
Lattice-Based Precoding And Decoding

in MIMO Fading Systems

by

Mahmoud Taherzadeh

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c©Mahmoud Taherzadeh 2008



I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In this thesis, different aspects of lattice-based precoding and decoding for the trans-

mission of digital and analog data over MIMO fading channels are investigated:

1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopt-

ing the lattice reduction in communication over MIMO broadcast channels is intro-

duced. Lattice basis reduction helps us to reduce the average transmitted energy by

modifying the region which includes the constellation points. The new viewpoint helps

us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate

transmission, and obtain analytic results for the asymptotic behavior of the symbol-

error-rate for the lattice-reduction-aided precoding and the perturbation technique.

Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is

analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm,

achieves the optimum asymptotic slope of symbol-error-rate (called the precoding di-

versity).

2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point

systems: Diversity order and diversity-multiplexing tradeoff are two important mea-

sures for the performance of communication systems over MIMO fading channels. For

the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO

point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-

reduction-aided decoding achieves the maximum receive diversity (which is equal to

the number of receive antennas). Also, it is proved that the naive lattice decoding

(which discards the out-of-region decoded points) achieves the maximum diversity in
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V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice

decoding for general MIMO fading systems is investigated. It is shown that using

the naive lattice decoding for MIMO systems has considerable deficiencies in terms of

the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding,

in this case, even the perfect lattice space-time codes which have the non-vanishing

determinant property can not achieve the optimal diversity-multiplexing tradeoff.

3) Lattice-based analog transmission over MIMO fading channels: The problem

of finding a delay-limited schemes for sending an analog source over MIMO fading

channels is investigated in this part. First, the problem of robust joint source-channel

coding over an additive white Gaussian noise channel is investigated. A new scheme

is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR)

curve (unlike the previous known coding schemes). Then, this idea is extended to

MIMO channels to construct lattice-based codes for joint source-channel coding over

MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic

performance of MIMO joint source-channel coding schemes is characterized, and a

concept called diversity-fidelity tradeoff is introduced in this thesis.
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Chapter 1

Introduction

In the last decade, there has been a substantial increase in multimedia services in

wireless environments and the demand for ubiquitous high-rate connectivity. To meet

these goals, designing spectrally efficient signaling schemes is an essential element. An

important approach to increase spectral efficiency is to exploit the spatial resources in

the system, i.e., to use multiple antennas at the transmitter and the receiver. Commu-

nications over multiple-antenna systems is also called multiple-input multiple-output

(MIMO) communications. When all the transmit antennas are used by one transmitter,

and all the receive antennas are used by one receiver, the system is called point-to-point

MIMO. When there are several transmitters, but the receive antennas are used by a

single user, the system is called MIMO multiaccess. Similarly, when there is a single

transmitter and several receivers, the systems is called MIMO broadcast.

In most wireless environments, the channel between a transmit and a receive antenna

is assumed to be a Rayleigh fading channel, i.e. the baseband signal (which can be
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Introduction 2

modeled as a complex number) is assumed to be multiplied by a complex channel

gain, with a complex Gaussian distribution, and then added by an additive Gaussian

noise [85]. The error rate of uncoded transmission over this channel scales as 1
SNR

,

where SNR denotes the signal-to-noise-ratio. It was known that when the environment

is highly dispersive, we can reduce the error rate and improve its scaling by exploiting

multiple antennas. In the literature, this improvement in the asymptotic scaling of the

error rate is known as diversity. When the error rate is asymptotically proportional to

1
SNRd , for a positive number d, then d is called the diversity order. It is known that

for a MIMO point-to-point system, diversity order is at most equal to NtNr, where Nt

and Nr are the numbers of receive and transmit antennas [81].

The other important measure in the communications over wireless fading channels

is the average transmission rate. For a single antenna system, the average achievable

data rate is asymptotically close to log SNR. In [82], it was shown that when multiple

antennas are used in a fading system with independent channel coefficients, the average

capacity asymptotically grows as M log SNR, where M is the minimum of the number

of transmit and receive antennas. This increase in the rate is called spatial multiplex-

ing. In [25], a practical system, called V-BLAST, was proposed for providing spatial

multiplexing in MIMO point-to-point systems. This system was based on sending inde-

pendent symbols over transmit antennas and using sequential minimum mean-squared

error (MMSE) detection at the receiver.

Since the seminal works by Telatar [82] and Foschini et al. [25], MIMO communica-

tions has attracted intensive research. In [3,80,81], some coding schemes are proposed
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to obtain the full diversity, along with a modest rate. Also, for noncoherent com-

munications over time-varying channels, differential space-time modulation schemes

(based on unitary matrices) are introduced in [37, 39, 79]. These works gave birth

to the field of Space-Time Coding, which has attracted many researchers in recent

years [17, 31, 32, 40, 41, 46, 67, 70].

To have a unified benchmark for evaluating different space-time coding schemes in

terms of both reliability and spectral efficiency, the concept of Diversity-Multiplexing

Tradeoff was introduced in [96]. For a family of space-time codes Ci, corresponding to

the signal-to-noise ratio SNRi, the normalized rate r is defined as r = limSNRi→∞
Ri

log SNRi
,

where Ri is the rate of the code Ci. Also, the diversity d(r) is defined as d(r) =

limSNRi→∞
− log Pr(error)

log SNRi
. For any coding scheme, there is a trade-off between the nor-

malized rate r (which can be any real number between 0 and the multiplexing gain,

min {Nt, Nr} ) and the diversity d(r) (which can be any number between 0 and the max-

imum diversity order NtNr). In [96], the authors have shown that for integer values of

r, 0 ≤ r ≤ min {Nt, Nr}, the optimum diversity d∗(r) is d∗(r) = (Nt − r)(Nr − r).

Several articles have dealt with achieving the optimum tradeoff with practical

schemes. For the encoding part, recently, several lattice codes are introduced which

have the non-vanishing determinant property and achieve the optimal trade-off, condi-

tioned on using exact maximum-likelihood decoding [18, 38, 53]. The lattice structure

of these codes facilitates the encoding. For the decoding part, various lattice decoders,

including the sphere decoder and the lattice-reduction-aided decoder are presented in

the literature [14, 91].
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Besides point-to-point systems, new information theoretic results [7,87,88,95] have

shown that using multiple-antennas can be also useful in multiuser MIMO systems. It

has been shown that in a MIMO broadcast system, the sum-capacity grows linearly

with the minimum number of the transmit and receive antennas [87, 88, 95].

Another important issue in MIMO systems is the problem of joint source-channel

coding, for the transmission of analog sources over MIMO channels. This problem can

be very important in the high-rate broadcast of multimedia in wireless environments.

While there has been some work on this issue [6, 30], the main questions (about both

the theoretical limitations and the design of practical schemes) are not answered yet.

The organization of this thesis is as follows. Sections 1.1 and 1.2 briefly introduce the

basic concepts of lattices and lattice-basis reduction. The rest of this chapter is devoted

to a brief summary of the materials presented in the following chapters. Chapter 2 deals

with the precoding for MIMO broadcast channels. In chapters 3 and 4, lattice decoding

in MIMO multiaccess and point-to-point systems is considered. Chapter 5 deals with

joint source-channel coding and chapter 6 investigates this problem in MIMO systems.

1.1 Lattices

Lattice structures have been frequently used in different communication applications

such as quantization or decoding of MIMO systems. A real (or complex) lattice Λ is a

discrete set1 of N -dimensional vectors in the real Euclidean space RN (or the complex

1A set S is called discrete if for any point in it, there is a neighborhood that does not contain any

other points of the set.



Introduction 5

Euclidean space CN) that forms a group under ordinary vector addition [10, 23, 29].

Every lattice Λ is generated by the integer linear combinations of some set of linearly

independent vectors b1, · · · ,bM ∈ Λ, where the integer M , M ≤ N , is called the

dimension of the lattice Λ. The set of vectors {b1, · · · ,bM} is called a basis of Λ, and

the matrix B = [b1, · · · ,bM ], which has the basis vectors as its columns, is called the

basis matrix (or the generator matrix ) of Λ.

For a real lattice Λ with basis vectors b1, · · · ,bM ∈ Λ, the parallelotope consisting

of the points

a1b1 + · · ·+ aMbM (0 ≤ ai < 1)

is called the fundamental parallelotope or the fundamental region2. The basis for rep-

resenting a lattice is not unique, hence, there are various choices for the fundamental

region of the lattice. However, the volume of a fundamental region of the lattice is

uniquely determined by the lattice and is independent of the choice of the basis. This

volume is equal to

Vol(Λ) =
(
detBBH

) 1
2

and its square is called the determinant or the discriminant of the lattice. For any

lattice point v ∈ Λ, the set of points whose closest lattice point is v is called the

Voronoi region (or the Voronoi cell) corresponding to v. The volume of the Voronoi

2Similarly, for an M -dimensional complex lattice, we can define the 2M -dimensional fundamental

parallelotope as the region consisting of the points

a1b1 + · · · + aMbM (0 ≤ ℜ(ai),ℑ(ai) < 1)
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regions is equal to the volume of the lattice, and unlike the fundamental region, the

the Voronoi regions are independent of the choice of the lattice basis [10].

In Communication applications, lattices are used in constructing signal sets for

transmitting digital data, or for quantizing analog data. To construct transmit signals,

usually lattice points (or a shifted version of them) inside a certain region A (which

is called constellation region) are used as transmit signal constellation. When the

constellation region A is large (compared to the fundamental region of the lattice), the

number of signal points can be approximated by Vol(A)
Vol(Λ)

. Also, the average transmit

energy per dimension can be approximated by the dimensionless normalized second

moment of the region A which is defined as

G(A) =
1

N
(Vol(A))−

N+2
2N

∫

A
‖x‖2 dx. (1.1)

This type of high-rate approximation is commonly referred to as continuous approxi-

mation in the literature.

1.2 Lattice-Basis Reduction

Usually a basis consisting of relatively short and nearly orthogonal vectors is desirable.

The procedure of finding such a basis for a lattice is called Lattice Basis Reduction. A

popular criterion for lattice-basis reduction is to find a basis such that ‖b1‖· ... ·‖bM‖ is

minimized. Because the volume of the lattice does not change with the change of basis,

this problem is equivalent to minimizing the orthogonality defect which is defined as

δ ,
(‖b1‖2‖b2‖2...‖bM‖2)

detBHB
. (1.2)
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The problem of finding such a basis is NP-hard [28]. Several distinct sub-optimal

reductions have been studied in the literature, including those associated to the names

Minkowski, Korkin-Zolotarev, and more recently Lenstra-Lenstra and Lovasz (LLL)

[29].

An ordered basis (b1, · · · ,bM) is a Minkowski-Reduced Basis [36] if

• b1 is the shortest nonzero vector in the lattice Λ, and

• For each k = 2, ..., M , bk is the shortest nonzero vector in Λ such that (b1, · · · ,bk)

may be extended to a basis of Λ.

Minkowski reduction can be seen as a greedy solution for the lattice-basis reduction

problem. However, finding Minkowski reduced basis is equivalent to finding the shortest

vector in the lattice and this problem by itself is NP-hard. Thus, there is no polynomial

time algorithm for this reduction method.

In [45], a reduction algorithm (called LLL algorithm) is introduced which uses the

Gram-Schmidt orthogonalization and has a polynomial complexity and guarantees a

bounded orthogonality defect. For any ordered basis of Λ, say (b1, · · · ,bM), one can

compute an ordered set of Gram-Schmidt vectors,
(
b̂1, · · · , b̂M

)
, which are mutually

orthogonal, using the following recursion:

b̂i = bi −
∑i−1

j=1 µijb̂j , with

µij =
< bi, b̂j >

‖b̂j‖2
.

(1.3)

where < ·, · > is the inner product. An ordered basis (b1, · · · ,bM) is an LLL Reduced

Basis [45] if,
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• |µij| ≤ 1
2

for 1 ≤ i < j ≤ M , and

• p · ‖b̂i‖2 ≤ ‖b̂i+1 + µi+1,ib̂i‖2

where 1
4

< p < 1, and
(
b̂1, · · · , b̂M

)
is the Gram-Schmidt orthogonalization of the

ordered basis and bi =
∑i

j=1 µijb̂j for i = 1, ..., M .

It is shown that the LLL basis-reduction algorithm produces relatively short basis

vectors with a polynomial-time computational complexity [45]. The LLL basis reduc-

tion has found extended applications in several contexts due to its polynomial-time

complexity. In [52], the LLL algorithm is generalized for Euclidean rings (including the

ring of complex integers). In this chapter, we will use the following important property

of the complex LLL reduction (for p = 3
4
):

Theorem 1.1 (see [52]). Let Λ be an M-dimensional complex lattice and B = [b1...bM ]

be the LLL reduced basis of Λ. If δ is the orthogonality defect of B, then,

√
δ ≤ 2M(M−1). (1.4)

1.3 Summary of the Dissertation

Chapter 2 presents a lattice-reduction-aided technique for precoding in MIMO broad-

cast systems. Although a similar technique has been introduced in the past [92], the

new viewpoint helps us in generalizing it for unequal-rate transmission, as well as an-

alyzing the asymptotic performance of these lattice-reduction-aided methods. This

chapter introduces a concept called precoding diversity for the asymptotic performance
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of the precoding techniques. It analyzes the asymptotic performance of lattice-based

precoding techniques (including the exact lattice precoding and its lattice-reduction-

aided approximation), and shows that they achieve the optimum precoding diversity.3

Chapter 3 investigates the performance of lattice-reduction-aided decoding in MIMO

multiaccess systems and MIMO point-to-point systems with V-BLAST transmission.

In this chapter, it is shown that lattice-reduction-aided decoding achieves the optimum

receive diversity in these systems. It is also shown that the naive lattice decoding (i.e.

lattice decoding without considering the boundary of the constellation) is sufficient for

achieving the receive diversity.4

Chapter 4 evaluates the diversity-multiplexing tradeoff of lattice-decoded codes in

MIMO point-to-point systems. This chapter presents an upper bound on the achiev-

able tradeoff of lattice-decoded codes which are based on full-rate lattices. It shows

that when we fix the lattice structure of the space-time code, if we use naive lattice

decoding, we cannot achieve the optimum diversity-multiplexing tradeoff. In recent

years, different elegant lattice codes have been introduced which achieve the optimal

trade-off [18] [53] [38], but they need ML decoding to achieve optimality. On the other

hand, there can exist a family of lattice codes (based on different lattice structures for

different rates and SNR values) which achieves the optimum tradeoff using the naive

lattice decoding [51]. The result of this chapter shows that the problem of achieving the

optimum diversity-multiplexing tradeoff by a practical encoding and decoding scheme

3The content of Chapter 2 was presented in part in [77, 78], and published in [75].
4The content of Chapter 3 was presented in part in [78], and published in [76].
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is still open. 5

Chapter 5 deals with constructing robust joint source-channel codes for a Gaussian

channel and an analog source. It introduces a new coding scheme which achieves the

optimum scaling of signal-to-distortion-ratio (SDR) for the whole range of SNR. It

also presents some bounds on the performance of other alternatives (including general

hybrid digital analog codes). These robust joint source-channel codes can be used

for sending analog sources over single-input single-output (SISO) fading channels. In

fading channels with time-varying channel gains, or when the objective is to transmit

common analog data to different users (with different channel gains), it is desirable to

have a coding scheme which is robust to the variations of the channel gain. Several

analog and hybrid digital-analog schemes have been introduced in the past, but none

of them achieve the optimum SDR scaling.6

Chapter 6 uses the idea presented in Chapter 5, to construct robust joint source-

channel codes for MIMO fading channels. It also introduces a concept called diversity-

fidelity tradeoff (which can be regarded as the analog version of the diversity-multiplexing

tradeoff). It shows that the proposed coding scheme achieves the optimum diversity-

fidelity tradeoff.

Finally, Chapter 7 presents a summary of the thesis contributions and discusses

several future research directions.

5The content of Chapter 4 is also available in [71].
6The content of Chapter 5 was presented in part in [73, 74], and is also available in [72].



Chapter 2

Lattice-based precoding in MIMO

broadcast systems

In the recent years, communications over multiple-antenna fading channels has at-

tracted the attention of many researchers. Initially, the main interest has been on the

point-to-point Multiple-Input Multiple-Output (MIMO) communications [3,25,80–82].

In [82] and [25], the authors have shown that the capacity of a MIMO point-to-point

channel increases linearly with the minimum number of the transmit and the receive

antennas.

More recently, new information theoretic results [7], [95], [88], [87] have shown that

in multiuser MIMO systems, one can exploit most of the advantages of multiple-antenna

systems. It has been shown that in a MIMO broadcast system, the sum-capacity grows

linearly with the minimum number of the transmit and receive antennas [95], [88], [87].

To achieve the sum capacity, some information theoretic schemes, based on dirty-paper

11
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coding, are introduced. Dirty-paper coding was originally proposed for the Gaussian

interference channel when the interfering signal is known at the transmitter [12]. Some

methods, such as using nested lattices, are introduced as practical techniques to achieve

the sum-capacity promised by the dirty-paper coding [19]. However, these methods are

not easy to implement.

As a simple precoding scheme for MIMO broadcast systems, the channel inversion

technique (or zero-forcing beamforming [7]) can be used at the transmitter to sepa-

rate the data for different users. To improve the performance of the channel inversion

technique, a zero-forcing approximation of the dirty paper coding (based on QR de-

composition) is introduced in [7] (which can be seen as a scalar approximation of [19]).

However, both of these methods are vulnerable to the poor channel conditions, due to

the occasional near-singularity of the channel matrix (when the channel matrix has at

least one small eigenvalue). This drawback results in a poor performance in terms of

the symbol-error-rate for the mentioned methods [55].

In [55], the authors have introduced a vector perturbation technique which has a

good performance in terms of symbol error rate. Nonetheless, this technique requires a

lattice decoder which is an NP-hard problem. To reduce the complexity of the lattice

decoder, in [22, 90–92], the authors have used lattice-basis reduction to approximate

the closest lattice point (using Babai approximation).

In this chapter, we present a transmission technique for the MIMO broadcast chan-

nel based on the lattice-basis reduction. Instead of approximating the closest lattice

point in the perturbation problem, we use the lattice-basis reduction to reduce the
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average transmitted energy by reducing the second moment of the fundamental region

generated by the lattice basis. This viewpoint helps us to: (i) achieve a better perfor-

mance as compared to [90], (ii) expand the idea for the case of unequal-rate transmis-

sion, and (iii) obtain some analytic results for the asymptotic behavior (SNR−→ ∞) of

the symbol-error-rate for both the proposed technique and the perturbation technique

of [55].

The rest of the chapter is organized as the following: Section 2.1 briefly describe

the system model. In section 2.2, the proposed method is described and in section 2.3,

the proposed approach is extended for the case of unequal-rate transmission. In section

2.4, we consider the asymptotic performance of the proposed method for high SNR

values, in terms of the probability of error. We define the precoding diversity and the

outage probability for the case of fixed-rate users. It is shown that by using lattice basis

reduction, we can achieve the maximum precoding diversity. For the proof, we use a

bound on the orthogonal deficiency of an LLL-reduced basis. Also, an upper bound is

given for the probability that the length of the shortest vector of a lattice (generated

by complex Gaussian vectors) is smaller than a given value. Using this result, we also

show that the perturbation technique achieves the maximum precoding diversity. In

section 2.5, some simulation results are presented. These results show that the proposed

method offers almost the same performance as [55] with a much smaller complexity. As

compared to [90], the proposed method offers almost the same performance. However,

by sending a very small amount of side information (a few bits for one fading block),

the modified proposed method offers a better performance with a similar complexity.
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Finally, in section 2.6, some concluding remarks are presented.

2.1 System Model and Problem Formulation

We consider a multiple-antenna broadcast system with Nt transmit antennas and Nr

single-antenna users (Nt ≥ Nr). Consider y = [y1, ..., yNr ]
T , x = [x1, ..., xNt ]

T , w =

[w1, ..., wNr ]
T , and the Nr × Nt matrix H, respectively, as the received signal, the

transmitted signal, the noise vector, and the channel matrix. The transmission over

the channel can be formulated as,

y = Hx + w. (2.1)

The channel is assumed to be Raleigh, i.e. the elements of H are i.i.d. with the

zero-mean unit-variance complex Gaussian distribution and the noise is i.i.d. addi-

tive Gaussian. Moreover, we have the energy constraint on the transmitted signal,

E(‖x‖2) = 1. The energy of the additive noise is σ2 per antenna, i.e. E(‖w‖2) = Nrσ
2.

The Signal-to-Noise Ratio (SNR) is defined as ρ = 1
σ2 .

In a broadcast system, the receivers do not cooperate with each other (they should

decode their respective data, independently). The main strategy in dealing with this

restriction is to apply an appropriate precoding scheme at the transmitter. The simplest

method in this category is using the channel inversion technique at the transmitter to

separate the data for different users:

s = H+u, (2.2)
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where H+ = HH(HHH)−1, and HH is the Hermitian transpose (conjugate transpose) of

H. Moreover, s is the transmitted signal before the normalization (x =
s√

E(‖s‖2)
is

the normalized transmitted signal), and u is the data vector, i.e. ui is the data for the

i ’th user. For Nt = Nr (the number of transmit antennas and the number of users are

equal), the transmitted signal is

s = H−1u. (2.3)

The problem arises when H is poorly conditioned and ‖s‖ becomes very large,

resulting in a high power consumption. This situation occurs when at least one of

the singular values of H is very small which results in vectors with large norms as

the columns of H+. Fortunately, most of the time (especially for high SNRs), we can

combat the effect of a small singular value by changing the supporting region of the

constellation which is the main motivation of this chapter of thesis.

When the data of different users are selected from Z[i], the overall constellation can

be seen as a set of lattice points. In this case, lattice algorithms can be used to modify

the constellation. Especially, lattice-basis reduction is a natural solution for modifying

the supporting region of the constellation.

2.2 Proposed Approach

Assume that the data for different users, ui, is selected from the points of the integer

lattice (or from the half-integer grid [24]). The data vector u is a point in the Carte-

sian product of these sub-constellations. As a result, the overall receive constellation
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consists of the points from Z2Nr , bounded within a 2Nr-dimensional hypercube. At the

transmitter side, when we use the channel inversion technique, the transmitted signal

is a point inside a parallelotope whose edges are parallel to vectors, defined by the

columns of H+. If the data is a point from the integer lattice Z2Nr , the transmitted

signal is a point in the lattice generated by H+. When the squared norm of at least one

of the columns of H+ is too large, some of the constellation points require high energy

for the transmission. We try to reduce the average transmitted energy, by replacing

these points with some other points with smaller square norms. However, the lack of

cooperation among the users imposes the restriction that the received signals should

belong to the integer lattice Z2Nr (to avoid the interference among the users). The core

of the idea in this chapter is based on using an appropriate supporting region for the

transmitted signal set to minimize the average energy, without changing the underlying

lattice. This is achieved through the lattice-basis reduction.

When we use the continuous approximation (which is appropriate for large constel-

lations), the average energy of the transmitted signal is approximated by the second

moment of the transmitted region [24]. When we assume equal rates for the users, e.g.

R bits per user (R
2

bits per dimension), the signal points (at the receiver) are inside a

hypercube with an edge of length a where

a = 2R/2. (2.4)

Therefore, the supporting region of the transmitted signal is the scaled version of the

fundamental region of the lattice generated by H+ (corresponding to its basis) with

the scaling factor a. Note that by changing the basis for this lattice, we can change
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the corresponding fundamental region (a parallelotope generated by the basis of the

lattice and centered at the origin). The second moment of the resulting region is

proportional to the sum of the squared norms of the basis vectors (see Appendix A).

Therefore, we should try to find a basis reduction method which minimizes the sum of

the squared norms of the basis vectors. Figure 2.1 shows the application of the lattice

basis reduction in reducing the average energy by replacing the old basis with a new

basis which has shorter vectors. In this figure, by changing the basis a1, a2 (columns of

H+) to b1,b2 (the reduced basis), the fundamental region F , generated by the original

basis, is replaced by F ′, generated by the reduced basis.

Among the known reduction algorithms, the Minkowski reduction can be considered

as an appropriate greedy algorithm for our problem. Indeed, the Minkowski algorithm

is the successively optimum solution because in each step, it finds the shortest vector.

However, the complexity of the Minkowski reduction is equal to the complexity of

the shortest-lattice-vector problem which is known to be NP-hard [2]. Therefore, we

use the LLL reduction algorithm which is a suboptimum solution with a polynomial

complexity.

Assume that B = H+U is the LLL-reduced basis for the lattice obtained by H+,

where U is an Nr ×Nr unimodular matrix (both U and U−1 have integer entries). We

use x = Bu′ = H+Uu′ as the transmitted signal where

u′ = U−1u mod a (2.5)

is the precoded data vector, u is the original data vector, and a is the length of the

edges of the hypercube, defined by (2.4). At the receiver side, we use modulo operation
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Figure 2.1: Using lattice-basis reduction for reducing the average energy
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to find the original data:

y = Hx + n = HH+U(U−1u mod a) + n = U(U−1u mod a) + n (2.6)

= UU−1u mod a + n = u mod a + n. (2.7)

In obtaining (2.7) from (2.6), we use the fact that U and U−1 have integer entries.

In this method, at the beginning of each fading block, we reduce the lattice obtained

by H+ and during this block the transmitted signal is computed using (2.5). Neglecting

the preprocessing at the beginning of the block (for lattice reduction), the complexity

of the precoding is in the order of a matrix multiplication and a modulo operation.

Therefore, the complexity of the proposed precoding method is comparable to the

complexity of the channel inversion method. However, as we will show by the simulation

results, the performance of this method is significantly better, and indeed, is near the

performance of the perturbation method, presented in [55].

In the perturbation technique [55], the idea of changing the support region of the

constellation has been implemented using a different approach. In [55], u′ = u + al is

used as the precoded data, where the integer vector l is chosen to minimize ‖H+(u+al)‖.

This problem is equivalent to the closest-lattice-point problem for the lattice generated

by aH+ (i.e. finding the lattice point which is closer to −H+u). Therefore, in the

perturbation technique, the support region of the constellation is a scaled version of

the Voronoi region [11] of the lattice. In the proposed method, we use a parallelotope

(generated by the reduced basis of the lattice), instead of the Voronoi region. Although

this approximation results in a larger second moment (i.e. higher energy consumption),
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it enables us to use a simple precoding technique, instead of solving the closest-lattice-

point problem.

For the lattice constellations, using a parallelotope instead of the Voronoi region

(presented in this chapter) is equivalent with using the Babai approximation instead of

the exact lattice decoding (previously presented in [90]). The only practical difference

between our lattice-reduction-aided scheme and the scheme presented in [90] is that we

reduce H+, while in [90], HH is reduced. As can be observed in the simulation results

(figure 2.2), this difference has no significant effect on the performance. However, the

new viewpoint helps us in extending the proposed method for the case of variable-rate

transmission and obtaining some analytical results for the asymptotic performance.

The performance of the proposed lattice-reduction aided scheme can be improved by

combining it with other schemes, such as regularization [54] or the V-BLAST precoding

[62], or by sending a very small amount of side information. In the rest of this section,

we present two of these modifications.

2.2.1 Regularized lattice-reduction-aided precoding

In [54], the authors have proposed a regularization scheme to reduce the transmitted

power, by avoiding the near-singularity of H. In this method, instead of using H+ =

HH (HHH)
−1

, the transmitted vector is constructed as

x = HH
(
HHH + αI

)−1
u (2.8)

where α is a positive number. To combine the regularized scheme with our lattice-

reduction-aided scheme, we consider Br as the matrix corresponding to the reduced
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basis of the lattice generated by HH (HHH + αI)
−1

. When we use the regularization,

the received signals of different users are not orthogonal anymore and the interference

acts like extra noise. Parameter α should be optimized such that the ratio between the

power of received signal and the power of the effective noise is minimized [54].

2.2.2 Modified lattice-reduction-aided precoding with small

side information

In practical systems, we are interested in using a subset of points with odd coordinates

from the integer lattice. In these cases, we can improve the performance of the proposed

method by sending a very small amount of side information. When the data vector u

consists of odd integers, using the lattice-basis reduction may result in points with some

even coordinates (i.e. U−1u has some even elements), instead of points with all-odd

coordinates in the new basis. For this case, in (2.5), the set of precoded data u′ is not

centered at the origin, hence the transmitted constellation (which includes all the valid

points Bu′) is not centered at the origin. Therefore, we can reduce the transmitted

energy and improve the performance by shifting the center of the constellation to the

origin. It can be shown that the translation vector is equal to (U−1[1+ i, 1+ i, · · · , 1+

i]T + [1 + i, 1 + i, · · · , 1+ i]T) mod 2 where i =
√
−1. When we use this shifted version

of the constellation, we must send the translation vector to the users (by sending 2 bits

per user) at the beginning of the block. However, compared to the size of the block of

data, the overhead of these two bits is negligible.

The above idea of using a shift vector can be also used to improve the perturbation
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technique (if we only use the odd points of the lattice). After reducing the inverse of

the channel matrix and obtaining the bits (corresponding to the shift vector) at the

beginning of each fading block, the closest point to the signal computed in equation

(2.5) can be found by using the sphere decoder. Then, the transmitted signal is obtained

by

x = B (u′ + al + upar) , (2.9)

where upar is the zero-one shift vector, which is computed for users at the beginning of

the fading block, and the perturbation vector l is an even integer vector such that the

vector x has the minimum energy. This method which can be considered as modified

perturbation method outperforms the perturbation method in [55]. When we are not

restricted to the odd lattice points, using (2.9) instead of H+ (u′ + al) does not change

the performance of the perturbation method. It only reduces the complexity of the

lattice decoder [1].

2.3 Unequal-Rate Transmission

In the previous section, we had considered the case that the transmission rates for

different users are equal. In some applications, we are interested in assigning different

rates to different users. Consider R1, ..., RNr as the transmission rates for the users (we

consider them as even integer numbers). Equation (2.5) should be modified as

u′ = U−1u mod a, (2.10)
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where the entries of a = [a1, ..., aNr ]
T are equal to

ai = 2Ri/2. (2.11)

Also, at the receiver side, instead of (2.6) and (2.7), we have

y = Hx + n = HH+U(U−1u mod a) + n = U(U−1u mod a) + n (2.12)

= UU−1u mod a + n = u mod a + n. (2.13)

If we are interested in sum-rate, instead of individual rates, we can improve the

performance of the proposed method by assigning variable rates to different users. We

assume that the sum-rate (rather than the individual rates) is fixed and we want to

reduce the average transmitted energy. To simplify the analysis, we use the continuous

approximation which has a good accuracy for high rates.

Considering continuous approximation, the sum-rate is proportional to the loga-

rithm of the volume of the lattice with basis B and the average energy is proportional

to the second moment of the corresponding parallelotope, which is proportional to

∑Nr

i=1 ‖bi‖2 = trBBH (see Appendix A). The goal is to minimize the average energy

while the sum-rate is fixed. We can use another lattice generated by B′ with the same

volume, where its basis vectors are scaled versions of the vectors of the basis B, ac-

cording to different rates for different users. Therefore, we can use B′ = BD instead of

B (where D is a unit determinant Nr ×Nr diagonal matrix which does not change the

volume of the lattice). For a given reduced basis B, the product of the squared norms
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of the new basis vectors is constant:

‖b′
1‖2‖b′

2‖2...‖b′
Nr
‖2 = (‖b1‖2‖b2‖2...‖bNr‖2) detD

= ‖b1‖2‖b2‖2...‖bNr‖2 = const.

(2.14)

The average energy corresponding to the new lattice basis should be minimized.

When we use the modified basis B′ instead of B, the average energy is proportional to

∑Nr

i=1 ‖b′
i‖2 = trB′B′H (see Appendix A). According to the arithmetic-geometric mean

inequality,
∑Nr

i=1 ‖b′
i‖2 = trB′B′H is minimized iff

‖b′
1‖ = ‖b′

2‖ = ... = ‖b′
Nr
‖. (2.15)

Therefore,

min trB′B′H = Nr

(
‖b′

1‖2‖b′
2‖2...‖b′

Nr
‖2
) 1

Nr = Nr

(
‖b1‖2‖b2‖2...‖bNr‖2

) 1
Nr (2.16)

Having the matrix B, the columns of matrix B′ can be found using the equa-

tion (2.15) and trB′B′H can be obtained by (2.16). Now, for the selection of the re-

duced basis B, we should find B such that ‖b1‖2‖b2‖2...‖bNr‖2 is minimized. Because

detBHB = det (H+)
H
H+ is given, the best basis reduction is the reduction which max-

imizes
‖b1‖2‖b2‖2·...·‖bNr‖2

| detBHB| , or in other words, minimizes the orthogonality defect.

In practice, we use discrete values for the rate, and sometimes, we should assign

the rate zero to some users (when their channel is very bad). In this case, for the rate

assignment for other users, we use the lattice reduction on the corresponding sublattice.

It should be noted that the average transmit power is fixed per channel realization and

no long-run averaging is considered, and no long-run power allocation is used.
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2.4 Diversity and Outage Probability

In this section, we consider the asymptotic behavior (ρ −→ ∞) of the symbol error

rate (SER) for the proposed method and the perturbation technique. We show that

for both of these methods, the asymptotic slope of the SER curve is equal to the

number of transmit antennas. By considering the outage probability of a fixed-rate

MIMO broadcast system, we will show that for the SER curve in high SNR, the slope

obtained by the proposed method has the largest achievable value. Also, we analyze

the asymptotic behavior of the outage probability for the case of fixed sum-rate. We

show that in this case, the slope of the corresponding curve is equal to the product of

the number of transmit antennas and the number of single-antenna users.

2.4.1 Fixed-rate users

When we have the Channel-State Information (CSI) at the transmitter, without any

assumption on the transmission rates, the outage probability is not meaningful. How-

ever, when we consider given rates R1, ..., RNr for different users, we can define the

outage probability Pout as the probability that the point (R1, ..., RNr) is outside the

capacity region.

Theorem 2.1. For a MIMO broadcast system with Nt transmit antennas, Nr single-

antenna receivers (Nt ≥ Nr), and given rates R1, ..., RNr ,

lim
ρ→∞

− log Pout

log ρ
≤ Nt. (2.17)
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Proof. Define Pout1 as the probability that the capacity of the point-to-point system

corresponding to the first user (consisting of Nt transmit antennas and one receive

antenna with independent channel coefficients and CSI at the transmitter) is less than

R1:

Pout1 = Pr{log
(
1 + ρ‖h1‖2

)
≤ R1} (2.18)

where h1 is the vector defined by the first row of H. Note that the entries of h1 have

iid complex Gaussian distribution with unit variance. Thus, its square norm has a chi

square distribution. We have,

Pr
{
log
(
2ρ‖h1‖2

)
≤ R1

}
(2.19)

= Pr

{
‖h1‖2 ≤ 2R1

2ρ

}
(2.20)

=

∫ 2R1
2ρ

0

f‖h1‖2(x) dx (2.21)

=

∫ 2R1
2ρ

0

1

(Nt − 1)!
xNt−1e−x dx (2.22)

We are interested in the large values of ρ. For ρ > 2R1−1,

∫ 2R1
2ρ

0

1

(Nt − 1)!
xNt−1e−x dx ≥

∫ 2R1
2ρ

0

1

(Nt − 1)!
xNt−1e−1 dx (2.23)

=
e−1

(Nt − 1)!

∫ 2R1
2ρ

0

xNt−1 dx (2.24)
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=
2NtR1c

ρNt
(2.25)

where c = e−1

2NtNt!
is a constant number. Now,

log
(
1 + ρ‖h1‖2

)
≤ log

(
2ρ‖h1‖2

)
for ρ >

1

‖h1‖2
(2.26)

=⇒ lim
ρ→∞

− log Pr{log (1 + ρ‖h1‖2) ≤ R1}
log ρ

(2.27)

≤ lim
ρ→∞

− log Pr{log (2ρ‖h1‖2) ≤ R1}
log ρ

(2.28)

≤ lim
ρ→∞

− log 2NtR1c
ρNt

log ρ
= Nt (2.29)

=⇒ lim
ρ→∞

− log Pout1

log ρ
≤ Nt. (2.30)

According to the definition of Pout1, Pout ≥ Pout1. Therefore,

lim
ρ→∞

− log Pout

log ρ
≤ lim

ρ→∞

− log Pout1

log ρ
≤ Nt. (2.31)

We can define the diversity gain of a MIMO broadcast constellation or its precoding

diversity as limρ→∞
− log Pe

log ρ
where Pe is the probability of error. Similar to [96, lemma

5], we can bound the precoding diversity by limρ→∞
− log Pout

log ρ
. Thus, based on theorem

2.1, the maximum achievable diversity is Nt.
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We show that the proposed method (based on lattice-basis reduction) achieves the

maximum precoding diversity. To prove this, in lemma 2.1 and lemma 2.2, we relate

the length of the largest vector of the reduced basis B to dHH (the minimum distance

of the lattice generated by HH). In lemma 2.3, we bound the probability that dHH is

too small. Finally, in theorem 2.2, we prove the main result by relating the minimum

distance of the receive constellation to the length of the largest vector of the reduced

basis B, and combining the bounds on the probability that dHH is too small, and the

probability that the noise vector is too large.

Lemma 2.1. Consider B = [b1...bM ] as an N × M matrix, with the orthogonality

defect δ, and B−H = [a1...aM ] as the inverse of its Hermitian (or its pseudo-inverse if

M < N). Then,

max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} (2.32)

and

max{‖a1‖, ..., ‖aM‖} ≤
√

δ

min{‖b1‖, ..., ‖bM‖} . (2.33)

Proof. Consider bi as an arbitrary column of B. The vector bi can be written as

b′
i +
∑

i6=j ci,jbj , where b′
i is orthogonal to bj for i 6= j. Now, [b1...bi−1b

′
ibi+1...bM ] can

be written as BP where P is a unit-determinant M × M matrix (a column operation

matrix):

‖b1‖2...‖bi−1‖2.‖bi‖2.‖bi+1‖2...‖bM‖2 (2.34)

= δ det BHB = δ detPHBHBP (2.35)

= δ det
(
[b1...bi−1b

′
ibi+1...bM ]H[b1...bi−1b

′
ibi+1...bM ]

)
. (2.36)
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According to the Hadamard theorem:

det
(
[b1...bi−1b

′
ibi+1...bM ]H[b1...bi−1b

′
ibi+1...bM ]

)
≤ (2.37)

‖b1‖2...‖bi−1‖2.‖b′
i‖2.‖bi+1‖2...‖bM‖2. (2.38)

Therefore,

‖b1‖2...‖bi−1‖2.‖bi‖2.‖bi+1‖2...‖bM‖2 ≤ δ‖b1‖2...‖bi−1‖2.‖b′
i‖2.‖bi+1‖2...‖bM‖2

(2.39)

=⇒ ‖bi‖ ≤
√

δ‖b′
i‖. (2.40)

Also, B+B = I results in <ai,bi> = 1 and <ai,bj> = 0 for i 6= j. Therefore,

1 = <ai,bi> = <ai, (b
′
i +
∑

i6=j

ci,jbj)> = <ai,b
′
i> (2.41)

Now, ai and b′
i, both are orthogonal to the (M − 1)-dimensional subspace generated

by the vectors bj (j 6= i). Thus,

1 = <ai,b
′
i> = ‖ai‖.‖b′

i‖ ≥ ‖ai‖.
‖bi‖√

δ
(2.42)

=⇒ 1 ≥ ‖bi‖.
‖ai‖√

δ
(2.43)

=⇒ ‖bi‖ ≤
√

δ

‖ai‖
(2.44)

The above relation is valid for every i, 1 ≤ i ≤ M . Without loss of generality, we can

assume that max{‖b1‖, ..., ‖bM‖} = ‖bk‖:

max{‖b1‖, ..., ‖bM‖} = ‖bk‖ ≤
√

δ

‖ak‖
(2.45)
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≤
√

δ

min{‖a1‖, ..., ‖aM‖} . (2.46)

Similarly, by using (2.44), we can also obtain the following inequality:

max{‖a1‖, ..., ‖aM‖} ≤
√

δ

min{‖b1‖, ..., ‖bM‖} . (2.47)

Lemma 2.2. Consider B = [b1...bM ] as an LLL-reduced basis for the lattice generated

by H+ and dHH as the minimum distance of the lattice generated by HH. Then, there is

a constant αM (independent of H) such that

max{‖b1‖, ..., ‖bM‖} ≤ αM

dHH

. (2.48)

Proof. According to the theorem 1.1,

√
δ ≤ 2M(M−1). (2.49)

Consider B−H = [a1, ..., aM ]. By using lemma 2.1 and (2.49),

max{‖b1‖, ..., ‖bM‖} ≤
√

δ

min{‖a1‖, ..., ‖aM‖} ≤ 2M(M−1)

min{‖a1‖, ..., ‖aM‖} (2.50)

The basis B can be written as B = H+U for some unimodular matrix U:

B−H = ((H+U)H)+ = (UHH−H)+ = HHU−H. (2.51)

Noting that U−H is unimodular, B−H = [a1, ..., aM ] is another basis for the lattice

generated by HH. Therefore, the vectors a1, ..., aM are vectors from the lattice generated

by HH, and therefore, the length of each of them is at least dHH :

‖ai‖ ≥ dHH for 1 ≤ i ≤ M (2.52)
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=⇒ min{‖a1‖, ..., ‖aM‖} ≥ dHH (2.53)

(2.50) and (2.53) =⇒ max{‖b1‖, ..., ‖bM‖} ≤ 2M(M−1)

dHH

. (2.54)

Lemma 2.3. Assume that the entries of the N × M matrix H has independent com-

plex Gaussian distribution with zero mean and unit variance and consider dH as the

minimum distance of the lattice generated by H. Then, there is a constant βN,M such

that

Pr {dH ≤ ε} ≤






βN,Mε2N for M < N

βN,Nε2N . max
{
−(ln ε)N+1, 1

}
for M = N

. (2.55)

Proof: See Appendix B.

Theorem 2.2. For a MIMO broadcast system with Nt transmit antennas and Nr single-

antenna receivers (Nt ≥ Nr) and fixed rates R1, ..., RNr , using the lattice-basis-reduction

method,

lim
ρ→∞

− log Pe

log ρ
= Nt. (2.56)

Proof. Consider B = [b1...bNr ] as the LLL-reduced basis for the lattice generated by

H+. Each transmitted vector s is inside the parallelotope, generated by r1b1, ..., rNrbNr

(where r1, ..., rNr are constant values determined by the rates of the users). Thus, every

transmitted vector s can be written as

s = t1b1 + ... + tNrbNr ,
−ri

2
≤ ti ≤

ri

2
. (2.57)
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For each of the transmitted vectors, the energy is

P = ‖s‖2 = ‖t1b1 + ... + tNrbNr‖2 (2.58)

=⇒ P ≤ (‖t1b1‖ + ... + ‖tNrbNr‖)2 (2.59)

=⇒ P ≤
(r1

2
‖b1‖ + ... +

rNr

2
‖bNr‖

)2

. (2.60)

Thus, the average transmitted energy is

Pav = E(P ) ≤ N2
r

(
max

{r1

2
‖b1‖, ...,

rNr

2
‖bNr‖

})2

≤ c1.(max{‖b1‖2, ..., ‖bNr‖2})

(2.61)

where c1 = N2
r

4
max

{
r2
1, ..., r

2
Nr

}
. The received signals (without the effect of noise) are

points from the Z2Nr lattice. If we consider the normalized system (by scaling the

signals such that the average transmitted energy becomes equal to one),

d2 =
1

Pav
≥ 1

c1.(max{‖b1‖2, ..., ‖bNr‖2}) (2.62)

is the squared distance between the received signal points.

For the normalized system,
1

ρ
is the energy of the noise at each receiver and

1

2ρ
is

the energy of the noise per each real dimension. Using (2.62), for any positive number

γ,

Pr

{
d2 ≤ γ

ρ

}

≤ Pr

{
1

c1 max{‖b1‖2, ..., ‖bNr‖2} ≤ γ

ρ

}
(2.63)

Using lemma 2.2,

max{‖b1‖, ..., ‖bNr‖} ≤ αNr

dHH

(2.64)
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(2.63), (2.64) =⇒ Pr

{
d2 ≤ γ

ρ

}
≤ Pr

{
d2
HH

c1α2
Nr

≤ γ

ρ

}
= Pr

{
d2
HH ≤

γc1α
2
Nr

ρ

}
(2.65)

The Nt × Nr matrix HH has independent complex Gaussian distribution with zero

mean and unit variance. Therefore, by using lemma 2.3 (considering M = Nr and

N = Nt), we can bound the probability that dHH is too small.

Case 1, Nr = Nt:

Pr

{
d2 ≤ γ

ρ

}
≤ Pr

{
d2
HH ≤

γc1α
2
Nt

ρ

}
(2.66)

≤ βNt,Nt

(
γc1α

2
Nt

ρ

)Nt

max

{(
−1

2
ln

γc1α
2
Nt

ρ

)Nt+1

, 1

}

(2.67)

≤ βNt,Nt

(
γc1α

2
Nt

ρ

)Nt

max
{

(ln ρ)Nt+1 , 1
}

for γ > 1 and ρ >
1

c1α2
Nt

(2.68)

≤ c2γ
Nt

ρNt
(ln ρ)Nt+1 for γ > 1 and ρ > max

{
1

c1α2
Nt

, e

}
(2.69)

where c2 is a constant number and e is the Euler number.

If the magnitude of the noise component in each real dimension is less than 1
2
d,

the transmitted data will be decoded correctly. Thus, we can bound the probability of

error by the probability that |wi|2 is greater than 1
4
d2 for at least one i, 1 ≤ i ≤ 2Nt.

Therefore, using the union bound,
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Pe ≤ 2Nt

(
Pr

{
|w1|2 ≥

1

4
d2

})
(2.70)

= 2Nt

(
Pr

{
d2 ≤ 4

ρ

}
. Pr

{
|w1|2 ≥

1

4
d2

∣∣∣∣d
2 ≤ 4

ρ

}

+ Pr

{
4

ρ
≤ d2 ≤ 8

ρ

}
. Pr

{
|w1|2 ≥

1

4
d2

∣∣∣∣
4

ρ
≤ d2 ≤ 8

ρ

}

+ Pr

{
8

ρ
≤ d2 ≤ 16

ρ

}
. Pr

{
|w1|2 ≥

1

4
d2

∣∣∣∣
8

ρ
≤ d2 ≤ 16

ρ

}
+ ...

)
(2.71)

≤ 2Nt

(
Pr

{
d2 ≤ 4

ρ

}
+ Pr

{
4

ρ
≤ d2 ≤ 8

ρ

}
. Pr

{
|w1|2 ≥

1

4
.
4

ρ

}

+ Pr

{
8

ρ
≤ d2 ≤ 16

ρ

}
. Pr

{
|w1|2 ≥

1

4
.
8

ρ

}
+ ...

)
(2.72)

≤ 2Nt

(
Pr

{
d2 ≤ 4

ρ

}
+ Pr

{
d2 ≤ 8

ρ

}
. Pr

{
|w1|2 ≥

1

ρ

}

+ Pr

{
d2 ≤ 16

ρ

}
. Pr

{
|w1|2 ≥

2

ρ

}
+ ...

)
(2.73)

For the product terms in (2.73), we can bound the first part by (2.69). To bound the

second part, we note that w1 has real Gaussian distribution with variance 1
2ρ

. Therefore,

Pr

{
|w1|2 ≥

θ

ρ

}
= 2Q(

√
2θ) ≤ e−θ (2.74)

Now, for ρ > max
{

1
c1α2

Nt

, e
}

,

(2.69), (2.73) and (2.74) =⇒ Pe ≤ 2Nt

(
Pr

{
|w1|2 ≥

1

4
d2

})
(2.75)
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≤ 2Nt

(
4Ntc2

ρNt
(ln ρ)Nt+1 +

∞∑

i=0

2Nt(i+3)c2

ρNt
(ln ρ)Nt+1 e−2i

)
(2.76)

≤ (ln ρ)Nt+1

ρNt
.c2.2Nt

(

4Nt +

∞∑

i=0

2Nt(i+3)e−2i

)

(2.77)

≤ c3(ln ρ)Nt+1

ρNt
(2.78)

where c3 is a constant number which only depends on Nt. Thus,

lim
ρ→∞

− log Pe

log ρ
≥ lim

ρ→∞

Nt log ρ − log(ln ρ)Nt+1 − log c3

log ρ
= Nt. (2.79)

According to Theorem 2.1, this limit cannot be greater than Nt. Therefore,

lim
ρ→∞

− log Pe

log ρ
= Nt. (2.80)

Case 2, Nr < Nt:

For the Nt ×Nr matrix HH, we use the first inequality in lemma 2.3 (by considering

M = Nr and N = Nt) to bound the probability that dHH is too small:

Pr

{
d2 ≤ γ

ρ

}
≤ Pr

{
d2
HH ≤

γc1α
2
Nr

ρ

}
(2.81)

≤ βNt,Nr

(
γc1α

2
Nr

ρ

)Nt

(2.82)
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≤ βNt,Nr

(
γc1α

2
Nr

ρ

)Nt

for γ > 1 and ρ >
1

c1α2
Nr

(2.83)

≤ c2γ
Nt

ρNt
for γ > 1 and ρ >

1

c1α
2
Nr

(2.84)

.

The rest of proof is similar to the case 1.

Corollary 2.1. Perturbation technique achieves the maximum precoding diversity in

fixed-rate MIMO broadcast systems.

Proof. In the perturbation technique, for the transmission of each data vector u, among

the set
{
H+(u + al)‖l ∈ Z2Nr

}
, the nearest point to the origin is chosen. The trans-

mitted vector in the lattice-reduction-based method belongs to that set. Therefore, the

energy of the transmitted signal in the lattice-reduction-based method cannot be less

than the transmitted energy in the perturbation technique. Thus, the average trans-

mitted energy for the perturbation method is at most equal to the average transmitted

energy of the lattice-reduction-based method. The rest of the proof is the same as the

proof of theorem 2.2.

2.4.2 Fixed sum-rate

When the sum-rate Rsum is given, similar to the previous part, we can define the outage

probability as the probability that the sum-capacity of the broadcast system is less than

Rsum.
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Theorem 2.3. For a MIMO broadcast system with Nt transmit antennas, Nr single-

antenna receivers, and a given sum-rate Rsum,

lim
ρ→∞

− log Pout

log ρ
≤ NtNr. (2.85)

Proof. For any channel matrix H, we have [87]

Csum = sup
D

log |INr + ρHHDH| (2.86)

where D is a diagonal matrix with non-negative elements and unit trace. Also, [48]

|2ρHHDH| ≤ (2ρtrHHDH)
Nr

NNr
r

=
(2ρtrHHH)

Nr

NNr
r

. (2.87)

The entries of H have iid complex Gaussian distribution with unit variance. Thus

trρHHH is equal to the square norm of an NtNr-dimensional complex Gaussian vector

and has a chi square distribution with 2NtNr degrees of freedom. Thus, we have (similar

to the equations 2.19-2.25, in the proof of theorem 2.1),

Pr

{
log

(2ρtrHHH)
Nr

NNr
r

≤ Rsum

}
(2.88)

= Pr

{

trHHH ≤ 2
Rsum

Nr Nr

2ρ

}

(2.89)

≥ 2NtRsumNNtNr
r c

ρNtNr
(for ρ >

2
Rsum

Nr Nr

2
) (2.90)

where c is a constant number. Now,

lim
ρ→∞

− log Pout

log ρ
= (2.91)



Lattice-based precoding in MIMO broadcast systems 38

lim
ρ→∞

− log Pr {sup
D

log |INr + ρHHDH| ≤ Rsum}
log ρ

(2.92)

≤ lim
ρ→∞

− log Pr{sup
D

log |2ρHHDH| ≤ Rsum}
log ρ

. (2.93)

By using (2.87), (2.90), and (2.93):

lim
ρ→∞

− log Pout

log ρ
≤ lim

ρ→∞

− log 2NtRsumN
NtNr
r c

ρNtNr

log ρ
= NtNr. (2.94)

The slope NtNr for the SER curve can be easily achieved by sending to only the

best user. Similar to the proof of theorem 2.1, the slope of the symbol-error rate curve

is asymptotically determined by the slope of the probability that |hmax| is smaller than

a constant number, where hmax is the entry of H with maximum norm. Due to the iid

complex Gaussian distribution of the entries of H, this probability decays with the same

rate as ρ−NtNr , for large ρ. However, although sending to only the best user achieves the

optimum slope for the SER curve, it is not an efficient transmission technique because

it reduces the capacity to the order of log ρ (instead of Nr log ρ).

2.5 Simulation Results

Figure 2.2 presents the simulation results for the performance of the proposed schemes,

the perturbation scheme [55], and the naive channel inversion approach. The number

of the transmit antennas is Nt = 4 and there are Nr = 4 single-antenna users in the
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system. The overall transmission rate is 8 bits per channel use, where 2 bits are assigned

to each user, i.e. a QPSK constellation is assigned to each user.

By considering the slope of the curves in figure 2.2, we see that by using the proposed

reduction-based schemes, we can achieve the maximum precoding diversity, with a

low complexity. Also, as compared to the perturbation scheme, we have a negligible

loss in the performance (about 0.2 dB). Moreover, compared to the approximated

perturbation method [90], we have about 1.5 dB improvement by sending the bits,

corresponding to the shift vector, at the beginning of the transmission. Without sending

the shift vector, the performance of the proposed method is the same as that of the

approximated perturbation method [90]. The modified perturbation method (with

sending two shift bits for each user) has around 0.3 dB improvement compared to the

perturbation method.

Figure 2.3 compares the regularized proposed scheme with V-BLAST modifica-

tions of Zero-Forcing and Babai approximation for the same setting. As shown in the

simulation results (and also in the simulation results in [55] and [90]), the modulo-

MMSE-VBLAST scheme does not achieve a precoding diversity better than zero forc-

ing (though it has a good performance in the low SNR region). However, combining

the lattice-reduction-aided (LRA) scheme with MMSE-VBLAST precoding or other

schemes such as regularization improves its performance by a finite coding gain (with-

out changing the slope of the curve of symbol-error-rate). Combining both the reg-

ularization and the shift vector can result in better performance compared to other

alternatives.
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Figure 2.2: Symbol Error Rate of the proposed schemes, the perturbation scheme [55],

and the naive channel inversion approach for Nt = 4 transmit antennas and Nr = 4

single-antenna receivers with the rate R = 2 bits per channel use per user.



Lattice-based precoding in MIMO broadcast systems 41

8 10 12 14 16 18 20 22 24
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
ym

bo
l E

rr
or

 R
at

e

 

 

4 transmit antennas, 4 single−antenna users, rate=4X2 bits per channel use 

Perturbation technique

Proposed method with regularization and shift vector

Babai approximation−VBLAST

Zero forcing

THP−VBLAST

Figure 2.3: Comparison of the regularized proposed scheme with V-BLAST modifi-

cations of Zero-Forcing and Babai approximation (for Nt = 4 transmit antennas and

Nr = 4 single-antenna receivers with the rate R = 2 bits per channel use per user.).
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Figure 2.4 compares the performances of the fixed-rate and the variable-rate trans-

mission using lattice-basis reduction for Nt = 2 transmit antennas and Nr = 2 users.

In both cases, the sum-rate is 8 bits per channel use (in the case of fixed individual

rates, a 16QAM constellation is assigned to each user). We see that by eliminating

the equal-rate constraint, we can considerably improve the performance (especially, for

high rates). In fact, the diversity gains for the equal-rate and the unequal-rate methods

are, respectively, Nr and NtNr.

2.6 Conclusion

A simple scheme for communications in MIMO broadcast channels is introduced which

is based on the lattice reduction technique and improves the performance of the channel

inversion method. Lattice basis reduction helps us to reduce the average transmitted

energy by modifying the region which includes the constellation points. Simulation re-

sults show that the performance of the proposed scheme is very close to the performance

of the perturbation method. Also, it is shown that by using lattice-basis reduction, we

achieve the maximum precoding diversity with a polynomial-time precoding complexity.
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Figure 2.4: Performance comparison between the fixed-rate and the variable-rate trans-

mission for Nt = 2 transmit antennas and Nr = 2 single-antenna receivers with sum-rate

8 bits per channel use.



Chapter 3

Lattice-reduction-based decoding in

MIMO multiaccess systems

In this chapter, we consider the performance of Lattice-reduction-based decoding in

MIMO multiaccess systems (or equivalently, in MIMO point-to-point systems with V-

BLAST transmission). Most of the sub-optimum decoding methods for BLAST (such

as nulling and cancelling, zero forcing and GDFE-type methods) cannot achieve the

maximum receive diversity which is equal to the number of receive antennas. In [14], a

lattice decoder is proposed for the decoding of BLAST which (according to the simu-

lation results) achieves the maximum diversity. However, its complexity is exponential

in terms of the number of antennas. In [91], [94], and [50], an approximation of lattice

decoding, using the LLL lattice-basis reduction [45], is introduced which has a polyno-

mial complexity and the simulation results show that it achieves the receive diversity.

In this chapter, we give a mathematical proof for achieving the receive diversity by

44



Lattice-reduction-based decoding in MIMO multiaccess systems 45

the LLL-aided zero-forcing decoder, which is one of the simplest forms of the lattice-

reduction-aided decoders. Also, a similar proof shows that the naive lattice decoding

(which discards the out-of-region decoded points) achieves the receive diversity.

In section 3.4, we complement this result by showing that for the special case of

equal number of transmit and receive antennas, although the naive lattice decoding

(and its LLL-aided approximation) still achieve the maximum receive diversity, their

gap with the optimal ML decoding grows unboundedly with SNR.

3.1 System Model

We consider a multiple-antenna system with Nt transmit antennas and Nr receive

antennas, where Nt ≤ Nr. In a multiple-access system, we consider different transmit

antennas as different users. We consider vectors y = [y1, ..., yNr ]
T , x = [x1, ..., xNt ]

T ,

w = [w1, ..., wNr ]
T and the Nr × M matrix H, as the received signal, the transmitted

signal, the noise vector and the channel matrix, respectively. The following matrix

equation describes the channel model:

y = Hx + w. (3.1)

The channel is assumed to be Rayleigh and the noise is Gaussian, i.e. the elements of

H are i.i.d with the zero-mean unit-variance complex Gaussian distribution. Also, we

have the power constraint on the transmitted signal, E|xi|2 = P , where P depends on

the size of the constellation. The power of the additive noise is σ2 per antenna, i.e.

E‖w‖2 = Nrσ
2. Therefore, the signal to noise ratio (SNR) is defined as ρ = NtP

σ2 .
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In a MIMO multiple-access system or a MIMO point-to-point system with V-

BLAST transmission, we send the transmitted vector x with independent entries from

Z[i], the set of complex Gaussian integers. At the receiver, as the maximum-likelihood

(ML) estimate of x, a vector x̂ should be found among the possible transmitted vectors,

such that ‖y−Hx̂‖ is minimized. For large constellations, the exact ML decoding can

be very complex and practically infeasible. Therefore, we need to approximate it by a

low-complexity scheme.

As a simple approximation of ML decoding, zero-forcing can be used, which selects x̂

as the closest integer point to H−1y. Although zero forcing is very simple to implement,

it has a poor performance. Indeed, in zero forcing, H−1w is the effective noise, and

when H has a small singular value, H−1 can have very large row vectors, which result in

magnifying the effective noise power. To overcome this shortcoming of the zero-forcing

decoder, lattice-basis reduction is used in [91], [94], and [50] to enhance the performance

of zero forcing and reduce its effective noise.

We can perform two slightly different types of LLL-aided decoding:

Type I) We find x̃ as the closest integer point to BHy where the N×M matrix B is

the reduced version of H−H, i.e. B = H−HU, where U is an M ×M unimodular matrix

(when M < N , we use the pseudo-inverse instead of the inverse). The transmitted

vector is decoded as,

x̂ = U−Hx̃.

In the absence of noise (when w = 0),

x̂ = U−Hx̃ = U−HBHy = U−H
(
H−HU

)
H

y = U−HUHH−1Hx = x.
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In the presence of the noise, BHw can be seen as the effective noise (instead of H−1w

in the traditional zero forcing).

Type II) We find x̃ as the closest integer point to Hred
−1y where Hred is the

reduced version of H i.e. Hred = HU. The transmitted vector is decoded as,

x̂ = Ux̃.

In the absence of noise (when w = 0),

x̂ = Ux̃ = UHred
−1y = UU−1H−1Hx = x

In the presence of the noise, Hred
−1w is the effective noise.

In the previous works [91] [94] [50], the LLL-aided decoding type II has been used.

We show that the type I method is more appropriate to reduce the effective noise, and

indeed, has a better performance. In the next section, we present the details of the

proof of our main result for the first method and show that a similar proof is valid for

the second method.

3.2 Diversity of LLL-aided decoding

For MIMO systems, diversity is defined as limρ→∞
− log Pe

log ρ
. When there is no joint

processing among the transmit antennas, the maximum achievable diversity is equal to

N , the number of receive antennas [81]. To prove that LLL-aided decoding achieves a

diversity order of N , we use Theorem 2.1 to bound δ, the orthogonality defect of the

LLL reduction.



Lattice-reduction-based decoding in MIMO multiaccess systems 48

In the rest of this section, in the lemmas 3.1 and 3.2, we bound the error probability

by the probability of an inequality on dH (the minimum distance among the points of

the lattice generated by H) and the length of the noise vector being valid. In theorem

3.1, we prove the main result by combining the bounds on the probability that dH is

too small (given in lemma 2.3), and the probability that the noise vector is too large.

Lemma 3.1. Consider B = [b1...bNt ] as a reduced basis (LLL) [45] for the lattice

generated by H−H, B−H = [a1...aNt ], and δ as the orthogonality defect of the reduction.

Then, if the magnitude of the noise vector is less than
min{‖a1‖, ..., ‖aNt‖}

2
√

Mδ
, the LLL-

aided decoding method correctly decodes the transmitted signal.

Proof. When we use the LLL-aided decoding method, we find the nearest integer point

to BHy. We should show that this point is the same as the transmitted vector; or in

other words, all the elements of BHw are in the interval (−1
2
, 1

2
). To prove this, we show

that ‖BHw‖ < 1
2
. It is easy to show that,

‖BHw‖ ≤
√

Nt · max{‖b1‖, ..., ‖bNt‖} · ‖w‖ (3.2)

Now, according to (2.32),

max{‖b1‖, ..., ‖bNt‖} ≤
√

δ

min{‖a1‖, ..., ‖aNt‖}
(3.3)

Therefore,

‖BHw‖ ≤
√

Mδ.‖w‖
min{‖a1‖, ..., ‖aNt‖}

(3.4)
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By using the assumption of the lemma,

‖BHw‖ <

√
Mδ.

min{‖a1‖, ..., ‖aNt‖}
2
√

Mδ
min{‖a1‖, ..., ‖aNt‖}

(3.5)

=⇒ ‖BHw‖ <
1

2
. (3.6)

Lemma 3.2. Consider B = [b1...bNt ] as a reduced basis (LLL) [45] and dH as the

minimum distance of the lattice generated by H, respectively. Then, there is a constant

number cNt (independent of H) such that the LLL-aided decoding method correctly de-

codes the transmitted signal, if the magnitude of the noise vector is less than cNtdH.

Proof. For an LLL reduction,

√
δ ≤ 2M(M−1). (3.7)

Therefore, if we consider cNt =
2−1−M(M−1)

√
Nt

,

‖w‖ ≤ cNtdH =⇒ ‖w‖ ≤ 1

2
√

Mδ
dH (3.8)

The basis B can be written as B = H−HU for some unimodular matrix U:

B−H = (H−HU)−H = HU−H (3.9)

Thus, B−H = [a1, ..., aNt ] is another basis for the lattice generated by H. Therefore,

a1, ..., aNt are vectors from the lattice generated by H, and therefore, the length of each

of them is at least dH. Therefore,
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‖w‖ ≤ 1

2
√

Mδ
dH ≤ 1

2
√

Mδ
min{‖a1‖, ..., ‖aNt‖}. (3.10)

Thus, according to lemma 3.1, LLL-aided decoding method correctly decodes the trans-

mitted signal.

Theorem 3.1. For a MIMO multi-access system (or a point-to-point MIMO system

with the V-BLAST transmission) with Nt transmit antennas and Nr receive antennas,

when we use the LLL lattice-aided-decoding,

lim
ρ→∞

− log Pe

log ρ
= Nr. (3.11)

Proof. When ‖w‖ ≤ cNtdH, according to lemma 3, we have no decoding error. Thus,

Pe ≤ Pr {‖w‖ > cNtdH} (3.12)

= Pr{c2
Nt

d2
H
≤ 1

ρ
} · Pr

{
‖w‖ > cNtdH

∣∣∣∣c
2
Nt

d2
H
≤ 1

ρ

}
+

∞∑

i=0

Pr{2i

ρ
< c2

Nt
d2
H
≤ 2i+1

ρ
} · Pr

{
‖w‖ > cNtdH

∣∣∣∣
2i

ρ
< c2

Nt
d2
H
≤ 2i+1

ρ

}
(3.13)

≤ Pr{c2
Nt

d2
H
≤ 1

ρ
}+

∞∑

i=0

Pr{c2
Nt

d2
H
≤ 2i+1

ρ
} · Pr

{
‖w‖2 ≥ 2i

ρ

}
(3.14)

The noise vector has complex Gaussian distribution with variance
NtP

2ρ
per each

real dimension. Thus, by using the union bound, we can bound the second part of each

product term as,

Pr

{
‖w‖2 ≥ γ

ρ

}
≤

2Nr∑

i=1

Pr

{
|wi|2 ≥

γ

2Nrρ

}
≤ 4NrQ

(√
Ntγ

NrP

)

≤ 4Nre
− Ntγ

2NrP (3.15)
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Also, for the first part of the product terms, we have,

Pr

{
c2
Nt

d2
H
≤ θ

ρ

}
= Pr

{
dH ≤

√
θ

c2
Nt

ρ

}
(3.16)

Bu using lemma 2.3, we can bound (3.16) and by combining it with (3.15), we can

bound (3.14).

Case 1, Nt < Nr:

(3.14) ≤ βNr ,Nt

(
1

c2
Nt

ρ

)Nr

+
∞∑

i=0

βNr,Nt

(
2i+1

c2
Nt

ρ

)Nr

· 4Nr · e−
2iNt
2NrP (3.17)

=
βNr,Nt

ρNr

((
1

c2
Nt

)Nr

+
∞∑

i=0

(
2i+1

c2
Nt

)Nr

· 4Nr · e−
2iNt
2NrP

)
(3.18)

=⇒ Pe ≤
c

ρNr
(3.19)

where c is a constant1. Therefore,

lim
ρ→∞

− log Pe

log ρ
≥ Nr. (3.20)

Case 2, Nt = Nr = M :

(3.14) ≤ βM,M

(
1

cM
2ρ

)M

max

{(
1

2
ln c2

Mρ

)M+1

, 1

}

+

∞∑

i=0

βM,M

(
2i+1

c2
Mρ

)M

max

{(
1

2
ln

c2
Mρ

2i+1

)M+1

, 1

}
· 4M · e− 2iM

2MP (3.21)

1The terms of this series have double exponential parts which ensure its convergence (according to

the ratio test).



Lattice-reduction-based decoding in MIMO multiaccess systems 52

We are interested in the large values of ρ. For ρ > c2
M and ln ρ > 1,

(3.14) ≤ βM,M

(
1

c2
Mρ

)M

(ln ρ)M+1 +

∞∑

i=0

βM,M

(
2i+1

c2
Mρ

)M

(ln ρ)M+1 · 4M · e− 2i

2P (3.22)

=
βM,M(ln ρ)M+1

ρM

((
1

c2
M

)M

+
∞∑

i=0

(
2i+1

c2
M

)M

· 4M · e− 2i

2P

)
(3.23)

=⇒ Pe ≤
c′ (ln ρ)M+1

ρM
(3.24)

where c′ is a constant. Therefore,

lim
ρ→∞

− log Pe

log ρ
≥ lim

ρ→∞

log ρM − (M + 1) log (ln ρ) − log c′

log ρ
= M. (3.25)

In the above proof, we have considered the LLL-aided decoding type I. In this case,

the effective noise vector is equal to w′ = BHw, compared to w′ = H−1w in zero-

forcing. In the previous works [91] [94] [50], the LLL-aided decoding type II has been

used. For the type II method, the effective noise vector is equal to w′ = Hred
−1w

and the average energy of its ith component is proportional to the square norm of the

ith column of Hred
−H. By using inequality (2.33) from lemma 1 (to bound the square

norm of the columns of Hred
−H) and using a similar proof as lemma 3.1, we can show

that the results of lemma 3.1 and theorem 3.1 are still valid. Therefore, both of these

LLL-aided decoding methods achieve the receive diversity in V-BLAST MIMO systems

(or multiple access MIMO systems). However, it is worth noting that the first method

is a more natural approach to reduce the power of the entries of the effective noise
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Figure 3.1: Bit-Error-Rate (versus SNR-per-bit) of the two LLL-aided decoding meth-

ods for M = 6 transmit antennas and N = 6 receive antennas with the rate R = 12

bits per channel use.

vector, and has a better performance (see figure 3.1). For the case of real lattices, a

latice-reduction-aided approach similar to type I is recently studied in [47] and based

on the concept of proximity factor, another justification for its superior performance

over type II is presented.
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3.3 Relation with the naive lattice-decoding

When we have a finite constellation, for each pair of constellation points, the pair-wise

error probability can be bounded by Chernoff bound (similar to [81]). By using the

union bound, we can show that the exact ML decoding achieves the diversity order of

Nr, the number of receive antennas. However, when we use lattice decoding for a finite

constellation and consider the out-of-region decoded lattice points as errors, achieving

the maximum diversity by lattice decoding is not trivial anymore. Nonetheless, by

using lemma 4, we can show that this suboptimum method (called the naive lattice

decoding [27]) still achieves the maximum diversity.

Theorem 3.2. For a MIMO multi-access system (or a point-to-point MIMO system

with the V-BLAST transmission method) with Nt transmit antennas and Nr receive

antennas, when we use the naive lattice decoding,

lim
ρ→∞

− log Pe

log ρ
= Nr. (3.26)

Proof. When ‖w‖ ≤ 1
2
dH, we have no decoding error. Thus, by using 1

2
instead of cNt

in the proof of theorem 3.1, we can bound Pe by bounding Pr
{
‖w‖ > 1

2
dH

}
. Therefore,

we can obtain the same result as theorem 3.1.

In [27], it is shown that for the naive lattice decoding, we can find a family of

lattices (generating a family of space-time codes) which achieves diversity order of Nt

(Nt ≤ Nr is the number of transmit antennas). The current result shows that even if

we use the codes generated by the integer lattice, the naive lattice decoding achieves
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the maximum receive diversity of Nr (number of receive antennas).

3.4 Asymptotic performance of the naive lattice de-

coding for Nt = Nr

We have shown that for Nr ≥ Nt, the naive lattice decoding achieves the receive diver-

sity in V-BLAST systems (indeed, even its simple latice-reduction-aided approximation

still achieves the optimum receive diversity of order N). However, there is a difference

between two cases of Nt < Nr and Nt = Nr. While for Nt < Nr, compared to ML

decoding, the performance loss of the naive lattice decoding is bounded in terms of

SNR, here we show this is not valid for the case of Nt = Nr = M . This dichotomy

is related to the bounds on the probability of having a short lattice vector in a lattice

generated by a random Gaussian matrix.

In lemma 2.3, an upper bound on the probability of having a short lattice vector is

given. For the case of M × M Gaussian matrices,

Prob{dH ≤ ε} ≤ Cε2M ln

(
1

ε

)M−1

.

The term ln
(

1
ε

)
suggests an unboundedly increasing gap between the performance

of ML decoding and the naive lattice decoding (though both of them have the same

slope M).

In this section, we present a lower bound on the error probability of the naive lattice

decoding and show that this unboundedly increasing gap does exist.
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Lemma 3.3. For M ≥ 2 and ε < 1, for the lattice generated by an M × M random

complex Gaussian matrix H with zero mean and unit variance, there is a constant C ′

such that,

Prob{dH ≤ ε} ≥ C ′ε2M ln

(
1

ε

)
. (3.27)

Proof: Consider L(v1,...,vNt)
as the lattice generated by v1,v2,...,vNt . Each point of

L(v1,...,vNt)
can be represented by v(z1,...,zNt)

= z1v1 +z2v2 + ...+zNtvNt , where z1, ..., zNt

are complex integer numbers.

The vectors v1,v2,...,vNt are independent and jointly Gaussian. Therefore, for every

complex vector b = (b1, ..., bNt), the vector vb = b1v1 + b2v2 + ... + bNtvNt has complex

circular Gaussian distribution with the variance

̺2
b

= ‖b‖2 = |b1|2 + ... + |bNt|2. (3.28)

Now, considering the pdf of vb, we can bound Pr {‖vb‖ ≤ ε} =
∫
‖v‖≤ε

fvb
(v) dv by

using the fact that e
− ε2

̺2
b ≤ e

− ‖v‖2
̺2
b ≤ 1 for ‖v‖ ≤ ε:

∫

‖v‖≤ε

1

πNt̺2M
b

e
− ε2

̺2
b dv ≤

∫

‖v‖≤ε

fv(v) dv ≤
∫

‖v‖≤ε

1

πNt̺2M
b

dv. (3.29)

Thus, because the volume of region of the integral (which is a 2M-dimensional

sphere with radius ε) is proportional to ε2M ,

c6
ε2M

‖b‖2M
e
− ε2

‖b‖2 ≤ Pr {‖vb‖ ≤ ε} ≤ c7
ε2M

‖b‖2M
. (3.30)

We can represent any M-dimensional complex integer vector as a 2M-dimensional

real integer vector. In our proof, we consider only integer vectors in the set B which
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consists of integer vectors z such that their real entries do not have a nontrivial common

divisor and ‖z‖∞ ≤ ε−
1

2M where ‖ · ‖∞ represents the norm of the largest real entry.

First, we show that the number of such integer vectors z in the region 2(k−1) < ‖z‖∞ ≤

2k is at least 22Mk. The total number of integer points in the region 2(k−1) < ‖z‖∞ ≤ 2k

is2
(
2k+1 + 1

)2M−
(
2k + 1

)2M
. The number of those points whose entries have a common

divisor i is at most equal to the number of integer points in the region ‖z‖∞ ≤ 2k

i
.

Therefore, nk, the number of integer vectors z whose entries does not have nontrivial

common divisors, can be lower bounded by

nk ≥
((

2k+1 + 1
)2M −

(
2k + 1

)2M
)
−

2k∑

i=2

(
2
2k

i
+ 1

)2M

>
((

2k+1 + 1
)2M −

(
3 · 2k−1

)2M
)
−

2k∑

i=2

(
3
2k

i

)2M

> 22kM+2M

(

1 −
(

3

4

)2M

−
(

3

2

)2M ∞∑

i=2

1

i2M

)

> 22kM+2M

(
1 −

(
3

4

)2M

−
(

3

2

)2M

·
(

1

22M
+

1

32M
+

∫ ∞

3

1

x2M
dx

))

= 22kM+2M

(
1 −

(
3

4

)2M

−
(

3

4

)2M

−
(

1

2

)2M

−
(

3

2

)2M

· 1

32M−1(2M − 1)

)

> 22kM+2M

(
1 − 2

(
3

4

)2M

− 1

22M
.

(
1 +

2

2M − 1

))

≥ 22kM+2M

(
1 − 2

(
3

4

)4

− 1

24
.

(
1 +

2

3

))
> 22kM+2M · 2−4 ≥ 22kM for M ≥ 2.

(3.31)

2The number of points in the cube ‖z‖∞ ≤ 2k is
(
2k+1 + 1

)2M
and the number of points in the

cube ‖z‖∞ ≤ 2(k−1) is
(
2k + 1

)2M
.
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z′′

r

z′

ε−1/2M

Figure 3.2: integer points in the region ‖z‖∞ ≤ ε−
1

2M .
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Now, we find an upper bound on Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} for two different complex

integer vectors z′ and z′′ which belong to B. We can write z′ as az′′ + r where a

is a complex number and r is a complex vector, orthogonal to z′′. We show that

‖r‖ ≥ 1√
2M

ε
1

2M . The area of the triangle which has vertexes 0, z′, and z′′, is equal to

S = 1
2
‖r‖ · ‖z′′‖. On the other hand, because 0, z′, and z′′ are integer points, 2S should

be integer. Also, because the entries of z′ do not have any nontrivial common divisor,

z′ cannot be a multiplier of z′′ (and vice versa). Because z′ and z′′ are not multipliers

of each other, S is nonzero. Thus, S ≥ 1
2
, hence,

1

2
‖r‖ · ‖z′′‖ ≥ 1

2
(3.32)

=⇒ ‖r‖ ≥ 1

‖z′′‖ ≥ 1√
2M‖z′′‖∞

≥ 1√
2Mε−

1
2M

=
1√
2M

ε
1

2M . (3.33)

Now we bound Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}. Because r ⊥ z′′, we can see that vr ⊥ vz′′ .

Thus, when ‖vr‖ > ε, using the fact that va+b = va + vb,

‖vz′‖ = ‖vaz′′+r‖ = ‖vaz′′ + vr‖ ≥ ‖vr‖ > ε

Therefore,

Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε}

≤ Pr {‖vr‖ ≤ ε, ‖vz′′‖ ≤ ε} (3.34)

Based on the orthogonality of r and z′′, vr and vz′′ are independent. Thus, using (3.30),
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(3.33), and noting that ‖z′′‖ ≥ 1 (because z′′ is a nonzero integer vector):

Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} ≤ Pr {‖vz′′‖ ≤ ε} · Pr {‖vr‖ ≤ ε}

≤
(

c7
ε2M

‖z′′‖2M

)
·
(

c7
ε2M

‖r‖2M

)

≤ c2
7ε

2M · ε2M (2M)Nt

(
ε

1
2M

)2M

= c8ε
4M−1 (3.35)

Now, we use the Bonferroni inequality [26],

Pr {dH ≤ ε} = Pr {∃ z 6= 0 : ‖vz‖ ≤ ε} ≥ Pr {∃ z : z ∈ B, ‖vz‖ ≤ ε}

≥
∑

z∈B
Pr {‖vz‖ ≤ ε}

−
∑

z′,z′′∈B
Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} (3.36)

For the first term of (3.36),

∑

z∈B
Pr {‖vz‖ ≤ ε} (3.37)

≥

—

log

„

ε−
1

2M

«�

∑

k=0

∑

z∈B,2k−1<‖z‖∞≤2k

Pr {‖vz‖ ≤ ε} (3.38)
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By using (3.31), (3.30), and noting that ‖z‖ ≤
√

2M‖z‖∞ and e
− ε2

‖z‖2 ≥ e−1 (because

ε < 1 and ‖z‖ ≥ 1),

(3.38) ≥

—

log

„

ε−
1

2M

«�

∑

k=0

22kM · c6ε
2M

(2k)2M · (2M)Nt
· e−1 (3.39)

≥

—

log

„

ε−
1

2M

«�

∑

k=0

c9ε
2M (3.40)

=
(⌊

log
(
ε−

1
2M

)⌋
+ 1
)
· c9ε

2M ≥ c10ε
2M · ln

(
1

ε

)
. (3.41)

For the second term of of (3.36), because the number of complex integers in B

(which is at most the number of integer points in the cube ‖z‖∞ ≤ ε−
1

2M ) is bounded

by c11

(
ε−

1
2M

)2M

= c11ε
−1, the number of pairs (z′, z′′) is at most (c11ε

−1)
2
. Thus,

using (3.35):

∑

z′,z′′∈B
Pr {‖vz′‖ ≤ ε, ‖vz′′‖ ≤ ε} (3.42)

≤
(
c11ε

−1
)2 · c8ε

4M−1 (3.43)

≤ c12ε
4M−3 (3.44)

Now, by using (3.41) and (3.44),
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(3.36) ≥ c10ε
2M ln

(
1

ε

)
− c12ε

4M−3 (3.45)

≥ C ′ε2M ln

(
1

ε

)
, for M ≥ 2. (3.46)

�

Theorem 3.3. Consider a MIMO fading channel with Nt = Nr = M transmit and

receive antennas and a V-BLAST transmission system. The naive lattice-decoding has

an asymptotically unbounded loss, campared to the exact ML decoding.

Proof: For ML decoding, by using the Chernoff bound for the pairwise error prob-

ability and then applying the union bound for the finite constellation, we have [81]

Perror−ML ≤ c13(SNR)−M (3.47)

where c13 depends on the size of constellation.

For naive lattice decoding,

Perror−NLD ≥ Pr

{
dH ≤ 1√

SNR

}
.Q

(
1√
Nt

)

≥ c14(SNR)−M ln(SNR). (3.48)

Therefore, although both of them asymptotically have the same slope and achieve the

optimal receive diversity of order M , for large SNRs, the gap between their perfor-

mances is unbounded (with a logarithmic growth, or in other words, log log SNR in dB

scale). �
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3.5 Conclusions

We have shown that LLL-aided zero-forcing, which is a polynomial-time algorithm,

achieves the maximum receive diversity in MIMO systems. By using LLL reduction

before zero-forcing, the complexity of the MIMO decoding is equal to the complexity of

the zero-forcing method with just an additional polynomial-time preprocessing for the

whole fading block. Also, it is shown that by using the naive lattice decoding, instead

of ML decoding, we do not lose the receive diversity order.



Chapter 4

Diversity-multiplexing tradeoff of

lattice-decoded codes

The optimal diversity-multiplexing trade-off [96] is considered as an important the-

oretical benchmark for practical systems. For the encoding part, recently, several

lattice codes are introduced which have the non-vanishing determinant property and

achieve the optimal trade-off, conditioned on using the exact maximum-likelihood de-

coding [18] [53] [38]. The lattice structure of these codes facilitates the encoding. For

the decoding part, various lattice decoders, including the sphere decoder and the lattice-

reduction-aided decoder are presented in the literature [14] [91]. To achieve the exact

maximum likelihood performance, we need to find the closest point of the lattice inside

the constellation region, which can be much more complex than finding the closest

point in an infinite lattice. To avoid this complexity, one can perform the traditional

lattice decoding (for the infinite lattice) and then, discard the out-of-region points.

64
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This approach is called Naive Lattice Decoding (NLD).

In chapter 3, it is shown that this sub-optimum decoding (and even its lattice-

reduction-aided approximation) still achieve the maximum receive diversity in the

fixed-rate MIMO systems. Achieving the optimal receive diversity by a low decoding

complexity makes lattice-reduction-aided decoding (using the LLL reduction) an at-

tractive choice for different applications. Nonetheless, this work shows that concerning

diversity-multiplexing trade-off, the optimality cannot be achieved by the naive-lattice

decoding or its approximations.

In [27], using a probabilistic method, a lower bound on the best achievable trade-

off, using the naive lattice decoding, is presented. In this chapter, we present an upper

bound on the performance of the naive lattice decoding for codes based on full-rate

lattices. We show that NLD cannot achieve the optimum diversity-multiplexing trade-

off. Also, for the special case of equal number of transmit and receive antennas, we

show that even the best full-rate lattice codes (including perfect space-time codes such

as the Golden code [53]) cannot perform better than the simple V-BLAST (if we use

the naive lattice decoding at the receiver). It should be noted that in this chapter, we

have assumed that the underlying lattice is fixed for different rates and SNR values (e.g.

lattice codes introduced in [18] [53] [38]). If we relax this restriction, there can exist a

family of lattice codes (based on different lattice structures for different rates and SNR

values) which achieves the optimum tradeoff using the naive lattice decoding [51].
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4.1 Diversity-multiplexing tradeoff for the naive lat-

tice decoding

Similar to Chapter 3, we consider a MIMO system with Nt transmit antennas and Nr

receive antennas. We send space-time codewords X = [x1, ...,xT ] with complex entries

(xi ∈ CNt) and at the receiver, we find x̃i as H−1ỹi where [ỹ1, ..., ỹT ] is the closest

NtT -dimensional lattice point to [y1, ...,yT ].

To derive the upper bound on the diversity-multiplexing trade-off of NLD, we first

present a lower bound on the probability that the received lattice (the lattice code after

passing through the fading channel) has a short vector.

Lemma 4.1. Assume that the Nr × Nt matrix H has i.i.d. complex Gaussian entries

with zero mean and unit variance and let d (HTL) be the minimum distance of the lattice

generated by HTL, where L is the full-rank NtT × NtT generator of a given complex

lattice with unit volume and HT is the NrT × NtT block diagonal matrix constructed

by repeating H along the main diagonal. We have,

lim
ε→0

log Pr{d (HTL) ≤ ε}
log ε

≤ 2Nt(Nr − Nt + 1) (4.1)

Proof: Let σ1 ≤ σ2 ≤ ... ≤ σNt be the nonzero singular values of H. Considering

the pdf of the singular values of a Gaussian matrix [15], it can be shown that [96]

lim
ε→0

log Pr
{
σ1 ≤ εb1, ..., σNt ≤ εbNt

}

log ε
=

Nt∑

i=1

2(Nr − Nt + 2i − 1)bi (4.2)
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Thus for any b1 > Nt and b2, · · · , bNt > 0

lim
ε→0

log Pr
{
σ1 ≤ εb1 , ..., σNt ≤ εbNt

}

log ε
≥ lim

ε→0

log Pr
{
σ1 ≤ 1

4
√

Nt
εNt , σi ≤ 1

4
√

Nt
for i > 1

}

log ε

(4.3)

and by considering b′1 = Nt and b′2, · · · , b′Nt
= 0,

lim
ε→0

log Pr
{
σ1 ≤ 1

4
√

Nt
εNt, σi ≤ 1

4
√

Nt
for i > 1

}

log ε
≥ 2Nt(Nr − Nt + 1). (4.4)

By combining (4.3) and (4.4), we have

lim
ε→0

log Pr
{

σ1 ≤ 1
4
√

Nt
εNt , σi ≤ 1

4
√

Nt
for i > 1

}

log ε
= 2Nt(Nr − Nt + 1). (4.5)

Let vmin be the singular vector of H, corresponding to σ1. For each NtT -dimensional

complex vector v = [a1v
T

min a2v
T

min... aT vT

min]T,

‖HTv‖2 =

T∑

i=1

a2
i ‖Hvmin‖2 =

T∑

i=1

σ2
1‖aivmin‖2 = σ2

1‖v‖2. (4.6)

Thus, assuming σ1 ≤ 1
4
√

Nt
εNt,

‖HTv‖ ≤ 1

4
√

Nt

εNt‖v‖. (4.7)

Let A be a 2NtT -dimensional hypercube with edges of length 1
εNt

whose 2T edges

are parallel to the subspace spanned by the vectors v = [a1v
T

min a2v
T

min... aTvT

min]T

and the other 2T (Nt − 1) edges are orthogonal to that subspace. The volume of this
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cube is ε−2N2
t T . Because the volume of the lattice is 1, for K, the number of lattice

points inside this cube, we have1 limε→0
K

ε−2N2
t T

= 1.

Now, assuming σ1 ≤ 1
4
√

Nt
εNt and σNt ≤ 1

4
√

Nt
, the region HTA is inside a 2NtT -

dimensional orthotope (in the subspace spanned by HT ) whose 2T edges (which cor-

respond to the smallest singular value σ1) have length 1
4
√

Nt
and the length of the

other 2T (Nt − 1) is at most 1
4
√

NtεNt
(because of the bound on the largest singular

value σNt). The 2T smaller edges can be covered by at most ⌈4−1ε−1⌉ ≤ 2−1ε−1

segments of length ε√
Nt

and the others can be covered by at most ⌈4−1ε−(Nt+1)⌉ ≤

2−1ε−(Nt+1) segments of length ε√
Nt

. Thus, this orthotope can be covered by at most

(2−1ε−1)
2T (

2−1ε−(Nt+1)
)2T (Nt−1)

= 2−2NtT ε−2N2
t T hypercubes of edge length ε√

Nt
. Be-

cause limε→0
K

ε−2N2
t T

= 1, when ε → 0, the number of these small hypercubes is smaller

than the number of lattice points inside them. Thus, based on Dirichlet’s box principle,

in one of these hypercubes there are at least 2 points of the new lattice, hence d (HTL)

is smaller than the diameter of the small hyper cubes:

dH ≤
√

Nt ·
ε√
Nt

. (4.8)

Therefore,

lim
ε→0

log Pr{d (HTL) ≤ ε}
log ε

≤ lim
ε→0

log Pr
{

σ1 ≤ εNt, σNt ≤ 1
2Nt

}

log ε
= 2Nt(Nr − Nt + 1).

(4.9)

�

1When a region is large, the number of lattice points inside the region can be approximated by the

ratio between the volume of the region and the volume of the lattice.
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Theorem 4.1. Consider a MIMO fading channel with Nt transmit and Nr receive

antennas (Nt ≤ Nr) with codebooks from an NtT -dimensional lattice L, which are sent

over T channel uses. For the naive lattice decoding, the diversity-multiplexing trade-off

of the system is

dNLD(r) ≤ Nt(Nr − Nt + 1) − r (Nr − Nt + 1) ,

for 0 ≤ r ≤ Nt. (4.10)

Proof: Consider the code of rate R constructed from the lattice. The number of

codewords is equal to 2R. Without any loss of generality, we can assume that the volume

of the lattice is fixed and is equal to 1, and the power constraint P is dependent on the

rate. To satisfy the power constraint, at least half of the codewords should have power

less than 2P . The number of codewords with power less than 2P is equal to the number

of lattice points inside a 2Nt-dimensional sphere whose volume is proportional to P Nt .

Thus, by approximating the number of lattice points with the ratio of the volume of

the region and the volume of the lattice:

2R ≤ c1P
Nt . (4.11)

where c1 is a constant, independent of SNR2. According to the definition of the multi-

plexing gain, r = limSNR→∞
log R

log SNR
. Using (4.11),

lim
SNR→∞

log P

log SNR
≥

log 1
Nt

log R

log SNR
=

r

Nt
. (4.12)

2Throughout this chapter c1, c2, ... are only dependent on size of dimensions.
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For the symbol error probability Pe, considering SNR = NtP
σ2 ,

Pe ≥ Pr

{
d (HTL) ≤ σ√

Nt

}
.Q

(
1

2
√

Nt

)
= Pr

{

d (HTL) ≤
√

P√
SNR

}

.Q

(
1

2
√

Nt

)
.

(4.13)

Therefore, using lemma 1 (with ε =
√

P√
SNR

) and (4.12),

dNLD(r) = lim
SNR→∞

− log Pe

log SNR
≤ lim

SNR→∞

− log Pr
{

dH ≤
√

P√
SNR

}

log SNR

≤ lim
SNR→∞

−2Nt(Nr − Nt + 1)
(
log

√
P√

SNR

)

log SNR

= lim
SNR→∞

−2Nt(Nr − Nt + 1)
(

1
2
log P − 1

2
log SNR

)

log SNR

≤ −
(

r

2Nt

− 1

2

)
· 2Nt(Nr − Nt + 1)

= Nt(Nr − Nt + 1) − r (Nr − Nt + 1) . (4.14)

�

Corollary 4.1. In a MIMO fading channel with Nt = Nr transmit and receive anten-

nas, if we use the naive lattice decoding, the diversity-multiplexing trade-off for full-rate

lattice code cannot be better than that of V-BLAST.

Proof: When Nt = Nr, according to Theorem 4.1,
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dNLD(r) ≤ Nt − r (4.15)

On the other hand, for the V-BLAST system with lattice decoding [85],

dV −BLAST (r) = Nt − r (4.16)

�

It is interesting to compare this result with the results on lattice space-time codes

which have non-vanishing determinants. Although by ML decoding, these codes (such

as the 2 × 2 Golden code) achieve the optimal diversity-multiplexing trade-off, when

we replace ML decoding with the naive lattice decoding (and its approximations), their

performance is not much better than the simple V-BLAST scheme (specially when the

number of transmit and receive antennas are the same)

To better understand the difference between the naive lattice decoding and the ML

decoding, we note that for small constellations, when the generator of the received

lattice has a small singular value, the minimum distance of the lattice can be much

smaller than the minimum distance of the constellation. Figure 4.2 shows this situation

for a small 4-point constellation from a 2-dimensional lattice.

We should note that this upper bound is for full-rate lattices. Lattices with lower

rate, can provide higher diversity, but their rate is limited by the dimension of the

lattice. For example, The Alamouti code, based on QAM constellations, can achieve

the full diversity for fixed rates (r = 0), but its rate is limited by one.



Diversity-multiplexing tradeoff of lattice-decoded codes 72

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

r

d

 

 
M=N=2, optimal trade−off

M=N=2, NLD for perfect codes

M=2, N=3, Optimal tradeoff

M=2, N=3, NLD for perfect codes

Figure 4.1: Comparison between the optimal diversity-multiplexing tradeoff and the

upper bound on the diversity-multiplexing trade-off of full-rate lattice codes (including

perfect space-time codes such as the Golden code)
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dmin

dH

Figure 4.2: Minimum distance of a lattice (dH = d (HTL)), compared to the minimum

distance of a lattice code (dmin)

4.2 Conclusions

In this chapter, the inherent limitations of the performance of the naive lattice decoding

is investigated. The naive lattice decoding and various implementions of it (such as

the sphere decoding) and its simple approximated versions (such as the LLL-aided

decoding) are very attractive for the practical MIMO systems. Nonetheless, to achieve

theoretical benchmarks (such as the diversity-multiplexing trade-off), these techniques

are not always sufficient. For the diversity-multiplexing trade-off, although different

elegant lattice codes have been introduced which achieve the optimal trade-off [18] [53]

[38], they need ML decoding to achieve optimality. On the other hand, there can exist

a family of lattice codes (based on different lattice structures for different rates and

SNR values) which achieves the optimum tradeoff using the naive lattice decoding [51].

However, the existence proof in [51] does not provide any constructive solution for the
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encoding of such codes. Therefore, the problem of achieving the optimum diversity-

multiplexing tradeoff by a practical encoding and decoding scheme is still open.



Chapter 5

Robust joint source-channel coding

in Gaussian channels

In many applications, delay-limited transmission of analog sources over an additive

white Gaussian channel is needed. Also, in many cases the exact signal-to-noise ratio

is not known at the transmitter, and may vary over a wide range of values. Two

examples of this scenario are transmitting an analog source over a quasi-static fading

channel and/or multicasting it to different users (with different channel gains).

Without considering the delay limitations, digital codes can theoretically achieve the

optimal performance in the Gaussian channel. Indeed, for the ergodic point-to-point

channels, Shannon’s source-channel coding separation theorem [64] [65] ensures the

optimality of separately designing source and channel codes. However, for the case of a

limited delay, several articles [4] [21] [20] [56] [89] have shown that joint source-channel

codes have a better performance as compared to the separately designed source and

75



Robust joint source-channel coding in Gaussian channels 76

channel codes (which are called tandem codes). Also, digital coding is very sensitive to

the mismatch in the estimation of the channel signal-to-noise-ratio (SNR).

To avoid the saturation effect of digital coding, various analog and hybrid digital-

analog schemes are introduced and investigated in the past [5, 8, 9, 13, 33–35, 44, 57,

66, 68, 69, 83, 84, 86, 93]. Among them, examples of 1-to-2-dimensional analog maps

can be found as early as the works of Shannon [66] and Kotelnikov [44] and different

variations of Shannon-Kotelnikov maps (which are also called twisted modulations) and

their performance is studied in [33,84,93]. Also, in [8] and [86], analog codes based on

dynamical systems are proposed. Although these codes can provide asymptotic gains

(for high SNR) over the simple repetition code, they suffer from a threshold effect.

Indeed, when the SNR becomes less than a certain threshold, the performance of these

systems degrades severely. Therefore, the design parameters of these methods should

be chosen according to the operating SNR, hence, these methods are still very sensitive

to the errors in the estimation of SNR. Also, although the performance of the system

is not saturated for the high SNR (unlike digital codes), the scaling of the end-to-end

distortion is far from the theoretical bounds. Theoretical bounds on the robustness of

joint source channel coding schemes (for the delay-unlimited case) are presented in [49]

and [58]. To achieve better SDR scaling, a coding scheme is introduced in [60, 61]

which uses B repetitions of a (k,n) binary code to map the digits of the infinite binary

expansion of k sample of the source to the digits of a nB-dimensional transmit vector.

For this scheme, the banwidth expansion factor is η = nB
k

and the SDR asymptotically

scales as SDR ∝ SNRB, while in theory, the optimum scaling is SDR ∝ SNRη. Thus,
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this scheme cannot achieve the optimum scaling by using a single mapping.

In this chapter, we address the problem of robust joint source-channel coding, using

delay-limited codes. In particular, we show that the optimum slope of the SDR curve

can be achieved by a single modulation mapping. The rest of the chapter is organized

as the following:

In section 5.1, the system model and the basic concepts are presented. Section

5.2 presents an analysis of some of the previous analog coding schemes, and their

limitations. In section 5.3, we introduce a class of joint source-channel codes which

have a self-similar structure, and achieve a better asymptotic performance, compared

to the analog and hybrid digital - analog coding schemes. The asymptotic performance

of these codes, in terms of SDR scaling, is comparable with the scheme presented

in [60, 61], but with a simpler structure and a shorter delay. We investigate the limits

of the asymptotic performance of self-similar coding schemes and its relation with the

Hausdorff dimension of the modulation signal set. In section 5.4, we present a single

mapping which achieves the optimum slope of the SDR curve , which is equal to the

bandwidth expansion factor. Although this mapping achieves the optimum slope of the

SDR curve, its gap with the optimum SDR curve is unbounded (in terms of dB). In

section 5.5, we construct a family of robust mappings, which individually achieve the

optimum SDR slope, and together, maintain a bounded gap with the optimum SDR

curve. We also analyze the limits on the asymptotic performance of delay-limited HDA

coding schemes.
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5.1 System model and theoretical limits

We consider a memoryless {Xi}∞i=1 uniform source with zero mean and variance 1
12

,

i.e. −1
2
≤ xi < 1

2
. Also, the samples of the source sequence are assumed independent

with identical distributions (i.i.d.). Although the focus of this chapter is on the uni-

form source, as we discussed in Appendix E, the asymptotic results are valid for all

distributions which have a bounded probability density function (including unbounded

sources, such as the Gaussian source).

The transmitted signal is sent over an additive white Gaussian noise (AWGN) chan-

nel. The problem is to map the one-dimensional signal to the N -dimensional channel

space, such that the effect of the noise is minimized. This means that the data x,

−1
2
≤ x < 1

2
, is mapped to the transmitted vector s = (s1, ..., sN). At the receiver side,

the received signal is y = s + z where z = (z1, ..., zN) is the additive white Gaussian

noise with variance σ2.

As an upper bound on the performance of the system, we can consider the case

of delay-unlimited. In this case, we can use Shannon’s theorem on the separation of

source and channel coding. By combining the lower bound on the distortion of the

quantized signal (using the rate-distortion formula) and the capacity of N parallel

Gaussian channels with the noise variance σ2, we have [86]

D ≥ cσ2N (5.1)

where c is a constant number and D is the average distortion.
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5.2 Codes based on dynamical systems and hybrid

digital-analog coding

Previously, two related schemes, based on dynamical systems, have been proposed for

the scenario of delay-limited analog coding:

1. Shift-map dynamical system [8]

2. Spherical shift-map dynamical system [86]

5.2.1 Shift-map dynamical system

In [8], an analog transmission scheme based on shift-map dynamical systems is pre-

sented. In this method, every analog data x is mapped to the modulated vector

(s1, ..., sN) where

s1 = x mod 1 (5.2)

si+1 = bisi mod 1, for 1 ≤ i ≤ N − 1 (5.3)

where bi is an integer number, bi ≥ 2. The set of modulated signals generated by

the shift map consists of b = b1...bN−1 parallel segments inside an N -dimensional unit

hypercube. In [86], the authors have shown that by appropriately choosing the param-

eters {bi} for different SNR values, one can achieve the SDR scaling (versus the channel

SNR) with the slope N − ǫ, for any positive number ǫ. Indeed, we can have a slightly

tighter upper bound on the end-to-end distortion:
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Theorem 5.1. Consider the shift-map analog coding system which maps the source

sample to an N-dimensional modulated vector. For any noise variance σ2 ≤ 1
2
, we can

find a number a such that for the shift-map scheme with the parameters bi = a ≥ 2, the

distortion of the decoded signal D is bounded as

D ≤ cσ2N(− log2 σ)N−1 (5.4)

where c is some constant number depending only on N .

Proof: See Appendix C. �

Also, we have the following lower bound on the end-to-end distortion:

Theorem 5.2. For any shift-map analog coding scheme, the output distortion is lower

bounded as

D ≥ c′σ2N (− log σ)N−1 (5.5)

where c′ is a constant number, independent of σ (depending only on N).

Proof: See Appendix D. �

5.2.2 Spherical shift-map dynamical system

In [86], a spherical code based on the linear system ṡT = AsT is introduced, where

sT is the 2N -dimensional modulated signal and A is a skew-symmetric matrix, i.e.

AT = −A.
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This scheme is very similar to the shift-map scheme. Indeed, with an appropriate

change of coordinates, the above modulated signal can be represented as

sT =
1√
N

(
cos 2πx, cos 2aπx, ..., cos 2aN−1πx,

sin 2πx, sin 2aπx, ..., sin 2aN−1πx
)

(5.6)

for some parameter a.

If we consider ssm as the modulated signal generated by the shift-map scheme with

parameters bi = a in (5.3), then, (5.6) can be written in the vector form as

sT =
(
Re
{
eπissm

}
, Im

{
eπissm

})
. (5.7)

The relation between the spherical code and the linear shift-map code is very similar

to the relation between PSK and PAM modulations. Indeed, the spherical shift-map

code and PSK modulation are, respectively, the linear shift-map and PAM modulations

which are transformed from the unit interval, [−1
2

, 1
2
), to the unit circle.

For the performance of the spherical codes, the same result as Theorem 5.1 is valid.

Indeed, for any parameters a and N , the spherical code asymptotically has a saving

of (2π)2

12
or 5.17 dB in the power. This asymptotic gain results from transforming the

unit-interval signal set (with length 1 and power 1
12

) to the unit-circle signal set (with

length 2π and power 1) . However, the spherical code uses 2N dimensions (compared

to N dimensions for the linear shift-map scheme).

For both these methods, for any fixed parameter a, the output SDR asymptoti-

cally has linear scaling with the channel SNR. The asymptotic gain (over the simple
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d1

s3

s2

s1

0 < x < 1

s1 = x

s2 = 2s1 mod 1

s3 = 2s2 mod 1

Figure 5.1: The shift-map modulated signal set for N = 3 dimensions and a = 2.

repetition code) is approximately a2(N−1) (because the modulated signal is stretched

approximately aN−1 times)1. Therefore, a larger scaling parameter a results in a higher

asymptotic gain. However, by increasing a, the distance between the parallel segments

of the modulated signal set decreases. This distance is approximately 1
a

and for the

low SNRs (when the noise variance is larger than or comparable to 1
a
), jumping from

one segment of the modulated signal set to another one becomes the dominant factor

in the distortion of the decoded signal which results in a poor performance in this SNR

region. Thus, there is a trade-off between the gain in the high-SNR region and the

critical noise level which is fatal for the system. By increasing the scaling parameter a,

the asymptotic gain increases, but at the same time, a higher SNR threshold is needed

1The exact asymptotic gain is equal to the scaling factor of the signal set, i.e.

a2(N−1)
(
1 + 1

a2 + ... + 1
aN−1

)
for the shift map and (2π)2

12 a2(N−1)
(
1 + 1

a2 + ... + 1
aN−1

)
for the spherical

shift map.
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to achieve that gain. In [59], the authors have combined the dynamical-system schemes

with LDPC and iterative decoding to reduce the critical SNR threshold. However,

overall behavior of the output distortion is the same for all these methods. Also, in [42]

and [43], a scheme is introduced for approaching arbitrarily close to the optimum SDR,

for coloured sources. However, it is not delay-limited and it only works for bandwidth

expansion 1.

The shift-map analog coding system can be seen as a variation of a Hybrid Digital-

Analog (HDA) joint source-channel code. Various types of these hybrid schemes are

investigated in [63], [49], [68], [34] and [69]. Indeed, for the shift-map system, we can

rotate the modulated signal set such that all the parallel segments of it become aligned

in the direction of one of the dimensions. In this case, by changing the support region

of the modulated set (which is a rotated N -dimensional cube) to the standard cube,

we obtain a new similar modulation which is hybrid digital-analog and has almost the

same performance. In the new modulation, the information signal is quantized by aN−1

points in an (N − 1)-dimensional sub-space and the quantization error is sent over the

remaining dimension.

Regarding the scaling of the output distorsion, the performance of the shift-map

scheme, with appropriate choice of parameters for each SNR, is very close to the theo-

retical limit. In fact, the output distortion scales as σ2N (− log σ)N−1, instead of being

proportional to σ2N . However, for any fixed set of parameters, the output SNR (versus

the input SNR) is saturated by the unit slope (instead of N). This shortcoming is

an inherent drawback of schemes like the shift-map code or spherical code (which are
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based on dynamical systems). Indeed, in [97], it is shown that no single differentiable

mapping can achieve an asymptotic slope better than 1. This chapter addresses this

shortcoming.

There are some other analog codes in the literature which use different mappings.

Analog codes based on the 2-dimensional Shannon map [13] [57] [35] [5], or the tent

map [8] are examples of these codes. However, all these codes share the shortcomings

of the shift-map code.

5.3 Joint source-channel codes based on fractal sets

In this section, we propose a coding scheme, based on the fractal sets, that can achieve

slopes greater than 1 (for the curve of SDR versus SNR).

Scheme I: For the modulating signal x, −1
2
≤ x < 1

2
, we consider the binary

expansion of x + 1
2
:

x +
1

2
=
(
0 · b1b2b3...

)
2
. (5.8)

Now, we construct s1, s2, ..., sN as

s1 =
(
0 · b1bN+1b2N+1...

)
α

(5.9)

s2 =
(
0 · b2bN+2b2N+2...

)
α

(5.10)

...

sN =
(
0 · bNb2Nb3N ...

)
α

(5.11)
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where
(
0 · b1b2b3...

)
α

is the base-α expansion2.

Theorem 5.3. In the proposed scheme, for any α > 2, the output distortion D is upper

bounded by

D ≤ cσ2β(− log σ)N (5.12)

where c is independent of σ and β = N log 2
log α

.

Proof: Consider wi as the Gaussian noise on the ith dimension:

Pr
{
|wi| > 2

√
Nσ
√

− log σ
}

= (5.13)

2Q
(
2
√

N
√

− log σ
)
≤ e−

4N(− log σ)
2 = e−2N(− log σ) = σ2N (5.14)

Now, we bound the distortion, conditioned on |wi| ≤ 2
√

Nσ
√− log σ for 1 ≤ i ≤ N .

If the kth digit of si and s′i are different,

|si − s′i| ≥ (5.15)



0 · 0...0︸︷︷︸
k−1

1000..





α

−



0 · 0...0︸︷︷︸
k−1

0111...





α

(5.16)

> (α − 2)α−(k+1) (5.17)

Therefore, if |si − s′i| ≤ δ for any δ > 0, the first k digits of si and s′i are the same,

where k ≥
⌊
− logα

(
δ

α−2

)⌋
− 1. Now, by considering δ = 4

√
Nσ

√− log σ,

2In this chapter, we define the base-α expansion, for any real number α ≥ 2 and any binary sequence

(b1b2b3...), as
(
0 · b1b2b3...

)
α

,
∑

∞

i=1 biα
−i.



Robust joint source-channel coding in Gaussian channels 86

|si − s′i| ≤ 2|wi| ≤ 4
√

Nσ
√

− log σ (5.18)

=⇒ k ≥
⌊

− logα

(
4
√

Nσ
√− log σ

α − 2

)⌋

− 1 (5.19)

Therefore, for 1 ≤ i ≤ N , the first

⌊

− logα

(
4
√

Nσ
√− log σ

α − 2

)⌋

− 1

digits of s1, s2, ..., sN can be decoded without any error, hence, the first

N

(⌊
− logα

(
4
√

Nσ
√− log σ

α − 2

)⌋
− 1

)

bits of the binary expansion of x can be reconstructed perfectly. In this case, the output

distortion is bounded by

√
D ≤ 2

−N
“j

− logα

“

4
√

Nσ
√− log σ

α−2

”k

−1
”

(5.20)

≤ c1σ
β(− log σ)

N
2 (5.21)

where c1 depends only on α and N .

By combining the upper bounds for the two cases,

D ≤ Pr
{
|wi| > 2

√
Nσ
√

− log σ
}

+ c1σ
β(− log σ)

N
2 (5.22)

≤ cσ2β(− log σ)N . (5.23)
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�

According to the theorem 5.2, for any ǫ > 0, we can construct a modulation scheme

that achieves the asymptotic slope of N − ǫ (for the curve of SDR versus SNR, in terms

of dB). As expected (according to the result by Ziv [97]), none of these mappings are

differentiable. More generally, Ziv has shown that [97]:

Theorem 5.4. ( [97], Theorem 2) For the modulation mapping s = f(x), define

df(∆) = Ex

(
‖f(x + ∆) − f(x)‖2

)
.

If there are positive numbers M, γ, ∆0 such that

df(∆) ≤ M∆γ for ∆ ≤ ∆0 (5.24)

then there is constant c such that

D ≥ cσ
2
γ . (5.25)

By decreasing α, we can increase the asymptotic slope β. However, it also degrades

the low-SNR performance of the system. This phenomenon is observed in figure 5.3.

In scheme I, the signal set is a self-similar fractal [16], where the parameter β, which

determines the asymptotic slope of the curve, is the dimension of the fractal. There are

different ways to define the fractal dimension. One of them is the Hausdorff dimension.

Consider F as a Borel set in a metric space, and A as a countable family of sets that

covers it. We define Hs
ε (F ) = inf

∑
A∈A

(diameter(A))s, where the infimum is over all

countable covers that diameter of their sets are not larger than ε. The s-dimensional

Hausdorff space is defined as Hs(F ) = limε→0 Hs
ε (F ) = supε>0 Hs

ε (F ). It can be shown
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that there is a critical value s0 such that for s < s0, this measure is infinite and for

s > s0, it is zero [16]. This critical value s0 is called the Hausdorff dimension of the set

F .

Another useful definition is the box-counting dimension. If we partition the space

into a grid cubic boxes of size ε, and consider Nε as the number of boxes which intersect

the set F , the box-counting dimension of F is defined as

Dimb(F ) = lim
ε→0

log Nε

log 1
ε

(5.26)

It can be shown that for regular self-similar fractals, the Hausdorff dimension is equal

to the box-counting dimension [16]. Intuitively, theorem 5.3 means that in scheme I

among the N available dimensions, only β dimensions are effectively used. Indeed, we

can show that for any modulation set with box-counting dimension β, the asymptotic

slope of the SDR curve is at most β:

Theorem 5.5. For a modulation mapping s = f(x), if the modulation set F has box-

counting dimension β, then,

lim
σ→0

log D

log σ
≤ 2β. (5.27)

Proof: We divide the space to the boxes of size σ. Consider Nσ as the number of

cubic boxes that cover F . We divide the source signal set to 4Nσ segments of length

1
4Nσ

. Consider A1, ...,A4Nσ as the corresponding N -dimensional optimal decoding re-

gion (based on the MMSE criterion), and B1, ...,B4Nσ as their intersection with the Nσ

cubes (see figure 5.2). Total volume of these 4Nσ sets is equal to the total volume of

the covering boxes, i.e. Nσσ
N . Thus, at least, half of these sets (i.e. 2Nσ of them)



Robust joint source-channel coding in Gaussian channels 89

have volume less than 1
2
σN . For any of these sets such as Bi and any box, the volume

of intersection of that box with other sets is at least Vmin = σN − 1
2
σN = 1

2
σN . For

any point in the corresponding segments of the set Bi, the probability of decoding to a

wrong segment is lower bounded by the probability of a jump to the neighboring sets

in the same box. Because the variance of the additive Gaussian noise is σ2 per each

dimension, and for such a jump the squared norm of the noise at most needs to be Nσ2

(square of the diameter of the box), the probability of such a jump can be bounded as

Pr(jump) ≥ Vmin · min
‖z‖2≤Nσ2

fz (z) (5.28)

≥ 1

2
σN · 1

(2π)
N
2 σN

e−
Nσ2

2σ2 =
1

2
N
2

+1π
N
2

e−
N
2 . (5.29)

Now, for these segments of the source, consider the subsegments with length 1
20Nσ

at

the center of them. For these subsegments whose total length is at least 1
20Nσ

·2Nσ = 1
10

,

at least with probability Pr(jump), we have a squared error which is not less than
(

1
10Nσ

)2

. Thus,

D ≥ 1

10
Pr(jump) ·

(
1

10Nσ

)2

=
c

N2
σ

(5.30)

where c only depends on the bandwidth expansion N .

On the other hand, based on the definition of the box-counting dimension,

β = lim
σ→0

log N(σ)

log 1
σ

. (5.31)

By using (5.30) and (5.31),
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Bi

Figure 5.2: Boxes of size σ and their intersections with the decoding regions
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lim
σ→0

log D

log σ
≤ 2β. (5.32)

�

It should be noted that theorem 5.5 is valid for all signal sets, not just self-similar

signal sets. As a corollary, based on the fact that the box-counting dimension cannot

be greater than the dimension of the space [16], theorem 5.5 gives a geometric insight

to (5.1).

5.4 Achieving the optimum asymptotic SDR slope

using a single mapping

Although scheme I can construct mappings that achieve near-optimum slope for the

curve of SDR (versus the channel SNR), none of these mappings can achieve the opti-

mum slope N . To achieve the optimum slope with a single mapping, we slightly modify

the scheme I:

For the modulating signal x, consider x + 1
2

=
(
0.b1b2b3...

)
2
. We construct s1, s2,

..., sN as

s1 =
(
0.b10bN(N+1)

2
+1

bN(N+1)
2

+2
...bN(N+1)

2
+N+1

0b (2N)(2N+1)
2

+1
...
)

2
(5.33)

s2 =
(
0.b2b30b (N+1)(N+2)

2
+1

b (N+1)(N+2)
2

+2
...b (N+1)(N+2)

2
+N+2

0...
)

2
(5.34)
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...

...

sN =
(
0.bN(N−1)

2
+1

bN(N−1)
2

+2
...bN(N+1)

2
0...
)

2
(5.35)

The difference between this scheme and Scheme I is that instead of assigning the

kN + ith bit to the signal si, the bits of the binary expansion of x+ 1
2

are grouped such

that the lth group (l = kN + i) consists of l bits and is assigned to the ith dimension.

Theorem 5.6. Using the mapping constructed by Scheme II, the output distortion D

is upper bounded by

D ≤ c1σ
2N2c2

√
− log σ (5.36)

where c1 and c2 are only dependet on N .

Proof: Consider zi as the Gaussian noise on the ith channel and assume that n is

selected such that

n∑

k=1

kN + i ≤ − log2 σ <

n+1∑

k=1

kN + i (5.37)

The probability that |zi| ≥ 2−1−Pn−1
k=1 kN+i is negligible. Indeed,

Pr

{
|zi| ≥ 2−1−

Pn−1
k=1 kN+i

∣∣∣∣∣− log2 σ ≥
n∑

k=1

kN + i

}
≤ (5.38)

2Q

(
2−1−Pn−1

k=1 kN+i

2−
Pn

k=1 kN+i

)
= 2Q

(
2nN−1

)
. (5.39)
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On the other hand, when |zi| < 2−1−
Pn−1

k=1 kN+i, the first
∑n−1

k=1 kN + i bits of si can

be decoded error-freely. The same is true for all 1 ≤ i′ ≤ i, and for i < i′ ≤ N , the first

∑n−2
k=1 kN + i′ can be decoded error-freely. Thus, the first

∑(n−1)N+i
j=1 j bits of x can be

decoded error-freely. Now,

(n−1)N+i∑

j=1

j ≥ (5.40)

N

n−2∑

k=1

kN + i ≥ (5.41)

N

n+1∑

k=1

(kN + i) − N ((n − 1)N + i + nN + i + (n + 1)N + i) ≥ (5.42)

N
n+1∑

k=1

kN + i − N2 (3n + 3) ≥ (5.43)

N
n+1∑

k=1

kN + i − c3

√√√√
n∑

k=1

kN + i (5.44)

where c3 depends only on N . Therefore, by using the assumption (5.37),

(n−1)N+i∑

j=1

j ≥ (5.45)

−N log2 σ − c3

√
− log2 σ (5.46)

Consequently, the output distortion is bounded by
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D ≤ Pr
{
|zi| ≥ 2−1−Pn−1

k=1 kN+i
}

+ 2−2
P(n−1)N+i

j=1 j (5.47)

≤ 2Q
(
2nN−1

)
+ 22N log2 σ+2c3

√
− log2 σ (5.48)

=⇒ D ≤ c1σ
2N2c2

√
− log σ. (5.49)

�

It should be noted that in the this proof, the assumption of having a uniform

distribution is not used, and the above proof is valid for any source whose samples are

in the interval
[
−1

2
, 1

2

)
. In Appendix C, we extend the scheme proposed in this section

to other sources which are not necessarily bounded.

5.5 Approaching a near-optimum SDR by delay-

limited codes

In [49], a family of hybrid digital-analog (HDA) source-channel codes are proposed

which together can achieve the optimum SDR curve and each of them only suffers

from the mild saturation effect (the asymptotic unit slope for the curve of SDR versus

SNR). However, their approach is based on using capacity-approaching digital codes as

a component of their scheme. In [58], it is shown that for any joint source-channel code

that touches the optimum SDR curve in a certain SNR, the asymptotic slope cannot

be better than one.
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In this section, we consider the problem of finding a family of delay-limited analog

codes which together have a bounded asymptotic loss in the SDR performance (in terms

of dB). Results of Section 5.2 show that none the previous analog coding schemes (based

on dynamical systems) can construct such a family of codes. In this section, we also

show that no HDA source-channel coding scheme can be used to achieve it. In the

HDA source-channel coding, in general, to map an M dimensional source to an N

dimensional signal set, the source is quantized by κ points which are sent over N −M

dimensions and the residual noise is transmitted over the remaining M dimensions. In

other words, the region of the source (which is a hypercube for the case of a uniform

source) is divided into κ subregions A1, ...,Aκ. These subregions are mapped to κ

parallel subsets of the N dimensional Euclidean space, A′
1, ...,A′

κ, where A′
i is a scaled

version of Ai with a factor of a.

Theorem 5.7. Consider a HDA joint source-channel code which maps an M-dimensional

uniform source (inside the unit cube) to κ parallel M-dimensional subsets of an N di-

mensional Euclidean space (N > M), with a power constraint of P . If the decoding of

digital and analog parts are done separately, for any noise variance σ2 and any integer

κ, the output distortion is bounded by

D ≥ cσ
2N
M (− log σ)

N−M
M (5.50)

where c is a constant number (independent of SNR).

Proof: See Appendix F. �
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Now, we construct families of delay-limited analog codes which by a proper choice

of parameters (according to the channel SNR) have only a bounded asymptotic loss in

the SDR performance (in terms of dB).

Type I - Family of piece-wise linear mappings: For any 2−k−1 < σ ≤ 2−k, for

k > 0, we construct an analog code as the following:

For x + 1
2

=
(
0 · b1b2...bNk−1

)
2
+

{2Nk−1x}
2Nk−1 , where {·} represents the fractional part,

we construct s1, s2, ..., sN as

s1 =
k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+1

s2 =
k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+2

...

sN−1 =

k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+N−1

sN =
k−1∑

i=1

(2−i + 2−k(k − i))b(i−1)N+N + 2Nk−k−2

{
2Nk−1x

}

2Nk−1
(5.51)

First, we show that the 0 ≤ si < 2, for 1 ≤ i ≤ N :

si ≤
k∑

i=1

(2−i + 2−k(k − i)) + 2−k−1 =
k+1∑

i=1

2−i + 2−k
k∑

i=1

(k − i) (5.52)

< 1 + 2−k · k(k − 1)

2
< 2. (5.53)
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Therefore, by an appropriate shift (e.g. modifying the transmitted signal set as s′ = s),

the transmitted power can be bounded by one. Next, we show that the proposed scheme

has a bounded gap (in terms of dB) to the optimum SDR curve:

Theorem 5.8. In the proposed scheme, the output distortion D is upper bounded by

D ≤ cσ2N (5.54)

where c is a constant, independent of σ.

Proof: The signal set consists of 2Nk−1 segments of length 2−k−1, where each of

them is a scaled version of a subsegment of the source region (the unit interval), by a

factor of 2Nk−k−2.

The probability that the first error occurs in the lth bit (l = (i − 1)N + j) of x is

bounded by Pl ≤ 2Q
(

k−i
2

)
≤ 2Q

(
k
2
− l

2N

)
and it results in an output squared error of

at most Dl ≤ 4−1+1 = 4−(i−1)N−j+1. Therefore, by considering the union-bound over

all possible errors, we obtain

D ≤
Nk−1∑

l=1

Dl · Pl + Dno−bit−error

≤
Nk−1∑

l=1

4−l+1 · 2Q
(

k

2
− l

2N

)
+ 4−(Nk−k−2)σ2. (5.55)

Now, by using Q(x) < e−
x2

2 and 2−k+1 < σ we have

D ≤
kN−1∑

l=1

2−2l+3e−
(k−l/N)2

8 + 4−(Nk−k−2)σ2



Robust joint source-channel coding in Gaussian channels 98

≤
kN−N−1∑

l=1

2−2l+3e−
(k−l/N)2

8 +
Nk−1∑

l=Nk−N

4−l+1e−
(k−l/N)2

8 + 4−(Nk−k−2)σ2

≤
kN−N−1∑

l=1

2−2l+3e−
(k−l/N)2

8 + N · 4−(k−1)N + 4−(Nk−k−2)σ2N

≤ N
k−1∑

t=1

4−tN+1 · e− (k−t)2

8 + N · 4−(k−1)N + 4−(Nk−k−2)σ2N

≤ N · 4−(k−1)N+1
∞∑

t=1

4N(k−t) · e− (k−t)2

8 + N · 4−(k−1)N + 4−(Nk−k−2)σ2N

≤ c94
−(k−1)N + 4−(Nk−k−2)σ2

≤ cσ2N . (5.56)

�

It is worth noting that in the proposed family of codes, for each code, the asymptotic

slope of the SDR curve is 1 (as we expected from the fact that for each code, the

mapping is partially differentiable). We can mix the idea of this scheme with Scheme II

of the previous section, to construct a family of mappings where for each of them, the

asymptotic slope is N , and together, they maintain a bounded gap with the optimal

SDR (in terms of dB):

Type II - Family of robust mappings: For x+ 1
2

=
(
0 · b1b2b3...

)
2
, we construct

fk(x) = (s1, s2, ..., sN) as
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s1 =
k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+1 + 2−k−1
(
0 · bkN+10bkN+N(N+1)

2
+1

b
kN+

N(N+1)
2

+2
...
)

2

s2 =
k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+2 + 2−k−1
(
0 · bkN+2b30bkN+ (N+1)(N+2)

2
+1

...
)

2

...

sN =
k∑

i=1

(2−i + 2−k(k − i))b(i−1)N+N + 2−k−1
(
0 · b

kN+
N(N−1)

2
+1

b
kN+

N(N−1)
2

+2
...
)

2

Theorem 5.9. In the proposed family of mappings (Type II), there are constants

c1, c2, c3, independent of σ and k (only dependent on N) such that for every integer

k > 0, if we use the modulation map fk(x),

i) For 2−k−1 < σ ≤ 2−k,

D ≤ c3σ
2N . (5.57)

ii) for any σ < 2−k−1,

D ≤ c1σ
2N2c2

√
− log σ. (5.58)

Proof: i) The probability that the first error occurs in the lth bit (l = (i−1)N +j <

kN) of x is bounded by Pl ≥ Q(k − i) and it results in an output squared error of at

most 4(i−1)N−j+1, and when there is no error in the first Nk bits, the squared error is

D′ ≤ 4−Nk. Therefore, by considering the union-bound over all possible errors, we have

D ≤
Nk−1∑

l=1

Dl · Pl + Dno−bit−error
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≤
Nk−1∑

l=1

4−l+1 · 2Q
(

k

2
− l

2N

)
+ 4−Nk

Similar to the proof of theorem 8, by using Q(x) < e−
x2

2 and 2−k+1 < σ ≤ 2−k we

have

D ≤
Nk−1∑

l=1

4−l+1e−
(k−l/N)2

8 + σ2N

≤ c124
−kN + σ2N

≤ cσ2N .

ii) Consider zi as the Gaussian noise on the ith channel and assume that n is selected

such that

k +
n∑

l=1

lN + i ≤ − log2 σ < k +
n+1∑

l=1

lN + i (5.59)

The probability that |zi| ≥ 2−k+1−
Pn−1

l=1 lN+i is negligible.

On the other hand, when |zi| < 2−k+1−Pn−1
l=1 lN+i, the first k +

∑n−1
l=1 lN + i bits of si

can be decoded error-freely. The same is true for all 1 ≤ i′ ≤ i, and for i < i′ ≤ N , the

first k +
∑n−2

l=1 lN + i′ can be decoded error-freely. Thus, the first kN +
∑(n−1)N+i

j=1 j

bits of x can be decoded error-freely. Now, similar to the proof of theorem 6,

kN +

(n−1)N+i∑

j=1

j ≥ (5.60)

N

n+1∑

k=1

kN + i − c2

√√√√
n+1∑

k=1

kN + i (5.61)
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where c2 depends only on N . Therefore, by using the assumption (5.59),

kN +

(n−1)N+i∑

j=1

j ≥ (5.62)

−N log2 σ − c2

√
− log2 σ (5.63)

Therefore, the output distortion is bounded by

D ≤ 2−2
P(n−1)N+i

j=1 j (5.64)

≤ 22N log2 σ+2c2
√

− log2 σ (5.65)

=⇒ D ≤ c1σ
2N2c2

√
− log σ. (5.66)

�

5.6 Simulation results

In figure 5.3, for a bandwidth expansion factor of 4, the performance of Scheme I (with

parameters α = 4 and 3) is compared with the shift-map scheme with a = 3. As we

expect, for the shift-map scheme, the signal-to-distortion-ratio (SDR) curve saturates

at slope 1, while the new scheme offers asymptotic slopes higher than one. For the

new scheme, with parameters α1 = 4 and α2 = 3, the asymptotic slope is respectively

β1 = 4 log 2
log 4

= 2 and β2 = 4 log 2
log 3

(as expected from Theorem 5.3). Also, we see that the

new scheme provides a gracefull degradation in the low SNR region.

Although Schemes I and II deal with the infinite binary expansion of x + 1
2

(which

is not practically feasible), approximated versions of this mapping can be implemented
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Figure 5.3: The SDR for the first proposed scheme (with α = 4 and 3) and the shift-map

scheme with a = 3. The bandwidth expansion is N = 4.

by low-complexity encoders and decoders. A simple approximation of these methods

is to split x + 1
2

as

x +
1

2
= 0.b1b2...bn + r (5.67)

and applying the proposed methods on 0.b1b2...bn and send r by a linear mapping over

one of the dimensions.
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5.7 Conclusions

To avoid the mild saturation effect in analog transmission systems and achieving the

optimum scaling of the output distortion, we need to use nondifferentiable mappings

(more precisely, mappings which are not differentiable on any interval). Two nondif-

ferentiable schemes are introduced in this chapter. Both these schemes outperform the

traditional analog schemes, in terms of scaling of the output SDR, and one of them

almost achieves the optimum SDR scaling with a simple mapping (it asymptotically

achieves slope N for the SDR curve). Also, simulation results show that Piecewise

differentiable approximations of these methods offers an acceptable performance (with

a low encoding/decoding complexity) for a wide range of channel SNRs.



Chapter 6

Joint source-channel coding over

MIMO fading channels

In many applications, such as voice and multimedia transmission in cellular and wireless

LAN environments, transmission of analog sources over wireless channels is needed.

Results of the research in the past decade shows that using multiple-antenna systems

can substantially improve the rate and the reliability of communication in wireless

fading environments. However, until now, most of the research has been focused on

the transmission of digital data over multiple-input multiple-output (MIMO) channels,

and the study of the analog source transmission is still in its early stages.

Although in recent years there has been a colossal amount of research in MIMO

communications, the research on MIMO joint source-channel coding is still in its early

stages. In [30] and [6] some digital and hybrid digital-analog techniques are exam-

ined for joint source-channel coding over MIMO channels, and some bounds on the

104
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asymptotic exponents of the average distortion are presented. However, the asymp-

totic exponents of the average distortion is not a good measure for the performance

evaluation of joint source-channel coding schemes in fading environments. The reason

is that the average distortion is dominated by rare cases of very bad channels. In these

environments, it is more informative to analyze the probability that distortion is greater

than a certain level, instead of averaging very large unusual distortions.

Unlike [30] and [6] which are focused on analyzing the asymptotic exponents of the

average distortion, here, we analyze the asymptotic exponents of the probability of

having a large distortion. This measure, which we call diversity-fidelity tradeoff, can

be seen as an analog version of the well-known diversity-multiplexing tradeoff which is

proved to be very useful in evaluating various digital space-time coding schemes.

6.1 System Model

We consider a communication system where an analog source of Gaussian indepen-

dent samples with variance σ2
s is to be transmitted over a (Nt, Nr) block fading MIMO

channel where Nt and Nr are the number of transmit and receive antennas respectively.

Every m samples of the source stacked in a vector xs are transmitted over n channel

uses. The channel matrix H is assumed fixed during this period and changes indepen-

dently for the next n channel uses. We call the ratio η = n
m

the expansion/contraction

factor of the system. In a general setting, the communication strategy consists of

source/channel coding and source/channel decoding. As a result of source channel

coding, xs is mapped into a Nt × n space-time matrix X which in turn is received at
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the receiver side as an Nr × n matrix Y where

Y =

√
SNR

Nt

HX + W

in which SNR is the average signal to noise ratio at each receive antenna, and W is

the additive noise matrix at the receiver whose entries are taken to be CN (0, 1). At

the receiver side, the source/channel decoder yields an estimation of xs out of Y as x̂s.

For a specific channel realization H, the distortion measure is

D(H) = Exs{‖xs − x̂s‖2|H}. (6.1)

For any specific strategy, we define the f−fidelity event as A(f) = {H : D(H) >

SNR−f} and we call f the fidelity exponent. For specific values of η, Nt and Nr, we

define:

d(f) = sup lim
SNR→∞

− log Pr{A(f)}
log SNR

(6.2)

where sup is taken over all possible source/channel coding schemes. We call d(f)

simply as diversity. In what follows, we offer lower and upper bounds on d(f).

We recall from [96] that if we denote the eigenvalues of HHH by λi, setting αi =

− log λi

log SNR
, we have1:

p(−→α )
.
= SNR−

P

(2i−1+|Nt−Nr |)αi . (6.3)

1In this chapter, we use a
.
= b to denote that a and b are asymptotically equivalent.
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On the other hand, in a system of tandem coder, i.e., separate source coder and

channel coder, we have:2

Pr{error|H} ≤ SNR−n[
P

(1−αi)+−r] (6.4)

where R = r log SNR is the transmission rate over the channel, i.e., R = log M
n

, and M

is the number of quantized points in the output of the source coder.

6.2 Upper bound on d(f)

To get an upper bound on d(f), we consider the case of delay unlimited where m, n → ∞

and n
m

= η is a constant. Also, we assume that the transmitter has perfect knowledge

of the channel matrix H , and therefore, one may talk about the capacity of this MIMO

channel which is given by [96]:

R = sup
Σ:tr(Σ)≤m

log det(I +
SNR

m
HΣHH) (6.5)

≤ log det(I + SNRHHH). (6.6)

We know that the source rate is Rs = ηR. On the other hand, the Distortion-Rate

function of the source is D(Rs;H) = e−2Rs . Therefore:

D(Rs;H) ≥ 1

det(I + SNRHHH)2η
. (6.7)

2We use x+ to denote max(x, 0).
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Let us denote the f -fidelity event as A∞(f) here. Thus, we obtain:

Pr{A∞(f)} = Pr{D(Rs; H) > f} ≥ (6.8)

Pr{ 1

det(I + SNRHHH)2η
> SNR−f} (6.9)

which can be written as:

Pr{A∞(f)} ≥ Pr{
i=n∏

i=1

(1 + SNRλi) < SNR
f
2η }

.
= Pr{

∑

i

(1 − αi)
+ <

f

2η
}. (6.10)

As a result, based on (6.3) and (6.10), we get:

Pr{A∞(f)} ≥
∫

−→α∈∆

SNR−
P

(2i−1+|Nt−Nr |)αid−→α (6.11)

where ∆ = {−→α :
∑

i(1 − αi)
+ < f

2η
}. Based on [96], we have:

∫

−→α∈∆

SNR−
P

(2i−1+|Nt−Nr |)αid−→α = SNR−dub(f) (6.12)

where dub(f) = min−→α∈∆

∑
(2i − 1 + |Nt − Nr|)αi. According to the results in [96], for

integer values of f
2η

, this can be calculated as:

dub(f) = (Nt −
f

2η
)(Nr −

f

2η
). (6.13)
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Clearly, if we let Pr{A∞(f)} .
= SNR−d∞(f), we have d∞(f) ≤ dub(f). Consequently,

dub(f) is an upper bound on d(f).

6.3 Achieving the optimum tradeoff

In this section, we show that for any given bandwidth expansion η = n
m

, the optimum

diversity-fidelity tradeoff can be achieved by a family of digital space-time codes {Ck}.

Consider the N2
t × N2

t matrix L as the generator of the underlying lattice of a space-

time code with non-vanishing determinant property (e.g. Perfect Codes [18] [53] [38]).

We map mN2
t samples of the source to an nN2

t -dimensional vector s = [s1...snN2
t
]T, and

construct the MIMO codeword by setting c = (L ⊗ In) s and mapping it to the entries

of n consecutive Nt × Nt space-time matrices.

For the modulating signal xs = (x1, ..., xmN2
t
), consider xi + 1

2
=
(
0.bi,1bi,2bi,3...

)
2
.

Let b′
i+(j−1)mN2

t
= bi,j. For the code Ck, we construct s1, s2, ..., sN (where N = nN2

t ) as

s1 =
(
0.b′1b

′
N+1b

′
2N+1...b

′
(k−1)N+1

)

2
, (6.14)

s2 =
(
0.b′2b

′
N+2b

′
2N+2...b

′
(k−1)N+2

)

2
, (6.15)

...

sN =
(
0.b′Nb′2Nb′3N ...b′kN

)
2
, (6.16)
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Lemma 6.1. [18] Consider {Ci(r)} a sequence of Nt × Nt lattice space-time codes,

designed for rate Ri = r · log SNRi (where SNRi → ∞), and assume that its underly-

ing lattice satisfy the nonvanishing determinant property. For dmin(r), the minimum

distance of the received constellation CH,i(r) = HCi(r), we have

Pe(r) = Pr

{
dmin(r)

2
≤ ‖w‖

}
.
= SNR−e(r) (6.17)

where e(r) is the piecewise linear function given by

e(r) = (Nt − r)(Nr − r) (6.18)

for integer values of r.

Theorem 6.1. For the proposed family of codes, if we use Ck for 2−(k−1)Nt > SNR− f
2η ≥

2−kNt,

d(f) = (Nt −
f

2η
)(Nr −

f

2η
)

for integer values of f
2η

.

Proof: Because the family of codes Ck are obtained from a lattice with non-vanishing

determinant property, using ML decoding, they achieve the optimum diversity-multiplexing

tradeoff. Thus, for this family of codes,

Perror(r)
.
= SNR−(Nt−r)(Nr−r) (6.19)

for integer values of r, the normalized rate (r = R
log SNR

). In this scheme, code Ck

has rate Rk = kNt and is used for 2−(k−1)Nt > SNR− f
2η ≥ 2−kNt. Therefore, r

.
= f

2η
,

hence,
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Figure 6.1: Diversity-Fidelity Tradeoff for different numbers of antennas and different

bandwidth expansion factors

Perror(r)
.
= SNR−(Nt− f

2η
)(Nr− f

2η
). (6.20)

When there is no error in decoding Ck, the kN = knN2
t bits b′1, ..., b

′
kN are decoded

correctly, hence the first ⌊k n
m

N2
t ⌋ = ⌊kNη⌋ bits of xi can be reconstructed without

error (for 1 ≤ i ≤ m), hence D
.
= 2−2kNη .

= SNR−f . Therefore,

Pr
{
D > SNR−f

}
≤ Perror(r)

.
= SNR−(Nt− f

2η
)(Nr− f

2η
). (6.21)

=⇒ d(f) ≥ (Nt −
f

2η
)(Nr −

f

2η
). (6.22)

�
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6.4 Conclusions

Similar to the diversity-multiplexing tradeoff which is well known for the high-SNR

asymptotic performance of space-time codes, diversity-fidelity tradoff can be used as

a benchmark for evaluating various MIMO source-channel codes. It is shown in this

chapter that this tradeoff can be achieved by a simple modification of the well-known

DMT-achieving codes. However, though the optimum tradeoff can be achieved for

different numbers of antennas and arbitrary bandwidth expansion factors, the proposed

scheme is not robust (it is dependent on the SNR of the channel). The other problem

is complexity of the decoding which is based on ML decoding and is not practical for

high-fidelity cases. Therefore, the problem of achieving the optimum (or near-optimum)

diversity-fidelity tradeoff by practical and robust codes remains open.



Chapter 7

Conclusion and Future Research

This dissertation focuses on the problem of signaling and fairness for the MIMO multi-

user systems.

In Chapter 2, a new viewpoint for adopting the lattice reduction in communication

over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce

the average transmitted energy by modifying the region which includes the constellation

points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided

precoding for the case of unequal-rate transmission, and obtain analytic results for the

asymptotic behavior (for large SNR) of the symbol-error-rate for the lattice-reduction-

aided precoding and the perturbation technique. Also, the outage probability for both

cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-

reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope

of symbol-error-rate (called the precoding diversity).

Chapter 3 considers the performance of lattice decoding and its lattice-reduction-

113
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aided approximation in MIMO multiaccess systems (or equivalently, MIMO point-to-

point systems with V-BLAST transmission). In this chapter, it is proven that in

these systems, lattice-reduction-aided decoding achieves the maximum receive diver-

sity (which is equal to the number of receive antennas). Also, it is proven that the

naive lattice decoding (which discards the out-of-region decoded points) achieves the

maximum diversity.

In Chapter 4, the inherent limitations of the performance of the naive lattice decod-

ing is investigated. The naive lattice decoding and various implementions of it (such

as the sphere decoding) and its simple approximated versions (such as the LLL-aided

decoding) are very attractive for the practical MIMO systems. Nonetheless, to achieve

theoretical benchmarks (such as the rate-diversity trade-off), these techniques are not

always sufficient.

In Chapter 5, the problem of sending an analog source over an additive white

Gaussian noise channel is considered. The traditional analog coding schemes suffer

from the threshold effect. We introduce a robust scheme for analog conding. Unlike

the previous methods, the new method asymptotically achieves the optimal scaling

of the signal-to-distortion-ratio (SDR) without being affected by the threshold effect.

Also, we show that approximated versions of these techniques perform well for the

practical applications, with a low complexity in encoding/decoding.

Finally, in Chapter 6, the problem of joint source-channel coding over delay-limited

MIMO channels is investigated and similar to the concept of diversity-multiplexing

tradeoff (which was defined for the transmission of digital sources over MIMO channels),
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we have shown that the theoretical limits of transmission of analog sources over MIMO

channels can be formulated by a tradeoff, called diversity-fidelity tradeoff. It is shown

that the optimum tradeoff can be achieved by a family of lattice joint-source channel

codes.

7.1 Future Research Directions

The dissertation can be continued in several directions as briefly explained in what

follows.

In chapter five, only the case of delay-limited constellation are studied. Construct-

ing robust joint source-channel codes which approach the optimum performance for a

certain SNR value (by having an arbitrarily small gap to the optimum point), is an

interesting research direction.

For chapter six, generalizing the concept of diversity-fidelity tradeoff to MIMO

multiuser systems and generalizing the ideas of this chapter to construct codes for

them is worth trying. Also, the problem of constructing robust MIMO codes, that

achieve the optimum diversity-fidelity tradeoff in entire range of SNR, remains open.



Appendix A

Second moment of a parallelotope

In this Appendix, we compute the second moment of a parallelotope whose centroid is

the origin and its edges are equal to the basis vectors of the lattice.

Assume that A is an M-dimensional parallelotope and X is its second moment.

The second moment of 1
2
A is

(
1
2

)M+2
X. The parallelotope A can be considered as the

union of 2M smaller parallelotopes which are constructed by ±1
2
b1,±1

2
b2, ....,±1

2
bM ,

where bi, 1 ≤ i ≤ M , is a basis vector. These parallelotopes are translated versions of

1
2
A with the translation vectors Ti = ±1

2
b1 ± 1

2
b2 ± ....± 1

2
bM , 1 ≤ i ≤ 2M . The second

moments of these parallelotopes are equal to
(

1
2

)M+2
X + ‖Ti‖2Vol(1

2
A), 1 ≤ i ≤ 2M .

By the summation over all these second moments, we can find the second moment of

A.

X =
2M∑

i=1

[(
1

2

)M+2

X + ‖Ti‖2.Vol(
1

2
A)

]
(A.1)
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=

(
1

2

)2

X + 2M−2(‖b1‖2 + ... + ‖bM‖2).Vol(
1

2
A) (A.2)

=
1

4
X +

1

4
(‖b1‖2 + ... + ‖bM‖2).Vol(A) (A.3)

=⇒ X =
1

3
(‖b1‖2 + ... + ‖bM‖2).Vol(A). (A.4)



Appendix B

Proof of Lemma 2.3

Lemma 3 states that the probability that a lattice, generated by M independent N -

dimensional complex Gaussian vectors, N ≥ M , with a unit variance per each dimen-

sion, has a nonzero point inside a sphere (centered at origin and with the radius ε) is

bounded by βN,Mε2N for N > M , and βN,Mε2N max
{
(− ln ε)N+1, 1

}
for N = M ≥ 2.

We can assume that ε < 1 (for ε ≥ 1, lemma 3 is trivial because the probability is

bounded).

B.0.1 Case 1: M = 1

When M = 1, the lattice consists of the integer multiples of the basis vector v. If the

norm of one of these vectors is less than ε, then the norm of v is less than ε. Consider

the variance of the components of v as ̺2. The vector v has an N -dimensional complex

118



Proof of Lemma 2.3 119

Gaussian distribution, fv(v). Therefore, the probability of this event is,

Pr {‖v‖ ≤ ε} =

∫

‖v‖≤ε

fv(v) dv ≤
∫

‖v‖≤ε

1

πN̺2N
dv ≤ βN,1

ε2N

̺2N
. (B.1)

When the variance of the components of v is equal to one, we have,

Pr {‖v‖ ≤ ε} ≤ βN,1ε
2N . (B.2)

B.0.2 Case 2: N > M > 1

Consider L(v1,...,vM) as the lattice generated by v1,v2,...,vM . Each point of L(v1,...,vM)

can be represented by v(z1,...,zM) = z1v1 + z2v2 + ... + zMvM , where z1, ..., zM are com-

plex integer numbers. The vectors v1,v2,...,vM are independent and jointly Gaussian.

Therefore, for every integer vector z = (z1, ..., zM), the entries of the vector v(z1,...,zM)

have complex Gaussian distributions with the variance

̺2
z

= ‖z‖2̺2 =
(
|z1|2 + ... + |zM |2

)
̺2. (B.3)

Therefore, according to the lemma for M = 1,

Pr
{
‖v(z1,...,zM)‖ ≤ ε

}
≤ βN,1

ε2N

(|z1|2 + ... + |zM |2)N
. (B.4)

Now, by using the union bound,

Pr {dH ≤ ε} ≤
∑

z6=0

Pr
{
‖v(z1,...,zM)‖ ≤ ε

}
(B.5)

≤
∑

z6=0

βN,1
ε2N

(|z1|2 + ... + |zM |2)N
(B.6)
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= βN,1




∑

1≤‖z‖<2

ε2N

‖z‖2N
+

∑

2≤‖z‖<3

ε2N

‖z‖2N

+
∑

3≤‖z‖<4

ε2N

‖z‖2N
+ ...



 . (B.7)

The M-dimensional complex integer points z = (z1, ..., zM), such that k ≤ ‖z‖ <

k + 1, can be considered as the centers of disjoint unit-volume cubes. All these cubes

are inside the region between the 2M-dimensional spheres, with radii k − 1 and k + 2.

Therefore, the number of M-dimensional complex integer points z = (z1, ..., zM), such

that k ≤ ‖z‖ < k + 1, can be bounded by the volume of the region between these two

2M-dimensional spheres. Thus, this number is bounded by c1k
2M−1 for some constant1

c1. Therefore,
∑

k≤‖z‖<k+1

ε2N

‖z‖2N
≤ c1k

2M−1 ε2N

k2N
(B.8)

(B.7), (B.8) =⇒ Pr {dH ≤ ε} ≤ c1βN,1ε
2N + 22M−1c1βN,1

ε2N

22N
+

+32M−1c1βN,1
ε2N

32N
+ ... (B.9)

≤ c1βN,1ε
2N

∞∑

k=1

1

k2N−2M+1
. (B.10)

According to the assumption of this case, N > M ; hence, 2N − 2M + 1 ≥ 2.

Therefore, the above summation is convergent:

1Throughout this proof, c1, c2, ... are some constant numbers.
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Pr {‖v‖ ≤ ε} ≤ βN,Mε2N . (B.11)

B.0.3 Case 3: N = M > 1

Each point of L(v1,...,vN) can be represented by zvN − v, where v belongs to the lattice

L(v1,...,vN−1) and z is a complex integer. Consider Sv as the sphere with radius ε and

centered at v. Now, zvN −v belongs to S0 iff the zvN belongs to Sv. Also, the sphere

Sv includes a point zvN iff Sv,z includes v , where Sv,z = Sv

z
is the sphere centered at

v/z with radius
ε

|z| (see figure 4). Therefore, the probability that a lattice point exists

in Sv is equal to the probability that vN is in at least one of the spheres {Sv,z}, z 6= 0.

If we consider dH as the minimum distance of L(v1,...,vN) and R as an arbitrary

number greater than 1:

Pr {dH ≤ ε} = Pr
{(

L(v1,...,vN) − 0
)
∩ S0 6= ∅

}
= Pr

{

vN ∈
⋃

v

⋃

z 6=0

Sv,z

}

(B.12)

≤ Pr




vN ∈
⋃

‖v

z
‖≤R

Sv,z




+ Pr




vN ∈
⋃

‖v

z
‖>R

Sv,z




 (B.13)

In the second term of (B.13), all the spheres have centers with norms greater than R

and radii less than 1 (because |z| ≥ 1). Therefore,

⋃

‖v

z
‖>R

Sv,z ⊂ {x | ‖x‖ > R − 1} (B.14)
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Figure B.1: The family of spheres Sv,z
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(B.14) =⇒ (B.13) ≤ Pr




vN ∈
⋃

‖v

z
‖≤R

Sv,z




+ Pr {‖vN‖ > R − 1} (B.15)

≤ Pr




vN ∈
⋃

‖v

z
‖≤R,|z|≤ε1−N

Sv,z




+Pr




vN ∈
⋃

‖v

z
‖≤R,|z|>ε1−N

Sv,z




+Pr {‖vN‖ > R − 1} .

(B.16)

We bound the first term of (B.16) as the following:

Pr{vN ∈
⋃

‖v

z
‖≤R,|z|≤ε1−N

Sv,z} (B.17)

≤




∑

‖v‖≤2R

∑

|z|≥1

Pr{vN ∈ Sv,z} +
∑

2R<‖v‖≤3R

∑

|z|≥2

Pr{vN ∈ Sv,z}+

... +
∑

⌊ε1−N ⌋R<‖v‖≤(⌊ε1−N ⌋+1)R

∑

|z|≥⌊ε1−N⌋

Pr{vN ∈ Sv,z}



 . (B.18)

Noting that the pdf of vN is less than or equal to 1
πN ,

(B.17) ≤ 1

πN




∑

‖v‖≤2R

∑

|z|≥1

Vol(Sv,z) +
∑

2R<‖v‖≤3R

∑

|z|≥2

Vol(Sv,z)+

... +
∑

⌊ε1−N ⌋R<‖v‖≤(⌊ε1−N ⌋+1)R

∑

|z|≥⌊ε1−N⌋
Vol(Sv,z)



 (B.19)

≤ 1

πN




∑

‖v‖≤2R

∑

|z|≥1

c2ε
2N

|z|2N
+

∑

2R<‖v‖≤3R

∑

|z|≥2

c2ε
2N

|z|2N
+
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... +
∑

⌊ε1−N ⌋R<‖v‖≤(⌊ε1−N ⌋+1)R

∑

|z|≥⌊ε1−N⌋

c2ε
2N

|z|2N



 . (B.20)

By using (B.8), for one-dimensional complex vector z = z,

∑

|z|≥i

c2ε
2N

|z|2N
=

∞∑

k=i

c2.
∑

k≤|z|≤k+1

ε2N

|z|2N
≤

∞∑

k=i

c1c2ε
2N

k2N−1
≤ c3ε

2N

i2N−2
(B.21)

Now,

(B.21) =⇒ (B.17) ≤ 1

πN




∑

‖v‖≤2R

c3ε
2N +

∑

2R<‖v‖≤3R

c3ε
2N

22N−2
+

... +
∑

⌊ε1−N ⌋R<‖v‖≤(⌊ε1−N ⌋+1)R

c3ε
2N

⌊ε1−N⌋2N−2



 . (B.22)

Assume that the minimum distance of L(v1,...,vN−1) is dN−1. The spheres with the

radius dN−1/2 and centered by the points of L(v1,...,vN−1) are disjoint. Therefore, the

number of points from the (N − 1)-dimensional complex lattice L(v1,...,vN−1), such that

‖v‖ ≤ 2R, is bounded by c4(2R+dN−1/2)2N−2

d2N−2
N−1

(it is bounded by the ratio between the

volumes of (2N − 2)-dimensional spheres with radii 2R + dN−1/2 and dN−1/2). Also,

the number of points from L(v1,...,vN−1), such that (k− 1)R < ‖v‖ ≤ kR, is bounded by

c4(kR)2N−3(R+dN−1)

d2N−2
N−1

(it is bounded by the ratio between the volumes of the region defined

by (k − 1)R − dN−1/2 < ‖x‖ ≤ kR + dN−1/2 and the sphere with radius dN−1/2):

(B.22) ≤ c5(2R + dN−1/2)2N−2

d2N−2
N−1

.ε2N +
c5R

2N−3(R + dN−1)

d2N−2
N−1

.ε2N

⌊ε1−N ⌋∑

k=2

1

k
(B.23)

(B.22) ≤ c5(2R + dN−1/2)2N−2

d2N−2
N−1

.ε2N +
c5R

2N−3(R + dN−1)

d2N−2
N−1

.ε2N . ln(ε1−N) (B.24)
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≤ c6ε
2N . max

(
R2N−2

d2N−2
N−1

, 1

)
. max {− ln ε, 1} . (B.25)

According to the proof of the case 2, we have Pr {dN−1 ≤ η} ≤ βN,N−1η
2N . There-

fore,

EdN−1

{
max

(
R2N−2

d2N−2
N−1

, 1

)}
(B.26)

≤ 1. Pr {dN−1 > R}+22N−2. Pr

{
1

2
R < dN−1 ≤ R

}
+32N−2. Pr

{
1

3
R < dN−1 ≤

1

2
R

}
+...

(B.27)

≤ 1 + 22N−2. Pr {dN−1 ≤ R} + 32N−2. Pr

{
dN−1 ≤

1

2
R

}
+ ... (B.28)

≤ 1 +

∞∑

k=1

(k + 1)2N−2

k2N
.R2NβN,N−1 ≤ c7R

2N (B.29)

=⇒ EdN−1

{

c6ε
2N . max

(
R2N−2

d2N−2
N−1

, 1

)

. max {− ln ε, 1}
}

≤ c8ε
2N .R2N . max {− ln ε, 1} .

(B.30)

To bound the second term of (B.16), we note that for |z| ≥ ε1−N , the radii of the

spheres Sv,z are less or equal to εN , and the centers of these spheres lie on the (N − 1)-

dimensional complex subspace containing Lv1,...,vN−1
. Also, the norm of these centers

are less than R. Therefore, all of these spheres are inside the region A which is an

orthotope centered at the origin, with 2N real dimensions (see figure 5):
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0

Subspace containing Lv1,...,vN−1

2εN

2R + 2εN

2R + 2εN

Figure B.2: The orthotope A

⋃

‖v

z
‖≤R,|z|>ε1−N

Sv,z ⊂ A (B.31)

=⇒ Pr{vN ∈
⋃

‖v

z
‖≤R,|z|>ε1−N

Sv,z} ≤ 1

πN
Vol




⋃

‖v

z
‖≤R,|z|>ε1−N

Sv,z



 ≤ 1

πN
Vol(A) (B.32)

≤ 1

πN
(2εN)2(2R + εN)2N−2 (B.33)

Also, according to the Gaussian distribution of the entries of vN (which have Vari-

ance 1
2

on each real dimension), we can bound the third term of (B.16) as,

Pr{‖vN‖ > R − 1} ≤ 2NQ

(√
R − 1

N

)
≤ c9e

−
“

R−1√
2N

”2

. (B.34)

By using (B.30), (B.33), and (B.34),

Pr {dH ≤ ε} ≤ c8ε
2N .R2N . max {− ln ε, 1} +

1

πN
(2εN)2(2R + εN)2N−2 + c9e

−
“

R−1√
2N

”2

.

(B.35)
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The above equation is true for every R > 1. Therefore, using R =
√

2N
√

− ln(ε2N)+1,

Pr {dH ≤ ε} ≤ βN,Nε2N . max
{
(− ln ε)N+1, 1

}
. (B.36)



Appendix C

Proof of Theorem 5.1

The set of modulated signals consists of aN−1 parallel segments where the projection

of each of them on the ith dimension has the length a−(i−1), hence, each segment has

the length
√

1 + a−2 + ... + a−2(N−1). By considering the distance of their intersections

with the hyperspace orthogonal to the Nth dimension (which is at least a−1) and the

angular factor of these segments, respecting to the sN -axis, we can bound the distance

between two parallel segments of the modulated signal set as

d ≥ a−1

√
1 + a−2 + ... + a−2(N−1)

≥ a−1

√
1 + 2−2 + ... + 2−2(N−1)

≥ a−1

2
(C.1)

First, we consider the case of σ ≤ 1
8
√

N
. Consider a =

⌊
1

8
√

Nσ
√
− log σ

⌋
. Probability

of a jump to a wrong segment (during the decoding) is bounded by

Pr(jump) ≤ Q

(
d

2σ

)
≤ Q

(
a−1

4σ

)
(C.2)
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≤ Q

(
8
√

Nσ
√− log σ

4σ

)
. (C.3)

By using Q(x) ≤ e−
x2

2 ,

Pr(jump) ≤ e
−(2

√
N

√− log σ)2

2 = e2N log σ = σ2N . (C.4)

On the other hand, each segment of the modulated signal set is a segment of the

source signal set, stretched by a factor of aN−1
√

1 + a−2 + ... + a−2(N−1) (its length

is changed from 1
aN−1 to

√
1 + a−2 + ... + a−2(N−1)). Therefore, assuming the correct

segment decoding, the average distortion is the variance of the channel noise divided

by
(
aN−1

√
1 + a−2 + ... + a−2(N−1)

)2

:

E
{
|x̃ − x|2|no jump

}
= (C.5)

σ2

(
aN−1

√
1 + a−2 + ... + a−2(N−1)

)2 ≤ (C.6)

σ2

a2(N−1)
=

σ2

⌊
1

8
√

Nσ
√
− log σ

⌋2(N−1)
≤ c1σ

2N (− log σ)N−1 (C.7)

where x̃ is the estimate of x and c1 is independent1 of a and σ and only depends on N .

Now, because E {|x̃ − x|2|jump} and Pr(no jump) are bounded by 1,

D = Pr(jump) · E
{
|x̃ − x|2|jump

}
+ Pr(no jump) · E

{
|x̃ − x|2|no jump

}
(C.8)

1Throughout this paper, c1, c2, ... are constants, independent of σ (they may depend on N).
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=⇒ D ≤ Pr(jump) + E
{
|x̃ − x|2|no jump

}
(C.9)

≤ c2σ
2N (− log σ)N−1, for σ ≤ 1

8
√

N
. (C.10)

On the other hand, for σ > 1
8
√

N
,

D ≤ 1 =⇒ D ≤
(

1

8
√

N

)−2N (
− log

(
1

8
√

N

))−(N−1)

σ2N (− log σ)N−1 (C.11)

= c3σ
2N (− log σ)N−1. (C.12)

Therefore, by combining these two bounds together, we obtain:

D ≤ cσ2N(− log σ)N−1. (C.13)



Appendix D

Proof of Theorem 5.2

We consider two cases:

Case 1) a ≤ 4
σ
√
− log σ

:

Each segment of the modulated signal set is a segment of the source signal set,

scaled by a factor of aN−1
√

1 + a−2 + ... + a−2(N−1), hence,

D ≥ E
{
|x̃ − x|2|no jump

}
(D.1)

=
σ2

(
aN−1

√
1 + a−2 + ... + a−2(N−1)

)2 (D.2)

≥ σ2

2a2(N−1)
(D.3)

≥ c1σ
2N(− log σ)N−1 (D.4)
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Case 2) 2l+1

σ
√
− log σ

< a ≤ 2l+2

σ
√
− log σ

, for l ≥ 1:

In this case, we bound the output distortion by the average distortion caused by a

large jump to another segment. Consider z1 as the additive noise in the first dimension.

For any point in the interval −1
2
+(k−1)a−1 < x ≤ −1

2
+ka−1 (for 1 ≤ k ≤ a−2l+1),

when z1 > 2l+1a−1, for any point x′ ≤ x + 2la−1, f
(
x′ + 2la−1

)
is closer to the received

point f(x) + z. Therefore, the decoded signal is x̃ > x + 2la−1. Thus, in this case, the

squared error is at least
(
2la−1

)2
. Therefore, the average distortion is lower bounded

by

D ≥ Pr

{
−1

2
< x ≤ 1

2
− 2l+1a−1

}
· Pr

{
z1 > 2l+1a−1

}
·
(
2la−1

)2
(D.5)

=
(
1 − 2l+1a−1

)
· Q
(

2l+1a−1

σ

)
·
(
2la−1

)2
(D.6)

≥
(

1 − σ
√− log σ

2

)
· Q
(

σ
√− log σ

σ

)
·
(

σ
√− log σ

22

)2

(D.7)

=

(
1 − σ

√− log σ

2

)
· Q
(√

− log σ
)
· σ2 (− log σ)

24
(D.8)

By using e−x2
< Q(x) < e

−x2

2 , for x > 1,

D ≥
(

1 − σ
√− log σ

2

)
· σ · σ2 (− log σ)

24
(D.9)

=⇒ D ≥ c2σ
3 (− log σ) . (D.10)
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By combining the bounds (for two cases),

D ≥ min
{
c2σ

3 (− log σ) , c1σ
2N (− log σ)N−1

}
(D.11)

D ≥ c′σ2N(− log σ) for N ≥ 2. (D.12)



Appendix E

Coding for unbounded sources

Consider {Xi}∞i=1 as an arbitrary memoryless i.i.d source. We show that the results of

Section V be extended for unbounded sources, to construct robust joint-source channel

codes with a constraint on the average power. Without any loss of generality, we can

assume the variance of the source as 1. For any source sample x, we can write it as

x = x1 + x2 where x1 is an integer and −1
2
≤ x2 < 1

2
, and x2 + 1

2
=
(
0 · b1b2b3...

)
2
.

Now, we construct the N-dimensional transmission vector as s′ = (s′1, s
′
2, ..., s

′
N) =

(
x1 + s1 − 1

2
, s2 − 1

2
, ..., sN

)
, where s1, ..., sN are constructed using (5.35) in section V.

Similar to the proof Theorem 6, we can show that the output distortion D is upper

bounded by

D ≤ c1σ
2N2c2

√
− log σ (E.1)

where c1 and c2 are constant. Thus, we only need to show that the average transmitted

power is bounded. For s′2, ..., s
′
N , the transmitted power is bounded as |s′i|2 ≤ 1

4
. For

134



Coding for unbounded sources 135

s′1,

|s′i|2 =

∣∣∣∣x1 + s1 −
1

2

∣∣∣∣
2

≤
(
|x1| +

∣∣∣∣s1 −
1

2

∣∣∣∣

)2

(E.2)

≤
(
|x| + 1

2
+

1

2

)2

= (|x| + 1)2 (E.3)

=⇒ E
{
|s′i|2

}
≤
(√

E|x|2 + 1
)2

(E.4)

≤ (1 + 1)2 = 4. (E.5)



Appendix F

Proof of Theorem 5.7

Without any loss of generality, we can consider P = 1. We consider two cases for a,

the scaling factor:

Case 1) a ≤ 2N−M+3σ− (N−M)
M (− log σ)

−(N−M)
2M :

Each subset of the modulated signal set is the scaled version of a segment of the

source signal set by a factor of a, hence, we can lower bound the distortion by only

considering the case the subset is decoded correctly and there is no jump to adjacent

subsets,

D ≥ E
{
|x̃ − x|2|no jump

}
(F.1)

=
σ2

a2
(F.2)

≥ c4σ
2N
M (− log σ)

N−M
M (F.3)
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Case 2) 2l+2(N−M) < a

σ− (N−M)
M (− log σ)

−(N−M)
2M

≤ 2l+1+2(N−M) for l ≥ 3:

In this case, we bound the output distortion by the average distortion caused by

a jump to another subset, during the decoding. Without loss of generality, we can

consider σ <
(

1
16

) M
N−M , hence 2−la > 8. First, we show that there are two constants c5

and c6 (independent of a and σ) such that probability of an squared error of at least

c5

(
2−la

)−2
is lower bounded by

Pr(jump) ≥ c6Q
(√

− log σ
)
≥ c6σ (F.4)

By considering the power constraint, the maximum distance of each source sample

to its quantization point is upper bounded by

dmax ≤ 1

a
. (F.5)

Also, by considering the volumes of quantization regions A1, ...,Ak and their scaled

versions, κ is lower bounded by

κ ≥
(

1

2dmax

)M

≥ aM

2M
. (F.6)

We can partition the M-dimensional uniform source to n =
(⌊

1
2ldmax

⌋)M

≥
(

1
2l+1dmax

)M

≥
(

a
2l+1

)M
cubes of size s = 1

j

1

2ldmax

k ≥ 2ldmax. We consider Bi as the union of the quanti-

zation regions whose center is in the ith cube (1 ≤ i ≤ n). Because the decoding of digi-

tal and analog parts are done separately, the (N −M)-dimensional subspace (dedicated

to send the quantization points) can be partitioned to n decoding subsets, correspond-

ing to regions B1, ...,Bn. If we consider C1, ..., Cn the intersections of these decoding

regions and the (N − M)-dimensional cube of size 4, centered at the origin, at least n
2
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of them have volume less than 2
(

(4)N−M

n

)
≤ (4)N−M

(2−l−1a)
M ≤ 2σN−M(− log σ)

N−M
2 . This

volume is less than the volume of an (N−M)-dimensional sphere of radius σ(− log σ)
1
2 .

Thus, for any point inside Bi with this property, the probability of being decoded to

a wrong subset Bj is at least Q
(√− log σ

)
≥ σ. Now, for the cubes corresponding to

these subsets, we consider points inside a smaller cube of size s
4
.

For these points, at least with probability σ, decoder finds a wrong quantization

region where the distance of its center and the original point is at least
s− s

4

2
> 2l−1dmax,

hence, the final squared error is at least
(
2l−1dmax − dmax

)2 ≥ c5

(
2−la

)−2
.

Because at least half of the n subsets have the mentioned property, the overall

probability of having this kind of points as the source is at least 1
2
4−M . Therefore, the

unconditioned probability of such an error in the decoding is at least 1
2
4−Mσ

Now, by considering the lower bound on the probability of this event and the dis-

tortion caused by this jump,

D ≥ c7σ
(
2−la

)−2

≥ c8σ · σ 2(N−M)
M (− log σ)

−(N−M)
M

= c8σ
2N−M

M (− log σ)
N−M

M . (F.7)

By considering the minimum of (F.3) and (F.7),

D ≥ cσ
2N
M (− log σ)

N−M
M . (F.8)
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