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Abstract 
This study seeks to explore and develop innovative methods for the extraction of semantic 

knowledge from unlabelled written English documents and the representation of this 

knowledge using a formal mathematical expression to facilitate its use in practical 

applications.  

The first method developed in this research focuses on semantic information extraction. To 

perform this task, the study introduces a natural language processing (NLP) method designed 

to extract information-rich keywords from English sentences. The method involves initially 

learning a set of rules that guide the extraction of keywords from parts of sentences. Once 

this learning stage is completed, the method can be used to extract the keywords from 

complete sentences by pairing these sentences to the most similar sequence of rules. The key 

innovation in this method is the use of a part-of-speech hierarchy. By raising words to 

increasingly general grammatical categories in this hierarchy, the system can compare rules, 

compute the degree of similarity between them, and learn new rules. 

The second method developed in this study addresses the problem of knowledge 

representation. This method processes triplets of keywords through several successive steps 

to represent information contained in the triplets using possibility distributions. These 

distributions represent the possibility of a topic given a particular triplet of keywords. Using 

this methodology, the information contained in the natural language triplets can be quantified 

and represented in a mathematical format, which can be easily used in a number of 

applications, such as document classifiers. 

In further extensions to the research, a theoretical justification and mathematical 

development for both methods are provided, and examples are given to illustrate these 

notions. Sample applications are also developed based on these methods, and the 

experimental results generated through these implementations are expounded and thoroughly 

analyzed to confirm that the methods are reliable in practice. 
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Chapter 1 
Introduction 

1.1 Problem Background and Motivation 

In 2002, laboratories from six Canadian universities, including the Pattern Analysis and 

Machine Intelligence (PAMI) laboratory at the University of Waterloo, teamed up to work on 

the Learning Objects Repositories Network (LORNET) project. This project aims to develop 

the Semantic Web: the next generation of the Web in which information will be organized 

semantically, or by meaning [9]. The specific focus of the PAMI lab within this project is on 

the development of knowledge extraction and representation techniques, and the 

implementation of software that operates based on these techniques. Once integrated into the 

overall LORNET framework, these tools will enable the development of software that 

semantically organizes, navigates through, and retrieves information. 

Our research is part of the PAMI lab contribution to the LORNET project. Our purpose is 

to develop two new Natural Language Processing (NLP) methods, one designed to extract 

semantic knowledge from otherwise untagged written English documents, and the other to 

represent this knowledge using a formal mathematical expression. These methods will 

facilitate the use of this knowledge in practical applications such as document classifiers and 

search engines. As this course of study will shown, these methods provide flexible 

frameworks that can be taken separately or together and adapted to fit the needs of any aspect 

of the LORNET project. 

1.2 Definitions 

To establish a clear framework for our study, we will define from the outset a number of 

expressions that play an important role in the study. 

In English, a sentence in its simplest form is composed of two parts: the subject and the 

predicate [63]. The subject is typically a noun phrase, while the predicate is a verb phrase 

that contains a verb and zero or more objects. This gives rise to the subject-verb-object 
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sentence structure, which is fundamental in this thesis. Using this structure causes us to 

discard a lot of information such as the semantic distinction between the agent and patient of 

the verb, and the grammatical distinction between the various types of objects. However, if 

the methods presented in this dissertation are proven to be effective using only simple 

subject-verb-object information, future work can build upon and refine these methods by 

reintroducing the discarded grammatical and semantic information. In our work, the subject-

verb-object structure is represented by a triplet of keywords, which we sometimes refer to 

simply as the triplets. 

A corpus (plural: corpora) is a collection of texts of any nature. Two different kinds of 

corpora will be used in this thesis, namely a training corpus and a testing corpus. The 

training corpus is a set of texts that a program can use to discover patterns, rules or statistical 

features. The testing corpus, on the other hand, is used to test a system after it has been 

trained.  

A domain is a part of the training corpus. It can comprise either a long text or a collection 

of short texts that have been merged. A domain represents a topic of discourse such as the 

medical domain or the business domain. In this thesis, the word “domain” can refer to either 

the original English text, the corresponding list of triplets extracted from it, or the topic it 

represents. 

A document, or testing document, is a part of the testing corpus. Documents are classified 

into a domain according to their content. In this thesis, “document” refers to either the 

original English text or the corresponding list of triplets extracted from it. 

Polysemy refers to the situation in which one word has several different meanings. For 

example, the word “bank” is polysemous, since it can refer to a financial institution or the 

rising ground bordering a body of water. Polysemous words are difficult to understand in 

isolation, but their meaning usually becomes clear when they are interpreted in their given 

context. Polysemous words therefore pose a major problem for applications of natural 

language processing that ignore or discard contextual information. 
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The data sparseness problem, also referred to in the literature as the sparse data problem 

and the rare events problem, is an important challenge in natural language processing. This 

problem is encountered when researchers extrapolate the probability of observing pairs of 

words (or triplets, or more) in reality, based on their frequency of occurrence in a training 

corpus. Because the training corpus has a limited size, it contains a finite number of word 

pairs. Pairs that are not present have a frequency of zero. Assigning zero probabilities is 

erroneous, as many of the pairs are not impossible, but are very rare. Instinctively, the 

solution to this problem might be to augment the size of training corpus to include a 

representative sample of the missing pairs. However, researchers in statistical NLP have 

shown that all representative corpora have this problem; there are simply too many rare 

events [113], [55]. This observation has led to the development of a number of algorithms to 

make the probabilities more accurate, such as Laplace’s law [48], Lidstone’s law of 

successions [51], the Expected Likelihood Estimation [12], the held out estimator [43], and 

the famous Good-Turing estimation [35]. The data sparseness problem becomes more severe 

when longer sequences of words are studied. This is because a given training corpus contains 

more word pairs than triplets of words. Therefore, the sample of pairs is normally more 

complete than the sample of triplets, and the probabilities extrapolated for the pairs will be 

more reliable. Likewise, the corpus will contain more triplets of words than quadruplets of 

words, more quadruplets than quintuplets, and so on. A good presentation of the data 

sparseness problem, as well as of some popular statistical smoothing techniques used to 

compensate for it, can be found in Manning and Schütze [56]. 

Possibility theory was proposed by L. A. Zadeh as a middle-ground between fuzzy set 

theory and probability theory [110]. In that seminal paper, he makes the case that possibilities 

are related to fuzzy sets through fuzzy restrictions, and weakly connected to probabilities 

through the possibility/probability consistency principle [110]. He also argues that, while 

probability theory is unquestionably useful for measuring information, the proper framework 

to handle the meaning of information should instead be possibility theory. For this reason, we 

used possibility theory as the mathematical foundation for our work in Chapter 5. 

Consequently, we will present a more complete introduction to the theory later in this thesis. 
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1.3 Previous Work and Evolution 

The basic concept of this research has developed from previous work by the PAMI Lab in the 

field of fuzzy natural language understanding (NLU) [84], [85]. This research had culminated 

in the development of a three-stage approach to NLU and implementation in a prototype 

system [85]. The first stage of this approach consists of obtaining a semantic representation 

of the sentences in the text being analyzed. This is achieved by matching each sentence to 

one of the semantic patterns defined in the system. These patterns are created manually, and 

have a format similar to “{company | person} acquire  

{company | person | financial-instrument} {for | at} money”. As this example shows, the 

semantic patterns are specialized not only to specific domains but also to specific actions in 

each domain. The formats of the patterns are moreover based on the assumption that the 

sentences of the text have simple, straightforward structures. The approach of [85] also 

requires, at this first stage, the creation of a custom-built dictionary to match the words in the 

sentence to the elements identified in the pattern, so as to distinguish, for example, a 

company from a person. At the second stage, the approach of [85] computes statistical 

information about the elements detected previously in the process of matching the patterns to 

the sentences in the first stage. More specifically, the statistics computed at this stage are the 

semantic distance between each pair of elements, as well as the frequency of occurrence of 

each of these pairs. Finally, membership functions are constructed in the third stage. These 

functions represent typical sentences for each action in each domain. The statistics computed 

in the previous stage are used here for the construction of the membership functions. In 

addition, rules are defined to assign a specific weight to each statistic based on which 

elements originated from which pattern in the first stage. 

Even though the general idea of our research traces its roots to the project described above, 

it becomes quite evident on closer inspection that this thesis presents considerable changes 

and makes important intellectual improvements to the original approach. Further insight into 

the evolution of our research from [84] to its final state presented in this thesis comes from 

our work in [45]. At that point, the project was between these two stages of development and 

illustrated the first innovations that laid the foundation for our subsequent expansion in this 
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study. First, and of great importance in this regard, is the fact that the domain-specific 

semantic patterns of the first stage of the original approach in [84] have been eliminated and 

replaced in [45] with general heuristics designed to isolate the nouns and verbs in the 

sentences. Later on, motivated by a desire to make the approach more practical, these 

heuristics were further refined into the triplet extraction method illustrated in Chapter 3 of 

this thesis. Secondly, of the two statistics computed in the second stage of the early work, 

only the semantic distances have been retained in [45], while the frequency of occurrences 

have been replaced by conditional probabilities to take into account the different lengths of 

the documents we can work with. Thirdly, the fuzzy membership functions found in [84] 

have been drastically modified in our version of the method presented in [45]. Whereas these 

functions were designed to model typical sentences in [84], they have been transformed in 

[45] to represent instead the membership degree of noun-verb pairs in each domain. As a 

result, mathematical computation of the membership function was completely overhauled to 

eliminate the idea of rules in favour of a set of equations (covered in Section 5.3 of this 

thesis). 

Drawing on these three main improvements, our research moved on to develop, most 

notably, a keyword extraction method using a part of speech hierarchy that is more versatile 

than the heuristics-based method of Chapter 3, and a framework founded on possibility 

theory that is more mathematically rigorous than the fuzzy set method it replaced. Putting all 

these features together led to the emergence of an integrated approach for knowledge 

extraction and representation, which is expounded and successfully tested in this thesis. 

1.4 Organization of the Dissertation 

With the above concepts now defined, this study takes the current research on natural 

language processing a step further by developing new methods for the extraction and 

representation of actions in text documents. Accordingly, Chapter 2 provides an overview of 

the existing literature in the field of natural language processing that deals specifically with 

the extraction of semantic information from documents. Although the information extraction 
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techniques reviewed work well under the specific conditions for which they were designed, 

our analysis shows that their applicability is too limited for the purpose of this study.  

The methods developed in this research present several key features. For clarity and ease of 

presentation, the research is subdivided into two main phases, knowledge extraction and 

knowledge representation. The knowledge extraction phase is the subject matter of Chapters 

3 and 4. The discussion in these two chapters focuses on the methodological processes 

developed to extract from the input documents a list of word triplets that represent the 

information contained in those documents. Chapter 3 presents the first of two triplet 

extraction processes. The analysis and experimental results reveal that this process, while 

simple and functional, bears a number of shortcomings that severely limit its applicability. 

Consequently, Chapter 4 suggests a second and more robust triplet extraction method. The 

subsequent analysis of this method and the experimental results generated from it 

demonstrate its reliability and usefulness. The keyword extraction method described in this 

chapter is one of the key contributions of this research. 

The knowledge representation phase of our research is investigated in Chapters 5 and 6. To 

begin with, a method developed for this purpose is presented in Chapter 5, along with its 

mathematical development. This method of knowledge representation is another contribution 

of this study. Following this method, the triplets undergo several successive processing steps 

to represent the information they contain using possibility distributions. To provide more 

insight into the structure of the system, each step is detailed with relevant concepts, 

theoretical justification, and the mathematical development of that step. And as befits a new 

approach, we verify its validity by conducting a detailed study of the mathematical principles 

underlying it. The mathematical foundation of each step of the method is examined in this 

chapter, and parallels between these theoretical outcomes and the practical results of Chapter 

6 are drawn. An example is also supplied to illustrate the practical operation of the system. 

Chapter 6 brings additional insight to the discussion with five different practical applications 

that use the proposed method. The first application is a domain classifier specifically devised 

to illustrate the implementation process step by step. Several tests are conducted with this 

classifier and the results generated are thoroughly analyzed. The discussion then moves on to 
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an overview of four more possible practical applications that could be implemented with the 

same method, including two that were designed to tackle problems encountered in other areas 

of the LORNET project.  

To sum up the main features of the new methods for the extraction and representation of 

knowledge developed in this study, Chapter 7 gives a brief retrospective of the main line of 

reasoning of this research and suggests directions for future work. 

1.5 Overview of the Contributions 

The key contributions to the field of natural language processing that will emerge from this 

research are as follows. The first contribution is the design of a part-of-speech hierarchy. 

This hierarchy is the foundation of the rule-learning and knowledge extraction method 

described in Chapter 4. 

The second main contribution, as detailed in Chapter 5, is to support the theory that most 

of the important semantic information of a sentence is contained in actions, i.e. subject-verb-

object triplets. In the same vein, our third main contribution is the mathematical development 

of possibility distributions as a means to represent this action-based semantic information.  

The fourth contribution is the implementation of our theoretical methods in practical 

applications. The experimental results obtained from these implementations confirm that the 

methods will be reliable in practice outside of our study. 

1.6 Conclusions 

The motivation for this thesis is to develop reliable methods for the purpose of extracting and 

representing semantic knowledge in texts. Two methods are developed and investigated in 

this thesis, one for knowledge extraction in Chapters 3 and 4, and the other for knowledge 

representation in Chapters 5 and 6.  
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Chapter 2 
Literature Review and Background 

2.1 Introduction 

The loss of semantic information has been a limiting factor in many applications of natural 

language processing (NLP). This is the case for information retrieval, text summarization and 

document translation. Consequently, several researchers have focused on the challenge of 

extracting semantic information from text documents, and have come up with interesting 

solutions. The methods underlying these solutions have evolved from the purely statistical 

methods advocated originally [50] to the methods of soft computing and machine learning 

used later. This chapter presents a survey of some of the most significant developments in 

this field of research. As befits this scientific domain, the discussion begins with a general 

overview of the field with emphasis on the philosophical shift from statistical to fuzzy NLP. 

This chapter then moves on to outline the topic from a different perspective, that of 

contrasting statistical NLP and symbolic NLP. The analysis then proceeds to recent 

developments in two particular areas of application of NLP methods, namely semantic 

tagging and domain classification. Finally, the chapter concludes with a general outline of the 

method we have developed to extract and represent semantic information from text 

documents. 

2.2 Overview of Natural Language Processing 

2.2.1 Statistical Natural Language Processing 

Modern studies involving text representation often rely on a statistical language model such 

as the document vector used in [54], [99], [61]. The assumption underlying this approach as 

well as other similar approaches is that any text document can adequately be represented by a 

document vector, which contains the frequency count of words selected as the most 

significant by a certain metric [1]. These approaches have been labelled bag-of-words 

techniques because in a sense, they treat the document as if it were a bag of words: it is 
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assumed that the order of the words is irrelevant and only their occurrence frequency matters. 

Despite their successes, document vector approaches have been criticized for numerous 

shortcomings, such as their inability to recognize words with similar or related meanings 

[61], [88]. For example, this method would fail to recognize that a document containing the 

words “learner” and “pupil” is similar to a document containing “student”. 

To overcome the limitations of the bag-of-words approach, some NLP researchers have 

enhanced it by disambiguating the semantic meaning of words using a variety of machine-

readable dictionaries such as WordNet [88], [22], [40], the Oxford Advanced Learner’s 

Dictionary [50], [7], the Longman Dictionary of Contemporary English [47], or the Funk and 

Wagnalls Dictionary [95]. The first, and arguably the most well-known, of these semantic 

techniques became known as Lesk’s algorithm, after its creator [50]. Lesk proposed to 

compare the dictionary definitions of the words in the text. In the case of words with several 

definitions, the correct one is assumed to be the one with the most terms in common with the 

definitions of other words. In essence, instead of treating the document as a bag-of-words, 

Lesk replaces the words of the document with their dictionary definitions and treats each of 

those definitions as a bag-of-words. Lesk’s simple setup can correctly classify on average 

50% of the ambiguous words it encounters, but when enhanced with collocates or specialized 

dictionaries such as those mentioned above, Lesk’s algorithm can reach 70% accuracy. 

Alternatively, some researchers have tried to incorporate semantic knowledge into their 

systems by using predefined syntactic patterns [49], [79], [80]. The basic method consists in 

matching a sentence to a pattern, then using words from that sentence to fill slots in the 

pattern [49]. A set of conditions is defined for each slot and must be met by the word 

considered for that slot. More advanced techniques to identify the patterns and the conditions 

take one sentence as an initial strict pattern and generalize it to encompass similar sentences 

in a training corpus [79], [80]. However, the use of predefined patterns implies a very precise 

a priori knowledge of the syntactic structures utilized in the document being analyzed, and as 

such is inherently limited to a domain-specific approach. 
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To represent syntactic and semantic information despite the limitations of domain-specific 

approaches such as the afore-mentioned syntactic patterns, some studies have explored the 

possibility of modelling the relationship between individual words [103], [104], [105], [106]. 

Indeed, modelling the relationships between all parts of a sentence may require specialized 

knowledge, but the semantic relationships between individual nouns, adjectives and adverbs 

are mostly independent of domain. However, because of the fuzziness present in human 

knowledge and consequently in the semantics of human languages [103], as in the case of 

English, word relationships are rarely governed by clear, crisp rules, and so are difficult to 

represent statistically. For this reason, researchers have turned their attention to other 

approaches. One of the most notable among these, and the one most related to our work, is 

fuzzy-based NLP. 

2.2.2 Fuzzy-Based Natural Language Processing 

In his paper on the foundations of fuzzy logic, Zadeh states that fuzzy logic has four major 

facets [101]. Its first and most common facet is called set-theoretic. In this perspective, fuzzy 

logic is used to define fuzzy sets, or sets with non-crisp boundaries. As a matter of fact, this 

aspect of fuzzy logic is the first one on which researchers have focused on when they initially 

explored this field, and it is the one on which most current applications of fuzzy logic rely. 

Secondly, fuzzy logic can be seen as a multiple-valued logical system with its own set of 

inference rules. These rules allow it to represent and manipulate information that is uncertain 

or partially true. A third aspect of fuzzy logic is its epistemic facet, which is related to the 

logical-system perception. This facet focuses rather on knowledge applications such as 

knowledge representation and information systems, where the knowledge is incomplete or 

uncertain. Finally, there is a relational aspect to fuzzy logic, which is mainly concerned with 

the representation and manipulation of fuzzy relations. It is this last facet that deals with the 

imprecise or uncertain relationships that exist between crisp or fuzzy elements. In practice, 

these fuzzy relations are most commonly represented as fuzzy if-then rules. This ability to 

deal with imprecision and approximate reasoning is intrinsic to fuzzy logic, and more 

importantly the usefulness of this characteristic in handling uncertain relationships makes 
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fuzzy logic an ideal tool to model and handle the vagueness and uncertainty of natural 

languages [102]. 

In early attempts to apply fuzzy logic to the field of NLP, researchers focused on 

modelling the impact of adverbs on the meaning of associated words in a sentence using 

fuzzy sets. A good deal of this work was pioneered by Zadeh. His initial research showed 

that adverbs could be treated as operators acting on fuzzy sets [103]. He went on to define a 

series of fuzzy operations that could be implemented using adverbs and laid the theoretical 

groundwork needed to match specific adverbs to the appropriate operations. These 

accomplishments were the first steps towards fuzzy representation and semantic evaluation 

of a composite sentence, but they were limited to representing adverbs. Representing the 

meaning of nouns is a far more arduous task. In fact, numerous psychologists, linguists and 

philosophers have studied the notion of word meaning without coming to a single definitive 

definition of this concept and what it means to humans [104]. For his part, Zadeh observed 

that words such as “green” or phrases such as “large integers” have an imprecise and 

subjective meaning. As such, he proposed to quantify the meaning of these words as fuzzy 

subsets of a universe of discourse, and developed a mathematical framework to represent and 

evaluate the value of these subsets [104]. He later expanded this concept by creating a new 

fuzzy method for representing the meaning of words in a natural language, which he called 

Possibilistic Relational Universal Fuzzy (PRUF) [105], [106]. According to Zadeh, PRUF is 

to fuzzy logic what predicate calculus is to propositional logic. That is to say that he 

developed a method to translate natural-language premises into PRUF expressions. These 

expressions can then be transformed using fuzzy rules of inference to yield new PRUF 

expressions. These new PRUF expressions can then be translated back to natural language as 

conclusions inferred from the original premises. PRUF not only differs from other methods 

of representing knowledge because it uses fuzzy logic, but also improves on other fuzzy-

logic-based approaches by making the basic assumption that the vagueness intrinsic to 

natural languages is possibilistic in nature as opposed to the probabilistic nature that is 

assumed by other meaning representation techniques. By taking possibility distributions as its 

starting point, the PRUF method allows for a uniform treatment of the intended meaning, 
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probable meaning and possible meaning of propositions and makes it possible to manipulate 

them all in a manner similar to predicate calculus [106].  

Zadeh’s next breakthrough followed from his theory of fuzzy information granulation 

(TFIG) [107]. He started from the idea that information granulation (IG) is one of the 

fundamental mechanisms of human cognition, along with organization and causation. 

Presented briefly, granulation is the division of a whole into its parts, while organization is 

the opposite mechanism of joining a set of parts into a whole, and causation is the 

understanding of the relationship of cause to effect. Zadeh studied the implementation of 

crisp IG, which is commonplace in fields such as interval analysis, rough set theory, machine 

learning from example and cluster analysis. He then extended the concept of IG to fuzzy 

logic and by so doing laid the foundation for TFIG. A key difference between crisp IG and 

fuzzy IG is that in the former case granules are precisely defined, while fuzzy IG allows the 

creation of fuzzy granules, which have fuzzy attributes and values. It is clear that this theory 

can be easily applied to NLP by defining words as fuzzy granules. Next, Zadeh combined 

TFIG with his previous work on generalized constraints (GC) [108], in which he defined 

relationships of the general form “X isr R”, where X is a variable being constrained, R is the 

relation constraining X, and isr is a copula containing the discrete values of r, the variable 

that defines how R constrains X. By combining TGIF and GC, Zadeh introduced the concept 

of precisiated natural language (PNL) [109]. A statement expressed in PNL is a translation of 

a natural language sentence into a mathematical protoform in which the words are fuzzy 

granules and the relationships between them are governed by the rules of generalized 

constraints. Furthermore, it is possible to manipulate PNL statements with a mathematical 

precision that is absent from natural languages with the help of operators defined in the 

generalized constraints. These operators allow for the application of inference rules to extract 

new information from a database of PNL statements and then answer simple queries. In spite 

of all these promising applications, Zadeh’s techniques remain limited in scope since they 

can only represent words that can be ranked on a measurement scale such as “very”, 

“somewhat”, “red”, “tall”, and simple sentences such as “most Swedes are honest” or 

“getting there takes about 20-25 minutes”.  
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More recently, researchers have considered the possibility of representing semantic 

information in the form of fuzzy relations [2][83]. Rather than using Zadeh’s approach of 

representing the meaning or effect of a word directly with fuzzy sets, fuzzy relations define a 

word’s meaning in terms of its relationships with other words and uses fuzzy logic to 

quantify the degree of those relationships. The resulting database of words and relationships 

is usually called a fuzzy thesaurus because the act of looking up a word in this database will 

return a list of words with related meaninga. In [2], researchers built a fuzzy thesaurus of 

soccer-related words using the following three relationships: 

1) Equivalence: two words are synonymous; 

2) Inclusion: an asymmetric relationship in which one word is a generalisation of a more 

specific word; 

3) Association: two words are loosely related. 

In [83], the authors took adapted the concept by focusing on affect-related information 

such as emotions, feelings, attitudes, temperaments, humours, frames of mind, moods, spirits, 

morale and dispositions. They reasoned that since affect-related information fundamentally 

pervades all natural language documents and human thinking, capturing such information 

will extract important information from texts, which can then be usefully integrated into all 

types of NLP applications. They went on to define 83 basic affect categories and created a 

fuzzy thesaurus of affect-related words using these two relationships: 

1) Centrality: the extent to which a word belongs to a category; 

2) Intensity: the suitability of the word in the category.  

Fuzzy thesauri such as those presented above are valid means of representing words within 

a specific domain, such as the soccer domain of [2], or words related to a specific set of 

concepts, such as affects in [83]. However, they are of limited usefulness in most general, 

non-domain-specific applications. 

That said, fuzzy-based natural language applications have been successfully implemented 

in and highly beneficial to several other fields such as database handling. Indeed, it is more 
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intuitive and productive for users to query the database using natural language questions 

rather than domain-specific keyword searches. To this end, a method is needed that would 

parse the sentences, recognize keywords, then reorganize those keywords into the appropriate 

database queries. One such system has been proposed in [90]. This system relies on a fuzzy 

grammar to parse possibly incomplete sentences. The fuzzy grammar allows the system to 

classify the words of the query according to three levels of importance, to detect that words 

are missing in queries, and to automatically correct grammatically incomplete queries if the 

missing words belong to one of the two lowest levels of importance. To work properly, this 

system requires a complete list of grammar rules along with a fuzzy value representing the 

importance of each rule. These fuzzy rules must be written manually, and often relate to the 

specific domain in which the query will be asked. In yet another contribution to database 

applications, a fuzzy data mining and inference engine was proposed [77] to detect entries in 

natural-language databases that represent the same concept. Such a system requires fuzzy 

inference rules to perform the comparison and judge the results because highly dissimilar 

natural-language expressions can describe the same concept in two databases. However in 

this application, selecting what part of each entry to consider and the construction of the 

inference rules used to compare them are both done manually by a domain expert. Thus, 

these two applications are limited by the tedious labour they impose on the system designers. 

2.2.3 Relationship to our Work 

The methods discussed above represent important milestones in the field of NLP; in 

particular, that of fuzzy NLP. However, while they offer valuable insights into the NLP 

problems they set out to solve, these methods also present significant constraints that limit 

their applicability. 

The original bag-of-words approaches, though interesting, are limited by their inherent 

disregard for all syntactic and semantic information in the text, which prevents any 

unambiguous understanding of the document. Instead of solving this problem, dictionary-

based methods such as the Lesk algorithm attempt to alleviate it by introducing new semantic 

information in the form of the dictionary definitions of the words that appear in the text. 
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Although these dictionary methods enjoy greater popularity than bag-of-words approaches, 

they still disregard too much information. To address this issue, a number of researchers have 

proposed statistical methods designed to represent semantic information through the use of 

predefined semantic patterns. On closer inspection, these patterns are only effective for texts 

that follow a specific structure, which implies an a priori in-depth knowledge of the 

documents being analyzed. Since this condition is rarely met in practice, the scope of these 

methods narrows considerably. To represent natural languages using more flexible tools, 

some researchers turned their attention to fuzzy-based approaches. Zadeh pioneered a good 

deal of this work and created predicate languages such as PRUF and PNL that can represent 

words and sentences and manipulate them using mathematical operators or even inference 

rules. Unfortunately, these languages can only handle the simplest of sentences. Other 

researchers studying fuzzy-based NLP proposed that words can be represented in terms of 

their relationships to selected key concepts. They constructed fuzzy thesauri in which each 

word is represented by the fuzzy quantification of its relationship to the key concepts. This 

line of reasoning appears lead to a very narrow field of applications. The choices of key 

concepts and their corresponding fuzzy quantifications are inherently domain-dependent, 

which makes the thesauri limited in usefulness to general applications. Finally, several 

researchers have designed fuzzy-based NLP systems specialized to certain applications such 

as database handling. These systems rely, however, on large and often domain-specific, 

manually-constructed fuzzy rule bases that render their implementation long and tedious. 

The purpose of Chapter 5 is to develop a new NLP method to address all the problems 

mentioned above. Instead of using the semantically barren bag-of-words approach or the 

strict semantic patterns, our method for semantic information representation will focus on 

representing the relationship between the subjects, verbs and objects of each sentence. As we 

will demonstrate in that chapter, the subject-verb-object triplets contain most of the semantic 

information of the sentence, so representing these triplets imparts a significant level of 

understanding to the system. Moreover, the subject-verb-object structure is fundamental to 

English language usage. As such, our method assumes no a priori knowledge of the text to 

be analyzed and remains general and domain-independent, unlike the semantic patterns and 
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fuzzy thesauri. The subject-verb-object relationships will be represented mathematically 

using principles founded in possibility theory, which we will present in the next section. 

Zadeh proposed this theory as a framework to represent and handle the intrinsic uncertainty 

of natural languages [110]. In his work, he argued that much of the knowledge that humans 

transfer through language is possibilistic in nature rather than probabilistic or fuzzy, and that 

possibility theory should therefore be used to represent knowledge. Following Zadeh, we will 

rely on the mathematical framework of possibility theory to develop the methods used in our 

study. 

2.3 Overview of Possibility Theory 

2.3.1 Introduction to Possibility Theory 

Possibility theory, first introduced by Zadeh [110], can be seen as a middle ground between 

probability theory and fuzzy set theory. Although it can be difficult in some cases to draw a 

clear distinction between these three theories, each one represents a different concept. More 

precisely, the probability of an event is assigned a value between 0 and 1 depending on the 

likelihood of that event occurring. A probability of 0 means a certainty that the event will 

never occur, while a probability of 1 is a certainty that the event will occur. Fuzzy set theory 

on the other hand, deals with the membership of an event in a set. A membership value of 0 

means that the event does not belong at all in the set, while a membership value of 1 means 

that the event epitomizes of the set. Finally, possibility theory expresses the ease with which 

an event can occur, or belong to a set. A possibility of 0 means that an event cannot occur, 

while a possibility of 1 means that the event is completely allowed to occur. Some examples 

will help to clarify these notions. 

To distinguish between possibilities and probabilities, consider the simple scenario of 

tossing a coin. When the coin is fair and the toss is carried out with no intention of 

influencing the results, the coin is as likely to land on one side as on the other. Within the 

framework of probability theory, the probability of the coin coming up heads on any 

individual toss is 0.5, and the probability of it coming up tails is 0.5. However, under similar 
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conditions, in the context of possibility theory, we can say that the coin could just as easily 

land on one side or the other. Hence, the possibility of an outcome of heads is 1 and the 

possibility of an outcome of tails is also 1. 

Possibilities can take on values between 0 and 1 to represent events that are restricted but 

not impossible. To illustrate this situation, consider the quantity of water Canadians drink in 

a single day. In this case, the probabilities of the consumption of various quantities of water 

can be estimated by conducting a survey of the drinking habits of Canadians or based on our 

degree of belief that Canadians will drink a given quantity of water. Possibilities, on the other 

hand, will express the degree of ease with which Canadians can drink a given quantity of 

water. If the recommended quantity is three litres per day and people drink less than that 

quantity, they will likely feel thirsty and dehydrated, but if they drink too much more they 

will feel bloated and uncomfortable. Table 2-1 presents the probabilities and possibilities 

estimated for the water consumption of Canadians in the range from 1 to 8 litres per day. 

Table 2-1: The probability and possibility distributions of water consumption of Canadians per 
day. 

Litres of water 1 2 3 4 5 6 7 8 

Probability 0.2 0.3 0.4 0.1 0.0 0.0 0.0 0.0 

Possibility 0.9 1.0 1.0 0.8 0.5 0.2 0.1 0.0 

Table 2-1 shows that the possibility and probability values are not necessarily in sync. For 

example, while it is quite possible for a person to drink 4 litres of water, the probability of 

anyone doing so is very small. But overall, there is a heuristic connection between 

possibilities and probabilities. This connection can be expressed intuitively, with 

observations such as “if an event is almost impossible, it is bound to be improbable”. Zadeh 

refers to this as the possibility/probability consistency principle [110]. 

The relationship between fuzzy sets and possibility distributions can be illustrated using 

the notion of temperature. To keep the example simple, assume that someone divides a 

temperature scale into three fuzzy sets, namely “cold”, “warm” and “hot”, as shown in Figure 

2-1. Each temperature is associated with a membership value in each set, which in turn 
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represents how compatible that temperature is with that set. For example, a temperature of 10 

degrees has a membership of 0.8 in the “cold” set and 0 in the “warm” and “hot” sets, which 

means that it is very compatible with our notion of cold but not at all compatible with that of 

warm and hot. Conversely, if we think in terms of a statement such as “this room is cold”, 

then the fuzzy set “cold” works as a fuzzy restriction on the temperature of the room, and a 

temperature of 10 degrees is said to satisfy the constraint to 0.8. Alternatively, we can take 

this situation to mean that there is a possibility of 0.8 that the room’s temperature is 10 

degrees given the fact that the room is cold. In this situation, we can think of the value of 0.8 

as representing the degree of ease with which someone would call a room with a temperature 

of 10 degrees “cold”. From this perspective, possibility distributions can thus be regarded as 

a new interpretation of fuzzy sets and fuzzy restrictions. While the membership value 

represents to what extent a temperature of 10 degrees belongs to the fuzzy set “cold”, the 

possibility value, by contrast, represents the extent to which a temperature of 10 degrees 

corresponds with our archetypal idea of cold [27]. 

 
Figure 2-1: Fuzzy sets dividing a temperature scale. 

Possibility distributions sometimes refer to the ease with which figurative events might 

occur. Indeed, the degree of ease represented by the possibility distribution may or may not 

be physically real. In the first two examples, the possibility values represent the ease with 

which a coin can land on one of its sides and the ease with which someone can drink a given 

quantity of water, respectively. In both cases the notions are real and measurable. However, 

in the third example, the possibility values stand for the ease with which a temperature of 10 
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degrees can be assigned to the concept of cold. In that case, the notion is figurative and has 

no corresponding physical significance. 

2.3.2 Possibility Theory in NLP 

The statistical analysis of information has contributed immensely to the development of 

modern information representation and handling systems. However, as Zadeh observed in 

[110], its usefulness is limited to measuring and quantifying information. As such, statistical 

analysis is not a suitable tool when we are focussed on the meaning of information. In that 

case, the appropriate framework for information analysis is a possibilistic one, because much 

of the intrinsic fuzziness of natural languages and much of the knowledge humans gather 

from linguistic information is possibilistic, not probabilistic, in nature. For example, given a 

written statement such as “this room is cold” and a specific temperature such as 10 degrees, 

the reader will get an idea about the room’s temperature by pondering the possibility that the 

room is 10 degrees rather than the probability of the room being 10 degrees. In other words, 

he will weigh how easy it is for a room to be 10 degrees given that we know it is cold, rather 

than how likely it is to be 10 degrees given that it is cold or how strongly he believes that a 

room can be 10 degrees given that it is cold. This important distinction begins to explain the 

different scopes of probability theory and possibility theory. 

Consider the statement “Bob is young”. In a probabilistic framework, one would assign 

different values various ages that correspond to how likely we believe or observe it is for 

someone of that age to be called “young”. This set of probabilities will then become the 

probability of Bob’s age, given that we know he is young; any given age will have a known 

probability of being the age of Bob. On the other hand, in a possibilistic framework, “young” 

becomes a fuzzy restriction on Bob’s age. Any given age will have a known membership 

degree to the fuzzy set “young”. The statement “Bob is young” will have the effect of 

converting this membership degree into a possibility degree, specifically the possibility that 

Bob’s age is this figure given the restriction of the fuzzy set “young”, or the degree of ease 

with which Bob’s age can take this value given the elasticity of the knowledge that Bob is 
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“young” [110]. In this sense, we say that probabilities measure the information given by 

sentences, while possibilities capture the meaning of the sentence. 

An important advantage of possibility theory is its unbiased ability to represent ignorance 

[26]. Consider for example the two scenarios described in [29]. In the first, a gambler has the 

option to bet on several events, which are all known to be equally probable. A rational 

gambler would of course bet exactly the same amount of money on each event. In the second 

scenario, a gambler has to bet on events while being completely ignorant regarding which is 

more or less likely. In that case, the most prudent strategy is again to bet an equal amount of 

money on each event. From a probabilistic point of view, these two scenarios are equivalent. 

Probability theory is thus an inappropriate framework for handling ignorance, and 

particularly the extreme case of total ignorance. Indeed, by assigning an equal probability of 

(1 / number of events) to each event in the case of total ignorance, we implicitly assume it is 

possible to compile an exhaustive list of all events. In a situation of complete ignorance, this 

assumption is questionable. 

In contrast, possibility theory gives us a more flexible and non-biased framework for 

representing ignorance [26]. This is because consequence of the fact that, unlike 

probabilities, possibilities are not additive [29] but follow instead axioms referred to by [28] 

as “maxitivity” and “minitivity”.  

Assume two events E1 and E2, each with a different probability and a different possibility 

of being true, which we will note as P(E1), P(E2), π(E1) and π(E2). Following [110], we can 

define the union and the intersection of these two events using equations (1) and (2) 

respectively: 

π(E1 » E2) =  max(π(E1), π(E2)) (1) 

π(E1 … E2) = min(π(E1), π(E2)) (2) 

Following [26], we can also define the necessity of an event as follows: 

N(E1) = 1 - π(~E1) (3) 

Where ~E1 is the complement of E1. Necessity is a measure of possibility that is defined 

as function of the complement of the event. For an event to have a necessity of 1, its 
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complement must have a possibility of 0. In other words, if an event must necessarily occur, 

then its complement must be absolutely impossible. Necessity obeys the axioms of maxitivity 

and minitivity, and in particular it obeys the following relation: 

N(E1 … ~E1) = min(N(E1), N(~E1)) = 0 (4) 

which prohibits an event and its complement from being both in any way necessary at the 

same time. Likewise, the possibility of an event and its complement obey the following 

relation: 

π(E1 » ~E1) =  max(π(E1), π(~E1)) = 1 (5) 

which means that given two contradictory events, at least one of them will be completely 

possible. 

Probability theory offers a similar axiom to express the probability of two complementary 

events: 

P(E1 » ~E1) = P(E1) + P(~E1) = 1 (6) 

This can be seen as a counterpart to equations (4) and (5). However, as [29] points out, 

equations (4) and (5) only imply the weaker relations: 

N(E1) + N(~E1) ≤ 1 (7) 

π(E1) + π(~E1) ≥ 1 (8) 

This is one of the key differences between probabilities and possibilities. While the 

probability of an event completely defines the probability of the complementary event, the 

possibility and necessity of an event are only weakly tied to those of the complementary 

event. This gives the possibilistic framework more flexibility in representing the uncertainty 

of an event. Moreover, to thoroughly express this uncertainty requires knowledge of both its 

possibility and its necessity. Possibility is a more natural way of handling uncertainty and 

reflects the human tendency to evaluate an uncertain event in terms of the evidence for it (the 

necessity) and the evidence against it (one minus the possibility) [29]. 

Based on the previous analysis, possibility theory is related to the Dempster-Shafer theory 

of evidence with the measures of possibility and necessity being cautious versions of belief 

and plausibility respectively. This is a problem for some authors who see probability theory 
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and the Dempster-Shafer theory as fundamentally incompatible and clashing. For example, in 

[66], Pearl develops a case where the probability of two mutually-contradicting premises can 

be used to correctly compute the probability of a consequent. Meanwhile, he shows that 

computing the level of belief using the Damper-Shaffer theory overestimates the value of the 

consequent [66], and takes that as evidence of the problematic limits of that theory compared 

to probability. However, in light of our analysis in this section, this is simply a natural 

consequence of the difference between the strict equality of equation (6) and the flexible 

inequality of equation (8). Moreover, this argument omits an important point that Pearl 

mentions a few pages earlier [66 p.421]: possibilities are designed to handle the very 

different situation in which we are ignorant about some of the information needed to compute 

the probabilities of the premises. The Bayesian probabilistic model simply cannot account for 

this ignorance [26] and requires that we make assumptions about the missing information  

[66 p.425], which introduces a personal bias to the model. This makes probability theory and 

possibility theory complementary rather than opposites; two theories that can be used to 

model different states of knowledge, ignorance and uncertainty. 

Since the information in natural language sentences is necessarily in a summarized and 

therefore imprecise form [110], a certain degree of ignorance is unavoidable in our models. 

We chose to build our method in Chapter 5 using possibility theory as it provides us with the 

greatest flexibility in handling this uncertainty. 

2.4 Comparison of Statistical and Symbolic NLP 

Two popular branches of natural language processing are those of statistical and symbolic 

NLP. In the first branch, tools and methods are designed based on statistical regularities of 

language observed in a training corpus. This allows these methods to infer information that 

will be correct on average. On the other hand, techniques in the branch of symbolic NLP seek 

to design patterns or templates to apply to the text, and infer information based on how (or if) 

a given sentence fits each pattern. The creation of these templates usually requires both a 

training corpus and background knowledge about the topics of the texts the templates will be 

applied to. The main differences between statistical and symbolic NLP methods can be 
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effectively analyzed in terms of the width of their coverage and the depth of their 

understanding [78]. By virtue of the fact that they do not normally require semantic 

information or reasoning and that they only rely on the observation of word occurrences, 

statistical NLP methods are the more general of the two and can be applied to a wide array of 

domains with little modification. However, they are by nature confined to retrieving 

superficial statistical data such as word counts and co-occurrences, and extrapolating from 

them. It thus appears that statistical NLP methods have a large width but a limited depth. On 

the other hand, symbolic NLP methods are more precise on account of their reliance on 

background knowledge and semantic information. They are thus capable of extracting precise 

information and relations from within text documents. In spite of their distinct advantage in 

the specific domain for which they were developed, the reliance of symbolic NLP methods 

on domain-specific knowledge makes it difficult to port them to other domains. In this sense, 

it can be said that symbolic NLP methods have a large depth but a limited width. This 

distinction between width and depth limits, in more cases than not, the practical applications 

of these methods, as will become evident in the following paragraphs.  

A popular application of statistical NLP is the creation of web filters. These tools are 

developed to detect and block web pages with inappropriate (usually erotic) content while 

allowing access to appropriate pages (such as sexual health resources). Given that acceptable 

and unacceptable pages often use the same vocabulary, filtering tools that rely on simple 

keyword detection can easily be misled. This observation underscores the need for more 

sophisticated statistical tools to fill this gap. To address this issue, the authors in [97], for 

example, suggested refining keyword detection systems by sorting keywords into three 

classes that represent three different frequencies of words occurrences within acceptable and 

unacceptable pages. The importance of an observed keyword is then expressed numerically 

both in relation to its class and to the presence of related words of other classes. Other 

researchers [25] followed a different route and explored the possibility of comparing a web 

page to a corpus of unacceptable pages. By representing each page as a vector containing the 

frequencies of occurrence of common words, it becomes possible to compute the similarity 

between the pages as the distance between their vectors using such common measures as the 
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cosine method. The filtering task is then accomplished simply by denying access to web 

pages that are too similar to one of those in the corpus of unacceptable pages.  

Tools that make use of symbolic NLP methods are favoured when there is a need to 

retrieve some very specific information from a corpus of specialized documents. Two typical 

examples of such tools can be found in the biomedical domain and are described in [37] and 

[62]. The first example is a system designed to extract information on protein-protein 

interactions from scientific papers [37]. This system builds chains of words that are strongly 

semantically related in each document, isolates the chains that are relevant to the topic of 

biology, and finally ranks the selected chains according to the strength of the relationships 

between the words they contain. To recognize relevant chains and evaluate the strength of 

word relationships in a biological context, this system relies on several specialized linguistic 

resources including biological and medical ontologies as well as an extension of WordNet for 

protein-related terms. The second example is an indexing tool designed not only to list the 

references found in a biomedical paper, but also to provide information about the relationship 

of each reference to the contents of the paper in question [62]. This system must therefore 

detect and understand linguistic cues at several levels of textual granularity. At a coarse level 

of granularity, the specific positioning of a reference in the document carries noteworthy 

significance that could be exploited. Indeed, references cited early in the text would likely 

represent links to previous work in the field, whereas references mentioned further on are 

likely related to the experimental results of the study. At a finer level of granularity, the 

words surrounding a reference usually convey more specific information about its purpose, 

as for instance if the reference confirms, explains, or rather contradicts the particular 

argument to which it refers. In this regard, the aforementioned linguistic cues are obtained 

from a corpus of scientific documents through a systematic learning process. On this point, 

the authors remark that to extract more sophisticated cues, the corpus should be limited to 

papers related to the same field. 

The various examples presented above illustrate the advantages and shortcomings of 

statistical and symbolic NLP methods. The main advantage of tools engineered on the basis 

of statistical NLP is that they can be applied to documents from a wide array of domains with 
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little or no modification. Indeed, were it not for issues of scalability, the tools presented in 

[97] and [25] could conceivably be successfully applied to the entire Internet at once. 

However, statistical tools are fundamentally confined to conduct a very coarse level of 

information analysis, which restrains their depth of semantic usefulness. To highlight this 

fact, recall that the tools discussed in these examples can only perform a binary classification 

of websites based on their overall content. On the other hand, tools designed using symbolic 

NLP methods provide more complex results. In particular, they have the distinct advantage 

of detecting and extracting very fine-grained information from documents such as the nature 

of protein-protein interactions [37] or the relationship between a paper and a reference it 

contains [62]. However, while the two symbolic tools mentioned above have a definitive lead 

over statistical tools in the biomedical domain, their reliance on domain-specific information 

restricts the width of their coverage. Their applicability to other domains hinges upon the 

introduction of major modifications in their knowledge base and a renewed training in that 

updated context. 

The examples presented above illustrate the advantages and shortcomings of statistical 

and symbolic NLP methods. Most notably, they reveal that statistical NLP approaches have 

the advantage of being general enough to suit a wide array of domains with little 

modification. However, they are inherently limited to the extraction of superficial data. By 

contrast, symbolic NLP tools can perform a fine-grain analysis of a text, but they cannot 

easily be exported to other documents of a different nature. In short, statistical NLP methods 

demonstrate large width but limited depth, whereas symbolic methods exhibit large depth but 

limited width. 

The method we propose in Chapter 4 seeks to integrate the width of coverage and depth 

of understanding of statistical and symbolic NLP tools. As we will show in that chapter, our 

method learns rules that are precise enough to extract specific information from individual 

sentences, which matches the depth of other symbolic NLP methods. At the same time, these 

rules are based only on sentence structure with no reliance on the domain-specific 

information that limits the width of symbolic NLP methods. Furthermore, since recent 

studies indicate that information regarding syntactic structure can be transported from one 
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domain to another [19], we can say that our method has a width comparable to that of 

statistical NLP approaches. 

Our method of Chapter 4 bears some similarity with work done in the field of Natural 

Language Understanding, specifically the semantic entailment system described in [14]. 

Much like our method, the system described in [14] uses a knowledge representation 

hierarchy. However, their hierarchy is very different from ours. While the part-of-speech 

hierarchy we present in this chapter is designed to only handle individual words, the 

hierarchy in [14] handles both words and phrases. Moreover, while our hierarchy is for parts-

of-speech only, the hierarchy in [14] includes a variety of information, such as semantic role 

and syntactic parse tags of words, the phrase types of arguments, and the structure of 

complex sentences. This abundance of information makes the hierarchy of [14] a lot more 

complex to handle than the one we have designed. 

2.5 Overview of Grammatical Function Labelling and Semantic Tagging 

Semantic tagging classifies words according to their meaning or role in the phrase. This 

problem has been extensively studied, and several interesting approaches have been 

proposed. For example, the FrameNet Project [6] has constructed a database that indexes the 

descriptions of lexical items. These descriptions include the context in which each item is 

used as well as the semantic role of co-occurring lexical items. This database is a valuable 

tool for several NLP applications like word sense disambiguation [31], text understanding 

[30], and even machine translation [11]. However, the construction of such a database is a 

time-consuming endeavour that requires considerable effort on the part of human annotators 

and reviewers [6]. Another project along the same vein is that of PropBank [46], which is a 

descendent of the Penn TreeBank [57], [58]. The objective of PropBank is to add a layer of 

semantic annotation to the Penn TreeBank to extract relational data from the text. The 

semantic information added, which is in the form of verb-argument relations, is similar to the 

information we seek to extract from our documents. However, PropBank, like FrameNet, 

relies on manual annotation of the data.  
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Numerous other small-scale semantic annotation projects also exist in the research 

framework of the Semantic Web [9]. But, given that the manual annotation of the Internet is 

an unthinkable task, these projects invariably focus on the automation of the annotation 

process. To accomplish this automation, the projects then rely on various pre-existing 

ontologies, such as the ontology of concepts used by [64], the ontology of annotated poems 

proposed in [82], the sharable domain ontology encouraged by [81], or the bridge-ontology 

designed to link multi-ontologies and presented in [89].  

Recently, several ingenious algorithms have been proposed to address the challenges of 

automated grammatical function and semantic role tagging. These algorithms seek to 

discover information about the role of nouns or noun phrases in a sentence. These roles are 

defined in relation to the predicate of the sentence; while the predicate is the action, a noun 

can represent the manner, benefactor, location or direction of this action, to name only a few 

examples from [10]. This information in turn allows a much deeper level of text 

understanding, as we show in Chapter 5. 

Although the algorithms proposed in the literature are rich in variety and originality, they 

tend to follow the same underlying principle. Their basic design is to prepare a list of 

semantic tags or grammatical tags, as well as a corpus of correctly-tagged documents. The 

algorithm then uses the documents to discover linguistic features that are observed in the 

texts when each tag is encountered, and based on these observations it computes the 

probability of each tag given the observed features. Finally, the implemented tagger works by 

detecting the keywords to tag as well as the known features surrounding it in the document to 

be analysed, and assigns to each keyword its most probable tag.  

This methodological structure is obvious in the semantic role tagger proposed in [34]. In 

this paper the authors define a set of 12 semantic domains for their tagger to recognise, and 

rely for their training corpus on a subset of the British National Corpus that was hand-

annotated by the FrameNet project. During its training phase, the system computes the 

probability of each semantic domain given various features, such as the surrounding words 

and the parse tree of the sentence. In empirical tests, these features allow the system to 
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correctly tag the semantic domain of keywords with an 82% accuracy level. A similar 

algorithm based on the work done in the Penn Treebank project rather than in FrameNet was 

also proposed for grammatical function tagging in [10]. The grammatical tag set used in this 

algorithm is the one defined in the Penn Treebank, some examples of which have been given 

previously, and the training and testing data is a section of the data used in the Penn 

Treebank project. As in [34], the features detected in [10] are Boolean-valued functions of 

the parse tree of the sentences, which combine both lexical and part-of-speech information, 

and which allow it to achieve an 87% accuracy level. As the authors note in [10], this mix of 

lexical and part-of-speech features is the source of one of the weaknesses of the method. 

Indeed, the grammatical tags used in that project are quite fine-grained, but the parts-of-

speech are too coarse to accurately predict the correct tags to use, while the lexical 

information is too sparse to yield precise statistics. This latter problem, however, could be 

solved by grouping the sparse lexical items into larger and more general categories. That, in 

fact, is the intuition behind another grammatical tagger, presented in [23]. This tagger, 

however, has a more specialized purpose. It seeks to disambiguate the sense of nouns used as 

arguments of predicates. For example, given the sentence “Fred ate strawberries with a 

spoon”, it would detect that “with a spoon” is an argument of “ate” rather than 

“strawberries”. Nevertheless, the tagger follows the same basic methodological structure as 

before. It defines a set of tags, which represent argument positions between a word and a 

predicate, and selects a training corpus, namely the British National Corpus. The features it 

detects are simply the occurrences of noun-predicate-argument triplets. As mentioned earlier, 

this type of lexical data is very sparse, a problem that the authors of [23] solve by moving the 

nouns up to more general categories in the WordNet lexical hierarchy. They then focus 

mainly on estimating the optimal level of generalization of nouns in WordNet, in order to 

compute probabilities that are based on data that is neither too sparse nor too general. At that 

optimal level, their tagger achieves a 74% accuracy level. 

The variety in semantic role and grammatical function tagging stems in part from the 

particular tag set defined, as demonstrated by the examples given previously. In these 

examples, tag sets encompass 20 specific grammatical functions [10] or 12 general semantic 
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domains [34] or two basic argument positions [23]. The analysis conducted in Section 2.5 

show that pre-existing resources such as FrameNet and PropBank are a mixed blessings. On 

one hand, they provide researchers with a versatile framework and an annotated corpus, two 

elements crucial to designing a new algorithm. On the other hand, restrictions resulting from 

design decisions of the original resource are automatically inherited by the new algorithm. 

For example, by virtue of being built based on the Penn Treebank project, the tagger of [10] 

gained a large and correctly-annotated training corpus but was limited to using the Penn 

Treebank tag set. Algorithms built using specialized ontologies such as those of [81], [82], 

[89], inherit even more restrictions, as they can only ever be applied in the domain for which 

the ontology is valid. To avoid inheriting such restrictions, some authors [23] simply avoid 

these resources. 

With this in mind, Chapter 3 presents the first of two original taggers developed for this 

research. Our approach in that chapter most resembles that of [23]. As in [23], we limit our 

scope to the basic subject and object argument positions. As we will show in that chapter, our 

method reveals these arguments by using rules that combine both part-of-speech information 

and lexical information and in one case a more general lexical category. We also make the 

same decision as [23], to forego the use of pre-existing semantic resources or ontologies. 

2.6 Overview of Text Classification 

Text classification refers to the task of assigning new, previously-unseen documents to the 

most similar of several predefined topics based on the documents’ contents. This task has 

been studied extensively over the past few years as reported in [111], [38], [3], [94], [44]; 

several approaches have been developed to tackle this complex issue.  

Most of the techniques proposed for text classification in the literature rely on a document 

vector to represent the texts be classified. Such a vector may simply contain the frequency of 

certain important keywords, or if it is designed in a more sophisticated way, it may quantify 

relevant text features [1]. The document vector is then compared with vectors representing 

archetypal documents of each domain. Several methods designed to perform these 

comparisons have been proposed and analysed. A popular method is k-nearest-neighbours 
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(kNN) [111], in which the entire vector is compared to all vectors in the training corpus, and 

the k most similar vectors are retained. The domains represented by those k vectors are then 

voted upon with weights corresponding inversely to their distance, and the domain with the 

highest score is assumed to be the correct one. The main drawbacks of this approach arise 

from the fact that the comparison of the vector to the entire training corpus imposes 

inherently stringent requirements in terms of memory and computation. An improvement on 

the kNN algorithm, called the ε-approximate nearest neighbour (ε-ANN), has recently been 

proposed to address this problem [18]. But while the ε-ANN algorithm is efficient in one- 

and two-dimensional cases, it still has serious obstacles to overcome before it can be 

efficiently applied to multidimensional problems such as those faced in NLP [18]. Other 

comparison techniques have been proposed to circumvent this problem. For example, using a 

decision tree as proposed in [38] and [3] allows the classifier to compare key elements of the 

vector one by one in a specified order and to terminate the search once it encounters a 

combination of features that only occurs in a particular domain. This technique is subject to 

its own drawbacks, namely the requirement to learn the tree from a training corpus while 

avoiding the problem of overfitting. This problem occurs when a decision tree has been built 

using overly-specific, irrelevant or coincidental features of the domains found in the training 

corpus. In these cases it generates a very accurate classification on the training data, but has a 

very poor performance on unseen test data. 

Given the non-crisp nature of human knowledge and of the knowledge conveyed in natural 

language sentences [103], it seems intuitive to use fuzzy logic tools to deal with text 

classification. Some researchers have explored this possibility, and in so doing they have 

come up with some interesting classifiers. One such system worth noting is based on a fuzzy 

similarity metric [94]. At its core, this system is an implementation of the Rocchio algorithm, 

which clusters the vectors of each domain in the training corpus and replaces them by a 

single vector representing the center of each cluster. In the classic Rocchio algorithm, the 

correct domain of a test vector is then computed as the nearest cluster center using a 

Euclidian metric such as the cosine coefficient [71]. In [94], the authors improved on this 

algorithm by replacing the crisp values of the cluster center vectors with fuzzy sets to 
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represent the membership of each term in the domain. They also computed the similarity 

between a test vector and the cluster centers using ordinary fuzzy operators [94]. Their 

results show that using fuzzy similarity gives a better classification than using crisp 

measures. Some researchers undertook the more general task of comparing the performance 

of classification using crisp and fuzzy clustering methods [44]. They found a notable 

improvement in the quality of the results when fuzzy clustering is used.  

2.7 Conclusions 

This chapter has presented a survey of a representative sample of modern techniques that we 

developed either for the general field of NLP, or more particularly for the specialized 

branches of semantic tagging and domain classification. Although these techniques work 

well under the specific conditions for which they were designed, our analysis shows that their 

applicability is limited, which makes them inappropriate for the purpose of this study.  

The purpose of the research that will unfold in the following chapters is to develop new 

NLP methods that which will address the problems mentioned throughout in this chapter. 

The approaches we develop in this study build upon our previous work in this field as 

documented in the publications listed in Appendix C. One of the key innovations in our 

method for semantic information representation is its focus on modelling the relationship 

between the subjects, verbs and objects of each sentence. As we will illustrate, the subject-

verb-object structure contains most of the semantic information of the sentence, so that 

modelling it imparts a useful level of understanding into a text-analysis system.  

Extracting the subject-verb-object triplets from the documents could easily become the 

limiting factor of our method. To address this problem, we propose in the following chapters 

another method, designed to learn autonomously the rules needed to identify the subjects, 

verbs and objects in sentences. With this second method, implementing systems based on our 

research does not impose a heavy workload on the system designer in the form of rule base 

programming, as other applications often do. 
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The remainder of this thesis presents key characteristics of the proposed methods that 

highlight their differences with traditional approaches found in the literature. Accordingly, 

the first key concept consists in the extraction of the subject-verb-object triplets from the 

documents under analysis. A first approach to accomplish this task will be presented in 

Chapter 3, while a second, more robust method will be put forward in Chapter 4. The 

semantic information contained in the triplets will then be represented using a formal 

mathematical expression in Chapter 5. Experimental results obtained using an 

implementation of the representation method of Chapter 5 will be presented in Chapter 6. 
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Chapter 3 
Syntactic Heuristics 

3.1 Introduction 

It is a common scientific practice to make simplifying assumptions in order to get a better 

understanding of the important relationships on which to concentrate. In this research, we 

assume that most of the semantic information in a sentence lies in the action described by 

that sentence. For example, the meaning of the sentence “the excited man drives the red car” 

is best captured by “man drives car”, rather than “excited man” or “red car”. Consequently, 

we focus on identifying and modelling relationships between words where those 

relationships represent actions. In more precise terms, our focus in this chapter will be on 

identifying and modelling the relationships between the subject, verb and object of the 

sentences.  

To minimize the workload for the user, our complete system is designed to accept un-

annotated English documents as training or testing data, and then automatically extract the 

subject-verb-object triplets from them. In Chapter 5, we propose to use a possibilistic method 

to represent the semantic information these triplets contain. Chapter 5 illustrates how this 

method computes the possibility of the different domains given the subject-verb pairs and the 

verb-object pairs. The possibility of a domain given a triplet will then be computed on the 

basis of its subject-verb and verb-object pairs. This will tell the system to which domain the 

triplet belongs to, and the degree to which that domain classification is reliable. The 

possibility values of various domains given the noun-verb pairs will be computed using 

information extracted from domain-specific training corpora. This will allow our method to 

be specialized for a specific domain or generalized to various domains through the use of a 

general corpus such as the Brown corpus [32].  

This chapter presents the first method to extract subject-verb-object triplets mentioned 

above, and establishes the discussion of the possibilistic method to be presented in Chapter 5. 
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To accurately find the verbs and their subjects and objects, the system must annotate the 

document text. To this end, several annotation systems, or taggers, have been proposed in the 

literature. Some of these taggers have been examined previously in Section 2.5. The rest of 

Chapter 3 presents the tagger we developed for our study. 

3.2 The Triplet Extraction Method 

In view of the limits of existing semantic annotation systems and the specific needs of our 

research, we have developed an appropriate process specifically designed to identify the 

subjects, verbs and objects in each sentence. It is worth noting that the most accurate results 

can be obtained only if the triplet extraction is done manually. However, an automated 

system can provide fairly accurate results nonetheless. In the system we developed, the 

triplets are extracted from the text automatically, using a three-step process. This process 

begins by performing a part-of-speech tagging to find the verbs and nouns in the sentence. It 

then applies some semantic rules to recognise the useful verbs, their subjects and their 

objects. Finally, it removes some information we deemed irrelevant from the triplets, so that 

later parts of the method may focus only on the most meaningful data. 

3.2.1 Part-of-Speech Tagging 

The first step of our triplet extraction process is to perform the part-of-speech tagging. This 

step is intended to transform an English sentence into a simple sequence of part-of-speech 

tags, which are a lot easier for a computer to handle. Indeed, while the English language 

features millions of words, it has only a limited number of parts-of-speech, which are 

typically grouped in only eight main classes: noun, verb, adjective, adverb, pronoun, 

preposition, conjunction, and interjection [63]. For our research, we are only interested in 

keeping the verbs and the nouns. Thus, performing part-of-speech tagging allows the system 

to focus on the relevant parts of the sentence and to discard unnecessary information. 

To perform the tagging, we rely on an implementation of the Brill tagger [15]. The Brill 

tagger is a simple yet efficient English-language tagger that operates by assigning each word 

its most commonly used part-of-speech tag, and then uses 9 transformation rules to correct 



 

 35

common tagging mistakes. Brill reports that this system achieves a tagging accuracy of 

95.6% [16].  

3.2.2 Syntactic Heuristics 

Once the part-of-speech tags are known, we can extract the triplets. We assume that the 

sentence follows a “subject verb object” structure, which is a common sentence structure in 

English. Thus, for each verb in the sentence, we assume the subject is the first noun 

preceding it and the objects are all the nouns following it. However, in the realm of English 

common parlance, this assumption can run into some problematic situations. These situations 

occur when extra words, such as extra verbs, extra nouns or extra sub-sentences, are inserted 

into the main sentence in order to give more information about the main action depicted. 

Consider for example the sentence “The seller agreed to meet the client”. Obviously, the 

triplet extracted from this sentence should be “seller meet client” while the extra verb “agree” 

should be ignored, since the main point of the sentence relates to a meeting between the 

seller and client. Likewise, in the sentence “Education Minister Kennedy attended a 

meeting”, the noun “education” and the proper noun “Kennedy” should be ignored, and the 

triplet extracted should be limited to “minister attended meeting”, to reflect the fact that the 

most important attribute of the attendee is that he is a minister, as opposed to being in charge 

of education or having the last name Kennedy. To address such common problematic 

situations, nine simple syntactic heuristics are implemented into our system. Their role is to 

detect these situations, isolate and eliminate the extra words and allow the system to 

successfully extract the real actions. It should be noted that these nine heuristics by no means 

cover all possible problematic situations. Yet taken together, they can correctly handle a wide 

range of common cases, and thus help minimize the number of incorrect triplets that will be 

introduced in the training and testing data. It is worth noting that, while we chose to use 

heuristics in order to maintain direct control over the processing of the sentences and the 

creation of the triplets, a system designer could just as easily replace them with a simple 

parser that performs the same task automatically. It is also important to point out that, while 

it remains true that we only wish to keep the nouns and verbs in the end, more information, 
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such as punctuation and prepositions, is needed for our heuristics to work. The syntactic 

heuristics implemented in our system are: 

• The “verb to verb” rule: This rule handles combinations of two verbs, such as “we 

decided to visit France”. When the system encounters this structure in a sentence, it 

considers that only the second verb is meaningful and ignores the first one. This is the 

rule used in the first example given previously. 

• The “verb verb” rule: This rule handles combinations of two verbs, such as “the story is 

based on historical facts”. Like in the previous case, when the system encounters this 

structure in a sentence, it considers that only the second verb is meaningful and ignores 

the first one.  

• The “word-verb” rule: This rule handles hyphenated words that are composed of one 

verb, such as “this site offers web-related advice”. The words are separated by the Brill 

tagger in the previous step of the method, hence the second part is wrongfully detected 

as one of the verbs of the sentence. This rule allows the system to skip such verbs. 

• The “of nation” rule: This rule handles names that contain “of nation”, such as “the 

government of Canada passed a law”. When such a structure is encountered, the 

system considers that the “of nation” part is unimportant and ignores it.  

• The “noun noun” rule: This rule handles double-nouns, such as “the company president 

announced the sale”. Normally, the second noun is the most meaningful one of the pair, 

and the first one serves to add details. Consequently, when such a structure is 

encountered in a sentence, the system ignores the first noun.  

• The “noun-noun” rule: This rule handles double-nouns that are joined by a hyphen, 

such as “the famous actor-director visited the set”. These words were separated by the 

Brill tagger in the previous step of the method, and are wrongfully detected as two 

distinct nouns. This rule allows the system to merge them back into a single noun. 

• The “noun propernoun” rule: This rule handles proper names preceded by a title, such 

as “Prime Minister Harper attended a meeting”. In this case, the system considers that 
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the title is the most meaningful word of the pair, and ignores the proper noun. This is 

the rule used in the second example given previously. 

• The “comma noun comma” rule: This rule handles portions of sentences placed 

between two comas, such as “the president, who is at a summit this month, answered 

the question”. The segment between the commas gives additional information on the 

subject (president). However, since the search for a subject is done by the system by 

moving leftward from the verb (answered), the first noun encountered is necessarily 

found in the segment between commas (month), which is evidently not the subject 

sought after. Consequently, when the system searches for the subject of a verb, it skips 

portions of sentences between two commas. 

• The “in noun to verb” rule: This rule handles sentence structures such as “students have 

to read the book in order to write a report”. When such a structure is encountered, the 

system considers that the noun is unimportant and ignores it. 

3.2.3 Reducing Complexity 

Given the rich English lexicon and the use of synonyms, a system that retains in the triplets 

all nouns and verbs exactly as they appear in the sentences will face serious complexity 

issues. To begin with, such a system would make irrelevant distinctions between different 

forms of the same word, such as singular and plural endings, or American and British 

spellings. Moreover, it has been shown that a typical natural-language document or corpus 

will be made up of a few frequently-occurring words and many rarely-used words [113], 

[55]. The frequently-occurring words will be general, and have such a broad meaning that 

they will be downright worthless in an NLP application. On the other hand, words that have a 

specialized or specific meaning and would therefore be of great importance in an NLP 

application are too infrequently used to be of any help. After all, what kind of reliable 

information could be derived from a word observed only once or twice in a corpus? This 

situation is a major obstacle in NLP. 
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In order to address the issues described above, the triplet extraction process in our system 

includes a complexity reduction phase. This segment of the process is based on the 

assumption that the most informative part of an action is the act itself, rather than the objects 

performing the act or those being acted upon, and rather than the time (past, present or 

future) in which the act takes place. For this reason, we eliminate the verb tense by 

substituting all verbs in the triplets with their infinitive form. In the same vein, nouns with a 

similar meaning to each other are replaced with a more general noun category. This is done 

to avoid the problem of handling many significant but rarely-used words. Instead of having, 

for example, one hundred nouns with a similar meaning used once each, the system will have 

one noun category with a roughly equivalent meaning used a hundred times. However, 

because of the importance we place on verbs, we will not group them in categories like we do 

for the nouns. 

The noun categories have to be designed and specialized for the particular domain in which 

the tagger will be used. To this end, domain-specific nouns must be represented by specific, 

fine-grained categories, while general nouns or nouns from other domains can be grouped 

together in general, broad categories. The justification for this design philosophy is that 

domain-specific nouns will carry vital details that could be lost if the clustering is too broad, 

while general and out-of-domain nouns are probably incidental, and unlikely to carry 

important domain-specific information. Moreover, domain-specific nouns can be expected to 

abound in their respective domains, which enables us to use fine categories without the risk 

of encountering data sparseness, while out-of-domain nouns are comparatively quite rare. To 

illustrate these distinctions, consider a sample of specialized medical terms. In the medical 

domain, the differences between viruses and bacteria, or enzymes and proteins, are very 

meaningful. For the purpose of this domain, each of these words should correctly be 

allocated to its own category, as each one carries a different medical significance. For the 

business domain however, the differences in the specific significance of these terms are 

irrelevant, and they can all be grouped under a single “medical terms” category with no loss 

of relevant information. Moreover, distinguishing between these terms could potentially 
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introduce distinctions between the documents that are irrelevant for the business domain, and 

which only serve to confuse the system with unnecessary details. 

To conduct this study, we have developed a partially-automated process for the specific 

purpose of creating the noun categories. The first step in this process is to count nit, the 

number of occurrences of each noun ni in each domain dt of the training corpus. Then, we 

compute the information gain ∆i of each noun using an equation we have formulated for this 

research:   
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In this equation, words that frequently occur in all domains will have a low information gain 

value, while words that occur a lot more in one domain than in any other will have a high 

value. The second step in our process is to manually sort out each noun into a broad noun 

category. Although no formal framework exists to help us perform this task, the general 

guideline we follow is to have as few categories as possible, while separating words with 

important differences in meaning into different categories. For example, in the 

implementation we will present in Chapter 6, the 3773 nouns encountered were sorted into 

375 noun categories, ranging from specific “worker” and “building” categories to general 

“individual” and “location”. This manual sorting is the reason why we labelled our method as 

“partially-automated”. However, this manual process could be replaced by an automated tool, 

such as in this case the CBC algorithm [65]. The nouns are then clustered according to the 

domain in which they occur most often. In the third step, the noun categories are split into 

several sub-categories, one per domain for the nouns that occur only in that domain, and one 

for the nouns that occur in several different domains. Then, by applying Equation (3-1), the 

information gain ∆'i of each noun sub-category is computed by using Nit, the number of 

occurrences of each sub-category in each domain, instead of nit. Finally, we set a threshold 

value for the information gain. If the information gain ∆'i of a sub-category is below that 

threshold, the noun with the lowest information gain ∆i is removed from that sub-category 

and filtered out of the corpus, and the new value of ∆'i is computed. This process is repeated 
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until all sub-categories have an information gain value higher than the threshold. Obviously, 

this last step of the method is skipped for the sub-categories containing nouns that occur only 

in one domain, since the information gain value of these sub-categories and of all nouns 

comprised in them is always 1.  

It is worth noting that other techniques could have been used, based on more standard 

information measures rather than the one we chose to devise for our work. One such 

alternative, for example, could be the pointwise mutual information (PMI) score described in 

[87]. We adapted the central equation of PMI to our work in equation (3-2). In that equation, 

nit and njt are the number of occurrences of words ni and nj, respectively, in domain dt, while 

the expression nit ∧  njt represents the number of occurrences of both words together. We can 

thus see that equation (3-2) computes the information between a pair of words nt and nt. 

Consequently, using this equation will require us to modify the rest of the category 

generation process. This could be easily accomplished. For example, while previously the 

last step of the process eliminated the words with the lowest information gain as computed 

using equation 3-1, our adapted process would eliminate the noun with the lowest average 

PMI with all other nouns in the category. 
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As mentioned above, our system considers the verbs to be the most significant part of the 

triplet. For this reason, we choose not to make use of verb classes. However, not all verbs are 

significant. Some very common verbs, such as to be and to have, carry little significance, yet 

they will have a major impact on the results by virtue of the fact that they are used very 

frequently in all domains. It is thus necessary to detect and filter out these verbs from the 

triplets. Consequently, we similarly apply the notion of information gain to the verbs, in 

order to detect and filter out these common and meaningless verbs. The information gain of 

each verb is computed by introducing the number of occurrences of the verb in each domain 

into Equation (3-1). We then set a threshold value, which doesn’t have to be the same as for 

the noun sub-categories, and verbs whose information gain value is below that threshold are 

considered too common and are consequently filtered out. 
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3.2.4 Illustrative Example 

In order to illustrate the steps of our triplet extraction process, a simple example is presented 

in Table 3-1.  

The sentence to be analysed is presented in the first row of the table. The first step of the 

algorithm is to generate the equivalent sequence of part-of-speech tags using the Brill tagger, 

as mentioned in Section 3.2.1. The output of this step is presented in the second row. The 

implementation of the tagger we took for our research uses the 46 parts-of-speech of the 

Penn Treebank, which are discussed in detail in [74] and reproduced in Appendix A for 

convenience. It should be noted that, although “have” and “doubled” are both verbs, they 

serve different functions in the sentence, and consequently the Brill tagger assigns them 

different tags.  

The next step of the algorithm is to extract the triplets. By using the part-of-speech tags, 

it’s easy to pick out the verbs and the nouns. The verbs are identified first, as the words with 

a part-of-speech that includes the letters VB. In our example, only “doubled” is marked; 

“have” has the part-of-speech RB, which labels it as an adverb. Then, since we assume that 

the sentence follows the “subject-verb-object” structure, the first noun left of the verb is 

assumed to be its subject, and the nouns right of the verb are assumed to be objects. This 

leads to the tagging shown in the third row of Table 3-1. However, as we explained in 

Section 3.2.2, this assumption can lead to the extraction of erroneous triplets in the cases 

when sentences do not strictly adhere to the “subject-verb-object” structure. To address this 

problem, we apply the heuristics of Section 3.2.2 to the sentence to eliminate wrong verbs, 

subjects or objects. This step is accomplished by finding which heuristic, if any, has the same 

structure as the sentence, and performing the action dictated by that heuristic. In our current 

example, since the sentence is fairly straightforward, the system finds no suitable heuristic, 

and the subject, verb and objects extracted remain those of the third row. 

Finally, the last step of the process is the one of Section 3.2.3, in which irrelevant 

information is discarded. As we can see in the last row of Table 3.1, the verb “doubled” has 

been transformed to its infinitive form “double”, and the nouns have been replaced by 
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general categories. Hence, the sentence in this example would generate two triplets: “finance 

double measure” and “finance double date”. 

Table 3-1: Tagging example. 

The shares have almost doubled in value since the start of 2005 . 

DT NNS VRB RB VBN IN NN IN DT NN IN CD . 

 subject   verb  object   object    

 finance   double  measure   date    

3.3 Experimental Results 

The data used to test our extraction heuristics comes from the Brown Corpus [32]. This 

dataset is a corpus of texts written in American English and compiled in 1961. It is composed 

of 500 sample documents selected to reflect the spread of domains that the American public 

were likely exposed to at that time. The documents in the corpus thus cover a wide range of 

topics, from news coverage to religious texts, from industrial reports to detective fiction. We 

decided to set off the demonstration by initially limiting the scope of the rule-learning system 

to the business domain of the corpus (samples A26-A28) and the science-fiction domain 

(samples M01-M06). 

As a benchmark for comparison, we analysed the selected samples and manually identified 

the correct keywords to extract. We then applied the extraction method of Section 3.2 on the 

samples. On the business domain, it obtains a precision of 86% and a recall of 91%, while on 

the science-fiction domain it obtains a precision of 90% and a recall of 91%. These good 

results are not surprising; indeed, we designed the heuristics of Section 3.2.2 by studying 

these same samples and identifying the most general form of the necessary rules. Moreover, 

they were obtained at the cost of imposing a number of important limitations on the method, 

which we will now present. 

3.4 Limitations of the Extraction Method 

The triplet extraction technique presented in this chapter does by no means guarantee the 

extraction of all the triplets, even less so the extraction of only accurate triplets from every 
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sentence it deals with. As mentioned before in section 3.2, the best extraction results can only 

be achieved if an individual were to perform the task manually; and even then, the outcome 

would not be perfect. Indeed, some ambiguous sentences can be interpreted differently by 

different people, who will depict them through different triplets. For example, given the 

sentence “time flies like an arrow”, some readers would annotate the triplet “time fly arrow”, 

while others would choose the triplet “flies like arrow”, or even a different triplet because of 

the many different interpretations of this expression that could be imagined.  

Ambiguous and complex sentences are the major problem faced by our extraction system. 

Indeed, the system operates on the core assumption that all sentences follow a 

straightforward subject-verb-object structure. This is obviously an oversimplification of 

reality, and it ignores many real sentence structures, such as the post-modification of subjects 

for example. Consequently, sentences with more sophisticated structures lead to the 

extraction of erroneous triplets, or cause the system to miss good triplets. We acknowledged 

this failing and attempted to limit its impact by using some syntactic heuristics to counter 

common problematic structures. However, there is no limit to the number of different 

sentence structures that can be used in natural texts, and as a result, it is impossible to devise 

heuristic rules to handle all possible scenarios. Sentences with unusual structures will always 

be a source of errors in this extraction process. 

Another source of error comes from the system’s reliance on the Brill tagger. This tagger 

boasts an accuracy rate of 95.6% [16], in the sense that any single word in the sentence has a 

probability of 95.6% of having been tagged correctly. This means that the longer the 

sentence, the more likely a tagging error will occur somewhere in it. For example, the 

sentence presented in Table 3-1 has 13 taggable elements, hence it has only a 55.7% chance 

of being entirely tagged correctly. At the moment, only tagging errors that cause nouns and 

verbs to be mislabelled, or that cause other words to be mislabelled as nouns or verbs, can 

have a detrimental effect on the system. However, as new and more elaborate syntactic 

heuristics are added to the system for the purpose of handling more complicated sentences, 

we can expect that the negative impact of these tagging errors will become more important 

for the system’s performance. 
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The use of anaphora in sentences brings about a loss of information for our system. 

Anaphoric words are placeholders that can stand for other words, expressions, or even 

complete noun phrases. However, they are meaningless in and of themselves, and can only 

make sense when we know what they stand for. The task of disambiguating their meaning is 

called anaphora resolution, and it remains to this day a major challenge in the field of NLP 

[42]. Our system is not designed to address this problem. As a result, encountering anaphora 

as subject or object in a sentence leads to the extraction of meaningless, useless triplets. 

Finally, the method does require a non-negligible amount of manual work. Indeed, we 

designed the syntactic heuristics of Section 3.2.2 manually after studying the test corpora that 

will be used in Chapter 6, and the process to generate the noun categories in Section 3.2.3 

requires the manual sorting of the nouns into coarse categories that the process then refines. 

This limits the portability of the method. 

The shortcomings of this method mentioned above are serious enough to justify the search 

for a more robust method for the extraction of the triplets. This is the subject matter of the 

following chapter. 

3.5 Conclusions 

In this chapter, we focused on the triplet extraction method of our research. We provided an 

analysis of the triplet extraction process we developed for this study. We showed that our 

process follows three sequential steps. It begins by identifying the part-of-speech tags of the 

sentence. It then isolates the relevant nouns and verbs using simple semantic rules, and 

associates each verb with its subject and objects. Finally, it removes superfluous information 

by replacing nouns with general noun categories, eliminating verb tense, and filtering out 

common verbs. An example illustrated the functioning of this process and exposed the 

theoretical limits of the method. 

Although simple and efficient, the method’s demonstrated shortcomings severely limit its 

applicability and justify striving toward a more robust alternative. Chapter 4 will present our 

alternative approach for triplet extraction.  
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Chapter 4 
Part-of-Speech Hierarchy 

 

 

4.1 Introduction 

Earlier research [78] has demonstrated that tools based on statistical natural language 

processing (NLP) approaches are general enough to generate a coarse-level understanding of 

almost any text. However, statistical NLP tools are rather limited when it comes to extracting 

finer details. Conversely, symbolic NLP tools can perform a fine-grain analysis of a text, but 

they cannot easily be exported to other documents of a different nature. This study expands 

the current NLP literature by developing a new method that combines the advantages of both 

statistical and symbolic NLP. This method permits a fine-grain analysis comparable to that of 

symbolic NLP applications while maintaining the generality that characterises statistical NLP 

algorithms. 

More specifically, we present in this chapter an original rule-learning algorithm for 

symbolic NLP that was designed to learn rules for extracting keywords marked in its training 

sentences. These keywords represent information that a potential user or system designer 

seeks to mine from the sentences. As such, the information sought varies with each 

application. The algorithm developed in this study is designed to extract the main verb of the 

sentence along with its subject and objects. Our method differs from other recent 

developments in the field of symbolic NLP in the implementation of a hierarchy of parts-of-

speech at the core of the learning algorithm. This new approach makes the rules dependent 

only on sentence structure rather than on content as in ontology-based methods [80]. 

Similarly, our method employs rules that are independent of context- and domain-specific 

information. 

To put in perspective the design and scope of our research, this chapter is structured as 

follows. The next section presents a complete description of our method and makes the case 
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for its original contribution. Experimental results generated through an implementation of 

this method are elaborated and thoroughly analysed in Section 4.3. We compare this 

extraction method with that of Chapter 3 in Section 4.4, and give directions for future work 

in Section 4.5. Finally, we end the chapter with concluding remarks in Section 4.6. 

4.2 The Rule-Learning Algorithm 

4.2.1 Part-of-Speech Hierarchy 

It is commonplace to define a part-of-speech as a linguistic category of lexical items 

(generally words) that share common syntactic or morphological characteristics. This 

definition is however quite vague and underscores the fact that there is no agreement among 

grammarians on what exactly constitutes an independent part-of-speech. To illustrate this 

point, consider for a moment that the Penn Treebank, with its set of 46 parts-of-speech, is a 

simplification of the Brown Corpus set, that has 87 parts-of-speech, and is in turn dwarfed by 

other corpora, such as the Lancaster-Oslo/Bergen tagset and the London-Lund tagset, that 

contain 135 and 197 parts-of-speech respectively [57]. At the other extreme, the “correct” 

English grammar taught in schools asserts that there are only eight parts-of-speech in the 

English language: the noun, verb, adjective, adverb, pronoun, preposition, conjunction, and 

interjection. To be sure, this list is modelled after Latin grammar, which was designed with 

eight parts-of-speech to resemble closely the more civilized (at the time) Greek grammar, 

that included eight parts-of-speech on account of the early and influential grammatical work 

of Dionysius Thrax in the Second Century BC [63]. Thus it appears that the eight part-of-

speech classes carried over to English grammar originate from tradition rather than from 

grammatical necessity.  

This study’s core contribution to the field of NLP is the design of an original part-of-

speech hierarchy. Indeed, while the design of hierarchical systems, such as ontologies or 

WordNet, has undeniably been gaining importance and recognition over the past years, no 

part-of-speech hierarchy has ever been developed before. The need for such a hierarchy does 

exist, as evidenced by the fact that some work in the field has been subtly pointing to it. For 
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example, as was pointed out earlier, the Penn Treebank is a simplification of the Brown 

Corpus tagset; it merges some of the Brown Corpus tags together and reduces the size of the 

tagset almost by half, but the lost tags can be recovered [57]. On the other hand, similar tags 

in the Penn Treebank use common prefixes. For example, the various parts-of-speech 

representing adjectives start with JJ, and those for verbs start with VB. This setup can be seen 

as a three-level hierarchy, with the prefixes as the highest, most general level, the Penn 

Treebank as an intermediate level, and the Brown Corpus tagset as the lowest, most precise 

level. However, the authors of the Penn Treebank never actually make this logical step, and 

the need for a part-of-speech hierarchy is never fulfilled or explicitly recognized. This study 

seeks to fill that gap.  

To help visualise the different levels of our part-of-speech hierarchy, a graphical 

representation of the complete hierarchy developed in this section is presented in Appendix 

B. To be sure, the purpose of the hierarchy originating in this research is to group specific 

words into more and more general part-of-speech groups. In this regard, it is logical to say 

that the lowest, most basic and specific level of the hierarchy is comprised of the lexical 

items taken from the sentence. The second level of the hierarchy corresponds to the first 

stage of the generalization of the lexical items. At this level, lexical items are grouped in the 

46 parts-of-speech of the Penn Treebank, discussed in detail in [74]. This set of part-of-

speech tags is listed in Appendix A for future reference.  

As can be seen in the appendix, we have made one notable modification to the Penn 

Treebank, which is the addition of a special “blank” symbol that stands for a missing word. 

This modification will allow rules and segments of different lengths to be compared and 

matched together, as the extra words in the longer sentence will be paired with “blank” words 

in the shorter one.  

At the second stage of generalisation, parts-of-speech that represent morphological 

variations of the same words, such as “singular common noun” and “plural common noun”, 

are brought together into morphological categories that constitute the third level of the 

hierarchy. Moving two levels beyond this third one, we reach the level in the hierarchy where 
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items are grouped into lexical categories. We have defined nine such categories for words, 

and three for the various symbols and non-native words that are commonly encountered in 

English texts. Each lexical category also includes the special “blank” symbol. Our set of 

lexical categories reads as follows: 

• Adjective: A word that modifies the attributes of a noun. 

• Adverb: A word that modifies a verb, adjective, another adverb, a clause or a 

sentence, but not a noun. 

• Auxiliary verb: A verb whose function is to give information about the following 

verb. 

• Conjunction: A function word that serves as a connector between two parts of a 

sentence. This category includes the preposition and the more general 

adposition, which are sometimes considered separate but overlapping 

categories. 

• Determiner: A function word that modifies the reference or quantity of a noun. 

• Interjection: A word that expresses emotion or represents an exclamation on the part 

of a speaker. 

• Noun: The name of a person, place or thing. 

• Pronoun: A function word that substitutes for a noun phrase. 

• Verb: An action, occurrence or state of being. This category excludes auxiliary verbs. 

• Punctuation: A symbol creating a division within a sentence or between sentences. 

• Numeric: Numbers and symbols related to numbers.  

• Foreign word: Any word in a language other than English. 

The level of the hierarchy that falls between the morphological and lexical categories 

defined above will be called the sub-lexical category. This level puts together items that 

belong to the same lexical category and which form a sub-group within this category. For 

example, the morphological categories “present participle verb” and “past participle verb” 
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can be seen as the sub-lexical category “participle tense verb” within the “verb” lexical 

category. 

The level of the hierarchy above that of the lexical category will be designated as the 

super-lexical category, because it is the one where the lexical categories are grouped into 

four super-categories, namely 

• Core word: A word that carries its meaning independently of any other (noun, verb 

and foreign word). 

• Modifier word: A word that modifies another word (adjective, adverb, interjection 

and auxiliary verb). 

• Function word: A word with no real meaning, that serves a practical function within 

the sentence (determiner, conjunction and pronoun). 

• Non-word: A symbol that is not a word at all (numeric and punctuation). 

Finally, the most general level of the hierarchy is the universe level, where all items are 

grouped into a single category.  

4.2.2 Similarity between Words and Sentences 

One way to compare two words or two sentences, to compute their similarity or merge them, 

consists in relaxing the constraints on one of them until it includes the second one, as 

suggested by Soderland [80]. In the case of two words, this is accomplished by finding their 

lowest common ancestor in an ontology. Then, the similarity between the words is the 

number of levels between each one and the common parent, while the merging is simply 

accomplished by replacing the words with their common ancestor. Likewise, for two 

sentences, the comparison is accomplished by pairing their words together, then finding the 

lowest common ancestor of each pair in an ontology. The similarity between the sentences is 

then computed as the average similarity between the pairs of words, and merging both 

sentences yields a sentence composed of the common ancestors of the original pairs of 

words. 
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However, it remains true that for the ontology to be valid, the rule-learning system must 

be confined to its specific domain, as in the case of Soderland’s study [80]. On the other 

hand, although our research is not intended to be limited to a single domain, it is still possible 

for us to define a general hierarchy of categories. To this end, we have designed the novel 

part-of-speech hierarchy described in the previous section. Using this hierarchy, the merger 

of two rules is done by raising the level to which each word belongs in this hierarchy towards 

more and more general grammatical categories. For example, the rules “the sites” and “the 

dogs” can be merged into “the (plural common noun)”, and that rule can then be merged with 

“a house” to become “(determiner) (common noun)”. Moreover, in this proposed hierarchy, 

the similarity between two rules simply becomes the average cost of raising each of their 

words to the levels in the hierarchy needed to merge the rules. This cost is a function of the 

number of grammatical elements represented by the category, and of the semantic 

importance of the category. For example, nouns and verbs are more semantically important 

in a sentence, and therefore more expensive to merge, than adjectives, which are in turn more 

important and expensive than punctuation marks.  

It is worth noting that the notion of cost we defined is not the only way to measure the 

distance between concepts in a hierarchy. In fact, the growing importance of the hierarchical 

lexicon WordNet in NLP research has led to the development of a number of new distance 

measures for this purpose, such as the Jiang-Conrath distance and Lin’s universal similarity 

measure. Several of these measures are reviewed in [17]. Future work can investigate how to 

adapt these techniques from WordNet to our part-of-speech hierarchy, as well as which is 

most appropriate for our purpose. 

4.2.3 The Rule-Learning Algorithm 

The rule-learning algorithm adopted in this research is a supervised learning system based on 

the work of Stephen Soderland [80]. The fundamental idea behind Soderland’s method is to 

devise the strictest rule possible to handle a sentence, and then relax it gradually in order to 

handle other, similar sentences. By applying the same principle, we have developed a new a 
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method to learn the rules needed to extract the main verb of a sentence, along with its subject 

and objects. 

Our learning system relies on a training corpus of sentences, in which the correct words 

to be extracted are identified. Since our method is centered on a part-of-speech hierarchy that 

will be explained in the next section, the first operation that the algorithm must naturally 

execute is the part-of-speech tagging of the sentence. This operation associates each word in 

the sentence with its correct part-of-speech tag from the Penn Treebank set [74], and is 

performed using the Brill tagger presented in Section 3.2.1. Once tagged, the training 

sentences are manually divided into short segments containing at most one word to extract 

each. Each of these segments thus becomes the strictest extraction rule possible for that word 

in that context. The set of all the aforementioned segments constitutes the training corpus of 

rules for the rule-learning system. 

As with any step in any system which involves manually handling data, the fore-

mentioned splitting of the sentences into segments is a bottleneck in the implementation 

process. It is important to note, however, the fact that this is neither a hard nor knowledge-

intensive task. Indeed, sentences present many “natural” split points, such as commas and 

conjunctions. Moreover, the split does not need to be very precise, and can be off by a word 

or two without negatively influencing the system. Indeed, as similar rules are merged 

together in the rule base using the process described in Section 4.2.2, the extra or missing 

words in some segments will be evened out in the merged rule, and replaced by more general 

categories of parts-of-speech. Important words that are sometimes missing in the segments 

will be replaced by lexical-level categories, which will allow the use of our blank part-of-

speech to handle cases where the word is absent. On the other hand, extra words in a segment 

which are truly irrelevant to the rule will be generalized up to the Universe category, 

meaning that they can be anything at all. It thus appears that the splitting process is a simple 

one; so much so, in fact, that it will be possible to automate it. Future work can focus on 

implementing an automated sentence divider using based on these “natural” split points. 

When the learning system receives a new sentence from the training corpus, it 
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immediately proceeds to add the sentence’s rules to its internal rule base, and then computes 

the similarity of all pairs of rules. The next step is for the most similar pair of rules to be 

merged together. This merger is accomplished by generalising one of the rules in order to 

incorporate the second. After the merger is completed, the keywords are extracted twice from 

the corpus of sentences, first by applying the pre-merger rule base, and secondly by using the 

post-merger rule base including the merged rule. Once that is done, the precision and recall 

ratios of both extraction processes are compared in order to determine the best rule base. If 

the first extraction turns out to have the higher ratios, the merged rule is rejected and the two 

rules are kept in the rule base without modification. By contrast, if the second extraction has 

equal or higher precision and recall ratios, the merged rule is retained in lieu of the original 

pair and its similarity to each of the other rules in the rule base is computed. Both outcomes, 

however, lead the algorithm back to the initial point on the loop, explained above, from 

where the learning process will continue running until all pairs of rules have been considered. 

To provide a deeper understanding of the learning algorithm presented above, Figure 4-1 

illustrates its structure and scope from an operational perspective. 

A. Select the next sentence in the training corpus 
B. Add all the sentence’s rules to the rule base 
C. Create the list of pairs of rules, with their similarity 
D. While all pairs of rules haven’t been considered 

a. Find the most similar pair of rules 
b. Merge the rules 
c. Create RuleBaseA, the rule base including the two rules 
d. Create RuleBaseB, the rule base excluding the two rules and 

including the merged rule 
e. Compute PrecisionA and RecallA, the precision and recall 

obtained when applying RuleBaseA to the training sentences 
f. Compute PrecisionB and RecallB, the precision and recall 

obtained when applying RuleBaseB to the training sentences 
g. If PrecisionB ≥ PrecisionA and RecallB ≥ RecallA  

i. Replace the pair of rules with the merged rule in the 
rule base 

ii. Discard all pairs of rules that used one of the old 
rules from the list 

iii. Add all pairs of rules using the merged rule to the 
list of pairs of rules to consider 

h. Else 
i. Discard the merged rule 

Figure 4-1: Structure of the learning algorithm 
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In order to compute the precision and recall ratios, the system compares the keywords 

extracted by applying the rules to those correctly marked in the sentences. If a keyword is 

correctly extracted by the rules, it counts as a true positive (TP). However, a keyword that is 

extracted by the rules yet does not appear as a keyword in the marked sentences counts as a 

false positive (FP), whereas a keyword missed by the rules counts as a false negative (FN). 

Furthermore, if the system is trained to recognise different types of keywords, and encounters 

a keyword extracted as the wrong type, it counts it as both a FP and a FN. Once these three 

values are calculated, the precision and recall ratios are computed as per Equations (4-1) and 

(4-2) below. 

FPTP
TPprecision
+

=  (4-1)

FNTP
TPrecall
+

=  (4-2)

To be sure, in the context of this research, the term “applying the rule base” refers to the 

process of extracting the subjects, objects and verbs from a corpus of sentences according to 

the rules. As part of this process, the algorithm we develop matches each part of the sentence 

to the most similar rule in the base. For instance, if a sentence contains the words “a duck”, 

the algorithm would recognise that it must match it to the rule “(determiner) (common 

noun)” instead of, say, “to (infinitive verb)”. This matching component of the extraction 

process will be described in greater detail in a later section. Once the matching is done, the 

subjects, objects and verbs that our system must find and that are already marked in the rules, 

can simply be extracted by identifying the matching words in the sentences. In the special 

case of a training corpus of sentences where the correct words to be extracted are known, the 

application of a rule base yields results that could be compared to the correct solution in 

order to estimate the precision and recall of the rule base. 

4.2.4 Applying the Rules 

The next major building block in our method is the procedure to apply the rules to a corpus 

of sentences, in order to extract the desired keywords. This particular procedure serves a dual 
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purpose. In the first place it serves to compute the precision and recall values of the various 

rule bases generated by the learning algorithm described previously, in order to compare 

them and pick the best one. Secondly, it serves to analyze real sentences using the final rule 

base learned by the algorithm. 

It should be noted that, in the context of this study, the rules that make up the rule base 

are only a few words long, which makes them much shorter than normal sentences. In the 

circumstances, it can easily be seen that it will take a combination of several rules, in most 

cases, to cover an entire sentence. Obviously, a large number of such combinations is 

possible, and the best combination of rules to apply is the one that is most similar to a 

sentence, using the measure of similarity defined before. In this way, the problem of applying 

the rules becomes one of finding the most similar sequence of rules to cover a sentence. 

The most similar sequence of rules is discovered by computing the similarity between 

each rule and the sentence, first at the initial word of the sentence, and then after the end of 

the previous rule, until the sentence is completely covered. This problem can be likened to 

that of searching a tree, in which each node is the choice of a rule, the cost of that node is the 

similarity of that rule to the part of the sentence to which it is being compared, and the cost of 

the path through the tree up to that node is the similarity of the sequence of rules up to that 

point. The tree is searched using a uniform-cost search algorithm. This algorithm finds the 

cheapest node (i.e. finds the sequence of most similar rules up to a point in the sentence), 

expands it (i.e. applies all rules at that point), and repeats this process until the cheapest node 

is at the end of the sentence. The structure of this search algorithm is illustrated in Figure 4-2. 

The advantages of the uniform-cost search are that it is optimal and complete [72], which 

means that it is guaranteed to find the cheapest sequence of rules for each sentence.  

4.2.5 Rule-Learning Example 

An example can help illustrate the rule generalisation process. This example, taken from the 

training of our prototype described in Section 4.3, will illustrate the successive merging of 

three similar rules into one.  
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A. Create the initial node at the start of the sentence, cost = 0 
B. Create the node list, containing only the initial node 
C. While the cheapest node in the list is not at the end of the 

sentence 
a. Remove the cheapest node from the list 
b. Expand the cheapest node 

1. While there are rules in the base 
i. Apply the rule at that point in the sentence 
ii. Create a child node containing this information  
iii. Add the cost of applying the rule to the child 

node’s cost 
c. Add the children nodes into the list 

D. Return the cheapest node 
Figure 4-2: Structure of the uniform-cost tree-searching algorithm 

The first two rules found to be similar in our example are “to the public” and “during the 

past week”. Their respective part-of-speech sequences are “TO DT NN” and “IN DT JJ NN”, 

the interpretation of which can be found in Appendix A, and in both cases the last noun of 

the rule is the one marked for extraction. These two rules are merged together using our 

algorithm presented in Figure 4-2 and our part-of-speech hierarchy illustrated in Appendix B. 

The new generalized rule obtained at the end of this process is “_ the _ _”, where each 

underscore represents a word, and its part-of-speech sequence is “Connector DT Adjective 

NN”. It is interesting to note that the adjective “past” in the second rule has no equivalent in 

the first rule. It is therefore matched to a blank symbol, and generalized in the merged rule to 

the higher-up lexical category “Adjective” which can represent any adjective or no word at 

all. Likewise, the prepositions “to” and “during”, which have different parts-of-speech, are 

generalized to their common sub-lexical parent “Connector” in the hierarchy. On the other 

hand, the article “the”, which is common to both sentences, remains unchanged in the 

merged rule. Similarly, the nouns “public” and “week”, which both have the part-of-speech 

“NN”, are simply generalized as any word with that same part-of-speech. 

Next, the newly-created rule is merged with a third rule. This third rule is “in years”, “IN 

NNS”, and the word to extract is “years”. The preposition “in” is paired with the 

“Connector” of the new rule and “years” is paired with the “NN” noun, which means that the 

other two words of the new rule, “the” and “Adjective”, have to be paired with blank 

symbols. The final merged rule is thus “_ _ _ _”, with the parts-of-speech “Connector 

Determiner Adjective CommonNoun” and with the final noun tagged for extraction. Since 



 

 56

the category “Connector” already includes the preposition “in” and the category “Adjective” 

already includes the blank symbol, these two elements are not changed during the merging. 

The part-of-speech NN, for singular common noun, is merged with NNS, plural common 

noun, and the word is generalized to the lowest parent in the hierarchy, which is the 

morpheme category CommonNoun. Finally, the determiner “the” is generalized to the lowest 

parent that includes the blank symbol it is being merged with, which is the Determiner lexical 

category in our hierarchy.  

To finish, it is important to note that either one of these mergings could have been 

rejected by our algorithm if the merged rule caused a drop in the precision or recall of the 

extraction process when compared to using the two original rules, as shown in Figure 4-1. 

However, this does not occur in our example, and in both cases the merged rule is accepted 

and used to replace the two original rules in the rule base. 

4.3 Experimental Results 

4.3.1 Setup 

As noted earlier, the algorithm developed in this study can be trained to extract any desired 

information from a text, provided the information could be obtained in the form of keywords 

in the sentences. To demonstrate this feature, the system was trained so as to extract the main 

verb of a sentence, along with the nouns that are its subjects and objects. However, the fact 

that most sentences typically contain many verbs and nouns that must be ignored constitutes 

a serious impediment to this extraction process. For example, in the sentence “John is 

prepared to leave for Berlin”, the verb “leave” is the verb that the system must extract, while 

the other two verbs should be ignored. Similarly, in the sentence “The president of the 

country made a speech”, the correct subject to extract is president, not country. Hence, the 

distinction between the nouns and verbs that should be retained and those that should be 

discarded is one of the main challenges that the extraction process must be capable of 

handling. The following section will demonstrate how our algorithm can effectively address 

this challenge. 
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The data used to train our system comes from the Brown Corpus [32]. This dataset is a 

corpus of texts written in American English and compiled in 1961. It is composed of 500 

sample documents selected to reflect the spread of domains that the American public were 

likely exposed to at that time. The documents in the corpus thus cover a wide range of topics, 

from news coverage to religious texts, from industrial reports to detective fiction. By 

adopting this entire corpus as training data, our system should be able to learn rules to handle 

a wide variety of sentences reflecting many different writing styles. From a practical 

perspective, we decided to set off the demonstration by initially limiting the scope of the 

rule-learning system to the business domain of the corpus (samples A26-A28), and to train 

our system with a random sub-sample constituted from 10% of that domain. This sub-sample 

represents 269 training rules, or 27 sentences. 

4.3.2 Results and Discussion 

It is interesting to examine in the first place the behaviour of the number of rules in the rule 

base even as the learning process evolves. Figure 4-3 illustrates the size of the rule base after 

each training sentence has been processed. As the figure shows, the rule base quickly grows 

to the 20-rules range, but its rate of growth slows down considerably after this. To be sure, 

the rule base still gains new rules after reaching the 20-rule level, but it does so at a slow and 

irregular pace, and even eliminates rules at some points in the training process. In short, after 

learning 20 rules from the first 50 training rules, the learning process only discovers 13 

additional ones from the next 220 training rules. This result seems to indicate that there is a 

limited number of rules to be learned, or alternatively that there is a limited number of atomic 

sentence structures that are combined in various ways as needed to form complete sentences.  

To gain a deeper understanding of the learning process, it would be informative to 

analyze the behaviour of the precision and recall values of the rule base after each training 

sentence has been processed. To compute these values, we applied the rule base on the 

unseen 90% portion of the Brown Corpus’ business domain that was not used in the training 

process. Overall, the results, which are illustrated in Figure 4-4, show that both the precision 

and recall values increase as the system becomes more and more trained. More specifically, 
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the recall value starts off higher than the precision value but falls during the processing of the 

first 80 training rules, as that of the precision increases. Figure 4-4 also reveals a sharp 

temporary rise of a few percentage points in the recall value in the 150-220 training rules 

range, which is matched by a corresponding drop in the precision value. This is a typical 

trade-off in classification systems, where an increase in precision is usually offset by a 

decrease in recall, or vice-versa [80] [76]. It is however interesting to note in this regard that, 

by the end of the learning process, the recall value has returned approximately to its initial 

value. The precision value itself has a slow and irregular rate of increase, but gains 

nonetheless 10% from the start to the finish of the training process. These results indicate 

that, with further training, both the precision and recall values of our system might be 

improved. 

 
Figure 4-3: Size of the rule base during training. 

The final results of the test of our algorithm using the useen 90% portion of the Brown 

Corpus’ business news domain are provided in Table 4-1. For comparison purposes, the table 

also includes the precision and recall values of both a statistical and a symbolic NLP 

algorithm. The symbolic algorithm represented here is the one developed by Soderland [80] 

which, as we noted, underlies our work. The experiments done in [80], the results of which 

are include in Table 4-1, were performed on a corpus of business news articles similar in 
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nature to the portion of the Brown Corpus we selected, and thus their results are comparable 

with our study. The statistical algorithm selected is the Minipar parser, a statistical 

dependency parser which was chosen because it was trained on the Brown Corpus to 

extracts, among other things, the same subjects, verbs and objects for which our algorithm 

has been trained, and also because it has been thoroughly studied and evaluated in [52]. It is 

worth noting the fact that both Soderland’s algorithm and Minipar were trained using much 

bigger training corpora than the one used for our algorithm. 

 
Figure 4-4: Precision (blue triangles) and recall (red squares) of the rule base during training. 

Table 4-1: Experimental results of our algorithm and two reference algorithms. 

 Our algorithm Minipar Soderland 

Precision 77% 88% 70% 

Recall 84% 75% 56% 

Limited width No No Yes 

Limited depth No Yes No 

As can be observed in Table 4-1, our method compares quite favourably with the two 

reference algorithms. Our system exhibits a better recall than the two references, and a better 
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precision than Soderland’s algorithm. Moreover, our algorithm’s field of application seems 

to be neither limited in width nor in depth as is the case for the two algorithms in reference. 

Indeed, while Minipar is quite good at the task of finding the subjects and objects of 

sentences, its performance degrades severely when it is used to extract information that 

requires a deeper understanding of the text. For example, on the task of finding conjunctions, 

Minipar only achieves a precision and recall of 67% and 50%, while for relative clauses 

those values drop even more to 52% and 56%. This rather poor performance is due to the fact 

that discovering this information often requires resolving attachment ambiguities, which 

Minipar tries to do by using decision rules that are often, but not always, correct [52]. In 

other words, Minipar relies on statistical information, which by its very nature only gives an 

overall view of the text and is not always well-suited for the extraction of specific details 

from sentences (as explained in Section 2.4). This limitation of Minipar contrasts with the 

capacity of our algorithm to successfully extract more specific information from the 

sentences, by simply adding new and more specialized rules to its rule base and without a 

significant drop in precision or recall. In the particular case described above, for example, 

our method would learn extraction rules representing how to handle each individual 

ambiguous case, and would then match a new ambiguous sentence to the most similar rule in 

order to know how to resolve it. 

On the other hand, the width limitation of symbolic algorithms, such as Soderland’s, 

comes from their reliance on domain-specific ontologies or other specialized sources of 

information. This type of information cannot be ported to other domains, which severely 

limits the scope of algorithms that are based on it. By contrast, our algorithm does not rely on 

any such constrained information, and the rules generated with it should therefore be 

applicable in any domain. In order to fully illustrate this fact, the final rule base was 

subjected to two more tests beyond the one described above, in which the unseen 90% 

portion of the Brown Corpus’ business news domain was used. To conduct the second and 

third tests, we selected the Brown Corpus’ science-fiction domain (samples M01-M06, 830 

sentences) and the transcript of a live television debate between three people (358 sentences). 

The reason for this selection of domain is that they are quite different from the business news 
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domain that was used to initially train the system. By design, the purpose of these tests is to 

demonstrate that the rules learned with our method are not domain-dependent. We manually 

tagged the correct keywords that should be extracted in our two test corpora, in order to 

evaluate the performance of the algorithm. In the tests, our method exhibits a precision of 

83% and a recall of 87% on the science-fiction corpus, and a precision of 61% and a recall of 

91% on the debate transcript. The positive results we obtain when we apply the rule base 

extracted from the business news domain to sentences from very different domains clearly 

demonstrate that our method is not domain-specific. Taken together with the previous 

analysis performed above, these results suggest that the algorithm developed in this study not 

only outperforms statistical and symbolic NLP algorithms, but also exhibits a wider field of 

application then symbolic algorithms and a deeper field of application then statistical 

algorithms. 

It is worth noting the main drawback of our method at this point, which is its requirement 

in computational time. Indeed, in the worst case, each word of a sentence segment will be 

compared to each word of each rule in the rule base, leading to a cubic algorithmic 

complexity. In fact, it took over a week for our implementation of the system to train itself 

using the portion of the Brown Corpus’ business news domain that we used as a training 

corpus. Clearly, optimising the method will be an important focus in future research. 

Our analysis also provides insight into the reason why the rule base actually performs 

better on the science-fiction dataset than on that of the business domain. Notably, this 

outcome is contrary to the expectation that the rule base should perform better on unseen in-

domain data than on out-of-domain data. The explanation for this surprising result is that the 

sentences found in science-fiction literature are typically simpler than those in business-

related news articles. Indeed, the sentences of the science-fiction domain are on average 17 

words long and contain five keywords to extract, while those in the business domain are on 

average 25 words long and have seven keywords to extract. Moreover, a closer look at the 

rules that were applied to extract the keywords reveals that the processing of the science-

fiction domain relied predominantly on seven short and simple rules, which indicates that the 

sentences were generally simple and straightforward. By contrast, the analysis of the business 
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domain’s sentences required a much greater variety of rules from the rule base, indicating 

that the sentences had a more varied and complicated structure. These observations could 

prove quite useful in future research.  

Using similar reasoning, we can explain why applying the rule base on the televised 

debate transcript yields a very high recall but a low precision compared to the business news 

corpus. Indeed, spoken sentences are typically shorter and more straightforward than written 

sentences. This allows the rules to recognise the keywords more reliably and to miss fewer of 

them, thus improving the recall value. Unfortunately, spoken sentences also make use of 

sentence structures that are not found in business news articles, and for which the rule base 

has no corresponding rule. For example, spoken sentences can make heavy use of 

interjections. Speakers also often repeat words for emphasis, or stop in mid-sentence when 

they are interrupted by someone else. Without the correct rule to handle such sentences, the 

system will try to apply the most similar rule found in the rule base. This most similar rule, 

however, may not be appropriate, and may mark the wrong word as keyword. This causes the 

drop in precision value. 

4.4 Limitations of the Extraction Method 

Before concluding this presentation, it would be instructive to contrast the limitations of the 

new extraction process discussed in this chapter with those of the extraction process we 

presented in Chapter 3. 

As we saw earlier, the first and foremost limit of the extraction process discussed in 

Section 3.4 comes from its overly-simplistic underlying assumption that all sentences follow 

a straightforward subject-verb-object structure. To be sure, we made an attempt to mitigate 

the incidence of this assumption by using a number of heuristics, but quickly realized that 

this correction is by its very nature constrained to handle a limited number of cases in the 

potentially limitless universe of sentence structures. By contrast, the new extraction process 

expounded in this chapter has the advantage of not relying on any such over-simplistic 

assumption. Indeed, the main assumption behind this new extraction process is that sentences 

can be reduced to a combination of atomic structures, each a few words long. And as shown 
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in Section 4.3, our experimental results seem to confirm the validity of this assumption. 

Furthermore, these atomic structures can be combined in any order and any number of times, 

thus allowing our system to handle a limitless variety of complex sentence structures. Taken 

together, these features are quite superior to those of the triplet extraction system of Chapter 

3 which, it will be recalled, was limited to the few complex sentence structures it was pre-

programmed to handle using its heuristics.  

The second limit of the extraction process of Chapter 3 comes from its reliance on the Brill 

tagger, which can mislabel the words in a sentence. Given that the heuristics were applied 

directly to the tagged sentence returned by the Brill tagger, the mislabelled words were 

consequently a major concern for that process. To be sure, our new extraction process also 

makes use of the Brill tagger, and is therefore subject to the same mislabelling problem. On 

closer inspection however, we saw in the case of the process presented in this chapter, that 

words are generalized to more and more general categories in our part-of-speech hierarchy. 

This means that mislabelled words can be generalized away. Indeed, a sentence segment with 

one mislabelled word can still be associated with its most similar rule, but only with that 

specific word replaced by the lowest category common to it and to the correct word in the 

rule. It follows that in the new process, this mislabelling problem is no longer the major 

limiting factor it was in Chapter 3. 

The third shortcoming of the process of Chapter 3 exposed in Section 3.4 is the absence of 

a way to handle anaphora resolution. Unfortunately, this problem is also present in the new 

system discussed in this chapter. Furthermore, as explained in Section 3.4, the task of 

anaphora resolution is a major challenge in NLP that lies outside the scope of this research. 

Nevertheless, it is interesting to note that our new system could potentially be used for this 

purpose, by learning rules that can match an anaphor with the word it stands for within a 

sentence segment. Such a major undertaking could be the subject matter of future research. 

The final limit of the extraction process of Chapter 3 was its need for manual work, a 

problem which limited the portability of the method. The process described in this chapter 

does not suffer from this limitation. Indeed, the only manual task in the method is that of 
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splitting the sentences of the training corpus into rules for the learning algorithm, and we 

have explained in Section 4.2.3 how that task can easily be automated. In addition, both the 

work of Chelba [19] and our own theoretical and experimental analysis in this chapter show 

that the rule base learned can be ported to other domains. This means that the learning 

process, and the manual work it requires, only needs to be done once, and makes this method 

much more portable than the one presented in Chapter 3. 

In the discussion of this chapter, we have demonstrated that our new part-of-speech 

method obtains high precision and recall results, while combining the unlimited width of 

statistical algorithms with the unlimited depth of symbolic algorithms. For comparison, in 

experimental tests, we found that the triplet-extraction method of Chapter 3 obtains slightly 

better precision and recall values in the business and science-fiction corpora introduced in 

Section 4.3. We should bear in mind however, that these are two of the corpora that the 

process of Chapter 3 was specifically designed to handle, and for which the heuristics of 

Section 3.2.2 were fine-tuned; the good performance of these heuristics in those corpora 

should therefore come as no surprise. Moreover, these results were obtained by sacrificing 

both the width and depth of the algorithm. Indeed, as is the case for any symbolic algorithm 

that relies on a finely-tuned rule set designed for a specific corpus, our triplet-extraction 

technique cannot be expected to perform well on different corpora. And the heuristics used 

are designed for the sole purpose of extracting the key verbs and nouns from sentences. They 

cannot be easily adapted for another purpose, and in fact, if there was a need to extract more 

precise information, it would be necessary to come up with a completely new set of 

heuristics. Taken together, these observations show that the method of Chapter 3 has both a 

limited width and a limited depth. 

In light of this analysis, it is clear that the new extraction process expounded in this chapter 

is robust enough to overcome the major shortcomings that plague the process of the previous 

chapter. 
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4.5 Future Developments 

4.5.1 Citation Classification 

It is interesting to note that our study bears some resemblance to that of Garzone [33], in 

which the author presents an innovative citation classification scheme. Garzone’s research is 

motivated by the need to develop informational tools that can automatically extract and 

organize the citations found in scientific papers. Indeed, the general tendency in scientific 

papers is to present the various approaches taken by previous studies related to the topic 

under examination in order to provide a sketch of the setting in which the research is 

developed, and to give methodological details, experimental results, counter-arguments, and 

a host of other relevant information to the reader. All this wealth of information is lost 

however in the paper’s “references” section, where studies are simply listed either in 

alphabetical order or according to their order of appearance in the paper. The search tool 

proposed by Garzone is designed to overcome this shortcoming by generating automatically 

a more informative classification of the references used in a study in order to show their 

relevance to the topic under examination. 

The citation classifier put forward in [33] operates in a succession of steps. The initial step 

consists in converting the article to be analysed from its original format, such as postscript, to 

a regular text file. In the second step, the sentences containing references to other studies are 

extracted from the text, and the section of the paper where such sentences appear is noted. 

Following that, each sentence is analysed using a regular part-of-speech tagger as well as a 

syntactic parser, in order to accurately identify the part-of-speech of each word. In the final 

step, the information about the sentence, its position in the article, and its parts of speech, are 

fed as inputs into a semantic parser. The role of this semantic parser is to determine the exact 

classification of the references mentioned in the sentence. It does so by comparing the 

sentence to a set of semantic grammar rules, and then assigning to it the corresponding 

category of the semantic grammar rule that matches the sentence.  

Still according to [33], a semantic grammar differs from a syntactic grammar in that the 

latter is general enough to be applicable to any context. The level of flexibility that 
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characterises syntactic grammars is not however necessary when designing an application for 

a specific domain, such as citations in scientific literature for example. Indeed, the syntactic 

rules in this case could be formulated more specifically by replacing their general lexical 

elements with domain-specific semantic elements. This switching of elements makes the 

rules much easier to use in a natural language application, as domain-specific elements are 

easier to recognise and match in the sentences. 

The rules of the semantic grammar used in [33] are learned from example. In this context, 

a number of sentences are provided for each class of reference use. The key part of each 

sentence, which contains the reference, a verb, and class-specific cue words, is isolated, and 

the rest of the sentence is discarded. Then, the rules are formed by merging together those 

key segments that use the same verb, regardless of verb tense and of class. In the process of 

this merger, identical words are maintained, while differing words are generalized into 

groups of words and unnecessary words are dropped. This yields a rule general enough to 

recognise similar sentences, but specialized to a limited number of classes. The fine-grained 

distinction between these classes can still be recovered, however. When a sentence in an 

article is matched to a rule, the words of the sentence that correspond to the generalized 

words of the rule provide the necessary information needed to determine to which of the 

classes covered by the rule the sentence actually belongs. By using this two-level 

classification system, Garzone is able to limit his semantic grammar to 12 rules. 

At first glance, it looks as if some similarity exists between our part-of-speech rules and 

Garzone’s semantic grammar rules. Indeed, both sets of rules are learned from example, and 

are formulated by generalizing similar sentence segments into single rules. On closer 

inspection, however, it becomes clear that our method provides a far more complete and 

rigorous framework for mathematically computing the similarity between sentence segments 

and for merging them together. For example, our algorithm is not limited to merging rules 

that use the same verb, and our part-of-speech categories are more versatile than groups of 

words observed in training examples. To be sure, our method does not allow for a two-level 

classification system, and would generate individual rules for each class, even if some of 

these rules differ only by one keyword. By contrast, in Garzone’s system, such rules are 
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merged together and the different classes are recognized at a later stage with the help of the 

different keywords. For all practical purposes, our method thus appears to be equivalent to 

that of Garzone in this specific regard. This observation leads to an interesting suggestion, 

namely to substitute Garzone’s semantic grammar with our part-of-speech rules. This 

modification would give the citation classification system a new level of flexibility, which 

will include for example the ability to generalize verbs, or to generalize nouns into a noun 

part-of-speech instead of constraining them to a limited group of nouns observed in the 

training data. This change would in all probability enhance the performance of the overall 

system, although the precise degree to which it would do so is hard to evaluate in advance. 

Still, we believe this to be a very interesting and promising development to investigate in 

future research. 

4.5.2 Incorporating Other Information 

Although we’ve shown in this chapter that our method can get good results using only parts-

of-speech, other authors [10] believe that this information alone can be too coarse to extract 

finer grammatical or semantic relationships. Consequently, an interesting future development 

for our method would be the addition of grammatical information. This information is more 

precise than part-of-speech tags, and taking it into account would improve the precision and 

recall of our method, as well as make it capable of extracting more fine-grained information 

from the sentences. In fact, the Penn Treebank already defines a grammatical function tag set, 

so including them in our method appears to be the next logical step for our work.  

 

One possible way of adding this information, which would be consistent with our current 

method, would be to create a new grammatical-function-tag hierarchy. Each word in the rules 

could then be represented by two tags, one for its part-of-speech and one for its grammatical 

function in the rule. Next, comparing two words in two rules would be done as described in 

this chapter, by raising the words to their lowest common ancestor, except this would now be 

done in both hierarchies independently. The similarity value between the words would take 

into account the distance from the word to their common ancestor in both hierarchies. This 
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setup would leave the merging of rules in the learning stage of Section 4.2.3 unchanged. 

Likewise, applying the rules would still be done as in Section 4.2.4, but by taking into 

account both hierarchies. 

4.5.3 Other Developments 

From a practical perspective, this study’s method has implications for other projects dealing 

with common NLP challenges. For instance, in situations where keywords marked in the 

training corpus only represent the central ideas of the texts making up the corpus, our 

proposed system becomes an appropriate tool for document summarization. Alternatively, by 

computing the frequency with which each rule of a rule base is used in dissimilar domains or 

in texts written by different people, our new method can be effectively applied in a domain 

classifier or in an author identification system. Another interesting application is in relation 

to a word processing software’s automated correction system. In that context, the method can 

provide a formalized mechanism for comparing the user’s text to a rule base of proper 

English sentence structures. By so doing, it can help identify bad sentences as those that are 

very different from the rule base, signal mistakes to the user and even suggest more 

syntactically-correct revisions of the sentences. These examples underscore the idea that the 

proposed method could be effectively applied to various NLP problems and tools. It will 

befall future research to explore the practicality of these possibilities. 

4.6 Conclusions 

This chapter introduced an NLP method designed to extract information-rich keywords from 

English sentences. The method involves first learning a set of rules that guide the extraction 

of keywords from parts of sentences. Once this learning stage is complete, the method can be 

used to extract the keywords from complete sentences by matching these sentences to the 

most similar sequence of rules. The key innovation in our method is the part-of-speech 

hierarchy that lies at its core. By raising words to more and more general grammatical 

categories in this hierarchy, the system can compare rules, compute the similarity measure, 

and perform the learning. The theoretical development and the experimental results discussed 
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in this study confirm that our method can be used to perform in-depth analyses of texts from 

any domain; but this comes at the cost of a higher computational complexity. These 

arguments appear to indicate that our proposed method will outperform both traditional 

statistical and symbolic NLP methods at their respective tasks, albeit in a more 

computationally-intensive manner. 

At the close of the extraction process, each free-text English document in the training and 

testing corpora that were provided to the system is replaced by a series of triplets that 

represent the actions described in that document. In the next phase of our research, the 

triplets of the training corpus will be used to compute the possibility distribution 

corresponding to each domain. This will be the focus of Chapter 5. 
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Chapter 5 
Possibility Distribution 

5.1 Introduction 

In the previous two chapters, the system was given a corpus of un-annotated English 

documents sorted by domains and transformed it into a collection of triplets that represent the 

actions described in those texts. Henceforth, each domain is associated with a series of 

subject-verb-object triplets. Some of these are common triplets present in several or all 

domains; others are specialized triplets found in only a few domains or in a single domain. 

Some triplets have virtually the same meaning and should be lumped together while others 

have very different meanings. The focus of this chapter documents our efforts to develop a 

method to extract the meaning and domain information contained in the triplets and to 

represent this information in a formal mathematical expression to facilitate the use of the 

information in practical applications. 

For most of this chapter, each subject-verb-object triplet is split into a subject-verb pair and 

an object-verb pair. This was done to avoid data sparseness: pairs of words occur far more 

frequently than triplets of words. This subdivision was done on the assumption that the 

meaning of the subject-verb pair and that of object-verb pair are discrete; although both pairs 

influence the meaning of the triplet, each one carries its own meaning independently of the 

other. To simplify the notation, we will refer to these two pairs as noun-verb pairs in the 

remainder of this thesis with the understanding that we will distinguish whether a noun 

category is used as a subject or an object. 

The mathematical expression we propose here is computed using a three-step method. In 

the first step, we compute the semantic distance between each noun-verb pair using a 

technique similar to that proposed in the literature by Rieger [70]. The second step consists of 

computing the conditional probabilities of the domains given each pair. To accomplish this, 

we adapted Bayes’ theorem to manipulate the data in our research. Finally, in the last step, a 

possibility distribution is computed from the semantic distances and the probabilities of each 
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domain using a mathematical development we devised for this purpose. This three-step 

method will be examined in detail in the remainder of this chapter. 

In the following sections, we present the mathematical foundation of each step in our 

method, and the possible outcomes are presented and illustrated graphically whenever 

feasible. Just as importantly, the close parallel between this theoretical discussion and its 

real-world implications are highlighted with examples drawn from the SchoolNet dataset 

used in the practical implementation presented in Chapter 6. Considering both these 

theoretical and experimental results permits an evaluation of the proposed method’s validity. 

5.2 Mathematical Foundations 

As is the case with any scientific advance, our research is firmly rooted in the work of other 

scientists. Specifically, we adapted notions from the research of Rieger [68], [69], [70], and 

Zadeh [110], [26], in addition to using Bayes’ Theorem. In all cases, we introduced 

modifications to the original material which we will present in the remainder of this chapter. 

In this section, we will present the mathematical principles on which our work is founded. 

Accordingly, we will begin by introducing some necessary notions regarding the Zipf-

Mandelbrot law and semantic understanding on which Rieger based his work, before moving 

on to present the steps for computing Rieger’s semantic distances. Next, we will briefly touch 

upon Bayes’ theorem. Finally, we will give a two-part introduction to Zadeh’s possibility 

theory, focusing first on some conceptual notions, and second on the mathematical 

development. In all cases, we will pay special attention to how these mathematical notions 

are applied in our research. 

5.2.1 The Zipf-Mandelbrot law 

To set off this mathematical analysis, we will make the assumption that each domain of the 

training corpus is made up of a very large number of triplets. Since our method learns its 

possibility distributions from these training examples, this assumption simulates the 

method’s ideal operating conditions. Moreover, under this assumption, we know that the 
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frequency of occurrence of the individual words in each domain will follow the Zipf-

Mandelbrot law [55]. 

The Zipf-Mandelbrot law finds its origin in [113], when Zipf observed that people, in 

general, seek to minimize the predicted amount of effort they will have to make over the long 

term. This observation has very significant consequences in the field of NLP. To visualise its 

impact, we can imagine a conversation between two people, a speaker and a listener. The 

speaker makes an effort by choosing the words that can best represent the ideas and concepts 

he is trying to convey. His efforts would be minimized if his vocabulary were composed of 

only a few words of broad meaning, or at the limit of only one word that can mean 

everything. On the other hand, the listener makes an effort to figure out the meaning of the 

words he hears, in order to understand the speaker without ambiguity. His efforts would be 

minimized if his vocabulary were composed of words that each have one and only one very 

specific meaning. Such a vocabulary must necessarily be comprised of a lot of words. In the 

real world, of course, no one is bound to be speaker or listener all the time, and people seek 

to minimise their efforts by reaching a compromise between these two extremes. In this 

balanced state, a normal spoken or written discourse will be composed, in major part, of a 

few often-repeated words with broad meaning, complemented by several rarely-used words 

with a precise meaning. Follow-up research [55] showed that when we rank the words in a 

discourse according to their frequency of occurrence, we obtain the following hyperbolic 

relationship: 

BrPf −+= )( ρ . (5-1)

This equation is known as the Zipf-Mandelbrot law, where f is the frequency of a word, r is 

its rank, and P, B and ρ are the parameters of the discourse analysed. When applied to the 

Brown Corpus for example, the values of the parameters are P = 105.4, B = 1.15 and ρ = 100 

[56], and the resulting relationship is illustrated in Figure 5-1. 

We can now make educated statements about the nature of the words with low and high 

ranks in the Zipf-Mandelbrot distribution. In line with our earlier discussion, we know that 

words with the highest frequencies will be general words of broad meaning. Moreover, in 



 

 73

this analysis, we consider domain-specific distributions. Hence, it stands to reason that 

important domain-specific words will also be used frequently and will be assigned a high 

rank. On the other hand, words with low ranks are those that appear rarely within a domain. 

Logically, they will be mainly composed of domain-specific words originating from other 

domains, and possibly of a few erroneous words resulting from errors encountered in the 

triplet extraction stage. 

 
Figure 5-1: Ideal plot of the Zipf-Mandelbrot law. 

To be sure, we can examine how the training corpus used in our implementation of the 

method compares with this theory. To this end, the frequency-rank plots of individual words, 

specifically of the noun categories and the verbs, in two different domains of our SchoolNet 

training corpus are shown in Figure 5-2. The two domains selected are the “social studies” 

domain and the “sciences” domain. It can be seen from the figure that both distributions 

follow the shape predicted by the Zipf-Mandelbrot law. Furthermore, an examination of the 

specific noun categories in each domain shows that the higher-ranked words include, as 

expected, both general words and important domain-specific words. For example, among the 

higher-ranking words and categories of both domains is a noun category containing general 

research-related words that commonly occur in all academic domains, and which also ranks  
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(a) 

 

(b)

Figure 5-2: Frequency-rank plot of the words in the social studies domain (a) and the sciences 
domain (b) of the training corpus. 

high in several other domains of the corpus. We also observe that domain-specific noun 

categories, such as the one for artistic terms in the social studies domain and the one for 

scientific terms in the sciences domain, rank high in their respective domains but poorly in 

the other domain. However, it should be mentioned that, while the shapes of the curves in 

both examples of Figure 5-2 below undeniably follow the shape of the Zipf-Mandelbrot law, 

they are a lot steeper than the ideal curve presented in Figure 5-1. This is a consequence of 

the problem of data sparseness that hinders this implementation of our method. The size of 
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the training corpus of our system is simply too small, and as a result the statistical 

information computed from it is imprecise and noisy. As the training corpus grows in size, 

we expect the results to converge towards their theoretical ideal values. 

5.2.2 Introduction to Semantic Understanding 

The first step of the training process of our method is to represent the meaning of each noun-

verb pair. This is done using a technique similar to the one proposed by Rieger [68], [69], 

[70]. The basis of Rieger’s work is two-fold. To start with, he draws on the notion of 

situation semantics [8], which holds that the meaning of an expression is based on two 

situations: 

1) Discourse situation: This notion of situation is what allows the expression’s meaning to 

be interpreted; 

2) Described situation: This notion of situation allows the expression’s truth-value to be 

evaluated. 

Following situation semantics, it appears that the meaning of an expression can be 

discovered by recognising similarities and invariants between situations in which the 

expression appears. In other words, the important information we must extract from the 

situations are the regularities in word usage. In the second place, Rieger linked the notion of 

situation to the idea of language games [96]. Wittgenstein had previously introduced 

language games, or the contextual-usage-meaning view, as an explanation for the way 

children begin to understand and use words. In his theory, children learn not by assimilating 

the definitions of words, but by discovering patterns and regularities in their usage. For 

example, when a child hears the word “blue” for the first time, he will not open a dictionary 

to look it up. Rather, he will hear adults around him describe various objects as “blue”, and 

eventually he will figure out that the only thing constant every time he hears that word is a 

particular colour. However, Wittgenstein’s work on language games was done at the level of 

the philosophical discourse. By linking it to the formally-defined notion of situation 

semantics, Rieger laid the theoretical basis for an empirical approach to learn word meaning 

using its observed usage in a normal text.  
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In essence, the assumption behind Rieger’s work, as well as ours, is that the same learning 

technique that children use to discover the meaning of words can also be applied to 

computers. If there is a target word a computer needs to understand, rather than looking up its 

definition in an online dictionary, the computer could search for its occurrences in a corpus 

of typical English documents, find which words regularly co-occur with it, and understand 

the meaning of the target word only on the basis of that information. 

Starting from the assumption that the analysis of a number of texts in order to isolate 

regularities in a word’s usage can reveal essential information regarding the word’s meaning, 

Rieger [70] developed an empirical model to discover these regularities. In fact, since Rieger 

wanted his model to rely only on observable regularities in the text, he was in essence trying 

to isolate lexical items that are regularly associated with the target word and may give insight 

into its meaning. The core of his method, which we have adapted for our purposes, was a 

two-level abstraction process that produced a set of usage regularities and a set of meaning 

points. 

5.2.3 Correlation Coefficient 

To extract the usage regularities, Rieger used a modified correlation coefficient. This 

coefficient computes the interdependence between any two lexical items on the basis of their 

frequencies in the texts of the training corpus. Rieger then used this correlation coefficient to 

estimate the relationship between a target word whose meaning he wanted to discover and 

any other relevant word. For the purpose of this study, the relevant words are the nouns and 

verbs found by our triplet extraction process. The equation we use to compute each word 

pair’s correlation coefficient is given by: 
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where ),( ji wwα  is the correlation coefficient of the pair composed of words wi and wj; where 

T denotes the total number of domains forming the training corpus; and wit and wjt denote the 
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total number of occurrences of wi and wj in domain dt, respectively. The expected number of 

occurrences eit is defined as t
i

it l
L

He = , where Hi is the total number of occurrences of the 

word wi in the training corpus; lt is the length of domain dt, or, said differently, the number of 

triplets representing domain dt; and L is the length of the training corpus. Mathematically, 

word pairs that have similar occurrences in the training corpus, in the sense that they are both 

present in or absent from the same texts, have a positive correlation coefficient. These are 

called affined pairs. On the other hand, word pairs with different occurrences, in the sense 

that one word often appears in texts without the other, will have a negative correlation 

coefficient. Those noun-verb pairs are called repugnant. 

One way to understand the behaviour of the correlation coefficients would be to look at the 

difference between the frequency of a word and its expected frequency, or wit – eit. The result 

of this subtraction, which we will call the frequency deviation, or simply the deviation, can 

fall into three broad ranges of values which we will define hereafter. The first range is wit – 

eit ≈ 0, when wit is roughly equal to eit. This first range of deviation values can only be 

observed if the word in question appears almost evenly throughout all domains of the corpus, 

regardless of the actual topic of each specific domain. This means that this particular word is 

definitely not domain-specific, but is most likely a word of general meaning. It is also 

possible, however, that such a word could come from a triplet extraction error. Such error 

words can only occur rarely and are confined to only one domain. Consequently, wit tends to 

become very small, eit tends to converge towards zero, and as a result the value of the 

deviation tends to be very low. The second range of deviation values that we define is  

wit – eit > 0, which occurs when a word appears in a domain more often than expected. For 

this to happen, the word cannot be distributed evenly throughout the training corpus, but 

must appear more often in some domains than in others. It must therefore be a domain-

specific word. Moreover, the domain dt is one where the frequency of occurrence of wi is 

higher than average. Consequently, the word wt must be relevant to that domain. We call 

such words in-domain. The third and final range of deviation values that we define is  

wit – eit < 0. This range is characteristic of a situation that is at the opposite extreme of the 
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previous one. In this case, wi is domain-specific, but its frequency of occurrence in dt is less 

than average. Under these conditions, it is quite evident that the word wi does not belong in 

this specific domain. We call such words out-of-domain. 

The next step in the analysis is to examine the range of values that the correlation 

coefficients can take as a function of the three ranges of frequency deviation values defined 

above. To be sure, these three ranges of deviation values could be combined into four unique 

pairs of words. The first pair we consider is composed of two general words. Referring to 

Equation (5-2) and to our earlier discussion, we can see that in this case, the correlation 

coefficient will be close to zero. Indeed, in this case, each of the two deviations in the 

numerator of the equation will have a low value, which means that the numerator itself, and 

hence the correlation coefficient, will be rather small. The second pair is made up of a 

general word and a domain-specific word. Based on our previous discussion, we know that 

wit – eit can take a high positive value when the domain-specific word is in-domain and a 

high negative value when it is out-of-domain. However, according to Equation (5-3), this 

deviation will then be multiplied by the low-value of the general word’s deviation, resulting 

in a small correlation coefficient, albeit not as close to zero as in the general-word-pair case 

discussed earlier. The third pair under consideration is that composed of two domain-specific 

words belonging to the same domain. Since they will always be either in-domain or out-of-

domain for the same domains, their deviations will always yield matching positive or 

negative numbers, and the multiplication in the numerator of Equation (5-2) will therefore 

always be positive. This will result in a correlation coefficient that is always greater than 

zero. The fourth and final pair of words being considered is the one composed of two 

domain-specific words belonging to two different domains. This pair is the opposite case of 

the previous one. Since the words belong to different domains, they will be either in-domain 

or out-of-domain for different domains. It follows that if one deviation is positive, the other 

will be negative, and the multiplication in the numerator of Equation (5-2) will therefore 

always give a negative value. The correlation coefficient obtained from this calculation will 

likewise always be less than zero.  
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Taken together, the features of the frequency deviation mentioned above have important 

implications for the discussion. It is thus of importance to realize that if we were to plot the 

pairs of words encountered in the training corpus according to their frequency deviation in 

each domain, we would find that they are divided in regions in a manner similar to the model 

presented in Figure 5-3. In this theoretical plot, region A contains general pairs, which have 

two low deviation values and a correlation coefficient around zero. Region C contains pairs 

composed of one general word and one domain-specific word, and whose correlation will be 

a little higher than those of region A. Finally, region B contains pairs of domain-specific 

words, which have large positive or negative deviation values. The pairs in regions BI and 

BIII are those for which the words belong to the same domain, and are both either in-domain 

in the case of BI or out-of-domain in the case of BIII. Those pairs have a high positive 

correlation. The pairs in regions BII and BIV, on the other hand, are composed of words 

belonging to different domains, and have a high negative correlation. 

 
Figure 5-3: The main regions of the values of the correlation. 

Our predictions can be compared with results gathered from the experimental data of 

Chapter 6. For clarity, we subdivided the word pairs of our training corpus into three groups, 

namely: those with a correlation greater than +0.5, those with a correlation less than –0.5, 
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and those with a correlation that lies between –0.5 and +0.5. We then proceeded to generate a 

plot similar in nature to that of Figure 5-3 for each of these three subgroups. The resulting 

three plots, which are presented in Figure 5-4, seem to confirm our theoretical development. 

Indeed, the figure shows that word pairs with a correlation greater than +0.5 are concentrated 

in quadrants I and III, while those with a correlation lesser than –0.5 are mostly found in 

quadrants II and IV, and most of those with a correlation between –0.5 and +0.5 are found in 

regions A and C. However, while a majority of the points follow our predicted distribution, 

the graphics do not show the clearly-defined regions A, B and C that we had hoped to find. 

The reason for this can be traced back to the data sparseness problem highlighted in the 

previous section. Indeed, we have shown that while the frequency statistics follow the Zipf-

Mandelbrot distribution we had anticipated, they are rather sparse and imprecise. As a result, 

the correlation coefficients we computed here using those statistics cannot be entirely 

accurate. 

5.2.4 Semantic Distance 

Once the usage regularities are known, the second level of Rieger’s model uses them to 

extract the meaning points. Rieger defined these meaning points as the difference between 

the usage regularity of two lexical items. The smaller this difference, the more similar the 

usage of the two lexical items is, and therefore the closer their meaning must be. This 

distance can be measured using an Euclidian metric, that will compute the difference of 

usage regularities of a lexical item against all other lexical items. Although we could 

compute the distance between any pair of words, in our method we are solely interested in 

the difference between noun-verb pairs. Thus, we have defined the semantic distance 

between noun ni and verb vj using the following equation:  
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(a) 

 

(b) 

 

(c) 

Figure 5-4: The frequency deviation plot of 94000 pairs of words with a correlation greater than 
+0.5 (a), 67000 pairs of words with a correlation less than –0.5 (b), and 551000 pairs 
of words with a correlation between –0.5 and +0.5 (c). 
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where Nw is the number of different words in the training corpus. The semantic distance 

δ(ni,vj) can take values between 0 and wN2 , with the most similar noun-verb pairs having 

the lowest values.  

For convenience, we will shorten the expression δ(ni,vj) to δij in the rest of this document. 

We will use the convention that the first subscript is the noun of the pair, and the second 

subscript is the verb. 

The notion of semantic distance represents mathematically the difference in meaning 

between two words. Indeed, as can be understood from the mathematical development in this 

section, two words wi and wj will have a low semantic distance if their meanings are similar, 

but a high semantic distance if their meanings are different. But moreover, we can use 

semantic distances to represent the meaning of two words relative to a third one. For 

example, if two pairs of words wi-wj and wi-wk have very different semantic distances, then it 

appears that wj and wk have very different meanings, with one having a meaning more similar 

to that of wi and the other having a meaning rather different from that of wi. On the other 

hand, if the two pairs have a similar semantic distance, then it appears that wj and wk have a 

similar meaning relative to that of wi. That understanding of semantic distances is the one we 

will be using when we build our possibility distributions in Section 5.4. 

In light of our earlier analysis of the correlation coefficients, we can foresee four main 

ranges of values for the semantic distance, corresponding to the four main regions of the 

correlation plot of Figure 5-3. The first corresponds to the distance between two domain-

specific words that belong to the same domain, or regions BI and BIII. As explained before, 

the correlation between a domain-specific word and another word could be either positive or 

negative, depending on whether or not the latter word belongs to the same domain as the 

former. And since we are computing Equation (5-3) using two words wi and wj that belong to 

the same domain, their correlations will always be either positive or negative simultaneously 

and their values should therefore cancel out when they are subtracted. It follows that the 

semantic distance in this first scenario will be close to zero. The opposite situation arises 
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when we compute the distance between two domain-specific words originating from 

different domains. In this second case, which corresponds to regions BII and BIV, it is 

logical to presume that a third word belonging to the same domain as one of these two must 

necessarily come from a domain different from that of the other one. This means that one of 

the correlation values in Equation (5-3) will be positive while the other will be negative and, 

instead of cancelling out as before, they will always add up and yield a rather large semantic 

distance, up to a maximum of  wordsofNumber 2  [68], [69], [70]. The third range of 

semantic distance values we can foresee is the one covering the distance between two general 

words, and corresponds to region A in Figure 5-3. In that third case, each of the correlation 

coefficients in Equation (5-3) will be either between a pair of general words, or between a 

general and a domain-specific word. Given that both of these pairs have small correlation 

coefficients, the semantic distance will consequently be small. The fourth and final range of 

values occurs when we compute the semantic distance between a general word and a domain-

specific word, and was region C in our correlation analysis. While the correlation of the pairs 

that make use of the general word will remain small, the pairs that make use of the domain-

specific word will take on positive or negative correlation values of different magnitudes 

depending on the other word in the pair. These correlation values will partially, though not 

completely, cancel each other out through the subtraction operation in Equation (5-3), thus 

resulting in a medium semantic distance figure – larger than the distance between two 

general words, but smaller than that between two domain-specific words of different 

domains. The resulting correlation coefficient-semantic distance graph, with the four regions 

positioned as per our analysis, is presented in Figure 5-5. 

The experimental data of Chapter 6 can now be used to demonstrate graphically the 

validity of the preceding theoretical observations, by illustrating the relationship between the 

correlation coefficients and the semantic distances of pairs of words. To carry out this 

verification, recall that two domain-specific words belonging to the same domain have a 

large positive correlation and a semantic distance near zero. On the other hand, pairs 

composed of two general words or of a general word and a domain-specific word both have 

small correlations, and either a small or a medium semantic distance, respectively. Finally, 
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pairs of domain-specific words originating from different domains have a large negative 

correlation and a large semantic distance. By plotting the relationship between the correlation 

coefficients computed in Section 5.2.3 and the semantic distance computed for the pairs of 

words, we obtain the graphic shown in Figure 5-6. Given the imprecision of the correlation 

coefficients computed in Section 5.2.3, this graphic is naturally noisy. However, it can 

readily be seen that the general shape of the relationship traced in this figure confirms the 

validity of our theoretical analysis. As predicted in Figure 5-5, the distribution goes from the 

negative correlation coefficient-high semantic distance range to the positive correlation 

coefficient-low semantic distance range, and is wider in the central region near the zero 

correlation coefficient. 

 
Figure 5-5: The main regions of the values of the semantic distance. 

5.2.5 Conditional Probability 

Apart from the two above concepts that we have adapted from Rieger’s work, our method 

still requires a third statistical piece of information. It consists of the conditional probability 

of a domain given each noun-verb. Indeed, while the semantic similarity gives us a statistical 

insight into the combined meaning of a noun-verb pair, the domain-pair probability, on the 

other hand, provides us with a statistical relationship between the noun-verb pair and the 

domains of the training corpus.  
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Figure 5-6: The relationship between the correlation and semantic distance of pairs of words. 

The probability of domain dt given the pair composed of noun ni and verb vj, P(dt | nivj), 

can be computed following Bayes’ theorem as: 

)(
)()|(

)|(
ji

ttji
jit vnP

dPdvnP
vndP = , (5-4) 

where P(dt) is the prior probability of domain dt, P(nivj) is the normalizing constant, and 

P(nivj | dt) is the likelihood function. In our system, we assume that the probability of a 

domain is not function of its length, but that each of the T domains of the training corpus is 

equally probable, hence:  

T
dP t

1)( = . (5-5) 

The normalizing constant is the probability of the pair nivj in the entire training corpus. This 

will be computed as the sum of the probabilities of ni and vj in each of the domains, as 

follows: 
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where nit and vjt are the number of occurrences of ni and vj in domain dt, respectively, and lt is 

the length of domain dt. Finally, the likelihood is the probability of the pair nivj occurring in 
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domain dt, which is computed using the probabilities of ni and vj, in the same manner as in 

Equation (5-6):  

t
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tji l

v
l
ndvnP =)|( . (5-7) 

For sure, we considered using probability of the pair nivj in each domain to compute 

Equations (5-6) and (5-7), instead of taking the probabilities of the noun and verb 

individually. The modified equations would be: 
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(5-8) 

where nivjt is the number of occurrences of the pair nivj in domain dt. In theory, such a 

measure would be more accurate than the one we used in Equations (5-6) and (5-7). 

However, in practice, the data sparseness problem will cause most pairs to be absent from 

most domains, thus resulting in a probability of zero. Using the probability of ni and vj 

individually instead of the probability of the pair nivj allows us to avoid this problem. 

In light of the mathematical development presented above, Equation (5-4) can be 

simplified to: 

∑
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In words, Equation (5-12) can be written as: 

Percentage of domain dt made up by pair wiwj P(dt | wiwj) = Sum of ( percentage of each domain made up by pair wiwj ) 
. (5-10)

Like any other probability, the value of P(dt | wiwj) will vary between 0 and 1. From 

Equations (5-9) and (5-13), we can infer that it will be closer to 1 when a pair of words wiwj 

represents a significant portion of a domain dt yet an insignificant portion of other domains. 
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Such pairs are clearly composed of domain-specific words, and the more domain-specific 

each of the two words of the pair is, the closer to 1 the probability gets. However, the 

probability will only reach 1 if one of the words in the pair occurs exclusively in that domain. 

Although such a word could be an exclusive domain-specific word, it could also be the single 

occurrence of a triplet extraction error. On the other hand, Equations (5-9) and (5-10) also 

show that the probability will fall close to 0 in the opposite situation, namely when the pair 

wiwj represents an insignificant portion of a domain dt but a significant portion of the other 

domains. In this case, although the pair is strongly domain-specific, it belongs to another 

domain besides dt. We can further infer that the closer to 0 the probability gets, the more 

domain-specific and out-of-domain each of the two words is. However, if the probability is 

exactly 0, the only inference that can be made is that one of the two words never occurs in 

domain dt, and of course nothing can be inferred about the other word. Finally, it is worth 

mentioning that the conditional probability of a domain given a pair of general, non-domain-

specific words, will lie somewhere between 0 and 1, with a perfectly-evenly-distributed word 

pair yielding a probability equal to 1 / number of domains. 

5.2.6 Possibility Theory  

Zadeh has laid down the mathematical foundations of possibility theory in [110]. In this 

section, we will outline some key concepts of that theory that are needed for our work. More 

details about the theory are found in [110].  

Let F be a fuzzy subset of a universe of discourse U, and X be a variable that can take 

values in U. A proposition such as “X is F” can be expressed as: 

FXRFX =→ )( is ,  (5-11)

where R(X) is a fuzzy restriction on the variable X. We can then associate a possibility 

distribution ΠX to X, which we postulate to be equal to R(X), i.e.: 

)(XRX =Π , (5-12)

with the corresponding possibility distribution function denoted as πX. In this context, πX(u) 

is the possibility that X = u. By combining Equations (5-11) and (5-12), we can write: 
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FFX X =Π→ is . (5-13)

Moving one step further, if we assign a linguistic probability value λ to the statement “X is 

F”, we can write:  

λλ =Π→ ) is ( is  is FXPFX , (5-14)

where P(X is F) is the probability distribution of F. This rule follows directly from the 

assumption that the propositions “X is F is λ” and “P(X is F) = λ” are semantically 

equivalent: 

λλ =↔ ) is ( is  is FXPFX . (5-15)

This assumption, made by Zadeh in [110], is one of the basic elements of our work. 

However, despite our reliance on the pioneering work of Zadeh in this field, it is worth 

pointing out that our application of possibility theory is quite different from his own. As 

mentioned in Section 2.2.2, Zadeh uses possibility theory to devise mathematical tools, such 

as PRUF, to be used in translating natural language information into fuzzy sets. For our part, 

we will show in the following section that we use possibility theory as an end in itself to 

represent natural language information. 

5.3 Fuzzy Sets 

The next step of the method is to combine the semantic distances and the probabilities into a 

single unified measure of the relationship between the word pairs and the domains. The first 

direct treatment of this question we proposed at an early stage of this study was 

accomplished using fuzzy set theory [45]. The main focus of this line of reasoning is to 

generate fuzzy sets that represent the membership of the pairs in each domain, and to provide 

the tool to defuzzify the membership degree of a specific pair in a specific domain.  

As we’ve mentioned in Section 1.3, the idea of using fuzzy sets in this way was proposed 

in the previous work done on this project in [85]. Naturally, the first stage of our research 

consisted in completing and refining the approach into the final form presented in this 

section. Over the course of our research however, we decided to forego the use of fuzzy set 

theory in favour of a leap forward into an original mathematical development based on 
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possibility theory that is more appropriate for our study and opens the way to significant 

practical applications. In order to follow these two lines of analysis, we shall first deal briefly 

with fuzzy sets in this section, and then at greater length with the application of possibility 

theory in Sections 5.5 to 5.8. 

5.3.1 Fuzzification 

Our line of analysis in applying fuzzy set theory relies on building fuzzy membership 

functions that represent and combine the information contained within the semantic distances 

and the probabilities. To this end, the system generates a 2D graph for each noun-domain 

combination, where the X-axis of the graph is the noun-verb similarity and the Y-axis is the 

noun-verb probability in each domain. The system can then position each verb in every graph 

with its appropriate coordinates, and is ready to compute an equivalent fuzzy membership 

function to represent this data.  

Studies have shown that the shape and tuning of the membership functions play an 

important role in the behaviour of the fuzzy controller [53]. Regarding the shape, we have 

opted for a trapezoid membership function, which was the one advocated in the previous 

work [85]. The tuning of the membership function’s parameters was done based on each 

graph’s semantic distance and conditional probability values, as we will show in the 

following paragraphs. 

The top plateau of the trapezoid function is centered on the average semantic distance of 

the noun-verb pairs, iδ , which is computed as follows:  

∑
=

=
vN

j
ij

v
i N 1

1 δδ , (5-16)

where Nv is the number of different verbs in the training corpus. The plateau extends one 

standard deviation of the semantic distance, 
iδ

σ , on each side, as indicated in the following 

equation: 
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The height of the plateau will be the normalized average probability (AP(ni, dt)) of all 

noun-verb pairs in that region. It is necessary to normalize that measure, because the high 

number of noun-verb pairs whose probability is zero would otherwise drag the height of all 

the membership functions near zero. These noun-verb pairs come from two sources: domain-

dependent verbs of one domain that do not appear in other domains, and rare verbs that occur 

once in the training corpus, thus generating a probability of 1 in one domain and 0 in all 

others. Obviously, the latter source will skew the results, but it must be dealt with in a way 

that doesn’t affect the former source, which contains some very important information. The 

solution is to give each verb vj a weight depending on its frequency in the training corpus. 

This verb weight VWj is computed in two steps. In the first step we compute the relative 

frequency RFj of the verb, by dividing its frequency in the corpus by the total frequency of all 

verbs: 
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Since there are several thousand verbs in total, that relative frequency will be quite close to 

zero. To avoid this result, the second step is to normalize the relative frequency by dividing it 

by the most frequent verb’s relative frequency: 

)max( k

j
j RF

RF
VW = . (5-19)

Thus, the most frequent verbs will have a verb weight close to 1, while verbs that seldom 

appear in the corpus will have a verb weight around 0. We are now ready to compute the 

normalized average probability. We define this measure as the sum of the probabilities of the 

noun-verb pairs in the region of the plateau, divided by the total weight of those verbs. This 

is given mathematically in Equation (5-20): 
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where: 
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The ramp sections of the trapezoid extend to three standard deviations on each side of the 

mean. In Equation (5-20), NSim represents the number of elements contained within VSim. A 

graphical representation of this setup is shown in Figure 5-7. 

 
Figure 5-7: Graphical representation of a membership function. 

5.3.2 Defuzzification 

Once the set of membership functions has been fully trained, it can be used to compute the 

membership of unseen triplets. The membership of a triplet composed of ni as subject, vj as 

verb and nk as object in domain dt is computed by defuzzifying the value of both pairs, nivj 

and nkvj, from the corresponding membership functions. Numerous defuzzification 

techniques have been proposed and tested in the literature [73], and though the centroid 
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method is generally considered more effective than the other methods, it is not by any means 

the best method to use in all situations. Indeed, different situations call for different 

defuzzification methods. More specifically, the centroid method is not appropriate for our 

work. The problem with the centroid method is that it minimises the importance of the pair-

domain probabilities (the Y-axis of the trapezoid plots) and focuses on the noun-verb 

similarities (the X-axis of the trapezoid plots). However, the similarity of a noun-verb pair is 

the same in all domains, and its height is what distinguishes one domain from another. Using 

the centroids eliminates almost completely this distinction, leaving very little information to 

differentiate one domain from another. Since our method requires a defuzzification method 

that will not suffer from such information loss, we have decided to defuzzify the membership 

functions by computing their area, using a process that we outline here and present 

graphically in Figure 5-8.  

For each of the two noun-verb pairs in domain dt, the algorithm begins by performing the 

α -cut of the noun’s membership function at the height corresponding to the noun-verb 

similarity abscissa coordinate (Figure 5-8a). The cropped membership functions of the 

subject-verb pair and object-verb pair of the triplet are then merged together using an AND 

function (Figure 5-8b), and the height of the resulting triplet membership function is 

normalized (Figure 5-8c). In our early work, the normalisation was done by multiplying the 

membership degrees by the relative importance of the verb in the domain, or the number of 

occurrences of the verb over the number of verbs in the domain, and dividing them by the 

relative importance of the domain in the corpus, or lt / L. Finally, the triplet’s membership 

function is defuzzified by computing its area in order to obtain the crisp membership value of 

the triplet (Figure 5-8d). 
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Figure 5-8: Illustration of the defuzzification technique. 

5.3.3 Implementation and Experimental Results 

The method described in this section was used to implement a general fuzzy text classifier. 

The classifier is designed to recognise specific text domains that are present in a training 

corpus. The training corpus is simply composed of un-annotated texts and of their matching 

domain. Once trained, the system will accurately classify unseen texts in one of the domains 

it was trained for, and will also give a measure of the certainty of its classification. 
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The training data used in this experiment comes from three domains of the Brown Corpus 

[32], and examples of actual 2D graphs and their membership functions are shown in Figure 

5-9, with the noun category biochem acting as subject in all three domains the classifier is 

trained for. The 20 documents used to test the classifier were taken from various sources on 

the Internet. A complete presentation of this training and testing data will be done in Chapter 

6. For now, we will limit ourselves to an overview of the results, to demonstrate the 

usefulness of our fuzzy set-based representation technique. 

It is interesting to note that the membership function in Figure 5-9 reaches the highest 

membership degree and covers the greatest area for the second domain. As we have already 

mentioned, the noun category used for this example is biochem, a category comprised of 

various bio-chemical nouns, that extends from the names of molecules to the names of body 

parts. It is no surprise then, that noun-verb pairs making use of nouns from this category have 

a higher membership degree in the medical domain than in the other two.  

Next, we classified the 20 test documents in the three domains the system was trained for. 

Each document is classified in the domain in which it exhibits the highest membership. This 

membership is computed by taking the sum of the membership of each triplet of the 

document in each domain. For comparison purposes, we computed the membership of the 

triplets first by using the defuzzification technique proposed in Section 5.3.2, then by using 

the classic centroid defuzzyfication method, and finally by simply calculating the probability 

P(nivjdt). Table 5-1 presents the classification results, along with the average membership (or 

probability) of the correctly- and incorrectly-classified documents in each case. 

For the reasons explained in Section 5.3.2, the centroid defuzzification method performs, 

as expected, very poorly for our setup. Meanwhile, the results obtained using our 

defuzzification method and those obtained by using the probabilities directly show some 

significant differences. The average probability of the documents classified correctly using 

the probabilities is significantly higher than the average membership obtained by using the 

defuzzification, but so is the that of the documents classified incorrectly. Furthermore, the  
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Figure 5-9: 2D graphs and membership functions for the noun category biochem as subject in 

the domain business (top), medicine (middle) and science-fiction (bottom). Each dot 
represents a verb. 

standard deviation of the documents classified incorrectly is much larger when the 

probabilities are used. These two findings negate the gains of having a higher correct 

probability, and indicates that it is preferable to use membership functions than the 

probabilities directly. This is due to the fact the probabilities can vary wildly, as shown by 

the very high standard deviation of the incorrectly-classified documents. This problem is 

commonly encountered in statistical NLP, and is due to the sparseness of the training data. 

Indeed, some rare noun-verb pairs occur only once or twice in the training data, which 

generates 100% spikes of probabilities in one domain, while a large number of rare noun-
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verb pairs will not be encountered at all, which generates a large number of 0% probability 

points in all domains. These 100% and 0% probabilities are obviously false, since no noun-

verb combination in English is used only in one domain, or is never used at all. They only 

occur because examples of a specific combination are lacking in our training corpus. 

Instinctively, the solution to this problem seems to consist in increasing the size of the 

training corpus in order to include a representative sample of the rare pairs. However, 

researchers in statistical NLP have shown that all training corpora have this problem, 

regardless of the size. This observation has led to the development of a number of algorithms 

to smooth the co-occurrence probabilities, such as Laplace’s law [48], Lidstone’s law of 

successions [51], the Expected Likelihood Estimation [12], the held out estimator [43], and 

the famous Good-Turing estimation [35]. These algorithms operate by subtracting a portion 

of the probability mass of pairs encountered in the training corpus, and distributing it to 

absent pairs that would otherwise have had a zero-probability. In our system, the construction 

of the fuzzy membership functions serves as a smoothing algorithm for the probabilities. It 

distributes the probability mass to the pairs depending on their similarity, decreasing the 

100% spikes and increasing the zero-probability pairs. This smoothing significantly improves 

the results of our method, as our discussion of the results of Table 5-1 indicated. 

Table 5-1: Classification results. 

Average membership and deviation of Experiment Documents 
correctly classified correct classifications incorrect classifications 

Section 5.3.2 15 / 20 0.42 ± 0.23 0.11 ± 0.09 

Centroid 5 / 20 0.04 ± 0.04 0.19 ± 0.13 

Probability 16 / 20 0.84 ± 0.23 0.36 ± 0.46 

5.4 Possibility Distributions 

5.4.1 Theoretical Development 

In the system we have developed, we use possibility distributions in order to represent the 

possibility of a domain dt given a noun-verb pair nivj. This is implemented by using an 

individual possibility distribution for each domain-noun combination 
itndΠ , as illustrated in 
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Figure 5-10. Within this framework, when given the pair nivj, a user can look up the 

possibility distribution of each domain dt given ni, and obtain the value of the distribution at 

vj. This permits him to know the possibility of the domain dt given nivj. 

 
Figure 5-10: Plot of the possibility distribution for domain dt given noun ni, and the possibility 

of dt given the pair nivj. 

Zadeh [110] showed that a probability distribution and a possibility distribution could be 

equivalent. Furthermore, it has been shown in Section 5.2 that each domain is related to each 

noun-verb pair by a discrete probability value. By using these results, we can adapt Zadeh’s 

work to our situation as follows: 

P(dt | nivj) = p From Section 5.2.  

“The probability of dt given nivj is p” English equivalent of previous line.  

“The probability that the observed 
pair nivj belongs to dt is p”

Rewriting of previous line.  

P(nivj is dt) = p Mathematical equivalent of previous line.  

nivj is dt is p From Equation (5-19).   
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p
tji dvnP =) is (π From Equation (5-18).  

Because p is a discrete probability instead 
of a linguistic probability λ, it corresponds 
to a single possibility π instead of a 
possibility distribution Π. 

 

pdtvn ji
=)(π Equivalent rewriting of previous line. (5-23) 

This development shows in what way the probability of dt given nivj is equivalent to  

)( tvn d
ji

π , the possibility of dt given nivj. However, transforming a set of these possibilities 

into a possibility distribution is not as straightforward as it seems. Indeed, these possibilities 

are based on a relatively small training corpus, and because of data sparseness they are 

incomplete and inaccurate. Some form of data smoothing is therefore required, in order to 

create an accurate possibility distribution. 

An example can help illustrate this situation. Suppose that our system observes two noun-

verb pairs, namely “company buy” (as in, “a company bought stocks”) and “company 

purchase” (as in, “a company purchased stocks”). Since the meaning of these two pairs is 

nearly identical, it is expected that a domain will have the same possibility given the 

knowledge of either one. However, if the first pair is often observed in one domain while the 

second pair is not, then this domain will only have a high possibility given the first pair. Such 

an erroneous result must be corrected.  

The correction we propose is based on the fact that two pairs nivj and nivk with a similar 

meaning will be at a very close, or possibly at the same, semantic distance. If they have the 

same semantic distance, we will consider that the two pairs are synonymous and give them a 

single possibility value. Following [26], this is done by taking the maximum of the two 

values: 

( ))(),(max)( tvntvntvnvn ddd
kijikiji

πππ =∪ , (5-24)

where )(dt
kiji vnvn ∪π  is the possibility of dt given either one of the pairs. This rule is in 

accordance with our intuition: if the possibility that an event E1 occurs is π1, then the 

possibility that either events E1 or E2 occur cannot be less than π1.  
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The same principle can be applied to correct the possibility associated with two pairs nivj 

and nivk with different semantic distances δij and δik, respectively. However, we must allow 

for the fact that the pairs have different meanings, by dampening the possibility of one of the 

pairs in function of the difference between δij and δik. This is accomplished by multiplying 

one of the possibilities by the relative difference between the pairs. In other words, the 

possibility of dt given the pair nivj will be perceived at the semantic distance δik as )( t
k

vn d
ji

π : 
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where δM and δm are the maximum and minimum possible semantic distances between a 

noun-verb pair, respectively, and G is the neighbourhood size. The role of this last parameter 

is to further dampen the possibility of pairs at a large distance to δij, up to the point where 

past a certain limit, pairs will have no influence whatsoever in the update function of 

Equation (5-24). In other words, the role of the parameter G is to limit the update to a 

neighbourhood around the semantic distance of pair nivj. In so doing, it allows us to manually 

control the trade-off between having the pairs at each semantic distance be completely 

independent of all others, and having pairs at any semantic distance influence all others. 

When G = 1, which is its minimum value, then all pairs are part of a single neighbourhood, 

and a pair at δm can affect the update of another pair at δM. However, higher values of G 

create smaller neighbourhoods. For instance, if G = 2, a neighbourhood can cover at most 

half the range of semantic distances, and a pair at δm can only affect the update of pairs up to 

δM/2. To get a better grasp of this relationship, Figure 5-11 gives a graphical illustration of 

the impact of three different values of G on the perceived possibility of a pair at δm. One 

possible direction for future work could be to estimate the optimal value of this parameter. 

Next, we can update the possibility of dt given nivk by modifying Equation (5-24) as 

follows: 

( ))(),(max)('
tvnt

k
vntvn ddd

kijiki
πππ = . (5-26)
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Figure 5-11: Impact of three neighbourhood values. 

Equation (5-26) updates )( tvn d
ki

π  by taking into account the possibility of one other pair. For 

more accuracy and completeness however, all other pairs composed of ni and a verb should 

also be incorporated. To this end, Equation (5-26) must be modified in the following way: 

( ))(max)('
t

k
vnNjtvn dd

ji
v

ki
ππ

∈
= , (5-27)

where Nv is the number of different verbs in the training corpus. Finally, the possibility 

distribution 
it ndΠ  of a combination of dt and ni is the set of possibilities of dt given ni and 

each of the verbs. Equation (5-28) computes this possibility distribution as: 

{ }vtvnnd Nkd
kiit

∈=Π ),('π . (5-28)

5.4.2 Validity of the Method 

It would be interesting to subject the possibility distributions to the same validity analysis as 

we conducted for the correlation coefficients, semantic distances and conditional 

probabilities in Section 5.2. More specifically, since the possibility distributions are 

constructed from the conditional probabilities and the semantic distances, it is therefore of 

importance to get a deeper understanding of the relationship between these two notions. 

Since the distribution of a specific domain is computed under the assumption of a specific 

noun and any verb, we can limit our study to three main situations, namely: that where the 
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noun is domain-specific and is in-domain, that where the noun is domain-specific but is out-

of-domain, and that where the noun is general and not domain-specific. 

The first situation to be considered is that where we compute the possibility distribution of 

a domain given an in-domain domain-specific noun. This situation is depicted in Figure 

5-12(a). In this graph as well as all the others of Figure 5-12, the verbs are sorted on the X 

axis according to the semantic distance of the noun-verb pair, while the conditional 

probability is measured on the Y axis. As shown in Section 5.2.4, the noun-verb pairs with 

the lowest distance will be the ones that belong to the same domain, and since the noun is in-

domain, it follows that the pair is both strongly domain-specific and belongs to the current 

domain as well. Under these conditions, and as shown in Section 5.2.5, the conditional 

probability of the domain given the pair will have a high value. The next highest value of 

semantic distance will be that of pairs in which the noun is matched with a general verb. As 

argued in Section 5.2.5, the probability of a domain given a domain-specific word and a 

general word will be lower than that of two domain-specific words, mentioned before. 

Finally, pairs where the noun is matched to a domain-specific verb from a different domain 

will yield the highest semantic distance, and the lowest probability. These relationships trace 

the decreasing line shown in Figure 5-12(a). 

The second situation under analysis is the inverse of the preceding one. In this case, we 

compute the possibility distribution of a domain given an out-of-domain domain-specific 

noun. Once again, the noun-verb pairs with the lowest semantic distance will be those that 

belong to the same domain, followed by those pairs with general verbs, and finally by the 

pairs that belong to different domains. However, in this instance, the lowest-distance noun-

verb pairs belong to a domain different from the one being plotted, and their conditional 

probability will be close to zero. In the same vein, the second group, namely that of noun-

verb pairs that include a general verb, will exhibit a slightly higher conditional probability 

than that of the first group. Finally, in the case where the noun and verb belong to different 

domains, it is possible that the verb will belong to the domain being plotted. If this is the 

case, the conditional probabilities given these pairs will reach the highest values. This 

relationship between the semantic distance of the three groups of pairs and their condition 
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probability traces a positive curve as depicted in Figure 5-12(b). It should be mentioned that 

this graph is valid only if the verbs with the greatest distance from the noun are the most in-

domain ones. However, if there are several domains, then other less distant verbs may be 

more in-domain than these. In that case, the probability will peak for some moderate value of 

the semantic distance, and will fall again as the verbs become increasingly distant from that 

peak, indicating that they belong to more and more dissimilar domains. This setup is 

illustrated in Figure 5-12(c). 

The final situation is the one that uses a general, non-domain-specific noun. This case is 

notably different from the previous two. Indeed, as shown in Section 5.2.4, only domain-

specific noun-verb pairs can have very small or very large semantic distances, whereas pairs 

that include a general word will show small to medium distance values. Moreover, the 

conditional probability of a domain given general noun-verb pairs is rather small, while that 

of a domain given mixed general and domain-specific pairs will only be a little higher when 

the domain-specific word belongs to the domain being plotted, and lower otherwise. The 

resulting distribution will therefore simply consist of a central hump, much like the one 

illustrated in Figure 5-12(d).  

The relationships described above can be observed in the experimental data of Chapter 6. 

We have selected from these data two examples to illustrate these relationships. These two 

examples have been chosen on account of their clarity and comprehensiveness.  

The first example is composed of the probability values of two domains given a noun 

category of scientific terms and all verbs. The plot of the probabilities of the sciences domain 

(in blue) and that of the social studies domain (in red) are shown in Figure 5-13(a). These 

two plots can be superposed as in this figure, since the semantic distances composing the X-

axis are not domain-dependent. This example illustrates the first two theoretical cases 

discussed earlier. As shown in Figure 5-13(a), the probability of the sciences domain given 

pairs composed of a science noun and a similar verb is very high at first, but falls gradually 

as the distance between the verbs and the noun increases. By contrast, in the social studies 

domain, the probability given pairs of science-related words starts very low, but increases as  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-12: The four possible shapes of the probability-distance relationship. Illustrated is the 
conditional probability of a domain given a noun of that domain (a), given a noun 
of a different domain (b and c), and given a general noun (d). 
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the verbs become more and more distant from the science noun category. It is worth noting 

that, since the science noun category selected only occurs in those two domains, the 

probabilities in both domains are exactly complementary. In this regard, the second example 

selected is a lot more sophisticated. In this example, we selected an art-related noun category 

that occurs in no less than six different domains. For ease of presentation, the three most 

interesting domains of this example are illustrated in Figure 5-13(b). They are the art domain 

in green, the language art domain in red, and the social studies domain in blue. This graph 

also shows that, with respect to the conditional probability of the art domain, the art-related 

noun-verb pairs in the first half of the semantic distance axis dominate those of the other two 

domains and indeed those of the remaining three domains not depicted graphically here. And 

even though they are overtaken by the conditional probabilities of other domains in the 

second half of the distance axis, the art domain still has a strong showing in that region. The 

social studies domain, on the other hand, is unrelated to the noun category, and its probability 

is therefore high only for pairs with the highest distances, namely those pairs where the verb 

is the most unrelated to the art noun. To be sure, these two situations are similar to the ones 

examined in the previous example. However, the novelty in this example comes from the 

language art domain. This particular domain is somewhat related to the arts noun category, 

and Figure 5-13(b) shows, its conditional probability distribution peaks near the middle of 

the plot, when the probability of the art domain begins to fall, and when the distance between 

the art noun category and the verbs has a medium value. That medium value means that the 

verbs are not exactly art-related, yet not completely different either. This last case of the 

language art domain illustrates the situation depicted in Figure 5-12(c). 

Although the scatter diagram of the second example presented above follows the 

theoretical distributions of three graphs of Figure 5-12, it has rather an irregular shape, and 

far more so than in the simpler first example. For instance, the probability of the art domain 

can drop from nearly 1 to almost 0 and jump back again to a high value over three 

consecutive noun-verb pairs. Since the conditional probability distributions depicted in 

Figure 5-13 are used as background to generate the possibility distributions, the need to 
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smooth them becomes evident. The resulting possibility distributions which correspond to the 

smoothed version of Figure 5-13 are presented in Figure 5-14. 

 

(a) 

 

(b) 

Figure 5-13: Experimental results of the relationship conditional probability and semantic 
distance. Shown in (a) is the science domain (blue) and social studies domain 
(red) given a science noun category. Shown in (b) is the art domain (green), the 
language art domain (red) and the social studies domain (blue) given an art noun 
category. 
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As we can see, the possibility distributions are more uniform than the probability scatter 

diagrams of Figure 5-13. Yet they still appear somewhat jagged – another consequence of the 

problem of data sparseness that has plagued this research since the beginning.   

 

(a) 

 

(b) 

Figure 5-14: The smoothed possibility distributions of the graphics of Figure 5-13. 
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5.5 Illustrative Example 

We will now present an example to illustrate the method described so far in this chapter. The 

example will show the steps required to plot a possibility distribution. We have chosen the 

distribution of the domain “science-fiction” given the noun “art” used as object. The data 

come from the first training corpus we will use in the implementation of our domain 

classifier, which will be presented in its entirety in Chapter 6. 

The first step in the development of the method is to compute the semantic distance 

between the object “art” and every verb in the training corpus, using the process presented in 

Section 5.2.4. It should be noted that this first step is not specific to the “science-fiction” 

domain we are dealing with. Indeed, the semantic distance of a noun-verb pair is constant in 

all domains, and this step is executed only once for the entire training corpus. Given the 

number of different words in the training corpus, the semantic distance can take values 

between 0 and 55.7, although in practice it only varies between 0.1 and 44.1. It would be 

both impractical and uninteresting to reproduce here the complete list of semantic distances 

between the object “art” and each of the 684 verbs. Instead, a limited sample is shown in 

Table 5-2. 

Table 5-2: Semantic distance between the object “art” and 25 verbs. 

Verb Distance  Verb Distance  Verb Distance 

Work 0.1  Announce 14.3  Consider 37.6 

Enjoy 4.5  Examine 18.3  Estimate 38.9 

Look 4.5  Limit 21.3  Provide 40.4 

Judge 4.9  Sell 23.6  Contain 42.6 

Record 4.9  Buy 25.8  Identify 42.8 

Carry 7.1  Design 25.8  Obtain 42.8 

Write 7.1  Compare 31.7  Act 43.0 

Publish 8.2  Play 34.6  Show 43.5 
      Improve 44.1 

The second step in the method is to compute the probability of the domain “science-

fiction” given each of the 684 art-verb pairs, by applying the set of equations presented in 
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Section 5.2.5. Once this is done, each pair will have both a semantic distance and a 

probability value associated with it. These can be represented with a 2D graph, as in Figure 

5-15. In this figure, black points depict single noun-verb pairs, red points represent more than 

one but less than 100 noun-verb pairs superposed, green points represent between 100 and 

200 noun-verb pairs superposed, and blue points represent more than 200 noun-verb pairs 

superposed. 

 
Figure 5-15: Semantic distance-probability plot of the 684 art-verb pairs. 

The final step of the method is to extrapolate the possibility distribution from the 

probability distribution. First, art-verb pairs at the same semantic distance are given the same 

possibility, according to Equation (5-24). This yields the possibility plot illustrated in Figure 

5-16. The possibility distribution is then smoothed, using Equation (5-25) and G = 1. The 

resulting possibility distribution is shown in Figure 5-17. 

 
Figure 5-16: Semantic distance-possibility plot of the 684 art-verb pairs. 

 
Figure 5-17: Smoothed possibility distribution of the domain “science-fiction” given the pairs 

composed of the object “art” and a verb. 
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5.6 The Possibility Given Triplets 

Up till now, the method developed has only focused on noun-verb pairs, yet actions are 

represented using subject-verb-object triplets. The system must therefore bridge the gap 

between the pairs and the triplets. 

As it turns out, given our earlier assumption of independence in Section 5.1, it is a simple 

matter to infer the possibility of a domain dt given a subject-verb-object triplet nivjnk, once 

the system knows the possibility of the domain given nivj and nkvj. Since we assume that the 

meaning of each pair is independent, the system needs only to combine both possibility 

values. Following [26], this is done by taking the minimum of the two values )( tvn d
ji

π  and 

)( tvn d
jk

π : 

( ))(),(min)()( tvntvntvnvntnvn dddd
jkjijkjikji

ππππ == ∩  (5-29)

where )( tvn d
ji

π  and )( tvn d
jk

π  are the possibilities of dt given the pairs nivj and nkvj 

respectively, )( tvnvn d
jkji ∩π  is the possibility of dt given both pairs and )( tnvn d

kji
π  is the 

possibility of dt given the triplet nivjnk. This rule is in accordance with our intuition: if the 

possibility that an event E1 occurs is π1, then the possibility that both events E1 and E2 occur 

cannot be more than π1.  

Suppose for example that the system needs to know the possibility of the business domain 

given the triplet “company buy stock”, and that it already knows the possibility of the 

business domain given the pairs “company buy” and “buy stock”. Since the business domain 

will be very possible given both these pairs, the minimum possibility value, and thus the 

possibility given the triplet, will be very high. Now suppose that, instead of “buy stock”, the 

second part of the triplet was something irrelevant, like “buy fruit”. This triplet could come 

from a sentence giving background trivia on the company, such as “the company bought a 

variety of fruits for the employee picnic last year”, or it could even come from an extraction 

error. Either way, the business domain will not be very possible given that pair. Hence, 

Equation (5-29) will insure that the business domain will not be very possible given the 
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triplet “company buy fruit”, despite the fact that it would be possible given the first pair 

“company buy”. 

5.7 Complexity of the Method 

To complete the presentation, it would be interesting to evaluate the complexity of an 

algorithm designed along the lines of the method developed in this chapter. To begin with, let 

us assume that the algorithm receives as input a training corpus of L triplets divided into T 

domains. In the worst case scenario, every single verb and noun in the triplets will be unique. 

There will thus be L verbs and 2L nouns, for a total of 3L words. Since each domain is 

composed of many triplets, it follows that the total number of domains T will always be a lot 

smaller than the number of triplets. For simplicity, we will follow the assumption of [13], to 

the effect that basic operations such as sums, subtractions, multiplications, divisions and 

square roots are done in unit time and are therefore constant. 

As explained earlier, the method of this chapter is made up of four successive steps. The 

complexity of an algorithm implementing this method will therefore amount to that of the 

most computationally expensive step.  

The first step of the method is to compute the correlation coefficient between each pair of 

words. The correlation equation, presented in Equation (5-2), is composed of two parts: a 

numerator, in which basic operations are repeated T times and which therefore has a 

complexity in O(T), and a denominator, in which basic operations are repeated T² times and 

which is therefore in O(T²). Consequently, the overall complexity of the equation is in O(T²). 

Moreover, as was detailed in Section 5.2.3, the correlation is computed for each pair of 

words, without regard to the order of words and with no repetitions. Hence, the number of 

times that Equation (5-2) will be computed is equal to the number of combinations of two 

elements in 3L. As can be seen from Equation (5-30) below, these combinations result in the 

first step of the method having a quadratic complexity in function of L, which, as was pointed 

out earlier, will be much greater than O(T²). The entire step thus has a complexity of O(T²L²). 
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The second step of the method is the computation of the semantic distances which is also 

discussed in Section 5.2.4. The semantic distance equation, or Equation (5-3), is made up of 

basic operations which are repeated for the number of different words, or 3L times in our 

current situation. The complexity of this equation will therefore be in O(L). Furthermore, as 

explained in Section 5.2.4, the semantic distance is computed for each pair of one noun and 

one verb. Given the initial setting presented above, there will be 2L² such pairs, and this step 

will consequently have a cubic complexity.  

In the third step, the conditional probability of each domain given each noun-verb pair is 

computed using Equation (5-4). The development done in Section 5.2.5 reveals that this 

equation is simple enough to be executed in O(T) time. However, a potential algorithm will 

have to compute Equation (5-4) for each domain and each noun-verb pair, for a total of T2L² 

times. This step of the algorithm has therefore a complexity in O(T²L²).  

The fourth and final step of the method is the smoothing of the possibility distributions, 

presented in Section 5.4. In this step, the algorithm has to compute for each domain given 

each noun the possibility distribution as per Equation (5-28). More specifically, Equation (5-

28) computes the possibility value at each semantic distance in the distribution as the 

maximum of the set of dampened possibilities at all semantic distances, as defined in 

Equation (5-27). The max operator has a linear complexity given the number of elements it 

must consider, which is equal to the number of semantic distances. Finally, the dampening 

equation given in Equation (5-25) is composed entirely of basic operations and can be 

computed in constant time for the possibility value at each semantic distance. The overall 

complexity of computing the set of dampened possibility values will therefore be a linear 

function of the number of semantic distances. Assuming the worst case scenario in which 

each noun-verb pair has a unique semantic distance and given that a distribution is limited to 

a single noun, the number of semantic distances in the distribution will be the same as the 

number of verbs. Consequently, the complexity of this step will be computed as: 
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number of domains * number of nouns * number of semantic distances * 

(dampening + max) = T*2L*L*(L + L) = O(TL³). 
(5-31)

In sum, an algorithm implementing our method will be made up of a sequence of four 

steps. Given L, which is normally much greater than T, the number of triplets provided as 

input at the training stage, two steps of the algorithm will have quadratic complexity while 

the other two will have cubic complexity. The overall algorithm will therefore have cubic 

complexity.  

The silver lining is that, once the training is done, a testing algorithm can perform in linear 

time. Indeed, such an algorithm will only need to compute the possibility of each domain 

given each triplet of the testing corpus. Under normal circumstances the testing corpus 

should be much smaller than the training corpus, however, for simplicity we will assume that 

both corpora have the same total of L triplets. Following Equation (5-29), it appears that the 

possibility of each triplet is the minimum of its two composing pairs. The min operator, like 

the max operator, is of linear complexity given the number of elements it considers, which is 

a constant in this case. It thus simplifies to a complexity of O(2). Likewise, looking up the 

possibility of a domain given a pair in our distributions is a trivial operation that can be done 

in unit time. The testing algorithm will perform these two operations for each domain and 

each triplet, for a total of TL times. Its complexity is therefore simply O(TL). 

5.8 Validity of the Method 

Before concluding this chapter, it behoves us to briefly summarize its main findings with 

respect to the validity of our method. To fix ideas, we will use the domain-specific words w1 

and w2, which originate from domains d1 and d2, respectively, along with the general word 

wG, and an extraction error, wE, which occurs a few times in d1. 

Let us start by focusing on the frequency of each word in each domain. Those results are 

fairly straightforward: the domain-specific words will occur with high frequency in their own 

domains but with low frequency elsewhere, while wG will occur with high frequency 

everywhere and wE will, by definition, occur rarely in one domain and never occur 
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elsewhere. These results support and extend the predictions of the Zipf-Mandelbrot law, as 

explained in Section 5.2.1. Let us turn next to the frequency deviation, as defined in Section 

5.2.3. As we recall, domain-specific words will have a deviation well above zero in their own 

domain and well below zero in other domains, while general words and error words will have 

a deviation around zero. These results are presented in Table 5-3. As can be observed from 

that table, there is a clear distinction between the behaviour of domain-specific words, that of 

general words and that of error words. Indeed, even at this early stage of computation, it is 

possible to distinguish between these three different types of words and to filter out 

undesirable words, such as those resulting from triplet extraction errors. 

Table 5-3: Frequency and deviation results for each word-domain pair. 

Word in domain Frequency Deviation 

w1 in d1 High > 0 

w1 in d2 Low < 0 

w2 in d1 Low < 0 

w2 in d2 High > 0 

wG in d1 High ≈ 0 

wG in d2 High ≈ 0 

wE in d1 Low ≈ 0 

wE in d2 = 0 ≈ 0 

Also in the context of Section 5.2.3, the next step in our method called for the use of the 

frequency deviations of words to compute the correlation coefficients between pairs of 

words. Drawing on Equation (5-2), we showed that the correlation between domain-specific 

words belonging to the same domain will have a high positive value, while that of domain-

specific words belonging to two different domains will have a high negative value. On the 

other hand, pairs composed of at least one general word will have a correlation close to zero, 

however if the second word were domain-specific, the pairs will have a slightly higher 

correlation value than if they were composed of two general words. Once calculated, these 

correlation coefficients are then used in Equation (5-3) to compute the semantic distances. 

Section 5.2.4 focuses on this aspect of the method, and reveals that pairs of domain-specific 
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words belonging to the same domain will have a semantic distance close to zero, while those 

that belong to different domains will have the highest distances. In-between these extremes 

are pairs that include a general word. In parallel with the results of the correlation analysis, 

pairs with a domain-specific word will have a slightly higher semantic distance than pairs of 

general words. Finally, in Section 5.2.5, the conditional probability of each domain given the 

pairs is computed. Most notably, this section has established that the probability of a domain 

given a pair of in-domain domain-specific words will be close to 1, while its probability 

given domain-specific words of another domain will be close to 0. The probability given 

other pairs will be in-between these two extremes and will vary depending on the presence of 

general or domain-specific words, with the probability of a domain given a pair of perfectly 

evenly-spread general words being equal to 1 / (number of domains in the training corpus). 

The results of the correlation, semantic distance and conditional probability are summarized 

in Table 5-4. The notation in this table adds the word w3, which is another domain-specific 

word that originates from domain d1, much like w1.  

Table 5-4: Correlation and distance of word pairs, and probability of domains given pairs. 

Domain given pair  Correlation Distance Probability 

d1 given (w1, w3)  > 0 ≈ 0 ≈ 1 

d2 given (w1, w3)  > 0 ≈ 0 ≈ 0 

d1 given (w1, w2) < 0 ≈  wordsofNumber 2 Medium 

d1 given (w1, wG)  ≈ 0 (Medium) Medium High 

d2 given (w1, wG)  ≈ 0 (Medium) Medium Low 

d1 given (wG, wG)  ≈ 0 (Low) Low ≈ 1 / Number of domains 

The special cases where the pairs of words include the extraction error wE are presented 

separately in Table 5-5. This table includes in its bottom line the word wF, which is another 

extraction error like wE, but one that occurred in another domain. By comparing Table 5-4 

and Table 5-5, it becomes apparent that pairs that include an error word have a mixed 

behaviour: they have the correlation and semantic distance of general pairs, but yield the 

conditional probability of extremely domain-specific pairs. This is a consequence of their 

rareness. Their low frequency and deviation, which we observed in Table 5-3, lead to a low 
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correlation and distance similar to that of general pairs. Furthermore, this rareness means that 

they appear in only one domain, which makes them akin to very domain-specific words for 

the purpose of the probability computation. 

Table 5-5: Correlation and distance of word pairs, and probability of domains given pairs, for 
pairs that include an error word. 

Domain given pair Correlation Distance Probability 

d1 given (wE, w1)  ≈ 0 Medium = 1 

d2 given (wE, w1)  ≈ 0 Medium = 0 

d2 given (wE, w2)  ≈ 0 Medium = 0 

d1 given (wE, wG)  ≈ 0 Low = 1 

d2 given (wE, wG)  ≈ 0 Low = 0 

d1 given (wE, wF)  ≈ 0 Low = 0 

To sum up, Tables 5-3 to 5-5 reveal that the semantic information representation method 

advocated in this research must handle four different types of words, namely domain-specific 

words whether they are in-domain or out-of-domain, general words, and error words. 

Furthermore, the method must also handle them either singly or in pairs. It does so by 

computing the five metrics analysed in this chapter: the frequency, the frequency variation, 

the correlation, the semantic distance, and the conditional probability.  

Given the results presented in Tables 5-3 to 5-5, it is possible to see that no two pairs of 

words have the same values for all five metrics. It is thus of importance to combine these 

results in order to gather reliable information about the words’ meaning and usage, and the 

nature of the documents containing them. The method developed in this study, by putting 

together the information obtained from the five metrics, achieves this goal in a most effective 

way. 

5.9 Conclusions 

In this chapter, we have focused on the segment of our system that allows us to represent 

domain information using possibility distributions. These distributions quantify the 
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possibility of a domain given a particular triplet, or in other words, how easy it is to use this 

triplet in that domain.  

We began the explanation of our method by introducing the mathematical notion on which 

the method is founded. We discussed a way to compute the semantic distance between a pair 

of words and the probability of a domain given a noun-verb pair, and introduced the basics of 

possibility theory as it pertains to our work. Before computing the possibility distributions, 

we presented an alternative solution we considered, which relied on fuzzy set theory. We 

then showed that probabilities and semantic distances previously computed could be used to 

generate the possibility distribution of a domain given the noun-verb pairs. These successive 

steps of the method were then illustrated with an example. Next, we explained how to obtain 

the possibility of a domain given a particular triplet by combining the possibility of that 

domain given two pairs of words. Finally, we evaluated the complexity of learning and 

testing algorithms designed along the same lines as our method. 

Using this method, the domain information contained in the English triplets can be 

quantified and represented in a mathematical format that can be easily used in a number of 

applications. Some examples of applications will be suggested in Chapter 6, and one will be 

examined in detail.  
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Chapter 6 
Applications and Experimental Results 

6.1 Introduction 

The previous chapter explored in relative detail the theoretical underpinnings of our 

knowledge-representation method. Starting with subject-verb-object triplets extracted from 

ordinary English texts with the help of appropriate techniques, such as those presented in 

Chapters 3 and 4, our approach can be applied to represent domain information using 

possibility distributions. Chapter 5 set forth in detail the sequence of stages and equations 

needed to compute these possibility distributions. 

The purpose of this chapter is to demonstrate the practicability of our method by presenting 

and analysing five suitable applications. We will first create a domain classifier based on our 

method. In this regard, we will detail the implementation of the method step by step. The 

classifier will then be trained and tested using several different corpora, and the experimental 

results will be analysed. Following this first illustration, four more applications will be 

presented. However, these applications will not be studied in the same depth as in the case of 

the domain classifier, since their purpose is simply to show that the method is general and 

flexible enough to be applied to any NLP problem.  

6.2 Text Classifier 

As mentioned in Section 2.6, the literature on text classification displays a large variety of 

techniques put forward to address this challenging task. Most of these techniques, however, 

follow the same fundamental pattern. They begin by representing both the classes and the 

documents to classify as vectors, and then they match each document to its most similar 

class. Accordingly, the main innovations offered by these techniques deal with refining the 

composition of the vectors and improving the comparison techniques. 

The text classifier developed to test our method is radically different from previously 

proposed text classification systems: it does not rely on a document vector at all. Instead of 
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classifying texts using the frequencies of words or features, this text classifier bases its 

classification on the actions described in the text. The classifier begins by extracting the 

subject-verb-object triplets representing the actions from each document. It then retrieves the 

possibility of each domain given each of the triplets and sums them to find the most possible 

domain for the text document. 

Two methods have been proposed for the task of triplet extraction in this thesis, namely the 

simpler method of Chapter 3 based on syntactic heuristics, and the more sophisticated 

method of Chapter 4 using our part-of-speech hierarchy and a rule-learning algorithm. Either 

one could be used to perform the triplet extraction for the text classifier in this chapter. We 

noted in Sections 3.5 and 4.5 that the method of Chapter 3 suffers from several limitations 

that do not appear in the more general method of Chapter 4. However, while the method in 

Chapter 4 is less limited, that of Chapter 3 was specifically designed and fine-tuned for our 

work. Consequently, while the method of Chapter 4 will be preferable in most cases, the 

method of Chapter 3 yields better results in this one specific case, and is therefore the one we 

will use to extract the triplets of words used in this chapter. 

6.3 Experimental Setup 

6.3.1 Training and Testing Corpora 

In order to fully demonstrate the usefulness of our method, the classifier will be trained and 

tested thrice, using three different corpora. The rational for running three experiments is to 

demonstrate the generality of the method, and its usefulness in three different situations. 

Indeed, in the first experiment, the classifier is trained with a general text corpus divided into 

three different domains, whereas in the second experiment it is trained using a specialized 

domain-specific text corpus divided into three similar sub-domains. The third experiment 

goes a step further, as the classifier is trained and tested using a corpus of learning objects 

divided into 16 domains. Taken together, these experiments serve to show that the method 

can be successfully applied in a wide range of situations. 
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The first training corpus comes from the Brown Corpus [32]. This data source is a corpus 

of American English written texts compiled in 1961. It is composed of 500 sample 

documents, selected to reflect the spread of domains Americans were reading about at that 

time. Documents in the corpus thus cover a wide range of topics, from news coverage to 

religious texts, from industrial reports to detective fiction. To set off the research on our 

classifier, we have decided to limit initially our scope to three domains of the Brown Corpus, 

namely the business domain (samples A26-A28 in the Brown Corpus), the medical domain 

(samples J13-J17) and the science-fiction domain (samples M01-M06). It should be noted 

however that the approach presented in this paper can be expanded to cover all the domains 

indexed in the Brown Corpus. One of the reasons motivating the choice of this corpus is the 

fact that it is a general corpus that includes samples from a large variety of domains. Once 

the classifier is expanded to the entire corpus, it will be able to handle texts from most 

domains. 

The second training corpus is composed of Reuters business news articles. These news 

articles are sorted in three domains: corporate acquisitions, company earnings, and company 

mergers. It should be mentioned that, since these three domains are subsets of the business 

domain, a good deal of overlap exists between the actions of the three domains. This makes 

the classification problem more difficult.  

The testing corpus for the first experiment is composed of 20 documents belonging to one 

or the other of the three domains of the training corpus. These documents are of course not 

part of the training corpus, but instead they come from various online sources. Furthermore, 

the 11 business-domain documents of this first testing corpus form the testing corpus of the 

second experiment. These two testing corpora are presented in detail in Table 6-1. 
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Table 6-1: Composition of the testing corpora. 

Domain Document Description 
Experiment 1 Experiment 2 

1 Business news article (Reuters) Business Acquisition 

2 Business news article (Reuters) Business Acquisition 

3 Business news article (Reuters) Business Acquisition 

4 Business news article (CTV) Business Earnings 

5 Business news article (Reuters) Business Earnings 

6 Business news article (CP) Business Earnings 

7 Business news article (Bloomberg) Business Earnings 

8 Business news article (Times) Business Earnings 

9 Business news article (CTV) Business Earnings 

10 Business news article (Bloomberg) Business Earnings 

11 Business news article (Washington Post) Business Mergers 

12 
F Bánhidy, RB Lowry, AE Czeizel, “Risk 
and Benefit of Drug Use During Pregnancy”, 
Int J Med Sci 2005; 2:100-106 (abstract) 

Medicine 
 

13 

SK Das, K Sanyal, A Basu, “Study of urban 
community survey in India: growing trend of 
high prevalence of hypertension in a 
developing country”, Int J Med Sci 2005; 
2:70-78 (abstract) 

Medicine 

 

14 
MK Paul, AK Mukhopadhyay, “Tyrosine 
kinase – Role and significance in Cancer”, 
Int J Med Sci 2004; 1:101-115 (abstract) 

Medicine 
 

15 Encyclopaedia entry on antibiotics Medicine  
16 Encyclopaedia entry on tuberculosis Medicine  

17 Complete Short Story (Ray Bradbury, “A 
Sound of Thunder”) Science-Fiction  

18 Book chapter (H. G. Wells, “War of the 
Worlds”) Science-Fiction  

19 Book chapter (Mark Twain, “The 
Adventures of Tom Sawyer”) Science-Fiction  

20 Section of an unpublished short story (Mike 
Combs, “The Right Question”) Science-Fiction  

The data used to create the third training and testing corpora in this research comes from 

Canada’s SchoolNet [75]. SchoolNet is an online digital repository of learning objects (LO), 
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that serves as a portal to thousands of educational websites. A LO is a metadata file 

containing information about an entity, either digital or not, that is used for educational 

purposes [41]. Learning object repositories (LOR) such as SchoolNet are growing in 

popularity, and are meant to become an integral part of the Semantic Web [9]. However, 

tools to represent and navigate through a LOR, such as [67], [39], or to integrate together and 

search through several LORs, such as [20], [21], are still in their infancy and lack a reliable 

process to represent and handle the information contained within the LO. Consequently, we 

will focus on Canada’s SchoolNet in this research in order to show that our method could be 

helpful in that regard. 

6.3.2 Triplet Extraction and Noun Categories 

The necessity to replace individual nouns with noun categories was explained in Section 

3.2.3. To gain a deeper understanding of the nature of the noun categories, we created the 

categories used in the first two experiments manually, while the process designed to generate 

automatically noun categories proposed in Section 3.2.3 was applied in the third experiment. 

This dual approach to the generation of noun categories brings into sharp focus the 

distinction between manually-created and automatically-generated noun categories. 

In the first training corpus, each noun is represented by one of 45 categories. Although the 

system treats all categories in the same manner, we can nevertheless differentiate between 

two types of categories. Categories of the first type group together nouns that relate to 

specific domains or concepts, such as finance, justice or emotion. We list those categories in 

Table 6-2. Categories of the second type are “catch-all” categories, or more general 

categories designed to give a coarse classification to nouns that do not fit into any category of 

the first type. These categories are listed in Table 6-3. Although there are fewer categories of 

the second type than there are of the first type, each second-type category encompasses more 

nouns. 
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Table 6-2: 35 specific noun categories used in the first training corpus. 

Category Definition  Example 

Art Nouns related to art forms, art supplies, or artists.  Ballet, Poet 

Biochem Nouns related to anatomy, diseases, medical terms and 
chemicals. 

 Chloride, 
Kidney 

Causality Nouns representing a cause or effect.  Consequence 

Clothes Nouns representing clothes, parts of clothes, or 
accessories. 

 Crown, 
Pocket 

Colour Any noun used to represent the colour of an object.  Blue, Hue 

Date Names of days and months or nouns representing a lapse 
of time.  

 Hour, Future 

Emotion Any emotion or state of mind.  Enthusiasm 

Family Nouns representing family members.  Father 

Finance Nouns relating to money, economics and business 
transactions. 

 Banker, Tax 

Fire Nouns related to fire.  Flame 

Food Nouns describing food, including production and 
consumption. 

 Dairy, Snack 

Geography Any natural landscape feature or astronomical object.  Nebula, 
Swamp 

Geometry All manners of lines, shapes and geometric measures.  Round, 
Length 

Group Nouns representing groups or derived from the action of 
grouping. 

 Combination, 
Merge 

Information Nouns relating to information, including processing and 
transmitting. 

 News, 
Reasoning 

Justice Nouns relating to the court of law.  Defendant 

Lifeform Any animal or plant  Lizard 

Literary Any noun related to written text or a part of discourse.  Conjugate, 
Newspaper 

Location Any man-made place or proper name of a place.  Canada, City 

Measure Nouns describing measures, the act of measuring, ranks or 
numbers. 

 Estimate, 
Fifth 

Military Anything related to the military or warfare, including all  Battle, 
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weapons. Warrior 

Movement Nouns describing all manners of physical movement.  Orbit, Path 

Opening Any natural or man-made orifice.  Fissure 

Organisation Any corporation or business group.  Company 

Politics Anything relating to the government, including buildings 
and people. 

 Dictatorship, 
Voter 

Religious Any noun representing a religious item, ceremony or 
being, including historical figures. 

 Angel, 
Church, 
Moses 

Resource Nouns representing natural resources that are not 
biological in origin.  

 Dust, Iron 

Science Nouns representing a field of science or related to 
scientific. 

 Laboratory, 
Theory 

Shopping Anything relating to retail shopping, including places and 
incentives. 

 Ad, 
Marketplace 

Social Any class or social group.  Generation 

Sound Anything that can be heard.  Tenor 

Transport Any means of transportation.  Locomotive 

Undertaking Nouns representing large-scale endeavours.  Expedition, 
Voyage 

Unit Any unit of measure.  Kilometre 

Weather Any noun relating to the weather or environmental 
conditions. 

 Drought, 
Storm 
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Table 6-3: 10 general noun categories used in the first training corpus. 

Category Definition  Example 

Abstraction Abstract notions that do not fit in any other category.  Anything, 
Premium 

Active Nouns derived of active verbs that do not fit in any other 
category. 

 Care, Repair 

Building Nouns representing buildings or parts of buildings and that 
do not fit in any other category. 

 Estate, Home, 
Wall 

Individual Any single person that doesn’t fit in any other category, 
and historical figures. 

 Friend, 
Napoleon 

Passive Nouns derived of passive verbs that do not fit in any other 
category. 

 Depletion, 
Proliferation 

People Any group of people that doesn’t fit in any other category.  Crowd, 
Everybody 

Physical Any physical object that doesn’t fit in any other category.  Debris, 
Teleprompter 

Profession Any occupation that doesn’t fit in any other category.  Guardian, 
Watchmaker 

Sense Nouns relating to human senses or mechanical sensors and 
that do not fit in any other category. 

 Flavour, 
Glance, 
Stealth 

Tool Any man-made object that is used to accomplish a task and 
that doesn’t fit in any other category. 

 Device, 
Ladder, 
Software 

The categories presented in Tables 6-2 and 6-3 are those that were found to strike the best 

balance between generality and specificity given the training data used in this research. They 

do not by any means represent the only possible clustering of these nouns. On the other hand, 

the problem of polysemy was solved simply by placing nouns in the category representing 

their most frequently-used meaning. 

The noun categories for the second training corpus are obtained by specializing those of 

the first training corpus to the business domain. This specialization is accomplished by 

splitting away nouns from some of the categories to form new, more domain-specific 
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categories. The specialization needed to adapt the noun categories to the business domain is 

set forth in Table 6-4. 

Table 6-4: 8 specialized noun categories. 

Category Split from Definition  Example 

Business-Action Active Nouns derived of active verbs 
related to the business world. 

 Capitalization 

Customer Individual An individual who purchases a 
good or service. 

 Participant 

Deal Abstraction Notions relating to deals and deal-
making. 

 Compromise 

Investor Individual An individual who puts capital in a 
business enterprise. 

 Industrialist 

Management Profession An administrative-level profession.  Chairman 

Money Finance The name of currencies.  Yen 

Observer Profession An analyst or critic type of 
profession. 

 Examiner 

Worker Profession An employee-level profession.  Designer 

The subject-verb-object triplets are extracted from the training and testing corpora using 

the noun categories presented above as well as the process described in Chapter 3 which, as 

mentioned in Section 4.4, yields slightly better results in these specific corpora than the 

method of Chapter 4. The total numbers of triplets extracted from each training domain and 

testing document are presented in Table 6-5. These results help illustrate the range of 

conditions under which the method must operate. Indeed, the first training corpus is 

composed of relatively small domains, containing less than 2,000 triplets each, while the 

second training corpus is composed of much larger domains, with one reaching nearly 10,000 

triplets. The testing documents also vary greatly, with the smallest ones being composed of 

only a few dozen triplets and the largest ones featuring hundreds of triplets. 



 

 126

Table 6-5: Triplet counts of the training domains and testing documents. 

 Domain or Document  Triplets  Domain or Document Triplets 

Training domain: Business 1071  Testing document 8 90 

Training domain: Medicine 1813  Testing document 9 42 

Training domain: Sci-Fi 1375  Testing document 10 42 

Training domain: Acquisition 9618  Testing document 11 67 

Training domain: Earnings 8342  Testing document 12 27 

Training domain: Mergers 3174  Testing document 13 79 

Testing document 1 109  Testing document 14 34 

Testing document 2 103  Testing document 15 233 

Testing document 3 52  Testing document 16 381 

Testing document 4 25  Testing document 17 288 

Testing document 5 57  Testing document 18 141 

Testing document 6 26  Testing document 19 241 

Testing document 7 54  Testing document 20 60 

Canada’s SchoolNet is composed of 2371 learning objects sorted in a hierarchy of 150 

domains. Each LO contains several metadata fields from which information could be 

extracted. Since the triplet extraction process described in Chapter 3 is designed to handle 

natural-language sentences, we have decided to limit our scope to the “description” field of 

the LO at this stage of the research. This field contains a few sentences written in plain 

English by ordinary SchoolNet users who wish to review or comment the contents of the 

website corresponding to each LO. Following the triplet extraction process, a total of 27746 

triplets, featuring 3773 different nouns divided into 375 noun categories and 767 different 

verbs, are gathered from this data. The training corpus is then created at runtime, by selecting 

randomly 90% of the learning objects in the SchoolNet LOR. The remaining 10% constitute 

the testing corpus. This selection of the training and testing corpora was initially done 

completely randomly, but later in our research we decided to constrain the selection process 

to insure that 10% of each domain is included in the testing corpus and that the same ratio of 

long to short LO is maintained in both corpora. These two constraints are introduced to 
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guarantee that the testing corpus matches the training corpus more closely. These two 

modifications, however, did not produce any noticeable changes in the experimental results.  

It is also worth noting that our classifier cannot yet handle a hierarchy of domains. As a 

result, it only considers the first level of the SchoolNet hierarchy, which divides the learning 

objects into 17 different domains. We have used 16 of these domains in our study. The 17th 

domain is ignored since it is composed of only two LO, and does not therefore contain 

enough data to be trained and tested properly.  

It is important to point out that some of the remaining 16 domains cover quite similar 

topics, and their contents may consequently overlap. This is the case, for example, of the 

contents of the social studies domain, which overlap with those of the social sciences 

domain. The same is true for the contents of the business education domain, which overlap 

with those of the entrepreneurship studies domain. Also of importance is the fact that the 

triplets are not spread evenly throughout the domains. Indeed, while the larger domains can 

count thousands of triplets, the smaller ones can be limited to only a few hundreds or even 

less, depending on the information gain threshold set in the filtering step of Section 3.2.3. 

These two characteristics of the SchoolNet LOR make the classification task with this corpus 

a lot harder than with either the Brown Corpus or the Reuters Corpus. 

6.3.3 Possibility of Testing Documents 

By applying the method explained in Chapter 5 and either one of the training corpora, the 

classifier can be trained to generate the possibility distribution of each domain for a given 

triplet. When its training is completed, the classifier is set to classify the testing documents. 

The classification is done in a winner-takes-all fashion. For each triplet in the document, only 

the most possible domain is given a value, while the possibilities of the other domains are set 

at zero. The total possibility of each domain is then computed as the sum of all triplets. The 

following equations specify this process.  
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In Equation (6-1), πz(dt) is the possibility of domain dt given the triplet τz. The triplet τz is 

the zth triplet of the test document, and is composed of nivjnk. In Equation (6-2), the 

possibility of domain dt given the entire testing document is defined as π(dt), and is computed 

as the sum of the possibility of domain dt given each of the Z triplets in the testing document.  

The possibility π(dt) represents how easy it is for the testing document to belong to domain 

dt. Once this measure has been computed for every domain, the testing document can be 

classified in the domain with the highest possibility, πM, which is formally defined in 

Equation (6-3) as: 

( ))(max tTtM dππ
∈

= . (6-3)

The rationale for using the winner-takes-all approach of Equation (6-1) instead of simply 

summing all possibility values is that this latter approach would give too much weight to 

domains that have several low-possibility triplets. Consider for instance the simplified 

illustration given in Table 6-6. In this example, the classifier is computing the possibility of 

three domains, given the three triplets of a document. If the classifier sums all the 

possibilities, it will identify domain d3 as the most possible domain on account of the large 

number of low-possibility triplets that it contains, despite the fact that the other domains are 

more possible when two of these triplets are considered. Conversely, by keeping only the 

domain with the maximum possibility given each triplet, the classifier finds that domain d1 is 

the most possible. In that scenario, the possibility of domain d3 is greatly reduced since more 

possible domains win most of the triplets. 
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Table 6-6: A simplified classification example. 

Domain τ1 τ2 τ3 Sum Max 

d1 0.0 0.0 0.8 0.8 0.8 

d2 0.4 0.0 0.0 0.4 0.4 

d3 0.3 0.3 0.3 0.9 0.3 

The foregoing method of operation also allows the classifier to compute the confidence of 

its classification. This is an important feature of the classifier, as it will allow it to distinguish 

between correct and incorrect classifications automatically. Indeed, correct classifications 

will be those documents classified with a high level of confidence, while erroneous 

classifications will be at a low level of confidence. Hence, the classifier will be able to detect 

and correct its classification errors automatically, thereby improving its results. In this 

system, we define the confidence level as the difference between the domain with highest 

possibility, πM, and the domain with the second-highest possibility, πM-1, defined in Equation 

(6-4).  

( ))(max
,1 tMtTtM dππ
≠∈− = . (6-4)

Using this definition, the confidence C can be computed as in Equation (6-5). 
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When a test document is classified correctly, in the sense that the domain it is classified 

into is the same as the one assigned by SchoolNet or in Table 6-1, it should have a high 

confidence value. As shown in Equation (6-5), this indicates that there is a large difference 

between the confidence of the correct domain and that of the runner-up domain. On the other 

hand, when a document is classified incorrectly, its confidence value should be low. As 

indicated in Equation (6-5), this result implies that the confidence values of the highest and 

second-highest domains are very close, or nearly equal. Hence, the classifier should be able 

to detect and filter out its classification errors automatically, thereby improving its results. 
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6.3.4 Results and Discussion 

The classification results of all three experiments are presented in Table 6-7. This table starts 

with the proportion of documents correctly classified (NC), i.e. those for which the domain 

with the highest possibility is the one given in Table 6-1 or in SchoolNet, followed by the 

documents incorrectly classified (NI). It then gives the average confidence and standard 

deviation of the correct classifications (CC) and of the incorrect classifications (CI). While the 

setup of the first two experiments only allows us to train and test the system once, it is 

possible to run the third experiment several times by selecting different random training and 

testing corpora. Consequently, two sets of results for the third experiment are shown in Table 

6-7. To begin with, the third line of the table presents the initial results obtained on the first 

trial run of that experiment. As the table shows, the percentage of correctly-classified 

documents in this first trial reaches 81%. In order to validate that these results are robust and 

not the product of an accidentally easy-to-classify division of the SchoolNet data, the 

experiment was run 20 times. The average results of these 20 runs are presented on the fourth 

line of the table. As indicated, the percentage of correctly-classified documents now stands at 

65% only. 

Table 6-7: Classification results. 

Experiment NC NI CC CI 

1 (Brown Corpus) 90% 10% 0.51 ± 0.20 0.19 ± 0.19 

2 (Reuters Corpus) 82% 18% 0.44 ± 0.23 0.25 ± 0.05 

3 (SchoolNet Corpus) 

First trial run 81% 19% 0.77 ± 0.32 0.59 ± 0.39 

3 (SchoolNet Corpus) 

Average of 20 runs 65% 35% 0.94 ± 0.20 0.83 ± 0.34 

In addition to the results of Table 6-7, we have computed the precision and recall values of 

the classifier for each domain of the third experiment. By not a dissimilar route to that of 

Section 4.2, we defined a true positive as a document correctly classified in domain dt, a false 

positive as a document incorrectly classified into domain dt, and a false negative as a 
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document belonging to domain dt but incorrectly classified into another domain, and 

computed the precision and recall values using Equations (4-1) and (4-2). We then computed 

the average precision and recall values for all domains and all 21 runs reported in Table 6-7, 

and obtained an average precision value of 87% and an average recall value of 81% for the 

first trial run, and an average precision value of 70% and an average recall value of 46% for 

the other 20 runs. The observed difference between the results of the initial single run of the 

third experiment and the average results of the subsequent 20 runs seem to indicate that the 

results of the initial run are not reliable. 

It is important to stress however, that the results reported in Table 6-7 confirm that the 

classifier can always correctly classify a majority of the testing documents. Moreover, a 

significant difference can be observed between the average confidences of the correctly and 

incorrectly classified documents in all experiments. It is worth noting that this difference in 

the confidence measure is greater in the first experiment than in the other two. This follows 

from the fact that the domains in the second and third experiments are not as clearly defined 

as in the first experiment, which makes the classification problem more difficult. It is also of 

importance to note that the above observations are true for all three experiments, despite 

difference in the exact values of the correct classification rate and confidence. This is a 

significant finding, given that each experiment has tested the classifier under different 

conditions. Indeed, as explained earlier, the first experiment divided the corpus into three 

different domains, the second one divided it into three similar domains while the third 

divided it into 16 various domains. Moreover, in the first two experiments the system was 

trained and tested using triplets extracted from complete text articles and manually-created 

noun categories, while in the third experiment it was trained and tested using a single field 

from learning objects and automatically-generated noun categories. Yet despite these major 

differences, the results obtained from the classifier remain of rather high quality from one 

experiment to the next. This observation confirms the robustness of our method for 

computing the possibility distributions.  

It appears from Table 6-7, however, that the 20-run average results of the third experiment 

are noticeably worse than those of the previous two experiments. This outcome was to be 
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expected. Indeed, it has already been mentioned in Section 6.3.2 that the SchoolNet Corpus 

presents a much bigger challenge for our classifier then the other two corpora. One important 

difficulty stems from the fact that many of the SchoolNet domains are composed of only a 

few hundred triplets, and sometimes even less than that, whereas the Brown Corpus counts 

over a thousand triplets per domain and the Reuters Corpus counts several thousands per 

domain. This is an important consideration because, as is the case for many other NLP 

methods that are trained with examples taken from a training corpus, our possibility 

distributions become more accurate when they are calculated with more triplets. With only a 

few hundred triplets per domain, the system suffers from data sparseness, the possibility 

distributions are less accurate, and the quality of the classification falls accordingly. The 

consequences of data sparseness in the SchoolNet Corpus were studied in more detail in 

Chapter 5.  

This problem is further compounded by the fact that several of the SchoolNet domains are 

similar to one another. With too few training examples, the method cannot accurately learn 

the subtle differences between some of the more similar domains. Consequently, test 

documents belonging to these domains are hard to classify correctly. To verify the above 

contention, the classifier was again trained and tested 20 times, but with two separate sets of 

domains, and according to the same experimental setup as before. The first set is composed 

of five of the more distinct domains of the SchoolNet Corpus, namely “entrepreneurship 

studies”, “social sciences”, “sciences”, “career and vocational education”, and “physical 

education”. By contrast, the second set consists of two pairs of similar domains, namely 

“social studies” and “social sciences”, and “art” and “language art”.   

The average results of these two sets of 20 runs are shown in Table 6-8, alongside the 

results of the 20 runs using the complete SchoolNet Corpus for comparison purposes. It can 

be seen from that table that the results do improve when the classifier is trained with the set 

of five distinct domains. Indeed, the percentage of documents correctly classified increases 

by almost 28%, and the gap in confidence between the correctly- and incorrectly-classified 

documents increases considerably. The precision value also shows a large increase, while the 

recall value is greatly improved. On the other hand, the results of the 20 runs using the two 
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pairs of similar domains show a marked deterioration in comparison with those of the 

previous set, although they are slightly better than those obtained from the complete corpus 

on account of the smaller number of overlapping domains. Thus, the percentage of correctly-

classified documents falls by almost 10% in comparison with that obtained from the set of 

distinct domains, although it is higher by about 15% compared to the result obtained from the 

entire corpus. The gap in confidence between the correctly- and incorrectly-classified 

documents is lower however, than in the other two sets of domains. The precision and recall 

values, though better than with the complete corpus, are still lower than those of the set of 

five distinct domains.  

Taken together, these results confirm our contention that data sparseness and overlapping 

domains can hinder the ability of the method to create reliable possibility distributions. Care 

should therefore be taken to avoid these two pitfalls in future work.  

Table 6-8: Classification results with the SchoolNet Corpus. 

Set of domains NC CC CI Precision Recall 

Complete corpus 65% 0.94 ± 0.20 0.83 ± 0.34 70% 46% 

Five distinct domains 83% 0.86 ± 0.24 0.64 ± 0.38 85% 80% 

Two pairs of similar domains 75% 0.88 ± 0.24 0.79 ± 0.32 74% 71% 

It is interesting to consider how our domain classifier performs relative to other text 

classifiers. To this end, we can compare the classification results of our classifier to those of 

other classifiers reported in the literature. We should point out that this comparison is purely 

for indicative purposes. Indeed, the classifier we implemented in this chapter is only a first 

prototype built for demonstrative purposes. Therefore, the tools resulting from years of 

efforts and refinements presented in the literature cannot serve as strict evaluation 

benchmarks, but only as loose indications of our progress. We have selected as benchmarks 

the dynamic vector space model of [98], the improved kNN multi-level classifier developed 

by [100], the improved Naïve Bayes algorithm proposed by [91], the sentence-space model 

classification introduced in [112], the combined layered clustering and K-means algorithm 

put forward in [92], the Bayesian classification approach integrating compound words that 
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was the focus of [5], and a classifier designed using the feature selection algorithm presented 

in [93]. Six of these seven classifiers provide success rates, and are presented alongside the 

results obtained with our method in Table 6-9. In addition, five of these benchmark 

classifiers exhibit precision and recall statistics that are contrasted to those of our classifier in 

Table 6-10. The results shown in these two tables reveal that our classifier’s results rank 

favourably compared to that of the benchmarks. This is a very positive outcome, considering 

the fact that our classifier is still in its prototype stage. As our method becomes more refined 

and our implementation more sophisticated, we can expect the performance of our classifier 

to improve as the experimental data becomes closer to the theoretical distributions presented 

in Chapter 5, and to become equal, or even surpass, the performance of the current top 

classifiers.  

Table 6-9: Comparison of classification results with various techniques. 

Classification technique Success rate 

Our method 82% to 90% 

Improved kNN multi-level classifier 91% 

Improved Naïve Bayes algorithm 84% 

Sentence-space model classification 92% 

Layered clustering and K-means algorithm 66% 

Bayesian classifier with compound words 66% 

Feature selection algorithm 82% 

Table 6-10: Comparison of precision and recall with various techniques. 

Classification technique Precision Recall 

Our method 85% 80% 

Dynamic vector space model 82% 73% 

Improved Naïve Bayes algorithm 81% 89% 

Layered clustering and K-means algorithm 67% 67% 

Bayesian classifier with compound words 66% 74% 

Feature selection algorithm 84% 82% 
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On the other hand, the confidence of the correctly and incorrectly classified documents can 

vary a lot, as is indicated by the large standard deviation values in Table 6-7. This means 

that, despite the difference in confidence, there will be an overlap between the correctly and 

incorrectly classified documents. The cause of this variation may come from the errors 

introduced during the triplet extraction stage of the system. Indeed, as explained in Section 

3.4, the occurrence of incorrect triplets is unavoidable in the training and testing corpora. The 

impact of the incorrect training triplets is minimized by the subsequent steps of the method, 

most notably the smoothing of the possibility distribution explained in Section 5.4. It remains 

true however, that the incorrect triplets of the testing corpus are used directly by the classifier 

in order to compute the possibility of each domain in which the testing documents can 

belong. It is most likely therefore that it is these incorrect testing triplets that cause the 

confidence of the classification to vary as wildly as it does in Table 6-7. 

In Section 6.3.3, we showed that the confidence level can be used to detect and eliminate 

classification errors. To this end, the system simply needs to determine a confidence 

threshold under which the classification will be considered erroneous and rejected. Two 

possible thresholds have been considered here. The first is defined as the confidence level of 

the correct classifications minus one standard deviation (CC – STD), and the second as the 

confidence level of the incorrect classifications plus one standard deviation (CI + STD). The 

classification results after applying each threshold in the first two experiments are shown in 

Table 6-11.  

Table 6-11: Classification results using threshold. 

CC – STD CI + STD Experiment 
NC NI NC NI 

1 (Brown Corpus) 80% 5% 75% 0% 

2 (Reuters Corpus) 73% 9% 55% 0% 

As expected, applying a confidence threshold allows the system to eliminate its incorrect 

classifications. Unfortunately, the overlap in confidence values discussed previously, leads 

the system to erroneously eliminate correct classifications as well. The first threshold allows 
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the system to eliminate half the incorrect classifications, but also reduces the proportion of 

correctly classified documents by 10%. The second threshold eliminates all the incorrect 

classifications, but entails yet another 10% loss in correct classifications. As the results of the 

third experiment displayed an even greater overlap in confidence values, we can expect that 

the loss of correctly-classified learning objects in that case will be even greater than 10%. It 

follows that for all practical purposes threshold levels for the classifier should be selected 

judiciously so as to weigh the number of correct documents needed against the number of 

incorrect documents that could be tolerated. This is a dilemma similar to the one encountered 

in normal text classifiers, whereby users have to weigh the precision against the recall of 

their system [76]. Note finally that, with regard to our classifier, once the number or the 

impact of the incorrect testing triplets is reduced, the use of the threshold can be expected to 

yield much more interesting results. 

We pointed out in Section 6.3.2 that our method can function using training domains of 

varying lengths. It would be interesting at this point to study how the size of the training 

domains can affect the quality of the classification results. To this end, we trained the 

classifier using sub-samples of the first two training corpora, starting with 5% of the triplets 

of each domain and increasing by 5% intervals. New classification results were generated for 

each sub-sample, and are shown in Figure 6-1. The three results we chose to illustrate in that 

figure are the proportion of testing documents that were correctly classified (blue line), the 

average confidence of the correct classifications (CC, green line), and that of the incorrect 

classifications (CI, red line). The first thing we notice in this figure is that, save for one brief 

exception, CI is always less than CC. This is clear evidence that our method is reliable. 

Indeed, had it been otherwise, we would have expected to find no consistent distinction 

between the possibility of correct and incorrect classifications, and therefore to find that CC 

and CI have similar values. The only exception, which occurs over the first 25% of the 

Reuters Corpus, can be explained by keeping in mind that the domains of the Reuters Corpus 

are very similar to each other. Given a training sample too small in length, our system is 

simply not able to learn to distinguish between these domains in a reliable manner. 

Furthermore, we can note that the classification results mostly improve with the size of the 
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training corpus. Indeed, while CC remains roughly constant overall throughout the tests, the 

proportion of correctly-classified documents shows a general trend upward, and CI a general 

 

 

(a) 

 

(b)

Figure 6-1: Experimental results gathered using a given percentage of the Brown Corpus (a) 
and the Reuters Corpus (b).  
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trend downward. This result was to be expected. Having more triplets allows the method to 

compute semantic distances and conditional probabilities that better model the real-world 

usage of the noun-verb pairs, which in turn makes the possibility distributions more accurate 

and improves the results. 

6.4 Other Applications 

It is important to note that the domain classifier presented in the previous section is not the 

only possible application for our method. In fact, the method was not developed with a 

specific application in mind, but is intended to provide a flexible mathematical core that can 

be adapted to any NLP problem. To highlight this fact, four problems, two of them 

encountered in the LORNET project, will be presented hereafter and solved with the 

classifier. In each case, we begin with a brief description of the research project and the 

problem attributable to it, before giving a general indication of how our method can be 

modified to find a solution. 

6.4.1 LORNAV 

It is well known that searching and navigating through learning object repositories (LOR) 

with traditional two-dimensional user interfaces is a tedious and counter-intuitive task. The 

LORNAV system has been proposed to remedy this situation [67], [39]. LORNAV is a three-

dimensional visualisation environment that enables a user to navigate through a LOR as if it 

were a virtual 3D world. The learning objects (LO) of the LOR are displayed as objects in the 

virtual world, and are positioned throughout the world in a way that reflects the objects’ 

relationships to the domains the user is interested in.  

The method proposed in this document could be successfully applied in the context of 

LORNAV. Indeed, as of yet, the LORNAV system possesses no formal means of computing 

the relationship between the LO and the domains. This relationship can be supplied by our 

method, in the form of the possibility of the domains given each LO. To illustrate this 

concept, Figure 6-2 shows the simple example of a world composed of two domains d1 and 

d2, and two learning objects LO1 and LO2. One way to populate such a world could be to 
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begin by choosing the positions of the domains, then to compute the possibility of each 

domain given a LO, and finally to use these possibilities as measures of the distance between 

the domains and the LO, in order to place the LO in the world accordingly. 

 
Figure 6-2: A simple LORNAV world. 

6.4.2 Semantic Signatures 

With the rapid popularisation of the Internet and of e-learning, many institutions rushed to 

create their own LORs. This situation created a need for efficient distributed search tools, to 

allow users to retrieve information from several LORs at once. However, the design of such 

tools cannot be done without addressing the problem of interoperability in a federated 

environment. Indeed, each of these LORs uses different semantic terms and ontologies, 

which reflect the institution’s target audience and background. This introduces variations in 

the metadata values which, combined with the lack of metadata format standards, makes 

direct keyword queries across LORs ineffective. 

One possible avenue to solve this problem is to represent each LO with a semantic 

signature [20], [21]. This semantic signature is computed using a three-step process. First, the 

system finds the most important metadata fields, such as “title” and “description”, which 

should be present in one form or another in all LO. By focusing its scope on these fields, the 

system effectively bypasses the lack of metadata format standards. Next, the system detects 

the most meaningful keywords in the target fields. These keywords are finally replaced with 

their entry from a common online lexical reference, such as WordNet. These last two steps 

eliminate the linguistic variations present in the metadata values, and represent all LO using a 
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common vocabulary. Once the LO are represented by their semantic signatures, they can 

easily be compared with the semantic signature of a user’s query, and classified accordingly. 

The methods proposed in this document can offer an alternative method of computing the 

semantic signatures. This new method stems from the fact that our approach is made up of 

two roughly independent parts, namely, the triplet extraction method and the possibility 

distribution method. To begin with, several triplet extraction modules could be implemented, 

with each module specially adapted to the extraction of triplets from one or another of the 

LORs that the system must handle. This setup has two advantages. First it effectively 

bypasses the problem of lack of metadata standards, which is the source of the problem. 

Second, if all the extraction modules use a common list of noun categories, it eliminates the 

linguistic variations between LORs. In the second segment of the method, all the extracted 

triplets can be directed to a common possibility distribution module, which will compute the 

possibility of each domain given each triplet, regardless of which LOR it originated from. 

This procedure requires that the system identifies the presence of a domain in several LORs, 

in order to combine together all its triplets. Such an identification could be accomplished in 

two alternative ways. In the first alternative, the system can easily find recurring domains in 

several LORs by mapping the domains of each LOR to a common domain hierarchy. This 

alternative requires that the system be given rules to perform the mapping. In the second 

alternative, the system would compute the possibility distributions of each domain in each 

LOR. Given that the differences between LORs have already been eliminated in the triplet 

extraction stage, similar domains in two LORs will have similar possibility distributions. The 

system, in this second alternative, will then have to find the domains with similar possibility 

distributions and combine their triplets together. The structure of the resulting system is 

illustrated in Figure 6-3. Following this procedure, the semantic signature of a LO would be 

the possibility distribution of its domain given the LO’s triplets. Finally, the user’s query, 

which must include both triplets and a domain, is also transformed into a set of possibility 

distributions. The distributions representing the query and the LO can then be compared, 

using any one of the well-known signal comparison techniques available. 
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Figure 6-3: The system to compute the semantic signatures. 

6.4.3 Keyphrase Extraction 

Another possible application of our method that deserves to be explored is keyphrase 

extraction. A keyphrase is defined in [86] as a sentence that accurately represents the main 

topic of a document. Essentially, the idea is that discovering such sentences from documents 

can be useful in many fields of application, including information extraction, text 

summarization, and indexing. According to [36], keyphrase extraction methods can be 

divided into two broad classes, namely those designed to extract keyphrases from a single 

document, and those designed to handle entire sets of documents at once. A detailed 

overview of single-document keyphrase extraction approaches and of several related fields of 

research can be found in [86]. This survey highlights the fact that, although these approaches 

are varied and innovative, they commonly suffer from the weakness of extracting long lists 

of sentences that include a lot of irrelevant phrases. 

With a few modifications, the domain classifier presented in this chapter could be adapted 

to the task of keyphrase extraction from single documents. In this context, the keyphrases are 

those that best represent the main topic of the document, and therefore contain a lot of 

information that is relevant and meaningful in that topic. Recall that, as part of the 

classification process, our classifier computes for all practical purposes the possibility of 

each domain given each triplet of a document. Suppose instead that the application already 

knows the correct domain to which the document belongs, either because it was successfully 

classified by the program or because it was specified as such by a user. Under these 

conditions, the computation can be limited to the calculation of the possibility of that domain 

given each triplet. This will allow the system to rank the triplets of the document by 
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possibility, or alternatively by how meaningful they are in that domain. It will then be 

necessary to give our keyphrase extraction system the ability to keep track of which sentence 

each triplet was extracted from, something that was not required for the domain classifier 

presented in this chapter. With this additional ability, finding the most important sentences 

becomes a simple matter of tracking back the most meaningful triplets to their source. 

Moreover, extra importance could be given to sentences from which several meaningful 

triplets were extracted. Finally, to avoid the problem of extracting too many sentences, the 

number of meaningful triplets retained can be limited in a number of ways, such as for 

example keeping only a pre-set proportion of the total number of triplets, or imposing a 

possibility threshold.  

6.4.4 Search Tool 

By not a dissimilar route used to build the domain classifier discussed extensively in this 

chapter, we can devise yet a fourth application of our method which yields an original search 

tool. To be sure, this application represents an expansion of the domain classifier presented 

earlier, rather than a completely new tool like the previous three applications discussed in 

this section. Indeed, a careful look at our classifier reveals that it could also be made to serve 

as a new type of search engine. This can be accomplished by training the classifier with a 

corpus that includes user-defined domains. For example, a scientist could create a domain 

made up of papers related to his field of research, while a voracious reader could create a 

domain composed of chapters taken form his favourite novels. Once the classifier is trained 

to recognise these special domains, it can subsequently be used to classify a large corpus, or 

even the entire Internet. As such, the search will turn out all the documents classified as 

belonging to the user’s domains of interest, sorted out by their possibility value. Moreover, 

the confidence measure defined in Equation (6-5) can then be used to filter out false 

positives, thus insuring that all the documents identified in the search are relevant to the 

domain defined by the user. 
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6.5 Conclusions 

In this chapter we have detailed several examples of possible applications of the method 

developed in this study. Its main focus has been on an in-depth study of the implementation 

of a domain classifier based on the proposed possibility distribution technique. The analysis 

has covered every step of the implementation process, and the experimental results obtained 

from the classifier showed that the proposed method is reliable and valid.  

The usefulness of the method we propose in this study is not limited to domain 

classification. To illustrate this point, four NLP problems, two of them specifically 

encountered in the LORNET project and two of general interest, were introduced as testing 

grounds for our procedure. In all cases, the study has indicated the ease with which our 

approach could be applied to help solve these problems successfully in the real world. 
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Chapter 7 
Conclusions and Future Work 

7.1 Summary of the Study 

This research has dealt with the development of new methods for extracting semantic 

knowledge from unannotated written English documents and to represent this information 

using a formal mathematical expression to facilitate its use in practical applications. The 

study was done in the context of the PAMI lab’s contribution to the LORNET project, and its 

setting and motivation are presented accordingly in Chapter 1. 

To set ideas, we started with a review of the most significant modern techniques relevant to 

our work in Chapter 2. The techniques reviewed were developed specifically to extract and 

handle the semantic information contained in text documents. This background analysis 

revealed that the techniques presented in the literature were fraught with constraints that 

severely limited their usefulness in this study.  

This review of the literature set the stage for the development of methods designed to 

tackle the related issues of semantic information extraction and representation. These two 

goals are addressed by two separate methods, as detailed in this thesis. 

Turning first to triplet extraction, Chapter 3 introduced the first method we proposed to 

address this task. We began the chapter with a survey of modern semantic taggers and an 

analysis of their relevance to our work. We then introduced the triplet extraction method 

developed for this research. Its mode of operation was explained in detail and illustrated with 

an example. Its shortcomings were also exposed and deemed significant enough to justify the 

search for a more robust alternative. By introducing a rule-learning algorithm, we designed a 

more valid method for triplet extraction, which is presented in Chapter 4. The key to the 

success of this method is its use of a part-of-speech hierarchy that lies at its core. The 

theoretical development and the experimental results discussed in this chapter confirm that 

our method can be used to obtain an in-depth analysis of texts without being limited to a 

particular domain of application. 
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The method we developed to represent domain information using possibility distributions 

is presented in Chapter 5. This method relies on the principles of semantic distances, 

conditional probabilities, and possibility distributions, which are all introduced in this same 

chapter. We discuss each of these notions in detail and provide an explanation of relevant 

concepts along with the theoretical justification and the mathematical development of each 

concept. As befits a new approach, we also provided in Chapter 5 a detailed study of the 

mathematical foundation underlying the proposed method. For each step of this method, we 

analysed the possible values of its input variables as well as the range and significance of its 

possible outcomes. To substantiate our examination, we contrasted the predicted theoretical 

outcome of each step of this new approach with the results generated through its 

implementation. Finally, putting together all the theoretical results reached in this chapter 

illustrated the complete workings of our knowledge representation method. 

To add more relevance to the discussion of this possibilistic method, we illustrated its 

practical applicability with real-world examples in Chapter 6. Our main focus in this chapter 

is the in-depth study of the implementation of a domain classifier based on the proposed 

method. This implementation allowed us to deal with each step of the implementation 

process in detail, and to gather experimental results that show that the proposed method is 

reliable and valid. The implementation process also clarified the link between the knowledge 

representation method and the triplet extraction presented earlier. To illustrate the flexibility 

of the method, we discussed its applicability to four more NLP challenges, including notably 

those of standardization and navigation through learning objects, which were encountered in 

applications related to areas of the LORNET project. 

7.2 Appreciation of the Results 

Putting together the theoretical developments and the experimental results presented in this 

research allows us to reach definitive conclusions with regard to the validity of our methods. 

We established the mathematical foundation and statistical validity of both the rule-learning 

method of Chapter 4 and the possibilistic method of Chapter 5. We are confident that our two 

approaches will withstand the highest levels of scrutiny. 
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Turning to the implementation phase of the two methods, we began with implementing the 

rule-learning method into a practical algorithm. The experimental results obtained from this 

test, as presented in Chapter 4, reveal that the precision of our rule-learning method compares 

favourably with the two reference algorithms, while its recall surpasses that of the references. 

Moreover, the rules learned can also extract very specific information without the rule base 

becoming domain-specific or growing to an unmanageable size. 

The possibilistic method of Chapter 5 was also successfully implemented in a domain 

classifier, as explained in Chapter 6. The classification precision and recall values obtained 

from this implementation reveal that our classifier’s performance ranks favourably in 

comparison with state-of-the-art classifiers found in the literature. Another important result 

was that our experimental classifier has not only classified correctly the vast majority of its 

testing documents, but it also gave on average a significantly higher confidence score to the 

correct classifications than to the incorrect classifications. These results confirm our 

hypothesis that most of the semantic information of a document lies in the actions described 

by that document, and that our method accurately extracts and represents this semantic 

information. Indeed, had it been otherwise, we would have found the classification results to 

be much lower, and more importantly we would have found the average confidence of both 

the correct and incorrect classifications to be roughly equal.  

Although significant, the implementation results of our two methods were not 

unequivocally positive. Indeed, the precision and recall values of the implementations 

reported in Chapters 4 and 6 show that there is still room for improvement in the methods. In 

the final analysis, however, the original goals of our study, which were to develop new 

methods to extract semantic knowledge from English documents and to represent it using a 

formal mathematical expression to facilitate its use in practical applications, have been 

achieved. 

7.3 Contributions 

Four key contributions to the field of natural language processing emerge from this research. 

The first main contribution, with important theoretical implications, is to demonstrate the 
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merit of representing semantic information in the form of actions, or subject-verb-object 

triplets.  

The second contribution is the design of a rule-learning method for keyword extraction 

rules with a part-of-speech hierarchy at its core. Indeed, no such hierarchy has ever been 

devised before. Nor is there an agreement among grammarians on what exactly constitutes an 

independent part-of-speech, despite the fact that they are one of the basic elements of 

language. 

The third contribution is the design of a method to represent the actions described in text 

documents. The central concept of this new method, and what sets it apart from other 

contributions to this field, is the mathematical development we formulated in order to 

represent the semantic information of the triplets using possibility distributions.  

The fourth contribution derives from the implementation of our methods in practical 

applications. These implementations illustrate the way in which our theoretical ideas can be 

used for practical purposes. More importantly, the experimental results obtained from these 

implementations confirm that the methods are reliable in practice. 

7.4 Future Work 

7.4.1 Type-2 Fuzzy Sets 

The mathematical development in Chapter 5 has demonstrated that, given enough training 

data, the scatter of conditional probability/semantic distance points converges to one of the 

four relationships illustrated in Figure 5-12. Furthermore, the method developed in that 

chapter showed how possibility theory can be used to approximate these relationships on the 

basis of statistical information derived from a training corpus. However, the precision with 

which the relationship can be estimated is directly related to the number of training examples 

from which the statistics are computed; with insufficient training examples, the statistics are 

inherently imprecise, as are the possibility distributions estimated from them. The impact of 

this lack of precision can be observed graphically: the scatter of probability/distance points 

becomes widespread and irregular, as shown in Figure 5-13(b). 
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In this study, we use a linear approximation of the scatter of probability/distance points to 

represent the possibility distribution, regardless of how scattered the points were originally. 

Although we have demonstrated both theoretically and practically that this is a sound 

approximation, a future question is whether a different approach using type-2 fuzzy sets 

(T2FS) would be equally successful. 

One of the main limits of type-1 fuzzy sets (T1FS) is that they eliminate the linguistic 

uncertainty from the words that they represent [59]. Indeed, T1FS categorize words by 

relying on precise membership functions (MF). These MFs are meant to represent the 

uncertainty about the meaning of words; however, since they are precise functions, they 

actually eliminate this uncertainty. Indeed, a word can have different meanings for different 

people, and can thus be represented by different MFs. However, by forcing the selection of 

one precise MF to represent the word, T1FSs effectively remove this kind of uncertainty. 

T2FSs make it possible to overcome this weakness by creating MFs that are not precise 

functions but rather fuzzy sets – creating in effect fuzzy fuzzy sets [60]. Said differently, 

instead of representing a word as an exact MF, it is represented in T2FS as a continuum of 

precise MFs. Each individual MF represents one possible understanding of the meaning of 

the word, and the multiple MFs combine to form the footprint of uncertainty (FOU) of the 

fuzzy set. 

Consider the temperature scale example discussed in Section 2.3. The words “cold”, 

“mild” and “hot” hold different meanings for different people, and if each individual in a 

sample group was asked to draw the fuzzy sets representing these words, no two sets are 

likely to be exactly the same, nor would they be exactly like the ones illustrated in Figure 2-

1. The MFs of Figure 2-1 do not capture this uncertainty; quite the contrary, they eliminate it 

by mapping, for example, 10 degrees to exactly 0.8 “cold”. If one were to draw the MFs 

while taking into account the different interpretations of the words “cold”, “mild” and “hot” 

that each member of the sample group holds, it might look more like Figure 7-1. In that 

figure, the filled-in area inside the MF is the FOU, and it contains the continuum of MFs 

plotted by the sample group to represent the three target words. 
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Figure 7-1: Type-2 fuzzy sets dividing a temperature scale. 

In much the same way that the MFs in the above example were drawn using the input of 

several people in a sample group, the statistics in our research were computed from several 

sources, namely the many domains forming the training corpus. While each MF in that 

example represents the meaning of the three temperature words according to each person, 

each point in our probability/distance scatter diagrams represents the meaning of a noun-verb 

pair in a domain. We can thus see a parallel emerging between T2FS and our work. While we 

use scatter diagrams such as the ones of Figure 5-13 to compute possibility distributions, it is 

quite conceivable to use them to delimit the FOU of fuzzy sets in an application of T2FS. 

This line of argument points to a completely new direction for our research albeit one beset 

by important intellectual problems that prevent its implementation at the present time. Of 

great importance is the fact that, while building T2FS based on groups of T1FSs is a 

straightforward matter, to the best of our knowledge no one has ever attempted to do so on 

the basis of scatters of points. A second problem comes from the need to introduce type-

reduction and defuzzification methods into our method. In a typical implementation of a 

type-2 fuzzy logic system, the T2FSs are reduced to T1FSs and then defuzzified into the 

crisp values that constitute the output of the system [60]. However, the mathematical 

techniques used to perform the type-reduction and the defuzzification vary depending on 

each situation, and determining the best ones to use in the context of our method will require 

an in-depth study of the question. Finally, it may prove necessary to assign weights to the 

different regions of the FOU. Almost all current applications of T2FS assume a normal 
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weighting scheme; however, in our method, it could be preferable to assign a greater weight 

to the regions of the scatter diagram that have the greatest concentration of points so as to 

reduce the impact of outliers and of empty regions in the diagram. Unfortunately, this creates 

new problems, as at this time there exists no practical way to perform the calculations 

required to handle T2FSs with non-uniform weights [60]. 

In light of this discussion, this new direction of research falls far outside the scope of this 

thesis and leads into a territory that currently lacks the practical tools needed to implement 

and test the work. It will be up to future studies to explore the feasibility of refining and 

expanding upon our research. 

7.4.2 Other Directions 

A few avenues for future work follow from our research. In the overall context of this study 

where the emphasis is on finding triplets that represent the central actions described in a 

document, the triplet extraction method can be taken one step further by limiting its scope to 

key phrases in the text documents. With such a setup, the method would first recognise the 

key phrases in the text, and then extract the actions represented in those phrases only instead 

of extracting the actions from all phrases of the text. This modification can be implemented 

without losing the essence of our method by implementing a keyphrase extraction system 

that assumes no a priori knowledge about the text documents, as in that presented in [36]. 

This would improve the accuracy of the method by limiting it to relevant actions. However, 

this improvement will come at the expense of a loss of data with which to compute the 

semantic distances and the probabilities.  

Another drawback of the triplet extraction process is related to the use of the noun 

categories introduced in Section 3.2.3. In that section, we proposed a partially-automated 

process to generate the categories. However, this task should be entirely automated to make 

the system more rigorous and to spare the user this long and tedious work. The semantic 

distance measure introduced in Section 5.2.4 could be used to this end. Indeed, we can 

conceive of a system that forms categories by grouping together nouns that are at a small 

semantic distance from each other. This approach would also aid us in addressing noun 
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polysemy by allowing these nouns to be close to the several groups that represent their many 

different meanings. Expanding on an idea mentioned in Section 6.3.2, we can see that to 

obtain the most general noun categories, the system can perform the clustering task on only 

the most general training corpus at its disposal. The system can then specialize the categories 

in the following way. First, it computes the semantic distance of the pairs of nouns within 

each category using a new training domain. Then, by using a data-partitioning algorithm [24] 

or a data-clustering algorithm [4], it detects cases where these distances cluster some of the 

nouns into isolated sub-groups. Finally, it splits these sub-groups into new categories. 

Moreover, we should not overlook the fact that this research is carried out within the 

context of the LORNET project. As such, it is imperative that it should effectively handle not 

only natural text documents, but also metadata files, which are a major feature of this project. 

The implementation carried out in this study shows that this can be done by isolating natural-

text fields of the metadata objects, such as “description” fields, and extracting triplets from 

them. Although our experimental results prove the feasibility of this approach, the analysis 

uncovers a shortcoming: discarding information by ignoring some important metadata fields, 

such as “title” or “keywords”, whose entries are not written in grammatical sentences but 

rather in lists of keywords. A possible solution to this problem would be to enrich the triplets 

extracted from text fields with information taken from keyword fields. For instance, based on 

the information of the keywords, some general noun categories used in the triplets could be 

replaced by more specific ones. One foreseeable challenge of applying this solution is that, 

while the present system considers all sentences as equivalent, different metadata fields can 

have a different meaning and a different level of importance, which must be taken into 

consideration. 

The process used to compute the possibility distributions in Chapter 5 could also be the 

subject of future research. For example, it would be interesting to study the effect of making 

the computation of the semantic distance domain-specific instead of computing the distances 

over the entire training corpus as is currently the case. It is difficult to anticipate what the 

impact of this change will be. On one hand, the semantic distance of pairs that include a 

polysemous word with two very different meanings in two domains should be more accurate, 
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which could lead to more accurate possibility distributions. On the other hand, as Chapter 5 

illustrated, data sparseness is of significant concern in our computations, and the proposed 

change would compound this problem by computing the semantic distance of all pairs based 

on a much smaller corpus. This could lead to less accurate distance measures and thus less 

accurate possibility distributions. In the same vein, distinguishing between subject-verb pairs 

and object-verb pairs, instead of considering them both simply as noun-verb pairs, leads to a 

similar dilemma. Grouping the data from both pairs together would lead to more complete 

occurrence probabilities in Section 5.2.5, which would improve the possibility distributions. 

However, the meaning of a noun-verb pair can vary depending on whether the noun is the 

subject or object of the verb; eliminating this difference would lead to a loss of information 

which could hurt the overall system. Predicting which of these two solutions is more 

preferable would require further examination. 

An interesting practical improvement that future work should seek to achieve consists in 

reaching the goal mentioned in Section 6.3.1, which is to expand the first training corpus so it 

includes the entire Brown Corpus. This would enable the domain classifier to classify 

documents covering all domains. Although the classifier’s framework is complete, ample 

work remains before the entire Corpus can be integrated in it. To our knowledge, a 

possibilistic domain classifier on such a scale has never been devised. In addition to 

expanding the system horizontally by adding new domains, the possibility of expanding it 

vertically by adding sub-domains to the domains already implemented should also be 

explored. This would transform our classifier into a hierarchical classifier capable of making 

an initial classification and subsequently refining it. We already hinted to future work in this 

direction in our study, as the second training corpus in Section 0 is composed of sub-domains 

of one of the domains of the first training corpus. However, in this study, the domain 

classifiers trained with both corpora are not used sequentially. Instead, each one classifies its 

testing documents independently of the other. A hierarchical classifier, on the other hand, 

could, for example, begin by analyzing a testing document and classify it as belonging to the 

business domain. Then it would sub-classify the document as a text dealing with a corporate 

takeover, and further sub-classify it as describing either a friendly or a hostile takeover. The 
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implementation of this hierarchical structure would be quite different from the single-level 

system architecture presented in this study and would raise a number of new concerns. One 

such concern relates to applying the winner-takes-all approach of Section 6.3.3 to the smaller 

domains. It could be computed by considering the possibility of all child domains given a 

triplet with or without considering the possibility of the parent domain, or even by comparing 

the possibility of each child domain to that of the parent domain individually. Each scheme 

has its own advantages and drawbacks, and further efforts are needed to figure out the most 

appropriate scheme for our approach. Another concern has to do with how far down in the 

child domains the system should try to classify a testing document, and what its cut-off 

conditions to end the classification should be. Most importantly, the level of classification 

accuracy that our method can allow, and how precise the child domains can become, are also 

of concern. 

*     *     *     *     * 

The central theme of this thesis has been to develop and apply two new and robust 

methodological frameworks that can lend themselves to further application for the extraction 

and representation of semantic knowledge in texts. As such, the disciplined procedures 

developed in this work have the presumed potential to contribute to the scientific progress of 

this field of research for many years to come.  
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Appendix A 
Parts-of-Speech of the Penn Treebank 

For convenience, this table lists the 46 parts-of-speech of the Penn Treebank. It includes 

the symbolic tag that represents the part-of-speech in applications, the name of the part-of-

speech, and either examples of the lexical item represented, a description thereof, or both. A 

complete and detailed presentation of this set of part-of-speech can be found in [74]. It is 

worth noting that the “blank” part-of-speech is not part of the Penn Treebank set, but an 

addition of our work. 

Tag Name Description 

 Blank A missing word 

# Number sign # 

$ Dollar sign Any word with the symbol $ in it 

( Left bracket ( [ { 

) Right bracket ) ] } 

: Colon : … - ;  

, Comma , 

. Period . ? ! 

'' Left quotes '' 

`` Right quotes ``  

" Quotes " 

CC Coordinating Conjunction and, &, or, but, either, neither, plus, minus, v., 
thenceforth 

CD Cardinal Number Any number, in digits or written out, and any word 
with a number in it 

DT Determiner a, all, an, another, any, both, each, either, every, no, 
neither, some, that, the, these, this, those 

EX Existential there there 

FW Foreign Word non, etc, e.g., i.e. 
Any word not in the English lexicon 

IN Preposition / subordinating 
conjunction 

about, above, across, after, against, along, although, 
among, amongst, anti, around, as, aside, at, because, 
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before, behind, below, beside, between, beyond, bi, 
by, down, during, except, for, from, if, in, inside, 
into, lest, like, 'n, near, of, off, on, onto, out, outside, 
over, per, since, so, than, that, the, though, through, 
throughout, towards, 'till, under, unlike, until, up, 
upon, via, vs., whether, while, with, within, without 

JJ Adjective Any adjective not JJR or JJS 

JJR Adjective, comparative better, greater, larger, more, worse  
Any adjective finishing with –er 

JJS Adjective, superlative best, greatest, largest, most, worst 
Any adjective finishing with -est 

LS List item marker Special unicode characters 

MD Modal can, cannot, could, couldn’t, may might, must, ought, 
shall, should, shouldn’t, will, would, 'll 

NN Noun, singular or mass Any singular noun 

NNP Proper noun, singular Any plural noun 

NNS Noun, plural Any singular proper noun 

NNPS Proper noun, plural Any plural proper noun 

PDT Predeterminer all 

POS Possessive ending '  's 

PRP$ Possessive pronoun her, his, its, my, our, their, your 

PRP Personal pronoun he, him, her, himself, herself, itself, it, me, myself, 
oneself, our, ourselves, ownself, she, them, 
themselves, they, thou, thy, thyself, us, we, you, 
yours, yourself, yourselves 

RB Adverb Any adverb not RBR, RBS or RP 

RBR Adverb, comparative earlier, prouder, neater, closer, more 
Any adverb finishing with –er 

RBS Adverb, superlative bluntest, most 
Any adverb finishing with –est 

RP Adverb, particle out, down, up, away 

SYM Symbol + * \ = < > 

TO To to 

UH Interjection ah, alas, amen, bah, dammit, eh, fella, gee, gimme, 
goddammit, golly, hello, hey, hmfp, ho, howdy, 
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hurrah, jeepers, mmm, ok, oops, shucks, tsk, uh-huh, 
wham, whoa, wow, yeah 

VB Verb, infinitive Any infinitive verb (preceded by ‘to’) 

VBD Verb, past tense was, were, lay, had, found, became 
Any verb finishing with –ed 

VBG Verb, gerund / present 
participle 

Any verb finishing with –ing 

VBN Verb, past participle been, given, found, put, read, held 
Any verb finishing with –ed 

VBP Verb, singular present non-
3rd person 

Any singular-present verb 
(infinitive verb not preceded by ‘to’) 

VBZ Verb, singular present 3rd 
person 

Any verb finishing with –s 

WDT Wh– determiner which, whichever, what, whatever, that 

WP$ Wh– possessive pronoun whose 

WP Wh– pronoun who, whosoever, whoever, whom, what 

WRB Wh– adverb how, when, whence, where, whereby, wherever, why 
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Appendix B 
Graphical Representation of our Part-of-Speech Hierarchy 

Due to space restriction, we show here each of the four super-lexical categories separately, along with all their sub-levels. The top 

level, in which these four super-lexical categories are grouped together in the single “Universe” category, is not shown here. 
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Appendix C 
Publications 

The following publications are based on parts of the research and results presented in this 

thesis. 

Journal Papers 

• R. Khoury, F. Karray, Y. Sun, M. Kamel, and O. Basir, “Semantic Understanding of 

General Linguistic Items by Means of Fuzzy Set Theory”, in IEEE Transactions on Fuzzy 

Sets and Systems, Volume 15, Issue 5, October 2007, pp. 757-771. 

• R. Khoury, F. Karray, and M. Kamel, “A Novel Approach for Extracting and 

Representing Actions in English Documents”, in Computational Linguistics. Submitted 

in April 2007, currently under review. 

• R. Khoury, F. Karray, and M. Kamel, “An Improved NLP Method Based on a Part-Of-

Speech Hierarchy”, in IEEE Intelligent Systems. Submitted in June 2007, currently under 

review. 

Conference Papers 

• Y. Sun, R. Khoury, F. Karray, and O. Basir, “Semantic Context Classification by Means 

of Fuzzy Set Theory”, in Proceedings of the 2005 IEEE International Conference on 

Natural Language Processing and Knowledge Engineering (IEEE NLP-KE'05), Wuhan, 

China, 30 October – 1 November 2005, pp. 250-255. 

• R. Khoury, F. Karray, and M. Kamel, “A Fuzzy Classifier for Natural Language Text 

using Automatically-Learned Fuzzy Rules”, in The second International Conference on 

Artificial & Computational Intelligence for Decision, Control and Automation - 

International Conference on Machine Intelligence (ACIDCA-ICMI'2005), Tozeur, 

Tunisia, 5-7 November 2005. 
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• R. Khoury, F. Karray, and M. Kamel, “A Method for Extracting and Representing 

Actions in Texts”, in Proceedings of the 2006 IEEE International Conference on Fuzzy 

Systems (FUZZ-IEEE 2006), Vancouver, Canada, 16-21 July 2006, p.574-581. 

• R. Khoury, F. Karray, and M. Kamel, “Extracting and Representing Actions in Text 

Using Possibility Theory”, in 3rd Annual Scientific Conference of the LORNET Research 

Network (I2LOR-06), Montreal, Canada, 9-11 November 2006.  

• R. Khoury, F. Karray, and M. Kamel, “Keyword Extraction Rules Based on a Part-Of-

Speech Hierarchy”, in 4th Annual Scientific Conference of the LORNET Research 

Network (I2LOR-07), Montreal, Canada, 4-7 November 2007.  

Posters 

• R. Khoury, Y. Sun, F. Karray, and M. Kamel, “Semantic Domain Classification by 

Means of Possibility Distributions”, in 2nd Annual Scientific Conference of the LORNET 

Research Network (I2LOR-05), Vancouver, Canada, 16-18 November 2005. 
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