco, et al. [BEST96] showed that the
logarithmic-depth Approzimate Quantum Fourier Transform (AQFT) could be
used in quantum phase estimation by repeating the estimation procedure poly-
nomially many times, while a more recent analysis by Cheung [Che03] showed that
this was unnecessary, as logarithmic-depth AQFT is asymptotically as effective
as the full QFT circuit for phase estimation problems. However, there remained
the question of how efficient a quantum phase estimation algorithm based on the
constant-depth approximate QFT could be.

With QFT-based phase estimation, the final measured result of the quantum
algorithm is directly correlated to the desired phase. This is also true with the
logarithmic-depth approximate QFT. However with low-depth AQFT, the phase
estimation procedure will not naturally yield direct answers, so there must be some
amount of classical post-processing involved. In Kitaev’s phase estimation algo-
rithm [Kit96], which is equivalent to a regular phase estimation algorithm using
a constant-depth approximate QFT, O(n) iterations of the approximate QFT are
used to naturally extract the required information, by use of the Chernoff bound.

However, with more involved post-processing, it may be possible to extract the
same information with fewer iterations. In Part III of this thesis, we will explore
possible techniques to improve the classical post-processing of the results of phase
estimation algorithms using low-depth AQFT.
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10.1 Summary of Results

We consider in general the problem of retrieving a phase estimate from the final
measurement results of a quantum circuit. By constructing the appropriate like-
lihood function L, which maps possible phase estimates to the probability of ob-
taining the already-determined final measurement results, we can apply maximum
likelihood techniques to obtain good estimates for the original phase.

In the case of n-bit quantum phase estimation, the resulting likelihood function
will have at least 2" individual local maxima, and therefore it is infeasible to search
for a maximum likelihood estimate using direct analysis. In the simplest version of
the AQFT, where no phase rotations are performed at all, resulting in the Walsh-
Hadamard operation. In general, where the AQFT effects a phase rotation of r, on
qubit &, the likelihood function will be of the form

L(z) = H (cos® m(2F o —ry))™ (sin®r(2"7" — rk))sk :

where parameters ¢; and s are determined by the measurement results of the phase
estimation circuit. We develop an algorithm which attempts to find a maximum
likelihood estimate by bounding the likelihood function by a series of step functions.
This algorithm is described in more detail in Chapter 12. Unfortunately, we have
not been able to obtain a rigorous analysis of the performance of our algorithm.
However, preliminary trials with an implementation of the algorithm suggest that
the algorithm does not perform poorly in instances where other efficient algorithms
are known. In addition, this classical post-processing algorithm applies to many
other situations, and has the potential to perform efficiently in situations where
other algorithms are not currently known to work.

Chapter 11 will discuss the QFT and the AQFT in more detail, including pre-
vious results related to their use in quantum phase estimation. Chapter 12 will
present some techniques which may be used to evaluate the likelihood function
L(z), and will include the full description of an algorithm which implements these
techniques. Chapter 13 will present the experimental results of one specific imple-
mentation of the algorithm discussed in Chapter 12, and finally, Chapter 14 will
present some analysis of the running time of various components of the algorithm,
and indicate further directions for future research in this area.
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Chapter 11

The Approximate Quantum
Fourier Transform

The approximate quantum Fourier transform arises naturally from the quantum
Fourier transform as a trade-off between accuracy and speed. In the simplest form,
as introduced by Coppersmith [Cop94], rotation gates in the QFT that have little
effect on the final result can simply be ignored, with the hope that the improvement
in the complexity of the circuit offsets the effect of removing these gates. A more
complete analysis and further generalizations on the AQFT were explored by Che-
ung [Che03]. In this chapter, we will introduce quantum phase estimation and the
QFT, and develop a number of variations on the idea of an approximate QFT in
the context of being a replacement for the full QFT in a quantum phase estimation
process.

11.1 Quantum Phase Estimation and QFT

In the quantum eigenvalue estimation problem, we are presented with a unitary
operator, U, which acts on an n-qubit register, and an eigenstate, |u) of U, which
is an n-qubit register containing an eigenvector of U. The unitary operator is given
as an arbitrary number of copies of a black-box quantum circuit implementing the
controlled-U operation, which maps

c-U = |0)])) + |0) )
and

U (DY) = 1) @ (Ufy)).

Given U in this form, and an eigenstate |u), the quantum eigenvalue estimation
problem asks for the corresponding eigenvalue A satisfying Ulu) = A|u). Because U
is unitary, A will be of the form A = e*™* for some value x € [0,1), and the eigen-
value estimation problem can be solved by estimating x. The eigenvalue estimation
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Figure 11.1: A quantum circuit that performs a quantum Fourier transform

problem, in turn, can be transformed into an instance of the more general quantum
phase estimation problem, which is the problem of estimating = given the state

2" —1
1

= Z 627rik$/2” |]€>
Y k=0

Quantum phase estimation has numerous applications in terms of quantum algo-
rithms. It is a component in Shor’s polynomial-time quantum factoring algorithm,
as well as polynomial-time algorithms for solving discrete logarithms. Quantum
phase estimation is also the main strategy for solving a class of problems known
as the Abelian Hidden Subgroup Problem, in which we are given a Abelian group
G and a quantum circuit which has the ability to distinguish different cosets of a
fixed subgroup K, and are asked to find a set of generators for K.

The standard strategy for solving the quantum phase estimation problem makes
use of the quantum Fourier transform. The QFT is an operation which effectively
performs a discrete Fourier transform on the individual amplitudes of a set of basis
states. In the specific case of quantum phase estimation, the Fourier transform
in question will act on the 2" computational basis states of an n-qubit register,
mapping a given computation basis state |j)for 0 < j < 2™ to

2" —1

. 1 1] n
QFTI)) = = > eI,
k=0

In order to show that the QFT represents a valid quantum unitary operation, we
can simply demonstrate a quantum circuit that performs the QFT. Such a circuit
is given in Figure 11.1.

In this circuit, the input register encodes the n-qubit computational basis state
|z), setting each individual qubit |zx) according to the binary expansion:

|z) = [T172 ... 1) = |71) @ |T2) ® -+ @ [7).
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Figure 11.2: Solving the eigenvalue estimation problem using phase estimation

The gates labelled H are Hadamard gates, which map H|0) = \%UO) + |1)) and
H|1) = \%(\O) — |1)), and the gates labelled R,, are phase rotation gates, which
map R, (a|0)+3|1)) = a|0) +e2™/2" 3|1). Note that in the QFT circuit, each phase
rotation R, is controlled by another qubit, |zx). This effectively makes R, a data-
dependent phase rotation. That is, given a phase rotation gate R,, controlled by
qubit |z1,), the gate effectively maps R,,(a|0)+3|1)) = a|0) +e>™ /2" 3]1). Finally,
note that the fractions 0.z1x5 ... given in the output states of the QFT are binary
expansions.

In order to solve the quantum eigenvalue estimation problem, we construct an
instance of the quantum phase estimation problem by applying the circuit given
in Figure 11.2. Note that the controlled-U 2 operation can be implemented simply
as 2 applications of the given black-box controlled-U circuit. However, in most
useful applications of quantum eigenvalue estimation, efficient implementations of
controlled-U?" are also available.

Now, assume for the time being that in the quantum phase estimation problem,
the desired phase \ is of the form \ = €?™* where x is an exact binary fraction of
the form x = 0.x1x5 ... x,, that is, x is an integer multiple of 1/2". In this case,
the qubits that are output by the circuit in Figure 11.2 are

|0> + e2m‘(2n—km)|1> — |0> + e27rz’(0.a:n,k+1...a:n)|1>'

This is precisely the output of the QFT circuit in Figure 11.1 with the order of
qubits at the output reversed. In other words, by applying the inverse of the QFT
to the output of Figure 11.2, we obtain the state |x) exactly. The inverse QFT is
shown in Figure 11.3.

In the general case, where x is no longer restricted to being an exact binary
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Figure 11.3: Solving the quantum phase estimation problem using Inverse QFT

fraction, the phase estimation algorithm no longer gives an exact answer. However,
with high probability, the output of the algorithm will be a binary fraction which
is close to the value of x. Specifically, it can be shown that given the unitary
operator U, the eigenstate |u) and the corresponding eigenvalue A = e*™@ where
x € [0,1), the estimate & obtained using the quantum phase estimation algorithm
has at least a % ~ 0.4053 probability of being the nearest binary fraction estimate,
so that |# — x| < 2771, Also, the phase estimation algorithm has at least a
% ~ (0.8106 probability of being one of the two nearest binary fraction estimates,
with |2 —xz| < 27". Obtaining the correct estimate with high probability is a simple
matter of repeating the algorithm an appropriate number of times.

11.2 Variations on the QFT

There are a number of variations on the basic concept of the QFT which are po-
tentially useful in either the analysis or practical implementation of quantum phase
estimation. One important observation was made by Griffiths and Niu [GN96], who
introduced a semi-classical version of the inverse quantum Fourier transform.

In order to construct the semi-classical inverse QFT, consider the output regis-
ter of the inverse QFT in Figure 11.3, which consists of qubits |zy) for 1 < k < n.
Observe that in the first half of the phase estimation algorithm, shown in Figure
11.2, the preparation of this qubit in the state |0) + 627”'(2’%1”“)]1} requires only the
eigenstate, and does not require any other qubit in the input register. Further-
more, quantum control of rotation gates followed immediately by measurement in
the computation basis can be replaced by measurement followed by classical con-
trol. For example, the qubit |z,) can be measured immediately after the Hadamard
operation is applied, and we may then conditionally apply the subsequent rotation
gates for the other qubits in the output register based on the result of this measure-
ment. In this way, if we start with the qubit |z,) and proceed in reverse order down
to |x1), we may construct an alternative quantum phase estimation algorithm com-
posed of circuits as shown in Figure 11.4. In this diagram, R represents the phase
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Figure 11.4: Quantum circuit for an individual qubit in phase estimation
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Figure 11.5: The Approximate Quantum Fourier Transform AQFT,,

rotation gate which applies a phase shift of e2™(0-0%k+1--2n) = The amount of phase
shift is obtained by using the results from the measurements of the higher-order
qubits.

11.3 Approximate QFT

The simplest form of approximate QFT is the original scheme by Coppersmith
[Cop94], which simply removes some of the controlled rotation gates from the phase
estimation algorithm. For an n-qubit register, the quantum phase estimation algo-
rithm using the full QFT requires phase shifts as small as €>™/?". However these
phase rotation gates have only a small effect on the final outcome, and so replacing
the QFT with an approximate QFT has the potential to improve the efficiency of
the quantum phase estimation algorithm at the cost of losing some accuracy.

We can now define the approximate QFT, parametrized by an integer m, 1 <
m < n as the circuit which results from removing any controlled phase rotation
gates Ry with £ > m. A diagram of such a circuit is given in Figure 11.5.

Observe that the circuit AQFT, is equivalent to the full QFT circuit, as no phase
rotation gates are removed. On the other extreme, AQFT) is simply the Hadamard
transform on an n-qubit register. Since each successive approximate QFT is a
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poorer approximation, with more phase rotation gates removed, the probability
of the output of the phase estimation algorithm using AQFT,, decreases as m
decreases. However, it is shown in [Che03] that if m > (log, n) + 2, the probability
P of one iteration of the quantum phase estimation algorithm finding the nearest
binary fraction estimate of o, where A = ¢*™* is the unknown eigenvalue, satisfies

P>4 1+m 4 1
w2 4n  4An?2 T w2 An’

In particular, this implies that the difference between phase estimation using the
full QFT and phase estimation using a logarithmic-depth AQFT circuit becomes
negligible as n becomes large.

11.4 Generalized AQFT

We may also set a semi-classical version of the AQFT-based quantum phase esti-
mation algorithm. In this case, the rotation gate R as represented in Figure 11.4
is adjusted accordingly. Specifically, for qubit |zx), the rotation gate R applies a
phase shift of e2™(0-02k+1--Titm—1) ' where we define x; = 0 when j > n. Alternatively,
we may think of this phase shift as an approximation for the phase shift that would
be applied at this point by the full QFT-based phase estimation algorithm, which
would be ¢?7(0-9%k11--2n)  However, this phase shift is itself simply an approximation
to an ideal phase shift, which is ™" '#=(0-2x) ' where ;, is the correct k-th bit of
the nearest binary fraction estimate of z. If we could apply the ideal phase shift
in the phase estimation algorithm, we would then obtain the correct answer with
probability 1. We can therefore ultimately think of AQFT-based phase estimation
as a family of approximations to this ideal process.

If we view the rotation gate in each individual circuit of the semi-classical phase
estimation procedure as an estimate for the ideal phase shift amount, then we may
generalize the AQFT-based procedure by simply applying a different estimation
procedure. In particular, the individual circuits for one particular bit of the final
answer x may be performed multiple times in order to refine our estimate of the
ideal phase shift amount before proceeding to the next bit. Also, if implementation
details allow, the phase shift applied by the rotation gate R can be selected from
a continuous range. As long as individual phase shifts obtained for the individual
circuits are not worse approximations for the ideal phase shift than those given by
the logarithmic-depth AQFT (with m = log, n + 2), the same lower-bound result
for the success probability applies.

We may also calculate the probability of obtaining the correct bit x; given
the phase shift amount applied. In an individual circuit for computing the bit
21, we begin by constructing the state |0) 4+ e272*"'#)|1). Note that with the ideal
phase shift amount of e2™2*'#=02%) applying R~ yields the state |0)+e27(0-2)[1),
Applying the Hadamard operation H on this state yields |zy), which gives us the
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Figure 11.6: One iteration of Kitaev’s phase estimation algorithm

correct result x; with certainty upon measurement in the computational basis.
With an approximation to the ideal phase shift amount, applying R~! yields the
state |0) + e (-7x+%)|1) for some amount &y, and the correct result a;, is measured
with probability cos? 7.

The success probability of the phase estimation algorithm will be the combined
product of these individual success probabilities. That is, given the offsets 9, cor-
responding to each qubit |zx) in the phase estimation procedure, the total success
probability will be

n
P = HC082 0.
k=1

11.5 Low-depth AQFT

A natural question to explore next is lower-depth AQFT, using the circuit AQFT,
with parameter m < log,n + 2. In particular, constant-depth AQFT may be of
particular interest in addressing concerns regarding physical implementation, as
only a fixed set of rotation gates may be available or efficiently constructed.

The immediate problem with low-depth AQFT is that with less accurate phase
rotation corrections, the success probability P can become quite low. However, the
success probability is calculated under the assumption that the phase estimate x
is given directly as the measurement result of the algorithm. Kitaev [Kit96] gives
an algorithm which in effect uses the circuit AQFT,, which has no phase rotation
correction. Kitaev’s algorithm repeats this procedure, which is illustrated in Figure
11.6, O(logn) times. Rather than using the measurement results for any particular
bit directly, the ratio of the number of times |0) is measured and the number of
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times |1) is measured is used to estimate the offset d;. Since no rotation gates
are used for phase correction in this algorithm, these offsets essentially estimate
21y — |28tz | for 1 < k < n. If these estimates are sufficiently consistent with
each other, they may be combined into an estimate of x.

In the next chapter, we will explore alternatives to Kitaev’s procedure for using
low-depth AQFT in quantum phase estimation.

69



Chapter 12

Classical Post-processing

In this chapter, we will develop algorithmic techniques for working with the likeli-
hood functions which arise from AQFT-based quantum phase estimation. We will
also present a complete algorithm for finding local maxima for such functions.

12.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a statistical method for finding the value of a
set of parameters from a given set of data generated by those parameters. It is
a widely-used method as the estimates produced have good statistical properties.
In the context of quantum phase estimation, maximum likelihood estimation is
a method for finding likely input parameters to a quantum circuit given a set of
measurement data from that circuit.

The likelihood of an event causing a given specific observed outcome is simply
the probability of the outcome being observed given the occurrence of that event.
However, likelihood differs from simple probability in that while probability is con-
cerned with assigning a distribution to the possible future outcomes of one given
event, likelihood considers the reverse, where a fixed outcome is already known,
and we are concerned with the set of possible events which could have occurred to
produce the observed outcome. Given an outcome, the likelihoods of the possible
events which could have produced the outcome do not need to sum to 1.

Specifically, given a procedure which depends on an unknown parameter, z,
and a set of measurement results from that procedure, we may define a function
L(z) which gives the likelihood of any particular value of the parameter x yielding
the observed outcome. The maximum likelihood estimate & is then defined as
the value of  which maximizes the likelihood function L(z). Furthermore, the
correct parameter z is likely to be found in a region where L(x) is relatively large
compared to the global maximum. Thus, searching for the correct parameter x can
be accomplished by searching for parameters with high values of L(z).
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Unfortunately, in general, likelihood functions can be difficult to work with
analytically. We will develop techniques for handling the likelihood functions which
arise from the quantum phase estimation algorithm.

12.2 A Likelihood Function for Phase Estimation

As we observed with Kitaev’s phase estimation procedure, even though phase rota-
tion corrections are not being applied before measurement, some information about
the phase 2¥'z — |28z can still be obtained with repetition. The maximum
likelihood method represents a method of extracting this information with strong
asymptotic statistical properties, in that it is optimally unbiased, meaning that
asymptotically, no other unbiased estimator gives a lower expected error. However,
it does require that the problem of finding input parameters which maximize or
nearly maximize the likelihood function be computationally feasible.

We will now derive a formula for the likelihood function L(z) which arises
from the quantum phase estimation algorithm. In general, given a qubit in the
state |0) +e?™|1), the process of performing a Hadamard gate and a measurement
in the computational basis will yield the measurement result |0) with probability
cos? 70, and the result |1) with probability sin? 6. If the phase rotation gate in
the individual circuit given in Figure 11.4 performs a phase shift of e*™* for some
constant 7, then in the individual phase estimation circuit for the bit xj, the
probability of measuring |0) is cos? 7(2*"'z — r;,) and the probability of measuring
1) is sin® (212 —7r;). We can now compute the likelihood function corresponding
to the process of performing this individual circuit a number of times. Suppose that
in the course of repeating this measurement, we obtain |0) as the result ¢ times, and
1) as the result s; times. The likelihood function for this measurement result will
be the probability of obtaining it, given the input phase x as a variable parameter,
which is

(Ck : 8k> (cos? (2" 'z — )" (sin*r (2" 'z — )"
k
As we are only concerned with finding maxima, we may ignore the constant factor.
We therefore define the likelihood function for the measurement results for bit
as

fr(x) = (0052 (28 e — Tk))ck (sin2 (28 e — rk))sk

Then the likelihood function for obtaining all of the measurement results for the
entire phase estimation procedure will be

Applying the maximum likelihood method is now a search for maximum values
of the likelihood function L(z). Note that as this function will have at least 2"
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Figure 12.1: A typical likelihood function for phase estimation, with n =5

distinct roots, and therefore as many local maxima, an analytical search using
calculus will not be efficient. Since it is likely that with this method, the correct
phase will be close to one of the largest maxima of this function, we would like to
be able to produce a list of the largest local maxima of this function in descending
order. This procedure will work as long as the task of producing the list is not too
inefficient, and as long as the correct answer is not too far from the top of the list.

12.3 Algorithmic Approach

The general approach that we will take in order to search for maxima is to construct
a step function which bounds the likelihood function L(z) from above, and then to
continually refine this bounding function until we find a maximum. A step function
can be represented simply as a list of intervals subdividing the range [0, 1], with a
value associated with each interval. In our approach, we may refine a bounding step
function by selecting the highest step and attempting to refine that upper bound,
until we find that the highest step is a tight bound for the function. At that point,
the interval corresponding to that step contains the global maximum. After finding
the global maximum, we may continue this refinement process to find other local
maxima in order of size.

In order to construct these step functions, we introduce the idea of subfunctions
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Figure 12.2: A likelihood function L(x) bounded by a step function

of the likelihood function. We define the subfunction L;(x) as

Li(x) = [ [ fu(e).

Given an interval bounded by two consecutive roots of L;(z), it is easy to find the
single maximum within that interval. We will also define the subfunction S;(z) as
the product of the remainder of the terms,

Site)= [T fulw).

k=j+1

With the bound on L;(x) on a given interval, and a global bound for S;(x), we
can form a bound for the likelihood function L(z) = L;(x)S;(z) on that interval.
In order to refine an estimate, in the form of an interval, and an upper bound, we
simply consider the intervals and bounds given by the next indexed subfunction,
Lj(z).

One final observation we can make is that the function S;(x) is of the same
general form as the likelihood functions, L(z). Specifically, S;(277x) could itself be
a likelihood function of the same form as L(x). In the refinement procedure where
a step in the step function corresponding to the subfunction L;(x) is replaced by
several steps which refine the upper bound on L(z), instead of simply finding a
more refined estimate using a different subfunction L;(x), we can take a step
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function which forms an upper bound for S;(x) and multiply it with the maximum
value of L;(x) on the original interval. This forms a step function which bounds
L(z) = Lj(z)S;(z) on the original interval.

12.4 A Post-processing Algorithm

In our algorithm, we will represent step functions as a list of individual steps,
consisting of an interval, and a value. We will store one more piece of information
with each step. In the algorithm, each step arises from an upper bound for some
subfunction L;(x). We will store this value j with each step.

Before we begin the post-processing algorithm, we need to find bounds for the
subfunctions S;(x). To do this, we can simply apply the post-processing algorithm
to the function S;(277x), as observed Section 12.3. Note that the functions Sy.(27*x)
for j < k < n form the subfunctions of S;(277z). Thus, as long as we start with
the subfunction S, (z) and work down to S;(z) as we compute bounds, we will not
find a situation where we depend on a bound for a subfunction that we have not
yet computed.

We first present this basic interval update procedure, which uses upper bounds
that have been derived for the subfunctions S;(x), but does not use any step func-
tion bounds for the subfunctions.

Basic Interval Update Procedure

1. Input: alikelihood function L(z), and a step, (1, p, j) in the form of an interval
I, a value p, and an index j

2. Output: a set s, of steps that will replace (I, p, j) in the step function

3. Precondition: Either I = [a,b] where a and b are consecutive roots of L;(z)
or I =R, p=1,and L;(z) = 1.

4. Precondition: L(z) < p forall x € I

5. f I =R:

e If L; 1(x) has no roots:

— Return s = {(R, 1,7 + 1)} and exit
e Else let a be any root of L;4(x)
e Set b—a+1

6. Initialize: s « ()
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7. Let a =1 <ry <...<r, = b be the set of roots of L;;(z) in the interval
[a, 0]

8. For each interval [ry, 1] with 1 < k < t:

e Set g1 to be the maximum value of L;;(z) on the interval [r, 7441]
e Set go < bound[j + 1], the upper bound for S;;;(z)
e Add the step ([rg, rrs1], ¢1G2,J + 1) to the set s

9. Return: s, the set of steps that will replace (I, p,j) in the step function

To compute the subfunction bounds, we use the basic interval update procedure,
being careful to compute the subfunctions starting with S,,_;(z) down to Sp(x), so
that upper bounds for S;(z) required in Step 8 will always be available. Note that
the number of times that the basic interval update function is run is a parameter to
the entire post-processing algorithm. We will discuss various strategies for setting
this parameter in Chapter 14.

Compute Subfunction Bounds

1. Initialize: Set bound|n| « 1

2. For each subfunction S;(z) with n > 5 > 0, starting at j = n — 1 down to
7 =0

e Initialize: stepfunction[j] — {(R,1,0)}

Repeat some fixed number of times:
— Find (I, p, k) € stepfunction[j] such that p is maximal
— If k = j and the bound S;(277z) < p on z € I is tight:
« Exit loop (since p is a tight bound for all of S;(z))

— Run: Basic Interval Update Function with input function
S;(2792) and input step (I,p, k)

Find (I,p, k) € stepfunction|j] such that p is maximal

Set bound[j] < p

For each (I,p, k) € stepfunction[j] with I = [a, b)]:

— Set a «— 277a
— Set b« 277p

Postcondition: step function|j] describes a step function bounding S;(z)
from above on an interval of size 277

5



e Optional: Continue to repeat the Basic Interval Update Function on
a copy of step function[j] to improve the step bounds (possibly including
bound|[j]) without increasing the number of steps in step function|j]

3. Postcondition: The two lists bound[0..n| and stepfunction|0..n — 1] are ini-
tialized

Note that in addition to computing a global bound for each subfunction S;(z),
we also construct a step function bound for each subfunction. We will use these
step function bounds in our enhanced interval update procedure below. Note that
we have the option to improve the step bounds for a particular subfunction S;(x)
without adding extra steps to that bound. In particular, we can use this strategy
to build a step function with better bounds, but without adding extra steps in the
enhanced interval update procedure.

Enhanced Interval Update Procedure

1. Input: a step, (I,p,j) in the form of an interval, I, a value p, and an index j
2. Output: a set, s, of steps that will replace (I, p, ) in the step function

3. Precondition: Lists bound[0..n] and step function[0..n — 1] have been initial-
ized

4. Precondition: Either I = [a,b] where a and b are consecutive roots of L;(z)
or =R, p=1, and Lj(x) = 1.

5. Precondition: L(z) < p for all x € [
6. If I =R:
o If L;,1(x) has no roots:
— Return s = {(R, 1, + 1)} and exit

e Else let a be any root of L;4(x)

e Setb«—a+1

7. Initialize: s < ()
8. Set m to be the maximum value of L;(z) on the interval /

9. For each interval (J, q, k) € stepfunction|j]:

e For each | € Z such that I (0 (& + J) # 0:
— Add the step (I (& + J),mq,j + k) to the set s

76



10. Return: s, the set of steps that will replace (I, p, 7) in the step function

Next, we will describe the final post-processing algorithm.

Classical Post-processing Algorithm

1. Input: A likelihood function, L(z) corresponding to measurement results from
the quantum phase estimation algorithm

2. Run: Compute Subfunction Bounds
3. Initialize: s — {(R,1,0)}

4. Initialize: maxlist < (), which will be a list of intervals containing global
maxima

5. Repeat until mazlist contains the desired interval, or too many intervals:

e Find (I,p,j) € s such that p is maximal

— If j = n and the bound L(z) < p is tight on interval I:
x Add (I,p,7) to maxlist
— If j = n and the bound L(x) < p is not tight on interval I:

% Set p to be the maximum of L(z) on interval I in the step (I, p, j)
in the set s

—Ifj<n:
* Run: Enhanced Interval Update Function with input step
(Z,p,7)

6. Return: maxlist

We also have the option in the post-processing algorithm of taking every interval
with 7 = n that we find, rather than waiting for them to emerge in order. This
may be preferable in applications where verifying whether or not a given phase is
the correct one can be done very quickly.

12.5 Sample Algorithm Execution

In this section, we will walk through a sample run of the algorithm on the likelihood
function

L(z) = cos®(nz) sin?(27x) sin?(2%7x) sin? (2372 cos? (2*7x),
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Figure 12.3: A first step function bounding L(x)

with n = 5. In order to simplify the exposition, we will use the Basic Interval
Update Procedure, and we will set the subfunction bounds to the trivial values
bound[j] = 1, for each j. This will allow us to demonstrate the basic idea of
interval updating.

e Initialize: s — {(R,1,0)} and maxlist — ()

e (I,p,7) — (R,1,0) is maximal in s. We have j < n so we update this interval:

11]

— I =R, and L (z) = cos’*(mz) has aroot at = —3, so set [a,b] = [—3, 3

— —3 and 3 are the only roots of L;(z) in the interval [a, b], so we consider
the interval [—1,1]:

* U max;_i 1 Li(z) =1,and ¢ = 1

* We obtain the step ([—1,1],1,1)

— The set of steps replacing (R,1,0) is {([—3,3],1,1)}
e We replace (R, 1,0) in s to get s — {([—3,3],1,1)}
e (I,p,j) «— ([—%, %], 1,1) is maximal in s. We update this interval:

— Roots of Ly(z) = cos?(rz) sin*(27z) in the interval [a,b] are {—1,0,1}
— Consider the interval [—1,0]:

* Q1 max_i Lo(z) = 0.592593, and ¢, = 1
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Figure 12.4: A second step function bounding L(z)

« We obtain the step ([—3,0],0.592593, 2)

:

— Consider the interval [0, £]:
* Q1 maxp 1 Lo(z) = 0.592593, and ¢ = 1
* We obtain the step ([0, 3], 0.592593, 2)

o We replace ([—31,3],1,1) in s to get
s — {([~1,0],0.592593, 2), ([0, ], 0.592593, 2)}

(see Figure 12.3)

e (I,p,j) < ([~3,0],0.592593, 2) is maximal in s. We update this interval:
— Roots of Ls(x) = cos?(mz) sin®(2rz) sin*(2%7x) in the interval [—3, 0] are
(510}
— For [—3, —1], we obtain the step ([—3, —3],0.142138, 3)
— For [—1,0], we obtain the step ([—1,0],0.472388, 3)

e We update

s — {([0, 3],0.592593, 2), ([—1,0],0.472388, 3), (-3, —3],0.142138, 3)}
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Figure 12.5: A third step function bounding L(z)

e We similarly update ([0, ],0.592593,2) to get

0],0.472388, 3), ([0

] ,51,0.472388, 3),
[—1,-1],0.142138,3), (3,

B
1],0.142138,3)}

(see Figure 12.4)

e (I,p,j) < ([~3,0],0.472388, 3) is maximal in s. We update this interval:
— Roots of Ly(z ) = cos?(mx) sin?(27x) sin?(227rz) sin?(237x) in the interval
[ ,0] are {—7, %, 0}
— For [_ia §]7
— For [—3, 0], we obtain the step ([—

we obtain the step ([—4, —3],0.341715,4)

1
4
£,0],0.132031, 4)

e We similarly update ([0, 1],0.472388,3) to get

s — {([=1,-11,0.341715,4), ([, 1],0.341715, 4),
(-1, -1),0.142138,3), ([, 1],0.142138, 3),
([—3%.0],0.132031,4), ([0, §],0.132031, 4)}

(see Figure 12.5)

e (I,p,j) — ([~ —3],0.341715,4) is maximal in s. We update this interval:
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Figure 12.6: A fourth step function bounding L(x)

Roots of Ls(x) = cos®(m

3

)sin (2mx) sin?(2%7x) sin?(2372) cos? (24mz) in

the interval [—1, —3] are {—1, 312,—3%,—%

For [—1, —55], we obtain the step ([—3, —5],0.002331, 5)
— For [—55, —], we obtain the step ([—45, ——] 0.307432, 5)
— For [—35, —&], we obtain the step ([—5, —3),0.141825,5)

e We similarly update ([%, ;11], 0.341715,4) to get

(see Figure 12.6)

g (-[7p7.]) = ([_3%7 -
2] contains a maximum

7
=3 3

3
32°

—21,0.307432,5)
],0.142138, 3), ([%,
—11,0.141825, 5), (
,0]()132031 4), ([o,
,—25],0.002331,5), ([55

([, 55),0.307432, 5),
11,0.142138, 3),
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132031, 4)
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%], 0.307432,5) is maximal in s. Since j = n, the interval
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e The two largest maxima of L(z) can be found in the intervals [

327
5 7
[ﬁv ﬁ]
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Chapter 13

Implementation and Experimental
Results

In this chapter, we will discuss some of the details involved in implementing the
classical post-processing algorithm discussed in Chapter 12. The source code for an
implementation of the algorithm is available in Appendix A. We will also present
experimental results from trial runs of this implementation.

13.1 Implementation Details

In practice, a major bottleneck in the algorithm is the evaluation of the function
L(x) and its subfunctions L;(z). Indeed, if we are also evaluating derivatives L(z)
in order to maximize L;(x) over an interval, the interval updating procedure can
become very slow. To address this, instead of trying to maximize

L(z) = [] (cos® (2" "a — 1)) (sin® m(2¥ 2 — 1)) ™"
k=1

we instead maximize the function

l(x) = logL(x)

= 2 Z cxlogcos (2" tr — i) + sp logsin (28w — 1),
k=1

also known as the log-likelihood function. The function ¢(z) has the derivative
(x) =27 Z 287 (—ep tan (281w — 1) + spcot T(26 T — 1))
k=1

which is much easier to compute than L'(x). Of course, the constant factors may
be safely ignored for both maximization and zero-finding.
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The step functions themselves are stored in a priority queue implemented on a
binary heap, which is a data structure which inserts and retrieves in O(logn) time,
where n is the number of the items in the queue.

In order to find local maxima for both the basic and enhanced interval up-
date procedures, we use the algorithm known as Brent’s Method, as presented in
[PTVF92] to find a root of the derivative ¢'(x). Brent’s Method attempts to use
mverse quadratic interpolation, where given three points which lie on the function
y = f(x), we use the polynomial x = (y — r1)(y — r2) running through these points
as an approximation of y = f(x) in order to find the next estimate. Finally, Brent
gives an additional condition, described in the pseudocode algorithm below, which
much be satisfied in order for the algorithm to accept the interpolated estimate.
If the condition is not satisfied, the new estimate is simply the midpoint of the
current interval bounding the desired root.

Brent’s Method

1. Input: [ag, bo] containing a root of a continuous function f(x).
2. Precondition: Either f(ag) < 0 < f(by) or f(by) <0 < f(ao)
3. Set b_y « by

4. Set k0

5. Set bisection «— TRUE

6. Repeat until f(bg) = 0 or |by — ag| is sufficiently small (below a preset error
tolerance)

o It [f(a)] < | ()], swap a and b,
o If f(ax) # f(bx) and f(ag) # f(br-1), set

b ar f(bx) f (bk—1)
(f(ar) — f(bx))(f(ar) — f(br-1))

. bif (ar) f (br—1)
(f(br) — far))(f(br) = f(br-1))
be—1f (ar) f (bk)
(f(bk—1) = f(ar))(f(bk-1) — f(br))

(inverse quadratic interpolation)

+

e Else, set

b bif(ar) — arf(br)
T (o) — flaw)

(linear interpolation)
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e Brent’s condition: If by is between w and b, and
either (bisection = TRUE and |bgy1 — bi| < |bx, — br—1])
or (bisection = FALSE and |bgy1 — bg| < |bg—1 — bg_o|) then:

— Accept interpolation: Set bisection < FALSE
o Else:

— Perform bisection: Set byy1 «—
— Set bisection +— TRUFE

e Increment counter: Set k «— k +1

ap+bg
2

7. Return: by, which will be within the preset error tolerance to a root of f(z)
with x € [ag, bo)

13.2 Algorithmic Parameters

There are a number of parameters to the classical post-processing algorithm that
we did not elaborate on in Chapter 12. These are the parameters for the step
function bounds constructed for the subfunctions S;(z) in the procedure Compute
Subfunction Bounds. The two parameters that we may adjust here are the
number of steps we want in a step function bound, and the degree of accuracy in that
bound. We can express the degree of accuracy in terms of an optional step in the
Compute Subfunction Bounds procedure, in which we continue to update an
fixed additional number of intervals after initially finding the step function bound,
and then adjusting the bounds for each individual step of the step function bound
based on the updated intervals. Intuitively, a step function which provides a tighter
bound on a subfunction S;(z) should more accurately determine which intervals can
be safely ignored, and which require further processing. However, the Extended
Interval Update Procedure requires that for each interval we wish to update,
we potentially add as many steps to our list of intervals as there are in our step
function bound for subfunction S;(z). As a result, having too many steps in a
bound for a subfunction may add extra work for the algorithm later. It would also
increase the memory requirements of the algorithm.

There is also a question of the amount of floating-point precision required for
the algorithm. In terms of finding bounds for the functions, the interval endpoints
can be expressed as binary fractions using n + 1 bits. Within an interval, the
bounds are to be used to compare the interval to all other intervals. With O(2")
potential intervals in the very worst case, we should use O(n) bits of precision to
compute this bound. However, we do not need to distinguish each interval bound
perfectly if we assume that the correct interval is among the ones with the highest
likelihood. In such a case, it would be sufficient to compute the interval bounds to
a constant precision. However, the inputs will still require O(n) bits to represent.
If the number of interval bounds required is super-polynomial, then the complexity
of computing the bounds to O(n) bits of precision would be dominated by other
super-polynomial terms.
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13.3 Post-processing and Phase Estimation

Recall that in the semi-classical version of the quantum phase estimation procedure,
we attempt to estimate each bit starting with the final bit, x,,, working our way back
to the first bit, ;. In the course of actually performing this procedure, we require
estimates for the phase rotation correction for each bit that we are attempting to
find. In order to find a good rotation correction for each new bit, the post-processing
algorithm needs to be performed for the data that has already been measured.

Specifically, suppose that we have already made a collection of measurements for
the bits 241, ..., z,, and we wish to find a rotation correction r; for the individual
circuit for measuring bit x;. The likelihood function for this partial collection of
measurements is simply the subfunction

n

Si(x) = H (cos? (2" 1w — rk))ck (sin® (2" 'z — rk))sk' :

k=j+1

The phase rotation correction r; is an estimate of the fractional part of 27z, which
simply requires applying the post-processing algorithm on the function S;(277z).
However, note that in the precomputation phase of the post-processing algorithm on
the final likelihood function L(x), the subfunctions S;(277x) are processed starting
with j = n, working our way down to 5 = 1. Thus, obtaining the corrections
r; during the quantum phase estimation procedure can be done in tandem with
computing the subfunction bounds. Furthermore, if the phase rotation correction
r; only needs to be determined up to some error 9, as is the case for the AQFT-
based phase estimation procedure, we do not necessarily need to find the global
maximum of S;(277x) to determine ;. It is sufficient to find an interval of size §
which most likely contains the exact phase.

If we are able, we may also add a degree of interaction to the phase estimation
procedure. If we find at a certain stage of phase estimation that we obtain measure-
ment data that does not fit well with the hypothesis that the rotation correction r;
for the current bit z; is close to the ideal phase correction, we may go back and se-
lect another likely phase correction from the previous measurement data. Although
this will increase the amount of work required for quantum phase estimation, it may
provide the best method for finding the correct phase efficiently in the event that
we obtain improbable measurement results.

One final consideration for performing phase estimation is the number of sam-
ples required for each bit in order to retrieve the correct phase with high probability.
In Kitaev’s procedure, O(log n) samples are obtained for each qubit. This quantity
is necessary in order to bound the probability that the sampling procedure will pro-
duce an incorrect result for any of the n bits, since Kitaev’s algorithm involves the
"stitching” of these n combined sampling results for each bit into an answer. If any
of these results are inconsistent, then this stitching procedure will fail. However,
the maximum likelihood method gives us a reasonable strategy for handling incon-
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sistent data, so we may expect that using our classical post-processing method will
allow us to use fewer samples. In particular, a constant number of samples for each
qubit would produce a constant expected ratio of inconsistent results. From the
analysis of Kitaev’s algorithm, we know that with a sufficient number of samples,
the data will be consistent and combined sampling results also gives the most likely
phase estimate. At this point, the performance of our post-processing method de-
pends only on the efficiency of the bounding procedure, since we need only find the
most likely phase.

13.4 Experimental Results

The goal of trial runs of the post-processing algorithm on sample data is twofold.
First, we would like some indication of how the running time of the algorithm grows
as a function on the input size, n. Secondly, we would like to see how the adjustable
parameters of the algorithm affect the running time, in order to find strategies for
selecting good parameters.

It is important, in constructing sample input data sets for testing the post-
processing algorithm, that we generate data that corresponds to the likely output
of the quantum phase estimation algorithm. While it is possible to construct patho-
logical data which may reduce the algorithm’s ability to find good bounds, such
data do not affect the usefulness of the algorithm if it is unlikely that it should
correspond to the output of the phase estimation algorithm for any input phase. In
particular, there should be some amount of correlation between the measurement
statistics (¢, i) for a particular bit x and the corresponding statistics for nearby
bits, owing to the direct relationship between the phases being sampled.

In order to construct proper data sets, we simulate the quantum phase es-
timation algorithm for a randomly selected phase by computing the probability
distribution for the measurement results, and then sampling from that distribu-
tion. In this way, we may ensure that the data generated represent typical data
sets which the algorithm may encounter. In a practical application, it is possible
that an oracle will be available which allows us to verify a potential solution in this
way. However, if such an oracle were not available, we would simply use the most
likely solutions as estimates.

In general, the data indicate a strong dependence on the accuracy of the data,
as one would expect. If we obtain data which a lower likelihood, given the original
phase, then the algorithm can potentially be forced to systematically check a large
number of more likely solutions before finding the correct one. In the data tables,
we have included both the arithmetic mean and geometric mean of the number of
interval updates required to find a phase over several trials of the algorithm with
random data. If we expect that the number of interval updates grows exponentially,
then the geometric mean is the most appropriate for combining these results. If
the growth is linear, then the arithmetic mean is the most appropriate. Since we
suspect that the growth maybe somewhere in between, we include both.
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| Size | Samples | Step Function | Mean (A) | Mean (G) |

15 10 30 40.1 214
15 100 30 14.6 13.4
15 1000 30 6.1 4.6
15 10000 30 3.6 3.2
20 10 40 49.4 33.5
20 100 40 13.9 10.7
20 1000 40 4.1 3.3
20 10000 40 2.2 3.8
25 10 20 166.3 91.8
25 100 50 18.3 13.7
25 1000 50 8.4 7.2
25 10000 50 5.4 4.5
30 100 60 16.3 15.4
30 1000 60 8.6 6.4
30 10000 60 4.0 3.4

Table 13.1: Average interval updates for various sample sizes

Table 13.1 shows the performance of the post-processing algorithm in relation
to the consistency of the data, using step function bounds with 2n steps. We can
see that with highly consistent data, the algorithm requires very few interval up-
dates, and that as the data becomes less consistent, the number of interval updates
required increases. This provides us with some evidence that the algorithm does
not perform poorly in cases when other, more efficient algorithms could be applied,
meaning that the overhead associated with using maximum likelihood techniques
1s not excessive.

Table 13.2 shows the performance of the post-processing algorithm in relation
to how well we construct a bound for the subfunctions

| Size | Samples | Step Function | Mean (A) | Mean (G) |

30 10 60 307.2 207.0
30 10 70 500.1 219.8
30 10 30 395.5 231.1
30 10 90 228.8 194.7
30 10 100 242.1 164.8
30 10 120 306.1 169.9
30 10 140 457.3 217.3
30 10 160 235.0 191.8
30 10 180 141.9 121.5
30 10 200 199 146.7

Table 13.2: Average interval updates for various step function parameters
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n
Sj(x) = H (cos? (2" 'z — rk))ck (sin®7(2" 'z — fr’k))sk :
k=j+1

The number of samples is fixed as a small constant. The precomputation phase
of the post-processing algorithm runs in polynomial time relative to this bound.
Note that the performance of the algorithm varies significantly, as we can observe
from the arithmetic mean data. Again, this indicates that errors have a fairly large
effect on the number of interval updates needed. However, AQFT-based phase
estimation reduces to Kitaev’s algorithm only in the worst case. In general, we
may also consider circuits with low constant depth. These circuits are much more
likely to produce consistent data, since an attempt is being made to approximate
the ideal phase correction amount, and since inconsistent data is required to make
bad approximations to the ideal phase correction amount. Thus, using the classical
post-processing algorithm may provide a reasonable solution to the problem of
recovering the solution to the phase estimation problem using with a low-depth
circuit using only a constant number of samples for each bit.
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Chapter 14

Analysis and Discussion

In this chapter, we will present an analysis on the running time of various com-
ponents of the classical post-processing algorithm. We will also summarize some
heuristic and experimental results concerning the number of intervals which the
algorithm has to process. This number appears to be difficult to bound properly
for several reasons which will also be discussed in this chapter.

We will also discuss the possibility of applying the techniques used in the post-
processing algorithm for other problems which reduce to analyzing likelihood func-
tions arising from quantum circuits. In particular, we will look at adapting the
subfunction bounding techniques developed in previous chapters to the Dihedral
Hidden Subgroup Problem.

14.1 Updating Intervals

We now analyze the asymptotic run time of various components of the post-
processing algorithm as a function of the input size, n. The goal of this section is
to find the run time of the basic and enhanced interval update procedures.

We begin by looking at the task of evaluating the log-likelihood function ¢(z),
and its derivative ¢(x). Recall that

tz) =2 Z cplogcos (25w — ry) + sy logsinw (2w — 1)
k=1

and
(x) =2m Z 2871 (—ep tan (28 e — 1) + s cot w(2F T — 1))
k=1

We can evaluate functions such as log z, sinz, cosz, tanx and cot z to a constant
precision by evaluating a fixed Taylor series expansion to a constant precision, which
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would require constant O(1) time asymptotically. Since both ¢(z) and ¢'(z) require
summing n terms together, they can each be evaluated in O(n) time.

Finding the maximum value of ¢(x) on a given interval requires finding the
corresponding root of ¢'(z) on that interval, then evaluating ¢(z) at that point.
Since we only need to evaluate this value to a fixed precision, the number of times
¢'(z) needs to be evaluated is bounded by a constant.

The final tasks which we need to consider from those performed during the
interval update procedure are the removal of the interval being processed from the
priority queue storing the step function, and the insertion of the intervals which will
replace it. Using a binary heap implementation of a priority queue, both insertions
to and deletions from the queue require O(log s) time, where s is the number of steps
in the priority queue. However, since each step in the priority queue is bounded by
roots of L(z), there can never be more steps in the queue than there are roots of
L(z) in the interval [0, 1), that is, one period of L(z). Since L(z) has O(2") roots,
we can conclude that insertions to and deletions from the priority queue require
O(n) time. While O(2") represents the very worst case in the number of steps in
the priority queue, we will attempt to give a better sense of how many steps there
could actually be in the queue in the next section.

While the Basic Interval Update Procedure requires only a constant-bounded
number of insertions to the priority queue, in the Extended Interval Update Proce-
dure, the number of steps we insert into the priority queue is given as the number of
steps in our step function bound of the subfunctions S;(z). This quantity is given
as a parameter to the full post-processing algorithm, and it would be preferable if
we did not require that this parameter be constant-bounded. Fortunately, we can
implement the priority queue using a Fibonacci heap, rather than a binary heap.
While this data structure is slightly more complex, insertions into a Fibonacci heap
can be accomplished in O(1) amortized time. Deletions still require O(log s) time,
where s is the number of steps in the priority queue. With this implementation of
the priority queue, we may construct step function estimates of the subfunctions
S;(x) using O(n) steps, while still guaranteeing that the Extended Interval Update
Procedure will not require more than O(n) time in order to insert the new intervals
into the priority queue.

We can now finally conclude that updating an interval for a likelihood function
L(x) with n terms requires O(n) time, as long as the parameter for the size of the
subfunction estimates is bounded by O(n) as well.

14.2 Constructing the Step Function

We will now consider the question of how many interval updates are needed in
order to construct a step function bound for L(z) which successfully finds the
solution to the phase estimation problem. Unfortunately, the question of bounding
this quantity exactly seems to be a difficult one, due to the number of unknown

91



variables involved. However, there are a number of remarks we can make for certain
cases.

In the optimal case, there exists at least one value of  for which L(z) = 1. This
will occur, for example, when the full QF'T is used in one iteration of the quantum
phase estimation algorithm. When this is the case, the priority queue of intervals
to be processed will always produce an interval with bound 1 until each such value
x is found. At the very maximum, the number of intervals processed will be the
number of such values, multiplied by n. In other words, the number of intervals
processed will be O(n).

Using AQF T-based phase estimation, it has been shown in [Che03] that with the
logarithmic-depth AQFT on n > 3 qubits and using AQFT,, with m > log, n + 2,
the estimate constructed by directly using the measurement results as with the
QFT is also the maximum likelihood estimate, with L(z) > 1 — % > 3 while
L(x) < 2 for other estimates. This means that once an interval is bounded by a
constant which is at most %, it will not be processed again before we find the correct
estimate. Since the total number of intervals we need to process is directly related
to the number of intervals which are processed which do not contain the answer,
the algorithm should run efficiently when the number of false intervals is kept to a
minimum. The number of such intervals which contain some value « with L(z) > 2

should be fairly small.

In the very worst-case scenario, it is possible that we face the extremely un-
likely possibility of our measurement data being exactly negatively correlated to
the correct phase parameter. In this case, the desired interval could be the smallest
local maximum, requiring that each and every other local maximum of L(z) be
checked first. This clearly requires O(2") steps to complete. It should be noted
that the likelihood associated with the correct phase cannot ever be exactly 0, as
it is impossible for such observed data to be produced by this phase.

For a typical case, it would appear that the number of interval updates required
depends strongly on the ability to bound false intervals quickly. This, in turn, would
depend on the amount of information the measurement results contain about the
correct phase. Measurement data containing more information about the hidden
phase will provide a larger separation between the value of L(z) corresponding to
the correct answer and the likelihoods of most of the other incorrect answers. This
makes it more likely for false intervals to be discarded sooner, which keeps the total
number of interval updates lower.

14.3 The Dihedral Hidden Subgroup Problem

The Dihedral Hidden Subgroup Problem is a problem for which the post-processing
techniques may also be applicable. In general, in a Hidden Subgroup Problem
(HSP), we are given a group G, which contains a hidden subgroup, K < G. To
retrieve the hidden subgroup, we are given a function f : G — Z which has the
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Figure 14.1: The Dihedral Group Dj as rotations and reflections on a pentagon

property that f(g1) = f(g2) if and only if g; € go K, that is, if g; and g9 are in the
same (left) coset of K. We are given the function f in the form of a quantum black-
box circuit Uy which takes an input register |g)|z) for some g € G and ancillary
register = and outputs the state |g)|x @ f(g)). The Hidden Subgroup Problem for
Abelian groups G is solved using quantum phase estimation, and was discussed in
Chapter 11.

In the Dihedral Hidden Subgroup Problem, the group G is a dihedral group, Dy,
which consists of ordered pairs (a,b) € Zy X Zg, and the group operation (aq, b;) -
(ag,ba) = (ag + (—=1)%ag, by +by). In general, for N > 2 this is a non-commutative
operation. The subgroups of D,, consist of the subgroup Zy = {(a,0) : a € Zy},
subgroups of Zy which are of the form Z,, where m | N, the dihedral subgroups
D,,, where m | N, and finally, subgroups of order 2 of the form {(0,0), (a,1)}, for
each a € Zy.

In 2004, Kuperberg [Kup03] presented a quantum algorithm which solves the
dihedral HSP in sub-exponential time. This was improved upon by Regev [Reg04],
who adapted the algorithm to use only polynomial space.

Ettinger and Hyer [EH99] give a quantum polynomial-time algorithm which
produces data which contain enough information to find the solution to the dihedral
HSP. However, determining the solution of an instance of the dihedral HSP from
the output of the algorithm requires the classical post-processing of a function
with exponentially many local maxima. We will outline the algorithm given by
Ettinger and Hyer, and then propose some possible ideas which may aid with the
post-processing of the output data from their algorithm.

In the Ettinger-Hyer algorithm, we begin by considering K N Zy as a subgroup
of Zx. Since Zy is Abelian, finding K N Zy is simply an application of the Abelian
HSP algorithm. We may also use the given black-box function Uy to determine
whether the elements (0,0) and (0,1) are in the same coset. These two pieces of
information are sufficient to distinguish all the subgroups of Dy except for the
trivial subgroup {(0,0)} and the order-2 subgroups {(0,0), (a,1)}, where a € Zy,
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Figure 14.2: Ettinger-Hyer algorithm for the Dihedral HSP problem

and a # 0. Thus, at this point, we simply need to give an algorithm capable of
distinguishing between these possibilities.

We proceed by applying the black-box function Uy to an equal superposition of
the elements of Dy, then performing the quantum Fourier transform and Hadamard
operation QF Ty ® H on the first two registers, respectively.

Using the state |a)|b) to represent the element (a,b) € Dy, we begin with the
equal superposition

% (i |j>> & (0) + 1Y) ® |00 ..0)

consisting of each element of Dy, with an ancillary register set to [00...0). We
first need to apply the black-box controlled Uy operation. For a given subgroup
{(0,0), (a,1)} of Dy, the left cosets will be {(7,0), (j + a,1)} for each j € Zn. We
can say that the function f maps each such left coset to f(j) = f(4,0) = f(j+a,1).
Note that we also have f(j,1) = f(j —a). Applying U; for this particular function
f yields

- j_o ADOLFG) + DIDIFG — )
_ ﬁ ADIOIFG)) + 15+ a|DLFG)Y)
_ \/%jzo(|j>|0>+Ij+a>|1>)®|f(j)>'
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If we then apply QF Ty ® H to this state, we get

1 N—1N-1
I (€N k) @ (|0) + |1)) + RN E) @ (10) — (1)) @ | £(5))
e
_ ﬁ eZm’jk/N ((1 + eZﬂiak:/N)|k,>|0> + (1 . 627riak/N)|k>|1>) ® |f(])>
j=0 k=0

Note that the value of the ancillary register |j) at this point in time will not affect
the probability distribution of outcomes for the first two registers. Measuring in
the computational basis yields |k)|0) with probability

N-1 2

Pa(k,O) — 27rzyk/N 1+627‘riak/N)

J=0
2

I
=

(1 2miak /N
2N( +e )

’ 1

oN (14 cos(2mak/N))

1
= ¥ cos?(rak/N).
Similarly, measurement in the computational basis yields |k)|1) with probability

1
P,(k,1) = N sin?(rak/N).

Ettinger and Hyer proceed by repeating this procedure m = O(log N) times
and recording the values k whenever a measurement result |k)|0) is obtained. They
then consider the function

f(x):ZP (k;,0) = Zcos nwk;/N)

and the two integer values a@ and N — a which maximize f(z) on the range 1 < x <
N — 1 They show that with O(log V) such samples, then with probability at least
1—5L 53> the correct value of a is either a or N —a. Fmally, to distinguish between the
order-2 subgroups {(0,0), (a,1)} and {(0,0),(N — a,1)} and the trivial subgroup
{(0,0)}, we test whether (a,1) or (N — a, 1) are indeed in the hidden subgroup.

While Ettinger and Hyer show that this procedure produces enough measure-
ment data in order to recover the hidden subgroup, the search for the maximum
for the function f(x) still appears to require O(N) steps.
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14.4 Subfunction Bounding for Dihedral HSP

In this section, we suggest a method for adapting the subfunction bounding tech-
niques which have been developed in this thesis to the post-processing problem
presented by the Ettinger-Hyer method for solving the Dihedral HSP. In Section
14.3, we established that applying the Ettinger-Hyer algorithm for the Dihedral
HSP for the group Dy yields the outcome (k,b) € Zy X Zs with probability

1 k b
P,(k,b) = NCOSQ (% + %) ;

when {(0,0), (a,1)} is the hidden subgroup. At this point, Ettinger and Hyer

consider the function
m

= pr(kjao)a
j=1

taking only the measurement results (k,b) with b = 0. However, we may also use
the likelihood function generated by this procedure,

m

k; b;
L(z) = pr” ki, b;) Hcos (mc 7T2 ) ,
j=1

ignoring the constant factor of N=™. Then, the two values a and N — a which
maximize the function L(x) on the range 1 < x < N —1 are the maximum likelihood
estimates for the parameter a which indicates the desired hidden subgroup.

In order to apply the post-processing techniques developed in Chapter 12, we
first need to define the subfunctions which are to be bounded. Since the values k;
are sampled randomly from the integers from 0 to N — 1, we could choose to fix
the ordering of these terms so that the values k; are given in ascending order. We
define the subfunctions of L(z) as

p
k; b;
L,(x)= HPI Hcos (Wx 7r2 ) ,
=1
for 1 < p < m, and give our initial interval as [0, N]. However, note that the
subfunction N )
Ly(x) = Pu(k1, by) = cos’ (”fvl + %)

will have k; = O(N) roots on the interval [0, N], where the local maximum on each
of the k; subintervals will be 1.

We may remedy this situation by considering the subfunction

nxk ) nxk b
Ly(x) = Py(k1,by) Py(ks, by) = cos® ( Nl + 71> cos? ( N2 + 72) ,
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which has at most k; + k2 roots on the interval [0, N]. However, the local maxima
on the subintervals corresponding to Lo(z) will not all be the same. Furthermore,
we can retrieve the subintervals in descending order of the corresponding local
maxima by observing that the values x at which local maxima for P,(k;,b;) and
P, (ks, bg) occur are exact integer multiples of ﬁ This means that we can give a
modular equation for the local maxima for P,(ki,b;) in terms of multiples of WN/@
and similarly, a modular equation for P,(ks,bs). Finally, subintervals of [0, N]
with higher local maxima for Ly(z) correspond to local maxima of P,(k;,b;) and
P,(kz,bs) which are closer together. Given an integer multiple of ﬁ, we may
find all pairs of local maxima from P,(ky,b;) and P,(ko,by) which are at that exact
distance apart by using the modular equations for these local maxima, and solving
the resulting system of modular equations using the Chinese Remainder Theorem.
By going through multiples of % in ascending order, we find the corresponding
subintervals for Ls(z) in descending order of local maximum. Now, instead of
finding all subintervals of Ly(z) first, we may start with only the best subintervals,

adding more only when necessary.

Although this strategy represents an improvement over a simple linear search
through the interval [0, N], it is not clear that this improvement represents any
significant gain. However, it does illustrate a situation in which the subfunction
bounding techniques that we have developed can be applied to a more complex
post-processing problem.

14.5 Further Directions

Finally, we will outline a number of possible directions for future research and
exploration. Of course, it is always desirable to find new applications for the post-
processing techniques we have developed. Any quantum algorithm which can be
expressed as the statistical sampling of unknown parameters can be analyzed in
terms of likelihood. However, without some convenient underlying structure to
the likelihood function, the subfunction bounding techniques may not give any
advantage over a brute-force analysis.

There is also the question of analyzing the performance of the post-processing
algorithm for the Quantum Phase Estimation Problem. The exact relationship
between the parameters of the post-processing algorithm and the expected average-
case performance of the algorithm is still not known.

Finally, there may be ways to improve the performance of the algorithm itself,
possibly by using functions other than step functions to bound the subfunctions.
The goal would be to bound the subfunction as well as possible, without increasing
the number of times the derivative of either the likelihood function L'(z) or the
log likelihood function ¢'(z) need to be evaluated. Specifically, while a step func-
tion provides a good bound for ¢(z) near the middle of an interval, this function
approaches —oo at both endpoints of the interval. It is possible that by improving
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the modelling of this behaviour, we can avoid analyzing the likelihood function over
even more regions which are unlikely to contain relatively large local maxima.

98



Appendix A

Classical Post-processor
Implementation

This appendix contains the C++ source code to an implementation of the classical
post-processing algorithm described in Part I of this thesis. Multi-precision arith-
metic was performed using the MPFR library, available at http://www.mpfr.org/.

A.1 interval.h

// interval.h
//

// Interval class for managing intervals

#ifndef __interval_h__

#define __interval_h__

#include <vector>
#include <functional>

#include <mpfr.h>
using namespace std;

// The Interval class can also maintain a tree hierarchy with intervals
// matched to their respective subintervals

class Interval

{

public:
Interval( unsigned int level_in, mp_prec_t range_prec ); // Constructor
~“Interval(); // Destructor
void refine(); // Improve current bound based on children’s bounds
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public:

mpfr_t left; // Left endpoint of the interval
mpfr_t right; // Right endpoint of the interval
double bound; // Bound on the function
unsigned int level; // Level of the subfunction
bool tight; // Set true if the interval bound is known to be tight
vector<Interval *> child; // List of children
I

// Interval_lt is a function object comparing two intervals given by pointers
// This function is used by the STL priority queue implementation

struct Interval_lt : public binary_function<Interval *, Interval *, bool>
{

bool operator() ( Interval *a, Interval *b ) { return a->bound < b->bound; }

};

#endif

A.2 interval.cpp

// interval.cpp
//

// Implementation of Interval class for managing intervals
#include <vector>
#include <mpfr.h>
#include "interval.h"
using namespace std;
// Interval Constructor
/7
// range_prec is the desired precision for the endpoint values
Interval::Interval( unsigned int level_in, mp_prec_t range_prec )
: level( level_in )
{
mpfr_init2( left, range_prec );
mpfr_init2( right, range_prec );
X
// Interval Destructor
Interval::~Interval()

{
// Delete children (if any)
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vector<Interval *>::iterator it;
for( it = child.begin(); it != child.end(); it++ ) delete (*it);

// Delete data
mpfr_clear( left );

mpfr_clear( right );
}

// Interval::refine

//
// Improve current interval bound based on children’s bounds
void Interval::refine()
{
if( child.empty() ) return;
vector<Interval *>::iterator it = child.begin();
bound = (*it)->bound;
for( ; it != child.end(); it++ )
{
(*it)->refine();
if ( (*it)->bound > bound ) bound = (*it)->bound;

}
}

A.3 function.h

// File: function.h
//

// Function class for managing likelihood functions

#ifndef __function_h__
#define __function_h__

#include <vector>
#include <queue>

#include <mpfr.h>
#include "interval.h"
using namespace std;
// Function class

class Function
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{

public:
Function(); // Constructor
“Function(); // Destructor

void set_size( const unsigned int n_in );

void set_data( const unsigned int index, mpfr_t r_in,

const unsigned int c_in, const unsigned int s_in );

void evaluate( mpfr_t rop, mpfr_t op, const int index );
void eval_deriv( mpfr_t rop, mpfr_t op, const int index );

protected:
double compute_subbound( Interval *intptr );
void update_interval( Interval *intptr );

protected:

unsigned int n; // Number of stages; n = 0 if function uninitialized
mpfr_t *r; // Stores the rotation amount for each stage

mpfr_t *r_pi; // Rotation amounts multiplied by pi

unsigned int *c; // Stores the number of O results measured for each stage
unsigned int *s; // Stores the number of 1 results measured for each stage
private:

mpfr_t pi; // Stored value of pi

mpfr_t tol; // Error tolerance

// We store temporary multi-precision variables within the class
// so they need to be initialized only once

mpfr_t _k, _1, _m, _n; // Pre-initialized temporary variables (extra prec)
mpfr_t _u, _v, _w; // Pre-initialized temporary variables (regular prec)
mpfr_t _a, _b, _c, _d, _e; // Extra prec variables for compute_subbound
mpfr_t _ab;

mpfr_t _p, _q, _r, _s, _t;

mpfr_t _f, _fa, _fb, _fc; // Regular prec variables for compute_subbound

};

// Subfunction class, subclass of Function class, with added functionality
// for handling subfunctions

class Subfunction : public Function

{
public:
Subfunction() ; // Comstructor
~“Subfunction(); // Destructor
protected:

vector<Interval *> intlist;

double bound;
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private:
Interval *interval;

friend class Postprocessor;

};

#endif

A.4 function.cpp

// File: function.cpp
//

// Implementation of Function class for managing likelihood functions

#include <cassert>
#include <cmath>
#include <iostream>

#include <mpfr.h>

#include "interval.h"
#include "function.h"

using namespace std;
// Function Comstructor

Function: :Function()
:n(C 0)

{

3

// Function Destructor

Function:: Function()
{

if( n == 0 ) return; // The function is uninitialized

for( unsigned int k = 0; k < n; k++ )
{

mpfr_clear( r[k] );

mpfr_clear( r_pil[k] );
}

delete[] r;
delete[] r_pi;
delete[] c;
delete[] s;
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mpfr_clear( pi );
mpfr_clear( tol );

mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
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mpfr_clear(
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mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(
mpfr_clear(

n=0;

}

// Function::set_size
//

// Sets the size of the function to n, and initializes data

void Function::set_size( const unsigned int n_in )
{

if( n !'= 0 ) return; // This procedure should not be run twice
n =n_in;
// Initialize rotation and measurement data to O

r = new mpfr_t [n];

r_pi = new mpfr_t [n];

¢ = new unsigned int [n];

s = new unsigned int [n];

for( unsigned int k = 0; k < n; k++ )

{
mpfr_init2( r[k], n+50 );
mpfr_set_ui( r[k], O, GMP_RNDN );
mpfr_init2( r_pil[k], n+50 );
mpfr_set_ui( r_pilk], O, GMP_RNDN );
clk] = s[k] = 0;
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X
// Initialize constants and temporary variables

mpfr_init2( pi, n+50 );
mpfr_const_pi( pi, GMP_RNDN );

mpfr_init2( tol, n+50 );
mpfr_set_ui( tol, 1, GMP_RNDN );
mpfr_div_2ui( tol, tol, mpfr_get_prec( tol ) - 2, GMP_RNDN );

mpfr_init2( _a, n+50 );
mpfr_init2( _b, n+50 );
mpfr_init2( _c, n+50 );
mpfr_init2( _d, n+50 );

mpfr_init2( _e, n+50 );
mpfr_init2( _ab, n+50 );
mpfr_init2( _p, n+50 );
mpfr_init2( _q, n+50 );
mpfr_init2( _r, n+50 );
mpfr_init2( _s, n+50 );
mpfr_init2( _t, n+50 );
mpfr_init2( _f, 75 );
mpfr_init2( _fa, 75 );
mpfr_init2( _fb, 75 );
mpfr_init2( _fc, 75 );

mpfr_init2( _k, n+50 );

mpfr_init2( _1, n+50 );
mpfr_init2( _m, n+50 );
mpfr_init2( _n, n+50 );
mpfr_init2( _u, 75 );
mpfr_init2( _v, 75 );

mpfr_init2( _w, 75 );
}

// Function::set_data
//

// Sets rotation and measurement data corresponding to a given index

void Function::set_data( const unsigned int index, mpfr_t r_in,
const unsigned int c_in,
const unsigned int s_in )
{
if( index < n ) // Range check
{
mpfr_set( r[index], r_in, GMP_RNDN );
mpfr_mul( r_pilindex], r_in, pi, GMP_RNDN );
clindex] = c_in;
s[index] = s_in;
}
}

// Function::evaluate
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//

// Evaluates the function up to index terms, at op, and returns answer in rop

void Function::evaluate( mpfr_t rop, mpfr_t op, const int index )

{
mpfr_set_ui( rop, 0, GMP_RNDN );

mpfr_mul( _n, op, pi, GMP_RNDN ); // invariant: _n = 2"k x * pi

for( int k = 0; k < index; k++ )
{
mpfr_sub( _m, _n, r_pil[k], GMP_RNDN ); // _m =pix( 2°k x - r_k )

// double _n for next iteration
mpfr_mul_2ui( _n, _n, 1, GMP_RNDN );

if( clk] || slk] ) // if either c[k] or s[k] are non-zero
{
mpfr_sin_cos( _u, _v, _m, GMP_RNDN );

if( s[k] )
{
mpfr_abs( _u, _u, GMP_RNDN );
mpfr_log( _u, _u, GMP_RNDN );
mpfr_mul _ui( _u, _u, s[k], GMP_RNDN );
mpfr_add( rop, rop, _u, GMP_RNDN ); // _u
}

s[k] * log | sin (_m) |

if( clx] )
{
mpfr_abs( _v, _v, GMP_RNDN );
mpfr_log( _v, _v, GMP_RNDN );
mpfr_mul_ui( _v, _v, c[k], GMP_RNDN );
mpfr_add( rop, rop, _v, GMP_RNDN ); // _v = c[k] * log | cos (_m) |

3
X
}

// Function::eval_deriv
//

// Evaluates the derivative of the function up to index terms
void Function::eval_deriv( mpfr_t rop, mpfr_t op, const int index )
{
mpfr_set_ui( rop, O, GMP_RNDN );
mpfr_mul( _n, op, pi, GMP_RNDN ); // invariant: _n = 2"k x * pi
for( int k = 0; k < index; k++ )
{
mpfr_sub( _m, _n, r_pi[k], GMP_RNDN ); // _m =pix( 2°k x - r_k )

// double _n for next iteration
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mpfr_mul_2ui( _n, _n, 1, GMP_RNDN );

if( clk] |1 slk] ) // if either c[k] or s[k] are non-zero
{
mpfr_sin_cos( _u, _v, _m, GMP_RNDN );

if( s[x] )

{
mpfr_div( _w, _v, _u, GMP_RNDN );
mpfr_mul_ui( _w, _w, s[k], GMP_RNDN );
mpfr_mul 2ui( _w, _w, k, GMP_RNDN );

mpfr_add( rop, rop, _w, GMP_RNDN ); // _w = 2"k * s[k] * cot (_m)

}

if( c[k] )

{
mpfr_div( _w, _u, _v, GMP_RNDN );
mpfr_mul_ui( _w, _w, c[k], GMP_RNDN );
mpfr_mul_2ui( _w, _w, k, GMP_RNDN );

mpfr_sub( rop, rop, _w, GMP_RNDN ); // _w =2"k * c[k] * tan (_m)

}

// Function::compute_subbound

//

// Computes an interval’s subfunction bound, as the maximum value of the
// subfunction (indicated by level) on the interval. At the bottommost level

// this just computes the function bound
//
// The interval is assumed to be part of the function’s interval tree

//

// We assume that the endpoints of the interval are two consecutive roots

//

// We currently use Brent’s method for finding the zero of the derivative

//

// compute_subbound must not use the same temporary variables as eval_deriv

double Function::compute_subbound( Interval *intptr )

{
assert( intptr != NULL );

mpfr_set( _a, intptr->left, GMP_RNDU );
mpfr_set( _b, intptr->right, GMP_RNDD );
mpfr_set_inf( _fa, 1 );
mpfr_set_inf( _fb, -1 );

if ( mpfr_nan_p( _a ) ) // The interval is R, so value should be 0
return 0.0;

int index = intptr->level;

bool interpolate;
int i = 0;
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// _b is the estimate

// _a is the counterpoint

// _c is the previous estimate

// _e is used in Brent’s condition, and _d is used to update _e

mpfr_set( _c, _a, GMP_RNDN );
mpfr_set( _fc, _fa, GMP_RNDN );

mpfr_sub( _d, _b, _a, GMP_RNDN );
mpfr_set( _e, _d, GMP_RNDN );

do {
// Swap _a and _b if _a seems to be a better guess

if ( mpfr_cmpabs( _fb, _fa ) > 0 )
{

mpfr_swap( _a, _b );

mpfr_swap( _fa, _fb );
}

mpfr_sub( _ab, _a, _b, GMP_RNDN );
interpolate = !( mpfr_inf_p( _fa ) || mpfr_inf_p( _fb ) );

if( interpolate )
{

// Attempt inverse quadratic interpolation

// We compute in a way that does not subtract evaluations of the function
// as this may be unstable

mpfr_div( _s, _fb, _fa, GMP_RNDN );

if( mpfr_equal_p( _a, _c ) || mpfr_equal_p( _b, _c ) )
{
mpfr_mul( _p, _ab, _s, GMP_RNDN ); // Linear Interpolation
mpfr_sub_ui( _q, _s, 1, GMP_RNDN );
} else {
mpfr_div( _r, _fb, _fc, GMP_RNDN );
mpfr_div( _t, _fa, _fc, GMP_RNDN );

mpfr_sub( _p, _c, _b, GMP_RNDN );
mpfr_sub( _q, _r, _t, GMP_RNDN );
mpfr_mul( _p, _p, _q, GMP_RNDN );
mpfr_mul( _p, _p, _t, GMP_RNDN );
mpfr_sub_ui( _r, _r, 1, GMP_RNDN );
mpfr_mul( _q, _ab, _r, GMP_RNDN );
mpfr_sub( _p, _p, _q, GMP_RNDN );
mpfr_mul( _p, _p, _s, GMP_RNDN );

mpfr_sub_ui( _s, _s, 1, GMP_RNDN );

mpfr_sub_ui( _t, _t, 1, GMP_RNDN );
mpfr_mul( _q, _r, _s, GMP_RNDN );
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mpfr_mul( _q, _q, _t, GMP_RNDN );
}

if ( mpfr_zero_p( _q ) ) interpolate = false;
else
{

mpfr_div( _p, _p, _q, GMP_RNDN );

if ( mpfr_cmpabs( _p, tol ) < 0 )
{
mpfr_set( _q, _b, GMP_RNDN );
break;

}

// The interpolated estimate is _b + _p

mpfr_mul_ui( _q, _ab, 3, GMP_RNDN );
mpfr_div_2ui( _q, _q, 2, GMP_RNDN ); // _q =3(_a-_b)/4
}
}

// Check Brent’s condition for accepting interpolated estimate

if( interpolate
&% ( mpfr_sgn( _p ) == mpfr_sgn( _q ) )
&% ( mpfr_cmpabs( _q, _p ) >= 0 )
&& ( mpfr_cmpabs( _e, _p ) >=0) )

mpfr_set( _e, _d, GMP_RNDN );
mpfr_set( _d, _p, GMP_RNDN );
} else { // Take bisection step
mpfr_div_2ui( _d, _ab, 1, GMP_RNDN );
mpfr_set( _e, _d, GMP_RNDN );
}

mpfr_set( _c, _b, GMP_RNDN ); // Current guess becomes previous
mpfr_set( _fc, _fb, GMP_RNDN );

mpfr_add( _q, _b, _d, GMP_RNDN );

eval_deriv( _f, _q, index );
if ( mpfr_zero_p( _f ) ) break;

if( mpfr_sgn( _f ) == mpfr_sgn( _fa ) ) // Update bounds
{

mpfr_set( _a, _q, GMP_RNDN );

mpfr_set( _fa, _f, GMP_RNDN );
} else {

mpfr_set( _b, _q, GMP_RNDN );

mpfr_set( _fb, _f, GMP_RNDN );

it++;
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} while( mpfr_cmpabs( _ab, tol ) > 0 );

evaluate( _f, _q, index );
return mpfr_get_d( _f, GMP_RNDN );
}

// Function::update_interval

/7

// Expands one single interval in the interval tree
// Function and subfunction bounds are not computed

void Function::update_interval( Interval *intptr )
{
assert( intptr != NULL );
unsigned int level = intptr->level;
if( level == n ) return; // Last level
if ( !'intptr->child.empty() ) return; // Already expanded
Interval *newintptr;
if( c[level] == 0 && s[level] == 0 ) // No data for current level

{

newintptr = new Interval( level+l, n+50 );

mpfr_set( newintptr->left, intptr->left, GMP_RNDN );
mpfr_set( newintptr->right, intptr->right, GMP_RNDN ) ;
intptr->child.push_back( newintptr );

return;

}

// Compute constants which will help us subdivide interval
unsigned int k = level+l;

mpfr_set( _m, r[level]l, GMP_RNDN );

mpfr_set_ui( _n, 1, GMP_RNDN );

mpfr_div_2ui( _n, _n, k, GMP_RNDN ); // _n = 1/2"(level+1)

if( s[level] == 0 )
{
mpfr_add( _m,

m, _n, GMP_RNDN ); // _m r[level] + 1/2"(level+1)

mpfr_mul 2ui( _n, _n, 1, GMP_RNDN );
k-—;
}

if( c[level] == 0 )

{
mpfr_mul_2ui( _n, _n, 1, GMP_RNDN );
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k-—;
¥

// _m is guaranteed to be a root of term level+l
// _n = 1/2"k is the distance between consecutive roots

if ( mpfr_number_p( intptr->left ) )
{
mpfr_set( _k, intptr->left, GMP_RNDN );
mpfr_set( _1, intptr->right, GMP_RNDN );
} else { // Interval is R
mpfr_set( _k, _m, GMP_RNDN );
mpfr_add_ui( _1, _m, 1, GMP_RNDN );
}

// [_k,_1] is the interval to be subdivided

mpfr_sub( _w, _k, _m, GMP_RNDN );
mpfr_mul_2ui( _w, _w, k, GMP_RNDN );
mpfr_floor( _w, _w );

mpfr_div_2ui( _w, _w, k, GMP_RNDN );
mpfr_add( _m, _m, _w, GMP_RNDN );

// _m is the largest root <= intptr->left
bool finished = false;
// Subdivide the interval

while( !finished )
{
mpfr_add( _m, _m, _n, GMP_RNDN );

if( mpfr_cmp( _m, _1 ) >= 0 ) // last subinterval
{

mpfr_set( _m, _1, GMP_RNDN );

finished = true;

}

newintptr = new Interval( level+l, n+50 );
mpfr_set( newintptr->left, _k, GMP_RNDN );
mpfr_set( newintptr->right, _m, GMP_RNDN );

intptr->child.push_back( newintptr );
mpfr_set( _k, _m, GMP_RNDN );
}
}
// Subfunction Constructor
Subfunction: :Subfunction()

interval( NULL )
{
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}
// Subfunction Destructor
Subfunction: : “Subfunction()

{
if ( interval !'= NULL ) delete interval;

}
A.5 postproc.h

// File: postproc.h
//

// Postprocessor class for post-processing algorithm

#ifndef __postproc_h__
#define __postproc_h__

#include <queue>

#include <mpfr.h>

#include "function.h"

using namespace std;

class Postprocessor : public Subfunction

{

public:
Postprocessor() ; // Constructor
“Postprocessor() ; // Destructor
void set_estimate_size( unsigned int subsize_in, unsigned int subdepth_in );
void build_subfunctions();
void build_subfunction( unsigned int j );

Interval *find_maximum();

public:
unsigned int intcount; // Number of intervals processed

private:
void initialize();

private:
Subfunction *subfunction;

double *subbound;

unsigned int subsize; // Number of steps in subfunction estimate
unsigned int subdepth; // Intervals used for subfunction estimate
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priority_queue<Interval *,vector<Interval *>,Interval_lt> pqueue;

mpfr_t _a, _b, _c, _d, _e, _f; // Extra precision temporary variables

};

#endif

A.6 postproc.cpp

// File: postproc.cpp
//

// Implementation of Postprocessor class for post-processing algorithm

#include <queue>
#include <vector>

#include <mpfr.h>

#include "interval.h"

#include "function.h"

#include "postproc.h"

using namespace std;

// Postprocessor Constructor

Postprocessor: :Postprocessor ()
subfunction( NULL ), subsize( 2 )

{
}

// Postprocessor Destructor
Postprocessor: : "Postprocessor ()
{

if ( subfunction == NULL ) return; // This postprocessor was not used

delete[] subfunction;
delete[] subbound;

mpfr_clear( _a );
mpfr_clear( _b );
mpfr_clear( _c );
mpfr_clear( _d );
mpfr_clear( _e );

mpfr_clear( _f );
}

// Postprocessor::set_estimate_size
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//

// Sets the two parameters for computing subfunction estimates

// subsize_in gives the number of steps to use in the estimate

// subdepth_in gives the number of intervals to process for the estimate

void Postprocessor::set_estimate_size( unsigned int subsize_in,
unsigned int subdepth_in )

{
subsize = subsize_in;
subdepth = subdepth_in;

if ( subsize < 2 ) subsize = 2; // Minimum size
if ( subdepth < subsize ) subdepth = subsize;
}

// Postprocessor::initialize

//

// Initialize subfunctions and priority queue

// subfunction != NULL if and only if initialize has been called

void Postprocessor::initialize()

{

if( n == 0 ) return; // Function data not initialized
if ( subfunction != NULL ) return; // Computation already performed
// Initialize subfunctions and temporary variables

subfunction = new Subfunctionl[n];
subbound = new double[n+1];

mpfr_init2( _a, n+50 )
mpfr_init2( _b, n+50 )
mpfr_init2( _c, n+50 );
mpfr_init2( _d, n+50 )
mpfr_init2( _e, n+50 )
mpfr_init2( _f, n+50 )

for( unsigned int j = 0; j < n; j++ )
subfunction[j].set_size( n-j );

subbound[n] = 0;
// Initialize the priority queue

Interval *intptr = new Interval( 0, n+50 );
intptr->bound = 0;

pqueue.push( intptr );

intcount = 0;

}

// Postprocessor: :build_subfunctions

//

// Builds step function estimates for all subfunctions
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void Postprocessor: :build_subfunctions()

{

if( n == 0 ) return; // Function data not initialized
if ( subfunction == NULL ) initialize(); // Subfunctions not initialized

for( int j = n-1; j >= 0; j-—- )
build_subfunction( j );
}

// Postprocessor: :build_subfunction

//
// Builds step function estimates for a single subfunction
// The subfunction’s interval pointer is NULL if subfunction is uninitialized

void Postprocessor::build_subfunction( unsigned int j )

{
if( n == 0 ) return; // Function data not initialized
if ( subfunction == NULL ) initialize(); // Subfunctions not initialized
if ( subfunction[j].interval != NULL ) return;

// Computation already performed
Interval *intptr;
vector<Interval *>::iterator it;

for( unsigned int i = 0; 1 < n—j; i++ )
subfunction[j].set_data( i, rl[i+j], cli+jl, s[i+j] );

priority_queue<Interval *,vector<Interval *>,Interval_lt> pqueuel, pqueue2;
// Initialize data for the first interval (which should be R)

subfunction[j].interval = new Interval( O, n+50 );
subfunction[j].interval->bound = 0;

// Update intervals until we have subdepth of them
pqueuel.push( subfunction[j].interval );

for( unsigned int d = 1; d < subdepth; )

{

if ( pqueuel.empty() ) break;

intptr = pqueuel.top();
pqueuel.pop();

if ( intptr->level < subfunction[j].n ) d--;
subfunction[j] .update_interval( intptr );

for( it = intptr->child.begin(); it != intptr->child.end(); it++ )
{
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(*it)->bound = subfunction[j].compute_subbound( *it ) +
subbound [j+(*it)->level];
pqueuel.push( *it );
d++;
}
}

subfunction[j].interval->refine();
// Find a step function with subsize steps to estimate the subfunction
pqueue2.push( subfunction[j].interval );

for( unsigned int d = 1; d < subsize; )
{
if ( pqueue2.empty() ) break;

intptr = pqueue2.top();
pqueue2.pop();

if ( intptr->child.empty() ) // Add interval to estimate
{

// Scale interval

mpfr_div_2si( intptr->left, intptr->left, j, GMP_RNDN );
mpfr_div_2si( intptr->right, intptr->right, j, GMP_RNDN );

subfunction[j].intlist.push_back( intptr );
continue;
}

else
d--;

for( it = intptr->child.begin(); it != intptr->child.end(); it++ )
{
pqueue2.push( *it );

d++;
}
by

// Add the rest of the intervals from the priority queue to the estimate
while( !pqueue2.empty() )
{

intptr = pqueue2.top();

pqueue2.pop();

// Scale interval

mpfr_div_2si( intptr->left, intptr->left, j, GMP_RNDN );
mpfr_div_2si( intptr->right, intptr->right, j, GMP_RNDN );

subfunction[j].intlist.push_back( intptr );
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// Set the global subfunction bound

subbound [j] = subfunction[j].interval->bound;

3

// Postprocessor::find_maximum

//
// Finds the highest local maximum not yet found
// Returns the appropriate interval, and stores the result in a list

Interval* Postprocessor::find_maximum()

{
if ( subfunction == NULL ) return NULL; // Precomputation not performed

Interval *intptr, *newintptr;
vector<Interval *>::iterator it;
unsigned int j;

while( !'pqueue.empty() )
{
intptr = pqueue.top();
pqueue.pop();

intcount++;

j = intptr->level; // Index of the appropriate subfunction

if( j ==n)

{
if( intptr->tight ) // If the bound is tight, then return the interval
{

// Adjust interval so that left endpoint is in [0,1)

while( mpfr_cmp_ui( intptr->left, 1 ) >= 0 )
{
mpfr_sub_ui( intptr->left, intptr->left, 1, GMP_RNDN );
mpfr_sub_ui( intptr->right, intptr->right, 1, GMP_RNDN );
}

while( mpfr_sgn( intptr->left ) < 0 )
{
mpfr_add_ui( intptr->left, intptr->left, 1, GMP_RNDN );
mpfr_add_ui( intptr->right, intptr->right, 1, GMP_RNDN );
}

intlist.push_back( intptr );
return intptr;

}
// Otherwise, tighten the bound and push it back on the queue
intptr->bound = compute_subbound( intptr ) + subbound[j];

intptr->tight = true;
pqueue.push( intptr );
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continue;

}

double intbound = compute_subbound( intptr );
intptr->bound = intbound + subboundl[j];

mpfr_set_ui( _e, 1, GMP_RNDN );
mpfr_div_2ui( _e, _e, j, GMP_RNDN );

it = subfunction[j].intlist.begin();
// [_a,_b] is the interval we are subdividing

if ( mpfr_number_p( intptr->left ) )
{
mpfr_set( _a, intptr->left, GMP_RNDN );
mpfr_set( _b, intptr->right, GMP_RNDN );
} else { // Interval is R
mpfr_set( _a, (*it)->left, GMP_RNDN ); // Grab left range from interval
mpfr_add_ui( _b, _a, 1, GMP_RNDN );
}

// Loop through all the intervals in the subfunction

for( it = subfunction[j].intlist.begin();
it != subfunction[j].intlist.end(); it++ )
{
// [_c,_d] is the shift of the current interval satisfying _c <= _a
mpfr_sub( _f, _a, (xit)->left, GMP_RNDN );
mpfr_mul_2si( _f, _f, j, GMP_RNDN );
mpfr_floor( _f, _f );
mpfr_div_2si( _f, _f, j, GMP_RNDN );
mpfr_add( _c, (*it)->left, _f, GMP_RNDN );
mpfr_add( _d, (*xit)->right, _f, GMP_RNDN );

if ( mpfr_cmp( _d, _a ) > 0 )

{
newintptr = new Interval( j+(*it)->level, n+50 );
mpfr_set( newintptr->left, _a, GMP_RNDN );
mpfr_set( newintptr->right, _d, GMP_RNDN );
newintptr->bound = intbound + (*it)->bound;

pqueue.push( newintptr );

}

mpfr_add( _c, _c, _e, GMP_RNDN );
mpfr_add( _d, _d, _e, GMP_RNDN );

while( mpfr_cmp( _c, _b ) < 0 )

{
newintptr = new Interval( j+(*it)->level, n+50 );
mpfr_set( newintptr->left, _c, GMP_RNDN );
mpfr_min( newintptr->right, _d, _b, GMP_RNDN );
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newintptr->bound = intbound + (*it)->bound;

pqueue.push( newintptr );
mpfr_add( _c, _c, _e, GMP_RNDN );
mpfr_add( _d, _d, _e, GMP_RNDN );
}
}

// Delete the old interval

delete intptr;
X

// The priority queue is empty, so all intervals have been found

return NULL;
¥

A.7 simulate.h

// File: simulate.h
//

// Simulation class for simulating phase estimation
#include <mpfr.h>
using namespace std;

class Simulation

{

public:
Simulation( unsigned int bits_in );
~“Simulation();

void set_bits( unsigned int bits_in );
void set_phase( mpfr_t phase_in );
void get_phase( mpfr_t phase_out );
void set_random_phase();

void measure( unsigned int iterations, unsigned int multiple,
mpfr_t rotation, unsigned int &c, unsigned int &s );
void measure_2( unsigned int iterations, unsigned int power,
mpfr_t rotation, unsigned int &c, unsigned int &s );

private:
unsigned int bits; // Number of bits to be estimated

mpfr_t phase;

gmp_randstate_t randstate;

};
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A.8 simulate.cpp

// File: simulate.cpp
//

// Implementation of Simulation class for simulating phase estimation
#include <ctime>

#include <gmp.h>
#include <mpfr.h>

#include "simulate.h"
using namespace std;
// Simulation Constructor

Simulation::Simulation( unsigned int bits_in )
: bits( bits_in )

{
mpfr_init2( phase, bits+50 );
mpfr_set_ui( phase, O, GMP_RNDN );

// Initialize random number seed based on current time

gmp_randinit_default( randstate );
gmp_randseed_ui( randstate, time(0) );

}
// Simulation Destructor

Simulation::~Simulation()

{
mpfr_clear( phase );
gmp_randclear( randstate );

}

// Simulation::set_bits

//
// Sets the number of bits to be estimated

void Simulation::set_bits( unsigned int bits_in )
{

bits = bits_in;

mpfr_set_prec( phase, bits+50 );
}

// Simulation::set_phase
//
// Sets the hidden phase

void Simulation::set_phase( mpfr_t phase_in )
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{
mpfr_set( phase, phase_in, GMP_RNDN );
}

// Simulation::get_phase

//
// Returns the hidden phase

void Simulation::get_phase( mpfr_t phase_out )
{

mpfr_set( phase_out, phase, GMP_RNDN );
}

// Simulation::set_random_phase

//

// Sets the phase to something random in the interval [0,1), with the
// appropriate number of bits

void Simulation::set_random_phase ()
{

mpfr_urandomb( phase, randstate );

}

// Simulation::measure

//

// Simulates the quantum circuit which performs the hidden phase shift

// multiple times, rotates by -rotation, and repeats this "iteration" times.
// c is set to be the number of measurements of 0

// s is set to be the number of measurements of 1

void Simulation::measure( unsigned int iterations, unsigned int multiple,
mpfr_t rotation, unsigned int &c, unsigned int &s )
{

mpfr_t angle, prob, rand;

mpfr_init2( angle, bits+50 );
mpfr_init2( prob, bits+50 );
mpfr_init2( rand, bits+50 );

// Compute the effective phase that we are sampling
mpfr_mul_ui( angle, phase, multiple, GMP_RNDN );
mpfr_sub( angle, angle, rotation, GMP_RNDN );
mpfr_frac( angle, angle, GMP_RNDN );

// Compute probability of measuring O
mpfr_const_pi( prob, GMP_RNDN );

mpfr_mul( prob, prob, angle, GMP_RNDN );

mpfr_cos( prob, prob, GMP_RNDN );
mpfr_sqr( prob, prob, GMP_RNDN ) ;
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for( unsigned int i = 0; i < iteratiomns; i++ )

{
mpfr_urandomb( rand, randstate );
if( mpfr_cmp( rand, prob ) < 0 ) c++;
else st++;

}

mpfr_clear( angle );
mpfr_clear( prob );
mpfr_clear( rand );

}

// Simulation::measure_2

//

// Simulations the quantum circuit which performs the hidden phase shift
// 2 power times, rotates by -rotation, and repeats this "iteration" times.
// ¢ is set to be the number of measurements of 0

// s is set to be the number of measurements of 1

void Simulation::measure_2( unsigned int iterations, unsigned int power,
mpfr_t rotation, unsigned int &c, unsigned int &s )
{
mpfr_t angle, prob, rand;

mpfr_init2( angle, bits+50 );
mpfr_init2( prob, bits+50 );
mpfr_init2( rand, bits+50 );

// Compute the effective phase that we are sampling
mpfr_mul_2ui( angle, phase, power, GMP_RNDN );
mpfr_sub( angle, angle, rotation, GMP_RNDN );
mpfr_frac( angle, angle, GMP_RNDN );

// Compute probability of measuring O
mpfr_const_pi( prob, GMP_RNDN );

mpfr_mul( prob, prob, angle, GMP_RNDN );

mpfr_cos( prob, prob, GMP_RNDN );
mpfr_sqr( prob, prob, GMP_RNDN );

for( unsigned int i = 0; i < iteratiomns; i++ )

{
mpfr_urandomb( rand, randstate );
if ( mpfr_cmp( rand, prob ) < 0 ) c++;
else st++;

}

mpfr_clear( angle );
mpfr_clear( prob );
mpfr_clear( rand );
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A.9 timer.h

// File: timer.h
//

// Timer class for timing-related functions
#include <sys/times.h>
using namespace std;

class Timer
{
public:
void start() { times( &s ); }
void stop() { times( &e ); }
double elapsed() { return (double)( e.tms_utime - s.tms_utime )/100.0; }
double split() { stop(); return elapsed(); }

private:
struct tms s, e;

};
A.10 process.cpp

// File: process.cpp
//

// This performs the postprocessing algorithm using a given data file

#include <iostream>
#include <iomanip>

#include "timer.h"
#include "interval.h"
#include "postproc.h"

using namespace std;

int main( int argc, char **argv )
{

// Output usage information

if( arge !'= 4 )

{
cout << "Usage: " << argv[0] << " [size] [subsize] [subdepth]" << endl;
return 1;

}

// Read parameters from command line

//
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// size = size of likelihood function

// subsize = number of steps in a subfunction estimate

// subdepth = number of intervals to process to make subfunction estimates
unsigned int size, subsize, subdepth;

size = atoi( argv[1] );

subsize = atoi( argv[2] );

subdepth = atoi( argv[3] );

// Initialize the Postprocessor class

Postprocessor P;

P.set_size( size );

// Read phase estimation data from input

mpfr_t phase, rotation;
unsigned int c, s;

mpfr_init2( phase, size+50 );
mpfr_inp_str( phase, NULL, 10, GMP_RNDN );

mpfr_init2( rotation, size+50 );

for( unsigned int i = 0; i < size; i++ )

{
mpfr_inp_str( rotation, NULL, 10, GMP_RNDN ) ;
cin >> ¢ >> s;
P.set_data( i, rotation, c, s );

}

mpfr_clear( rotation );

// Build subfunctions
P.set_estimate_size( subsize, subdepth );
Timer timer; // Initialize timer
timer.start();
P.build_subfunctions();
timer.stop(Q);

double subtime = timer.elapsed();

// Perform postprocessing algorithm
Interval *intptr;

timer.start();

while(1)
{
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intptr = P.find_maximum() ;
if ( intptr == NULL ) break; // We should never have to do this
// Adjust interval to check for wrap-around

if( mpfr_cmp_ui( intptr->right, 1 ) >= 0
&& mpfr_cmp( phase, intptr->left ) < 0 )
{
mpfr_sub_ui( intptr->left, intptr->left, 1, GMP_RNDN );
mpfr_sub_ui( intptr->right, intptr->right, 1, GMP_RNDN );
}

if ( mpfr_cmp( intptr->left, phase ) <= 0
&& mpfr_cmp( intptr->right, phase ) >= 0 ) break;
}
timer.stop(Q);

// Output statistics
//

// size subsize  subdepth subtime time intervals
cout << setw(10) << size << setw(10) << subsize;
cout << setw(10) << subdepth << setw(10) << subtime;

cout << setw(10) << timer.elapsed() << setw(10) << P.intcount << endl;

return O;

A.11 generate.cpp

// File: generate.cpp
//

// Generates simulated measurement data for a given or a random phase

#include <cstdio>
#include <iostream>

#include "simulate.h"
using namespace std;
int main( int argc, char **argv )
{
// Output usage information
if( argc !'= 4 && argc !'= 5 )
{

cout << "Usage: " << argv[0] << " [size] [reps] [depth] [(phase)]" << endl;
cout << endl;

125



cout << "To generate a random phase, leave optional parameter out" << endl;
return 1;

3

// Read parameters from command line

//

// size = size of phase estimation problem (bits)
// reps = number of reps for each bit

// depth = depth of rotation gate corrections

// phase (optional) = hidden phase to be estimated
//

// Note that the simulated rotation correction will always be the nearest one
unsigned int size, reps, depth;

size = atoi( argv[1i] );

reps = atoi( argv[2] );

depth = atoi( argv[3] );

// Initialize the simuation

Simulation sim( size );

mpfr_t phase, rotation;

unsigned int c, s;

mpfr_init2( phase, size+50 );
mpfr_init2( rotation, size+50 );

// If the phase data is missing, we need to generate a random phase
// Otherwise, read the phase from the command-line parameters

if( argc == 4 )

{
sim.set_random_phase();
sim.get_phase( phase );
// Make sure phase is in the range [0,1)
mpfr_frac( phase, phase, GMP_RNDN );
if( mpfr_sgn( phase ) < 0 )
mpfr_add_ui( phase, phase, 1, GMP_RNDN );
}
else
{
mpfr_set_str( phase, argv[4], 10, GMP_RNDN );
sim.set_phase( phase );
}

// Output phase
// Data will be output in a format compatible with the "process" program

mpfr_out_str( NULL, 10, O, phase, GMP_RNDN );
cout << endl;

126



// Simulate phase estimation algorithm
mpfr_set_ui( rotation, O, GMP_RNDN );

for( unsigned int power = 0; power < size; power++ )
{

// Find the nearest rotation correction

if( depth > 1 )

{
mpfr_mul_2ui( rotation, phase, power+depth, GMP_RNDN );
mpfr_round( rotation, rotation );
mpfr_div_2ui( rotation, rotation, depth-1, GMP_RNDN );
mpfr_frac( rotation, rotation, GMP_RNDN ) ;
mpfr_div_2ui( rotation, rotation, 1, GMP_RNDN );

}

// Simulate the actual measurement (reps) times
sim.measure_2( reps, power, rotation, c, s );
// Output measurement data

mpfr_out_str( NULL,10,0, rotation, GMP_RNDN );
cout << " " <K< ¢ << " " <K< g << endl;

3

mpfr_clear( phase );
mpfr_clear( rotation );

return O;
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