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Abstract

When interpolating a data mesh using triangular Bézier patches, the requirement of C1 or

G1 continuity imposes strict constraints on the control points of adjacent patches. How-

ever, fulfilment of these continuity constraints cannot guarantee that the resulting surfaces

have good shape. This thesis presents an approach to constructing surfaces with approxi-

mate C1/G1 continuity, where a small amount of discontinuity is allowed between surface

normals of adjacent patches. For all the schemes presented in this thesis, although the

resulting surface has C1/G1 continuity at the data vertices, I only require approximate

C1/G1 continuity along data triangle boundaries so as to lower the patch degree.

For functional data, a cubic interpolating scheme with approximate C1 continuity is

presented. In this scheme, one cubic patch will be constructed for each data triangle and

upper bounds are provided for the normal discontinuity across patch boundaries.

For a triangular mesh of arbitrary topology, two interpolating parametric schemes are

devised. For each data triangle, the first scheme performs a domain split and constructs

three cubic micro-patches; the second scheme constructs one quintic patch for each data

triangle. To reduce the normal discontinuity, neighbouring patches across data triangle

boundaries are adjusted to have identical normals at the middle point of the common

boundary. The upper bounds for the normal discontinuity between two parametric patches

are also derived for the resulting approximate G1 surface.

In most cases, the resulting surfaces with approximate continuity have the same level

of visual smoothness and in some cases better shape quality.
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1.1 Triangular Bézier patches . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 de Casteljau’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Patch subdivision and extrapolation . . . . . . . . . . . . . . . . . . 7

1.1.3 Degree elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Surface continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Parametric continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Geometric continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Approximate continuity . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Polynomial surface interpolation . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Surface interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Shaded images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Gaussian curvature plots . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.3 Isophotes curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Approximate continuity for functional surfaces 21

2.1 Bounding the discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Upper bound one . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Upper bound two . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Data fitting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Tests and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



3 Parametric surface fitting with domain splitting 37

3.1 G1 singularity for cubic patches . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Cubic approximate G1 cross boundary scheme . . . . . . . . . . . . . . . . 43

3.2.1 Adjustment of control points . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 One equal-normal point . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Multiple equal-normal points . . . . . . . . . . . . . . . . . . . . . 49

3.3 Surface fitting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Discontinuity reduction . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Comparison to G1 schemes . . . . . . . . . . . . . . . . . . . . . . . 55

4 Parametric surface fitting without domain splitting 58

4.1 Twist compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Loop’s scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Quintic approximate G1 scheme . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Quartic patch construction . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Quintic patch construction . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Adjustment to interior control points . . . . . . . . . . . . . . . . . 72

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Data mesh optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Discontinuity bound for parametric surfaces 84

5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Upper bound one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Upper bound two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Discontinuity reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusions 94

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



Bibliography 100

vii



List of Tables

2.1 Discontinuity of Franke function surfaces. . . . . . . . . . . . . . . . . . . . 31

2.2 Ratio distribution for Franke Function 1. . . . . . . . . . . . . . . . . . . . 33

2.3 Ratio distribution for other Franke functions. . . . . . . . . . . . . . . . . 34

3.1 Discontinuity angles before and after adjustments. . . . . . . . . . . . . . . 54

3.2 Discontinuity angles of torus surfaces. . . . . . . . . . . . . . . . . . . . . . 54

3.3 Gaussian curvature of torus surfaces. . . . . . . . . . . . . . . . . . . . . . 55

4.1 Isophotes gaps of torus surfaces. . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Discontinuity statistics of Bunny . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Upper bounds before adjustments. . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Upper bounds after adjustments. . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Discontinuity of Franke function surfaces. . . . . . . . . . . . . . . . . . . . 93

viii



List of Figures
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Chapter 1

Introduction

The history of spline curves and surfaces can be traced back to the 1950’s, when curves

represented in Bézier form came into being and a new field called Computer Aided Geo-

metric Design (CAGD) emerged. One CAGD problem is to construct a surface based on

a data set. The resulting surface is often represented as a polynomial because polynomial

surfaces are mathematically simple and easy to evaluate. However, using one polynomial

for the whole data set requires high degree, which makes evaluation expensive. Therefore,

most surface schemes construct a surface using multiple polynomial patches, where adja-

cent patches are required to share a common boundary curve and fulfill certain continuity

constraints.

In this thesis, I use triangular Bézier patches to construct surfaces over arbitrary trian-

gular meshes. Since the resulting surface is composed of many patches, it is important to

ensure smoothness along patch boundaries. Researchers have paid considerable attention

to creating surfaces that satisfy parametric or geometric continuity conditions. For most

existing surface schemes, C1/G1 continuity is required along the boundary between two

adjacent patches.

However, many industrial applications only require visual smoothness on the resulting

surface, i.e., the surface “looks” smooth, even though adjacent patches actually do not

meet with C1/G1 continuity. On the other hand, these applications put an emphasis

on the surface shape. Generally, the perception of a good surface shape is subjective.

Different engineering applications and users may have different criteria to define a good

1



2 Approximate Continuity for Triangular Bézier Surfaces

surface shape. However, we usually have unanimous consent on some aspects of “bad”

surface shape and wish to avoid things such as inflection points, cusps, dents, etc.

The primary objective of my work is to find a surface construction method that relaxes

the C1/G1 continuity constraints so that I can use low degree patches (ideally cubic) to

generate surfaces with visual smoothness and pleasing surface shape. In this dissertation,

I will focus on the problem of constructing a surface with approximate continuity from a

given triangular data mesh, using triangular Bézier patches.

In the design of surface schemes, there exists a gap between mathematics and practice.

Even when the mathematical conditions are fulfilled, practical problems may occur and

lead to unexpected results. For example, surfaces of many existing C1/G1 schemes have

poor shape quality [27]. Another example is in the method introduce in chapters 3, 4

and 5, where mathematical derivation suggests that the more equal-normal points we have

on the boundary curve, the lower the cross-boundary discontinuity. However, I found in

experiments that the methods using two and three equal-normal points sometimes generate

surfaces with higher discontinuity than the one-point method (Chapter 5). Therefore, not

only developed mathematics for my work, but I also tested the results on different types

of data meshes. When examining the surface shape quality, I used additional subjective

criteria such as analyzing shaded images and compared the results to those of C1/G1

continuous schemes.

The primary contributions of this dissertation include:

1. I designed three surface fitting schemes using ε-C1/ ε-G1 continuity to construct

interpolating surfaces with similar shape, but lower degree than comparable C1/G1

schemes.

2. I created an ε-G1 method to reduce the normal discontinuity across patch boundaries

and I conducted an analysis of this method. I used variations of this method in my

parametric ε-G1 surface fitting schemes.

In the remaining sections of this chapter, I will start introducing the idea of approxi-

mate continuity by reviewing some fundamentals of triangular Bézier surfaces and surface

continuity. A surface interpolation scheme with approximate continuity for functional sur-

faces is introduced in Chapter 2, together with the analysis on upper bounds of the normal
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discontinuity angle. In Chapter 3, an interpolation scheme for parametric surfaces with

a domain split is presented, and another scheme without a domain split is introduced in

Chapter 4. Detailed analysis of upper bounds for the parametric surfaces with approxi-

mate continuity is discussed in Chapter 5. I will conclude my thesis with a summary and

proposal for future research in Chapter 6.

1.1 Triangular Bézier patches

In 1911, Sergei Bernstein, a Russian mathematician, introduced Bernstein Polynomials

as spline functions and gave a constructive proof of Weierstrass’s theorem, namely that a

continuous function on a finite subinterval of the real line can be uniformly approximated

as closely as we wish by a polynomial.

A degree n binomial Bernstein polynomial is defined as

Bn
ij(u0, u1) =

n!

i!j!
ui

0u
j
1, (1.1)

where u0 + u1 = 1 and i+ j = n. Equation 1.1 can be re-written as

Bn
i (t) =

n!

i!(n− i)!t
i(1− t)n−i. (1.2)

Bernstein polynomials of degree n form a basis for all polynomials of degree equal to or

less than n, hence each polynomial has a Bernstein representation.

Bézier curves, named after Pierre Bézier, an engineer from Rénaut, are a curve repre-

sentation relative to Bernstein polynomials:

C(t) =
n∑

i=0

PiB
n
i (t). (1.3)

Here Bn
i (t) are the Bernstein polynomials and the Pi are the control points. Figure 1.1

shows examples of two Bézier curves, with a quadratic curve on the left and a cubic curve

on the right.

We can easily expand the definition of Bernstein polynomials to the trinomial case:

Bn
ijk(u0, u1, u2) =

n!

i!j!k!
ui

0u
j
1u

k
2,
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bb

b

b

b

b

b

b

P0

P1

P2

P0

P1

P2

P3

Figure 1.1: Bézier curves.

with u0 + u1 + u2 = 1 and i+ j + k = n. Here (u0, u1, u2) are the Barycentric coordinates

relative to the domain triangle. A degree n triangular Bézier patch is therefore defined

over a triangular domain using Barycentric coordinates:

S(u0, u1, u2) =
∑

i+j+k=n

PijkB
n
ijk(u0, u1, u2).

Here Pijk are the control points. As shown in Figure 1.2, control points of a cubic patch

are connected to form a control mesh. The triangular patch representation is a mapping

from a two-dimensional triangular domain to a two-dimensional manifold.

Some of the nice properties of triangular Bézier patches include:

� Every point on the patch is an affine combination of the control points. 1

� A triangular Bézier patch passes through its three corner control points.

� The tangent plane at each corner vertex is defined by the corresponding control panel.

� All three patch boundaries are Bézier curve, defined by the boundary control points

of the patch.

1In CAGD, we like affine combinations since they have nice geometric interpretations. An affine com-
bination is a linear combination whose coefficients sum to 1.
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Figure 1.2: Control points of a cubic patch.

� It is efficient to evaluate a triangular Bézier patch using de Casteljau’s algorithm,

especially when we need to calculate the surface normal.

These properties of triangular Bézier patches make them suitable for surface fitting on

data meshes. All the spline surfaces discussed in this dissertation are constructed using

triangular Bézier patches.

1.1.1 de Casteljau’s algorithm

In 1959, Paul de Faget de Casteljau, an engineer from Citroën, invented a recursive algo-

rithm to evaluate Bézier curves [5]. The de Casteljau’s algorithm was later generalized to

surfaces and used to evaluate triangular Bézier patches. The basic idea of this algorithm

is that the desired curve or surface point can be found with repeated affine combinations

of the control points.

Using de Casteljau’s algorithm, a point P on a degree n patch with barycentric coor-

dinates (u0, u1, u2) can be calculated as

P 0
ijk = Pijk,

P l+1
ijk = u0P

l
ijk+100 + u1P

l
ijk+010 + u2P

l
ijk+001, l = 0, 1, . . . , n− 1,

P = P n
000,
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Figure 1.3: Patch evaluation using de Casteljau’s algorithm.

where Pijk are the control points of the patch. Figure 1.3 presents the evaluation process

of a cubic patch, with the initial control points shown as black dots and the intermediate

points in white. All the points in Figure 1.3 are labeled as in Equation 1.4, and the resulting

points of the same step are connected. In Figure 1.3, the upward control point triangles

are known as control panels.

At the last step of the evaluation, P is located on the plane of 4P 2
100P

2
010P

2
001, which

defines the surface tangent plane at P (Figure 1.3). The normal vector at P is calculated

as the cross product of two difference vectors in 4P 2
100P

2
010P

2
001:

~NP = (P 2
100 − P 2

010)× (P 2
001 − P 2

010)

de Casteljau’s algorithm can also be used to calculate the derivative in an arbitrary

direction. As shown in Figure 1.4, letting ~v be a direction vector and U be the preimage of

P relative to the domain triangle 4ABC, there are two ways to generate the derivative:
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~w

P1

P

P0

P2
U

~v

CB

A

S(U) = P
∂S

∂~v
(U) = ~w

Figure 1.4: Mapping of a Bézier patch.

1. Run de Casteljau’s algorithm at U for (n − 1) times, then map ~v to the remaining

triangle.

2. Map ~v in each control panel independently, then evaluate (n− 1) times at U to find

the final result.

Higher order derivatives can be obtained by applying another derivative to the first deriva-

tive function to generate the second derivative, and so on. Note that the higher order

derivatives can be mixed partial derivatives.

1.1.2 Patch subdivision and extrapolation

Other than evaluation, de Casteljau’s algorithm also subdivides a triangular Bézier patch

by evaluating the patch at a specified split point. For the same cubic patch shown in

Figure 1.3, we evaluate point P on the cubic patch using de Casteljau’s algorithm. As

shown in the left of Figure 1.5, U is the preimage of P , relative to the domain triangle

4ABC. After the evaluation, ABC is spit into three sub-triangles with U as the new

vertex; the intermediate results generated by the evaluation can be divided into three

sub-patches. As shown in Figure 1.5, the three sub-patches are composed with the points
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Figure 1.5: Patch split.
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Figure 1.6: Patch extrapolation.

labeled as P l
ij0, P

l
0jk and P l

i0k respectively, with l = 0, 1, 2, 3. These three sub-patches define

the same surface patch as before the subdivision.

If U , the preimage of P , is outside the domain triangle 4ABC, as shown in Figure 1.6,

evaluating at U becomes an extrapolation and the intermediate control points expand the

surface patch to P . As shown in Figure 1.6, we can divide the intermediate control points

generated by the extrapolation into three micro-patches as well, with domain triangles

4ABC, 4ABU and 4UBC respectively.
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1.1.3 Degree elevation

Figure 1.7: Degree elevation of a quadratic patch.

For a degree n triangular Bézier patch, we can compute the Bézier control points of the

same polynomial relative to degree n + 1 Berstein polynomials [11]. This transformation

is called degree elevation or degree raising. For a degree n Bézier patch with control

points Pijk, the same polynomial can be represented relative to the degree n + 1 Berstein

polynomials with control points Qrst :

n∑
ijk

PijkB
n
ijk(u0, u1, u2) =

n+1∑
rst

QrstB
n+1
rst (u0, u1, u2),

Qrst =
1

n+ 1
(rPrst−(1,0,0) + sPrst−(0,1,0) + tPrst−(0,0,1)), (1.4)

where i + j + k = n and r + s + t = n + 1. For the control points of a quadratic patch

shown as black dots in Figure 1.7, the patch degree is elevated to cubic and the newly

generated control points are shown as white dots. Note that the cubic representation has

the same corner control points as the quadratic representation. We can raise the patch

degree further by applying Equation 1.4 multiple times on the resulting patch.
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1.2 Surface continuity

Many CAD/CAM applications have aesthetic demands (such as a car body) and physical

requirements deduced from aerodynamic or hydrodynamic laws (like air crafts or ship

hulls). For all such applications, a certain order of continuity is required between adjacent

patches. In mathematics, the continuity of a curve can be analyzed by differentiating

the curve with respect to the parameter. For a surface, continuity is still analyzed by

differentiation of the surface, after taking partial derivatives into account.

Basically, there are two kinds of continuity conditions associated with spline surfaces.

The first is called parametric continuity (Ck or kth order parametric continuity), also

known as algebraic continuity, which requires partial derivatives to agree where the surface

patches meet. The second category of the surface continuity is geometric continuity (Gk

or kth order geometric continuity), which is parameterization independent.

1.2.1 Parametric continuity

H

G

F

Figure 1.8: Two functional patches meeting with C1 continuity.

Parametric continuity places emphasis on parameterization and has a close relation-

ship with algebra, but it does not necessarily reflect the smoothness of the surfaces. For

triangular Bézier surfaces, kth order of parametric continuity means that for any point on

the surface, the kth order of derivatives in an arbitrary direction are continuous. Note that

the derivatives discussed here are directional derivatives, and a direction in the domain is
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required to specify a vector in the tangent plane. A surface with Ck continuity must also

be Ck−1 continuous, k ≥ 1. For example, a C2 surface must be C1 and C0 continuous. At

the interior of a Bézier patch, derivatives are infinitely continuous, hence the patch is C∞

everywhere in its interior.

Generally, there are geometric or physical meanings associated with Ck continuity.

� C0: There is no gap, break or hole on the surface, which is “watertight”.

� C1: The first derivative is continuous along any direction on the surface. In physics,

the first derivative denotes the velocity, and a C1 surface means that if we are moving

along the surface, then we get a continuous (not necessarily constant) velocity. In

geometric design, if the surface is not C1 continuous at a point, we will have a non-

continuous feature, such as a crease (suppose the control points do not overlap and

no singularities in the data mesh).

For two adjacent patches to join with C1 continuity, every pair of boundary control pan-

els must be affine images of the domain triangles [21, 30]. As shown in Figure 1.8, patches

F and G meet at a common boundary curve H, with the boundary control panels outlined

and the domain triangles shown in the upper left corner. The geometric interpretation

of the C1 continuity condition is that we can re-parameterize one patch over the domain

of the neighbouring patch and compare the boundary layer of control points. Using the

extrapolation method introduced in Section 1.1.2, we first re-parameterize F (Figure 1.8)

over the domain of G and generate a set of new control points. Patches F and G meet

with C1 continuity if the first two rows of new points from the boundary match with the

corresponding control points of G.

The C1 conditions are simplified for functional surfaces (i.e., where z = f(x, y)). Since

all the domain triangles are identical in the functional case, the C1 continuity conditions

are met if each pair of the control panels along the boundary is coplanar [21, 30].

1.2.2 Geometric continuity

Since parametric continuity require the domains to generate the derivatives, it is incon-

venient to use parametric continuity for surfaces with arbitrary topology. Furthermore,
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parametric continuity disallows many parameterizations that would generate geometrically

smooth surfaces. As a relaxed form of parametric continuity, geometric continuity (Gk or

kth order geometric continuity) was introduced. The constraints imposed by geometric

continuity accommodate the differences between different parameterizations of adjacent

surface patches.

Geometric continuity, in essence, is the existence of a (local) re-parameterization.

DeRose [6] and Hahn [20] discussed the detailed mathematical meanings of geometric

continuity. Generally, the arc element, i.e., the first fundamental form, is considered an

invariant parameter as used in differential geometry [11]. Then a Gk continuous surface is

up to the kth order differentiable with respect to the arc length, although not necessarily

kth order differentiable with respect to the current parameterization.

For specific meanings of Gk continuity used in my work, we have

� G0 : Same as C0 continuity, there is no break/gap/hole on the surface.

� G1 : There exists a continuous tangent plane across the surface.

Currently, G1 continuity is the most widely used form of continuity in CAGD. A C1 con-

tinuous non-degenerate surface is naturally G1 continuous (with non-vanishing derivatives),

but not vice versa. Geometrically continuous surfaces are useful in practice, particularly for

modelling various situations where ordinary C1 continuous surfaces cannot be constructed,

for example, a star-shaped patch. They are also useful for joining various kinds of patches,

such as triangles and rectangles [19].

For triangular Bézier surfaces, two patches meeting with G0 continuity share the same

sequence of control points along the boundary. If the two patches meet with G1 continuity,

their tangent planes must be co-planar along the common boundary. For patches F and G

(whose domains are shown in Figure 1.9), we evaluate them symbolically at a parameter

value on the boundary H to yield a point P . If the two normal vectors calculated in F

and G are identical (after normalization, and they point to the same side of the surface)

at P , then F and G have the same tangent plane at P , i.e., they meet with G1 continuity

across the boundary.
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GPF

G1

G0

G2

F1

H1

H2

H3

F2

F0

H0

Figure 1.9: Domains of two neighboring cubic patches.

1.2.3 Approximate continuity

Although geometric continuity is already a relaxed form of parametric continuity, it still

requires considerable calculation to find a solution to fulfill the constraints. For example,

resolving the cross boundary G1 continuity constraints of two abutting cubic triangular

patches involves solving four quadratic equations. Further, satisfying geometric continuity

conditions often lead to surfaces with poor shapes. The object of my work is to find a

solution to relax the continuity conditions that provides a trade-off between continuity and

shape quality.

Instead of satisfying the continuity constraints of C1 or G1, I will trade them off for

better overall geometric quality and lower cost. By using approximate continuity, small

discontinuities in the surface normals will be allowed across the patch boundaries. Approxi-

mate continuity is a relaxation of C1/G1 continuity where patches meet with C0 continuity,

but the discontinuity in the normals between adjacent patches is small. The definition of

approximate continuity is as follows [27]:

A piecewise, C0 surface is defined to be ε-C1 or ε-G1 if the maximum angle

between two surface normals across the patch boundary is bounded by ε.
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Here ε is an upper bound on the normal discontinuity, a metric to estimate the level of

smoothness of a surface constructed with ε-C1/ε-G1 continuity. As stated, the definition

of ε-C1/ε-G1 allows a surface to have a “razor edge”; these surfaces are not considered to

be ε-C1 for ε < 90 degrees. For functional surfaces, C1 continuity conditions are relaxed

to be ε-C1; for parametric surfaces, G1 conditions are relaxed to be ε-G1.

Although surfaces with approximate continuity allow some normal discontinuity, it does

not mean that any surfaces with discontinuities are ε-C1/ε-G1 surfaces. The value of ε

should be limited to such a small amount that the discontinuity is not observable on result-

ing surfaces. When setting the control points that define the cross boundary continuity,

ε-C1/ε-G1 schemes use simpler methods than the schemes with C1/G1 continuity. The

goal of designing ε-C1/ε-G1 schemes is to use lower degree patches to construct functional

or parametric surfaces, yet still generate visually smooth surfaces with good shape qual-

ity. Moreover, we hope the overall surface shape can be improved by applying the idea of

approximate continuity.

1.3 Polynomial surface interpolation

In this dissertation, I have applied the idea of approximate continuity to surface fitting.

For a set of scattered data points, we need to construct a surface that interpolates the data

points and possibly meets other constraints. Different surface methods demand different

amounts of computational time and memory, as well as resulting in varied quality of the

constructed surfaces. There is no one method that works well in all cases.

Existing surface fitting schemes include methods of polynomial/rational polynomial,

transfinite, subdivision/wavelet, radial basis function, etc. With each category of method,

we can construct surfaces either interpolating or approximating the input data mesh. Each

method has its own strength and drawbacks, suitable for different applications. Since

polynomial methods have simplest explicit representation, all the schemes I designed in

this thesis are polynomial methods.

Polynomial schemes are further classified into functional and parametric schemes, be-

cause of the different patch domains. Although functional surface schemes can handle

many problems, they are incapable of modelling surfaces with arbitrary topology, such as
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a sphere. Another type of interpolation using parametric surfaces was introduced for data

sets with arbitrary topology. The popular schemes in this field include Shirman-Séquin [38],

Loop [25], Hahmann [17]. All such schemes use at least quartic patches, and most of them

only guarantee G1 continuity across the patch boundaries [31].

Surface fitting methods can also be categorized into global methods and local methods.

The global methods create the surface using all the data points at once. If any one of the

data points changes, the problem has to be solved over again and the entire surface changes.

Global methods can generate surfaces with more uniform curvature distribution, but they

are computationally slow. The local methods perform the interpolation locally. If any one

of the data points changes, only a part of the interpolated surface has to be re-computed.

Generally, local methods do not generate results as good as the global methods. Sometimes,

global and local methods can be combined [12][32]. In my work, all the interpolation

schemes are local methods, and they are limited to triangular Bézier patches. I assume that

all the scattered data points have already been properly triangulated, and the intersection

of the interior of every pair of triangles is empty. Each data point is a vertex of at least

one non-degenerate triangle, and every triangle is defined by exactly three points.

Most local interpolation methods usually have three steps:

1. Construct boundary curves connecting the input vertices.

2. Set the interior control points along boundaries to achieve cross-boundary continuity.

3. Set any remaining interior points.

The second step has to handle the vertex consistency problem, which involves finding a

consistent mixed partial terms for each patch meeting at a vertex [26]. Based on how the

vertex consistency problem is solved, surface fitting methods can also be classified into two

categories. The first kind of method performs a domain split for each data triangle, such

as the Clough-Tocher scheme [3]. Another category of schemes create only one patch for

each data triangle, such as Loop’s scheme [25]. I will further discuss the vertex consistency

problem and Loop’s scheme in Chaper 4.
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1.4 Surface interrogation

For most applications, the analysis of surface shape quality is equally important as the sur-

face construction process. As an intrinsic property, the continuity conditions on a piecewise

polynomial surface provides a straightforward measurement for the surface quality. We can

evaluate a surface mathematically to determine its continuity condition, such as C1, G1,

C2, etc. Although such a mathematical evaluation is efficient and accurate, it does not

allow designers to examine the surface shape quality interactively.

The process of extracting and visualizing the geometric information from a surface is

called surface interrogation [16]. I use surface interrogation methods to locate regions

with poor shape, especially along the patch boundaries where approximate continuity is

employed. There are various visualization techniques available with the goal of identifying

unwanted shapes on the surface. For surfaces in this dissertation, I used three methods to

visualize the geometric properties:

1. Shaded images: Diffuse images of the constructed surfaces.

2. Gaussian curvature plots: Colored image of the Gaussian curvature values.

3. Isophotes: Curves with equal light intensity above the surface.

The shaded images presents the information about the C1/G1 continuity of a surface, while

Gaussian curvature plots and isophotes curves describe the C2/G2 conditions. The primary

interrogation method I used is rendering shaded images. However, even if a surface looks

visually smooth in the shaded images, it may still have unwanted curvature regions. To

further examine the surface shape quality, Gaussian curvature plots and isophotes curves

are generated.

1.4.1 Shaded images

To visualize the surface shape, shaded images of a surface are rendered using standard

OpenGL lighting with ambient, diffuse and specular materials. The result is what a real

surface would look like under certain conditions.
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Figure 1.10: Examples of shaded images.

In Figure 1.10, both surfaces were constructed using the same octahedron data mesh.

On the G1 continuous surface shown on the left of Figure 1.10, we see no discontinuities

along the patch boundaries. However, creases along boundaries are visible on the right

surface of Figure 1.10, where patches meet with approximate continuity. One of the primary

uses of shaded images in this thesis is to ensure poor shapes, such as creases, are not visible

on the surfaces constructed with approximate continuity.

1.4.2 Gaussian curvature plots

The Gaussian curvature at a given surface point is an intrinsic measure of the surface

shape. The value of Gaussian curvature depends only on how distances are measured on

the surface, not on the way it is embedded in space. Gaussian curvature is formally defined

as

K =
eg − f 2

EG− F 2
.

Here E, F and G are coefficients of the first fundamental form and e, f and g are coefficients

of the second fundamental form [15].
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Figure 1.11: Examples of Gaussian curvature plots.

Gaussian curvature indicates the amount by which a geometric surface deviates from

being flat. The value of Gaussian curvature is positive for spheres, negative for one-sheet

hyperboloids and zero for planes. For a region on the surface constructed in this thesis,

positive Gaussian curvatures correspond to areas that are locally convex; while negative

Gaussian curvatures correspond to saddle points. When used for surface interrogation,

Gaussian curvature values are mapped to colors and color plots are generated for the

surface constructed.

To generate Gaussian curvature plots, each surface is tessellated into a set of small

triangles. For each vertex of such a triangle, its Gaussian curvature value is calculated

and mapped to a color. In my curvature plots, red regions indicate positive Gaussian

curvature; blue regions indicate negative Gaussian curvature; and the green regions have

zero Gaussian curvature. After each vertex is tagged with a material, a color image is

generated for the surface. In general, the Gaussian curvature plot is very sensitive to small

local changes and will detect types of defects not found by viewing the shaded images.

As shown in Figure 1.11, Gaussian curvature plots were generated for two surfaces

based on the same torus model. Both surfaces are constructed with Loop’s sextic scheme
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and both are G1 continuous (Chapter 4). The left one is an approximating surface of the

given data mesh, which shows a narrower range of curvature values and a smooth curvature

distribution. For the interpolation surface on the right of Figure 1.11, we see some high

curvature values (red) changing rapidly to small values (green), indicating abrupt changes

of the surface shape in this region.

As a trade-off between the C1/G1 conditions and shape quality, approximate C1/G1

surfaces are expected to have better (at least not worse) shape than surfaces with C1/G1

continuity. To compare the shape quality between surfaces, I generated Gaussian curva-

ture plots and identified the local shape imperfections. These local shape defects in turn

determine the shape quality of the approximate C1/G1 surfaces.

1.4.3 Isophotes curves

The isophote method analyzes surface quality by determining lines of equal light intensity.

For a parallel lighting ~L, the isophotes condition is defined as

~N(u0, u1, u2) · ~L = I. (1.5)

Here I is a constant value; ~N(u0, u1, u2) is the normal vector at the surface point of

(u0, u1, u2). All the points with the same value I in Equation 1.5 are connected and form

isophotes curves (also called isophotes lines). Silhouettes are special isophotes for I = 0.

In general, we can construct isophotes curves by testing various values of constant I in

Equation 1.5. There also exist more efficient methods to generate isophotes curves with

acceleration using GPU programming [2].

If a surface is Ck continuous, then the corresponding isophotes curves are Ck−1 con-

tinuous [16]. For example, the isophotes curves of a C1/G1 continuous surface are C0

continuous, i.e., each curve should be connected. If a surface is constructed to be approx-

imately C1/G1 continuous, its isophotes curves are not C0 continuous, therefore gaps on

the curves are visible. The lower the discontinuity we have on the surface, the smaller gaps

are on the isophotes curves.

Isophotes curves are closely related to reflection lines [39]. Both isophotes and reflection

lines give an indication of how reflections will look on the surface. For applications such as

car body design and computer animation, it is important to have a surface with continuous
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Figure 1.12: Examples of isophotoes curves.

reflections. In this case, isophotes and/or reflection lines are often applied as interrogation

tools.

When interrogating the shape quality of ε-C1/ε-G1 continuous surfaces, I render isophotes

curves together with the shaded surface image. To make the isophotes curves more dis-

cernible, they are placed with a small offset from the surface and rendered in different

colors. Figure 1.12 shows two interpolating surfaces with isophotes curves (blue) attached.

Both surfaces are constructed using the same data mesh sampled on a unit sphere. The

left surface of Figure 1.12 is a G1 continuous surface constructed using Loop’s sextic in-

terpolation scheme [25]; the right surface is a quartic approximately G1 continuous surface

(Section 4.3.1). Each of the isophotes curves on the left surface is connected (C0 contin-

uous), indicating that the surface is G1 continuous. For the right surface of Figure 1.12,

which is only approximately G1 continuous, the gaps on the isophotes curves indicate that

the isophotes curves are not C0.



Chapter 2

Approximate continuity for

functional surfaces

In this chapter, I will introduce the application of approximate continuity to the surface

interpolation in the functional case. For functional surfaces, the xy-coordinates of all the

control points are distributed uniformly in the xy-plane, with

Rxy
ijk =

i

n
Rxy

n00 +
j

n
Rxy

0n0 +
k

n
Rxy

00n, i+ j + k = n.

Here (i, j, k) are barycentric coordinates; Rxy
n00, R

xy
0n0 and Rxy

00n are the xy position of the

three vertices. All the control points have different z-coordinates. The example of a

cubic patch is shown in Figure 2.1, viewed along the z-axis. The boundary curves of

these triangular Bézier patches are defined by the boundary control points, and the cross

boundary derivatives are defined by the difference of the first two layers of control points.

For the cubic patch shown in Figure 2.1, the cross boundary derivatives along the

boundary from R030 to R003 in the direction of R003 −R030 are given by

R′(t) = 3
∑

j+k=2

(
R0jk+100 −R0jk+010

)
B2

0jk(t).

As mentioned in Chapter 1, for two Bézier patches of the same degree to meet with C0

continuity, they must share common boundary control points. If these two patches are

functional and also meeting with C1 continuity, their adjacent panels along the boundary

must be coplanar.

21
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R030 R012 R003R021

R120 R111 R102

R210 R201

R300

Figure 2.1: Control points of a functional Bézier patch.

2.1 Bounding the discontinuity

In earlier work, the discontinuity between two adjacent triangular Bézier patches was ap-

proximated by sampling the normals of the patches along the common boundary, and com-

puting the maximum angle between corresponding pairs of normals [7, 27]. This method

has two weaknesses: first, it can be computationally expensive; and second, in general the

method calculates a lower bound than an upper bound. The difficulty in computing the

true maximum is that the function for the discontinuity is non-polynomial.

In this section, two upper bounds are derived for the discontinuity in the surface nor-

mal based solely on the control points of the neighboring patches. To further simplify the

upper bounds, the case of cubic patches is analyzed with equal normals at two end points

of common boundaries. The case of equal normals at the end points is interesting, since

by interpolating the position and derivatives at the corners of a data triangle, schemes

can often achieve polynomial precision. Although this polynomial precision may not pro-

vide bounds on the discontinuity, it helps to minimize the discontinuity between adjacent

patches and results in better shape.

Consider the functional case shown in Figure 2.2, where two cubic Bézier patches F

and F̄ share the common boundary H (this figure shows the orthographic projection of the

control points into the xy-plane; the control points themselves have arbitrary z values). If

F and F̄ meet with C1 continuity, then the control points of a pair of boundary control
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H1

H2

H3

H0

F2

F1

F0

h

G1, F̄1

G2, F̄2

G0, F̄0g

Figure 2.2: Domain of cubic patches F , F̄ , and G.

panels, say Fi, Hi, F̄i, and Hi+1, are coplanar (i = 0, 1, 2) (Section 1.2.1). Since this is the

functional setting, the spacing between consecutive Hxy
i is a constant h, and the spacing

between each F̄ xy
i , Hxy

i pair is a constant g. The normal vector ~N for patch F̄ (also the

normal of patch F ) is calculated as the cross product of the two directional derivatives in

the x and y domain directions:

~N =

(
n

n−1∑
i=0

(Hi+1 −Hi)B
n−1
i (t)

)
×
(
n

n−1∑
i=0

(F̄i −Hi)B
n−1
i (t)

)
. (2.1)

Here F̄ and F are defined to be in degree n. To simplify the computation, we assume that

the boundary H in the domain is parallel to the y-axis, and that the bottom edges of F

and F̄ in the domain are parallel to the x-axis (in Section 2.2, if the patches have arbitrary

domain triangles, a re-parameterization on those patches will yield the arrangement I have

just described).

Letting
~Hi = Hi+1 −Hi,

~̄F i = F̄i −Hi,

then
~Hi = 0~x+ h~y + ~Hz

i ~z,
~̄F i = g~x+ 0~y + ~̄F z

i ~z.
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The normal ~N is calculated as

~N =

(
n

n−1∑
i=0

[0, h, ~Hz
i ]Bn−1

i (t)

)
×
(
n

n−1∑
j=0

[g, 0, ~̄F z
j ]Bn−1

j (t)

)

= n2

[
h

n−1∑
j=0

~̄F z
j B

n−1
j (t), g

n−1∑
i=0

~Hz
i B

n−1
i (t),−hg

]
(2.2)

Now consider a patch G over the same domain as F̄ that shares the Hi boundary control

points with F , but whose control points differ from F̄ elsewhere. We can think of the Gi

as being displaced from the F̄i along the ~z-axis: Gz
j = F̄ z

j + zj. Then the equation for the

normal ~N ′ of patch G along the boundary H is (based on Equation 2.2)

~N ′ = n2

[
h

n−1∑
j=0

( ~̄F z
j + zj), g

n−1∑
i=0

~Hz
i ,−hg

]
Bn−1

i (t)Bn−1
j (t)

= ~N + n2

n−1∑
j=0

[hzj, 0, 0]Bn−1
j (t). (2.3)

Note that both ~N and ~N ′ are not normalized. Letting I = n2
∑n−1

j=0 [hzj, 0, 0]Bn−1
j (t), then

~N ′ = ~N + ~I. The relationship among ~I, ~N and ~N ′ is shown in Figure 2.3(a). In the

following sections, I will describe two methods to bound the angle between N and N ′.

2.1.1 Upper bound one

The angle θ between N and N ′ is defined as

θ = arcsin

(
| ~N × ~N ′|
| ~N || ~N ′|

)
= arcsin

(
| ~N × ( ~N + ~I)|
| ~N || ~N ′|

)
= arcsin

(
| ~N × ~I|
| ~N || ~N ′|

)

= arcsin

n4h2
∣∣∣∑n−1

j=0 zjB
n−1
j (t)

[
0, g,−∑n−1

i=0
~Hz

i B
n−1
i (t)

] ∣∣∣
| ~N || ~N ′|

 . (2.4)

It is difficult to calculate a true maximum value for θ using Equation 2.4. Instead of

bounding θ as a whole term, it is easier to calculate an upper bound by finding the maxi-

mum/minimum value for each part in the numerator and denominator separately.
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Theorem 2.1.1. For functional triangular Bézier patches F and G arranged as in Fig-

ure 2.2, an upper bound on the angle θ between the normals of the two patches along their

common boundaries is given by

θ ≤ arcsin

(
n4h2Lz

√
g2 + (Lh)2

L ~NL ~N ′

)
, (2.5)

where

Lz = max

(∣∣∣ n−1∑
j=0

zjB
n−1
j (t)

∣∣∣) , Lh = max

(∣∣∣ n−1∑
i=0

~Hz
i B

n−1
i (t)

∣∣∣) .
Here L ~N and L ~N ′ denote the minimum length of ~N and ~N ′ as we vary t over [0, 1].

Proof. The proof of this theorem is given by bounding the components in Equation 2.4

separately. Since Lz and Lh are degree n− 1 Bézier curves, taking the maximum absolute

value of zj and ~Hz
i will generate the maximum values for Lz and Lh(see Equation 2.2). We

bound L ~N as

L ~N ≥
∣∣∣n2

[
hmin

∣∣ n−1∑
j=0

~̄F z
j B

n−1
j (t)

∣∣, gmin
∣∣ n−1∑

i=0

~Hz
i B

n−1
i (t)

∣∣,−hg] ∣∣∣
≥ n2

∣∣ [hZmin(F̄ z
j ), g Zmin( ~Hz

i ),−hg
] ∣∣, (2.6)

where Zmin(ai) is zero if the ai are of mixed sign, and is the minimum of the absolute

values of the ai otherwise. Similarly, the definition of L ~N ′ is

L ~N ′ ≥ n2
∣∣[hZmin(Ḡz

j), g Zmin( ~Hz
i ),−hg]

∣∣.
If patches F and G are both cubic triangular Bézier patches, and the panels at each

end of the boundary are coplanar, then the control points of these end panels have zero

z displacement, i.e., G0 = F̄0 and G2 = F̄2, and z0 = z2 = 0. Thus, the only freedom to

manipulate is G1. The upper bound defined by Equation 2.5 simplifies to

θ ≤ arcsin

(
n4h2|z1|

√
g2 + (Lh)2

2L ~NL ~N ′

)
. (2.7)
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Here the extra factor of 2 in the denominator is because the Bernstein polynomial B2
j (t)

obtains its maximum value over [0, 1] at t = 1
2
, and B2

j (1
2
) = 1

2
. In the remaining part

of this thesis, I use the acronym of FB1 (functional surface upper bound 1) to denote the

upper bound defined by Equation 2.5.

2.1.2 Upper bound two

(a) (b)

��

��

�� �

�� �

�
�

��

��

�

Figure 2.3: Calculating a bound on θ.

Another upper bound of the angle θ is calculated by using a different method to bound

the surface normals.

Theorem 2.1.2. For functional triangular Bézier patches F and G arranged in Figure 2.2

and discussed in the text, the bound on the angle θ between the normals of the two patches

along their common boundaries is given by

θ ≤ arcsin

(
hn2Lz

2L

)
, (2.8)

where Lz is defined as in method 1 and

L = min(L ~N , L ~N ′).
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Proof. The goal is to bound the angle θ between ~N and ~N ′ for t ∈ [0, 1]. For now, assume

that | ~N | ≤ | ~N ′|. As illustrated in Figure 2.3(a), I ′ is the vector that forms a chord on the

circle of radius | ~N |, where its tail is placed at the head of ~N with |I| = |I ′|, and I · I ′ ≥ 0.

Looking at Figure 2.3(a), we see that θ ≤ φ. For any ~N and ~I of fixed length, angle φ

reaches its maximum value when | ~N | = | ~N ′| (Figure 2.3(b)). The angle θ can be bounded

by computing a bound on φ:

θ ≤ φ ≤ 2 arcsin

(
|~I|
2L

)

= 2 arcsin

(
n2
∣∣∑n−1

j=0 [hzj, 0, 0]Bn−1
j (t)

∣∣
2L

)

= 2 arcsin

(
hn2Lz

2L

)
. (2.9)

Now we consider the special case of two cubic Bézier patches F and G where the panel

pairs at each end of the boundary are coplanar. As mentioned in method 1, we have

G0 = F̄0 and G2 = F̄2, therefore z0 = z2 = 0. Equation 2.8 simplifies to

θ ≤ 2 arcsin

(
|h9
∑2

j=0zjB
2
j (t)|

2L

)
≤ 2 arcsin

(
9h|z1|

4L

)
. (2.10)

Again, the Bernstein polynomial B2
j (t) obtains its maximum over [0, 1] at t = 1

2
, and

B2
j (1

2
) = 1

2
. For any approximately C1 continuous surface, we can use the minimum result

of the two methods as a bound of the discontinuity angle. Let FB2 denote the upper bound

defined by Equation 2.8.

2.2 Data fitting scheme

To test the two upper bounds, I devised a surface fitting scheme and sampled the Franke

functions as test data [22]. By varying the sampling density, a set of ε-C1 surfaces are

constructed with a small amount of C1 discontinuities. The following ε-C1 construction
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R300
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R012 R021 R030

R003

R201

R102

Figure 2.4: Construction of the functional C1 scheme.

is the first step of a scheme that appeared in [29]. Three types of control points are

constructed: data points, boundary points and one interior point. For a data triangle

4P0P1P2, we construct a cubic Bézier patch R (shown in Figure 2.4) to interpolate the

position and the normal at each of three vertices:

1. Set the three corner data points (black points in Figure 2.4) to the data vertices:

R300 = P0, R030 = P1, R003 = P2.

2. For the other six boundary control points (gray points in Figure 2.4), we calculate

the intersection of a line parallel to the z-axis with the tangent plane of the nearest

corner point. For example, to compute R210, we intersect the line through Rxy
210 in

the direction of the z-axis with the tangent plane at R300. The intersection point

is the position for R210. This forces the patch to interpolate the normal data of

data vertices, and ensures that all the control points surrounding a data point are

coplanar.

3. Set the interior control point R111(the big white point in Figure 2.4) by evaluating

R at the three adjacent data vertices, say Q0, Q1 and Q2, and averaging the results.



29

This step is the same as the one used by Foley-Opitz to set the center point in their

hybrid patch construction [13].

For the data triangle 4P0P1P2 with adjacent data points Q0, Q1 and Q2 (Figure 2.4), the

last step of my construction needs to calculate the z-coordinate of the interior control point

R111.

We compute three values for Rz
111: R

z
0, Rz

1, and Rz
2 by evaluating the patch R at the

three Qxy
s values, and require R(Qxy

s ) = Qz
s, s = 0, 1, 2. Each evaluation provides a linear

equation in the unknown control point R111. Solving each equation gives one of the Rz
s,

which are averaged to set Rz
111. Letting (t0i , t

1
i , t

2
i ) be the barycentric coordinates of Qxy

s

relative to 4P xy
0 P xy

1 P xy
2 , evaluating R at Qxy

s gives us

Qz
s =

∑
i+j+k=3

Rz
ijkB

3
ijk((t0i , t

1
i , t

2
i ))

= Rz
iB

3
111(t

0
i , t

1
i , t

2
i ) +

∑
ijk,ijk 6=111

Rz
ijkB

3
ijk((t0i , t

1
i , t

2
i ))

=⇒ Rz
s =

Qz
s −

∑
ijk,ijk 6=111R

z
ijkB

3
ijk((t0i , t

1
i , t

2
i ))

B3
111(t

0
i , t

1
i , t

2
i )

,

Rz
111 =

Rz
0 +Rz

1 +Rz
2

3
.

Note that if all six data points and normals (P0, P1, P2, Q0, Q1, Q2) come from a

single cubic polynomial C, then R0 = R1 = R2 = R111 and the resulting surface patch will

reproduce this polynomial, i.e., R = C.
The cubic data fitting scheme introduced above meets the requirement for generating

the test data; in particular, the cubic convergence results in decreasing discontinuities

as we increase the sampling density of the base functions. With this scheme, I would

need a special construction for the boundary data triangles, because they have only one

or two neighboring triangles rather than the three neighbors that internal data triangles

have. While this is easily done by constructing one or two Rz
i respectively, to simplify the

analysis, I do not construct patches for the boundary layer of triangles.

To use the approximate continuity result of Section 2.1, the control points of two

adjacent patches F and G must be arranged as in Figure 2.2 (i.e., the common boundary

H must be aligned with the y-axis, and another boundary must align with the x-axis). If
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O

Figure 2.5: Frame change for the approximate continuity calculation.

the patch domain does not meet these constraints, we can change the patch representation

as follows (see Figure 2.5):

1. Create a coordinate frame F = {O, x′, y′, z′}, with the origin O at one end of the

common boundary, and E for the other end of the boundary; align the y′ basis vector

with the common boundary; set the x′ basis vector to be perpendicular to y′ in the

xy-plane; and set the z′ basis vector to be parallel to the z-axis.

2. Position two points Fp and Gp in the domain along the x′-axis, with |O − Fp| =

|O −Gp| = |E − O|.

3. Re-parameterize F by evaluating F at Fp using the de Casteljau algorithm (Sec-

tion 1.1.2), and extracting the sub-patch over the domain4FpOE . A similar process

can be used to extract the representation of G over the domain triangle 4GpEO.

Now we can apply the continuity bounds described in Section 2.1, using the coordinates

of the control points relative to F . The F̄i of Figure 2.2 will have the same xy-positions

as the Gi but different z-values, so that patch F̄ meets patch F with C1 continuity. The

points F̄0 and F̄2 already meet the required C1 planarity conditions; point F̄1 is given by

F̄1 = t0H1 + t1H2 + t3F1,

where (t0, t1, t2) are the barycentric coordinates of Gxy
1 relative to 4Hxy

1 Hxy
2 F xy

1 .
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Table 2.1: Discontinuity of Franke function surfaces.

Functions Grid Discontinuity FB1 FB2

10×10 26.487492 67.894637 35.814840

20×20 8.254011 11.494557 8.597684
F1

40×40 1.226258 1.469088 1.266205

10×10 8.059139 13.315756 11.347997

20×20 2.676044 3.660120 3.431178
F2

40×40 0.438722 0.515085 0.541983

10×10 1.430003 1.630511 1.498616

20×20 0.231934 0.240315 0.235121
F3

40×40 0.030659 0.030940 0.030764

10×10 0.512760 0.545877 0.519773

20×20 0.069462 0.070669 0.069708
F4

40×40 0.008862 0.008901 0.008870

10×10 5.426008 9.497992 6.355084

20×20 0.988369 1.235251 1.039557
F5

40×40 0.137503 0.146953 0.139415

10×10 0.432433 0.503140 0.506612

20×20 0.081190 0.089400 0.097062
F6

40×40 0.013420 0.014184 0.016166

2.3 Tests and results

For test data, I sampled the six “Franke functions” as described by Grandine [14], and fit

approximate C1 surfaces to these data sets using the scheme described in Section 2.2. Since

we are testing the boundary discontinuity and the convergence properties as the sampling

rate is increased, these six functions are sampled uniformly in the xy-plane.

The discontinuity between surface normals are bounded using three methods. The first

method samples the common boundary of every pair of adjacent patches at 100 points,

computing the surface normals, and calculating the angle between the two normals. The
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(a) Bound 1 over sampled error ratio.
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(b) Bound 2 over sampled error ratio.
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(c) Minimum Bound over sampled error ratio.
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Figure 2.6: Upper bounds analysis of Franke function 1 surface.

other two methods, FB1 and FB2, calculate the upper bounds as described in Section 2.1.

Table 2.1 shows the maximum discontinuity angles and the two upper bounds for all

boundary curves of the surface; all the numbers are in degrees.

The column labeled “Grid” in Table 2.1 refers to the number of cells in the square

grid to fit patches on; two triangular patches were fit to each square of the grid. Since no

patch was fit to the boundary layer of squares, the actual number of samples taken from

the corresponding Franke function was three higher in each dimension (e.g., a 10× 10 grid

means 13×13 samples). The samples were taken so that (ignoring the boundary layer) the

outer layer aligns with the [0, 1]-square in the domain. As shown in Table 2.1, although

the discontinuity of my scheme is noticeable at low samplings of the Franke function, the

discontinuity drops quickly when sampling density is increased; the discontinuity appears
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Table 2.2: Ratio distribution for Franke Function 1.

Ratio 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-

Method 1 84.43 12.76 1.98 0.34 0.09 0.0

Method 2 77.33 15.86 4.57 1.29 0.60 0.34

Combined 94.83 5.17 0.0 0.0 0.0 0.0

to drop as O(h3). Generally, FB2 shows better results than FB1. The plot of the nor-

mal discontinuities for all the patch boundaries (Figure 2.6(d)) shows that the maximum

discontinuity occurs near the middle of the curve but not exactly at t = 0.5.

When I plot the ratio of the estimated discontinuity to the maximum sampled discon-

tinuity for all boundaries of one surface, we see that the ratio can be higher than the ratio

of maximum values in Table 2.1. Plots were generated for Function 1, on a 20 × 20 grid

(Figure 2.6(a,b,c)). Each point on the graph is the ratio of the error bound to the nu-

merically computed maximum error for the boundary between two pairs of patches. Using

FB1 (Figure 2.6(a)), we generate more boundary curves with a lower ratio than using FB2

(Figure 2.6(b)), especially for those with lower discontinuity angles. But FB2 is better

for boundary curves where there is a high normal discontinuity. In an application, we can

take the smaller result of the two bounds (Figure 2.6(c)). Table 2.2 shows the percentage

breakdown of upper bound ratios for function 1. Table 2.3 shows the percentage distribu-

tion for other functions. All the surfaces in Table 2.2 and Table 2.3 were sampled on a

20 × 20 grid. For the combination of the two methods, the majority of the points are in

the lower end of the ratio (Figure 2.6(c)).

Looking at the shaded images, the shape quality of ε-C1 surfaces seemed good, and I

wanted to compare it to an existing C1 surface fitting scheme. Since a local polynomial

scheme with cubic convergence would provide the most meaningful comparison, the new

ε-C1 scheme was compared to a cubic precision Clough-Tocher interpolant [28]. The visual

results of these comparisons are shown in Figures 2.7(a) to 2.7(h).

Figure 2.7(a), left, shows the surface produced when my scheme is applied to a 5 ×
5 sampling of the Franke 1 function. The C1 discontinuities are clearly visible in the

surface (the maximum sampled normal discontinuity is 33.96 degrees). Note, however,
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Table 2.3: Ratio distribution for other Franke functions.

Ratio 1.0-1.1 1.1-1.2 1.2-1.3 1.3-1.4 1.4-1.5 1.5-

Method 1 71.72 5.86 9.48 6.21 0.00 6.72

Method 2 74.66 8.97 9.48 6.55 0.00 0.34
F2

Combined 74.66 8.97 16.03 0.0 0.00 0.34

Method 1 90.17 9.57 0.26 0.00 0.00 0.00

Method 2 71.43 17.84 8.71 3.02 0.00 0.00
F3

Combined 96.12 3.88 0.00 0.0 0.00 0.00

Method 1 100.0 0.00 0.00 0.00 0.00 0.00

Method 2 68.10 31.90 0.00 0.00 0.00 0.00
F4

Combined 100.0 0.0 0.00 0.00 0.00 0.00

Method 1 68.97 18.97 7.41 3.28 1.03 0.34

Method 2 72.24 10.34 6.90 4.48 1.90 4.14
F5

Combined 78.45 15.34 4.48 1.38 0.34 0.0

Method 1 96.03 3.79 0.17 0.00 0.00 0.00

Method 2 75.00 21.38 2.24 0.86 0.34 0.17
F6

Combined 99.31 0.69 0.0 0.0 0.0 0.0

that the cubic precision Clough-Tocher interpolant has similar artifacts in the same location

(Figure 2.7(a), right). Increasing the sampling density of the Franke 1 function to 20 ×
20, both my methods and the Clough-Tocher method produce good results. Looking at

Gaussian curvature plots of the surfaces fit to the 20×20 sampling of the Franke 1 function

(Figure 2.7(c)), the approximate C1 scheme gives a slightly smoother curvature plot than

the C1 Clough-Tocher scheme. (In Figures 2.7(c) to 2.7(h), the left image is the Gaussian

curvature of the surface created by my ε-C1 scheme; the right from the cubic precision

Clough-Toucher scheme).

The remaining figures show a Gaussian curvature comparison of my ε-C1 scheme (left

of each figure) to the cubic precision Clough-Tocher scheme (right of the figure) on Franke

functions 2, 3, 4, 5, and 6. For the Franke functions 3–6, both schemes construct a reason-

able surface for 10x10 samplings. For the Franke 2 function, both schemes did a relatively
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poor job of fitting a surface to the data. The maximum/minimum Gaussian curvature of

the surface fit by my scheme to this data is (23.3392,−48.035); the maximum/minimum

curvature of the Clough-Tocher surface is (71.5072,−97.6572). This Franke surface is a

ruled surface, so its Gaussian curvature is 0 everywhere. The Franke 2 function is known

to be difficult to fit with polynomials because of ringing effects.

In summary, the results indicate that the discontinuity bound is reasonable (although

not excellent), and that ε-C1 surfaces are of comparible quality to C1 surfaces. Note also

that the surface constructed by the Clough-Tocher scheme has three times as many Bézier

patches as the ε-C1 surface.
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(a) Franke function 1, sampled at 5× 5. (b) Franke function 1, sampled at 20× 20.

(c) Franke function 1, sampled at 20× 20. (d) Franke function 2, sampled at 10× 10.

(e) Franke function 3, sampled at 10× 10. (f) Franke function 4, sampled at 10× 10.

(g) Franke function 5, sampled at 10× 10. (h) Franke function 6, sampled at 10× 10.

Figure 2.7: Results of surfaces fit on Franke functions.



Chapter 3

Parametric surface fitting with

domain splitting

To interpolate a data set with arbitrary topology, we need to use parametric triangular

Bézier patches instead of functional patches. Generally, parametric interpolating surfaces

are required to have at least G1 continuity [11, 34, 33]. However, fulfilment of these condi-

tions is sometimes impossible. In this chapter, I introduce an ε-G1 parametric scheme that

performs a Clough-Tocher like 3-to-1 split using cubic parametric patches. By relaxing the

continuity constraints to ε-G1, I am able to use low degree (cubic) patches to construct

surfaces with smoothness similar to existing G1 schemes. In my ε-G1 scheme, two neigh-

bouring patches are also required to have equal normals at interior points on the common

boundary curve to reduce the normal discontinuity. I begin this chapter with a review of

the problem that cubic patches have for constructing a G1 join in the parametric setting.

3.1 G1 singularity for cubic patches

As shown in Figure 3.1, two cubic patches F and G meet with G1 continuity along a

common boundary curve H. Here only the boundary curve control points and the second

row of control points of F and G are shown. For a point P on the boundary curve, we

calculate the tangent planes of F and G, on which we choose four points represented by

37
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Figure 3.1: G1 constraints on control points.

quadratic Bézier functions:

I =
2∑

i=0

HiB
2
i (t), J =

2∑
i=0

Hi+1B
2
i (t), K =

2∑
i=0

FiB
2
i (t), L =

2∑
i=0

GiB
2
i (t).

The tangent plane for patch F at point P is defined by 4KIJ , and the tangent plane for

G is defined by 4IJL, as shown in Figure 3.1. As the parameter t varies from 0 to 1, the

two tangent planes are evaluated along the common boundary H. Piper developed the G1

continuity constraints [34] for F and G: the four points should be co-planar at any t value,

which can be expressed in the matrix form as

Det


1 I

1 J

1 K

1 L

 = 0. (3.1)

To interpolate the normal vectors at two data points H0 and H3, two pairs of end control

panels (4H0H1F0 and 4H0H1G0, 4H2H3F2 and 4H2H3G2) are set to be coplanar. The

question is where to place F1 and G1 so that Equation 3.1 is satisfied at an arbitrary

point on the boundary curve. Piper [34] and Peters [33] both showed that for some data
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Figure 3.2: A data set without cubic solution.

sets, there might be no G1 solution when using cubic patches. Piper gave such a singular

example [34] as shown in Figure 3.2, with the control points set as follows:

F0 = (1,1,0), F1 = ?, F2 = (3,1,1),

H0 = (0,0,0), H1 = (1,0,0), H2 = (2,0,1), H3 = (4,0,1),

G0 = (1,-1,0), G1 = ?, G2 = (3,-1,1).

For this setting of H0, H1, H2, H3, F0, F2, G0, and G2, there is no setting for F1 and G1

to get a G1 continuous join between F and G. Further, Peters’ work shows that there will

be no cubic G1 solution as long as F0 is on the line of y = 1 in xoz plane, except for x = 0,

shown as a dashed line in Figure 3.2. Unmentioned by Peters is that as F0 approaches the

line of y = 1, a G1 solution exists, but the resulting surface may have poor shape quality. In

Figure 3.3, three example surfaces with two patches F and G were rendered with different

positions of F0: from left to right, the y-coordinate of F0 is changed to 0.5, 0.95, and 0.99.

For each of these three surfaces, F1 and G1 are set to the unique positions that yield G1
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Figure 3.3: Patches of near singular configurations.

continuity along the boundary curve. As shown in Figure 3.3, when F0 approaches the

“singular line” of y = 1 along the positive y-axis, F1 and G1 move toward infinity and the

surface shape gets worse. Finally the centre of the surface goes to infinity when F y
0 = 1.

If F y
0 approaches 1 from the direction of negative y, a similar trend is also observed.

For the surfaces shown in Figure 3.3, the value of F x
0 was 1. To check the surface shape

for other values of F x
0 , I set F x

0 by sampling uniformly in a rectangular area perpendicular

to z-axis with the center of (0, 1, 0), excluding the singularity positions. For each sampled

position of F0, I calculated G1 solutions for F1 and G1 and examined the shape quality

of the resulting patches. Instead of rendering the resulting patches, I estimated the shape

quality by plotting the positions of F1 and G1.

I first solved F1 and G1 symbolically with F0 as an invariant. As indicated by Equa-

tion 3.1, the determinant of the matrix composed of four tangent points should be zero

for any t value to guarantee the co-planarity of the two tangent planes. Expanding Equa-
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tion 3.1 using Maple, we have

Det


1 I

1 J

1 K

1 L

 = C0t
6 + C1t

5 + C2t
4 + C3t

3 + C4t
2 + C5t,

C0 = 8F y
1G

x
1 − 4Gx

1 − 4F y
0G

x
1 − 2F y

0G
z
1 − 2Gz

1 + 4F y
1G

z
1 − 16F y

1 + 8F y
0 + 8,

C1 = 48F y
1 + 6F y

0G
z
1 + 8Gx

1 + 2Gz
1 − 24F y

1G
x
1 − 32F y

0 + 16F y
0G

x
1 − 8F y

1G
z
1 − 16,

C2 = 24F y
1G

x
1 + 8F y

1G
z
1 − 4Gx

1 − 4F x
1 − 2F z

1 − 2Gz
1 + 2F x

0 − 8F y
0G

z
1 +

50F y
0 − 52F y

1 − 24F y
0G

x
1 + 16,

C3 = 8F x
1 − 6F x

0 + 8F y
0G

z
1 + 2Gz

1 + 16F y
0G

x
1 − 38F y

0 − 8F y
1G

x
1 − 8F y

1G
z
1 +

2F z
1 + 24F y

1 − 12,

C4 = −4F y
1 + 14F y

0 − 4F x
1 − 2F z

1 + 6F x
0 − 6F y

0G
z
1 − 4F y

0G
x
1 + 4F y

1G
z
1 + 4,

C5 = 8F y
1G

x
1 − 8Gx

1 − 4Gz
1 + 4F y

1G
z
1 − 16F y

1 + 16.

Here (F x
1 , F

y
1 , F

z
1 ) and (Gx

1 , G
y
1, G

z
1) are Euclidean coordinates of F1 and G1. A necessary

G1 condition is Ci = 0, i = 0, 1 . . . 5. From these six equations, F1 and G1 can be solved.

For each solution of F1 and G1, the shape quality of resulting surfaces mainly depends on

the x- and z-coordinates of F1 and G1. Therefore, I simplified the solutions by setting

Gy
1 = −1 (the same y-coordinate as G0 and G2). Finally, we have G1 solutions for F1 and

G1 given as

F1 =

(
F x

0 +
F y

0 + 2

2
+

F x
0

2(F y
0 − 1)

,
F y

0 + 1

2
, − F x

0

F y
0 − 1

)
,

G1 =

(
3

2
− F x

0

2(F y
0 − 1)

, −1,
F x

0

F y
0 − 1

+ 1

)
. (3.2)

In Equation 3.2, all unknown coordinates are linear or linear rational functions of F x
0 and

F y
0 . For the plots of Figure 3.4, the x-axis is F x

0 , the y-axis is F y
0 and the z-axis is the

absolute value of F x
1 , Gx

1 , F z
1 and Gz

1 individually for each plot. Since the value of F y
1

is a linear function and Gy
1 is a constant value, I did not generate plots for them. In
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(a) Plot of F x
1 . (b) Plot of Gx

1 .

(c) Plot of F z
1 . (d) Plot of Gz

1.

Figure 3.4: Plots of coordinates for different configurations.

each plot of Figure 3.4, the large height value indicates that either F1 or G1 is far away

from the end panels (for F z
1 and Gz

1), or the center control panels are nearly degenerate

(for F x
1 and Gx

1), both resulting in poor shape quality. As shown in Figure 3.4, when F0

approaches the singular line of y = 1 (excluding (0, 1, 0)), the z-coordinate gets bigger,

therefore the surface shape gets worse. If F0 is set far away from the singular line, the

end panel 4H0H1F0 is nearly degenerate or approaches an extraordinary value, which also

results in poor surface shape.

In summary, if we construct cubic patches by generating the boundary control points
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first, then we cannot always find a G1 solution for the interior control points. And second,

even if there exists a G1 solution, the resulting surfaces may have poor shape quality.

These are the two motivations for using approximate continuity to construct interpolating

surfaces.

3.2 Cubic approximate G1 cross boundary scheme

The possible benefits of using approximate continuity include two aspects:

� Finding good, cubic solutions for the singular or near-singular cases.

� Using approximate continuity to trade off between continuity and shape properties.

To avoid the cubic singular cases, current surface fitting schemes use quartic [38], quin-

tic [18], or sextic [25] patches to guarantee G1 continuity along the boundary curves.

In this section, I introduce an ε-G1 method using cubic patches, interpolating the

position and normal of each data point. As shown in Figure 3.5, two adjacent cubic

patches F and G meet at a common boundary curve H. Since the positions and normals

at the data points are interpolated, two pairs of end panels are coplanar, and the patches

meet with G1 continuity at H0 and H3. For all others points along the boundary, the

central panels, i.e., 4F1H1H2 and 4G1H1H2, will determine the continuity.

The continuity conditions can be checked by examining the angles between the two

normals at a given boundary point. The definitions of Peters [33] are used to illustrated

the constraints, as shown in Figure 3.5. The two pairs of end panels, i.e., 4F0H0H1 and

4G0H0H1, 4F2H2H3 and 4G2H2H3, are set to be coplanar to interpolate the normals at

end data points H0 and H3. Letting F0G0 intersect H0H1 at P0, F2G2 intersect H2H3 at

P2, as shown in Figure 3.5, Peters defined the ratios of the intersection as

η0 =
|P0 −H0|
|H1 −H0| , γ0 =

|G0 − P0|
|G0 − F0| , η2 =

|P2 −H2|
|H3 −H2| , γ2 =

|G2 − P2|
|G2 − F2| .

In each pair of panels, we have

η0(H1 −H0) = γ0(F0 −H0) + (1− γ0)(G0 −H0),

η2(H3 −H2) = γ2(F2 −H2) + (1− γ2)(G2 −H2). (3.3)
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F0

P0

H3

G2

P2

H1

H0

G0

H2

F2

F1

G1

Figure 3.5: Ratios of intersection in control panels.

Peters has shown that there are valid positions for F1 and G1 so that patches F and G

meet with tangential continuity, if and only if following constraint is satisfied:

For η0,γ0, η2, and γ2 calculated using Equation 3.3, either γ0 6= γ2, or γ0 = γ2 and

η0 = η2.

If this constraint is satisfied, Peters gave the solution to set F1 and G1 [33] so that we

have G1 continuity along the boundary. But in some cases, the above constraint can not

be fulfilled. Further, even when there is a G1 solution for F1 and G1, the shape of the

resulting surface might be unacceptable (Figure 3.3).

An approximate solution for F1 and G1 is to average the end panel data, including the

intersection ratios and cross boundary vectors:

η1 =
η0 + η2

2
, γ1 =

γ0 + γ2

2
, ~u1 = H2 −H1, ~s1 =

F0 −G0

2
+
F2 −G2

2
,

=⇒ F1 = (1− γ1)~s1 + η1~u1, G1 = −γ1~s1 + η1~u1.

Here the central control panels 4F1H1H2 and 4G1H1H2 are set to be coplanar. Neigh-

bouring patches constructed with this scheme do not in general meet with G1 continuity.

Further, while the coplanar and averaged panels result in normal discontinuity less than

8 degrees, a smaller discontinuity is likely required for most applications. However, this

construction provides us an initial arrangement for F1 and G1; I will show how to reduce

this normal discontinuity in the next section.
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Figure 3.6: Icosahedron surface before and after the adjustments.

3.2.1 Adjustment of control points

To test the results of setting the boundary control points as in Section 3.2, I used the ε-G1

data fitting scheme described in Section 3.3 to interpolate data sets of an icosahedron and

a torus sampled with 10 data triangles per ring.

The left picture in Figure 3.6 shows the resulting surface of an icosahedron. The

maximum discontinuity angle of this surface is 7.20 degree, and the creases along macro-

patch boundaries are visible. To reduce the discontinuity, I adjusted F1 and G1 so as to

have equal normals at additional interior points along the boundary (we already have equal

normals at two end points). The reason why such an adjustment reduces the discontinuity

will be explained in Chapter 5. To make this adjustment for a given point P on the

boundary curve, I performed de Casteljau’s algorithm on patches F and G individually

until the last step, leaving the two triangles 4F and 4G spanned by vectors ~u, ~v, ~w, as

shown in Figure 3.7(b). For the vectors shown in Figure 3.7(a), define

~ui = Hi+1 −Hi, ~vi = Fi −Hi, ~wi = Gi −Hi,

then ~u, ~v, ~w are all defined by quadratic Bézier functions:

~u =
2∑

i=0

~uiB
n
i (t), ~v =

2∑
i=0

~viB
n
i (t), ~w =

2∑
i=0

~wiB
n
i (t).
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~v0

P0 P2~u0 ~u2

H0 H1 H2 H3

~v2

~w0 ~w2

~v1

~w1

~u1

4F

4G

Pα

β

~v

~w

~u

G0 G1 G2

(a)

F0 F1 F2

(b)

Figure 3.7: Control vectors along a boundary curve.

The normal vectors of 4F and 4G are defined by the cross products of the difference

vectors:
~NF =

~u× ~v
|~u× ~v| ,

~NG =
~w × ~u
|~w × ~u| .

Define the angle spanned by ~u and ~v as α, and the angle between ~w and ~u as β (Fig-

ure 3.7 (b)). Suppose we already have an ε-G1 solution using the method from Section 3.1;

now adjust F1 and G1, i.e., vectors ~v1 and ~w1, so that patches F and G meet with equal

normals at additional interior points on the boundary. If we add offset vectors, say ~f and

~g, to F1 and G1 individually, the difference vectors in the center panels can be rewritten

as
~u′1 = ~u1, ~v′1 = ~v1 + ~f, ~w′1 = ~w1 + ~g.

The vectors in 4F and 4G then change to

~u′ = ~u, ~v′ = ~v + 2t(1− t)~f, ~w′ = ~w + 2t(1− t)~g.

After adjustments, we want ~u′, ~v′, ~w′ to be coplanar at P , therefore we should have

~v′ · ( ~w′ × ~u′) = (~v + 2t(1− t)~f) · ((~w + 2t(1− t)~g)× ~u) = 0. (3.4)

The goal is to find ~f and ~g that satisfy Equation 3.4.
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3.2.2 One equal-normal point

In Equation 3.4, we first suppose G1 is fixed, then we can solve for F1. Letting ~g = 0, and

t ∈ (0, 1), Equation 3.4 becomes

~v′ · ( ~w′ × ~u′) = (~v + 2t(1− t)~f) · (~w × ~u) = 0

=⇒ ~f · ~NG = − ~v · ~NG

2t(1− t) . (3.5)

Vectors ~v and ~NG are fixed once the parameter t is set. The geometric meaning of Equa-

tion 3.5 is that all the solutions of ~f define a plane perpendicular to ~NG. To have equal

normals at a third point, we solve Equation 3.5 with a given t value. Since we cannot

solve the three unknown components of ~f with only one equation, I set ~f parallel to ~NG to

minimize the length of ~f (in Section 3.2.3, an alternative approach is to have more than

one equal-normal point on the boundary). Then Equation 3.5 becomes

~f = − ~v · ~NG

2t(1− t)
~NG. (3.6)

Equation 3.6 shows how to adjust F1 when G1 is fixed.

Now we consider the general case of how to solve ~f and ~g simultaneously to have one

additional equal-normal point along the boundary. In a practical surface fitting scheme,

the adjustments to F1 and G1 should obey the following rules:

� F1 and G1 should be adjusted only once.

� The changes to F1 and G1 should be symmetric.

� Vectors ~f and ~g should be independent of which of F and G we construct first.

To solve for ~f and ~g simultaneously from Equation 3.4, we first find the directions of ~f

and ~g, then calculate their lengths. As shown in Figure 3.8(a), 4F and 4G are the results

of evaluating patches F and G using de Casteljau’s algorithm at the boundary point P

until the last step. Before adjustments, the two normal vectors ~NF and ~NG are not equal,

and 4F and 4G are not coplanar, as shown in Figure 3.8(a). After adjustments, 4F and

4G should be on the same plane defined by a normal vector ~N , as shown in Figure 3.8(a).
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△F

△G

~NF

~NG

2t(1− t)~f

2(t)(1− t)~g

~N

(a)

(b)

~NF
~NG

P
△G△F

2t(1− t)b ~N2t(1− t)a ~N
θθ

~N

P

Figure 3.8: Adjustment of a pair of control points.

A 2D side-view is presented in Figure 3.8(b), where 4F and 4G are projected into the

plane perpendicular with ~u. To distribute the adjustments evenly, set the target normal
~N to bisect ~NF and ~NG (other choices of ~N might generate a surface with better visual

quality, and should be investigated in the future):

~N =
~NF + ~NG

| ~NF + ~NG|
. (3.7)

After the adjustments, both 4F and 4G are on the target plane. If we set ~f and ~g to be

parallel to ~N to minimize the vector length, then ~f and ~g become

~f = a ~N , ~g = b ~N.

As shown in Figure 3.8, the ratio between vector length a and b is

a

b
=
Area(4F )

Area(4G)
=
|~u× ~v|
|~w × ~u| . (3.8)
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Substituting Equation 3.8 in Equation 3.4 leads to

~v′ · ( ~w′ × ~u′) = (~v + 2t(1− t)a ~N) · ((~w + 2t(1− t)b ~N)× ~u)

= ~v · ~NG + 4t(1− t)a ~N · ~NG

= 0

=⇒ a = −|~v| sin(α) sin(θ)

2t(1− t) , b = −|~w| sin(β) sin(θ)

2t(1− t) . (3.9)

Here, α is the angle between vector ~v and ~u; β is the angle between ~u and ~w (Figure 3.7(b));

θ is the angle between ~N and ~NF ( ~N and ~NG), as shown Figure 3.8(b). Equation 3.9 shows

that for two patches meeting with ε-G1 continuity, equal-normal points can be achieved

at the interior of the boundary curve by adjusting the center control points. Note that if

the two patches already meet with equal normals at P with initial positions of F1 and G1,

then sin(θ) = 0 and a = b = 0, and the adjustment leaves F1 and G1 unchanged.

3.2.3 Multiple equal-normal points

To have more interior equal-normal points on the boundary, I first construct a target plane

for each chosen t value as discussed in Section 3.2.2. If it is possible to set ~f and ~g in a way

that F1 and G1 will be on the intersection of the target planes, then there can be multiple

equal-normal points along the boundary. Using this technique, there can be up to three

interior equal-normal points.

For the case of two equal-normal points, the two target normals are set by Equation 3.7

individually. If the two target planes are not parallel to each other, as long as ~f and ~g move

F1 and G1 to the intersection line of the two planes, there will be two equal-normal points

along the boundary. By defining ~f and ~g perpendicular to this intersection line, we have

enough constraints to solve for ~f and ~g. To have equal normals at three different t values, I

compute the three target normals by Equation 3.7 individually. If these three target planes

(defined by the three target normals) intersect at one point, then both ~f and ~g are solved

uniquely. Since the two or three target planes are not guaranteed to intersect, the solution

for ~f and ~g is not guaranteed for the two or three equal-normal points methods.

Theoretically, having more equal-normal points along boundaries can reduce the discon-

tinuity more than the one-point method does (detailed explanation in Chapter 5). However,
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I found in practice that methods using two or three equal-normal points (if solutions exist)

do not provide substantial improvements over the one-point method and might result in

poor surface shape. The poor shape occurs when the two or three equal-normal points

solutions move the control points far away. In my thesis, I only use the method with one

equal-normal point along each boundary curve.

3.3 Surface fitting scheme

To test the approximate G1 boundary construction, a simple cubic parametric surface

fitting scheme was devised. This scheme constructs boundary curves first, then sets the

interior control points of the patch. For each boundary, we need the end panel data to

construct the center points F1 and G1; further, to perform a visual inspection of the normal

discontinuity, we need to construct complete surface patches for rendering. My cubic ε-G1

scheme is similar to Clough-Tocher’s scheme for data above a plane [3]. The fitting scheme

proceeds in the following steps:

1. Construct a cubic patch for each data triangle, as shown in Figure 3.9 (left). This

initial patch interpolates the positions and normal vectors of the three data vertices.

The center control point of the patch is set to be a weighted average of the other

nine control points, using Farin’s quadratic precision method [9]. I then subdivide

the patch into three cubic patches (called micro-patches), as shown in Figure 3.9.

2. Figure 3.10 shows the three micro-patches of current data triangle and the patches of

three neighbouring triangles (in dashed lines) subdivided the same way. The center

control points of the micro-patches are shown as large black dots in Figure 3.10,

including those of micro-patches from adjacent triangles. Set the center control points

so that two micro-patches have ε-G1 continuity along the macro-patch (the patch

corresponding to the whole data triangle) boundary. I used the method introduced

in Section 3.2.2 to have equal normals at one interior point along each macro-patch

boundary.

3. Each of the small and large white points are constructed as the gravity centre of the

adjacent three control points, as in Clough-Tocher’s scheme [10][28].
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Figure 3.9: Macro patch split.

Figure 3.10: Construction of micro-patches.

In this scheme, the second step uses the method introduced in Section 3.1 to set initial

positions for the big black points. Points F1 and G1 are then adjusted by adding an offset

vector calculated with method of Section 3.2.1. This scheme has ε-G1 continuity along the

macro-patch boundary. C1 continuity is guaranteed along the internal boundary between

two micro-patches (with the three micro-patches meeting with C2 continuity at the split

point, a result of the averaging in Step 3 [10]).

3.4 Results

The data fitting scheme described in the previous section was applied to various examples

to test how large the discontinuity was along the boundaries using the various variations of

the ε-G1 constructions. Further, since the ε-G1 scheme is a complete data fitting scheme,

I compared it with some G1 schemes of similar complexity. Subsection 3.4.1 gives tests on

the magnitude of the discontinuity along the boundaries, and Subsection 3.4.2 compares

the surfaces of my ε-G1 scheme to those of Shirman-Séquin and Peters.
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Figure 3.11: Discontinuity before reduction.
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Figure 3.12: Discontinuity after reduction.

3.4.1 Discontinuity reduction

I reduce the discontinuity on a surface with ε-G1 continuity by increasing the number of

equal-normal points along boundary curves.

To check the results of the discontinuity reduction for an individual boundary curve, I

sampled along a boundary curve for the maximum discontinuity on an icosahedron surface.

At each of the 100 sampled points, the discontinuity angle between two surface normals

was calculated and the results in degree are shown in Figure 3.11 and Figure 3.12. Before

the reduction operations, the discontinuity angle reaches the highest value at t = 0.5, as

shown in Figure 3.11. After the adjustments to have equal normals at the middle point, the

discontinuity at t = 0.5 is zero, and the maximum discontinuity drops dramatically. The

right picture in Figure 3.6 shows the resulting surface of icosahedron after having equal

normals at a middle boundary point; the creases observed in the left picture are gone.

Figure 3.13 shows the results of the discontinuity reduction for all the boundary curves

of a torus surface sampled at 10 data triangles per ring. As shown in Figure 3.13, the max-

imum discontinuity angle with equal normals only at the boundary end points is compared

to the maximum discontinuity angle with equal normals at boundary end points and at

t = 0.5. Due to the symmetrical pattern used to sample the torus model, multiple bound-
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Figure 3.13: Discontinuity reduction.
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Figure 3.14: Discontinuity comparison.

aries share the same patch configuration. Therefore each point in Figure 3.13 represents

more than one boundary curve. The plot shows that for every boundary, the discontinuity

angle has been dramatically reduced.

One question that remains to be addressed is which t values should we use for these

points? For the method that has one interior equal-normal point, we could perform a

numerical search to determine the t value that gives the smallest maximum discontinuity.

Figure 3.14 shows a comparison of results of having equal normals at t = 0.5 with having

equal normals at the optimal t value. For this comparison, I chose a sequence of t values

from 0 to 1, with a step of 0.01. For each value of t, I adjusted F1 and G1 to have equal

normals at the corresponding point and then calculate the maximum discontinuity angle

along the boundary. Finally I compared the minimum of these biggest discontinuity angles

with the maximum angle for having equal normals at t = 0.5, as shown in Figure 3.14.

Although the optimal t value varies from 0.12 to 0.88, the result using t = 0.5 is nearly

as good as the optimal t value, with a difference of less than 0.05 degrees. When we set

t = 0.5, Equation 3.9 simplifies to

a = −2|~v| sin(α) sin(θ), b = −2|~w| sin(β) sin(θ). (3.10)

To test the results of multiple equal-normal points, I set t = 1
3
, 2

3
for the two-point
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Table 3.1: Discontinuity angles before and after adjustments.

Interior points with equal normals
Model Before

One Two Three

Icosahedron 7.20 0.65 0.52 0.55

Torus 1.61 0.12 0.04 0.11

Table 3.2: Discontinuity angles of torus surfaces.

Sampling rate Max discontinuity

10 0.117087

20 0.008262

40 0.000485

method, and 0.25, 0.5, 0.75 for the three-point method. Table 3.1 shows the maximum dis-

continuity angles of an icosahedron and a torus (sampled by 10 triangles per ring), before

and after the adjustments, where all the angles are in degree. As shown in Table 3.1,

the one-point method reduces the discontinuity significantly; the two-points method re-

duces the discontinuity further, but not much; while the three-point method is almost the

same as that of the one-point method. This experiment suggests that the three methods

basically generate similar results for the discontinuity reduction. Since the two- and three-

point methods are not guaranteed to work, I used the one-point method in the remaining

experiments.

The other factor influencing the discontinuity on the resulting surfaces is the sampling

rate of the data mesh. Table 3.2 shows the maximum discontinuity angle of torus surfaces

with different sampling resolutions. As we increase the sampling rate, the maximum normal

discontinuity angle drops quickly. All the data in Table 3.2 are generated using the one

equal-normal point method discussed above. While we can achieve a reduction in the

discontinuity when we increase the sampling rate, we cannot do this for some data meshes,

such as those scanned from real objects. Increasing the sampling rates is more useful for

testing than for real application.
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Table 3.3: Gaussian curvature of torus surfaces.
Sampling rate Our scheme Shirman-Séquin’s

10 (2.09477, -4.70887) (2.27557, -5.24718)

20 (1.52910, -4.26633) (1.56662, -4.40811)

40 (1.38138, -4.07419) (1.39029, -4.10928)

3.4.2 Comparison to G1 schemes

To check the surface quality of my ε-G1 surfaces, I applied my surface fitting scheme and

two G1 schemes to the data mesh of a torus and compared the results. There are other G1

schemes that use optimizations that generate better surfaces than the two G1 schemes to

which I compare my scheme. However, I feel it is more appropriate to compare my ε-G1

scheme to those schemes with similar computational costs. In the Chapter 4, I present a

more sophisticated ε-G1 scheme and compare it to some better G1 schemes.

In this section, I compare the results of my scheme to that of Shirman-Séquin’s scheme

using quartic boundary curves and to Peter’s scheme with cubic patches. For these com-

parisons, I only used the variation of one equal-normal point along the macro-boundaries.

The main concern was that the ε-G1 scheme should not perform worse than these two

schemes, and we had some hopes that it might perform better.

In Figure 3.15, the first row shows the surface with 10 data triangles sampled for each

ring; the second row shows the sampling rate at 20; the surface on the left of each row

was generated by my scheme, and the surfaces on the right were generated with Shirman-

Séquin’s scheme with cubic boundary curves (Peters’ scheme can not be used on this data

set, because the data set does not admit a G1 solution for cubics). My scheme has the

same visual continuity as Shirman-Séquin’s.

From the data set used in Figure 3.15, I perturbed the locations of vertices on the

torus to avoid the singular case that Peters’ cubic scheme fails on. This allowed us to use

Peters’ scheme [33] to fit cubic surfaces to the data, although since it is near a singular

case we expected Peters scheme to perform poorly. As shown in Figure 3.16, the surface

on the left is the result of the ε-G1 scheme, the one in the middle is the cubic solution from

Peters’, the one on the right is from Shirman-Séquin’s. Although Peters’ cubic solution
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Figure 3.15: Torus surfaces compared to Shirman-Séquin’s.

Figure 3.16: Surfaces compared to Peter’s and Shirman-Séquin’s.

Figure 3.17: Torus curvature plot compared to Shirman-Séquin’s.
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can guarantee G1 continuity along the boundary, the surface has poor shape as expected.

If we look at Gaussian curvature plots of the surfaces fit to the torus with a sampling

rate of 10, as shown in Figure 3.17, my approximate G1 solution gives almost the same

curvature plot as Shirman-Séquin’s scheme. If we look at the maximum/minimum Gaussian

curvature values at different sampling rates (Table 3.3), we find that surfaces from our

scheme have a slightly better curvature range than Shirman-Séquin’s. Here the actual

range of Gaussian curvature values for the torus sampled to get the data sets is [4
3
,−4].



Chapter 4

Parametric surface fitting without

domain splitting

Other than the domain splitting methods, some polynomial G1 surface schemes interpolate

the given data set using one Bézier patch per data triangle. For these one-patch schemes,

the twist compatibility problem or vertex consistency problem, has to be resolved [25, 37,

41]. Existing G1 schemes solve this problem by using high degree patches for each data

triangle. For example, Loop designed a scheme using sextic triangular Bézier patches in

the one-to-one correspondence with data triangles [25]. In Loop’s scheme, the boundary

control points are constructed to guarantee solutions to the twist compatibility problem.

In this chapter, I will introduce an approximate G1 scheme that fits one Bézier patch

for each data triangle. In this ε-G1 scheme, positions of the data vertices are interpolated

by using one quintic triangular patch for each data triangle, generating surfaces with

approximate G1 continuity along the patch boundaries. To reduce the normal discontinuity,

the method described in Chapter 3 is extended to adjust two neighbouring quintic patches

to have equal normals at the middle point of their common boundary curve. I will begin

by reviewing the twist compatibility problem and Loop’s solution to it, since while I do

not have to solve the twist compatibility problem, I use Loop’s construction as a basis for

my approximate G1 construction.

58
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4.1 Twist compatibility

When constructing a G1 continuous surface with one patch for each data triangle of the

data mesh, we have to solve the twist compatibility problem. Although solving this problem

is not required for creating surfaces with approximate G1 continuity, the solution to this

problem has great impact on the shape quality of the resulting surface. In Loop’s scheme,

the construction of boundary curves can guarantee solutions to the twist compatibility

problem [25], and help to achieve good surface quality on the resulting surface. My ε-G1

scheme constructs the tangents and twist terms at the data vertices the same as in Loop’s

scheme [25]. In this chapter, I review the twist compatibility problem and outline Loop’s

construction.

~ti

~ti+1

~ti−1

~ti

(0, 1, 0)

(0, 0, 1)

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

(1, 0, 0)

Hi

Si

Si−1

V

Vi

Figure 4.1: Two adjacent parametric patches.

For a given triangular closed mesh M, a piecewise triangular surface is constructed to

interpolate the positions of data vertices inM. For each data vertex V inM, the number

of incident edges is referred to as the valence of V . Since we assume M is of arbitrary

topology and triangulated without singularity, the valence of V is always greater than two.

For vertex V with valence n, two adjacent patches Si and Si−1 and their domain triangles

are shown in Figure 4.1. The direction for the partial derivative along the ith edge of V

is defined as ~ti in the domain triangles. The boundary curve between patch Si and Si−1
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is Hi(t), with Hi(0) = V and Hi(1) = Vi. Assuming that the given data mesh M is not

degenerate, we have
∂Si

∂~ti+1

× ∂Si

∂~ti
6= 0.

Here the partial derivative ∂Si/∂~ti is a vector valued spline of one degree less than Si.

Then Si and Si−1 meet with G1 continuity along Hi if and only if

1. Patch Si and Si−1 share the common boundary curve: Si(t, 1−t, 0) = Si−1(t, 0, 1−t).

2. There are scalar valued functions µ(t) and ν(t) such that

∂Si

∂~ti
= µ(t)

∂Si

∂~ti+1

+ ν(t)
∂Si−1

∂~ti−1

. (4.1)

To guarantee the proper orientation of the tangent planes, assume µ(t)ν(t) ≥ 0. Differen-

tiating Equation 4.1 along the direction of ~ti and evaluating at t = 0 leads to the following

equation:

∂2Si

∂~t2i
= µ′i(0)

∂Si

∂~ti+1

+ µi(0)
∂2Si

∂~ti+1∂~ti
+ ν ′i(0)

∂Si−1

∂~ti−1

+ νi(0)
∂2Si−1

∂~ti−1∂~ti
. (4.2)

Here ∂2Si/∂~ti+1∂~ti and ∂2Si−1/∂~ti−1∂~ti are the mixed second order partial derivatives, i.e.,

the twist terms. All other terms in Equation 4.2 are known once the boundary control

points have been constructed. When constructing n patches to meet with G1 continuity

at V , there are n instances of Equations 4.2 to resolve. Solving this linear system is called

the twist compatibility problem [4, 37, 41].

For surface fitting schemes without domain splitting, solving the twist compatibility

problem is an essential issue. However, Watkins showed that a solution for an arbitrary

boundary construction is not guaranteed to exist if the valence of V is a even number [41].

If a solution exists, while we can set the twist control points to generate a G1 continuous

surface, it is unclear whether the shape of such a surface is satisfactory.

To better illustrate the twist compatibility problem and also relate it to Loop’s solution,

I present Equation 4.2 in terms of control points. As we discussed in Chapter 3, it is not

always possible to construct a G1 continuous surface using cubic patches for an arbitrary

data set [34]. Therefore we construct one quartic patch Si for the data triangle 4V ViVi+1,
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Figure 4.2: Patches surrounding a vertex.

as shown in Figure 4.2. Two adjacent patches Si and Si−1 meet at the quartic boundary

curve H, with control points Hi, j = 0, 1, 2, 3, 4. By default, we require that the vertex

positions are interpolated, therefore H0 = V and H4 = Vi. To interpolate the vertex

normals as well, points H1 and H3 are placed on the tangent planes at V and Vi respectively.

Finally, the middle control point H2 is calculated using information from adjacent data

vertices. Similarly, we set the other boundary curves originating from V .

The twist compatibility problem occurs when constructing the interior points after all

boundary curves are set. As shown in Figure 4.2, if Si and Si−1 meet with G1 continuity,

the twist control points F1 and G1 have to be set with certain constraints. With the

definition of vectors as

~ui = Hi+1 −Hi, ~vi = Fi −Hi, ~wi = Gi −Hi,
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Equation 4.1 turns into

3∑
j=0

B3
j (t)~ui = µi(t)

3∑
j=0

B3
j (t)~vi + νi(t)

3∑
j=0

B3
j (t)~wi. (4.3)

Here the B3
j (t) are the cubic Bernstein polynomials. Once all the tangent points are set,

we evaluate Equation 4.3 at t = 0 and take the cross product with the vector ~u0 on both

sides:

~u0 = µi(0)~v0 + νi(0)~w0

=⇒ ~u0 × ~u0 = µi(0)~v0 × ~u0 + νi(0)~w0 × ~u0

=⇒ µi(0)

νi(0)
=
|~w0 × ~u0|
|~u0 × ~v0| =

area4H0G0H1

area4H0H1F0

. (4.4)

We also assume µi(0), νi(0) > 0, and µi(0) + νi(0) = 1, which means that the coefficients

µi(0) and νi(0) can be determined from Equation 4.4, Similarly, the values of µi(1) and

νi(1) are set using the information at vertex Vi:

µi(0) = µ0, ν(0) = 1− µ0, µi(1) = µ1, ν(1) = 1− µ1.

To make the calculation simpler, we set µi(t) and νi(t) to be linear functions, therefore

µi(t) and νi(t) are completely defined.

We can now expand both sides of Equation 4.3, and compare the coefficients of each

Bernstein polynomial on both sides. Because the left side of Equation 4.3 is one degree lower

than the right side, I first elevate the degree of the left side to quartic. Then Equation 4.3

is true for any t value if and only if

~u0 = µ0~v0 + (1− µ0)~w0,

3~u1 + ~u0 = 3µ0~v1 + µ1~v0 + 3(1− µ0)~w1 + (1− µ1)~w0,

~u2 + ~u1 = µ0~v2 + µ1~v1 + (1− µ0)~w2 + (1− µ1)~w1,

~u3 + 3~u2 = µ0~v3 + 3µ1~v2 + (1− µ0)~w3 + 3(1− µ1)~w2,

~u3 = µ1~v3 + (1− µ1)~w3. (4.5)

The first and fifth equations in Equation 4.5 are fulfilled after we set the boundary control

points. Due to the symmetry of the patch layout, the fourth equation is equivalent to the
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second one. To solve the second and third equations, we replace the vectors with control

points, giving

µ0F1 + (1− µ0)G1 +
1

3
µ1F0 +

1

3
(1− µ1)G0 = H2 +

1

3
H1, (4.6)

µ0F2 + (1− µ0)G2 + µ1F1 + (1− µ1)G1 = H3 +H2. (4.7)

Equations 4.6 and 4.7 are equivalent to the G1 constraints described by Farin [11](page

368). In Farin’s book, the G1 conditions are targeted for arbitrary degree patches and

boundary curves. To solve the unknown points of F1 and G1, re-arrange Equation 4.6:

µ0F1 + (1− µ0)G1 = H2 +
1

3
H1 − 1

3
µ1F0 − 1

3
(1− µ1)G0

= E. (4.8)

It is easy to confirm that the coefficients of points in Equation 4.8 sum to one, therefore E

is an affine combination of the existing boundary control points. Constructing Equation 4.8

for each edge of the vertex V leads to a linear system. To better present this linear system,

re-define Pi as the twist control point of the data triangle 4V ViVi+1 (F1 in Equation 4.8).

Counting the neighbouring vertices of V in anti-clockwise order, the point G1 is therefore

re-named as Pi−1. For a vertex V with valence of n, there are n instances of Equation 4.8,

with n unknown points Pi:

ϕ0P1 + (1− ϕ0)P0 = E0,

ϕ1P2 + (1− ϕ1)P1 = E1,

ϕ2P3 + (1− ϕ2)P2 = E2,

. . . ,

ϕn−1P0 + (1− ϕn−1)Pn−1 = En−1.

Here ϕi is the scalar value of µi(0) for the ith boundary of the vertex V . The matrix form

of this linear system is
(1− ϕ0) ϕ0 0 . . . 0

0 (1− ϕ1) ϕ1 0 . . .
...

ϕn−1 0 . . . 0 (1− ϕn−1)




P0

P1

...

Pn−1

 =


E0

E1

...

En−1

 . (4.9)
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Solving the linear system of Equation 4.9 is equivalent to solving the twist compatibility

problem presented in [37, 40, 41]. A simple calculation shows that the determinant of the

coefficients matrix in Equation 4.9 is

D =
n−1∏
i=0

(1− ϕi)− (−1)n

n−1∏
i=0

ϕi.

When n is even, D can be zero and in that case there will be no non-trivial solution; if

n is odd, it is possible to set the twist points uniquely by solving Equation 4.9, but the

solution is not guaranteed to satisfy the G1 constraints at the other end of the boundary

curve (Equation 4.7).

Instead of solving Equation 4.9 for an arbitrary configuration of boundary curves, Loop

presented a solution by setting ϕi = 0.5, and constructing all the tangential control points

surrounding a given vertex to form a regular “n-gon” [25].

In Loop’s scheme, all the points in the definition of E (Equation 4.8) are set as the

average of two points, each calculated uniquely from the corresponding data triangle. In

this way, a solution to Equation 4.9 is guaranteed and a G1 interpolant is always avail-

able for the given data mesh. After comparing results of different configurations, I found

that Loop’s quartic boundary curve construction can provide good surface quality. For

an approximate G1 scheme, we do not have to meet the constraints imposed by the G1

conditions. In other words, an ε-G1 surface is not required to have a solution for Equa-

tion 4.9. However, my new ε-G1 scheme still uses the tangent and twist point construction

from Loop’s scheme because experiments showed that such a configuration can help to

improve the surface smoothness and yield better overall shape quality. Since the new ε-G1

scheme generates quintic surfaces, using the quartic boundaries of Loop’s scheme poses no

problem.

4.2 Loop’s scheme

Loop’s sextic scheme has the following steps:

1. Construct quartic boundary curves.

2. Solve the twist terms.
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3. Construct tangent fields along the boundaries.

4. Elevate the boundary curves to degree six.

5. Set the second row of control points in the sextic patch to interpolate the tangent

fields.

6. Set the remaining control point by averaging the control points from the steps above.

When the three vertices of a data triangle have the same valence, the patch constructed by

Loop’s scheme is quintic; if the three valences are all six, then the patch degree reduces to

quartic. In the remaining part of this section, I will review the first two steps briefly; the

details of the other steps of Loop’s scheme are in [25]. For each quartic boundary curve

with control points of H0
i , . . . , H4

i , Loop constructs the first two control points as

H0
i = αV + (1− α)A = αV +

1− α
n

n∑
j=1

Vj, (4.10)

H1
i = H0

i +
β

n

n∑
j=1

[
cos

(
2(j − i)π

n

)]
Vj. (4.11)

Here n is the valence of vertex V ; A is the averaged centroid if all V ’s neighboring ver-

tices. The construction of H0
i and H1

i along all boundaries performs a first order Fourier

transformation on neighbouring vertices of V [4]. If all the control points H0
i and H1

i

are connected, they will form a regular n-gon with V being the centre, as shown in the

Figure 4.3.

The α and β in Equation 4.11 are two shape parameters. The resulting surface inter-

polates the data vertices when α = 1 and approximates the data mesh when α is in other

values. In my ε-G1 scheme, α is always set to be 1. Parameter β defines the tangent length

at V . To have a pleasing surface shape, Loop recommends α and β to be

α =
1

9

[
4 + cos(

2π

n
)

]
, β =

1

3

[
1 + cos(

2π

n
)

]
. (4.12)

The last two control points H3
i and H4

i are set by Equation 4.10 and 4.11 calculated on

the neighbouring vertex Vi. The middle point H2
i is set as the average of the two centroid
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V

H1
i
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H1
i+1

A

H0
i

H1
i−1

Vi+1

H4
i

H3
i

H2
i

Ci

Ci−1

Figure 4.3: Boundary curve construction in Loop’s scheme.

points Ci and Ci−1 of the two adjacent data triangles:

H2
i =

Ci−1 + Ci

2
=
V

3
+
Vi

3
+
Vi+1

6
+
Vi−1

6
. (4.13)

With the definition of φ0 = cos(2π/n), the twist terms at V for patch Fi are solved as

∂2Fi

∂~ui∂~ui+1

=
4

n

j=n∑
j=1

[
β + φ0(−3 + 3α− 7β)

(
cos

2π(j − i)
n

+ tan
π

n
sin

2π(j − i)
n

)]
Vj

+4φ0(1− 3α)V + 4φ0 (Vi+1 + Vi−1) . (4.14)

The twist control points then can be calculated using Equation 4.14. Such a construction

generates consistent mixed partial derivatives at V from all the surrounding patches [25].

4.3 Quintic approximate G1 scheme

In Loop’s scheme, the original quartic patch has to be degree elevated to sextic to fulfil

the G1 continuity constraints. In my approximate G1 scheme, I first construct a quartic
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patch for each data triangle as an intermediate result. Such a quartic surface is actually

approximate G1 continuous and visually smooth on some models. To gain more freedom

for better surface quality, a quintic patch is later constructed based on each quartic patch.

My quintic approximate G1 surface fitting scheme has following steps:

1. Construct the quartic boundary curves for each data triangle, with a different middle

control point setting than Loop’s scheme.

2. Solve the twist terms and set the interior control points of the quartic patch.

3. Construct a quintic patch based on the quartic patch.

4. Adjust the quintic patch control points to reduce the normal discontinuity.

4.3.1 Quartic patch construction

In Loop’s scheme, quartic control points H0
i , H1

i , H3
i and H4

i are created using Equa-

tions 4.10 and 4.11 with α = 1. Figure 4.4 shows the construction of a boundary curve on

an icosahedron. For the middle control point H2
i , Loop’s scheme sets it to be the average

of Ci−1 and Ci, the centroids of two adjacent data triangles (Equation 4.13). However, if

the we need to interpolate the data vertices, i.e., V = H0
i , this construction results in a

curve with an extra ‘wiggle’, as shown in Figure 4.4(a).

In my approximate G1 scheme, I set H2
i differently to improve the surface shape, as

shown in Figure 4.4(b). The new scheme obeys the following rules to set H2
i , so that the

twist terms can be solved locally.

1. Point H2
i must be the average of Ci and Ci−1,

2. Point Ci must be set using only data at triangle V ViVi+1.

As an improvement over Loop’s construction, I calculate a virtual point V̄ for V and

set H2
i as the average of C̄i−1 and C̄i, as shown in Figure 4.4(b), with C̄i as the centroid of

4V̄ V̄iV̄i+1. All the virtual points of mesh M form a virtual mesh M̄. Ideally, a M̄ could

be found so that the Loop’s scheme can fit a surface to it, with α set by Equation 4.12.
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Figure 4.4: Comparison of different boundary curve constructions.

Therefore the resulting surface should interpolate all the data vertices of M and have a

pleasing shape. With the introduction of V̄ , Equation 4.10 is rewritten to

V = αV̄ +
1− α
n

n∑
j=1

V̄j = αV̄ +
1− α
n

Ā (4.15)

=⇒ V̄ = V +
1− α
α

(V − A) +
1− α
α

(A− Ā).

Since M is of arbitrary topology, finding the solution for V̄ from Equation 4.15 involves

solving a global system, and the solution is not guaranteed. A lower cost approach is

to introduce a new shape parameter γ, and construct V̄ to be collinear with line V A

(Figure 4.5):

V̄ = V + γ
1− α
α

(V − A). (4.16)

The middle control point H2
i is then set as the average of the virtual centroids:

H2
i =

C̄i−1

2
+
C̄i

2
=
V̄

3
+
V̄i

3
+
V̄i+1

6
+
V̄i−1

6
. (4.17)
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Figure 4.5: New construction of the middle control point.

As shown in the bottom of Figure 4.4(b), the quartic boundary curve with improved setting

of H2
i does not have the wiggle of Loop’s construction.

To further test the construction, I experimented with using a cubic boundary curve

consisting of the four tangent control points constructed by Equations 4.10 and 4.11, as

shown in Figure 4.4(c). The side view of this cubic curve shows similar shape as the im-

proved quartic construction (Figure 4.4(b) and (c)). In Section 4.5, this cubic construction

will be used to analyze the mesh optimization process of the tangent points construction

in Loop’ scheme, but the results presented there show the need to use a quartic bounary

curve.

After creating the quartic boundary curves, now we build the intermediate quartic

patch. From Equations 4.10 (with α = 1), 4.11 and 4.17, all control points on the boundary

curves in the quartic patch are set as

Q(4−k,k,0) = Hk
i , (4.18)

with k = 0, 1, . . . , 4, shown as the small circles in Figure 4.6.

Points for the other two boundaries are obtained similarly by shifting the indices to the
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Figure 4.6: Quartic patch control points.

left once and twice. The twist control point Q211 is set as

Q211 =
1

12

∂2Fi

∂~ui∂~ui+1

−Q400 +Q301 +Q310, (4.19)

shown as a big circle in Figure 4.6. Here the twist term ∂2Fi/(∂~ui∂~ui+1) is calculated using

Equation 4.2. Points Q121 and Q112 are calculated the same way with the twist term of the

corresponding vertex and the control points with indices shifted to the left once and twice.

The quartic patch is now G1 continuous at the vertices, but not on other points along the

boundary curves.

4.3.2 Quintic patch construction

The quartic patch construction in Section 4.3.1 generates a surface with large normal

discontinuities along the common boundary between patches. Since there is not enough

freedom left in the quartic patch to make further adjustments, the patch degree is raised

to quintic and its control points are adjusted to reduce the normal discontinuity. The

boundary control points of the quintic patch, shown as small circles in Figure 4.7, are

calculated by a degree elevation from the quartic patch boundary points. For example, the
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Figure 4.7: Quintic patch control points.

control points along the boundary of P500P050 are set as

P500 = Q400, P5−k,k,0 =
k

5
Q5−k,k−1,0 +

5− k
5

Q4−k,k,0, (4.20)

with k = 1, 2, 3, 4. The interior control point P311 defines the twist terms across neigh-

bouring patches. I then set the twist terms in the quintic patch to be equivalent to those

in the quartic patch:

P311 =
3

5
(Q211 −Q301 −Q310 +Q400) + P401 + P410 − P500. (4.21)

There are still three control points unset in the quintic patch, indicated as filled circles in

Figure 4.7. To limit the normal discontinuity, I set the positions of these three points by

averaging the information of the control points available so far:

P221 = P320 +
1

2
(P311 − P410 + P131 − P230). (4.22)

This result is only an initial position for point P221; Section 4.3.3 explains how to adjust it

to reduce the normal discontinuity along the boundaries. The control points corresponding

to other two boundaries are obtained by shifting the indices in Equations 4.20, 4.21, 4.22

to the left once and twice.
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Figure 4.8: Control vectors along a common boundary curve.

4.3.3 Adjustment to interior control points

Since the quintic surface constructed as in Section 4.3.2 is degree raised from the quartic

surface of Section 4.3.1, it has large normal discontinuities along patch boundaries. To

reduce the normal discontinuity along the boundaries, the control points are adjusted in a

similar way as in Chapter 3; the difference is that here one quintic patch is used for each

data triangle. The detailed analysis of discontinuity and the motivation of this adjustment

will be presented in Chapter 5.

For two adjacent quintic patches F and G sharing common boundary H, the G1 con-

straints only require two rows of control points of each patch being considered, as shown

in Figure 4.8. To reduce the discontinuity, I will adjust F2 and G2 so that patches F

and G have equal normals at additional interior points along the boundary (they already

have equal normals at the two boundary end points). For the approximate scheme in this

chapter, only the method for one additional equal-normal point is used. For a boundary

curve point P corresponding to a parameter value t, we perform de Casteljau’s algorithm

on patches F and G individually until the last step, leaving the two tangent triangles 4F
and 4G spanned by vectors ~u, ~v, ~w, as shown in Figure 4.8(b). For the vectors shown in
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Figure 4.9: Adjustment of control points.

Figure 4.8(a), define

~ui = Hi+1 −Hi, ~vi = Fi −Hi, ~wi = Gi −Hi.

This defines ~u, ~v, ~w as quartic Bézier functions:

~u =
4∑

i=0

~uiB
4
i (t), ~v =

4∑
i=0

~viB
4
i (t), ~w =

4∑
i=0

~wiB
4
i (t).

The normal vectors of4F and4G are defined by the cross product of two tangent vectors:

~NF =
~u× ~v
|~u× ~v| ,

~NG =
~w × ~u
|~w × ~u| .

We define the angle spanned by ~u and ~v as δF , and the angle between ~w and ~u as δG

(Figure 4.8 (b)). For the quintic patch constructed in Section 4.3.2, now we adjust F2

and G2 so that patches F and G meet with equal normals at one interior point on the
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boundary. Adding offset vectors, say ~f and ~g, to F2 and G2 respectively, the vectors ~v and

~w in 4F and 4G then change to

~v′ = ~v + 6t2(1− t)2 ~f, ~w′ = ~w + 6t2(1− t)2~g.

After adjustments, we want ~u, ~v′, ~w′ to be coplanar at P , that is

(~v + 6t2(1− t)2 ~f) · ((~w + 6t2(1− t)2~g)× ~u) = 0. (4.23)

The goal is to find ~f and ~g that satisfy Equation 4.23. Before adjustments, 4F and 4G
(shown with gray color in Figure 4.9(a)) are not coplanar. After adjustments, 4F and4G
should be on the same plane defined by the new normal vector ~N , as shown in Figure 4.9(a).

A 2D side-view is presented in Figure 4.9(b), where 4F and 4G are projected into the

plane perpendicular with ~u. To distribute the adjustments evenly, set the target normal
~N to bisect ~NF and ~NG:

~N =
~NF + ~NG

| ~NF + ~NG|
.

If we set ~f and ~g to be parallel to ~N to minimize the vector length, then ~f and ~g become
~f = a ~N , ~g = b ~N . By similar triangles shown in Figure 4.9(b), the ratio between the

vectors length is

a

b
=
|~v| sin(δF ) cos θ

|~w| sin(δG) cos θ
=
|~u× ~v|
|~w × ~u| . (4.24)

Substituting Equation 4.24 into Equation 4.23 to have

~v′ · ( ~w′ × ~u) = ~v · ~NG + 12t2(1− t)2a ~N · ~NG = 0

=⇒ a = −|~v| sin(δF ) sin(θ)

6t2(1− t)2
, b = −|~w| sin(δG) sin(θ)

6t2(1− t)2
. (4.25)

Equation 4.25 shows that for two patches meeting with ε-G1 continuity, we can have equal

normals at an additional interior point P on the boundary by adjusting central control

points. If the two patches already meet with equal normals at P with initial positions

of F2 and G2, then sin(θ) = 0 and a = b = 0, and the adjustment leaves F2 and G2

unchanged. Chapter 3 shows that having equal normals at t = 0.5 reduces the normal
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discontinuity significantly and the results are close to the value of t that minimize the

normal discontinuities. With t = 0.5, Equation 4.25 simplifies to

a = −8

3
|~v| sin(δF ) sin(θ), b = −8

3
|~w| sin(δG) sin(θ). (4.26)

4.4 Results

I applied my quintic approximate G1 scheme on the triangular meshes sampled on an

icosahedron, a torus and the Stanford bunny, whose meshes are shown in Figure 4.10.

I compared the resulting surfaces to those created by Loop’s sextic G1 scheme. I also

implemented Loop’s interpolating scheme using the new boundary construction method

(Section 4.3.1), so that the ε-G1 scheme and Loop’s interpolating scheme construct the

boundaries the same way as shown in Figure 4.5; this allows for a more reasonable com-

parison between Loop’s G1 scheme, and our approximate G1 scheme and is an improvement

over Loop’s original scheme.

As the first test, I wanted to see if I could use a cubic boundary curve instead of a quartic

curve. Figures 4.11 shows two interpolating surfaces on the icosahedron model. The surface

on the left has cubic boundary curves with the vertex tangents constructed the same as

in Loop’s scheme (Section 4.3.1). The surface on the right of Figures 4.11 uses quartic

boundaries constructed as in Section 4.3 with shape parameter γ set to 0.75. The degree

of boundary curves of both surfaces were later elevated to quintic. Both surfaces were

constructed using the quintic approximate G1 scheme with equal normals at the middle

boundary point. As shown in Figures 4.11, the discontinuity along the cubic boundaries

(left) is noticeable; the surface with quartic boundaries (right) is visually smooth. Surfaces

with different cubic boundary curves may have improved continuity conditions than the

left surface of Figures 4.11, but my experiments show that they are still not as good as

the surfaces with quartic boundary curves. The problem with using cubic boundary curves

is that the construction of the twist control points (F1 and G1 in Figure 4.8) depends on

the middle control point H2. Using a cubic boundary curve does not admit a solution

with consistent mixed partial derivatives at the vertex, leading to worse surface shape.

Therefore, I will use quartic boundary curves for the rest of this chapter.
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Figure 4.10: Data meshes.

Figure 4.11: Icosahedral surfaces with cubic and quartic boundaries.
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Figure 4.12: Icosahedral surfaces. Figure 4.13: Torus surfaces.

In figures 4.12, 4.13, 4.14, 4.15 and 4.16, the surface on the upper left corner is generated

by Loop’s scheme with vertices interpolated; the upper right surface is the approximating

result by Loop’s scheme; the lower left surface is by Loop’s interpolating scheme with the

new boundaries; the lower right surface is my interpolating surface with approximate G1

continuity. The shape parameter γ is set to 0.75 for the icosahedron in Figure 4.12, and

0.5 for all other models; these values were picked empirically.

The surface constructed for the icosahedron dataset by Loop’s interpolating scheme

with the original boundary construction shows poor shape quality, as shown in Figure 4.12.

The approximating surface by Loop’s scheme (upper right of Figure 4.12) has better shape,

but the vertices are not interpolated. With the improved construction of boundary curves,

Loop’s scheme generates an interpolating surface with better shape (lower left of Fig-

ure 4.12), but not as good as the surface constructed by my scheme (lower right of Fig-

ure 4.12). With the maximum normal discontinuity lower than 0.1 degrees, we do not see

a crease along patches boundaries on the surface constructed by my scheme.

As a second example, a torus surface was sampled randomly at 1371 vertices and the

vertices were tessellated using a Voronoi triangulation method [1, 36], then surfaces were fit

to this data whose mesh is shown in the upper right of Figure 4.10. The torus model used
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Figure 4.14: Gaussian curvature plots. Figure 4.15: Isophotes lines of torus surfaces.

here has a major radius of 1 and a minor radius of 0.5. The maximum valence of a vertex

in this mesh is 9, with the typical valence being 6. The ε-G1 surfaces show the same level

of visual smoothness as the revised interpolating surfaces and the approximating surface

of Loop’s scheme, with the maximum normal discontinuity lower than 0.7 degree.

To check the shape quality in more detail, I generated Gaussian curvature plots (Fig-

ure 4.14) and isophotes curves (Figure 4.15) for the resulting surfaces. In both plots, the

surfaces constructed by the ε-G1 scheme show similar shape as the surfaces constructed by

Loop’s scheme with revised boundaries. Although the isophotes shown on the surface that

the ε-G1 scheme constructed for the torus mesh look continuous in Figure 4.15, there are

actually small breaks in these isophotes lines, because ε-G1 surfaces are not G1 continuous.

Table 4.1 gives statistics about the gaps between the isophotes curves of the torus surface

constructed by the ε-G1 scheme. The greatest gap between isophotes segments is 0.066.

Both schemes with revised boundaries show better shape than that of the original Loop

interpolating scheme, but worse than the Loop’s approximating scheme, which does not

interpolate the data points.

The last model is the Stanford bunny, a triangular mesh with 752 vertices and 1500



79

Table 4.1: Isophotes gaps of torus surfaces.

Gaps (0, 10−3] (10−3, 10−2] (10−2, 10−1]

Number 2760 90 1

Percentage 97.81% 3.16% 0.03%

faces. As shown in Figure 4.16, my quintic ε-G1 scheme generates a surface with the same

level of smoothness as the revised Loop interpolating scheme. The highest normal disconti-

nuity angle between two adjacent patches in ε-G1 scheme is 65.7◦. However, statistics show

that boundaries with high normal discontinuity angles (more than 10 degrees) account for

about 0.8% of all boundary curves (Table 4.2). The region having a discontinuity of 65.7◦ is

circled in Figure 4.16 and Figure 4.17 shows a close up view of this region. Unlike the other

figures, the upper left image in Figure 4.17 shows the data triangulation; the other three

images are similar to the other figures. Among all the 27 edges with maximum normal

discontinuity of more than 5 degrees, 22 edges are located around 5 vertices. As seen in

the mesh in Figure 4.17, these vertices that cause problems for ε-G1 scheme have anoma-

lous locations, and cause modulations for most interpolating schemes, including Loop’s.

Table 4.2 shows that other than these particular areas, most parts of the ε-G1 surface have

low discontinuities.

Table 4.2: Discontinuity statistics of Bunny

Discontinuity [0, 5] (5, 10] (10, 20] > 20

Boundary Number 2223 12 10 5

Percentage 98.1% 1.1% 0.5% 0.3%

I have presented the construction of a piecewise quintic surface that interpolates the

data positions and normals. The patches meeting at a data point have a consistent mixed

partial derivative, and each pair of adjacent patches meet with ε-G1 continuity along the

common boundary. In summary, the new quintic approximate G1 scheme in this chapter



80 Approximate Continuity for Triangular Bézier Surfaces

Figure 4.16: Bunny surfaces. Figure 4.17: Close up view of bunny surfaces.

has following contributions:

� By using approximate continuity, I am able to reduce from six to five the degree of

a triangular Bézier patch interpolant.

� By using a lower degree patch than Loop’s scheme, the new scheme has fewer degrees

of freedom remaining after achieving the interpolation and continuity conditions.

This lower number of degrees of freedom avoids steps like the averaging used in step

6 of Loop’s scheme (as mentioned in Section 4.2). The expectation is that this will

result in a better shape, although such shape improvements may only appear in

sparse data sets like the icosahedron of Figure 4.12.

� By constructing a virtual mesh, I was able to improve the shape of the surfaces

constructed by Loop’s scheme when it is used to interpolate data.

For all the models (icosahedron, torus and bunny) shown in figures 4.12, 4.13, 4.14, 4.15

and 4.16, the approximating surfaces displayed better shape quality than the interpolating
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surfaces created by the same scheme. The main reason for such a difference is that both

Loop’s scheme and my quintic ε-G1 scheme optimize the data meshes for approximating

surfaces. This translation process filters out the “bad shape features” on the original data

mesh and generates surfaces with better shape as further discussed in the next section.

4.5 Data mesh optimization

To confirm the smoothing effect of transforming data vertices, I applied another two sur-

face schemes with domain splitting to the optimized data meshes: Shirman-Séquin’s G1

quartic scheme [38] and an ε-G1 cubic scheme [23]. I used these two schemes to construct

both interpolating and approximating surfaces on the bunny model (experiments on other

models lead to the same conclusion). The cubic scheme is based on the scheme introduced

in Chapter 3, with the tangent planes at each data vertex constructed the same way as

in Loop’s scheme and the quintic ε-G1 scheme. Each cubic boundary curve is then built

using the tangent points at both ends of the boundary. After the three micro-patches are

constructed, the center control points are adjusted to have more equal-normal points along

each boundary to reduce the cross boundary discontinutiy.

In Figure 4.18, the surfaces in the left column are interpolating surfaces and those in

the right column are approximating surfaces. The two surfaces in the first row are con-

structed using Loop’s sextic scheme; the second row by Shirman-Séquin’s quartic scheme;

the third row by the cubic ε-G1 scheme. For Loop’s interpolating surface, I did not use the

optimization on the middle control point of the boundary curve. Since Shirman-Séquin’s

is an interpolating scheme, the right surface in the second row is generated on a “new”

model that is composed of data vertices after optimization (Equation 4.10), i.e., applying

the interpolating scheme to the approximating data set. The three approximating surfaces

in the right column of Figure 4.18 interpolate the same set of data vertices.

For the interpolating surfaces, both Shirman-Séquin’s and the cubic ε-G1 scheme gen-

erated numerous shape artifacts, but the shape quality of the two approximating surfaces

is much better than that of the corresponding interpolating surfaces. This observation

confirms that the transformation of data vertices has a great impact on the surface shape

quality. Moreover, if we compare the surfaces of Shirman-Séquin’s scheme and the cubic ε-
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Figure 4.18: Influence of mesh optimization on surface quality.
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G1 scheme, they have the same shape quality for both interpolating and the approximating

surfaces. This experiment shows that the fulfillment of G1 continuity constraints is not a

prerequisite condition to construct surfaces with good shape. When building surfaces with

approximate continuity, we should integrate techniques such as data mesh optimization

and better boundary curve construction to create surfaces with better surface shape.



Chapter 5

Discontinuity bound for parametric

surfaces

On surfaces with ε-G1 continuity, we allow a small amount of discontinuity between nor-

mals across patch boundaries. To guarantee the maximum discontinuity angle within the

tolerance of an application, we need to find the upper bound for the discontinuity. This dis-

continuity upper bound should be calculated solely using the control points from adjacent

patches. By analyzing the definition of this upper bound, we can also develop methods to

reduce the discontinuity.

5.1 Definitions

I define the tangent points and vectors in this section similarly to those used in chapters 3

and 4. The only difference is that I use degree n patches as the general case in this chapter.

For two degree n triangular Bézier patches F and G meeting with ε-G1 continuity, only

the boundary control points Hi and the second row of control points from each patch are

considered, as shown in Figure 5.1(a). For a given point P on the boundary curve, we

perform de Casteljau’s algorithm on patches F and G individually. At the last step of

the evaluation, we have two tangent triangles 4F and 4G spanned by vectors ~u, ~v, ~w, as

84
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H1 H2

~u0 ~u1
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...
HnHn−1

F0 F1 Fn−1
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~v0

~w0
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~v1

~w1
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Gn−1

~un−1

Figure 5.1: Definition of tangent vectors

△F

△G

~u

~v

~w

θ
α

β
γ

Figure 5.2: Definition of the discontinuity angle

shown in Figure 5.1(b). For the vectors shown in Figure 5.1(a), if we define

~ui = Hi+1 −Hi, ~vi = Fi −Hi, ~wi = Gi −Hi,

then the tangent vectors ~u, ~v, ~w are degree n− 1 Bézier functions:

~u =
n−1∑
i=0

~uiB
n−1
i (t), ~v =

n−1∑
i=0

~viB
n−1
i (t), ~w =

n−1∑
i=0

~wiB
n−1
i (t).

Another view of 4F and 4G and the corresponding angles are shown in Figure 5.2. The

angle θ between the normals of 4F and 4G is the discontinuity angle that we need to
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bound from above. In Chapter 2, the discontinuity angle was calculated by calculating its

sine:

θ = arcsin

( |(~w × ~u)× (~u× ~v)|
|~w × ~u| |~u× ~v|

)
. (5.1)

In Equation 5.1, each of the normals is defined as the cross product of two tangent vectors.

Because this was the functional case, the xy-coordinates of all the control points were

distributed uniformly in the plane. For each pair of tangent vectors that define a surface

normal, I decomposed them along the xyz-axes and calculate the cross product of two

components along each axis independently. By calculating the max/min length of normals

in Equation 5.1, I computed an upper bound for the discontinuity angle for functional

surface patches meeting with approximate G1 continuity.

In the parametric case, we cannot use the same method as in the functional case to

calculate the upper bound using Equation 5.1. Since the topology of parametric surfaces is

arbitrary, the normals cannot be decomposed uniquely and therefore the max/min length

of the normals cannot be calculated as in the functional case in Chapter 2. To have a

definition of θ that is easier to bound, I use arctan θ instead of arcsin θ. As shown in

Figure 5.2, after projecting ~v to the plane defined by ~w and ~u, the discontinuity angle θ is

defined as

θ = arctan

( |~v · (~w × ~u)| |(~u× (~u× ~w))|
|~v · (~u× (~u× ~w))| |(~w × ~u)|

)
= arctan

( |~v · (~w × ~u) | |~u|
|(~u · ~v)(~u · ~w)− (~v · ~w)(~u · ~u)|

)
. (5.2)

In Equation 5.2, each term in the dot product between two tangent vectors is a scalar

valued, degree 2(n − 1) spline. The term ~v · (~w × ~u) is a scalar valued, degree 3(n − 1)

spline. To avoid the denominator being zero, we make following assumptions:

1. Angles α and β are not zero.

2. The planes of 4F and 4G are not perpendicular to each other.

As shown in Figure 5.2, α is spanned by vectors ~v and ~u, and β by ~w and ~u. The first

assumption is easy to fulfil as long as there is no singular data triangle. For the second

assumption, we assume all the boundaries are constructed free of “razor” edges, i.e., the
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value of ~v · (~u × (~u × ~w)) never changes sign along the boundary. Since we require the

interpolation of normals at the data vertices, the two pairs of end panels are assumed to

be coplanar, therefore ~v · (~u × (~u × ~w)) 6= 0 at the two end points. Therefore we have

~v · (~u× (~u× ~w)) 6= 0 for all the points along the boundary, which means θ ∈ [0, π/2).

5.2 Upper bound one

Since all the terms of the dot product in Equation 5.2 are scalar valued splines, an upper

bound of θ can be calculated using the convex hull property of splines.

Theorem 5.2.1. For parametric triangular Bézier patches F and G as defined in Sec-

tion 5.1, the upper bound of the discontinuity angle θ is given by

θ ≤ arctan

(
max(|~v · (~w × ~u) |) max(

√|~u · ~u|)
|min(|~u · ~v| |~u · ~w|)−min(|~v · ~w| |~u · ~u|)|

)
. (5.3)

The theorem follows directly from Equation 5.2. In the remaining part of this thesis,

I use the acronym of PB1 to denote the upper bound defined by Equation 5.3. All the

max/min values in Equation 5.3 are computed separately. The calculation of PB1 (para-

metric surface upper bound 1) solely depends on the configuration of tangent vectors.

5.3 Upper bound two

Calculating the upper bound using the convex hull property of spline functions can only

offer a coarse estimate of the discontinuity angle. To calculate a tighter upper bound, Equa-

tion 5.2 is further simplified. After cancelling the vectors’ lengths both in the numerator

and the denominator, we have

θ = arctan

( |~v · (~w × ~u) | |~u|
|(~u · ~v)(~u · ~w)− (~v · ~w)(~u · ~u)|

)
= arctan

( |v̂ · (ŵ × û) |
| cosα cos β − cos γ|

)
. (5.4)
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Here û, v̂ and ŵ are normalized vectors. Angle α is spanned by ~v and ~u, β by ~w and ~u, and

γ by ~v and ~w ,as shown in Figure 5.2. To have a tighter upper bound than Equation 5.3,

we need to find a tighter upper bound for the numerator and a tighter lower bound for the

denominator in Equation 5.4 individually.

For the denominator of Equation 5.4, its value only depends on the three angles α, β

and γ. As the sampling rate is increased, these angles do not change much. Therefore the

denominator of Equation 5.4 plays little part in finding a tighter upper bound for the angle

θ.

Theorem 5.3.1. For parametric triangular Bézier patches F and G as defined in Sec-

tion 5.1, an upper bound on the discontinuity angle θ is given by

θ ≤ arctan

(
max(|f (k)(t)|)hk max(

√
~u · ~u)

4k (|min(|~u · ~v| |~u · ~w|)−min(|~v · ~w| |~u · ~u|)|)

)
. (5.5)

Proof. For the numerator of Equation 5.4, we define a scalar valued function f(t) as

f(t) = ~v · (~w × ~u), t ∈ [0, 1]. (5.6)

Since vectors ~v, ~w and ~u are all degree n − 1 polynomials, the function f(t) is a degree

3(n− 1) Bézier polynomial. Now we use a degree k − 1, k > 1, Lagrange polynomial p(t)

to interpolate f(t) at 0 = t0 < t1 · · · < tk−1 = 1, to have p(ti) = f(ti), i = 0, . . . , k − 1.

The error estimate of such an interpolation is [8, 35]

|f(t)− p(t)| ≤ max(|f (k)(t)|)hk

4k
.

Here h = max(|ti+1 − ti|), the maximum parameter interval. The function f(t) must

be differentiable to at least order k. If f(t) and p(t) are both zero at these points, i.e.,

p(ti) = f(ti) = 0, i = 0, . . . , k − 1, then we have k zero-valued equations for the degree

k − 1 polynomial p(t), which leads to

p(t) ≡ 0.

The error estimate then turns into the upper bound of |f(t)| [35]:

|f(t)− p(t)| = |f(t)| ≤ max(|f (k)(t)|)hk

4k
. (5.7)
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Here k represents the number of equal-normal points along the boundary. Replacing the

corresponding term in Equation 5.3 with Equation 5.7, we have the second upper bound

for θ, named PB2. The proof of this theorem is done by combining all the equations in

this section with Equation 5.2. Here all the terms other than f(t) are calculated the same

way as in PB1.

The Taylor series of arctan(x) is

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ · · · = lim

n→∞
(−1)nx2n+1

2n+ 1
.

Thus, for small angles, we should expect θ to converge as O(hk).

5.4 Discontinuity reduction

In the surface fitting schemes introduced in Chapters 3 and 4, I adjusted the control points

to reduce the discontinuity across each boundary. With the upper bounds developed in

this chapter, now I can explain why this method works. In Equation 5.5, with other terms

being constant, we can have a smaller value of θ by

1. Increasing the sampling rate,

2. Increasing k, the number of equal-normal points.

Reducing the discontinuity by increasing the sampling rate is not always possible especially

when the surface being sampled is unknown. But we can generate more equal-normal points

by adjusting the control points. Since we require that the data normals are interpolated,

the two end points have equal normals before the adjustment, therefore k = 2. The extra

equal-normal points should be chosen at the interior of the boundary curve. In Chapter 3

and 4, I discussed how to adjust the control points of an ε-G1 surface to reduce the

normal discontinuity. After the adjustments, we can have up to three additional equal-

normal points on each boundary curve. In practice, I only used the one equal-normal point

method. The parameter value t of this extra equal-normal point is set to be t = 0.5 to

make a uniform partition.
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Table 5.1: Upper bounds before adjustments.

Sample Max PB1 PB2 R1 R2

10 1.612928 1.799921 2.530955 1.12 1.57

20 0.221054 0.260774 0.257245 1.18 1.12

30 0.065661 0.078249 0.070457 1.19 1.07

40 0.028203 0.033712 0.029404 1.20 1.04

50 0.014293 0.017116 0.014675 1.20 1.03

60 0.008388 0.010049 0.008549 1.20 1.02

70 0.005229 0.006266 0.005951 1.20 1.14

80 0.003561 0.004269 0.003639 1.20 1.02

Table 5.2: Upper bounds after adjustments.

Sample Max PB1 PB2 R1 R2

10 0.117087 0.235954 0.295882 2.01 2.53

20 0.008262 0.015297 0.016588 1.85 2.00

30 0.001617 0.002941 0.002973 1.82 1.84

40 0.000485 0.000866 0.000787 1.79 1.62

50 0.000201 0.000357 0.000318 1.78 1.58

60 0.000098 0.000174 0.000157 1.78 1.60

70 0.000052 0.000093 0.000082 1.79 1.57

80 0.000031 0.000054 0.000046 1.74 1.50

5.5 Results

To test the upper bounds, I applied the ε-G1 cubic interpolation scheme introduced in

Chapter 3 on the data meshes sampled from a regular torus model. To reduce the dis-

continuity, the center control points of the micro patches are also adjusted to have equal

normals at the middle point of each boundary.

The resulting surfaces have G1 continuity at all the data vertices, approximate G1

continuity on other boundary points and C1 continuity along the internal boundaries. The

sampling rate of the torus surfaces varies from 10 to 80 data triangles per ring and tube.

Table 5.1 shows the discontinuity angles of the surfaces before the adjustments on control



91

points, and Table 5.2 shows the data after the adjustments. All the angles in Tables 5.1

and 5.2 are in degrees. For each boundary curve, I sampled surface normals numerically at

100 points, and calculated the discontinuity angle between the two normals. The greatest

discontinuity angle sampled on each surface is shown in the column “Max” in tables 5.1

and 5.2. Although this maximum angle is not the actual greatest discontinuity angle, it

meets the precision requirement of my experiments. I used the maximum angle to measure

the tightness of the upper bounds. For the boundary curve where the maximum angle is

recorded, I also calculated the two upper bounds together with the ratios of them over the

maximum angle, shown as “R1” and “R2” in Table 5.1 and 5.2. In Table 5.1 and 5.2, the

step size in the sampling rate is 10, while in Figure 5.3, the step size is 2. For the plotted

curves in Figure 5.3, I use solid line to depict the curve of the maximum angle, dashed line

for PB1, and dotted line for PB2. The three curves in the right of Figure 5.3 are generated

with the results before the adjustments to reduce the discontinuity, and the three curves

in the left are plotted for the surfaces after the adjustments.

Before the adjustments to have equal normals at the middle boundary point, the value

of PB2 is greater than that of PB1 for low sampling rates, as shown in right of Figure 5.3.

As we increase the sampling rate, PB2 converges more quickly and soon gets smaller than

PB1. Equation 5.5 shows that the convergence speed of the upper bound should be order

of O(hk). For each boundary curve, we have equal normals at the two end points before the

adjustments, i.e., k = 2, therefore the convergence speed should be O(h2). However, in the

experiments, the convergence speed of the discontinuity angles, including the maximum

angle and two upper bounds, relative to the sampling rate are observed to be O(h3).

The discontinuity angle and the upper bounds were re-calculated after the adjustments

and the plotted curves are shown in the left in Figure 5.3. After the adjustments, there

are three equal-normal points along each boundary curve and values of PB1, PB2 and the

max angle dropped tremendously for all surfaces at different sampling rates. Moreover,

the convergence speed of the angles (sampled angle, PB1 and PB2) after adjustments is

observed to O(h4), although Equations 5.5 shows that it should be O(h3) (for k = 3). After

adjustments, the value of PB2 is greater than PB1 at low sampling rates. As the sampling

rate is increased, PB2 converges faster than PB1 and soon has smaller values than PB1,

as shown in the left of Figure 5.3. It is worth noting that usually the discontinuity is not
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Figure 5.3: Upper bounds plot.

observable when the discontinuity angle is lower than one degree.

I also applied PB1 and PB2 to the functional surfaces introduced in Chapter 2 and

compared the results with the normal discontinuity upper bounds on functional surfaces

i.e., FB1 and FB2. In Table 5.3, columns “PB1” and “PB2” show the results of the two

upper bounds introduced in this chapter; all other data are the same as in the Table 2.1.

Generally, the two parametric upper bounds are larger than the functional bounds. For

most surfaces, the optimal (smallest) parametric bound is greater than the optimal func-

tional bound, except for some surfaces where the discontinuity is small and all the bounds

have similar values. Functional bounds on these surfaces are tighter because they use

properties of a functional surface to greatly simplify the bounding equations (Chapter 2).
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Table 5.3: Discontinuity of Franke function surfaces.

Functions Grid Discontinuity FB 1 FB 2 PB 1 PB 2

10×10 26.487492 67.894637 35.814840 85.634356 84.765676

20×20 8.254011 11.494557 8.597684 18.127269 15.259764
F1

40×40 1.226258 1.469088 1.266205 1.997695 1.664952

10×10 8.059139 13.315756 11.347997 15.449778 12.970033

20×20 2.676044 3.660120 3.431178 4.380602 3.652674
F2

40×40 0.438722 0.515085 0.541983 0.618069 0.515064

10×10 1.430003 1.630511 1.498616 2.283164 1.902944

20×20 0.231934 0.240315 0.235121 0.296013 0.246678
F3

40×40 0.030659 0.030940 0.030764 0.037127 0.030939

10×10 0.512760 0.545877 0.519773 0.655014 0.545852

20×20 0.069462 0.070669 0.069708 0.084802 0.070669
F4

40×40 0.008862 0.008901 0.008870 0.010681 0.008901

10×10 5.426008 9.497992 6.355084 12.080647 10.112753

20×20 0.988369 1.235251 1.039557 1.491006 1.242591
F5

40×40 0.137503 0.146953 0.139415 0.176416 0.147013

10×10 0.432433 0.503140 0.506612 0.603738 0.503121

20×20 0.081190 0.089400 0.097062 0.107280 0.089400
F6

40×40 0.013420 0.014184 0.016166 0.017021 0.014184



Chapter 6

Conclusions

6.1 Contributions

When constructing surfaces using triangular Bézier patches to interpolate data meshes,

control points are constrained to satisfy continuity conditions. Strict constraints require

more control points, therefore we have to use high degree patches. Setting these extra

degrees of freedom in high degree patches during surface construction is complicated, and

the shape quality of resulting surfaces is sometimes unsatisfying.

The question is, do we have to satisfy continuity conditions to have a visually smooth

surface with good shape? For many applications, what we need is a visually smooth

surface, not necessarily meeting strict C1/G1 conditions. Moreover, fulfillment of continuity

conditions is also not a prerequisite of having a good shape quality (Section 4.4).

The objectives of using approximate continuity is to relax the continuity constraints so

as to use low degree patches and simple constructions without introducing too many extra

control points. We also expect approximately continuous surfaces to have shape quality

as good as the high degree surfaces with C1/G1 continuity. I first applied the idea of

approximate continuity to interpolate functional data (Chapter 2). The cross boundary

C1 constraints were simplified and an upper bound of the discontinuity angle between

surface normals was formulated. To test the idea, a simple scheme was designed to fit

surfaces to a data mesh (Chapter 2). In this functional scheme, only one cubic functional

patch is used for each data triangle. The resulting surfaces displayed the same level of

94
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smoothness as the G1 scheme using three cubic patches per data triangle [28]. Although

I did not expect this scheme to replace existing C1 schemes, it provides a good example

that it is possible to use a simple patch construction to generate visually smooth surfaces,

sometime with a better shape quality than C1 schemes.

However, the smooth surfaces constructed by the ε-C1 scheme in Chapter 2 may be due

to the simplicity of the functional data sets. The uniform distribution of control points

in the plane helps limit the normal discontinuity, especially when the ε-C1 scheme uses

local averaging methods to build patches. So I looked at parametric surfaces to further

test the idea of approximate continuity. For parametric surfaces, using only one cubic

patch cannot provide enough freedom to maintain acceptable smoothness along all patch

boundaries. Therefore I performed a Clough-Tocher like domain split on each data triangle,

with each sub-patch affecting one corresponding macro-boundary (Chapter 3). This ε-G1

scheme provides a cubic solution for arbitrary data sets, including those without a cubic

G1 solution. The resulting surfaces are as smooth as Shirman-Séquin’s quartic scheme,

and have better shape quality than some cubic schemes for nearly singular data sets.

The drawback of using a Clough-Tocher split is that the sub-patches can be long and

narrow, generating unwanted undulations on the surfaces. Although this problem happens

to all domain split schemes, it is worth further analysis to devise a better ε-G1 scheme

without a domain split. To use one patch for each data triangle, a higher degree patch

is required to allow more freedom and specially designed boundary curves for optimized

surface shape. In Loop’s scheme, the optimization on the data meshes helps to generate

surfaces with high smoothness. My quintic ε-G1 scheme uses the same method, together

with a revised configuration of the middle point of each quartic boundary curve (Chap-

ter 4). Thus one patch ε-G1 scheme constructs surfaces using quintic patches with quartic

boundary curves. The resulting surfaces exhibit the same level of smoothness as G1 contin-

uous sextic schemes for data sets from regular primitives such as the torus and octahedron,

and on the widely used data model of the Stanford bunny.

For both of my parametric schemes, the center control panel along the boundary curve

can be adjusted so as to have equal normals at the middle point. This adjustment can be

applied on any ε-G1 surface as long as it only affects the continuity along one boundary

curve and the adjustment is limited to the center panel of the boundary. The motivation of
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this adjustment is from the analysis of the upper bound of the discontinuity angle between

surface normals (Chapter 5).

In summary, the essential idea of approximate continuity is to relax the strict C1/G1

constraints and manipulate control points to reduce the normal discontinuity and improve

surface shape. Surface fitting with approximate continuity is not merely a removal of the

continuity conditions, it includes different techniques to guarantee that the discontinuity

is under control. The maximum discontinuity for surfaces is bounded from above.

6.2 Future work

I have shown the potentials of constructing surfaces with the approximate continuity, but

there are still many possible improvements remaining. The first possible improvement is

to construct better boundary curves. An interpolating surface with good shape quality

depends heavily on the construction of good boundary curves. This has been identified as

a key issue for all surface fitting schemes [27]. In this thesis, all my ε-C1/ε-G1 schemes

use the same boundary construction as the C1/G1 schemes, requiring the interpolation of

the positions and normals at data vertices. To make the construction simple, the bound-

ary curve is usually built as a planar curve. In Loop’s scheme and my ε-G1 scheme in

Chapter 4, the tangent control points are created as a regular “n-gon” at the data vertices

and all the boundary curves are not coplanar. The resulting surfaces show that these

3D boundary curves can lead to better surface shape than the traditional 2D curves. In

the future, designing boundary curves for better surface shape of ε-C1/ε-G1 continuous

isurfaces should be studied.

For the parametric scheme introduced in Chapter 4, a quartic patch is first created for

each data triangle and later degree elevated to quintic to create more freedom to adjust the

control points. The quartic patch is created using a revised boundary curve construction

of Loop’s G1 scheme, interpolating the twist terms calculated for G1 conditions, as shown

in the Figure 6.1. Although setting the twist terms the same as Loop’s scheme helps to

improve the shape quality for my quintic ε-G1 scheme, it is worth mention that a solution

to the twist compatibility problem is not required in an ε-G1 scheme. In the future work,

it would be good to set the twist points optimized for better surface quality other than
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Si−1

Si+1

Si

V

Figure 6.1: Quartic patches surrounding a vertex.

interpolating twist terms calculated for ε-G1 continuous surfaces.

In this dissertation, all the surface fitting schemes use ε-C1/ε-G1 continuity, but no

higher continuity conditions. Actually, the surface shape is also closely related to the

curvature distribution on the resulting surfaces, therefore approximate continuity of higher

orders should also be analyzed. I hope to use the freedom released from the relaxation of

C1/G1 constraints to gain smoother curvature. Ideally, we can configure the control points

per a user’s request to generate surfaces with smoother curvature than C1/G1 surfaces. In

the results shown in Chapters 2, 3 and 4, ε-C1/ε-G1 continuous surfaces sometimes show

a better Gaussian curvature distribution than the corresponding C1/G1 surfaces. In the

future, I will do further analysis to optimize curvature distribution.

The data triangulation affects the quality of resulting surfaces tremendously. Loop

presented a method to optimize the data mesh for triangular subdivision surfaces in his

thesis [24]. Later, this method is used in his interpolating scheme and my quintic ε-G1

scheme, filtering out small “bad” features such as cusps, in the data mesh that might ruin

the smoothness of the resulting surface.

The reason why this optimization works can be found by analyzing the curvature value

around vertices. An easy method to approximate the curvature value on the data mesh
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θi1

θi

Si−1

Si
Vi+1

Vi
Vi−1

V

Figure 6.2: Curvature approximation of data mesh.

is the deficit method. For the example shown in Figure 6.2, if the given vertex V and

its surrounding vertices Vi, i = 0, . . . , n − 1 are not coplanar, then using the angle deficit

method, the curvature at vertex V can be approximated as

Cur =
2π −∑n−1

i=0 θi

1
3

∑n−1
i=0 Si

(6.1)

Here angle θi is the angle spanned by ViVi and ViVi+1, Si is the area of the triangle

4V ViVi+1. In the optimization method, we translate V toward the averaged center of all

the neighbours. Since we focus on the surface shape, the size of the triangles in the data

mesh is assumed to be not changed much during this vertex translation process. Therefore,

as the vertex V is translated toward the averaged center, the numerator of Equation 6.1 is

getting smaller, and the denominator is relatively invariant. Therefore Cur is decreased af-

ter translation. This is why the approximating surface has a better surface shape than the

interpolating surface in Loop’s scheme [25]. In the future, I will explore other optimization

methods on data meshes to improve the shape quality of ε-C1/ε-G1 surfaces.

With the two upper bounds of discontinuity angle introduced in Chapter 5, we can

estimate the smoothness of resulting surfaces. In the future, I will try to refine the upper

bounds on the normal discontinuity. Moreover, for a given discontinuity tolerance, I need to

find a way to show how to guarantee this order of smoothness limited by the upper bounds.

If we have an application that has a strict limit on the discontinuity, what methods should
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we use and what will the quality of the resulting surfaces be? In this case, the constraints

of control points should be solved in reverse order for a given discontinuity value. These

constraints will later be configured during the construction to guarantee the surface quality.

In my work, all the ε-C1 and ε-G1 surfaces here are constructed using the triangular

Bézier patches. However, tensor product surfaces, particularly NURBS surfaces, are the

industrial standard. It would be an interesting topic to migrate approximate continuity

techniques to tensor product surfaces.
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che and L Schumaker, editors, Mathematical Methods for Computer Aided Geometric

Design II, pages 275–286. Academic Press, 1992.

[14] Thomas Grandine. An iterative method for computing multivariate C1 piecewise

polynomial interpolants. Computer Aided Geometric Design, 4:307–319, 1987.

[15] Alfred Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica.

Academic Press, second edition, 1997.

[16] Hans Hagen, Stefanie Hahmann, and Thomas Schreiber. Surface interrogation algo-

rithms. Computer Graphics and Applications, 7:53–60, 1992.

[17] Stefanie Hahmann. Triangular G1 interpolation by 4-splitting domain triangles. Com-

puter Aided Geometric Design, 17(8):731–757, 2000.

[18] Stefanie Hahmann and Georges-Pierre Bonneau. Polynomial surfaces interpolating

arbitrary triangulations. IEEE Transactions on Visualization and Computer Graphics

(TVCG), 9(1):99–109, 2003.

[19] Josef Hoschek, Dieter Lasser, and Larry L. Schumaker. Fundamentals of Computer

Aided Geometric Design. A K Peters, 1993.

[20] J.M.Hahn. Triangular patches within a geometric continuous patch complex. Technical

report, Brunel University, Uxbridge, England, 1987.

[21] Ming-Jun Lai. Geometric interpretation of smoothness conditions of triangular poly-

nomial patches. Computer Aided Geometric Design, 14:191–199, 1997.



102 Approximate Continuity for Triangular Bézier Surfaces
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Bézier patches. Presented on SIAM-Geometric Modeling 2005, submitted for review

for conference proceeding, 2005.

[23] Yingbin Liu and Stephen Mann. Approximate G1 cubic surfaces for data approxima-

tion. Third International Conference on Computer Graphics Theory and Applications,

pages 39–44, 2008.

[24] Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, 1987.

[25] Charles Loop. A G1 triangular spline surface of arbitrary topological type. Computer

Aided Geometric Design, 11(3):303–330, 1994.

[26] Michael Lounsbery, Stephen Mann, and Tony DeRose. Parametric surface interpola-

tion. Computer Graphics and Applications, IEEE, 12(5):45–52, Septemper 1992.

[27] Stephen Mann. Surface Approximation Using Geometric Hermite Patches. PhD thesis,

University of Washington, 1992.

[28] Stephen Mann. Cubic precision Clough-Tocher interpolation. Computer Aided Geo-

metric Design, 16(2):85–88, February 1999.

[29] Stephen Mann. Continuity adjustments to triangular Bézier patches that retain poly-
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