
 

 

 

Upper Bounds to the Capacity of 

Wireless Networks 
 

 

 

by 

 

 

Xiaoyu Chu 
 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Electrical and Computer Engineering 

 

 

 

Waterloo, Ontario, Canada, 2008 

 

 

©Xiaoyu Chu, 2008 

 

 

 



 ii

 

 

 

 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 
thesis, including any required final revisions, as accepted by my examiners. 
 
I understand that my thesis may be made electronically available to the public. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii

 

 

 

 

Abstract 

In this thesis, I mainly focus on the evaluation of the upper bounds to the capacity of 

wireless networks. With the consideration of the two measures, the maximal 

transmission rate for any source-destination pair and the transport capacity of 

wireless networks, I summarize the most recent results to the upper bounds of these 

two measures first in this thesis. At the same time, I also improve and modify the 

previous results given in these papers. Moreover, I present a proof to the upper bound 

of maximal transmission rate with high probability by taking the fading of the channel 

into account when the full CSI is only known to the receivers. With a simple 

extension of the result, I derive an upper bound to the transport capacity of wireless 

networks without full CSI at the receiver side. A linear scaling of the upper bound to 

transport capacity is also derived when the path loss exponent α  is greater than 

three. Compared with the previous results, it is shown that the upper bound given in 

this thesis is much better for relatively large α  and a minimum distance constraint. 
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Chapter 1  

Introduction 
 

1.1 Introduction to Upper Bounds to the Capacity of Wireless 

Networks 

Wired and wireless networks have enabled a wide range of devices to communicate 
with each other over vast distances. But with the constraint in physical realization of 
wired networks, people put more efforts on the research of wireless networks. 
Networks like Ad Hoc networks [1] Figure 1.1, mesh networks and sensor networks, 
have no wired backbone and all communications share the wireless medium. With the 
topical interest in wireless networks, people concentrate on deriving different metrics 
to evaluate the performance of wireless networks. And it is fundamental to determine 
the capacity of the wireless networks, but this question has not been completely 
solved even in several very simple scenarios, like relay channel and interference 
channel [12,Ch.14].  

However, still a lot of outstanding work has been done to evaluate the capacity of 
wireless networks. In the seminal paper written by Gupta and Kumar [1], they 
initiated the study of scaling laws in large wireless networks. The concept of the 
transport capacity was first introduced which measures the distance weighted total 
rate that a wireless network can support. It was shown that the transport capacity of a 
wireless network scales with the square root of the product of the area of the network 
and the number of the nodes. And another result was obtained that a wireless network 
with random node distribution and every node chooses its destination randomly, then 
the uniform communication rate for each source-destination pair scales with 

1( )
lo gn n

Θ .  

Xie and Kumar [2] confirmed this result from the information theoretic point of 
view with a strong assumption on the signal attenuation level over distance. They 
showed that whenever the path loss exponent α  of the environment is greater than 
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Figure1. 1 Ad Hoc Wireless Network. 
 

 

four in one dimensional networks or greater than six in two dimensional networks, the 
network transport capacity is upper bounded by a multiple of the total transmitted 
power Ptotal. And in the following work [8], they further improved the results to lower 
attenuation region that with random phases of the signal attenuations, the transport 
capacity of wireless Ad Hoc networks is upper bounded by a multiple of the total 
power transmitted by all transmission nodes when the path loss exponent α  is 
greater than 4 for two-dimensional networks, and α  is greater than 2.5 for 
one-dimensional networks. In the case that the phases are arbitrary, the transport 
capacity is upper bounded by a multiple of the total transmission power in the 
network when α  is greater than 5 for two-dimensional networks, and α  is greater 
than 3 for one-dimensional networks. These are the best results known until now, and 
it narrows the attenuation region where the upper bounds to transport capacity 
achieved a linear scaling. But in the region of path loss exponents 3 5α≤ ≤  for two 
dimensional networks, and 2 3α≤ ≤  for one-dimensional networks, it is still an 
open problem and they have showed that one cannot improve the result with the same 
technique used in their paper. 

These results imply the fact that if all the pairs are chosen randomly without 
consideration of the relative locations, the common rate R for any pair goes to zero by 
1/ n  for an example of two-dimensional network. Leveque and Telatar [4] showed 
that when all the nodes are uniformly and independently distributed in the extended  
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network, the maximal achievable rate tends to be zero when the number of nodes goes 
to infinity. And they proved the results with a weaker assumption on the attenuation 
level for one dimensional network [5]. In the subsequent paper [6] Ozgur, Leveque 
and Preissmann generalized the results to any attenuation level 0α > , they obtained 
the communication rate per source-destination pair is bounded by 1/n up to a factor 

(logn)3 for one dimensional network and bounded by 

1
8

1/ 2

n
n

α+

 up to a factor of (logn)3 

for two dimensional network. A quick extension to the transport capacity can be 
obtained from the results that the transport capacity is bounded by n up to a factor of 

(logn)3 for one dimensional network and bounded by 
11

8n α
+

+  up to a factor of (logn)3 
for two dimensional network with arbitrary vale of 0α > .  

Then Ozgur, Leveque and Tse [7] considered the channel model with multi-path 
fading and assumed that both the transmitters and receivers know the full channel 
state information, an upper bound on the aggregate throughput of extended network is 
obtained that with random source-destination pairing the total throughput is upper 
bounded by 2 / 2K n α ε− +  when the path loss exponent α  satisfies that 2<α <3, and 
is upper bounded by 1/ 2Kn ε+  when the path loss exponent α  is greater than three. 

In this thesis, I summarize the most recent results about the upper bounds to the 
capacity of wireless networks for different channel models. At the same time I also 
present some corrections and improvements of the previous results. Moreover, I also 
provide a proof to the upper bound of the maximal communication rate per 
source-destination pair for wireless networks that, with high probability, the maximal 
transmission rate per source-destination pair goes to zero with the increasing size of 
the network when 2α >  and a linear scaling to the upper bound of the transport 
capacity is obtained when 3α > . Unlike the channel model used in the paper above 
which I have just mentioned, we assume the full CSI is only known to the receiver 
side. Moreover, a comparison with the previous results in [9] shows that my upper 
bound is much better with relatively large path loss and minimum distance constraint.  

 
 
 

1.2 Thesis Organization 

This thesis is organized as follows: 
  Chapter 2 provides the descriptions of the background on the network modeling 
and channel modeling.  
  Chapter 3 discusses the results to the capacity of wireless networks. Specifically, I 
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will mainly focus on the paper [4], [5], [6], [7], [8] [9] and [10]. The basic ideas and 
fundamental results are discussed in details about the upper bound to maximal 
communication rate and the transport capacity. A detailed summarization will be 
given in this chapter. 
  Chapter 4 presents some corrections and modifications I have made about the 
previous work. A detailed description will be given. 
  Chapter 5 provides a new proof to the upper bounds to maximal communication 
rate for the channel model with multi-path fading with the assumption that the full 
channel state information is only known to the receiver side. And an extension to the 
upper bound of the transport capacity is presented in the following. A comparison 
between my results with the previous results is given. 
  Chapter 6 concludes the thesis briefly. 
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Chapter 2  

System Model 
 

2.1 Background 

To describe a wireless channel, people mainly focus on the variations of the channel 
strength over time Figure 2.1 and over frequency. And two kinds of variations of 
wireless channel are well-known: 

 
 Small-scale fading, it is caused by the multiple signal paths between the 

transmitter and receiver and usually it is frequency dependent. 
 Large-scale fading, it is caused by the signal attenuation. Usually it is denoted as 

the path loss of signal and can be expressed as a function of the distance between 
the transmitter and the receiver. Moreover, it can be also caused by the 
shadowing of large objects. This kind of fading is typically frequency 
independent [15]. 

 
The distance between transmitter and receiver is very important to evaluate the 

channel characteristic. As the distance r increases, the electric field decreases as r -1 
then the power in free space wave decreases as r -2 and it is often not valid when there 
are obstructions in free space propagation. In order to describe the signal attenuation 
with distance, the parameter called path loss exponent α  is used and the power of a 
signal decays with distance by r α− . Another parameter called absorption constant is 
also presented in some model. The power decays with distance by re γ− .  

For the Small-scale fading, usually it is difficult to handle. For simplicity, people 
usually use a random phase term to characterize the multi-path fading for each 
channel. And the Rayleigh fading channel is the simplest probabilistic model. As 
compared with the wavelength, the distance between reflectors and scatterers are 
much farther, it is reasonable to assume the phase of each path is uniformly 
distributed and independent to each other. Then for a large number of independent 
paths, the channel gain can be modeled as a complex zero-mean Gaussian random 
variable through Central Limit Theorem. Consequently, the magnitude of the channel 
gain is a Rayleigh random variable. This model is frequently used with the constraint 
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Figure 2. 1 Channel quality varies over multiple time-scales. 

 
that the channel gains are circularly symmetric complex Gaussian random variables. 

Usually, there is a standard assumption that an additive noise is included in each 
channel. And it is quite normal and reasonable to assume all the noises are 
independent with each other and are identically distributed with a Gaussian 
distribution. This assumption of AWGN essentially means all the additive noises are 
from the receiver side which are independent with different receivers. Moreover, there 
is no relation between the noises and the channel as well as the transmitters. And in 
practice, this model has been popularly applied to most of the communication 
situations [15]. 

 
 
 

2.2 Network Model 

2.2.1 Dense Networks 

For a dense network, Figure 2.2, the area is fixed, usually is defined as with area one 

for simplicity, and the node density is increasing while the number of nodes in the 

network is increasing, or equivalently, the number of nodes increases in a constant 

area which leads to the increasing of the node density. In this scenario, it is quite 

obvious to find that the affect of interference among all the nodes becomes more and 

more severe with the increasing number of nodes in the network.  
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Figure 2. 2 Two dimensional dense network with n nodes and area one 

 
 

 
 

 
Figure 2. 3 Two dimensional extended network with n nodes and area n 

 

2.2.2 Extended Networks 

For an extended network Figure 2.3, the node density of the network is fixed, i.e., the 
number of nodes increases with the area at the same time and the density keeps 
constant. In this scenario, compared with the dense network, the distance between two  
nodes is scaled by n , take two-dimensional network for instance, then with the 
same transmission power, the received power for the intended transmitter decreases  
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Figure 2. 4 A planar network with the minimum separation minρ . 

 
 

 
 

Figure 2. 5 A linear network with the minimum separation minρ . 

 
by a factor of / 2n α− . So the extended network can be assumed to be equivalent to the 
dense network with the average power constraint per node reduced to / 2/P nα  
instead of P . 
 

2.3 Channel Model 

For the channel formulation, people focus on the characterization of the signal 
attenuation with distance and the fading due to multi-path. Next I will present two 
different kinds of channel models with and without small scale fading which are with 
great interest in channel modeling. 
 
 

2.3.1 Channel Model without Consideration of Small Scale Fading 

Xie and Kumar [2] firstly considered the problem in information theoretic point of 
view. And their fundamental system model is essentially frequently used in the 
following work. The model used is called linear network for one-dimensional Figure 
2.4 and planar network for two-dimensional Figure 2.5. 

Take the planar network for an example, the network model is defined as follows, 
A. n nodes uniformly located in the plane. 
 

                                        8



 
 
System Model                                                       9 

  

 
B. The minimum distance between any two nodes is minρ , i.e., minijρ ρ≥  for any 

two nodes i and j in the network, where ijρ  is the distance between i and j. 
 
C. Each node has both a transmitter and a receiver. At each time instant, node i 

sends signal Xi(t) and receives signal Yi(t), which satisfies  
 

                     
( )

( ) ( )
ij

j
i i

j i ij

e X t
Y t Z t

γρ

δρ

−

≠

= +∑  

 
and Zi(t) is the additive noise which is Gaussian independent and identically 
distributed random variable with zero mean and variance 2σ . The two constants 

0γ ≥  and δ >0 are the absorption constant and path loss exponent. 
 

D. Let Pi denote the transmit power used by node i, and the power satisfies the 
individual power constraint that i indP P≤  for any i. At the same time, all the 
transmitting nodes satisfy the total power constraint that  

 

1

n

i total
i

P P
=

≤∑ .  

 
E. There are several source-destination pairs ( , )l ls d  where l ls d≠ , and each node 

can only pick up one node uniformly as its destination. 
 
Essentially, this model is an extension of single user Gaussian additive noise 

channel to a network version which relates the channel gain to the distance between 
the transmitter and the receiver. The most special case of the planar network is called 
regular planar network, for which, all the nodes are located at the cross points of a 
square lattice. And similarly, the regular linear network is defined as the 
one-dimensional network with all the nodes distributed in the integer point of a line 
with the interval length defined as the minimum distance constraint. And usually, it 
makes sense to assume the minimum distance constraint between any two nodes, 
since it is provable that with high probability, there exists such a minimum distance in 
the network. Thus, the regular network just simplifies the problem by knowing that all 
nodes have fixed locations. 

In the paper by Leveque and Telatar [4], Ozgur, Leveque and Preissmann [6], they 
all considered the same network model and channel model. And they also take a much 
more simple case into account that there is no absorption in the channel model, i.e., 

0γ = . 
 

2.3.2 Channel Model with Consideration of Small Scale Fading 

Usually, the small scale fading caused by multi-path can be taken into account by 
adding a random phase term in the channel model that 
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( )

( ) ( )
ijj

j
i i

j i ij

e X t
Y t Z t

θ

δρ≠

= +∑  

   
 
where ijθ  is the random phase for the channel from node i to node j caused by the 
multi-path from i to j. And the random phase term is defined as uniformly distributed 
in the interval [0, 2 ]π . The phase term is considered to be independent with the 
distance from i to j. Usually a constant term G which represents the gain from the 
transmitter and receiver is added to the channel model and the carrier wavelength is 
omitted in the channel model. In the paper [7],[8],[9] and [10], they all have 
considered the channel model with multi-path fading. And usually, the evaluation of 
the upper bound to capacity of wireless networks is different due the existence of the 
small scale fading. 
 

 

2.3.4 Channel State Information 

In the channel modeling, it is also important to know whether the information about 
the channel state is available or not. Usually, there are two different kinds of 
assumptions that the full channel state information is fully known to both the 
transmitters and receivers or the full channel state information is only known to the 
receivers. The difference between the two cases is, if the full channel state 
information is known to all the transmitters, then all the transmitters can cooperate 
and distribute the transmission power according to the channel state information. 
Otherwise, all the transmitters can only transmit with fixed power allocation. And 
intuitively, it should perform much better with the full information of the channel 
state known to both transmitters and receivers.  
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Chapter 3  

Upper Bounds to the Capacity of 
Wireless Network 
 

A lot of insightful results have been presented about the capacity of wireless networks 
in the past few years. People mainly focus on the measure of maximal communication 
rate and the transport capacity to evaluate the performance of the networks. In the 
discussion of the two metric, all the techniques are based on the cut set bound which 
was first introduced by Cover [12]. So in the following, I will present the most recent 
results about the upper bound to maximal communication rate and the transport 
capacity based on single cut analysis and multi-cut analysis. And I will also provide 
two distinct models for different channel characterization which are frequently used. 
Then the upper bound to the transport capacity over fading channels will be presented 
in the end. 
 

 

3.1 Cut-Set Bound 

Cut set bound is the most frequently used and the only one can be applied to the 
derivation of upper bounds to the throughput and the transport capacity for wireless 
networks. With consideration of the spirit of Max-Flow Min-Cut Lemma into 
information theory, the cut set bound was first introduced in [12]. Then all the 
analysis of upper bound is based on this general method. 

For a general wireless network with multiple transmitters and receivers randomly 
distributed in an area. Each node has both transmitter and receiver with transmitted 
variable X(i) and received variable Y(i) for node i. For any two different nodes i and j, 
they communicate with rate R(ij) and all the messages sent from i to j are independent 
and uniformly distributed over the message alphabet {1,2,…,2nR(ij)}. If there exists a 
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Figure 3. 1 Cut set applied to wireless network 

 
random cut which divides the network into two parts, S and SC , Figure 3.1, then the 
total communication rate through the cut from the nodes in S to SC is upper bounded 
by the conditional mutual information that 
 

( )

,

( ; | )C C
C

ij
S S S

i S j S

R I X Y X
∈ ∈

≤∑                      (1) 

 
So the interpretation of the cut-set bound is the total rate of the information flow 

across the cut is less than or equals to the mutual information between the inputs in 
one side and the outputs on the other side, conditioned on the inputs on the other side. 
But this upper bound is not tight for most cases. 
This nice upper bound can be simply applied to the analysis of the upper bound of 
throughput and the transport capacity of wireless network. Basically, people use two 
different ways which are both direct application of cut set bound. Firstly, consider 
only one cut which divides the network into two parts. In [4],[5],[6], they consider a 
deterministic cut that divide the network into two equal parts and in [9], they consider 
a random cut which also divide the network into two parts. On the other hand, Xie and 
Kumar first use the multi cut analysis to derive the upper bound which is much more 
precise. Because there is a nice relationship between the transport capacity and the cut 
set bound applied to multiple cuts, obviously, the multiple cut analysis can provide a 
much better result on the transport capacity since now the total communication rates 
through the cut which divides the network into two equal part and the cut which 
divides the network into two parts with one node and n-1 nodes are totally different.  
 

                                        12



 
 
Upper Bounds to the Capacity of Wireless Networks                        13 

  

 
The relationship between cut set bound and the transport capacity ensures the 

accuracy to use multi cut analysis. Moreover, people can use it to make a connection 
between communication rate and the transport capacity. For one dimensional network 
as an example, the transport capacity and the multi-cut set bound is related by, 

 
( , )i j

T ij
i j

C R ρ
≠

=∑                                   (2) 

 
( , ) ( , )i j i j

ij ij
i j i j

R Rρ ρ
< >

= +∑ ∑                        (3) 

 
The first part in equation (3) can be represented by 

 
( , )( , )

1

j
i ji j

ij kk
i j i j k i

R Rρ ρ +
< < =

=∑ ∑ ∑                            (4) 

 

         
1

( , )
1

1 1 1

n k n
i j

kk
k i j k

Rρ
−

+
= = = +

=∑ ∑ ∑                         (5) 

 

Obviously, ( , )

1 1

k n
i j

i j k
R

= = +
∑ ∑ is just the total rate through the kth cut from left to right 

between the two node k and k+1 which can be represented by kR + . 

Similarly, the same process can be applied to the second term in equation (3). So 
the transport capacity can be represented by 

 

1
1

( )
n

T kk k k
k

C R Rρ + + −
=

= +∑                         (6) 

 
This result can also be extended to two-dimensional case [6]. 
 

 

3.2 Single Cut Analysis to the Capacity of Wireless Networks 

For the analysis to the capacity of wireless networks according to cut-set bound, 

usually there are two kinds of application. The simplest one is the single cut analysis 

which is defined as there exist only one cut dividing the network into two equal parts. 
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Then people focus on the total throughput across the single cut and the maximal 

communication rate across the cut for any source-destination pairs. Although it is not 

as tight as the multi-cut analysis, it simplifies the problem to evaluate the performance 

of the network. Several papers have used this method to derive the upper bound to 

capacity of wireless networks and I will present them in details in the following. 

Moreover, I will mention two kinds of different channel modeling in the application 

of the single cut analysis. 

 

3.2.1 Upper Bounds to the Capacity of Wireless Networks for the Channel 

Model without Fading 

There is a series of work which concentrate in the scenario that all the nodes are 
uniformly distributed in the network with constant node density. An information 
theoretic upper bound to the communication rate is derived that the maximum 
communication rate goes to zero with the increasing of the network size. 

In the first work [4], the model used is called uniformly distributed network. In the 
d-dimensional region 

 
1/ 1/ 1/ 1[ , ] [0, ]d d d d

n n n n −Ω = − ×  

 
with n users uniformly distributed in it. The single cut analysis is applied to the 
network which divides the region into two equal groups, and there are n/2 nodes in 
each group. Every node can be either a transmitter or a receiver, so statistically, there 
are about n/8 communications crossing the cut from left to right hand side. We can 
only consider these nodes because the deviations from the idealized situation are of 
order much smaller than n when n goes to infinity with high probability. Moreover, 
another n additional users which are called “mirror” nodes are introduced in helping 
relaying communications Figure 3.2. These n additional nodes (with n/2 on each side) 
not only help the communication, but also bring the nice symmetry to this problem, 
because with the mirror nodes, there are n nodes on both sides which are symmetrical 
according to the single cut in middle, then the channel gain matrix G is therefore a 
symmetric matrix which simplifies the analysis of the capacity. 

Based on the equation (1), a simple upper bound for the total communication rates 
from the left to right hand side can be derived with the relation between XS and YSc 
that 
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Figure 3. 2 The wireless network with the “mirror” nodes and the white ones represent 

the original nodes and the black ones represent the mirror nodes. 

 
C SS

Y GX Z= +                         (7) 

 
where G is the channel matrix with each element Gij is corresponding to the channel 
gain from node i on the left hand side to node j on the right hand side. So  
 

1

n

j ij i j
i

Y G X Z
=

= +∑  

 
As the jointly Gaussian vector achieves the maximum mutual information in 

equation (1), it can be represented by logarithm function in terms of the channel gain 
matrix and input variables’ autocorrelation matrix, and the basic idea used here is to 
convert the matrix form to scalar case by Hardmard’s inequality which simplifies the 
calculation. By the symmetry of the channel gain matrix, the whole problem becomes 
easy by taking use of the majorization theory for the Schur-concave function.  

The majorization theory which is not introduced in details in [4], is defined as a 
vector 1 2[ , ... ]nX x x x=  majorizes another vector 1 2[ , ... ]nY y y y=  which is 

represented by 
 
                    X Y  or  1 2 1 2[ , ... ] [ , ... ]n nx x x y y y  

if 
                    

                                        15



 
 
Upper Bounds to the Capacity of Wireless Networks                        16 

  

 

                    1 1

1 1

l l

i i
i i

n n

i i
i i

x y

x y

= =

= =

⎧
≥⎪⎪

⎨
⎪ =
⎪⎩

∑ ∑

∑ ∑
 

 
Intuitively, the majorizaiton argument for vector X and Y means the elements of Y 

are much closer to each other than the X vector. 
The majorization theory for the Schur-concave function is for any Schur-concave 

function ( )f X  where the argument X is a vector, then ( ) ( )f X f Y≤  if X Y .  
So the key point in this proof is just to use the result that the eigenvalues of the 

channel gain matrix majorizes the diagonal elements. And the diagonal elements of 
channel gain matrix G is easy to handle since the gain is only related to the distance 
between any two nodes, so the upper bound can be simply derived. Moreover, all the 
upper bounds obtained in this paper are held with high probability. And there is a 
good observation here about how to derive an upper bound with high probability. 
Basically, they tried to find the expected communication rate due to the randomness 
of the node location. And based on the expected value of communication rate, if the 
deviation from the mean value is sublinear to the expected value, then one can say the 
upper bound will hold for any communication pair with high probability when the 
number of nodes n goes to infinity. 

The result obtained in this paper can be summarized as  
 

1/ 1/

2

1/

log

(log )

d

d

nR K
n

nR K
n

α−

⎧ ≤⎪⎪
⎨
⎪ ≤
⎪⎩

 

 
Basically, they proved that the maximum transmission rate per communication pair 

in wireless network tends to be zero with the number of nodes goes to infinity under 
the condition that 2( 2)d dα > ∨ −  without absorption or for any α  with the 
presence of absorption. But obviously, the upper bound derived here is not tight due 
to the loose upper bound used to analyze the mutual information, there must exit a 
better analysis on the capacity with single cut. So the following work [5] and [6] just 
improved the result. 

In [5], Leveque and Preissmann improved the result in one dimensional case for 
small values of the path loss exponent α . The model they used is exactly the same as 
that defined in [4] with an additional minimum distance assumption that the minimum 
distance between any two nodes in the network is minρ . Actually this assumption is  

 

almost sure  without absorption 

2( 2)d dα > ∨ −
almost sure  with absorption 

0β >

1, 2 . . . 1l n= −  
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quite reasonable, it is because for most random networks there do exit a minimum 
distance between any two nodes with high probability. With the same technique to 
upper bound the mutual information, they try to convert it to another matrix form 
instead of the majorization theory to analyze the upper bound. Although it is much 
more complicated, it obtains a much better result. The key step in their proof is they 
upper bounded the mutual information by a logarithm function in terms of channel 
gain matrix that 

 

1

2

10,

( ; ) max log(1 )
n

k k
k

n

k k
kP P nP

I X Y P λ

=

=> ≤

≤ +
∑

∑                   (8) 

1
2 log(1 )

n

k
k

nPλ
=

≤ +∑                       (9)    

 

2 log det( )I nPG= +                       (10) 
 

where kλ  is the k-th eigenvalue of channel gain matrix G. The reason to upper 

bound the mutual information by equation (10) is to use the nice analytic expression 
of Cauchy Matrix that  
 

2

, ,
det( ( )) ( ( ) ) /( ( ))J j i j i

i j J i j J
i j

D x x x x x
∈ ∈

<

= ∏ − ∏ +                  (11) 

 

and the elements of the matrix D(xJ) is 1
i j

i j

D
x x

=
+

 for any i and j. 

So as the exact expression of the determinant is known now, the upper bound will 
be much more accurate based on these analysis, therefore a better upper bound is 
obtained that  

 
3(log )K nR

n

ε+

≤  

 
for any 2 4α≤ ≤  and 0ε > . 

This upper bound approximately showed that the maximum transmission rate per 
communication pair goes to zero by 1/n up to a factor of order 3(log )n ε+ with n 
denoting the number of nodes in the network. This improved the upper bound by 

1/1/ n α  compared with the results that derived in the last paper for one dimensional  
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Figure 3. 3 Divide the two dimensional network into horizontal strips with length ε  

 
network. Moreover, in the next paper [6], the result was even extended with a much 
weaker assumption on the pass loss level that for any value of α , the maximal 
communication rate for each source-destination pair can be bounded above by 

 
3

1

1
38

2

(log )

(log )

nR K
n

n nR K
n

α+

⎧
≤⎪

⎪
⎨
⎪

≤⎪
⎩

 

 
and all the results presented here are obtained with high probability. 

 
This upper bound provides a general evaluation on any kind of pass loss level, it 

was even generalized to the two-dimensional case by dividing the whole network into 
multiple of strips Figure 3.3.  

With this division, approximately in each strip, it is assumed to be a 
one-dimensional network which has been already upper bounded before. Therefore, 
this approximation provides an upper bound to the maximal communication rate for 
two-dimensional network. 

Moreover the upper bound can be simply generalized to the upper bound to total 
aggregate throughput of the network by multiplying the network size n because the 
total throughput can be represented by 

One-dimensional 

Two-dimensional 
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( ) ijT n R=∑  

 
and there are at most n communication pairs, the total throughput can be simply 
bounded by 
 

maxijR nR≤∑  

 
And a trivial upper bound to the transport capacity of the wireless network can be 

obtained by applying the nice relation proved in the section 3.1 that 
 

3
3

1
38

4

( ) (log )

( ) (log )

C

C

T n K n n

T n K nn nα+

⎧ ≤⎪
⎨
⎪ ≤⎩

 

 
for any path loss exponent 0α >  with high probability. 

The upper bound implies that the transport capacity of a wireless network grows at 
most linear with n in one dimensional case, up to a logarithmic factor for any 
attenuation coefficient. But this upper bound on the transport capacity is trivial, 
because the essence of the proof is to upper bound the aggregate throughput first and 
then use this bound for every single cut with n times. Obviously, this bound is loose 
since the throughput through different cuts is totally different, like the cut which 
divides the network into two parts by one node on the left hand side and n-1 nodes on 
the right hand side and the cut which equally divides the network. So the upper bound 
to the transport capacity can be even improved my multi-cut analysis which has been 
done in [8], and I will talk about it later.    

 
 

3.2.2 Upper Bounds to the Capacity of Wireless Networks for the Channel 

Model with Fading 

The most recent paper written by Ozgur, Leveque and Tse [7] obtained the upper 
bounds to the maximum communication rate of wireless network with full CSI known 
to both the transmitter and receiver. Compared with the previous work introduced in 
last section, they considered the channel model with multi-path fading which is 
characterized by a random phase term. They also assume that the full channel state 
information are known such that the transmitters can cooperate and distribute the total 
power depending on the channel state information,  i.e. the covariance matrix for the  
 

One-dimensional  

Two-dimensional 
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Figure 3. 4 A single cut applied to the wireless network. The right hand side is divided 

into two parts, the first part includes all nodes near the cut and the second part 

includes all nodes relatively far away from the cut. 

 
transmitting variables is a function in terms of the channel state information. With the 
channel model defined in chapter 2.3.2, each node randomly chooses its destination 
without consideration of the location. For the single cut analysis, the network was 
divided into two equal parts with the same number of nodes on each side with high 
probability. For all the receiving nodes on the right hand side, they were divided into 
another two parts Figure 3.4. The nodes in the first part which are closed to the cut in 
the middle of the network will have a severe affect on the upper bound when the 
signal attenuation level is high, so consider the upper bound on the receiving nodes in 
two different parts separately will result in the better analysis on the upper bound in 
low attenuation level. 

Compared with the previous work [4],[5] and [6], the key step in this work is to 
analyze the maximal eigenvalue of the scaled version of the channel gain matrix(see 
proof in [7]).  
  The upper bound can be derived as following 
 

1 / 2

1/ 2

'
'

R K n
R K n

α ε

ε

− +

− +

⎧ ≤⎪
⎨

≤⎪⎩
 

 
3α ≥

2 3α≤ <
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for any 0ε >  and 'K  is a constant. 

 
The most important thing of this proof is that they found independent signaling 

among all the transmitting nodes is enough to achieve the upper bound. Equivalently, 
with consideration of the random phase of the channel gain caused by the multi-path, 
there is no need for the transmitting nodes to cooperate or make use of any kind of 
beamforming. This is an interesting and useful result that it may simplify the analysis 
of the performance of the network due to the independence. Quite intuitively, this 
conclusion is due to the random phase introduced into the channel model. Another 
importance of the proof is that the dominant part of the upper bound of capacity is 
different for different attenuation level. When the pass loss exponent α  is greater 
than three, then the received power in the cut set bound mainly comes from the power 
transferred from the nodes near the cut and correspondingly, the received power is 
mainly from the nodes far away from the cut when α  is less than three. 

Similar to the previous work, this upper bound can give a trivial upper bound on the 
transport capacity immediately by applying the nice relationship between multiple cut 
set bound and the transport capacity, 

 
2.5 / 2

1

( ) '

( ) '
C

C

T n K n

T n K n

α ε

ε

− +

+

⎧ ≤⎪
⎨

≤⎪⎩
 

 
For this result, the upper bound of the transport capacity is quite closed to a linear 

scaling, up to a factor of nε  for any ε  greater than zero when the attenuation factor 
α  is greater than or equals to three. 
 

 

3.3 Multi-cut Analysis to the Capacity of Wireless Networks 

As the nice relationship between the multiple cut set bound and the transport capacity, 
the multi-cut analysis should provide a much better analysis to the upper bound of the 
transport capacity of wireless network. Xie and Kumar proved the linear scaling of the 
transport capacity of wireless network with and without multi-path fading for certain 
range of path loss level in 2006 [8]. Like the model used in [2], a network with n 
nodes randomly distributed is introduced. For each node, it can be both transmitter 
and receiver, and the received variable and the transmitted variable can be related by 
equation (12). 

 
 

3α ≥

2 3α≤ <
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( ) ( ) ( )j ij i j

i N
i j

Y t g X t Z t
∈
≠

= +∑                         (12) 

 
Without the “mirror” nodes introduced in the network, the channel gain matrix in 

this model is quite general in the form that 
 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...
: : : :

...

n

n

n n n n

g g g
g g g

G

g g g

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
with each element / 2

, /iji
i j ijg e θ αρ=  for the channel model with multi-path fading and 

/ 2
, 1/i j ijg αρ=  for the channel model without multi-path fading. 

The idea for the proof is to use the Hardmard’s inequality to bound above the 
mutual information in terms of the channel gain matrix. Then by changing the order of 
the multiple sum, the linear scaling for the transport capacity can be obtained through 
strict proof. The results got in this paper are 
 
1) For the channel model with multi path fading 
 

1
2 1

min

( ) log
T total

c eEC Pα

δ
σ ρ −≤  

 
for one dimensional case with the path loss exponent 2.5α >  and define 2α δ= ,the 
constant 1( )c δ  is defined as 

 

 
1/ 2

1 3/ 2

2(4 1)(4 3)( )
(4 5)

c δ δδ
δ
− −

=
−

 

 
  For two dimensional network 
 

2
2 1

min

( ) log
T total

c eEC Pα

δ
σ ρ −≤  

 
with the path loss exponent 4α >  and the constant 2 ( )c δ  is defined as  
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2 ( )c δ =
2 2 2 4 1.5 5.5 1.5

1/ 2 1/ 2 1.5 0.5

2 2 2 2( )
( 1) ( 2) ( 1) ( 3) ( 2) ( 1)

2 2 2 2 2

α α α α

α α α α αα

+ + + +

+ + +
− − − − − −

 

 
2) For the channel model without multi path fading 
 

1
2 1

min

( ) log
T total

c eC Pα

δ
σ ρ −≤  

 
for one dimensional case with the path loss exponent 3α >  and the constant 1( )c δ  

is defined as  
 

1
3 1( ) 2(1 )

2 2 ( 1)(2 3)
c δ

δ δ δ
= + +

− − −
 

 
  For two dimensional network 
 

2
2 1

min

( ) log
T total

c eC Pα

δ
σ ρ −≤  

 
with the path loss exponent 5α >  and the constant 2 ( )c δ  is defined as 

 
2 8

2 2

2( )
( 2)

c
δ

δ
δ

+

=
−

 

 
Here 1( )c δ and 2 ( )c δ  are two constants in terms of the path loss parameter 

/ 2δ α= , σ  is the standard variance of the complex Gaussian noise, minρ  is the 

minimum distance between any two nodes in the network defined in the network 
model and totalP  is the total power constraint for the total transmitting power. It can 

also be represented by indnP  where indP  is the individual power constraint for any 

transmitting node. It is obvious to find that by simply replacing the totalP  by indnP , a 

linear scaling to the transport capacity of wireless network can be obtained 
immediately. So basically, the results showed the transport capacity of wireless 
network has a linear scaling behavior in a certain level of path loss attenuation. As it 
is already proved that the upper bound to the transport capacity do not have a linear 
scaling when 2α <  for one dimensional case and 3α <  for two dimensional case, 
there is a gap for the path loss exponent which is still an open problem. 
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These upper bounds also have implications for the ergodic the transport capacity of 

wireless network over fading channels, so it is also with great importance to find the 
performance of the transport capacity over general fading channels. 
 

 

3.4 Upper Bounds to the Transport Capacity of Wireless 

Networks over Fading Channels 

In the last few sections, the performance of the wireless network has already been 
evaluated in details. And the best result is the linear scaling for the upper bounds to 
the transport capacity of wireless network. So what happened to the general fading 
channels? Is there any affect to the upper bound of the transport capacity for wireless 
network? Xue, Xie and Kumar analyzed the performance of the transport capacity 
over fading channel and proved that the linear scaling still holds in a certain power 
attenuation regime [10]. 

The model used here is similar to the previous model defined in [8] except the 
fading process introduced in the network. N communication nodes randomly 
distributed in a two dimensional network, the model for the communication among 
them is described as  
 

0
( ) ( ) ( ) ( )

ij

j ijl i ij j
i j lij

eY t H t X t l Z t
γρ

δ

β τ
ρ

− ∞

≠ =

⎛ ⎞= ⋅ − − +⎜ ⎟
⎝ ⎠

∑ ∑                (13) 

 
where γ  and δ is the absorption constant and one half of the path loss exponent as 
defined before. The random process ( )ijlH t  is the random fading process introduced 

in the network and the ijτ  is the propagation delay for the signals from node i to 

node j which can be also defined as 0/ijρ ρ⎢ ⎥⎣ ⎦  with the distance from node i to node j 

as the nominator and the distance a signal traveling in one time slot as denominator. 
With this channel model, when the ( ) 0ijlH t ≡  for all 1l ≥ , the channel is flat 

fading. And reversely, when the ( )ijlH t  depends on the 1l ≥ ,i.e. ( ) 0ijlH t >  when 

1l ≥ , the channel is frequency-selective fading. Moreover, when the ( )ijlH t  depends 

on t or we say the coherence time is longer, it is slow fading, correspondingly, when 
the fading parameter is independent from time to time, it means the channel coherence 
time is relatively small, therefore, the channel is fast fading. Based on this model, the 
upper bound to the transport capacity can be obtained that 
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( )

1
n

TC c n≤ ⋅               for all n 

 
if the channel is slow fading or flat fading with positive absorption constant or 
without absorption and the path loss exponent is greater than 6 no matter the full 
channel state is known or not to both transmitters and receivers. 
 

( )
2

n
TC c n≥ ⋅               for all n 

if the channel is fast fading or frequency-selective fading with positive absorption 
constant or without absorption and the path loss exponent is greater than 6 no matter 
the full channel state is known or not to both transmitters and receivers. 

Basically, this result just proved that there is no affect from the fading of the 
channel to the upper bound of the transport capacity in high attenuation regime or in 
the case with positive absorption. Or equivalently, the transport capacity cannot grow 
faster than linearly in the size of the network even if the fading process is known 
perfectly to all nodes in the network. But if the fading process is independent from 
time to time which should be the worst case, the transport capacity achieves linear 
scaling for a specific construction of the node locations.  

For a conclusion of the whole chapter, Table 3.1 provides a summarization of the 
results of upper bound to capacity of wireless networks. 
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Table 3. 1 Upper bounds to the capacity of wireless networks 

 

              d=1      condition d=2       Condition 
Upper bound to communication rate of wireless networks 

without fading 
[6] 

3((log ) / )O n n  0α >  1
38( (log ) / )O n n nα+

 

0α >  

1 / 2( )O n α ε− +  2 3α≤ <  with fading 
[7] 

N/A N/A 
1/ 2( )O n ε− +  3α ≥  

          Upper bound to the transport capacity of wireless networks 
without fading 

[6] 

3( (log ) )O n n  0α >  1
38( (log ) )O nn nα+  

0α >  

without fading 
[8] 

( )O n  3α >  ( )O n  5α >  

2.5 / 2( )O n α ε− +  2 3α≤ <  with fading 
[7] 

N/A N/A 
1( )O n ε+  3α ≥  

with fading 
[8] 

( )O n  2.5α >  ( )O n  4α >  

( )O n  
without CSI 

2α >  ( )O n  
without CSI 

3α >   
with fading 

 [9] ( )O n  
with CSI 

3α >  ( )O n  
with CSI 

5α >  
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Chapter 4  

Improvements to the Previous Results 
 

In this chapter, based on the papers I have read, some improvements and 
modifications of those results obtained in the paper are presented. Specifically, a 
mistake in [4] is mentioned and some improvements to the upper bound of total 
throughput are provided. At the same time, the exact expressions for the constant parts 
of the upper bound obtained in [7] are given. 
 
 

4.1 Upper Bounds to the Maximal Transmission Rate of 

Regular Networks: A Correction 

In [4], Leveque and Telatar found the upper bounds to the maximal communication 
rate of regular network Figure 4.1 by taking the majorization argument into account. 
Although the results seemed quite reasonable, the proof is totally wrong due to a 
mistaken use of majorization argument.  

First let me introduce the definition for majorization argument and the Schur’s 
theorem which are used in [4].  

For any two vectors X  and Y , we say X majorizes Y  if the following relations 
are satisfied 

 

1 1

1 1

l l

i i
i i

n n

i i
i i

x y

x y

= =

= =

⎧
≥⎪⎪

⎨
⎪ =
⎪⎩

∑ ∑

∑ ∑
 

 
where X andY are defined as two 1n×  vectors with the corresponding elements that  

1 2[ , ,... ]nX x x x=  and 1 2[ , ,... ]nY y y y= . And we use the notation X Y  to 
represent the fact that X  majorizes Y . Basically, the majorization argument just

1, 2 . . . 1l n= −  
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Figure 4. 1 Two dimensional regular networks. 

 

indicate that with the sum of all elements equals to each other, the elements of Y  are 
much closer or distributed in a smaller interval than X  if X Y . 
  With the definition for majorization argument, we have the corresponding theorem 
which is called Schur’s Theorem that for any Schur-concave function ( )f X  where 
the argument X is a 1n×  vector, then ( ) ( )f X f Y≤  if X Y . 

With these in mind, let me first briefly present the proof to obtain the upper bound 
to maximal communication rate of any pair for regular networks given in [4]. 
According to the inequality (3) derived in [4], the total communication rate can be 
upper bounded by 

 

2
1

1 1
( ): (| | ), 1

max ( ,..., ; ,... )
n

ii

n

ij n n
p X E X nPi j

R I X X Y Y
=

≤=

≤
∑

∑  

 
*

( )
max log det( )

Tr Q nP
I GQG

≤
= +  

 

1

2

0, 1
max log(1 )

n
k kk

n

k k
P P nP k

P λ
=

≥ ≤ =

≤ +
∑

∑                       (14) 

 
where G stands for the channel gain matrix, and Q  denotes the autocorrelation 
matrix for the input variables X1, X2,…Xn and 2

kλ  is the k-th eigenvalue of the matrix 
*G G . There is a good observation here that kP  in (14) is not the individual 

transmission power for transmitting node k due to the unitary transform for matrix Q  
as following 
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* *log det( ) log det( )I GQG I QG G+ = +  

 
based on the fact that det( ) det( )I AB I BA+ = + . And as *G G  is Hermitian matrix 
which can be diagonalized as *U UΛ  where U is a unitary matrix and Λ  is a 
diagonal matrix with its diagonal values equal to the eigenvalues of matrix *G G .              
Therefore,        
 

* *log det( ) log det( )I QG G I QU U+ = + Λ  
 

1/ 2 * 1/ 2log det( )I UQU= + Λ Λ  
 

1/ 2 1/ 2log det( )I Q= +Λ Λ  
 
where Q  is defined as the matrix *UQU  which can be considered as the unitary 
transform of matrix Q  and these two matrix Q  and Q  has the following property 
that  

( ) ( )tr Q tr Q=   
 

Thus, the inequality of (14) is obtained from Hardmard’s inequality, where kP  

stands for the kth diagonal element for the matrix Q . At the same time, since the trace 
is still the same as before, so the maximization over Q  is therefore equivalent to the 
maximization over Q . 
  In the proof to get the upper bound of maximal communication rate of regular 
network, they apply the Schur’s theorem and got the following upper bound since sum 
of logarithm function is a Schur-concave function 
 

2 *

1 1
log(1 ) log(1 ( ) )

n n

k k k kk
k k

P P GGλ
= =

+ ≤ +∑ ∑                 (15) 

  
  And they have used the fact that the vector of eigenvalues majorizes the diagonal 
values of *GG that  
 

2 *

1 1

2 *

1 1

( )

( )

l l

i ii
i i

n n

i ii
i i

GG

GG

λ

λ

= =

= =

⎧
≥⎪⎪

⎨
⎪ =
⎪⎩

∑ ∑

∑ ∑
                              (16) 

 
  But actually this is not correct since there is also another term kP  in the function 
which may affect the result. For an simple example, assume n equals to two and 

1P , 2P  are fixed with 1 2P P= , 2 0P = . Then if (15) is correct, we should have  
 

1, 2... 1l n= −  
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2 *

1 11log(1 2 ) log(1 2 ( ) )P P GGλ+ ≤ +                  (17) 
 

 
And from (16), we know,  

 
2 *

1 11
2 *
2 22

( )

( )

GG

GG

λ

λ

⎧ ≥⎪
⎨

≤⎪⎩
 

 
  Then the only possibility for (17) to be correct is the case that 2 *

1 11( )GGλ = , at this 

time the equality in (17) can be obtained, otherwise for 2 *
1 11( )GGλ > , we will have a 

conclusion that 
 

2 *
1 11log(1 2 ) log(1 2 ( ) )P P GGλ+ > +  

 
  Even though it is possible to obtain the equality in (17) when 2 *

1 11( )GGλ = , we can 
never derive the inequality that 
 

2 *
1 11log(1 2 ) log(1 2 ( ) )P P GGλ+ < +  

 
  And moreover, generally, 2

1λ  does not equal to *
11( )GG  since the matrix *GG  

is not a diagonal matrix almost for all the networks. Therefore, the inequality of (17) 
is not correct generally.  

Basically, they made a mistake in using the Schur’s theorem, it works only when 
the whole argument of the Schur-concave function satisfies the majorization argument. 
And for (15), the condition given in (16) is not enough to apply Schur’s theorem. 

 
Actually, they have used it correctly in [4,eq(6)] that 

 
2
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=
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np GG
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since they bound above the kP  by total power constraint nP , then with the fact 
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the inequality of (18) holds. 
  But for inequality of (15), the majorization argument can not be simply applied. 
And as I proved, the inequality of (15) is not correct even if all the kP s are fixed.  
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Thus the upper bound to the maximal communication rate of regular networks is not 
correct. 
 

 

4.2 Improvements to the Upper Bounds to the Capacity of 

Wireless Networks with Multi-path Fading  

In the paper by Ozgur, Leveque and Tse [7], they got an upper bound to the total 
throughput for extended network. And I improved the upper bound by a factor of 
log n  in the case that the path loss exponent 2α =  through a much more detailed 
analysis. Moreover, I also replace the term nε  by 3(log )n ε+  and derived the exact 
expression of the constant in the upper bound in terms of α  which make the upper 
bound more accurate in the general case for 2α ≥ . 

First, let me give a brief introduction to the proof given in their paper. In their proof, 
basically they first try to upper bound the total aggregate throughput by [7,eq(10)]  
 

1
1

*
1 1 1( ) 0, ( ( )) ,

max (log det( ( ) ))
kk

ik Q Hk S i D E Q H P k S

R E I H Q H H
≥

∈ ∈ ≤ ∀ ∈

≤ +∑  

 

2
2

*
2 2 2( ) 0

( ( )) ,

max (log det( ( ) ))
kk

Q H
E Q H P k S

E I H Q H H
≥

≤ ∀ ∈

+ +           (19) 

 
and they have proved the second term in (19) can be also bounded above by ( )totn P nε  
[7,Lemma 5.2] which is also the dominant term in (19). And ( )totP n  is the total 
received power which can be bounded by 
 

2
,

,

( ) 2(log )
x y

x y

n

tot k k
k k

P n n PG d≤ ∑                      (20) 

 
where ,x yk kd  is defined as  
 

, 2 2 / 2
, 1

1
(( 1) ( ) )x y

x y

n

k k
i i x x y y

d
i k i k α

=

=
+ − + −∑                (21) 

 
  Here they have used the idea that simplifying the problem to a regular network and 
assume that all the nodes are distributed in the integer vertices points of the network 
Figure 4.2, ( , )x yi i , ( , )x yk k  just denote the node location. 

In order to upper bound ( )totP n , they provide an upper bound to (21) first which is 
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Figure 4. 2 Consider the nodes in one small square are all distributed on the vertices 

like regular network. 

 

1 3
, (1 ) log |

x y x

n
k k x x kd k k rα απ π− −≤ + + +                    (22) 

'
2 logK n≤  

Then for the inequality of (20), when the 2α =  the ( )totP n  can be upper bounded  
by 

 
2 '

2
, 1

( ) 2(log ) log
x y

n

tot
k k

P n n PG K n
=

≤ ∑  

 
' 3
22 (log )PGK n n=  

   
But this upper bound, especially for 2α = , is not tight since they simply upper 

bound the ,x yk kd by '
2 logK n  where '

2K  should be a function of xk  based on (22) 

and neglect all the other terms. And actually  totP  defined in (20) is a term summed 
over xk , probably there will be affect from the sum over xk , specially for the '

2K  
which is function in terms of xk . So I think if we plug (22) into (20) directly without 
upper bounding it first by '

2 logK n , a better upper bound to the total received power 
will be obtained.  

Substitute ,x yk kd  by (22) in (20), then the total received power can be upper 

bounded by a sum over all xk s which represents the horizontal component of the kth  
 

                                        32



 
 
Improvements to the Previous Results                                    33 

  

 
node’s location 

2 1

,

( ) 2(log ) ( (1 ) log3 log )
x y

n

tot x x x
k k

P n n PG k k n kα απ π π− −≤ + + + −∑  
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2 (log ) ( ( (1 ) log 3 log ))
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n

x x x
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n n PG k k n kα απ π π− −

=

≤ + + + −∑  

 
It is easy to upper bound the first two terms in this summation when the path loss 

exponent 2α =  by 
 

                    

2 2

1
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1 1

1
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(1 ) (1 )( 1)

x

x

n n
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k
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x x x
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=

⎧
≤ + ≤⎪

⎪
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∑ ∫

∑ ∫
              (23) 

   
Here, similar to the analysis in [7], I also used the fact that 

 

0
0

1 1 1
( ) ( )

n n

l
dl

l a a l aγ γ γ
=

≤ +
+ +∑ ∫  

 
and moreover the last term in this summation can be simplified to  
 

           
1 1
( log 3 log ) ( log 3 log log )

2
x x

n n

x x
k k

n k n kππ π π π
= =

− = + −∑ ∑  

 

log 3 log log !
2

n n n nππ π= + −     (24) 

   
From Sterling’s series, we have 
 

! 2 ( ) nnn n
e

π>  

 
  Plug this into (24), it can be upper bounded by K n . Together with (23), the 
dominant part in this summation comes from (24). So I can have an upper bound for 

totP  that  
 

22 ' (log )totP PGK n n≤  
 
  Compared this result with the one given in [7], I improved the result by a factor of 
log n . Although this proof does not improve the result by too much, it still provide an  
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intuition and idea on how can we do better. Sometimes the constant part in scaling is 
also important and can be done much better with detailed analysis on it. 
   

Actually, the constant parts of the upper bound given in [7] can also be expressed 
exactly in terms of path loss exponent α . And it is also important to evaluate the 
constant part of the upper bound, since when the network size is large enough, the 
constant multiplier in the upper bound of capacity also have significant affect to the 
results. Therefore, I derived the exact expression for constant 'K  given in [7] in the 
following. 
  Consider the equation (32) in [7], plug this into the equation (20), an upper bound 
can be derived that  
 

1) 2α =  
 

2 1

, 1
( ) 2 (log ) (1 ) log 3

x y

n
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k k

P n PG n k k nα απ π− −
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  4) 3α >  
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  So the constant in the upper bound given in [7] can be obtained in the exact 
expression in terms of α  that  

 
2 log3'

log 2 2
1' (2 )

3 2
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K
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  And for my improvement to the case when 2α = , the constant part can be also 
derived as following with the similar idea proved before 
 
                      ' log3K eπ=  
 
  Compared with the previous results obtained in [7], my constant is much smaller 
than theirs in the case when 2α = , so when n is large enough, my upper bound is 
much better than theirs. 
  Moreover, it is trivial to get rid of the term nε  obtained in their upper bound. First, 
this term, nε , comes from the proof of Lemma 5.3 in [7] that with high probability, 
the maximum eigenvalue of *H H  is less than nε . And they have used the 
Chebyshev’s inequality to upper bound the probability that 
 

' 32
2 1(4( log ) )(|| || )(|| || )

mm

m m

K nE HP H n
n n

ε
ε ε≥ ≤ ≤  

 
  Actually, we can simply replace nε  by 3(log )n ε+ and the same conclusion will be 
obtained that with high probability, the maximum eigenvalue of *H H  is less than 

3(log )n ε+  that  
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ε ε
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  When n is large enough, this probability goes to zero, or equivalently, with high 
probability, the maximum eigenvalue of *H H  is less than 3(log )n ε+ . 

Therefore, with the improvement to the upper bound in the case when 2α = , 
replacing the term nε  by 3(log )n ε+  and the exact expression for all the constants 
with different path loss level, all the upper bounds given in [7] can be represented by 
the following now 
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Chapter 5  

Upper Bounds to the Capacity of 
Wireless Networks without Full CSI 
 

In this chapter, an upper bound to maximal communication rate of wireless network is 
derived for which the channel state information is known only at the receiver side. 
Moreover, the multi-path fading affect is also taken into account which can be 
characterized by a random phase term in channel model. A simple extension to the 
upper bound of the transport capacity is derived then. Compared with the result given 
in [9], the same linear scaling of the upper bounds to the transport capacity with high 
probability when 3α >  is obtained with a much simpler proof and an upper bound 
for the low attenuation level when 3α <  is also presented. Moreover, with the same 
scaling, a comparison among all the constant parts for different upper bounds proved 
that when the path loss level and the minimum distance constraint are relatively large, 
the results presented in this thesis are much better. 
 
 

5.1 System Model 

Consider a two-dimensional network Figure 5.1 with constant density of nodes which 
equals unity, or equivalently, there are n nodes uniformly distributed in the two 
dimensional area with area n, and I divide the area into two equal parts, such that 

 

:[ , ] [0, ] :[ ,0] [0, ] :[0, ] [0, ]
2 2 2 2x y
n n n nD n D n D n− × = − × + ×  

 
With high probability, there are n/2 nodes in each of the two areas xD  and yD  

due to the uniform nodes distribution. Assume the nodes in xD  are the source nodes 
which want to establish communication with nodes in yD , the destination nodes. 
Each source node has a maximum transmission power constraint P. Let x1,x2,…….xn/2 
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Figure 5. 1 A two-dimensional network divided into two equal parts 

 

in xD  denote  the node positions of the source nodes and the corresponding 
destination nodes be y1,y2……..yn/2 in yD .  

Define the following relationship between the output and the input 
 

Y GX Z= +                           (25) 

 

where the vector X=(X1,X2,…….Xn/2) is the transmitted variables by source nodes 

and the vector Y=(Y1,Y2……..Yn/2) is the received variables by destination nodes. Z 

is the additive Gaussian noise which is also a vector with n/2 elements and each 

element equals to Zi, i=1,2……….n/2 which is a Gaussian random variable with zero 

mean and unit variance. G matrix stands for the channel gain matrix with elements 

ijG  which represents the channel gain from i to j that  

 

21

j

ij

i j

eG
x y

θ

α=
+ −

 

 

where θ  is independent for different channels which characterizes the multi-path 

fading of the channel. And |xi-yj| represents the Euclidean distance between node i in 

xD  and node j in yD . There is subtle difference for the channel attenuation model by 
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using / 2 1(1 )αρ −+  instead of / 2αρ − . All the information is perfectly known to the 

receiver side but not the transmitter side. And α  is the path loss exponent as defined 

before. 

Assume all the transmitting nodes are subjected to an individual power constraint 

P  and let Q  denotes the autocorrelation matrix for all these transmitted variables, 

i.e., [ ]TQ E XX= . 

 

 

5.2 Upper Bounds to the Maximal Communication Rate  

Define the communication rate between the transmitting node i and receiving node j 
as ijR  and for the channel defined in (25), based on the cut set bound, the total 
transmission rates across the cut is bounded above by the conditional mutual 
information that 
 

2 , 1,2.... / 2,
max ( ( ; | ))

y
i

x y

ij g D
EX P i ni D j D

R E I X Y X
≤ =∈ ∈

≤∑               (26) 

 
where the XDy denotes the variables transmitted by the nodes in yD . And the 
expectation is taken with respect to the channel gain which is random due to the 
random phase term for multi-path fading. From (25) which relates the transmitted 
variable X to the received variable Y, we can deduce that 
 

( ; | ) ( | ) ( | , )
y y yD D DI X Y X H GX Z X H GX Z X X= + − +  

( | ) ( )
yDH GX Z X H Z= + −  

( ) ( )H GX Z H Z≤ + −  

( ; )I X Y=  

 

So (26) can be bounded above by 
 

2 , 1,2.... / 2,
max ( ( ; ))

i
x y

ij g
EX P i ni D j D

R E I X Y
≤ =∈ ∈

≤∑  

 
/ 2 / 2[log det( * )]g n nE I G PI G= +                 (27) 
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n n
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i j

E P G
= =

≤ +∑ ∑                  

 
The equation (27) is obtained by applying the fact that independent signaling 

achieves the maximum for the channel with multi-path fading (see proof in [9]). As 
there are n/2 source-destination pairs, then we can find the communication rate per 
source-destination pair on average by simply dividing n/2 on both sides of (27) which 
is denoted by R  

 
/ 2 / 2
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n n
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i j

R E P G
n = =

≤ +∑ ∑  

 
/ 2 / 2
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/ 2 / 2

1 1

2 1log(1 )
1 | |

n n

i j i j

P
n x y α

= =

≤ +
+ −∑∑  

 
where the inequalities are obtained through concavity of logarithm function and the 
Jensen’s inequality. 

As all the nodes are uniformly distributed in the network, we can derive a 
communication rate on average by taking expectation over the random nodes 
positions.  

 
/ 2 / 2

1 1

2 1( ) log(1 )
1 | |

n n

i j i j

PE R E
n x y α

= =

≤ +
+ −∑∑  

 
/ 2 / 2

1 1

2 1log(1 )
1 | |

n n

i j i j

P E
n x y α

= =

≤ +
+ −∑∑              (28) 

 
Due to the uniform distribution for all these nodes, the probability density function 

for the horizontal components of ix  and jy  is 2 / n  and for the vertical 

components is 1/ n . So just consider the expectation term in (28) that 
 

/ 2 / 2

1 1

2 1
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n n

i j i j

E
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= =

=
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where (xi1, xi2) and (yj1,yj2) denote the coordinates of nodes xi and yj. Then change the 

variables by defining '
1 1i ix x= − , '

2 2i ix x= , '
1 1j jy y=  and '

2 2 2j j iy y x= − , we can 

rewrite (29) as 

 
/ 2 / 2

' ' ' '
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2 1
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−

=
+ + +∫ ∫ ∫  

 

For this integral in a three-dimensional domain, we can simply upper bound the 

integral by expanding the integration range to a half ball with radius 3 / 2n which 

contains the original integration range. Then change the variables again by polar 

coordinates that, 

 
'
1 1 2
'
1 1 2

'
2 1
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Such that 
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3 / 2

1 2
0 0 0

| det( ) |2
1

n
dJn drd d

n r

π π

α θ θ=
+∫ ∫ ∫           (30) 

 
where det( )dJ  is the Jacobian matrix due to the change of variables and we have 
used the determinant of the Jacobian matrix. 

 
2

1det( ) sindJ r θ= −  
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Plug the determinant of the Jacobian matrix into (30), I have the following 

expression, and it can be further simplified by the following. 
 

3 / 2

1 2
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( )I r=                                          

 
Then for different values of α , an upper bound on ( )I r  can be obtained as 

following 
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where ( )iC α  for i=1,2,3,4,5 is constant which is a function in terms of the path loss 
exponent α . By plugging ( )I r  into (28), the upper bound on the communication 
rate on average can be obtained 
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A similar result has been obtained in [11]. With the same channel model and they 
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assume that the channel state information is only known to the receiver side, they also 
derived an upper bound to the communication rate on average over the random node 
locations that  

 

1 / 2

(ln )
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  Compared the result with mine, my upper bound is much more tight when the path 
loss exponent 2α = . But this is just an upper bound to the average transmission rate 
for all the communication pairs. And how can we generalize the results to more 
general cases or how can we find the upper bound to the maximal transmission rate 
for each communication pair which is of much more interests? Basically, it is difficult 
to prove the upper bound for all kinds of random networks, but it is possible to find an 
upper bound for most of the random networks. My goal is to find an upper bound 
which bounds above the maximal transmission rate of each communication pair with 
high probability. 

Assume there is a minimum distance constraint mind  between any two nodes in the 
network, i.e. minij dρ ≥  for any i and j. Actually, this assumption is quite reasonable 
since for most of the networks, there exits a minimum distance between any two 
nodes in the network. And similar assumptions are also made in [2] and [8]. With this 
assumption, an upper bound to the maximal transmission rate per communication pair 
is obtained  
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With the similar analysis to the average communication rate, the maximal 
transmission rate R can be upper bounded by 
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where the constant '

min( , )iC dα  i=1,2,3,4,5 is a function in terms of the path loss 
exponent α  and the minimum distance constraint between any two nodes mind .    

This upper bound showed that the transmission rate for any communication pair 
goes to zero with the number of nodes going to infinity in the case that the path loss 
exponent α  is greater than 2. And compared with the other work which are also 
based on single cut analysis, this model has taken the multi-path fading into account 
but the full channel state information is only known to the receiver, or equivalently, 
the transmitter cannot distribute the transmission power based on different channel 
state information.     

More specifically, all the constants can be calculated through the previous 
integration actually. And it is also with great interests to get the exact expression of 
the constant. Similar to the constant obtained in [2] and [8], all of them are functions 
in terms of the path loss exponent α  and the constraint of minimum distance mind  
between any two nodes. And I can also evaluate the performance of the constant part 
with respect to the two parameters. Sometimes it is also important to analyze the 
constant part, especially when the network size is large enough, such that the constant 
part will have significant affect to the upper bound to the capacity of wireless 
networks. 
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            (31) 

   
I especially analyze the constant '

5 min( , )C dα  with respect to α  and mind  when 
3α > . It is obviously to see from the expression in (31) that for some fixed path loss 

level, the constant decreases with the increasing of the minimum distance constraint 
and finally it converges to zero with the increasing of the mind . Correspondingly, for 
fixed minimum distance constraint, the constant also decreases with the increasing of 

the path loss exponent and it converges to 
2

3/ 2
min

2
3
P
d
π  with the increasing of α . And I 

will make a comparison of my results with the results given in [9] later. 
An trivial extension to the upper bound of total aggregate throughput can be 

obtained by simply multiplying the number of communication pairs n/2 that 
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5.3 Upper Bounds to the Transport Capacity of Wireless 

Networks 

In the previous section, I considered the upper bounds to the maximal communication 
rate among all the communication pairs. However, we can simply extend this upper 
bound to a more general measure, the transport capacity. Like one-dimensional 
network, we can also derive a nice relation between the transport capacity and cut set 
bound. Firstly, for a two dimensional network, from the definition of the transport 
capacity, it can be bounded by 
 

, ,
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ij ijij ij ij x y
i j i j
i j i j

R Rρ ρ ρ
≠ ≠

≤ +∑ ∑                       (32) 

 
where the 

ijxρ and 
ijyρ  denote the horizontal and vertical components of the distance 

from i to j. So this inequality in (32) comes from the triangle inequality immediately. 
Then we can consider the (32) is just the sum of two the transport capacity in one 
dimensional network. As we have already shown the nice relationship between the 
transport capacity and cut set bound in Chapter 3 for one-dimensional case, then (32) 
can be bounded by 
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The (33) can be viewed as there are n-1 single cuts in both two dimensions, and a 

trivial upper bound to the transport capacity can be established immediately by 
bounding above the total throughput through any single cut by the maximal 
throughput through a single cut, which actually is the total throughput through the cut 
right in the middle of the network, such that the sum over all k with respect to the 
corresponding distance between any two neighbor nodes, it gives the total distance in 
both horizontal and vertical dimensions.  
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As we already got the upper bound to the maximal transmission rate R per 

communication pair, the maximum communication rate through any of the k-1 cuts 
can be simply bounded above by n R⋅ ,  and moreover, we can bound xρ  and yρ  

by the horizontal and vertical length of the network which are all n  for this 
extended network. So we can get an upper bound to the transport capacity as 
following 
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Therefore, a linear scaling of the upper bound to the transport capacity is obtained 

when the path loss exponent α  is greater than three and for α  equals to three, a 
linear scaling is achieved up to a factor of log n . And all these upper bound is 
obtained with high probability. 

Now I can compare the result with the previous results given in the paper [9]. With 
the same channel modeling and the same assumption that the full channel state 
information is only known to the receiver side as well as there is a minimum distance 
constraint between any two nodes, they also derived a linear scaling of the transport  
capacity when α  is greater than 3 that 

 

1
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where the function ( )ζ α  is defined as 
1

( )
i

i αζ α
∞

−

=

=∑ , so the upper bound given in 

(34) can be written as following, which is also a linear upper bound with respect to the 
total number of nodes in the network. 
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Figure 5. 2 A comparison between the constant in [9] (dotted line) and the constant in 

my proof (solid line) for some fixed values of α  

 
where I have used the definition of the function ( )ζ α  which is defined just before 
that  
 

2

1
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− +
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2
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2
3

α
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−
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and P is the individual power constraint for each transmitting node. 
  So with the assumption of the minimum distance between any two nodes and the 
full channel state information is only known to the receiver side, they also get a linear 
scaling of the upper bound to the transport capacity in the case when α  is greater 
than three. 

Obviously, although we have the same scaling for the transport capacity when α  
is greater than three, we still have different constant parts, and when n is large enough, 
the different values of the constant will have different affects to these upper bounds. I  
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Figure 5. 3 A comparison between constant in [9] (dotted line) and the constant in my 

proof (solid line) for some fixed values of the minimum distance constraint mind  

 
have made a comparison between the constant part given in [9] and the constant in my 
proof. From Figure 5.2, it was shown that, for some fixed path loss level, both of our 
constant decreases with the increasing of mind . But the constant in my proof will be 
much smaller for relatively large values of mind . If the path loss exponent α  is large, 
for example, it equals to five in Figure 5.2, my constant is almost always smaller than 
the constant given in [9]. For Figure 5.3, my constant decreases with the increasing of 
the path loss level for some fixed minimum distance constraint, but their constants 
will decrease first and increase then with the increasing of the path attenuation level 
for some fixed minimum distance constraint. And it is obvious that my results are 
much smaller than their constants especially in the case that the minimum distance 
constraint mind  is relatively large. For an simple example, my result is almost always 
smaller than the constant part given in [9] for any value of alpha when the mind  is 
greater than one in Figure 5.3. Therefore, the upper bound to the transport capacity 
obtained in my proof is much better than the result given in [9] for large path loss 
exponent and relatively large minimum distance constraint. 
  To evaluate the affect from the constant part, I also compare the results given in [8] 
which are the best results until now with the results given in my proof and the results 
in [9]. Xie and Kumar derived an upper bound to the transport capacity with 
consideration of fading but they have assumed that the full channel state information  
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is all known to both of the receivers and transmitters. Moreover, in this channel model 

characterization, they used / 2

1
αρ

 instead of / 2

1
1 αρ+

 defined in my proof and in the 

paper [9]. So it is helpful to compare the constant part to see the affect from the 
channel state information in the upper bound. Firstly, the constant obtained in the 
upper bounds to the transport capacity in [8] are  
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 The constant parts derived in [9] are 
 
1) One dimensional case and 3α >  with full CSI 
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2) One dimensional case and 2α >  with no CSI 
 

             1
min

12
2

P
C

dα

α
α

−

−
−=  

 
3) Two dimensional case and 5α >  with full CSI 
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4) Two dimensional case and 3α >  with no CSI 
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And the constant part in my proof is 

 
1)  Two dimensional case and 3α >  with no CSI 
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  With the same assumption that the individual power constraint is one and the 
variance of the Gaussian additive noise is also one, then compare the results as 
following and all the graphs are listed in Appendix.  
  Figure A.1 shows the comparison between the results given in [8] and [9] for one 
dimensional case and the full channel state information is known to both receivers and 
transmitters. It shows that if the path loss level is fixed, both of the constants decrease 
with the increasing of the minimum distance constraint. And the constant given in [8] 
is much smaller than [9] for relatively small path loss level, like 3.3α =  and 

3.6α =  in Figure A.1. But when the path loss level is relatively high, the constant in 
[9] is much smaller. In Figure A.2, it shows the comparison between the constant 
given in [8] with CSI and the constant given [9] without CSI, and the conclusion is 
totally different that for relatively small path loss level like 3.3α =  and 3.6α =  in 
Figure A.2, the constants in [9] are much smaller and when the path loss level is 
relatively high, like 5α = , the constants in [8] is much smaller.  
  For two dimensional case, as shown in Figure A.3 and Figure A.4, the constants 
given in [8] with full CSI is very large, usually with the order of 510 , so the constants 
in my proof and [9] when the full CSI is not available are much smaller in this case.  
  For conclusion, I list all my contributions in Table5.1 with a comparison to the 
previous results. 
  And the Table 3.1 can also be rewritten which is presented in Table 5.2 in the 
following. 
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Table 5. 1 My contributions with a comparison to the previous results. 
 

Previous results           My contributions 

The upper bounds to the maximal 
communication rate of each source destination 
pair for regular networks [4]. 

It is shown that the proof is not correct. 

The upper bounds to the total aggregate 
throughput for wireless networks in the case 
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The exact expression for the constants in the 
upper bounds in terms of α  is derived and nε
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for different path loss level that 2α = , 
2 3α< < , 3α =  and 3α >  

The upper bounds to the communication rate 
on average over the random node location that
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with consideration of fading and the full 
channel state information is only known to the 
receivers. 

An upper bound to the maximal communication 
rate for each source destination with 
consideration of fading and the assumption that 
the full channel state information is only known 
to the receiver side is obtained 
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and all the constants are also obtained with exact 
expression given in (31). 

The upper bounds to the transport capacity of 
planar wireless networks with the 
consideration of fading, minimum distance 
constraint and there is no full channel state 
information [9] when 3α >  that  
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An upper bound to the transport capacity with 
same condition and assumption as [9] when 

3α >  is derived that  
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It is much tighter with relatively large α  and 

mind  Figure5.4 & 5.5 
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Table 5. 2 New table of upper bounds to the capacity of wireless networks 
 

 d=1 condition d=2 condition 
Upper bound to communication rate of wireless networks 

without fading 
[4] 

3((log ) / )O n n  0α >  1
38( (log ) / )O n n nα +  

0α >  

5((log ) )O n ε+  2α =  
1 / 2 5( (log ) )O n nα ε− +  2 3α< <  

1/ 2 6( (log ) )O n n ε− +  3α =  

with fading 
[7] and my 

proof 

N/A N/A 

1/ 2 5( (log ) )O n n ε− +  3α >  

          Upper bound to the transport capacity of wireless networks 
without fading 

[6] 

3( (log ) )O n n  0α >  1
38( (log ) )O nn nα+  

0α >  

without fading 
[8] 

( )O n  3α >  ( )O n  5α >  

1.5 5( (log ) )O n n ε+  2α =  
2.5 / 2 6( (log ) )O n nα ε− +  2 3α< <  

6( (log ) )O n n ε+  3α =  

with fading 
[7] and my 

proof 

N/A N/A 

5( (log ) )O n n ε+  3α >  

with fading 
[8] 

( )O n  2.5α >  ( )O n  4α >  

3/ 2( log )O n n  2α <  
3/ 2( )O n  2α =  
5/ 2 / 2( )O n α−  2 3α< <  

( log )O n n  3α =  

 
 

( )O n  
without CSI 

 
 

2α >  

( )O n  
without CSI 

3α >  

 
 
 

with fading 
 [9] and my 

proof 

( )O n  
with CSI 

3α >  ( )O n  
with CSI 
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Chapter 6  

Conclusions and Future Work 
 

This thesis presents some upper bounds to the capacity of wireless networks. With a 
summarization of the previous insightful results on the upper bounds to the maximal 
communication rate and the transport capacity of the wireless networks, the 
improvements to those results are provided. A wrong proof in [4] was pointed out and 
an improvement to the upper bound of total throughput obtained in [7] is derived. 
Moreover, the exact expressions of the constants for the upper bounds in [7] are given 
in this thesis.  
  A new upper bound to the maximal communication rate for each source-destination 
pair of wireless networks for which the channel is subject to multi-path fading and the 
full channel state information is only known to the receiver side is derived in this 
thesis. The maximal communication rate goes to zero with the increasing of the 
network size when the path loss exponent α  is greater than two. An upper bound to 
the transport capacity is also presented in this thesis. A linear scaling of the upper 
bound to the transport capacity when α  is greater than three is obtained. Although 
the same scaling of the upper bound as the previous results given in [9] is obtained in 
somehow, it still proved that the upper bound derived in this thesis is much better for 
relatively large path loss level and the minimum distance constraint of the networks. It 
is because of the different constants derived in the upper bound and the difference 
among the constant parts will provide great affect to the upper bounds when the 
number of nodes is large enough. 
  Based on these works, our future work will mainly focus on the upper bounds to the 
transport capacity. We will try to narrow the gap of the path loss exponent in which 
the linear scaling of upper bounds to the transport capacity is obtained. As Xie and 
Kumar have shown that it is impossible to improve the results based on their method, 
we need to consider the matrix case directly. But obviously, this will make the 
problem much more complicated. 
 
 
 
 
 

                                        53



 
 
Appendix                                                           54 

  

 
 
 
 
 
 
 

Appendix  

The Comparison of the Constants 

 

 
 
Figure A. 1 The comparison between constant part in [8] (real line) and [9] (imaginary 

line) with fixed path loss level for one dimensional case with full CSI  
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Figure A. 2 The comparison between the constant in [8] with full CSI (real line) and 

the constant in [9] without full CSI (imaginary line) for fixed path loss level in one 

dimensional network. 
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Figure A. 3 The constant in [8] with respect to mind  for some fixed α  in two 

dimensional networks. 

 
 

 

                                        56



 
 
Appendix                                                           57 

  

 

 
 

Figure A. 4 The constant in [8] with respect to α  for some fixed mind  in two 

dimensional networks 
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