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Abstract 

Remote sensing of atmospheric gases improves our understanding of the state and evolution of the 
Earth’s environment. At the beginning of the thesis, the basic principles for the retrieval of 
concentrations of atmospheric gases from spectra are presented with a focus on ground-based 
observations. An overview of the characteristic features of different platforms, viewing geometries, 
measurement sites, and Fourier Transform Spectrometers (FTSs) used in the measurements are 
provided. The thesis covers four main projects. 

The first study of the global distribution of atmospheric phosgene was carried out using a total of 
5614 measured profiles from the satellite-borne Atmospheric Chemistry Experiment FTS (ACE-FTS) 
spanning the period February 2004 through May 2006. The phosgene concentrations display a zonally 
symmetric pattern with the maximum concentration located approximately over the equator, at about 
25 km in altitude, and the concentrations decrease towards the poles. A layer of enhanced 
concentration of phosgene spans the lower stratosphere at all latitudes, with volume mixing ratios of 
20-60 pptv. The reasons for the formation of the phosgene distribution pattern are explained by the 
insolation, lifetime of phosgene and the Brewer-Dobson circulation. The ACE observations show 
lower phosgene concentrations in the stratosphere than were obtained from previous observations in 
the 1980s and 1990s due to a significant decrease in source species.  

The Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR) is a 
copy of the ACE-FTS that was designed for ground-based and balloon-borne measurements. The first 
balloon flight was part of the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 2004 
balloon payload. Some useful engineering information was obtained on the thermal performance of 
the instrument during the flight. As part of the MANTRA program, a ground-based inter-instrument 
comparison campaign was conducted with the objective of assessing instrument performance, and 
evaluating data processing routines and retrieval codes. PARIS-IR provides similar quality results for 
stratospheric species as does the University of Toronto FTS.  

An advanced study was carried out for the Carbon Cycle science by Fourier Transform 
Spectroscopy (CC-FTS) mission, which is a proposed future satellite mission to obtain a better 
understanding of the sources and sinks of greenhouse gases in the Earth’s atmosphere by monitoring 
total and partial columns of CO2, CH4, N2O, and CO in the near infrared together with the molecular 
O2 column. To evaluate the spectral regions, resolution, optical components, and spectroscopic 
parameters required for the mission, ground-based Fourier transform spectra, recorded at Kiruna, Kitt 
Peak, and Waterloo, were used. Dry air volume mixing ratios of CO2 and CH4 were retrieved from the 
ground-based observations. A FTS with a spectral resolution of 0.1 cm-1, operating between 2000 and 
15000 cm-1, is suggested as the primary instrument for the mission. Further progress in improving the 
atmospheric retrievals for CO2, CH4 and O2 requires new laboratory measurements to improve the 
spectroscopic line parameters. 

Atmospheric observations were made with three FTSs at the Polar Environment Atmospheric 
Research Laboratory (PEARL) during spring 2006. The vertical column densities of O3, HCl, HNO3, 
HF, NO2, ClONO2 and NO from PARIS-IR, the Eureka DA8 FTS, and the ACE-FTS show good 
agreement. Chorine activation and denitrification in the Arctic atmosphere were observed in the 
extremely cold stratosphere near Eureka, Nunavut, Canada. The observed ozone depletion during the 
2006 campaign was attributed to chemical removal. 
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Chapter 1 
Introduction and Theory  

1.1 Introduction 

Observations of the gaseous constituents of the Earth’s atmosphere are important in the study 

of atmospheric chemistry and in the development of models that can predict the possible 

evolution of this complicated system. Gases from volcanic eruptions, biomass burning, and 

industrial sources are perturbing the environment. Conventional atmospheric measurements 

involve direct sampling, which is not always straightforward or risk-free, and is inconvenient 

for long-term monitoring. An atmospheric absorption spectrum recorded using the sun as a 

source contains spectral features that are characteristic of atmospheric composition. The 

intensity of the observed features provides quantitative information on the constituent 

concentrations.  

In the infrared spectral region, Fourier transform spectrometers (FTSs) are the usual 

choice for atmospheric remote sensing because of their inherent advantages of high energy 

throughput and wide spectral coverage, relative to a grating spectrometer with a single 

detector element. In general, FTSs also have a “multiplex” advantage, at least in the thermal 

infrared [Davis et al., 2001]. FTSs have been deployed on various satellites and planetary 

probes [Persky 1995; Kobayashi et al., 1999; Beer 2006], on balloon gondolas [Camy-Peyret, 

1995; Friedl-Vallon et al., 2004], and on the ground for volcanic gas measurements 

[Oppenheimer et al., 1998; 2002] and pollutant emission studies [Griffiths et al., 2000; Hong 

et al., 2004; Koehler et al., 2001; Todd et al., 2001]. They are used in long term monitoring 

programs for atmospheric species that are changing the climate on the Earth [Griffith et al., 

2003; Rinsland et al., 2003; Yang et al., 2002; Washenfelder et al., 2003]. Remote sensing 

from a satellite such as the Atmospheric Chemistry Experiment (ACE) mission [Bernath et 

al., 2005] and the Orbiting Carbon Observatory (OCO) mission [Crisp et al., 2004] can 

provide a global picture of changes in atmospheric composition. The ACE mission provides 

temperature and pressure profiles and volume mixing ratio (VMR) profiles with 3-4 km 
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vertical resolution of about 30 atmospheric constituents, as well as of multiple isotopologues 

of some of these species [Bernath, 2006]. The use of spectrometers in space has, in turn, 

spurred the need for measurements from the ground or balloons, in order to verify the 

calibration and performance of satellite instruments [Fu et al., 2007; Fu et al., in 

preparation]. 

This work describes the remote sensing of atmospheric gases using Fourier transform 

spectroscopy from satellites, balloons and the ground. In Chapter 2, the characteristic 

features of observation geometries, platforms and instrumentation used will be introduced. In 

Chapter 3, the global phosgene observations from ACE, a Canadian satellite mission, are 

given [Fu et al., 2007]. In Chapter 4, preparation and deployment of PARIS-IR (Portable 

Atmospheric Research Interferometric Spectrometer for the Infrared) for the MANTRA 

(Middle Atmosphere Nitrogen TRend Assessment) 2004 balloon campaign are presented. 

Chapter 5 discusses the ground-based solar absorption studies that have been used to plan for 

a possible future satellite mission, Carbon Cycle Science by Fourier Transform Spectroscopy 

(CC-FTS) [submitted to J. Quant. Spectrosc. Radiat. Trans.]. In Chapter 6, simultaneous 

atmospheric measurements from the ground using two Fourier transform infrared 

spectrometers during the 2006 Canadian Arctic ACE Validation Campaign are presented [Fu 

et al., in preparation].  

Ground-based observations have been used in most of the work in this thesis. Hence, the 

following sections will describe Fourier transform spectroscopy, spectral lineshapes, 

simulation of atmospheric absorption spectra, and the retrieval process which is used to 

obtain concentration information from atmospheric absorption spectra. In the following 

section,  matrices and matrix functions are denoted by bold-face upper-case fonts, vectors by 

bold-face lower-case, the transpose by a superscript T, and a matrix inverse is denoted by a 

superscript ‘-1’.  
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1.2 Fourier Transform Spectroscopy 

Fourier transform spectroscopy is a measurement technique in which spectra are collected 

based on interference of the light from a radiative source. The heart of a FTS is a Michelson 

interferometer that was first designed about 120 years ago [Michelson, 1891; 1892]. A 

schematic diagram of a Michelson interferometer is presented in Figure 1.1. Radiation from a 

source such as the sun is split by a beamsplitter into two beams.  One beam is reflected off a 

fixed mirror (M1) and one off a moving mirror (M2) which introduces a time delay. After the 

two beams recombine at the beamsplitter and interfere with each other, allowing the temporal 

coherence of the light to be measured at different time delay settings, that is, at different 

optical path differences. By recording the signal intensity at many discrete positions of the 

moving mirror, an interferogram is obtained. The spectrum can be obtained by performing a 

Fourier transform on the interferogram. The principles and development of Fourier transform 

spectroscopy have been discussed in many books, such as Griffiths and de Haseth [1986], 

Davis et al. [2001] and Thorne et al. [1991] and hence only a brief description is given here.  

 

Figure 1.1 A schematic diagram of a classical Michelson interferometer. 
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When the light source is monochromatic, that is a single frequency, the two beams will 

interfere at the beamsplitter due to the optical path difference x, and the intensity of the 

interferogram can be written as 

[ ]x)ν~cos(2π1)ν~B(I(x) += .                                            (1.2.1) 

)ν~B( is the spectral intensity of the monochromatic source as a function of wavenumber ν~ .  

When the source is polychromatic, that is, contains more than one frequency, the right 

hand side of Eq. (1.2.1) needs to be integrated in order to describe the intensity of the 

interferogram as 

( )[ ] ν~d ν~2πcos1)ν~(B)x(I 0 += ∫
∞+                                    (1.2.2) 

      ν~d x)ν~)cos(2πν~B(ν~)dν~B(0 0∫ ∫
∞+ ∞++= .                     (1.2.3) 

The first term in the right hand side of Eq. (1.2.3) is the mean intensity of the interferogram, 

and is constant if the source is stable. The second term, also known as the AC component, 

contains all the information in the spectrum. Let us define 

 ν~d x)ν~)cos(2πν~B((x)I'
0∫
∞+

= ,                                           (1.2.4) 

with 0)ν~B( = for 0ν~ < . Hence, Eq. (1.2.4) can be written as  

ν~d x)ν~)cos(2πν~B((x)I'
-∫
∞+

∞
= .                                            (1.2.5) 

To obtain the source spectrum )ν~B( , Fourier transformation gives 

dx x)ν~(x)cos(2πI')ν~B(
-∫
∞+

∞
= .                                            (1.2.6) 

For real observations, only finite optical path differences can be attained and hence, Eq. 

(1.2.6) will be rewritten as  

dx x)ν~(x)cos(2πI' )ν~B(
MOPD

MOPD-∫
+

= ,                                      (1.2.7) 
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where, MOPD stands for maximum optical path difference. The MOPD value depends on the 

maximum distance that the moving mirror travels in the interferometer. Each FTS has a finite 

spectral resolution ν~Δ due to its finite MOPD. For this thesis, the spectral resolution is 

defined as 0.5/MOPDν~ =Δ . 

 

1.3 Lineshape Functions 

When sunlight travels through the Earth’s atmosphere, it can be absorbed by the gaseous 

species, and in the infrared this absorption is associated with vibration-rotation transitions of 

molecules. An atmospheric absorption spectrum, which is the solar radiation as a function of 

wavenumber, contains many absorption features called lines. However, the absorption 

features do not occur at a single wavelength, and each line has a definite width and 

characteristic shape. In the atmosphere, line broadening is mainly due to collisions between 

molecules and to their thermal motions [Bernath, 2005].  

Doppler broadening is the broadening of spectral lines due to the Doppler effect in which 

the thermal movement shifts the apparent frequency of each emitter or absorber. The many 

different velocities of the molecules result in many small shifts, and the combined effect is to 

broaden the line. The resulting line profile is known as a Doppler lineshape function,  

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=− 2

2
0

0D a
ν~ν~

exp
aπ
1)ν~ν~(g           (1.3.1) 

m
T2k

c
ν~

a B0=              (1.3.2) 

which is a Gaussian function, where 0
~ν  is the wavenumber at the line center, Bk  is the 

Boltzmann constant (1.381×10-23J/K), T is the ambient temperature, m is the molecular mass, 

and the full width at half maximum (FWHM) of the line is ln2aν~Δ D =  [Bernath, 2005]. 

The line broadening that arises from collisions between molecules, either due to the same 

type of molecule or to different species, can be presented as a Lorentzian lineshape function   
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( ) ( )2
L

2
L0

L
0L ν~Δδν~ν~

ν~Δ
π
1)ν~ν~(g

+−−
=− ,          (1.3.3) 

in which 0ν~ is the line center at zero pressure, Lδ is a line position shift, and Lν
~Δ is the line 

width parameter. For air at temperature T and pressure p, the line width is 

( )[ ]s00selfs00air

n
0

L )pp,(Tγpp)p,(Tγ
T
T

p)(T,Δν
air

+−⎟
⎠
⎞

⎜
⎝
⎛=  .         (1.3.4) 

In Eq. (1.3.3), pδδ airL =  is line shift with airδ  the line shift parameter in air measured at the 

reference temperature T0 (296 K) and pressure p0 (1 atm). 2 LνΔ , is the FWHM of the 

Lorentz lineshape at the specified temperature T and pressure p . In Equation 1.3.4, airγ  

and selfγ , are the air-broadening and self-broadening coefficients, respectively. They are also 

measured at the reference temperature T0 (296 K) and pressure p0 (1 atm); sp  is the partial 

pressure of the gas that absorbed the solar radiation at wavenumber ν~ . airn  is the temperature 

exponent coefficient, and its value depends on the nature of the gases in the collision and on 

the particular transition.  

The Voigt lineshape function is the convolution of a Lorentz broadening lineshape and a 

Doppler broadening lineshape,  

∫
∞+

∞−
−−=− '

0
'
0L0

'
0D0V ν~d )ν~ν~(g )ν~ν~(g)ν~ν~(g .                    (1.3.5) 

It is a general form that can include purely Lorentz or Doppler broadening lineshapes as 

limiting cases [Bernath, 2005]. The Voigt lineshape function is widely used in atmospheric 

remote sensing, for example in the SFIT2 retrieval program, which will be described in 

Section 1.8. For example, at low altitudes, where pressure broadening dominates the 

lineshape function, DL νν ~~ Δ>>Δ , so )ν~ν~δ()ν~ν~(g 0
'
00

'
0D −≈−  and  

( ) ( ) ( )0L
'
0

'
0

'
0L0v ν~ν~gν~d ν~ν~δ ν~ν~g)ν~ν~(g −=−−=− ∫

+∞

∞−
.                     (1.3.6) 
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Lorentz broadening decreases rapidly as the altitude increases due to the exponential 

decrease in the atmospheric pressure. It becomes comparable to Doppler broadening at about 

25 km (for CO2), and is negligible at about 45 km, that is, DL νν ~~ Δ<<Δ . In this limit 

)ν~ν~δ()ν~ν~(g '
0

'
0L −≈− , and 

( ) ( ) ( )0D
'
0

'
0

'
0D0v ν~ν~gν~d ν~ν~δ ν~ν~g)ν~ν~(g −=−−=− ∫

+∞

∞−
.           (1.3.7) 

When Lorentz and Doppler broadening are both important, as in the stratosphere, the Voigt 

lineshape function becomes 

( ) ( )( )
dy 

ν~/Δν~ν~yν~/Δν~Δ
e

π
1

a
ν~Δ

)ν~ν~(g 2
D0

2
DL

y

3/22
L

0V

2

∫
∞+

∞−

−

−−+
=− .                     (1.3.8) 

The absorption coefficient ν~k is the product of the line strength ( )0ν~S  and lineshape function, 

( ) )ν~ν~(gν~S)ν~(k 0V0ν~ −×= .            (1.3.9) 

Line parameters such as 0ν~ , airγ , selfγ , airδ , and airn  are measured by many research groups, 

and are collected in the HITRAN (HIigh-resolution TRANsmission) database [Rothman et 

al., 2005] and in the GEISA (Gestion et Etude des Informations Spectroscopiques 

Atmosphériques) database [Jacquinet-Husson et al., 2005].  

 

1.4 Simulation of Atmospheric Absorption Spectra  

The transmittance of sunlight through the atmosphere is the ratio of the intensity at the top of 

the atmosphere (TOA) to the intensity measured at the ground, 

( )
( )ν~I
ν~Iτ

0

= .                                                                      (1.4.1) 

Atmospheric absorption is described by the Bouguer-Lambert-Beer law, usually called 

Beer’s law: 
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( )
( ) )dsn x),ν~k(exp(-
ν~I
ν~Iτ TOA

surface x
0

∫==
  
                               (1.4.2) 

for the transmission due to molecule x with molecular density xn at wavenumber ν~ at position 

x along the optical path. The optical path, ds , can be calculated by the auxiliary “FSCATM” 

subroutine [Gallery et al., 1983; Meier et al., 2004] of the SFIT2 algorithm which performs 

ray tracing calculations by taking account of the effects of atmospheric curvature and 

refraction. 100 km above sea level is commonly defined as TOA. 

 The atmospheric absorption spectrum of trace gas x can be calculated using Eq. (1.4.2) if 

the vertical distribution of the gas x is known. The vertical distribution of gas x can be 

obtained from balloon or satellite observations. For example, many vertical profiles of more 

than 30 atmospheric gases are available from the measurements made using the MkIV 

balloon Fourier transform infrared spectrometer [Peterson and Margitan, 1995]. The 

HALogen Occultation Experiment (HALOE) v.19 satellite data provide O3, HCl, HF, CH4, 

H2O, NO, and NO2 volume mixing ratio (VMR) profiles [Russell et al., 1994; Grooß and 

Russell, 2005]. In many cases, the vertical distributions of atmospheric gases are given in 

VMRs as a function of altitude or pressure. They can be easily transformed to number 

density units (molecules/m3) using the idea gas equation  

vmr
B

x C
Tk

pn = ,                       (1.4.3) 

in which Bk  is the Boltzmann constant (1.381×10-23 J/K) and Cvmr (dimensionless) is the 

VMR value for gas x. The p (in pascal) and T (in K) profiles, which are used in Eq. (1.4.3) 

and in the previous calculations of absorption coefficients, can be obtained from National 

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research 

(NCAR) analyses provided by the NASA Goddard Space Flight Centre (GSFC) automailer 

(science@hyperion.gsfc.nasa.gov) [McPherson et al., 1979; Kalnay et al., 1996] and the 

Mass-Spectrometer-Incoherent-Scatter model (MSIS-2000) [Picone et al., 2002]. NCEP 

covers the altitude range from surface to about 50 km, and the output of MSIS is used from 

50 km to 100 km. 
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The total column amount of gas x in the slant optical path from the TOA to the 

observatory at the surface Mx, can be obtained along the optical path from the integral 

ds)s(nM TOA

surface xx ∫= .             (1.4.3) 

The vertical total column of gas x, tot_xM , can be calculated from 

ds
ds
dz(z)nM

TOA 

surface xtot_x ∫=             (1.4.4) 

using the vertical coordinate, z. If an altitude range is used in the integral of Eq. (1.4.4) 

instead of from the surface to the top of the atmosphere (e.g. from 10 km to 50 km), a partial 

vertical column will be obtained for the gas x. In this thesis, total vertical columns and partial 

columns of several gases are reported in Chapters 4 to 6.  

After normalization, an atmospheric absorption spectrum can be used as a transmittance 

spectrum if the effects of atmospheric scattering and emission can be neglected. This 

approximation is generally used in the infrared region where atmospheric scattering is 

relatively weak. The simulated spectra make use of a priori VMR profiles, such as those 

recorded by the MkIV or HALOE instruments, but the observed profiles are expected to be 

different. By adjusting the simulated profile, the differences between the calculated 

absorption spectrum and the measured one will be minimized. The final adjusted profile is 

reported as the VMR profile of gas x. The procedure for finding the desired quantities (VMR 

vertical distributions of target gas x) from the measured spectra is often called an “inverse 

problem”. In the retrievals employed in Chapters 4 to 6, the Optimal Estimation Method 

(OEM) developed by Rodgers [2000] is used.  

 

1.5 Retrievals Using the Optimal Estimation Method 

The retrieval of a VMR profile for an atmospheric gas from a ground-based solar absorption 

spectrum is inherently an ill-posed problem. This is because the spectral absorption features 

contain only enough information to determine the gas concentrations in a few independent 
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vertical layers, while the atmosphere must be modeled with about 30 layers to minimize 

severe errors in the simulated spectra due to possible misrepresentation of physical 

conditions such as p and T in the atmosphere. The vertical resolution of ground-based 

observations is limited by many factors such as the observation geometry and the maximum 

spectral resolution. The OEM provides a suitable procedure to solve the under-determined 

problem of deriving a VMR profile from an observed absorption spectrum.  

In the OEM formulation of atmospheric sounding, the a priori VMR, ax , which is an n 

dimensional state vector, contains VMR values of the target gas on a specified altitude grid 

obtained from previous observations. The m-dimensional measurement vector y contains the 

measured spectral intensities in the wavenumber domain, while the vector x contains the 

observed vertical VMR values of the target gas. The forward model F(x, b) relates the state 

vector x to the measurement vector y through 

εbxFy += ),( ,               (1.5.1) 

in which, b are parameters used in the forward model, such as the spectroscopic parameters 

and temperature profiles, and ε  is the random spectral measurement noise. The goal is 

determine the profile x from the spectrum, y. 

Eq. (1.5.1) can be linearized about the a priori state, ax , which is taken as the reference 

state,  

εxxKbxFy +−+= )(),( aa ,                       (1.5.2) 

in which, x/bxFK ∂∂= ),( , is an m by n matrix. Eq. (1.5.2) can be further expanded to  

εbbKxxKbxFεbb
b
Fxx

x
FbxFy abaaaaaaa +−+−+=+−

∂
∂

+−
∂
∂

+= )()(),()()(),(     

       (1.5.3) 

by including a linearization about a set of model parameters ba. K contains the sensitivity of 

the forward model to the true state of VMR, and Kb defines the sensitivity of the forward 

model to the model parameters. K is called the weighting function matrix or Jacobian matrix. 
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  It is possible to determine an inverse model R which relates the spectra y to the desired 

estimate of the atmospheric state, x̂ : 

),(ˆ byRx = .            (1.5.4) 

The inverse model can also be linearized as  

)-()-(),()-()-(),(ˆ abaaaaaaa bbGyyGbyRbb
b
Ryy

y
RbyRx ++=

∂
∂

+
∂
∂

+=           (1.5.5) 

about the measurement ya, which is the expected measured spectrum when the VMR profile 

in the given atmosphere is xa. G is an n by m matrix called the gain or contribution function 

matrix, since it shows the contribution to the solution due to a unit change in the 

corresponding element of y. Gb represents the sensitivity of the inverse model to its model 

parameters.  

The retrieved profile x̂ can be related to the true profile x using a transfer function T,  

),()),,((ˆ bxTbbxFRx == ,                          (1.5.6) 

by ignoring the errors in the measurements and model parameters.  

Eq. (1.5.6) can be linearized about the a priori state, xa, 

)-(),()-(),()-(),(ˆ aaaaaa xxGKbxTxx
x
F

F
RbxTxx

x
TbxTx +=

∂
∂

∂
∂

+=
∂
∂

+=      (1.5.7) 

and since a),( xbxT a = , Eq. (1.5.7) can be further simplified to  

aaaaa )( )()(ˆ xA-IAxx-xAxx-xGKxx +=+=+=                             (1.5.8) 

with A defined as GK . Thus x̂ , which is the solution of the retrieval, is weighted by the n by 

n matrix
x
x

x
F

F
RGKA

∂
∂

=
∂
∂

∂
∂

==
ˆ

. The rows of the square matrix A are called the averaging 

kernel [Backus and Gilbert, 1970], and they represent the sensitivity of the retrieved state to 

the true state.  To find the solution x̂ , the G and K matrices need to be determined, since the 

reference state ax can be easily obtained from previous observations. 
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The procedure for finding the solution x̂  is to find the probability of obtaining the VMR 

profile x from given a measurement y using Bayes’ theorem [Rodgers, 2000]: 

)(
),()|(

yP
yxPyxP = .            (1.5.9) 

)|( yxP  is the conditional probability of obtaining x given y. )(yP  is the probability of 

obtaining y, and ),( yxP is joint probability of obtaining x and y. 

Given a VMR profile x, the probability of measurement can be written as 

)(
),()|(

xP
yxPxyP = ,                       (1.5.10) 

or  

)()|(),( xPxyPyxP =  .                       (1.5.11) 

Combining Eq (1.5.11) and Eq. (1.5.9) gives 

)(
)()|(|(

yP
xPxyPy)xP = .                                              (1.5.12) 

In practice, all observations have experimental error or ‘measurement noise’, so retrievals 

must take this into account. The experimental error can be written in terms of probability 

density functions. For example, consider a single variable z. Our knowledge of the true value 

of the measured parameter is described by a probability density function )z(P with mean 

z and variance 2σ , with 

∫= zd)z(zPz                                                    (1.5.13) 

and 

( ) ( )dz zP zzσ
22 ∫ −= .                                              (1.5.14) 

Hence, the probability that z lies in the interval (z, z + dz) is P(z)dz. The form of P(z)dz is 

almost always taken to be Gaussian, 
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( )
( )

⎥
⎦

⎤
⎢
⎣

⎡ −
−=−= 2

2

1/2 2σ
zzexp

σ2π
1)σ,zz(NP(z) ,            (1.5.15) 

since it is a good approximation for experimental error, and is very convenient for algebraic 

manipulations [Rodgers, 2000]. 

When the measured quantity is a vector, a probability density function can still be defined 

over a measurement space )(zP . In this case, P(z)dz gives the probability that the true value 

of the measurement lies in a multidimensional interval (z, z + dz) in measurement space. 

Different elements of a vector may be correlated, as 

0)]z)(zz[(zS jjiiij ≠−−= ε ,                                    (1.5.16) 

where ijS  is called the covariance of iz  and jz , and ε is the expected value operator. A 

matrix denoted by zS  is used to express the covariance matrix of z. The Gaussian 

distribution for a vector z is written as 

 
( )

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−= − zzSzz

S
zP 1T

1/2n/2 2
1exp

2π
1)( z

z

.                          (1.5.17) 

Similarly, )(xP , )(yP , and )|( xyP  in our case can be described using Gaussian functions as  

( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ −−−= −

aaa xxSxx
S

xP 1T
1/2

a
n/2 2

1exp
2π

1)( ,                         (1.5.18) 

in which aS is the n by n covariance matrix of the a priori VMR, and describes how much 

the VMR of two layers vary together,  

( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ −−−= − yySyy

S
yP 1

ε
T

1/2
ε

n/2 2
1exp

2π
1)(  ,       (1.5.19) 

and 

( )
( ) ( )⎥⎦

⎤
⎢⎣
⎡ −−−= − KxySKxy

S
x|yP 1

ε
T

1/2
ε

m/2 2
1exp

2π
1)( ,       (1.5.20) 
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respectively [Rodgers, 2000]. In Eqs. (1.5.19) and (1.5.20), εS is the measurement noise 

covariance matrix, an m by m matrix describing how much the measurement error of two 

spectral points varies together. The off-diagonal elements in εS  can be assumed to be zero 

since the measurement errors are mostly independent of each other, i.e., they are random, and 

the diagonal elements in εS are usually set to 1/(signal-to-noise ratio)2. 

Using Equations (1.5.12), (1.5.18), (1.5.19) and (1.5.20), one obtains: 

( ) ( ) ( ) ( ) ( ) ( )

( ) 1/2
a

n/2

a
1

a
T

a
1

ε
T1

ε

T

2π
2
1

2
1

2
1exp

)|(
S

xxSxxKxySKxyyySyy
yxP

⎥⎦
⎤

⎢⎣
⎡ −−−−−−−−

=

−−−

 

     (1.5.21)  

and taking the logarithm of Eq. (1.5.21) yields, 

( ) ( ) ( ) ( ) 1a
1

a
T

a
1

ε
T C)(2ln- +−−+−−= −− xxSxxKxySKxyy|xP  ,        (1.5.22) 

in which, 1C is a constant since it does not depend on x. Eq. (1.5.22) is quadratic in x, so it 

must be possible to write  

( ) ( ) 2
1T Cˆˆˆ)|(2ln- +−−= − xxSxxyxP  .         (1.5.23) 

Eq. (1.5.22) and Eq. (1.5.23) can be related by equating terms. Equating terms that are 

quadratic in x, gives 

xSxxSxKxSKx 1T1
a

T1
ε

TT −−− =+          (1.5.24) 

and hence, 

1
a

1
ε

T1 −−− += SKSKS           (1.5.25) 

Likewise, equating the terms linear in xT using Eq. (1.5.22) and Eq. (1.5.23), gives 

( ) ( ) ( ) ( ) ( )xSxxSxySKx a ˆ--- 1T1
a

T1
ε

T −−− =+         (1.5.26) 

and removing the xT in Eq. (1.5.26) gives 
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xSxSxySK ˆ1
a

1
a

T1
ε

T −−− =+          (1.5.27) 

Substituting Eq. (1.5.25) into Eq. (1.5.27) gives 

 ( )xSKSKxSxySK ˆ1
a

1
ε

T
a

1
a

T1
ε

T −−−− +=+         (1.5.28) 

and hence 

( ) ( )a
1

a
T1

ε
T11

a
1

ε
Tˆ xSxySKSKSKx −−−−− ++=  

( ) ( )a
1

ε
T

a
T

aa KxySKKSKSx −++=
− .                    (1.5.29) 

Since Kxy = , Eq. (1.5.29) can be written as  

( ) )(ˆ a
1

ε
T11

a
1

ε
T

a xxKSKSKSKxx −++= −−−−          (1.5.30) 

or 

( ) ( )a
1

ε
T

a
T

aaˆ xxKSKKSKSxx −++=
− .        (1.5.31) 

Eqs. (1.5.30) and (1.5.31) can be compared with Eq. (1.5.8) and the matrix G is found to be  

( ) ( ) 1
ε

T
a

T
a

1
ε

T11
a

1
ε

T −−−−− +=+= SKKSKSSKSKSKG       (1.5.32) 

Eq. (1.5.32) shows that the gain matrix (also known as contribution function), G, can be 

calculated given the Jacobian matrix K, the measurement error covariance matrix εS , and the 

a priori VMR covariance aS . Notice, however, that equation (1.5.31) assumes Gaussian error 

probabilities and a linear relationship between y and x (y = Kx), which is not generally the 

case in practice [Rodgers, 2000]. In general, there is a non-linear relationship 

)(xFy = between the spectrum y and the profile x, and the most probable solution is 

determined by 

 [ ] ( ) ( ) }C)()()]({[)|(ln2 1a
1

aa
1

ε
T

xx +−−+−−∇=−∇ −− xxSxxxFySxFyyxP        (1.5.33) 

[ ] ( ) ( )a
1

a
1

ε
T

x )())(( xxSxFySxF −+−−∇= −−                                (1.5.34) 
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( ) ( ) 0)()]([ a
1

a
1

ε
T

x =−+−∇−= −− xxSxFySxF                   (1.5.35) 

Eq. (1.5.35) is an implicit equation for x, that is, the value of y is obtained from x by solving 

the equation ( ) ( ) 0)()]([ a
1

a
1

ε
T

x =−+−∇− −− xxSxFySxF . It must be solved numerically, and 

the difficulty involved depends on the degree of non-linearity of the forward model )(xF .  

Let us define the cost function J as  

( ) ( ) ( ) ( )a
1

a
T

a
1

ε
T)( xxSxxKxySKxyxJ −−+−−= −− .        (1.5.36) 

According to equation Eq. (1.5.30), the gradient of the cost function J(x)gives 

[ ] ( ) ( )a
1

a
1

ε
T

xx )()()( xxSxFySxFxJ −+−∇−=∇ −−  .       (1.5.37) 

Newtonian iteration is a straightforward numerical method for finding the zero of the 

gradient of the cost function J(x) . For 0x =∇ J(x) , the (i+1)th iteration of x gives   

[ ] )() ix
1

ixxi1i xJJ(xxx ∇∇∇−= −
+         (1.5.38) 

The derivative of J(x)x∇ can be written as 

( )[ ] ( )[ ]{ } [ ])()(x)( 1T
x

1
ε

T
x

1
axx xFySxFKSxFSJ(x) ε −∇∇−∇+=∇∇ −−−       (1.5.39) 

and if the last term in Eq. (1.5.39) is small enough to be neglected, then 

( )[ ] KSxFSJ(x) 1
ε

T
x

1
axx )( −− ∇+=∇∇         (1.5.40) 

Substituting Eqs. (1.5.37) and (1.5.40) into Eq. (1.5.38) gives 

[ ]{ } ( )[ ] [ ] ( ){ }aii
T

ixix
1T

ix
1

ai1i xxS)F(xySxF)F(xS)F(xSxx 1
a

1
εε −+−∇∇∇++= −−−−

+  

                (1.5.41) 

By expressing 1i+x  as a departure from ax rather than from ix , Eq. (1.5.41) can be rearranged 

as  

[ ]{ } ( )[ ] ( )[ ] ( ){ }ai
1

ixi
1T

ixix
1

ε
T

ix
1

aa1i xxxF)F(xySxF)F(xS)F(xSxx ε −∇+−∇∇∇++= −−−−
+  
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       [ ] [ ]{ }( ) ( )[ ] ( ){ }ai
1

ixi
T

ixzix
T

ixaa xxxFyy)F(x)SF(x)F(xSx −∇+−∇∇∇+= −       (1.5.42) 

in which, ( )ii xFy =  is produced by the forward model using the ith estimate of the VMR 

profile. It is the calculated spectrum at the ith iteration.  

A convergence criterion is required to determine when the iterations should be terminated. 

A commonly used test is to compare the difference between the calculated 

spectrum ( )ii xFy =  and the measured spectrum y  with the expected measurement error. 

When the difference is smaller than the expected measurement error m  

[ ] [ ] [ ] m≤−−=− −− 1
i

1
εii

2χ )F(xyS)F(xy)F(xy              (1.5.43) 

the iteration will be terminated at the ith step, and the solution ix  is the retrieved VMR x̂ .  

 

1.6 Retrieval Characterization 

The Eq. (1.5.8) shows that the retrieved VMR profile is actually a combination of the a priori 

VMR and the measurements, in which the a priori VMR is weighted by the matrix A. The n 

by n matrix A, called the averaging kernel matrix, gives the sensitivity of the retrieval to the 

VMR profile. The averaging kernel matrix is the product of the contribution function G, 

which is given by Eq. (1.5.32), and the weighting function ( )
x
xFK

∂
∂

= .  

The averaging kernel matrix characterizes the retrievals, since its rows describe the 

sensitivity of the retrieval to each atmospheric layer. In the ideal case, A is a unit matrix, that 

is, the measurement is sensitive to each layer with perfect sensitivity, and the retrieved VMR 

profiles do not use any information from the a priori ones. The vertical resolution in the ideal 

case is the vertical layer spacing. However, in reality, such as for the retrievals of ground-

based observations, the rows of A are generally peaked functions. The diagonal elements of 

A are not equal to one and the off-diagonal elements are not equal to zero. The a priori VMR 

profile thus makes a contribution to the retrieved VMR profiles. The half-width of the peaked 

function is usually defined as the vertical resolution of the observations. The sum of the 
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elements in the nth row of the A matrix gives the sensitivity of the observations at the nth 

layer. For example, the retrieved VMR value at the nth layer is solely determined by the 

observations when the sum is close to 1. In contrast, if the sum is close to 0 the retrieved 

VMR value is mainly from the a priori VMR.  

The VMR profiles of trace gases observed using ground-based instruments or satellite-

borne nadir-viewing spectrometers have a limited vertical resolution, and typically provide 

about 1 to 4 independent layers. The trace of the averaging kernel matrix A, called the 

degrees of freedom (DOFS) for signal and labeled as ( ))tr(DOFS A= , determines the number 

of independently resolved pieces of information in the atmosphere obtained from the 

measurement, that is, the amount of a trace gas in a certain altitude range, which is a partial 

column. For example, when 3)tr(DOFS == A three partial columns representing three 

different altitude ranges in the atmosphere can be obtained from the observations. 

1.7 Retrieval Error Analysis  

Taking errors into account, Eq. (1.5.6) can be rewritten as  

[ ]bεbbxΔfbxFRx ,)',,(,),(ˆ += .                          (1.7.1) 

Here, )',,( bbxΔf is the difference between the best known forward model ),( bxF and the 

perfect forward model; 'b are the unknown forward model parameters, but should be 

included in the best known physical model; ε is the random measurement noise.  

Performing a linearization of the forward model ),( bxF about ax and ab  (subscript a 

indicates that the parameters are from a priori information), we can rewrite Eq. (1.7.1) as 

[ ]aabaaa )',,()-()-(),(ˆ bε,bbxfbbKxxKbxFRx +Δ+++= .            (1.7.2) 

A linearization about ay for Eq. (1.7.2) yields, 

⎥⎦
⎤

⎢⎣
⎡ +Δ++

∂
∂

+= aabaaa )',,()-()-(),(ˆ bε,bbxfbbKxx
F
RbxFRx ,        (1.7.3) 
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and assuming that the retrieval method does not introduce a bias, has [ ]aaaa ),,( bbxFRx = . 

As given in section 1.5, 
F
RG
∂
∂

= so  

Gε)bbf(xG)b-(bGK)x-GK(xxx +Δ+++= ',,ˆ abaa           (1.7.4) 

Since GKA = , subtracting x from both sides of Eq. (1.7.4) and denoting the n by n unity 

matrix as I, we obtain 

)x-(xIAxx a)(ˆ −=−                  smoothing error     

 )b-(bGK ab+     model parameter error 

 )',,( bbxfGΔ+     forward model parameter error 

 Gε+ .      retrieval noise         (1.7.5) 

The left hand side of Eq. (1.7.5) is the total error in an observation, since it presents the 

difference between the retrieved or observed VMR profile and the real VMR profile of the 

target gas in the atmosphere. The right hand side indicates the various error sources which 

consist of smoothing error, model parameter error, forward model parameter error, and 

retrieval noise error.  

Since we do not know the real VMR profile in the atmosphere, only the error covariance 

matrices can be obtained as  

T
aS )()( I-ASI-AS =                (1.7.6)            

TT
bbbF GKSGKS =             (1.7.7) 

T
εM GGSS = .              (1.7.8) 

SS is the covariance of the smoothing of the real VMR profile through the use of an 

averaging kernel matrix. It is a systematic error on a short time scale, but random on long 

time scales since its estimate is only correct as aS  becomes the covariance of a real ensemble 

of atmospheric VMR profiles and ax  gives the true mean atmospheric VMR profile. MS is 



Chapter 1                                                                                                       Introduction and Theory 

  20

the covariance error arising from the random measurement noise propagating into the 

retrievals, and is a random error. The model parameter error covariance FS  is caused by 

biases in forward model parameters, and can contain random errors such as those from the 

temperature and pressure profiles and solar zenith angle used in the model, together with 

systematic errors such as those from spectroscopic parameters. The forward model error is 

usually neglected, since evaluating it without knowing x and b is extremely difficult.  

 

1.8 Retrievals Using SFIT2 Program 

The SFIT2 program [Hase et al., 2004; Pougatchev et al., 1995; Rinsland et al., 1998] is 

widely used for the analysis of ground-based solar absorption spectra. It was jointly 

developed at the NASA-Langley Research Center and at the National Institute of Water and 

Atmospheric Research at Lauder, New Zealand. It is a retrieval program that employs the 

OEM of C. D. Rodgers [Rodgers 1976, 1990, 2000; Rodgers et al., 2003]. The OEM is coded 

into the program to include a priori VMR profiles as a function of altitude in the retrievals. 

SFIT2 allows the simultaneous retrieval of a vertical profile and column density of the target 

molecule, together with the total columns of interfering species.  

To run the SFIT2 program, we need the following input information: 1) a model 

atmosphere; 2) line parameters; 3) instrumental parameters which simulate the performance 

of the spectrometer used in the observation, such as the MOPD (the parameter that 

determines the spectral resolution for an FTS), and the effective apodization parameters 

(EAP); 4) segments of observed atmospheric absorption spectrum, called “microwindows”.  

To obtain the initial input information, a forward model, named FSCATM [Gallery et al., 

1983; Meier et al., 2004], is applied to generate model atmospheres using a priori VMR 

profiles containing the concentrations of most atmospheric gases as a function of altitude, 

pressure and temperature profiles, longitude and latitude of the observation site, and the time 

of each observation. It is needed to conduct refractive ray tracing, and a calculation of the air 

mass distribution (which is the number of molecules as a function of altitude) for each model 
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atmosphere. The a priori VMR profiles xa and covariance matrices Sa for each atmospheric 

constituent are constructed using a combination of climatological profiles measured by 

satellite-borne or balloon-borne instruments. For example, the a priori VMR profiles that are 

used for the observations at Waterloo Atmospheric Observatory (WAO) were provided by A. 

Wiacek, who combined the HALogen Occultation Experiment (HALOE) v.19 satellite data 

[Russell et al., 1994], mid-latitude daytime 2001 Michelson Interferometer for Passive 

Atmospheric Sounding (MIPAS) reference profiles [Carli et al., 2004], and the VMR 

profiles obtained for northern mid-latitudes by Toon et al. using the MkIV FTS 

measurements during balloon flights [Peterson and Margitan, 1995]. Pressure and 

temperature profiles obtained from NCEP/NCAR, as provided by the NASA GSFC 

automailer (science@hyperion.gsfc.nasa.gov) [McPherson et al., 1979; Kalnay et al., 1996] 

and the MSIS-2000 [Picone et al., 2002] are also the input information for the retrievals. 

Typically, NCEP provides the pressure and temperature information from the surface to 50 

km and the output of MSIS covers from 50 km to 100 km. The a priori VMR, pressure and 

temperature profiles used in the data analysis of the ground-based observations will be 

specified in the retrieval sections in Chapters 4-6. The retrievals of atmospheric phosgene 

VMR profiles as shown in Chapter 3 were performed by C. D. Boone using an iterative 

nonlinear least squares fitting procedure, which differs with the OEM approach and does not 

require a priori VMR profiles as an input information [Boone et al., 2005]. In all of the 

retrievals used by this work, HITRAN 2004, which contains the latest released version of the 

HITRAN data compilation (http://cfa-www.harvard.edu/hitran/welcometop.html) [Rothman 

et al., 2005], were used.  

In order to find the best estimate, that is, to find the VMR profile x̂  that satisfies Eqs. 

1.5.35 and 1.5.43, SFIT2 uses the Newton iteration approach as given in Eq. 1.5.42. During 

each iteration, input information is used in the forward model of the SFIT2 program to 

simulate the infrared absorption spectrum of the target gas along with the interfering gases 

which produce absorption features within the specified microwindow or microwindows. In 

the first iteration, the SFIT2 program uses a1 xx =  to simulate the first absorption spectrum. 

In the ith iteration, the simulated spectrum, which is the iy  or )F(x i  term in Eq. (1.5.42), is 
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calculated using the ith estimated VMR profile ix . The iy , )F(x i , the εS covariance matrix 

(which has only diagonal elements that are all equal to the reciprocal of the square of signal-

to-noise ratio),  together with the input observed spectrum y , are used in the Eq. (1.5.43) to 

evaluate the convergence. If the convergence criterion is satisfied, then the program will 

output the ith estimated VMR profile ix as the retrieved VMR profile x̂  for the target species. 

The weighting function matrix ii | x
x
FK
∂
∂

=  is also written in the output file. Since the 

weighting function matrix is already obtained from the retrieval and the aS and εS matrices 

are also known, the contribution function G  can be calculated using Eq. (1.5.32). Finally, the 

averaging kernel matrix A can be obtained simply because we know ,GKA = and A is used 

in the retrieval characterization and the retrieval error analysis using Eqs. (1.7.6) to (1.7.8).  
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Chapter 2 
 Overview of Observations and Instrumentation 

2.1 Platform and Geometry Used in the Observations  

Atmospheric remote sensing can be performed from different types of platforms, which 

generally can be classified into three categories: ground-based, air-borne and space-based. 

The space-borne platforms, such as satellites provide an excellent view in the nadir and limb 

directions. Satellites are very stable and have predictable orbital motions. However, satellites 

are expensive to launch and to operate, and are difficult to repair. Air-borne platforms such 

as aircraft and balloons offer a cheaper way to observe the atmosphere with a better view 

than from the ground. Air-borne platforms, however, can be unstable, and in the case of 

balloons, the flight direction is difficult to control. Ground-based platforms provide the 

lowest costs and easiest instrumental access.  

  Spatial resolution is important in the study of chemical processes in the atmosphere, and 

is related to the viewing geometry used for the observations. For example, a limb-viewing 

geometry can provide a higher vertical resolution than a nadir-viewing geometry or a ground-

based solar viewing geometry. The solar occultation geometry is available only for 

measurements taken from a space-borne or an air-borne platform. The solar occultation 

geometry usually provides lower spatial resolution in the horizontal direction and poorer 

sampling in the troposphere than does a nadir-viewing geometry or the solar-viewing 

geometry used in a ground-based observatory.  

Since each platform and geometry has its own characteristic features, they are selected 

based on the specific scientific problems to be addressed. It is common to utilize many 

platforms and multiple viewing geometries in atmospheric observation programs. The 

following subsections will focus on the descriptions of the platforms and viewing geometries 

used in this thesis. 
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2.1.1 SCISAT-1 and Solar Occultation Viewing Geometry 

The Atmospheric Chemistry Experiment (ACE) satellite, also known as SCISAT-1 (shown in 

Figure 2.1), is a Canadian satellite which was launched on August 12th, 2003. It is being used 

for remote sensing of the Earth’s atmosphere from a low Earth circular orbit (perigee 642 

km, apogee 654 km, inclination 73.9º, period 97.7 minutes) [Bernath et al., 2005]. SCISAT-1 

is a small satellite that uses a circular instrument/component aluminum mounting plate (1.12 

m in diameter) as the main structure element. It was designed, built and integrated by Bristol 

Aerospace Ltd. of Winnipeg, Manitoba, a division of Magellan Aerospace Corporation. The 

spacecraft is 3-axis stabilized as shown in Figure 2.1. SCISAT-1 has a total mass of 150 kg, a 

low power usage of 70 W supplied by a single solar panel, and total data storage capacity of 

1.5 gigabytes. 

 

 

Figure 2.1 A schematic diagram of ACE satellite, SCISAT-1. Figure was adapted from 

the schematic diagram provide by Bristol Aerospace. 

 

The ACE mission studies primarily the upper troposphere and stratosphere. It measures 

chemical constituents that influence the distribution of stratospheric ozone, a major chemical 

species that absorbs the sun's biologically-damaging ultraviolet radiation. To obtain the 

vertical concentration profiles of atmospheric species, ACE measures the absorption of 
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sunlight using solar occultation geometry, in which the sun is used as a light source, and 

interferograms are recorded during sunrise and sunset as shown in Figure 2.2. 

 

 
Figure 2.2 A schematic diagram showing the solar occultation geometry used in the 

ACE mission. Note that the distances are not to scale. Solar radiation passes through 

space and arrives at the upper boundary of the Earth’s atmosphere. The blue, green 

and gray lines indicate the atmospheric absorption path lengths in layers 1, 2 and n, 

respectively. The attenuated solar radiation is recorded by the instruments on SCISAT-

1 for a set of tangent heights during an occultation.  

 

As SCISAT-1 orbits the Earth, the scientific instruments, which will be described in 

Section 2.2.1, point toward the sun and measure the intensity of solar radiation as shown in 

Figure 2.2. At high sun, that is, at the end of a sunrise or at the beginning of a sunset, the 

instruments record the solar radiation without attenuation by the atmosphere to obtain a 

reference spectrum exoatmosphere measurement. During a sunset, when the spacecraft 

moves towards the horizon, the instruments record the intensity of solar radiation which 

passes through the atmosphere and is attenuated by aerosols and gases that scatter and absorb 

sunlight. These spectra are recorded at different tangent heights, which are the minimum 

distances from the Earth’s surface to the optical paths followed by the rays from the sun to 
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the instrument. The atmospheric spectra are divided by the reference spectra to obtain 

transmittances. The sequence of atmospheric transmittances provides information on the 

concentrations of atmospheric constituents in each layer. The details of how the information 

is retrieved from the atmospheric transmittances are provided for ACE Fourier Transform 

Spectrometer (ACE-FTS) and ACE Measurement of Aerosol Extinction in the Stratosphere 

and Troposphere Retrieved by Occultation (ACE-MAESTRO) instruments in Boone et al. 

[2005] and McElroy et al. [2007], respectively. The vertical resolution is determined by the 

field-of-view (FOV) of the instrument, which is 3 to 4 km for the ACE-FTS and 1 to 2 km 

for ACE-MAESTRO. 

SCISAT-1 has now exceeded its 2-year design lifetime, and no degradation of 

performance or functionality of the FTS instrument has been observed since launch. Satellite 

operations have been extended to 2009. Due to its excellent performance, SCISAT-1 is now 

moving beyond its original mission goals, and is providing excellent data related not only to 

ozone chemistry, but also to climate change and air pollution. In Chapter 3, the results on the 

first global observation of phosgene, a highly toxic atmospheric gas, will be presented.  

 

2.1.2 MANTRA 2004 Balloon and Solar Occultation Viewing Geometry 

The Middle Atmosphere Nitrogen TRend Assessment (MANTRA) is an international 

atmospheric observation program that uses a series of high-altitude balloon flights to study 

ozone chemistry in the mid-latitude stratosphere. Four balloon campaigns were held at 

Vanscoy (52.02ºN, 107.03ºW, and 510 m above sea level), Saskatchewan, in August 1998, 

August 2000, September 2002, and September 2004. In each flight, a high-altitude balloon 

carried instruments to measure vertical concentration profiles of stratospheric trace gases 

from a float altitude of about 35 km. The launch of the MANTRA 2004 balloon is shown in 

Figure 2.3. 

A new portable FTS, an instrument built for the validation program of the ACE mission, 

was launched for the first time on a high altitude balloon in MANTRA 2004. The FTS was to 

observe the vertical concentration profiles of thirteen traces gases (O3, CH4, N2O, H2O, 
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HNO3, HCl, NO, NO2, CCl3F, CCl2F2, HF, CO and N2O5) for the ACE validation program. 

To obtain a vertical resolution similar to that used in the ACE mission, this FTS was to use a 

solar occultation viewing geometry from the balloon gondola. The instrument description of 

the FTS is given in Section 2.2.2. The entire instrument configuration on the balloon 

platform, instrument tests, and its performance during two MANTRA 2004 balloon flights 

are given in Chapter 4.  

 

 

Figure 2.3 MANTRA 2004 balloon was launched on September 1st, 2004. It contains 

330208 m3 (11.8 million cubic feet) of helium gas and carried 13 scientific instruments 

with a total weight of 658 kg (1450 lb) to the float altitude of about 37 km. Figure was 

downloaded from http://www.atmosp.physics.utoronto.ca/MANTRA. 

 

2.1.3 CC-FTS, Nadir and Glint Viewing Geometries 

The Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS) mission is a 

second-generation mission proposed to follow the Orbiting Carbon Observatory (OCO) 

mission [Crisp et al., 2004] and the Greenhouse Gases Observing Satellite (GOSAT) mission 
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[Hamazaki et al., 2005]. It aims to provide highly precise simultaneous observations of CO2, 

CH4, CO, N2O and O2 with a small pixel size of 1 km square by recording the solar radiation 

reflected by the Earth’s surface from orbit.  

The primary observation modes of CC-FTS are nadir viewing and glint viewing 

geometries for land and water surfaces, respectively (Figure 2.4 A). Glint viewing geometry 

corresponds to mirror-like specular reflection of sunlight from a flat water surface. The 

reason for using the glint viewing geometry is that in the short wave infrared bands (about 

4000 – 6500 cm-1) used to measure the principal greenhouse gases and the precursor CO, the 

albedo (the ratio of reflected to incident radiation) of water is too low, <1%, to provide a 

suitable source of radiance. The glint viewing geometry provides a high radiance similar to 

the nadir view over land.  

In the nadir viewing geometry, the CC-FTS will scan from west to east to obtain cross 

track observations and will have a FOV with a dimension of 8 by 8 km (indicated by blue 

boxes in Figure 2.4 B). An array of 64 detectors placed in an 8 by 8 matrix will be used for 

the observation of greenhouse gases. A single scan of the FTS lasting 6.5 seconds yields a set 

of 64 interferograms for each FOV. Each detector pixel is identical and observes 1 km2 

within the 8 km square as shown in Figure 2.4 C-D. During the interferometer scan and 

recovery period, the satellite moves forward by ~50 km. Image motion compensation is 

necessary, so during each FTS scan the instrument pointing system views a single scene on 

the ground by scanning back along the satellite path by ~2.2º (Figure 2.4 B).  

Contiguous coverage is not needed, and the CC-FTS mission is able to collect enough 

information to sample CO2 on a regional scale. For example, a set of 64 interferograms per 

FOV will be able to cover the area of Kitchener-Waterloo, a Canadian twin city with a 

population of 300,000 (Figure 2.4 C). For example, a measurement over the University of 

Waterloo campus can provide information on the difference in greenhouse gas column 

densities between the student accommodation area near Columbia Lake (indicated by the 

orange box on the left in Figure 2.4 D) and the main campus of the University of Waterloo 

(indicated by the orange box on the right in Figure 2.4 D). In Chapter 4 the results of ground-
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based observations needed to select the spectral regions, spectral resolution and spectroscopic 

line parameter requirements for the CC-FTS mission are reported. 

 

Figure 2.4 A schematic diagram of the operation modes, scan patterns and spatial 
coverage strategy to be used in the proposed CC-FTS mission as shown in (A) CC-FTS 
satellite orbiting the Earth and observing greenhouse gases in the nadir (shown by the 
green line) and glint viewing geometries (shown by the gray line); (B) During a single 
cross-track scan in the nadir viewing geometry, the CC-FTS makes 6 measurements in 
the cross track direction; (C) An array of 64 detectors placed in an 8 x 8 matrix will be 
used in the observations with a FOV that covers an area of 8 km square. Observations 
with a single FOV of CC-FTS are able to cover Kitchener-Waterloo (image courtesy of 
Google Earth); (D) Each detector pixel observes 1 km2 which, for example, covers the 
Columbia Lake student accommodation (left pixel) or the main campus of University of 
Waterloo (right pixel).   
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2.1.4 WAO, NSO at Kitt Peak, PEARL (also known as ASTRO) and Ground-
based Solar Viewing Geometry 

The Waterloo Atmospheric Observatory (WAO) is located on the roof of the Centre for 

Environmental and Information Technology (CEIT), University of Waterloo (43.47ºN, 

80.54ºW, and 319 m above sea level). WAO is currently equipped with the following 

instruments: the Portable Atmospheric Research Interferometric Spectrometer for the 

Infrared (PARIS-IR), an ABB-Bomem DA8 FTS, an ABB-Bomem sun tracker, a sun tracker 

built by Denver University, and a commercially available weather station (Vantage Pro Plus 

manufactured by Davis Instruments Corp) that records the local metrological conditions, UV 

radiation and solar irradiance. Figure 2.5 shows how observations were performed using the 

two FTSs. The description of PARIS-IR and the ABB-Bomem FTS will be given in Section 

2.2.2 and Section 2.2.3, respectively. WAO has four major goals: (1) to function as the home 

base of PARIS-IR to prepare for field campaigns and to carry out instrument maintenance; 

(2) to monitor concentrations of atmospheric trace gases related to ozone chemistry and to 

observe their trends at mid-latitudes; (2) to perform ground-based observations needed for 

future satellite missions such as CC-FTS; (4) to validate satellite missions such as the on-

going ACE mission and the CC-FTS mission in the future.  

A B C
 

Figure 2.5 PARIS-IR (A) and the ABB-Bomem DA8 FTS for IR-Visible-UV (B: rear 

view; C: front view) observing the atmosphere at WAO, Waterloo, Ontario, Canada.  
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The National Solar Observatory (NSO) has facilities at Kitt Peak (31.96°N, 111.59°W, 

and 2096 m above sea level), Arizona, USA. The primary goal of the NSO is to advance 

knowledge of the sun, both as an astronomical object and as the dominant external influence 

on the Earth, by providing observational opportunities to the research community 

(http://www.nso.edu/general/docs/ar2006_final.pdf). The two major facilities of NSO at Kitt 

Peak are Synoptic Optical Long-term Investigations of the Sun (SOLIS) and the McMath-

Pierce Telescope Complex (MPTC) (http://nsokp.nso.edu/). The McMath-Pierce 1-meter 

FTS is located in MPTC, and has provided atmospheric absorption measurements over 28 

years. It was also used as part of the advanced study for the CC-FTS mission. The description 

of this instrument will be given in Section 2.2.4.  

 

 

Figure 2.6 The McMath-Pierce 1-meter FTS housed in a vacuum vessel in the McMath-

Pierce Telescope Complex at Kitt Peak, Arizona, USA. Courtesy of Dr. Peter F. 

Bernath. 

 

The Arctic STratospheric Ozone Observatory (ASTRO) is an atmospheric observatory 

built in 1992 at Eureka, Nunavut (80.05°N, 86.42°W, and 619 m above sea level) Canada. It 

was operated by Environment Canada until 2002. It was renamed the Polar Environment 

Atmospheric Research Laboratory (PEARL) in 2005 and is currently operated by the 
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Canadian Network for the Detection of Atmospheric Change (CANDAC, 

http://www.candac.ca/). CANDAC is carrying out studies on atmospheric chemistry and the 

environment in the Canadian Arctic. It is equipped with a number of scientific instruments 

such as LIght Detection and Ranging (LIDAR) [Bird et al., 1996], Brewer spectrophotometer 

[Savasktiouk and McElroy, 2005], ozonesondes [Davies et al., 2000], UV-visible 

spectrometers [Kerzenmacher et al., 2005; Bassford et al., 2001; 2005], high resolution FTS 

[Donovan et al., 1997; Farahani et al., 2007], and other optical equipment [Pommereau and 

Goutail, 1988]. Atmospheric absorption spectra have been recorded since 1993 using an 

ABB-Bomem DA8 FTS. The laboratory also is used for validation of satellite instrument 

performance. For example, it has been used in the validation of satellite missions such as the 

ACE since 2004 [Bernath et al., 2005; Kerzenmacher et al., 2005; Fu et al., in preparation 

for Atmos. Phys. Chem.]. The description of this instrument is given in Section 2.2.5. 

Atmospheric observations, together with analysis of FTS data from the DA8 FTS and 

PARIS-IR, are described in Chapter 6. 

 

Figure 2.7 Overview of the PEARL and two FTSs in the Eureka 2006 campaign. (A) 

PEARL located at Eureka, Nunavut Canada; (B) the ABB-Bomem DA8 spectrometer 

and PARIS-IR simultaneously observing the Arctic atmosphere in PEARL from 

February 21st to March 8th, 2006. 
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Solar radiation passes through the entire atmosphere and is attenuated by atmospheric 

constituents due to absorption and scattering. When using FTSs to observe the atmosphere 

from the ground at WAO, NSO at Kitt Peak, and at PEARL, the sun is used as a light source 

and atmospheric absorption spectra are recorded in the solar viewing geometry as shown in 

Figure 2.8. Measurements using FTSs on the ground provide a way to observe the 

atmosphere with good sensitivity, relatively low cost and with instrumental accessibility for 

maintenance over the long term. However, the ground-based solar viewing geometry on the 

ground provides low vertical resolution relative to the solar occultation viewing geometry 

used by space-borne instruments, especially for the middle and upper atmosphere where the 

pressure is low. Height information in ground-based absorption spectra comes from the 

observation of pressure-broadening of the lines. The total column density of a trace gas in the 

optical path through the atmosphere can be obtained by the application of the Beer’s law. 

However, the vertical distribution of a trace gas is difficult to obtain from the line shape 

which contains pressure-broadening information from each atmospheric layer. The retrieval 

of a height profile from a ground-based solar spectrum is an under-constrained or ill-posed 

problem. As explained in Chapter 1, Rodgers developed a method, called the Optical 

Estimation Method (OEM), to solve this type of problem [Rodgers, 2000].  

 

Figure 2.8 A schematic diagram of the ground-based solar viewing geometry. G is the 

location of the observatory. GZ indicates the zenith. Solar radiation arrives at the point 

T, the top of atmosphere, and then arrives at the input optics of the instrument on the 

ground after attenuation by absorption and scattering by atmospheric constituents.  
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2.2 Instrumentation 

Remote sensing instruments can be classified into two groups: Passive instruments, which 

measure the electromagnetic radiation emitted or absorbed by an object, and active 

instruments, which emit electromagnetic radiation and compare it with the back scattered or 

reflected signal. In this thesis, five passive instruments that make use of Fourier transform 

spectroscopy were utilized for atmospheric remote sensing: 1) a satellite-borne high 

resolution FTS (ACE-FTS) was used for the first global phosgene observations; 2) a new 

compact, portable FTS (PARIS-IR) was used on the ground and on a balloon; 3) an ABB 

Bomem DA8 IR-Visible-near UV FTS located at the WAO; 4) a folded cat’s-eye Michelson 

interferometer located at the NSO together with the third instrument were utilized in the 

advanced study for the CC-FTS mission; 5) an ABB Bomem DA8 Fourier transform IR 

spectrometer located at Polar Environment Atmospheric Research Laboratory (PEARL) was 

also used in during the 2006 Canadian Arctic ACE Validation Campaign.  

 

2.2.1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer  

The primary instrument on SCISAT-1, the ACE-FTS, is a Fourier transform spectrometer 

coupled with an auxiliary 2-channel visible (525 nm) and near infrared imager (1020 nm). 

The imagers provide important information on pointing and help to detect the presence of 

clouds in the FOV. The other instrument onboard SCISAT-1 is ACE-MAESTRO shown in 

Figure 2.1, a small UV-Visible-Near Infrared spectrophotometer. Since the results used in 

this thesis are not from ACE-MAESTRO, the following section will focus only on the ACE-

FTS.  

The ACE-FTS was designed and built by ABB-Bomem in Québec City. The ACE-FTS 

has two photovoltaic detectors (InSb: indium antimonide; MCT: mercury cadmium telluride) 

covering the 750 to 4400 cm-1 spectral region with a resolution of 0.02 cm-1 (±25 cm MOPD, 

maximum optical path difference).  
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Figure 2.9 Illustration of the ACE-FTS optical layout, courtesy of ABB-Bomem. 
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The Optical Path Difference (OPD) was generated by two cube corners rotating on a central 

flex pivot. An “end” mirror was placed inside the interferometer to increase the OPD by 

double-passing solar radiance (shown in Figure 2.9). The ACE-FTS records double-sided 

interferograms by solar occultation, and interferograms are recorded in the limb geometry 

during sunrise and sunset. A pointing mirror, controlled by a quad cell servo-loop, locks on 

the sun center and tracks it when making measurements. Fourier transformation of 

interferograms is carried out on the ground at the ACE Science Operation Center (SOC) to 

obtain the desired atmospheric spectra. The Signal-to-Noise Ratio (SNR) of each solar 

spectrum from a 2 second scan is typically 300. The measured spectra are processed to obtain 

the volume mixing ratio (VMR) profiles of trace gases in the Earth's atmosphere, as well as 

pressure and temperature profiles at the SOC at the University of Waterloo [Boone et al., 

2005]. 

 

2.2.2 Portable Atmospheric Research Interferometric Spectrometer for the 
Infrared  

Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), a 

new portable high resolution Fourier transform spectrometer, was built by ABB-Bomem, 

Inc., in Québec City for the Waterloo Atmosphere Observatory (WAO). It has relatively high 

spectral resolution (0.02 cm-1) with a very compact design. A suntracker, also from ABB-

Bomem, is used to direct radiance from the sun into the spectrometer, and atmospheric 

absorption measurements can be made from sunrise to sunset. PARIS-IR is being used 

regularly to monitor atmospheric trace gases from WAO. It has also participated in Canadian 

ground-based field campaigns at PEARL in Eureka, Nunavut and in the MANTRA 2004 

balloon campaign in Vanscoy, Saskatchewan. From these solar absorption results, total 

column densities are obtained for key atmospheric constituents such as ozone and other 

species involved in ozone chemistry such as HNO3, NO2 and HCl, together with 

measurements of primarily tropospheric species such as N2O and CH4.  
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PARIS-IR has a design similar to that of ACE-FTS, and measurements recorded by 

PARIS-IR are being used to validate data from the ACE-FTS [Kerzenmacher et al., 2005; 

Sung et al., 2007; Fu et al., in preparation for Atmos. Phys. Chem.]. PARIS-IR has the same 

resolution (0.02 cm-1) and spectral coverage region (750 to 4400 cm-1) as the ACE-FTS due 

to their similar design and the use of components such as the beam splitter that were flight 

spares for the satellite instrument. PARIS-IR has a mass of about 66 kg, dimensions of 60 cm 

x 60 cm x 42 cm, and an average power consumption of 62 W. The instrument has a circular 

field of view (FOV) of 3.32 mrad. It can sustain a mechanical shock of up to 10g (g = 9.8 

m/s2). These features make PARIS-IR an excellent instrument for field measurements. 

 

Figure 2.10 Double-pendulum interferometer for the PARIS-IR instrument. Two cube-

corner reflectors mounted on a rotating structure driven by a magnetic voice coil 

around a pivot are used as moving elements to generate the optical path difference. 

Courtesy of ABB-Bomem. 

The core of this compact, high resolution spectrometer is a “double pendulum” 

interferometer (DPI; shown in Figure 2.10). Two cube-corner reflectors mounted on a 

rotating structure driven by a magnetic voice coil around a pivot are used as moving elements 

to generate the optical path difference. The first DPI interferometer design was developed in 
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the 1980’s [Burkert et al., 1983]. The advantages of DPI-type instruments are compact size, 

low power consumption, and insensitivity to linear acceleration. The beamsplitter is made 

from zinc selenide (ZnSe). The corner cubes are coated with protected gold, and the only 

moving components are the cube-corner reflectors. A diode laser operating at 1.55 µm 

provides interference fringes to measure the optical path difference (OPD), and these fringes 

are used to trigger the sampling of the interferogram. There are eight options for the MOPD 

setting, corresponding to 0.02, 0.1, 0.2, 1.0, 2.0, 5.0, 10.0, and 25 cm. These MOPD values 

correspond to spectral resolutions (defined as 0.5/MOPD) of approximately 25.0, 5.0, 2.5, 

0.5, 0.25, 0.10, 0.05, and 0.02 cm–1, respectively. The spectral observation time varies 

according to the MOPD setting and the scan speed of the interferometer. Four options for the 

scanning speed of the interferometer are available: 0.83 cm/s, 1.25 cm/s, 1.67 cm/s and 2.5 

cm/s.  

The optical path layout of PARIS-IR is illustrated in Figure 2.11. The PARIS-IR optical 

design is fully compensated for tilt and shear of both moving and stationary optics inside the 

interferometer, mainly because the radiation is double-passed through the FTS using the 

“entrance mirror” (shown in Figure 2.11). The pointing mirror in the sun tracker, controlled 

by the sun tracker servo-loop, locks on the radiometric center of the sun and provides fine 

tracking while PARIS-IR is taking measurements. The solar beam is sent through the PARIS-

IR input window by the sun tracker. The 44 mm diameter solar beam is directed to the optical 

bench by two flat mirrors (73 mm x 73 mm) coated with protected gold. The solar beam is 

then directed to the 1.73X magnification telescope primary mirror. The primary mirror 

reflects the solar beam through the entrance aperture (5 mm diameter) and field stop (0.5 mm 

diameter) to the secondary collimator mirror. The collimated beam with a diameter of 25.4 

mm is then directed towards the interferometer. An infrared filter (30 mm diameter) is 

installed between the input optics and the interferometer to minimize the thermal load. The 

IR signal goes through a 25.4 mm diameter port in the entrance mirror. In order to mount the 

optics in a relatively small volume, the interferometer is double-passed and cube corner 

mirrors in both arms of the interferometer are scanned. The output of the interferometer is 
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Figure 2.11 Schematic diagram showing optical layout of the PARIS-IR instrument. The PARIS-IR optical design is fully compensated for 

tilt and shear of both moving and stationary optics inside the interferometer, mainly because the radiation is double-passed through the 

FTS using the “entrance mirror”. 
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then directed by a series of flat mirrors and an ellipsoidal mirror into the detector. The 

stainless-steel detector dewar has a capacity of 0.4 liters of liquid N2 and a hold time of 

approximately 48 hours. The two detectors (from Judson), a photovoltaic indium antimonide 

(InSb) and a photoconductive mercury cadmium telluride (MCT) detector, are mounted in a 

sandwich arrangement. Using these two detectors simultaneously, PARIS-IR covers the 

spectral region from 750 to 4400 cm-1. Double sided interferogams are stored on the hard 

disk of the main control computer inside the PARIS-IR case. These data are transferred to an 

external data processing computer using a 10 Mb/s Ethernet communication port. 

Using ABB-Bomem’s software package L1bDPS (version 1.3), the desired atmospheric 

spectra were generated from the double-sided interferograms recorded by PARIS-IR. The 

L1bDPS includes several necessary processes including wavenumber calibration, phase 

correction, detector nonlinearity correction, channel spectrum correction, residual DC 

removal, and Fourier transformation. The L1bDPS program is based on the level 0 (raw 

interferograms) to level 1 (calibrated spectra) software developed by ABB-Bomem for the 

ACE-FTS instrument [Bernath et al., 2005]. 

The output frequency of PARIS-IR’s diode laser, which is used to control the sampling of 

the interferogram, is affected by the ambient temperature. The spectra recorded by PARIS-IR 

thus require careful wavenumber calibration because of the drift of the diode laser frequency. 

The L1bDPS program can obtain the calibration factor needed for each interferogram based 

on unsaturated atmospheric lines of species such as N2O. The measured interferogram is not 

a real symmetric function because of experimental, instrumental, and computational 

limitations. A complete reconstruction of the spectrum thus requires a complex Fourier 

transformation to handle both amplitude and phase information. The needed phase 

correction, to obtain a real spectrum with only noise in the imaginary plane, is made by the 

L1bDPS program. In addition, the nonlinear response of the photoconductive MCT detector 

must be corrected. The L1bDPS program obtains non-linearity characterization parameters 

by minimizing the out-of-band optical artifacts, and uses them for nonlinearity correction of 

the interferogram [Jeseck et al., 1998]. 
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Figure 2.12 Sample solar absorption spectra recorded using PARIS-IR observed with a 

solar zenith angle of 65.77º at WAO on November 3rd, 2004. Spectra are from the co-

addition of 20 scans (400 second observation).  

 

Figure 2.12 displays typical ground-based infrared atmospheric solar absorption spectra 

generated from interferograms using the L1bDPS program. They have a 0.02 cm-1 resolution 

and were observed at WAO in November 3rd, 2004 with a solar zenith angle of 65.77º. The 

left side in Figure 2.12 shows the overview of a typical spectrum recorded using MCT (upper 

plot) and InSb (lower plot) detectors. The range of signal-to-noise ratios (SNR) over the 750-

4400 cm-1 spectral region is from 150:1 to 300:1 (typically 20 scans recorded in 400 seconds 

are coadded to obtain these spectra). The right side of Figure 2.12 shows several spectral 

segments (microwindows) used in the retrieval process. The retrieval process uses the SFIT2 

program to extract the column densities of O3, CH4, N2O and HCl target molecules from the 

appropriate microwindows (O3: 987.15 - 990.0 cm-1; CH4: 1231.5 - 1234.5 cm-1; N2O: 2520.5 

- 2524.2 cm-1; HCl: 2925.65 - 2926.20 cm-1). In these microwindows, the absorption lines of 
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the target species are well isolated, i.e., the absorption lines of the target molecules are 

minimally affected by absorption of the interfering species such as H2O and CO2. 
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Figure 2.13 ILS of the PARIS-IR instrument, which was derived from a N2O gas cell 

spectrum around 2500 cm-1. The PARIS-IR line shape is symmetric and is nearly a sinc 

function. 
 

The observed spectral lines shapes can be affected by instrumental effects (such as optical 

misalignment) and by the observing conditions (e.g. clouds in the FOV). These effects are 

considered by including an Empirical Apodization Parameter Function (EAPF) in the 

spectral analysis [Pougatchev et al., 1995; Rinsland et al., 1998]. Figure 2.13 shows the 

instrument line shape function (ILS) of PARIS-IR obtained by Fourier transformation of the 

EAPF. The EAPF was derived from a N2O gas cell spectrum in the 2500 cm-1 region. The 

PARIS-IR line shape is symmetric and is nearly a sinc (sinx/x) function.  
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2.2.3 The ABB Bomem DA8 FTS (IR-Visible-near UV) at WAO 

An ABB Bomem DA8 FTS was installed at WAO in July 2005 and used for atmospheric 

remote sensing. The DA8 spectrometer is a plane mirror Michelson interferometer with a 

maximum optical path difference of 25 cm, providing a maximum spectral resolution of 0.02 

cm-1. The interferometer inside the DA8 is a modified Michelson interferometer that uses the 

Dynamical Alignment Technique (DAT) from ABB-Bomem, as shown in Figure 2.14. DAT 

compensates for the angular instability of the scanning mirror by adjusting the stationary 

mirror M1 which is typically fixed in a classical Michelson interferometer. The DAT 

provides a fixed optical axis through the beam splitter which helps to keep the modulation 

efficiency constant.  

 

Table 2.1 Spectral coverage of the detectors, beamsplitters, internal sources for the DA8 

FTS.  

Detector 
Spectral 
Rangeb       
(cm-1) 

Beam 

Splitter 

Spectral 
Rangeb            

(cm-1) 

Internal 
Source 

Spectral 
Rangeb        
(cm-1) 

Mercury 
Cadmium 
Telluridea 

800 – 5000 KBr 450 –  5000 Mercury 
Lamp 5 – 200 

Indium 
Antimonidea 1800 – 11000 CaF2 1200 – 10000 Globar 450 – 8500 

Indium 
Gallium 

Arsenidea 
6350 – 11000 Quartz 

(Visible) 4000 – 27000 
Quartz/ 
Halogen 

Lamp 
2500 – 15000 

Silicon 8500 – 52000 Quartz 
(UV) 8500 – 55000 Deuterium 

Lampc 9500 – 55000 

a Liquid nitrogen-cooled. 
b The spectral ranges are optimum values.  
c Deuterium lamp is an externally mounted source.  
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Figure 2.14 The ABB-Bomem DA8 FTS at WAO is a plane mirror Michelson 

interferometer (see text for details). A movable folding mirror selects between the 

emission port used for solar absorption measurements and the internal sources used for 

instrument alignment. A rotating mirror selects between the detector in left chamber 

and the one in right chamber to record spectra with the desired spectral range. Figure 

was adapted from optical path schematic plot provided by ABB-Bomem Inc. 
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A movable folding mirror selects between the emission port used for solar absorption 

measurements and the internal sources used for instrument alignment and tests of instrument 

performance. A rotating mirror selects between the detector in the left chamber and the one 

in the right chamber to record spectra with the desired spectral range. The DA8 FTS at WAO 

is currently equipped with four detectors and four beam splitters. This combination makes the 

DA8 at WAO capable of recording atmospheric spectra from the infrared to ultraviolet (500 

– 55,000 cm-1). The spectral coverage of detectors, beam splitters, internal sources and 

external sources used with the WAO DA8 are shown in Table 2.1.  

 

2.2.4 The McMath-Pierce FTS in NSO at Kitt Peak 

The McMath-Pierce FTS is housed in a vacuum vessel located at the NSO at Kitt Peak. It is 

available for use either in conjunction with the solar beam from the McMath-Pierce telescope 

or with laboratory sources. It can provide a broad spectral coverage of 550 to 45,000 cm-1 

with the available optical configurations (see Table 2.2).  

 

Table 2.2 Spectral coverage of the detectors and beamsplitters of the McMath-Pierce 
FTSa.  

Detector Spectral Range Beam Splitter Spectral Range 

 cm-1  cm-1 

Arsenic-Doped 

Silicon  
500 – 1850 KCl 550 –  3000 

Indium Antimonide 

Diode 
1850 – 15000 CaF2 1250 – 9000 

Silicon PIN Diode 9000 – 45000 Visible Quartz 4000 – 27000 

  UV Quartz 6500 – 45000 

a Data obtained from http://nsokp.nso.edu/mp/fts/aboutFTS.html.  
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Figure 2.15 A schematic diagram of the McMath-Pierce Fourier transform 

spectrometer at Kitt Peak, Arizona, USA. (A) the dual-input and output configuration 

and (B) in the double-pass, single-input/output configuration, courtesy of Jennings et al. 

[1985].  
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The heart of the McMath-Pierce FTS is a folded cat’s-eye Michelson interferometer. It is a 

modified version of the classical Michelson interferometer that uses cat's eye retroreflectors 

instead of plane mirrors. In normal operation the instrument has a maximum spectral 

resolution of 0.005 cm-1 (MOPD = 100 cm), but it can also be operated in a double pass 

mode with a maximum spectral resolution of 0.0025 cm-1 (MOPD = 200 cm) [Jennings et al., 

1985]. 

The dual-input and output configuration is the standard mode of the McMath-Pierce FTS 

as shown in Figure 2.15 (A). The input beams from two input apertures are divided at a beam 

splitter and sent to two cat's-eyes. The beams returning from the cat's-eyes are recombined at 

a second beam splitter and the two output beams are sent to a pair of detectors. Each cat's-eye 

travels a maximum of 25 cm, yielding a MOPD of 100 cm. In this mode, the instrument 

receives radiation from two input apertures and is able to detect the difference between two 

input intensities at the two output apertures. The use of two input ports helps in subtracting a 

large background common to both inputs from a small signal present at only one input (e.g. 

for stellar observations). 

For the double-pass, single-input and output mode, a flat mirror is placed in the output 

beam from each cat's-eye, reflecting the beams back through the cat's-eyes to the first beam 

splitter. This configuration is shown in Figure 2.15 (B). A single detector is placed at the 

second input port shown in Figure 2.15 (A), which is now the output port of the FTS. A 

compensator, matched to the beam splitter substrate, is used in the double-pass configuration. 

This double-pass configuration gives a MOPD of 200 cm from the 25 cm movement of the 

cat's-eyes. 

 

2.2.5 ABB-Bomem DA8 Fourier Transform Spectrometer at PEARL 

An ABB-Bomem DA8 FTS was installed at PEARL in February 1993 [Donovan et al., 1997; 

Farahani et al., 2007]. It has the same design as the ABB Bomem DA8 FTS at WAO shown 

in Figure 2.7. However, the DA8 FTS in PEARL has a narrower spectral range and a higher 

maximum spectral resolution than the DA8 at WAO. The DA8 FTS has a maximum spectral 
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resolution of 0.004 cm-1 (MOPD = 250 cm) and is equipped with two detectors, MCT and 

InSb, covering the spectral range from 700 to 5100 cm-1.  Nine consecutive optical filters are 

used with the DA8 FTS to improve the SNR. The filters, spectral ranges, and detectors used 

in the DA8 spectrometer are shown in Table 2.3. A mirror-tracking system, which is 

mounted on the rooftop of the PEARL facility, is used to direct sunlight into the input optics 

of the DA8 spectrometer. 

Table 2.3 Filters, their spectral ranges, and detectors used for the DA8 FTS at PEARL. 

Filter Spectral Range (cm-1) Maximum Optical Path Difference 
(cm) 

Detector 

S0 3900 - 5100 166.67 InSb
S1 3950 - 4300 250.00 InSb 
S2 2500 - 3500 250.00 InSb 
S3 2400 - 3300 250.00 InSb 
S4 1950 - 2800 250.00 InSb 
S5 1800 - 2050 250.00 InSb 
S6  700 - 1300 250.00 MCT 
S7 2750 - 3100 250.00 InSb 
S8 2400 - 3100 250.00 InSb 

 

 

 

 

 

 



Chapter 2                                                                                        Observation and Instrumentation 

 56

2.3 References 

Bassford M.R., McLinden C.A., and Strong K., (2001), Zenith-Sky Observations of 

Stratospheric Gases:  The Sensitivity of Air Mass Factors to Geophysical Parameters and the 

Influence of Tropospheric Clouds, J. Quant. Spectrosc. Radiat. Transfer, 68, 657-677. 

Bassford M.R., Strong K., McLinden C.A., and McElroy C.T. (2005), Ground-based 

measurements of ozone and NO2 during MANTRA 1998 using a new Zenith-Sky 

spectrometer, Atmos. Ocean., 43, 325-338. 

Bernath P.F., McElroy C.T., Abrams M.C., Boone C.D., Butler M., Camy-Peyret C., Carleer 

M., Clerbaux C., Coheur P.-F., Colin R., DeCola P., DeMazière M., Drummond J.R., Dufour 

D., Evans W.F.J., Fast H., Fussen D., Gilbert K., Jennings D.E., Llewellyn E.J., Lowe R.P., 

Mahieu E., McConnell J.C., McHugh M., McLeod S.D., Michaud R., Midwinter C., Nassar 

R., Nichitiu F., Nowlan C., Rinsland C.P., Rochon Y.J., Rowlands N., Semeniuk K., Simon 

P., Skelton R., Sloan J.J., Soucy M.-A., Strong K., Tremblay P., Turnbull D., Walker K.A., 

Walkty I., Wardle D.A., Wehrle V., Zander R., and Zou J.,  (2005), Atmospheric Chemistry 

Experiment (ACE): Mission Overview, Geophys. Res. Lett., 32, L15S01, 

doi:10.1029/2005GL022386.  

Bird J.C., Carswell A.I., Donovan D.P., Duck T.J., Pal S.R., Whiteway J.A., and Wardle D.I., 

(1996), Stratospheric studies at the Eureka NDSC station using a Rayleigh/Raman 

differential absorption lidar, paper presented at XVIII Quadrennial Ozone Symposium-96, 

Univ. of L’Aquila, L’Aquila, Italy. 

Boone C.D., Nassar R., Walker K.A., Rochon Y., McLeod S.D., Rinsland C.P., and Bernath 

P.F., (2005), Retrievals for the Atmospheric Chemistry Experiment Fourier transform 

spectrometer, Appl. Opt., 44, 7218-7231. 

Burkert P., Fergg F., and Fischer H., (1983), A compact high-resolution Michelson 

interferometer for passive atmospheric sounding (MIPAS), IEEE Trans. Geosci. Remote 

Sens., 21, 345-349. 



Chapter 2                                                                                        Observation and Instrumentation 

 57

Crisp D., Atlas R.M., Breon F.M., Brown L.R., Burrows J.P., Ciais P., Connor B.J., Doney 

S.C., Fung I.Y., Jacob D.J., Miller C.E., O’Brien D., Pawson S., Randerson J.T., Rayner P., 

Salawitch R.J., Sander S.P., Sen B., Stephens G.L., Tans P.P., Toon G.C., Wennberg P.O., 

Wofsy S.C., Yung Y.L., Kuang Z., Chudasama B., Sprague G., Weiss B., Pollock R., 

Kenyon D., and Schroll S., (2004), The Orbiting Carbon Observatory (OCO) mission, Adv. 

Space Res., 34, 700-709. 

Davies J., Tarasick D.W., McElroy C.T., Kerr J.B., Fogal P.F., and Savastiouk V., (2000), 

Evaluation of ECC Ozonesonde Preparation Methods from Laboratory Tests and Field 

Comparisons during MANTRA, Proceedings of the Quadrennial Ozone Symposium, 

Hokkaido University, Sapporo, Japan, July 3-8, 2000. Bojkov RD, Kazuo S. eds., 137-138. 

Donovan D.P., Fast H., MakinoY.,  Bird J.C., Carswell A.I., Davies J., Duck T.J., Kaminski 

J.W., McElroy C.T., and Mittermeier R.L., (1997), Ozone, column ClO, and PSC 

measurements made at the NDSC Eureka observatory (80°N, 86°W) during the spring of 

1997, Geophys. Res. Lett., 24, 2709-2712. 

Farahani E., Fast H., Mittermeier R.L., Makino Y., Strong K., McLandress C., Shepherd 

T.G., Chipperfield M.P., Hannigan J.W., Coffey M.T., Mikuteit S., Hase F., Blumenstock T., 

and Raffalski U., (2007), Nitric acid measurements at Eureka obtained in winter 2001–2002 

using solar and lunar Fourier transform infrared absorption spectroscopy: Comparisons with 

observations at Thule and Kiruna and with results from three-dimensional models, J. 

Geophys. Res., 112, D01305, doi:10.1029/2006JD007096. 

Fu D., Walker K.A., Sung K., Boone C.D., Soucy M-A, and Bernath P.F., (2007), The 

Portable Atmospheric Research Interferometric Spectrometer for the Infrared, PARIS-IR, J. 

Quant. Spectrosc. Radiat. Trans., 103, 362-370.  

Fu D., Sung K., Walker K.A., Boone C.D., and Bernath P.F., Ground-based solar absorption 

studies for the Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS) mission, 

Submitted to J. Quant. Spectrosc. Radiat. Trans.. 



Chapter 2                                                                                        Observation and Instrumentation 

 58

Fu D., Mittermeier R., Sung K., Walker K.A., Boone C.D., Bernath P.F., Fast H., and Strong 

K., Simultaneous atmospheric measurements using Fourier transform infrared spectrometers 

at the Polar Environment Atmospheric Research Laboratory (PEARL) during spring 2006, 

(in preparation for Atmos. Chem. Phys.). 

Hamazaki T., Kaneko Y., Kuze A., and Kondo K., (2005), Fourier transform spectrometer 

for Greenhouse Gases Observing Satellite (GOSAT), SPIE, 5659, 73-80.  

Jennings D.E., Hubbard R., and Brault J.W., (1985), Double passing the Kitt  Peak 1-m 

Fourier transform spectrometer, Appl. Opt., 24, 3438-3440. 

Jeseck P., Camy-Peyret C., Payan S., and Hawat T., (1998), Detector nonlinearity correction 

scheme for the LPMA Balloon-borne Fourier transform spectrometer, Appl. Opt., 37, 6544-

6549. 

Kerzenmacher T.E., Walker K.A., Strong K., Berman R., Bernath P.F., Boone C.D., 

Drummond J.R., Fast H., Fraser A., MacQuarrie K., Midwinter C., Sung K., McElroy C.T., 

Mittermeier R.L., Walker J., and Wu H., (2005), Measurements of O3, NO2 and temperature 

during the 2004 canadian arctic ACE validation campaign, Geophys. Res. Lett., 32, L16S07, 

doi:10.1029/2005GL023032.  

Pommereau J.P. and Goutail F., (1988), O3 and NO2 ground-based measurements by visible 

spectrometry during Arctic winter and spring, Geophys. Res. Lett., 15, 891-894. 

Pougatchev N.S., Connor B.J., and Rinsland C.P., (1995), Infrared measurements of the 

ozone vertical distribution above Kitt Peak, J. Geophys. Res., 100, 16689-16698. 

Rinsland C.P., Jones N.B., Connor B.J., Logan J.A., Pougatchev N.S., Goldman A., Murcray 

F.J., Stephen T.M., Pine A.S., and Zande R., (1998), Northern and southern hemisphere 

ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and 

ethane, J. Geophy. Res., 103, 28197-28217.  



Chapter 2                                                                                        Observation and Instrumentation 

 59

Rodgers C.D. (2000), Inverse methods for atmospheric sounding: Theory and practice, 

World Scientific, Singapore. 

Savasktiouk V. and McElroy C.T., (2005), Brewer spectrophotometer total ozone 

measurements made during the 1998 Middle Atmosphere Nitrogen Trend Assessment 

(MANTRA) campaign, Atmos. Ocean., 43, 315-324.  

Sung K., Skelton R., Walker K.A., Boone C.D., Fu D., and Bernath P.F., (2007), N2O and O3 

Arctic column amounts from PARIS-IR observations: Retrievals, characterization and error 

analysis, J. Quant. Spectrosc. Radiat. Trans., 107, 385-406. 

 



Chapter 3                                                                                                                                  Phosgene 

 60

Chapter 3 
Global Phosgene Observations from the Atmospheric Chemistry 

Experiment (ACE) Mission 

3.1 Introduction 

Phosgene, also known as carbonyl chloride (COCl2), was synthesized by the chemist John 

Davy in 1812 using sunlight and a mixture of carbon monoxide and chlorine [Leonard, 

1945]. Phosgene is a highly toxic colorless gas. It gained infamy through its use as a 

chemical weapon during World War I, and was stockpiled as part of US military arsenals 

until well after World War II in the form of aerial bombs and mortar rounds. Phosgene plays 

a major role in the chemical industry, particularly in the preparation of pharmaceuticals, 

herbicides, insecticides, synthetic foams, resins, and polymers. Considering the health 

hazards associated with phosgene, the chemical industry is trying to find substitutes to 

eliminate its use [Aresta  et al., 1997].  

Phosgene is produced from the decomposition of chlorocarbon compounds. In the 

troposphere, phosgene is mainly formed by the OH-initiated oxidation of chlorinated 

hydrocarbons such as CH3CCl3 and C2Cl4, and is removed by water droplets in clouds or by 

deposition onto the ocean and other water surfaces [Singh 1976; Helas and Wilson, 1992]. In 

the stratosphere, phosgene is produced from the photochemical decay of CCl4 together with 

oxidization of its tropospheric source gases [Crutzen et al., 1978; Wilson et al., 1988]. 

Phosgene can be slowly oxidized through ultraviolet photolysis to form ClOx, which plays an 

important role in stratospheric ozone depletion [Wilson et al., 1988]. However, this process is 

slower than the vertical transport of phosgene, since it is a weak absorber in the near 

ultraviolet and does not react with OH [Kindler et al., 1995]. 

The first measurement of atmospheric phosgene was performed in situ by Singh et al. 

[1977]. They obtained surface concentrations at six stations in California. Wilson et al. 

[1988] then measured phosgene during the flight of a Lear Jet aircraft between Germany and 

Spitzbergen. Toon et al. [2001] reported twelve volume mixing ratio (VMR) profiles of 



Chapter 3                                                                                                                                  Phosgene 

 61

phosgene using the solar occultation technique from data recorded during nine MkIV 

spectrometer balloon flights near 34ºN and 68ºN between 1992 and 2000. There have been 

no previous reports of the global distribution of phosgene. 

3.2 Observations and Retrievals 

The Atmospheric Chemistry Experiment (ACE) satellite, also known as SCISAT-1, is a 

Canadian satellite for remote sensing of the Earth’s atmosphere from a low Earth circular 

orbit (altitude 650 km, inclination 74º). The primary instrument on SCISAT-1, ACE-FTS, is 

a Fourier transform spectrometer (FTS) covering the spectral region 750 to 4400 cm-1 with a 

resolution of 0.02 cm-1 (±25 cm maximum optical path difference) [Bernath et al., 2005]. 

ACE-FTS records spectra by solar occultation in which the sun is used as a light source and 

spectra are recorded in the limb geometry during sunrise and sunset. The measured spectra 

are inverted to obtain the VMR profiles of trace gases in the Earth's atmosphere, along with 

pressure and temperature profiles [Boone et al., 2005]. The ACE-FTS version 2.2 data 

contains temperature and pressure profiles, and VMR profiles with 3-4 km vertical resolution 

of 27 atmospheric constituents including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HF, 

HCl, OCS, N2O5, ClONO2, HCN, CH3Cl, CF4, CCl2F2, CCl3F, COF2, C2H6, C2H2, CHF2Cl, 

SF6, ClO, HO2NO2, CCl4, and N2, and multiple isotopologues of some of these species. 

Details of the ACE mission and measurement geometry are given in Chapter 2.  

COCl2 VMR retrievals were performed using the spectral region 831 to 864 cm-1 with 

spectroscopic line parameters taken from Brown et al. [1996] and Toon et al. [2001]. The 

spectroscopic parameters include data for both the main isotopologue (CO35Cl2) and the most 

abundant minor isotopologue (CO35Cl37Cl).  The altitude range of the retrievals extends from 

8 to 30 km.  Pressure and temperature for the retrievals were taken from ACE-FTS version 

2.2 results. Molecules with interferences in the retrieval window are CCl3F (CFC-11), HNO3, 

O3, CO2, OCS, C2H6, H2
16O, and H2

18O.  For molecules other than COCl2, spectroscopic line 

parameters and cross sections (CFC-11) were taken from the HITRAN 2004 database 

[Rothman et al., 2005].  
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During COCl2 retrievals, VMR profiles are retrieved simultaneously for the interferers 

CFC-11, HNO3, O3, and H2O. The VMR for CO2 is fixed to its assumed profile [Boone et al., 

2005], while the VMR profiles for OCS and C2H6 are fixed to ACE-FTS version 2.2 results.  

Note that the isotopologue H2
18O is a minor interference, only significant below ~9 km for 

tropical occultations and negligible for polar occultations. Contributions to the spectrum from 

CFC-11 are calculated from 55 cross section files in the HITRAN 2004 database that cover 

the pressure and temperature range of 0.01-1 atm and 190-296 K.  

Following the procedure outlined in Dufour et al. [2006], Table 3.1 presents an estimate 

of uncertainties associated with the retrievals for a representative set of occultations: tropical 

occultations with latitudes 15 to 20°N. The column labeled “measurement noise” is the 

statistical fitting error in the least squares analysis. Deficiencies in the retrieval of 

interferences analyzed simultaneously (CFC-11, HNO3, O3, and H2O) are reflected in this 

column.  Contributions from errors in temperatures, pointing, and interferences fixed during 

the retrieval (CO2, OCS, and C2H6) are also considered. The uncertainty of 30% on the 

COCl2 spectroscopic parameters was deduced from information provided in the article by 

Toon et al. [2001], where average quantities were calculated from two sources that differed 

by up to 60% (much higher than the quoted precisions of 2 and 10%). Interferences analyzed 

simultaneously (CFC-11, HNO3, O3, and H2O) are not considered separately. The random 

errors from deficiencies in the retrievals of these molecules are reflected in the measurement 

noise column, and systematic contributions to the error are neglected. Of particular concern 

for COCl2 retrievals is the broad, overlapping CFC-11 absorption feature. Note, however, 

that a systematic scaling of the CFC-11 cross sections in HITRAN 2004 would only affect 

the retrieved CFC-11 VMR profile.  Systematic errors in the COCl2 retrievals from errors in 

CFC-11 spectroscopy would only arise if the shape of the calculated CFC-11 absorption 

feature was wrong, and there is no indication of such problems in the fitting residuals. 

It is worth noting that the numbers in Table 3.1 represent the uncertainties on the retrieval 

of a single VMR profile, including both random and systematic contributions.  Uncertainties 

are a large percentage of the retrieved VMR values, and they exceed 100 percent at the 

highest retrieval altitude, where the magnitude of the COCl2 spectral signature approaches 
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the noise level.  Random contributions to the uncertainty (such as measurement noise) are 

greatly reduced (generally to less than 5 pptv) through averaging results for many 

occultations, as was done for the plots presented in this article. 

 

Table 3.1 Sensitivity study for the COCl2 retrieval, evaluated from a representative set 

of occultations in the latitude range 15-20ºN. COCl2 VMR values and uncertainties in 

the VMR are expressed in parts per trillion by volume (pptv). The total error is 

expressed as a percentage of the mean VMR. 

Altitude 

(km) 

Mean  

VMR 

Measurement

noise 

Spectr. 

Dataa 

Pointingb Tc CO2
d OCSe C2H6

f Total 

Error 

8.5 21.6 13.5 6.5 3.0 0.5 0.01 0.02 0.14 71%
11.5 19.0 13.1 5.7 2.0 0.7 0.002 0.01 0.04 76% 

14.5 15.3 10.8 4.6 1.0 0.9 0.002 0.003 0.03 77% 

17.5 18.2 13.1 5.5 2.0 0.5 0.001 0.003 0.02 79% 

20.5 23.3 21.0 6.2 1.5 0.5 0.001 0.005 0.005 94% 

23.5 36.8 32.9 11.0 2.0 1.0 0.002 0.004 0.005 94% 

26.5 32.6 41.6 9.8 3.0 0.5 0.003 0.003 0.01 131% 

29.5 3.7 44.9 1.1 2.0 0.3 0.005 0.004 0.015 1215%
a Based on spectroscopic uncertainty of 30 % for COCl2 (see text). 
b Based on a tangent height uncertainty of 150 m. 
c Based on a temperature uncertainty of 2 K. 
d Based on an uncertainty of 1%. 
e Based on an uncertainty of 5%. 
f Based on an uncertainty of 10%. 

 

During polar winter/spring, the airmass contained within the polar vortex experiences a 

significant subsidence. As a consequence, VMR profiles of COCl2 measured inside or at the 

edge of the polar vortex are smaller than those observed outside the vortex at a particular 

altitude [Toon et al., 2001]. In order to avoid this temporary dynamical effect, occultations 
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within the polar vortex or on the vortex edge were excluded from analysis.  Using the 

potential vorticity derived from the Met Office meteorological analyses [Davies et al., 2005], 

a two-step approach similar to that described by Nassar et al. [2005] was used to classify 

each of the 6758 occultations collected during the period February 2004 to May 2006 as 

being inside, outside, or on the edge of the vortex. Filtering out occultations inside or on the 

edge of the vortex yielded 5614 extravortex occultations, which were then used in the 

evaluation of the COCl2 global distribution. The geographic locations of these 5614 

occultations are shown in Figure 3.1. 

 

Figure 3.1 The locations of 30 km geometric tangent points for 5614 ACE-FTS 

occultations during the period February 2004 to May 2006 are illustrated with dots. 

The color of each marker indicates the year of the observation was made (Red: 2004; 

Blue: 2005 and Black: 2006). 
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3.3 Results and Discussion 

Within 5 degree latitudinal zones, the observed VMR profiles of COCl2 show very similar 

characteristics in terms of peak altitude and VMR values at the peak.  For this initial work, 

the predicted small seasonal cycle [Kindler et al., 1995] and the expected annual decrease 

due to the decline in atmospheric chlorine loading were not considered. The entire data set 

was therefore separated into 5 degree latitude bins, and all of the profiles within a given bin 

were averaged to generate a single profile with reduced noise. Although there are 36 bins 

between 90ºN and 90ºS, only 35 of the bins were used because there were no profiles in the 

region 85 to 90ºS. 
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Figure 3.2 The 35 averaged COCl2 VMR profiles for 5 degree latitudinal zones 

spanning from 90ºN to 85ºS during the period February 2004 to May 2006 are 

presented. There were no profiles in the region 85 to 90ºS. 
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The 35 averaged COCl2 VMR profiles shown in Figure 3.2 were used to generate the 

contour plot shown in Figure 3.3. In the troposphere, phosgene has a generally even 

distribution, with VMR values of roughly 15 to 20 pptv.  In the lower stratosphere, COCl2 

exhibits a layer of higher concentration (25 to 60 pptv) with a thickness of 5 to 10 km. 

Within this layer, COCl2 concentrations are highest near the equator and decline poleward.  

There is a core of strongly enhanced COCl2 (VMRs 40 to 60 pptv) between 22 and 27 km in 

the region 20ºN to 20ºS.  For all latitudes, the retrieved VMR drops rapidly to zero for 

altitudes above the COCl2 enhancement layer. 
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Figure 3.3 The latitudinal distribution of averaged COCl2 VMR profiles spanning 8 to 

30 km from ACE-FTS observations during the period February 2004 to May 2006 are 

displayed.   

 

The phosgene distribution pattern is determined by its chemical production and lifetime. 

COCl2 is believed to have five main precursor molecules. In the troposphere, COCl2 is 

produced primarily from the OH-initiated oxidation of CH3CCl3, CHCl3, C2Cl4, and C2HCl3 
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[Helas and Wilson, 1992]. In addition to these sources, the largest source of COCl2 is 

attributed to the photolysis of CCl4 which contributes about 68% of the total COCl2 budget in 

the stratosphere, according to model simulation results [Kindler et al., 1995]. Tropospheric 

COCl2 has a lifetime of about 70 days due to fast wet removal [Singh, 1976; Singh et al., 

1977; Kindler et al., 1995]. Stratospheric COCl2, on the other hand, is expected to have a 

lifetime of several years, since phosgene decomposes slowly through UV photolysis and has 

no reaction with OH. Interestingly, Kindler et al. [1995] predict that a substantial amount of 

phosgene is returned to the troposphere from the stratosphere, where it is removed primarily 

by wet deposition.  

Based on the distribution in Figure 3.3, the bulk of the COCl2 appears over the tropics, 

likely because the tropics receive more insolation than higher latitudes, due to a smaller solar 

zenith angle. Because of its long lifetime, COCl2 in the tropics can then be transported 

poleward by the Brewer-Dobson circulation. Hence, the high concentration of phosgene 

appears in the tropics, decreases poleward, and shows a zonally symmetric pattern centered 

on the equator.  

Figure 3.4 shows COCl2 profiles corresponding to five different latitudinal zones (90-

60ºN, 60-30ºN, 30ºS-30ºN, 30-60ºS and 60-85ºS) averaged from the observed profiles 

spanning February 2004 through May 2006.  In the stratosphere, the peak values of COCl2 

VMR decrease significantly from the tropics to the poles. In a recent global inventory of 

stratospheric chlorine [Nassar et al., 2006], mean COCl2 profiles were estimated from the 

MkIV measurements spanning September 1992 to March 2000 [Toon et al. 2001], but with 

limited latitudinal coverage in those measurements, the presently observed latitudinal 

distribution of stratospheric COCl2 was not discerned. In the troposphere, the COCl2 VMR 

increases slightly from the tropics to the poles. This may result from the fact that the 

troposphere at higher latitudes contains less liquid water than the tropical atmosphere, 

providing less opportunity for wet removal. In addition, larger tropospheric phosgene mixing 

ratios at higher latitudes may be a result of recirculation from the stratosphere by Brewer-

Dobson circulation. The averaged VMR profiles for northern (0-90°N) and southern (0-85°S) 

hemispheres seen in Figure 3.4 are very similar, suggesting that both hemispheres have 
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similar amounts of COCl2. This observation is at variance with the model results of Kindler 

et al. [1995], which predict a significant hemispheric asymmetry with an enhancement in the 

troposphere of the Northern Hemisphere, though the hemispheric differences of source gases 

are much smaller than they were in the 1980s and 1990s. 
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Figure 3.4 The averaged COCl2 VMR profiles for 90-60ºN, 60-30ºN, 30ºS-30ºN, 30-60ºS 

and 60-85ºS latitudinal zones, southern hemisphere and northern hemisphere observed 

by the ACE mission during the period February 2004 to May 2006 are presented. 

 

Above the peak in all of the averaged ACE-FTS COCl2 profiles, around 22 to 25 km 

depending on the latitude range, COCl2 VMR decreases rapidly with increasing altitude and 

becomes essentially zero above 28 km. This is consistent with the results from the MkIV 

spectrometer [Toon et al., 2001] measured near 34ºN and 68ºN between September 1992 and 

March 2000. Both ACE-FTS and MkIV results are inconsistent with the model results 

[Kindler et al., 1995], which are plotted as red dotted line in Figure 3.5. Results from aircraft 

observations collected by Wilson et al. [1988] between Germany and Spitzbergen (50º-78ºN) 
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at altitudes of 5-12 km are also included in Figure 3.5 COCl2 VMRs in the stratosphere from 

ACE-FTS are smaller than the observations from both Wilson et al. [1988] and Toon et al. 

[2001].  
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Figure 3.5 The averaged COCl2 VMR profiles (filled magenta diamond line) for 30-

35ºN, latitudinal zone observed by ACE mission during the period February 2004 to 

May 2006 are presented along with in situ aircraft measurements of Wilson et al. [1988] 

between Germany and Spitzbergen (50º-78ºN) at altitudes of 5-12 km (filled black 

diamonds), plus the results presented in Figure 11 in the model prediction of Kindler et 

al. [1995] (dotted red line), the Nassar et al. [2006] (filled green triangle line) estimates 

for 2004 based on a best-fit line to the Toon et al. [2001] MkIV points in the 10-30 km 

range measured near 34ºN and 68ºN between September 1992 and March 2000, and 

phosgene profiles measured in 2003, 2004, and 2005 using MkIV spectrometer by Toon 

et al. [private communication, 2007]. 
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The differences of the ACE-FTS COCl2 VMR from values obtained in previous studies 

likely arise from changes in the concentrations of sources species. Ground based studies 

indicate sharp declines in a number of the “parent” molecules of COCl2 over the past 10 to 

15 years as a result of emission restrictions on its two major sources CH3CCl3 and CCl4 

required by the Montreal Protocol and its amendments. For example, the Atmospheric 

Lifetime Experiment, the Global Atmospheric Gases Experiment and the Advanced Global 

Atmospheric Gases Experiment (ALE/GAGE/AGAGE) [Prinn et al., 2000, 2005; Simmonds 

et al., 2006; WMO, 2006], the National Oceanic and Atmospheric Administration Climate 

Monitoring and Diagnostics Laboratory (NOAA/CMDL) [Montzka et al., 1996, 1999; 

Thompson et al., 2004; WMO, 2006], and the University of California at Irvine (UCI) [Blake 

et al., 1996; Blake et al., 2001; WMO, 2006] measure the concentrations of the five main 

phosgene precursor molecules.  

From these in situ data sets, CCl4 concentrations dropped 10% between 1988 and 2005 

[Montzka et al., 1996, 1999; Blake et al., 1996; Blake et al., 2001; Thompson et al., 2004; 

Prinn et al., 2000, 2005; WMO, 2006]. Levels of tropospheric CH3CCl3 declined rapidly 

between 1991 and 2004. During this period, the CH3CCl3 mixing ratio declined 85% [Prinn 

et al., 2000, 2005; WMO, 2006]. Between 1989 and 2002, annual mean C2Cl4 mixing ratios 

for the extratropical northern hemisphere dropped from 13.9 pptv to less than half this value 

(6.5 pptv), and global averages declined from 6.3 pptv to 3.5 pptv [Simpson et al., 2004; 

WMO, 2006]. Recent ambient atmospheric data suggest that the amounts of CHCl3 and 

C2HCl3 are also declining. Prinn et al. [2000] reported data for CHCl3 from 1983-1998 with 

a trend ranging from –0.1 to –0.4 ppt/year. The rate of decrease for C2HCl3 was reported as 

0.01 ppt/year during the period July 1999 to December 2004 [Simmonds et al., 2006]. Given 

these significant changes in atmospheric chlorine content, differences on the order of 25% for 

COCl2 as compared to older data sets are quite reasonable. 

3.4 Summary 

The first study of the global distribution of atmospheric phosgene (COCl2) has been 

performed using data from the ACE satellite mission. A total of 5614 profiles from the period 
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February 2004 to May 2006 were used, after filtering out occultations that were inside or 

near the polar vortex.  No seasonal variation was observed in the data, but there was a 

significant variation as a function of latitude. 

A major source region for atmospheric phosgene appears in the stratosphere over the 

tropics (around 25 km), where the highest VMRs (40-60 pptv) are observed.  There are also 

likely enhanced abundances of the COCl2 parent species in this region, but an in-depth study 

of the parent species is beyond the scope of this discussion.  The Brewer-Dobson circulation 

transports the COCl2 toward the poles.  A long lifetime in the lower stratosphere leads to an 

enhanced layer in this region.  For altitudes above the enhancement layer, VMR values are 

small because the molecule undergoes UV photolysis. In the troposphere, COCl2 VMR 

values are relatively low (17-20 pptv) as a result of the 70-day lifetime which is governed by 

fast wet removal. 

Comparisons of COCl2 VMRs between ACE-FTS observations and measurements from 

previous work [Wilson et al., 1988; Toon et al., 2001] show reasonable agreement. ACE-FTS 

results indicate a decline in COCl2 concentrations since those studies, as one would expect 

from the decline in parent species [Blake et al., 1996; Montzka et al., 1996, 1999; Blake et 

al., 2001; Simpson et al., 2004; Thompson et al., 2004; Prinn et al., 2000, 2005; Simmonds et 

al., 2006; WMO, 2006].  
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Chapter 4 
 Preparation and Deployment of PARIS-IR for the MANTRA 2004 

Balloon Campaign  

4.1 Introduction 

The Portable Atmospheric Research Interferometric Spectrometer (PARIS-IR), is a high 

resolution Fourier Transform Spectrometer (FTS) built for atmospheric remote sensing 

measurements. The instrument description was given in section 2.2.2. PARIS-IR makes 

atmospheric measurements from the ground and also participates in balloon campaigns [Fu et 

al., 2007]. During August and September 2004, PARIS-IR was part of the payload for the 

Middle Atmosphere Nitrogen TRend Assessment (MANTRA 2004) balloon campaign. 

MANTRA has four major scientific goals: 1) to measure key stratospheric species that 

control the mid-latitude ozone amounts, particularly species in the NOy (HNO3, NO, NO2, 

N2O5, HNO4 and ClONO2) and Cly (ClO, HOCl, HCl and ClONO2) families as well as the 

dynamical tracers N2O and HF; 2) to measure the long term changes in the composition of 

the stratosphere by combining measurements from MANTRA with those from previous 

balloon flights at northern mid-latitudes; 3) to investigate instrument differences by 

comparing the measurements of the same species recorded by different instruments on the 

balloon platform; 4) to validate satellite measurements such as those from SCISAT-1 [Strong 

et al., 2005].  

To achieve these goals, measurements were made by thirteen different instruments from a 

single platform in 2004. These instruments are listed in Table 4.1. The measurements from 

the three FTSs (including PARIS-IR) are able to provide vertical concentration profiles of 

thirteen of the “baseline” traces gases (O3, CH4, N2O, H2O, HNO3, HCl, NO, NO2, CCl3F, 

CCl2F2, HF, CO and N2O5) required to validate [Walker et al., 2005] the Atmospheric 

Chemistry Experiment, a Canadian satellite mission [Bernath et al., 2005]. As described in 

Section 2.1.2 the balloon campaign took place at Environment Canada’s Balloon Launch 

Facility in Vanscoy, Saskatchewan (52.02ºN, 107.03ºW, and 510 m above sea level).    
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Table 4.1 Instruments onboard the MANTRA 2004 balloon payloada. 

Primary Balloon-Borne Instruments Secondary Balloon-Borne Instruments 

MSCb emission radiometer (thermal infrared) Second MSCb emission radiometer 
(thermal infrared) 

MSCb SPSc-B1 (UV-Vis) MSCb FTS (infrared) 

MAESTRO-Bd (UV-Vis) PARIS-IR FTS (infrared) 

U of Denver FTS (infrared) MSCb SPSc-B2 (UV-Vis) 

Service d'Aéronomie SAOZe (UV-Vis) MSCb OH spectrometer (UV) 

MSCb ozonesondef (in situ) AIRg (near infrared) 

aerosol sonde (in situ)  
a The spectral ranges of the instruments are given in the brackets.  
b Meteorological Service of Canada  
c SunPhotoSpectrometer [McElroy, 1995]  

d Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by 
Occultation- Balloon [McElroy et al., 2007] 

e Système d’Analyse par Observations Zènithales [Pommereau and Piquard, 1994]  
f  [Davies et al., 2000] 
g Airglow Infrared Radiometer [Yee et al., 2003]  
 

4.2 Measurements Made from a Balloon 

There are several environmental factors which have to be taken into account when putting an 

instrument on a high-altitude balloon platform. The low pressure (~3 mbar at ~38 km) 

significantly decreases the efficiency of cooling by convection, the typical method used for 

cooling electronic equipment on the ground. Only radiative and conductive methods can be 

used to remove heat from balloon-borne instruments.  The low pressure also limits the types 

of data storage devices that can be used.  A standard hard drive requires an ambient pressure 

of one atmosphere for the rotating mechanism to operate properly. Either a solid-state device, 

such as a compact flash memory card, or a hard drive with a pressurized case must be used 

for the balloon flight. The instrument must be able to sustain a wide range of temperatures:  

these range from an ambient temperature of -60°C as the payload passes through the 
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tropopause (at a height of ~10 to 20 km) to high temperatures (up to +60°C) due to heating 

from direct solar radiation at float altitude (~37 km), where the balloon does not change its 

height significantly relative to the surface. The instrument also has to be able to survive large 

mechanical shocks both at launch (~2.5 g) and when the parachute opens during descent (~10 

g). These factors were taken into consideration when designing and constructing the PARIS-

IR instrument. 

 

4.3 PARIS-IR Balloon Configuration 

Two computers are required to operate PARIS-IR remotely from the ground. An onboard 

computer (mini-ATX 600 MHz) is on the gondola to provide communication between 

PARIS-IR and the ground computer.  Two SanDisk 2 GB flash cards are used for data 

storage in the onboard computer instead of hard drives. The ground computer is used for 

receiving, processing and displaying the instrument status information and for storing the 

measurement data sent down from the balloon. Three serial (RS-232) communication links 

are used to send data between the onboard computer/PARIS-IR and the ground computer. 

These are an instrument status information downlink (9600 baud), a shared high speed data 

downlink (115.2 kbaud), and a command uplink (300 baud) (Figure 4.1). These data stream 

are transmitted and received using the shared microwave communication system used by all 

of the instruments on the balloon platform. This system is provided and operated by the 

launch contractor, Scientific Instrumentation Ltd.  

To remotely control the instrument, control and commanding software was developed for 

the onboard computer and the ground computer. This software was jointly developed by 

Yony Bresler, Ian Young, and Michelle Seguin, who were undergraduate co-op and 4th year 

project students in Dr. Bernath’s group. This software allows PARIS-IR to make 

measurements using an onboard auto scheduler. It executes a batch file prepared before the 

flight which contains all the required instrument commands. The instrument status 

information can be monitored as the parameters are collected and sent down to the ground 

computer automatically by the onboard computer every few seconds. When necessary, the 
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PARIS-IR instrument can be sent commands from the ground using the command uplink. 

When requested, the measured scientific data are sent down to the ground through the data 

downlink channel. This process is not automatic because the high speed downlink channel is 

shared between the three FTS instruments. The scientific data also can be downloaded using 

the instrument status data downlink when this request is excuted by the auto scheduler. In 

this download mode, the instrument status is not updated, since the down link is occupied by 

the scientific data.   

 

 
Figure 4.1 PARIS-IR balloon configuration. 

 

4.4 Preflight Vacuum Testing 

The whole PARIS-IR system had to be tested under simulated flight conditions to determine 

if it could withstand the low pressures present at float altitude.  Two sets of tests were carried 

out at the Space Instrument Characterization Facility (SICF) in the Physics Department at the 

University of Toronto in April and July 2004. The SICF has a class 100000 clean room with 

a large (2 m diameter and 5 m length) thermal-vacuum chamber (TVAC) which was used for 
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all tests, as shown in Figure 4.2. The pumping system can easily evacuate the TVAC 

chamber to pressures of ~3 mbar with all of the PARIS-IR components inside.  

 

 

Figure 4.2 PARIS-IR system in the thermal-vacuum chamber (TVAC) at the Space 

Instrument Characterization Facility (SICF) located in University of Toronto.   

 

The temperatures of electronic components and optical components of the PARIS-IR 

system must be maintained within the recommended ranges given by their manufacturers. 

For example, when the temperatures of the Central Processing Unit (CPU), which is the main 

component in a digital computer that interprets computer program instructions and processes 

data, is higher than 95ºC, it may not respond to input commands, and instrument control will 

be compromised. In addition, the optical alignment of PARIS-IR will change if the 

temperature of the optical bench on which most of the optical components are mounted is out 

of the nominal 20 to 35ºC range. 

Several thermistors were installed in PARIS-IR and the onboard computer so that their 

temperatures could be measured during flight. For the tests, PARIS-IR and the onboard 

computer were operated at low pressure (~3 mbar) in the TVAC for several hours, or until 
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the rate of the temperature increase for the main components was nearly zero, as shown in 

Figure 4.3. An additional set of thermocouples were used to monitor several of the same 

points during testing, to verify the thermistor readings.  

 
Figure 4.3 The temperature measurements for the major components in the PARIS-IR 

system. They were obtained from the tests on July 12th, 2004. The tests were performed 

in the TVAC at the SICF located at University of Toronto. The onboard computer, 

PARIS-IR and sun tracker were powered up on 18:55:00 (local time). After operating 

for two hours, the temperature increases of the various components had slowed 

significantly.  

 

During the April tests, it was apparent that the heat sink on the CPU of the onboard 

computer needed to be improved. A new larger aluminum heat sink was installed above the 

CPU and North Bridge chipset. The new heat sink reduced the operating temperature of the 

components by 5-10°C. The flight model DC-DC power converter for the onboard computer 

was only tested in July. The results during this pre-flight test showed that the heat sink of this 
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component needed to be improved as shown in the Figure 4.3 (computer power supply). The 

ground-based suntracker used with PARIS-IR was tested in the TVAC to ensure that it could 

withstand the temperature and pressure conditions expected during the balloon flight. The 

temperatures of all of the CPUs achieved a stable operating value below 80°C. The PARIS-

IR optical bench temperature was lower than 30 °C. 

 

4.5 Preflight Preparation at Vanscoy, Saskatchewan 

Field preparations started one month prior to the balloon launch. Tests were made to verify 

the performance of each instrument and then the payload was integrated and tested as a unit.  

Some ground-based measurements were taken near the beginning of the campaign using 

PARIS-IR and the sun tracker.  

 
Figure 4.4 PARIS-IR and the ABB-Bomem sun tracker on the gondola of the MANTRA 

2004 balloon during mechanical tests. 

 

One of the first tests to be conducted with all of the instruments was to determine if the 

PARIS-IR ground-based sun tracker caused any mechanical interference with other 

instruments on the balloon platform. The sun tracker has two stepping motors which move 

the tracking mirror in azimuth and elevation (Figure 4.4). When tested on the balloon 

gondola, the vibration from the stepping motors produced artifacts in the measurements of 
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the other two FTS instruments. Because of this, the sun tracker was replaced by a two-mirror 

tracker system coupled to the gondola pointing system (Figure 4.5). This required an 

alignment procedure to be developed and then to be verified outdoors by using the gondola 

pointing system to track the Sun. However, there proved to be very few opportunities to 

perform these tests because of cloudy and rainy weather during much of August.  

 

 
Figure 4.5 PARIS-IR and the two mirror tracker on the gondola of the MANTRA 2004 

balloon. M1: a flat mirror (4 by 6 inches) mounted on the pointing system; M2: a flat 

mirror driven by a stepper motor; FS: feed back sensor; ECB: electronic control box 

for the stepper motor. A: overview B: expanded view. 

 

Tests were done to ensure that the gondola power and communication systems and all 

instruments could be powered by the 28 V power supplied from the lithium battery packs and 

that the communication uplink and downlinks were operational using the onboard telemetry 

system. Tests were also carried out verify that there was no radio frequency interference from 

the instruments or the gondola systems onboard. Foam insulation was used to cover some of 

the instrument surfaces to reduce the impact of the large ambient temperature fluctuations 

during the flight.  The foam not only kept heat in the instrument and the onboard computer 

during ascent, but it also insulated the sun-facing side of the instrument from the strong solar 

B

A 
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radiation at float altitude. Parts attached to heat sinks were not covered by foam, in order to 

allow the excess heat to more easily radiate from the instrument during flight. 

 

4.6 MANTRA 2004 Balloon Flights 

The first flight of the MANTRA 2004 payload was launched on September 1st, 2004 at 

8:30:00 (local time). There was a problem with the uplink antenna that made it impossible to 

send commands to the gondola after the first 15 minutes of the flight. The instrument status 

information downlink showed that PARIS-IR was operating as expected using the auto 

scheduler. The observed instrument temperatures were slightly lower than those measured 

during the TVAC tests (Figure 4.6). Good performance was obtained from the heat sink on 

the DC-DC power supply.  

Because of the loss of the command uplink, there was some concern that several of the 

instruments might overheat because they could not be turned off when they were not in use. 

It turned out that instrument temperatures were not a major problem, but the continuous 

operation of the instruments shortened the length of the flight by consuming the battery 

power. PARIS-IR measurements were attempted at solar noon and during sunset. A 

command glitch and problems with the solar alignment prevented usable spectra from being 

recorded on this flight.  In addition, the gondola pointing system failed at 16:20:00, 

apparently due to overheating. Without active pointing control, the gondola started to rotate 

with a period of 30 minutes, thus making it impossible for any of the FTSs to record sunset 

spectra. The flight was terminated at 20:40:00. The payload was recovered the next morning 

and returned to the launch facility. All of the instruments were removed from the gondola 

and checked. PARIS-IR was found to have minimal damage, although its surface was rather 

dirty from landing in a wheat field. 
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Figure 4.6 The temperature records of the major components in the PARIS-IR system 

obtained during the MANTRA 2004 balloon flight on September 1st, 2004. From 

13:38:02 to 13:50:53 (local time), the instrument status information was not updated 

since its downlink system was used to transmit interferograms obtained at solar noon 

by PARIS-IR. The instrument temperatures varied with the ambient temperature 

significantly from the surface at launch to the float altitude.  

 

Preparations were made for a second flight. PARIS-IR and the two mirror tracking system 

were realigned and extensively tested outdoors with the pointing system. The MANTRA 

2004 payload was launched a second time on September 14th, 2004 at 2:16:00 (local time). 

Unfortunately, the flight ended after 5 minutes when the termination mechanism fired, 

separating the balloon from the gondola. The maximum altitude reached was 2.0906 km, as 

shown in Figure 4.7. The cause of this failure was investigated and remains unknown.  
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Figure 4.7 The altitude records of the PARIS-IR system obtained during the MANTRA 

2004 balloon flight on September 14th, 2004. The termination system fired prematurely 

on 2:21:10 (local time).  

 

4.7 Ground-based Measurements Made during MANTRA 2004 

Ground-based measurements were carried out on August 13th, 2004 at the MSC Balloon 

Launch Facility in Vanscoy, Saskatchewan as part of the PARIS-IR prelaunch testing. The 

data were analyzed using the SFIT2 (version 3.81) program [Pougatchev et al., 1995; 

Rinsland et al., 1998], which uses the Optimal Estimation Method (OEM) to derive 

atmospheric composition information from spectra as discussed in Chapter 1. The total 

column of ozone observed by PARIS-IR at Vanscoy on August 13th, 2004 was 307.4 Dobson 

Units. For the same day, total column amounts of ozone obtained from the Brewer 

spectrophotometer [Savastiouk and McElroy, 2005], SAOZ (Systeme d’Analyse par 

d’Observation Zenithale, a lightweight UV-visible diode array spectrometer) [Pommereau et 

al., 1988] and UV-visible grating spectrometer [Bassford et al., 2001; 2005] at the same 

campaign station were 307.7, 305.8 and 288.0 Dobson Units (1 Dobson Unit = 2.6867 x 1016 

molecules/cm2), respectively [Fraser et al., 2007]. The partial column amount of ozone 
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(from the surface to 33.82 km) measured by an ozonesonde [Davies et al., 2000] was 270.2 

Dobson Units [Fraser et al., 2007]. The partial column of ozone from the surface to 33.5 km 

retrieved from PARIS-IR observations was 261.3 Dobson Units. The discrepancies between 

PARIS-IR, Brewer spectrophotometer, SAOZ, ozonesonde and the UV-visible grating 

spectrometer are less than 6.5%. The uncertainty in the retrieved PARIS-IR results is 2.6%. 

The uncertainty in the retrieved PARIS-IR results for ozone include contributions from the 

spectral noise, interfering molecules, uncertainties in the viewing geometry and uncertainties 

in atmospheric temperature profiles which are described in Section 1.7.  

 

4.8 PARIS-IR Observations during the mini-MANTRA Campaign 

Simultaneous observations were performed by three FTSs on August 24th, August 26th, 

September 1st and September 2nd, 2005 from the Toronto Atmospheric Observatory (TAO, 

43.66ºN, 79.4ºW, and 174 m above sea level), a complementary measurement station in the 

Network for the Detection of Atmospheric Composition Change (NDACC) 

(http://www.ndsc.ncep.noaa.gov/) as part of an intercomparison campaign. This activity was 

developed as a part of the MANTRA 2004 campaign and was called the mini-MANTRA 

campaign. The goal of the campaign was to investigate the impact of instrumental differences 

among PARIS-IR, U of T FTS, and TAO-FTS, such as instrument resolution (maximum 

optical path difference (MOPD) = 25 cm, 50 cm, and 250 cm, respectively for the three 

instruments), on the retrieved column amounts [Wunch et al., 2007].  

The observations were performed simultaneously using PARIS-IR (operator: Dejian Fu), 

the U of T FTS (operator: Debra Wunch), and the TAO-FTS (operator: Jeff Taylor). TAO-

FTS, a high-resolution ABB-Bomem FTS, has a design similar to the ABB-Bomem DA8 

Fourier transform spectrometer at PEARL (Section 2.2.5) and has been operating in the TAO 

since May 2002 [Wiacek et al., 2007]. U of T FTS was adapted from a commercial ABB-

Bomem DA5 FTS using updated software and electronics. It is a FTS that is appropriate for 

both ground-based and balloon-based measurements [Wunch et al., 2006]. To ensure the 

differences observed in the mini-MANTRA results were solely due to instrument differences, 
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simultaneous measurements were taken from the same location, (i.e., same optical path for 

three FTSs), in the same spectral range, and using similar retrieval methods with identical a 

priori information, line parameters and forward model. Retrievals for all three instruments 

were performed using SFIT2 (v.3.82beta3) [Pougatchev et al., 1995; Rinsland et al., 1998] 

and the same input parameters. More details on the data analysis using SFIT are given in 

Chapter 1. The experimental setup is shown in Figure 4.8.  

 

Figure 4.8 Diagram of the experimental setup in mini-MANTRA. 

 

Total column amounts of O3, HCl, N2O and CH4 were retrieved from PARIS-IR, the U of 

T FTS, and the TAO-FTS. Measurements were averaged during coincident 20-min periods, 

and the total column amounts retrieved from these averaged spectra were compared directly. 

The results for the three FTSs are given in Table 4.2. These show that the lower-resolution 

instruments can measure total columns of O3, CH4, HCl and N2O to within 4%, on average, 

of the “true” values (taken here as the results from the high-resolution TAO-FTS) from the 
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ground [Wunch et al., 2007]. The largest errors are obtained for the stratospheric species, and 

these errors can be attributed to the averaging kernels of the lower-resolution instruments, 

since PARIS-IR has lower spectral resolution than others. It suggests that using other spectral 

ranges with higher line densities of target species will help to improve the observations made 

using PARIS-IR. A new set of microwindows, the spectral segments used in the retrievals, 

have been selected and used in the data analysis of spectra recorded at Eureka in 2006 [Fu et 

al., in preparation] and shown in Chapter 6. The errors from the methane retrievals are 

possibly due to uncertainties in the spectroscopic parameters. Using better instrument 

information by retrieving Instrument Line Shape (ILS) parameters from SFIT2 significantly 

improves the column comparisons of the stratospheric species for the lower-resolution 

instruments over retrievals performed assuming an ideal ILS [Wunch et al., 2007]. The ILS 

information is less important for the wider lines of pressure-broadened tropospheric species 

(N2O and CH4) in the observations using PARIS-IR.  

 

Table 4.2 Percentage differences of mean total column values among PARIS-IR, U of T FTS, 

and TAO-FTS together with results from previous intercomparisons is shown. Measurements 

with solar zenith angle > 40 degrees were used. Table courtesy of D. Wunch. 

 O3 HCl N2O CH4 

 3040a 2775a 2925a 2482a 2859a

PARIS-IR percentage difference from TAO 0.9 1.2 4.5 0.4 0.5 

U of T FTS percentage difference from TAO 3.3 0.7 1.7 0.4 2.3 

U of T FTS percentage difference from PARIS-IR 4.3 2.8 2.6 0.8 1.7 
          a Central wavenumber of the spectral segments used in analysis. 

 

4.9 Summary and conclusions 

The PARIS-IR instrument was adapted for balloon-based measurements. Its first flights were 

part of the MANTRA 2004 balloon payload and some useful engineering information was 

obtained on the thermal performance of the instrument. For future flights, improvements will 
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have to be made to the PARIS-IR suntracker to provide a system that is more easily aligned. 

To achieve the MANTRA goals, a ground-based inter-instrument comparison campaign was 

conducted with the objective of assessing instrument performance and evaluating data 

processing routines and retrieval codes. Based on the results from the intercomparison 

campaign, PARIS-IR provides similar quality results for the stratospheric species as does the 

U of T FTS, a portable FTS that was deployed in MANTRA 2004. It also suggests that using 

an accurate ILS improves the observations using a portable FTS such as PARIS-IR, for 

which the spectral resolution is typically 5-10 times lower than for a laboratory FTS. 
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Chapter 5 
Ground-based Solar Absorption Studies for the Carbon Cycle 
Science by Fourier Transform Spectroscopy (CC-FTS) Mission 

5.1 Introduction 

Emissions from human activities such as combustion of fossil fuel, production of cement and 

changes in land use are changing the Earth’s atmosphere. The primary anthropogenic 

contribution to the change in atmospheric composition is the emission of the greenhouse 

gases CO2, CH4, and N2O [Etheridge et al., 1998; Cunnold et al., 2002; Hofmann et al., 2006; 

IPCC, 2007]. Greenhouse gas concentrations in the atmosphere have increased significantly 

in the past few decades [Cunnold et al., 2002; Hofmann et al., 2006; IPCC 2007; Keeling et 

al., 1996, 2005; Yang et al., 2002; Washenfelder et al., 2003; Dufour et al., 2004]. The first 

high precision measurements of atmospheric CO2 concentrations on a continuous basis were 

taken by C.D. Keeling, starting in 1958 at Mauna Loa, Hawaii [Keeling, 1960; Keeling et al., 

2005]. The record of CO2 concentrations at Mauna Loa, now known as the “Keeling curve”, 

indicates a 21% increase in the mean annual concentration from 315 ppmv in 1958 to 381 

ppmv in 2006, as shown in Figure 5.1 [Source data are available at 

ftp://ftp.cmdl.noaa.gov/ccg/co2/in-situ/]. The persistent year-to-year increase has an 

associated wave-like pattern in each year. These annual cycles are due to the effect of the 

biosphere on the CO2 concentration. The atmospheric CO2 concentration is higher in winter 

due to biospheric respiration, and has low values in summer because of drawdown by 

photosynthesis [Keeling et al., 1996, 2005]. The increase in greenhouse gases has important 

consequences for air quality, meteorology and climate [Etheridge et al., 1998; Cunnold et al., 

2002; Hofmann et al., 2006; IPCC, 2007; Houghton et al., 2000].  

Since the 1970s, a world-wide network consisting of more than 100 stations has been 

organized to monitor greenhouse gases. For example, air samples are collected through the 

National Ocean and Atmospheric Administration (NOAA) / Earth System Research 

Laboratory (ESRL) global network, including a cooperative program for carbon containing 
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gases which provides samples from 30 fixed stations and at 5 degree latitude intervals from 

three ship routes [Cunnold et al., 2002; Hofmann et al., 2006]. In North America, solar 

absorption spectra recorded containing information on CH4 and CO2 have been recorded 

since 1978 at Kitt Peak, Arizona, USA [Yang et al., 2002; Washenfelder et al., 2003; Dufour 

et al., 2004]. The tropospheric CH4 and atmospheric CO2 total columns were retrieved from 

these spectra. In 1992, the Kyoto Protocol was established as an international treaty on 

climate change, assigning mandatory greenhouse gas emission limitations to the signatory 

countries [Hofmann et al., 2006; Houghton et al., 2000].  

 

 

Figure 5.1 The 48-year record of atmospheric CO2 monthly mean concentrations in dry 

air at Mauna Loa, also known as the Keeling curve, shows a 21% increase of the mean 

annual concentration from 315 ppmv in 1958 to 381 ppmv in 2006. The annual cycle of 

CO2 at Mauna Loa in 2006 is shown in the subplot. Source data were downloaded from 

the following link: ftp://ftp.cmdl.noaa.gov/ccg/co2/in-situ/. 
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Detailed knowledge of the carbon cycle is necessary to implement the Kyoto Protocol and 

successor agreements. Measurements from ground-based instruments provide long-term 

records of concentrations of major greenhouse gases, but with limited spatial coverage. 

Furthermore, in the transport models used to identify the regional sources and sinks, errors 

within models are bigger than those between models [Gurney et al., 2002]. However, the 

requirement to monitor sources and sinks of greenhouse gases, which helps to achieve the 

goal of controlling the amount of greenhouse gases, makes the knowledge of the global 

spatial distributions important [Rayner and O’Brien, 2001]. Observations from space using 

Fourier transform spectroscopy provide an effective method to obtain global distributions of 

greenhouse gases with high spatial resolution and accuracy. Current satellite instruments 

such as TOVS [Chédin et al., 2002, 2003], IASI [Turquety et al., 2004], AIRS [Aumann et 

al., 2003], TES [Beer 2006], MOPITT [Drummond and Mand, 1996; Deeter et al., 2004], 

and particularly SCIAMACHY [Buchwitz et al., 2005], are carrying out pioneering studies 

on global carbon. However, measurements from these missions have a limitation in that they 

provide a precision not better than 1% for the columns and, except for SCIAMACHY, all of 

them have poor sampling of the planetary boundary layer [Crisp et al., 2004]. Since 

differential column distributions are needed to identify regional sources and sinks of CO2, it 

is the precision of the measurements that is more important than absolute accuracy. In 1997, 

Park et al. [1997] showed that a precision of better than 1% in the CO2 column-averaged 

volume mixing ratio can be achieved for a FTS when the O2 A-band and three CO2 bands at 

4.3, 2.7, and 2.0 μm are employed. More recent studies by Rayer et al. in 2001 demonstrated 

that a precision of 2.5 ppm (0.7%) is needed to improve on the current knowledge of sources 

and sinks based on the existing flask network. The absolute accuracy can be improved by a 

ground-based calibration-validation program associated with a satellite mission.  

The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based 

measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and 

coverage required to characterize CO2 sources and sinks on regional scales. Starting in 2008 

the OCO mission will measure global CO2 column densities using three near infrared grating 
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spectrometers (spectral resolution of about 0.3 cm-1) in a 98.2º polar sun-synchronous orbit in 

the ‘A-train’ [Crisp et al., 2004]. The Greenhouse Gases Observing Satellite (GOSAT) 

mission will also be launched in 2008, and will use a Fourier transform spectrometer (FTS) 

(resolution of 0.2 cm-1, MOPD = 2.5 cm) to make measurements of additional gases such as 

CH4 as well as CO2 [Hamazaki et al., 2005]. GOSAT will use observations in the thermal 

infrared as well as the near infrared, but has a pixel size of 10 km by 10 km compared to the 

1 km by 1 km pixel used by OCO [Crisp et al., 2004; Hamazaki et al., 2005]. Smaller pixel 

sizes suffer from less cloud contamination. The Carbon Cycle science by Fourier Transform 

Spectroscopy (CC-FTS) mission is a second-generation mission proposed to follow OCO and 

GOSAT. It aims to provide highly precise simultaneous observations of CO2, CH4, CO, N2O 

and O2 with a small pixel size of 1 km by 1 km, similar to the OCO mission. This chapter 

reports on the results of ground-based observations needed to select the spectral regions, 

spectral resolution, and spectroscopic line parameter requirements for this proposed mission.  

Ground-based solar absorption spectra recorded in the near infrared have been analysed to 

obtain CH4 and CO2 columns [Yang et al., 2002; Washenfelder et al., 2003; Dufour et al., 

2004]. However, the spectroscopic parameters from HITRAN 1996 and 2000 used in their 

work are substantially different from more recent values [Henningsen and Simonsen, 2000; 

Miller and Brown, 2004; Miller et al., 2004, 2005; Toth et al., 2006]. In the near infrared, 

nadir satellite observations are based on the measurement of reflected sunlight [O’Brien et 

al., 1998; Heidinger and Stephens, 2000; Kuze and Chance, 1994; Asano et al., 1995; Yang 

et al., 2005]. Solar photons experience significant scattering in the atmosphere from clouds 

and aerosols, and therefore have an effective optical path different from that calculated using 

the observation geometry. The retrieved column densities of the greenhouse gases can be 

corrected for the variations in optical path caused by clouds and aerosols by dividing them by 

the simultaneously observed O2 total column. O2 is a well mixed gas with a known constant 

volume mixing ratio. However, no published work has analyzed the O2 A-band at 0.76 μm 

and the greenhouse gas absorptions in the near infrared region (such as CH4 near 1.68 μm 

and CO2 near 1.57 μm and 2.06 μm) using simultaneously observed spectra. Most of the 

ground-based FTSs, such as those used in the Network for the Detection of Atmospheric 



Chapter 5                                                                                                                                   CC-FTS 

 98

Composition Change (NDACC, http://www.ndsc.ncep.noaa.gov/) only observe in the 

infrared spectral region from 700 to 7000 cm-1. Recently automated observatories with the 

capability of measuring atmospheric column abundances of CO2 and O2 simultaneously 

using near-infrared FTS solar absorption spectra of the sun have been developed in the Total 

Carbon Column Observing Network (TCCON). The first observations at Park Falls, 

Wisconsin have just been published, but they did not use the O2 A-band recorded in their 

analyses [Washenfelder et al., 2006]. Simultaneously observed spectra are able to provide the 

total column of CO2, CH4, CO, N2O and O2 under the same atmospheric conditions of optical 

path and ambient pressure. Our work presents first results from ground-based measurements 

over broad spectral region spanning 2000 to 15000 cm-1.  

 
5.2 Instrumentation and Observations 

The effect of spectral resolution has been considered in order to determine an optimum value 

for a greenhouse gas mission. Ground-based atmospheric absorption spectra in the 3950 cm-1 

to 7140 cm-1 region with a spectral resolution of 0.0042 cm-1 (120 cm MOPD) recorded using 

a Bruker IFS 120 HR spectrometer at Kiruna (67.84ºN, 20.41ºE, and 419 m above sea level), 

Sweden on April 1st, 1998 were used for this study. The observed interferogram was 

truncated at 50 cm, 5 cm and 5/3 cm MOPD and Fourier transformed to generate spectra with 

resolution of 0.01 cm-1, 0.1 cm-1, 0.3 cm-1, respectively. Figures 5.2-5.5 present expanded 

views of observed and  resolution degraded spectra in six spectral regions including CO2 at 

4911 and 6238 cm-1, CH4 at 4264 and 5891 cm-1, CO at 4274 cm-1 and N2O at 4429 cm-1. 

Typical molecular line widths due to pressure broadening are 0.1 cm-1 in the troposphere, so 

there is little change in the spectra as the resolution changes from 0.0042 cm-1 to 0.01 cm-1, 

or even to 0.1 cm-1 for these molecules. The change in resolution from 0.1 cm-1 to 0.3 cm-1, 

however, has a more significant effect, and in all cases, except for the very clean CO2 band 

near 6239 cm-1 that has been selected as the primary candidate for CO2 column 

measurements, there is a serious loss of information at the lower spectral resolution of 0.3 

cm-1 for the atmospheric species of CH4, CO and N2O. In particular, the lines of interest  



Chapter 5                                                                                                                                   CC-FTS 

 99

 

 
Figure 5.2 Observed and resolution-degraded atmospheric absorption spectra of CO2 near 4911 

cm-1 at 2.06 μm (upper plot) and near 6238 cm-1 at 1.57 μm (lower plot) are shown. Solid lines 

indicate spectra recorded with a commercial Bruker IFS 120 HR spectrometer by Meier at 

Institutet för rymdfysik (IRF) Kiruna (67.84ºN, 20.41ºE, and 419 m above sea level) on April 

1st, 1998. Solar zenith angle is 65.02º, and spectral resolution is 0.0042 cm-1 (MOPD = 120 cm). 

Spectra with resolution degraded from 0.0042 cm-1 (MOPD = 120 cm) to 0.01 cm-1 (MOPD = 50 

cm), 0.1 cm-1 (MOPD = 5 cm) and 0.3 cm-1 (MOPD = 5/3 cm) are presented by red solid line, 

green dashed line, blue dashed line and black dashed line, respectively. 
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Figure 5.3 Observed and resolution-degraded atmospheric absorption spectra of CH4 near 4264 

cm-1 at 2.34 μm (upper plot) and near 5891 cm-1 at 1.69 μm (lower plot) are shown. Solid lines 

indicate spectra recorded with a commercial Bruker IFS 120 HR spectrometer by Meier at IRF 

Kiruna (67.84ºN, 20.41ºE, and 419 m above sea level) on April 1st, 1998. Solar zenith angle is 

65.02º, and spectral resolution is 0.0042 cm-1 (MOPD = 120 cm). Spectra with resolution 

degraded from 0.0042 cm-1 to 0.01 cm-1 (MOPD = 50 cm), 0.1 cm-1 (MOPD = 5 cm) and 0.3 cm-1 

(MOPD = 5/3 cm) are shown by red solid line,  green dashed line, blue dashed line and black 

dashed line, respectively. 
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Figure 5.4 Observed and resolution-degraded atmospheric absorption spectra of CO near 4274 cm-1 at 2.34 μm are shown. Solid lines 
indicate spectra recorded with a commercial Bruker IFS 120 HR spectrometer by Meier at IRF Kiruna (67.84ºN, 20.41ºE, and 419 m 
above sea level) on April 1st, 1998. Solar zenith angle is 65.02º, and spectral resolution is 0.0042 cm-1 (MOPD = 120 cm). Spectra with 
resolution degraded from 0.0042 cm-1  to 0.01 cm-1 (MOPD = 50 cm), 0.1 cm-1 (MOPD = 5 cm) and 0.3 cm-1 (MOPD = 5/3 cm) are 
presented by red solid line,  green dashed line, blue dashed line and black dashed line, respectively. 

Figure 5.5 Observed and resolution-degraded atmospheric absorption spectra of N2O near 4429 cm-1 at 2.26 μm are shown. Solid lines 
indicate spectra recorded with a commercial Bruker IFS 120 HR spectrometer by Meier at IRF Kiruna (67.84ºN, 20.41ºE, and 419 m 
above sea level) on April 1st, 1998. Solar zenith angle is 65.02°, and spectral resolution is 0.0042 cm-1 (MOPD = 120 cm). Spectra with 
resolution degraded from 0.0042 cm-1 to 0.01 cm-1 (MOPD = 50 cm), 0.1 cm-1 (MOPD = 5 cm) and 0.3 cm-1 (MOPD = 5/3 cm) are presented 
by solid line, triangle-dashed line, dashed line and dotted line, respectively. 

Figure 5.4 Figure 5.5
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become blended with water lines, and the baseline is no longer clear; this will degrade the 

retrieval precision. To monitor concentrations of major greenhouse species other than CO2 

with high precision, the spectral resolution should be better than 0.3 cm-1. Spectra recorded at 

about 0.1 cm-1 (MOPD = 5 cm) are satisfactory. 

For additional studies, we recorded atmospheric absorption spectra with resolutions of 

0.01 cm-1 and 0.1 cm-1
 at the National Solar Observatory (NSO) at Kitt Peak in Arizona 

(31.9°N, 111.6°W, and 2.1 km above sea level) and Waterloo Atmospheric Observatory 

(WAO) at Waterloo in Ontario (43.5°N, 80.6°W, and 0.3 km above sea level). A series of 

spectra were obtained on July 25th, 2005 using the McMath-Pierce FTS, a folded cat’s-eye 

Michelson interferometer (MOPD = 100 cm) housed in a vacuum vessel in the McMath-

Pierce solar telescope facility. An ABB Bomem DA8 Fourier transform spectrometer, a plane 

mirror Michelson interferometer (25 cm MOPD), was used for the observations in the WAO 

on November 22nd, 2006. Details of descriptions for these two FTSs are given in Chapter 2.  

For the observations at NSO, an indium antimonide (InSb) detector and calcium fluoride 

(CaF2) beamsplitter were used to record atmospheric absorption spectra from 2000 cm-1 to 

15000 cm-1. Each spectrum recorded is the coaddition of 2 scans (about 30 minutes) at a 

spectral resolution of 0.01 cm-1. A RG715 red pass filter was used to cut the spectra at 15000 

cm-1. At WAO, the observations were also recorded in the near-infrared spectral region from 

2000 to 15000 cm-1 in order to obtain spectroscopic signatures of O2, CH4, CO2, CO, and 

N2O. A filter (713 nm or 14000 cm-1 red pass) in front of the entrance window of the DA8 

spectrometer was used to block visible light. InSb and semiconductor silicon (Si) detectors 

were used (InSb: 2,000 to 15,000 cm-1, Si: 8,500 to 15,000 cm-1) in alternation. Each 

spectrum is based on the coaddition of 20 scans (about 15 minutes).  

The left hand panel of Figure 5.6 shows an overview of the atmospheric absorption 

spectra recorded at WAO covering the broad spectral region from mid infrared to visible. 

The spectral segments indicated by the solid bars are the regions containing a high density of 

absorption features of CH4, CO2, CO, N2O and O2. The right hand panel in Figure 5.6 

provides enlarged views of three spectral regions of interest. Starting from the top, they are  
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Figure 5.6 Overview (on the left) and enlarged view (on the right) of the atmospheric absorption spectra recorded on November 22nd,  

2006 using the ABB-Bomem DA8 spectrometer at WAO (43.5°N, 80.6°W, and 0.3 km above sea level) are shown. Spectral resolution is 0.1 

cm-1 (MOPD = 5 cm). InSb and Si detectors are used to record spectra covering the spectral region from 4000 to 14000 cm-1 (red line in 

left plot) and 8500 to 14000 cm-1 (blue line in left plot), respectively. Solar zenith angles are 66.61° and 67.33° for InSb and Si data, 

respectively. In the overview of spectra, solid bars with species names indicate the spectral regions containing suitable absorption 

features. From top to bottom in the right plot, expanded spectral sections from the overview spectra are shown for CO2 at 1.57 μm and 

2.06 μm, O2 A-band at 0.76 μm from InSb and Si detectors, respectively. 
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CO2 at 1.58 μm, CO2 at 2.06 μm and O2 at 0.76 μm recorded with the InSb detector. The 

bottom plot of right hand panel of Figure 5.6 shows O2 at 0.76 μm recorded using the Si 

detector. The O2 A-band recorded using the InSb detector has a signal-to-noise ratio of 150:1. 

Although the 0.76 μm spectral region is not optimal for the InSb detector, spectra recorded 

with the InSb detector are similar in quality as those acquired using the Si detector. The 

highest precision will be obtained by using spectra covering all regions of interest (including 

the A-band) that are recorded at the same time [Yang et al., 2002; Washenfelder et al., 2003; 

Dufour et al., 2004; Washenfelder et al., 2006]. Hence, the analysis only includes spectra 

recorded using the InSb detector. 

 

5.3 Spectral Analysis and Retrievals  

Spectra recorded at the two observatories were analyzed using SFIT2 (version 3.91) 

[Pougatchev et al., 1995; Rinsland et al., 1998]. SFIT2 was jointly developed at the NASA-

Langley Research Center and at the National Institute of Water and Atmospheric Research at 

Lauder, New Zealand and is widely used for the analysis of ground-based solar absorption 

spectra. SFIT2 is a retrieval algorithm that employs the Optimal Estimation Method (OEM) 

of Rodgers et al. [Rodger, 1976; 1990; 2000; Rodgers and Connor, 2003]. It makes use of 

the OEM to include a priori constituent profiles as a function of altitude in the retrievals in a 

statistically sound manner. SFIT2 allows the simultaneous retrieval of a vertical profile and 

column density of the target molecule, together with the total columns of interfering species.  

Details of SFIT2 program were described in Chapter 1. 

Model atmospheres are used in the SFIT2 program to simulate spectra during the 

retrievals. A program called FSCATM [Meier et al., 2004] was used to carry out refractive 

ray tracing needed to generate the model atmospheres using a priori Volume Mixing Ratio 

(VMR) estimates, pressure profiles and temperature profiles. A combination of a climatology 

estimated from the HALogen Occultation Experiment (HALOE) v.19 satellite data [Russell 

et al., 1994] and mid-latitude daytime 2001 Michelson Interferometer for Passive 

Atmospheric Sounding (MIPAS) reference profiles [Carli et al., 2004] were used to construct 
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the a priori state estimates of VMR profiles and columns. Details of the a priori construction 

are available in Section 4.1 of Wiacek’s thesis [Wiacek, 2006]. These a priori VMRs are 

used in the retrievals of spectra recorded at WAO. The a priori VMRs from Mark IV balloon 

FT-IR spectra [Peterson and Margitan, 1995] obtained in northern mid-latitudes by G. C. 

Toon et al. are use in the retrievals of Kitt Peak spectra. Two sets of a priori VMR estimates 

are used in retrievals, because there are significant environmental differences between the 

two sites. Pressure and temperature profiles were obtained from the National Centers for 

Environmental Prediction/National Center for Atmospheric Research analyses provided by 

the NASA Goddard Space Flight Centre automailer (obtained from the Goddard Automailer: 

science@hyperion.gsfc.nasa.gov) [McPherson et al., 1979; Kalnay et al., 1996] and the 

Mass-Spectrometer-Incoherent-Scatter model (MSIS-2000) [Picone et al., 2002]. NCEP 

covers the surface to 50 km, and the output of MSIS is used from 50 km to 100 km. The 

spectroscopic line parameters used in this work are from the HIgh resolution TRANsmission 

molecular absorption database (HITRAN) 2004 [Rothman et al., 2005].  

 In our analysis, we mainly focus on CO2 and CH4, two greenhouse gases that are 

identified in the IPCC report as the first and second most important species in altering the 

balance of incoming and outgoing energy in the Earth-atmosphere system [IPCC, 2007]. 

Total columns of CO2 were retrieved from three spectral bands: two bands at 1.57 μm and 

one band at 2.06 μm. The absorption features at 1.57 μm consist of 30013-00001 and (ν1 

+4ν2+ν3, ν0 = 6228 cm-1) and 30012-00001 (2ν1 +2ν2+ν3, ν0 = 6348 cm-1) transitions. They 

will be referred to as the CO2 6228 cm-1 and CO2 6348 cm-1 bands. In the spectral region at 

1.57 μm there are numerous absorption features from CO2, with weak absorption by H2O, 

HDO and additionally from CH4 for the 30013-00001 transition. These CO2 bands consist of 

many lines with a wide range of intensities, which provides good retrieval sensitivities in 

both the stratosphere and troposphere. Thermal emission from the atmosphere and instrument 

are also negligible at these short wavelengths [Kuang et al., 2002]. The 2.06 μm CO2 

absorption band has a weaker dependence on the CO2 concentration, and greater sensitivity to 

airborne particles and the temperature profile than does the weaker absorption in the 1.57 μm 

bands [Dufour and Bréon, 2003]. The spectral region from 5880 to 5996 cm-1 is investigated 
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for the CH4 retrieval, taking advantage of its weak dependence on the temperature profile 

[Washenfelder et al., 2003]. The total column of O2 will be used to overcome the common 

systematic bias in CH4 and CO2 retrievals arising from air mass errors and surface pressure 

variations. Spectra of the O2 A-band at 0.76 μm provide constraints on both the surface 

pressure and optical path length variations associated with scattering by aerosols in the 

atmosphere [O’Brien et al., 1998; Heidinger and Stephens, 2000; Kuze and Chance, 1994; 

Asano et al., 1995; Yang et al., 2005]. By taking the ratio of columns of CH4 and CO2 to O2 

columns, systematic errors will be reduced as long as they are measured under the same 

conditions. The O2 total columns are retrieved from the −Σ−Δ gg
31  IR band (ν0 = 7882 cm-1) at 

1.27 μm, and from the −+ ΣΧ−Σ ggb 31  band (ν0 = 13121 cm-1) (A-band) at 0.76 μm. Two sets of 

line intensity parameters for the O2 7882 cm-1 band are used, based on the work of Goldman 

[Goldman, private communication] and the values in HITRAN 2004 [Rothman et al., 2005]. 

 

5.4 Results and Discussion 

Figures 5.7 to 5.12 show sample fits for CO2, CH4, and O2 using spectra recorded at NSO 

and WAO. The largest discrepancies between the calculated and the measured transmittances 

are on the order of a few percent (about 2 % for CO2, CH4 and O2 1.27 micron band and 5% 

for O2 0.76 micron band), and are observed in the vicinity of the absorption line centers. 

Similar systematic fitting residual patterns in terms of positions and amplitudes also appeared 

in the results of previous work [Yang et al., 2002; Washenfelder et al., 2003; Dufour et al., 

2004; Yang et al., 2005]. They mainly arise from the spectroscopic parameters including line 

intensity, self- and air-broadening coefficients, and self- and air-shift coefficients. Away 

from the absorption lines, the fitting residuals from spectra recorded at NSO are generally 

larger than those obtained using spectra recorded at WAO. This is because the WAO spectra 

have a higher Signal-to-Noise Ratio (SNR), mainly because of their lower spectral resolution.  
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Figure 5.7 Fitting residuals for the CO2 6228 cm-1 band at 1.57 μm obtained using spectra 

recorded at WAO, Waterloo, Ontario on November 22nd, 2006 (spectral resolution: 0.1 cm-1, 

solar zenith angle: 66.6°) and obtained using spectra recorded at NSO (31.9°N, 111.6°W, and 

2.1 km above sea level) at Kitt Peak, Arizona on July 25th, 2005 (spectral resolution: 0.01 cm-1, 

solar zenith angle: 49.1°) are shown in the upper and lower plot, respectively.  

NSO 

WAO 
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Figure 5.8 Fitting residuals for the CO2 6348 cm-1 band at 1.57 μm obtained using spectra 

recorded at WAO on November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 

66.6°) and obtained using spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 

cm-1, solar zenith angle: 49.1°) are shown in the upper and lower plot, respectively.  

WAO 

NSO 
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Figure 5.9 Fitting residuals for CO2 at 2.06 μm obtained using spectra recorded at WAO on  

November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 66.6°) and averaging 

kernel profiles corresponding to the retrievals are shown in the upper and lower plot, 

respectively.  

WAO 

WAO 
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Figure 5.10 Fitting residuals for CH4 at 1.68 μm obtained using spectra recorded at WAO on  

November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 66.6°) and obtained using 

spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar zenith angle: 

49.1°) are shown in the upper and lower plot, respectively.  

WAO 

NSO 
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Figure 5.11 Fitting residuals for O2 at 1.27 μm obtained using spectra recorded at WAO on  

November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 66.6°) and obtained using 

spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar zenith angle: 

49.1°) are shown in the upper plot and lower plot, respectively.  

WAO 

NSO 
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Figure 5.12 Fitting residuals for the O2 A-band at 0.76 μm obtained using spectra recorded at 

WAO on November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 66.6°) and 

obtained using spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar 

zenith angle: 49.1°) are shown in the upper and lower plot, respectively.  

WAO 

NSO 
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The absolute accuracy of the CO2 retrievals obtained using spectroscopic parameters from 

HITRAN 2004 is expected to be limited to ~2% [Devi et al., 2007]. Recent studies show the 

improvements in the CO2 spectroscopic parameters in the spectral region of 4550 to 7000 cm-

1 with a precision of 1% or better [Miller and Brown, Miller et al., 2004, 2005; Toth et al., 

2006; Devi et al., in press]. Devi et al. in 2007 made further improvements in the CO2 

spectroscopic parameters for the 6348 cm-1 band by considering line mixing and using speed-

dependent Voigt line shape functions. The work of Devi et al. provides the possibility of 

remote sensing CO2 with ~ 0.3% precision. As demonstrated by Boone et al. [Boone et al., 

2007], the use of speed-dependent Voigt line shape functions improves tropospheric remote 

sensing, but such a modification of SFIT2 is beyond the scope of this work. Deficiencies in 

spectroscopic parameters are also found for the CH4 and O2 retrievals. For example, the 

fitting residuals show obvious difficulty in fitting the O2 continuum (not included in our 

forward model) for both the 1.27 μm and 0.76 μm bands. However, no recent published work 

has presented improvements to the spectroscopic parameters for CH4 and O2 over those in 

HITRAN 2004.  

Sources and sinks for greenhouse gases are located primarily in the boundary layer. 

Hence, it is critical for any satellite mission to obtain good sensitivity near the surface. The 

vertical sampling of a particular measurement is quantified by computing the averaging 

kernel, as defined in the Rodgers optimal estimation approach [Rodgers, 2000]. The Rodgers 

approach for a retrieval such as the vertical profile of CO2 combines information from 

observations and the a priori values in a statistically sound manner. The averaging kernel is 

the derivative of a derived parameter with respect to its a priori state value, i.e., when this 

derivative is small (nearly 0), all of the information comes from the a priori and when it is 

large (near 1), then the information in the retrieval comes mainly from the measured data 

[Rodgers, 2000]. When observing the atmosphere with a nadir viewing geometry, a 

spectrometer with higher spectral resolution is expected to provide better vertical information 

than one with low spectral resolution [Rodgers, 2000]. Typical vertical averaging kernels for 

CO2 at 2.06 μm and 1.57 μm and for CH4 at 1.68 μm from ground-based observations at 

NSO and WAO are shown in Figures 5.9 and 5.13-5.15. They demonstrate that observations  
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Figure 5.13 Averaging kernel profiles for the retrievals using CO2 6228 cm-1 band at 1.57 μm 

recorded at WAO on November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 

66.6°) and using spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar 

zenith angle: 49.1°) are shown in the upper and lower plot, respectively. 

WAO 

NSO 
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Figure 5.14 Averaging kernel profiles for the retrievals using CO2 6348 cm-1 band at 1.57 μm 

recorded at WAO on November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 

66.6°) and using spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar 

zenith angle: 49.1°) are shown in the upper and lower plot, respectively.  

WAO 

NSO 
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Figure 5.15  Averaging kernel profiles for the retrievals using CH4 at 1.68 μm recorded at WAO 

on November 22nd, 2006 (spectral resolution: 0.1 cm-1, solar zenith angle: 66.6°) and using 

spectra recorded at NSO on July 25th, 2005 (spectral resolution: 0.01 cm-1, solar zenith angle: 

49.1°) are shown in the upper and right plot, respectively.  

WAO 

NSO 
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achieved the required near surface sensitivity, i.e., averaging kernel values are near one from 

the surface to the upper troposphere. In this altitude range, only minor differences are seen 

between spectra with resolutions of 0.01 cm-1 and 0.1 cm-1. The retrieval of a tropospheric 

partial column with spectral resolution 0.1 cm-1 is as feasible as that for a spectrum with 0.01 

cm-1 resolution. There is enough information to split the total CO2 column and the CH4 

column into four layers and two layers, respectively. A FTS with lower spectral resolution 

(0.1 cm-1) will provide spectra with a higher signal-to-noise ratio, and is much cheaper to 

build than one with a higher resolution (0.01 cm-1).  

The retrievals using the SFIT2 program provide the total vertical column density of CO2, 

and the VMR of CO2 can be calculated using  

air

CO
CO C

C
VMR 2

2
= .           (5.4.1) 

However, the VMRs have only limited precision because the measurements are influenced 

by a number of factors such as variations in surface pressure and light path in the 

atmosphere. Humidity can increase the total column of air by 0.5%, but does not change the 

CO2 total column. Essentially, the CO2 gets ‘diluted’ by the H2O. Fortunately, the O2 total 

vertical column density is diluted in the same way as that for CO2, and has a similar optical 

path. The VMR of CO2 in dry-air is more directly related to sources and sinks, and is a better 

tracer because it is not influenced by evaporation or condensation of H2O. The VMR of O2 in 

dry air can be assumed to be constant at 0.2095, so the total column of dry air is given by 

0.2095
C

C 2O
airdry =− .            (5.4.2) 

The retrieved O2 total vertical column density obtained from the O2 A-band is used in Eq. 

(5.4.2). By replacing the total vertical column density of air in Eq. (5.4.1) with the total 

columns of dry air obtained from Eq. (5.4.2), the VMR of CO2 in dry is 

2

2

2
O

CO
CO-dry C

C0.2095
VMR

×
= .                                           (5.4.3) 
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Eq. (5.4.3) can be adapted to give the CH4 VMR in dry air as 

2

4

4
O

CH
CH-dry C

C0.2095
VMR

×
= .          (5.4.4) 

Common systematic errors such as surface pressure and scattering effects of large 

particles in the solar beam are removed by using Eqs. (5.4.3) and (5.4.4). Figure 5.16 shows 

the retrieved total column of CO2 and O2 together with the column-averaged VMR of CO2 in 

dry air observed at the two sites. Figure 5.17 presents the retrieved total column and column 

averaged VMR in dry air of CH4. The precision of the observations can be estimated from 

the standard deviations of the results of repeated measurements under similar conditions. The 

measurements at each site were performed in a single day with uniform weather conditions. 

The precisions of the column-averaged VMRs of CO2 and CH4 in dry air are found to be 

better than 1.07% and 1.13%, respectively. The observed total columns of CO2, CH4 and O2 

at NSO in all spectral regions are less than those in WAO by about 12%, 15% and 11%, 

respectively. These differences are reasonable because of the different altitudes of the two 

observation sites (NSO: 2.1 km above sea level; WAO: 0.3 km). The column densities of 

CO2 from the 6348 cm-1 band are consistently higher than those derived from the 6228 cm-1 

and 2.06 μm bands by about 7%. The Goldman spectroscopic parameters for the O2 1.27 μm 

band provide O2 amounts 12% lower than those obtained using the values in HITRAN 2004. 

The systematic residuals that are observed in our analysis are due to deficiencies in the line 

parameters. 
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Figure 5.16 Retrieved total vertical column densities of CO2, O2 and column ratios in dry air of CO2 to O2 obtained using spectra recorded 
at WAO on November 22nd, 2006 (spectral resolution: 0.1 cm-1) and using spectra recorded at NSO on July 25th, 2005 (spectral resolution 
0.01 cm-1) are shown in the left and right plots respectively, as a function of solar zenith angles. In both plots, top panels contain retrieved 
total columns of CO2 at 1.57 μm and 2.06 μm (triangles: 6348 cm-1 band at 1.57 μm; circles: 6228 cm-1 band at 1.57 μm; squares: 2.06 μm 
band); middle panels present retrieved total columns of O2 at 1.27 μm and at 0.76 μm (circles: 1.27 μm band with HITRAN 2004 
spectroscopic parameters; squares: 1.27 μm band with Goldman spectroscopic parameters; stars: 0.76 μm band with HITRAN 2004 
spectroscopic parameters); bottom panels show Volume Mixing Ratios (VMR) of CO2 in dry air at 1.57 μm and 2.06 μm corrected with 
simultaneously observed total columns of O2 at 0.76 μm (triangles: 6348 cm-1 band at 1.57 μm; circles: 6228 cm-1 band at 1.57 μm; 
squares: 2.06 μm band).  

WAO

WAO

WAO

NSO 

NSO 

NSO 



Chapter 5                                                                                                                                   CC-FTS 

 

 120

 

 

Figure 5.17  Retrieved total columns of CH4 at 1.68 μm from observations at NSO and WAO, 

column ratios in dry air of CH4 (1.68 μm) to O2 (0.76 μm) at NSO and WAO are shown in plots 

from the top to the bottom, respectively. Observations at WAO and NSO were made on 

November 22nd, 2006 with a spectral resolution of 0.1 cm-1 and on July 25th, 2005 with a spectral 

resolution of 0.01 cm-1, respectively. 

 

5.5 Summary and Conclusions 

Atmospheric spectra with resolutions of 0.0042 cm-1, 0.01 cm-1, 0.1 cm-1 and 0.3 cm-1 in the 

3950 cm-1 to 7140 cm-1 region recorded at IRF Kiruna, Sweden were compared. The spectral 

features of CH4, N2O, CO and CO2 2.06 μm band are under-resolved in most spectral regions 

at a resolution of 0.3 cm-1, which is similar to that used in the OCO mission. Spectra with a 

resolution of 0.1 cm-1 are sufficient to resolve the absorption features of CO2, CH4, N2O, and 

CO.  
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In order to obtain the near infrared absorption features of CH4, CO2, CO and N2O together 

with the O2 A-band in a single spectrum, further observations over a broad spectral region 

from 2000 to 15000 cm-1 were taken at Kitt Peak and Waterloo at resolutions of 0.01 cm-1 

and 0.1 cm-1, respectively. The vertical sampling of these observations is quantified by 

computing averaging kernels as defined in the Rodgers optimal estimation method. The 

vertical sampling of observations with a spectral resolution of 0.1 cm-1 is similar to those 

with a spectral resolution of 0.01 cm-1. A spectral resolution of 0.1 cm-1 (MOPD = 5 cm) is 

recommended for the CC-FTS mission.  

Systematic fitting residuals are obvious in all of our retrievals, and have been noted 

previously [Yang et al., 2002; Washenfelder et al., 2003; Dufour et al., 2004; Washenfelder 

et al., 2006]. These residuals are due to the deficiencies in the spectroscopic line parameters 

in the HITRAN 2004 database. To improve the precision of atmospheric observations, new 

laboratory measurements on the spectroscopic parameters are required.   
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Chapter 6 
Simultaneous Atmospheric Measurements Using Two Fourier 
Transform Infrared Spectrometers at the Polar Environment 

Atmospheric Research Laboratory (PEARL) during Spring 2006 

6.1 Introduction 

The Atmospheric Chemistry Experiment (ACE), also known as SCISAT-1, is a Canadian-led 

satellite mission developed for remote sensing of the Earth’s atmosphere from a circular, low 

Earth orbit (altitude 650 km, inclination 74º). An infrared Fourier Transform Spectrometer 

(ACE-FTS) together with a dual, UV-visible-near-infrared spectrophotometer named 

Measurement of Aerosol Extinction in Stratosphere and Troposphere Retrieved by 

Occultation (ACE-MAESTRO), are the main two scientific instruments onboard SCISAT-1. 

They measure the concentrations of more than 30 atmospheric constituents, using 

spectroscopy from space [Bernath et al., 2005; Bernath 2006; Boone et al., 2005]. Details of 

the mission and instrumentation are given in Chapter 2.  

The 2006 Canadian Arctic ACE Validation Campaign, the third held in Eureka, is a part 

of the calibration and validation program for the ACE mission [Kerzenmacher et al., 2005; 

Walker et al., 2005; Manney et al., 2007; Sung et al., 2007; Fu et al., in preparation]. The 

campaign took place at the Polar Environment Atmospheric Research Laboratory (PEARL, 

86.42°W, 80.05°N, 610 meters above seal level) in Eureka, Nunavut, Canada from February 

17th to March 31st, 2006. A combination of 10 scientific instruments (Table 6.1) including 

terrestrial versions of the ACE-FTS (Portable Atmospheric Research Interferometric 

Spectrometer for the Infrared, PARIS-IR) [Fu et al., 2007] and ACE-MAESTRO 

(MAESTRO-G) [Kerzenmacher et al., 2005; McElroy et al., 2007] were deployed at the 

campaign site and used to observe total columns, partial columns, and vertical profiles of 

most of the ACE target species, as well as temperature, and pressure. This work will focus on 

the observations made by PARIS-IR, Meteorological Service of Canada (MSC) DA8 FTS 
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[Donovan et al., 1997; Farahani et al., 2007] and ACE-FTS. Further descriptions of other 

instruments are provided in the references listed in Table 6.1.  

 

Table 6.1 Instruments used in the 2006 Canadian Artic ACE Validation Campaign. 

On-Site Instruments  Campaign Instruments 

MSCa Eureka DA8 FTS PARIS-IR 

MSCa DIALb  MAESTRO-Gc  

MSCa ozonesondesd  MSCa SPS-Ge  

MSCa Brewer spectrophotometerf UT-GBSg 

 Service d'Aéronomie SAOZh  

 MSCa Brewer spectrophotometerf,i 
a Meteorological Service of Canada  
b DIfferential Absorption Lidar [Bird et al., 1996] 
c Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by 

Occultation- Ground [Kerzenmacher et al., 2005; McElroy et al., 2007] 
d [Davies et al., 2000] 
e SunPhotoSpectrometer-Ground [McElroy, 1995] 
f [Savasktiouk and McElroy, 2005] 
g University of Toronto Ground-Based Spectrometer [Bassford et al., 2001, 2005] 
h Système ďAnalyse par Observations Zénithales [Pommereau and Goutail, 1988]  
i Second Brewer spectrophotometer deployed for campaign  

 

The campaign measurements started with the return of sunlight to Eureka when polar 

sunrise occurred on February 20th, 2006. At and after sunrise, the Arctic atmosphere is 

perturbed by chemical reactions that are driven by solar radiation, such as chlorine activation 

[Solomon 1999; Bernath 2001]. In the chlorine activation process, inactive or reservoir forms 
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of chlorine compounds such as HCl and ClONO2 gases, which do not react with O3, are 

converted to reactive forms such as Cl2 by heterogeneous chemistry:  

322 HNOClClONOHCl +→+ (Solid)                          (6.1.1) 

322 HNOHOClOHClONO +→+ (Solid)         (6.1.2) 

OHClHOClHCl 22 +→+ (Solid)                      (6.1.3) 

on polar stratospheric clouds (PSCs). PSCs form at low temperatures in the polar vortex, 

which is a planetary-scale cyclonic circulation (an area of low atmospheric pressure 

characterized by inward spiraling winds that rotate counter clockwise in the northern 

hemisphere and clockwise in the southern hemisphere of the Earth), centered generally on the 

polar regions in winter and early spring. Cl2 is easily turned into the reactive Cl radical 

through photolysis when sunrise occurs and Cl atoms destroy ozone in catalytic cycles such 

as 

23 OClOOCl +→+                                                        (6.1.4) 

ClOOClO 2 +→+                                                         (6.1.5) 

and other cycles involving the ClO dimer [Solomon 1999; Bernath 2001]. The first in situ 

measurements of depleted HCl giving evidence for conversion to active chlorine in the Arctic 

were made by Webster et al. in 1993. Observations of ClONO2 in the Arctic also displayed 

evidence for heterogeneous processes on PSCs [von Clarmann et al., 1993; Oelhaf et al., 

1994].  

The removal of nitric acid, called denitrification, is an important feature of Cl-activated 

polar chemistry. Denitrification is most likely due to gaseous HNO3 dissolving into PSCs, 

which causes the concentration of gaseous HNO3 to decrease significantly. Large PSC 

particles can also sediment out of the polar vortex, but the mechanism of denitrification is not 

completely understood [Solomon 1999]. Denitrification affects ozone chemistry in the polar 

region [Fahey et al., 1990; Solomon 1999; Bernath 2001]. For example, Toon et al. [1986] 
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demonstrated that the removal of nitric acid from the gas phase causes a reduction in NO2 

concentrations, which enhances ClO/ClONO2 ratios and associated chlorine-catalyzed ozone 

loss.  

It is now broadly accepted that changes in the amounts of chlorine and nitrogen 

compounds due to the chlorine activation and denitrification in the Arctic stratosphere lead to 

chemical depletion of ozone [Fahey et al., 1990; Müeller et al. 1996; Solomon 1999; Waibel 

et al., 1999; Tabazadeh et al., 2000; Bernath 2001; Mellqvist, et al., 2002; Tilmes et al., 

2004; Jin et al., 2006]. PEARL, a primary station in the Network for the Detection of 

Atmospheric Composition Change (NDACC, http://www.ndsc.ncep.noaa.gov/), is located 

near the point of maximum stratospheric variability in the Arctic [Harvey and Hitchman, 

1996] where there is a good chance of observing the evolution of chemical species in the 

stratosphere both inside and outside the Arctic vortex. Hence, PEARL is an excellent site for 

making observations of trace gases in the stratosphere and studying Arctic ozone chemistry.  

During the 2006 Canadian Arctic ACE Validation Campaign, solar absorption spectra 

were recorded by PARIS-IR, DA8 FTS and ACE-FTS. These measurements were used to 

obtain information on the vertical column amounts of stratospheric trace gases such as O3, 

HNO3, NO2, NO, HF, ClONO2, and HCl near PEARL in spring 2006. Although PARIS-IR 

was deployed to Eureka in 2004 and 2005, there were major instrument changes and 

improvements for the 2006 campaign. In addition, optical parts in PARIS-IR were realigned 

in 2005. PARIS-IR’s performance is expected to be different in 2006 from the performance 

in the 2004 and 2005 campaigns. The MSC DA8 FTS has been operating at Eureka since 

1993, and was compared to the portable FTS from National Physical Laboratory (NPL) 

[Murphy et al., 2001]. Hence, one of the goals of the campaign was to investigate the 

differences between the retrieved columns obtained by PARIS-IR, which is a relatively ‘new’ 

campaign instrument, and the DA8 FTS that is a permanently installed instrument making 

long term observations at PEARL.  

To focus on the differences in the vertical columns that arise from the instrument 

performance, PARIS-IR and the DA8 FTS were configured to measure atmospheric 
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absorption spectra simultaneously. This measurement strategy differs from that used in the 

2004 and 2005 Canadian Arctic ACE Validation Campaigns, when PARIS-IR and the DA8 

FTS recorded spectra alternately. Details on the configuration of the two ground-based FTSs 

in the 2006 campaign will be presented in Section 6.2. Making simultaneous measurements 

ensured that PARIS-IR and the DA8 FTS were sampling the same atmosphere, and thus 

removed any differences in vertical columns due to temporal and spatial variations. Total 

columns, partial columns and column ratios obtained from simultaneous atmospheric remote 

sensing measurements using PARIS-IR and the DA8 FTS at Eureka are reported. These 

results are used to compare measurements from PARIS-IR and the DA8 FTS, to evaluate the 

quality of ACE occultation measurements, and to probe the time evolution of the chemical 

constituents in the atmosphere over the Canadian high Arctic during spring 2006. 

 

6.2 Instrumentation and Observations 

PARIS-IR is a portable FTS built for atmospheric remote sensing from the ground and from 

airborne platforms such as high altitude balloon gondolas. It was constructed as a terrestrial 

version of the ACE-FTS using a similar design and incorporating flight-spare optical 

components from the satellite instrument [Fu et al., 2007]. Hence, PARIS-IR can achieve the 

same spectral resolution (a maximum spectral resolution of 0.02 cm-1 or a maximum optical 

path difference (MOPD) of 25 cm) and spectral coverage (750 to 4400 cm-1) as the ACE-

FTS. Its maximum scanning speed is 2.5 cm/s, which makes PARIS-IR able to record a 

double-sided interferogram at MOPD every 20 seconds. A sandwich-type detector that 

consists of mercury cadmium telluride (MCT) and indium antimonide (InSb) elements is 

used in PARIS-IR to record spectra over its entire spectral coverage region in a single scan 

[Fu et al., 2007]. Details of this novel instrument are given in Section 2.2.2.  

An ABB-Bomem DA8 FTS, a high spectral resolution (maximum spectral resolution of 

0.004 cm-1, MOPD=250 cm) Michelson interferometer using dynamic alignment techniques, 

was installed at PEARL in February 1993 [Donovan et al., 1997; Farahani et al., 2007]. Two 
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detectors, MCT and InSb, are used to cover the spectral range from 700 to 5100 cm-1. DA8 

FTS measurements are made using a sequence of nine optical filters to improve the Signal-

to-Noise Ratio (SNR). The filters, the spectral ranges, and the detectors used in the DA8 FTS 

are shown in Table 2.3 and further details regarding this instrument are available in Section 

2.2.5.  

A sun-tracking mirror system which is permanently mounted on the roof of PEARL was 

used to direct the solar beam into the FTS laboratory. To observe the atmosphere 

simultaneously using the two spectrometers, the solar beam (diameter ~14 cm) was split into 

two parts. One third of the solar beam was directed through the input window of PARIS-IR 

using a flat pickoff mirror. The rest of the solar beam was directed into the DA8 FTS. The 

SNR and retrieved total columns from several spectra recorded in shared beam mode and in 

whole beam mode were compared at the beginning of the intensive phase. Differences in 

total columns between the two modes, which are generally about 1% in total columns, are 

small. PARIS-IR has a shorter acquisition time per spectrum (20 seconds) than the DA8 FTS 

(about 190 seconds). Hence, all of the individual spectra recorded using PARIS-IR during the 

interval of about 13 minutes required by the DA8 FTS to finish a single measurement (co-

addition of four spectra per measurement) were co-added in order to further ensure 

simultaneity.  

The campaign was carried out in two phases: the intensive and extended phases. The 

intensive phase was from February 17th to March 8th, 2006.  During this time, measurements 

were made by all of the scientific instruments, including PARIS-IR and the DA8 FTS, when 

weather conditions allowed. Also, daily MSC ozonesonde balloons were launched. After the 

intensive phase, PARIS-IR was shipped back to its home station, the Waterloo Atmospheric 

Observatory (WAO). The extended phase continued from March 9th to March 31st, 2006 with 

measurements by the DA8 FTS, by several of the UT-visible grating spectrometers, and by 

weekly MSC ozonesonde flights. During the entire campaign, ACE-FTS recorded spectra by 

solar occultation, as described in Chapter 2, and provided thirteen measurements that are 

within 500 km of PEARL.  
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6.3 Spectral Analysis and Retrievals  

The spectra measured by the ACE-FTS are analysed using a least squares fitting approach to 

obtain Volume Mixing Ratio (VMR) profiles of trace gases in the Earth's atmosphere, along 

with pressure and temperature profiles [Boone et al., 2005]. The ACE-FTS version 2.2 data 

contains temperature and pressure profiles and VMR profiles with 3-4 km vertical resolution, 

for about 30 atmospheric constituents, as described in Section 2.1.1.  

The spectra measured using FTSs on the ground were analyzed using SFIT2 (version 

3.91) [Pougatchev et al., 1995; Rinsland et al., 1998]. SFIT2 makes use of the Optimal 

Estimation Method (OEM) [Rodgers 1976, 1990, 2000; Rodgers and Connor, 2003] to 

include a priori VMR profiles of atmospheric constituents as a function of altitude in the 

retrievals. The details of OEM and SFIT2 have been introduced in Chapter 1. The spectral 

ranges (called microwindows, MW) used in the retrievals are shown in Table 6.2. All of the 

spectroscopic line parameters used in the retrievals are from the HIgh resolution 

TRANsmission molecular absorption database (HITRAN) 2004 [Rothman et al., 2004].  

A model atmosphere is used in the SFIT2 program to simulate spectra. A forward model 

named FSCATM [Gallery et al., 1983; Meier et al., 2004] was applied to generate the model 

atmospheres using a priori VMR estimates and pressure and temperature profiles. FSCATM 

carries out refractive ray tracing and a calculation of the air mass distribution, which is the 

number of molecules as a function of altitude, for each model atmosphere. A combination of 

climatological estimates from the HALogen Occultation Experiment (HALOE) v.19 satellite 

data from 1992 to 2005 [Russell et al., 1994; Grooß et al., 2005], Michelson Interferometer 

for Passive Atmospheric Sounding (MIPAS) reference profiles measured from 2002-2004 

[Carli et al., 2004], Stratospheric Processes And their Role in Climate 2000 Report 

Climatology (SPARC2000) [SPARC, 2002], Eureka ozonesonde archive, MkIV balloon FT-

IR spectrometer obtained in northern mid-latitudes by G.C. Toon [Peterson and Margitan, 

1995], and the a priori profiles constructed by A. Meier in 1998 for the NDACC station at 

Kiruna, were used to construct the a priori estimates of VMR profiles and columns. Pressure 

and temperature profiles were obtained from the daily radiosondes launched from the Eureka 
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weather station, National Centers for Environmental Prediction (NCEP)/National Center for 

Atmospheric Research analyses provided by the NASA Goddard Space Flight Centre 

automailer (obtained from the Goddard Automailer science@hyperion.gsfc.nasa.gov) 

[McPherson et al., 1979; Kalnay et al., 1996] and the Mass-Spectrometer-Incoherent-Scatter 

model (MSIS-2000) [Picone et al., 2002]. From surface to 35 km, the radiosonde 

measurements were used. NCEP covers from 35 km to 50 km and the output of MSIS is used 

from 50 km to 100 km.  

Table 6.2 Species, microwindows, spectral ranges of microwindows, interfering species, 

and filters used in ground-based observations. 

Species Microwindow Spectral Range 
(cm-1) Interfering species Filterb 

1104.78 - 1105.08 CH3D, CHF2Cl, CCl2F2, H2CO2, 
HDO, 16O16O 

18O  

1119.73 - 1119.95 CHF2Cl, N2O, 16O16O 
18O 

1121.67 - 1122.03 
16O16O 

18O, H2CO2, CHF2Cl, N2O, 
H2O 

1120a 

1122.84 - 1123.06 
16O16O 

18O, H2CO2, CHF2Cl,  
CH3D, CH4, H2O 

S6 
O3 

2775 2775.78 - 2775.88 HCl, N2O, CH4 S3 

868 867.00 - 869.20 H2O, OCS, NH3, CO2 S6 
HNO3 

872 871.80 - 874.00 H2O, OCS, NH3, CO2, C2H4, Cl2F2 S6 

ClONO2 780 779.85 - 780.45 CO2, O3, HNO3, CCl4 S6 

HF 4038 4038.78- 4039.10 H2O, CH4, HDO S1 

2727.72 - 2727.84 O3, CH4, HDO, CO2 
HCl 2725a 

2775.78 - 2775.88 O3, CH4, N2O 
S3 

NOc 1903 1899.92 - 1900.15 CO2, N2O, H2O, OCS, O3 S5 

NO2 2914 2914.60 - 2914.70 CH4, OCS, CH3D S3 
a Several spectral ranges from individual spectrum were used in the retrievals simutaneously, 

also known as multi-microwindow fitting.  
b Filters were placed in front of the entrance aperture of the DA8 FTS to improve signal-to-
noise ratio.  
c PARIS-IR has no results for NO from the 2006 Canadian Arctic Validation Campaign. 
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6.4 Latitudes and Longitudes of Sampled Atmosphere 

The knowledge of which part of the Arctic atmosphere was observed by the two ground-

based FTSs during an observation day is need for the discussions in Section 6.5. In this 

section, the calculation of the distances between the sampled atmosphere and the PEARL, 

together with the latitudes and longitudes of sampled atmosphere, will be given.  

The schematic diagram of the distance between the sampled atmosphere and PEARL is 

shown in Figure 6.1. The distance AC can be written as  

                                     OA
BCOC

SZA)sin(πOCsinSZAAC 1- ×
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

+
−×

−=                     (6.4.1) 

using the law of sines and law of summation of angles, in which, AC (in km) is the distance 

between the ground location of the sampled atmosphere and PEARL. SZA is the Solar Zenith 

Angle (in radians) which is calculated using the program “sun_moon.exe” provided by A. 

Meier. OA = OC are the Earth’s radius and the radius at the north pole of 6356.766 

kilometers is used. BC is the altitude of atmosphere that is sampled. Since the target species 

are mainly located in the stratosphere, BC is equal to 25 km in our calculation. 

 
Figure 6.1 A schematic diagram of the distance between sampled atmosphere and 

PEARL. It shows a cross section of the Earth. O: Center of the Earth; A: Location of 

PEARL; B: Sampled atmosphere; C: Location of point B on the ground; SZA: Solar 

Zenith Angle; E: A point on the Equator; P: North Pole.  
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According to the definition of latitude, which is the angle at the center of the Earth 

between the any point on the Earth’s surface and the plane of the equator, together with the 

geometry shown in Figure 6.1, the latitude of PEARL is  

φα +=°=∠ 05.80AOE  .                                (6.4.2) 

Hence, the latitude of the sampled atmosphere at point C is  

αφ −°==∠ 05.80COE  .                                (6.4.3) 

In the triangle ΔOAB (Figure 6.1), α  can be written as  

⎥⎦
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⎢⎣
⎡

+
−×

−=
BCOC

SZA)sin(πOAsinSZAα 1-                                 (6.4.4) 

by using the law of sines and law of summation of angles.  

Substituting Eq. (6.4.4) into Eq. (6.4.3), the latitude of sampled atmosphere at point C can be 

written as  
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During each measurement day, the FTSs measured several different parts of the 

atmosphere because the sunlight has a different optical path due to the rotation of the Earth. 

At solar noon on an observation day (Table 6.3), that is when the sun is on the meridian at 

Eureka, the sampled atmosphere is located at the same longitude as that of PEARL 

(86.42ºW), as indicated in Figure 6.2. At other times, the longitude of the sampled 

atmosphere Longc  can be calculated using 

Longc = -86.42º - HA.                                                       (6.4.6) 

The negative sign (-86.42º) indicates a location west of the Greenwich Meridian in longitude. 

HA is the hour angle (in degrees) shown in Figure 6.2, and is calculated as 

                                  HA = [Tx (in hour) – TSN (in hour)] * 15º / hour,         (6.4.7) 
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in which, Tx is the observation time and TSN is the local solar noon time for the day when the 

observation was made (Table 6.3).  

 
Figure 6.2 A schematic diagram of the Hour Angles (HA). A: Location of PEARL; C: 

Location of point B on the ground. 

 

Figure 6.3 Locations of sampled atmosphere at 25 km height by two ground-based 

FTSs observing simultaneously on March 4th, 2006 are shown. In addition, the locations 

(noted using the 30 km geometric tangent points) of the 13 ACE-FTS occultations 

within 500 km of PEARL during the period February 21st to March 31st, 2006 are 

indicated. Location of PEARL is indicated with a black solid square. 
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Table 6.3 The sunrise, sunset and solar noon times at PEARL, Eureka, during the 2006 

Canadian Arctic ACE Validation Campaign a.  

Feb. 2006 Mar. 2006 
sunrise sunset solar noon sunrise sunset solarnoon Day 
hhmm hhmm hhmm hhmm hhmm hhmm 

1 0945 1615 1300 
2 0933 1626 1259 
3 0922 1637 1259 
4 0911 1647 1259 
5 0900 1658 1259 
6 0850 1708 1259 
7 0840 1717 1258 
8 0830 1727 1258 
9 0820 1736 1258 
10 0810 1746 1258 
11 0800 1755 1257 
12 0751 1804 1257 
13 0741 1813 1257 
14 0732 1822 1257 
15 0723 1831 1257 
16 0713 1839 1256 
17 0704 1848 1256 
18 0655 1857 1256 
19 

  

0646 1906 1256 
20 1254 1308 1301 0637 1914 1255 
21 1158 1404 1301 0627 1923 1255 
22 1131 1430 1300 0618 1932 1255 
23 1111 1450 1300 0608 1941 1254 
24 1053 1507 1300 0559 1950 1254 
25 1037 1523 1300 0550 1959 1254 
26 1023 1537 1300 0540 2008 1254 
27 1009 1550 1259 0530 2018 1254 
28 0957 1603 1300 0520 2027 1253 
29 0510 2037 1253 
30 0500 2047 1253 
31 

  
0450 2057 1253 

a Time of sunrise, sunset, and solar noon are local times and obtained from the Astronomical 

Application Department of U.S. Naval Observatory using the following link: 

http://aa.usno.navy.mil/.  
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Hence, the distances between sampled atmosphere and PEARL, the latitudes and 

longitudes of sampled atmosphere of each measurement can be calculated by using Eqs. 

(6.4.1), (6.4.5), and (6.4.6), respectively. The calculations of latitude and longitudes of 

sampled atmosphere for the observations made March 4th, 2007 were carried out and are 

shown in Figure 6.3. 

 

6.5 Results and Discussion 

The spectra recorded using PARIS-IR, DA8 FTS and ACE-FTS during the 2006 Canadian 

Arctic ACE Validation Campaign were analyzed to obtain the amounts of trace gases, 

utilizing the methods given in Section 6.3. The results for seven trace gases (O3, HNO3, HCl, 

ClONO2, NO2, NO, HF) from these observations will be discussed in the following sections. 

In the Section 6.5.1, the comparisons of results between two ground-based FTSs, PARIS-IR 

and the DA8 FTS will be reported. In Section 6.5.2, the results from the ground-based 

observations are used to evaluate the quality of ACE-FTS occultation measurements. Finally, 

the results from three FTSs will be utilized in probing the time evolution of chemical 

constituents in the atmosphere over the Canadian high Arctic during the spring 2006. 

 

6.5.1 Comparisons between PARIS-IR and the DA8 FTS 

Atmospheric absorption spectra were simultaneously recorded using PARIS-IR and the DA8 

FTS during the 2006 Canadian Arctic ACE Validation Campaign. Like other FTSs in the 

NDACC network, the DA8 FTS at PEARL records each spectral range during an observation 

day with a specified filter, as shown in Table 2.3. This strategy improves the SNR of 

recorded spectra, but provides fewer observed species at each observation time due to the 

limited spectral ranges of each filter. In addition, at the beginning of the campaign, each day 

is short as shown in Table 6.3 and the weather also affects the measurements through the 

campaign. The DA8 FTS was therefore not always able to finish a complete set of 
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measurements. Not all of the target species were measured every day using two ground-based 

FTSs.  

Unlike the DA8 FTS, PARIS-IR records a broad spectral range of 750 to 4400 cm-1 

simultaneously, that is, it is able to determine the vertical columns for all of the investigated 

trace gases from each observation. Results from PARIS-IR should therefore provide 

information with higher temporal resolution than those from the DA8 FTS. For example, on 

March 4th, 2006, ten observations were made using PARIS-IR and the DA8 FTS 

simultaneously. Figure 6.3 shows that the two ground-based FTSs sampled the atmosphere in 

different locations for the ten observations. Each observation was taken in approximately 13 

minutes. The vertical columns of O3 are available from all ten observations made using 

PARIS-IR on that day. In contrast, only two spectra in the spectral range of the S6 Filter 

(Table 2.3) were recorded by the DA8 FTS containing MWs around 1120 cm-1. Hence, only 

two ozone columns were reported from the observations using the DA8 FTS from MW1120 

on March 4th, 2006. As indicated in Figure 6.3 for the rest of time on that day, the DA8 FTS 

recorded atmospheric absorption spectra in spectral ranges other than the one covered by the 

S6 Filter. Hence, the differences between PARIS-IR and the DA8 FTS in the spectral 

coverage of each observation resulted in different temporal resolutions for the observed 

vertical columns of target species. Furthermore, PARIS-IR provided column amounts with a 

wider spatial coverage than those made using the DA8 FTS. For example, the ozone columns 

retrieved from MW1120 from ten observations measured by PARIS-IR on March 4th, 2006 

provide the ozone distributions in a rectangle about 40ºW to 140ºW and 74ºN to 78ºN, while 

the results from the MW1120 recorded by the DA8 FTS show the distribution of ozone in the 

area around 40ºW to 50ºW and 74ºN to 78ºN.  

The total columns of six species (O3, HNO3, HCl, NO2, ClONO2, HF) from PARIS-IR and 

the DA8 FTS were compared, as shown in Table 6.4 (PARIS-IR did not measure NO). The 

comparisons were performed in two ways. One is to use the daily averaged values in the 

comparisons and the other is to utilize the individual measurements in the comparisons. For 

the former method, the daily averaged total columns were calculated for any given species 
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measured by the two FTSs, and the percentage differences for the given species measured by 

two spectrometers were calculated for each measurement day using   

100
C

]CC[P
Px

DxPx ×
−

=x ,                                           (6.5.1.1) 

where, PxC  and DxC are the daily mean values of observed total columns of the given species 

x (x can be O3, HNO3, HCl, NO2, ClONO2, or HF) observed by PARIS-IR and the DA8 FTS, 

respectively. All of the percentage differences were then averaged to obtain the results shown 

in the third column of Table 6.4, with the 1σ standard deviation of the mean differences in 

total columns shown in parentheses. In the second method used in the comparison, the 

differences of individual measurements were calculated using  

100
C

]C[CP
Px

DxPx ×
−

=x ,                                           (6.5.1.2) 

where, PxC  and DxC are the individual values of simultaneously observed total columns. All 

of these differences of individual measurements were averaged to obtain the results which 

are shown in the fourth column of Table 6.4, together with the 1σ standard deviations.  

As shown in Table 6.4, for all six of the investigated species the comparisons using daily 

average values show larger differences (up to 17%) between two FTSs than those using the 

individual observations recorded simultaneously. The variations of the measured total 

columns during each observation day, which arise from temporal and spatial differences in 

Arctic atmospheric composition, is the explanation for these phenomena. For example, the 

daily trends in ozone total columns, as shown in the enlarged views in Figure 6.4, were 

averaged to obtained daily mean values of ozone for March 4th, 5th, and 6th, 2006 

respectively. The daily averaged total columns of ozone from PARIS-IR represent ozone 

amounts over broad geographical areas. However, the DA8 FTS data set contains only two 

total ozone columns per day for the March 4th to 6th, 2006, because of the sequence of filters 

used. The daily averages of ozone from the DA8 FTS represent the ozone distribution on the 
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east side of Eureka (Figure 6.3) near sunrise (Figure 6.4). The daily averages for the two 

instruments therefore cover different regions at different times. 

Table 6.4 Comparisons of total columns observed by the DA8 FTS and PARIS-IR from 

February 21st to March 8th, 2006 

Mean Percentage Differences a 
Species Microwindow 

Comparison Using Daily 
Mean Valuea 

Comparison Using Individual 
Measured Valuea 

1120 -6.33(±8.07)% 2.84(±5.71)% 
O3 

2775 -3.56(±3.87)% 0.03(± 4.76)% 
868 -5.11( ±9.59)% -0.11(±2.95)% 

HNO3 
872 -2.22(±7.34)% -1.94(±2.60)% 

NO2 2914 -2.84(±6.97)% -0.08(±3.23)% 
HCl 2725 -7.84(±2.91)% -3.22(±2.71)% 
HF 4038 -5.31(±3.22)% -1.45(±6.77)% 

ClONO2 780 -17.62(±10.10)% -4.28(±6.70)% 
a See text for calculation method description. 

 

In 1999, an instrument comparison campaign was held at Eureka and the retrieved vertical 

columns from the portable National Physical Laboratory (NPL) FTS (a Bruker 120 M) were 

compared with those from the DA8 FTS at PEARL [Murphy et al., 2001]. The comparisons 

show that the differences between the NPL FTS and the DA8 FTS have a consistent 

systematic bias of about 3% for HCl, HNO3 and O3, and 7% for HF. The large difference 

between instruments for HF was attributed to an instrument lineshape problem and a zero 

level problem (when the atmosphere has 100% absorption the signal should go zero) 

[Murphy et al., 2001].  In addition, the non-linearity of the MCT detector was found to be 

causing a major part of the differences in the retrieved HNO3 columns between the NPL FTS 

and the DA8 FTS [Murphy et al., 2001]. The differences from the 2006 Canadian Arctic 

ACE Validation Campaign generally show smaller values than those reported in the 1999 

comparison, although the mean differences show systematically lower column values for five 

species (HNO3, HCl, NO2, ClONO2, HF) and higher column values for O3 from PARIS-IR 
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than from the DA8 FTS. The 2006 campaign likely benefits from the fact that the software 

packages used to derive detector nonlinearity and baseline corrections for the two FTSs were 

both from the same company (ABB-Bomem, who built both instruments), ensuring a degree 

of internal consistency.  

Comparisons between PARIS-IR and two FTSs with higher spectral resolutions were 

carried out in summer 2005 at the University of Toronto [Wunch et al., 2007]. One of these 

FTSs was the Toronto Atmospheric Observatory Fourier Transform Spectrometer (TAO-

FTS), an ABB-Bomem DA8 FTS with the same specifications as the Eureka DA8 FTS.  

Total column differences for O3 and HCl between PARIS-IR and the TAO-FTS were about 

1% to 4% (Figure 4.2), respectively, consistent with the agreement between PARIS-IR and 

the Eureka DA8 FTS in this work. 

 
Figure 6.4 O3 total columns obtained from the spectra near 1120 cm-1 recorded using 

PARIS-IR and the DA8 at PEARL from during the 2006 Canadian Arctic ACE 

Validation Campaign, together with ozonesonde measurements. Enlarged views of daily 

observations on March 4th to 6th, 2006 are shown. 
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OEM, the method used in the SFIT2 spectral analysis program, provides a method to 

compute the major uncertainties in the retrievals of vertical columns such as smoothing error, 

retrieval noise error and model parameter error [Rodgers 1976, 1990, 2000; Rodgers and 

Connor 2003]. Smoothing error, also known as null space error in the Rodger’s OEM 

formalism, arises from the limited altitude resolution of the observing system. Retrieval noise 

error is due to measurement noise in the spectra. The forward model parameters such as 

spectral background, slope and instrumental line shape also generate uncertainties in the 

retrievals and these contributions are grouped together as model parameter error. Table 6.5 

summarizes these errors in the observations using PARIS-IR and the DA8 FTS. The methods 

for estimating these errors are discussed in Section 1.7. 

 

Table 6.5 Uncertainties in the retrievals of total vertical columns obtained from 

measurements by the DA8 FTS and PARIS-IR 

Smoothing  
Error 

Retrieval 
Noise   Error 

Model 
Parameter 

Error 

Degrees of     
Freedom Species MW 

PAR a DA8 b PAR a DA8  b PAR a DA8 b PAR a DA8 b 

1120 7.9% 5.4% 2.9% 2.5% 0.5% 0.3% 3.6 4.2 
O3 

2775 12.3% 8.7% 0.4% 3.7% 0.5% 0.2% 2.2 2.5 

868 14.7% 13.5% 1.5% 2.9% 0.2% 0.1% 1.5 1.7 
HNO3 

872 14.5% 13.7% 1.5% 2.9% 0.3% 0.1% 1.6 1.9 

NO2 2914 25.1% 22.7% 2.8% 3.7% 0.1% 0.1% 1.7 1.9 

HCl 2725 7.5% 7.4% 0.8% 2.7% 0.3% 0.1% 1.7 1.7 

HF 4038 6.8% 5.5% 1.3% 2.5% 0.2% 0.1% 1.7 1.7 

ClONO2 780 16.1% 14.2% 3.0% 2.7% 0.1% 0.1% 1.0 0.9 

NO 1903 N/A 10.9% N/A 3.9% N/A 0.1% N/A 1.2 
a PAR: PARIS-IR  
b DA8: DA8 FTS 
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The spectral resolution of a measurement affects the amount of vertical information 

obtained from the spectral line shape of a measured species [Rodgers 2000]. With higher 

spectral resolution, more precise vertical information can be obtained, as discussed in 

Chapters 1 and 5. As shown in Table 6.5, the results from the DA8 FTS have higher values 

of Degrees Of Freedom for Signal (DOFS), the number of independent quantities obtained 

from the observations (the vertical partial columns in the specified altitude range, in this 

case), than those from PARIS-IR, since the DA8 FTS has a spectral resolution 10 times 

higher than that of PARIS-IR. The DOFS can be improved by choosing high quality 

microwindows, i.e., spectral segments which contain many absorption lines of the 

investigated species with only few and weak absorption features from interfering species. 

The microwindows used in this work generally improved the retrievals of O3 and HCl 

compared to those carried out in the instrument comparison campaign at University of 

Toronto [Wunch et al. 2007] in terms of DOFS.  

According to the Rodger’s OEM theory which is described in Chapter 1, the averaging 

kernel is the derivative of a derived parameter with respect to its a priori state value, i.e., 

when this derivative is small (nearly 0) all of the information comes from the a priori and 

when it is large (near 1) then the information in the retrieval comes mainly from the 

measured spectra [Rodgers 1976, 1990, 2000]. The typical averaging kernel profiles of seven 

investigated species are shown in Figure 6.5. For all of the seven investigated species, the 

retrievals show good performance, since the averaging kernel values are close to 1 in the 

altitude ranges where most of the species are located. For example, the averaging kernel 

values from the O3 retrievals using spectral segments near 1120 cm-1 (MW 1120) are close to 

1 from 10 to 60 km for both FTSs, as shown in Figure 6.5. More than 80% of the total ozone 

is present in the altitude range of 10 to 60 km.  
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Figure 6.5 Averaging Kernels of PARIS-IR and the DA8 FTS. 

 
6.5.2 Partial Column Comparisons between ACE-FTS Measurements and 
Ground-Based Observations using Two FTSs 

Ground-based observations provide retrieved concentration profiles of trace gases with 

limited vertical resolution (DOFS about 1 to 4 as shown in Table 6.5, half width at half 

maximum for averaging kernels about 15 to 30 km as shown in Figure 6.5), much coarser 

than the vertical resolution (about 3 km) of observations from ACE-FTS. Because of this, the 

present comparisons are restricted to partial column abundances rather than profiles. As 

shown in Sung et al. [2007], the comparisons of partial columns from ground-based 

instruments with ACE-FTS results poses difficulties for molecules with maximum VMR in 

the troposphere (such as N2O or CH4), particularly for an FTS with the resolution of PARIS-
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IR. Thus, the comparisons were restricted to molecules where the VMR peaks in the 

stratosphere. 

Version 2.2 of the ACE retrievals including the ozone update [Boone et al., 2005] is used 

here. This version is the latest release of ACE-FTS results from the ACE mission, and the 

ozone update shows improved agreement with other datasets [Dupuy et al., in preparation for 

Atmos. Chem. Phys.]. There were thirteen occultation measurements within 500 km of 

PEARL during the 2006 Canadian Arctic ACE Validation Campaign. Coincidences occurred 

on eight days for DA8 FTS and seven days for PARIS-IR, with respectively, nine and eight 

ACE occultations meeting the criteria that they occurred on the same day within 500 km 

from PEARL. The partial columns xC of seven trace gases were calculated for ACE-FTS 

using   

  ∑
=

=

××=
topi

bottomi
xx Z(i)(i)VMRρ(i)C ,                                   (6.5.2.1) 

where, x stands for O3, HCl, ClONO2, HF, HNO3, NO2, or NO.; ρ(i) (in molecules/cm3), 

(i)VMR x , and Z(i) (in cm) are the number density of air, the volume mixing ratio of the 

species x in the ith layer, and the thickness of the ith layer. In the database of the version 2.2 

ACE-FTS retrievals, ρ and xVMR  are reported on an altitude grid with 150 layers (spanning 

0.5 to 150 km with a constant thickness of 1 km). However, occultations made by the ACE-

FTS usually have different altitude ranges due to various factors such as clouds that block the 

field-of-view during observations. Hence, in order to make a valid comparison, the partial 

columns from PARIS-IR and the DA8 FTS for the investigated species x were determined in 

the same altitude range as in the 13 ACE-FTS occultations. The partial columns from the 

ACE-FTS are shown together with their altitude ranges, measurement dates, and occultation 

names in Table 6.6.  

The heterogeneity of the Arctic atmosphere can be seen in the ACE-FTS observations. For 

example, two measurements named ss13793 and ss13794, in which the ss indicates the 

measurements were carried out at sunset, and 5 digits give the orbit numbers, were made 
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within 500 km of PEARL by the ACE-FTS on March 5th, 2006 (Figure 6.3). The observation 

times for ss13793 and ss13794 were 21:22:04 and 22:59:47 (in universal time), respectively. 

The observed partial columns (Table 6.6) show percentage differences of -8.11%, -6.79%, -

38.06%, -12.32%, -14.88%, 1.96%, and 7.67% for O3, HCl, ClONO2, HF, HNO3, NO2, and 

NO, respectively. The partial column differences between ss13793 and ss13794 can be 

attributed to the spatial differences (about 400 km) between the two observations (Figure 

6.3), and shows the heterogeneity of the Arctic atmosphere because the time difference 

between these two observations is only about 1.5 hours.   

In addition, observations made by the ACE-FTS also show differences in measured partial 

columns due to different measurement times. For example, the observation ss13778, whose 

measurement time is 20:56:26 (in universal time) on March 4th, 2006, was made about 24 

hours earlier than the observation ss13793. The distance between ss13778 and ss13793 is 

about 30 km (Figure 6.3), and both of them are within 100 km of PEARL (Table 6.6). The 

observed partial columns show percentage differences of -18.14%, -16.83%, -71.18%, -

40.51%, -37.45%, 11.14%, and -3.21%, for O3, HCl, ClONO2, HF, HNO3, NO2, and NO,  

respectively. 

In the altitude ranges of the partial columns measured by the ACE-FTS, the retrievals 

from PARIS-IR and the DA8 FTS have averaging kernel values generally larger than 0.5 (as 

shown in Figure 6.5), which indicates that retrieved columns of the investigated species are 

mainly obtained from observations rather than a priori information. The partial columns 

from the DA8 FTS and PARIS-IR, which were determined in the same altitude ranges as 

those of the ACE-FTS, were divided by the partial columns of ACE-FTS to obtain the ratios 

in Table 6.7. The partial columns from the individual ground-based observations with 

measurement time closest to those of the ACE-FTS observations were used in these 

calculations.  
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Table 6.6 Partial columns observed by ACE-FTS during the 2006 Canadian Arctic ACE Validation Campaign 

O3 HCl ClONO2 HF HNO3 NO2 NO Date 

mm/dd 

Time 

hh:mm:ssa 

Occult. 

Nameb 

Distance 

Δc in km molecules /cm2 

2/22 21:32:40 ss13631     449 1.1646×1019 4.4257×1015 1.5903×1015 1.9223×1015 2.6874×1016 0.8151×1015 2.2761×1015 

2/23 20:20:45 ss13645     201 1.1136×1019 4.4358×1015 1.5824×1015 1.9217×1015 2.6225×1016 1.2500×1015 2.8668×1015 

2/26 20:00:13 ss13689       92 1.1103×1019 4.3949×1015 1.8289×1015 2.0582×1015 2.5816×1016 0.9698×1015 2.2107×1015 

2/28 20:51:34 ss13719     119 1.0994×1019 4.3367×1015 2.0231×1015 2.0782×1015 2.5891×1016 0.7822×1015 2.1822×1015 

3/1 21:17:13 ss13734     202 1.1631×1019 4.4074×1015 2.4271×1015 2.2977×1015 2.7763×1016 1.2075×1015 2.2530×1015 

3/4 20:56:26 ss13778       95 0.9404×1019 3.9714×1015 1.4044×1015 1.7299×1015 2.1749×1016 1.1683×1015 2.3525×1015 

3/5 21:22:04 ss13793       64 1.1110×1019 4.6399×1015 2.4041×1015 2.4306×1015 2.9895×1016 1.0381×1015 2.4280×1015 

3/5 22:59:47 ss13794     445 1.0277×1019 4.3447×1015 1.7413×1015 2.1639×1015 2.6022×1016 1.0589×1015 2.6297×1015 

3/6 21:47:43 ss13808       63 1.0540×1019 4.3723×1015 2.2347×1015 2.2577×1015 2.6079×1016 1.0059×1015 2.4636×1015 

3/6 23:25:25 ss13809     497 1.0212×1019 4.2115×1015 1.6180×1015 2.0166×1015 2.4378×1016 1.0539×1015 2.3264×1015 

3/7 22:13:21 ss13823       98 1.0256×1019 4.3300×1015 1.8834×1015 2.2221×1015 2.3588×1016 1.1856×1015 2.4563×1015 

3/8 22:38:59 ss13838     152 1.1407×1019 4.5224×1015 1.7710×1015 2.2175×1015 2.7366×1016 1.1370×1015 2.5993×1015 

3/13 23:09:33 ss13912     357 1.2004×1019 4.9258×1015 3.0328×1015 2.8421×1015 3.5076×1016 1.3169×1015 2.2828×1015 

Altitude Range (km) 9.5 - 84.5 11.5 - 47.5 14.5 - 30.5 13.5 - 44.5 10.5 - 31.5 17.5 - 35.5 24.5 - 84.5 

a Universal time.  
b Occultation names which are used by the ACE Science Operation Centre to name occultations [type of measurement (sr = sunrise and ss = sunset) + orbit 

number]. 
c Δ is distance from 30 km altitude tangent point of ACE-FTS occultation measurement to PEARL 
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Table 6.7 Ratios of partial columns ([ACE-FTS]/[ground-based FTS]) obtained during the 2006 Canadian Arctic ACE 

Validation Campaign 

Date Time Occultation O3 HCl ClONO2 HF HNO3 NO2 NO 

mm/dd hh:mm:ssa Δb in km  ADc APd AD AP AD AP AD AP AD AP AD AP AD AP 

2/22 21:32:40 ss13631 (449) - - - - - - - - - - - - - - 

2/23 20:20:45 ss13645 (201) - 0.93 0.91 1.00 - 1.01 0.87 0.89  0.92 1.31 1.20 - - 

2/26 20:00:13 ss13689 (092) - 1.00 0.88 1.01  0.91 1.00 0.99  0.94 0.96 0.96 - - 

2/28 20:51:34 ss13719 (119) - - - - - - - - - - - - - - 

3/1 21:17:13 ss13734 (202) - - - - - - - - - - - - - - 

3/4 20:56:26 ss13778 (095) 0.70e 0.94 0.82 0.95 0.54e 0.92 - 0.90 0.74e 0.94 1.11 0.92 1.17 - 

3/5 21:22:04 ss13793 (064) 0.90 0.99 0.89 1.03 0.85 0.95 1.02 1.17 1.09 1.13 1.18 1.07 1.21 - 

3/5 22:59:47 ss13794 (445) 0.84 0.91 0.83 1.01 0.62 1.05 0.91 1.05 0.95 0.98 1.20 0.88 1.31 - 

3/6 21:47:43 ss13808 (063) 1.00 1.01 0.94 1.02 1.08 1.18 1.09 1.18 1.07 1.13 0.96 0.89 1.05 - 

3/6 23:25:25 ss13809 (497) 0.97 0.98 0.91 0.99 0.78 0.85 0.98 1.06 1.00 1.06 1.00 0.94 0.99 - 

3/7 22:13:21 ss13823 (098) 0.93 1.06 0.92 1.06 0.77 0.84 1.05 1.10 0.89 0.98 1.19 0.78 1.14 - 

3/8 22:38:59 ss13838 (152) - - - - - - - - - - - - - - 

3/13 23:09:33 ss13912 (357) 0.93 - 0.84 - 1.01 - 0.88 - - - 1.32 - 1.06 - 

Mean Values 0.90 0.98 0.88 1.01 0.77 0.96 0.98 1.04 0.96 1.01 1.14 0.96 1.13 - 
a Universal time.  
b Δ is distance from 30 km altitude tangent point of ACE-FTS occultation measurement to PEARL. 
c Ratio of [ACE-FTS]/[DA8]  
d Ratio of [ACE-FTS]/[PARIS-IR] 
e The large differences between the DA8 FTS and the ACE-FTS are caused by the heterogeneity of the Artic atmosphere. See text for details.
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The trace gases have average differences of about 10% between the DA8 FTS and the 

ACE-FTS except for ClONO2, a trace gas involved in many heterogeneous chemical 

processes that often occur in a strong polar vortex [Solomon 1999; Toon et al., 1999]. The 

discrepancies between ground-based measurements and the observations made by the ACE-

FTS are mainly due to the heterogeneity of the Arctic atmosphere and the differences in 

measurement time. The results from PARIS-IR show better agreement than those of the DA8 

FTS with the ACE-FTS due to better temporal coincidences. The average differences for all 

of the investigated species for ACE-FTS, and PARIS-IR are within 4%, as shown in Table 

6.7. In previous work carried out by Mahieu et al. [2005], HCl and ClONO2 measurements 

made by ACE-FTS were compared to ground-based FTS observations and showed column 

ratios ([ACE-FTS]/[Ground FTS]) spanning from 0.99 to 1.07 and 0.79 to 1.09, respectively. 

The comparisons carried out in this work are consistent with those in Mahieu et al. [2005]. 

 

6.5.3 Time Evolution of Trace Gases and Ozone Chemical Depletion during the 
2006 Canadian Arctic ACE Validation Campaign 

The satellite observations, together with meteorological analyses, have been used to study the 

Arctic vortex, temperature and trace gas evolution in 2004-2005, 2005-2006 and 2006-2007 

winters [Manney et al., 2007]. In that study, the 2005-2006 winter in the Arctic had a very 

strong, prolonged major Stratospheric Sudden Warming (SSW) beginning in early to mid 

January, 2006, that ended in the middle to late February, 2006. After the SSW, a pole-

centered strong vortex redeveloped quickly in the lower mesosphere and the upper 

stratosphere. Figures 1 to 3 of Manney et al. [2007] show that the Arctic vortex in the 

stratosphere extends to about 60º N. Figures 4 and 12 of Manney et al. [2007] show cold 

temperatures (about 190 to 220 K) in the stratosphere (about 20 to 50 km) over Eureka 

during the entire 2006 Canadian Arctic ACE Validation Campaign.  

Figure 6.6 is a contour plot of scaled potential vorticity (sPV in units of 10-4s-1) as a 

function of time from February 21st to March 31st, 2006 over PEARL. sPV is the scaled 
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Rossby-Ertel potential vorticity (PV), which is a measure used to describe the intensity of the 

polar vortex [Dunkerton and Delisi, 1986; Manney et al., 1994]. The larger sPV, the stronger 

the polar vortex is. The sPV values used in Figure 6.6 are the Derived Meteorological 

Products (DMPs) calculated from the Goddard Earth Observing System version 4.03 (GEOS-

4) and provided by G.L. Manney. Manney et al. [2007] found that the sPV values at the edge 

of vortex in the stratosphere are about 1.2 to 1.6×10-4s-1. The sPV profiles shown in Figure 

6.6 are produced for each sunrise and sunset during the campaign. In the upper stratosphere 

(about 50 km), the sPV values are larger than 2×10-4s-1 during entire campaign, and indicate 

the Arctic vortex is strong. In the middle stratosphere (about 30 km) the sPV values are 

larger than 1.6×10-4s-1, and indicate that the Arctic vortex has formed. In the lower 

stratosphere (about 18 km) the sPV values are generally about 1.2 to 1.6×10-4s-1, and indicate 

that the vortex is weak and ill-defined. During the entire 2006 Canadian Arctic ACE 

Validation Campaign, the redeveloping vortex was continuously over Eureka, but in the 

lower stratosphere, the vortex was weak and ill-defined compared to higher altitudes. 

The observations carried out using three FTSs (ACE-FTS, PARIS-IR, and the DA8 FTS) 

measured column densities of the stratospheric trace gases within the Arctic vortex on 2006 

(the locations of sampled atmosphere shown in Figures 6.3 and 6.7 of this work, Arctic 

vortex range in the stratosphere shown in Figures 1 to 3 of Manney et al. [2007]). The 

meteorological conditions in the stratosphere affect the trace gases in the Arctic because 

polar stratospheric clouds form at temperatures below 195 K, [Solomon 1999; Bernath 2001]. 

Heterogeneous chemistry on these PSCs results in ozone depletion. The temperature 

dependence of chlorine activation is discussed by Kawa et al. in [1996]. 
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Figure 6.6 Cross-sections above Eureka of scaled potential vorticity (sPV, 10-4s-1) from 

GEOS-4 as a function of time from February 21st to March 31st, 2006 are shown. A: at 

sunrise; B: at sunset. 
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Figure 6.7 Locations of sampled atmosphere by PARIS-IR and the DA8 FTS. Location of 

PEARL is indicated with a black triangle. Blue dots, red dots and green dots indicate locations 

of sampled atmosphere at 14 km, 26 km, and 46 km height, respectively. PARIS-IR made 

observations from February 21st to March 7th, 2006. The DA8 FTS made observations from 

February 21st to March 30th, 2006. 

PARIS-IR 
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The O3, ClONO2, HCl, HNO3, and HF atmospheric height profiles of concentrations have 

similar shapes, with peak values in the stratosphere [Toon et al., 1992; Mellqvist et al., 2002]. 

HF has been used as a tracer in the stratosphere, since it is a long-lived species and does not 

have any known stratospheric sinks [Toon et al., 1992; Mellqvist et al., 2002]. In addition, 

the ACE-FTS provides partial columns of these species that are very nearly total column 

densities. The partial columns to total column percentages for O3, HCl, ClONO2, HNO3, and 

HF are 92%, 98%, 94%, 93%, and 91%, respectively. In order to remove most of the 

dynamical effects, such as diabatic descent and tropopause and stratospause height changes, 

the partial columns of O3, ClONO2, HCl, and HNO3 from ACE-FTS, PARIS-IR, and the 

DA8 FTS, were normalized by taking ratios with the partial columns of HF, and the results 

are shown in Figure 6.8.  

The columns of ClONO2, HCl, HNO3, and O3 cannot be measured simultaneously with 

those of HF with the DA8 FTS operated using the observation strategy of NDACC. The daily 

mean values of partial columns were used for the DA8 FTS. For PARIS-IR, simultaneous 

measurements were used to compute the ratios, and these ratios were then averaged to obtain 

the daily mean column ratios of [HCl]/[HF], [ClONO2]/[HF], [HNO3]/ [HF], and [O3]/[HF]. 

As shown in Figure 6.8, PARIS-IR and the DA8 FTS have similar trends.   

HCl and ClONO2 are the major chlorine reservoir species (they do not react with ozone) 

but can form active compounds such as ClO in the cold atmospheric conditions within the 

polar vortex [Webster et al., 1993; von Clarmann et al., 1993; Oelhaf et al., 1994; Toon et 

al., 1999; Solomon 1999; Mellqvist et al., 2002]. ClO is a key chemical in ozone depletion 

[Solomon 1999; Bernath 2001]. Based on previous studies, chlorine activation is 

characterized by a decrease in the ratios of [HCl]/[HF], [ClONO2]/[HF], or 

[HCl+ClONO2]/[HF], and is associated with a decrease in the ratios of [O3]/[HF]. For 

example, Toon et al. in [1999] discussed the connection between the decreases in the column 

ratios of [O3]/[HF] and [HCl]/[HF], [ClONO2]/[HF], [HNO3]/[HF] with the low temperature 

in the vortex. The observations, which were carried out using the ground-based FTS at Ny 

Ålesund (78.9°N, 11.9°E) in spring 1992 and 1997 together with the FTS at Fairbanks 
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Figure 6.8 Time evolution of partial columns of ClONO2, HCl, HNO3, and O3, normalized with 

HF from the observations using ACE-FTS, PARIS-IR, and the DA8 FTS during the 2006 

Canadian Arctic ACE Validation  Campaign.  

 

 (65.1ºN, 147.4ºW) in spring 1997, were utilized in the work of Toon et al. [1999]. In 

addition, Mellqvist et al. demonstrated in 2002 that chlorine activation correlates with ozone 

depletion, using the observations from Harestua (60.2°N, 10.8°E), Kiruna (67.8°N, 20.4°E), 

Esrange (67.9°N, 21.1°E), and Ny Ålesund (78.9°N, 11.9°E) during the winter of 1999-2000. 

The observations made by ACE-FTS, PARIS-IR, and the DA8 FTS show decreases in the 

[HCl]/[HF], [ClONO2]/[HF] and [O3]/[HF] ratios (Figure 6.8). Although there are differences 

in the individual column ratios between the observations of ACE-FTS and those from two 

ground-based FTSs (PARIS-IR and the DA8 FTS), especially at the beginning of the 

campaign (February 21st to 25th, 2006), these differences are most likely due to the 
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heterogeneous Arctic atmosphere and temporal differences in the observations. These ratios 

indicate that during the 2006 campaign, chlorine activation occurred over Eureka, which was 

inside the polar vortex in spring 2006. The deceases of ClONO2 and O3 in the Arctic 

stratosphere (65º N to 80º N) during the 2006 campaign were also observed by the 

Microwave Limb Sounder (MLS) on Aura which were shown in Figures 7 to 9 of Santee et 

al. (submitted to J. Geophs. Res.). Santee et al. carried out the study of the evolution of 

reactive and reservoir chlorine, nitric acid gas and ozone during the 2004-2005 and 2005-

2006 winters in the Arctic stratosphere using the observations from the Microwave Limb 

Sounder (MLS) on Aura and the ACE-FTS on SCISAT-1. 

HNO3 is a major nitrogen reservoir in the atmosphere, and can be removed from the polar 

stratosphere by denitrification processes such as HNO3 dissolving in sulfate aerosols 

[Solomon 1999; Bernath 2001]. Denitrification occurs less frequently in the Arctic than in the 

Antarctic, since it requires extremely low temperatures to form PSCs (around 195 K) 

[Solomon 1999]. In exceptionally cold winters such as 2004-2005, denitrification in the 

Arctic was observed using ACE-FTS measurements [Jin et al., 2006]. Ground-based and 

satellite observations suggest that denitrification also occurred near Eureka during the 2006 

campaign (Figure 6.8), since the [HNO3]/[HF] ratio generally decreased. Manney et al. 

[2007] showed that in the 2005-2006 winter the meteorological conditions were very similar 

to those in the 2003-2004 winter, and that after a SSW the Arctic vortex quickly redeveloped 

and had much colder temperatures in the stratosphere compared to those in ‘normal’ winters. 

Chlorine deactivation is the process in which active chlorine compounds such as ClO convert 

to chlorine reservoir forms such as ClONO2 through reactions with nitrogen dioxide (NO2) 

[Waibel et al., 1999; Tabazadeh et al., 2000]. The amount of NO2 can be reduced via 

conversion of NO2 into HNO3 catalyzed by aerosol surfaces. The reduction will be 

permanent due to the removal of the HNO3 from the atmosphere by sedimenting PSCs 

particles. It results in a delay on the deactivation of chlorine compounds, and prolongs the 

polar ozone depletion in the stratosphere [Solomon 1999; Waibel et al., 1999; Tabazadeh et 

al., 2000].  
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Based on observations from three FTSs, the ratios of [O3]/[HF] generally decreased during 

the 2006 campaign. The DA8 FTS, the only FTS providing results throughout the entire 

campaign, gave a value at the end of the campaign that was about 70% of the value at the 

beginning (Figure 6.8). This is mainly due to the combined effects of chlorine activation and 

denitrification, which results in the chemical removal of ozone in the Arctic atmosphere 

[Solomon 1999; Toon et al., 1999; Mellqvist et al., 2002]. Despite wavelike variations, the 

total amount of ozone also decreased by about 10% during the campaign, according to the 

observations of the DA8 FTS (Figure 6.4), with 1.201 × 1019 molecules/cm2 on February 

24th, 2006 and 1.087 × 1019 molecules/cm2 on March 30th, 2006. In addition, the ozonesondes 

(a balloon instrument that measures ozone in situ) also reported a decrease of about 15% in 

the total amount of ozone near Eureka. According the ozonesonde measurements, the total 

vertical column of ozone was about 461 DU (1.240 × 1019 molecules/cm2) on February 24th, 

2006 and 391 DU (1.051 × 1019 molecules/cm2) on March 29th, 2006. The decrease in total 

ozone column is less severe than the partial column of [O3]/[HF], suggesting that dynamical 

effects may have mitigated the chemical loss, especially in the lower stratosphere and the 

troposphere where the Arctic vortex was the ill-defined [Manney et al., 2007]. In a weak 

Arctic vortex the air is not isolated, and horizontal meridional transport might bring air 

masses richer in O3 than HF from lower latitudes to the Arctic [Toon et al., 1999].    

 

6.6 Summary and Conclusions 

The 2006 Canadian Arctic ACE Validation Campaign made measurements for the ACE 

satellite mission at PEARL, Eureka from February 17th to March 31st in 2006. The DA8 FTS 

and PARIS-IR observations were performed simultaneously so that instrument performance 

could be compared directly. The solar beam was shared between the two FTSs, and spectral 

co-additions were performed over the same time intervals to ensure simultaneity. From these 

spectra, vertical total columns and partial columns of O3, ClONO2, HCl, HNO3, NO, NO2, 

and HF were retrieved using the SFIT2 (version 3.91) program. The mean differences in 

vertical total columns of O3, HNO3, NO2, HCl, HF, and ClONO2 from the observations 
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between PARIS-IR and the DA8 FTS are 2.84%, -1.94%, -0.08%, -3.22%, -1.45% and -

4.28%, respectively. These differences can be attributed to the non-linearity of the detectors, 

zero levels of the observed spectra, and instrumental line shapes, together with the different 

spectral resolutions. Other factors have been removed by using the same analysis program, 

spectroscopic parameters, spectral regions, and a priori information to analyze the spectra 

recorded by PARIS-IR and the DA8 FTS.  

The ground-based observations using the DA8 FTS and PARIS-IR were used to validate 

the observed version 2.2 results of the ACE-FTS. The results from PARIS-IR agree better 

with the ACE-FTS than those the DA8 FTS for all of the investigated species. This has been 

attributed to the better coincidence with the ACE-FTS observations, and the ground-based 

measurements are within 4% of partial column ratios. The differences can be explained by 

the heterogeneity of the Arctic atmosphere and temporal differences between the 

measurements.  

The results from three FTSs are utilized in probing the time evolution of chemical 

constituents in the atmosphere over Eureka in spring 2006. Chlorine activation was evident 

from the decrease in ClONO2 and HCl [von Clarmann et al., 1993; Oelhaf et al., 1994; 

Solomon 1999; Mellqvist et al., 2002], and denitrification from the decrease in the amount of 

HNO3 [Solomon 1999; Tabazadeh et al., 2000; Bernath 2001; Jin et al., 2006] was observed 

by ACE-FTS, PARIS-IR and the DA8 FTS. Ozone depletion during the 2006 campaign was 

caused by chemical removal inside the Arctic vortex over Eureka [Manney et al., 2007]. 
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Chapter 7 
Summary and Future Work  

This work has investigated the concentrations of O3, HNO3, NO2, NO, HCl, ClONO2, HF, 

COCl2, O2, CO2, CH4 retrieved from measurements by satellite-borne, balloon-borne or 

ground-based Fourier Transform Spectrometers (FTSs) in order to study several important 

atmospheric science topics such as ozone depletion and global warming. The results have 

been reported, have been submitted or will be submitted for publication in the scientific 

literature [Fu et al., 2007a; 2007b; 2007c; 2007d]. 

Chapter 1 presented an overview of the observations carried out using FTSs and the basic 

principles used in the retrieval of concentrations of atmospheric gases from spectra with a 

focus on ground-based observations. The characteristic features of three types of platforms 

(satellite-based, balloon-borne, ground-based), four types of viewing geometries (solar 

occultation, nadir viewing, glint viewing, ground-based solar viewing), six measurement sites 

(Waterloo, Kitt Peak, Eureka, Toronto, Kiruna, Vanscoy), and five FTSs used in the 

measurements are introduced in Chapter 2.  

Chapter 3 presented the first study of the global distribution of atmospheric phosgene and 

discussed reasons for the observed distribution pattern. The study was carried out using solar 

occultation measurements from a total of 5614 measured profiles from the satellite-borne 

Atmospheric Chemistry Experiment FTS (ACE-FTS) spanning the period February 2004 

through May 2006. In addition, comparisons between observations from the ACE mission 

and previous measurements made in 1980s and 1990s were carried out. The phosgene 

concentrations measured by the ACE-FTS display a zonally symmetric pattern with the 

maximum concentration located approximately over the equator, at about 25 km in altitude, 

and decreasing towards the poles. A layer of enhanced concentration of phosgene spans the 

lower stratosphere at all latitudes, with volume mixing ratios of 20 to 60 pptv. The 

distribution pattern of atmospheric phosgene has been attributed to the insolation, the lifetime 
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of phosgene and the Brewer-Dobson circulation. The observations from ACE-FTS show 

lower phosgene concentrations than were obtained from previous observations in the 1980s 

and 1990s.  This is due to a significant decrease in the chlorinated hydrocarbon source 

species. Discrepancies in the results between current model predictions and observations 

made by ACE-FTS and the JPL MkIV spectrometer were noted. Improvements in chemical 

transport model calculations are needed to improve our understanding of the evolution of 

atmospheric phosgene.  

Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR) 

is a copy of the ACE-FTS that was designed for ground-based and balloon-borne 

measurements. Chapter 4 presented the PARIS-IR configuration used for its first balloon 

flight as a part of the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 2004 

balloon payload. Useful engineering information, detailing the thermal performance of the 

instrument during the flight, was obtained from this balloon campaign. As part of the 

MANTRA 2004 program, a ground-based inter-instrument comparison campaign was carried 

out with the goals of assessing instrument performance, and evaluating data processing 

routines and retrieval codes. Based on the results from the inter-comparison campaign, 

PARIS-IR provides measurements of similar quality for stratospheric species as obtained 

from the University of Toronto FTS. For future balloon flights, a new solar tracker system 

must be built for PARIS-IR. The new tracker system must be able to direct sunlight into the 

PARIS-IR instrument independently without input from the balloon payload pointing system. 

To verify the performance of this new tracker system, sufficient pre-flight tests are 

recommended.  

The goals of Chapter 5 were to investigate the suitable spectral resolution, spectral ranges, 

spectroscopic parameters and the optical components for a possible future satellite mission 

called Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS). The CC-FTS 

mission will improve our understanding of the sources and sinks of greenhouse gases in the 

Earth’s atmosphere by monitoring total and partial columns of CO2, CH4, N2O, and CO in the 

near infrared. The molecular O2 column density will also be measured to obtain the effective 
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optical path of each measurement and will be used to normalize the column densities of the 

other gases. To achieve these goals, ground-based Fourier transform spectra recorded at 

Kiruna, Kitt Peak, and Waterloo were used in the investigations. Dry air volume mixing 

ratios of CO2 and CH4 were retrieved from ground-based observations. Based on these results, 

a Fourier transform spectrometer with a spectral resolution of 0.1 cm-1, operating between 

2000 and 15000 cm-1, is suggested as the primary instrument for the mission. Deficiencies in 

the spectroscopic parameters of the investigated greenhouse gases were noted during this 

study. Recently, Devi et al. [2007] made improvements in the CO2 spectroscopic parameters 

for the 6348 cm-1 band by considering line mixing and by using speed-dependent Voigt line 

shape functions. By improving the spectroscopic parameters (as was done in the work by 

Devi et al. [2007]), it is possible to obtain precisions of ~0.3 % in remote sensing 

measurements of CO2. New laboratory measurements to improve the spectroscopic line 

parameters are required to improve the atmospheric retrievals for CH4, O2 and CO2 (in 

spectral regions other than 6348 cm-1 band).  

Chapter 6 presented atmospheric observations made with PARIS-IR, ACE-FTS and the 

Eureka DA8 FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) 

from from February 17th to March 31st, 2006 during the 2006 Canadian Arctic ACE 

Validation Campaign. Mean differences in vertical total columns of O3, HNO3, NO2, HCl, 

HF, and ClONO2 obtained from PARIS-IR and DA8 FTS measurements are 2.84%, -1.94%, 

-0.08%, -3.22%, -1.45% and -4.28%, respectively. For all of the species investigated, the 

results from PARIS-IR agreed better with the ACE-FTS than did those from the DA8 FTS. 

Chorine activation and denitrification in the Arctic atmosphere were observed by the three 

FTSs in the extremely cold stratosphere near Eureka, Nunavut, Canada. The observed ozone 

depletion during the 2006 campaign was attributed to chemical removal. In summer 2006, a 

new Bruker 125 FTS was installed at PEARL. It was used record Arctic atmospheric spectra 

simultaneously with PARIS-IR and DA8 FTS during the 2007 Canadian Arctic ACE 

Validation Campaign. A study is under way to investigate the differences in the retrieved 
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columns from these three ground-based FTSs in order to evaluate the performance of the 

newly installed instrument. 
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