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Abstract

Due to the lossy nature of image/video compression and the expensive band-

width and computation resources in a multimedia system, one of the key design

issues for image and video coding/transcoding is to optimize trade-off among distor-

tion, rate, and/or complexity. This thesis studies the application of rate distortion

(RD) optimization approaches to image and video coding/transcoding for explor-

ing the best RD performance of a video codec compatible to the newest video

coding standard H.264 and for designing computationally efficient down-sampling

algorithms with high visual fidelity in the discrete Cosine transform (DCT) domain.

RD optimization for video coding in this thesis considers two objectives, i.e., to

achieve the best encoding efficiency in terms of minimizing the actual RD cost and

to maintain decoding compatibility with the newest video coding standard H.264.

By the actual RD cost, we mean a cost based on the final reconstruction error and

the entire coding rate. Specifically, an operational RD method is proposed based on

a soft decision quantization (SDQ) mechanism, which has its root in a fundamental

RD theoretic study on fixed-slope lossy data compression. Using SDQ instead

of hard decision quantization, we establish a general framework in which motion

prediction, quantization, and entropy coding in a hybrid video coding scheme such

as H.264 are jointly designed to minimize the actual RD cost on a frame basis.

The proposed framework is applicable to optimize any hybrid video coding scheme,

provided that specific algorithms are designed corresponding to coding syntaxes of

a given standard codec, so as to maintain compatibility with the standard.

Corresponding to the baseline profile syntaxes and the main profile syntaxes of

H.264, respectively, we have proposed three RD algorithms—a graph-based algo-

rithm for SDQ given motion prediction and quantization step sizes, an algorithm

for residual coding optimization given motion prediction, and an iterative over-

all algorithm for jointly optimizing motion prediction, quantization, and entropy

coding—with them embedded in the indicated order. Among the three algorithms,

the SDQ design is the core, which is developed based on a given entropy coding
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method. Specifically, two SDQ algorithms have been developed based on the con-

text adaptive variable length coding (CAVLC) in H.264 baseline profile and the

context adaptive binary arithmetic coding (CABAC) in H.264 main profile, respec-

tively.

Experimental results for the H.264 baseline codec optimization show that for a

set of typical testing sequences, the proposed RD method for H.264 baseline coding

achieves a better trade-off between rate and distortion, i.e., 12% rate reduction on

average at the same distortion (ranging from 30dB to 38dB by PSNR) when com-

pared with the RD optimization method implemented in H.264 baseline reference

codec. Experimental results for optimizing H.264 main profile coding with CABAC

show 10% rate reduction over a main profile reference codec using CABAC, which

also suggests 20% rate reduction over the RD optimization method implemented in

H.264 baseline reference codec, leading to our claim of having developed the best

codec in terms of RD performance, while maintaining the compatibility with H.264.

By investigating trade-off between distortion and complexity, we have also pro-

posed a designing framework for image/video transcoding with spatial resolution

reduction, i.e., to down-sample compressed images/video with an arbitrary ratio in

the DCT domain. First, we derive a set of DCT-domain down-sampling methods,

which can be represented by a linear transform with double-sided matrix multipli-

cation (LTDS) in the DCT domain. Then, for a pre-selected pixel-domain down-

sampling method, we formulate an optimization problem for finding an LTDS to

approximate the given pixel-domain method to achieve the best trade-off between

visual quality and computational complexity. The problem is then solved by model-

ing an LTDS with a multi-layer perceptron network and using a structural learning

with forgetting algorithm for training the network. Finally, by selecting a pixel-

domain reference method with the popular Butterworth lowpass filtering and cu-

bic B-spline interpolation, the proposed framework discovers an LTDS with better

visual quality and lower computational complexity when compared with state-of-

the-art methods in the literature.
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Chapter 1

Introduction

Broadly speaking, this thesis addresses some data compression problems in a prac-

tical multimedia system. As shown in Figure 1.1, the system involves a front device,

an end device, and a connection in the between through channels or storage media.

A conventional system setting for researching on video compression is the pair of

encoder and decoder, assuming abundant computation power for encoding, limited

computation power for decoding, and no diversity for spatial and temporal resolu-

tions. Under this circumstance, a critical question is what the best RD trade-off is,

which is the first problem to be tackled in this thesis. Furthermore, if we consider

the spatial resolution diversity between the capturing unit and the displaying unit,

there is a transcoding problem, which involves converting the spatial resolution for

a compressed source. This transcoding task with spatial resolution conversion mo-

tivates the second major work in this thesis for image/video down-sampling in the

DCT domain.

Lossy video compression under the conventional system setting with abundant

encoding power generally adopts a hybrid structure shown in Figure ??, where sev-

eral different compression techniques such as motion prediction, transform, quan-

tization, and entropy coding are employed together. In general, this is referred

to as hybrid video compression [20, 55, 63]. This structure follows an intuitive

understanding of video data about the temporal redundancy (similarity between
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Encoder
Computing Unit

Channels
Capturing

Unit
or Decoder

Computing Unit
Displaying

UnitStrorage
media

Front device End device

Device diversities: Spatial/Temporal resolution for Capturing/Displaying unit,  
Computation power for Computing unit.

Figure 1.1: A multimedia system. Video compression in a practical multimedia sys-

tem may be customized by different system settings such as its device diversities and

the data delivery method. Conventional hybrid video compression assumes only the

pair of encoder and decoder, overlooking the device diversities and the data delivery

method. Transcoding considers the spatial resolution diversity, and/or the tempo-

ral resolution diversity, and/or channel bandwidth diversity through a network.

Distributed video coding addresses the computation power diversity, technically

speaking.

frames), the spatial redundancy (similarity between neighboring pixels), the psy-

chovisual redundancy (limited sensitivity to spatial details by human eyes). Yet, it

is still the most effective way for lossy video compression and has been adopted in

all lossy video coding standards in the industry[63]. In this thesis, we will study the

best rate distortion performance by hybrid video compression with compatibility

to industrial standards.

Future research may also be well pictured in the multimedia system shown in

Figure 1.1. The first is still spatial resolution conversion, but with a focus on

handling motion re-prediction, which is not handled in this thesis. The second is

temporal resolution conversion, which deals with the temporal resolution diversity.

The third is to investigate how the computation power may be allocated between

the front device and the end device in a flexible way, as to be discussed in details

in the last chapter.
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1.1 Thesis Motivations

Work in this thesis is mainly motivated by a desire to answer the following questions

in the multimedia system shown in Figure 1.1.

1. What is the best RD coding performance for hybrid video compression?

Ever since digital video was invented, video compression has been an essen-

tial part in any of its applications because of the enormous volume of video

data[64, 13]. As digital video has become a ubiquitous and essential com-

ponent of the entertainment, broadcasting, and communications industries,

there is a never ending pursuit of more bandwidth/storage space for accom-

modating the explosively growing video data. This is fueling the demand for

video compression to pursue the possibly best compression efficiency.

Video compression generally assumes four types (temporal, spatial, psychovi-

sual, and statistical) of redundancy, leading to a hybrid coding structure[40],

as shown in Figure 1.2. The hybrid structure consists of four coding parts, i.e.,

motion compensation, transform, quantization, and entropy coding. Because

the quantization part introduces permanent information loss to video data,

hybrid video compression is usually categorized as lossy data compression.

The theory that studies the theoretical limits for lossy data compression is

called rate distortion theory [1]. Given an information source, the best cod-

ing efficiency that a compression method can achieve is characterized by the

so-called rate distortion function, or equivalently distortion rate function [1].

Therefore, the fundamental trade-off in the design of a video compression

system is its entire rate distortion performance.

2. What is the best RD coding performance an H.264-compatible codec can

achieve?

Video coding standards provide a solid base for the development of digi-

tal video industries by promoting worldwide interoperability. Therefore, our

3
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Coded
 bitstream

Figure 1.2: Illustration of a hybrid coding structure with motion prediction, trans-

form, quantization and entropy coding.

study on the best RD coding performance will be within a standard coding

scheme, i.e., to maintain compatibility with an industrial coding standard.

H.264, the newest hybrid video compression standard [79], has proved its su-

periority in coding efficiency over its precedents, e.g., it shows a more than

40% rate reduction over H.263 [77]. Meanwhile, from an engineering perspec-

tive, it is known that H.264 has utilized up-to-date technologies to improve

its coding efficiency for each individual coding part from quarter-pixel motion

prediction to complex binary arithmetic coding. It is interesting to see how

much RD theoretic studies can help to further improve the coding perfor-

mance for H.264 by jointly designing the whole hybrid coding structure.

3. How to construct efficient DCT-domain down-sampling methods for image/video

transcoding?

As wireless and wired network connectivity is rapidly expanding and the

number of network users is steadily increasing, there has been a great mo-

mentum in the multimedia industry for supporting content display in diverse

devices all over the network [52]. A big challenge, however, is the great

diversity of devices with various display resolutions from full screen comput-

ers to small smart phones. This leads to researches on transcoding, which

involves automatic reformatting. Particularly, image/video transcoding in

the DCT domain with spatial resolution conversion has attracted increasing

attentions[69], because most image/video data to be shared over the network

are originally captured with a high resolution and coded using a transform

technique of DCT, e.g., MPEG, JPEG, DV, etc.

4



1.2 Thesis Contributions

Contributions in this thesis are summarized as follow:

• A joint design framework for optimizing RD trade-off in hybrid video coding.

Based on SDQ instead of conventional HDQ, we have proposed an RD opti-

mization framework for jointly designing motion compensation, quantization,

and entropy coding by minimizing the actual RD cost. The framework in-

cludes three algorithms, i.e., SDQ, residual coding optimization, and overall

joint optimization, with them embedded in the indicated order. The frame-

work may be applied to any hybrid video coding scheme by developing the

three algorithms, particular the SDQ algorithm, according to given coding

syntaxes.

• SDQ design based on CAVLC and SDQ design based on CABAC. In gen-

eral, different entropy coding methods require different algorithms for SDQ.

Depending on the entropy coding method involved, the problem of designing

algorithms for optimal or near optimal SDQ in conjunction with that spe-

cific entropy coding method could be very challenging, especially when the

involved entropy coding method is complicated. In some cases, for exam-

ple, SDQ for GIF/PNG coding where the entropy coding methods are the

Lempel-Ziv[84] [85] algorithms, the SDQ design problem is still open [35].

Fortunately, in this thesis, we are able to solve the design problems of SDQ in

conjunction with CAVLC and CABAC, respectively. It is shown that given

quantization step sizes, the proposed SDQ algorithms based on CAVLC and

CABAC, respectively, achieve near-optimal residual quantization in the sense

of minimizing the actual RD cost.

• A design framework for downsampling compressed images/video frames with

an arbitrary ratio in the DCT domain. We first derive a set of DCT-domain

down-sampling methods, which can be represented by LTDS in the DCT do-

main, and show that the set contains a wide range of methods with various

5



complexity and visual quality. Then, based on a pre-selected spatial-domain

method, we formulate an optimization problem for finding an LTDS to ap-

proximate the given spatial domain method in the DCT domain for achiev-

ing the best trade-off between visual quality and complexity. By selecting

a spatial-domain reference method with the popular Butterworth lowpass

filtering and cubic B-spline interpolation, the proposed framework discov-

ers LTDSs with better visual quality and lower computational complexity

when compared with state-of-the-art methods in the literature. The obtained

LTDSs will make a good application to transcoding non-predictively coded

image/video such as JPEG or DV because of the good visual quality and high

computational efficiency.

1.3 Thesis Organization

Chapter 2 presents a generic overview of hybrid video compression. In the first

section, we review the four coding components in a typical hybrid coding structure,

i.e., motion compensation, transform, quantization, and entropy coding. Since

practices of data compression take root in Shannon’s information theory[47], the

discussion is intended to explain some underlying principles for those four coding

parts from an information theoretic point of view. However, the theoretic discussion

is limited to an introductory level. Some other discussions are presented from an

algorithm design point of view, explaining corresponding state-of-the-art techniques

and how they can be applied. Then, the next section introduces the development of

video coding standards from the early MPEG-1 to the newest H.264 (also refereed

to as MPEG-4, part-10) as background material and motivations to our study

on RD optimization for video compression. Essentially, the development of those

video coding standards shows that each individual coding part in the newest coding

standard H.264 has been well designed to achieve superior coding performance

using the state-of-the-art technologies. Optimization of an individual part alone

will unlikely bring much improvement. This motivates our joint design framework
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for hybrid video compression. Finally, the last section is devoted to details of the

newest standard H.264, based on which we will develop algorithms for applying

our proposed joint design framework to achieve the best coding performance while

maintaining compatibility with H.264.

Chapter 3 presents the RD optimization framework for hybrid video compres-

sion. We begin with a brief survey on related work in the literature, highlighting the

difficulty of using the actual RD cost in conventional RD optimization approaches.

To tackle this issue, we discover an SDQ mechanism based on a universal fixed-

slope lossy coding scheme. Using SDQ instead of the conventional HDQ, we then

establish an RD optimization framework, which allows us to jointly design motion

compensation, quantization, and entropy coding by minimizing the actual RD cost.

Specifically, in the second section, we review the universal fixed-slope lossy coding

scheme and apply it to optimizing hybrid video compression, obtaining SDQ. Based

on the idea of SDQ, in the third section, we then formulate an RD optimization

problem mathematically and derive an iterative solution, obtaining a generic RD

optimization framework. In general, development of the residual coding optimiza-

tion algorithm and the overall joint optimization algorithm is not directly related to

specific coding syntaxes, except that they are based on the SDQ algorithm, which

needs to be developed based on given coding syntaxes. Therefore, in the third

section, we describe algorithms for residual coding optimization and overall joint

optimization in details, leaving the SDQ design to be tackled when concrete coding

syntaxes are given in a real application of the proposed RD framework.

In Chapter 4, we discuss the application of the joint design framework to opti-

mizing RD trade-off for H.264 baseline profile encoding. As the residual optimiza-

tion algorithm and the overall joint optimization algorithm have been described in

Chapter 3 in details, we are focused on the SDQ design based on the entropy cod-

ing method in H.264 baseline profile, i.e., CAVLC. Specifically, a detailed review

of CAVLC is presented in the first section. Then, in the second section, we exam

the computation of the RD cost, based on which we construct a graph structure so
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that the RD cost can be computed in an additive manner. As a result, the additive

computation of the RD cost enables us to use dynamic programming techniques to

search for quantization outputs to minimize the actual RD cost, yielding an SDQ

design based on CAVLC. The SDQ design is then embedded into the residual coding

algorithm, which is further called in the overall joint optimization algorithm. In the

third section, we provide experimental results for implementing these algorithms

based on H.264 reference codec Jm82.

Sharing a similar organization as that in Chapter 4, Chapter 5 is focused on the

application of the joint design framework to optimizing H.264 main profile encoding

with CABAC. The chapter begins by reviewing CABAC. Similarly, in the second

section, we exam the RD cost computation based on CABAC. Compared with

SDQ based on CAVLC, SDQ based on CABAC is more complicated because of

the adaptive context updating in CABAC. To tackle this problem, we decompose

the SDQ algorithm into two steps: the first step is SDQ with fixed probability

context and the second step is context updating with fixed quantization outputs.

The second step is straightforward. For the first step, a graph is constructed based

on context modeling in CABAC. Finally, we implement the resulting algorithms

and report experimental results in the third section.

Chapter 6 presents the designing framework for down-sampling images in the

DCT domain. In the first section, extensive discussions are presented on pixel-

domain down-sampling, which is the basis for designing DCT-domain down-sampling

algorithms. Then, in the second section, we review other DCT-domain down-

sampling methods in the literature. Based on these discussions, the third section de-

rives a linear transform with double-sided matrix multiplication for down-sampling

in the DCT domain. The linear transform is equivalent to a concatenation of inverse

DCT, pixel-domain down-sampling, and DCT. The next section discusses the visual

quality measurement for down-sampled images. Then, we establish a complexity

model for LTDS, based on which a joint optimization problem is formulated mathe-

matically to find the optimal LTDS for DCT-domain down-sampling by optimizing
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trade-off between visual quality and computational complexity. The problem is

solved using a multiple-layer neural network structure and a structural learning

with forgetting algorithm. We conduct some experiments and provide comparative

results in the last section.

Finally, Chapter 7 concludes the thesis and discusses future research.
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Chapter 2

Hybrid Video Compression

Overview

An important feature for lossy video compression, as discussed in the introduction

chapter, is a hybrid coding structure [78]. In fact, all lossy video coding standards,

from the earliest MPEG-1 to the newest H.264[72], employ this hybrid coding struc-

ture. In this chapter, we first review the basic structure of hybrid video coding.

Then, we briefly introduce the development of those lossy video coding standards

for their main technical features, showing how coding techniques for individual

parts in the hybrid structure evolve through the development. Finally, we present

a detailed review of H.264, since one of the main objectives in this thesis is to

maintain compatibility with H.264 while optimizing its RD trade-off.

2.1 Hybrid Coding Structure

As shown in Figure 1.2, there are four coding parts in the hybrid coding struc-

ture, i.e., motion compensation, transform, quantization, and entropy coding. This

section reviews individual coding parts in the hybrid coding structure for their

underlying principles and some design issues.
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2.1.1 Motion Compensation

Video signals display a distinct kind of redundancy called temporal redundancy,

i.e., the high similarity between neighboring frames. While image data are well

known for spatial redundancy among neighboring pixels, for video compression

higher similarities are often observed among nearby frames than within a single

frame. In fact, the major difference between still image compression and video

coding is the temporal redundancy processing in the latter [40].

Motion compensation reduces temporal redundancy by estimating the current

frame from reproductions of previously coded frames. A typical scenario is that an

object moves from one location to another location. Once the object is encoded in

one frame, its appearance in all the consecutive frames can be well represented with

two factors, i.e., its shape and the displacement. Motion compensation that allows

arbitrary shapes is conceptually advanced since an object may be of any shape[65].

However, it turns out that the coding performance of object-based motion compen-

sation is much worse than that of a block-based coding scheme [63], because of the

high rate for coding the shape. Thus, block-based motion compensation is more

widely used in video compression standards. An important factor for block-based

coding is the block size. In general, a small block size will lead to more motion

vectors, which means more overhead bits. However, it also means a better pre-

diction. H.264 uses square/rectangle blocks for motion compensation with various

block sizes, e.g., 16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8, 4× 4, resulting in more

flexibility for this new standard to achieve superior coding efficiency.

Another important factor for motion compensation is the prediction accuracy.

In the early standard H.261, motion compensation is conducted on the original

pixel map, so-called full-pixel prediction. The newest H.264 supports up to 1
4
-

pixel accuracy for the luma component. Because samples at sub-pixel positions

do not exist, they are created by interpolation in the reference frames. In general,

the higher the prediction resolution is, the more effective motion compensation

will be. However, studies by Girod in [21] show that the gain by using higher
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prediction accuracy is limited in the sense that it becomes very small beyond a

critical accuracy. It is suggested that 1
2
-pixel accuracy be sufficient for motion

compensation based on videophone signals, while 1
4
-pixel accuracy be desirable for

broadcast TV applications [21].

Multihypotheses prediction is another hot topic for motion compensation, where

a prediction is obtained by a linear combination of more than one hypothesis1

from multiple reference frames. Flierl et al. derived a performance bound [17]

for averaging multiple hypothesis by extending the wide-sense stationary theory

of motion-compensated prediction in [20]. It shows that the gain is limited even

when the number of hypotheses goes to infinite. It is suggested that two hypotheses

provide the most efficient solution, leading to applications of the so-called B-frame

design. (See [16] for B-frame design in H.264.) In addition, Girod [22] points out

that the introduction of bi-direction is more efficient than doubling the prediction

accuracy.

With all these flexibilities for motion compensation, i.e., the block size, accuracy,

multiple references, it is of natural interest to think of a criterion for finding an

optimal setting of these parameters. Early in 1987, Girod [20] proposed a rate-

distortion analysis of motion compensation by relating the power spectral density

of the prediction error to the prediction accuracy. Later, the analysis was extended

to multihypotheses motion compensation [22, 17], providing guidance for using P-

frames (one reference) and B-frames (two references). Corbera and Neuhoff [8][7]

also developed a theoretical framework for selecting the best prediction accuracy

in the sense of minimizing a joint cost of the prediction error and the coding rate

of motion vectors. The above theoretical analyses provided valuable insights in the

underlying mechanism of motion compensation.

Beside the above analytical studies, many experimental methods have been

developed and used, e.g., motion compensation in H.264 is optimized as follows

1The term of hypothesis used here means one estimation of a given pixel block based on a

given reference frame.
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[77],

arg min
v

Jp = ||x− p(v)||+ λ ·R(x), (2.1)

where x is the pixel data, p is the prediction, x is the corresponding motion vector,

and R is the rate for coding the motion vector. This optimization works fairly well.

However, the compression distortion actually comes from quantizing the residual

x − p(v), instead of the residual itself. Meanwhile, the residual coding rate is

not considered. Therefore, the cost function in (3.1) is not based on the actual

distortion and the entire rate. In other words, (3.1) does not minimize the actual

rate distortion cost, suggesting that there is still space for further optimization.

There are still many problems open for motion compensation. E.g., motion

compensated prediction assumes translational motions, i.e., the current picture can

be locally modeled as a translation of some previously coded pictures. In case of

rotations or shape changing, this is a fundamental defect. The zooming operation

of the camera is also a problem. Studies in [20, 22] suggest that the performance

of motion compensation is essentially limited by the assumption of translational

motions. Another problem for conventional motion compensated prediction is its

high complexity, which results in a slow encoder. This actually motivates the

research on distributed video coding, which has attracted a lot attention in the

video coding community recently (see [23] and reference therein).

2.1.2 Transform

Transform coding works by converting data into a transform domain. Ever since

its invention in early 1960’s, transform coding has been widely used for lossy com-

pression of video, image, and audio[25] [41]. The motivation for using transform

coding is to decorrelate signals so that the outputs can be efficiently coded us-

ing simple techniques such as scalar quantization. In general, transform coding is

always linked to scalar quantization [19, 26].

Among many block-based transforms, the most popular one is the discrete cosine

transform (DCT), which has been adopted in all lossy video coding standards.
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While 8×8 DCT is used in early standards, the H.264 uses a 4×4 DCT, which gives

better coding efficiency and less block effect. As suggested from [49], the coding

gain for using a small block size comes from the reduced interblock correlation.

Another popular transform is the discrete wavelet transform(DWT), which is

based on the whole image. Although DWT has proved a big success in still image

compression, it tends to be less attractive than the DCT in the case of video

compression. The image-based DWT transform leads to design problems for block-

based motion compensation. E.g., the mode selection for motion compensation

requires to compute the rate cost for coding residuals. For any given block, there

are a few modes. It is impossible to find the optimal mode for all blocks using the

image-based DWT. However, DWT still makes its way into the MPEG-4 Visual

standard, as an alternative option besides DCT.

From the correlation point of view, however, the concatenation of motion com-

pensation and transform coding is non-optimal. Intuitively speaking, the more

effective is motion compensation, the less correlated are the residuals, thus the

less interesting for transforming the residual to the frequency domain. Studies in

[20, 22, 46] pointed out that residuals after motion compensation are only weakly

correlated.

From the information theoretic point of view, the transform plus scalar quanti-

zation and entropy coding method is questionable too. The DCT transform tends

to generate coefficients with Gaussian distributions when the block size is large,

which may be justified by applying the central limit theorem. Particularly, Eude

et al. showed by mathematical analyses that DCT coefficients of images could

be well modeled with a finite mixture of Gaussian distributions [14]. Information

theory shows that the rate distortion function of a stationary source achieves its

upper bound with Gaussian distributions [1], indicating that Gaussian source is the

most difficult for lossy compression either by vector quantization or by a scheme

with scalar quantization and entropy coding [26]. The fact that a small block size

gives a better performance for using DCT transform possibly indicates that DCT
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transform in the hybrid structure is of much interest for reconsideration.

2.1.3 Quantization

The application of quantization to video compression is inspired by some cognitive

studies on human visual systems. Human visual systems show excellent robustness

in extracting information from video signals [59]. Bioelectrically, the human eye’s

response to spatial details is limited. Thus, a certain amount of distortion may be

introduced into video signals while a human observer would not notice it. Further-

more, the human visual system allows a wide range of even noticeable distortion

while it is still able to obtain critical information from the video signals. In other

words, there exist much psychovisual redundancy in image/video signals. From in-

formation theoretical point of view, this psychovisual redundancy makes it possible

to balance bandwidth and distortion according to given channel conditions, leading

to the application of quantization.

Most video compression designs use scalar quantization, which is basically a

simple arithmetic operation to shrink the dynamic range of inputs [63] [55]. It is

a hard decision based operation in the sense that the quantization output for a

given input is directly computed from the input itself and a quantization step size.

Its major merit is the simplicity, which is well demonstrated by the complexity

of vector quantization (VQ) as the rival. Information theoretic analysis on source

coding with a fidelity criterion shows that there exists an unbeatable bound, which is

characterized by the distortion-rate function of a source with respect to a distortion

measure [1, 83]. This Shannon lower bound is approximately achievable by VQ.

Gray proved that VQ can perform arbitrarily close to the Shannon lower bound

[26]. Unfortunately, designing such optimum quantizers can be very difficult [18].

Meanwhile, the high complexity due to the exponentially increasing vector space

makes it almost infeasible for many real-world applications [19].

On the other hand, comparative studies between optimized VQ and scalar quan-

tization discover interesting results, supporting scalar quantization [19, 83, 26].
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Gray showed that the optimum vector quantizer should have a uniform density of

reproduction levels in the vector space when some extra effort is allowed to code

quantization outputs with lossless codes [26]. Under such a circumstance, one is

using entropy to measure rate. The quantizer is designed to minimize the entropy

of its outputs, while a lossless algorithm is used to achieve a coding rate as close to

the entropy as it can. In general, this result suggests a promising combination of

scalar quantization and entropy coding.

Theoretical studies based on the rate distortion theory provide further support

for using scalar quantization [36, 24]. Consider a generic scheme of quantization plus

entropy coding as discussed above. The performance of a quantizer Q can be mea-

sured by two quantities, i.e., quantization distortion and the entropy of quantization

outputs HQ. An essential result obtained by Gish and Pierce in [24] showed that

for small distortions (high rate) and a memoryless source with a smooth marginal

density, HQ of a scalar quantizer exceeds the Shannon lower bound RSLB(D) by

around 0.255 bit/sample, i.e.,

HQ −RSLB(D) ≈ 0.255.

Denote the rate-distortion function for the source as R(D). Considering that the

Shannon lower bound is strictly less than R(D) and that the above approximate

equality is very close to equality, we can have [26]

HQ ≤ R(D) + 0.255,

which is very encouraging for combining scalar quantizer and lossless codes. It

indicates that the combination can perform almost within one quarter of a bit of

the Shannon optimum.

The above analysis well explains the wide application of scalar quantization.

However, it does not mean that it is of no interest to look for optimum quantiz-

ers, particularly in the low bit rate case. In fact, it has been shown that scalar

quantization is not good in the case of low bit rate[36, 26, 66], e.g., 0.5 bit/sample.

The gap between HQ and the Shannon bound, which may be ignorable for high bit
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rate applications, becomes a bottle-neck for using scalar quantizers in low bit rate

systems.

There are two methods to deal with this gap. One is to use VQ [68, 18]. For

a k-dimensional vector quantizer, the gap between the kth order entropy of the

quantized signal and the Shannon lower bound is approximated as [36, 26],

lim
D→0

[H
(k)
Q −R

(k)
slb (D)] ≥ 1

2
log

e(Γ(1 + k/b))b/k

1 + k/b
,

where b is the distance norm for measuring distortion, e.g., b = 2 for using Euclidean

distance. Calculation of the right side with b = 2 shows the gap as 0.255, 0.221,

and 0.178 for k = 1, k = 2, and k = 4, respectively. Obviously, a rate gain is

achievable by coding the k-dimensional quantization outputs. However, there is a

big complexity issue because the size of the vector space grows exponentially with

the dimension.

Another method is to introduce soft decision quantization [32], by which we

mean that quantization outputs are generated based on a rate distortion cost for

an array of inputs, as to be discussed later. An intuitive interpretation of soft

decision quantization is to adapt quantization outputs to the coding context of

a given lossless coding algorithm. For hard decision quantization, the output is

totally unrelated to the entropy coding part. Under such a circumstance, the best

rate performance of the whole scheme is bounded by the entropy of quantization

outputs. Then the gap between the entropy and the Shannon lower bound is an

inevitable loss. However, studies in [36] show that the original entropy bound can be

exceeded by optimizing quantization outputs with respect to the following lossless

coding. As a result, the coding rate of the lossless algorithm will asymptotically

approach the optimum given by the rate-distortion function.

2.1.4 Entropy Coding

Intuitively, designs of prediction, transform, and quantization are based on cognitive

modeling of video signals, i.e., they may be regarded as aiming at temporal, spatial,
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and psychovisual redundancy in video data, respectively. Entropy coding, on the

other hand, is independent of specific data characteristics and is developed based

on mathematical data modeling, specifically, Shannon’s information theory [9]. In

Shannon’s information theory, entropy means the amount of information presented

in a source, which is quantitatively defined as the minimum average message length

that must be sent to communicate the value of the source to a receiver.

While multimedia compression is usually lossy, the entropy coding part is loss-

less. In a hybrid video coding structure, the information loss comes from the

quantization part only. After quantization, entropy coding is designed to precisely

represent quantization outputs and other overhead symbols with possibly minimum

number of bits. According to Shannon’s source coding theorem, the optimal num-

ber of bits for coding a source symbol is − log2 p, where p is the probability of the

input symbol2. An entropy coder seeks for the minimal number of bits for coding

a given set of symbols [26].

The two most popular entropy coding methods are Huffman coding [28] and

arithmetic coding [51]. The basic idea of Huffman coding is to encode a symbol that

has higher probability with a less number of bits, which exactly follows Shannon’s

guideline of − log2 p. The problem, however, is that − log2 p may not be an integer,

leading to an loss of coding efficiency by up to 1bit/symbol. For example, a source

symbol with p = 0.248 would transmit 2.01 bits of information, but it consumes

3bits if Huffman coding is used. This efficiency loss comes from the fact that

Huffman coding can only assign an integer number of bits to code a source symbol.

Arithmetic coding is generally superior to variable length coding such as the

Huffman coding because it can adapt to symbol statistics and assign a non-integer

number of bits to code a symbol. The main idea of arithmetic coding is to treat a

sequence of symbols as one input and to generate one unique codeword accordingly.

So, there is no explicit code-book. Instead, the whole sequence of symbols is mapped

2In general the base should be the number of symbols used for generating output codes. But

the base 2 is always used in this thesis so that the coding length is measured by bits.
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to a point on the real axis, whose binary representation is then taken as the coding

output, and the length of the binary representation is − log2 p with p being the

probability of the whole sequence. E.g., for an I.I.D source with alphabet set

{x1, x2, x3} and probability model p(x1) = 1
2
, p(x2) = 1

3
, p(x3) = 1

6
, s sequence of

(x1x3x2x2x3x3x1x2) would result in a codeword of length ceil(− log2(
1
2

1
6

1
3

1
3

1
6

1
6

1
2

1
3
))

by arithmetic coding. This corresponds to a coding rate of 1.875bit/symbol, while

the rate for Huffman coding is 2.125bit/symbol, which is computed as (1 + 3 + 2 +

2+3+3+1+2)/8 because x1, x2, x3 accord to codewords of 1bit, 2bits, and 3bits,

respectively. Certainly, there is a price for arithmetic coding to pay for its high

compression efficiency, i.e., the high computational complexity.

Since an entropy codec is designed based on a mathematical model, the coding

efficiency of an entropy codec in a real-world application is largely dependent on

how well we can establish a mathematical model for the data to be compressed.

Shannon’s source coding theorem establishes a relationship between the symbol

probability and the corresponding coding bits. In order to find the optimal rep-

resentation, i.e., the minimal number of bits, the probability distributions of all

symbols are required to be known, which unfortunately is not true for most real

world applications. The solution is to estimate the distributions. In general, this

is a big challenge for designing entropy coding methods. It requires complicated

design and extensive computation. E.g., extensive experiments are conducted to

study the empirical distributions of various syntax elements in H.264. Eventually,

there are over 400 context models developed and complicated criteria are defined

for context selection in the CABAC method[51].

2.2 Hybrid Video Coding Standards

International standards for video compression have played an important role in the

development of the digital video industry. Since early 1980’s, many standards have

been developed. Each standard is the result of many years of work by a lot of
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people with expertise in video compression. It is interesting to have a look at the

development of these standards.

2.2.1 MPEG-1

The first video coding standard that proved a great success in market was MPEG-1

[13], developed by ISO/IEC MPEG. MPEG-1 was designed for bit rate up to 1.5

Mbps. This was based on CD-ROM video applications. Today, it is still a popular

standard for video on the Internet. It is also the compression standard for VideoCD,

the most popular video distribution format throughout much of Asia.

Technically, MPEG-1 is very simple if compared with today’s standard. How-

ever, it has utilized all the main coding techniques for hybrid video coding such

as bi-directional inter-frame coding, DCT, variable length coding, etc., except that

these techniques in MPEG-1 have not been developed as well as they are in lat-

ter standards. For motion prediction, MPEG-1 supports the three main types of

frames, i.e., I-frame for intra prediction, P-frame for inter prediction, and B-frame

for bi-directional prediction. The block partition in I-frames is 8 × 8, while the

block size for inter prediction in P-frames is fixed as 16× 16. Also, the prediction

in MPEG-1 is based on full-pixels, while later on it advances to support half-pixel

in MPEG-2, and quarter-pixel in H.264. DCT in MPEG-1 uses an 8× 8 block size.

For quantization in MPEG-1, there is one step size for the DC coefficient, and 31

step sizes for the AC coefficients. The 31 step sizes take the even values from 2

to 62. For AC coefficients of inter-coded blocks, there is also a dead-zone around

zero. Finally, entropy coding in MPEG-1 uses a simple scheme of concatenating

run-length coding with variable length coding (VLC). A small VLC table is defined

for most frequent run-level pairs, while other run-level combinations are coded as

a sequence of 6-bit escape, 6-bit codeword for run, and 8-bit codeword for levels

within [−127, 127] or 16-bit codewords for other levels.
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2.2.2 MPEG-2

MPEG-2 [64] was developed soon after MPEG-1 because it turned out that MPEG-

1 could not provide a satisfactory quality for television applications. MPEG-2 was

then designed to support digital television set top boxes and DVD applications.

Ever since it was finalized in November 1994, MPEG-2 has become a fundamen-

tal international standard for delivering digital video. The worldwide acceptance

of MPEG2 opens a clear path to worldwide interoperability. Today, MPEG-2 plays

an important role in the market and it will continue to do the same in the near

future according to some market forecast such as the Insight Research Coopera-

tion for MPEG-2 related products. All of the industries who target digital video

services have to invest in MPEG-2 applications. MPEG2 based video products are

developed for a wide range of applications, as to name a few in the following.

1. DVD: As a new generation of optical disc storage technology, DVD offers an

up to 10G storage space for MPEG-2 video distribution. Ever since its intro-

duction, DVD has become the most popular MPEG-2 based video product.

2. HDTV: MPEG-2 compression is used in HDTV applications to transmit mov-

ing pictures with resolution up to 1080× 1920 at rate up to 30frame/second

(requiring 20MHz bandwidth) through 8MHz channels.

3. Digital Camcorders: Originally, all digital camcorders use the Digital Video

(DV) standard and record onto digital tape cassettes. However, the latest

generation of camcorders turns to use MPEG2 because it provides a high

compression with high quality. Video data can be recorded directly onto

flash memory or even to a hard disk. While transferring video files from a

tape is slow because it requires real time play-back, a flash card/DVD/hard

disk provides a much faster access to the video data.

Figure 2.2 illustrates the motion compensation procedure in MPEG-2. Basically,

motion compensation design in MPEG-2 is still at a primitive stage. Many issues
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such as the block size and prediction accuracy were not effectively addressed. In

particular, motion compensation in MPEG-2 is based on a fixed size of 16 × 16,

which leads to poor prediction when there are a lot of details in images. The

prediction accuracy is fixed at half-pixel, while studies by Girod [22] show that

quarter-pixel accuracy is required for efficient motion compensation when distortion

is small.

MPEG-2 utilizes 8× 8 DCT. The DCT design is as follows [63],

Y = A ·X ·AT (2.2)

X = AT ·Y ·A (2.3)

where A is an N ×N transform matrix with its element

Ai,j = Ci cos
(2j + 1)iπ

2N
where C0 =

√
1

N
, Ci =

√
2

N
(i > 0).

MPEG-2 uses N = 8. As shown in Figure 2.2, the 8× 8 block is the fundamental

unit for residual coding in MPEG-2.

Scalar quantization is applied to each 8×8 block of DCT coefficients in MPEG-2

with lower frequency coefficients taking smaller quantization step sizes and higher

frequency components taking larger quantization step sizes. Specifically, an 8 × 8

weighting matrix is defined for inter blocks as follows,

w=



16 17 18 19 21 23 25 27

17 18 18 21 23 25 27 29

18 19 20 22 24 26 28 31

19 20 22 24 26 28 30 33

20 22 24 26 28 30 32 35

21 23 25 27 29 32 35 38

23 25 27 29 31 34 38 42

25 27 29 31 34 38 42 47



,

and a quantization scalar qs is defined as an integer within [1, 31]. Then the quan-

tization syntax is specified in MPEG-2 by the following de-quantization equation,

ĉij = uij · qs · wij/8,
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Figure 2.1: The syntax of macroblocks in MPEG-2.

where uij stands for a quantized coefficient, wij is the (i, j)th element in w, and

ĉij is the corresponding reconstruction. Quantization for intra blocks is slightly

different. For an intra block, its DC components are quantized using one of 4

quantization step sizes, i.e., 1, 2, 4, 8, Accordingly, the 11-bit dynamic range of the

DC coefficient is rendered to accuracy of 11, 10, 9, or 8 bits, respectively.

Each quantized coefficient in MPEG-2 is encoded as two parts, i.e., its absolute

value and the sign. A set of variable length coding tables is designed to code the

absolute values of quantized coefficients and other syntax elements. These tables

are often referred to as modified Huffman tables, in the sense that they are not

optimized for a limited range of bit rates. Coefficient signs are coded using fixed

length codes with an underlying assumption that positive and negative coefficients

are equally probable.

In summary, Figure 2.2 illustrates the hybrid coding procedure of MPEG-2. For

a given macroblock, a motion vector is found by matching its 16 × 16 luma block

with blocks in previously coded images, called reference frames. Predictions for

both the luma block and two chroma blocks are computed based on this vector.

Then, residuals are partitioned into 8×8 blocks and transformed using DCT. Scalar

quantization is applied to the transform coefficients. Finally, variable length codes

are used to encode the quantized coefficients.

2.2.3 MPEG-4/H.264

MPEG-2 was so successful that the MPEG working group aborted its work on up-

dating MPEG-2 to MPEG-3. MPEG started to work on a new standard MPEG-4
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Figure 2.2: The hybrid encoding process of MPEG-2. Motion vector search is based

on the 16×16 luma block with half-pixel accuracy. Residuals are divided into 8×8

blocks. They are transformed with 8 × 8 DCT and quantized. Finally, variable

length codes are used to code the quantized coefficients.

[63] in 1993. Besides ISO/IEC MPEG, ITU-T VCEG is another working group who

takes a leading place in video coding standard development. Its work is essentially

focused on efficient video communications over telecommunication networks and

computer networks. H.261 was the first successful standard for video-conferencing

developed by VCEG [13]. It was designed for two-way video communications over

ISDN, targeting data rates at multiples of 64kbps. It only supported two image

resolutions, i.e., common intermediate format (CIF) and quarter CIF. In order to

achieve lower bit rate compression, VCEG developed H.263, targeting data rate

below 30kbps [64]. Many new technologies were then introduced into the stan-

dard, e.g., arithmetic coding. In general, these technologies required much more

computation. However, advances in silicon technologies well compensated these

requirements. The resulting coding performance won a big success for H.263. Fi-

nally, it was adopted by MPEG as the compression core of MPEG-4 Visual, also

called MPEG-4, part-2. MPEG-4 Visual is designed to support both efficient video
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compression and various content-based functionalities.

Besides some short-term effort on improving H.263, e.g., H.263+ and H.263++,

VCEG started to develop an entirely new standard for low bit rate video compres-

sion in 1995. The outcome was the H.26L draft. The new standard had a narrower

scope than MPEG-4 Visual. Essentially, it was focused on efficient coding for

rectangular moving pictures. It showed a significant improvement on the coding

performance over previous standards. In 2001, MPEG decided to adopt H.26L as

the core of its advanced video coding design. Then, a joint video team was formed

by experts from both MPEG and VCEG. The new standard, by the name ITU-T

H.264 and ISO/IEC MPEG-4 Advanced Video Coding, was published in 2003. For

simplicity, it is often referred to as H.264.

2.3 Detailed Review of the Newest Standard H.264

H.264 was finalized in 2003. As the most efficient video coding standard at this

point, H.264 utilizes many advanced coding technologies, e.g., adaptive block size,

quarter-pixel prediction accuracy, 4x4 DCT, arithmetic coding, etc.

2.3.1 The Great Potential of H.264

H.264 offers significantly higher coding efficiency than its predecessors. In general,

it is reported to give twice the compression of MPEG-4 Visual, or triple the com-

pression of MPEG2 [78]. The digital video industry shows a warm welcome to

the new standard. E.g., an announcement from the Apple company said that the

DVD forum has ratified H.264 to be included in the next generation High Definition

DVD format. As shown in table 2.1, companies are active in developing products

for H.264.
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Table 2.1: H.264 codecs and vendors
Vendor Encoder Homepage

Apple QuickTime for Tiger - N.A. www.apple.com/macosx/tiger/h264.html

Harmonic Inc. DiviCom Encoder (HW) www.harmonicinc.com

Videosoft H.264 encoder www.videosoftinc.com/

HHI JM 8.5 reference software bs.hhi.de/ suehring/tml/

Dicas mpegable AVC (free) www.mpegable.com/show/mpegableavc.html

Mainconcept Preview Encoder www.mainconcept.com/h264 encoder.shtml

Modulus Video SDTV, HDTV Encoder www.modulusvideo.com/

PixelTools Expert H.264 www.pixeltools.com/experth264.html

UBVideo UBLive-264-C64 (Videoconferencing) www.ubvideo.com/mainmenu.html

Media Excel Softstream www.mediaexcel.com/products.htm

LSILogic H.264 VLE4000 (HW) www.lsilogic.com/products/video broadcasting/vle4000.html

Envivio 4Caster (HW) www.envivio.com/products/4caster.html

Envivio 4Coder (SW) envivio.com/products/4coder se.html

Table 2.2: Compression performance for various video coding standards.

Feature Compression Performance

MPEG-1 Poor quality

Resolution Raw rate Real rate
MPEG-2 In the market 352 × 288 34.8Mb/s Set-top boxes 4Mb/s

720 × 480 118Mb/s DVD 9.8Mb/s
SD-DVB 15 Mb/s

1920×1080 712Mb/s HDTV 80 Mb/s

H.263 Low rate applications 1.5 time compression of MPEG-2 [77]

H.264 All applications triple the compression of MPEG-2 [77]

2.3.2 Hybrid Coding in H.264

Development of H.264 had a very clear target at its beginning, i.e., to utilize the

great advances in silicon technologies to achieve possibly the best coding efficiency.

H.264 is based on the same hybrid coding structure as MPEG-2. However, there

are many significant improvements in detailed designs.
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Figure 2.3: Block partitions in H.264.

Motion Compensation in H.264

While prediction in MPEG-2 is at the primitive stage, the prediction design in

H.264 has been significantly improved. It allows various block sizes from 16×16 to

4× 4 as shown in Figure 2.3. While a large block size is desirable for homogeneous

regions, a small size makes it possible to catch details more efficiently.

The prediction accuracy for H.264 is 1
4
-pixel, which is suggested as the highest

precision that is required in order to achieve optimal coding performance [22]. To

compute the half-pixel samples, a 6-tap finite impulse response filter is designed

with weights (1/32, -5/32, 20/31, -5/32, 1/32). Given samples in Figure 2.4, the

half-pixel sample b is

b = (E − 5F + 20G + 20H − 5I + J)/32.

Then, quarter-pixel samples a, d, e are obtained by linear averaging as follows,

a = (G + b)/2, d = (G + h)/2, e = (b + h)/2.

Transform in H.264

H.264 uses the well-known discrete cosine transform (DCT) with a block size of

4×4 in its baseline profile and main profile. Specifically, the transform matrix is
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To facilitate fast implementation with integer operations, a simplified transform

matrix is obtained as

w =


1 1 1 1

1 1/2 −1/2 −1

1 −1 −1 1

1/2 −1 1 −1/2
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by extracting a factor matrix f from ŵ as

f =
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,

with ŵY ŵT = (wYwT)⊗ f for any 4×4 matrix Y where the symbol ⊗ denotes

element-wise multiplication between matrixes.

28



Quantization in H.264

Quantization in H.264 is achieved simply by a scalar quantizer. It is defined by 52

step sizes based on an index parameter p = 0, 1, · · · , 51. The quantization step size

for a given p is specified as

q[p] = h[prem] · 2pquo , (2.4)

where prem = p%6 and pquo = floor(p/6) are the remainder and quotient of p divided

by 6, and h[i] ∈ {10
16

, 11
16

, 13
16

, 14
16

, 16
16

, 18
16
}, 6 > i ≥ 0.

For the purpose of fast implementation, quantization and transform in H.264

are combined together. Specifically, the factor matrix f is combined with the

quantization step size. Suppose that the decoder receives the quantized transform

coefficients u and the quantization parameter p for a 4×4 block. Then the following

process is defined in H.264 for the decoding,

T−1(Q−1(u)) = ŵT · (u · q[p]) · ŵ ,

= wT · ((u · h[prem] · 2pquo)⊗ f ) ·w ,

= wT · (u ⊗ (dq [prem]) · 2pquo) ·w · 1

64
, (2.5)

where dq [i] = (f ·h[i] ·64) with 6 > i ≥ 0 are constant matrices defined in the

standard(see [63] for details). It is clear that the computation of (2.5) is then

conducted using only integer operations.

Entropy Coding in H.264

H.264 supports two entropy coding methods for residual coding, i.e., context adap-

tive variable length coding (CAVLC) [3] in its baseline profile and context adaptive

binary arithmetic coding (CABAC) [51] in its main profile.

Residual coding using CAVLC starts with the conventional run-length coding.

CAVLC provides 7 tables for coding levels and a few tables for coding runs. A

number of parameters are used to set up the table selection context, e.g., the total
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mb_type Motion
vectormb_∆qpCBP

MB MB

mb_pred sub_mb_pred coded residual

Figure 2.5: The syntax of macroblocks in H.264. The first three elements are used

to signal the block partition and prediction mode. CBP stands for coded block

pattern, which indicates which 8× 8 blocks contain nonzero coefficients.

number of nonzero coefficients. More details will be introduced in Chapter 4 when a

soft decision quantization algorithm is designed based on CAVLC. The Exp-Golomb

codes are used for coding other syntax elements, e.g., the block mode, quantization

step size, motion vectors, etc.

In order to achieve higher coding performance, H.264 supports binary arithmetic

coding in its main profile. Arithmetic coding is generally superior to variable length

coding because it can adapt to the symbol statistics and assign a non-integer number

of bits to code a symbol. However, the complexity of arithmetic coding is high.

In total, there are over 400 context models designed for various syntax elements.

Details of CABAC is discussed in Chapter 5 before an SDQ algorithm is designed

based on it.

The macroblock syntax for H.264 is summarized in Figure 2.5. As mentioned

before, macroblock is the fundamental unit for mode selection. The coding process

for a frame can be treated as repetitions of that for coding one macroblock. Thus,

optimization for coding a frame can be broken down to optimization of individual

macroblocks, which will simplify the implementation.

As discussed above, each individual coding part in H.264 has been well designed

to achieve a good coding performance using the state-of-the-art technologies. Opti-

mization of an individual part in H.264 alone will unlikely bring much improvement.
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Meanwhile, a joint optimal design of the whole encoding structure is possible be-

cause the standard only specifies a syntax for the coded bit stream, leaving details

of the encoding process open to a designer. In the next chapter, we will propose a

rate distortion framework for jointly designing motion compensation, quantization

and entropy coding in hybrid video coding, which is then applied to improve H.264

coding efficiency.
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Chapter 3

An RD Optimization Framework

for Hybrid Video Coding

In this chapter, we propose a joint design framework for hybrid video coding by

optimizing trade-off between rate and distortion. Based on SDQ instead of conven-

tional HDQ, the proposed framework allows us to jointly design motion compen-

sation, quantization, and entropy coding by minimizing the actual RD cost. By

the actual RD cost, we mean a cost based on the final reconstruction error and the

entire coding rate. In the following, we first review RD optimization methods in

the literature. Then, an SDQ scheme is introduced based on reviews of theoretical

results on universal fixed-slope lossy coding. Based on the SDQ scheme, we for-

mulate an RD optimization problem for hybrid video coding and then provide an

iterative solution.

3.1 Related Rate Distortion Optimization Work

RD methods for video compression can be classified into two categories. The first

category computes the theoretical RD function based on a given statistical model

for video data, e.g., [11, 45]. In general, the challenge for designing a method in the

first category is the model mismatch due to the non-stationary nature of video data
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[38, 39]. The second category uses an operational RD function, which is computed

based on the data to be compressed. This thesis is focused on developing operation

RD methods.

Ramchandran et al. [61] developed an operational rate distortion framework for

efficiently distributing bit budget among temporal and spatial coding methods for

MPEG video compression. The rate distortion optimization problem was converted

into a generalized bit allocation task. There was an issue of exponential complexity,

which was tackled by utilizing a monotonicity property of operational rate distortion

curves for dependent blocks/frames. The monotonicity property was constructed

based on an assumption that rate distortion performance for coding one frame was

monotonic in the effectiveness of prediction, which depended on the reproduction

quality of reference frames. A pruning rule was then developed to reduce search

complexity based on the monotonicity property. Generally speaking, the above

assumption implies a linear relationship between distortion and residual coding

rate. In fact, the above assumption is valid to a large extent. However, a problem

here is that the total coding rate includes more than the rate for coding residuals.

Motion vectors from motion compensation also need to be transmitted. For early

standards such as MPEG-1, MPEG-2, motion compensation is based on a large

block size of 16×16, leading to a small number of motion vectors to be transmitted.

Motion vectors consume relatively few bits. It is then acceptable to apply the above

assumption to simplify the rate distortion problem. However, when small block sizes

are allowed for motion compensation such as 4 × 4 in H.264, motion vectors will

consume a significant portion of the total coding bits. Consequently, it will not be

able to find the optimal solution, either due to the approximation of the coding rate

(when the monotonicity property is used) or because of the exponential complexity

(when it is not used).

Using the generalized Lagrangian multiplier method [15], Wiegand et al. pro-

posed a simple and effective operational RD method for motion estimation opti-

mization [71, 75, 77]. The mode selection for motion estimation is conducted based
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on the actual RD cost in a macroblock-by-macroblock manner1. For a given predic-

tion mode, motion estimation is optimized based on an operational RD cost, which

approximates the actual RD cost, as follows,

(f, v) = arg min
f,v

d(x ,p(m, f, v)) + λ · (r(v) + r(f)), (3.1)

where x stands for the original image block, p(m, f, v) is the prediction with given

prediction mode m, reference index f , and motion vector v , d(·) is a distortion

measure, r(v) is the number of bits for coding v , r(f) is the number of bits for

coding f , and λ is the Lagrangian multiplier.

Wen et. al [74] proposed an operational RD method for residual coding op-

timization in H.263+ using a trellis-based soft decision quantization design. In

H.263+, residuals are coded with run-length codes followed by variable length cod-

ing (VLC). The VLC in H.263+ is simple and does not introduce any dependency

among neighboring coefficients, while the dependency mainly comes from the run-

length code. Therefore, a trellis structure is used to decouple the dependency so

that a dynamic programming algorithm can be used to find the optimal path for

quantization decisions. In the baseline of H.264, however, context adaptive VLC

is used after the run-length coding. The context adaptivity introduces great de-

pendency among neighboring coefficients, thus a new design criterion is needed to

handle the context adaptivity for designing SDQ in H.264.

A recent study on soft decision quantization in [67] developed a linear model of

inter-frame dependencies and a simplified rate model to formulate an optimization

problem for computing the quantization outputs using a quadratic program. From

the problem formulation point of view, our SDQ problem formulation shares the

same spirit as that in [67], except that the latter one is more ambitious as it targets

inter-frame dependencies. From the algorithm design point of view, [67] gives an

optimized determination of transform coefficient levels by considering temporal de-

1RD optimization of mode selection for a group of macro-blocks in H.263 using dynamic pro-

gramming was discussed in [76]. In H.264 reference software, however, the mode is independently

selected for each macro-block [77].
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pendencies, but neglecting other factors such as the specific entropy coding method,

while the graph-based SDQ design to be presented latter in this thesis provides the

optimal SDQ under certain conditions, i.e., motion prediction is given and CAVLC

or CABAC is used for entropy coding.

Overall, there are two problems when designing an operational RD method.

First, the formulated optimization problem is restricted and the RD cost is opti-

mized only over motion estimation and quantization step sizes. Second, there is

no simple way to solve the restricted optimization problem if the actual RD cost is

used. Specifically, because of HDQ, there is no simple analytic formula to represent

the actual RD cost as a function of motion estimation and quantization step sizes,

and hence a brute force approach with high computational complexity is likely to

be used to solve the restricted optimization problem [55]. For this reason, an ap-

proximate RD cost is often used in the restricted optimization problem in many

operational RD methods. For example, the optimization of motion estimation in

[77] is based on the prediction error instead of the actual distortion, which is the

quantization error.

3.2 SDQ based on Fixed-Slope Lossy Coding

We now review a so-called fixed-slope lossy coding framework, based on which we

propose a soft decision quantization scheme.

3.2.1 Overview of Fixed-Slope Lossy Coding

The framework for fixed-slope universal lossy data compression2 has been well es-

tablished in [27, 37, 36]. Consider a coding scheme shown in figure 3.1. The source

z first passes through a mapping function α(·). It is then encoded by a universal

2Related to fixed slope compression are entropy constrained [6] and conditional entropy con-

strained scalar/vector quantization. See [36, 10] for their difference and similarity.
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lossless algorithm γ(·). To achieve rate reduction, α(·) should be a multiple-to-

one mapping. It is usually non-invertible, resulting in a distortion of d(z, β(α(z))),

where d(·) is the distortion measure. Define a length function lγ(u) for the lossless

coding algorithm γ as the number of bits of the codeword that the algorithm assigns

to u. Then, the rate for coding z is computed as r = lγ(α(z)). The problem of the

fixed-slope lossy algorithm design is to find a solution of (α, β, γ) to minimize the

actual rate distortion cost, i.e.,

min
α,β,γ

d(z, β(α(z))) + λ · lγ(α(z)), (3.2)

where λ is a positive constant, which leads to the name of fixed-slope. As shown

in Figure 3.2, a fixed-rate method finds a solution within the shadow area B, while

the corresponding optimal solution approaches the crossing point of the RD curve

and the line of R = R0. A fixed-distortion method results in a solution within the

shadow area C, while the corresponding optimal solution approaches the crossing

point of the RD curve and the line of D = D0. For a given λ, the fixed-slope method

finds a solution within the shadow area A, which asymptotically approaches a point

on the RD curve whose slope is −λ.

The theoretical basis of the fixed slope algorithm may be traced back to the vari-

ational descirption of Theorem 4.2.1 in [26] for evaluating rate-distortion functions.

Denote I(c) as the mutual information between a source P and the corresponding

output by a channel with conditional pmf C, i.e., I(q) =
∑

j,k pjqk|j log
qk|jP
i piqk|j

.

Suppose the distortion measure as d(q) =
∑

j,k pjqk|jd(j, k). For a constant λ > 0,

define a rate-distortion pair (Rλ, Dλ) parametrically by

Rλ = λDλ + min
c

[I(q) + λd(q)] (3.3)

Dλ = d(q) =
∑

j

∑
k

pjq
∗
k|jd(j, k),

where q∗ is the conditional pmf yielding the minimum in (3.3). It has been proved

that each value of the parameter λ will lead to a pair of (Rλ, Dλ), which is on the

rate-distortion curve characterized as

R(D) = min
q∈{d(q)<D}

I(q), (3.4)
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Figure 3.1: A universal lossy compression scheme. α(·) is a non-invertible mapping

function for encoding. β(·) is a mapping function for decoding. γ(·) is a lossless

algorithm.

i.e.,

Rλ = R(Dλ).

The above result shows that for every given constant λ the unconstrained minimiza-

tion in (3.3) will produce the optimal solution to the constrained optimization in

(3.4. Note the difference between the contant λ in (3.3) and a Lagrange multiplier

that may be used to solve the constrained minimization in (3.4) as

min
q,λ′

[I(q) + λ′(d(q)−D)], (3.5)

where λ′ is considered a variable. The difference between the minimization in (3.3)

and (3.5) is that the former one results in a point on the rate-distortion curve with

slope λ, while the latter results in a point with distortion D. Their results become

the same if and only if D in (3.5) takes the value of Dλ in (3.3).

The fixed-slope method is generally superior to the fixed-rate or fixed-distortion

method by its computational efficiency. Consider the asymptotic coding problem

[47] based on the universal lossy scheme in Fig. 3.1. A fixed-rate method is equiv-

alent to an inequality constrained problem

min
α,β,γ

D(z, β(α(z))), subject to γ(α(z))−R0 ≤ 0,

which involves a search over {α(z)|γ(α(z)) − R0 ≤ 0} to minimize the distortion.

Similarly, a fixed-distortion method is described as

min
α,β,γ

γ(α(z)), subject to D(z, β(α(z)))−D0 ≤ 0,
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Figure 3.2: Illustrations of the rate distortion functions for coding schemes with

fixed-slope, fixed rate, or fixed distortion. We use R and D to denote the rate and

distortion, respectively.

which requires a search over {α(z)|δ(z, β(α(z))) − D0 ≤ 0} to minimize the rate.

The problem here is that both {α(z)|γ(α(z))−R0 ≤ 0} and {α(z)|δ(z, β(α(z)))−

D0 ≤ 0} have a very large size, which increases exponentially with the sequence

dimension. Thus, they generally suffer from high coding complexity, although they

possess asymptotic optimality [37, 47]. The fixed-slope method, however, is an

unconstrained problem, for which there are some powerful methods to be used [2].

A successful example is the variable rate trellis source encoding algorithm in [36],

where dynamic programming techniques are employed.

3.2.2 Soft Decision Quantization

Now, we investigate how the universal fixed-slope lossy coding scheme discussed

above may be used to conduct SDQ in hybrid video coding optimization. Consider

a 4×4 block, with quantized transform coefficient u , prediction mode m, refer-

ence index f , motion vector v , and quantization step size q. Its reconstruction is

computed by

x̂ = p(m, f, v) + T−1(u · q), (3.6)

where p(m, f, v) is the prediction corresponding to m, f, v and T−1(·) is the inverse

transform.
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Conventionally, the constraint of (3.6) is used to derive a deterministic quanti-

zation procedure, i.e.,

HDQ(T(z )) = round([T(z ) + δ · q]/q), (3.7)

which mainly minimizes the quantization distortion d(x , x̂ ), where z = x−p(m, f, v).

The factor δ is an offset parameter for adapting the quantization outputs to the

source distribution to some extend. There are empirical studies on determining

δ according to the signal statistics to improve the RD compression efficiency[79].

Still, this is an HDQ process. From the syntax-constrained optimization point of

view, however, there is no deterministic relationship such as (3.7) between quanti-

zation outputs and (m, f, v). Examine the fixed-slope lossy scheme of (3.2) under

the circumstance of optimizing H.264 baseline coding. In case of H.264-compliant

coding, the decoding mapping β(·) and the lossless coding algorithms γ and γ−1

have been specified in the standard, i.e., γ and γ−1 accord to entropy encoding and

decoding in H.264, respectively, and β(·) = T−1(Q−1(·)), where T−1(·) and Q−1(·)

are the inverse DCT and de-quantization, respectively. In case that HDQ was used,

we would have α(·) = β−1(·) = Q(T(·)). However, the relationship of α(·) = β−1(·),

though appearing to be true, finds no ground in the standard specification3. In-

stead, the H.264 standard only specifies β(·) and γ(·), leaving α(z ) a free parameter

for minimizing the RD cost. In this case, the problem of (3.2) reduces to a search

for u = α(z ) to minimize the RD cost, i.e.,

u = arg min
u

d(z , T−1(u · q)) + λ · rγ(u). (3.8)

The minimization in (3.8) is over all possible quantized values. In general, such a

u will not be obtained by the hard decision process via (3.7), and the quantization

by (3.8) is called SDQ [31].

Here is a simple example illustrating the idea underlying the SDQ. Consider a

quantization step size q = 5, a block of transform coefficients

c = T(x − p(m, f, v)) = (84, 0,−8, 17, 0,−11,−8, 1),

3Actually, this is true for most recent video compression standards, as they only specify the

decoding syntax and leave the encoding open for optimization.
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and the entropy coding method of context adaptive variable length coding (CAVLC)

in H.264. (See Section 2.3.2 for review of hybrid coding in H.264.) The quantization

output given by conventional HDQ is

u ′=(17, 0, −2, 3, 0, −2, −2, 0).

In this case, the resulting distortion for coding the block is 15, and the number of

bits resulting from using CAVLC to code u ′ is 45. On the other hand, with λ = 30,

an SDQ method may output,

u=(17, 0, −2, 4, 0, −2, −1, 0).

In this case, the resulting distortion is 25, but the number of bits needed for CAVLC

to code u reduces to 27. With λ = 30, the RD costs resulting from u ′ and u are

respectively 1365 and 835 with the latter significantly smaller than the former.

Note that the value −8 is quantized into both −2 and −1 in u , as

c3=−8, u3=−2 and c7=−8, u7=−1.

Clearly, SDQ can trade off a little more distortion for a significant rate reduction

for using CAVLC.

The idea of trading off a little distortion for a better RD performance has

already been utilized partially in the H.264 reference software, however, in an ad

hoc way[79]. A whole block of quantized coefficients is discarded under certain

conditions, e.g., when there is only one non-zero coefficient taking a value of 1 or

-1. This is equivalent to quantizing that coefficient to 0, although a hard decision

scalar quantizer would output 1 or -1 for that coefficient. Such simple practice

has been well justified by experimental results [79]. To get better compression

performance, it is interesting and desirable to conduct SDQ in a systematic way of

(3.8).

Overall, the SDQ scheme is inspired by the fixed-slope universal lossy data com-

pression scheme considered in [37], which was first initiated in [29] and was latter
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extended in [36]. Other related works on practical SDQ include without limita-

tion SDQ in JPEG image coding and H.263+ video coding (see [62, 10, 28, 74, 67]

and references therein). In [62, 10], partial SDQ called rate-distortion optimal

thresholding was considered. Recently, Yang and Wang [28] successfully devel-

oped an algorithm for optimal SDQ in JPEG image coding to further improve the

compression performance of a standard JPEG image codec. Without considering

optimization over motion estimation and quantization step sizes, Wen et. al [74]

proposed a trellis-based algorithm for optimal SDQ in H.263+ video coding, which,

however, is not applicable to SDQ design in H.264 due to the inherent difference

in the entropy coding stages of H.264 and H.263+. In [67], Schumitsch et. al.

studied inter-frame optimization of transform coefficient levels based on a simpli-

fied linear model of inter-frame dependencies. Although the SDQ principle is not

new and this thesis is not the first attempt [28] to apply SDQ to practical coding

standards either, designing algorithms for optimal or near optimal SDQ in con-

junction with a specific entropy coding method is still quite challenging, especially

when the involved entropy coding method is complicated. Different entropy coding

methods require different algorithms for SDQ. In some cases, for example, SDQ

for GIF/PNG coding where the entropy coding methods are the Lempel-Ziv[84][85]

algorithms, the SDQ design problem is still open [35]. Fortunately, in the case of

H.264, we are able to tackle the SDQ design issues associated with CAVLC and

CABAC in H.264 [32, 30, 33]. Furthermore, our studies in SDQ within the fixed

slope scheme constitutionally leads to a new framework for jointly designing motion

prediction, quantization, and entropy coding in hybrid video coding, as described

in the next section.
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3.3 Rate Distortion Optimization Framework for

Hybrid Video Coding

Based on the SDQ scheme of (3.8), we now examine the maximal variability and

flexibility an hybrid encoder can enjoy when decoding syntaxes are given. Then,

an RD optimization problem is formulated for minimizing the actual RD cost and

an iterative solution is developed after.

3.3.1 Optimization Problem Formulation

A conventional RD optimization framework for hybrid video coding is based on

HDQ of (3.7). Consider RD optimization for a whole frame X , which consists of

a group of blocks. Denote prediction modes, reference frames, motion vectors, and

quantization step sizes as m , f , V , and q , respectively. The actual RD cost is

JX (m , f ,V , q)

= ||Z − Ẑ ||2 + λ · [r(m) + r(f ) + r(V ) + r(q) + r( HDQ[T(Z )] ) ], (3.9)

where Z = X − P(f ,m ,V ), P(f ,m ,V ) is the prediction, Ẑ is the residual re-

constructed from the hard decision quantization outputs HDQ(T(Z )), and λ is a

constant. The conventional RD optimization framework for hybrid video compres-

sion can then be summarized as follows,

min
m ,f ,V ,q

JX (m , f ,V , q). (3.10)

However, it is easy to see that HDQ is not desirable for minimizing the RD

cost because with HDQ the minimizing of the actual RD cost is impractical, i.e., it

requires to go through the residual coding procedure for many time [55]. Moreover,

HDQ is not required by any hybrid coding standard. Indeed, inspired by the SDQ

scheme of (3.8), we discover that given motion prediction and a quantization step

size, the quantization output itself is a free parameter and one has the flexibility to

choose the desired quantization output in order to optimize trade-off between rate
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and distortion rather than to minimize the distortion only [34] [32], as discussed in

section 3.2.

Using SDQ instead of conventional HDQ, an optimization problem for jointly

designing motion prediction, quantization, and entropy coding in a hybrid coding

structure is formulated as follows,

min
m ,f ,V ,q ,U

JX (m , f ,V , q ,U ), (3.11)

where

JX (m , f ,V , q ,U ) = ||Z−T−1(Q−1(U ))||2+λ·[r(m)+r(f )+r(V )+r(q)+r(U ) ] .

A simple comparison between the proposed framework in (3.11) and the conven-

tional one in (3.10) reveals an advantage of the proposed framework, i.e.,

min
m ,f ,V ,q ,U

JX (m , f ,V , q ,U ) ≤ min
m ,f ,V ,q

JX (m , f ,V , q),

since for any given m , f ,V , q , we can always apply SDQ in (3.8) to reduce the RD

cost in (3.9). Furthermore, the problem of optimizing the actual RD cost becomes

tractable algorithmically by (3.11), i.e., as discussed in Section 3.3.2, an iterative

solution is easily established to optimize over m , f , V , q and U . The solution

is at least feasible, although it may not be proved to be globally optimal. On the

other hand, with the conventional framework of (3.10), it is impractical to optimize

the actual RD cost over f , V , and q , because it would require to go through the

residual coding procedure to evaluate the cost for all possible f , V , and q . Overall,

due to SDQ, the new framework supports a better RD performance and features a

feasible solution to minimizing the actual RD cost for hybrid video coding.

3.3.2 Problem Solution

In general, (3.11) is difficult to solve due to the mutual dependency among m , f ,

V , q , U . To make the problem tractable, we propose an iterative solution, in

which motion estimation and residual coding are optimized alternately. Specifi-

cally, three RD optimization algorithms are developed—one for SDQ given motion
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estimation and quantization step sizes, one for optimizing residual coding given

motion estimation, and one for overall optimization of hybrid video encoding for

each individual frame with given reference frames—with them embedded in the

indicated order.

Optimal Soft Decision Quantization

Given (m , f ,V , q), the minimization problem of (3.11) becomes

min
U
||Z − T−1(Q−1(U ))||2 + λ · r(U ), (3.12)

where Z is the residual corresponding to given (m , f ,V , q). It is easy to see

that the exact optimal SDQ solution to (3.12) depends on entropy coding, which

determines the rate function r(·). Furthermore, the entropy coding method is

application-dependent. Different applications have different entropy coding meth-

ods and hence different SDQ solutions. Some early work on practical (optimal

or suboptimal) SDQ includes without limitation SDQ in JPEG image coding and

H.263+ video coding (see [67, 10, 28, 74, 62] and references therein). In this thesis,

we focus on RD optimization with H.264 compatibility. Since H.264 supports two

entropy coding methods, i.e., CAVLC and CABAC, two SDQ algorithms are to

be developed. Specifically, a graph-based SDQ design based on CAVLC is to be

presented in Chapter 4 when the proposed RD framework is applied to optimize

H.264 baseline profile encoding. Another SDQ design based on CABAC is to be

presented in Chapter 5 when the proposed RD framework is applied to optimize

H.264 main profile encoding.

Residual Coding Optimization

Residual coding optimization here refers to a partial solution of (3.11) with given

(m , f ,V ). Essentially, it involves alternating optimization over U with given q ,

which is SDQ, and optimization over q with given U . Specifically, given (m , f ,V ),
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in residual coding optimization, we compute

arg min
q ,U

||Z − T−1(Q−1(U ))||2 +λ · (r(q) + r(U )). (3.13)

In general, algorithms for solving (3.13) are to be designed based on specific

coding syntaxes of T−1(Q−1(·)) and r(·). As discussed above, the SDQ design is

closely related to a given entropy coding method. However, when the SDQ design

is given, it is easy to obtain a solution to (3.13). In the following, we present our

solution to (3.13), which is developed for optimizing H.264-compatible coding.

Examining the distortion term in (3.13), we see that its computation is macro-

block wise additive. As to be discussed later, even though the term r(U ) is not

strictly macroblock-wise additive, the adjacent block dependency used in coding

U is so weak that we can ignore it in our optimization and simply regard r(U )

as being block-wise additive. Thus, the main difficulty lies in the term of r(q),

which represents a first order predictive coding method [79] in H.264. As such, the

optimization problem in (3.13) for H.264 can not be solved in a macroblock-by-

macroblock manner.

To tackle the adjacent macro-block dependency from r(q), we develop a trellis

structure with K stages and 52 states at each stage (H.264 specifies 52 quantization

step sizes). Each stage accords to a macro-block, while each state accords to a

quantization step size. States between two neighboring stages are fully connected

with each other. The RD cost for a transition between the ith state at the (m−1)th

stage to the jth state at the mth stage can be computed by two parts, i.e., the

coding rate of r(qj − qi) and the RD cost for coding the mth macro-block using qj,

which is computed using SDQ. The RD cost for each state j at the initial stage

is equal to the RD cost resulting from encoding the first macro-block using qj and

the corresponding optimal SDQ. Then, dynamic programming can be used to solve

(3.13) completely.

Apparently, the above solution is computationally expensive as it involves run-

ning SDQ for each one of 52 states at each stage and then searching the whole
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trellis. In practice, however, there is no need for this full scale dynamic program-

ming because the RD cost corresponding to the quantization output U is much

greater than that corresponding to the quantization step size q 4. This implies

that very likely, the globally optimal quantization step size for each macro-block

will be within a small neighboring region around the best quantization step size

obtained when r(q) is ignored in the cost and one can apply dynamic programming

to a much reduced trellis with states at each stage limited only to such a small

neighborhood. To this end, we propose the following procedure to find the best q

when r(q) is ignored.

Step 1 : For a given block5, initialize q using the following empirical equation

proposed in [75] with a given λ in conjunction with (2.4):

λ = 0.85 · 2(p−12)/3. (3.14)

Step 2 : Compute u by the SDQ algorithm6.

Step 3 : Fix u . Compute q by solving ∂J
∂q

= 0. By ignoring r(q), we have

q = |T(z ) · u/(u · u)|, which is then rounded to one of the 52 predefined

values in H.264.

Step 4 : Repeat Steps 2 and 3 until the decrement of the RD cost is less than a

prescribed threshold.

4One quantization step size is used for a whole 32× 32 macroblock, which accords to 32× 32

quantization outputs. Besides, the dynamic range of quantization step size is [1, 52] while the

dynamic range of a quantization output is [0, 255].
5As we use U , q to represent quantization outputs and quantization step sizes for a whole

frame, we use u , q to represent those for any macro-block, with subscript omitted for simplicity.
6 We assume an SDQ is given while discussing the residual coding optimization algorithm

in this section. For applying the proposed framework, an SDQ is firstly developed based on a

specific entropy coding method. Then, the SDQ is embedded to the residual coding optimization

algorithm, which is further embedded into the overall optimization algorithm presented in the

next section.

46



Mb MbMb MbMb Mb1                   2                               k                  k+1                           K-1                   K 

Figure 3.3: A reduced trellis structure for the residual coding optimization. The

five states accord to quantization step sizes of qk(pk − 2), qk(pk − 1), qk(pk), qk(pk +

1), qk(pk + 2).

Simulations show that (3.14) makes a good initial point. After one iteration, the

obtained q is quite close to the best quantization step size with r(q) being ignored.

We then select a neighboring region of [q−2, q+2] to build up the trellis at stage k,

as shown in Figure 3.3, and hence the computation complexity is greatly reduced.

Experiments have been conducted to compare the performance of the reduced

trellis structure with that of the full trellis structure. Specifically, we encode 20

frames with 10 frames from “foreman.qcif” and 10 frames from “carphone.qcif”. In

total, there are 1980 macroblocks. We compare the optimal quantization step sizes

obtained using the full trellis and those obtained using the reduced trellis. There

is only one macroblock in “carphone.qcif” that chooses a different quantization

step size by using the full trellis and the reduced trellis. Correspondingly, the

rate distortion performance are shown in Table 3.1. It is shown that dynamic

programming applied to this reduced trellis achieves almost the same performance

as that applied to the full trellis.

Table 3.1: RD performance for using the full trellis and the reduced trellis.

Reduced trellis Full trellis

PSNR (dB) 36.885 36.886

Number of bits 19876 19878
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The joint optimization algorithm

Based on the algorithm for the near optimal residual coding, a joint optimization

algorithm for solving (3.11) is proposed to alternately optimize motion estimation

and residual coding as follows.

Step 1 : (Motion estimation) For given residual reconstruction Ẑ (q ,U ), we com-

pute (m , f ,V ) by,

min
m ,f ,V

d(X−P(m , f ,V ), Ẑ )+λ · (r(m)+r(f )+r(V )). (3.15)

which is equivalent to (3.11) for given (q ,U ).

Step 2 : (Residual coding) For given (m , f ,V ), the process in Section 3.3.2 is

used to find (q ,U ).

Step 3 : Repeat Steps 1 and 2 until the decrement of the actual RD cost is less

than a given threshold.

We now study the solution to (3.15), which involves mode selection and motion

estimation. In [77], the prediction mode is selected for each macroblock by com-

puting the actual RD cost corresponding to each mode and choosing the one with

the minimum. This method of mode selection is also used here. For a pixel block

x with its residual reconstruction ẑ and a given mode m, (f, v) is computed by

(f, v) = arg min
f,v

d( x−ẑ , p(m,f,v) ) + λ · (r(v) + r(f)). (3.16)

Compare (3.16) with (3.1). For given ẑ , (3.16) is equivalent to searching for a

prediction to match x−ẑ in (3.1). Thus, the same search algorithm is used to solve

(3.16) as the one for (3.1) in [77]. The computational complexity for (3.16) and

(3.1) is almost the same since the time for computing x−ẑ is ignorable.

By its iterative nature, the above joint optimization algorithm is not guaranteed

to converge to the global optimal solution of (3.11). However, it does converge

in the sense that the actual rate distortion cost is decreasing at each iteration
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step. The computational complexity of the proposed iterative algorithm comes

from three parts, i.e., optimal residual coding, motion vector computation, and

mode selection. In case of H.264, the motion vector updating part and the mode

selection part hardly cause any increase in the computational complexity compared

to the rate distortion optimization method in [77], as discussed in the above. The

main extra computational complexity results from the optimal residual coding part,

particularly the SDQ algorithm.

3.4 Chapter Summary

In this chapter, we have discussed RD optimization for hybrid video compression.

Inspired by the universal fixed-slope lossy coding scheme, we have discovered a

new free parameter for RD optimization, i.e., the quantization output, based on

which an RD optimization framework is proposed to minimize the actual RD cost.

Within the framework, we have proposed three algorithms—SDQ, residual coding

optimization, and an iterative overall algorithm—with them embedded in the in-

dicated order. In general, the proposed framework may be applied to optimize RD

trade-off for any hybrid coding scheme by developing three algorithms according

to corresponding coding syntaxes. In this chapter, we have presented details of the

residual coding algorithm and the joint optimization algorithm for optimizing RD

trade-off in H.264. The real challenge for algorithm design, actually, comes from

the SDQ design. In the following chapters, we will discuss detailed SDQ designs

and their applications in the proposed RD framework to optimizing H.264 baseline

profile encoding and main profile encoding, respectively.
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Chapter 4

RD Optimal Coding with H.264

Baseline Compatibility

In this chapter, we apply the proposed RD framework to optimizing H.264 baseline

profile encoding. As discussed in Chapter 3, a key step in the application of the

proposed framework is to design SDQ in conjunction with a specific entropy coding

method, i.e., CAVLC in H.264 baseline profile in this case. Once an SDQ algorithm

is designed, it can be called as a subroutine by the residual coding optimization

algorithm, which is then called by the overall algorithm, as discussed in Chapter 3.

4.1 Review of CAVLC

CAVLC is used to code zig-zag ordered quantized transform coefficients1 in the

H.264 baseline profile. For a given zig-zag sequence ū , CAVLC encoding is con-

ducted in the reverse order. In particular, the CAVLC encoding algorithm is sum-

marized as follows [3]:

1. Initialization. The sequence is scanned in the reverse order to initialize two

sets of parameters. The first set includes TotalCoefficients (refereed to as TC

1Quantized transform coefficients are also referred to as transform coefficient levels.
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hereafter), T1s , and TotalZeros , which represent the total number of non-

zero coefficients, the number of trailing coefficients with value ±1, and the

number of zero coefficients between the first non-zero coefficient and the scan

end, respectively. The definition of T1s is based on an observation that the

highest frequency non-zero coefficients in the scan are often a sequence of ±1,

called trailing ones. CAVLC allows at most 3 trailing ones to be specially

handled, i.e., T1s≤ 3. The second set is a series of (run, level) pairs, where

level means a non-zero coefficient and run is the number of zeros between the

current level and the next level .

2. Encoding CoeffToken. TC and T1s are combined into one parameter, i.e.,

CoeffToken, to be encoded. Four look-up tables are defined for encoding

CoeffToken. The selection depends on the numbers of non-zero coefficients in

upper and left-hand previously coded blocks, Nu and Nl. Specifically, a table

is selected based on M = (Nu + Nl)/2 by the following procedure:

if(0<=M<2) use table Num-V0 ;

if(2<=M<4) use table Num-V1 ;

if(4<=M<8) use table Num-V2 ;

if(M>=8) 6-bit fixed length code ;

3. Encoding the sign of each trailing one. One bit is used to signal the sign, i.e.,

0 for + and 1 for -. Note that the number of trailing ones has already been

transmitted.

4. Encoding levels. 7 VLC tables, named as Vlc(i) with 0 ≤ i ≤ 6, are used

to encode all levels other than trailing ones. The table selection criteria are

summarized in the following pseudo codes.

// Choose a table for the first level

if(TotalCoeffs>10 && T1s<3) i = 1 ; // use Vlc(1)
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else i = 0 ; // use Vlc(0)

// Update the table selection after coding each level

vlc_inc[7] = {0, 3, 6, 12, 24, 48, 65536} ;

if(level>vlc_inc[i]) i ++ ;

if(level>3 && (Be the first non-1 level)) i = 2 ;

5. Encoding TotalZeros . One out of 15 tables is chosen based on TC to encode

TotalZeros .

6. Encoding runs. For each run, a parameter called ZerosLeft (referred to as ZL

hereafter) is defined as the number of zeros between the current level and the

scan end. It is then used to select one table out of 7 to encode the current

run. E.g., ZL equals to TotalZeros for the first run.

In summary, CAVLC is designed to take advantage of some empirical observa-

tions on quantized coefficients. First, they are commonly sparse, i.e., containing

mostly zeros. Run-length coding is used to represent consecutive zeros efficiently.

Second, it is very likely that the trailing nonzero coefficients after the zig-zag scan

take values of ±1. The trailing one rule is specially developed to handle these

levels. Third, the magnitude of non-zero coefficients tends to be higher at the start

of the zig-zag scan and lower towards the higher frequencies. The level coding ta-

bles Vlc(0-6) are constructed according to this tendency. All these delicate designs

together pave the way for CAVLC to be adopted in H.264.

4.2 SDQ Design based on CAVLC

In this section, we present a graph-based SDQ algorithm based on CAVLC, which

solves the SDQ problem of (3.12). Clearly, for given residual and q , the distortion

term in (3.12) is block-wise additive. Note that U = {u1, · · · ,u16K}, where K

is the number of macro-blocks in a frame and 16K is the number of 4 × 4 blocks

52



there. In H.264, encoding of each block uk depends not only on uk itself, but

also on its two neighboring blocks. However, such dependency is very weak and

the number of bits needed to encode uk largely depends on uk itself. Therefore,

in the optimization problem given in (3.12) for the whole frame, we will decouple

such weak dependency. In doing so, the optimization of the whole frame can be

solved in a block by block manner with each block being 4×4. That is, the optimal

U can be determined independently for each uk. By omitting the subscript, the

optimization problem given in (3.12) now reduces to,

u = arg min
u

d(z , T−1(u · q)) + λ · r(u), (4.1)

where r(u) is the number of bits needed for encoding u using CAVLC given that

its two neighboring blocks have been optimized.

In general, SDQ is a search in a vector space of quantization outputs for trade-

off between rate and distortion. The efficiency of the search largely depends on how

we may discover and utilize the structure of the vector space, which features the

de-quantization syntax and the entropy coding method of CAVLC. In this study, we

propose to use a dynamic programming technique to do the search, which requires

an additive evaluation of the RD cost. In the following, we first show the additive

distortion computation in the DCT domain based on the de-quantization syntax in

H.264 as reviewed in Section 2.3.2. Second, we design a graph for additive evalua-

tion of the rate based on analysis of CAVLC, with states being defined according

to level coding rules and connections being specified according to run coding rules.

Finally, we discuss the optimality of the graph-based algorithm, showing that the

graph design helps to solve the minimization problem of (4.1).

4.2.1 Distortion Computation in the DCT domain

The distortion term in (4.1) is defined in the pixel domain. It contains inverse

DCT, which is not only time consuming, but also makes the optimization problem

intractable. Consider that DCT is a unitary transform, which maintains the Eu-
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clidean distance. We choose the Euclidean distance for d(·). Then, the distortion

can be computed in the transform domain in an element-wise additive manner.

As reviewed in Section 2.3.2, the transform and quantization in H.264 are com-

bined together. Specifically, the residual reconstruction process is

T−1(u · q) = wT · (u ⊗ dq [prem] · 2pquo/64) ·w . (4.2)

Since ŵ defines a unitary transform, we have

||ŵT ·Y · ŵ ||2 = ||Y ||2.

Equivalently, that is,

||wT ·Y ·w ||2 = ||Y ⊗B ||2, (4.3)

where Y is any 4×4 matrix, and

B =
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Note that B is obtained based on the given matrixes of w and ŵ as shown in

Section 2.3.2. Consider z = ŵT(ŵ · z · ŵT)ŵ . Applying (4.3), we compute the the

distortion term in (4.1) with the Euclidean measure by

D = ||z −wT · (u ⊗ dq [prem] · 2pquo/64) ·w ||2

= ||wT ·
(
(ŵ · z · ŵT)⊗ f − u ⊗ dq [prem] · 2pquo/64

)
·w ||2

= ||c − u ⊗ dq [prem] · 2pquo/64⊗B ||2 (4.4)

where c = (w · z · wT) ⊗ f . The equation of (4.4) brings to us two advantages.

The first is the high efficiency for computing distortion. Note that B and dq

are constant matrices defined in the standard. c is computed before soft decision

quantization for given z . Thus, the evaluation of D consumes only two integer

multiplications together with some shifts and additions per coefficient. More im-

portantly, the second advantage is the resulted element-wise additive computation

54



of distortion, which enables us to solve the soft decision quantization problem using

the Viterbi algorithm to be presented later.

After applying the result of (4.4) to (4.1), the soft decision quantization problem

becomes

u = arg min
u
||c − u ⊗ dq [prem] · 2pquo/64⊗B ||2 + λ · r(u). (4.5)

Note that every bold symbol here, e.g., u , represents a 4×4 matrix. For entropy

coding, the 4×4 matrix of u will be zig-zag ordered into a 1×16 sequence. To facil-

itate our following discussion of algorithm design based on CAVLC, we introduce

a new denotation, i.e., to add a bar on the top of a bold symbol to indicate the

zig-zag ordered sequence of the corresponding matrix. E.g., ū represents the 1×16

vector obtained by ordering u . Then, the equation of (4.5) is rewritten as follows,

ū = arg min
ū
||c̄ − ū ⊗ d̄q [prem] · 2pquo/64⊗ B̄ ||2 + λ · r(ū),

where we still use the symbol ⊗ to indicate the element-wise multiplication between

two vectors. Finally, for simplicity, we denote b̄(p) = d̄q [prem] · 2pquo/64 ⊗ B̄ and

obtain the following SDQ problem:

ū = arg min
ū
||c̄ − ū ⊗ b̄(p)||2 + λ · rCAVLC(ū). (4.6)

Note that the rate function r(·) is further clarified to be related to CAVLC2.

4.2.2 Graph Design for SDQ based on CAVLC

The minimization problem in (4.6) is equivalent to a search for an output sequence

to minimize the rate distortion cost. Targeting an efficient search, we propose a

graph-based method. Specifically, we will use the graph shown in Figure 4.1 to rep-

resent the vector space of the quantization outputs, with each transition standing

for a (run, level) pair and each path from the initial state (denoted as HOS) to the

2The clarification is for avoiding confusion with latter discussions about SDQ design based on

CABAC.
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end state (denoted as EOS) in the graph giving a unique sequence of quantization

outputs. As discussed in the above, the distortion term in (4.6) can be easily com-

puted in an element-wise additive manner. However, it is difficult to evaluate the

rate term due to the adaptive coding table selection in CAVLC. Graph 4.1 will facil-

itate an additive rate evaluation according to the CAVLC coding process reviewed

in the above. It has 16 columns corresponding to 16 quantization coefficients in

addition to the initial and end states with each column further containing a set of

states. In the following, we will first define those states and then describe how they

are connected to form the graph 4.1.

Definition of states according to CAVLC level coding

CAVLC encodes levels based on adaptive contexts, which are used to select VLC

tables. These adaptive contexts are represented by different states in Graph 4.1.

Let us first examine the trailing one coding rule (see [3] for details). The trailing

ones are a set of levels with three features. First, they must be handled at the

beginning of the coding process. (Note that coding is conducted in the reverse

order of the zig-zag sequence.) Second, they are consecutive. Third, there is a

restriction of to consider at most 3 of them. To meet these three requirements, we

design three types of states, Tn i, i = 1, 2, 3. In addition, CAVLC requires to know

the number of trailing ones, i.e., T1s , both at the beginning of the coding process

(T1s is transmitted) and at the point that the level coding table is initialized. As

such, we define 6 states, Tn3H, Tn2H, Tn1H, Tn2T, Tn1T, and Tn1TH as shown

in Figure 4.2, where TnjH in the column of ci represents that ci is the first trailing

one and T1s =j, TnjT in the column of ci represents that ci is the (4−j)th trailing

one and T1s = 3, and Tn1TH in the column of ci represents that ci is the second

trailing one and T1s =2. Hereafter, these states are also referred to as T-states.

More states are defined based on features for coding levels other than trailing

ones using CAVLC. The two important factors for coding these levels are rate

functions for corresponding tables and table selection criteria. For the purpose of
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Figure 4.1: The graph structure for SDQ based on CAVLC. There are 16 columns

according to 16 coefficients in a 4 × 4 block. A column consists of multiple state

groups, according to different ZL. The left panel shows the connections between

these groups. Each group initially contains a set of states defined on the right

panel, while eventually only states that receive valid connections remain valid.
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rate evaluation, two tables are different only if they have different rate functions.

The following equations summarize the rate functions for Vlc(0)-Vlc(6),

r(Vlc(0), u) =



2u− 1, 0 < u < 8

−2u, −8 < u < 0

19, 8 ≤ |u| ≤ 15

28, o.w.

(4.7)

r(Vlc(i), u) =

{ |u|−1
2i−1 + i + 1, |u| ≤ 15 · 2i−1

28, o.w.
i = 1, · · · , 6. (4.8)

Now consider the table selection. It is based on a set of thresholds assigned to those

codes:

Ti = 3 · 2i−1, i = 1, · · · , 5.

Note that the threshold for Vlc(0) is 0, meaning that it always switches to another

table. There is no threshold defined for Vlc(6). Once it is selected, it will be

used until the end of the current block. Other than these, the coding table will

be switched from Vlc(i) to Vlc(i+1) when the current level is greater than Ti.

Vlc(0) will switch to Vlc(2) when level > 3. Therefore, each coding table except

Vlc(6) needs to have two states in order to clearly determine the context to choose

a coding table for the next level according to the current level . As shown in Figure

4.3, there are 13 states defined, named as either Vi≤Ti or Vi>Ti. These states are

refereed to as V-states. The above state definition also implies a restriction to the

state output. For example, the output for the state Vi > Ti must be greater than

Ti. Consider the dynamic range of [1, 212] for a level in H.264. The output range

for Vi≤Ti is [1, Ti], while the output for Vi>Ti will be any integer in [Ti + 1, 212].

For V6, the output range will be the full range of [1, 212].

Definition of state groups according to run coding

Now we examine the runs coding process of CAVLC and explain why and how

states are clustered into groups. The context for choosing a table to code runs
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Figure 4.2: States and connections defined according to the trailing one coding rule

of CAVLC. HOS is a dummy state, indicating the start of encoding.

depends on the parameter of ZL, which is involved in future states in the graph

structure. To build this dependency into the definition of states, we define a state

group for each different ZL. As shown in Figure 4.1, a state group initially consists

of all T-states and V-states. For the column of coefficient ci, there are (i + 1)

groups, corresponding to ZL=0, 1, · · · , i.

Besides helping the run coding table selection, the formation of state groups

according to ZL provides other two advantages. First, it naturally leads us to know

TotalZeros for every path in the graph. Second, it enables us to include the coding

rate of CoeffToken in the optimization process by providing the value of TC . In

addition, TC is also used to initialize the level coding table.

Connecting states to build up a graph

Connections from one column to another are now established in two steps. The first

is to connect state groups, and the second is to further clarify connections between

states in two connected groups. Specifically, HOS is connected to all groups, while

a group in the column of ci is connected to EOS only if its ZL equals to i. Moreover,

consider the mth group in the column of ci (0 ≤m≤ i) with ZL being m and the

nth group in the column of cj with ZL being n, where i > j. These two groups are

connected if and only if i−m=j − n. This rule is illustrated in Figure 4.1.
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Figure 4.3: States and connections defined according to the level coding process of

CAVLC.

Now we discuss connections between two groups. First, two rules are defined as

Tn3H→Tn2T→Tn1T and Tn2H→Tn1TH between T-states as shown in Figure 4.2.

Second, connections between V-states are established by two rules, as illustrated in

Figure 4.3:

1. The state Vi≤Ti will go to both Vi≤Ti and Vi>Ti.

2. The state Vi>Ti will go to both Vi+1≤Ti+1 and Vi+1>Ti+1.

Third, we utilize the level coding table initialization rule to set up other necessary

connections including those from the initial state HOS and those to the end state

EOS.

1. Connections from HOS to T-states. HOS is connected to Tn3H in the column

corresponding to ci when i ≥ 2; HOS is connected to Tn2H in the column

corresponding to ci when i≥1; HOS is connected to all Tn1H states.
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2. Connections from HOS to V-states in a group with ZL in the column corre-

sponding to ci. This is for the case where T1s =0. Connect HOS to V0≤ 3

and V0 > 3 if i + 1 − ZL ≤ 10. Connect HOS to V1 ≤ 3 and V1 > 3 if

i + 1− ZL > 10.

3. Connections from Tn1H to V-states in a group with ZL in the column corre-

sponding to ci. This is for the case where T1s =1. Connect Tn1H to V0≤3

and V0 > 3 if i + 1 − ZL ≤ 9. Connect Tn1H to V1 ≤ 3 and V1 > 3 if

i + 1− ZL > 9.

4. Connections from Tn1TH to V-states in a group with ZL in the column

corresponding to ci. This is for the case where T1s =2. Connect Tn1TH to

V0≤3 and V0>3 if i + 1− ZL ≤ 8. Connect Tn1TH to V1≤3 and V1>3 if

i + 1− ZL > 8.

5. Connecting Tn1T to V0≤3 and V0>3.

Eventually, while each group initially contains 19 states as shown in Figure 4.1, only

those states that receive valid connections remain. The graph ends at a dummy

state EOS.

Metric assignment

Now we discuss parallel transitions before presenting metric assignment to a transi-

tion in the graph. Because each state may accord to multiple quantization outputs,

there exist multiple transitions between two connected states. As discussed above,

there are two types of states, i.e., T-states and V-states. While a T-state clearly

outputs 1, the output of a V-state can be any integer within a given range. Ac-

cordingly, there exist multiple transitions for a connection to a V-state. Consider

a connection from a state s1 in the column corresponding to ci to a state s2 in the

column corresponding to cj. Denote the output range of s2 as [ulow, uhigh]. There

will be (uhigh−ulow+1) parallel transitions from s1 to s2, with each according to a
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unique quantization output. Clearly, the only difference between those transitions

is the quantization output. However, the output is well constrained within a range

so that the difference will not affect any other connections. Therefore, they are

named parallel transitions.

Now, we assign metrics to three types of transitions, i.e., a transition starting

from HOS, a transition ending at EOS, and a transition from a state s1 in the

column of ci to another state s2 in the column of cj. The metric for a transition

from HOS to s1 in the column of ci is defined as follows.

ghead(ci, s1) =
15∑

k=i+1

c2
k + λ · r(ZL,T1s ,TC ) + (ci − ui · bi)

2 + λ · rs1(ui), (4.9)

where the first term is the distortion for quantizing c15, · · · , ci+1 to zeros as the

encoding starts with ci, the last two terms accord to the RD cost for quantizing ci

to ui, and bi is the ith element of the vector b̄(p) as defined in (4.6).

The metric for a transition from s1 in the column of ci to s2 in the column of

cj, (i >j) is defined as

gn =
i−1∑

k=j+1

c2
k + λ · rs1(i− j − 1) + (cj − uj · bj)

2 + λ · ts2(uj), (4.10)

where the first term computes the distortion for quantizing some coefficients to

zero, the second term is the rate cost for coding the run with rs1(i−j−1) given

by the run coding table at state s1, and the last two terms are the RD cost for

quantizing cj to uj with ts2(uj) determined by the level coding table at state s2.

Finally, for a transition from a state in the column corresponding to cj to EOS,

the RD cost is

gend(cj) =

j−1∑
k=0

c2
k, (4.11)

which accords to the distortion for quantizing all remaining coefficients from cj−1

to c0 to zeros.
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4.2.3 Algorithm, Optimality, and Complexity

With the above metric assignments, the problem of (4.6) can be solved by running

dynamic programming over Graph 4.1. In other words, the optimal path resulting

from dynamic programming applied to Graph 4.1 will give rise to the optimal

solution to (4.6), as shown in the following theorem.

Theorem: Given a 4×4 residual block, applying dynamic programming for a

search in the proposed graph gives the optimal solution to the SDQ problem of

(4.6).

The proof of the above theorem is sketched as follows. For a given input se-

quence c̄ = (c15, · · · , c0), any possible sequence of quantization outputs accords to

a path in the proposed graph, and vice versa. Define a metric for each transition

in the graph as by Equations from (4.9) to (4.11). Carefully examining details of

CAVLC will show that the accumulated metric along any path leads to the same

value as evaluating the RD cost in (4.6) by really going through CAVLC to code

the corresponding output sequence. Thus, when dynamic programming, e.g., the

Viterbi algorithm [81], is applied to find the path with the minimize RD cost, the

obtained path gives the quantization output sequence to solve (4.6).

The complexity of the proposed graph-based SDQ algorithm (i.e., dynamic pro-

gramming applied to Graph 4.1) mainly depends on three factors, i.e., the number

of columns as 16, the number of states in each column, and the number of parallel

transitions for each connection. Expansion of Graph 4.1 into a full graph reveals

that the number of states at various columns varies from 17 to 171. With states

selectively connected, the major computational cost is to handle the parallel tran-

sitions. For a connection from a state s1 in one column to a state s2 in another

column, the number of parallel transitions is (uhigh−ulow+1), where [ulow, uhigh] is the

range of all possible quantization outputs at the state s2. From (4.9) and (4.10), it

follows that the only difference among the RD costs assigned to these parallel tran-

sitions is in the RD costs arising from different quantization outputs u∈ [ulow, uhigh].

Studies on CAVLC show the rate variation due to different u ∈ [ulow, uhigh] is in-
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Table 4.1: Statistics corresponding to 6 parallel transitions in H.264 baseline profile

optimization.

floor(u)-2 floor(u)-1 floor(u) ceil(u) ceil(u) +1 ceil(u) +2

Occurrences 0 13644 154328 110268 16955 0

significant compared to the quadratic distortion. This implies that the quantization

output for the optimal transition is very likely within a small neighboring region

around the hard-decision quantization output û ∈ [ulow, uhigh] that minimizes the

quadratic distortion. Thus the number of parallel transitions to be examined in

practice could be much smaller. Table 4.1 shows the result of an experiment, in

which we collect the number of occurrences for events that a real-valued coefficient

u is quantized to 6 integers around it. It is shown that it is sufficient to compare 4

parallel transitions around û, and hence the complexity is reduced to a fairly low

level.

4.3 Experimental Results

Experiments have been conducted to study the coding performance of the proposed

RD method for optimizing H.264 baseline profile coding. The algorithms are imple-

mented based on the H.264 reference software Jm82[42]. Each sequence is divided

into and encoded by groups of frames. In each group, there is one standard I-frame,

while all the subsequent frames are coded as P-frames. Experiment results are re-

ported with a group size of 21. The range for full-pixel motion estimation is ±32,

and 5 reference frames are used for motion estimation.

Comparative studies of the coding performance are shown by RD curves, with

the distortion being measured by PSNR defined as PSNR = 10 log10(2552)/MSE ,

where MSE is the mean square error. Given two methods A and B, a so-called

relative rate saving of B to A is computed as in [77] by,

S(PSNR) = 100 · RA(PSNR)−RB(PSNR)

RA(PSNR)
%,
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Figure 4.4: The RD curves of four coding methods for coding video sequences of

“Foreman” and “Highway”.
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Figure 4.5: The RD curves of four coding methods for coding the video sequence

of “Carphone”.

where RA(PSNR) and RB(PSNR) are the rate corresponding to a given PSNR

for methods A and B, respectively. RA(PSNR) and RB(PSNR) are calculated by

interpolations based on corresponding RD curves. Figures 4.4 and 4.5 show the

RD curves for coding various sequences. The RD performance is measured over

P-frames only since I-frames are not optimized. The result is reported on the

luma component as usual. Comparisons are conducted among four encoders, i.e.,

a baseline encoder with the proposed overall joint optimization method, a main-

profile reference encoder with the RD optimization method in [77] and CABAC

(the coding setting of this encoder is the same as that of a baseline profile except

that CABAC is used instead of CAVLC), a baseline reference encoder with the

RD optimization method in [77], and a baseline reference encoder with compro-

mised RD optimization3. The RD curve for the proposed method is obtained by

3This is conducted by disabling the RD optimization option in the JM software. In this case,

empirical formulas are used to compute the RD cost for mode selection, resulting in a compromised
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varying the slope λ, while RD curves for other methods result from varying the

quantization step size. Specifically, the six points on the curve of the proposed

joint optimization method accord to λ = {27.2, 34.3, 43.2, 54.4, 68.5, 86.3}. As il-

lustrated in Figures 4.4 and 4.5, the baseline encoder with the proposed overall

joint optimization method achieves a significant rate reduction over the baseline

reference encoder with the RD optimization in [77]. Moreover, experiments over a

set of 8 video sequences (i.e., Highway, Carphone, Foreman, Salesman, Silent, Con-

tainer, Mother-Daughter, Grandma) show the proposed joint optimization method

achieves an average 12% rate reduction while preserving the same PSNR over the

RD optimization in [77] with the baseline profile, and 23% rate reduction over the

baseline encoder with compromised RD optimization.

It is interesting to compare the proposed joint optimization method using CAVLC

and the method in [77] using CABAC. Theoretically, CABAC holds advantage over

CAVLC by its adaptability to the symbol statistics and its ability to use a noninte-

ger code length. The fundamental 1bit/symbol limit on variable length codes leads

to a poor coding performance for CAVLC when the symbol probability is large.

Surprisingly, this fundamental deficit of CAVLC to CABAC has been well compen-

sated when we tune up the whole system with the joint optimization. Indeed, as

shown in Figures 4.4 and 4.5, the joint optimization method using CAVLC slightly

outperforms the method in [77] using CABAC. Since CAVLC is faster than CABAC

for decoding, the proposed joint optimization method results in a codec with a bet-

ter coding performance and faster decoding while compared to the method in [77]

using CABAC.

Figure 4.6 compares the coding gain among the proposed three algorithms.

For simplicity, the encoders with three proposed algorithms are referred to as

Enc(SDQ), Enc(SDQ+QP), and Enc(SDQ+QP+ME), respectively, while the forth

encoder is called Enc(baseline, [77]). For Enc(SDQ), motion estimation and quanti-

zation step sizes are computed using the baseline method in [77]. For Enc(SDQ+QP),

RD performance.
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the proposed residual coding optimization is performed based on the motion estima-

tion obtained using the baseline method in [77]. It is shown that approximately, half

of the gain for overall joint optimization comes from SDQ 4, while QP and ME con-

tribute the other half gain together. On average, our experiments show rate reduc-

tions of 6%, 8%, and 12% while preserving PSNR by Enc(SDQ), Enc(SDQ+QP),

and Enc(SDQ+QP+ME), respectively, over Enc(baseline, [77]).

In term of program execution time with our current implementation, the baseline

encoder using RD optimization of [77] takes 1 second to encode a P frame. SDQ

adds 1 second for each P frame. QP+SDQ takes 6 seconds to encode each frame.

The overall optimization with SDQ+QP+ME takes 15 seconds per frame. The

complexity of SDQ+QP comes from the process to explore a neighboring region of

5 quantization step sizes. The complexity of the overall algorithm mainly comes

from the iterative procedure, for which two iterations are used. Frankly, the current

implementation is not efficient and there is plenty of room to improve the software

structure and efficiency. Meanwhile, compared with the RD method in [77] and the

compromised RD method, the proposed approach seeks for better RD performance

while maintaining the decoding complexity. It targets off-line applications such as

video delivery, for which the RD performance is more important and a complicated

encoder is normally acceptable since encoding is carried out only once.

The proposed joint optimization algorithm works in a frame-by-frame manner.

Clearly, the optimization of the current P-frame encoding will impact on the coding

of the next P-frame. Thus, it is interesting to see such impact as the number of

optimized P-frames increases. Figure 4.7 shows the results of the relative rate

savings of the proposed joint optimization algorithm over the baseline reference

encoder with compromised RD optimization for various numbers of P-frames. Also

shown in Figure 4.7 is the result for the RD method in [77]. Although the proposed

4It may be interesting to relate the SDQ gain to the picture texture. In general, they can be

related to each other qualitatively through the effectiveness of motion estimation. I.e., the gain

from SDQ is higher when the energy of residual signals is greater. Usually, this accords to a less

effective motion estimation, which may be observed for highly textured pictures.
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coding the sequence of “Salesman”.
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joint optimization algorithm constantly provides better gains than the RD method

in [77], the relative rate savings decreases as N increases in both cases. This

warrants the joint optimization of a group of frames, which is left open for future

research.

4.4 Chapter Summary

In this chapter, we have applied the framework proposed in Chapter 3 to optimize

RD trade-off for H.264 baseline profile encoding. Particularly, a graph-based SDQ

algorithm has been developed based on CAVLC. It has been shown that if the weak

adjacent block dependency utilized in CAVLC of H.264 is ignored for optimization,

the proposed graph-based SDQ algorithm is indeed optimal and so is the algorithm

for residual coding. These algorithms have been implemented based on the refer-

ence encoder JM82 of H.264 with complete compatibility to the baseline profile.

Experiments have demonstrated that for a set of typical video testing sequences,

the graph-based SDQ algorithm, the algorithm for residue coding, and the iterative

overall algorithm achieve on average, 6%, 8%, and 12%, respectively, rate reduc-

tion at the same PSNR (ranging from 30dB to 38dB) when compared with the RD

optimization method implemented in the H.264 baseline reference software.

As discussed in Chapter 3, the proposed optimization framework is applicable

to any hybrid video coding scheme. In the following, we study its application to

optimizing H.264 main profile encoding.
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Chapter 5

RD Optimal Coding with H.264

Main Profile Compatibility

This chapter is focused on applying our proposed RD optimization framework to

optimizing RD trade-off for H.264 main profile encoding. Specifically, an SDQ al-

gorithm is proposed based on the entropy coding method CABAC and experiments

are conducted to verify the performance. In the following, CABAC is reviewed

before a graph structure is designed based on it for SDQ.

5.1 Review of CABAC

CABAC consists of three steps [51]:

1. Binarization. The so-called UEG0 algorithm is used to convert non-zero

transform coefficient levels into a binary representation so that the binary

arithmetic coding engine can be used to code them.

2. Context modeling. CABAC defines a probability model for each binary bit.

In the following, we will discuss those related to our SDQ design.

3. Binary arithmetic coding. The binary representation is encoded bit by bit

using corresponding models.
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The SDQ design to be presented is closely related to the context modeling

for residual coding. Residual coding by CABAC includes two parts, i.e., coding

of a so-called significance map and coding of non-zero coefficients. Given a zig-

zag ordered sequence of transform coefficient levels, its significance map contains

a binary sequence of significant coefficient flags and a sequence of last significant

coefficient flags. The context modeling for coding the significance map is associated

with the zig-zag order and is easy to be included in the soft decision design. The

context modeling for coding non-zero coefficients, however, is complicated. For a

given sequence, there are in total 10 contexts for coding the absolute values of non-

zero coefficients, with 5 of them for coding the first bit of a binary representation

and the other 5 dedicated to coding bits from the second to the 14th. Briefly, these

contexts are selected as follows,

1. For a given nonzero transform coefficient level, check the coded part of the

sequence. Compute NumLg1 as the number of coded levels that are greater

than 1 and NumEq1 as the number of coded levels that equal to 1.

2. Determine the context for coding the first bit, named pin1, of the binary

representation for the current level as,

Ctx pin1 =

 0, NumLg1 > 0

min(4, 1+NumEq1 ), otherwise.

3. The context for the 2nd ∼ 14th bits is selected by

Ctx pin2 = min(4,NumLg1 ).

There is also a bypass mode with a fixed distribution. The remaining bits after the

15th, as well as the sign bits, are coded using the bypass mode. Table 5.1 shows a

simple example of the CABAC encoding. Note that the encoding is carried out in

the reverse order of the zig-zag scan.
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Table 5.1: A simple example for CABAC significance map encoding and context

modeling.

Scanning position 1 2 3 4 5 6 7 8 9

Transform coefficient levels -8 -4 1 0 0 0 0 0 -1

Significant coefficient flag 1 1 1 0 0 0 0 0 1

Last coefficient flag 0 0 0 1

NumLg1 1 0 0 0

NumEq1 2 2 1 0

Ctx pin1 0 3 2 1

Ctx pin2 1 0

5.2 SDQ Design based on CABAC

In this section, we develop an SDQ algorithm based on CABAC in the main profile

of H.264.

5.2.1 Graph Design for SDQ based on CABAC

First look at the computation issue associated with the distortion term in (3.12)

as it contains the inverse DCT transform. This is the same issue as we have dis-

cussed in Section 4.2.1 while designing SDQ based on CAVLC. Actually, the block-

dependency decoupling discussion and the resulting formula of (4.1) in Section 4.2

are also valid here for tackling the SDQ design based on CABAC. Meanwhile, the

result of distortion computation in (4.6) discussed in Section 4.2.1 is also applica-

ble here because in both cases the transform and quantization parts are the same.

Essentially, our SDQ design based on CABAC starts with a formula as follows,

ū = arg min
ū
||c̄ − ū ⊗ b̄(p)||2 + λ · rCABAC(ū), (5.1)
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which is similar with (4.6), except that the rate function r(·) here accords to

CABAC while in (4.6) it is related to CAVLC.

Compared with SDQ design based on CAVLC in Chapter 4, SDQ design based

on CABAC is more complicated because CABAC employs an adaptive context

updating scheme besides the adaptive context selection scheme, i.e., context models

are updated after each symbol has been encoded using CABAC. Thus, the context

states, i.e., probabilities in a context model for coding a given level, are dependent

on all previously encoded levels. To tackle this problem, we consider to decompose

the problem (5.1) into a two-step optimization as follows,

min
ū

min
Ω

||c̄ − u ⊗ b̄(p)||2 + λ · r(ū |Ω), (5.2)

where Ω represents context states, or the probabilities in all context models used

for coding non-zero transform coefficient levels ū . This decomposition enables an

iterative solution to (5.1), in which the objective function is optimized over ū and

Ω alternately. Specifically, the iteration goes as follows,

1. Fix the context states Ω and optimize the RD cost over the quantization

outputs u , i.e.,

ū = arg min
ū

||c̄ − u ⊗ b̄(p)||2 + λ · r(ū |Ω), with given Ω (5.3)

2. Update context states Ω by the obtained quantization outputs ū .

Clearly, the second step is simple. The main challenge now turns to solve (5.3), for

which a graph-based design is proposed in the following.

A Graph Design based on CABAC Encoding

To solve the problem (5.3), we develop a graph structure, in which the rate function

r(ū |Ω) with given Ω is computed additively.

As shown in Figure 5.1, a graph is constructed based on coding features of

CABAC. Basically, states are defined based on the context model selection, which
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Figure 5.1: The graph structure for SDQ based on CABAC in the main profile of

H.264.

depends on two parameters NumEq1 and NumLg1 . Thus, states are named by

values of NumEq1 and NumLg1 , in the form of NumEq1 NumLg1 , e.g., 2 0 accords

to NumEq1 =2 and NumLg1 =0. When NumLg1 >0, the context is irrelevant with

NumEq1 . Thus, there are three states as X 1, X 2, and X 3. The context is fixed for

all NumLg1 ≥4. Accordingly, one state X X is defined. For a 4×4 luma block, there

are 16 columns with each of them corresponding to one coefficient. In each column

there are up to 8 states. Transitions are established between states according to the

increase of NumEq1 and NumLg1 , e.g., the state 1 0 is connected to 1 0, 2 0, or X 1

according to quantization outputs of 0, 1, or greater than 1, respectively. In case

that quantization outputs are greater than 1, parallel transitions are established

so that each accords to a unique value. In practice, because the distortion is

a quadratic function with respect to the quantization output, it is sufficient to

investigate only a few parallel transitions. Thus the complexity is greatly reduced

without sacrificing the RD performance. Finally, a graph structure as shown in

Figure 5.1 is obtained.
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Rate Distortion Metric Computation in the Graph

Consider a transition from the state H to the mth state at the coefficient ci and

denote it as si,m. Note that si,m cannot output 0 because any transition from H

must go to a so-called last significant coefficient. Denote rs(·|Ω), rl(·|Ω), and rc(·|Ω)

as the coding rate for a significant-coefficient-flag bit, a last-coefficient-flag bit, and

a quantized coefficient ui, respectively. Define a metric for this transition as follows,

gm,i = (ci − bi ·ui)
2+λ·(rs(1|Ω)+rl(1|Ω)+rc(ui|Ω)). (5.4)

Note that both the significant-coefficient-flag bit and the last-coefficient-flag bit are

1.

Further consider a transition from the mth state si+1,m at coefficient ci+1 to the

nth state si,n at coefficient ci. There are multiple parallel transitions. Different

metrics are assigned to transitions with output zero and transitions with outputs

greater than zero. Specifically,

gn,m,i=

(ci−bi ·ui)
2+λ·(rs(1|Ω)+rl(0|Ω)+rc(ui|Ω)), ui≥1

c2
i +λ·(rs(0|Ω) + rl(0|Ω)), ui =0

(5.5)

where the significant-flag bit is 0 or 1 for ui = 0 or ui > 0 and the last-coefficient-flag

bit is always 0.

Given selected context models with fixed context states, the rate functions of

rs(·|Ω), rl(·|Ω), and rc(·|Ω) in (5.4) and (5.5) are estimated as the self-information

of the corresponding probability event. Specifically, context states in CABAC are

specified by a pair of (LPS, σ), where LPS indicates the least probable symbol, and

σ = 0, · · · , 63. Correspondingly, the probability for LPS is specified as[51],

pσ(LPS) =
1

2
· 0.0375σ/63. (5.6)

Then, for a selected context model with (LPS, σ) ∈ Ω and an input bit ḃ, the rate

is estimated by

rcontext(LPS,σ)(ḃ) =

 − log2(pσ(LPS)) ḃ = LPS

− log2(1− pσ(LPS)) ḃ 6= LPS
(5.7)
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This estimation is applicable to rs(·|Ω), rl(·|Ω), and rc(·|Ω) all in the same way,

except that different context models are selected.

5.2.2 Algorithm, Optimality, and Complexity

Based on the graph design and the metric computation discussed above, the solution

to (5.3) now becomes a problem of searching for a path in the graph for the minimal

RD cost. It is not hard to see that the proposed graph design would allow an

element-wise additive computation of the RD cost in (5.3) with given Ω. In this case,

the Viterbi algorithm can be used to do the search. Overall, the SDQ algorithm

for solving (5.1) is summarized as follows,

1. Initialize all context states at each column in Figure 5.1 by extracting context

states for the current block, and updating it according to the HDQ outputs.

2. Fix context states at each column, and search for a path with the minimal

RD cost using Viterbi algorithm.

3. Update context states at each column using the quantization outputs corre-

sponding to the path obtained in Step 2. Repeat Step 2 until the algorithm

converges, meaning that the resulted path does not change.

Observations show that the above algorithm converges mostly by two iterations.

Table 5.2 shows a simple example of SDQ based on CABAC. The real quantization

outputs correspond to the real value of T(z )/q in (3.7). The offset value δ = 1/6

is as used in the reference codec JM821. Note that the value of 1.12 is quantized

to 0 by SDQ, which would never happen if HDQ is used.

In general, the optimality of the above SDQ algorithm for (5.1) is not guaranteed

due to its iterative nature. Nevertheless, it can be shown that the proposed graph

1Adaptive rounding offset has been proposed for H.264 in JVT-N011[54], where the rounding

offsets vary for each level . However, the quantization with adaptive rounding offset is still con-

sidered as HDQ, which is incapable of generating SDQ outputs, as shown by the quantization of

the value of 1.12 in Table 5.2.

78



Table 5.2: An example of SDQ. See explanation of the first column in the text.

Real quantization outputs -8.13 -4.53 0.88 0.20 0.65 -0.48 -0.58 0.60 -1.12

HDQ outputs by (3.7), δ= 1
6

-8 -4 1 0 0 0 0 0 -1

SDQ outputs by one iteration -9 -4 1 0 0 0 0 0 0

SDQ outputs by two iterations -8 -4 1 0 0 0 0 0 0

design leads to the optimal solution to (5.3). Thus the SDQ algorithm is referred to

as being near-optimal for solving (5.1). Specifically, we summarize the optimality

for solving (5.3) in the following theorem.

Theorem: For a 4×4 residual block z , the proposed graph design in Figure 5.1

provides the optimal solution to the RD minimization problem defined in (5.3).

The graph represents the whole vector space of quantization outputs and each

path in the graph gives a unique block of quantization outputs. Therefore, to prove

the theorem is to find a metric for each transition in the graph so that for any

path the accumulated metric equals to the RD cost of (5.3). Consequently, Viterbi

algorithm can be used to search for a path in the graph to minimize the RD cost

and the obtained path gives the optimal quantization outputs for solving (5.3).

As shown in Figure 5.1, at each state the values of NumEq1 and NumLg1 are

clearly defined, leaving no ambiguity of context selection for coding the non-zero

coefficients. Meanwhile, context models for coding the significance map is also

known for each state. Therefore, rc(·|Ω), rs(·|Ω) and rl(·|Ω) can be computed using

(5.7). By examining the details of CABAC, it is not hard to see that for any given

path and its corresponding coefficient sequence, the accumulated metric along the

path by (5.4) and (5.5) equals to the result as calculating the RD cost in (5.3) with

given Ω. Thus, applying Viterbi algorithm to search the graph leads to the solution

of the problem in (5.3).

The complexity of the proposed graph-based SDQ algorithm (i.e., dynamic

programming applied to Graph 5.1) depends on four factors, i.e., the number of

columns as 16, the number of states in each column as 8, the number of iterations
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Table 5.3: Statistics corresponding to 6 parallel transitions in H.264 main profile

optimization.

floor(u)-2 floor(u)-1 floor(u) ceil(u) ceil(u) +1 ceil(u) +2

Occurrences 0 18400 162345 129876 17923 0

as 2, and the number of parallel transitions for each connection. Parallel transitions

are defined for states with quantization outputs greater than 1. Specifically, the

number of parallel transitions is (uhigh−ulow+1), where [ulow, uhigh] is the range of

all possible quantization outputs. In practice, because the distortion is a quadratic

function with respect to the quantization output, the quantization output for the

optimal transition is within a small neighboring region around the hard-decision

quantization output û ∈ [ulow, uhigh]. Thus the number of parallel transitions to

be examined in practice is small. Table 5.3 shows the result of an experiment, in

which we collect the number of occurrences for events that a real-valued coefficient

u is quantized to 6 integers around it. It is shown that it is sufficient to compare 4

parallel transitions around û, and hence the complexity is reduced to a fairly low

level.

5.3 Experimental Results

The proposed joint optimization method is implemented based on the H.264 ref-

erence software Jm82. Only the first frame is intra coded (I-frame), while all the

subsequent frames use temporal prediction (P-frame). The range for full-pixel mo-

tion prediction is ±32. The iteration for the joint optimization is stopped when the

RD cost decrease is less than 1%. Comparative studies of the coding performance

are shown by RD curves. with the distortion being measured by PSNR as defined

in Chapter 4. The RD performance is measured over P-frames only since I-frames

are not optimized. As usual, the result is reported on the luma component.

Figure 5.2 shows the RD performance for coding two typical video sequences
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Figure 5.2: RD performance for coding “Salesman.qcif” and “highway.qcif”, cor-

responding to the three algorithms in the proposed RD optimization framework

and a main profile reference encoder with the RD optimization method in [77] and

CABAC.
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using the proposed SDQ algorithm based on CABAC. Furthermore, it also shows

the RD performance for embedding the SDQ into the residual coding optimization

algorithm and that for embedding the residual coding optimization algorithm into

the overall optimization algorithm. For simplicity, the encoders are referred to as

Enc(SDQ), Enc(SDQ+QP), and Enc(SDQ+QP+ME), while the encoder with the

RD optimization method in [77] and CABAC is called Enc(RD in [77], CABAC).

For Enc(SDQ), motion estimation and quantization step sizes are computed using

the main profile method in [77]. For Enc(SDQ+QP), the residual coding opti-

mization is performed based on the motion estimation obtained using the main

profile method in [77]. It is shown that, approximately, half of the gain by the

joint optimization comes from SDQ. Specifically, our experiments show on av-

erage rate reductions of 5%, 7%, and 10% while preserving the same PSNR by

Enc(SDQ), Enc(SDQ+QP), and Enc(SDQ+QP+ME), respectively, over Enc(RD

in [77], CABAC).

In Figures 5.3 and 5.4, we further compare the RD performance of our joint

optimization method in this study with other four methods, i.e., a baseline encoder

with joint RD optimization implemented in [34], a main-profile reference encoder

with the RD optimization method in [77] and CABAC (the coding setting of this

encoder is the same as that of a baseline profile except that CABAC is used instead

of CAVLC), a baseline reference encoder with the RD optimization method in [77],

and a baseline reference encoder with compromised RD optimization. Figures 5.3

and 5.4 show that the joint optimization method in this study achieves the best

RD performance among 5 methods mentioned above. Experiments in [34] showed

that the joint design based on the baseline profile with CAVLC outperformed the

method based on the main profile with CABAC in [77]. In this study, it is shown

that the joint design based on the main profile with CABAC results in a better RD

performance than the joint design based on the baseline method CAVLC, which

is as expected since CABAC is superior to CAVLC. Specifically, it is interesting

to see that an average 10% rate reduction is achieved by the joint optimization

method based on the proposed SDQ for CABAC over the main-profile reference
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encoder with the RD optimization method in [77] and CABAC. If compared with

the baseline reference encoder with RD optimization in [77], the proposed joint

optimization method with SDQ based on CABAC yields a 20% rate reduction,

while the rate gain2 by the proposed joint optimization method with SDQ based

on CAVLC is 12%, as presented in Chapter 4.

In term of program execution time with our implementation, the complexity

of the joint optimization with SDQ based on CABAC is similar with that of the

joint optimization with SDQ based on CAVLC. Specifically, a main-profile reference

encoder with CABAC and the RD optimization method in [77] takes a little more

than 1 second to encode a P frame, while the overall joint optimization based on

the proposed SDQ design takes around 15 seconds per frame. Frankly, the current

implementation is not efficient, yet similar arguments as those we made in Chapter

4 may also be made here to justify the proposed method with SDQ based on

CABAC. Basically, it targets off-line applications such as video delivery, for which

the RD performance is more important and a complicated encoder is normally

acceptable since encoding is carried out only once. Furthermore, the proposed

method here also helps to satisfy a desire for pushing the coding performance of

a standard-compatible codec to its theoretic limit or to achieve the best known

coding performance.

5.4 Chapter Summary

In this chapter, the joint RD optimization framework proposed in chapter 3 has

been applied to improve H.264 encoding with its main profile decoding compatibil-

ity. Based on CABAC, a graph-based SDQ design has been developed, which forms

the core for jointly optimizing motion prediction, quantization, and entropy encod-

ing in the H.264 main profile encoding. Given motion estimation and quantization

step sizes, the proposed SDQ design provides near-optimal quantization outputs

2In this thesis, rate gain or rate reduction means the relative rate saving when PSNR is

maintained the same.
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for a given block in the sense of minimizing the actual RD cost when the adjacent

block dependency is ignored. Experiment results show that our joint optimization

encoder with the proposed SDQ based on CABAC achieves on average 10% rate

reduction while maintaining the same video quality over the main-profile RD op-

timization method in [77] using CABAC, with half of the gain coming from the

SDQ design. If compared with the baseline RD optimization method in [77], the

proposed joint optimization encoder with SDQ based on CABAC achieves a 20%

rate reduction, while the joint optimization encoder with SDQ based on CAVLC

proposed in Chapter 4 achieves a 12% rate reduction. Overall, the proposed joint

optimization encoder with SDQ based on CABAC shows the best coding perfor-

mance that is known for H.264-compatible codecs.
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Chapter 6

Image/Video Transcoding with

Spatial Resolution Reduction

In this chapter, we investigate the trade-off between distortion and complexity for

transcoding DCT images/video frames from a high spatial resolution to a low spatial

resolution [82]. This is motivated by a desire to provide universal multimedia access

over a network with diverse display devices. Specifically, we are focused on designing

down-sampling algorithms in the DCT-domain, because most image/video data to

be shared over the network are originally captured with high resolution and coded

using a transform technique of DCT, e.g., MPEG, JPEG, DV, etc. In the following,

we first review image down-sampling in the pixel domain. Then, we review related

work for designing DCT-domain down-sampling methods in the literature. Finally,

a designing framework is proposed for down-sampling DCT images/video with an

arbitrary ratio.

6.1 Image Down-sampling in Pixel Domain

Image down-sampling in the pixel domain has been well studied and has become

textbook material [60]. Consider a digital image X with sampling rate fs,high. The

problem of digital image down-sampling is to find a discrete image x , which accords
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to re-sampling g(X ) at a lower rate of fs,low, where g(X ) denotes the continuous

image which is to be reconstructed using X . As a fundamental result in the field

of information theory, Nyquist-Shannon sampling theorem states that the signal

bandwidth must be no more than half of the sampling rate 1
2
fs in order to avoid

aliasing. Hence, a low-pass filter is required to shrink the signal bandwidth of g(X ).

As a result, the down-sampling includes two steps. First, a digital low-pass filter is

used to process X to obtain X̂ , whose bandwidth is less than 1
2
fs,low. Second, the

down-sampling is carried out by interpolating X̂ to compute the sample values at

equally-spaced intervals given by fs,low.

6.1.1 Low-pass Filtering for Down-sampling

In practice, there are several criteria that have been used for evaluating the low-

pass filtering performance for the purpose of down-sampling. In the following, we

summarize these criteria and use them to select a particular low-pass filter, based on

which a DCT-domain down-sampling framework is constructed as to be presented

later. Specifically, the following three criteria are investigated.

1. To remove aliases by quenching frequency components higher than the Nyquist

frequency.

2. To limit the ringing effect by smoothing the transition band.

3. To keep the sharpness of the image by preserving as much energy as possible

for frequency components lower than the Nyquist frequency.

By the Nyquist−Shannon sampling theorem, the main purpose of applying low-

passing filtering is to remove aliases. An ideal low-pass filter may completely elim-

inate all frequencies above the Nyquist frequency while passing all those below, as

shown in Figure 6.1. Furthermore, it can be proven that the ideal filter [60] gives

the optimal performance of minimizing the L2 distance between the original signal

and its filtered version while completely removing aliases, as shown in the following.
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Figure 6.1: Frequency response and impulse response of an ideal low-pass filter

with the cutoff frequency f0 = 0.2.

Let x(t) be any finite energy signal with Fourier transform F (f). The ideal

filter with its cutoff frequency being the Nyquist frequency results in the minimal

L2 distance between the the signal and the filtering output under the condition that

there is no alias, i.e.,

Hideal(f) = arg min
H(f)

∫ ∞

−∞
|x(t)− x̂(t)|2dt

where x̂(t) =
∫ ∞
−∞(F (f) · H(f))ej2πftdf . While this result is summarized for 1-

dimensional signal, it can be extended to the case of filtering 2D data such as images.

The proof can be done by using the Parseval’s relation [60], i.e.,
∫ ∞
−∞ |x(t)|2dt =∫ ∞

−∞ |F (f)|2df .

In practice, however, the ideal filter is not desirable for low-pass filtering because

it introduces a so-called ringing effect. Figure 6.2 shows the ringing effect by the

ideal filter for processing an image with intensity edges. The reason is the sharp

transition band of the filter. Figure 6.1 shows the shape of a one-dimensional ideal

filter in both frequency and spatial domains. The sharp transition in the frequency

domain corresponds to a long tail with multiple peaks in the spatial domain. By

the convolution theorem, multiplication in the Fourier domain corresponds to a

convolution in the spatial domain. The multiple peaks will produce unwanted

ringing along intensity edges in the spatial domain when they are convoluted with

the spatial signal.
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Figure 6.2: Low-pass filtering for an image with intensity edges. The cutoff fre-

quency is 0.25. The PSNR by the Butterworth filter is 25.4dB, while the ideal filter

results in a PSNR of 26.2dB. The ideal filtering result shows a clear ringing effect.
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Figure 6.3: Frequency response and impulse response of a Butterworth filter.

90



(b) (c)(a)

(e)(d)

Figure 6.4: One-dimensional interpolation functions. (a) Sinc function for

Nyquist−Shannon interpolation. (b) Square function for the nearest interpola-

tion. (c) Triangle function (two squares convolved) for linear interpolation with

a continuous but not smooth output. (d) Bell function (three squares convolved)

for interpolation with continuous first order derivative. (e) Cubic B-spline function

(four squares convolved) for interpolation with continuous second order derivative.

The ringing effect can be attenuated by smoothing the transition band of the

filter. A Gaussian filter has a smooth Gaussian shape in both the frequency and

spatial domains. It does not incur any ringing effect. However, the Gaussian

shape in the frequency domain causes a significant loss of low frequency energy

unnecessarily. As a result, the Gaussian filter is unsuitable for down-sampling.

The Butterworth filter, however, provides a good solution for anti-aliasing and

anti-ringing filtering due to its smooth transition band. As shown in Figure 6.3,

it also preserves most low frequency energy. Indeed, simulation results, as to be

shown later, show that down-sampling based on a Butterworth filter gives the best

visual quality in comparison with another ideal-filter-based method and the ‘resize’

function in Matlab (A commercial software product from Mathworks) for down-

sampling some benchmark images.

6.1.2 Interpolations

After low-pass filtering, image down-sampling becomes a problem of estimating the

sample values at some points according to fs,low based on sample values at given
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Figure 6.5: Demonstration of various interpolation methods. The lower panel shows

the zoom-in of the square area in the upper figure.
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points. In general, interpolation theory studies a problem of estimating the output

of a function at arbitrary points based on its sample values at some given points[60].

The interpolation sometimes is also addressed as reconstruction filtering.

There have been a wide range of interpolation methods with various complexity

and quality studied in the literature from the nearest neighbor interpolation to

the Nyquist−Shannon interpolation. The nearest neighbor interpolation accords

to a square function, while a better interpolation can be achieved by convolving

several square functions to obtain the interpolation function. Figure 6.4 shows some

one-dimensional interpolation functions. Interpolation in the spatial domain is to

convolve the interpolation function with the pulse sequences of samples.

Figure 6.5 shows the outputs of 5 algorithms for interpolating some equally-

spaced samples shown by diamonds. The nearest neighbor interpolation is the

simplest one with the least complexity, yet it outputs a step function with dis-

continuous points. The linear interpolation outputs a continuous but not smooth

function. The bell function interpolation provides a smooth output with continu-

ous first order derivative. The cubic B-spline method, furthermore, generates an

output with continuous second order derivative.

Theoretically, the Nyquist−Shannon method should give the best result for

interpolating the samples with limited bandwidth. However, this theoretical result

assumes an infinitely long sequence, which may have to be truncated in a practical

system. The cubic B-spline interpolation method gives a solution with continuous

second order derivative and generally provides a satisfying performance because it

fits with a physical fact that the curvature of a curve at a point is determined by

the second derivative at that point [60].
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6.2 Review of DCT-domain Down-sampling meth-

ods

A straightforward method for down-sampling DCT images is to first convert DCT

data back to the spatial domain and then apply a standard down-sampling method

in the spatial domain. This method may give the best visual quality, yet its com-

plexity is too high [52, 12, 58, 69]. As discussed previously, down-sampling in

the spatial-domain consists of low-pass filtering and interpolation. Theoretically,

low-pass filtering for down-sampling is justified by the Nyquist−Shannon sampling

theorem for anti-aliasing. Technically, there have been many low-pass filter de-

signs developed to further deal with practical issues such as the so-called ringing

effect [44]. After low-pass filtering, down-sampling in the spatial domain becomes a

problem of estimating sample values at certain points, for which the interpolation

theory has been established. Practically, there have been a wide range of inter-

polation methods proposed in the literature with various complexity and quality,

from the nearest neighbor interpolation to the spline interpolation [60]. Thus, it

is fair to say that image down-sampling in the pixel domain has been well studied

both in theory and in practice and it may give the best visual quality for image

down-sampling. The problem for the above method, however, is the computational

complexity1, which is associated with the spatial-domain low-pass filtering, inter-

polation, as well as the inverse DCT and DCT.

In practice, a desirable down-sampling method for DCT data may consider three

factors, i.e., the quality of the down-sampled image, the computational complexity,

and the down-sampling ratio. The above method of transforming DCT data into

spatial domain for down-sampling represents the best case in terms of quality, yet

the worst case in terms of computational complexity. To tackle the complexity

issue, it is desired that down-sampling is carried out in the DCT domain directly

[5][48][12] without involving the inverse DCT of the original DCT data and the

1An experimental result for the complexity will be shown in Section 6.6.
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subsequent DCT of the down-sampled data. Many methods along this line have

been developed in the literature.

One category of DCT-domain down-sampling methods, referred to as DCT co-

efficient manipulation, investigate various properties of DCT coefficients and ma-

nipulate them with techniques such as zero-padding, truncating, scaling, etc. In

[12], a fast algorithm was developed for down-sampling DCT images by a factor of

2 based on DCT coefficients truncation. In [56], based on studies of the symmetric

convolution property of DCT, zero-padding and truncation were jointly utilized,

leading to the so-called L/M-fold image resizing algorithm. The L/M-fold method

was further accelerated in [58] by using fast algorithms for inverse and forward DCT

transforms with composite lengths developed in the literature. In general, there is

an inherent drawback for these manipulation methods, as also discussed in [12].

Specifically, the truncation of DCT coefficients is equivalent to an ideal filter with

a sharp transition band in term of filtering. As discussed in Section 6.1, however,

the ideal filter is not desirable because it introduces ringing effects [60].

Another category of such methods may be viewed as a linear transform of the

DCT coefficients, which is equivalent to a concatenation of inverse DCT, a specific

down-sampling method in the spatial domain, and DCT. In [52], a spatial-domain

method of averaging each M×M block for down-sampling by a factor of M (M=2,3,4)

was used to derive a fast down-sampling method in the DCT domain. The key idea

was to derive a computationally efficient method for combining the inverse DCT,

the spatial-domain down-sampling method, and the forward DCT into a one-stage

computation to reduce the complexity. Later, this idea was extended to a general

case with arbitrary down-sampling ratio in [48], where the so-called transform-

domain resolution translation was developed based on a pipeline architecture that

involves matrix-vector multiplications. For these methods, the quality is mainly

determined by the corresponding method for down-sampling in spatial domain.

The method by averaging in [52] overlooks the anti-aliasing filtering, resulting in a

limited performance in term of quality. The scheme in [48] allows a flexible choice
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of low-pass filtering. Hence, it is capable of achieving good quality for the obtained

image. However, the computational complexity for matrix-vector multiplication is

still relatively high [58].

6.3 Linear Transform with Double-sided Matrix

Multiplication

This section derives a result that for a wide range of spatial-domain down-sampling

methods, a concatenation of inverse DCT, spatial-domain down-sampling and DCT

can be implemented equivalently as a linear transform with double-sided matrix

multiplication (LTDS) in the DCT domain.

The derivation of LTDS may be summarized in 3 steps. Denote t as a DCT

matrix. Consider to down-sample an M×N DCT image CMN with a concatenation of

inverse DCT, spatial-domain down-sampling and DCT. The 3 steps are as follows.

First, apply the inverse DCT to obtain the spatial-domain image X MN as

X MN = t ′ � CMN � t , (6.1)

where � denotes block-wise multiplications. Second, a spatial-domain method is

selected and used to down-sample X MN to obtain an I×J image, denoted as x IJ.

Third, DCT is applied to the I×J image, resulting in

V IJ = t � x IJ � t ′. (6.2)

We now consider details of the second step, i.e., down-sampling in the spatial

domain. Specifically, down-sampling in the spatial domain consists of low-pass

filtering and interpolation. We consider to implement the low-pass filter based on

a 2D discrete Fourier transform (DFT). Given the image X MN, the filtering output

X̃ MN is obtained by

X̃ MN = A∗
MM((AMM ·X MN ·BNN)⊗ FMN) ·B∗

NN, (6.3)

where AMM is an M×M DFT transform matrix with its element given by
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auv = 1√
M

exp (−j2πuv
M

), u = 0, 1, · · · , M−1, v = 0, 1, · · · , M−1,

and A∗
MM is its conjugate. Similarly, BNN is an N×N DFT transform matrix and B∗

NN

is the conjugate matrix. FMN is the low-pass filtering matrix in the DFT domain.

The symbol ⊗ denotes element-wise multiplications.

Consider to construct FMN based on two one-dimensional filters2, i.e.,

FMN = LM1 ·R1N. (6.4)

It is then not hard to see that the element wise multiplication in (6.3) may be

removed, yielding

X̃ MN = A∗
MM · LMM · (AMM ·X MN ·BNN) ·RNN ·B∗

NN, (6.5)

where LMM and RNN are diagonal matrixes with diagonal elements being LM1 and

R1N, respectively.

The interpolation is a process of reconstructing any in-between samples from the

original samples, which is usually implemented as an interpolation filter. Assume a

linear interpolation filter in the form of matrix multiplication. Specifically, denote

E IM and GNJ as the interpolation matrixes. The down-sampled image is computed

by

x IJ = E IM · X̃ MN ·GNJ. (6.6)

Insert (6.5) into (6.6). Down-sampling in the spatial domain is carried out by

x IJ = E IMA∗
MMLMMAMM ·X MN ·BNNRNNB

∗
NNGNJ. (6.7)

Now, combine (6.1), (6.2) and (6.7). The concatenation of inverse DCT, spatial-

domain down-sampling, and DCT is,

V IJ = t � [E IMA∗
MMLMMAMM(t ′ � CMN� t) ·BNNRNNB

∗
NNGNJ] � t ′

2Because the 2D filtering may be implemented with a concatenation of two 1D filters, the 2D

filtering matrix FMN is assumed to take the form of LM1 · R1N. This, in turn, helps to replace

the element-wise multiplication in (6.3) with regular matrix multiplication, which is a necessary

condition for obtaining the LTDS.
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The block-wise multiplication can be replaced by applying a result of t � CMN =

TMM,t · CMN, where TMM,t =


pxtqy 0 0

0
. . . 0

0 0 pxtqy

 with the DCT matrix t lining on

the diagonal of T . Consequently, we obtain a linear transform in the DCT domain,

V IJ = D IM ·CMN ·W NJ, (6.8)

where

D IM = T II,tE IMA∗
MMLMMAMMTMM,t ′ ,

W NJ = TNN,tBNNR
∗
NNBNNGNJT JJ,t ′ .

Equation (6.8) shows that for many down-sampling methods with a concate-

nation of inverse DCT, spatial-domain down-sampling, and DCT, we can find an

equivalent linear transform in the DCT domain, which produces the same out-

put. Motivated by (6.8), we call any DCT domain transform in the form of

D IM · CMN ·W NJ a DCT-domain LTDS, where D IM and W NJ are arbitrary ma-

trixes with respective dimensions. We are interested in the set of all DCT-domain

LTDSs, denoted as S hereafter. Clearly, as shown in (6.8), the set is quite large; It

contains all methods corresponding to spatial-domain down-sampling methods with

properties of (6.4) and (6.6). In particular, it includes the L/M-fold method (since

the truncation operation of DCT coefficient in the L/M-fold method is equivalent

to a filtering process with properties of (6.4) and (6.6)), as well as the methods

in [52] and [48]. Some LTDSs in the set have high complexity while others have

low complexity. Given any spatial-domain method which may not be in the set

S, it will be interesting to find its LTDS approximation in S, which gives the best

trade-off between the visual quality and the computational complexity. In the fol-

lowing, we will propose a framework for designing LTDSs corresponding to a given

spatial-domain down-sampling method by jointly optimizing the visual quality and

the computational complexity.
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6.4 Visual Quality Measurement for Down-sampled

Images

Quality measure is the very basis to formulate our optimization problem for find-

ing optimal LTDSs corresponding to a pre-selected spatial-domain down-sampling

method. Although spatial-domain down-sampling has become textbook material

for decades [44], unfortunately, there is still no objective measurement unanimously

accepted for measuring the quality of a down-sampled image.

There have been two major objective quality measures used in the literature for

image down-sampling. The first one is to measure the quality with a reference image

obtained using a standard down-sampling method in the spatial domain [52][53].

The second one is to up-sample the down-sampled image to the original resolution.

Then, the quality is measured by the MSE between the up-sampled image and the

original one [12, 56, 57].

In this research, we apply the first measure for evaluating the performance of

different LTDSs, based on which an optimization problem is formulated to find an

LTDS to achieve the best trade-off between the visual quality and the complexity.

This measurement will naturally allow us to approach the visual performance of a

pre-selected spatial-domain method by setting the down-sampling output of the pre-

selected method as the reference. Then, we may be able to achieve the best visual

quality by pre-selecting a spatial-domain method with the best visual quality if there

is one. Meanwhile, since we are interested in viewing a down-sampled image in its

own resolution, there is no up-sampling process involved. Hence the first measure

is more appropriate than the second measure for our purpose. Besides, the second

measure is contradict with the principal of anti-aliasing filtering for down-sampling

in the sense that an optimization problem for minimizing the MSE between the

up-sampled image and the original one will treat the anti-aliasing filtering as a

source of information loss for high-frequency components and will tend to minimize

such loss. In addition, observations in [12] also show that the MSE between the up-
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sampled image and the original one is more determined by the up-sampling scheme

than by the down-sampling method. Because we target a down-sampling design

and the up-sampling process is out of the scope of our optimization, the second

measure is unsuitable in our design.

Specifically, the quality measure used in our problem formulation is as follows.

Consider an M×N DCT image CMN. The original image in the spatial domain is

X MN = T−1(CMN), where T−1(·) represents the inverse DCT. Assume x IJ as the

I×J reference image obtained using a pre-selected spatial-domain method for down-

sampling X MN. For any LTDS in S, the quality of the obtained image D IM ·CMN ·

W NJ is measured by ||x IJ − T−1(D IM ·CMN ·W NJ)||2.

In complement to the objective measure discussed in the above, we will also use

subjective evaluation and present resulting images in the experimental section, since

the down-sampling output eventually go to a human viewer. The subjective visual

quality of a down-sampling image is mainly evaluated by appearance of aliasing,

ringing effect, and/or other artifacts.

6.5 LTDS-based Down-sampling Design

6.5.1 Complexity Modeling of LTDS

In general, the complexity for computing D IM ·CMN ·W NJ is related to the number

of non-zero elements in D IM and W NJ. Specifically, the computation of D IM ·CMN ·

W NJ, if computed from left to right, involves p1·I·M·N+p2·I·N·J multiplications and

I·(p1M−1)·N+I·(p2N−1)·J additions, where p1 and p2 are the percentage of nonzero

elements in D IM and W NJ, respectively. To reduce the computational complexity,

we plan to apply a structural learning with forgetting (SLF) scheme[43] to decrease

p1 and p2. Initially, we consider a complexity model of

rf = |D IM|+ |W NJ|,
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where | · | defines the l1 norm of a matrix. By a learning with forgetting stage

of SLF, the minimization of |D IM| + |W NJ| will lead to a constant decay for all

non-zero elements, forcing as many elements to be zero as possible. This constant

decay at the beginning stage also helps to remove redundant connections due to a

random initialization that is typically adopted before SLF is applied.

The complexity model needs to be further adjusted for a learning with selective

forgetting stage in SLF, which follows the learning with forgetting stage. In general,

a constant decay to elements with large values will introduce a large distortion to

the visual quality, measured as ||x IJ − T−1(D IM · CMN ·W NJ)||2. After removing

redundant connections due to a random initialization of all elements, we expect

to protect certain large elements from the decay so that they can be trained to

focus on providing better visual quality. Accordingly, the complexity model for the

learning with selective forgetting stage is defined as

rs = |D IM||dim|<d0 + |W NJ||wnj |<w0 ,

where d0 and w0 are two thresholds, and |D IM||dim|<d0 (|W NJ||wnj |<w0 , respectively)

denotes the modified l1 norm of D IM ( W NJ, respectively) in which all elements

of D IM (W NJ, respectively) with magnitude greater than or equal to d0 (w0, re-

spectively) are excluded. The minimization of this complexity function will lead to

a constant decay only to elements with small values and will force them to zero,

while elements with large values are excluded from the complexity model.

Besides the number of non-zero elements in D IM and W NJ, the complexity

for computing D IM · CMN · W NJ is also related to how multiplications may be

implemented. In general, a multiplication may be approximated by a series of

additions and shifts, e.g., for a multiplier a w
∑

ai · 2−i, ai ∈ {1,−1, 0}, we have

a ·v w
∑

ai · (v >> i), where ai determines the sign and ‘>>’ stands for right shift.

This approximation is desirable if the quality loss due to the resulted inaccuracy

and the complexity reduction due to the fast implementation of shifts and additions

are well balanced. Assuming the magnitudes of all elements in D IM and W NJ are
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in the range of [0, 8)3, we introduce the following quantization procedure into the

complexity model. For any x ∈ (−8, 8), define

Q(x) =
i=15∑
i=−2

ai · 2−i, ai ∈ {1,−1, 0} (6.9)

where

{ai} = arg min
|x−

P
(ai2−i)|≤|x|η

∑
|ai|,

where η is a small constant. Essentially, this quantization procedure leads to an

approximation within a given neighboring region with the minimal number of ones

in the binary representation. Thus, the corresponding multiplication may be im-

plemented with the minimal number of shifts and additions.

The quantization procedure discussed above is generally applied at the learning

with selective forgetting stage of SLF because its corresponding contribution to the

complexity function is at a level similar to rs, which is much less than rf. Overall,

the complexity model for the learning with selective forgetting stage is defined as

follows,

rq = (|D IM||dim|<d0+|W NJ||wnj |<w0)+ρ·(|D IM−Q(D IM)|+|W NJ−Q(W NJ)|), (6.10)

where ρ is a constant, and Q(D IM) and Q(W NJ) mean to apply Q(·) to each element

of D IM and W NJ.

6.5.2 Optimization Problem Formulation

Based on the above discussions on LTDS and its complexity models, we now for-

mulate the design problem for down-sampling in the DCT domain as a joint opti-

mization of the visual quality and the computational complexity, i.e.,

min
g(·)

||g(CMN)−V IJ||2 + λ · rg, (6.11)

3This range is set up empirically as observation shows that almost all elements in D IM and

W NJ have magnitudes strictly smaller than 1.
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where CMN is a DCT image and V IJ is the down-sampling output for CMN using

a pre-selected spatial-domain method. Consider g(·) as the LTDS in (6.8). The

complexity term rg may take the definition of rf or rq according to different stages

of SLF. The optimization problem of (6.11) becomes

min
DIM,W NJ

||D IMCMNW NJ −V IJ||2 + λ · rg. (6.12)

The objective of designing down-sampling algorithms in the DCT domain is to find

an LTDS with the best trade-off between the fidelity of g(CMN) to V IJ and the

complexity of rg in the sense of minimizing the joint cost. Note that the trade-

off depends on five parameters, η, λ, ρ, d0 and w0, which are to be determined

according to user preferences.

The above optimization problem involves a pre-selected down-sampling method.

However, the problem formulation and the algorithms to be discussed later for solv-

ing the problem do not depend on any selected method. Instead, the optimization

framework and the proposed learning algorithms for solving the problem take the

output of a pre-selected method to form the training data. As to be presented later,

experiments in this work are based on a spatial-domain method with Butterworth

filter and cubic B-spline interpolation, which, according to our literature survey,

is a popular choice for its advantages of anti-aliasing, ringing avoidance, and low-

frequency components preservation. Yet, the proposed framework itself does not

rely on this selection and it can be used to match any other spatial-domain method

in the DCT domain.

6.5.3 Problem Solution

The optimization problem (6.12) is solved by modeling LTDS as a multiple-layer

neural network. A structural learning with forgetting algorithm [43] is then used

to train the network structure.
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Figure 6.6: A three-layer network for implementing the linear transform of (6.8).

A Multiple-Layer Neural Network Structure

As shown in Figure 6.6, an LTDS may be implemented as a three-layer neural

network. Similar to the multiple layer perceptron (MLP) [50], the three layers

are named as input layer CMN, hidden layer Y IN, and output layer Z IJ. Then,

connections are selectively built up among units in each two layers to simulate the

matrix multiplication operation in the linear transform.

The left panel of Figure 6.7 shows the connections between the input layer and

the hidden layer. Specifically, these connections are established according to three

rules, i.e.,

• Connections are established from units in a given column of the input layer

to units in the same column of the hidden layer. Note that the input layer

and the hidden layer have the same number of columns.

• Units in a given column of the input layer are fully connected to units in the

same column of the hidden layer.

• Valid connections between any two columns share the same weight matrix,

i.e., D IM.

Consequently, the output of the hidden layer is computed as Y IN = D IM ·CMN by

a forward process from the input layer to the hidden layer.

Similarly, connections between the hidden layer and the output layer are demon-

strated in the right panel of Figure 6.7. The connections rules are the same as the

above except that connections are built up among rows and the corresponding
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Figure 6.7: Illustration of selective connections in a three-layer network structure

for simulating the computation of LTDS. The left panel shows connections between

the input layer CMN and the hidden layer Y IN. The right panel demonstrates

connections between the hidden layer Y IN and the output layer Z IJ.

weight matrix is W NJ. Then, forwarding computation from the hidden layer to the

output layer leads to Z IJ = Y IN ·W NJ. Overall, the LTDS is implemented by a

forwarding computation in the network structure as Z IJ = D IM ·CMN ·W NJ.

Training with Structural Learning with Forgetting

SLF was originally developed in [43] to find a concise structure for multiple-layer

neural networks. The key idea of SLF is to simplify and clarify the network structure

by removing redundant connections with a decay. In this study, SLF is adopted

to reduce connections in the 3-layer network, so as to reduce the computation

complexity of LTDS. Specifically, the learning procedure includes two stages, i.e.,

learning with forgetting and learning with selective forgetting.

The learning with forgetting stage is developed to remove redundant initial

connections as much as possible. In this stage, the learning objective function is

obtained by plugging rg = rf into the objective function of (6.12), i.e.,

Jf = ||D IMCMNW NJ −V IJ||2 + λ · rf. (6.13)

Due to a random initialization of the connection weights, some redundant connec-

tions may possess an initial weight with a big value. Thus, it is desired to apply a

105



constant decay to all elements in order to get rid of this redundancy. Specifically,

the learning with forgetting procedure is as follows,

1. Pass the input signal forward to compute the network outputs.

Y IN = D IM ·CMN ⇒ Z IJ = Y IN ·W NJ

2. Compute the network error and propagate it backward.

∆Z IJ = Z IJ −V IJ ⇒ (∆Y )IN = (∆Z )IJ · (W t)JN

3. Compute the learning amount for D and W .

∆D = 1
2
· ∂Jf

∂D
= (∆Y )IN · (C t)NM + λ · sgn(D IM)

∆W = 1
2
· ∂Jf

∂W
= (Y t)NI · (∆Z )IJ + λ · sgn(W NJ)

(6.14)

where sgn(·) is the sign function as

sgn(x) =


1
2
, x > 0

0, x = 0

−1
2
, x < 0

.

4. Learn with error propagation and forgetting.

D (n+1)
NJ = D (n)

NJ − α ·∆D ,

W (n+1)
NJ = W (n)

NJ − α ·∆W ,

where α is a small positive number named the learning factor and the super-

scripts (n) and (n+1) accord to the n-th and (n+1)-th iterations. Note that

the superscripts are omitted in steps 1 to 4 for simplicity.

5. Repeat steps 1 to 4 until the decrement of Jf is smaller than a given threshold.

The above learning with forgetting stage normally ends with a skeleton structure

but a large distortion. The selective forgetting stage is then used to tune the

structure for a better trade-off between distortion and complexity. Specifically,

the selective forgetting stage accords to using the complexity model of rq into the
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minimization objective function. Apparently, a small threshold is introduced for

selectively applying the decay to connections with small weights. Compared with

the learning with forgetting stage discussed in the above, the algorithm for the

selective forgetting is mostly the same, except the computation of the learning

amount ∆D and ∆W . For the selective forgetting stage, the learning amount is

obtained by

∆D = (∆Y )IN · (C t)NM + λ · thr(D IM, d0) + λ · ρ · sgn(D IM −Q(D IM))

∆W = (Y t)NI · (∆Z )IJ + λ · thr(W NJ, w0) + λ · ρ · sgn(W NJ −Q(W NJ))
,

where ρ and Q(·) are defined in (6.10), and thr(·) is defined as follows,

thr(x, θ) =


1
2
, θ > x > 0

0, x=0 or x≥θ or x≤−θ

−1
2
, −θ < x < 0

.

Efficient Down-sampling Algorithm Design

Based on the 3-layer structure and the structural learning with forgetting algorithm,

the optimization problem in (6.12) is solved as follows,

1. Generate a training set based on a given spatial-domain down-sampling method

which down-samples an M×N image to a resolution of I×J. Choose several

M×N DCT images, {CMN,i, i = 1, · · · , 5}. Apply the pre-selected down-

sampling method discussed in Section 6.5.3 to obtain down-sampling refer-

ences {V IJ,i, i = 1, · · · , 5}. The training set is {(CMN,i,V IJ,i), i = 1, · · · , 5}.

2. Learning with forgetting. Construct the 3-layer structure with D IM and W NJ.

Find a skeleton structure using the learning with forgetting algorithm.

3. Learning with selective forgetting. Refine D IM and W NJ with the learning

with selective forgetting algorithm.

4. Combination of arithmetic operations to further reduce the computation cost.
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The above algorithm results in an LTDS-based down-sampling method, which

minimizes the joint cost of visual quality and complexity for given parameters of λ,

η, ρ, d0 and w0. Essentially, different parameters will lead to a method with various

complexity and different visual quality as well. End users may determine values

for these parameters according to their requirements on the acceptable quality and

the affordable complexity.

Performance Analysis

Convergence of the Learning Algorithm. In general, the global convergence of SLF

for solving (6.12) is not guaranteed. Still, we may show that the learning with

forgetting algorithm will converge for minimizing (6.13) based on a given pair of

training data (CMN,i,V IJ,i). Consider the Hessian matrix corresponding to W NJ.

GNJ×NJ(W ) =


∂Jf

∂w11∂w11

∂Jf

∂w11∂w12
· · · ∂Jf

∂w11∂wNJ

... · . . .
...

∂Jf

∂wNJ∂w11

∂Jf

∂wNJ∂w12
· · · ∂Jf

∂wNJ∂wNJ

 .

By some derivation, we have

GNJ×NJ(W ) =


pxGJJqy1 0 0

0
. . . 0

0 0 pxGJJqyN

 ,

with matrixes GJJ lying on the diagonal and GJJ = (∆Z t)JI ·∆Z IJ. Apparently,

GJJ is positive semi-definite. Therefore, the Hessian matrix GNJ×NJ(W ) is positive

semi-definite. Similarly, we can show that the Hessian matrix corresponding to D IM

is,

H IM×IM(D) =


pxHMMqy1 0 0

0
. . . 0

0 0 pxHMMqyI

 ,

with HMM = CMN ·W NJ · (W t)JN · (C t)NM. HMM is positive semi-definite. Thus, the

Hessian matrix H IM×IM(D) is positive semi-definite. Consequently, we have that
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Jf is a convex function with respect to D and W . Consider the gradient descent

nature of the learning with forgetting algorithm as shown in (6.14). We conclude

the convergence of the structural learning with forgetting for minimizing (6.13).

Visual Quality. In general, (6.12) shows that the best achievable visual qual-

ity for an obtained down-sampling algorithm is limited only by the pre-selected

down-sampling method in the spatial domain. As mentioned in the above, exten-

sive studies have been conducted on spatial-domain down-sampling4. Therefore, it

is natural to use such a method with the optimal visual quality to create a refer-

ence image. Specifically, we choose the corresponding spatial-domain method based

on analysis of low-pass filtering and interpolation designs. The design of low-pass

filters for down-sampling normally involves a trade-off among three factors, i.e.,

aliasing, low-frequency components, and ringing. A filter with a sharp transition

band provides a good performance on anti-aliasing and preserving low-frequency

components, yet a sharp transition band incurs ringing along intensity edges in the

filtered image. A popular choice of low-pass filter with a desirable trade-off among

those three factors is the Butterworth filter. Therefore, in this study we use the

Butterworth filter for the low-pass filtering before down-sampling. Specifically, we

choose LM1 and R1N according to two 1D Butterworth filters with the frequency

response function |H(f)| =
√

1
1+(f/fc)2L , where fc is the cutoff frequency and L

represents the order, which characterizes the transition band. For the interpola-

tion algorithms, we choose the commonly-used cubic B-spline interpolation, which

provides an output with continuous second order derivative.

Apparently, an LTDS obtained in Section 6.5.3 based on the above-selected

spatial-domain method is expected to inherit the advantages of anti-aliasing, ringing

avoidance, and low-frequency components preservation. Later on, we will show

resulting images for subjective evaluation of the visual quality, in terms of aliasing

and ringing effect.

4By the best achievable visual quality, we mean a subjective quality evaluation based on

analysis of anti-aliasing, ringing avoidance, and low-frequency components preservation, which

may reflect today’s best understanding about image down-sampling.

109



Down-sampling Ratio. Because DCT is a block-based transform, the feasible

ratio for a down-sampling method in DCT domain is limited by two parameters,

i.e., the size of the image and the block size of the DCT transform. Consider an M×N

image and an S×S DCT transform. All possible ratios for vertically down-sampling

form a set of rv = { i
MS

, i = 1, · · · , MS}, while rh = { j

NS
, j = 1, · · · , NS} includes

all possible ratios for horizontally down-sampling, where MS = M
S

and NS = N
S

are

the numbers of DCT blocks along the height and the width, respectively.

In case that the vertical scaling ratio and the horizontal scaling ratio are required

to be the same 5, the set for all possible ratios is r = { i
Gcd

, i = 1, · · · , Gcd}, where

Gcd is the greatest common divisor of MS and NS. The proposed LTDS-based

method is capable of dealing with any ratio in r.

The proposed method, furthermore, supports a combination of any vertical

down-sampling ratio rh ∈ rh and any horizontal down-sampling ratio rv ∈ rv.

This provides flexibility to support a ratio r /∈ r without causing noticeable visual

distortion by allowing a small difference between the horizontal scaling ratio and the

vertical scaling ratio. Specifically, for any ratio r, the proposed method performs

the down-sampling horizontally by rh = floor(r· NS)
NS

and vertically by rv = floor(r· MS)
MS

.

In general, the distortion to the image proportion caused by such a small difference

between rh and rv is virtually unnoticeable. Moreover, the flexibility of allowing the

difference between rh and rv makes it straightforward to adapt the output image

to a specific displaying resolution. For example, consider a picture of original size

480 × 720, a typical handset displaying resolution of 240 × 320, and 8 × 8 DCT

size. The proposed method will process the image by rv = 2 : 1 and rh = 2.25 : 1

for a full screen display. On the other hand, a method based on DCT coefficient

manipulation has to cut 80 columns in the original image or to pad 24 blank rows

to the image in order to display with the full screen.

5It is ideal that down-sampling can be carried out with the same scaling ratio along the height

and the width. However, in many cases, a little difference between the vertical scaling ratio and

the horizontal scaling ratio is acceptable as long as it does not cause noticeable distortion to

viewers.
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Figure 6.8: Five images used for building up the training set.

6.6 Experimental Results

The proposed design algorithm has been implemented and applied to generate a

series of down-sampling methods in the DCT domain according to various user

preferences to the relative significance of visual quality over the complexity. A

spatial-domain method with the 10th order Butterworth low-pass filtering and cu-

bic B-spline interpolation is selected to generate reference images for evaluating

the visual quality among different LTDSs. Then, we compare the obtained LTDSs

with other DCT-domain methods for down-sampling ratios being 2:1 and 3:2, re-

spectively.

Table 6.1 shows the performance of three LTDSs for down-sampling with a ratio

of 2:1 obtained using the proposed method. Experiments for finding the optimal

LTDS according to user preference start with choosing 5 images {C 256×256,i, i =

1, · · · , 5}, as shown in Figure 6.8. A reference set {V 128×128,i, i = 1, · · · , 5} is

built up using the selected spatial-domain down-sampling method. The training for

solving (6.13) begins with initializing all connections by random numbers uniformly

distributed in [−0.5, 0.5]. The learning factor is α = 1×10−6, ρ = 0.5, λ = 0.1,
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.9: Comparison of visual quality for downsampling “Lena” by 2:1 using

six methods: (b) the pre-selected spatial domain method with Butterworth low

pass filtering and cubic B-spline interpolation, (c) our method obtained by solving

(6.12) with (d0 = w0 = 0.1), (d) the method in [12], (e) the M/L method in [58],

(f) the bilinear interpolation method in [53], and (g) a fast approximate algorithm

with bilinear interpolation in [53]. (a) is the original image with full resolution.

Compare the visual quality of down-sampled images in (b) to (g). There are major

artifacts shown in (g), e.g., at the shoulder and along the brim of the hat.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.10: Downsampling “Barbara” by 2:1 using six methods: (b) the pre-

selected spatial domain method with Butterworth low pass filtering and cubic B-

spline interpolation, (c) our method obtained by solving (6.12) with (d0 = w0 =

0.1), (d) the method in [12], (e) the M/L method in [58], (f) the bilinear interpola-

tion method in [53], and (g) a fast approximate algorithm with bilinear interpolation

in [53]. (a) is the original image with full resolution. Compare the down-sampled

images and pay attention to the strips on the top-left corner and the knees. Due to

the lack of low-pass filtering in the bilinear interpolation method, slight aliasing is

observed in the image of (f), e.g., the erroneous pattern at the left-top corner and

the pepper noise at the knees. The image of (g) shows severe aliasing and artifacts.
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Table 6.1: Performance of three LTDS-based methods for down-sampling DCT

images by 2:1 obtained using the proposed method corresponding to three set of

training parameters. The PSNR is calculated based on reference images obtained

using the pre-selected down-sampling method in the spatial domain as discussed in

Section 6.5.3.

Training parameters Complexity Visual quality

MUL ADD SHL PSNR

d0 = w0 = 0.2 0 1 1 30.4dB

d0 = w0 = 0.1 0 5.06 3.65 38.5dB

d0 = w0 = 0.005 0 17.25 13.75 46.2dB

η = 0.02. Different thresholds d0, w0 result in different trade-offs between distortion

and complexity.

In general, the LTDS corresponding to d0 = w0 = 0.1 makes a good choice for

down-sampling in the sense that it shows a better quality and a lower complexity,

compared with other algorithms. For the ratio of 2:1, we compare our LTDS ob-

tained for d0 = w0 = 0.1 with other four algorithms, which were proposed in [12],

[58], and [53], respectively. The method in [12] is developed for down-sampling

by a factor of 2 based on DCT coefficient manipulation while the method in [58]

shares a similar spirit of DCT coefficient manipulation, except that it is extended

to support more down-sampling ratios. The work in [53] is specifically targeted for

down-sampling by 2:1 with 8× 8 DCT, including two algorithms. The first one is

essentially an LTDS based on bilinear interpolation, i.e., to compute a new sample

by averaging every 2× 2 block. The other one is a fast approximate algorithm for

the bilinear interpolation method.

Table 6.3 shows our comparative studies for the five down-sampling algorithms

with a ratio of 2:1. We measure the complexity by the number of arithmetic oper-

ations, as well as the execution time by a software implementation on our 3.4Ghz

P-IV platform. Instead of the PSNR, which we use for comparing various LTDSs
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Table 6.2: Image quality by PSNR for various DCT-domain methods measured

against the spatial-domain reference down-sampling method.

lena.jpg barbara.jpg house.jpg

LTDS (d0 = w0 = 0.1) 40.42 38.83 40.39

Method in [12] 37.53 34.81 37.66

L/M [58] 38.01 35.40 36.67

Bilinear average in [53] 38.64 33.28 38.74

Fast algorithm in [53] 28.66 23.07 30.12

obtained by different learning parameters, the visual quality here is examined by

subjective criteria, such as aliasing and ringing in the table. The PSNR measure-

ment is not used because of the lack of common reference images. The reference

images obtained by the selected standard method play a fair role for evaluating

various LTDSs obtained by (6.12). But they are not suitable for comparing our

LTDSs with other methods because these LTDSs take a favor from those references

through the optimization of (6.12). In fact, as shown in Table 6.2, the obtained

LTDS (d0 = w0 = 0.1) shows a 3 to 4dB PSNR gain over other methods, yet the

down-sampled images do not look that different. We examine the visual quality

for down-sampling a set of 20 images, while some are included here to support

the result for the visual quality in Table 6.3. As shown in Figure 6.9, the visual

quality for down-sampling the image of “lena” by our method is very similar with

that by other methods in [12], [58], and [53]. Moreover, Figure 6.10 shows that

the lack of low-pass filtering as in the bilinear interpolation method [53] leads to

aliasing for down-sampling the image of “barbara”, while Figure 6.11 demonstrates

ringing effects for down-sampling the image of “house” by methods in [12] and [58].

Hence, it is fair to say that our LTDS with (d0 = w0 = 0.1) shows a visual quality

no worse than others in the literature, while its complexity is lower. Overall, our

LTDS achieves the best trade-off between the visual quality and the computational

complexity.

Since the algorithms in [53] are also LTDS, it is interesting to look into more
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Table 6.3: Performance comparison of five DCT-domain methods and the reference

spatial-domain method for down-sampling at a ratio of 2:1. Complexity is measured

with number of operations per pixel in the original image, while computation time

is reported based on our computer with 3.4Ghz P-IV CPU. The visual quality is

measured by subjective criteria for a testing set of 20 images. Note that a ‘yes’

means that the corresponding effect shows up for some, not necessarily all, images

in the whole set, while a ‘no’ means that the corresponding effect has not been

observed for all images in the set. See Figures 6.9, 6.10 and 6.11 for the visual

quality comparison. The reference spatial-domain method uses 10×10 2D low-pass

filter and bicubic interpolation.

Complexity Visual quality Computation

Other time

MUL ADD SHL Ringing Aliasing artifacts per image

Spatial reference method 36 31 0 no no no 112.0ms

LTDS (d0 = w0 = 0.1) 0 5.16 3.66 no no no 1.6ms

Method in [12] 1.25 1.25 0 yes no no 2.1ms

L/M [58] 3.31 8.68 2.2 yes no no 6.3ms

Bilinear average in [53] 3.75 5.81 0.38 yes yes no 2.9ms

Fast algorithm in [53] 0 2.72 0.72 yes yes yes 0.9ms
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.11: Comparison of visual quality for downsampling “House” by 2:1 using

six methods: (b) the pre-selected spatial domain method with Butterworth low pass

filtering and cubic B-spline interpolation, (c) our method obtained by solving (6.12),

(d) the method in [12], (e) the M/L method in [58], (f) the bilinear interpolation

method in [53], and (g) a fast approximate of the algorithm (f) in [53]. (a) is

the original image with full resolution. Pay attention to the dark line on the top.

The down-sampled images in (d) and (e) show a light line right below the dark

line, indicating a typical ringing effect. Slight aliasing is observed in (f), e.g., the

erroneous pattern seen along the eaves on the right. The image of (g) shows severe

aliasing and artifacts. 117



details for the comparison between the algorithms in [53] and our obtained LTDS.

The algorithms in [53] accord to a concatenation of inverse DCT, bilinear interpo-

lation, and DCT. Essentially, the concatenation leads to an LTDS, which is shown

in the following:

A1 =



0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.453 0.208 −0.037 0.011 0.000 −0.011 0.037 −0.208

0.000 0.500 0.000 0.000 0.000 0.000 0.000 −0.500

−0.159 0.396 0.257 −0.049 0.000 0.049 −0.257 −0.396

0.000 0.000 0.500 0.000 0.000 0.000 −0.500 0.000

0.106 −0.176 0.384 0.245 0.000 −0.245 −0.384 0.176

0.000 0.000 0.000 0.500 0.000 −0.500 0.000 0.000

−0.090 0.139 −0.188 0.433 0.000 −0.433 0.188 −0.139


,

A2 =



0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

−0.453 0.208 0.037 0.011 0.000 −0.011 −0.037 −0.208

0.000 −0.500 0.000 0.000 0.000 0.000 0.000 0.500

0.159 0.396 −0.257 −0.049 0.000 0.049 0.257 −0.396

0.000 0.000 0.500 0.000 0.000 0.000 −0.500 0.000

−0.106 −0.176 −0.384 0.245 0.000 −0.245 0.384 0.176

0.000 0.000 0.000 −0.500 0.000 0.500 0.000 0.000

0.090 0.139 0.188 0.433 0.000 −0.433 −0.188 −0.139


,

and the corresponding LTDS is defined as

D IM =


pxA1A2qy 0 0

0
. . . 0

0 0 pxA1A2qy


and

W NJ =



AT
1

AT
2

 0 0

0
. . . 0

0 0

AT
1

AT
2




.
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The above LTDS is further processed in [53] for fast computation. Specifically,

elements in A1 and A2 are quantized to one of four levels, i.e., 0, 1
8
, 1

4
, and 1

2
.

Consequently,

A1,fast =



0.5 0 0 0 0 0 0 0

0.5 0.25 0 0 0 0 0 −0.25

0 0.5 0 0 0 0 0 −0.5

−0.125 0.5 0.25 0 0 0 −0.25 −0.5

0 0 0.5 0 0 0 −0.5 0

0.125 −0.25 0.5 0.25 0 −0.25 −0.5 0.25

0 0 0 0.5 0 −0.5 0 0

−0.125 0.125 −0.25 0.5 0 −0.50 0.25 −0.125


,

which is the quantization output of A1. The quantization output of A2 is similar,

except the difference of the sign.

The LTDS obtained by our proposed method with d0 = w0 = 0.1, on the other

hand, is as follows.

DI×M =


pxB1B2qy 0 0

0
. . . 0

0 0 pxB1B2qy

 ,

and

W NJ =



BT
1

BT
2

 0 0

0
. . . 0

0 0

BT
1

BT
2




.

where
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B1 =



0.5 0 0 0 0 0 0 0

0.4375 0.1875 −0.0625 0 0 0 0 0

0 0.5 0 0 0 0 0 0

−0.15625 0.34375 0.25 −0.09375 0 0 0 0

0 0 0.4375 0 0 0 0 0

0.0625 −0.15625 0.2890625 0.21875 −0.09375 0 0 0

0 0 0 0.375 0 0 0 0

−0.0625 0.0625 −0.125 0.203125 0.125 −0.09375 0 0


,

B2 =



0.5 0 0 0 0 0 0 0

−0.4375 0.1875 0.0625 0 0 0 0 0

0 −0.50 0 0 0 0 0 0

0.15625 0.34375 −0.25 −0.09375 0 0 0 0

0 0 0.4375 0 0 0 0 0

−0.0625 −0.15625 −0.2890625 0.21875 0.09375 0 0 0

0 0 0 −0.375 0 0 0 0

0.0625 0.0625 0.125 0.203125 −0.125 −0.09375 0 0


.

Consider the complexity of computing the obtained LTDS with (d0 = w0 = 0.1)

for down-sampling by 2:1. The computation of the LTDS can be broken down for

each 16× 16 block as pxB1B2qyC 16×16

BT
1

BT
2

. Consider the binary representation

of B1, i.e.,
2−1 0 0 0 0 0 0 0

2−2 + 2−3 + 2−4 2−3 + 2−4 −2−4 0 0 0 0 0

0 2−1 0 0 0 0 0 0

−(2−3 + 2−5) 2−2 + 2−4 + 2−5 2−2 −(2−4 + 2−5) 0 0 0 0

0 0 2−2 + 2−3 + 2−4 0 0 0 0 0

2−4 −(2−3 + 2−5) 2−2 + 2−5 + 2−7 2−3 + 2−4 + 2−5 −(2−4 + 2−5) 0 0 0

0 0 0 2−2 + 2−3 0 0 0 0

−2−4 2−4 −2−3 2−3 + 2−4 + 2−6 2−3 −(2−4 + 2−5) 0 0

.

Denote a column vector from C 16×16 as (c1, · · · , c16). Consider the symmetry

between B1 and B2. The corresponding column for the left side matrix multipli-
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Table 6.4: Performance of three LTDS-based methods for down-sampling DCT

images by 3:2 obtained using the proposed method corresponding to three set of

training parameters. The PSNR is calculated based on reference images obtained

using the pre-selected down-sampling method in the spatial domain as discussed in

Section 6.5.3.

Complexity Visual quality

MUL ADD SHL PSNR

d0 = w0 = 0.1 0.26 8.9 7.85 30.1dB

d0 = w0 = 0.02 0.26 10.4 14.3 35.6dB

d0 = w0 = 0.006 0.23 25.1 25 48.6dB

cation is computed as follows:

2−1(c1 + c9),

(2−2 + 2−3 + 2−4)(c1 + c9) + (2−3 + 2−4)(c2 + c10) − 2−4(c3 + c11),

2−1(c1 + c10),

−(2−3 + 2−5)(c1 + c9) + (2−2 + 2−4 + 2−5)(c2 + c10) + 2−2(c3 + c11) − (2−4 + 2−5)(c4 + c12),

(2−2 + 2−3 + 2−4)(c3 + c11),

2−4(c1 + c9) − (2−3 + 2−5)(c2 + c10) + (2−2 + 2−5 + 2−7)(c3 + c11) + (2−3 + 2−4 + 2−5)(c4 + c12) − (2−4 + 2−5)(c5 + c13),

(2−2 + 2−3)(c4 + c12),

−2−4(c2 + c10 − c1 − c9) + 2−3(c5 + c13 − c3 − c11) + (2−3 + 2−4 + 2−6)(c4 + c12).

It is easy to see that the above column consume 53 additions and 39 shifts, de-

noted as 53A and 39S, respectively. For each 16 × 16 block, the left side matrix

multiplication takes 16(53A+39S), while the right side matrix multiplication re-

quires 8(53A+39S). Therefore, the number of operations per each original pixel is

16(53A+39S)+8(53A+39S)
256

= 5.06A + 3.65S, which is shown in Table 6.1.

Compare the procedure of designing the fast algorithm in [53] with the proposed

framework (6.12) for developing our LTDS. They share similar ideas of quantizing

the coefficients. The proposed design framework, however, employs a more ad-

vanced quantization design, where the quantization is integrated into the optimiza-

tion scheme, leading to a better trade-off between the computational complexity

and the visual quality. In general, the learning with forgetting may be considered

as quantization too, except that the criterion is to search for coefficients which

contribute the least to the visual quality and quantize them to zeros.
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Table 6.5: Performance comparison for down-sampling JPEG images with a ratio

of 3:2.

Complexity Visual quality Computation

Ringing Other time

MUL ADD SHL effect artifacts per image

LTDS (d0 =w0 =0.02) 0.26 10.4 14.3 no no 3.2ms

L/M [58] 1.94 8.06 0 yes no 4.1ms

The proposed framework is applicable for generating down-sampling algorithms

with arbitrary ratios. Experiments have been conducted to generate down-sampling

algorithms with a ratio of 3:2. With different training parameters, three LTDSs

have been obtained for down-sampling by 3:2, as shown in Table 6.4. Note that the

number of multiplications is not zero, meaning that there are some multipliers for

which multiplication are not substituted with additions and shifts. This is because

the binary representation as shown in (6.9) may contains too many ones. A rule of

allowing at most 5 ones in the binary representation was applied in our experiments.

The obtained LTDS for down-sampling by 3:2 is compared with the L/M method

in [58], since the method in [53] is for 2:1 only and the work in [12] targets for down-

sampling by a factor of 2. The result is shown in Table 6.5, with a focus on the

complexity. Essentially, the obtained LTDS has a lower complexity than the method

in [58]. Specifically, there are two algorithms proposed for down-sampling by 3:2

in [58], referred to as case I and case II. In this comparison, the case II algorithm

is used because of its lower complexity. Experimental results by the computation

time show that the obtained LTDS is more efficient than the case II algorithm.

Figure 6.12 shows images down-sampled by 3:2 using three methods for two

typical images, “Barbara” and “House”. Mainly the interest of comparison lies

on the obtained LTDS and the L/M method. For “Barbara”, the resulting down-

sampling images are quite similar with each other, as shown in Figure 6.12 by (b)

and (c). For “House”, the ringing effect is observed for the method in [58] due
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to its inherent drawbacks from DCT coefficient truncation, which is equivalent to

filtering with an ideal filter. Specifically, there are several slight lines on the top,

indicating the occurrence of ringing. Overall, compared with the method in [58] the

obtained LTDS achieves a reduced complexity and a slightly better visual quality

for the down-sampling ratio of 3:2.

6.7 Chapter Summary

The goal of this chapter is to study the trade-off between distortion and complexity

for images/video frames down-sampling in the DCT domain, which is motivated

by image/video transcoding. Essentially, a DCT-domain down-sampling design

framework has been proposed. Certainly, the proposed design framework itself does

not depend on any spatial-domain method. In other words, it is open to adopt other

spatial-domain methods as the reference for the visual quality, if there is any other

method proven to be superior to the method selected in our experiments. As the

main interest in developing DCT-domain down-sampling method is for reducing

the computational complexity, we have shown that the proposed design framework

yields LTDSs which are more efficient than other DCT-domain methods in the

literature. It has achieved a desired trade-off between the visual quality and the

computational complexity.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Comparison of visual quality for downsampling “Barbara” and

“House” by 3:2 using three methods: (a)(d) the pre-selected spatial domain method

with Butterworth low pass filtering and cubic B-spline interpolation, (b)(e) a

method obtained by solving (6.12), (c)(f) the M/L method in [58]. The visual

quality for the two methods are very similar, except that slight ringing is observed

for the M/L method in [58], e.g., there are some light lines on the top of (f).

124



Chapter 7

Conclusions and Future Research

This chapter concludes the thesis with a summary of contributions and presents a

few thoughts on future research.

7.1 Conclusions

In this thesis, we first study the RD optimal hybrid video coding and its applica-

tion to optimize RD trade-off for H.264. Using SDQ, we have proposed a general

framework in which motion estimation, quantization, and entropy coding in the

hybrid coding structure for the current frame can be jointly designed to minimize

the actual RD cost given previously coded reference frames. Within the frame-

work, we have then developed three RD optimization algorithms—a graph-based

algorithm for SDQ, an algorithm for residual coding optimization, and an itera-

tive overall algorithm—with them embedded in the indicated order. Specifically,

we have developed these algorithms corresponding to syntax constraints of H.264

baseline coding and H.264 main profile coding, respectively.

These algorithms have been implemented based on the reference encoder JM82

of H.264, as shown in Chapter 4 with compatibility to H.264 baseline profile and

Chapter 5 with compatibility to H.264 main profile. Experiments in Chapter 4
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have demonstrated that for a set of typical video testing sequences, the graph-

based SDQ algorithm based on CAVLC achieves on average 6% rate reduction at

the same PSNR (ranging from 30dB to 38dB) when compared with the baseline RD

optimization method implemented in the H.264 reference software, and the overall

optimization algorithm with baseline compatibility achieves 12% rate reduction.

With a similar comparative setting, experiments in Chapter 5 have showed that

the graph-based SDQ algorithm based on CABAC achieves on average 5% rate

reduction over the reference main profile H.264 codec using CABAC, and the overall

optimization algorithm with main profile compatibility achieves 10% rate reduction.

The main contribution in Chapter 6 is a framework for designing down-sampling

method in the DCT domain by jointly optimizing the visual quality and the com-

putational complexity. First, a linear transform model is established, based on

which a joint optimization problem is formulated for finding optimal LTDSs corre-

sponding to a pre-selected spatial-domain down-sampling method. The optimality

is defined as to minimize a joint cost of the visual quality and the complexity for

given parameters, which reflect the user’s preference to the relative significance of

the visual quality and the computational complexity. The optimization problem

is addressed by modeling the LTDS with a multi-layer network and applying an

automatic machine learning algorithm, i.e., structural learning with forgetting for

training the network. The proposed design framework has been applied to find the

optimal LTDSs corresponding to a popular spatial-domain down-sampling method

with Butterworth low-pass filtering and cubic B-spline interpolation. Experiments

show that the obtained LTDS inherits the desirable properties of anti-aliasing and

ringing avoidance from the pre-selected spatial-domain method while being com-

putationally efficient.
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7.2 Future Research

Needless to say, there are many topics left for future work. Yet, in the following,

we discuss a few of them that may be pictured in Figure 1.1 as mentioned in the

introduction.

7.2.1 Hybrid Video Transcoding with Spatial Resolution

Reduction

Video coding involves two major coding techniques, i.e., predictive coding and

nonpredictive coding. Correspondingly, there are two types of video transcoding.

Predictive video coding methods explore and utilize the cross-frame and/or cross-

block similarity to achieve high compression. For example, a hybrid video coding

method uses inter prediction between frames and intra prediction within frames to

improve compression efficiency. All hybrid video coding standards such as MPEG-2

and H.264 employ predictive coding. On the other side, nonpredictive video coding

methods process each frame in a video clip separately. They are less efficient than

predictive methods in terms of compression, yet they are preferable for applications

such as film and television postproduction because nonpredictive coding enables

easy editing, which means that any frame in a video clip is accessible with the

same ease as any other.

In this thesis, we have studied DCT-domain down-sampling, which plays a key

role in transcoding nonpredictively-coded images and video clips, such as JPEG

images and DV video clips. JPEG is one of the most popular formats for images

on the Internet. The DV format is also widely used for consumer and professional

video production. Features of the DV standard includes its standard interface of

Firewire, also known as IEEE 1394, for getting video into and out of computers,

and its nonpredictive compression for easy editing. Motivations for transcoding

nonpredictively-coded video clips come from the fact that many video resources are

originally recorded in nonpredictive formats such as DV.
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Figure 7.1: Diagram of transcoding H.264-coded video with spatial resolution

reduction. The symbols of m , V , f , U , and q are prediction modes, motion

vectors, reference frame numbers, quantization outputs, and quantization step sizes

as defined in Chapter 3. The subscript i denotes the frame number.

Nevertheless, there are also strong motivations for transcoding predictively-

coded video clips with spatial resolution reduction because of the abundance of

predictively-coded video data. Since predictive video coding is also known as hybrid

video coding, we call this study hybrid video transcoding. Hybrid video Transcod-

ing involves both processing DCT coefficients and re-prediction. Particularly, a

key step is to re-estimate new motion information based on old motion informa-

tion obtained from the input bitstream. For example, consider to transcode an

H.264-coded video clip with spatial resolution reduction, as shown in Figure 7.1.

The main problem is how to find and utilize the correlation between the motion

information with high spatial resolution (mH,V H, f H) and that with low spatial

resolution (mL,V L, f L).

A preliminary study on transcoding H.264-coded video has been conducted in

[73], where a linear method is developed to estimate a range for V L based on

V H and then a full search within the range is performed to find (mL,V L, f L).

Essentially, a linear relationship is assumed between motion vectors in high reso-

lution scenes V H and motion vectors in low resolution pictures V L. Simulations

show that the linear method works fairly well to predict the range. Yet, the above

transcoding method requires to fully decode the input bitstream, then to down-

sample frames in the spatial domain, and to re-encoding the down-sampled frames.

This procedure is slow and would be further accelerated if (mL,V L, f L) could be
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computed directly based on (mH,V H, f H).

Future work on hybrid video transcoding with spatial resolution reduction may

be formulated as an optimization problem for minimizing a transcoding distortion

over a transform from (mH,V H, f H) to (mL,V L, f L), which is conditioned on

a given down-sampling method with a given ratio. The distortion may be defined

based on mean square error between a frame reconstructed from (mL,V L, f L) and a

down-sampled version of a frame reconstructed from (mH,V H, f H). Then, various

non-linear optimization algorithms such as neural networks or genetic algorithms

can be investigated to solve the problem.

7.2.2 Temporal Resolution Conversion for Video Sequences

As shown in Figure 1.1, a fundamental diversity between a video capturing de-

vice and a display device is the temporal resolution (also called frame rate). A

well-known example is the difference between NTSC and PAL. NTSC is used in

North America and it supports a temporal resolution of 29.97frames/second; PAL

is adopted in Europe and it defines a resolution of 25frames/second. Temporal res-

olution conversion is needed when playing PAL or NTSC recorded video on NTSC

or PAL devices.

The temporal resolution conversion issue is not new to the digital video pre-

cessing community at all. E.g., a motion-adaptive method was developed in [4]

for frame rate up-conversion. However, existing methods either adopt a too simple

scheme to provide satisfactory video quality or involve extensive computation. A

recent conversation with a principal engineer in an internationally leading company

for video products revealed that an effective and efficient temporal resolution con-

version method is still on the most-wanted list. This serves as a strong motivation

for developing practical temporal resolution conversion methods.
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7.2.3 Video Coding with Side-Information Assisted Refine-

ment

Lossy video compression today is going in two main directions, i.e., the conven-

tional hybrid coding and the emerging Wyner-Ziv (W-Z) video coding (also called

distributed video coding) [23]. Hybrid coding features a complex encoder and a

simple decoder, where the encoder carries the computational burden to exploit

source statistics for achieving efficient compression. W-Z video coding, as the dual

to hybrid coding, enables fast encoding by shifting the bulk of computation to the

decoder. Apparently, hybrid video coding is suitable for applications with powerful

front devices. For example, in filming industries, video encoders enjoy high-end

professional equipments with super computation power. On the other side, W-Z

video coding is desirable for a system, which has more power at the decoder than

at the encoder, e.g., a remote surveillance system with a powerful home station.

An interesting future study on video coding is to combine hybrid coding and

W-Z coding. E.g., a new paradigm of video coding with side-information-assisted

refinement is shown in Figure 7.2. It will allow us to flexibly distribute the com-

putation burden between the encoder and the decoder by combining hybrid coding

and W-Z coding in a scalable coding scheme. This research should yield helpful

insight into the next generation video coding. While the current market-dominator,

hybrid coding, experiences difficulties for many mobile applications due to the com-

plex encoding, the emerging W-Z video coding is also limited by its high decoding

complexity. This research allows a flexible distribution of complexity between en-

coding and decoding, which will open the door for many applications such as video

messaging or video telephony with mobile terminals at both ends.

In addition, the combination of hybrid coding and W-Z coding in a scalable

structure has another advantage, i.e., fast reviewing or searching for video data,

which is desired for applications such as digital video library. By its nature of

complex decoding, W-Z-coded video data suffer from slow reviewing/searching.

To tackle this issue, a transcoding scheme has been studied by Girod et. al. as
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Figure 7.2: A new paradigm of video compression with side-information-assisted

refinement.
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Figure 7.3: Transcoding from W-Z video coding to hybrid video compression [23].

shown in Figure 7.3, which implements a concatenation of W-Z decoding and hybrid

encoding. This transcoding structure requires extra infrastructure. In the scalable

combination structure of Figure 7.2, however, the fast reviewing feature is a natural

result of reconstructing X̂.

Theoretically, hybrid video coding and W-Z coding have been well studied in

the literature, as the RD theory was created by Shannon in the 1950s [1] and

the Slepian-Wolf theorem [70] and the W-Z theorem [80] were established in the

1970s. For the new coding scheme of video coding with side-information-assisted

refinement, the following theoretic problems arise:

1. What is the RD achievable region of (R1, R2, D1, D2)?

2. What is the gap between the RD functions R(D2) with R1 = 0 and the

function R(D2) with given D1?

3. What is the minimum R given two distortion levels D1 and D2?
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Algorithmically, video compression is still challenging researchers over the world.

For the new video coding diagram, the following practical designs are interesting.

1. Algorithm design for generating a base-layer description X corresponding to

given R1.

2. Algorithm design for refining X̃ with X̂ and side information Y to approach

R(D2) with given D1.
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