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Abstract

In recent years, there has been a growing interest in the application of quasi-Monte
Carlo methods in finance and actuarial science. A common application of the Monte
Carlo method is in the evaluation of multi-dimensional integrals. Quasi-Monte
Carlo uses specially selected deterministic sequences rather than random sequences
as in Monte Carlo. These special sequences are known as low discrepancy sequences
and have the property that they tend to be evenly dispersed throughout the unit
cube. For many applications in finance, the use of low discrepancy sequences seems
to provide more accurate answer than random sequences. Nevertheless there are
several drawbacks of this method. First, there is no simple criterion to assess the
accuracy of the estimates in applications of this technique. Second, the integrand
should have certain smoothness properties. This can be a restrictive condition in
some situations. Third, any additional smoothness of the integrands is not reflected
in the the error bound of the quasi-Monte Carlo method. In this thesis, we address
these issues and examine ways of overcoming these problems so that the efficiency

of the quasi-Monte Carlo method can be enhanced.
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Chapter 1

Overview

The Monte Carlo simulation method is a powerful and flexible approach for pro-
viding numerical solutions to a large class of complex problems. In recent years.
the Monte Carlo approach has been extensively used in the finance and investment
area. Initially, the applications were mainly concerned with calculations related to
the pricing of complex financial instruments and the computation of related hedg-
ing parameters. Examples of such instruments are mortgage-backed securities and
various complex exotic options. More recently, Monte Carlo methods have been
used to estimate the distribution of returns of entire portfolios. Applications in-
clude the calculation of credit risk and market risk and value at risk computations.
Boyle, Broadie and Glasserman [10] provide a recent survey of the applications of
Monte Carlo methods to financial calculations.

We now discuss briefly why the Monte Carlo method is useful in the investment
and finance area. In modern financial economics, security prices are modelled as

stochastic processes to reflect future uncertainty. The current price of a security
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can be represented as the expected value of the future payouts on the security. This
follows from the assumption of no-arbitrage. The expectation is taken with respect
to a probability measure that is induced by the current price system. Under a
suitable normalization, the revised prices become martingales under this probability
measure. Hence this probability measure is often called the equivalent martingale
measure. If a complex financial instrument has a payout that depends on the
prices of several underlying securities or a payout that depends on the price path of
an existing security, then its price can be written as a multi-dimensional integral.
There are many different types of financial instruments of this nature. In some
cases, the number of dimensions is quite large; for example, under mortgage-backed
securities, the number of dimensions is as high as 360.

For high dimensional problems, the Monte Carlo method has strong advantages
over alternative numerical integration schemes. The rate of convergence for the
Monte Carlo method is O(/N~!/?) which is independent of the dimension. This is in
contrast to most quadrature methods which suffer from the “curse of dimensional-
ity” with a convergence rate of O(N~2/*). One disadvantage of the standard Monte
Carlo method is that in some cases, notably for large scale problems, the rate of
convergence is very slow. Different methods of speeding up the convergence have
been proposed. These techniques are known as variance reduction techniques. Re-
cently, so-called quasi-Monte Carlo methods or the low discrepancy (LD) methods
have been used in finance applications. These methods rely on the use of specially
selected deterministic sequences instead of random sequences. These deterministic

sequences have the property that they are well dispersed throughout the unit cube
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and are known as (LD) low discrepancy sequences. The monograph by Niederre-
iter [68] provides an excellent discussion of these sequences. Applications of low
discrepancy sequences to finance problems are discussed by Acworth, Broadie and
Glasserman [1], Boyle, Broadie and Glasserman {10}, Caflisch, Morokoff and Owen
[16], Galanti and Jung [27], Joy, Boyle and Tan [46], Ninomiya and Tezuka (72]
and Paskov and Traub [80]. There are differences in the relative efficiency of LD
methods versus standard Monte Carlo for the typical finance problems and for other
more general applications. In the case of finance problems, the LD methods appear
to outperform standard Monte Carlo for some high dimensional problems. For ex-
ample, in mortgage-backed security applications with dimensions as high as 360,
Paskov and Traub [80] report good results using Sobol’ sequences while Ninomiya
and Tezuka [72] conclude that generalized Niederreiter sequences are superior. For
more general non-finance integrals — which can be non smooth or highly periodic
— the superiority of low discrepancy algorithms vanishes for dimensions around
30 or even lower. For a comparison of the two approaches in the case of more
general integrands see Bratley, Fox and Niederreiter [14] and Morokoff and Caflisch
(59, 60]. The advantages of LD methods for finance applications appears to stem
from the smoothness of the integrand in many applications and the fact that the
effective dimension in finance applications is sometimes lower than the actual di-
mension. However, it is not always the case that the classical LD methods dominate
standard Monte Carlo for finance applications. The relative effectiveness depends
on several factors including the nature of the integrand and the properties of the

sequence used to evaluate it.
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It is worth noting that many of the techniques introduced in this thesis can
also be applied to problems in actuarial science. Indeed, one of the most popular
insurance contracts in the United States is the so-called equity-indexed annuity
(EIA) which can contain different types of exotic options. For example, the contract
could include a minimum guaranteed amount plus a variable payoff based on the
performance of a stock market index during the life time of the contract. These
EIAs feature a whole range of exotic options such as lookback options (high-water
mark), cliquet options and Asian options. The methods introduced in this thesis
provide an attractive alternative to the standard Monte Carlo approaches that are
often employed to value these contracts.

We now provide a brief summary of the chapters in this thesis. Chapter 2
provides a brief overview of the Monte Carlo and LD methods. Since the notion of
discrepancy plays a crucial role in characterizing the uniformity of the sequences as
well as the error bound of the LD methods, we provide a more detailed discussion.

In Chapter 3, we introduce different types of low discrepancy point sets and low
discrepancy sequence. The notion of elementary intervals, (¢,m, s)-nets and (¢.s)-
sequences play an important role in low discrepancy point sets and low discrepancy
sequence. These concepts are abstract and sometimes difficult to understand. In
Section 3.3, we use a graphical representation to describe various important prop-
erties of elementary intervals, (t,m, s)-nets and (£, s)-sequences. We also generalize
the conventional elementary intervals, (¢,m, s)-nets and (t, s)-sequences which al-
lows variable bases in defining the point sets and sequences. This is in contrast to

conventional (¢,m, s)-nets and (¢, s)-sequences which confine to a common base.
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In Chapter 4, we examine the two-dimensional orthogonal projections of the low
discrepancy sequences. We find that undesirable pattern occurs even in the first
two dimensions of a non-telescopic sequence while a similar pattern is observed in
higher dimensions for telescopic sequence.’

Until recently a major drawback of the classical LD approach has been the ab-
sence of a reliable practical error bound. Even though there exists a deterministic
upper bound based on Koksma-Hlawka inequality, this theoretical bound signifi-
cantly overestimates the actual error. This is in contrast to the crude Monte Carlo
method for which the accuracy of the estimate can be assessed by constructing the
confidence limits.

In Section 4.3, we describe a technique developed by Owen [74] which provides
a probabilistic error bound for the quasi-Monte Carlo method by randomizing the
points while preserving the low discrepancy property. By replicating this procedure.
we obtain several independent estimates for the integral of interest and thus pro-
vide an estimate of the standard error. From this we can derive probabilistic error
bounds and overcome one of the main disadvantages of the classical quasi-Monte
Carlo approach. Owen’s original method, however, is computationally infeasible
when the dimension is greater than 10. Consequently, we propose a partial random-
ization technique based on Owen’s method. The proposed partial randomization
technique has the advantage of computational feasibility in high dimensions. We
investigate the effectiveness of this approach and provide numerical illustrations

which compare it to Owen’s approach in the case of low-dimensional problems. We

1For definition on telescopic and non-telescopic sequences, see Section 3.6 of Chapter 3.
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also apply the proposed sequences to high-dimensional option problems and con-
clude that substantial variance reduction can be achieved even when compared to
Monte Carlo methods using antithetic variable technique.

In Chapter 5, we examine the impact of the discontinuity in LD methods. Ex-
amples which contain discontinuity include integrating a characteristic function or
the decision to accept or reject in an acceptance-rejection algorithm. Unless the
boundary of the set which defines the discontinuity is parallel to the coordinate
axes, the variation of the function is infinite. While the unbounded variation does
not affect the conventional convergence rate of Monte Carlo methods, it has an
adverse effect on the efficiency of the low discrepancy sequences. This also follows
from the Koksma-Hlawka inequality which leads to an infinite error bound in these
situations. In this chapter, we discuss methods of dealing with discontinuities when
using LD methods. We provide a general framework for avoiding the discontinuity
by smoothing the integrands. This method is inspired by the smoothing technique
proposed by Moskowitz and Caflisch [61]. Our empirical studies indicate the su-
periority of our generalization over Moskowitz and Caflisch’s smoothing technique.
The generalized technique also has the advantage that the resulting estimate is
unbiased, in contrast to Moskowitz and Caflisch’s method which is biased.

In this chapter, we consider functions which have additional smoothness than
that required by the Koksma-Hlawka error bound. It follows from the Koksma-
Hlawka inequality that any additional regularity of the integrand is not reflected in
the magnitude of the error bound. This is in contrast to classical one-dimensional

integration rules, such as the Gaussian formulas, are designed to exploit the par-
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ticular regularity class of the integrand to achieve a higher rate of convergence. In
Chapter 6, we discuss another family of numerical quadrature formulas known as
method of good lattice points. This method is designed to handle periodic functions
and achieves a rate of convergence of order O(N~*log® N), where the constant
a > 0 depends on the smoothness class of the function while 3 > C depends on
the dimension. For certain values of a and @, this rate compares favourably to
the rate O(N ~'log*~! N) attained by LD methods with fixed point set. We apply
these lattice rules to low-dimensional financial instruments such as the spread op-
tions, generalized rainbow options, lookback options and Asian options. We find
that this method yields an extremely high level of precision even for a relatively
small number of integration nodes. This method also compares favourably to other
methods.

In Chapter 7, we consider a specific application of the low discrepancy sequences.
In particular, we propose an efficient technique for simulating through trees. The
need to simulate through trees arises in situation when the values of a derivative
security is path-dependent or when the tree is not recombining. In this chapter, we
describe how to combine the simulation technique with low discrepancy sequences.
We also establish condition under which simulating through tree using low discrep-
ancy sequences leads to the same exact discrete pricing as the backward induction
method provided we use the correct number of points. This requires an additional
uniformity in the conventional low discrepancy sequences. The numerical exam-
ples conducted also indicate that the resulting refined low discrepancy sequences

perform better than conventional low discrepancy sequences.
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Koksma-Hlawka Inequality

|Integration Error| < (Variation) x (Uniformity)

[(Quasi-Monte Carlo))

AN
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T . .
rees @ermmatlon Crltewﬁm
4
Chapter 4
Chapter 7 P

A\
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Figure 1.1: Flow Chart of the Chapters
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To summarize, Figure 1.1 provides a “flow chart” for the last four chapters.
Essentially, Chapters 4. 5 and 6 identify some of the disadvantages using LD meth-
ods and describe methods of overcoming these problems. These problems can be
analyzed in term of the error bound given by the classical Koksma-Hlawka inequal-
ity which states that the absolute integration error is bounded by a product of
two components. (See also Chapter 2.) These two components correspond to the
smoothness of the function and the uniformity of the deterministic points used in
approximating the function. Chapter 7, on the other hand. considers a specific
application using low discrepancy sequences for simulating through trees.

In the last chapter of the thesis; i.e. Chapter 8, we provide a general guideline
for using the LD methods and list potential research topics that could be conducted

in near future.
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Chapter 2

Monte Carlo and Quasi-Monte
Carlo Methods

2.1 Introduction

This chapter lays out the background which is essential for the remainder of the
thesis. A key distinction between quasi-Monte Carlo and Monte Carlo methods
is that the former uses deterministic points while the latter uses random points.
Typically we have in mind the problem of evaluating a multidimensional integrals.
The sequence of points can be used as the integration nodes for evaluating such
high-dimensional integrals. It is well known that using a random sequence gives
rise to a rate of convergence @O(N~1/2). On the other hand, using a systematically
constructed sequence, which is more evenly distributed than a randomly generated
sequence, can result in a better rate of convergence. Section 2.2 provides a brief

introduction to the classical Monte Carlo methods with particular application to

11
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integration. The advantages and disadvantages of this method are discussed. The
motivation for using deterministic points is discussed in Section 2.3. Since the
notion of discrepancy plays a central role in analyzing these deterministic sequences
and in evaluating the performance of the quasi-Monte Carlo methods, an extensive

discussion of this concept is given in Section 2.4.

2.2 Monte Carlo Integration

Consider the problem of evaluating a multiple integral of the form

1 1 1
f(z)dz = / dz® / dz@ ... / dz® f(zM 2@z =64 (2.2.1)
[0,1)' 0 0 0

where z = (z(1),... ,z4)) ¢ [0,1)*. We also assume the function f is Riemann
integrable in [0,1)* and that [f] < co.

In many practical problems of interest, the function f is either too complicated
to evaluate or that the dimensionality of the problem, s, is too large to be handled
by either traditional methods such as the quadrature formula. One viable technique
is the Monte Carlo method.

The basic principle of Monte Carlo method is to use independent, uniformly
distributed random numbers in [0,1)* as the source of integration nodes to ap-
proximate 6. Suppose {z,} is a canonical random sequence such that {z,} are

independently and identically distributed in [0,1)’, the Monte Carlo estimate of 8
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is given by the average of f evaluated at the point {z,}. In other words,

N
Monte Carlo estimate (é) = ;n=_1Nﬁz_n) (2.2.2)

where N is the total number of random points. The strong law of large number
asserts that the Monte Carlo estimate based on (2.2.2) converges almost surely.’ It

also follows that the Monte Carlo estimate is unbiased: i.e.
E(6) = E(f) =6 (2.2.3)

and with variance

_ # (2.2.4)
where o%(f) is the variance of f defined by
2
(f)= | Ple)dz - ( f(:z:)dz) . (2.2.5)
[0.1)* (0.1)

Note that the Monte Carlo method still converges even if o?(f) is infinite. We

assume o%(f) < oo so that

l9. — g almost surely if {w € Q : ga(w) = g(w)} as n — oo is an event with probability 1.
In our context, if {®,} is a sequence of random vectors, the event that § does not tend to 6 as
N — oo has probability zero.
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An important feature Monte Carlo method is the probabilistic error bound. The
Central Limit Theorem guarantees that the distribution of é converges asymptoti-

cally to a normal distribution with mean 6 and variance o3 as N — oo. Therefore,

. co(f) 5 _ c20(f) -:2/2
Nh_rgoProb( \/N <8-6< \/_> \/2_7?/:1 dt

for any constants ¢, < ¢; and 0 < o(f) < oo. For this reason, it is more meaningful

to provide the confidence interval of the Monte Carlo estimate, rather than just
the point estimate 8 given by (2.2.2). For instance, the 95% confidence interval is

usually reported and is constructed as follows:

[9—196‘:% 6 +1.96 \;Jziv)] (2.2.6)

where

1 %
\/?/ e_t /2 dt = 0.95
T J-1.96

and o(f) is the standard deviation of the function f (as given by (2.2.5)). In

practice, o(f) is often estimated using the following consistent estimator

o o (F(a) — 6)
a(f)~\/ ]

The interval constructed according to (2.2.6) can be interpreted that with 95%

confident the true value 8 lies in this range. The precision of the Monte Carlo

estimate depends on how narrow this interval is. The tighter the interval, the
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better the Monte Carlo estimate. There are two ways of improving the accuracy of

the standard Monte Carlo estimate:
1. reducing the sampling variance, 62(f), or

2. increasing the number of trials, N.

The techniques used to improve the efficiency of the Monte Carlo estimate by reduc-
ing the variability of the underlying function are referred to as vaeriance reduction
techniques. Examples of variance reduction techniques include the control variate
technique, the antithetic variable method, stratified sampling and importance sam-
pling. An alternative to variance reduction techniques is to resort to the brute force
approach by increasing the number of simulations until a desired level of accuracy
is reached. This method, however, can be very expensive and time-consuming. To
improve the Monte Carlo estimate by 1/10 requires an increase in the number of
simulations by 100-fold. This follows from the rate of convergence of the Monte
Carlo method which is of order O(N~'/2). Nevertheless, one advantage of the Monte
Carlo method is that the rate of convergence is independent of the dimensions of
the problems. This is in contrast to most other techniques which usually suffer
from a phenomenon called the “curse of dimensionality”. The classical quadrature
method with an error bound of O(N~%/*) is an example. -

Despite these advantages, the Monte Carlo method does have several deficiencies
which hinder its usefulness. First is the probabilistic nature of the error estimate.
As discussed earlier, it is customary to report the confidence interval as opposed
to just the point estimate §. Due to the random fluctuation of the estimate, the

point estimate § by itself can be a bad estimate of the true value 6 even though
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the confidence interval constructed satisfies the statistical notion of the confidence
level. Furthermore, the constructed confidence interval does not completely rule
out the possibility that the true value may not lie in the interval, although such
event is less probable. In situations where high precision of the estimate is critical,
such as the sensitivity analysis, the probabilistic nature of the estimate becomes
undesirable.

Another fundamental difficulty with Monte Carlo method lies on the require-
ment that {z,} is a random sample that is independently and identically dis-
tributed. In fact, a truly random sequence does not exist. What is actually done
in practice is to use so-called pseudo-random sequences. Such a sequence has the
same relevant statistical properties as a random sequence and presumably will be-
have like a random sequence even though it is generated through a deterministic
algorithm. The success of any Monte Carlo calculation therefore crucially depends
on the “ability” of these sequences to “imitate” the true random sequence. When
a bad (and undetected) pseudo-random number generator is used, the resulting
Monte Carlo estimate becomes meaningless.

Although the theory concerning the construction and analysis of (pseudo-)random
number generators is well developed (see for example, Knuth [49] and L'Ecuyer
[57]), unreliable and dangerous generators still exist in the scientific literature and
on computer systems. The following quote from L’Ecuyer [57] indicates the poten-

tial danger in blindly relying on “black-box” (pseudo-)random number generators.

Many of the “default” [(pseudo-)random number] generators currently

offered in popular computer softwares, or suggested in some simulation
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teztbooks, are old ones, and are not competitive with those based on the
more recent theory. Much worse, many bad generators are still proposed

every year in (supposedly serious) journal articles.

Despite the fact that the rate of convergence does not depend on the dimension.
the Monte Carlo method is generally regarded as a time-consuming tool, with rate
of convergence O(N~/2). As pointed out earlier, variance reduction techniques can
be used in conjunction with the Monte Carlo method to enhance the efficiency of
the underlying method. The effectiveness of these variance reduction techniques
depends on how well they reduce the sampling variance component &%(f). Quasi-
Monte Carlo or the low discrepancy method is another approach that has been
proposed in the literature. This method potentially has a much better rate of
convergence than the Monte Carlo method. This thesis explores the application of

quasi-Monte Carlo methods to numerical problems in finance.

2.3 Motivation for Using Deterministic Points

Let us assume for simplicity that the problem of interest is in the evaluation of
one-dimensional integrals. Recall that Monte Carlo integration relying on points
that are randomly, independently and uniformly distributed in [0,1) can achieve
on average an absolute error of magnitude N~'/2. This implies that there must
exist a set of nodes for which the integration error is no larger than the average.
For instance, in the case of 1-dimensional problem, it is well known that we could
achieve a much better convergence rate using quadrature methods such as trape-

zoidal or midpoint rules. In contrast to pseudo-random points which try to imitate
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the randomness as closely as possible, quadrature methods seek derandomization.
Under the quadrature methods, the integration nodes are spread more evenly over
the integration domain [0, 1) than a typical random sample from a uniform distri-
bution. For example, if we were to use an evenly spaced grid points on [0, 1) such as
{%.%,..., %2}, the integration error is O(N~2), which is a drastic improvement
over the Monte Carlo method. The method just described is typically known as
the N-panel method (or midpoint rule).

The experience from the 1-dimensional problem suggests that among the basic
ingredients (randomness, independencies, and uniformity) of a random sequence,
the randomness and independencies seem to play a secondary role in Monte Carlo
integrations. A sequence with a better uniformity than a random sequence leads
to better rate of convergence. Generalizing this idea to high dimensions suggests
that using a sequence that is more uniformly distributed in [0,1)* than a random
sequence could lead to a better convergence rate. This indicates the essential feature
of the quasi-Monte Carlo or the low discrepancy method. The basic idea of the
quasi-Monte Carlo or the low discrepancy method is to replace the random sample
in a Monte Carlo method by carefully chosen deterministic points. The criteria for
the choice of deterministic points is such that the sequence in [0,1)* has a better
uniformity than a random sequence. To measure the uniformity we use the concept
of discrepancy which is the topic of the next section. The ultimate goal of quasi-
Monte Carlo or the low discrepancy method is to achieve an integration error that
is significantly smaller than that given by Monte Carlo method.

In view of the advantages of quasi-Monte Carlo method, it is interesting to
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compare it with the Monte Carlo method. The disadvantages of Monte Carlo
method was discussed in previous section. Since the underlying principle of quasi-
Monte Carlo method is to abandon the randomness and independencies and to
adopt completely deterministic nodes in a Monte Carlo calculation, the resulting
integration error is therefore deterministic, rather than probabilistic. Furthermore.
when the deterministic ncdes are well chosen, the quasi-Monte Carlo method yields
an error bound of O(N~!log* N) for an infinite sequence and O(N ~'log*™* N) for a
finite point set, assuming function f is sufficiently regular. These rates are superior
to the Monte Carlo rate of convergence for large N.

It was argued that another problem with the Monte Carlo method lies in the
random sample generation. It is difficult to generate a sequence that is a truly
representative of a random sequence since “randomness” is a statistical concept.
This difficulty, on the other hand, evaporates when a quasi-Monte Carlo method
is used. In the quasi-Monte Carlo method, there exists a precise construction

algorithm for generating the required nodes.

2.4 Discrepancy

This section describes the concept of discrepancy. For a more complete treatment

on this topic, we refer to Kuipers and Niederreiter [53] or Niederreiter [68].

Definition 2.1 (Discrepancy) Consider a s-dimensional sequence of N points

{z.} € [0,1)*. For any hyper-rectangular boz of the form J = [[i_, [u®,v®), with
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0 < u¥ < vl) < 1, the (local)discrepancy over J, Dn(J) is defined by

Dn(J) = —"%‘7) —v(J), (2.4.1)

where v(J) = [[i_, (v —ul?) is the volume of J and X(J) represents the number
of points of {€,} whose coordinates satisfy ul¥) < ¥ < v for 1 < i < s e

X(J) counts the number of points that belong to the hyper-rectangular boz J .

Figure 2.1 illustrates the concept of local discrepancy in two dimensions. Con-
sider a sequence of 10 elements € [0,1)%. Let (u(*),4(?) = (0.3,0.4) and (v, v®) =

(0.8,0.6) so that the rectangle 7 is of the form
J =[0.4,0.8) x [0.3,0.6)

with »(J) = 0.4 x 0.3 = 0.12. From the graph, we see that two points lie in

Vg = 0.6 |--eereeeremmenns ........

ty = 03 oo S

u; =04 v; =0.8

Figure 2.1: ILLUSTRATION OF LOCAL DISCREPANCY
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rectangle 7. Hence, the local discrepancy over J can be computed as

D]_O(J) = 1% - 012 = 0.08 .

By taking different norm of Dy(J) over [0,1)*, we obtain different discrep-
ancy measures such as the extreme, the star and the mean square discrepancies.
In general, these measures give a global measure of uniformity of the sequence.
More importantly, these discrepancies play an important role in the error bounds
for quasi-Monte Carlo integration. We will discuss this in greater detail in Subsec-

tion 2.4.1. We now describe some of the more important types of discrepancies.

Definition 2.2 (Extreme Discrepancy) The Lo, norm (extreme discrepancy)

of a finite sequence {z,} is defined as
Dy = sup |Dn(J)] (2.4.2)
Jeg

where the supremum is extended over all subintervals in [0,1)* of the form J =

[Tiz: [, 9], with 0 < ul <o < 1.

Definition 2.3 The L, norm is defined as

e {/ [DN(J(u,v))]zdudv}z (2.43)
(U,0)€[0,1)2%,uli) <ulé)

where J(u,v) € J.

If we impose an additional condition that u() = 0 for all j, then the counterpart

measures of discrepancy exist and are defined respectively as follows:
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Definition 2.4 (Star Discrepancy) The L, norm (star discrepancy) is de-

fined as
Dy = sup |Dn(J)] (2.4.4)
Jeg*

where J* is the family of the subintervals J such that the hyper-rectangle boz

contains a corner at 0.

Definition 2.5 (Mean Square) The L, norm (mean square) is defined as

Ty = {A'l)‘[DN(J(O,v))]zdv} (2.4.5)

where J(0,v) € J*.
A more general concept of discrepancy is suggested by Fang and Wang [23].

This can be described as follow:

Definition 2.6 Let F(z) be a cumulative density function in R® and {€,.1 <n <
N} be a set of points on R*. Then the F-discrepancy of the point set with respect
to F(z) is defined as

Dy = sup |Fy(z) — F(2)|,
TR

where Fy(x) is the empirical distribution of {Zn,1 < n < N}.
Note that D} is also the Kolmogorou-Smirnov statistic for the goodness of fit test of
F(z). When F(z) is the uniform distribution on [0, 1)*, the F-discrepancy becomes

the star discrepancy described above.
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The classical result in the theory of uniform distribution of sequences states
that an infinite sequence {z,} is uniformly distributed in [0,1)* if and only if
limy 00 Df = O (or equivalently limy_,c Dnv = 0). In other words, the extreme
and the star discrepancies measure the uniformity of a sequence. They can be
viewed as a quantitative measure for the deviation from the uniform distribution.
Sequences that have small discrepancy (see Equation (2.4.7)) are known as low
discrepancy sequence. The significance of the discrepancy will become clear when
we discuss the error bound for quasi-Monte Carlo integration in Subsection 2.4.1.
Before we introduce this result, let us consider various properties and relationships
among these discrepancy measures. The simplest such relationship is given by the

following proposition (see Niederreiter {68, Proposition 2.4}).

Proposition 2.1 For any finite sequence in [0, 1)*, we have the following relation-

ship between Dy, and Dy

D;, < Dy < 2°Dj.

The first inequality is trivial since J~ is a subset of J. The second inequality arises
from the fact that any sets in J can be expressed as a 2° sets in J~. Another trivial

relationships 1s

Ty < Dy,

which is obvious since L., norms are larger than L, norms. Additional relationships

between Dy and Ty was established in Niederreiter [68] while the relationship
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between T and Ty was discussed in Morokoff and Caflisch [59].
Since discrepancy measures the uniformity of a sequence and since the efficiency
of quasi-Monte Carlo method relies on the uniformity of the sequence, two questions

arise at this point.

1. Is it possible to construct sequences that have greater uniformity than the

random sequence ?

2. If such sequences exist, is it possible to construct an optimal point set in the

sense that it has the lowest possible discrepancy ?

It turns out that it is possible to construct a sequence that has a smaller discrepancy
than the random sequence. Using the law of iterated logarithms, the expectation of
a random sequence can be shown to be bounded by N~*/?(log log N)!/? (Chung [17]
or Kiefer [48]). An example of a sequence which has a better uniformity that the
random sequence is one-dimensional sequence with nodes given by the midpoint
rule; i.e. z, = 2571, In fact in one-dimensional sequence of N elements, the

points constructed according to the midpoint rule yields the lowest discrepancy, as

indicated by the following theorems:

Theorem 2.1 If0<z; <.--<zny <1, then

2n-1
T, oN |-

. 1
Dv=oy5+322%

Theorem 2.2 If0<z;, <---<zy <1, then

DN=%+1151?§5V(—1%_3")_1g.i£N(%_z")'
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Hammersley Pointsl

Figure 2.2: COMPARISON OF TwoO DIFFERENT POINT SETS

For proofs of the above theorems, see Niederreiter {68, p. 15]. Theorem 2.1 suggests
that for any 1-dimensional finite sequence of N points, the lowest possible star
discrepancy is attained by setting z, = 3’;,;‘, which coincides with the midpoint
rule.

It is tempting to generalize the equally spaced grid point to higher dimensions
based on the Cartesian product rule; i.e. N = M?*. Unfortunately, such a regu-
lar grid points (or the rectangular lattice) only work well in one dimension. To
understand why they fail to produce satisfactory results in high dimensions, it is
instructive to consider the following example where s = 2.2 The left panel of Fig-
ure 2.2 depicts a sample of N = 42 grid points, i.e. M = 4, while the right panel
gives 16 Hammersley points.> Suppose the function f(z), € [0,1)* under con-

sideration depends strongly on one of the variables. The rectangular lattice yields

2We follow the argument made in Sobol’ {95], see also Fox [26].

3A Hammersley sequence is an example of a low discrepancy point set. See Chapter 3.
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only 4 different values with each repeated 4 times. The Hammersley points, on the
other hand, produce 16 different values of either f(z,) or f(z:). If these points are
used to create scenarios in a solvency or cash-flow testing, the implication is that
we really obtain 4 different scenarios for the first set while 16 different scenarios for
the second set.

In general, when a function f(z), z € [0,1)°, depends strongly only on s’ < s
leading variables, the rectangular lattice results in only M ¢ = N*/4 different values.
Hence N — N*/* functional evaluations become redundant. The problem becomes
more significant when s’ <« s and as N increases.

The discrepancy of the rectangular lattice can be shown to be
Dy =(M+1)"' ~ N7

This order is better than the random sequence only when s = 1. The discrepancy
of the rectangular lattice becomes progressively large as s increases. This is also
the underlying reason that the quadrature methods do not perform well in high
dimensions.

Extensive research has been carried out to construct an optimum s-dimensional
sequence that has the lowest possible discrepancy. Unfortunately, even with s = 2,
such point set exists only for N < 6. For instance, with one point, the optimum
position of the point is ((v5 —1)/2, (V5 —1)/2) with D} = (v/5—1)/2. See White
[105] for the solution for N < 6. Other attempts have also been made to search for

a uniformly best sequence, see for example Aird and Rice [2] and Lambert [54].
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In discussing the discrepancy bound, it is important to make a distinction be-
tween a point set and a sequence. Informally, a point set consisting of N elements
€ [0,1)* is called a low discrepancy point set when D} is small. For low discrepancy
sequence, additional points can be introduced to the existing set of points while still
preserving low discrepancy. Informally, a low discrepancy sequence can be defined
as a sequence of elements € [0, 1)* for which D} is small for all ¥ > 1. Because of
the flexibility in the low discrepancy sequence, the discrepancy of a low discrepancy
sequence is higher than a low discrepancy point set. This is also reflected in the
discrepancy bound discussed below.

For a s-dimensional point set or sequence, it has been established that its dis-

crepancy must be no smaller than the famous Roth [87] lower bound which states

that
logle—1V/2 N
Dy > B’LN_ for a finite point set,
log’* N
Dy > B,gg-jv— for an infinite sequence,

where B, > 0 depends only on s.
Unfortunately, except in one dimension, it is not known if such lower bound is
attainable. Improvements to Roth lower bound has been suggested by Schmidt [90]

and Beck [5], but only restricted to cases with s = 2 and 3. It is widely believed
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that the lower bound of Roth can further be improved to

1 s—1

Dy > B:og_NN_ for a finite point set, (2.4.6)
l s

Dy > B:%N for an infinite sequence, (2.4.7)

where B’ > 0 depends only on s. Conjecture (2.4.6) is true for s = 1,2 but remains
open for s > 3. For s = 1, (2.4.6) follows immediately from Theorem 2.1 while for
s = 2, (2.4.6) was established by Schmidt [90]. Unfortunately, s = 1 is the only case
for which (2.4.7) is known. This result is again due to Schmidt [90]. Expository
accounts of this topic are given in Kuipers and Niederreiter [53].

Although (2.4.6) and (2.4.7) have not been proven in higher dimension, many
sequences have been constructed that attain the conjectured lower bound. For this
reason. it is customary to speak of low discrepancy sequences when such bounds

are achieved. We will discuss these sequences in later sections.

2.4.1 Error Bounds

The importance of discrepancy can be seen from the Koksma-Hlawka inequality.
The inequality states that the absolute error in approximating an integral by a series
of point evaluations is bounded by a product of two measures, the discrepancy of
the sequence and the variation of the integrand. In the l-dimensional case, the

Koksma inequality is stated as follows:
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Theorem 2.3 (Koksma Inequality) If f has bounded variation V(f) on [0,1),

then, for any N points {z,.} € [0,1), we have

N 1
%_ /0 f(w)du| < V(£)Dj.

where D}, is the star discrepancy of the sequence {z,,1 <n < N}.

The generalization of Koksma inequality to multidimensional case requires an ap-
propriate concept of bounded variation for functions of multiple variables. In par-

ticular, the one which is of interest to us is the Hardy-Krause variation, which is

defined as follows:

Definition 2.7 (Hardy-Krause Variation) For a function f(z) = f(z!).... .zl?))
on [0,1)* with s > 2, let us consider a partition P of [0,1)* which is composed of a
set of s finite sequences ugj). u(lj), .. ,uf,{‘), such that 0 = u((,j) < u(lj) <-...< ufiz =1
for 3 =1,....s. For such partition, define an operator Aj, j =1,...,s, by
Ajf(z™, ..., z=1 ) G+ gy =
T T BE S R ) R /0% O IR W PG R
fori=0,...,mj— 1. Then the variation of f on [0,1)* in the sense of Vital:
is defined by
mp—1 m,—1
Vi) =sup 3] e 30 1Anafus - ul)l, (2.4.8)

=0 1,=0
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where A, , denotes A, --- A, and the supremum is extended over all partitions P
of [0,1)°.

Now, for1 < k<sandl <7 < - <3 <8, let VN (fidy,... ,4x) denote
the Vitali variation of the function f restricted to the k-dimensional subspace such

that* (z1,....z,) z; =1 for j #1i1,... ,%. Then

Vi =D D, VB(frin. i)

k=1 1< << <o

is called the variation of f on [0,1)° in the sense of Hardy-Krause and f is

of bounded variation in the Hardy-Krause sense if V(f) is finite.

With this notion of variation, the Koksma inequality is generalized to the multidi-

mensional case as follows:

Theorem 2.4 (Koksma-Hlawka Inequality) For any sequence of N points {zn}

in [0,1)* and any function f of bounded variation in the sense of Hardy-Krause,

then we have

N ]
= T, . . - .
Z_,%_) - flaydu| <> D" VO(friy,. i) Dyl - i)
(0.1)* k=1 1<) <<y <38
(2.4.9)
where Dy (%1,... ,ik) denotes the star discrepancy of the orthogonal projection of

the sequence {z,} on to the appropriate k-dimensional subspace of [0,1)*. Since

D3 > D3 (31, .- ytk) for k < s and together with the definition of vartation of f in

tFor ezample, if f is a &-dimensional function, then V©)(f;1,3,4) would imply
V(s)f(zh lv I3, T4, 1)'
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the sense of Hardy-Krause, inequality (2.4.9) can also be writien as

N
FﬂNM — [ fwdu| < V(f)D;. (2.4.10)

[0.1)*

Note that when f is sufficiently smooth® on [0,1)?, the Vitali variation (2.4.8) of f

on [0,1)* can be expressed more compactly as

ven=f

and V®I(fi4).... i) as

o' f

—_aul v du (2.4.11)

__of dug, s,
Bu,-l v a'u."k

uj=1,j#5 ik

VE(fidy, ... ,ik)=/

o.1)*

Theorem 2.4 was proved by Koksma [50] while the generalization to multidimen-
sional case was proved by Hlawka [38]. The proof of these two theorems can also be
found in Kuipers and Niederreiter [53], Hua and Wang [41] and Niederreiter [68].
One important distinction between the error bound given by Koksma-Hlawka
inequality and error bound given by Monte Carlo method is that the former is
deterministic while the latter is probabilistic. Furthermore, the Koksma-Hlawka
bound is only asymptotic in nature. The empirical observation indicates that the
number of points required for the asymptotic behavior to begin to operate grows
exponentially with the dimensions (see Morokoff and Caflisch [59]). In practice,

only a relatively small sample of points will ever be used. The bounds implied by

5The function f is sufficiently smooth on [0,1)* in the sense that the partial derivatives in
(2.4.11) exist.
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Koksma-Hlawka inequality, as a result, may not be representative of the true errors.
In addition, the bounds given by (2.4.10) is not sharp.

Despite the difficulties pertaining to the Koksma-Hlawka bound, this inequal-
ity does provide a theoretical justification for the application of low discrepancy

sequences to Monte Carlo methods. Several important insights can be gleaned.

e The Koksma-Hlawka inequality effectively separates the integration error into
two components: these correspond to the smoothness of the function and the

discrepancy of the deterministic nodes used in approximating the function.

¢ The inequality also implies that for a fixed function, sequences with lower
discrepancy should lead to lower integration error. Since the asymptotic dis-
crepancy for a finite sequence of N random points, N grid points and N low
discrepancy points are O((loglog N)/2N-'/2), O(N-'/*) and O(N~!log’ N)
respectively, the Koksma-Hlawka inequality implies that the deterministic er-
ror bound of these 3 methods are also of the same order as their asymptotic
discrepancy. This suggests that for large N and high dimension, the low
discrepancy method is the most effective while the grid point method is the

least.

o The factor log’ N in the discrepancy bound of the low discrepancy sequence
becomes dominant for high dimensions, suggesting that the efficiency of the
low discrepancy sequence deteriorates with dimensions. This is consistent

with the computational results shown in later chapters.
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e So far much attention has been devoted to the nature of the sequence used
in approximating the function, not much has been discussed regarding the
function itself. For the inequality to hold, the function must be reasonably
smooth and continuous. Discontinuous functions generally violate the hy-
pothesis of bounded variation and hence adversely affect the efficiency of the

low discrepancy methods. We will explore this issue in Chapter 5.
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Chapter 3

Low Discrepancy Sequences

3.1 Introduction

The purpose of this chapter is to introduce different types of low discrepancy point
sets or low discrepancy sequences. Most of these point sets or sequences will be
used in the computational studies in subsequent chapters. To have a better un-
derstanding of these point sets or sequences, we provide a simple and intuitive
approach using diagrams to illustrate various properties of an important class of
low discrepancy point sets and low discrepancy sequences known as (¢,m, s)-nets
and (¢, s)-sequences. Many of the popular low discrepancy point sets or low dis-
crepancy sequences can be considered as special cases of the (¢, m, s)-nets and (¢, s)-
sequences. We also generalize the conventional (¢, m, s)-nets and (Z, s)-sequences so
that the generalized class encompasses a broader family of low discrepancy point
sets or low discrepancy sequences. For instance, the low discrepancy sequence con-

structed by Halton [32] belongs to the generalized class while it does not belong to

35
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the conventional (¢, s)-sequence.

The rest of the chapter is organized as follows: Section 3.2 introduces various
types of low discrepancy point sets and low discrepancy sequences. Section 3.3
describes (t,m, s)-nets and (¢, s)-sequences and their generalizations. Good lattice
point sets and good point sequences are discussed in Sections 3.4 and 3.5. Sec-
tion 3.6 concludes the chapter by pointing out the difference between a telescopic

and a non-telescopic sequence (point set).

3.2 Low Discrepancy Sequences

In this section we briefly describe a few popular low discrepancy sequences. It is
widely believed that the discrepancy of any sequence is bounded by the following

conjecture lower bound:

log* N log” ' N
N> Ci—— —_ 2.1

where C, is constant in N but is sequence-dependent and dimension-dependent.
Sequences that attain such lower bound is customary known as low discrepancy
sequences. Explicit algorithms for constructing these sequences are given by van
der Corput, Halton [32], Sobol’ [93], Faure [24], Niederreiter [65], Tezuka [101],
and Lapeyre-Pagés [78]. Efficient algorithms for generating van der Corput or
Halton sequences can be found in Halton and Smith [33], Schatte [89] and Lécot
[56]. Implementations of the Faure, Halton, Sobol’, and Niederreiter sequences

in Fortran programming language are available in Fox [26], Bratley and Fox [13],
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Bratley and Fox and Niederreiter {14, 15] and Sobol’, Turchaninov and Shukhman
(96].
For our purpose, we find it convenient to express the generation of the low

discrepancy sequences using the following matrix notation. For arbitrary large R,

we define

[ G Gir ‘" GlR-1 - [ ao(n) . - Qo - [ Gni1 -
C: = Ci2o0 GCi21 *** GCi2R-1 A= ai(n) - a Q.= Gni2

| GRo GiR1 ! GRR-1 | i ar(n) j | ¢R | | 9niR |

where the matrix C; is known as the generation matrix for the ¢-th component
of the low discrepancy sequences and the vector A, is the base b representation

corresponding to the integer n; i.e.
n=ag+ab+---+ap_ b l= (ap-18R-2 - @0)s (3.2.2)
and Q,; is the vector obtained from matrix multiplication C;A,. Hence we have

Q.; = CiAn. (3.2.3)

The matrix multiplication and addition is assumed to be carried out over the field

F;. Each component of £, = (Zn1, --. ,Zns) is generated from the vector Q,; as
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follows:

(@ni1@niz * = * GniR )b

Lni — bR

Many of the low discrepancy sequences have the above representation. For instance.
if the generation matrix is chosen to be

1 forj—r=1,
Cijr = (3.2.4)

0 otherwise,
so that C; is an identity matrix for 1 < ¢ < s, we obtain the famous van der Corput

in base b when s = 1 and any prime base b. If

0 for0<r<j-1.

Cijr = . (3.2.5)
’ (J_:l)(i—l)'_"’*'1 forr>j-1,

so that C; = P*"', 1 < i < s, where P is the Pascal matrix, we obtain the Faure
sequence when b is chosen to be the smallest prime base > s. Other choices of
the generation matrices are possible. Niederreiter [65] provides a general construc-
tion principle for obtaining the generation matrix that yields sequences with small
discrepancy.

The advantage of expressing the generation method as described above is that
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efficient algorithm exists for such representation. When b = 2, we have a “super-
fast” algorithm suggested by Antonov and Saleev [3] which exploits the combi-
natoric structure of the Gray code [30]. When b # 2, we also have an efficient
algorithm based on a generalization of the Gray code. This is described in Tezuka
[101].

3.3 (t,m,s)-Nets and (¢, s)-Sequences in Base b

This section discusses the theory related to (. m, s)-nets and (¢, s)-sequences which
is first introduced by Sobol’ [93] and later formalized by Niederreiter [65]. The
(¢t,m, s)-net and (¢, s)-sequence form a general class of low discrepancy sequences
in which many of the popular low discrepancy sequences can be considered as special
cases. Because of the strict combinatorial property imposed by the net, sequence

satisfies the notion of net is guaranteed to have low discrepancy.

Definition 3.1 (Elementary Interval) An elementary interval in base b is
an interval E in [0,1)° of the form

E=H[l;‘7“_b}1.)

=1
with d; > 0,0 < a; < b% and a;,d; are integers.

An elementary interval E is thus a subinterval of the unit-cube [0, 1)* whose i-th axis
has length 1/b%. When we divide the i-th axis into 6% equal slices and repeat the
division for other axes, the subinterval obtained is the elementary interval having

volume b~ Zi=1di
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Definition 3.2 Let 0 < t < m be integers. A (t,m,s)-net in base b is a finite
point set with b™ points from [0,1)* such that every elementary interval in base b

of volume b*~™ contains ezactly b* points of the sequence.

Definition 3.3 An infinite sequence of points {z,} € [0,1)* is a (¢, s)-sequence in
base b if for all k > 0 and m > t, the finite sequence Tipm, ..., T(ky1)pm-1 forms a

(t,m, 8)-net in base b.
Another definition of the nets introduced by Owen [75] is as follows:

Definition 3.4 Let s.m.t, b, A be integers with s > 1.m > 0,0 <t < m,b > 2,
and 1 < A < b. A sequence {z,} of A\b™ points is called a (A, t,m,s)-net in base
b if every elementary interval in base b of volume b*~™ contains Ab* points of the

sequence and no elementary interval in base b of volume b*~™"! contains more than

b* points of the sequence.

From the above definitions. it is easy to see that a (¢,m.s)-net in base b is a
(1.t,m, s)-net in base b. Also if {z,} is a (¢, s)-sequence in base b, then Z;pm+1, ... .
Tipm+ipapmoy 15 @ (A, £, ™, 8)-net in base b for integers £ > 0 and 1 < A < b.

The importance of the net can also be seen from the following theorem which
asserts that if a sequence satisfies a (¢, s)-sequence in base b, low discrepancy is

ensured.

Theorem 3.1 For any N > 2, the discrepancy of the first N points of a (¢, 3)-

sequence in base b satisfies

Dy < cit,s,0) 08N L o (

L b(log N)"‘)

7 (3.3.1)
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where

B b-1)
Cle.s,b) =7 (210g b)

if either s =2 or b = 2,8 = 3,4, otherunse

B b=1 (15/2]\"
Clt.s.8)= 5 30672] (1ogb)‘

Sobol’ {93] describes how to construct (t,m, s)-nets and (t. s)-sequences in base
2. Faure [24] provides a construction of the (0,m,s)-net and (0, s)-sequence in a
prime base greater than or equal to s. Niederreiter [65] generalizes the construction
of the Sobol’ sequence to arbitrary bases and the Faure sequence to bases that are
of prime power greater than or equal to s.

For the remainder of this subsection, we illustrate graphically how the uniformity
of a sequence is maintained when the sequence satisfies the net property. We use
the construction due to Faure [24] to generate the (0, s)-sequences in base b. For
simplicity, we only consider the (0, 2)-sequence so that the points can be plotted on
a graph and hence the distribution of the points in [0, 1)? can be seen. By definition,

the finite subsequence
ZTppm, - - s T(k+1)b™m -1 (332)

of a (0,s)-sequence is a (0,m,2)-net in base 2 for all ¥ > 0 and m > 0. More
specifically, let consider £k = 8 and m = 3 in sequence (3.3.2). The resulting

sequence is therefore a (0, 3,2)-net in base 2 with 2% = 8 elements. It follows from



CHAPTER 3. LOW DISCREPANCY SEQUENCES 42

Definition 3.2 that every elementary interval in base 2 (or rectangle in this case)
with area 272 contains only one point of this subsequence. The rectangles of interest

are of the form

a; a;+1 az az+1
[271’ 24 )x [27 24 ) (333

in [0, 1)? with integers a;,d; such that d; > 0 and 0 < a; < 2% for i = 1,2. Another
constraint on d; and d; can be derived by recognizing that for this subsequence,
the elementary interval has area 272 and since the rectangle produced from (3.3.3)

has area 2-(41+92) hence we have

2—(dl +d2) = 2—3

for integers dy,d,; > 0. This implies
d1 + dz = 3

Since d; and d, are integers, the above equation yields 4 sets of solutions, namely
(0,3),(3,0),(1,2) and (2,1), where the first coordinate refers to d; and the second
coordinate refers to d,. It is clear from the above analysis that, in general, there
is no unique way of characterizing the elementary intervals in base 4. Figure 3.1
demonstrates the 4 possible representations of the elementary intervals in base 2
corresponding to the 4 sets of solution of (d;,d;). In this figure and the subsequent
figures, the horizontal and vertical axes represent, respectively, the first and sec-

ond dimension of the point. A remarkable feature is that irrespective of how the
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Figure 3.1: 4 Characterizations of Elementary Intervals for the First 8 Points
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elementary interval is constructed, as long as the elementary intervals satisfy the
necessary condition, each elementary interval will contain exactly one point, as it
should.

One compelling advantage of a (£, s)-sequence is that points can be subsequently
added in group of ™ points without distorting the uniformity of the sequence. This
is in contrast to other techniques such as lattice rules or stratified sampling methods
where the number of points has to be preset. To see how the uniformity of the
sequence is maintained when more points are added, let us consider introducing an
additional 8 points to our existing sequence in the above example. The result is
shown in Figure 3.2. The first set of the 8 points are denoted by the “e” while the
subsequent set of the 8 points are denoted by “x”. With 16 points in the sequence.
the area of the elementary interval reduces to 2°*. Each revised rectangle still
contains only a single point. This should not be surprising since the sequence of 16
points in fact is a (0.4.2)-net in base 2 (k = 4 and m = 4 in (3.3.2)). Following
the same argument as before, it is easy to derive that there are five possible ways
to characterize the elementary intervals as shown in Figure 3.2.

The above phenomenon can be explained as follows: consider the lower right
panel of Figure 3.1. Suppose each of the rectangles is cut into 2 identical squares
with area 27%. Sixteen identical squares are produced but only 8 of them contain
a point. If points are to be added subsequently while maintaining the overall
uniformity, the natural positions for these newcomers are those squares without
any points. Consequently, each empty square is successively filled up by the newly

added points. When exactly 8 points are added so that each of the 16 squares has
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exactly one point, a (0,4,2)-net in base 2 is formed as shown in Figure 3.2.

The basic argument applies when even more points are needed. For instance,
if points are continually incremented to the existing sequence of 16 points, each of
the squares in the upper panel of Figure 3.2 is further subdivided into 2 smaller
identical rectangles so that 16 of the rectangles contain no points. To construct
the next level of net; i.e. (0,6,2)-net in base 2, exactly 16 points as opposed to
8 points are needed to fill up each of the empty rectangles. The two panels in
Figure 3.3 indicates how the points are distributed throughout the unit square as
additional 16 and 32 points are subsequently added to the sequence. The two panels
in Figure 3.3 correspond to (0,5,2)-net and (0, 6,2)-net in base 2 and demonstrate
only one particular partition of the elementary intervals.

Note that as points are introduced to the existing sequence, the optimal uni-
formity is achieved only when the next higher level of net is formed with each
elementary interval contains only a single point. The number of points required
to accomplish such task unfortunately grows exponentially in base b. In general.
to construct a (¢,m + 1,s)-net in base b from a (¢,m, s)-net in base b, exactly b™
points are needed. Hence, this is only feasible for low values of b and m. Any
finite sequence of N points for which ™ < N < b™*! represents the transition
zone. This transient state becomes exponentially long as m increases. The cycle
of moving from optimal uniformity to transition zone and then back to optimal
uniformity has an important implication on the efficiency of of the low discrepancy
sequence for quasi-Monte Carlo integration, particularly when b is large as in the

high-dimensional Faure sequence considered in Chapter 4.
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The strategy of successively occupying the elementary intervals as points are
introduced ensures that the resulting sequence maintains good uniformity for any
N even though the optimal number of points is not reached. This property is
important in computational practice since in most cases, we do not know in advance
how many simulations will be needed. We would prefer to have the flexibility of
continuing a simulation until we achieve a given level of precision.

So far we have only considered a special case where each elementary interval
contains only a single point (¢ = 0). There exists a special relation between a
(0.m, s)-net in base b and a (¢,m, s)-net in base b for 1 <t < m. We now explore
such relationship.

The points in each panel of Figure 3.4 are identical to Figure 3.2 except that
rectangles are drawn differently. As noted carlier, this sequence corresponds to a
(0,4,2)-net in base 2. However, if we examine the top left panel of Figure 3.4.
interestingly a (1.4.2)-net in base 2 is implied. To see this, first notice that each
rectangle of top left panel of Figure 3.4 is composed of 2 disjoint elementary intervals
of Figure 3.2 (say top or middle panel). This rectangle therefore has area 272 and
is also an elementary interval in base 2. Second, there are exactly 2 elements in
each of these rectangles. Consequently, we have 8 rectangles each with area 273
and containing 2 points, satisfying all the properties of a (1,4,2)-net in base 2.
Applying the same argument to the top right, lower left and lower right reveals
that the sequence is respectively a (2,4, 2)-net, (3,4, 2)-net and (4,4, 2)-net in base
2. This illustrate a remarkable feature of the net theory that different type of

nets can be produced by restructuring the elementary intervals differently. More
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formally, we have the following proposition

Proposition 3.1 Any (t,m, s)-net in base b is also a (u,m.s)-net in base b for
integers t < u < m and any (¢, s)-sequence in base b is also a (u,s)-sequence in

base b for integers u > t.

A consequent of the above proposition is that every elementary interval of a (u. m. s)-
net in base b can be expressed as a disjoint union of the elementary intervals of a
(t,m, s)-net in base b for ¢t < u.

The parameter ¢ plays an important role in the theory of net. It determines
the number of points in each elementary interval and smaller values of ¢ imply
stronger regularity properties. Hence, ¢ is sometimes known as “quality parame-
ter” or “uniformity parameter”. When ¢ = m, (m, m, s)-net reduces to a random
sequence.

By now, it should also be obvious that a (¢, m, s)-net in base b and a s-dimensional
stratification share many similarities. For instant, a (t,m, s)-net in base b can be
interpreted as a s-dimensional stratification in which [0, 1)* is partitioned into 5™~
hyper-rectangles (elementary intervals) of volume =™ each containing exactly b*
points. The disadvantage of stratification is that partitioning of points in higher di-
mension become a difficult task. Furthermore, the number of points must be preset
before carrying the stratification. If more points are to be added subsequently, the
earlier points have to be discarded. The (¢, m, s)-net, especially the (¢, s)-sequence,
on the other hand, provide a systematic way of sampling the points from [0,1)* and

still ensuring uniformity of the sequence.
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3.3.1 Generalized (t,m,s)-net and (¢, s)-sequence in Base b

From the conventional definition of the elementary interval, each axis is divided
into equal slices based on a common base b. Nevertheless, such restriction can be
relaxed by assigning a different base to different axis. The subinterval obtained
from this kind of partition becomes a more generalized version of the elementary

interval. More formally, Definition 3.1 can be generalized as follow:

Definition 3.5 (Generalized Elementary Interval) A generalized
elementary interval in base b is an interval E' in (0,1)*of the form

, ' a; a;+1
g =H[F’—b4- )

i=1
withd; > 0,0<a; < b'f", a;,d; are integers and b = (by,...,b,).

Hence, the generalized elementary interval has volume equal to [];_, b; 4 Similarly,
we can also obtain a generalized version of (t,m, s)-net and (¢, s)-sequence based

on the generalized elementary interval as follows:

Definition 3.6 (Generalized (t,m, s)-net) Define vectors b = (by,... ,b,), t =
(t1,-..,t;) and m = (my,... ,m,) such that each component is integer satisfying
0<t;<m;fori=1,...,s5. A (t,m,s)-net in base b is a finite sequence with
[1i=, 6 points from [0,1)* such that every generalized elementary interval in base

b of volume [[;_, b¥™™ contains ezactly [];_, b points of the sequence.

Definition 3.7 (Generalized (£, s)-sequence) An infinite sequence of points {z;} €
[0,1) is a (¢, 3)-sequence in base b if for all k > 0 and m; > t;, the finite sequence

Thny -+ s T(ktl)n—1 Withn = [[I_, b7 forms a (£, m, s)-net in base b.
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The conventional elementary interval, (¢,m, s)-net and (¢, s)-sequence are triv-
ially obtained from these generalized concepts. For instance, when b; =-.- = b, =

b. the generalized elementary interval in base b reduces to conventional elementary
interval in base b. Furthermore, if 3 !_, m; = m and }_[_ t; = ¢, Definitions 3.6
and 3.7 become the classical (¢, m, s)-net and (¢, s)-sequence in base b.

To the best of our knowledge, Definitions 3.5, 3.6 and 3.7 are new. The con-
struction of such sequences for arbitrary bases b is not known. The only known
situation is when all the bases b;, 1 < z < s are relatively coprime. Using the
Chinese Remainder Theorem, it can be shown when b;, 1 < ¢ < s are relatively
coprime, the resulting generalized sequences with ¢; = 0,1 < ¢ < s become the

famous Halton sequences. (See Halton [32].)

Now, Proposition 3.1 can be restated as follows:

Proposition 3.2 Any generalized (t, m, s)-net in base b is also a (u, m, s)-net in
base b where u is an integer vector satisfying t; < u; < m; for1 <1 < s. Any
generalized (t, s)-sequence in base b is also a (u, s)-sequence in base b where u; > ¢t;

forl1<i<s.

3.4 Good Lattice Point Sets

The good lattice point (g.l.p.) set is defined as follows:

Definition 3.8 Let (N;zy, ... ,2z,) be a vector with integral components satisfying

1<z <N, z # zi(t £ 7), s < n and the greatest common divisors (N, z;) = 1,
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1<1<s. Let

= {3}

where {y} denotes the fractional part of y. Then the point set {Tn = (Tn1, Tnzy -+ s Tns).
1 < n < N} is called a lattice point set of the generator (N;zy, ... ,2,). If the
point set T, has the smallest discrepancy among all possible generating vectors, then

the set is called good lattice point set.

The g.l.p. is introduced by Korobov [51] and Hlawka [38]. They show that with an
appropriate choice of the generators (N, z, ..., z,), the discrepancy of the point
set is O(N~!*) for 0 < ¢ < 1. In Chapter 6, we will discover that this type of

point sets is very effective for sufficiently smooth functions.

3.5 Good Point Sequences

The good point sequence is defined as follow:

Definition 3.9 Let v = (71, --- ,7,) € R*. If the first N terms of the sequence

z, = ({nm}, --. ., {n7.}), forn=1,2,...,

has discrepancy Dy = O(N~'*¢) as n — oo, then the point set is called o good

point set and z and v a good point.

Several choices of good point -y have been proposed in the literature. The following

are a few samples:
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(a) The square root sequence with

‘Y=(\/P_17---7\/P—a)

where all p;, 1 <1 < s, are different primes.

(b) The cyclotomic field method with

2 2
¥ = ({2cos—7r-},{2cos 4_1r} e ,{2cos£})
p p p

where p is a prime > 2s + 3. This is proposed by Hua and Wang [41].

(c) Let p be a prime and ¢ = p'/(**1), then the good point is obtained as

v = (g, qz’ s n Q)

3.6 Conclusion

94

In this chapter, we introduced different types of low discrepancy point sets and

low discrepancy sequences. Before we conclude this chapter, we make the following

three remarks which have an important implications in quasi-Monte Carlo methods.

1. Recall that in Chapter 2, we discuss the difference between a low discrepancy

point set and a low discrepancy sequence. We noted that a low discrepancy

sequence has the flexibility of introducing more points to the existing sequence

while still maintain low discrepancy. This is 2 desirable property in practice
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since we can keep increasing the number of point evaluations until a required
precision is reached while utilizing all the previously calculated values. On
the other hand, using a low discrepancy point set would require redo the en-
tire computation every time the number of point evaluations is changed. The
flexibility of the sequence is achieved at the expense of increasing the dis-
crepancy. This implies that in situation where such flexibility is not needed,
it is preferred to use a point set since we can achieve a better discrepancy
bound when N is fixed. Examples of low discrepancy sequences are the Hal-
ton, Faure, Sobol’, Niederreiter and the good points while examples of low

discrepancy point sets are the Hammersley points and the good lattice points.

2. Another feature of the low discrepancy sequences (or point sets) is the dis-
tinction between telescopic and non-telescopic sequences (point sets). A se-
quence is telescopic when it satisfies the following property: Suppose we
have already generated a s-dimensional low discrepancy sequence, z, =
(Zn1s Tn2y -+ 1Zns), 7 > 1. If a (8 + 1)-dimensional low discrepancy se-
quence can be produced by stacking an additional component z,,41, 7 > 1,
to the existing s-dimensional low discrepancy sequence, we describe the se-
quence as telescopic. Examples of telescopic sequences (point sets) are the
Sobol’, the Halton, and the good points. Faure sequence, on the other hand,

is non-telescopic.

3. The distinction between nominal dimension and effective dimension. Loosely
speaking, for a function with nominal dimension s, the effective dimension

is approximately the same as the nominal dimension when all the compo-
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nents are of equal importance. When the function is dominated by a few
components, the effective dimension is less than the nominal dimension. A
more formal discussion of this issue is given in Caflisch, Morokoff and Owen
[16] where the effective dimension is defined to be the smallest subset of the
components that captures 99% of the total variance. Note that in most fi-
nance applications, the effective dimensions are in general considerably less
than the nominal dimensions. Furthermore, the dominating components are
usually the first few dimensions. For most other problems, the dominating

components can be any subset of the dimensions.

Because of the nature of telescoping, the telescopic sequences would have
greater uniformity in the initial components of the sequences. Non-telescopic
sequences require constructing the entire sequences from scratch and hence
have a better uniformity when all the dimensions are considered together.
The implication of this property is that non-telescopic sequences would be
more efficient applying to problems where the effective dimension is approx-
imately the same as the nominal dimension. When the effective dimension
is a lot smaller than the nominal dimension, the telescopic sequences would
be preferred. In particular, the initial dimensions of the telescopic sequences

should be used to estimate those dominating components.



Chapter 4

Randomization Techniques

4.1 Introduction

In the first part of this chapter, we evaluate the uniformity of the sequences by ex-
aming the two-dimensional orthogonal projections of the low discrepancy sequences.
The evidences from these investigations suggest that undesirable patterns behaviour
of the points exist when we examine subsets of the dimensions.

Until recently a major drawback of the classical LD approach has been the
absence of a reliable practical error bound. Even though there exists a deterministic
upper bound, this theoretical bound significantly overestimates the actual error in
practice. This is in contrast to the crude Monte Carlo method for which a statistical
estimate of the error is readily available. The purpose of the second part of this
chapter is to investigate a modification of the technique proposed by Owen [74]
for overcoming this problem. We investigate the effectiveness of this approach and

provide numerical illustrations which compare it to Owen'’s approach in the case of

57
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low-dimensional problems.

The rest of the chapter is organized as follows: Section 4.2 evaluates the unifor-
mity of the sequences by examing their two-dimensional orthogonal projections .
Section 4.3 describes a technique developed by Owen which provides a probabilistic
error bound for quasi-Monte Carlo by randomizing the points in a such a way to
preserve the low discrepancy property. In Subsection 4.3.1, we propose a simpli-
fication to Owen’s randomization technique that is feasible for high dimensional
problems. Section 4.4 discusses two different ways of obtaining the variance of the
estimated values from the randomized nets (or sequences). Section 4.5 describes
the class of complex derivative securities that we will use for our numerical calcu-
lations. The numerical comparisons, which consist of two parts, are conducted in
Section 4.6. The first part (see Subsection 4.6.1) deals with low dimensional ex-
amples so that the efficiency of our proposed randomization can be compared and
assessed to Owen’s randomization technique. Statistical tests are also provided to
validate our studies. The second part (see Subsection 4.6.2) applies the proposed

method to higher dimensional examples. Section 4.7 concludes the chapter.

4.2 Uniformity of Low Discrepancy Sequences

In the last chapter, we discussed the uniformity of sequence in high dimension and
noted that the star discrepancy, D}, is a measure of uniformity. Unfortunately,
computing Dj is only feasible for dimensions as low as two or three and for small
number of point sets. Hence we need other methods to assess the uniformity.

A common approach is to examine the orthogonal projections of the sequences.
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This method provides a mean of investigating the pairing of the points and is
restricted to two dimensions. This provides useful information on the uniformity

of the sequences. We discuss this method in the following subsection.

4.2.1 Orthogonal Projections

In this subsection, we provide evidence that undesirable patterns occur in low
discrepancy sequences. Since it is not possible to plot the points in [0, 1)*, for s > 2
or 3, we use a simpler approach by examining the two-dimensional orthogonal
projection of the low discrepancy points. We are assuming that if a sequence
is uniformly dispersed in [0, 1)®, then any two-dimensional orthogonal projections
should also be uniformly dispersed. For instance, Figure 4.1 plots the first and
second coordinates of a (0,4, 7)-net in base 7. (We use Faure’s generation algorithm
for obtaining these nets.) These points appear to be uniformly dispersed throughout
the unit-square. Figure 4.2 provides a similar comparison except that random points
are generated. From the graph, one can see that the random points tend to cluster
and tend to have gaps. These are typical features of random points.

Even though (0, s)-sequences in high dimensions still maintain low discrepancy.
undesirable features exist when we focus on their orthogonal projections. In Fig-
ure 4.3 we plot nine pairs of the orthogonal projections of a (0, 3, 19)-net in base 19.
These nine pairs were selected at random. By merely increasing the dimensions from
seven to nineteen, the orthogonal projection reveals an interesting characteristic of
the nets. The graph clearly suggests that undesirable correlation exists between

these points. Such patterns have also been pointed out by Morokoff and Caflisch
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[59] and Boyle, Broadie and Glasserman [10]. As argued by Morokoff and Caflisch
[59], this phenomenon is due to the large prime base used to generate (0, m, s)-nets
and can be explained by Figure 4.4. The grid shows subsets of the elementary inter-
vals with volume 1972 for the subsets of the points in the first panel of Figure 4.3.
From net property, the (0, 3,19)-net in base 19 must have exactly one point in each
elementary interval of volume 1973. This is confirmed by Figure 4.4. The points
between successive elementary intervals, on the other hand, form a regular pattern
and are not uniformly distributed within these intervals. This behaviour leads to
the highly correlated structure as shown in Figure 4.3.

It should be pointed out that such patterns are not unique to Faure sequences.
They exist in other type of sequences. For telescopic sequences, this kind of pattern
only happens in higher dimensions due to the way that these sequences are tele-
scoped. For instance, Figure 4.5 provides an orthogonal projection of the 7-th and
8-th dimensions for the first 5491 Halton points. The corresponding pair of prime
numbers for generating these two dimensions are 17 and 19. It was discussed in the
previous chapter that the first N = b]"'b7? - -- b7 points of the Halton sequence
is a generalized (0, m, s)-net where b; is the i-th prime number used to generate
the i-th dimension of the Halton sequence. In Figure 4.5, there are 5491 = 172 -19
Halton points. This implies that the two-dimensional elementary interval of the

form

i1\ [5 i+l
172 172 19° 19

where 0 < 7 < 172 and 0 < j < 19 should contain exactly one point. This is
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confirmed in Figure 4.6 where subset of the points in intervals [0,5/17%) x [0,1) is
extracted. The horizontal axis is divided into five equal slices of length 1/17% and
the vertical axis is divided into 19 equal slices of length 1/19. Similar to the Faure
sequence, the points between the adjacent elementary intervals are arranged in a
specific pattern that give rise to the correlated structure shown in Figure 4.5. The
use of orthogonal projections to study Halton sequences was suggested by Braaten
and Weller [12]. The orthogonal projection for other types of sequences can be

found in Morokoff and Caflisch [59].
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CHAPTER 4 RANDOMIZATION TECHNIQUES 64

l _6 1 { 1
%
= 04 -
I~
02 .
0 ) A Sy - C oy r' = ;"‘
0 0.2 04 0.6 0.8 1
7-th dimension

Figure 4.5: Orthogonal Projection Halton Sequence (7-th and 8-th Dimensions)

1 -
2 *- w
2 4. -
. o - .
g o [ PY
19 . - . o ®
. [ . .
g ® hd . . o
'E g * * .
< 10 NI o | .
E E [ ] y Y [ .
:'3 L] b . . ™
— L L] 9 . [
;li ¢ ) 0 ° .
5 L v ) b °
Ia 10 L M . Py
¥ 0
¥ g N 3
v s
- *
0~ R 3 4 5
289 289 289 289 289

7-th dimension
Figure 4.6: Subsets of Halton Points in Figure 4.5



CHAPTER 4 RANDOMIZATION TECHNIQUES 65

4.3 Randomization

In this section we describe the scrambled (or randomized) (¢,m, s)-nets or (t.s)-
sequences proposed by Owen [74]. In the following subsection, we describe our
modifications of Owen’s method. The idea of combining Monte Carlo and LD
methods has been proposed by several authors. Cranley and Patterson {19] first
introduced the technique in the context of number-theoretic methods. Braaten
and Weller [12] randomly permute the Halton sequence. Joe [45] randomizes lat-
tice rules. Faure [25] provides an optimal permutation for a one-dimensional low
discrepancy sequence.

Our interpretation of Owen’s randomization technique may be described as
follows: Suppose {A} is a (t,m,s)-net or a (t,s)-sequence in base b. Let A, =
(Ani, Anz, ... . An,) denote the n-th term in the net (or sequence). Each component

of A, can be expressed in its base b representation as

where 0 < ay;; < b for all n,1, j.
A scrambled (or randomized) version of {A} is a net (or sequence) {X} with

components X, = (Xn1, ... , Xn,) defined in terms of an;; as follow:

Xni = iznijb—j

i=1

Ti(@ni1) . Tiany (Gniz) Tini~anik—1 (Fnik)
; + = RS o +.--. (43.1)
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The functions w are random permutation of the digits {0,1,...,b — 1} and are
mutually independent with each permutation function uniformly distributed over &!
permutations. The first digit z,;; in the base b expansion of the scrambled sequence
X, is obtained by permuting a,;; using the randomly chosen permutation function
m;. The second digit zn;» is obtained by permuting a,;; using the appropriate
randomly generated permutation function =;,,, which depends on the value of first
digit; i.e., ani;. In general, the permutation function applied to the k-th digit an
depends on the first £ — 1 values a5, 7=1,... ,k—1.

The scrambled sequences {X,} defined above not only inherit the equidistri-
bution properties of the unscrambled sequences {A,}, each individual point of the
sequence is also uniformly distributed on [0, 1)*. This implies that the sample esti-
mate 3 Zle f(X.) is an unbiased estimator for [ f(X)dX. These two properties

follow from the following two propositions of Owen [74].

Proposition 4.1 If {A,} is a (¢, m, s)-net in base b, then {X .} is a (t,m.s)-net
in base b with probability 1. If {A,} is a (t,s)-sequence in base b, then {X .} is a

(t, 8)-sequence in base b with probability 1.

Proposition 4.2 Let {X,} be a randomized (t,m, 8)-net or (t, s)-sequence in base
b as described in equation ({.3.1). Then each element {X .} has the uniform distri-
bution on [0,1)*. That is, for any Lebesgue measurable G C [0,1)*, P(X, € G) =

Xs(G), the s-dimensional Lebesgue measure of G.

As a corollary to Proposition 4.1, if {A,} is a (A, ¢, m, s)-net in base b, then {X,}

is also a (A, ¢, m, s)-net in base b with probability 1.
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Several important asymptotic results pertaining to the randomized nets have
also been obtained in a series of papers by Owen (75, 76] and Hickernell {37].
For instance, Owen [76] shows that for a sufficiently smooth integrand f; i.e.,
the mixed partial derivative g(z) = 8°f(z)/8z* is Lipschitz continuous which
means that |g(z) — g(z")| < B||z — z°||? for some B > 0, 8 € (0.1] and ||2||
is the Euclidean norm of z, the variance of the estimate of the randomized net
is of order N=3log® !N as N = Ab™ — oo. Thus the integration errors are
of order N=3/21og*~1/2 N in probability, which compares favourably to the rate
N-llog*~! N attained by unrandomized nets. However, extreme care must be
taken when interpreting these two asymptotic rates. The former rate describes the
average case over random permutations for a fixed function f. The latter rate. on
the other hand, describes the worst case over functions for a fixed set of integration
points. Note that the worst case result remains valid for randomized nets. This
implies that it never “hurts” to scramble the nets. In the more favourable situation,
we can achieve a superior rate of N=3/2log*"!)/2 N for smooth functions while in
the worst case, we still have the upper error bound of the Koksma-Hlawka inequal-
ity. A further advantage of scrambling the nets lies in the ease of estimating the
attained accuracy. We will explore this issue in greater detail in Section 4.4.

Theorem 3 of Owen [75] (or Theorem 1 of Owen [76]) also establishes that for any
square-integrable integrand f, the variance of the estimate based on a scrambled
(0, m, s)-net is never more than e = 2.718 times the Monte Carlo variance while the
variance of the scrambled (A,0,m,s)-net is never more than 1 + e =~ 3.718 times

the Monte Carlo variance. Thus the scrambled net variance cannot be much worse
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than the Monte Carlo variance.

Another asymptotic rate studied by Hickernell [37] is that the worst case inte-
grand of bounded variation, averaged over permutations of a net. attains a rate of
N-'log N*-Y/2N. Comparing to the asymptotic rate achieved by scrambled nets
on smooth integrands, this rate is a factor of N ~1/2 less efficient. Hence, if the
integrand is chosen pessimistically after observing how the net was randomized, no
real improvement can be expected from scrambling the nets.

For both scrambled and unscrambled nets, the asymptotic rate cannot be ex-
pected to set in until N = b**+¢. For (0, m, s)-net in base b, this implies that N = s°.
The number of sample points required therefore becomes unrealistically large even
for moderate dimensions. Hence the benefit of the (scrambled) nets seems unattain-
able. The nets nevertheless can still be very useful in many applications since in
most cases, the effective dimensions of the problems are considerable less than the
nominal dimensions. This is certainly to be expected in typical finance applica-
tions. This also partially accounts for the success reported in finance articles (see
e.g. Caflisch, Morokoff and Owen [16], Joy, Boyle and Tan [46], Ninomiya and
Tezuka 72| and Paskov and Traub [80]) even for very high-dimensional problems,
which seems to contradict the findings in other fields (see e.g. Bratley, Fox and

Niederreiter [68] and Fox [26]).

4.3.1 Partial Randomization

The implementation of Owen’s randomization procedure can be represented

graphically in Figure 4.7. It is convenient to describe Owen'’s technique in terms
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of levels of randomization. In the first level of randomization, we require only
one particular permutation function ; to permute the first digit in the base b
expansion of A,;. In the second level of randomization, there are b possible choices of
permutation functions {m; 4, =0, Tiany=1s - - - » Fi.ani=b—1}, depending on the value
of @ni;. In general, there are b*~! possible choices of permutation functions in the
k-th level of randomization. The appropriate permutation function used to permute
the k-th digit @, is determined by the k — 1 values {a@.i;, j =1, ... ,k—1}. This
illustrates the “path-dependency” of the underlying randomization algorithm.

This particular property of the randomization functions implies two potential
difficulties in implementing the algorithm. The first problem is that the expansion
of X, must be truncated at some finite k*. One choice, suggested by Owen, is
to take k* large enough so that 4~*" is small compared to the error committed in
truncating the expansion. An alternate choice is to take k* = M if at most 6™
points will ever be used.

The second practical issue is the memory storage problem. Suppose the expan-
sion of A, is truncated at &k, Figure 4.7 indicates that scrambling a s-dimensional

net (or sequence) requires s(1 + b+ b% 4 --- + 6" 71) = 3":‘_‘11 independent permu-

tations. For large s, large b or large k*, the underlying algorithm is very memory
intensive and hence computationally infeasible. This also explains why the numeri-
cal examples in Owen [74] and Owen and Tavella [77] are based on low dimensional
problems (such as 6 and 10).

In this chapter, we consider a modification of Owen’s randomization technique

so that we can apply the randomized technique to problems with higher dimensions.
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We now describe our proposed modification. Suppose, for 1 < i < s, the first &
digits {@ni1, Gniz, - - - , Gnic} have already been randomized according to Owen'’s ran-
domization technique. To proceed to the next level of randomization, instead of
USINg Mia,;;-a,;, tO scramble the digit ani+1 as suggested by Owen’s randomization
technique, we use i, ..q.;,_, tO permute @ni4+1. In fact, the same set of permu-
tation functions i, ..q,,_, are used to permute the digits {anij, k& < j < k7}.
Therefore, the above algorithm is consistent with Owen’s randomization technique
only up to level k. The path-dependency of the permutation functions is destroyed
after the k-th level. Hence we have T, .anuy = Mignir-anie = Figni--anige- W
denote this method as randomization of level k. In the trivial case where k = 0.
no randomization is performed. As the randomization level increases, the proposed
randomization converges to Owen’s technique. At the other extreme where k = k*,
the randomization of level k converges to Owen’s algorithm. In this context, when
0 < k < k=, the randomization of level k can be considered as a partial randomiza-
tion technique.

The advantage of using “partial” randomization rather than the “full” random-
ization lies in its ease of implementation. For the randomization of level k, we
only need sb:_—‘ll permutation functions to permute an s-dimensional net (or se-
quence). The number of permutation functions required is dramatically reduced
when k is small relative to k*. This allows us to scramble the sequence in a much
higher dimensions where it would not be feasible under full randomization. Partial
randomization, however, does not come at no cost. Suppose the m-th and n-th

terms of the i-th component of the sequence share the same k — 1 digits in base



CHAPTER 4 RANDOMIZATION TECHNIQUES 72

b expansion of Am; and Apg; ie., Gmi; = @nij, for 1 < j < k — 1. These two
terms will be scrambled by the same set of permutation functions regardless of
the values of am;; and an;j, for & < j < k*. This destroys the independency of
the digits after the k-th expansion. Hence, Proposition 4.2 need not hold for the
scrambled sequences generated from the partial randomization technique. However,
since the first k digits are scrambled correctly in the sense of Owen'’s randomization
technique, the maximum deviation between the scrambled point using the partial
randomization of level k and the corresponding point using the full randomization
is (b — 1)/b*+!. The above argument assumes that the permutation functions used
to scramble the first k digits are identical in both techniques. When b is large, the
maximum difference (b — 1)/b**! will be insignificant even when k is small. Hence,
the independency issue becomes much less of a concern for high dimensional nets
(or sequences) and these are the ones we are primarily interested. This is certainly
true for (0, m, s)-nets where the nets can exist only if b6 > s — 1. As an illustration.
consider scrambling a (0,4, 100)-net in base 101. Since there are only 101* points
in this net, we let A~ = 4. If full randomization were used to scramble the net.
we would require 104,060,400 permutation functions. On the other hand, consider
partial randomization of level 2. In this case, we only need 100 x 102 = 10,200
permutation functions. This results in a significant reduction of 10,202 times in the
number of permutation functions required to scramble the net. The reduction of
the permutation functions is achieved at the expense of giving up the independency
in the third and fourth digits of the expansion. The effect is negligible since for each

point, the maximum deviation between the full and partial randomizations of level
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2 is 100/101% ~ 0.000097. In other words, the corresponding scrambled point for
the full and partial randomizations of level 2 can only differ after the third decimal
places. This provides an intuitive justification for using partial randomization. By
giving up total randomizing at the third digit and beyond, we achieve a substantial
reduction in the number of permutation functions. This allows us to apply the
randomization technique to much higher dimensions. Furthermore, the difference
occurs at the terms in the expansion (in base b) that only have a minor role in

determining the value of the points.

4.3.2 Evaluation of Uniformity

In Subsection 4.2.1, we assessed the uniformity of the low discrepancy sequences
based on the orthogonal projections. We observed that undesirable behaviour of
the points exists for the classical (0, s)-sequences.

In this subsection, we apply the same technique to the randomized sequences.
First, we use the proposed partial randomization of level 2 to the same sets of points
reported in Figure 4.3. These correspond to the first panel in Figure 4.3. Figure 4.8
shows subsets of the elementary intervals after randomization. The randomized
procedure effectively destroys the regular structure displayed in Figure 4.4 while
retains the property that each elementary interval still contains a single point.
Figure 4.9 gives the same set of the orthogonal projections for the randomized
(0,3, 19)-net in base 19. The randomized net appears to eliminate the regularities
observed in the classical (0, 3,19)-net. The randomized points are more uniformly

dispersed throughout the unit square and do not follow any specific structure.
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4.4 Variance Estimation

The underlying advantage of randomizing the classical (0, m, s)-net or (0, s)-sequence
is in obtaining a statistical error bound of the estimates. Owen [75] discusses
two different approaches to estimate the variance of the estimate, V(f). The
simplest way of estimating V(f) is by replication. A classical net (or sequence)
{A,,n =1, ... ,N} is chosen and is scrambled independently r times using r in-
dependent sets of permutation functions 7 so that the r estimates of the underlying
value can be used to estimate V(f). Suppose f; denotes the resulting estimate from

the i-th set of the independent permutation functions, then the unbiased estimate

of V(f) is given by

V()= — > (= (441)
where f = Do f,- /7. Once V(f) is estimated, an approximate confidence interval
of the estimate can be constructed from the appropriate ¢-distribution or normal
distribution to assess the accuracy of the estimate.

Rather than using independent replications, an alternate approach to estimate
V(f) is to rely on a single large scrambled (0, m, s)-net. Recall that a (0, m, s)-net
is a point set with 4™ points {A,,n =0, ... ,b™ — 1}. Suppose the (0,m, s)-net is

divided equally into b subsets of points as follows:

\AO’ tery Ab"“'l—Jl’ 546""1 ey Azbm-l—y Tt 44(()—1)1)""l yeeny Apm_y .
(O.m—l.s)-net (O.m—l,n)-net (0.,m-1,s)-net

- o

—

(0,m,s)-net
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so that each subset (or netlet) becomes a (0, m — 1, 3)-net of b™~! points. Hence. a
single scrambled (0, m, s)-net can be interpreted as a (0,m — 1, s)-net being repli-
cated “internally” b times. Let fj denote the estimate obtained from the j-th
internal replicate of (0,m — 1,s)-net. Then (4.4.1) can be used to estimate V(f)
with » = b. When b is large, instead of using b internal copies, a single large scram-
bled (\,0,m, s)-net, A > 1 is generated so that A(= r) internal replicates scrambled
(0,m, s)-nets are used to estimate V( f) Normally, A should be chosen to be a lot
smaller than b to allow the estimation to be manageable.

We now discuss the difference between the above two approaches. We assume
that both methods use Nt points in estimating V( f). First we would expect that
the estimate of the underlying value using a single large randomized net of Nt
points is more accurate than the corresponding estimate based on r independent
replications of N points, This is certainly to be expected in the limit where N is
fixed and r tends to infinity. In this situation, the independent replications can only
achieve the Monte Carlo rate while the single large net can achieve the superior rate
of O(log(rN)*~'/(rN)). The drawback of using r internal copies to estimate the
variance is that the estimated variance is biased. However, the variation among the
T netlets should be larger than the variation based on r independent replications. If
a point from a particular netlet belongs to a given elementary interval (of size 5™™),
then other points from any of the netlets cannot appear in this elementary interval.
This follows from the basic net property. In general, this leads to negative correla-
tion among the estimates of the internal replicates and results in larger variation.

Consequently, the variance estimated from r netlets overstates the true sampling
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variance. This implies that any confidence statement constructed from this vari-
ance estimate is conservative. The conservativeness and higher accuracy lead us
to use the second approach in obtaining the standard error of the estimate. The
numerical calculations performed in Section 4.6 also indicate that the constructed

confidence limits are conservative.

4.5 Derivative Securities used for Numerical

Estimations

In this section, we examine the valuation of an option contract. For ease of bench-
marking, it is important to use a security that admits a simple analytic solutions for
any finite dimension. One of the simplest such problem in finance is the European
average options where the average is taken to be the geometric average. The payoff

of the call option at maturity can be represented by

g = max {ﬁSi}'—K, 0f{,

i=1

where S;, 1 < i < s, is the appropriate asset price. We assume S; is the terminal
asset price for asset i so that we have a geometric portfolio average option with
s underlying assets. Under the Black-Scholes framework, the distribution for the
geometric average is the product of lognormal distributions and hence it is a log-
normal distribution. Thus, there exists a simple closed-form representation similar

to the Black-Scholes formula for a standard European call option. There is also
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a closed-form solution for the case where the option is based on geometric path
average for a single asset. This option is known as the geometric Asian option.

In our numerical examples, we consider the portfolio average option. We use two
different approaches to obtain the required parameter values. For the first type. we
consider an at-the-money option where the parameter values are fixed as follows:
Initial asset prices S;(0) = 100, volatility o; = 0.3 for z = 1,... , s, the correlation
between i-th and j-th assets is p;; = 0.5 fori,7 =1,... ,s, ¢ # j, time to maturity
is 1 year and the annual interest rate is 10%. The strike price is chosen so that
both call and put options have equal values.

For the second type, we randomly select the parameter values according to the
following criteria: The strike price is fixed at 100 and the correlation between asset
returns is fixed at 0.5. The other parameter values are generated randomly such
that each initial asset price is uniformly distributed between 50 and 150, the annual
volatilities are uniformly distributed between 10% and 60%, the expiration date is
uniformly distributed between 6 months and 2 years and the annual interest rate is
uniformly distributed between 5% and 15%. If the true option price for the set of
randomly generated parameter values falls below 0.5, it is discarded and is replaced
by another randomly generated set until the option price is at least 0.5. This is
because very low option prices may lead to less reliable estimates of RMSE as
defined below. The threshold 0.5 is suggested in Acworth, Broadie and Glasserman

[1], but otherwise arbitrary.

In both cases, we compute the root-mean-squared relative error (RMSE) defined
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by

where C; and C; denote the simulated value and the theoretical value for the j-th
option contract respectively and m represents the total number of option contracts

to be evaluated.

4.6 Numerical Studies

Our numerical experiments can be divided into two parts. In the first part, we con-
centrate on low-dimensional option problems so that Owen’s randomization tech-
nique can be implemented. This allows us to analyze the difference between the
partial and full randomization methods. These are discussed in details in the fol-
lowing subsection. In the second part, we apply our proposed partial randomization
technique to higher dimensional option contracts. The results are reported in Sub-
section 4.6.2.

Throughout the entire comparison, we have consistently used the scrambled
versions of the (0,m, s)-nets in base b. When applicable the unscrambled (0, m, s)-
nets or (0, s)-sequences in base b are also examined. Furthermore, the results based
on crude Monte Carlo and Monte Carlo with antithetic variable technique are also
reported for comparison. Briefly, the Monte Carlo estimates based on antithetic
variates are obtained as follows: for each simulation run, two parallel estimates of

the option prices are obtained. Suppose the first estimate, f,-, is computed from the
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s independent standardized normal variates {e;, ... ,€,} while the second estimate,

.J‘-‘, is obtained from {—e¢,,... ,—¢,}. The overall estimate of the option price for

this particular simulation trial is given by the average of these two estimates. Hence,

ﬁ=ﬁ+ﬁ
2
becomes the option estimate for the j-th simulation trial for the Monte Carlo
method with antithetic sampling. Note that each estimate of the antithetic vari-
able technique involves two functional evaluations. This implies that for the same
number of simulations, there are twice as many functional evaluations in antithetic
sampling as in crude Monte Carlo methods. Therefore, the reported results for
the Monte Carlo with antithetic sampling should be adjusted approximately by a
factor 1/+/2 = 0.707 in order to have a fair comparison to other methods. In both
cases, the random sequences are generated using the generator RAN2 from Press,

Teukolsky, William and Brian [84)].

4.6.1 Low-Dimensional Option Contracts

In this subsection, we compare the efficiency of both partial and full randomization
techniques using 10-dimensional examples. This is done in three parts which we
denote by A, B and C. To scramble the nets (or sequences), we consider Owen’s full
randomization and our proposed partial randomizations of levels 1 and 2. Hence-
forth, these three types of randomizations are referred to as partial-k*, partial-I and
partial-II, respectively. Recall that the full randomization method is implemented

with truncation after k*-th digits.
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In determining the appropriate level of randomization, a preliminary calculation
can be carried out in practice using the first few levels of randomization, say 1
and 2, with a small number of point set. This provides information regarding
the variability of the estimates using different randomization levels and hence the
appropriate level of randomization can be determined.

Suppose {n%, 7L, . ,---, n?

1Anil -~ Cnik® —

.} denote the randomly generated permu-
tation functions for randomized technique p where p € {partial-I, partial-II, partial-k~}.

By construction, we have

partial-II _ _partial-II

anil < Baij iGnil

for 2 < j < k® and

partial-I _ ﬂ,‘partial-l

@il Gnij

for 1 < j < k" for each dimension ¢. For the randomized nets (or sequences) used
in this study, the permutation functions are randomly generated subject to the

following conditions:

artial-I _ _ partial-II partial-k*
"";P =T =y

and

7rpa.ri:ia.l-II — ﬂ,partial-k‘ '

1an1 3nil
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7 That is. the first digit is always randomized by the same set of permutation func-
tions in all three kinds of randomization while the second digit is always random-
ized by the same set of permutation function for partial-II and partial-k* methods.
When the permutation functions are controlled in this manner, any difference that
arises between the partial-k method and the full randomization technique can be
attributed to the effect of not randomizing the digits after the k-th places, rather

than due to random variability in the permutation functions.

Part A
In the first part of the comparison, we randomly generate 1000 sets of option
contracts where the parameter values are selected according to the rules outlined in
the previous section. For each randomization technique, we compute the RMSE at
point sets A113, A =1, ...,11. In other words, a classical (A,0,3,10)-net in base
11 is generated and is scrambled accordingly to evaluate the option contracts.
Figure 4.10 summarizes the results. We plot the log of the RMSE against log(N)
where N is the number of the sample points. For the top panel, a single scrambled
net is used to evaluate the 1000 randomly generated option contracts. The middle
panel is similar to the top panel except that a different scrambled net is used.
From these two panels, it can be concluded that the RMSE estimated from partial-
k, partial-II and partial-I methods are correlated. This is to be expected since
the randomly generated permutation functions have been controlled as discussed
earlier. The efficiency of the nets, however, depends on the particular choice of the

permutation functions.
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Figure 4.10: Relative Efficiency for Partial and Full Randomizations
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A more appropriate assessment is to examine the average errors estimated over
different independent sets of permutation functions. The result is presented at
the bottom panel of Figure 4.10 where each option contract uses a different (and
independent) scrambled net. Different scrambled nets are obtained by using inde-
pendent set of randomly generated permutation functions. We now observe that
the RMSE exhibits a smoother transition with the number of sample points. For
comparison, the results obtained from the crude Monte Carlo and Monte Carlo with
antithetic sampling are also included. In these cases, each option contract also uses
a different set of random sequences.

On average, the results presented in the bottom panel indicate that all three
of the scrambled nets essentially yield the same order of convergence although the
full randomization technique seems to be consistently better than the other two

scrambled nets.

Part B
We now proceed to the second part where we analyze the distribution of the esti-
mates obtained from the scrambled nets. Statistical tests are conducted to test the
hypothesis that the underlying distribution is normal. The normality assumption
is important so that we can draw confidence statement about the estimated option
value, hence providing a practical error bound where it would not be possible under
the classical LD methods.

To facilitate our hypothesis testing, we consider a 10-dimensional at-the-money

option contract using the parameter values given in Section 4.5. For each ran-
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domization technique, a single large scrambled net consists of 1000 x 11° points
is generated. Each consecutive 11% point set is used to estimate the value of the
at-the-money option contract. Hence there are exactly 1,000 option estimates esti-
mating the same underlying value. This enable us using various statistical tools to
test the empirical distribution of the option estimates.

Our primary interest lies in whether the normality assumption holds for the
option estimates. We now describe the statistical methods we use to conduct the
hypothesis testing. These are only a small sample of the statistical tools that can
be used to test the normality assumption. See D’Agostino and Stephens [20] for a
comprehensive treatment on this topic.

The most common test is based on normal probability plot (also known as Q-Q
or rankit plot). This can briefly be described as follows: Let f;- denote the estimate
of the option using the j netlet and let f(l) < e < f(,.) be the ordered values from
all the r netlets. If f(l) < e < f(,) are independent and identically distributed

(i.e. i.i.d.) N(p,o) random variables, then

Elf;] = p+0v; (4.6.1)

where v; = ®~1[(j —3/8)/(r +1/4)] and ®~! is the inverse function of the standard
normal cumulative density function. From (4.6.1), it follows that if fi ..., fr are
ii.d. N(u,o0), a plot of f(,-) against 4; would yield approximately a straight line.
Such a plot is known as the normal probability plot.

Figure 4.11 provides the required plots for the three types of randomization

techniques based on r = 1000 option estimates. These plots support the normality
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Figure 4.11: Normal Probability Plots
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assumption. To confirm this observation, we conduct two other quantitative tests.

The first measure is based on the correlation coefficient of points in the rankit plots.

This is defined as

S (Fo = Hey =)

PQQ = = = z (4.6.2)
\/ 2imfe) - f)z\/ Y= —7)°

where f = POV f(j)/r, 3 = 3 5=17Ys /7 and v = 1000 in this example. This
statistic measures the straightness of the rankit plot and provide a powerful test of
normality.

A second test is based on the closeness of the sample skewness and sample kurto-
sis to the theoretical values of 0 and 3 respectively under the normality assumption.
This test is known as the Bowman-Shelton test for normality. The sample skewness
can be estimated as

S (Fay = £/

&3

skewness =

and the sample kurtosis as

Si(fiy = T

kurtosis = ~
o

Here 4 is the sample deviation defined in (4.4.1).

A statistic which tests the symmetrization and the tail of the population can
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Test Statistic Partial-k* Partial-Il Partial-I ||

PQQ 0.9994 0.9995 0.9995
skewness -0.0001 -0.0211 0.0747
kurtosis 2.9150 2.8300 2.8581
Bowman Shelton 0.3014 1.2781 1.7696

Table 4.1: Test Statistics based on 1000 Internal Replicates
be constructed as follow:

(skewness)?  (kurtosis — 3)?
6 24

Bowman-Shelton = r [ (4.6.3)

Under the null hypothesis that the population distribution is normal, this test
statistic converges to a chi-square distribution with 2 degrees of freedom as the
number of observations become very large. The null hypothesis is rejected for large
values of the test statistic.

Table 4.1 reports the test statistics based on the 1000 simulated option esti-
mates. With respect to the third and fourth moments of the option estimates,
there is a slight deterioration in switching from full randomization to partial ran-
domization. However, the deterioration is well within the tolerance that hypotheses
distribution is not rejected. For instance, the critical point for the Bowman-Shelton
statistic at 10% significance level with N = 800 sample size is 4.32 and NV = oo is
4.61 (chi-square distribution with 2 degree of freedom). Since the Bowman-Shelton
tests obtained from the full and partial randomization methods are well below the
critical points, the null hypothesis that the sample population is normal is not re-

jected.
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Part C

We now consider the estimation of the standard errors based on the at-the-money

Monte Carlo Randomized (A, 0, 3,10)-Nets
Crude Antithetic || Partial-k* | Partial-I1 Partial-I
A [Std. Ertor % [ Ratio % || Ratio % | Ratio % | Ratio %
7 0.145 60| 1.8 5414 97 20| 90 15 85 2.0
8 0.136 59| 1.8 5.8 96 1.7 90 09| 85 1.6
9 0.129 4.9 1.8 5.0 9.7 1.0 9.0 0.6 8.5 1.1
10 0.123 5.5 1.8 4.2 9.7 1.1 91 04 8.6 0.3
11 0.118 4.8 1.8 4.6 9.7 0.7 91 04 8.5 0.2

Table 4.2: Comparison of the Average Standard Errors and the Percentage of the
Violations based on At-the-Money Option

option example used in Part B. For each scrambling method, a (A, 0, 3,10)-net in
base 11 is generated so that A internal replicates (each conmsists of 11® points) are
used to estimate the standard error. Five different values of A = 7,8,...,11 are
considered. For the Monte Carlo methods with and without antithetic sampling, the
same number of points (= A113) is also used to estimate the corresponding standard
error. This procedure is repeated 1000 times using different scrambled (A, 0, 3, 10)-
nets generated from independent sets of permutation functions and different random
sequences.

The second column of Table 4.2 reports the average standard errors over 1000
independent standard errors obtained from Monte Carlo methods. For ease of com-
parison, we report the ratio of the average standard errors from the crude Monte

Carlo to the corresponding average standard errors obtained from the Monte Carlo



CHAPTER 4. RANDOMIZATION TECHNIQUES 91

with antithetic sampling, partial-k*, partial-II and partial-I methods. Hence, the
larger the ratio, the more favourable the underlying method. These ratios are tab-
ulated under the heading “ratio” in Table 4.2. When A = 9, the simulation results
indicate that the average standard errors from the Monte Carlo with antithetic sam-
pling is approximately 1.8 times smaller than the corresponding average standard
errors from the crude Monte Carlo method. Since the antithetic sampling has used
twice as many functional evaluations as the crude Monte Carlo method, this ratio
should be reduced approximately by a factor 1/4/2 so that the actual improvement
of the antithetic sampling is only about 1.3 times.

The scrambled nets, on the other hand, have achieved a significant improvement.
For the same number of replications, the magnitude of improvement for partial-
k=, partial-II, partial-I techniques are respectively, 9.7, 9.0 and 8.5 times smaller.
This implies that the average standard errors for the partial-k*, partial-II, partial-
I methods are only 0.0133, 0.0144 and 0.0159, which compare favourably to the
Monte Carlo average standard error 0.129. This reinforces the findings given in
Part A where we compare the efficiency by computing the RMSE.

Note that the magnitude of improvements is relatively stable across A. We also
observe that the full randomization yields the smallest average standard errors. By
only randomizing the first one and first two digits as in the partial-I and partial-II
approaches, we observe a slight decrease in the efficiency of the underlying method.
For instance, Table 4.2 indicates that the average standard errors for partial-I and
partial-II randomizations are approximately 1.14 and 1.07 times larger than the full

randomization.
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The main reason for estimating the standard errors is that for Monte Carlo
methods, we can construct the confidence interval using the ¢-distribution or normal
distribution, depending on the number of replications, so that the accuracy of the
estimate can be gauged. This follows from the central limit theorem. This is
an important advantage of the Monte Carlo method. For the full and partial
randomization methods, the analysis in Part B also justifies that the use of a
similar approach to estimate confidence intervals.

In addition to comparing the average standard errors, we also compute the 95%
confidence interval using the ¢-distribution with an appropriate degree of freedom
in our example. Hence we have 1000 independent sets of confidence limits for each
A and each method. From the constructed confidence limits, we determine if the
theoretical option value lies within the limits. Since we have used 95% as the
confidence level for obtaining the confidence limits, we would expect approximately
50 out of the 1000 constructed confidence intervals do not contain the theoretical
value. This is consistent with our simulated results for the Monte Carlo with
and without antithetic sampling. The percentage violations of the constructed
confidence limits for these two methods are tabulated in the third and fifth columns
of Table 4.2. For example, when 9 replications are used to estimate the standard
errors the crude Monte Carlo results indicate that among the 1000 indepeadent
confidence limits constructed, 49 of them do not contain the theoretical option
value. Similarly, the seventh, ninth and eleventh columns give the corresponding
measure for the full and partial randomization of levels 2 and 1, respectively. Unlike

the Monte Carlo methods, the percentage of violations for the scrambled net are
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a lot smaller than the anticipated proportion. Furthermore, the percentage of
violations for the partial randomization methods in most cases are less than the
full randomization method. All these observations lead to the conclusion that the
confidence limits constructed from the scrambled nets are conservative. This is
consistent with argument given in Section 4.4.

So far the comparison of the standard errors relies only on one particular con-
tract — the at-the-money option. Our conclusion could therefore be influenced by
a particular choice of the parameter values. To avoid this possibility, we repeat
the calculations using 1000 randomly generated sets of parameter values. Each op-
tion contract uses a different random point set or scrambled (A.0,3,10)-net. The
results are summarized in Table 4.3. The conclusions are similar to the previous
case where only one option contract is evaluated. First, the constructed confidence
limits for the scrambled nets are conservative. The percentage of violations is no
more than 2% for these methods. Second. the magnitude of improvement is rela-
tively stable across the number of replications. Third, the randomized nets have
achieved a substantial reduction in the estimated standard errors while the Monte
Carlo with antithetic sampling is only marginally more efficient. Fourth, sacrificing
the total randomization only results in a slight deterioration of the scrambled nets.
Compared to the full randomization, the average standard errors obtained from
randomizing only the first digit is approximately 22% (= 11.7/9.6 — 1) larger while
randomizing the first two digits is roughly 10% (= 11.7/10.6 — 1) larger. The loss
of accuracy is well compensated for by the tremendous reduction in the number of

permutation functions required in randomizing the nets, which in turn translates
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into a great saving in the memory storage requirements as well as the execution
time for generating the extra permutation functions. In either case, we still observe
an order of improvement around 9.6 and 10.7 times relative to the standard Monte

Carlo methods.

4.6.2 High-Dimensional Option Contracts

The impetus for proposing the partial randomization lies in high-dimensional appli-
cations. In the last subsection, we have intentionally used low-dimensional option
contracts (s = 10) so that the proposed partial randomization technique can be
compared to the total randomization technique. In this subsection, we examine the
efficiency of the partial randomization technique when the dimension is large. We
only consider the partial-I and partial-II randomization methods since the full ran-
domization becomes computationally infeasible for large s. We divide the studies

into two parts as described below.

Part A

We first compare the efficiency of the partial randomization methods by increasing
the dimensionality of the option problems. We consider s = 100,250 and 365. For
each case, we compute the RMSE based on 50 randomly generated option con-
tracts as outlined in Section 4.5. Three types of LD sequences — classical (0, s)-
sequences in base b using the generation algorithm by Faure [24] and scrambled
(0, 8)-sequences in base b using partial-I and partial-II randomization are imple-

mented. For each sequence, we compute the RMSE at point sets N = Ab™ for
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Monte Carlo Randomized (A, 0, 3, 10)-Nets
Crude Antithetic | Partial-k* | Partial-II Partial-I
A [Std. Ertor % | Ratio % || Ratio % | Ratio % | Ratio %
7 0.153 5.1 21 49| 11.7 1.1} 106 20 9.6 1.6
8 0.144 5.3 2.1 45| 11.7 1.1] 10.7 1.0 9.6 1.1
9 0.136 5.6 2.1 41| 11.7 1.0| 10.7 0.7 9.6 0.5
10 0.130 5.5 2.1 48| 11.7 0.3 10.7 0.4 9.6 0.6
11 0.125 4.5 2.1 451 11.8 0.3 10.8 0.2 9.7 0.2

Table 4.3: Comparison of the Average Standard Errors and the Percentage of the
Violations using 1000 Randomly Generated Option Contracts

integers A and m satisfying 10,000 < N < 200,000. The results (in log-log scale)
are plotted in Figure 4.12. In all these cases. a single generated sequence is used
to evaluate the entire portfolio of the option contracts. This explains the fluctu-
ation in the RMSE. We also observe that the randomized sequences yield smaller
RMSE than the corresponding unscrambled sequences. Furthermore. the simula-
tion results from both partial-I and partial-II tends to be correlated. This is to be
expected since we have controlled our experiment so that the first digit is always
scrambled by the same set of permutation function.

Similar to Part A of last subsection, we repeat the above calculations so that
each option contract uses an independent scrambled sequence generated from an
independent set of permutation function. For the classical sequences, a different
(and non-overlapping) part of the sequences is used to evaluate each option contract.
The results are presented in Figure 4.13. For comparison, the results from Monte
Carlo methods with and without antithetic sampling are also illustrated.

Compared to Figure 4.12, using different independent set of sequences has sub-
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Figure 4.12: Relative Efficiency with Increasing Dimensions (Same Sequence Ap-

plies to 50 Option Contracts)
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Figure 4.13: Relative Efficiency with Increasing Dimensions (Each Option Con-

tracts Uses Different Sequences)
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stantially reduced the variability in RMSE. We note the different rates of conver-
gence exhibited by the classical and scrambled LD sequences. Theoretically, the
asymptotic rate of the LD methods does not kick in until N = s°. which is a lot
larger than the number of points used in our studies. However, as discussed in
Section 4.3, the benefits of the LD methods can appear even for N « s°. This
is due to the low-dimensional structures inherent in most finance problems even if
the nominal dimension is large. This argument appears to hold for the scrambled
sequences in Figure 4.13. The classical (0, s)-sequences, on the other hand, seem
to require a much larger number of points to achieve the same efficiency as the
scrambled sequences.

Another interesting observation is the “cyclical” convergence rate exhibited in
the LD sequences, particularly more pronounced for the classical (0.s)-sequences.
For instance when s = 365, the RMSE decreases as N increases until log N =~ 11.8.
At such point any further increments in N actually increases the RMSE. These
patterns can partly be attributed to the large prime base used in generating the
sequence. By construction, the (0,s)-sequences achieve the optimal uniformity
when the number of points is equal to the power of the base so that each elementary
interval contains exactly a single point. This implies that the optimal uniformity
is achieved at N =™, m = 1,2, ... and we would expect low integration errors
at these optimal point sets. For N = Ab™, 1 < A < b, the point set is in a
“transient” state in the semnse that the elementary intervals are gradually filling
up. Consequently using these point sets lead to slightly higher integration errors.
This explains the small RMSE observed at log 3672 =~ 11.8 at the bottom panel
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of Figure 4.13 since b = 367 is the required prime base used to generate (0.365)-
sequences.

Part B

To assess the effectiveness of the partial randomization methods in providing the
standard errors of the estimates and the constructed confidence intervals in high di-
mensions, we follow the same methodology described in Part C of last subsection.
In this case, we consider s = 100 and also use 1000 randomly generated option
contracts. Each option contract uses an independent scrambled (A, 0, 3, 100)-net in
base 101. Standard errors are estimated at A = 7,9,... ,11. The same number of
points is also used for the Monte Carlo with and without antithetic sampling to
estimate the standard error. From the estimated standard error, the 95% confi-
dence limit is constructed so as to determine if the theoretical option value for that
particular option contract lies in the interval.

Table 4.4 summarizes the results. As anticipated, the percentages of violation
for the Monte Carlo methods fluctuate around the expected 5% level. For the
scrambled nets, the percentages of violation are still less than 5% although with a
much larger proportion compared to the low dimensional situation. The relative
magnitude of the average standard errors for Monte Carlo with antithetic sampling,
partial-II and partial-I are approximately 1.4, 8.6 and 8.4 times smaller than the
corresponding measure from the crude Monte Carlo method. This indicates that a
significant variance reduction can be achieved even for dimensions as high as 100

while still providing conservative confidence limits.
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Monte Carlo Randomized (A, 0, 3, 100)-Nets
Crude Antithetic Partial-I1 Partial-1
A | Std. Error % | Ratio % || Ratio % Ratio %
7 0.052 59| 2.0 59| 8.5 4.3 8.3 4.2
8 0.049 6.0 2.0 50| 8.5 3.8 8.4 4.3
9 0.047 49| 20 65| 8.6 4.0 8.4 3.8
10 0.045 4.5 2.0 4.9 8.6 4.5 8.5 4.0
11 0.043 53| 2.0 55| 8.7 4.2 8.5 3.7

Table 4.4: Comparison of the Average Standard Errors using 1000 Randomly Gen-
erated Sets of Option Contracts (s = 100)

4.7 Conclusion

The classical approach to the implementation of low discrepancy sequences for the
solution of problems in the finance area suffers from some drawbacks. This chapter
has examined ways to rectify some of the disadvantages of LD methods. These new
methods try to combine the best features of both standard (crude) Monte Carlo and
classical LD methods. We found that our modification of the scrambling procedure
suggested by Owen [74] improves the convergence rate as compared to the classical
LD approach. More importantly, from a series of empirical studies, we observed that
giving up the full randomization only results in a slight decrease in the efficiency
of the sequences. This loss in efficiency is however justified by the saving of the
memory storage requirements and the computation time. Statistical tests were
conducted to validate the generation of the confidence intervals. The availability of
confidence intervals is useful because it provides a scientific method for determining
the accuracy of the estimation procedure and thus providing practical termination

criteria. Hence the main conclusion of this chapter is that it is possible to modify
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the randomization technique due to Owen so that it can be applied effectively to

high dimensional problems.
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Chapter 5

Smoothing Discontinuities

While the routine application of quasi-Monte Carlo works well for some integrands.
there are situations when the efficiency of quasi-Monte Carlo methods is severely
deteriorated. Two common situations are where the integrand in question is dis-
continuous and when the number of dimensions is very large. In this chapter. we
discuss methods of dealing with discontinuities when using quasi-Monte Carlo meth-
ods. We provide a general framework for avoiding the discontinuity by smoothing
the integrands. This method is inspired by the smoothing technique proposed by
Moskowitz and Caflisch [61].

Section 5.1 provides some background material for the issues involved. Sec-
tion 5.2 discusses an application of Monte Carlo integration which involves dis-
continuity. In Section 5.3, we describe the generalized smoothing technique and
relate the proposed method to Moskowitz and Caflisch’s smoothing technique. We
also discuss the bias that arises from using Moskowitz and Caflisch’s smoothing

technique. In Section 5.4 , examples are presented to compare the efficiency of the
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proposed generalization to the existing methods. Section 5.5 concludes the chapter.

5.1 Background

Monte Carlo integration using low discrepancy sequences has theoretical error
bounds of O(N~'log’ N) in dimension s. This error bound is established from
the Koksma-Hlawka inequality which states that for Monte Carlo integration of a
function f over the domain [0,1)* of N points, the integration error is bounded by
the product of two quantities (see (2.4.10)). The first quantity, Dy, depends on
the uniformity of the point set and is measured by its discrepancy while the second
quantity, V(f). relates to the smoothness of the function for which the function has
bounded variation in Hardy-Krause sense. In practice, this bound turns out to be
not very useful since it is not sharp and is only correct asymptotically. Neverthe-
less. this bound provides a theoretical justification for using sequences that have low
discrepancy. Furthermore, the Koksma-Hlawka inequality provides several “clues”
for which the effectiveness of the Monte Carlo integration using low discrepancy
sequences can be detrimental.

First, the factor N='log’ N is not smaller than N~!/2 until N is very large.
Furthermore, as the dimension increases, the value of N where the low discrepancy
sequences start to exhibit their asymptotic behaviour also becomes exponentially
larger. This implies that for fixed N, the efficiency of the low discrepancy sequence
reduces in dimension s. This is in contrast to the Monte Carlo method where the
rate of convergence is O(N~1/2) and is independent of the dimension.

Second, for f to be of bounded variation, the function f must be smooth.
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This can be a restrictive criteria since discontinuous functions often arise in Monte
Carlo applications. These functions, in general, have infinite variation unless the
discontinuities occur along the direction that is parallel to the coordinate axes.
The direction in which the discontinuity occurs plays an important role since low
discrepancy sequences are constructed so as to minimize the discrepancy along each
coordinate axis.

An example of discontinuous integrands is the characteristic function of a set,
which yields a value of 1 over a certain range of values and 0 otherwise. More

formally, if we denote the characteristic function of the set E as xg, we have

1 ifze ECR.
xe(z) =
0 otherwise.

Clearly, the discontinuity occurs at the boundary of the set E where the value
changes from 0 to 1. The variation is infinite unless the boundary of the set is
parallel to the coordinate axes.

Another example which contains a discontinuity is the acceptance-rejection
method used to generate independent sample points that have a certain density
distribution. The acceptance-rejection method achieves this objective by trans-
forming sample points from one distribution, say h(z), to the desired distribution
f(z). Suppose f(z) < vh(z),v > 1 for all z, the general acceptance-rejection

algorithm can be described as follow:
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Algorithm A-R-1

e REPEAT
1. Generate z,, € h(z).
2. Generate y, € U[0,1).

e UNTIL y, < L£Z=) 4p( return z,, .

¥ h(Za)

The above algorithm, which we have labeled as A-R-1. produces a sequence of
accepted points z, that are distributed according to f. For this algorithm to be
effective, the density h should be relatively simple so that it is easy to evaluate.
Furthermore, the constant v should be close to 1 since 1/ denotes the probability of
accepting the generated trial points. When « is large, there will be more iterations
in the loop before a successful point with the desired distribution is obtained. The
discontinuous nature of the acceptance-rejection method follows from the binary
decision to accept or to reject the trial point.

For both examples, the discontinuity leads to infinite variation unless the bound-
ary of the set is parallel to the coordinate axes. The Koksma-Hlawka inequality
would yield an infinite error bound and the star discrepancy is no longer mean-
ingful. The integration error bound of characteristic functions, nevertheless, can
be bounded by a generalized version of a discrepancy measure known as isotropic
discrepancy. The isotropic discrepancy, Jy, of a sequence ¢, € [0,1)*. 1 <n < N

is defined as (see also Kuipers and Niederreiter [53])

T = sup | 4G _

sup | == ~m(C),

where C is the class of all convex subsets of [0,1)*, A(C; N) is the number of z,
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which are inside C, and m(C) is the measure of C. Morokoff and Caflisch {60]
show that the theoretic error bound for the integration of characteristic functions
is O(N~*/(2s-1)) assuming an optimistic point set with Dy = N~! is used. This
result suggests that integrating a discontinuous function in high dimension. we
cannot expect to obtain a convergence that is much better than the Monte Carlo
method. A heuristic argument provided by Press and Teukolsky [83] in explaining
the loss of accuracy is that near the boundary of the discontinuity, the positioning
of a point just inside the set and thus contributes a value of 1 or just outside the
set and thus contributes a value of 0 is essentially random when the boundary of
the characteristic function is not parallel to the axes. The convergence for points
near the boundary can only achieve a random error. When this is combined with
the rest of the points which attain a superior low discrepancy rate, we obtain a new
rate of convergence that lies between these two extremes.

The computational experiments conducted by Morokoff and Caflisch [60], Moskowitz
and Caflisch [61], and Press and Teukolsky [83] support the above argument. They
observe a decline in the efficiency of the low discrepancy sequence when the method
is used to evaluate an integrand which is discontinuous. However, the magnitude
of deterioration is not as extreme as O(N~*/(22-1)). Their studies indicate that the
convergence rate is typically ranging from N~!/? and N~?/3. In Moskowitz and
Caflisch [61], an attempt is made to improve the convergence of low discrepancy
sequence when the function of interest contains a discontinuity. They propose a
“smoothed acceptance-rejection method” and show that when this method is com-

bined with importance sampling, the superior rate of low discrepancy sequence can
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be recovered. The idea underlying their method is to “smooth out” the bound-
ary where the characteristic function is defined so that the function is no longer
sharply discontinuous. In this chapter, we consider a generalization of their method
and provide a general framework for the smoothing technique. We also show that
Moskowitz and Caflisch’s smoothing technique yields an estimate that is biased
while the proposed generalized smoothing technique is unbiased.

Moskowitz and Caflisch [61] also rediscover the weighted uniform sampling
method proposed by Powell and Swann [82] as an alternative to avoiding discon-
tinuity. Moskowitz and Caflisch conclude that although the smoothed acceptance-
rejection method is more efficient than the ordinary acceptance-rejection method.
the weighted uniform sampling method is even more superior. In our computa-
tional examples, the generalized smoothing technique is not only more efficient
than Moskowitz and Caflisch’s smoothing technique, it is also competitive with the

weighted uniform sampling method.

5.2 Importance Sampling Using Acceptance-
Rejection Method

In standard Monte Carlo integration, the estimate of f[o.1)' f(z)dz, is obtained from

the sample average using

R 1 N
Ay =5 f(za) (5.2.1)

n=1
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where z., is uniformly distributed in the s-dimensional unit cube; i.e., £, ~ U[0.1)’.
It is well known that this method has a convergence rate of order O(N~/2). In
practice, the standard Monte Carlo method is often coupled with other methods
known as variance reduction techniques to speed up the convergence rate by reduc-
ing the variance of the Monte Carlo estimate. Examples of these methods include
the conditioning method, the use of control variates, the antithetic variable tech-
nique and importance sampling. Of particular interest to us is the importance
sampling which we now describe. Suppose there exists a simpler function g > 0
which closely resembles f. In our context, a function is simple when it can easily
be integrated analytically or numerically. The basic idea is to generate points that
are distributed according to g. The points are then used to evaluate f(z)/g(z) so

that the importance sampled Monte Carlo estimate is given by

;o fl=a)
Ay =) e (5.2.2)

n=1

where z,, is distributed according to g(z); i.e. z, ~ g(z), and g is a normalized
integrand such that fol g(z)dz = 1. The estimate Ay is an unbiased estimator of

fol f(z)dz since

fl - (=) | vz =
B [g] [0,1) g(z) g(z)d [0,1)'f(z)dz'

The variance of the importance sampled Monte Carlo estimate is smaller than the
corresponding standard Monte Carlo estimate as long as the variance of f/g is

smaller than f. The efficiency of this method therefore relies on how well the func-
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tion g mimics f and how easy it is to generate sample points that have probability
density g.

The acceptance-rejection method discussed in the last section is one of the most
commonly used tools to generate x, with a specific probability density. Suppose
the densities A and f in A-R-1 are respectively, replaced by U[0,1)* and g, we
obtain the following modified algorithm which we label as A-R-2:

Algorithm A-R-2

¢ REPEAT
1. Generate (z,,y,) € U[0,1)*+L.

¢ UNTIL y, < g(—:f"l and return z,, .

This algorithm again produces a sequence of accepted points z, having prob-
ability density g. The accepted points are then used to evaluate (5.2.2) to obtain
the importance sampled Monte Carlo estimate.

The discontinuous nature of the importance sampling with acceptance-rejection
method is apparent when we express the importance sampled Monte Carlo estimate

(5.2.2) as

_ 1 X f(za)
Zrlz.v;l W(ZTn,Yn) o1 9(zn)

Ax W(Zn, Yn) (5.2.3)
where N~ is the total number of trial points generated in algorithm A-R-2, and
w(Zn,yYn) is the weight associated with each functional estimate f(z,)/g(zn). In
this case, the weight w(z,,yn) admits only the values of 1 or 0 depending on

the decision making step in A-R-2. In other words, the weight w(z,,y,) is a
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characteristic function which can be expressed as

1 ify. < g(Zn)
Tan n ’
W(Tn, Yn) = X {yn < 9(7 )} = ”

0 otherwise.

Therefore, the sum Ef;l w(ZTp,yYn) denotes the total number of successful points
out of the N~ trial points and the ratio Zﬁ:l w(Zn,yn)/N™ can be interpreted as
the probability of acceptance. From the acceptance-rejection algorithm, this proba-
bility is exactly given by 1/v. Consequently, an alternate estimator for importance

sampling with acceptance-rejection is given by

A =l-§.:f(—z"—)w(:c ) (5.2.4)
" TN 2 glaa) *

Using integral representation, the above estimate can be regarded as the Monte

Carlo evaluation of the following integral:

o), g
7/[;'1)' ; g(z)x y < . dydz. (5.2.5)

It should now be obvious that the importance sampling with acceptance-rejection
method boils down to integrating a function that is discontinuous. This implies
that when a low discrepancy sequence is applied to importance sampling with

acceptance-rejection, its effectiveness is severely altered.
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5.3 Generalized Smoothed Acceptance-Rejection

Method

Equation (5.2.5) indicates that importance sampling using the acceptance-rejection
method is discontinuous. In this section, we consider a generalized smoothing
technique which smooths the boundary where the binary decision of accepting or
rejecting is made. Rather than having an “all-or-nothing” situation; i.e. a weight
of 1 or 0, we smooth the discontinuity by introducing a “bridge” near the boundary
of discontinuity so that for points in this region, the associated weight w(z,,yns)
changes gradually from 1 to 0, instead of only restricting to 1 or 0.

More formally, suppose there exists functions g; and gy such that
0<gr(z) <g'(z) =gz <gu(z) <1, for all z. (5.3.1)

The lower and upper bounds g, and gy can be fixed constants or functions that de-
pend on z. We consider the following representation of the weight in our smoothing

procedure. For ease of reference, we label them as bridge A and bridge B.

1 if y € [0, gz()),

. A wi(z,y) ify € lg(z).g°(2)),
Bridge A: w'(z,y) = |
wy(z,y) ify€[g7(z) gu(=)),

0 otherwise.
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4
1 if y € [0.g.(z)),
Bridge B: WP (z,y) = ¢ wB(z,y) ify€lg(z), gu(z)),
0 otherwise.

In either representation, the weights are chosen so that they satisfy the following

two conditions:

1. Boundary conditions: For bridge A, we enforce the following constraints

wf(z»gL(z)) =1,
wi (2, gu(z)) = 0, (5.3.2)

wi(z.g"(z)) = wi(z.97(2)),

while for bridge B, we have

wy (z,gc(z)) = 1,

(5.3.3)
wB(z.gy(z)) = 0.
2. Invariant property:
1
/ wi(z,y)dy = g () for bridge A, (5.3.4)
0
1
wB(z,y)dy = g°(z) for bridge B. (5.3.5)

0

Condition 1 ensures that when y = g1 or gy, the weights have the required values

of 1 or 0. Condition 2 ensures that the distribution is correctly sampled so that the
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discontinuous integrand (5.2.5) can equivalently be replaced by

' f(=)
’7/[;’1)‘ 9= )w(z ,y)dydz

where W(Zn,yn) € {W?(Zn,Yn), 2 (Zn,yn)}. This also ensures that the resulting
estimate is unbiased. Hence, an alternative Monte Carlo estimator based on the

transformed weight can be formulated as

N.Zf Z5) i (2. ). (5.3.6)

(zn)

The difference between (5.2.4) and (5.3.6) lies in the weight associated with each
functional evaluation f(z)/g(z). In (5.2.4), W(2Zn,yn) is restricted to be 0 or 1
while in (5.3.6), this constraint is relaxed. The weight W(z,.y,) is defined so that
the resulting estimate is smooth and continuous in the required interval. This goal
can be attained by an appropriate functional form of w(z,,y.) that is smooth and
continuous in the intervals [gr(z),g"(2)] and [g”(x), gu(z)] for bridge A represen-
tation, and [g(z), gu(x)] for bridge B representation. There are many candidates
for the choice of W(Z,,yn). Here we only consider piecewise polynomial function
for simplicity. We have a choice of fitting two polynomials to bridge A or just one
polynomial to bridge B. The decision depends on the number of parameters of the
polynomial so that these parameters are uniquely determined to satisfy the bound-
ary condition and invariant property. For the random sequence, the choice of the
bridging and the functional form of w(zn,yn) have no impact on rate of conver-

gence of both estimators (5.2.4) and (5.3.6), although the variance will be affected.
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On the other hand, when the random sequence is substituted by low discrepancy
sequence, estimator (5.3.6) yields a much higher convergence rate than (5.2.4) since
the discontinuity is effectively eliminated.

We now illustrate the construction of the weights by assuming the weight is

either linear or quadratic.

Piecewise Linear

In the first case, we assume the bridge is linear and has bridge A representation.
Under the above assumption, the weights wi(z,y) = wi™°"(z.y) and wi(z,y) =

wkinear (g y) can be represented as

wh™or (2, y) = a; + bily — go(z)]

and

wh™eor (2, y) = a3 + baly — g7 ()]

where the parameters a;, b;, j = 1,2 are determined so as the boundary conditions
(5.3.2) and and the invariant property (5.3.4) are satisfied. The boundary conditions

lead to

a; = 1, (5.37)

1+ big*(z) —gu(z)] = a2 = —bigu(z) - g°(2)]. (5.3.8)
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From the invariant property, we have

gL () g°(T) g°(2)
/ ldy + / 1+ bify — gz()] dy + / az + baly — g°(2)) dy = g (2).
0 gc(T) g°(Z)

Evaluating the above expression yields
bi(g”(z) — gr(=))? = ba(gu(z) — g7(=))>. (5.3.9)

Thus (5.3.8) and (5.3.9) involve two equations with two unknowns. Solving these

two simultaneous equations yield the following set of solution:

gu(z) — g°(z)
[gu(z) — gr(=z)][g™(=) — gr(z)]

b1=—

and

B g'(2) = g (=)
lgu(z) — gu(2)][gu(z) — g™ (=)]

bg=

To summarize, the generalized smoothed acceptance-rejection technique assuming

the weight is piecewise linear can be formulated as follow:

¢

1 if y € [0,91(z)),

_ gu(z) — g°(z)
[gu(z) — g(=)]lg" () -

g"(z) — gr(z) ( 3

gu(z) — gr(=) gu(z) — g7(=)

0 otherwise.
\

1

~ Linear gL(z)] [y - gL(z)] 1fy € [gL(z)’ g'(:l!)),

w (z,y) = <

[y — g'(z)]) if y € [¢"(2). qu (=),
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Because of the linearity, W% (z,y) always lies between 0 and 1.

Piecewise Quadratic

Similarly, when we fit a piecewise quadratic function to the weight in the interval

[gr(z). gu(z)] that has bridge B representation, we obtain

,

1 if y € [0.g.()).

u-]QuadratiC(z’ y) = ! 1+ a[y _ gL(:!:)] + b[y _ gL(z)]2 lfy € [gL(:B), gu(:c)).,

0 otherwise,
\

where

_ 2(3g7(x) — gr(x) — 2gv(=)]
[gu(z) — gr(=)]?

and

_3[29°(z) — g(2) — gu(=)]

b= 90(@) - 92@)P

In this case, the weight w?“¥ret(z y) is no longer restricted to [0,1]. In either
functional form, the weight is continuous in the required intervals but at the bound-
ary it is not differentiable. Differentiability can be accomplished by a cubic spline
but we do not do this here since the computational results in Morokoff and Caflisch
[60] indicate that differentiability is not as critical as continuity in Monte Carlo

integration using low discrepancy sequence.
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We now consider another special case of the bridging that is piecewise linear.

Suppose

N o

é
gr(z) =g (z) — and  gu(z)=g7(z) + 3 (5.3.10)

the modified weight W%’ (z,y), which we denote by w*(z,y), becomes

if y € 0,97(2) - 3),

lZ)M-C(

zy)={ 2 (g@) +o—y) Fyelr(®) -ta(z) +9)
2

S o =

otherwise.

\

This coincides to the smoothed acceptance-rejection technique proposed by Moskowitz
and Caflisch [61].

Comparing WX (z,y), w?4e¥e4(z,y) and ¥™ ¢ (z.y), we note that the gen-
eralized smoothed acceptance-rejection method offers a greater flexibility in defining
the weights. Both gr(z) and gy(x) can be constants or any parametric form as
long as condition (5.3.1) holds. In practice, the implementation of the generalized
smoothing technique is facilitated by convenient choices of gr(z) and gy(z). In
particular, suppose g°(x) is a complicated function and gr and gy are constants
or simple functions, the generalized smoothing technique reduces the computation
by avoiding evaluating g*(z) whenever y € (0,gr(z)) or y € [gu(z),1). This is in
contrast to Moskowitz and Caflisch’s smoothed acceptance-rejection method which
requires the calculation of g*(z) for all trial points.

Another inherent difficulty for the Moskowitz and Caflisch’s smoothing tech-
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nique is in choosing the appropriate smoothing constant §. They argue that the con-
stant & should be sufficiently small. However, if § is made too small, the smoothed
acceptance-rejection method reduces to the ordinary acceptance-rejection method,
hence losing the advantages of continuity. More crucially, Moskowitz and Caflisch’s
smoothing technique leads to an estimate that is biased for arbitrary 4. This fol-
lows from the fact the invariant property is violated since both gr(z) and gy(z) are
simply defined as a flat adjustment to g*(z) (see Equation (5.3.10)). Such choices
do not guarantee gr(x) > 0 and gy(x) < 1 for all . In the extreme case where

gr(z) < 0 and gy(zx) > 1 for all z, i.e. the points are always accepted. we have

/ Mz y)dy = / E (5@ +3 ~y) dy

which does not reduce to g*(z) (unless § = 1) as required by the invariant property
(5.3.5). This implies that if the acceptance-rejection method is replaced by the
above smoothed acceptance-rejection method, the accepted point z, with accep-
tance weight W °(z,,y,) does not have the necessary density g. Consequently,
the resulting estimate is biased. To ensure that the original functional value is not
distorted after Moskowitz and Caflisch’s transformation, we need to introduce an
additional constraint. For arbitrary §, the smoothing constant satisfies § < ¢ where
€ is the maximum constant for which the following two conditions hold:

sup g (z)+ <1 and inf g°(z) —

Zelo,1)*

I
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The proof for the convergence of the smoothed acceptance-rejection method given
in Moskowitz and Caflisch [61] implicitly assumes that & is chosen such that § < ¢&.
On the other hand, even if £ does exist, it will always be more efficient using
generalized smoothed acceptance-rejection method with gr = infgeo.1)+ 9°(=) and

gu = supgep)+ 9" (). The numerical examples discussed in the following section

also support this argument.

5.4 Numerical Experiments

We now compare the efficiency of the proposed generalization to Moskowitz and
Caflisch’s smoothing method. We also consider the weighted uniform sampling
method. The weighted uniform sampling method involves taking the ratio of two
direct Monte Carlo integration estimates — an estimate of the original function f in
the numerator, and an estimate of the importance function g in the denominator.
The weighted uniform sampling method is continuous (as long as f and g are
continuous) and does not require the determination of the acceptance weight for
each point. This method also has the advantage that sample points need not be
generated for the density g. Furthermore, a substantial variance reduction can be
achieved due to the strong positive correlation between f and g.

On the other hand, for problems with large regions of low importance, the
weighted uniform sampling method requires more function evaluations than if im-
portance sampling is used. In this situation, importance sampling using acceptance-
rejection method would be more efficient than the weighted uniform sampling

method. The weighted uniform sampling method also has the disadvantage that
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the estimate is biased although Powell and Swann [82] and Spanier and Maize [98]
shown that as N — oo, the bias is negligible in comparison with the RMSE.

For the examples studied below, we consider the following estimates:
N
- 1
1. Direct Monte Carlo method: A{ = ¥ > f(za), za~UD,1).
n=1

2. Weighted uniform sampling method:

N
A0 = Zn=i f(Z) g e
VOSSR @y U0

f(zn)
g(z n)

4. Moskowitz and Caflisch’s smoothed acceptance-rejection method:

Ty ~ g(z)

s

. Acceptance-rejection method: AQ) = Z

Av =L Zf(::; P C (2, yn)s (s T C (20, ym) ~ ().

5. Generalized smoothed acceptance-rejection method with linear weights:

6 = L S fl@a)
AP = 2y ) (@ 8 (@) ~ ()

6. Generalized smoothed acceptance-rejection method with quadratic weights:

- .f(zﬂ uadratic 17 ratic
Asg) Z g($ Q drats (znvyn)’ (zn,wQuad at (z‘myﬂ)) ~g(z)’

For the last three estimators, N* is chosen so that the sum of the acceptance

weights is within one unit of N. Note that the dimension of the sequence for the
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methods involving acceptance-rejection always has one dimension more than the
direct Monte Carlo or the weighted uniform sampling method. The extra dimension
serves as a decision maker for determining the appropriate weight associates with
each point.

The efficiency of the underlying method is assessed by comparing the result-
ing root-mean-squared error (RMSE). For a given value of N, the RMSE over M

empirical estimates is defined as follow:

M
_ |1 i) . _
RMSE = Mg(AN'k-A)z, ji=1,....6

where A%)k denotes the k-th empirical estimate of /.1&’,) and A is the true value of
the underlying problem; i.e. A = f[o.l)' f(z)dz. In our examples, the true value
of the integral is approximated to high degree of accuracy either using quadrature
method or direct Monte Carlo method with enormous number of sample points.
We set M = 50 and compute RMSE at N = 2!, 10 < ¢ < 19. It is important
to note that when calculating RMSE, the point set is not only distinct for each
repetition, it is also different across different values of N. For instance, to estimate
Ag'}zk where we have just computed Ag\’,l)k with N, > N, in practice, we often
carry out the simulation by only adding N, — N, points to the existing N, points
to obtain the error estimate using N points. In our simulation, we deliberately use
a fresh partition of the sequence consists of N, elements so that the points used to
compute flg’,gk are not reused in Ag\ﬁk This ensures the estimates Agﬁk and Af’:};)k

are not correlated so that the RMSE calculated for each N is “independent” of the
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error calculated for other values of N.!
Once RMSE:s have been computed for several different values of N, we determine

the empirical convergence rate from the following relationship:
RMSE(A{) = N~ (5.4.1)
and
log RMSE(Ag)) = logc—-alogN

The values a and ¢ can be estimated from linear regression on the empirical data.
Although the rate of convergence estimated using above relationship may not rep-
resent the asymptotic rate, it provides an adequate measure of efficiency for the
finite number of sampling points considered in practice. Therefore the parameter «
can be interpreted as an indicator of performance; the higher the a, the greater the
rate of convergence. For random sequence, we would expect a = 1/2 while for low
discrepancy sequence, we would expect a to be greater than 1/2, say approaching
1, and a smaller coefficient c.

Two examples are used in our comparison. The first example is a 7-dimensional
problem extracted from Example 3 of Moskowitz and Caflisch [61] while second

example is an extension of the first example to high dimension (s = 20).

Strictly speaking, this statement is valid only for random sequences. Points in low discrepancy
sequence are correlated and the resulting RMSEs are inevitably correlated even when different
part of the sequence is used. In the present studies, the “independency” issue is not of critical
concern.
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Example 5.1 Let z € [0,1)7 and consider the function

7
filz) = el~Ti=isin®(57) gregin (sin(l) + ——253632)

using the positive definite tmportance function:

alz) = iel“zg=1 sin(§20)
n

where 1 is the normalizing constant such that

1
n= / gi(z)dz =e- </ e"i“'(gz)dz)
[0.1)7 0

3

Example 5.2 In this ezample, we assume z € [0,1)%° and set
20
fo(z) = €2~ iz18i0%(§20) aregin (sin(l) + —Zézz)&) )

Similarly, we consider the importance function
1 252, sin?( i)

g2(z) = ;e

where n is the normalizing constant such that

1 10
n= / g2(z)dz = €* - (/ e"i"z(%‘)dz>
[0.1)20 0

In these two examples, we set 71 = Supgeo,1)7 91(Z)7~" and 2 = supgg 1y g2(Z)n~"



CHAPTER 5. SMOOTHING DISCONTINUITIES 125

respectively. This results in 4, = 3.7 for Example 5.1 and v; = 5.5 for Example 5.2.
Hence the acceptance-rejection methods for these two examples on average require
3.7N and 5.5N as many points before obtaining N accepted points.

For Moskowitz and Caflisch’s smoothed acceptance-rejection method, we con-
sider § = 0.1 and 0.2 for the smoothing constants. This is arbitrary but Moskowitz
and Caflisch [61] have reported success with § = 0.2. For the generalized smoothing

techniques, we also consider two possible candidates of (g.(z), gv(z)); namely

. 1 1
I: inf —yg(z), sup —aq(z)
Tel0.1)” 71 Tefo,1)" 11
I L opesliinGa) gup g
7N Telo,1)” N7

for Example 5.1, and

1 1
I inf —go(x), su —ga(x
(ze[o,l)m ngz( ) ze[og)zo 721]92( ))
II: Lez_z:}:l sin(%Z;), sup 1 gz(z)
727 Zelo,1)20 V27

for Example 5.2. Note that condition (5.3.1) is satisfied in all these choices. The
first set of candidates (i.e. I) is in general preferred to the second set since both gr,
and gy are constants and hence eliminate the additional computation of these two
functions.

Figures 5.1, 5.2 and 5.3 provides a comparison of the simulated results using
random sequence generated from RAN2 from Press et. al. [84], and low discrepancy

sequences using the construction methods due to Halton [32] and Sobol’ [93]. The
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log (RMSE)

log (RMSE)

Example 5.1 - Random Sequence

-3 Direct (0.48) —e—
4+ W.U.S. (0.50) ——
A-R (0.48) +
0T M-C & = 0.1 (0.48) —o—
64 M-C & = 0.2 (0.43) —e—
Linear-I (0.48) ——
ST+
~~~~~~~ Linear-II (0.49) &
0 Iy S Quadratic-I (0.48) -o-
94+ 00 —T5——, T Quadratic-II (0.49) e
SR A e
a1+ -
-12 t : t t + t t
6 7 8 9 10 11 12 13 14
log N
3 Example 5.2 - Random Sequence
) Direct (0.52) —e—
4+ W.U.S. (0.49) ——
A-R (0.51) +
ST M-C 6 = 0.1 (0.51) —o—
64 M-C § = 0.2 (0.51) —e—
*Linear-I (0.36) —o—
-7+
Linear-II (0.51) &
ol Quadratic-I (0.52) -<o-
94 Quadratic-II (0.53) e
-10 +
-11 T+
-12 } } t } -+ —+— t
6 7 8 9 10 11 12 13 14

log N
Figure 5.1: Relative Efficiency using Random Sequence
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Example 5.1 - Halton Sequence

-7
-8 +
9+
-10 T
g-ll T
-12 +
= .13+ Direct (0.97) —— ~
0 W.U.S. (0.93) ——
= .14 + A-R (0.72) +
15 | M-C6=0.1(0.80) ——
- M-C § = 0.2 (0.30) —e—
-16 + Linear-I (0.89) ——
Linear-II (0.89) o R
-17 + Quadratic-I (1.00) -<- IR
-18 Quadratjc-II (0.96), e ) . , , ,
6 7 8 9 10 11 12 13 14
log N
5 Example 5.2 - Halton Sequence
-6 +
T+
-8 +
a9
é-lo + ~
e0.11 + Direct (0.99) —e—
= W.U.S. (0.94) ——
-12 + A-R (0.60) +
13 | M-Cé=01(0.62) ——
- M-C 6§ = 0.2 (0.27) ——
-14 + Linear-I (0.76) —o—
Linear-II (0.75) =
-15 T Quadratic-I (0.94) -o-
-16 Quadratjc-II (0.95) - e \ \ . : ;
6 7 8 9 10 11 12 13 14
log N

Figure 5.2: Relative Efficiency using Halton Sequence
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Example 5.1 — Sobol’ Sequence

-7
-8 T
9+
-10 T
-11 1
-12 + * -
-13 +
W.U.S. (0.97) ——
-14 1 A-R (0.60) + x
15 L M-Cd=0.1(0.70) ——
- M-C 4§ =0.2 (0.21) ——
-16 + Linear-I (0.83) ——
Linear-II (0.75) &
-17 T Quadratic-I (0.94) -o-
_18 Quadratjc-II (0.90) e ) ) y ) >
6 7 8 9 10 11 12 13 14
log N
p Example 5.2 - Sobol’ Sequence
-6 +
74
-8 T+
-9 +
-10 + * — - -
*
-11 + Direct (0.94) —e— S
W.U.S. (0.96) ——
-12 + A-R (0.59) +
13 + M-C § = 0.1 (0.65) ——
- M-C § = 0.2 (0.18) ——
-14 + Linear-I (0.73) ——
Linear-II (0.74) o
-15 T Quadratic-I (0.97) -<--
-16 Quadratjc-II (0.95) o , , , . | x
6 7 8 9 10 11 12 13 14
log N

Figure 5.3: Relative Efficiency using Sobol’ Sequence
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results are presented on a log-log scale. The parameter a in (5.4.1) is obtained from
a least squares linear fit and is reported in parenthesis for each method together with
the fitted straight line (except for Moskowitz and Caflisch’s smoothing technique

with § = 0.2, see point 4 below). We summarize the results as follow:

1. For the range of sample points considered in these examples, the simula-
tion methods coupled with importance function have resulted in substantial
reduction of error estimates over the direct Monte Carlo method. This is evi-
denced by the sets of lower fitted lines for these methods; i.e. the coefficients ¢
in (5.4.1) are smaller for Monte Carlo using importance sampling or weighted

uniform sampling than the direct Monte Carlo method.

2. Although weighted uniform sampling and importance sampling using acceptance-
rejection with or without smoothing are effective in reducing the error, the
rate of convergence remains unaffected for the random sequence. The fitted
parameter value a in Figure 5.1 is relatively stable at the anticipated level
0.5. This implies that the continuity adjustment has no impact on random
sequence. In contrast, when the random sequence is replaced by the low dis-
crepancy sequence, we observe a wide range of efficiency. In particular, there
is a significant decay in the rate of convergence when switching the direct
Monte Carlo method to Monte Carlo with importance sampling using the
ordinary acceptance-rejection method. (Compare for example, a =~ 0.93 for
the direct Monte Carlo method to a@ = 0.6 for importance sampling with
acceptance-rejection method using Sobol’ sequence.) This supports the argu-

ment that discontinuity has a detrimental impact on the efficiency of the low
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discrepancy sequence.

3. The simulation result also reaches the same conclusion as Moskowitz and
Caflisch (61] on the superiority of the weighted uniform sampling over impor-
tance sampling with smoothed acceptance-rejection. However, Figures 5.2
and 5.3 also indicate the proposed generalized smoothing techniques can
achieve a significant improvement over Moskowitz and Caflisch’s smooth-
ing technique. In fact, the generalized smoothing technique using quadratic

weights candidate I as (gz, gu) is as efficient as the weighted uniform sampling.

4. The results in Figures 5.1, 5.2 and 5.3 also reveal the bias in Moskowitz and
Caflisch’s smoothing technique with § = 0.2. This is to be anticipated since
we have set v; = supgep,)s 79i(2), and this leads to supgep,).97(2) = 1
for both examples. This implies that with positive probability, g*(z) + g—
can exceed 1. Hence condition (5.3.1) is violated. The severity of violation
increases with 4. As noted earlier, this leads to an estimate that is biased
and consequently accounts for the virtually flat RMSE for N > 32,768 in
both examples. The estimated parameter a also becomes meaningless in this
case. When 4 = 0.1, Moskowitz and Caflisch’s smoothing technique seems to
have improved over the ordinary acceptance-rejection method. For instance,
consider the Sobol’ sequence. The estimator a is approximately 0.70 and
0.65 for Examples 5.1 and 5.2, which are better than 0.60 and 0.59 for the
ordinary acceptance-rejection method. The reason for this behaviour is that
for the ranges of N considered in these examples, the bias arises from using

a = 0.1 is negligible compared to the RMSE. If N is increased to sufficiently
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large, the RMSE would eventually become “flat” as in the case for @ = 0.2.

5.5 Conclusion

It is well documented that continuity of the integrand plays a crucial role in the
efficiency of the Monte Carlo integration using low discrepancy sequence. Un-
fortunately, discontinuous functions are not uncommon in Monte Carlo methods.
Examples include integrating a characteristic function or the acceptance-rejection
method. In this chapter, we consider a generalized smoothing technique. This
is a simple procedure for transforming a discontinuous function to a continuous
function. The continuity adjustment has no effect on the rate of convergence for
random sequences. However, a significant improvement can be achieved using low
discrepancy sequence. Because of its simplicity and flexibility, the proposed gen-
eralization is more efficient than Moskowitz and Caflisch’s smoothing technique.
Furthermore, the proposed method is unbiased and is comparable to the weighted

uniform sampling.
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Chapter 6

Lattice Points Methods

6.1 Introduction

In earlier chapters, we have applied low discrepancy sequences to value derivative
securities with dimensions as high as 365. We found that LD method, in general,
is significantly more efficient than Monte Carlo method. This is also consistent
with the findings reported in Acworth, Broadie and Glasserman [1], Boyle, Broadie
and Glasserman [10], Caflisch, Morokoff and Owen [16], Galanti and Jung [27], Joy,
Boyle and Tan [46], Ninomiya and Tezuka [72] and Paskov and Traub [80] using
different types of financial instruments. All of these studies have emphasized on
high-dimensional applications and overlooked those financial instruments with low
dimensions. Nevertheless there are many low-dimensional financial contracts which
also require efficient numerical techniques in situations where analytic solutions are
not available or analytic solutions are possible but are too complicated to evalu-

ate. One example is the spread options. Although these options only involve two

133
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dimensions, analytic solutions are not available and hence various numerical approx-
imation techniques have been proposed. Other examples include basket options,
options on the maximum or minimum of s assets, (generalized) rainbow options or
multi-strike options and exotic options such as high water mark options and Asian
options which are embedded in the equity-indexed annuities. These options are
typically associated with low dimensions ranging from 2 to 7. In these cases, we
would expect LD methods to be very efficient relative to Monte Carlo methods, in-
ferring from their success in much higher dimensions. In this chapter, we show that
using number-theoretic methods such as the good lattice points method is superior
to LD methods when an additional regularity of the integrands can be assumed.

In the last chapter, we show that discontinuity has an adverse impact on the
superiority of the LD methods. On the other hand, any additional regularity of the
integrand. besides having bounded variation in the sense of Hardy and Krause, is
not reflected in the Koksma-Hlawka error bound. This is in contrast to classical one-
dimensional integration rules, such as the Gaussian formulas, which are designed
to exploit the particular regularity class of the integrand to achieve a higher rate
of convergence.

In this chapter, we discuss another family of numerical quadrature formulas
known as method of good lattice points. These lattice points, which are con-
structed based on number-theoretic methods, are specifically tailored to periodic
functions. The method of good lattice points achieves a rate of convergence of order
O(N~=log®® N), for positive constants a and 8 which does not depend on N. For

certain values of a and 3, this rate compares favorably to the rate O(N~!log*~' N)
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attained by LD methods with fixed point set.

The purpose of this chapter is to show that whenever an additional continuity
exists for the integrands of interest, the lattice points are preferred to low discrep-
ancy points. In general, most integrands do not have the required periodicity. Ways
for circumventing such problem are also discussed in this chapter.

The rest of the chapter is organized as follows: Section 6.2 provides an overview
on the method of good lattice points. Section 6.3 provides a brief discussion on pric-
ing European-style derivative securities. Section 6.4 considers several applications
using the method of good lattice points. In particular, we examine spread options.
exchange options, generalized rainbow options and path-dependent options such as

lookback options and Asian options. Section 6.5 concludes the chapter.

6.2 The Method of Good Lattice Points

In late 1950s and early 1960s, both N.M. Korobov and E. Hlawka introduced an

interesting family of numerical quadrature formulas that are specifically tailored to
periodic function of several variables. These formulas take the form

N

1 k

fludu= =) f ({—z})

[0,1) N k; N

1

where N is the chosen number of quadrature points and z = z(N) € Z’ is a carefully

chosen integer vector that depends on N and {z} = z—|z]. Since we have assumed
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f has period 1 in each variable, the above expression can be reformulated as

fpium 23 f (52) (6:2.1)

N
k=1

[0.1)*

The efficiency of these rules critically depends on the number-theoretic properties
of the integer vector z. It has been established that, as N — oo, there exist a

vector z(N) such that the quadrature error is of the following order

1, (k| _ [ log®N
/[0'1)‘ flu) - N;f (ﬁ?.) = 0( ) (6.2.2)

Na
for positive constants a and 3 and for integrands f belonging to certain class of

smooth periodic function.

The vector z that satisfies (6.2.2) is generally known as the good lattice points
(g.l.p.) or the optimal coefficients. The term “g.l.p.” was first coined by Hlawka
[38] while the term “optimal coefficient” is due to Korobov [52]. The resulting
quadrature method is known as the method of g.1.p.. More recently this quadrature
rule is also known as rank-I rule. See Sloan and Joe [92] for details.

6.2.1 Error Bounds

In this subsection, we discuss error bounds corresponding to the method of g.l.p..

Let f(u),u € [0,1)* be a periodic function on R* with period 1 in each of its s
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variables. Let f(h), h € Z*. denote the Fourier coefficient of f so that

flu)= Y f(h)exp(2rih -u) (6.2.3)
hez:
where
f(R) = (u) exp(—2r ik - u)du (6.2.4)
[0.1)*

and the inner product h - u = hyuy + haua + --- + h,u,.
For fixed @ > 1. we say f belongs to the class of continuous periodic function

&3(C) provided that for all nonzero h € Z*, we have

UWHSChLMMHM4 =Cr(h)™® (6.2.5)

i=1

where r(h) = [];_, max(1.|h;|]) and C is a constant does not depend on k. The
rate of decay of the Fourier coeflicient of a function is related to the smoothness of
the function. Hence £;(C) can be interpreted as characterizing a class of function
of certain smoothness. Zaremba [108] proved the following sufficient condition for
membership of this class when a > 1: If f is a one-periodic function on R’ whose

partial derivatives

aal+"'+aaf

Pa . Gul

with 0<gg;<a-1 for 1<:1<s

exist and are of bounded variation on [0,1)’ in the sense of Hardy and Krause, then

there exists an explicit C for which f € £2(C).
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Now consider approximating the value of the integral using the quadrature for-

mula as given in (6.2.1). We also assume f € £3(C) so that its Fourier series is

absolutely convergent and represents f. Substituting (6.2.3) into the right-hand

side of (6.2.1), we obtain

LS (k) -

Note that

and £(0) = f,,,, f(u)du. Rearranging (6.2.6) yields

N
1 k
() -
N k=1 N (0.1)

where

én(h-z) =

k=1 h ez
= f(h)ZN: <2mih z) (6.2.6)
N xP N -
heze k=1
)_ N, if h-z=0 mod N
0, otherwise.
(w)du = Y Sn(h-z)f(h) (6.2.7)

hz0

1 if h-z=0 mod N

0 otherwise.

The sum in the right-hand side of (6.2.7) is over all nonzero h € Z° with h-z =0

mod N. Hence, the quadrature error is represented by the sum of certain Fourier
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coefficients of f.
Since f € £2(C), it follows from (6.2.5) that the quadrature error is bounded

from above by

v (v)
— —z)- du| < CP.(z,N (6.2.8)
Nkz;:f ¥7) " o, fO0% (2. M)
where
Pa(z.N) = S ‘5—’:%!”—). (6.2.9)

h+0

It follows from (6.2.8) that it is desirable to use a vector z such that P,(z,N) is
small for a given N. Observe also that the quantity P.(z, N) will be small if the
smallest r(h) in the sum (6.2.9) is large. Hence we can define g.1.p. or the optimal

coefficients independent of a as follows:

Definition 6.1 Let Ny, N,,... be an increasing sequence of positive integers. A se-
quence z(Ny), z(N3),... of s-tuples of integers is a good lattice points sequence
or an optimal coef ficient sequence (and each g(N;) is known as a set of
good lattice point or a set of optimal coef ficient modulo N;) if there
ezist numbers A > 0 and B such that for every i, every solution h = (hy,... ,h,)

of the congruence

h - z(N;) mod N;



CHAPTER 6. LATTICE POINTS METHODS 140

has

r(h) > A—F— (6.2.10)

1ogﬂ N;

The bound in (6.2.8) implies that if 2(V;) is a good lattice point sequence, we can

establish the following error bound

flu) - i (—z(N))' (bﬁxm) (6.2.11)

[0'1)‘ k:

as i — oo and for every f € £2. This yields the same relation given in (6.2.2) with
N; = N.

For this reason, it is also customary to define g.l.p. z as a s-tuple of integers
for which (6.2.11) is satisfied. The lowest 8~ for which (6.2.10) holds is known as
the indez of the optimal coefficient sequence and it depends on the dimension s.
The optimal coefficient sequences constructed by Korobov [52] has index 8° < s.
When N is prime, Bahvalov [4] shows that 8* can be reduced to s — 1. The work
of Sargin [102] indicates that the lower bound on af8" is at least s — 1. It is only
in the case of s = 2 where Sargin’s lower bound is attainable. To date, the best
bounds on P.(z, N) have been those obtained by Niederreiter [69].

For a given pair of N and z, an explicit error bound for rules of the form (6.2.1)
can be constructed. The idea is to find a function that belongs to the class £5(C)

for which the maximum error in (6.2.8) is attained. This particular function, which
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we denote by f., can be represented as

1
fa(u) = Z —exp(2rih - u).
hez: r(k)

Hence, (6.2.8) becomes

= P,(z, N). (6.2.12)

1 k
AT @ vy - a d
w2 ( Nz) [ fatwda

Since f, is the worst function in the class £2(C), it also follows from (6.2.8) and

(6.2.12) that for any f € £5(C), we have

< CP,(z,N). (6.2.13)

L zN:fa (iz) - fa(u)du
N o N (0.1)°

Therefore, the asymptotic bound (6.2.11) can be replaced by the explicit (and
sharp) error bound of (6.2.13) with the assurance from (6.2.11) that if z is a g.1.p..

then P,(z, N) will go to zero rapidly as N increases.

6.2.2 Constructions of Good Lattice Points

So far we have indicated that there exists g.1.p. such that the error bound in (6.2.2)
(or (6.2.11)) is attainable. We have also discussed that the asymptotic bound
(6.2.11) can be replaced by the explicit (and sharp) error bound of (6.2.13). In
this subsection, we discuss how to find these g.l.p.. It turns out that these g.l.p.
are neither rare nor unique. There exists a simple construction for two-dimensional

g.lp.. In higher dimensions, we only have existence theorems for g.l.p.. In 1959,
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Korobov demonstrated the existence of g.1.p. for N that is either prime or product
of two primes. It also follows from his existence proof that for prime N, half or
more of all the possible vector z can be suitable choices for g.l.p.. Several authors
have subsequently relaxed the restriction on N in the existence proof of Korobov.
Keast [47] shows the existence of g.l.p. of order N when N is a product of more
than two primes while Niederreiter [64] shows that g.l.p. exist for all N.

We now consider the construction of the g.l.p. in two dimensions. This is the
only known situation where the lower bound of Sargin is achieved. Hence we obtain

an error bound of the form

_ log N
= O( Na ) (6.2.14)

Fu) - %g:f (x2)

(0.1)?

for s = 2. The g.l.p. that yields the above rate of convergence is constructed from
the Fibonacci numbers. See Bahvalov [4]. Recall that the Fibonacci numbers are

defined by
F1=1, Fz =1, Fm=Fm-1+Fm_2, m23
where F,, is the m-th Fibonacci number. For any N = F,,, the point set

k kFm-1
OGS -

generated from the optimal coefficient z = (1, Fi,—,) is a g.1.p. that attains the error

bound in (6.2.14). Hence the 2-dimensional g.l.p. exists only for specific values of
N. Specifically, the first 15 Fibonacci numbers are {1, 1, 2, 3, 5, 8, 13, 21, 24, 55,
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89, 144, 233, 377, 610}.

In higher dimensions, the optimal coefficients are normally found by a computer
search. From Definition 6.1, the vector z is defined independent of the smoothness
parameter . This implies that if z is “optimal” or “good” in the sense of Korobov
and Hlawka for a fixed value a in £2(C), it is automatically “optimal” or “good” for
other classes £2(C) with other values of a.! Hence it is not necessary to seek g.l.p.
that are tailored to the specific smoothness class of the function. The method of
g.l.p. automatically exploits all the smoothness in the integrand to achieve a better
rate of convergence.

Korobov shown that for fixed a, the g.l.p. sequences can be constructed by
calculating P,(z,N) in (6.2.12) over all possible vectors z and choosing the z
which minimizes that quantity. For convenience, we assume f[o.1)' fo = 1 so that

(6.2.12) becomes

Hence, searching g.l.p. reduces to finding z that minimizes P.(z,N). A more
convenient representation of f, is to express it as a product of functions of a single

variable (see Haber [31]):

fa(u) =[] Fa(w)

=1

10f course, the constant C and 8 will vary with a.
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where

Fy(u) = Z exp(2rihu)

& max(L, [h])’

Normally « is taken to be an even number since in these cases F, can be expressed

in terms of the Bernoulli polynomials. For a = 2,4 and 6, we have

2

Fyu) = 1+ 3'3—(3u(u —1)+1)
2t 2 )
Fy(u) = 1+E(1—30u (1 —u)?)
6
Fs(u) = 1+ 34% (1 - 21u® + 105u* — 126u® + 42u°)

for u € [0,1].

This direct approach of finding a g.l.p. over all possible z becomes prohibitive
for large values of N and s since there are N* possible choices of z to search through.
For this reason, Korobov [52] considers a more restricted but manageable structure

of the lattice points that is of the form

z()=(1, I, ? mod N, ..., I°"! mod N), 1<l<N.

Each vector z thus consists of only one parameter with a total of N — 1 possible
choices, as opposed to N*. A further reduction in the number of vectors to be

searched through is still possible by recognizing that

Fo(u) = Fo(l — u), u € [0,1].
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This implies f,(kz({)/N) = fa((N — k)z(I)/N) so that the search is reduced to
almost half by considering only z(I) for 1 <1 < |N/2].

Tables of g.l.p. obtained by minimizing P;(s, N) can be found in Haber [31].
Other tables of g.l.p. can be found in Saltykov [88], which are reproduced in Stroud
[99], Hua and Wang [41], Sloan and Joe [92].

6.2.3 Periodization

We have indicated that the method of g.l.p. exploits the additional regularity of
the function such as the periodicity (with respect to each component of u). Most
functions encountered in practice do not meet these criteria. Some functions may
be periodic in some of the components but not all. In these situations we must
carry out a preliminary transformation to convert a sufficiently regular nonperiodic
integrand into an integrand that has the required periodicity. In doing so. we must

take note of the following criteria:
1. The transformation should be relatively simple.
2. The transformation should preserve the value of the underlying integrand. In

other words, we must have

(u)du = d(u)du

(0.1)° (0.1)

where f and ¢ are the original and the transformed integrands.
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3. Regularity of the function should be preserved in the sense that if all the
partial derivatives

gt tang

3'11,?1...3.“?. with0 <o <a 1<i<s

of the original function f exist and are of the bounded variation on [0,1)*
in the sense of Hardy and Krause. then the transformed function ¢ should

satisfy the following two properties:

e all the partial derivatives

aa1+---+aa¢

au?l---au?‘ with0< g, <a. 1<1<s

are of bounded variation on [0, 1)’ in the sense of Hardy and Krause:

g+t ang

(7 a
aull"‘aUg‘

aa1+-”+a,¢

a 83
ult ... gu e

u; =0 u;=1

with0<ag; <a-1, 1<1<s.

A good account of the methods for periodizing the integrands can be found
in Hua and Wang [41], Zaremba [109] and Beckers and Haegemans {6]. In this
subsection, we only describe a particular class of these techniques. These techniques

are based on nonlinear transformation such that each variable is defined as

u = (1)
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where 9 is a smooth increasing function which maps [0, 1] onto [0, 1] and %'?(0) =
(1) = 0 for 1 < j < . From the standard change-of-variable techniques, the

transformed periodized ¢ has the following representation

¢(u) = f(¢(u1)7 ... v¢(u8))¢l(ul) e ¢'(u.).

We now consider two potential choices of 1. These transformations will be used

extensively in our numerical studies.

A. Polynomial Transformations:

Let ¥,,, m > 2 be a function that satisfies

m—1 ‘ 2\m—-1
Pm(t) = (2m — 1)(2m B 2) /0 (z — )™ 'dez.
Then for fixed m, the polynomial transformations is given by
P(t) = Pm(t)
with @ = m — 1. The first three polynomial transformations are

va(t) = 32 —2¢°
Pva(t) = 10t° — 15¢* + 6¢°

Ya(t) = 35¢* —84¢° 4 70t° — 20¢7.
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B. sin™-Transformations: Sidi [91]
Define

where
t
Om(t) = / (sin wz)™dz, m=12,....
0
Then the first four sin™-transformations are

i(t) = %(1 — cos 7t),
1 .
Pa(t) = 2 (27t — sin 27t)
Ps(t) = % (8 — 9cos wt + cos 3nt),

1 . .
Ya(t) = on (127t — 8sin 2wt + sin 4~t).

These transformations have the advantages of simplicity and easily calculated deriva-

tives. Furthermore, we have
$(0) =4(1) =0

for1 <j<m.
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6.2.4 Error Estimation

In Chapter 4, we have discussed how to obtain an error estimate for quasi-Monte
Carlo methods using Owen’s methods. Owen’s idea was based on randomization
which was originally suggested by Cranley and Patterson [19] for obtaining the
error estimate in the context of number theoretic methods. Let @Q(z,N)f denote

the number theoretic rule of order N with g.l.p. z. In other words, we have

Qz, N)f = %,—Zv:f ({%z}) |

For each v € [0,1)*, we define the shifted number theoretic rule of order N with

glp. z as

Q(z,N.v)f = %gf ({%z +v}) |

Cranley and Patterson show that if v is a vector chosen randomly from a multivari-
ate uniform distribution on [0,1)* so that each component of v is independently

and uniformly distributed on [0, 1], then

E[Q(z,N,v)f] = If.

Consequently, if v, ... ,v, are q independent random vectors drawn from a mul-

tivariate uniform distribution on [0, 1)*, then

AUz, M)f = =3 Q= N,vs)f

i=1
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is an unbiased estimate of I f. This suggests that it is possible to construct the con-
fidence interval by replication with the estimate of the standard error, &, calculated

as

q 1/2
b= {q(—ql_—l) > [Q(z Nov))f - Ql=, N)f]’} .

6.3 Option Pricings

In this section, we provide a brief overview on pricing European-style derivative
securities. Consider an economy with s risky assets with prices S¢ = (St ... . Sat)

at time t. We assume the risk neutralized asset prices processes satisfy
dS,‘t = (1’ - (5{)5& dt + O'iSit dmt, 1 S ) S S

where the parameters d;, 0;, 1 < ¢ < s. are the annualized dividend yield. and
volatility for asset 7 and 7 is annualized risk-free rate. The process W, = (Wi, ... , W)
are correlated Brownian motions where each W has drift 0 and variance 1, and
the i-th and j-th components have correlation p;;. Note that each asset price
is a geometric Brownian motion process. Let ; = log Sit, 1 < ¢ < s, then

6, = (b1, ... ,08,) is normally distributed with mean

""t = (/“lh s al‘nt)
_ (log Sio+ (r— 8 = 2oDt, ... log Suo+ (r - J%crf)t) (63.1)
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and covariance matrix

e = (035) = pijoioit. (6.3.2)

Under the risk-neutral measure, the current price of the derivative security is equal

to the expected value of its payoff; i.e. the current price of the derivative security

is computed as

Vo = e "TEqly(St)]

= T [ a(Sr)f(St) Sz (6.3.3)

A(ST)
where g(S71) = g(SiT, ... .Ss7) is the payoff of the European derivative security
and depends on the terminal asset prices (Sit, ..., S.r), A(St) € R’ is the in-

tegration domain and f(S7t) is a s-variate lognormal distribution with probability

density function

exp {—%(log Sr— )’y "' (log St - ﬂ)}

1
f(St) = ,____|Z|(2W)'51T"'54T

where log St = (log(Sir), --- ,log(S.r)), p#r and > ; are defined in (6.3.1) and
(6.3.2).

The price of an European derivative security therefore reduces to evaluating the
integral of the form (6.3.3). The complexity of the problem depends on the structure
of the payoff function g(St). It is only in rare cases that amalytic solution are

available. In most situations, it is necessary to approximate (6.3.3) using numerical
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methods such as finite difference methods, tree approaches or Monte Carlo methods.

6.4 Applications

In this section, we consider the valuation of several exotic options. We demonstrate
that for reasonably low dimensions, the multiple integral (6.3.3) can be effectively
approximated to high precision using method of g.1.p.. This method also compares
favorably to other numerical techniques. The following subsection considers spread
options, Subsection 6.4.2 examines a 5-dimensional example based on generalization
of the spread options and Subsection 6.4.3 considers path-dependent options such

as lookback options and Asian options.

6.4.1 Spread Options

Spread options are options whose payoff depends on the difference in the prices of
two underlying assets. In the general case, the payoff of a spread option at maturity

can be represented as

max({w;S.r — w1511 — K, 0] for call option
9(St) =
max[K — (w2 Sar — w1 S17), 0]  for put option
where K is the strike price of the option and the weights w; and w, are assumed
to be positive. When K = 0, the spread options reduce to exchange options. The
pricing formula for this particular case with w, = w, = 1 is given in Margrabe (58]

and Stultz [100].
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For non-zero strike prices, analytic expressions for the values of spread options
are not known and numerous approximation methods have been proposed. A sim-
ple approach suggested by Wilcox [106] is to assume that the spread is normally
distributed. This assumption leads to a very simple pricing formula. The draw-
back of this approach is its inconsistency with the lognormal framework of the asset
prices. A more accurate approach is given by Pearson [81]. Other approaches to
pricing the spread options include the bivariate binomial and trinomial approxima-
tions proposed by Boyle [9], Boyle, Evnine and Gibbs [11] and He [34]. Simulation
is also an alternative approach although the drawbacks of this method, as according
to Pearson, are “somewhat limited accuracy and the computational effort involved.”
In this subsection, we show that the number-theoretic methods using g.l.p. can be
a very effective tool for pricing these options. The numerical examples also indicate
that this method yields much higher accuracy than the approximation algorithm
proposed by Pearson [81].

We now discuss how to use the method of g.l.p. to price the spread options.
Substituting g(St) = max{w;S,r —w, S17— K, 0] into (6.3.3), we obtain the current

price of the spread call option V4 as

e"TVo = EQ [ma}([‘llI252T - ‘wlSIT - K, 0]]

= / / maX['UJ252T - w151T t K, O]f(ST)dST (641)
0 0

/ / (w2Sar — w1 Siz — K)f(Sr)dSardSir
0 (w1 SiT+K)/un

o0 /-oo
-[w log(uw1 1 T+1T + K)—log(wz ) —p2r

(wpe®THT — p H1ITHMT _ KVR(O7)dO  (6.4.2)
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where

1,
h(01) = —50T2T10T> -

1
v IZT|(21r)2 P (

To obtain (6.4.2), we have used the substitution Sz = exp(fir + pir), ¢ = 1,2.
Note that the integration domain of the integral (6.4.2) is not in [0,1)%. For

either method of g.1.p. or Monte Carlo integration, we always assume that the inte-

gration domain lies in [0,1)*. This can be accomplished by the following sequence

of transformations: first, we let @7 = Cy where C is the Cholesky decomposition

of the covariance matrix Y p; i.e., CC’' = >, where

ciy 0 aivVT 0
C21 C22 Puo’zﬁ \/1—P1202\/T

Applying this transformation to (6.4.2), we obtain the following expression

bl
: / | / z(eczlyx-(-c'nm-f-m‘l' — ec“ylﬂ"”‘ - K)C—%(Ufﬂlg) dyZdylv (643)
ay

"
V(2m) a}

where a} = —o0, b] = b3 = oo and

_ log(w,esn it + K) — log(ws) — por — ety
C22 '

1
Qy

Now consider the second phase of the transformation by letting y; = ®7!(2).
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This results in

e €
/ ' 2(em‘f"‘(zn)+en‘l"‘(z:)+m’r _ ecu‘f'“(n)+uu- - K) dz, (6.4.4)
dy d2

where d; = ®(—o0) =0, e; = e = $(c0) =1 and

C22

d, =& <1°g(wle°"§-‘(")+"" + K) —log(ws2) — por — 621‘1"1(21)>
2 = .

The final change-of-variable z; = d; + u;(e; — d;) leads to

1 p1
/ / (1- dz)(w26czx§°'(m)+C:z‘l’“(d:+uz(1—dz))+uzr — wyen® T (m)rmr _ K)du,
o Jo

(6.4.5)

which has the required integration domain (0, 1)2.

It follows from (6.4.5) that the Monte Carlo or quasi-Monte Carlo integration

estimate is given by

- N R
7 > h(tn1, tnz) (6.4.6)
n=1

e

Vo =
where

il(unl,unz) — (1 _ dz)(wzecn‘[’"(unl)+Cn4"'l(42+Una(1-d2))+#21' — wlecn‘l’_l(unl)+#1r _ K)

and %, = (Un1,%n2) € [0,1)® denotes the n-th term of a random or low discrepancy
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sequence. Alternatively, a crude estimate of the spread options can be obtained as

-7 N
7 § :max[wzem@"(un1)+<:zz‘§"'(unz)+mr _wle<:u{’"(unn)+mr - K,0].

n=1

e

Vo =
(6.4.7)

Comparing these two approaches of estimating the spread options, we would expect
estimate (6.4.6) to be more efficient for a given N. This estimate can be interpreted
as a conditioning estimate; the component wWayet ¥ (unt)+eaz T (drtuna(1-d2)) 4t _
w11 ®7 (um)+mT _ K denotes the payoff of the option conditional on being in-the-
money while the adjustment factor 1 —d, denotes the probability of the option being
in-the-money. Hence this eliminates the max function in (6.4.7). The additional
smoothness can further be exploited by using lattice methods such as the g.l.p.

methods. This requires an additional transformation so that the function of interest

is periodic. Accordingly, estimate (6.4.6) is revised as

-rT N

Z il(¢(un1)7 ¢(uﬂ2))¢’l(un1 )¢I(un2) (648)
n=1

e

N

7 =

where (un1,%q2) is the g.l.p. and % is an appropriate transformation for periodizing
the integrands. The function ¥ can be one of the transformations discussed in
Subsection 6.2.3.

We now demonstrate the efficiency of using the g.l.p. in evaluating (6.4.8). This

is carried out in two parts as described below:
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Part A
In the first part of the analysis, we consider a special case of spread options where
K = 0 and w;, = w, = 1. This becomes the exchange options and we can obtain

an analytical expression for these options as
e"TE[max[SQT - SlT,O]] = Szoe-JQT@(—Dz) - Sme-JlT@(—Dl) (649)

where

log(Szo/Sm) + (61 — 52 - 0'2/2)T
ovT

D, = D;+oVT

_ 2 2
o° = o7+ 05 —2p120,0,.

Note that the risk-free rate r does not play any role in determining the value of the
exchange options. The analytic values of these options serve as benchmark against
the results using the method of g.1.p.. As in the previous chapters, our assessment is
based on the RMSE calculated over 50 randomly generated sets of option contracts.

The parameter values for the 50 option contracts are determined as follows:
For the first asset, we set Syo = 100, oy = 30%, and 8, = 5%. Holding these
parameter values fixed allows us to have a better control over the options being
in-the-money, out-of-money or at-the money by manipulating the parameter values
of the second asset. Hence the parameter values of the second asset are generated
randomly according to the following rules: the second asset price Sy is uniformly
distributed between 50 and 130, the volatility o, is uniformly distributed between
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10% and 50%, the dividend yield 4, is uniformly distributed between 1% and 10%.
the correlation between asset 1 and 2, p;2, is uniformly distributed between —0.8
and 0.8 and the time until maturity T is uniformly distributed between 6 months
to 5 years. The option price for the randomly selected option contract is again
enforced to be at least 0.5.

The two-dimensional g.l.p. used in our computation is generated from Fibonacci
numbers F,,. This point set has the advantage that it is the only known situation
where Sargin’s lower bound is attainable. One possible drawback of this point
set is that it only admits specific values of N. For instance, in our examples we
consider the Fibonacci numbers F,, with m = 7,8, ... ,16. This implies that for
10 < N < 1000, we can only compute the RMSEs at 10 possible values of N, namely
N = 13,89, ...,610,987. Nevertheless, we can always find an appropriate g.l.p.
for arbitrary point set using the searching technique outlined in Subsection 6.2.2.

When using (6.4.8), we consider the following types of periodization techniques:

Polynomial-Transformation with m = 3,4
v = sin™-Transformation with m = 2,3
Furthermore, the same set of g.l.p. is also applied to (6.4.6), i.e. without any pe-
riodization. This allows to examine the impact of periodizing the integrands. Ta-
ble 6.1 reports the RMSE in percentage for each method. Three conclusions can
be drawn from these results. First, the method of g.l.p. yields extremely high

precision, even for a small point set. For instance, with a mere 55 points, the

largest RMSE across different periodization techniques is only 0.05% to as low as
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0.017%. Second, the efficiency of the periodized integrands varies across different
methods of transformations. Within the same class of transformation, it appears

that higher level of transformation gives a much better result. For example, the

RMSE in Percentage
Periodization Transformation No Periodization

N | Polynomial-3 Polynomial-4 | sin® sin”

13 2.76679 3.96266 1.78029 5.42768 25.65
21 0.70174 0.61241 0.39638 0.83536 16.77
34 0.29790 0.14219 0.16876 0.12909 13.00
55 0.05446 0.01800 0.02765 0.01666 8.27
89 0.02395 0.00505 0.01411 0.00458 6.24
144 0.00509 0.00109 0.00243 0.00067 3.90
233 0.00215 0.00010 0.00125 0.00006 2.91
377 0.00046 0.00004 0.00021 0.00003 1.80
610 0.00019 0.00001 0.00011 0.00001 1.33
987 0.00004 0.00000 0.00002 0.00000 0.81

Table 6.1: Comparisons of the RMSE (%) for the 50 Randomly Generated Exchange
Option Contracts

polynomial-4 is superior to polynomial-3 while sin® is superior to sin?. Third, it is
desirable to take into account of the additional regularity inherent in the function.
For instance without periodization, the resulting RMSE using N = 55 can be as
huge as 8.27/0.01666 ~ 496 times than the corresponding periodized estimate using

sin3-transformation.

Part B
In this part of the comparison, we relax the constraint that K = 0. For a non-
zero strike price, the comparison will be harder since there do not exist closed-form

solution for the spread options. For our purpose, the option estimate obtained from
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the g.l.p. method using N = 121,393 is taken to be the “true” option value. This
true” option value is justified given the success that we observed for the exchange
options in Part A,

Rather than generating the option contracts randomly as in Part A, we use
the same set of parameter values as in Pearson {81]. Pearson considers 144 spread
call option contracts with the parameter values comprise of the following: Sio =
92,96, 100,104, Sz = 100, o7 = 10%, 20%, 30%, o, = 20%, T = 1 week, 1 month.
1 year, 5 years, p1; = —0.5,0,0.5, &, = 2 = 5%, r = 10%.

The key to Pearson’s approximation algorithm is to recognize that the double

integrals (6.4.1) with w; = w; = 1 can be decomposed to

erT‘/0

/ / max(Syr — Sur — K, 0lg(Syr|Si7) F(Siz)dSardSir
0 (4]
- / / (Sar — Suz — K)g(Sar|S1z) F(Sir)dSardSsr

0 S,1+K

-/ ~ F(Si2)f(Su)dSur (6.4.10)
0

where g(S»1|S17) is the conditional density of Sar given Si7, f(Sir) is the marginal

density of S;r and

oo

F(Si) = / (Saz — Sur — K)g(Sar|Sir)dSur
S

1 T+K

The function F(S,7) can be evaluated analytically so that the pricing of spread
options is now reduced to the one-dimensional integration problem of the form
(6.4.10). Unfortunately, F(S,r) is a complicated function involving the cumulative
normal density function. This implies that the integral (6.4.10) would still need to
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be evaluated numerically. The method proposed in Pearson [81] is to approximate
F(S,r) by piecewise linear functions. Pearson shows that using N = 100 (which
corresponds to approximating F with 2N = 200 piecewise linear functions, using
Pearson’s terminology), the approximation yields a much higher accuracy compared
to the approach suggested by Wilcox [106].

We will demonstrate that the method of g.l.p. is superior to Pearson’s approx-
imation algorithm. Based on 144 option contracts described earlier, Tables 6.2
and 6.3 depict the percentage relative pricing errors for Pearson’s approximation
and g.l.p. method with sin®-transformation. In both methods, we have assumed
N = 55.2 Although the function F is only approximated by 110 piecewise linear
functions, Pearson’s method appears to be reasonable. Pearson’s method is most
accurate in situations with positive correlation and low volatility of the first un-
derlying asset relative to the second asset. The approximation starts to deteriorate
as the volatility of the first underlying asset is greater than the volatility of the
second asset, particularly with zero or negative correlation and deep out-of-money
option contracts. In general, most of relative errors are less than 5%. On the other
hand, the result from the method of g.l.p. is amazingly accurate, with most of the
relative pricing errors within 0.05%! Even if we increase the number of piecewise
linear functions in Pearson’s algorithm to 10,000, i.e. N = 5,000, (see Table 6.4),
the method of g.l.p. with N = 55 is still superior.

We now compute the RMSE using the same values of N as in Part A. The option

contracts are still based on Pearson’s examples except that we ignore those spread

2Note that the complexities of these two methods are proportional to N, however, they are
not necessary comnparable to each other for a given N.
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call options with values less than 0.5. This eliminates most of the deep out-of-
money option contracts. For the g.l.p. method, we consider the estimates with and
without periodization. We also use the same sets of periodization transformation.
Figure 6.1 plots log N against the computed log(RMSE). The graph indicates that
Pearson’s method is more efficient than the Monte Carlo integration that does
not take into account the additional smoothness. However, once such additional
regularity is factored in, the g.l.p. method yields a more superior convergence rate.

Similar to Part A, the transformations based on polynomial-4 and sin® are the most

efficient.
0 T T T T
-5 |-
e
E ﬁ\‘z‘\,,
S _10 B
-10 g _
= NG
—Eoto P \g"\-:::é\.::., \;
earson —— il I Sl
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Si_n; - \g.~~ Sty
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Figure 6.1: Comparisons of the RMSEs using g.l.p.and Pearson’s Method

Before concluding this section, we should remark that our program implement-
ing Pearson’s algorithm does not reproduce exactly the results reported in Pearson

[81]. The results in Exhibit 2 of Pearson [81] claim to have been obtained using
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Volatility Price

of First of First

Correlation = -0.5

Correlation = 0

Correlation = 0.5

Time until Maturity

Time until Maturity

Time until Maturity

Underlying Underlying | 0.02 0.083 1.00 5.00| 0.02 0.083 1.00 5.00 002 0.083 1.00 5.00
0.1 92 042 1.08 207 2.82| 0.09 0.29 055 062] 000 0.00 0.00 0.00
96 216 221 248 3.03| 071 0.70 0.70 0.69| 0.00 0.00 0.00 0.00

100 6.60 3.97 293 3.23| 2.57 142 087 0.76| 0.01 0.00 0.00 0.00

104 1479 645 342 344 6.13 247 106 084 | 0.02 0.01 0.00 0.00

0.2 92 08 168 279 3.64( 038 0.89 147 1.58| 0.06 0.24 0.39 0.11
96 283 289 320 384 | 180 1.8 178 1.72| 079 0.76 056 0.18

100 6.92 458 3.65 4.04| 527 3.18 2.12 1.87| 3.40 1.71 0.77 0.26

104 13.73 6.80 4.12 4.24 {1149 509 249 2.02| 867 3.19 1.01 0.34

0.3 92 1.24 211 3.20 4.08| 0.77 1.47 2.14 220| 033 086 1.25 0.78
96 3.18 3.24 358 425 253 252 248 236| 198 192 160 0.93

100 6.61 4.71 397 443 6.07 399 286 2.52| 6.33 3.60 1.98 1.08

104 11.89 6.54 4.38 4.60 {11.90 589 3.25 2.67 1445 6.01 241 1.24

Table 6.2: Relative Errors (%) of the Spread Call Option Prices Using Pearson’s Algorithin with N = 55
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CHAPTER 6.

Volatility
of First

Price

of First

Correlation = -0.5

Corrclation =

Correlation = 0.5

Time until Maturity

Time until Maturity

Time until Maturity

Underlying Underlying || 0.02 0.083 1.00 5.00| 0.02 0.083 1.00 5.00| 0.02 0.083 1.00 5.00
0.1 92 -0.01 0.01 -0.01 -0.01| 0.00 0.00 0.00 -0.00] 0.00 0.00 0.00 0.00
96 -0.0r -0.01 -0.01 -0.01f 0.00 0.00 0.00 -0.00| 0.00 0.00 0.00 0.00

100 0.02 0.01 -0.01 -0.01) 0.00 0.00 0.00 -0.00{ 0.00 0.00 0.00 0.00

104 0.03 0.02 -0.00 -0.01]-0.02 0.00 0.00 -0.00{ 000 0.00 0.00 0.00

0.2 92 -0.01 -0.00 0.02 0.01}-0.00 0.00 -0.01 -001f 0.00 0.00 0.00 0.00
96 0.02 0.02 0.02 0.00]-0.01 -0.01 -0.01 -0.01| 0.00 0.00 0.00 0.00

100 -0.00 -0.02 0.01 0.00f 001 0.01 -0.00 -0.01| 0.00 0.00 0.00 0.00

104 0.03 -0.01 -0.01 -0.00] 0.01 0.01 -0.00 -0.01]-0.06 0.00 0.00 0.00

0.3 92 -0.01 -0.03 0.00 -0.01}-0.02 0.01 001 0.00]-0.00 0.01 -0.00 -0.00
96 0.03 002 0.01 -000| 0.01 0.01 0.00 -0.00(-0.01 -0.01 -0.01 -0.00

100 -0.03 003 002 000} 001 -0.02 -0.00 -0.00| 0.02 0.00 -0.01 -0.00

104 0.04 -0.03 0.03 001} 003 001 -001 -0.01}| 0.02 0.02 -0.01 -0.01

Table 6.3: Relative Errors (%) of the Spread Call Option Prices Using g.l.p. Method with N =5

Transformation

5 and sin®-




165

LATTICE POINTS METHODS

CHAPTER 6.

Volatility Price Corrclation = -0.5 Correlation = 0 Correlation = 0.5
of First of First Time until Maturity Time until Maturity Time until Maturity
Underlying Underlying (| 0.02 0.083 1.00 5.00 | 0.02 0.083 1.00 5.00 | 0.02 0.083 1.00 5.00
0.1 92 0.00 0.01 0.02 0.030.00 0.00 001 0.01}0.00 0.00 0.00 0.00
96 0.02 0.02 0.03 0.03{0.01 001 001 0.01]0.00 0.00 0.00 0.00
100 0.07 0.04 0.03 0.0410.03 002 001 0.01]0.00 0.00 0.00 0.00
104 0.16 0.07 0.04 0.04]0.07 003 001 0.01}0.00 0.00 0.00 0.00
0.2 92 0.01 0.02 0.03 0.04 000 0.01 0.02 002000 0.00 0.00 0.00
96 0.03 0.03 0.04 004|002 0.02 0.02 0.02{0.01 0.01 0.01 0.00
100 0.08 0.05 0.04 0.04 006 004 0.02 0.02]0.04 0.02 0.01 0.00
104 0.15 0.08 0.05 0.05]0.12 0.06 003 0.02]009 0.04 0.01 0.00
0.3 92 0.01 002 0.04 005|001 002 002 002]000 0.0 0.01 0.01
96 0.04 0.04 0.04 0.05|0.03 003 003 003]002 0.02 0.02 0.01
100 0.07 0.05 0.04 005007 0.04 0.03 0.03]0.07 0.04 0.02 0.01
104 0.13 0.07 0.05 005|013 0.07 0.04 0.03]0.15 0.07 0.03 0.01

Table 6.4: Relative Errors (%) of the Spread Call Option Prices Using Pearson’s Algorithm with N = 5,000
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N = 100. In our program, we need to increase N as large as 5,000 before getting
virtually the same results (up to 2 decimal places). Tables 6.5 and 6.6 show a
sample of the option estimates for N = 100 and N = 5,000 using our implemented

version of Pearson’s method.

6.4.2 Generalized Rainbow Options

So far we have only applied the g.l.p. to two-dimensional numerical problems. In
this subsection, we evaluate its efficiency in higher dimensions. We consider the

generalized rainbow options where the payoff function can be written as

g9(St) = max[wg + w1 S1T + waSar + -+ - + W, S,7, 0]

where the constants w;, 0 < ¢ < s are either positive or negative. When wg = — K,
wy; = —1 and w, = 1, the generalized rainbow options become the spread call
options.

In our numerical examples, we consider a special case of the generalized rainbow
options where wog = — K, w; = —-1/(s—1)for1 <t < s—1and w, = 1. This
particular option is similar to outperformance option which results in a positive
payoff only if the designated asset outperforms the average of a portfolio of assets
after adjusted for the strike price. We consider s = § and use parameter values:
Sio =100, 0; =20%, i =1, ...,5, T =.1 year, and K = 4. Since these options do
not have an analytic solution, an exhaustive Monte Carlo simulation was used to
determine the appropriate values of the options. With 20 million simulation runs,
the option value is 4.431856 with standard error 0.00058. This value is used as a
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CHAPTER 6.

Volatility Price Correlation = -0.5 Correlation = 0 Correlation = 0.5
of First of First Time until Maturity Time until Maturity Time until Maturity
Underlying Underlying || 0.02 0.083 1.00 5.00 |0.02 0.083 1.00 5.00]0.02 0.083 1.00 5.00
0.1 92 426 539 1195 19.78 | 4.14 499 1040 16.94 14.05 4.56 8.62 13.67
96 149 3.04 10.12 1853 (126 256 852 1562|098 1.99 6.65 12.26
100 029 150 852 1736|0.16 1.08 691 14.40|006 063 5.04 10.97
104 003 065 713 16.260.01 038 555 13.27[0.00 014 3.74 9.81
0.2 92 454 6.19 1487 2498 [ 4.30 5.53 12.49 20.69 |4.09 476 9.46 15.23
96 195 3.95 13.14 2385|158 3.21 1068 1947 |1.11 2.26 7.55 13.87
100 059 235 1158 2278034 166 9.09 1833 |0.10 0.84 593 12.63
104 0.12 130 10.18 21.77|10.04 076 7.70 17.26|0.00 0.24 4.61 11.48
0.3 92 490 7.11 18.06 30.44 [4.58 6.30 15.23 25.52 [4.24 5.32 11.68 19.24
96 244 496 1641 2944|201 4.08 13.51 2441|146 296 9.86 18.00
100 098 3.31 1490 2849 0.64 247 11.96 23.37 (0.27 144 826 16.83
104 032 212 13.53 2758 [0.14 139 10.57 2238 {0.02 0.61 6.89 15.75

Table 6.5: Spread Call Option Prices Using Pearson’s Algorithm with N = 100
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CHAPTER 6.

Volatility Price Correlation = -0.5 Corrclation = 0 Correlation = 0.5
of First of First Time until Maturity Time until Maturity Time until Maturity
Underlying Underlying |[ 0.02 0.083 1.00 5.00 | 0.02 0.083 1.00 5.000.02 0.083 1.00 5.00
0.1 92 425 536 11.82 1948 | 4.14 4.98 10.37 16.88 |4.05 4.56 8.62 13.67
96 148 3.00 9.99 1823|125 255 849 1556|0.98 1.99 6.65 12.26
100 028 147 839 1706016 1.08 688 14.34|0.06 0.63 5.04 10.97
104 0.03 063 7.01 1596|001 037 552 13.21[0.00 0.14 3.74 9.81
0.2 92 4.52 6.13 1465 24.49 | 429 551 12.39 20.52 |4.08 4.75 9.44 15.22
96 1.92 3.89 1292 23.36 {156 3.18 1058 19.29 |1.11 225 7.52 13.86
100 0.57 229 11.36 2230033 163 899 18.15(0.10 0.83 591 12.61
104 012 1.26 996 21.29 (0.04 0.74 7.60 17.07]0.00 0.24 4.58 11.46
0.3 92 487 7.03 17.75 29.78 [4.56 6.25 15.06 25.21 |4.23 5.30 11.61 19.16
96 240 487 16.10 28.78 | 1.98 4.02 13.34 24.10 | 1.44 293 9.77 17.90
100 095 3.23 14.59 27.82|0.62 241 11.78 23.05|0.26 141 8.18 16.73
104 030 2.05 13.21 2691|014 135 10.39 2206 [0.02 0.59 6.80 15.64

Table 6.6: Spread Call Option Prices Using Pearson’s Algorithm with N = 5,000
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benchmark to compare with the results from the lattice points.

We use the published table for the 5-dimensional good lattice points. We con-
sider 9 different values of N, which are 1069, 1543, 2129, 3001, 4001, 5003, 6007,
8191 and 10007. The corresponding optimal coefficients for the g.l.p. can be ob-
tained from Hua and Wang [41]. Figure 6.2 summarizes the results. The 95%
confidence limits from Monte Carlo methods are provided for benchmarking. We

max[Ss — (S1 +--- + S4)/4 — K, 0]
4.434 1 , ,

Polynomial-3 o

Upper 95% Confidence Limit Polyn om.la.l-% -+

4.433 B

4.432 -

4.431

Option Value

4.430

4.429 -

. X
4.428 i AT 1 1 i
6.5 7.0 7.5 8.0 8.5 9.0 9.5
log N

Figure 6.2: Comparisons of the RMSEs using g.l.p. with and without Periodization

observe that even with s = 5, the g.l.p. method still yields a very high degree of
precision. All four transformations agree up to 4 decimal places (converging to
4.4319) for N > 4000. Straightforward application of the g.l.p. without periodizing

the integrand results in a much higher error.
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6.4.3 Path-Dependent Options: Lookback and Asian

In this subsection, we consider path-dependent options with values contingent on
the realized asset prices at discretely sampled time points. The history of the asset
prices becomes important in valuing this type of option. This is in contrast to the
options considered in the last two subsections where the values of the options only
depend on the terminal asset prices. For our numerical illustrations, we consider

the path-dependent options that have the following payoff structures:

(a) g(S) =max[ma.x[So,Sl,... ,S,]—K,O]

(b) 9(S) = max [K — min[S, S, - .. . S,), 0]
_ Z:=o S;

(c) g(S) = max [—W—K,O]

where S; denotes the asset price at the i-th discretely sampled time points. Options
of type (a) are known as fixed-strike lookback call options or high water mark
options, options of type (b) are known as fixed-strike lookback put options, while
options of type (c) are known as Asian options with arithmetic averaging. The
high water mark options and Asian options are often embedded in equity-index
annuities sold by insurance companies. The prices of discrete lookback options are
expressed in terms of multivariate normal probabilities (see Heynen and Kat [36})
while the prices of Asian options are expressed in terms of the Bessel process (see
German and Yor [28]). These are often too complicated to evaluate directly and

hence simulation is a common pricing tool in these cases.
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In this subsection, we demonstrate that the method of g.l.p. can be an effi-
cient pricing tool for low-dimensional path-dependent options. For our numerical

comparisons, we consider the following sets of parameter values:

So = 100
r = 10%

o = 20%, 30%, 40%.

For the lookback options. we assume the times until maturity are 2 and 5 years
with strike prices K = 70,100, 130. For the Asian options, we assume the time until
maturity is 7 years with strike prices K = 90, 100, 110. We further assume that the
asset prices are sampled annually so that the time until maturity (in years) repre-
sents the dimensionality of the problem. We have deliberately chosen options that
have long dated maturities and a small number of monitoring time points. These
are typical features of the options embedded in equity-indexed annuities. For the
2-year options, we consider g.l.p. with N = 64, 256, 512. For the 5-year options, we
take N = 256, 512, 4096 and for the 7-year options we assume N = 512,4096, 8192.
The optimal coefficients for these g.1.p. are determined using the searching algorithm
outlined in Subsection 6.2.2. Haber [31] also published tables of low-dimensional
g.l.p., where N is a multipler of 2 or 3, from a pool of randomly selected g.l.p.,
rather searching through the entire choices of the one-parameter g.l.p.. Therefore,
Haber’s g.l.p. is only a sub-optimal choice, whereas ours is optimal.

For each option contract and each point set, we generate 10 independent option

estimates using the technique described in Subsection 6.2.4. An estimate of the
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standard error of the option estimate based on these independent replications is
computed. The resulting standard error is then compared to that obtained from
the Monte Carlo methods using the same number of points. Tables 6.7, 6.8, 6.9.
6.10 and 6.11 summarize the results for these path-dependent options. For the
g.l.p., we report 3 sets of results. Two of these sets use periodization techniques
with polynomial-3 and sin' transformations while the third set of results does not
involve any periodization.

For the 2-year lookback options, we observe that a significant reduction of stan-
dard errors is achieved even for a point set as low as 640. This is consistent with the
results reported in Subsection 6.4.1 which used Fibonacci numbers in constructing
the 2-dimensional g.l.p.. For the 5-year lookback options and 7-year Asian options.
we still observe a substantial improvement over standard Monte Carlo methods.
although the magnitude of improvement is not as favourable as the 2-dimensional
case. A much larger point set is required for 5-dimensional and 7-dimensional exam-
ples in order to achieve the same level of accuracy as the 2-dimensional cases. For
instance, let consider the option contract with ¢ = 30% and K = 100. In this case.
the efficiency ratio for the 2-year high water mark option with 5120 points and sin!
transformation is 1115. On the other hand, by merely increasing the dimensions
from 2 to 5, the efficiency ratio with the same number of points diminishes to 17.4.
This represents a significant decline of 1115/17.4 = 64 times in efficiency. Another
conclusion can be drawn from these experiments is that periodization, in general,
speeds up the convergence of the g.l.p. methods.

It should be pointed out that in our comparisons, we have used crude Monte
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Carlo method without any variance reduction techniques. In the case of Asian
options, a more efficient simulation technique is to use the corresponding Asian
option with geometric averaging as control variates. This leads to a substantial
reduction in the magnitude of the standard errors. Such efficiency is not exploited
in our comparisons since if control variate works well for the Monte Carlo methods.
it also works well for g.l.p. methods. Hence, the efficiency ratio would likely remain

the same when both methods incorporated the control variates.

6.5 Conclusion

In this chapter, we show that good lattice points can be used to exploit the addi-
tional smoothness exhibited in low-dimensional financial instruments. This method
compares favorably to other numerical techniques. Its superiority is documented
in the numerical examples based on spread options, a particular case of the gen-
eralized rainbow options and path-dependent options including high water mark
options, lookback put options and Asian options. Evidently, the method of g.1.p. is
not confined to these applications. A similar approach can be used to compute the
hedging parameters such as the delta or gamma. We would expect the same level

of efficiency in these situations.
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Good Lattice Points®
Std. Periodization No
o K | Random error | polynomial-3 | sin’ Periodization
Total points = 10 x N = 640
0.2 170 49.09 0.96 48.30 (62.8) 48.30 (70.9) 47.94 (3.3)
100 24.53 0.96 23.73 (78.4) 23.74 (89.4) 23.38 (3.3)
130 9.24 0.71 9.15 (45.4) 9.15 (53.4) 8.85 (2.7)
0.3 170 54.95 1.50 54.06 (54.5) 54.06 (63.1) 53.49 (3.0)
100 30.39 1.50 29.50 (61.4) 29.50 (71.5) 28.93 (3.0)
130 15.99 1.24 15.75 (44.4) 15.75 (44.4) 15.24 (2.6)
04 70 61.27 2.16 60.24 (49.2) 60.25 (60.0) 59.44 (2.8)
100 36.71 2.16 35.68 (51.9) 35.69 (64.0) 34.88 (2.8)
130 23.11 1.91 22.63 (43.2) 22.64 (53.1) 21.89 (2.5)
Total points = 10 x N = 2560
0.2 170 48.27 0.48 || 48.31 (292.6) | 48.31 (363.0) 48.28 (7.0)
100 23.71 0.48 || 23.75 (341.7) | 23.75 (423.1) 23.72 (7.0)
130 9.11 0.35 9.16 (265.1) 9.16 (350.4) 9.12 (5.5)
0.3 70 54.05 0.74 || 54.09 (281.3) | 54.09 (365.9) 54.02 (5.8)
100 29.49 0.74 || 29.53 (311.3) | 29.53 (407.3) 29.45 (5.8)
130 15.72 0.60 15.77 (262.6) | 15.77 (262.6) 15.68 (4.9)
04 70 60.25 1.04 || 60.28 (236.9) | 60.28 (306.5) 60.11 (4.8)
100 35.68 1.04 || 35.72 (250.3) | 35.72 (323.8) 35.55 (4.8)
130 22.63 0.91 || 22.67 (205.3) | 22.67 (265.7) 22.49 (4.3)
Total points = 10 x N = 5120
0.2 70 48.57 0.34 || 48.31 (1029.9) | 48.31 (1343.7) 48.28 (8.0)
100 24.01 0.34 || 23.75 (1154.3) | 23.75 (1542.6) 23.72 (8.0)
130 9.29 0.25 9.16 (780.1) 9.16 (729.9) 9.14 (6.0)
0.3 70 94.55 0.53 || 54.09 (992.9) | 54.09 (1033.9) 54.04 (6.6)
100 29.99 0.53 || 29.53 (1082.8) | 29.53 (1115.0) 29.48 (6.6)
130 16.06 0.43 15.77 (859.7) | 15.77 (859.7) 15.73 (5.5)
04 70 60.95 0.74 || 60.27 (977.3) | 60.28 (1250.4) 60.20 (5.5)
100 36.39 0.74 {| 35.71 (1021.7) | 35.71 (1294.0) 35.64 (5.5)
130 23.15 0.65 || 22.66 (812.3) | 22.66 (864.0) 22.59 (4.8)
[ AThe value in bracket is the ratio of the standard errors from Monte Carlo method to g.l.p. methods. ~"

Table 6.7: 2-Year High Water Mark Options with Annual Monitorings
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Good Lattice Points®
Std. Periodization No
o0 K | Random error || polynomial-3 | sin” Periodization
Total points = 10 x N = 640
0.2 170 0.28 0.06 0.23 (14.4) 0.22 (17.4) 0.23 (1.4)
100 4.68 0.33 5.13 (40.4) 5.13 (45.7) 5.25 (4.0)
130 29.24 0.33 || 29.69 (32.5) | 29.69 (38.2) 29.81 (4.0)
03 170 1.62 0.20 1.65 (42.8) 1.65 (49.8) 1.71 (2.7)
100 9.20 0.52 {| 10.21 (81.8) | 10.21 (76.3) 10.39 (4.4)
130 33.77 0.52 || 34.77 (62.2) | 34.77 (62.2) 34.96 (4.4)
04 70 3.85 0.33 4.23 (36.2) 4.23 (48.7) 4.34 (3.7)
100 13.90 0.68 || 15.39 (91.0) | 15.38 (83.7) 15.63 (5.0)
130 38.46 0.68 || 39.95 (84.3) | 39.95 (85.4) 40.20 (5.0)
Total points = 10 x N = 2560
0.2 70 0.31 0.03 0.23 (41.8) 0.23 (45.4) 0.21 (3.7)
100 5.24 0.17 || 5.12 (202.0) | 5.12 (194.2) 5.10 (8.4)
130 29.80 0.17 || 29.68 (172.1) | 29.68 (167.7) 29.66 (8.4)
0.3 170 1.81 0.10 1.66 (103.3) | 1.65 (110.3) 1.63 (6.3)
100 10.26 0.27 | 10.20 (333.2) | 10.20 (302.1) || 10.17 (10.0)
130 34.82 0.27 || 34.76 (258.6) | 34.76 (258.6) || 34.73 (10.0)
04 70 4.36 0.17 || 4.22 (200.8) | 4.22 (182.2) 4.20 (8.3)
100 15.36 0.35 || 15.39 (344.0) | 15.39 (331.9) || 15.37 (11.4)
130 39.92 0.35 || 39.96 (280.9) | 39.96 (292.6) || 39.93 (11.4)
Total points = 10 x N = 5120
0.2 170 0.26 0.02 0.23 (60.7) 0.23 (88.1) 0.23 (4.0)
100 5.14 0.12 || 5.12 (430.9) | 5.12 (472.8) 5.13 (9-4)
130 29.70 0.12 |{ 29.68 (380.4) | 29.68 (415.6) 29.69 (9.4)
03 70 1.70 0.07 1.65 (154.1) | 1.65 (172.8) 1.66 (6.4)
100 10.17 0.19 || 10.20 (631.4) | 10.20 (677.1) || 10.21 (12.4)
130 34.73 0.19 || 34.76 (591.4) | 34.76 (591.4) || 34.77 (12.4)
0.4 70 4.23 0.12 || 4.22 (515.2) | 4.22 (354.7) 4.23 (8.9)
100 15.28 0.24 || 15.39 (711.8) | 15.39 (636.0) || 15.41 (13.7)
130 39.85 0.24 || 39.95 (615.2) | 39.95 (581.6) || 39.97 (13.7)
8The value in bracket is the ratio of the standard errors from Monte Carlo method to g.l.p. methods.

Table 6.8: 2-Year Fixed-Strike Lookback Put Options with Annual Monitorings
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Good Lattice Points®
Std. Periodization No
o K | Random error || polynomial-3 |  sin’ Periodization
Total points = 10 x N = 2560
0.2 70 66.79 0.89 || 65.70 (8.0) | 65.70 (8.7) 65.67 (4.5)
100 48.60 0.89 || 47.49 (9.0) | 47.49 (9.7) 47.48 (4.5)
130 33.46 0.84 || 32.38 (9.5) | 32.39 (9.7) 32.39 (4.1)
0.3 70 77.65 1.46 {| 75.50 (9.6) | 75.50 (9.9) 75.87 (3.1)
100 59.45 1.46 || 57.29 (10.4) | 57.28 (10.8) 57.68 (3.1)
130 45.62 1.40 || 43.64 (11.0) | 43.65 (11.1) 43.91 (3.0)
04 70 90.19 2.24 | 86.85 (12.4) | 86.87 (12.5) 87.78 (2.4)
100 71.99 2.24 | 68.64 (13.3) | 68.66 (13.5) 69.58 (2 4)
130 59.13 2.17 || 56.00 (14.0) | 56.03 (14.3) 56.85 (2.3)
Total points = 10 x N = 5120
0.2 70 65.92 0.61 || 65.53 (16.2) | 65.54 (16.1) 65.82 (4.7)
100 47.72 0.61 || 47.33 (18.5) | 47.34 (18.3) 47.62 (4.7)
130 32.62 0.58 || 32.24 (14.4) | 32.24 (14.5) 32.56 (3.9)
0.3 70 76.03 1.00 || 75.43 (16.3) | 75.43 (16.0) 76.11 (3.5)
100 57.84 1.00 || 57.22 (17.8) | 57.23 (17.4) 57.91 (3.5)
130 44.06 0.95 | 43.48 (17.5) | 43.49 (17.3) 44.19 (3.2)
04 70 87.60 1.51 || 86.83 (24.7) | 86.86 (23.8) 88.05 (3.0)
100 69.40 1.51 || 68.63 (26.9) | 68.65 (26.0) 69.85 (3.0)
130 56.63 1.46 || 55.89 (25.1) | 55.92 (25.3) 57.16 (2.9)
Total points = 10 x N = 40960
0.2 70 65.69 0.22 || 65.51 (34.1) | 65.51 (43.8) 65.48 (8.1)
100 47.49 0.22 | 47.31 (42.6) | 47.31 (54.1) 47.28 (8.1)
130 32.40 0.20 || 32.25 (55.0) | 32.25 (69.5) 32.22 (7.1)
0.3 70 75.75 0.35 || 75.45 (36.0) | 75.45 (41.6) 75.36 (5.0)
100 57.56 0.35 || 57.26 (41.4) | 57.26 (46.7) 57.16 (5.0)
130 43.80 0.34 | 43.55 (42.1) | 43.55 (47.4) 43.45 (4.8)
04 70 87.32 0.54 | 86.87 (47.9) | 86.87 (57.5) 86.71 (3.4)
100 69.12 0.54 || 68.67 (53.0) | 68.67 (63.0) 68.52 (3.4)
130 56.39 0.53 || 55.97 (71.6) | 55.97 (88.1) 55.81 (3.3)
| AThe value in bracket is the ratio of the standard errors from Monte Carlo method to g.l.p. methods.

Table 6.9: 5-Year High Water Mark Options with Annual Monitorings
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Good Lattice Points®
Std. Periodization No
o K || Random error || polynomial-3 | sin" Periodization
Total points = 10 x N = 2560
0.2 70 0.60 0.05 0.56 (6.2) 0.56 (4.3) 0.57 (3.4)
100 5.47 0.16 5.54 (9.7) 5.53 (9.4) 5.60 (6.0)
130 23.67 0.16 23.75 (5.8) 23.74 (5.7) 23.80 (6.0)
0.3 170 3.25 0.13 3.25 (7.5) 3.24 (8.1) 3.29 (5.3)
100 11.77 0.26 11.96 (6.3) 11.97 (6.0) 11.94 (6.3)
130 29.97 0.26 30.17 (5.3) 30.18 (5.2) 30.14 (6.3)
04 70 7.23 0.20 7.30 (11.7) 7.31 (9.9) 7.31 (4.7)
100 18.14 0.33 18.41 (9.3) 18.41 (8.8) 18.43 (6.7)
130 36.34 0.33 36.62 (7.2) 36.62 (7.3) 36.63 (6.7)
Total points = 10 x N = 5120
0.2 70 0.59 0.03 0.58 (7.8) 0.58 (8.3) 0.59 (2.4)
100 5.53 0.11 5.58 (13.7) 5.58 (13.2) 5.99 (4.2)
130 23.73 0.11 23.78 (8.1) 23.78 (7.8) 23.78 (4.2)
0.3 70 3.25 0.09 3.26 (11.6) 3.25 (12.8) 3.26 (3.7)
100 11.87 0.18 || 11.96 (12.1) | 11.96 (10.7) 11.94 (9.4)
130 30.07 0.18 30.16 (8.8) | 30.16 (8.3) 30.13 (9.4)
04 70 7.25 0.14 7.32 (10.8) 7.32 (9.5) 7.31 (6.2)
100 18.32 0.23 18.42 (7.6) 18.41 (7.1) 18.38 (7.3)
130 36.52 0.23 36.62 (6.7) 36.62 (6.3) 36.58 (7.3)
Total points = 10 x N = 40960
0.2 70 0.58 0.01 0.56 (15.2) 0.56 (14.6) 0.57 (2.7)
100 5.59 0.04 5.57 (19.1) 5.57 (19.0) 5.57 (5.6)
130 23.79 0.04 || 23.77 (12.0) | 23.77 (13.8) 23.76 (5.6)
0.3 70 3.29 0.03 3.26 (15.6) 3.26 (15.7) 3.25 (3.7)
100 11.96 0.06 || 11.95 (23.5) | 11.95 (29.3) 11.94 (7.5)
130 30.16 0.06 | 30.15 (17.6) | 30.15 (23.4) 30.14 (7.5)
04 70 7.34 0.05 7.32 (25.0) 7.32 (27.2) 7.31 (7.9)
100 18.40 0.08 || 18.42 (36.7) | 18.42 (46.1) || 18.42 (10.0)
130 36.59 0.08 || 36.62 (24.3) | 36.62 (32.8) || 36.61 (10.0)
2The value in bracket is the ratio of the standard errors from Monte Carlo method to g.l.p. methods.

Table 6.10: 5-Year Fixed-Strike Lookback Put Options with Annual Monitorings



CHAPTER 6. LATTICE POINTS METHODS

178

Good Lattice Points®
Std. Periodization No
o K || Random error || polynomial-3 | sin” Periodization
Total points = 10 x N = 5120
0.2 90 28.53 0.35 28.08 (6.1) 28.08 (5.8) 28.06 (4.1)
100 24.15 0.34 23.71 (7.6) 23.71 (7.1) 23.70 (3.7)
110 20.14 0.32 19.76 (7.8) 19.77 (7.4) 19.77 (3.5)
0.3 90 30.25 0.55 29.63 (8.2) 29.64 (7.6) 29.65 (2.6)
100 26.58 0.53 26.02 (8.0) 26.04 (7.6) 26.03 (2.5)
110 23.29 0.52 22.81 (7.1) 22.83 (6.6) 22.80 (2.4)
0.4 90 32.72 0.81 31.89 (8.2) 31.91 (7.9) 31.95 (2.0)
100 29.60 0.80 28.85 (7.5) 28.88 (7.1) 28.90 (1.9)
110 26.79 0.79 26.09 (7.0) 26.12 (6.6) 26.18 (1.8)
Total points = 10 x N = 40960
0.2 90 28.30 0.12 | 28.08 (11.6) | 28.08 (11.2) 28.09 (4.5)
100 23.94 0.12 || 23.72 (11.5) | 23.72 (11.0) 23.73 (4.1)
110 19.98 0.11 || 19.77 (11.1) | 19.77 (9.2) 19.77 (3.7)
0.3 90 29.97 0.19 || 29.63 (15.7) | 29.63 (13.6) 29.63 (3.1)
100 26.32 0.19 | 26.00 (15.3) | 26.00 (12.5) 25.99 (2.9)
110 23.06 0.18 | 22.76 (17.6) | 22.76 (13.7) 22.75 (2.8)
0.4 90 32.31 0.28 || 31.82 (20.3) | 31.83 (17.9) 31.81 (2.5)
100 29.22 0.28 || 28.75 (17.8) | 28.75 (14.3) 28.75 (2.4)
110 26.46 0.27 || 26.01 (14.5) | 26.01 (10.8) 26.02 (2.3)
Total points = 10 x N = 81920
0.2 90 28.22 0.09 || 28.10 (23.8) | 28.10 (26.2) 28.08 (11.0)
100 23.86 0.08 | 23.74 (28.4) | 23.74 (30.5) 23.72 (8.2)
110 19.90 0.08 | 19.78 (29.0) | 19.78 (30.6) 19.76 (6.6)
0.3 90 29.86 0.13 || 29.65 (26.0) | 29.65 (29.7) 29.60 (6.3)
100 26.22 0.13 || 26.02 (25.5) | 26.02 (28.6) 25.97 (5.8)
110 22.97 0.13 | 22.78 (18.5) | 22.78 (19.8) 22.73 (5.6)
0.4 90 32.18 0.20 || 31.86 (19.7) | 31.86 (20.2) 31.77 (5.1)
100 29.10 0.19 || 28.80 (16.7) | 28.80 (16.5) 28.71 (5.1)
110 26.35 0.19 | 26.06 (15.4) | 26.06 (15.0) 25.98 (4.9)
8The value in bracket is the ratio of the standard errors from Monte Carlo method to g.l.p. methods. I

Table 6.11: 7-Year Asian Call Options with Annual Fixings



Chapter 7

Efficient Techniques for

Simulating Through Trees

The aim of this chapter is to show how low discrepancy sequences can be used
to improve convergence when simulating path-dependent derivative securities. We
consider binomial (or multinomial) trees where payoffs of the derivative securities
depend on the path taken through the tree. Even with a recombining tree, the
number of distinct paths grows exponentially with the number of time steps. It is
therefore impossible, in term of the computational time, to evaluate all the outcomes
when the number of time steps is very large, say greater than 25. One way to
handle this situation is to use Monte Carlo simulation. In this chapter, we discuss
how to use low discrepancy sequences to deal with these types of problems. The
conventional low discrepancy sequences, however, may not be as efficient as the
random sequences when the dimension is large. In this case, we need to enforce

additional uniformity on the classical low discrepancy sequences to recover the

179



CHAPTER 7. EFFICIENT TECHNIQUES FOR SIMULATING THROUGH
TREES 180
efficiency of the low discrepancy sequences. The resulting “refined” low discrepancy
sequences also have the added advantage that when enough paths are sampled, the
estimate converges exactly to the true value. This is in contrast to the Monte Carlo
simulation where the convergence is only probabilistic.

The layout of this chapter is as follows: Section 7.1 outlines the problem inherent
in valuing path-dependent derivative securities and also describes the Monte Carlo
method for simulating through the trees. Section 7.2 discusses how to enhance the
convergence using a refinment of low discrepancy sequences. Section 7.3 provides an
explicit construction method for generating such sequences. Section 7.4 compares
the efficiency of simulating through the trees using the proposed sequences to the

random and classical low discrepancy sequences. Section 7.5 concludes the chapter.

7.1 Monte Carlo Pathwise Valuation

During the last two decades researchers have devoted considerable effort to the
development of efficient numerical procedures for pricing derivative securities (or
contingent claims). Very often the variables underlying derivative securities are the
prices of traded securities or other factors such as interest rates. Examples include
a stock option whose value is contingent on the price of a stock, or a bond option
whose value is contingent on the value of the bond which in turn depends on the
evolution of future interest rates.

When analytic expressions are not available, a common approach to the valua-
tion of derivative securities is to model the underlying variable(s) in a discrete-time

arbitrage-free framework. For instance, a continuous-time asset price process is



CHAPTER 7. EFFICIENT TECHNIQUES FOR SIMULATING THROUGH
TREES 181
often approximated by an arbitrage-free binomial (see Cox, Ross and Rubinstein
[18]) or trinomial (see Boyle [9]) lattice model of price evolution. The discrete-time
models become the basis for direct computation of derivative securities. The back-
ward induction method, which involves rolling backward at each node of the lattice,
is a powerful numerical tool for obtaining the price of the derivative security.

In addition to modeling the movement of an asset, the lattice models are fre-
quently used to model the evolution of interest rates. Examples of these models are
Ho and Lee [40], Black, Derman and Toy (7], Black and Karasinski (8], Heath. Jar-
row and Morton [35], and extended Vasicek (see Hull and White [43]). Interest-rate
contingent claims are similarly valued using backward induction technique.

Although the backward induction technique is fast and efficient, it can be com-
putationally demanding in certain circumstances, particularly when the payoffs of
the derivative securities depend on the history of the underlying state variable(s) or
when movements of the underlying state variable(s) are not recombining. Examples

of the first case are

e path-dependent options such as Asian option whose payoff depends on the
average of the asset prices, or lookback options whose payoff is a function of

the extreme asset price achieved during the option’s life.

e Mortgage-backed securities (MBS) or index amortization swaps (IAS). An
MBS is a fixed-rate debt security where the principal may be paid off prior
to maturity. The amount of prepayment is usually assumed to depend on
the prevailing level of interest rates. An IAS is a fixed-for-floating interest

rate swap where the notional principal is reduced according to a prespecified
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prepayment schedule. The amount of prepayment again depends on the pre-
vailing interest rate level. For both securities, the values at a particular time
depend on the interest rate level and the cumulative amount of prepayments.
In other words, the history of the interest rates must be known in order to
price these types of securities. This leads to the path-dependency nature of

the securities.

A popular example of the second case is the Heath, Jarrow and Morton model where
the movements of the interest rates are, in general, not recombining. This results
in a so-called bushy tree. For a binomial (or trinomial) lattice that is recombining,
there are only s + 1 (or 2s + 1) nodes after s time steps. On the other hand, for
a non-recombining binomial (or trinomial) tree, there are 2* (or 3°) branches after
s time steps. This exponential growth of the branches limits the efficiency of the
backward induction method.

Several numerical techniques have been proposed for overcoming this problem.
These include Hull and White [42] and Ho [39]. Hull and White combine the tech-
niques of forward induction, backward induction and interpolation. Ho proposes
the linear path space method, a schematic algorithm which generates the paths
according to their importance.

Another approach is to rely on simulation to sample the scenarios or paths.
Each scenario is typically simulated as follows: Suppose we have constructed an
arbitrage-free b-nomial model. At each node of the tree, the state variable can evolve
to one of the b states (or branches). For convenience, we label these branches as

0,1, ...,b— 1. Suppose further that the risk-neutral probability of moving to
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branch j is b; where b; > 0 and Y i-yb; = 1. We also assume the branching
probabilities are independent of time and state. This constraint can easily be
relaxed. At time 0, the initial value of the underlying state variable is always
known so that no simulation is required. At time 1, the underlying state variable
could move to one of the b branches. This is resolved by drawing a random point

z € [0,1) so that the branching is determined according to the following rule:

\

if z < by, then move to branch 0
if £ < bg+ by, then move to branch 1

b (7.1.1)
fz>1-by_y, then move to branch b — 1. )

See Figure 7.1 for a generic branching of the nodes. We repeat the above procedure
for subsequent time steps until we have simulated an entire path. The discounted
value of the cash flow of the derivative security along the simulated path is com-
puted. We denote the resulting quantity as the pathwise value. The estimate of the
derivative security is obtained by averaging over all the simulated pathwise values.
The convergence of this method is guaranteed by the law of large numbers. We

label this technique as Monte Carlo pathwise valuation (MCPV).

7.2 Low Discrepancy Pathwise Valuation

The last section discussed Monte Carlo pathwise valuation. We noted that each
simulated path with s time step requires s random numbers or a random point z

from an s-dimensional unit-cube. In this section, we describe another method of
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Condition
iszl—bb_l

ifz <bg+---+bp_2

if$<bo+b1

if z <bg
Figure 7.1: Branching from the Node

sampling the paths using low discrepancy sequences. We denote this method as
low discrepancy pathwise valuation (LDPV). We also show that under certain con-
ditions, low discrepancy pathwise valuation is consistent with backward induction
in the sense that both techniques yield exactly the same estimate.

In the rest of this section, we establish the condition under which LDPV is equiv-
alent to backward induction. We assume that we have constructed an arbitrage-free
b-nomial model with s time steps. The model can be either recombining or non-
recombing. We also assume that the branching movements are equal-probable; i.e.
the risk-neutral probability of branching is 1/b for each branch. This is not a very
restrictive condition since many models fulfil this constraint. For instance, the
Black, Derman and Toy [7] model is a binomial interest rate lattice which assumes

that the risk-neutral probability of the rate going up or down is 1/2.

Proposition 7.1 Under the above assumptions, when paths are generated from a

(0, m, 8)-net in base b, for m > s, LDPV is consistent with backward induction; i.e.
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both methods yield the same value.

This proposition follows directly from the properties of the (0, m, s)-net but we spell
out the proof for completeness. Before giving the proof of the above proposition,
we first give the following two lemmas. These two lemmas are elementary but are

included so that the proof to Proposition 7.1 will be more transparent.

Lemma 7.1 Any point = (z,,z3,... ,z,) sampled from the following hypercube

E=T] [‘-‘b-&bil) , (7.2.1)

=1

for integers 0 < a; < b, 1 <1< s, leads to the same set of paths or scenarios.

Proof By definition, € E implies

a a; +1
ZI.S I lb y
a, a, +1
2< g,

b = ° b

Since we have assumed the probability of each branching is 1/b, the decision rule
(7.1.1) with b; = 1/b, 0 < j < b -1, and for = satisfying (7.2.1) would result in
moving to branch a; at time 1, to branch a, at time 2, ..., and to branch a, at

time s. Hence this leads to the same set of paths or scenarios. =]

Lemma 7.2 Suppose [0,1)* is partitioned into hypercubes of the form (7.2.1) and

a point is drawn from each hypercube to generate a corresponding scenario. The
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value of the derivative security by averaging over b® scenarios is consistent with

backward induction.

Proof This is obvious by noting that the backward induction is equivalent to
computing the pathwise values over b* distinct paths and there are b* hypercubes

of the form (7.2.1) in [0, 1)*. a

Proof Proof of Proposition 7.1. We first consider the case where m = s. By
definition. every elementary interval in base b of volume b~* of a (0, s, s)-net in base
b must contain a single point. In particular, the elementary interval (or hypercube)

of the form

E=]] [‘-’b- “—;—1) : (7.2.2)

which corresponds to setting d; = --- = d, = 1 in Definition 3.1 of Chapter 3. must
contain a point. Note that this particular elementary interval is exactly the same
as the hypercube (7.2.1). Hence it follows from Lemmas 7.1 and 7.2 that LDPV
is equivalent to backward induction.

We now consider m > s. In this case, it is sufficient to show that each elementary
interval in base b of volume 5~* (as defined in (7.2.2)) contains the same number of
points so that each distinct scenario is generated the same number of times. This
is proved by noting that any (¢, m, s)-net in base b is also a (u,m, s)-net in base b
for integers t < u < m; see Proposition 3.1 of Chapter 3. Hence an (0, m, s)-net in
base b is also an (m — s, m, s)-net in base b. Consequently, each elementary interval

of volume b contains exactly b™* points and this completes the proof. o
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Remarks:

1. To minimize the computations, we always assume m = s, the minimum value

of m for which LDPYV is consistent with backward induction.

2. Corollary 4.21 of Niederreiter [68] states that for m > 2, a (0, m, s)-net in
base b can only exist if s < b+ 1. This implies that when s > b+ 1, it
is impossible to compute the pathwise values from a (0, m, s)-net in base b.
This is unfortunate since in most problems, the number of time steps is much

larger than the number of branches.

3. Proposition 7.1 is only a sufficient condition, not a necessary condition. To

illustrate, let consider the following two point sets each with 8 elements:

A
(0, 0, 0)

(1/8,1/8,5/8)
(2/8,4/8,4/8)
(3/8,5/8,1/8)
(4/8,2/8,6/8)
(5/8,3/8,3/8)
(6/8,6/8,2/8)
(7/8,7/8,7/8)

B
(0, 0, 0)

(1/8,1/8,1/8)
(2/8,4/8,4/8)
(3/8,5/8,5/8)
(4/8,2/8,6/8)
(5/8,3/8,7/8)
(6/8,6/8,2/8)
(7/8,7/8,3/8)

Note that these two point sets are (1,3, 3)-nets in base 2. To verify, we just

have to show that each elementary interval of the following form, which has
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volume 272, contains exactly two points.

. 1
1=[“_1,“1+ )x[O,l)x[O,l), 0<a <4

4 14
. 1
E, =[0.1) x [‘;—2,“’: )x[0,1), 0<a,<4
ES=[0,1)x[0,1)x[‘-’f,“3:1>, 0<as<4
- (@, a; +1 a; a;+1
E'4_.?1, 12 )x[g, 22 )x[O,l), 0<a;1<2.0<a,<2
B[22 h 01 x [, 2 0<a <2 0<a <2
5—-27 2 s -27 9 » > a; . = 43
E6=[0,1)x["2_2,“2;1)x “_3“3+1), 0<a;<2 0<as<?2

|27 2

However, these two point sets are not (0,3,3)-nets in base 2. If these two

point sets are (0,3, 3)-nets, then every elementary interval of the following

with volume 2~% must contain a single point.

E1=

27 2

ﬂal+1)x a_2_a2+1)x[£03+1)’ OsatS1’1S1<4

2° 2 277 2

)x[O,l), 0<a;<2,0<a;<3

a1 “‘“) x [0,1) x [“3 “3+1), 0<a <2 0<a;<4
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- (@, a1 +1 a; az+1
E4=_Zl'v 14 )x[?z 22 )X[O»l)y 0<a;<4,0<a2<2
Be= 2% ) oy« [22F) g<a <4 0<a<
5--47 4 ’ -27 9 3 s a ) >~ G3
- (@, ar +1 (a3 a3 +1
E6=[0,1)x-?2, 22 )X-zs, 34 )9 0S02<270503<4
- (@, as +1 (a3 a3+ 1
E: =[0,1) x -z’, 24 )x?:‘ 32 ) 0<a;<4, 0<a;<2

To show that these two point sets are not (0,3, 3)-nets, it is sufficient to just
find one elementary interval E; that does not have exactly one point. For
instance, let consider the elementary interval Ez with a; = a, = 0. In this
case, either point set A or B has two points in this particular elementary
interval, hence violating the condition for being a (0, 3, 3)-net. Consequently.

these two point sets are only (1,3, 3)-nets.

Despite that these two point sets are not (0,3, 3)-nets in base 2. LDPV using
point set A is nevertheless consistent with backward induction while using
point set B is not. To see this, we first deal with point set A. Observe that
every elementary interval in base 2 of the form E, contains a single point for
point set A. This implies that LDPV using this point set will be consistent

with backward induction.

Now we consider point set B. In this case, each elementary intervals of the
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form

[0,1/2) x [0,1/2) x [0,1/2).
[0.1/2) x [1/2,1) x [1/2,1),
[1/2.1) x [0,1/2) x [1/2,1),

[1/2,1) x [1/2,1) x [0,1/2),

contains 2 points while none of the elementary intervals of the form

[0,1/2) x [0,1/2) x [1/2,1),
[0,1/2) x [1/2,1) x {0,1/2),
[1/2,1) x [0.1/2) x [0,1/2),

(1/2,1) x [1/2,1) x [1/2,1)

contains any point. Hence, that LDPV using this point set will not be con-

sistent with backward induction.

The consequence of the third remark is that when ¢ > 0, there is no assurance that
LDPV using (¢, s, s)-net in base b is consistent with backward induction. To ensure
such consistency, we must impose an additional constraint on the classical (t,m, s)-
net and (¢, s)-sequence. We denote the resulting sequence as a refined (t,m,s)-net

and a refined (t,s)-sequence.

Definition 7.1 A refined (t,m,s)-net in base b is a (£, m, s)-net in base b satisfying

the additional condition that for m > s, every elementary interval in base b of the
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form (7.2.2) contains ezactly b™* points.

Definition 7.2 An infinite sequence of points {z.} € [0,1)* is a refined (t,s)-
sequence in base b if for allk > 0 and m > s, the finite sequence Tipm, ..., T(k+1)pm—1

forms a refined (t, m, s8)-net in base b.

It follows from these two definitions that the refined nets and sequences have
stronger combinatorial structure than the classical nets and sequences. In the trivial
case where t = 0, a refined (0, m, s)-net is equivalent to a (0, m, s)-net and a refined
(0. s)-sequence is equivalent to a (0, s)-sequence. For t # 0, another situation where
the classical (¢, m, s)-net is also a refined net is when ¢ = m — s. To illustrate the
difference between a refined (¢,m,s)-net and a classical (m — s, m,s)-net when
t # m — s, we consider the same point set A discussed earlier. In this example,
point set A is a refined (1, 3, 3)-net since this point set not only satisfies the classical
(1,3, 3)-net, it also satisfies an additional constraint that each elementary interval
of the form E; contains exactly a point. On the other hand, a (0, 3, 3)-net not only
requires that every elementary interval of the form E, contains exactly a single
point, all elementary interval of the form E,-, 2 < j < 7 must also contain a point.
When b = 2, the refined (¢, s)-sequence in base 2 corresponds to the low discrepancy

sequence which satisfies “Property A” of Sobol’ [94].

Proposition 7.2 An LDPV using a refined (t,m,s)-net in base b, for m > s, is

consistent with backward induction.

Proof This follows immediately from Definition 7.1 and Lemma 7.2. a
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Before proceeding to the next section, we remark that both MCPV and LDPV
are discontinuous. To see this, we consider a binomial lattice with recombining
states. Let S(z,7) denote the value of the underlying state variable at time step 2
after j an up-jumps. For simplicity, we also assume the probability of an up-jump
or a down-jump is independent of time and states. In other words, at time step
i, S(2,7) can evolve to S(z + 1,j) with probability by or to S(z + 1,7 + 1) with
probability b, = 1 — by at time step ¢ + 1.

Suppose we are interested in valuing a discrete-time Asian option with geometric

averaging over s reset time points. The pathwise valuation can be described as

—+T N s T l:
pathwise valuation estimate = eN Z [H Sn (i, Z X{znj?_bx})] (7.2.3)
n=1 Li=1 =1
where N is the total number of sampled paths, , = (Zn;, ... . Zn,) € [0,1)* denotes

the n-th term of the sequence, {Sx (2, Z;zl X{zn;>b:}); 1 <1 < s} denotes the n-th

simulated path and

1 if Lnj 2 blv
x{znjzbl}) =
0 otherwise.

For MCPV, &, is drawn from a random number generator while for LDPV, z, is
obtained from the low discrepancy sequences. The discontinuity of the pathwise
valuation arises from the inherent characteristic function x(z,;>s,}- The boundary
where the characteristic function is defined is, however, parallel to the coordinate

axes. This implies that the variation of the function is not infinite. Consequently
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the problem of discontinuity discussed in Chapter 4 is not of particular concern in

this case.

7.3 Constructions of Refined (¢, m, s)-Nets and

Refined (t, s)-Sequences

The previous section states the condition under which LDPV is consistent with
backward induction. In this section, we provide an explicit construction method
for the refined sequences and nets. First, recall that the i-th component of the n-th

term of the low discrepancy sequences can be generated from

I.: = (Qnil Qni2 *°° Qru'R)b
ni bR
_ Qnile_l + -+ dniR
= bR
R

_ Qnir
= = (7.3.1)

r=1

where
Qru' = Ci A"'

The matrices Q,;, C; and A, are defined in Chapter 3, Section 3.2.
Since we can always obtain a (¢,m, s)-net in base b from a (¢, s)-sequence in
base b, we just discuss the construction of (¢, s)-sequences. The general construction

principle for generating these sequences is given in Niederreiter [65] while an explicit
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algorithm, based on formal Laurent series expansion, for finding the appropriate
values ¢;;r such that the resulting (¢, s)-sequence in base b has small ¢ is provided in
Niederreiter [66]. This explicit construction method is summarized in the following

theorem:

Theorem 7.1 Let b be an arbitrary prime power and let py,...,p, € Fy[z] be
pairwise coprime where s > 1 is arbitrary and deg(p;) = e; > 1 for1 <1 < s. For

j>1land1<i<s, let gi; € Fo[z] with ged(g:j,p:) =1 and

lim (je; — deg(gij)) =00 for1<i<s. (7.3.2)

J—00

For0<k<e, 1<it<s, andj > 1, now consider the ezpansion

zk ij = . —-r—1
Pg(:c()f) = Zag(],k,r)z , (7.3.3)

r=w

by which the elements a;(j,k,r) € Fy are determined. Here w < 0 may depend on

1.j. k. If the elements c;;; € Fy are defined by
cijr = ai(g + 1,u,7) for1<i1<s, 35721, 120, (7.3.4)
where!

j—l=gqe;+u (7.3.5)

torg=|{(7 —1-u)/e].
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with integers ¢ = ¢;; and u = u;; satisfying 0 < u < e;, then the sequence
T, = (T, --- +ZTns) € [0,1)°, n >0,

is a (t,s)-sequence in base b with

t= i(e.- — 1).

=1

There are several important insights from this theorem. First, to minimize the
quantity ¢ for fixed s and b, the degrees of the polynomials p,... ,p, have to be
chosen as small as possible. This is achieved by choosing p1,... ,p, as the first s
monic irreducible polynomials over F;,, where deg(p;) < deg(p;),1 £: < j < s.
Second, the problem of determining the elments ¢;jr is now reduced to finding the
elements a;(j, k,r) as given by relation (7.3.4). Third, for fixed ¢. j, k. the coefficient
a;(7, k,r) becomes a function of r and satisfy a linear recurrence relation with
characteristic polynomial p;(z)’. Fourth, the calculation of ai(j,k,r) can further
be simplified by a convenient choice of the polynomials g;;(z).

In Niederreiter [66], a special case where g;;(z) = 1, for 7,5 > 1, is considered

so that identity (7.3.3) becomes

k oo
T ; —r—
p(:z:)-’ = E ai(]v k,"‘)z 1'

r=w

The procedure for solving a;(j, k,r), and hence ¢;(j, k, ), can be summarized in the

following 5-step algorithm. (Note that we assume at most 5% points will ever be
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generated so that we only need to obtain the generator matrix C; with dimension

up to R x R.)

I Choose a suitable monic polynomial p;(z) € Fy[z] and let the degree of p;(z)

bee; > 1. Set j « 0, g« —1, and u « e;.
II Increment j. If v = e;, do Step III; otherwise go to Step IV.

III Increment q, set © + 0 and calculate
b(z) = pil)T = 2™ = b1z =+ — o
to obtain a polynomial of degree m = e;(q + 1). Then set
ai(¢g+1,0,7) =0 for0<r<m-2

ai(g+1.0,r)=1 forr=m-1

a(g+1,0,r) =) bnai(q+1,0,r—1) form<r<R+e—2

=1

IV For 0 <7 < R, set

cijr = ai(g+1,0,7 + u). (7.3.6)

V If j = R, stop; otherwise increment u and go to Step II.

Equation (7.3.6) is equivalent to (7.3.4) since for fixed ¢, we have a;(j,u,r) =
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a;(j,u+1,7—1).

As pointed out by Bratley, Fox and Niederreiter [14], one problem arises from
the above implementation is so-called the “leading-zeros” phenomenon. In Step III,
we set a;(7,0,7) =0, 0 < r < e;(¢g+ 1) — 2. This implies that the initial values c;;-
are also zeros. For instance if j = 1, we have ¢;;, = 0 for 0 < r < ¢; — 2. This leads

to

R-1
d'n.l = Zcilrar(n) =0

r=0

for n < b%~1. Consequently there are too many points, particular those near the
initial segment of the sequences, clustered at the origin.

Several solutions have been suggested by Bratley, Fox and Niederreiter [14]. The
simplest approach is to throw away a certain number of initial terms of the sequence.
Naturally, the number to be skipped should be a power of base b. Furthermore.
this power should be at least equal to e,, where e, is the maximum degree of the
polynomials used to obtain the generating matrix C,.

Another solution is to modify the initial values a;(3,0,7), 0 <r < e;(g+1)—2.
Bratley, Fox and Niederreiter [14] discuss a general method for defining these initial

values and in [15] a computer program is implemented by setting

ai(7,0,7) =0 0<r<eq

ai(5,0,7) =1 eiq<r <eq-2

in Step III.
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We now consider an alternative method for assigning these initial values. These

values are selected so that the resulting sequence is a refined (¢, s)-sequence. Let

k., = (kni, -.. .kn,), for integers 0 < k,; < b, denote the branching process cor-
responds to £, = (ZTa1, --- ,Zn,). Therefore, at time 1 branch k, is realized. at
time 2 branch k,; is realized, ..., and at time s branch k,, is realized. Since we

have assumed the probability of branching is 1/b for each branch, the decision rule
(7.1.1) implies that z,; € [kn:/b. (kni + 1)/b). From (7.3.1), it follows that

E+1
<—_

k
- < -
b _znt b

if and only if gns; = k. In other words, (kn;, - .. ,kns) belongs to the path generated
from (a1, - .. ,Zn,s) if and only if

kni = Gni1

for1 <:<s.
Suppose {z.} is a (t,s)-sequence in base b so that Zji, ... ,Z(j+1)ps-1 forms
a (t.s.s)-net in base b. Then for j* < n < (j + 1)b°, the base b expansion

corresponding to n can be expressed as

for fixed digits @, - - - Gg—1 and arbitrary digits ag---a,-1.
Therefore, the path (kny, ... ,kn,) belongs to (za1, ... ,Zns) if and only if the
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following system of equations is satisfied:

@gCi1o + +** + Bs—1Ci14—1 + @4Cits + *+* + GR-1Ci1R-1 = Gni1 = Kkni

for 1 <1 < s. Since @p-; - - - a, are fixed, the above system of equations reduces to

@gCi1o + *** + Gs—1Ci1a—1 = kni

where I::m- = kp; — @4Ci14 — * -+ — @R-1Ci1 R—1- From elementary algebra, this system

of equations yields a unique solution if and only if the following condition holds:

€110 €111 *°° Ci1s-1
C210 C211 °°* C21s-1

det #0 (7.3.7)
Cs10 Cs11 - °° Csl s—1

Hence we have the following theorem, which generalizes Theorem 1 of Sobol’ [94]:

Theorem 7.2 A (t,s)-sequence in base b is also a refined (t, s)-sequence in base b

if and only if condition (7.8.7) is satisfied.

We remark that the condition in Theorem 1 of Sobol’ [94] has the determinant of

the matrix in (7.3.7) being set to 1. This is consistent with the above theorem since

Sobol’ only considers b = 2.
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7.4 Empirical Studies

In this section, we compare the efficiency of both MCPV and LDPV. For LDPV,
we also examine the impact of using the refined low discrepancy sequences. Two
models are used in our comparisons. Subsection 7.4.1 considers a binomial model
which discretizes the continuous-time asset price while Subsection 7.4.2 deals with
a trinomial lattice that models the evolution of short rates. Since each node of
the tree either has 2 or 3 branches, we consider the (Z,s)-sequences in bases 2
and 3. We use the implementation given in Bratley, Fox and Niederreiter [14] to
generate these sequences. The refined (£, s)-sequences in bases 2 and 3 are generated
similarly except that the generator matrices are constructed so as condition (7.3.7)
is satisfied.

We evaluate the efficiency of the proposed methods by comparing the root-

mean-squared relative error (RMSE). This measure is defined as

M - 2
_ 1 CJ'—C,'
RMSE_\JMZ( G )

=1

where C; and C; denote respectively, the simulated value and the backward induc-
tion value for the j-th derivative security contract. In our empirical studies, we
consider M = 50 and the parameter values for each derivative security contract are
randomly generated. This measure of performance avoids the situation where the

result is influenced by a particular set of parameter values.
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7.4.1 Binomial Lattice

In this subsection, we consider simulating a binomial lattice using Cox, Ross and
Rubinstein [18] model. In one time step At = T/s, where T is the time until
maturity of the derivative security and s is the number of discretization time points,
the asset price moves up by a proportional amount u with probability of “up-
jump” b;, or down by a proportional amount d with probability of “down-jump”
bo = 1 — b,. From standard no-arbitrage arguments, the parameters u, d and b, are

related according to

B N (7.4.1)
d
and
r\/—A—t_ d
b= —C% (7.4.2)
u—d

where o is the annualized volatility of the rate of return of the asset and r is the
continuously compounded annual interest rate. The condition ud = 1 ensures that
the binomial lattice is recombining.

As discussed in Section 7.1, MCPV is a common tool for valuing path-dependent
options such as the discrete-time Asian option with arithmetic averaging. When
the payoff of the Asian option depends on the geometric average of the asset prices,
Panjer [79] develops a simple and efficient method which yields an exact pricing in
a recombining binomial lattice. Hence the geometric average option with arbitrary

discrete reset time points can be priced using Panjer’s method that is consistent
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with backward induction.

Our primary objective is to demonstrate the efficiency of LDPV. Hence we con-
sider the discrete-time geometric Asian option so that for any number of averaging
time points, the simulated values from LDPV and MCPV using (7.2.3) can be
compared to the exact values from Panjer’s method. In this case, the number of
averaging time points represents the dimensions of the problem.

The parameter values for each Asian option contract are generated as follows:
the strike price is fixed at 100, the initial asset price is uniformly distributed between
50 and 150, the annual volatility is uniformly distributed between 10% and 60%,
the expiration date is uniformly distributed between 6 months and 3 years and and
the annual interest rate is uniformly distributed between 5% and 15%.

Once the required parameter values are obtained, we construct the binomial
lattice (or CRR model). Panjer’s algorithm is then used to determine the option
price. If the option price falls below 0.5. the set of parameter values is discarded
and is replaced by another randomly generated set until the option price is at least
0.5. This is because very low option prices may lead to less reliable estimates of
RMSE.

We divide our comparison into two cases where by = b, = 1/2 and p # 1/2.
Naturally, we would expect LDPV using the refined nets is most effective for by =
b; = 1/2. For arbitrary set of parameter values, the probability p determined from
(7.4.2) need not be 1/2. A simple way of enforcing b, = 1/2 is by manipulating the

parameter value r. Rather than letting r be generated randomly, we determine r
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so that it satisfies

__log((u+d)/2)
VAt

where u and d are defined in (7.4.1). The relation ensures that the resulting b, is
1/2.

In Part A, the option contracts considered are always confined to b; = 1/2. In
Part B, we relax this constraint and repeat the comparison. It should be noted
that the condition 8o = b; = 1/2 is not restrictive since for an arbitrary set of input
parameter values, the continuous-time asset price process can always be discretized
such that the probability of branching is equally probable. See Jarrow and Turnbull
[44] and He [34] for details.

Part A

We first consider s = 15 and randomly generate 50 sets of parameter values subject
to the constraint & = 1/2. For LDPV, a refined (¢, 15,15)-net in base 2 and a
conventional (t,15,15)-net in base 2 are generated. From these two large nets,
the RMSEs at N = 2™, 7 < m < 15 based on the 50 randomly generated option
contracts are computed. The entire procedure is repeated using one additional
refined and conventional (¢,15,15)-nets that are generated by skipping an initial
part of the sequence. For MCPV, a random sequence of 2!° elements are generated
and the RMSEs at the same number of points as the nets are also computed.
Table 7.1 reports the simulated results.

In general, we observe that LDPV using the adjusted nets is most effective
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LDPV (b =2) MCPV
classical nets refined nets
m || skip = 0 | skip = 32,768 || skip = 0 | skip = 32,768
7 32.704 10.074 4.788 2.814 20.284
8 11.439 5.569 3.047 2.234 17.934
9 3.731 1.411 3.026 3.153 12.690
10 1.510 0.668 0.950 0.706 8.775
11 0.315 0.235 0.501 0.150 6.631
12 0.315 0.235 0.196 0.183 4.373
13 0.072 0.251 0.084 0.056 3.743
14 0.150 0.138 0.066 0.066 2.559
15 0.003 0.003 0.000 0.000 1.195

Table 7.1: RMSE (%) Based on 50 Randomly Generated Asian Option Contracts
with 15 Reset Points and by = b, = 1/2

while MCPYV is the least. What is even more interesting is the “initial sequence”
phenomenon exhibited in LDPV. The program in Bratley, Fox and Niederreiter [14]
recommend throwing away the first 4,096 terms of the sequences. In our simulation
results, we ignore the initial 32,768 elements for the skipped sequences. The number
chosen is arbitrary, as long as it is a power of the base. Throwing away an initial
portion of the sequence does not affect the asymptotic discrepancy of the sequence.
However, it does have an important implication on the efficiency, particularly when
only a small number of point set is considered. To illustrate, let consider the
simulation results for m = 7. Without skipping the initial segment of the sequence,
the RMSE using the first 27 points is 32.70%. This value is more than 3 times as
big as the corresponding measure from (t,7,15)-net drawn after 32,768-th terms.
The impact of the “initial sequence” phenomenon diminishes as N increases and

becomes insignificant for large N. For instance when N = 2!%, the RMSEs using
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skipped and unskipped sequences are essentially the same.

LDPV (b =2) MCPV
m || classical nets | refined nets
7 36.248 7.742 25.011
8 12.409 6.027 17.275
9 12.940 6.488 11.491
10 4.477 2.886 8.630
11 3.369 0.679 5.292
12 3.789 1.024 3.468
13 2.676 1.222 3.001
14 1.841 0.481 2.294
15 1.982 0.611 1.705

Table 7.2: RMSE (%) Based on 50 Randomly Generated Asian Option Contracts
with 30 Reset Points and by = b, = 1/2

The LDPV using the refined nets not only enhances the effectiveness of the
underlying method, the “initial sequence” phenomenon has also been dampened
somewhat. For instance with N = 27, the RMSE using the adjusted net with-
out skipping only results in an 4.788/2.814 = 1.7 increase when compared to the
skipped sequence. Furthermore, the adjusted net achieves an order of improvement
10.074/2.814 =~ 3.6 and 32.704/4.788 = 6.8 times compared to the unadjusted nets
with and without skipping.

In general, the RMSE declines as N increases, although it does not decrease
monotonically. This is due to the random fluctuation exhibited when the same
sequence is used repeatedly to evaluate all the option contracts. When N = 215,
the RMSE for the classical net is nonzero while the adjusted net is zero. This is to

be anticipated since it follows from Proposition 7.2 that LDPV using the refined



CHAPTER 7. EFFICIENT TECHNIQUES FOR SIMULATING THROUGH
TREES 206
(¢,15, 15)-net in base 2 is consistent with backward induction when s = 13.

We now repeat the above exercise by doubling the dimensions so that we are
valuing average options with 30 reset points. Since it is impractical to consider
2% paths, where LDPV using the refined (¢,30,30)-net in base 2 coincides with
backward induction, we compute RMSE using the same number of point sets as in
the previous case. The efficiency of the underlying methods therefore depends on
how well the small subset of the sampled paths represents the entire 23° paths. The
results are presented in Table 7.2 where the nets have been generated by ignoring
the initial 32,768 terms. By doubling the dimension, we observe a deterioration
of the LDPV using the classical nets. In fact, At N = 27,29, 212 2!5 the RMSEs
from the classical nets are larger than the corresponding values from the MCPV.
On the other hand, the LDPV using the refined nets yields a much higher efficiency
relative to both LDPV using the classical nets and MCPV.

An attempt has also been made to carry out the LDPV so that each option con-
tract uses a distinct net. This reduces the variability of the RMSE. The findings

are similar. The refined nets are still the most superior.

Part B

So far the examples in Tables 7.1 and 7.2 have restricted to the special case by =
b; = 1/2 where the valuation using the refined (t,m, s)-nets is most efficient. It
is therefore of interest to evaluate its efficiency even when b; is not constrained
to be equal to one half. We again consider s = 30. The RMSE (%) based on 50

randomly generated option contracts with b; € (0,1) are depicted in Table 7.3.
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Even though the refined nets are not designed specifically for this situation, we still
observe a significant improvement over the classical nets and MCPV. For instance,
when N = 2! the RMSE computed from the refined nets is 2.53%. This results in
5.212/2.526 ~ 2.1 and 7.216/2.526 = 2.9 times more efficient that the corresponding
values from LDPV using classical nets and MCPV.

LDPV (=13) MCPV
m || classical nets | refined nets
7 36.294 7.716 23.655
8 11.418 5.093 17.163
9 12.048 5.356 10.019
10 5.212 2.526 7.216
11 4.113 1.513 6.884
12 3.984 0.999 4.190
13 2.584 1.201 2.704
14 1.760 0.492 1.670
15 1.847 0.614 1.626

Table 7.3: RMSE (%) Based on 50 Randomly Generated Asian Option Contracts
with 30 Reset Points and no Restriction on the Probability of Branching

7.4.2 Trinomial Lattice

In this subsection, we consider valuing interest-rate securities on a lattice. In par-
ticular, we use the extended Vasicek [103] model proposed by Hull and White (43].

The diffusion process for the short rate can be described as

dr = [6(¢) — ar]dt + gd=z
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where the parameter o is the volatility of the short rates, the parameter a determines
the rate of reversion and dz is the Wiener process. The parameter 6(t) is time-
dependent and is determined so as the trinomial lattice fits exactly to the initial
term structure. Unlike the CRR model, the branching probabilities of the trinomial
model are time-dependent and state-dependent.

In our empirical studies, we consider the valuation of coupon bonds. The value
of the coupon bond is easily priced from the current term structure or from the
constructed lattice model using backward induction. The exact price serves as a
benchmark for comparing to the simulated values from MCPV and LDPV. Similar
to the previous subsection, we compute the RMSE based on 50 randomly generated
coupon bonds. For all the randomly generated bonds, the face value of the bond
is fixed at 100 and the bond has 5-year maturity with semi-annual coupons. The
annual coupon rate is generated so that it is uniformly distributed between 0% and
15%. Since the bonds mature in 5 years, we construct the interest rate lattices that
extend to the same time horizon. We also assume that each bond is associated
with a randomly generating term structure. The term structure is determined by
first randomly generate the instantaneous rate and two other zero-coupon rates for
years 3 and 5. We refer these rates as the anchored rates and denote them by rq,
r3 and rs respectively. The zero-coupon rates for other durations are determined
by interpolating from the two nearest anchored rates.

Generating the term structure in this manner allows us to have a better control
on the shape of the term structure assumption. In our examples, r¢ is uniformly

distributed between 5% and 8%, r3 is uniformly distributed between 8% and 11%,
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and r; is uniformly distributed between 7% and 13%. When the randomly generated
anchored rates satisfy rg < r3 < rs, we have an increasing term structure. Similarly,
when rqo < r3 > r5, we have a term structure that increases linearly from rq to 73
in year 3, the term structure then decreases linearly to rs in year 5. In calibrating
the trinomial to the term structure, we also assume the parameter values a and o

of the diffusion process are fixed at 0.1 and 0.014, respectively.

LDPV (b= 3) MCPV

m || classical nets | refined nets

4 0.277 0.216 0.736
5 0.082 0.075 0.400
6 0.051 0.041 0.213
7 0.026 0.018 0.123
8 0.015 0.011 0.072
9 0.006 0.005 0.047

Table 7.4: RMSE (%) Based on 50 Randomly Generated Coupon Bonds with 30

Discretization Time Steps

For each pair of coupon bond and term structure assumptions, we construct
a trinomial model with 30 discretization time steps. Hence, a stream of cash-
flows occurs at time steps 3, 6, ..., 30. These cash flows are discounted from
the generated set of interest rate paths. The paths from LDPV are determined
using both (£, m,30)-nets and refined (¢,m,30)-net in base 3 by skipping the first
3° terms. Table 7.4 provides a comparison of the RMSE using LDPV and MCPV
with point sets N = 3™, 4 < m < 9. It should be noted that for this particular
application, the LDPV using the adjusted nets may not be the most efficient since

the branching probabilities at each node are not exactly 1/3. Hence, even if 3%
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paths are generated, the simulated value from the refined (t,30,30)-net in base 3
need not match exactly to the value from backward induction. Despite this fact, the
results in Table 7.4 indicate considerable improvement over MCPV is achieved while
only a marginal improvement over the classical nets. For instance when N = 2°,
the RMSEs for the classical nets and MCPV are roughly 1.4 and 6.5 times larger

than the corresponding value from the adjusted nets.

7.5 Conclusion

In this chapter, we discussed ways to improve path simulation through a tree using
low discrepancy sequences. It turns out that (¢, m, s)-nets and (£, s)-sequences can
be made more suitable for this purpose by introducing an additional constraint.
These refined nets and sequences have a more regular combinatorial structure than
standard nets and sequences. We discussed the properties of these refined nets and
sequences and showed how to construct them.

To simulate path-dependent options, we observe a gain in efficiency. We applied
our approaches to Asian options in the standard Cox, Ross and Rubinstein model.
We also considered simulating bond prices on a trinomial interest rate model. In
both cases, we observed a significant improvement using the refined low discrep-
ancy sequences over classical low discrepancy sequences (and also over standard
Monte Carlo method). We expect that these refined sequences would have the

same desirable efficiency in the case of other applications.



Chapter 8

Summary and Future Research

The final chapter is divided into two distinct sections. The first section has at-
tempted to provide a few general guidelines for the application of Monte Carlo and
quasi-Monte Carlo methods. Naturally, it is difficult to be very precise when one is
discussing problems in the abstract rather than specific examples. The next section

of this chapter summarizes some of the possible extensions to this thesis.

8.1 Guidelines

The general problem we have in mind is the evaluation of a multi-dimensional
integral. When no special knowledge of the function is available, it is often very
useful to estimate the integral using standard Monte Carlo method. From the
estimated sample variance of the estimate, we can obtain information on the number
of simulation trials needed to attain a given accuracy level.

A natural question concerns the relative efficiency of the Monte Carlo and the

211
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LD methods. In several finance applications, LD methods seem to outperform stan-
dard Monte Carlo method. However, the relative performance of the two methods

depends on
e the smoothness of the integrands,
o the effective dimensions,
e and the number of points used to evaluate the function.

Furthermore, in the case of the LD method, the convergence will also depend on the
properties of the low discrepancy sequences used. To fully exploit the advantages of
the LD method, one should study the properties of the integrand and where possible
consider using some of the approaches proposed in this thesis. For instance, rather
than using conventional low discrepancy sequences, Chapter 7 concludes that we
can improve the efficiency of the LD method by using a refined version of low
discrepancy sequences.

Broadly speaking, ways of improving the LD methods can be summarized as

follows:

1. Have a good understanding of the underlying problem. It will always be the
case that the more you know about the problem at hand, the more can be

exploited in enhancing the simulation techniques.

2. Dimension reduction. Identify the most important input dimensions and
reformulate the problem so that the variation is concentrated in the first

few dimensions. To illustrate, let us consider simulating the following two
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functions:

fi(z) = Ewizi and fo(z) = Zw:—i-i»lzis

i=1 =1

where the weights w; are increasing constants in ¢ and € [0.1)*. Although
these two functions have the same values and Monte Carlo method would yield
the same level of efficiency, the effectiveness of the LD method, on the other
hand, can vary. Due to the particular arrangement of the weights, the higher
dimensions of the first integrand f; are of greater importance than the lower
dimensions. The opposite observation holds for integrand f,. Since telescopic
low discrepancy sequences have greater uniformity in the initial dimensions.
we would expect that these sequences would be more effective applying to f;
than to f;. This example illustrates that by simply reordering the weights, an
improvement to LD method can be achieved. Other methods of reducing the
dimensionality of the problem include the principal component technique (see
Acworth, Broadie and Glasserman {1]) and the Brownian bridge discretization

method (see Moskowitz and Caflisch [61] and Caflisch, Morokoff and Owen
[16]).
3. Continuity. If the underlying function has unbounded variation due to dis-

continuity, consider the generalized smoothing technique discussed in Chap-

ter 9.

4. Additional Smoothness. If the underlying function has additional regular-

ity and when the dimension is small, (say s < 10), consider using the lattice
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points (see Chapter 6) instead of the low discrepancy point sets.

5. Termination Criteria. In situations where constructing a probabilistic error
bound is desired, the randomization method (for low dimension, say s <
10) proposed by Owen [74] or the partial randomization method (for high

dimension) discussed in Chapter 4 can be applied.

6. Variance reduction techniques. Many of the traditional variance reduc-
tion techniques such as antithetic sampling, control variates, and importance
sampling can be used in conjunction with the above methods for enhancing

LD method.

7. If (¢, s)-sequence in base b is used, a more accurate estimate is obtained at N

that is proportional to the power of the base.

8.2 Future Work

This section summarizes some of the possible extensions to this thesis. These topics
tend to be either extensions of the methodologies introduced in the thesis or ap-
plications of quasi-random sequences to specific practical problems in finance and
actuarial science. Some of these topics are natural extensions of material in Chap-
ters 3, 4, 5,6 and 7 and we present them along these lines. We then discuss the
applications. Since most of the proposed future research suggested in this chapter

are very exploratory, we can only give broad ideas and not details.
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Chapter 3

The research question in Chapter 3 is to explore methods of constructing a wider
class of (¢, m, s)-nets using ideas from combinatorial design. In the study of (¢, m. s)-
nets and (¢, s)-sequences, a central issue is the determination of the parameter values
t,m,s,b for which these nets or sequences exist. Recall Theorem 3.1 of Chapter 3
states that for any N > 1, the discrepancy of the first N points of a (¢, s)-sequence

in base b satisfies

8 ¢ s—1
Dy < Clt,2,6) 8 40 (91—°g17—1")

where C(t,s,b) = ':—: . 2‘{;—/12] . (Ji%%l)‘. This result indicates that a sequence with
a small discrepancy bound is obtained by minimizing the coefficient C(t, s, b) for a
given dimension s. For fixed s, there are certain combinatorial constraints on the
parameters b and ¢t which must be satisfied for a (¢, s)-sequence in base b to exist.
For instance, from Niederreiter’s [66] general construction principle, the minimum ¢
for which a (¢, s)-sequence in base b exists grows at a rate of O(slog s) in dimension
s when b < s. On the other hand, to obtain a (¢, s)-sequence with ¢ = 0, the base
b must necessarily be increased to at least s. Another situation for which a (0, s)-
sequence exists is to allow variable bases. This corresponds to the generalized
(¢, s)-sequences defined in Section 3.3.1 of Chapter 3 with 4;,1 < 7 < s being

mutually coprime and ¢; = 0, 1 < 2z < 3. Hence the coefficient of the discrepancy

bound for the Halton sequence is

Halton _ T hi—1
¢ (s’b)—H2logb.-'

=1
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The coefficient is minimized by taking b;,1 < ¢ < s to be the s smallest primes.
As noted earlier that for conventional (¢, s)-sequences, holding b fixed with b < s
can only be achieved at the expense of increasing ¢ at a rate of O(slog s) while
enforcing t = 0 requires b > s. In order to reduce the growth of ¢ while keeping the
bases at reasonable magnitude, one idea is to construct a generalized (¢, s)-sequence.
Unfortunately, the only known construction of a generalized (¢, s)-sequence is the
special case where t; = 0 and b;, 1 < 7 < s being mutually coprime. For more general
bases, it appears that such sequences do not exist since there is no analog of the
Chinese Remainder Theorem when the bases are not pairwise relatively prime.
Nevertheless, a generalized (¢, m, 3)-net in base b with t; = 0,m; =1,1<:< 3
and b; = b, = 2,83 = 3 does exist. In this case, we just have to find a set of 12
points for which all the following 3 sets of generalized elementary intervals contain

a single point.

—01 (11+1 as (12+1 as a3+1
1. |—=, —= =, =, < .0< i
23 )X[Z‘ 5 )x[3 3 )0_a1<2,0_a2<2

0<a3 <.

(@, a; +1 az az+1
2. -Zl 14 )x[O,l)x[?s, 33 >0§a1<4,05a3<3.

1 1
3. 0,1) x [%“2_4*_) x [333,“3;" )05a2<4,05a3<3.

An example of a point set which jointly satisfies all the above conditions is
(0,0,0) (1/2,13/16,1/3) (1/16,7/8,8/9)
(1/4,1/4,2/3) (3/4,5/16,1/9) (9/16,3/4,1/27)
(1/8,1/2,4/9) (5/8,1/16,7/9) (3/8,3/8,10/27)
(3/8,9/16,2/9) (7/8,1/8,5/9) (7/8,5/8,19/27)
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This exercise indicates that a generalized (¢, m, s)-net can exist even if the bases are
not relatively coprime. This therefore provides hope that generalized (&, m, s)-nets
or generalized (¢, s)-sequences also exist for other general bases.

We now sketch a possible approach to construct a generalized sequence or net
using the equivalency between a net and an orthogonal array. The work of Mullen
[63] and Niederreiter [67)] indicate that there exists a (¢,t + 2, s)-net in base b if
and only if there exists an orthogonal array (b'*2, s, b,2) of index bf; i.e. an s x b**?
orthogonal array of size b**? (columns), s factors (rows), b levels and strength 2 and
any 2 x b**? submatrix contains all possible 2 x 1 columns with the same frequency
bt. However, an analogous equivalence does not exist between (t,¢ + k, s)-nets in
base b and orthogonal arrays (b***,s,b, k) for k > 2.

More recently, Lawrence [55] and Schmid [62] independently have defined a new
family of combinatorial objects which they have denoted as “generalized orthogonal
arrays” and “ordered orthogonal arrays” respectively. These generalizations enable
them to obtain a general equivalency between the (¢,m, s)-nets in base b and the
orthogonal arrays. More importantly, this combinatorial characterization also pro-
vides a new method of constructing (¢, m, s)-nets in an arbitrary base b and have
resulted in many new nets that have smaller values of ¢ for a given dimension s.

Strictly speaking, the particular type of the orthogonal arrays used in their
generalizations is known as the symmetrical orthogonal arrays. The orthogonal
arrays are symmetric in the sense that the “levels” of the orthogonal arrays are the
same for each row. The equivalence results between the nets and the orthogonal

arrays imply a delicate relationship between the “levels” of the orthogonal arrays
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and the base of the (£, m, s)-nets. The conventional orthogonal arrays, on the other
hand, have been generalized to allow variable “levels” for the orthogonal arrays.
The resulting orthogonal arrays are known as asymmetrical orthogonal arrays and
were first introduced in Rao [85, 86]. In recent years, several constructions of these
orthogonal arrays have been proposed by Wang and Wu [104], Wu, Zhang and
Wang [107] and Dey and Midha [21]. Since the asymmetrical orthogonal arrays
allow variable “levels”, a natural question is whether a similar generalization for
the asymmetrical orthogonal arrays would be possible to establish an equivalency

between the asymmetrical orthogonal arrays and the generalized (£, m, s)-nets.

Chapter 4

In this case, we plan to extend the randomization idea to more general types of
sequences. In chapter 4, we have considered scrambling a (0, s)-sequence and have
discussed its advantages over the classical (0, s)-sequence. Nevertheless. the same
randomization procedure can be applied to any general (t,s)-sequence in base b.
for t > 0. We plan to investigate the efficiency of these randomized (%, s)-sequences

for t > 0.



CHAPTER 8. SUMMARY AND FUTURE RESEARCH 219

Chapter 5

In Chapter 5, we have provided a general ramework for smoothing a character-
istic function. There are many derivative securities which contain discontinuities.
Interesting examples include binary options and barrier options. We would like to
explore the application of the generalized smoothing technique to these types of

options.

Chapter 6

In Chapter 6, we have described the method of good lattice points and have applied
it to evaluate particular types of financial derivatives. In the case of certain low
dimensional problems, it appears to work very well. Preliminary analysis, however.
indicates that it does not work so well in the case of higher dimensional prob-
lems (say s > 10). One possible solution is to consider a hybrid method by using
good lattice points for the first few important dimensions and standard or quasi-
Monte Carlo for the remaining dimensions. A similar “mixed sequence’ which
combines both low discrepancy sequence and (pseudo)random sequence has also
been proposed by Spanier [97] and Okten [73]. Another possible research topic is
to investigate of role of different periodization schemes. Qur preliminary analysis
also indicates that as the dimensions get larger, the effectiveness of the method of

g.l.p. critically depends on the periodization method.

Chapter 7

Cash-flow testing or solvency testing are important issues faced by actuaries. Very
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often they are required to sample interest rate scenarios from a binomial or trino-
mial tree in projecting the cash flows. In practice, they can only afford to sample
a small subset of the scenarios. Hence they are constantly seeking for an efficient
algorithm to accomplish this task. The technique discussed in Chapter 7 therefore
offers an alternative. We plan to apply this technique to more realistic actuarial

problems.

The methods described in this thesis can be applied to a set of different practical
problems. There is now considerable interest in measuring risk at the portfolio level
and in particular market risk and credit risk. The techniques suggested in this thesis
should prove useful in developing more efficient solutions for these problems.

There are also several areas in actuarial science where these methods could be
applied. Preliminary work suggests that the low discrepancy approach provides
an effective way of simulating a representative set of future interest rate scenarios.
These types of calculations are required for dynamic solvency calculations. We
also plan to explore the applications of quasi-Monte Carlo methods to some of the
classical problems in risk theory (see Dickson and Waters [22]).

In summary, the methods developed in this thesis can be used as a springboard
for future research on the construction of more efficient nets and sequences. There
also appears to be considerable scope for the application of these methods to a

range of practical problems.
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