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Amélie Bélanger

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2008
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Abstract

Several of the more complex optimization problems in finance can be characterized as

impulse control problems. Impulse control problems can be written as quasi-variational

inequalities, which are then solved to determine the optimal control strategy. Since most

quasi-variational inequalities do not have analytical solutions, numerical methods are

generally used in the solution process.

In this thesis, the impulse control problem framework is applied to value two com-

plex long-term option-type contracts. Both pricing problems considered are cast as im-

pulse control problems and solved using an implicit approach based on either the penalty

method or the operator splitting scheme.

The first contract chosen is an exotic employee stock option referred to as an infinite

reload option. This contract provides the owner with an infinite number of reload op-

portunities. Each time a reload occurs, the owner pays the strike price using pre-owned

company shares and, in return, receives one share for each option exercised and a portion

of a new reload option. Numerical methods based on the classic Black-Scholes equation

are developed while taking into account contract features such as vesting periods. In

addition, the value of an infinite reload option to it’s owner is obtained by using a utility

maximization approach.

The second long-term contract considered is a variable annuity with a guaranteed

minimum death benefit (GMDB) clause. Numerical methods are developed to determine

the cost of the GMDB clause while including features such as partial withdrawals. The

pricing model is then used to determine the fair insurance charge which minimizes the

cost of the contract to the issuer. Due to the long maturity of variable annuities, non-

constant market parameters expressed through the use of regime-switching are included

in the GMDB pricing model.
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Chapter 1

Introduction

Optimal control problems arise in many areas of finance, and several can be characterized

as impulse control problems [14]. By definition, an impulse control problem involves de-

termining a sequence of intervention times as well as a sequence of corresponding optimal

actions that modifies the value of the underlying asset [63]. Actions for example could

include discrete dividends and buying or selling assets. Furthermore, impulse control

problems can be written as quasi-variational inequalities, which are then solved to de-

termine the optimal control strategy. The impulse control framework is a rather general

approach which allows us to handle complex contractual features. For example, this ap-

proach has been applied to problems of optimal consumption and portfolio composition

with transaction costs [62, 76, 66, 40], cash management and index tracking [17, 7], prob-

lems related to currency exchange rates [20, 21] and determining the optimal dividend

policy of a company [19, 58].

To clarify further, let us define a continuous value function F (x), where the underlying

variable x (which may be a vector) follows a stochastic process. When an impulse occurs,

the system state jumps from x to a new state J(x, α) where J is a given function and α

1



2 CHAPTER 1. INTRODUCTION

is the control. In this context, the non-local optimal control operator A is defined as:

AF (x) = sup
α

[F (J(x, α)) + G(x, α) − c] , (1.1)

where F (J(x, α)) is the intervention term, G(x, α) is a cash flow or payoff term and c is

a fixed cost. Note that the fixed cost c is included in equation (1.1) to ensure that the

impulse control problem is well-posed. Singular control problems [93] can sometimes be

viewed as a special case of impulse control problems where, in the limit, the fixed cost

c → 0+. Using the operator defined in equation (1.1), an impulse control problem can be

written as a set of quasi-variational inequalities:

LF (x) ≥ 0, (1.2)

(AF (x) − F (x)) ≥ 0, (1.3)

(AF (x) − F (x))(LF (x)) = 0, (1.4)

where L is a differential operator [63].

Since most quasi-variational inequalities do not have analytical solutions, numerical

methods are generally used in the solution process. Previous solution methods include

an iterative scheme combining stochastic control and optimal stopping problems [24].

In this thesis, the impulse control framework is applied to value two complex long-

term option-type contracts. The first contract considered is an exotic employee stock

option known as an infinite reload option. The infinite reload option can be exercised

an arbitrary number of times prior to maturity [39, 32]. When the option is exercised,

the contract owner pays the current strike price with pre-owned company shares and, in

return, receives one share for each option exercised and a portion of a new infinite reload

option with increased strike price. The impulse control problem in this case determines
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the optimal timing of exercise rights.

The second long-term contract valued in this thesis is a variable annuity contract

containing a guaranteed minimum death benefit clause (GMDB) [72, 74]. This particular

variable annuity contract includes a death benefit that is initially set to the invested

capital and can be increased at periodic ratchet dates. Since GMDB contracts often

contain a partial withdrawal feature which can be invoked at any time prior to expiry,

this problem can be considered as an impulse control problem.

To solve the resulting inequalities in (1.2)–(1.4), we apply an implicit timestepping

scheme, based on either a penalty method [44] or an operator splitting scheme [55].

Applied previously to solve simpler variational inequalities [87, 35, 36, 90], the penalty

method enables us to solve a complex problem in a straightforward manner by providing

us with a robust numerical scheme to value both reload options and variable annuities

with a GMDB clause. Assuming that the original problem satisfies a strong comparison

result, convergence to the viscosity solution [8] is verified in both cases (see [31, 8] and

references therein for more details on viscosity solutions).

While the main goal of this thesis is to show how impulse control problems can

be valued with an implicit timestepping method, additional modelling details are also

investigated. In Chapter 2, the no-arbitrage pricing model for infinite reload options,

based on the classic Black-Scholes approach, is developed. Companies that have issued

employee stock options need to include them as an expense in their annual reports [1],

and may be looking to reduce the value of these contracts. In particular, infinite reload

options are very expensive due to the reload feature. We will show how a specific contract

modification can reduce the no-arbitrage price significantly.

In Chapter 3, the original infinite reload pricing model is augmented by including

vesting periods. This feature is also shown to reduce the no-arbitrage price of infinite

reload options. Since it is well-known that employees place a lower value on stock options
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than the actual no-arbitrage price [51, 50, 64, 22], Chapter 4 focuses on valuing infinite

reload options from an employee’s perspective. A utility-maximizing pricing model is

developed and used to estimate the gap between the no-arbitrage price and the value of

the contract to its owner.

In Chapter 5, long-term insurance contracts with a guaranteed minimum death benefit

(GMDB) clause are considered. Numerical methods are developed to determine the cost

of the GMDB clause while including contract features such as partial withdrawals. A real-

istic fee structure is also included in the pricing model. The GMDB pricing model is then

used to determine the fair insurance charge which minimizes the contract cost to the is-

suer. Since variable annuities can be considered as long-term options, the constant volatil-

ity assumption associated with the classic Black-Scholes model is insufficient. As such,

non-constant market parameters expressed through the concept of regime-switching [52],

are used when determining the fair insurance charge for the GMDB clause.

1.1 Contributions

The main contributions of this thesis include:

• In Chapter 2, the increased reload pricing problem is outlined and characterized as

an impulse control problem [14], which results in a Hamilton-Jacobi-Bellman vari-

ational inequality. In our formulation, the infinite reload pricing problem becomes

a special case of the increased reload pricing problem where there is no increase in

the reload strike. The discrete problem is formulated using a penalty method.

• In Chapter 2, we show that the discretized Hamilton-Jacobi-Bellman equations

satisfy the classic stability, monotonicity and consistency requirements outlined in

[8], and hence converge to the viscosity solution [31], assuming a strong comparison

result holds. The most challenging requirement turns out to be l∞-stability. To



1.1. CONTRIBUTIONS 5

demonstrate l∞-stability, we need to obtain sharper bounds than what is usually

obtained with standard maximum analysis.

• In addition, the time discretization of the reload constraint is considered in Chapter

2. When a penalty term is used to impose the reload constraint (implicit method),

we demonstrate how applying the reload constraint implicitly, as opposed to explic-

itly, results in significantly more accurate results. From a financial perspective, we

show that making small changes to the reload contract can dramatically lower the

no-arbitrage value.

• Vesting periods are added to the pricing model for infinite reload options as outlined

in Chapter 3. The addition of vesting periods is shown to reduce the value of infinite

reload options and affect the optimal exercise policy.

• In Chapter 4, a multi-step valuation model is developed to determine the value

of employee stock options to the contract owner based on a utility maximization

approach [64]. The first step involves solving a partial differential equation while the

second step makes use of Monte Carlo simulations [85]. Both simple stock options

and infinite reload options are valued from an employee’s perspective. For infinite

reload options, it is shown that the contract value to the employee is about one

third the no-arbitrage price and is highly sensitive to assumptions made regarding

the employee’s portfolio composition.

• A robust pricing model for the GMDB guarantee is presented in Chapter 5. Cast

as an impulse control problem, the pricing model includes the partial withdrawal

feature and makes use of a regime-switching model [52]. Assuming that the original

problem satisfies a strong comparison result, convergence to the viscosity solution

is demonstrated by showing the discrete equations satisfy the stability, monotonic-
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ity and consistency requirements [8]. The method used to prove l∞-stability in

Chapter 2 is extended to this more complex case.

• In Chapter 5, numerical results for the fair insurance fee charged by the GMDB

issuer are presented. We introduce optimal withdrawals and show that typical fees

being charged by insurance companies are not enough to fund hedging costs. This

contrasts with previous results in the literature [72, 74] which did not take into

account partial withdrawals.



Chapter 2

Infinite Reload Options: Pricing

and Analysis

Numerous companies have included employee stock options in their executive compen-

sation packages since they are believed to align the executive’s interests with those of

the share holders. However, in the last few years many large firms have stopped issuing

new employee stock options. This change in compensation philosophy may be a direct

consequence of the recent changes in accounting requirements regarding employee stock

options in the United States. Indeed, the Financial Accounting Standards Board now

requires companies issuing stock options to include these contracts as an expense on their

balance sheet. Consequently, companies are looking to establish the fair or no-arbitrage

value of employee stock option contracts currently on their balance sheets using numer-

ical techniques. In addition, companies that have issued more exotic, and often more

valuable, stock options may be looking to modify these contracts in order to reduce their

no-arbitrage value and thus minimize the expense associated with stock options.

This chapter focuses on valuing a particularly expensive type of employee stock option

7
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referred to as a reload option. These contracts allow the owner to pay the current strike

price using a certain amount of pre-owned company stock and, in return, receive new

options where the strike price is set to the prevailing stock price. For an infinite reload

option, the employee is entitled to take advantage of his reload right as often as he chooses

prior to the expiration of the contract. Only limited work has been done regarding the

valuation of reload options. In [39], the authors use a binomial model (essentially an

explicit finite difference method) to price infinite reload options and outline the optimal

exercise policy whereby the owner should exercise his option whenever the stock price

exceeds the current strike price. In [61], the author develops analytical pricing formulas for

different types of infinite reload options and considers the impact of contract restrictions

such as the indivisibility of shares on the contract value. Meanwhile, in [32], the authors

outline a binomial pricing model for reload options with both finite and infinite reload

opportunities where the reload feature is incorporated using dynamic programming [42].

Companies that have issued infinite reload options may now be looking for ways to

reduce their no-arbitrage price [59]. One particular contractual change which has been

considered by some companies [59] is to increase the strike price of new options received

following a reload event by a certain percentage. We refer to this modified contract as

an increased reload option and will show how this contract modification can reduce the

option expense.

More specifically, we can summarize this chapter’s contributions as follows:

• The increased reload pricing problem is outlined and characterized as an impulse

control problem [14], which results in a Hamilton-Jacobi-Bellman variational in-

equality. In our formulation, the infinite reload pricing problem becomes a special

case of the increased reload pricing problem where there is no increase in the reload

strike.
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• In this context, the question of convergence to the viscosity solution must be ad-

dressed. Assuming a unique viscosity solution exists, we show that the discretized

Hamilton-Jacobi-Bellman equations satisfy the classic stability, monotonicity and

consistency requirements outlined in [8].

• Furthermore, the time discretization of the reload constraint is considered. While a

penalty term is used to impose the reload constraint (implicit method), we demon-

strate how applying the reload constraint implicitly provides more accurate results

than applying the constraint explicitly. Note that previous work on reload options

involved applying the constraint explicitly [39, 32].

• From a financial perspective, we show that both the option value and the optimal

exercise policy are highly sensitive to the percentage increase in the reload strike.

Indeed, even a small percentage increase means that it is no longer optimal to

exercise whenever the stock price exceeds the strike price.

• Finally, we outline how a local volatility surface can be included in our pricing

model for increased reload options.

2.1 Increased Reload Pricing Problem

One of the main goals of this chapter is to investigate how a particular contract mod-

ification reduces the no-arbitrage price of infinite reload options. For standard infinite

reload options, the following exchange takes place each time a reload occurs: the owner

pays the current strike price K using K/S pre-owned company shares (assuming S > K)

and, in return, receives one unit of company stock and K/S new reload options where

the strike price is set to the current stock price K = S. We assume that the employee

previously owns a sufficient amount of stock that can be used as tender [39]. To clarify,
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let us now consider a more concrete example of the reload event. We assume that a given

employee owns 10 reload options where the strike price is set to K = $100. When the

company stock price reaches S = $125, the employee decides to reload all of his stock

options. He will need 8 units of stock to pay the strike price of all 10 reload options

(10 × K = $1000). In exchange, the employee will receive 10 new units of stock (one for

each option exercised) and 8 new reload options where the strike price is K = $125.

For increased reload options, the contractual change considered [59] implies that the

strike price of new reload options received following a reload event is increased to K =

S × (1 + p), where p ≥ 0 represents the fraction increase. Note that the classic infinite

reload option contract is a special case of the increased reload contract where p = 0.

The value of an increased reload option, denoted as V = V (S,K, t), depends on the

company stock price S, the option strike price K and time t. We assume that the company

stock price S follows geometric Brownian motion [54], namely:

dS

S
= (µ − q)dt + σ(S,K, t)dZ, (2.1)

where µ is the drift rate, q ≥ 0 is the dividend yield1, σ(S,K, t) is the volatility of the

company stock and dZ is the increment of a Wiener process [54]. Notice that the asset

volatility in equation (2.1) is written as a function of S, K and t allowing us to model

volatility both as a constant and as a function of S, K and t through the use of a local

volatility surface [85].

At maturity of the contract (t = T ), the owner receives one unit of stock for each

increased reload option owned, which can then be sold at market value. Hence, the option

1While our pricing model assumes a constant dividend yield, discrete dividends could also be included
easily.
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payoff received by the employee at expiry is:

V (S,K, t = T ) = Payoff(S,K) = max(S − K, 0), (2.2)

where K is the strike price of the option at expiry and S is the market value of the

company stock at expiry.

A reload constraint AV = AV (S,K, t) must be imposed to ensure that the current

value of the increased reload option is never less than the value obtained by the owner

following a reload event. Since the owner of an increased reload option will only consider

reloading when S > K, the increased reload constraint AV is defined as:

AV (S,K, t) =















(S − K) + K
S

V (S, S(1 + p), t) if S > K,

0 otherwise,

(2.3)

where V (S, S(1 + p), t) is the value of the new reload option obtained with strike K =

S(1 + p). Note that the infinite reload constraint stated in [32] and [39] is recovered by

setting p = 0 in equation (2.3).

Furthermore, the constraint in equation (2.3) can be related to the impulse control

framework outlined in Chapter 1. In this context, A is the non-local impulse operator

defined in equation (1.1) with only one possible value for the control (denoted as α in

equation (1.1)). In equation (2.3), K
S

V (S, S(1 + p), t) corresponds to the intervention

term which modifies the state of the system (F (J(x, α)) in equation (1.1)), while (S−K)

is the cash flow (G(x, α) in equation (1.1)). No fixed cost is required in equation (2.3)

(i.e. c = 0 in equation (1.1)) since the operator A is non-zero only for S > K.

Defining the differential operator LV as:

LV ≡ σ(S,K, τ)2S2

2
VSS + (r − q)SVS − rV, (2.4)
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where r is the risk-free rate of return, the increased reload pricing problem can be stated

as [32, 39]:

min

(

Vτ −LV, V −AV

)

= 0, (2.5)

where AV is defined in equation (2.3) and τ = T−t is the time to maturity of the contract.

The increased reload pricing problem can also be written as a penalized problem:

lim
ε→0

(

Vτ −LV − 1

ε
max(AV − V, 0)

)

= 0, (2.6)

which will be the starting point for our numerical methods. The pricing problem in

equation (2.6) will be solved numerically using the penalty method outlined in [44]. We

will show that as ε → 0, equation (2.6) is consistent with equation (2.5).

When homogeneity properties are satisfied (i.e. when volatility is constant), the in-

creased reload constraint in equation (2.3) can be simplified by using the following prop-

erty [68].

Definition 2.1 (Homogeneous Option Values). Option values V (S,K, t) are homo-

geneous of degree one in both S and K if, for any λ > 0, the following property holds:

V (λS, λK, t) = λV (S,K, t). (2.7)

When equation (2.7) holds, equation (2.3) can be simplified considerably. Setting

K = S(1 + p) in equation (2.7), we obtain:

V (λS, λS(1 + p), t) = λV (S, S(1 + p), t), (2.8)
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and now setting λ = K
S(1+p) , we get:

V (S, S(1 + p), t) = (1 + p)
S

K
V

(

K

1 + p
,K, t

)

. (2.9)

Using equation (2.9), the reload constraint in equation (2.3) becomes:

AV (S,K, t) =















(S − K) + (1 + p)V
(

K
1+p

,K, t
)

if S > K,

0 otherwise.

(2.10)

Therefore, when a similarity reduction can be applied, the constraint in equation (2.10)

can be used when solving equation (2.6). We then need only to solve equation (2.6) for a

single value of K. Thus, the use of a similarity reduction effectively reduces the solution

of a two-dimensional problem in (S,K) to a one-dimensional problem in S [85]. Since this

approach can only be applied when volatility is constant, it will be treated as a special

case of the general increased reload pricing problem.

2.1.1 Boundary Conditions (No Similarity Reduction)

Theoretically, the increased reload pricing problem in equation (2.6) should be solved

on an unbounded two-dimensional domain. In practice, we truncate both the S and K

domains and define the solution domain as: [0, Smax] × [0,Kmax], where Smax � Kmax.

To localize the increased reload problem, we specify additional boundary conditions

in both the S and K directions. We begin by considering the case where S → 0. When

S = 0, equation (2.6) simplifies to:

Vτ + rV = 0, (2.11)

since AV = 0 at S = 0. As K → 0, no additional boundary condition is necessary since
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the differential operator L in equation (2.4) contains no K derivatives.

However, some care must be taken when considering the boundary conditions as

K → ∞ and S → ∞. For S = Smax, we apply the following boundary condition:

V = max(Payoff(S,K),AV ). (2.12)

Note that the condition in equation (2.12) is an approximation and was chosen since it can

easily be shown that V ≥ Payoff(S,K). We expect that the error incurred by applying the

approximate boundary condition in (2.12) will be small in the area of interest, assuming

Smax is chosen sufficiently large. This will be verified in Section 2.5.

As K → Kmax, we could assume that the contract contains a cap, whereby no reload

is possible when K ≥ Kmax. In this case, we would solve:

Vτ −LV = 0 at K = Kmax, (2.13)

and the reload constraint in equation (2.3) would become:

AV (S,K, t) =















(S − K) + K
S

V (S, S∗(1 + p), t) if S > K,K < Kmax ,

0 otherwise,

(2.14)

where S∗ = min
(

S, Kmax
(1+p)

)

. Of course, if equation (2.14) is used, then a similarity reduc-

tion is not possible.

Another possibility, and our preferred choice, is to assume that a similarity reduction

is valid for K = Kmax, S(1 + p) > Kmax. In the context of equation (2.4), this implies

that σ(S,K, τ) is assumed to be constant as S → Kmax. Making this assumption, the

solution for S > Kmax/(1 + p) can be approximated by a similarity solution with little

error, provided Kmax is sufficiently large.
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More precisely, setting K = Kmax in equation (2.9), and then using equation (2.3),

we obtain the modified reload constraint:

AV (S,K, t) =































(S − K) + K
S

V (S, S(1 + p), t) if K < S ≤ Kmax
(1+p) ,

(S − K) + K(1+p)
Kmax

V
(

Kmax
1+p

,Kmax, t
)

if S > K and S(1 + p) > Kmax,

0 otherwise.

(2.15)

In practice, in order to guarantee the stability of the numerical scheme, we will modify

equation (2.15):

AV (S,K, t) =































(S − K) + K
S

V (S, S(1 + p), t) if S > K and S(1 + p) ≤ Kmax,

(S − K) + min
(

1, K(1+p)
Kmax

)

V
(

Kmax
1+p

,Kmax, t
)

if S > K and S(1 + p) > Kmax,

0 otherwise.

(2.16)

Figure 2.1 depicts how the reload constraint AV is calculated according to equation (2.16)

on the [0, Smax] × [0,Kmax] solution domain.

Remark 2.2. We remind the reader that equation (2.15) for S(1+p) > Kmax is an arti-

ficial boundary condition used to localize the problem and is in general an approximation.

Equation (2.16) simply replaces one artificial condition by another for S(1 + p) > Kmax.

Note that since the K values of interest satisfy K � Kmax and p < 1, the difference

between equation (2.16) and (2.15) occurs only for K values remote from the areas of

interest (i.e. K > Kmax/2). The effect of both approximations should be negligible for

Kmax sufficiently large. This will be verified in some numerical tests in Section 2.5.
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To summarize, we solve the following equation:

Vτ −LV − 1

ε
max(AV − V, 0) = 0, (2.17)

on the domain [0, Smax] × [0,Kmax] with initial conditions:

V (S,K, τ = 0) = max(S − K, 0), (2.18)

and boundary conditions:

Vτ + rV = 0 for S = 0, (2.19)

V = max(Payoff(S,K),AV ) for S = Smax, (2.20)

where AV is given by equation (2.16) and L is defined in equation (2.4). This fully

specifies our option pricing problem. Since we truncate the solution domain to finite

[0, Smax] × [0,Kmax], we are solving an approximation to the original pricing problem on

[0,∞] × [0,∞]. We will verify in Section 2.5 through numerical experiments that the

localization error due to finite Smax, Kmax is easily reduced to negligible values.

2.2 Discretization of the Reload Pricing Problem

In this section, we consider the discretization of equation (2.17) on the [0, Smax]×[0,Kmax]

domain. The construction of the underlying grid is described in Section 2.2.1, while

Section 2.2.2 contains the details of the discrete equations.
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Kmax

K

S = Kmax

1+p
Smax S

K = S

AV = S − K + K
S

V (S, S(1 + p), t)

AV = 0

AV = S − K + min

„

1, K(1+p)
Kmax

«

V

„

Kmax

1+p
, Kmax, t

«

Figure 2.1: Calculation of the reload constraint AV according to equation (2.16) on a typical
[0, Smax] × [0, Kmax] domain.

2.2.1 Scaled Grid Construction

In this section, we describe the construction of the underlying grid on the [0, Smax] ×

[0,Kmax] domain. Since equation (2.4) contains no derivatives with respect to K, we can

discretize equation (2.17) using a set of one-dimensional S grids. Let Kinit be the initial

strike price. We build a set of nodes in the K direction {Kj}, for j = 0, . . . , jmax, such

that there exists an index l where Kl = Kinit and an index u where Ku = Kinit(1 + p).

Note that the bulk of the Kj nodes are placed around Kinit.

For each Kj , we construct a set of S grid nodes {Sj
i } as follows:

Sj
i =

Kj

Kinit

Ki

(1 + p)
for i = 0, . . . , jmax − 1,

Sj
jmax

=
Kjmax

Kinit

Kjmax

(1 + p)
. (2.21)

This guarantees that for any j, the nodes
(

Kj

1+p
,Kj

)

and (Kj ,Kj) are included in the

grid. As shown in Figure 2.2, this scaled grid construction concentrates nodes near the

line K = (1 + p)S so that the constraint in equation (2.16) can be computed accurately.
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K

0 S

Kmax

Smax

K = (1 + p)S

S =
Kmax

1 + p

Figure 2.2: Example of a scaled grid construction for the two-dimensional [0, Smax] × [0, Kmax]
domain. Nodes are concentrated around the diagonal K = (1 + p)S line.

We remark that this type of grid generally requires interpolation to estimate AV .

The scaled grid construction contrasts with the simple idea of defining:

Sj
i = Ki for i = 0, . . . , jmax, (2.22)

for a given Kj which results in the so-called repeated grids discussed in [90] and [87]. No

interpolation is required to estimate AV (when p = 0) on a repeated grid. However, tests

in [87] show that a scaled grid, along with diagonal interpolation (to be discussed later)

is superior to a repeated grid.

2.2.2 Discrete Equations

In this section, we derive the discrete equations for the increased reload pricing problem.

To outline the dependence of the option value on S, K and τ , the following notation

is used for the discrete option value: V n
i,j = V (Sj

i ,Kj , τ
n). Similarly, discrete operators

will be denoted as Lh and Ah where the superscript h represents the space discretization
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parameter. The discrete form of equation (2.17) is obtained by using finite difference

approximations and introducing a discrete penalty term P (V n+1
i,j ,AhV n+1

i,j ):

V n+1
i,j − V n

i,j

∆τ
= (1 − θ)[LhV ]n+1

i,j + θ[LhV ]ni,j + P (V n+1
i,j ,AhV n+1

i,j ), (2.23)

where ∆τ = T/N , AhV n+1
i,j = AhV (Sj

i ,Kj , τ
n+1) is the discrete reload constraint and

0 ≤ θ ≤ 1 indicates the timestepping method used (θ = 0 implies that a fully implicit

method is chosen, while θ = 1/2 implies that Crank-Nicolson timestepping is used [54]).

The discrete differential operator Lh is defined as:

[LhV ]ni,j = αn
i,jV

n
i−1,j + βn

i,jV
n
i+1,j − (αn

i,j + βn
i,j + r)V n

i,j, (2.24)

where αn
i,j and βn

i,j are determined according to the algorithm in Appendix A, and satisfy:

αn
i,j ≥ 0 ; βn

i,j ≥ 0 ∀i, j, n. (2.25)

The discrete penalty term P (V n+1
i,j ,AhV n+1

i,j ) is defined as:

P (V n+1
i,j ,AhV n+1

i,j ) = Ln+1
i,j

[

AhV n+1
i,j − V n+1

i,j

]

, (2.26)

where

Ln+1
i,j = L(V n+1

i,j ,AhV n+1
i,j ) =















1
ε

if AhV n+1
i,j > V n+1

i,j ,

0 otherwise.

(2.27)

Similarly, the boundary condition (2.12) in penalized form for i = jmax is:

V n+1
jmax,j = Payoff(Sj

jmax
,Kj) + P (V n+1

jmax,j,AhV n+1
jmax,j), (2.28)
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where Payoff(Sj
i ,Kj) = max(Sj

i − Kj , 0) in accordance with equation (2.2).

Writing the penalty term as a control term, equation (2.26) becomes:

P (V n+1
i,j ,AhV n+1

i,j ) = max
γ∈{0,1}

γ

ε

[

AhV n+1
i,j − V n+1

i,j

]

. (2.29)

The control formulation in equation (2.29), is sometimes useful for carrying out analysis

of the discrete equations.

When computing the constraint AhV n+1
i,j in equation (2.26), we use diagonal inter-

polation along the K = S(1 + p) line to determine V (S, S(1 + p), τ) in equation (2.16).

For each (i, j) pair, having determined m such that Km ≤ Sj
i (1 + p) ≤ Km+1, diagonal

interpolation can be written as:

V (Sj
i , S

j
i (1 + p), τn+1) =V

(

Km

1 + p
,Km, τn+1

)

(

1 − Sj
i (1 + p) − Km

Km+1 − Km

)

+ V

(

Km+1

(1 + p)
,Km+1, τ

n+1

)

Sj
i (1 + p) − Km

Km+1 − Km

+ O((Km+1 − Km)2). (2.30)

Tests in [87] show that diagonal interpolation for shout options is superior to the usual

bilinear interpolation. Indeed, since a similarity reduction can be used in the increased

reload pricing model, the option value is linear along the line K = S(1 + p) implying

that diagonal interpolation will be exact when used in the context of equation (2.16) [87].

Defining the interpolation weight 0 ≤ ω ≤ 1 as:

ω =
Sj

i (1 + p) − Km

Km+1 − Km
, (2.31)
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equation (2.30) can be written as:

V (Sj
i , S

j
i (1 + p), τn+1) 'V n+1

l,m (1 − ω) + V n+1
l,m+1ω, (2.32)

where l is an index such that Sm
l = Km/(1+p), Sm+1

l = Km+1/(1+p) (see equation (2.21))

and V n+1
l,m = V (Sm

l ,Km, τn+1). Figure 2.3 shows a graphical representation of diagonal

interpolation along the K = S(1 + p) line.

Consequently, the discrete penalty term can be written as:

P (V n+1
i,j ,AhV n+1

i,j ) =















1
ε

[

AhV n+1
i,j − V n+1

i,j

]

when AhV n+1
i,j > V n+1

i,j and Sj
i > Kj,

0 otherwise,

(2.33)

where

AhV n+1
i,j = Sj

i − Kj +
Kj

Sj
i

(

(1 − ω)V n+1
l,m + ωV n+1

l,m+1

)

. (2.34)

For those nodes where a similarity reduction is applied, such as in equation (2.28) at

node i = jmax, the discrete penalty term P (V n+1
i,j ,AhV n+1

i,j ) will still be of the general

form presented in equation (2.33) but AhV n+1
i,j will be (from equations (2.10) and (2.16)):

AhV n+1
i,j = Sj

i − Kj + min

(

1,
Kj(1 + p)

Kjmax

)

V n+1
l,jmax

. (2.35)

No interpolation is required in this case since the node (S jmax

l ,Kjmax) is included in our

initial grid (see equation (2.21)).

The numerical scheme in equation (2.23) is a positive coefficient discretization [43] as

defined below.

Definition 2.1 (Positive Coefficient Scheme). The numerical scheme in equation (2.23)



22 CHAPTER 2. INFINITE RELOAD OPTIONS

.

V n+1

l,m+1

K

Sm
l

Sm+1

l
S

Km+1

Km

V (Sj
i
,S

j
i
(1 + p), τ n+1)

V n+1

l,m

Figure 2.3: Diagonal interpolation is used when determining the value of new reload options
V (Sj

i , Sj
i (1 + p), τn+1) in the reload constraint in equation (2.16).

is a positive coefficient discretization when:

αn+1
i,j ≥ 0, βn+1

i,j ≥ 0, r ≥ 0, ∀i, j, n. (2.36)

Since αn+1
i,j and βn+1

i,j satisfy equation (2.25) (see Appendix A) and r > 0 for all

problems considered, the numerical scheme in equation (2.23) is a positive coefficient

discretization.

2.3 Convergence to the Viscosity Solution

In [81], the authors demonstrate how some reasonable discretization schemes either never

converge or converge to a wrong solution. Hence, it is important to verify that our

discretization method converges to the unique viscosity solution [31], which corresponds

to the financially relevant solution. In this section, we show that the discrete equations
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in (2.23) satisfy the stability, monotonicity and consistency requirements which generally

ensure convergence of the numerical solution to the unique viscosity solution [11, 9, 8].

A unique, continuous viscosity solution exists if the pricing problem in equation (2.5)

satisfies a strong comparison property [8]. Intuitively, the strong comparison principle

implies that when the payoff of a first option is larger than the payoff of a second option,

the same relation holds for the value of the respective contracts at all times [8]. In a

financial context, this must hold to preclude arbitrage opportunities. While such a result

exists for many first and second order equations, our increased reload pricing problem

differs due to the non-local character of the reload constraint AhV n+1
i,j defined in equa-

tions (2.34) and (2.35). However, the authors of [84], [24], [4] and [57] show that a strong

comparison principle holds for similar (but not identical) impulse control problems.

Assumption 2.1. We assume that a unique, continuous viscosity solution exists [8, 31]

for the localized reload pricing problem in equation (2.17) with initial conditions outlined

in equation (2.18) and localization conditions in equations (2.16), (2.19) and (2.20).

2.3.1 Stability

In this section, we demonstrate that the discrete equations in (2.23) satisfy the l∞-stability

requirement which involves showing that the discrete option value V n+1
i,j is bounded. We

define the vector V n+1
j as:

V n+1
j =



















V n+1
0,j

V n+1
1,j

...

V n+1
jmax,j



















, (2.37)
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and further define:

∆Sj
max = max

i
(Sj

i+1 − Sj
i ), ∆Kmax = max

j
(Kj+1 − Kj).

Definition 2.2 (Stability). For a fixed Smax, Kmax and T , the discretization in equa-

tion (2.23) is l∞-stable if

||V n+1
j ||∞ < C, (2.38)

for 0 ≤ n ≤ N , as ∆τ → 0, ∆Sj
max → 0, ∆Kmax → 0 and ε → 0, where C is a constant

independent of ∆τ , ∆Sj
max, ∆Kmax and ε.

Assumption 2.3. We assume that ∆Kmax, ∆Sj
max, ∆τ and ε are parametrized as:

∆Kmax = c1h, ∆Sj
max = c2h, ∆τ = c3h, ε = c4h, (2.39)

where c1, c2, c3 and c4 are constants.

The stability of the discrete scheme in (2.23) is a consequence of the following Theo-

rem.

Theorem 2.4 (Bound for V n
i,j). Assuming that the numerical scheme satisfies Defini-

tion 2.1, that the boundary conditions are applied as outlined in Section 2.1.1 and that

the initial conditions are given by the discrete version of equation (2.18), the value of the

increased reload option contract satisfies:

0 ≤ V n
i,j ≤ Sj

i ∀i, j, n, (2.40)

in the case of fully implicit timestepping (θ = 0).
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Proof. To prove Theorem 2.4, we write the discrete equations for V n+1
i,j in matrix form:

Qn+1(V n+1)V n+1 = V n + other terms, (2.41)

where the coefficient matrix Qn+1(V n+1) is an M-matrix. Having shown that the terms on

the right-hand side of equation (2.41) are positive, we use the properties of Qn+1(V n+1)

to show that V n+1
i,j ≥ 0. We then apply the coefficient matrix Qn+1(V n+1) to (Sj

i −V n+1
i,j ).

Using the same approach (positive right-hand terms and properties of Qn+1(V n+1)), we

show that Sj
i −V n+1

i,j ≥ 0. The complete proof of Theorem 2.4 is included as Appendix B.

Since Sj
i ≤ Smax, the numerical scheme in equation (2.23) satisfies the stability re-

quirement in Definition 2.2, assuming fully implicit timestepping is used. We can extend

the above analysis when Crank-Nicolson is used (θ = 1/2 in equation (2.23)) to show

that Crank-Nicolson timestepping is l∞-stable if the following timestepping condition is

satisfied:

∆τ ≤ 2

αn
i,j + βn

i,j + r
∀i, j, n. (2.42)

2.3.2 Monotonicity

In this section, we show that the numerical scheme in equation (2.23) is monotone. We

denote the discrete equations in equation (2.23) at interior nodes (i < jmax) as:

gi,j(h, x, V n+1
i,j , {V n+1

k,j }k 6=i,{V n
i,j}, V n+1

l,m , V n+1
l,m+1)

=V n+1
i,j − V n

i,j − (1 − θ)∆τ [LhV ]n+1
i,j − θ∆τ [LhV ]ni,j

− ∆τL(V n+1
i,j ,AhV n+1

i,j )

[

AhV n+1
i,j − V n+1

i,j

]

=0, (2.43)
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and at boundary nodes ( i = jmax) as:

gjmax,j(h, x, V n+1
jmax ,j,{V n+1

k,j }k 6=jmax , {V n
jmax,j}, V n+1

l,m , V n+1
l,m+1)

= V n+1
jmax,j − Payoff(Sj

jmax
,Kj) − L(V n+1

i,j ,AhV n+1
i,j )

[

AhV n+1
i,j − V n+1

i,j

]

= 0, (2.44)

where x = (Sj
i ,Kj , τ

n+1), 0 ≤ θ ≤ 1, [LhV ]n+1
i,j is defined in equation (2.24) and AhV n+1

i,j

is defined as in equation (2.34) for i < jmax and as in equation (2.35) for i = jmax.

Definition 2.5 (Monotonicity). The numerical scheme gi,j(h, x, V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j, V

n+1
l,m ,

V n+1
l,m+1) in equations (2.43) and (2.44) is monotone if, for all εn

i,j ≥ 0:

gi,j(h, x, V n+1
i,j , {V n+1

k,j + εn+1
k,j }k 6=i, {V n

i,j + εn
i,j}, V n+1

l,m + εn+1
l,m , V n+1

l,m+1 + εn+1
l,m+1)

− gi,j(h, x, V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1) ≤ 0. (2.45)

Note that this definition of monotonicity is equivalent to that presented in [8].

Theorem 2.6 (Monotone Discretization). Assuming the discretization satisfies Def-

inition 2.1, the numerical scheme gi,j(h, x, V n+1
i,j , {V n+1

k,j }k 6=i, {V n
i,j}, V n+1

l,m , V n+1
l,m+1) defined

in equations (2.43) and (2.44), is monotone.

Proof. According to Definition 2.1, the scheme presented in equation (2.23) is a positive

coefficient scheme. Also, recall that the discrete increased reload pricing problem can be

defined as a control problem (see equation (2.29)). In [43], the authors show that the

discretization of an optimal control problem with positive coefficients is also monotone.

Using the same technique as in [43], it is straightforward to show that the numerical

scheme in equations (2.43) and (2.44) is monotone and satisfies Definition 2.5.
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2.3.3 Consistency

To facilitate the definition of consistency, we outline some notational details. For the

increased reload pricing problem, the impulse control problem can be written as:

F (V (x)) = 0 for all x = (S,K, τ), (2.46)

where

F (V (x)) =















Fin(V (x)) if S < Smax,

Fbound(V (x)) if S = Smax.

(2.47)

The continuous problem evaluated at discrete interior nodes when S j
i < Smax can be

written as:

Fin(V )n+1
i,j =

[

min(Vτ −LV, V −AV )
]n+1

i,j
= 0, (2.48)

where the continuous operator L is defined in equation (2.4). At the boundary nodes

where Sj
i = Smax, we have:

Fbound(V )n+1
jmax,j =

[

V − max(Payoff(S,K),AV )
]n+1

jmax,j
= 0. (2.49)

Since ε > 0, the numerical scheme at interior nodes ( i < jmax) in equation (2.43) can

be rewritten as:

ĝi,j(h, x, V n+1
i,j , {V n+1

k,j }k 6=i, {V n
i,j}, V n+1

l,m , V n+1
l,m+1) = (2.50)

min

(

ε

(

V n+1
i,j − V n

i,j

∆τ
− [LhV ]n+1

i,j

)

+ V n+1
i,j −AhV n+1

i,j ,
V n+1

i,j − V n
i,j

∆τ
− [LhV ]n+1

i,j

)

= 0,
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while equation (2.44) for i = jmax can be rewritten as:

ĝjmax,j(h, x, V n+1
jmax ,j, {V n+1

k,j }k 6=jmax , {V n
jmax,j}, V n+1

l,m , V n+1
l,m+1) = (2.51)

min

(

ε
(

V n+1
jmax,j − Payoff(Sj

jmax
,Kj)

)

+ V n+1
jmax,j −AhV n+1

jmax,j, V
n+1
jmax,j − Payoff(Sj

jmax
,Kj)

)

= 0.

To formally define the notion of consistency, we require the concept of upper and

lower semi-continuous envelope of a function.

Definition 2.7. Assume we have a function f : C → R where C is a topological space.

Then the upper semi-continuous and lower semi-continuous envelopes of f are defined as:

f∗(y) = lim sup
x→y

y∈C

f(x) and f∗(y) = lim inf
x→y

y∈C

f(x). (2.52)

Definition 2.8 (Consistency). For any smooth test function φ with bounded derivatives

of all orders with respect to S and τ , the scheme ĝi,j(h, x, φn+1
i,j , {φn+1

k,j }k 6=i, {φn
i,j}, φn+1

l,m , φn+1
l,m+1)

is consistent if, for all points in the domain x̂ = (Ŝ, K̂, τ̂) with x = (Sj
i ,Kj , τ

n+1), we

have:

lim sup
h,ξ→0
x→x̂

ĝi,j(h, x, φn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ) ≤ F ∗(φ(x̂))

(2.53)

lim inf
h,x,ξ→0

x→x̂

ĝi,j(h, x, φn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ) ≥ F∗(φ(x̂)).

(2.54)

where φn
i,j = φ(Sj

i ,Kj , τ
n) and ξ ≥ 0.

Remark 2.9 (Continuous Scheme). When the numerical scheme is continuous over
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the entire domain (both interior nodes and boundary), the conditions in equations (2.53)

and (2.54) reduce to:

lim
h→0

∣

∣

∣

∣

∣

F (φ)n+1
i,j − ĝi,j(h, x, φn+1

i,j , {φn+1
k,j }k 6=i, {φn

i,j}, φn+1
l,m , φn+1

l,m+1)

∣

∣

∣

∣

∣

= 0. (2.55)

Equation (2.55) is the typical formulation used when verifying consistency of a numerical

scheme and applies, for example, to cases where the equation on the boundary is obtained

by taking the limit of the equation on the interior nodes. Unfortunately, this is not the

case for our increased reload pricing model which is why the consistency requirements are

outlined as in equations (2.53) and (2.54).

Theorem 2.10 (Consistent Discretization). The numerical scheme in equation (2.23)

is consistent according to Definition 2.8.

Proof. See Appendix C.

Having shown that the discrete equations in (2.23) are monotone, stable and consis-

tent, we can state the following theorem.

Theorem 2.11 (Convergence to the Viscosity Solution). Assuming a unique vis-

cosity solution exists (i.e. Assumption 2.1 is satisfied), the numerical scheme in equa-

tion (2.23), with boundary conditions corresponding to the discrete version of equations

(2.19) and (2.20) and initial conditions outlined in the discrete version of equation (2.18),

converges to the unique viscosity solution of the localized problem in equation (2.5), with

boundary conditions in (2.16), (2.19) and (2.20).

2.4 Solution Algorithm

In this section, we specify algorithmic details about the solution process. Recall that

at each timestep, we solve a set of one-dimensional problems each with a different strike
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value Kj. More specifically, when the reload constraint is applied implicitly, the following

equation is solved at each timestep (assuming fully implicit timestepping is used):

Bn+1
j V n+1

j = V n
j + En+1

j AhV n+1
j , (2.56)

where the vectors V n
j , V n+1

j are defined in equation (2.37) and

En+1
j =

























∆τLn+1
0,j

∆τLn+1
1,j

...

∆τLn+1
jmax−1,j

Ln+1
jmax,j

























; AhV n+1
j =

























AhV n+1
0,j

AhV n+1
1,j

...

AhV n+1
jmax−1,j

AhV n+1
jmax,j

























, (2.57)

with Ln+1
i,j = L(V n+1

i,j ,AhV n+1
i,j ) defined in equation (2.27) and AhV n+1

i,j defined in equa-

tion (2.34) (or (2.35) in the similarity reduction case). The matrix Bn+1
j is constructed

such that:

[Bn+1
j V n+1

j ]i = V n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j ))

− ∆ταn+1
i,j V n+1

i−1,j − ∆τβn+1
i,j V n+1

i+1,j , (2.58)

for rows where the diagonal interpolation does not involve the current pricing problem,

namely when Sj
i (1 + p) > Kj+1.

For some points Sj
i near Kj , diagonal interpolation defined in equation (2.34) in-

volves data from the current pricing problem. When Kj ≤ Sj
i (1 + p) ≤ Kj+1, diagonal

interpolation will use V n+1
l,j and V n+1

l,j+1 to determine V (Sj
i , S

j
i (1 + p), τn+1) as in equa-

tion (2.32). Hence, the rows in Bn+1
j corresponding to these points are redefined since
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for j = 0, 1, . . . , jmax do
for i = 0, 1, . . . , jmax do

V 0
i,j = Payoff(Sj

i ,Kj)

end for
end for

for n = 0, 1, . . . , N do
for j = jmax, jmax − 1, . . . , 0 do

Solve: Bn+1
j V n+1

j = V n
j + En+1

j AhV n+1
j

end for
end for

Algorithm 2.1: Implicit Application of the Reload Constraint

they now contain an extra entry:

[Bn+1
j V n+1

j ]i = V n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j )) − ∆ταn+1
i,j V n+1

i−1,j

− ∆τβn+1
i,j V n+1

i+1,j − ∆τLn+1
i,j

Kj

Sj
i

(1 − ω)V n+1
l,j . (2.59)

Similarly, we redefine AhV n+1
i,j for these points as:

AhV n+1
i,j = Sj

i − Kj +
Kj

Sj
i

ωV n+1
l,j+1 . (2.60)

Since interpolation is used when calculating the entries in AhV n+1
j , their value will

generally depend on the solution from pricing problems with higher strike values: V n+1
m

where Km > Kj . Hence, we need to solve each of the V n+1
m problems first before pro-

ceeding to compute V n+1
j . Consequently, we will solve the pricing problems in a specific

order namely with decreasing strike (i.e. from j = jmax to j = 0). The detailed solution

method is presented as Algorithm 2.1.

Having noted that equation (2.56) is non-linear, non-linear iteration is used to deter-
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V̄ 0
j = V n

j

for k = 0, 1, . . . ,until convergence do

Solve: B̄k
j V̄ k+1

j = V n
j + Ēk

j AhV̄ k
j

if maxi

[

|V̄ k+1
i,j −V̄ k

i,j |

max(1,|V k
i,j |)

]

< tol then

Stop iteration - Exit For loop

end if
end for

V n+1
j = V̄ k+1

j

Algorithm 2.2: Non-Linear Iteration

mine V n+1
j for each j value. We denote the kth estimate for V n+1

j as (V n+1
j )k = V̄ k

j .

Similarly, we define (En+1
j )k = Ēk

j and (Bn+1
j )k = B̄k

j . Algorithm 2.2 outlines the it-

eration algorithm to determine V n+1
j for a given j value. Note that the convergence

tolerance in Algorithm 2.2, denoted by tol, is chosen sufficiently small, i.e. tol � 1. Also,

we notice that B̄k
j is not a tri-diagonal matrix since some rows contain an extra non-zero

entry outside the usual tri-diagonal envelope. Nonetheless, B̄k
j V̄ k+1

j = V n
j + Ēk+1

j AhV̄ k
j

can be easily solved using a direct sparse solver.

Theorem 2.1 (Convergence of Non-linear Iteration). Since the matrix B̄k
j satis-

fies all the properties of an M-matrix, the non-linear iteration process in Algorithm 2.2

converges to the unique solution of equation (2.56).

Proof. Proof of Theorem 2.1 follows from [43]. Recall that we can write the solution

step in Algorithm 2.2 as a control problem. Hence, a straightforward maximum analysis

can be used to bound V̄ k
j , independent of k. Since B̄k

j is an M-matrix, the iterates

form a bounded non-decreasing sequence. Thus, convergence to the unique solution of

equation (2.56) can be shown using the same technique as in [43].
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Alternatively, the reload constraint in equation (2.16) can be applied explicitly. In

this case, an intermediate solution value V̂ n+1
j is determined by solving the equation:

B̂n+1
j V̂ n+1

j = V n
j , (2.61)

where all rows in B̂n+1
j are defined such that:

[B̂n+1
j V̂ n+1

j ]i = V̂ n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r))

− ∆ταn+1
i,j V̂ n+1

i−1,j − ∆τβn+1
i,j V̂ n+1

i+1,j . (2.62)

Note that the matrix B̂n+1
j is a tri-diagonal matrix and the resulting system is now linear.

As such, no iteration is required when solving equation (2.61).

Once V̂ n+1
j has been determined, the reload constraint is applied explicitly for each i:

V n+1
i,j = max(AhV n+1

i,j , V̂ n+1
i,j ) , (2.63)

where AhV n+1
i,j is defined as:

AhV n+1
i,j = Sj

i − Kj +
Kj

Sj
i

[

(1 − ω)V̄ n+1
l,m + ωV n+1

l,m+1

]

, (2.64)

where V̄ n+1
i,j is computed using the most recent information available (i.e. we solve for j

in decreasing order), which implies:

V̄ n+1
l,m =















V n+1
l,m if m 6= j,

V̂ n+1
l,m if m = j.

(2.65)
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For those cases when a similarity reduction is used, AhV n+1
i,j is defined as:

AhV n+1
i,j = Sj

i − Kj + min

(

1,
Kj(1 + p)

Kjmax

)

V̂ n+1
l,jmax

, (2.66)

and no interpolation is required to determine AhV n+1
i,j .

When no similarity reduction is possible, the calculation of AhV n+1
i,j still requires

interpolation and use of the data from pricing problems with higher strike values. Conse-

quently, the one-dimensional problems are once again solved in decreasing order, namely

from j = jmax to j = 0. Algorithm 2.3 describes the complete solution process 2.

In Section 2.5, we will show that the implicit application of the reload constraint

provides much more accurate option values when compared to the explicit application of

the constraint, although both methods only converge at a first order rate (in the worst

case). Note that previous work on reload options in both [39] and [32] has utilized an

explicit application of the reload constraint. Though simpler to implement and often

commonly used in practice for pricing American-type options, this approach is not the

best choice in this case since it results in poor convergence.

2.5 Numerical Results

Having examined the analytical properties of the increased reload pricing equations, we

now consider numerical results obtained when pricing such contracts. We carry out a

convergence study of the increased reload pricing model in Section 2.5.1 and show that

companies can reduce their option expense by replacing infinite reload options (p = 0)

by increased reload options (with p > 0). In Section 2.5.2, the implicit application of the

reload constraint (see equation (2.16)) is shown to be superior to the explicit application

2It is straightforward to show that the explicit constraint (Algorithm 2.3) is unconditionally stable
and monotone when fully implicit timestepping is used.
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for j = 0, . . . , jmax do
for i = 0, . . . , jmax do

V 0
i,j = Payoff(Sj

i ,Kj)

end for
end for

for n = 0, . . . , N do
for j = jmax, . . . , 0 do

Determine V̂ n+1
j by solving B̂n+1

j V̂ n+1
j = V n

j

for i = 0, . . . , jmax do

V n+1
i,j = max(AhV n+1

i,j , V̂ n+1
i,j )

end for
end for

end for

Algorithm 2.3: Explicit Application of the Reload Constraint

of this same constraint when pricing increased reload options. Finally, in Section 2.5.3,

we introduce a volatility surface [46] and study its effect on the value of increased reload

options with p = 0.

2.5.1 Convergence Study

In this section, we carry-out a convergence analysis for the general case when p 6= 0

and the special case of p = 0. To validate our pricing model, the numerical values

obtained for infinite reload options (p = 0) are compared with analytical values for these

contracts presented in [32]. The parameter values chosen for the convergence analysis are

presented in Table 2.1 and will be used throughout this section unless otherwise specified.

Though not presented here, numerical tests were conducted to ensure that the choice of

Kmax = $2000, and consequently Smax = $40000, resulted in a minimum of 6 digits of

accuracy in the numerical solution. Also, the convergence tolerance in Algorithm 2.2 is
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Parameter Value

σ - Volatility 0.30
r - Risk-free interest rate 0.04
q - Dividend yield 0.0
K - Initial strike price $100
S - Initial asset price $100
T - Contract maturity 10 years
Kmax - Grid parameter $2000
Smax - Grid parameter $40000

Table 2.1: Parameter values used when pricing increased reload option contracts.

set to 1 × 10−8 and ε = ∆τ × 10−6 in the penalty term (see equation (2.27)).

Table 2.2 holds the results of a convergence study for increased reload options when

p = 5%. Let us specify the content of each column of Table 2.2. The first column

(Refinement) contains the refinement level used when pricing the reload contract. Each

refinement level almost doubles the number of grid nodes in both the S and K direc-

tions and cuts the initial timestep size in half. Both of these parameters are included

as the second (Nodes) and third (Timesteps) columns of Table 2.2. The fourth column

(Option Value) presents the option value obtained for each refinement level. The fifth

column (Difference) presents the difference between the option value obtained for two

successive refinement operations, while the last column (Ratio) presents the ratio of two

successive difference values. The ratio obtained in the last column indicates the con-

vergence of the timestepping method used. For example, a ratio of 2 indicates linear

convergence while a value of 4 is associated with quadratic convergence. The convergence

ratio obtained in Table 2.2 for each timestepping method is consistent with local trunca-

tion error analysis, assuming a smooth solution. Indeed, linear convergence is expected

when fully implicit timestepping is used, while quadratic convergence is associated with

Crank-Nicolson timestepping. Note that constant timesteps are taken when fully implicit

timestepping is used while variable timesteps are taken in the case of Crank-Nicolson.
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Increased Reload Options when p = 5%

Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit

0 61 100 54.596846 n.a. n.a.
1 121 200 54.704649 0.107803 n.a.
2 241 400 54.749564 0.044915 2.40
3 481 800 54.769482 0.019918 2.25
4 961 1600 54.778859 0.009377 2.12

Crank-Nicolson (variable timesteps)

0 61 101 54.741440 n.a. n.a.
1 121 211 54.773632 0.032192 n.a.
2 241 448 54.784286 0.010654 3.02
3 481 940 54.786926 0.002640 4.04
4 961 1925 54.787581 0.000655 4.03

Table 2.2: Value of an increased reload option with p = 5% at S = $100 using both fully implicit
and Crank-Nicolson timestepping (with variable timesteps) for different refinement levels. The
reload constraint is applied implicitly as specified in Algorithm 2.1 and the initial timestep is
∆τ0 = 0.1 years on the coarsest grid. Other parameter values are presented in Table 2.1.

See [44] for details on the timestep selector used and an explanation of the importance

of variable timestepping for American-type constraints.

To further validate our pricing model, we carry out a convergence study in the special

case when p = 0, the results of which are presented in Table 2.3. In this case, linear con-

vergence is obtained when fully implicit timestepping is used but quadratic convergence

is not obtained when Crank-Nicolson timestepping is chosen. Indeed, Crank-Nicolson

only provides linear convergence. Additional tests using a second order BDF scheme

were also carried out with similar results. As discussed subsequently, we believe that the

lack of quadratic convergence is due to the non-smoothness of the solution at S = $100.

Nonetheless, the results in Table 2.3 appear to be converging to the analytical value for

infinite reload options obtained in [32]: $64.67 at S = $100. As a side note, both the

similarity reduction and the full two-dimensional approach provide identical results, as

shown in Table 2.4. Thus, when applicable, the similarity reduction may be considered
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Infinite Reload Options

Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit

0 61 100 64.428679 n.a. n.a.
1 121 200 64.562116 0.133437 n.a.
2 241 400 64.620278 0.058162 2.29
3 481 800 64.647254 0.026976 2.16
4 961 1600 64.660219 0.012965 2.08

Crank-Nicolson (variable timesteps)

0 61 104 64.548919 n.a. n.a.
1 121 229 64.619955 0.071036 n.a.
2 241 506 64.648809 0.028854 2.46
3 481 1088 64.661325 0.012516 2.31
4 961 2262 64.667198 0.005873 2.13

Table 2.3: Value of an increased reload option with p = 0% (infinite reload option) at S = $100
using both fully implicit and Crank-Nicolson timestepping (with variable timesteps) for different
refinement levels. The reload constraint is applied implicitly as specified in Algorithm 2.1 and the
initial timestep is ∆τ0 = 0.1 years on the coarsest grid. Other parameter values are presented in
Table 2.1.

Nodes Timesteps Full 2-D Sim. Red.

61 100 64.428679 64.428679
121 200 64.562116 64.562116
241 400 64.620278 64.620278
481 800 64.647254 64.647254
961 1600 64.660219 64.660219

Table 2.4: Value of an increased reload option with p = 0% at S = $100 when the solution is
obtained on a full S×K grid (Full 2-D) and when the solution is obtained on a single S grid using
the similarity reduction (Sim. Red.).Fully implicit timestepping is used and the reload constraint
is applied implicitly. Other parameter values used in these calculations are presented in Table 2.1.

as an alternate and less computationally expensive solution method.

As a complement to the results presented in Table 2.3, Appendix D includes numerical

values for infinite reload options when a capped boundary condition is applied at Kmax as

outlined in equation (2.14). The results in Appendix D show that a larger grid is required

to provide an acceptable level of accuracy when using the capped boundary condition.

Therefore, it would appear that our choice of applying a similarity reduction at Kmax, as
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Figure 2.4: Option value (V ), delta (VS) and gamma (VSS) for increased reload options with
different p values. The parameters used in the pricing process are presented in Table 2.1.

outlined in equation (2.16), remains the better of the two options considered.

To complete our analysis, we consider the particular features of the option delta (VS)

and gamma (VSS). These quantities are hedging parameters, and are hence of practical
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importance. Figure 2.4 presents the option value, the delta and the gamma of increased

reload option contracts with different values of p. Note that the delta and gamma curves

obtained when p = 0 are distinctly different from those obtained when p > 0. Indeed, the

option delta curve for infinite reload options (p = 0) shows a kink in the curve around

the strike (S = $100) resulting in a discontinuity in the gamma. On the other hand, the

delta and gamma curves obtained when p > 0 are all similar to one another and contain

no such non-smoothness. The distinct shape of the gamma curve when p = 0 reflects the

optimal exercise policy for this contract; the kink in the option gamma curve implies that

it is optimal to exercise the reload option whenever S > K [39, 32]. However, increased

reload option contracts where p > 0 do not follow this optimal exercise policy which

results in smooth delta and gamma curves. Clearly, the non-smoothness of the solution

at S = $100 has a negative effect on the convergence rate.

Since this contract modification is suggested as a tool to reduce the stock option

expense for companies issuing infinite reload options, we investigate how the option value

is affected by the value of p. Table 2.5 presents the value of increased reload options

for five different choices of p. We see that increasing p from 0% to 1% results in an 8%

reduction of the contract value. However, setting p to larger values has a less significant

impact on the option value. This trend is confirmed by Figure 2.5 which demonstrates

that setting p to any value greater than 30% results in the same option value3. Beyond

that point, the value of the reload contract is essentially identical to the value of a 10

year European option.

Thus, we conclude that transforming infinite reload options (p = 0) into increased

reload option contracts (with p > 0) results in a significant price reduction for small

3Note that the effect of p on the option value is a function of both σ and r. For example, when
choosing a higher volatility (σ = 0.40 and r = 0.04), the value of a European option is only recovered
when p ≥ 40%.
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Refinement Percentage Increase (p)
Level Nodes 0% 1% 5% 10% 25%

0 61 64.548919 59.398274 54.741440 52.293088 49.495693
1 121 64.619955 59.431475 54.773632 52.355101 49.631507
2 241 64.648809 59.441275 54.784286 52.370947 49.673673
3 481 64.661325 59.443599 54.786926 52.374873 49.685124
4 961 64.667198 59.444172 54.787581 52.375864 49.688072

Table 2.5: Price of an increased reload option at S = $100 for different p values. Additional
parameters used are presented in Table 2.1. Crank-Nicolson timestepping with variable timesteps
was used; the initial timestep is set to ∆τ0 = 0.1 years.
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Figure 2.5: Value of an increased reload option (at S = $100) as a function of the percentage
increase p. The parameters used are presented in Table 2.1.

values of p. However, the effect of this contract modification is somewhat limited since

the option value tends to the value of a European option for larger choices of p.

In [39], it is shown that for standard infinite reload options (p = 0%), it is always

optimal to reload whenever S > K. However, Figure 2.4 shows that for small values of

p, i.e. p = 5%, it is not optimal to reload for S < $200 (when K = $100). In fact, when

p = 5%, it is optimal to reload only for S ' $215. This is confirmed by Figure 2.6 which

plots the effect of small values of p on the exercise boundary of the option contract.

Figure 2.6 only considers p ≤ 15% since it is not optimal to exercise increased reload
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Figure 2.6: Effect of small changes in p on the exercise boundary of the increased reload option
on the grant date. The parameters used are presented in Table 2.1.

contracts on the grant date when p > 15%. Consequently, the optimal reload policy is

extremely sensitive to small changes in p. Intuitively, this is logical since, as p increases,

employees are expected to reload less often. Thus, as p → ∞, the price of the increased

reload option simply converges to the price of a European call option.

2.5.2 Implicit vs Explicit Application of the Reload Constraint

All numerical results presented thus far have been obtained when the reload constraint in

equation (2.16) is applied implicitly (as in Algorithm 2.1). An alternative to this choice

is to apply the reload constraint explicitly at each timestep as outlined in Algorithm 2.3.

If we are using a fully implicit timestepping method, which is only O(∆τ), then one may

argue that we might as well use Algorithm 2.3 as done in both [39] and [32]. Though much

simpler to implement, this explicit method results in poor accuracy. Indeed, Table 2.6

contains the value at S = $100 of an increased reload option with p = 0% when the

constraint is both applied implicitly and explicitly. In these examples, we use a similarity

reduction so that no interpolation is required to determine AhV n+1
i,j (see equation (2.66)).
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Explicit Constraint Implicit Constraint
Nodes Timesteps S = 90 S = 100 S = 110 S = 90 S = 100 S = 110

61 100 52.519348 62.233168 72.233168 54.554268 64.428679 74.428679
121 200 53.208489 62.974357 72.974357 54.683619 64.562116 74.562116
241 400 53.678279 63.479419 73.479419 54.739847 64.620278 74.620278
481 800 54.005953 63.831411 73.831411 54.765882 64.647254 74.647254
961 1600 54.236391 64.078763 74.078763 54.778383 64.660219 74.660219

Table 2.6: Value of an increased reload option contract with p = 0% when the reload constraint
in (2.3) is applied both implicitly and explicitly. These results are obtained using a similarity
reduction and fully implicit timestepping. The parameter values used in these calculations are
presented in Table 2.1.

As shown in Table 2.6, the numerical results obtained when the constraint is applied

explicitly are very far from the analytic values for infinite reload option contracts obtained

in [32]: $54.79 at S = $90, $64.67 at S = $100 and $74.67 at S = $110.

These comments are confirmed by the convergence analysis presented in Table 2.7.

The results in Table 2.7 show that when the constraint is applied explicitly, the numerical

solution remains far from the analytical option value for reasonable refinement levels.

Indeed, the option value obtained for refinement level 4 with Crank-Nicolson timestepping

and explicit application of the reload constraint is still about $0.40 below the analytical

value of $64.67 from [32].

2.5.3 Adding a Volatility Surface

It is well known that constant volatility models cannot reproduce observed market option

prices. In this section, we determine the value of an increased reload option contract with

p = 0% when a volatility surface is used to replace the constant volatility assumption.

A standard approach is to assume that σ = σ(S, τ) and to determine σ(S, τ) by cali-

bration [85]. We consider two additional modelling assumptions regarding the properties

and use of the local volatility surface. The first modelling assumption is to consider the

volatility as a function of the moneyness of the option. The second assumption implies
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Infinite Reload Options - Explicit Constraint

Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit

0 61 100 62.233168 n.a. n.a.
1 121 200 62.974357 0.741189 n.a.
2 241 400 63.479419 0.505062 1.47
3 481 800 63.831411 0.351992 1.43
4 961 1600 64.078763 0.247352 1.42

Crank-Nicolson (constant timesteps)

0 61 100 62.995249 n.a. n.a.
1 121 200 63.498765 0.503516 n.a.
2 241 400 63.843231 0.344465 1.46
3 481 800 64.085195 0.241964 1.42
4 961 1600 64.256482 0.171287 1.41

Table 2.7: Value of an increased reload option with p = 0% at S = $100 when the reload
constraint is applied explicitly using both fully implicit and Crank-Nicolson (constant timesteps)
timestepping for different refinement levels. Analytical contract value is [32]: $64.67. Note that a
similarity reduction is used. Other parameter values chosen are presented in Table 2.1.

that the volatility surface is rolled forward periodically. Both of these assumptions are

often used by practitioners and will be considered in turn.

Let us outline the implications of the first modelling assumption which is referred to

as the sticky delta property. Since local volatility surfaces can be a challenge to calibrate

for different combinations of strike and asset values, this first assumption implies that

the volatility skew will always be centered around the strike of the contract considered.

The sticky delta property stems from the following assumption:

σ(S,K, t) = σ(ρS, ρK, t). (2.67)

Setting ρ = Kinit
K

, we obtain:

σ(S,K, t) = σ

(

S

K
Kinit,Kinit, t

)

, (2.68)
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where S
K

represents the moneyness of the option considered. This assumption is par-

ticularly relevant for pricing infinite reload options due to the definition of the reload

constraint (see equation (2.16)).

The second assumption implies that the volatility surface is rolled forward or updated

periodically. Since employee stock options have longer maturities, it is particularly perti-

nent to include this update process in our model. Mathematically, this second assumption

implies:

σ(S,K, t) = σ(S,K, t − tr), (2.69)

where tr ≤ t ≤ tr+1 and {tr} represents the times when the local volatility surface is

rolled forward.

Table 2.8 presents numerical values for infinite reload options when using a volatility

surface and assuming that equation (2.68) and/or equation (2.69) hold. The local volatil-

ity surface used to price these contracts was obtained by calibration to synthetic option

prices. As outlined in [90], synthetic market prices were generated for both vanilla call

and put options using the exact European prices under a Merton jump diffusion model

[69]. These synthetic values were generated monthly from [0, 1.0] and yearly from [1.0, 5.0]

for 7 different strike values. Note that σ = .2359 and σ = .3167 are the constant volatility

values which reproduce the jump diffusion model price of an at-the-money call option in

the context of a classic Black-Scholes model (without jumps) when T = 0.25 years and

T = 5 years respectively. See Figure 2.7 for a graphical representation of the volatility

surface obtained. More details regarding the parameters used to generate this volatility

surface are specified in [90].

Table 2.8 holds values obtained when using a volatility surface to price increased reload

option contracts with p = 0%. We consider two specific cases namely Case 1 where the

volatility surface described above is used and equation (2.68) holds, and Case 2 where
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Figure 2.7: Plot of volatility surface obtained by calibrating to synthetic market prices as outlined
in [90].

Vol. Surf. Const. Vol.
Nodes Timesteps Case 1 Case 2 σ = .2359 σ = .3167

61 100 72.330961 81.703373 57.374825 66.113595
121 200 72.386614 81.554748 57.552235 66.237392
241 400 72.414143 81.481324 57.621998 66.292977
481 800 72.427872 81.444101 57.652163 66.319226
961 1600 72.434732 81.425310 57.666067 66.331968

Table 2.8: Value of an increased reload option when p = 0% at S = $100 for different volatility
assumptions. Vol. Surf. indicates the use of a volatility surface while Case 1 implies that equation
(2.68) holds and Case 2 implies that both equations (2.68) and (2.69) hold. For comparison
purposes, we include results for two constant volatility values (Const. Vol.). Note that fully
implicit timestepping is chosen. Additional parameter values are presented in Table 2.1.

the same volatility surface is used but now both equations (2.68) and (2.69) hold. In

Case 2, the volatility surface is rolled forward every year during the contract lifetime.

For comparison purposes, we also present option values obtained under the assumption

of constant volatility when σ = .2359 and σ = .3167. The data from Case 1 and Case 2

in Table 2.8 highlights the impact of updating the volatility surface on the contract
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value. Indeed, updating the volatility surface every year results in a significant increase

in option value. This seems intuitively correct since the volatility surface flattens out as

t grows larger. Furthermore, the use of a volatility surface, compared to the assumption

of constant volatility, results in increased option values.

Figure 2.8 shows the option value (V ), the delta (VS) and the gamma (VSS) for the

cases considered in Table 2.8. While the shape of the option value curve is relatively

unaffected by the use of a local volatility surface, this is not the case for the delta and

gamma of the option. Indeed, the delta curve (and consequently the gamma curve) is

significantly different when a local volatility surface is used for S < K. Nonetheless, the

characteristic non-smoothness at the strike in the delta curve is preserved when a local

volatility surface is added to the pricing model.

2.6 Summary

Infinite reload options are considered as some of the more complex and costly employee

stock options. As such, issuing companies that need to include these contracts in their

balance sheets may be looking for ways to reduce their no-arbitrage value. In this Chapter,

we defined the increased reload option which is obtained by modifying the infinite reload

option contract. Instead of receiving new options where K = S following a reload event

(which is the case for infinite reload options), owners would receive options where K =

S × (1 + p), where p is a percentage increase parameter. Defined in this context, the

infinite reload option contract becomes a special case of the increased reload contract

where p = 0. Our numerical results have shown that the increased reload option contract

can be used as a tool to help companies reduce their option expense.

More specifically, the following contributions were made:

• A detailed pricing model for increased reload options was outlined as an impulse
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Figure 2.8: Plot of the option value (V ), the delta (VS) and the gamma (VSS) for an increased
reload option with p = 0% under different modelling assumptions. Vol. Surf. – Case 1 implies
that a local volatility surface is used and equation (2.68) holds. Vol. Surf. – Case 2 implies that
a local volatility surface is used and equations (2.68) and (2.69) both hold. The update interval in
this case is 1 year. Const. Vol. makes the assumption that σ = .3167 is a constant parameter.
Other parameters used in the pricing process are presented in Table 2.1.
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control problem which was formulated as a Hamilton-Jacobi-Bellman equation. A

penalization method was also used to apply the reload constraint implicitly.

• To ensure convergence to the viscosity solution, we have shown that the discrete

equations obtained from the pricing model are consistent, stable and monotone [8].

• It was also shown that the implicit application of the reload constraint is clearly

superior to applying the constraint explicitly.

• Furthermore, the effect of the percentage increase parameter value p on both the

option value and the optimal exercise policy was outlined. Indeed, setting p to a

small non-zero value results in a significant reduction in contract value. In addition,

the exercise policy is very sensitive to small values of p.

Since setting p to a small non-zero value significantly reduces the no-arbitrage price of

the stock options considered, this simple contract modification may be easily accepted by

stock option owners while providing a non-negligible price reduction for issuing companies.

While we considered the impact of a rather simple contract modification on the option

value, there are numerous other changes that could be made to infinite reload options

to reduce their no-arbitrage price. Consider for example imposing a minimum holding

period for either company stock or employee stock options following a reload event. This

contract modification would limit the number of possible reloads during the lifetime of the

contract, thus reducing the value of infinite reload options significantly. These different

contract modifications will surely be considered more seriously by companies that have

issued stock options, and that are now seeking to reduce the stock option expense recorded

on their balance sheet.





Chapter 3

Infinite Reload Options with

Vesting

Companies granting employee stock options often include a vesting clause or vesting

period1 in these contracts. While the typical maturity for employee stock options is ten

years, the length of a vesting period generally ranges from six months to three years.

Depending on their structure, some employee stock options may be more significantly

impacted by the addition of a vesting period. For example, the initial reload option

grant, as well as each subsequent option received following a reload event, is subject to

the time vesting requirement. In this chapter, we investigate how the vesting period

affects the no-arbitrage value of infinite reload options.

In [39], [33] and [61], the authors discuss numerical methods for valuing reload options

with a time vesting constraint. The authors of [39] use a trinomial pricing model with

two state variables to price infinite reload options with vesting. Results in [39] show

1During the vesting period, employee stock options cannot be exercised. For example, owners of reload
options cannot trigger a reload event during the vesting period of the contract.

51
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that the infinite reload option value is reduced and the optimal exercise policy2 is no

longer applicable when vesting periods are added. In [61], the author presents analytical

pricing formulas for infinite reload options with time vesting constraints while assuming

that only the initial option grant is subject to vesting (options received following a reload

event vest immediately). In [33], a pricing method applicable to all reload options with a

time vesting requirement (including those with finite and infinite reload possibilities) is

developed. This pricing method is based on the binomial tree and numerical values for

reload options with both finite or infinite reload possibilities are presented. The authors

of [33] also state that the value of an infinite reload option is equal to that of a reload

option with finite reload rights where the number of remaining reloads is a function of

the time to expiry.

In this chapter, we extend the impulse control pricing model for infinite reload options

presented in Chapter 2 by including the time vesting requirement. The derived partial dif-

ferential equation contains an extra path-dependent variable to keep track of the vesting

period. Since the resulting pricing equation is convection-dominated, a semi-Lagrangian

scheme [37, 80, 41] is used during the discretization process. The infinite reload pricing

problem with vesting is solved using an operator splitting method [55, 56] due to the ob-

served poor convergence of the penalty iteration scheme. However, the operator splitting

scheme has the disadvantage that it is not monotone. Numerical results are generated

including a convergence analysis of the pricing method.

2Recall that the optimal exercise policy for infinite reload options states that the holder should reload
whenever the option is in-the-money. See Chapter 2 for more details.
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3.1 Option Pricing Model

To add vesting periods to the reload pricing model outlined in Chapter 2, we define an

additional path-dependent variable which determines whether or not the vesting period

has ended. Let u be defined as the time that has elapsed since the most recent reload

event:

u = t − tr, (3.1)

where tr is the time at which the last reload event occurred and t is the current time.

When the option is granted, u is set to zero and increases at the same rate as time (going

forward). When a reload event occurs, the owner receives new options that are subject

to the same vesting period and u is reset to zero. Once the vesting period is over, we no

longer need to keep track of u since it no longer affects the option value. Consequently,

u is defined on the range [0, vp], where vp > 0 is the vesting period of the initial option

contract.

Let V = V (S,K, u, t) denote the value of an infinite reload option with vesting period

vp, where S is the company stock price and K is the option strike price. As in Chapter 2,

we assume that S follows geometric Brownian motion (see equation (2.1)).

Once the vesting period has elapsed (u ≥ vp), the owner of the contract can choose to

reload his option at any time. A reload constraint is applied to ensure that the current

value of the reload option is never less than the value obtained following a reload event.

The reload constraint, denoted as AV = AV (S,K, u, t), is defined as:

AV (S,K, u, t) =















S − K + K
S

V (S, S, u = 0, t) if S > K and u ≥ vp,

0 otherwise,

(3.2)

where V (S, S, u = 0, t) represents the new option received by the owner with strike price
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K = S (and subject to a vesting period of vp). The reload constraint in equation (3.2)

can be defined as a non-local impulse operator (see Chapter 1) where S − K is the cash

flow and K
S

V (S, S, u = 0, t) is the intervention operator.

If the option has vested (u ≥ vp) when the contract reaches maturity (t = T ), the

owner receives one unit of stock for each infinite reload option owned. However, if the

reload option expires before the end of the vesting period (u < vp), the owner forfeits any

payoff. Thus, the payoff of an infinite reload option with vesting can be written as:

Payoff(S,K) =















max(S − K, 0) if u ≥ vp,

0 otherwise,

(3.3)

where K is the strike price of the option at expiry and S is the value of the company

stock at expiry.

Due to the presence of an extra path-dependent variable, the value of an infinite reload

option with vesting no longer satisfies the classic Black-Scholes equation. The specific

pricing equation for infinite reload options with vesting is now derived using the same

steps as for the Black-Scholes derivation [85].

We construct a hedging portfolio Π which contains the infinite reload option and a

certain amount β of company stock:

Π = V − βS, (3.4)

where we choose β = VS.

Applying Ito’s lemma [85, 54] to V = V (S,K, u, t), we obtain:

dV = Vtdt + Vudu + VSdS +
1

2
σ2S2VSSdt. (3.5)
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Since u increases at the same rate as forward time t, we have:

du = dt. (3.6)

Taking equation (3.6) into consideration, equation (3.5) becomes:

dV = Vtdt + Vudt + VSdS +
1

2
σ2S2VSSdt. (3.7)

From equation (3.4), the change in portfolio value Π is:

dΠ = dV − [βdS + βSqdt]

= Vtdt + Vudt +
1

2
σ2S2VSSdt − βSqdt, (3.8)

where q is the dividend rate.

Since the portfolio Π is risk-free, we have:

dΠ = rΠdt, (3.9)

where r is the risk-free rate of return.

Combining equations (3.4), (3.8) and (3.9), we obtain:

Vt + Vu + (r − q)SVS +
1

2
σ2S2VSS − rV = 0. (3.10)

Defining τ = T − t as the time to expiry, equation (3.10) can be written as:

Vτ = Vu + (r − q)SVS +
1

2
σ2S2VSS − rV. (3.11)

Equation (3.11) can now be combined with the reload constraint in equation (3.2) to
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provide a complete pricing framework for infinite reload options with vesting. Defining

the differential operator L as in equation (2.4) in Chapter 2, the no-arbitrage value of the

infinite reload option with vesting is obtained by solving the impulse control problem:

min

(

Vτ − Vu −LV, V −AV

)

= 0, (3.12)

where AV = AV (S,K, u, τ) is defined in equation (3.2). The initial conditions for the

pricing problem in (3.12) are set to the payoff defined in equation (3.3):

V (S,K, u, τ = 0) =















max(S − K, 0) if u ≥ vp,

0 otherwise.

(3.13)

The infinite reload pricing problem with vesting can also be written as a penalized

problem:

lim
ε→0

(

Vτ − Vu −LV − 1

ε
max(AV − V, 0)

)

= 0. (3.14)

Even though equation (3.14) suggests that the penalty method in [44] could be applied

easily, to solve the option pricing problem, we use the operator splitting method outlined

in [55] and [56]. This choice is a consequence of the slow convergence of the penalty

method when applied to equation (3.14) and is discussed in more detail in Section 3.2.2.

Assuming homogeneity conditions are met, the reload constraint in equation (3.2) can

be simplified. If V (S,K, u, τ) is homogeneous of degree one in (S,K) (see Definition 2.1),

then the constraint in equation (3.2) can be simplified by setting K = S in equation (2.7)

and choosing λ = K
S

, to get:

V (S, S, u, τ) =
S

K
V (K,K, u, τ). (3.15)
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Using equation (3.15), the reload constraint in equation (3.2) can be written as:

AV (S,K, u, τ) =















S − K + V (K,K, u = 0, τ) if S > K and u ≥ vp ,

0 otherwise.

(3.16)

Hence, when a similarity reduction is possible, the constraint in equation (3.16) can be

used when solving equation (3.12) in lieu of the usual reload constraint in equation (3.2).

Note that the use of a similarity reduction also reduces the dimensionality of the op-

tion pricing problem. However, since the similarity reduction is only applicable when

homogeneity conditions are met, it will be treated as a special case.

3.1.1 Solution Domain and Boundary Conditions

In this section, we determine the discrete solution domain and associated boundary con-

ditions for the infinite reload pricing problem in equation (3.12). Since the option value

no longer depends on u once the vesting period is over, we have:

V (S,K, u∗, τ) = V (S,K, vp, τ), (3.17)

for any u∗ > vp. Restricting the domain in the u direction to [0, vp], we define the discrete

solution domain as: [0, Smax]× [0,Kmax]× [0, umax], where Smax � Kmax and umax = vp.

To localize the reload option pricing problem, we specify additional boundary condi-

tions in each of the S, K and u directions. Let us first consider the boundary condition

as S → 0. When S = 0, equation (3.12) simplifies to:

Vτ − Vu + rV = 0. (3.18)

As K → 0, no additional boundary condition is necessary since the differential operator
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L in equation (2.4) contains no K derivatives.

The boundary conditions as K → Kmax and S → Smax should be handled with some

care. For S = Smax (with Smax � Kmax), we make the assumption that:

V ∼ H(u, τ)S ; S → Smax, (3.19)

which implies:

min(Vτ − Vu + qV, V −AV ) = 0 ; S → Smax. (3.20)

As in Chapter 2, we assume that a similarity reduction is applicable for K = Kmax

and/or S > Kmax. This is equivalent to assuming that the volatility is approximately

constant for those cases when K = Kmax and/or S > Kmax. The reload constraint in

equation (3.2) can now be rewritten to reflect this assumption:

AV (S,K, u, τ) =































S − K + K
S

V (S, S, u = 0, τ) if K < S ≤ Kmax and u = vp,

S − K + V (K,K, u = 0, τ) if S > Kmax and u = vp,

0 otherwise.

(3.21)

As u → 0, recall that the reload constraint is no longer applied. As such, the equation

solved at u = 0 is:

Vτ − Vu −LV = 0, (3.22)

where L is defined in equation (2.4). Note that this does not cause any problems since

there is an outward characteristic at u = 0. As u → ∞, the pricing problem no longer

depends on u once u ≥ vp which implies Vu = 0 at u = vp. Thus, we simply solve

equation (3.12) at u = vp with Vu = 0.
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In summary, pricing infinite reload options with vesting involves solving:

min(Vτ − Vu −LV, V −AV ) = 0, (3.23)

on the discrete domain [0, Smax] × [0,Kmax] × [0, umax] with initial conditions:

V (S,K, u, τ = 0) =















max(S − K, 0) if u = umax = vp,

0 otherwise,

(3.24)

and boundary conditions:

Vτ − Vu + rV = 0 for S = 0, (3.25)

min(Vτ − Vu + qV, V −AV ) = 0 for S = Smax, (3.26)

Vτ − Vu −LV = 0 for u = 0, (3.27)

min(Vτ −LV, V −AV ) = 0 for u = umax, S < Smax, (3.28)

where the reload constraint AV is calculated as in equation (3.21).

3.1.2 Reformulation of the Continuous Pricing Problem

To avoid algebraic complexity, the infinite reload pricing problem with vesting has thus far

been defined as an impulse control problem in equation (3.12) or as a penalized problem

in equation (3.14). However, since a discrete penalty method [44] cannot be used due to

the slow convergence of the iteration (as discussed in Section 3.2.2), an operator splitting

approach is used in the solution process. In this section, we reformulate the continuous

pricing problem as an equivalent set of quasi-variational inequalities to facilitate the

description of the discrete solution process.
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We rewrite the pricing equation (3.12) as a set of quasi-variational inequalities:

Vτ − Vu −LV ≥ 0

V −AV ≥ 0 (3.29)

(Vτ − Vu −LV )(V −AV ) = 0

where the last equation indicates that either (V −AV ) = 0 or (Vτ −Vu −LV ) = 0 at any

given point in the domain.

Based on the formulation of the linear complementarity problem in [55] and [56], we

introduce an auxiliary variable ξ and rewrite equation (3.29) as:

Vτ − Vu = LV + ξ (3.30)

V −AV ≥ 0 ; ξ ≥ 0 (3.31)

(V −AV )ξ = 0. (3.32)

Note that the initial and boundary conditions outlined previously are still needed to fully

specify the reformulated option pricing problem defined above.

3.2 Derivation of the Discrete Equations

In this section, we outline how equation (3.12) is discretized over the solution domain in

the context of the operator splitting method [55]. To simplify our derivation, we describe

in detail the construction of the underlying grid.

Since the option value depends on three path-dependent variables as well as time, we

construct a set of nodes which spans the [0, Smax] × [0,Kmax] × [0, vp] domain. A set of

equally spaced nodes in the u direction {uk}, for k = 0, . . . , kmax is constructed where
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Figure 3.1: Example of a three-dimensional S×K×u domain where each S×K plane contains
a scaled grid as shown in Figure 2.2.

u0 = 0 and ukmax = vp. For each uk, we build a two-dimensional scaled grid which covers

the [0, Smax] × [0,Kmax] domain. As described in Section 2.2.1, the characteristic of the

scaled grid construction is that it concentrates nodes near the line S = K. Thus, we

obtain kmax + 1 rectangular grids spanning the S ×K domain, each associated with a uk

value. An example of the final three-dimensional grid is included as Figure 3.1.

Having defined the underlying grid, we discretize equation (3.30) in both space and

time, setting aside for now the additional constraints presented as equations (3.31) and

(3.32) and the auxiliary variable ξ. Due to the absence of a diffusion term in the u

direction, equation (3.30) is considered to be convection-dominated. While the differential

term on the right-hand side of equation (3.30) is discretized using standard finite difference

methods, the terms on the left-hand side of equation (3.30) are discretized using a semi-

Lagrangian approach as done in [36]. Often used in areas such as weather prediction,
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oceanography and fluid dynamics, semi-Lagrangian schemes are designed to deal with

numerical problems arising from convection-dominated equations. The semi-Lagrangian

approach enables us to trace the trajectory of flow particles back in time while knowing

their current position. In [36], semi-Lagrangian timestepping is used to solve a partial

integral differential equation when pricing Asian options with jumps in the underlying.

We apply a similar technique to our infinite reload pricing equation.

Let us consider a trajectory in the u direction denoted by û = û(τ ;S,K), where S

and K are constant and fixed values. Using equation (3.6) and recalling that dt = −dτ ,

the û trajectory satisfies:

dû

dτ
= −1. (3.33)

Defining the Lagrangian derivative of V as:

DV

Dτ
= Vτ + Vu

dû

dτ
(3.34)

and using equation (3.33), we can write equation (3.30) (ignoring for now the auxiliary

variable ξ) as:

DV

Dτ
= LV, (3.35)

where L is defined in equation (2.4).

We assume the trajectory of û values arrives at the discrete node (S j
i ,Kj , uk) at time

τ = τn+1, with both Sj
i and Kj being constant. The departure point of this trajectory

at time τ = τn is denoted as û(τn) = û(τn;Sj
i ,Kj , uk, τ

n+1). Keep in mind that the

departure point of the trajectory may not coincide with an existing grid node since û(τ n)
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is determined by solving:

dû

dτ
= −1 (3.36)

S = Sj
i ; K = Kj ; û(τ) = uk at τ = τn+1,

from τ = τn+1 to τ = τn. Therefore, û(τn) will satisfy:

û(τn) = uk −
∫ τn

τn+1

dτ

= uk + (τn+1 − τn) (3.37)

where T ≥ τn+1 > τn.

Let V n
i,j,k = V (Sj

i ,Kj , uk, τ
n) denote the discrete reload option value at node (S j

i ,Kj , uk)

and time τn, and V n
i,j,k′ = V (Sj

i ,Kj , û(τn), τn) denote the option value at the departure

point of the trajectory û(τn). Limited quadratic interpolation along the u-axis can be

used when calculating V n
i,j,k′ [41]. However, linear interpolation is required to ensure

monotonicity if desired. Assuming the index p such that up ≤ û(τn) ≤ up+1 is known,

linear interpolation along the u-axis implies:

V n
i,j,k′ = (1 − γ)V n

i,j,p + γV n
i,j,p+1 (3.38)

where both V n
i,j,p and V n

i,j,p+1 correspond to pre-existing grid nodes (see Section 3.2) and

the interpolation weight 0 ≤ γ ≤ 1 is defined as:

γ =
û(τn) − up

up+1 − up
. (3.39)
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Thus, the time discretization of equation (3.35) along the characteristic curve implies:

V n+1
i,j,k − V n

i,j,k′

∆τ
= θ[LhV ]ni,j,k′ + (1 − θ)[LhV ]n+1

i,j,k (3.40)

where 0 ≤ θ ≤ 1 determines which timestepping method is used in the solution process

and [LhV ]ni,j,k is defined as:

[LhV ]ni,j,k = αi,jV
n
i−1,j,k + βi,jV

n
i+1,j,k − (αi,j + βi,j + r)V n

i,j,k (3.41)

where αi,j ≥ 0 and βi,j ≥ 0 are determined according to the algorithm in Appendix A.

In the context of the operator splitting method [55], the solution process involves

two fractional steps. First, equation (3.40), augmented by the auxiliary variable ξ, is

solved providing us with an intermediate solution denoted as V̄ n
i,j,k = V̄ (Sj

i ,Kj , uk, τ
n).

Second, the reload constraint in equation (3.21) is applied and the auxiliary variable

ξ is updated accordingly. The discrete value of the auxiliary variable ξ is denoted as

ξn
i,j,k = ξ(Sj

i ,Kj , uk, τ
n).

To facilitate the description of this process, we use the following vector notation:

V n
j,k =



















V n
0,j,k

V n
1,j,k

...

V n
jmax,j,k



















; V̄ n
j,k =



















V̄ n
0,j,k

V̄ n
1,j,k

...

V̄ n
jmax,j,k



















; ξn
j,k =



















ξn
0,j,k

ξn
1,j,k

...

ξn
jmax,j,k



















, (3.42)

and define the tri-diagonal coefficient matrix D as:

[

DV n
j,k

]

i
= V n

i,j,k(αi,j + βi,j + r)∆τ − ∆τβi,jV
n
i+1,j,k − ∆ταi,jV

n
i−1,j,k. (3.43)

We denote the discrete value of the reload constraint as AhV n
i,j,k = AhV (Sj

i ,Kj , uk, τ
n)
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and use the vector notation defined in (3.42) to obtain:

AhV n
j,k =



















AhV n
0,j,k

AhV n
1,j,k

...

AhV n
jmax,j,k



















. (3.44)

Similarly, the interpolated semi-Lagrangian terms are denoted by:

Ii,j,k′V n =



















V n
0,j,k′

V n
1,j,k′

...

V n
jmax,j,k′



















= aV n
j,p + bV n

j,p+1 (3.45)

where Ii,j,k′ represents the interpolation operator, a = [(1 − γ) (1 − γ) . . . (1 − γ)] and

b = [γ γ . . . γ] in accordance with equation (3.38).

The first step of the solution method involves solving:

[I + (1 − θ)D]V̄ n+1
j,k = Ii,j,k′V n − θIi,j,k′DV n + ∆τξn

j,k, (3.46)

to determine the intermediate solution vector V̄ n+1
j,k . Note that equation (3.46) corre-

sponds to equation (3.40) in matrix form with the addition of the discrete value of the

auxiliary variable. Consistent with [55], we initially set the auxiliary variable to ξ 0
i,j,k = 0

for all i, j, k.

The second fractional step involves updating the option value and the auxiliary vari-

able component-wise to enforce the linear complementarity conditions. In [55], the au-
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for i = 0, . . . , jmax do

V n+1
i,j,k = max

(

V̄ n+1
i,j,k ,AhV n+1

i,j,k

)

if V̄ n+1
i,j,k > AhV n+1

i,j,k then

ξn+1
i,j,k = 0

else

ξn+1
i,j,k = ξn

i,j,k + 1
∆τ

(

V̄ n+1
i,j,k −AhV n+1

i,j,k

)

end if
end for

Algorithm 3.1: Update Process in Operator Splitting Method

thors outline the update process as:

V̄ n+1
i,j,k − V n+1

i,j,k − ∆τ(ξn+1
i,j,k − ξn

i,j,k) = 0, (3.47)

ξn+1
i,j,k (V n+1

i,j,k −AhV n+1
i,j,k ) = 0, (3.48)

V n+1
i,j,k ≥ AhV n+1

i,j,k ; ξn+1
i,j,k ≥ 0, (3.49)

when fully implicit timestepping (θ = 0) or Crank-Nicolson timestepping (θ = 1/2) is used

to solve equation (3.46). Equations (3.47)–(3.49) are equivalent to the update process in

Algorithm 3.1. In [56], it is shown that the discrete scheme in equations (3.46)–(3.49)

approximates the reformulation of the linear complementarity problem in (3.30)–(3.32)

to second order in time for sufficiently smooth solutions.

When computing the discrete reload constraint defined in equation (3.21), diagonal

interpolation is used along the K = S line to determine V (S, S, u = 0, τ) as described in

equation (2.30) (with p = 0). The discrete version of the reload constraint in (3.21) can
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be written as:

AhV (Sj
i ,Kj , uk, τ

n+1) =











































Sj
i − Kj +

Kj

S
j
i

(

(1 − ω) V n+1
l,m,0 + ωV n+1

l,m+1,0

)

if Sj
i > Kj, Sj

i ≤ Kjmax , uk = vp,

Sj
i − Kj + V n+1

l,j,0 if Sj
i > Kj, Sj

i > Kjmax , uk = vp,

0 otherwise,

(3.50)

where the interpolation weight 0 ≤ ω ≤ 1 is defined in equation (2.31) (with p = 0) and

the index l is such that Sj
l = Kj and V n+1

l,j,0 = V (Sj
l ,Kj , u0, τ

n+1). When a similarity

reduction is applicable, the calculation of the reload constraint requires no interpolation

since the node (Sj
l ,Kj) is included in the grid constructed for each uk (see Section 2.2.1).

3.2.1 Theoretical Issues

In this section, we verify the theoretical properties of the discrete equations to ensure that

the solution of our numerical scheme converges to the unique viscosity solution [31]. Based

on [8, 11], verifying that the numerical scheme is stable, monotone and consistent ensures

convergence to the viscosity solution, assuming that the strong comparison principle

applies [8]. However, if one of these three properties is not satisfied by the numerical

scheme, then convergence to the viscosity solution cannot be guaranteed.

Consistency

In [56], the authors show that the discrete operator splitting scheme is consistent. There-

fore, the discrete solution method presented previously satisfies the consistency require-

ment.
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Stability

While the authors of [56] also claim that the numerical scheme is stable, it is not clear

that this can be proved rigorously.

Monotonicity

We show that the discrete equations do not satisfy the monotonicity property by providing

a counter-example. We denote the discrete equations obtained from the operator splitting

scheme as gi,j,k = gi,j,k(V
n+1
i,j,k , Ii,j,k′V n, ξn

j,k) = 0, where Ii,j,k′V n = Ii,j,k′V n(V n
j,p, V

n
j,p+1)

and ξn
j,k = ξn

j,k(ξ
n−1
j,k , Ii,j,k′V n−1(V n−1

j,p , V n−1
j,p+1)) = ξn

j,k(V
n−1
j,k , V n−2

j,k , . . .) are defined in

equations (3.45) and (3.42) respectively. For the special case when V n+1
i,j,k = V̄ n+1

i,j,k , we

can write the solution process as a single step (from equation (3.46)):

gi,j,k

(

V n+1
i,j,k , Ii,j,k′V n, ξn

j,k

)

=
[

V n+1
j,k

]

i
−
[

M−1Ii,j,k′V n + ∆τM−1ξn
j,k

]

i
= 0, (3.51)

assuming fully implicit timestepping is used, where the matrix M = I+D and the matrix

D is defined in equation (3.43). Since M is an M-matrix, gi,j,k is a decreasing function of

ξn
j,k. Furthermore, Ii,j,k′V n is a monotone function of V n

j,k if linear interpolation is used

(see equation (3.45)), which we assume to be the case. In this context, we can define the

monotonicity requirement as follows.

Definition 3.1 (Monotonicity). The numerical scheme gi,j,k(V
n+1
i,j,k , Ii,j,k′V n, ξn

j,k) in

equation (3.51) is monotone if for all εn
i,j,k ≥ 0:

gi,j,k

(

V n+1
i,j,k , Ii,j,k′V n(V n

j,p + εn
j,p, V

n
j,p+1 + εn

j,p+1), ξ
n
j,k

(

V n−1
j,k + εn−1

j,k , V n−2
j,k + εn−2

j,k , . . .
)

)

− gi,j,k

(

V n+1
i,j,k , Ii,j,k′V n(V n

j,p, V
n
j,p+1), ξ

n
j,k

(

V n−1
j,k , V n−2

j,k , . . .
)

)

≤ 0 (3.52)

where εn
j,k = [εn

0,j,k, ε
n
1,j,k, . . . , ε

n
jmax,j,k]

′.
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We will show that equation (3.52) does not hold when V n+1
i,j,k = V̄ n+1

i,j,k .

Lemma 3.2 (Non-Monotone Discretization). If

V̄ n+1
i,j,k > AhV n+1

i,j,k , (3.53)

ξn
i,j,k > 0 and ξn−1

i,j,k = 0 (3.54)

for all i, the numerical scheme gi,j,k(V
n+1
i,j,k , Ii,j,k′V n, ξn

j,k) in equation (3.51) is not mono-

tone even if linear interpolation (presented in equation (3.38)) is used to obtain the semi-

Lagrangian term. In this case, the requirement outlined in equation (3.52) from Defini-

tion 3.1 is not satisfied.

Proof. A necessary condition for monotonicity is that the auxiliary variable ξn
i,j,k be an

increasing function of V n−1
i,j,k′. When equations (3.53) and (3.54) are satisfied, V n+1

i,j,k = V̄ n+1
i,j,k

and the pricing equation for V n+1
i,j,k can be written as (from equation (3.46)):

[V n+1
j,k ]i =

[

M−1(Ii,j,k′V n + ∆τξn
j,k)
]

i
, (3.55)

where Ii,j,k′V n is defined in equation (3.45). Since M is an M-matrix, the entries in M−1

are non-negative with positive diagonals.

Since ξn
i,j,k > 0, Algorithm 3.1 implies that V̄ n

i,j,k ≤ AhV n
i,j,k and:

ξn
i,j,k = ξn−1

i,j,k +
1

∆τ

(

V̄ n
i,j,k −AhV n

i,j,k

)

, (3.56)

where V̄ n
i,j,k is obtained as in (3.46). Since ξn−1

i,j,k = 0 and ξn
i,j,k > 0 by assumption,

Algorithm 3.1 implies that V n
i,j,k = AhV n

i,j,k.
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For all i, we choose εn−1
i,j,p > 0 sufficiently large such that:

[V̄ n
i,j,k]perturbed =

[

M−1
(

a(V n−1
j,p + εn−1

j,p ) + b(V n−1
j,p+1)

)

+ ∆τξn−1
j,k

)

]

i

=
[

M−1
(

a(V n−1
j,p + εn−1

j,p ) + b(V n−1
j,p+1)

)

]

i

> AhV n
i,j,k (3.57)

where Ii,j,k′V n−1 = aV n−1
j,p + bV n−1

j,p+1 from (3.45). This implies that [ξn
i,j,k]perturbed = 0.

Consequently, we have shown that, for εn−1
i,j,p sufficiently large:

ξn
i,j,k

(

ξn−1
j,k , Ii,j,k′V n−1(V n−1

j,p + εn−1
j,p , V n−1

j,p+1)
)

− ξn
i,j,k

(

ξn−1
j,k , Ii,j,k′V n−1(V n−1

j,p , V n−1
j,p+1)

)

< 0,

and we get:

gi,j,k

(

V n+1
i,j,k , Ij,k′V n

(

V n
j,p, V

n
j,p+1

)

, ξn
j,k

(

V n−1
j,k + εn−1

j,k , V n−2
j,k , . . .

)

)

− gi,j,k

(

V n+1
i,j,k , Ii,j,k′V n

(

V n
j,p, V

n
j,p+1

)

, ξn
j,k

(

V n−1
j,k , V n−2

j,k , . . .
)

)

> 0, (3.58)

which contradicts equation (3.52) in Definition 3.1. Hence, gi,j,k(V
n+1
i,j,k , Ii,j,k′V n, ξn

j,k) is

not monotone.

This counter-example shows that the operator splitting scheme is not monotone in

general, and hence, convergence to the viscosity solution is not guaranteed.

3.2.2 Comments on the Solution Method

In this section, we discuss some of the numerical issues that were encountered when pricing

infinite reload options with vesting. When first attempting to price these contracts,

we chose to determine their numerical value using the penalty method outlined in [44].

Recall that this solution method was used successfully in Chapter 2 when pricing classic
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infinite reload option contracts [13]. However, a serious setback was encountered with this

iterative scheme. It was observed that a very large number of iterations were necessary

to obtain convergence of the solution at each timestep. This led us to consider alternate

solution methods for handling the reload constraint.

Consequently, the operator splitting method presented in [55] and [56] was chosen to

solve the infinite reload pricing problem with vesting. While this method provided a sat-

isfactory alternative to the iterative penalty scheme, some drawbacks were also observed.

In addition to the issues outlined in Section 3.2.1, less than ideal convergence ratios were

obtained. While the authors of [56] claim that quadratic convergence is possible when

the method uses Crank-Nicolson timestepping, we were not able to generate a consistent

quadratic convergence rate when pricing a simple American put option with the operator

splitting method. As shown in Appendix E, only sub-quadratic convergence is obtained

when pricing an American put option (without vesting) using Crank-Nicolson. Note that

this is consistent with the results in [56] where the authors obtain rather erratic conver-

gence ratios when pricing American options with stochastic volatility using the operator

splitting method. The authors claim that the solution is not smooth enough with respect

to time to provide quadratic convergence when Crank-Nicolson timestepping is used.

Since quadratic convergence was not obtained when pricing a simpler contract such

as the American put option, it is unlikely that second order convergence will be observed

when pricing infinite reload options using the operator splitting solution method and

Crank-Nicolson timestepping.

3.3 Numerical Results

In this section, numerical results for infinite reload options with different vesting periods

are presented. All results were computed using the operator splitting method. We begin
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Parameter Value

σ - Volatility 0.3
r - Risk-free interest rate 0.05
q - Dividend yield 0.0
K - Initial strike price $100
S - Initial asset price $100
T - Contract maturity 10 years
vp - Vesting Period 0.5 years
Kmax - Grid parameter $2000
Smax - Grid parameter $40000

Table 3.1: Parameter values used when pricing infinite reload options with vesting.

by carrying out a convergence analysis and then move on to consider the effect of the

length of the vesting period on the option value. Also, we demonstrate the robustness of

our pricing model by comparing the numerical results obtained here with those presented

in [39] and [33]. The parameter values chosen when generating these results are presented

in Table 3.1 and will be used throughout this section unless otherwise noted.

Table 3.2 holds the results of the convergence analysis for an infinite reload option

contract with a vesting period of 0.5 years. The underlying grid is built as described in

Section 3.2 and a similarity reduction is used in the option value calculation. Furthermore,

quadratic interpolation is chosen for the semi-Lagrangian term calculation and diagonal

interpolation is used when calculating the reload constraint. Constant timesteps are used

for both fully implicit and Crank-Nicolson timestepping in accordance with the results in

Appendix E.

From Table 3.2, we see that linear convergence is obtained when fully implicit timestep-

ping is used. This result is consistent with the theoretical convergence of this timestepping

method. However, sub-quadratic convergence is obtained when Crank-Nicolson timestep-

ping is chosen even though diagonal interpolation is used to calculate the reload con-

straint. As noted previously, we attribute this less than theoretical convergence to the



3.3. NUMERICAL RESULTS 73

Infinite Reload Option with a vp = 0.5 years

Nodes
Refinement K Grid u Grid Option Value Difference Ratio

Fully Implicit (implicit constraint)

0 61 51 63.070009 n.a. n.a.
1 121 101 63.187814 0.117805 n.a.
2 241 201 63.236508 0.048694 2.42
3 481 401 63.258609 0.022101 2.20
4 961 801 63.269171 0.010562 2.09

Crank-Nicolson (implicit constraint)

0 61 51 63.199299 n.a. n.a.
1 121 101 63.254138 0.054840 n.a.
2 241 201 63.270394 0.016255 3.37
3 481 401 63.275846 0.005452 2.98
4 961 801 63.277916 0.002071 2.63

Table 3.2: Value of an infinite reload option at S = $100 with a vesting period of 0.5 years using
fully implicit and Crank-Nicolson timestepping for different refinement levels. Constant timesteps
are taken in both cases and the initial timestep is set to 0.05 years on the coarsest grid. Other
parameter values are presented in Table 3.1. Note that a similarity reduction was used when
computing these results.

use of the operator splitting method as well as the complex nature of the reload constraint

applied at each timestep.

The results presented in Table 3.2 are consistent with those presented in [33] and [39].

Using the parameters in Table 3.1, the authors of [39] use extrapolation to establish the

contract value as $63.26, while the authors of [33] determine the option value as being

$63.28. To further compare our results with those obtained in [33] and [39], we consider

alternate volatility and vesting period values. Table 3.3 presents the value of an infinite

reload option contract with a vesting period of either 0.5 or 1 year and a volatility of

either 0.3 or 0.4. The results obtained in each case are consistent with the values presented

in [33] and [39]. Note that fully implicit timestepping is used since both timestepping

methods were found to provide first-order convergence.

Since the implicit application of the reload constraint within the operator splitting
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vp = 0.5 years vp = 1 year
Refinement σ = 0.3 σ = 0.4 σ = 0.3 σ = 0.4

0 63.070009 71.601479 61.604386 70.102681
1 63.187814 71.689259 61.695624 70.167970
2 63.236508 71.732622 61.731127 70.198941
3 63.258609 71.754397 61.746449 70.214171
4 63.269171 71.765399 61.753563 70.221788

Values from [33] 63.28 71.78 61.76 70.23
Values from [39] 63.26 71.76 61.78 70.21

Table 3.3: Value of an infinite reload option with a maturity of 10 years for different vesting
period lengths (vp) and different volatility values (σ). Fully implicit timestepping is used with an
initial timestep of 0.05 years on the coarsest grid. Other parameter values chosen are presented in
Table 3.1. For comparison, the last two rows present numerical results obtained in Dai and Kwok
[33] and Dybvig and Loewenstein [39].

method does not provide quadratic convergence, the explicit application of the constraint

is considered as a possible alternative. Applying the reload constraint explicitly implies

first solving:

[I + (1 − θ)D]V̄ n+1
j,k = V n

j,k′ − θIi,j,k′DV n (3.59)

to determine the intermediate solution, where D is defined in equation (3.43), 0 ≤ θ ≤ 1

is determined by the timestepping method and Ii,j,k′V n is calculated as in (3.45). The

reload constraint is then applied component-wise:

V n+1
i,j,k = max(V̄ n+1

i,j,k ,AhV n+1
i,j,k ). (3.60)

An advantage of this explicit constraint scheme is that it is easy to show that this method

(in the fully implicit case) is l∞-stable and monotone (assuming linear interpolation is

used when computing the semi-Lagrangian term). Consistency can be shown using an

argument similar to that in Chapter 2 for increased reload options. Hence, we are guar-

anteed that this scheme converges to the unique viscosity solution.

Table 3.4 presents values obtained when pricing an infinite reload option with vp = 0.5
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Infinite Reload Option with a vp = 0.5 years

Nodes
Refinement K Grid u Grid Option Value Difference Ratio

Fully Implicit (explicit constraint)

0 61 51 63.039664 n.a. n.a.
1 121 101 63.172646 0.132982 n.a.
2 241 201 63.228925 0.056280 2.36
3 481 401 63.254818 0.025893 2.17
4 961 801 63.267276 0.012458 2.08

Crank-Nicolson (explicit constraint)

0 61 51 63.187866 n.a. n.a.
1 121 101 63.248805 0.060939 n.a.
2 241 201 63.267922 0.019117 3.19
3 481 401 63.274711 0.006789 2.82
4 961 801 63.277392 0.002681 2.53

Table 3.4: Value of an infinite reload option at S = $100 with a vesting period of 0.5 years
where the reload constraint is applied explicitly. Constant timesteps are used for both timestepping
methods and the initial timestep is set to 0.05 years on the coarsest grid. Other parameter values
are presented in Table 3.1. Note that the similarity reduction property was used when obtaining
these results.

years and applying the reload constraint explicitly. Quadratic interpolation is used to

calculate the semi-Lagrangian term and diagonal interpolation is used to compute the

reload constraint. As expected, both the fully implicit and Crank-Nicolson timestepping

schemes provide first-order convergence. When comparing the results in Table 3.4 with

those in Table 3.2, we see that the accuracy of the option values are comparable. This is

especially true for higher refinement levels (i.e. refinement of 3 or 4). As such, it would

appear that the explicit application of the reload constraint is an acceptable alternative for

those looking for a solution method that is simpler to implement and also has guaranteed

convergence properties (if linear interpolation is used). We also increased both Kmax and

Smax and found that when Kmax = $2000 the numerical results are accurate for 8 digits.

In the remainder of this chapter, the numerical results are generated using the operator

splitting scheme.
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We now consider the effect of the length of the vesting period on the infinite reload

option value. Table 3.5 presents values of infinite reload options with a vesting period of

0.5, 1 and 3 years. For comparison purposes, numerical values for the standard infinite

reload option contract (no vesting period) and the classic employee stock option (similar

to a simple European call option) are also included in Table 3.5. Clearly, the addition of

a vesting period to infinite reload option contracts results in a significant reduction of its

no-arbitrage price.

More specifically, adding a vesting period reduces the premium associated with the

infinite reload right. According to the results in Table 3.5, the difference between the

classic employee stock option and the infinite reload option value is about $14. This

amount corresponds to the premium paid for the right to reload at any time prior to

maturity. Adding a vesting period of 1 year reduces the option value by about $5 which

corresponds to a reduction of the reload premium by about 35%. However, this contract

modification does not appear to be as effective in reducing the option value as increasing

the reload strike [13]. As shown in Chapter 2, increasing the strike of new reload options

by only 1% reduces the option value to about $61.70 resulting in a similar impact as the

addition of a vesting period of 1 year. From the point of view of the employee, increasing

the strike price of new reload options by 1% is probably more appealing than including

a vesting period of 1 year to the reload contract and it may be easier to negotiate its

acceptance with employees.

More information on the effect of the vesting period on the value of an infinite reload

option can be found in Figure 3.2 which plots the option value as a function of the vesting

period length. The plot in Figure 3.2 reveals that adding a vesting period of more than 5

years will reduce the option value to that of a classic employee stock option with identical

maturity (see numerical value in Table 3.5). Indeed, when vp > 5 years, the reload option

essentially becomes a classic stock option since the owner can never reload his option as
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Vesting Period vp (in years) Classic Employee
S 0.0 0.5 1.0 3.0 Option

90 56.85 53.65 52.27 48.87 44.29
100 66.76 63.28 61.75 57.92 52.57
110 76.76 73.06 71.41 67.19 61.10

Table 3.5: Value of an infinite reload option with a maturity of 10 years at different S values for
vesting periods (vp) ranging from 0.5 to 3 years. For comparison purposes, the value of a classic
employee stock option is also included. Note that the numerical results shown are precise to within
$0.01. The parameter values used in the calculations are presented in Table 3.1.
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Figure 3.2: Value of an infinite reload option as a function of the length of the vesting period
(vp). Contract parameters used during the pricing process are presented in Table 3.1.

it would then expire prior to the end of the vesting period.

Also, consider the two price drops that occur at approximately 3.33 years and 5 years

respectively. These sharp price reductions occur when the number of possible reloads

during the lifetime of the contract is reduced. The first drop occurs at vp = 3.33 years

which corresponds to the time when the number of possible reloads drops from 2 to 1.

Similarly, the price of the contract drops sharply at vp = 5 years since the owner loses all

reload possibilities when vp > 5.
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Lastly, we study the effect of the vesting period length on the option value (V ), the

delta (VS) and the gamma (VSS). Figure 3.3 presents these three quantities for infinite

reload option contracts with a vesting period of 1 and 3 years. For comparison purposes,

the curves obtained for classic infinite reload options (No vesting) are also included.

While the shape of the option value curve is not significantly affected by the vesting

period (Figure 3.3(a)), the shape of the delta curve changes when a vesting period is

introduced, as shown in Figure 3.3(b). The plot of the delta for the classic infinite reload

option contains a kink at the strike which disappears with the addition of a vesting period.

Consequently, the discontinuity in the gamma observed for classic infinite reload options

disappears when a vesting period is added (see Figure 3.3(c)). For infinite reload options

without vesting, recall that the discontinuity in the gamma represents the optimal exercise

policy whereby the owner should reload whenever S > K [39]. Clearly, this optimal

exercise policy no longer applies when vesting periods are introduced; this is reflected

in the smooth gamma curves observed when vp = 1 year and vp = 3 years. This result

is consistent with the comments in [39] and [33] regarding the optimal exercise policy.

The authors of [39] and [33] both state that the optimal exercise policy is affected by

the introduction of a vesting period, even resulting in periods during the lifetime of the

contract where it is not optimal to exercise at all.

3.4 Summary

In this chapter, we have extended the no-arbitrage pricing model for infinite reload options

presented in Chapter 2 by taking into consideration possible vesting periods. Since the

modelling of this feature results in the addition of a new path-dependent variable, the

appropriate pricing equation for infinite reload options with vesting was derived. Due to

the convection-dominated nature of the pricing equation, a semi-Lagrangian scheme was
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(b) Option delta for different vp values.
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Figure 3.3: Plot of the option value (V ), the delta (VS) and the gamma (VSS) functions when
pricing an infinite reload option with different vesting periods. The contract parameters used
during the pricing process are presented in Table 3.1.

used during the discretization process. While the impulse control problem considered

could have been solved using the penalty method [44], an operator splitting method was

chosen due to the large number of iterations required when solving the pricing problem
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with the penalty method. It was shown that the resulting numerical scheme is not

monotone and, therefore, convergence of the solution to the unique viscosity solution

cannot be guaranteed. Our numerical results where nonetheless consistent with those in

[39] and [33]. Numerical results obtained using the operator splitting method with an

implicit application of the reload constraint were also compared to those recovered when

the constraint is applied explicitly. The values obtained from the explicit scheme were

found to be comparable in terms of accuracy to those from the operator splitting scheme.

While the introduction of a vesting period reduces the no-arbitrage price of an infinite

reload option, the price drop was not as significant as one would have expected. This

is especially true when this contract modification is compared to increasing the strike

of new reload options (Chapter 2). Indeed, increasing the reload strike by only 1% has

the same impact as adding a vesting period of 1 year and is probably more appealing

to employees. However, the price difference remains non-negligible which implies that

the vesting period of an infinite reload option should not be ignored during the pricing

process, if such a feature is included in the option contract.



Chapter 4

Expected Utility Pricing of

Infinite Reload Options

One of the main issues when using stock options as a compensation tool is the well-

established notion that employees place a lower value on stock options than the no-

arbitrage price of the contract, as discussed in [51]. Having been demonstrated repeatedly

in previous literature (see [70], [50], [64], [22]), this appears to be a consequence of the

trading restrictions imposed on the employee regarding his or her company stock. While

a no-arbitrage pricing model for infinite reload options was developed in Chapter 2 and

extended in Chapter 3 by adding vesting periods, this chapter focuses on determining the

value of employee stock options, and infinite reload options in particular, to the holder

of the contract.

A substantial amount of literature is available regarding the pricing of classic vanilla-

type stock options from the holder’s point of view. Using different pricing techniques, both

[60] and [70] show that the value of a classic stock option to the holder is significantly less

than the no-arbitrage price computed using the Black-Scholes approach. Both [83] and

81
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[50] determine the value of classic vanilla-type stock options using a certainty equivalence

approach. In [83], the authors determine the incentive effects of classic stock options, while

[50] tries to shed light on various related issues such as option repricing and exercise price

policies. In [23], the author compares the value obtained for classic stock options using a

certainty equivalence approach with those obtained using an extension of the American

pricing model and finds that they are quite similar. Finally, in [22] the authors attempt

to reduce the gap between the objective and subjective option value by suggesting a

particular hedging strategy.

The main contributions of this chapter can be summarized as follows:

• A general utility-based pricing framework is developed to determine the value of a

stock option to the holder. Our pricing model is a multi-step process where two

expected utility values are computed. The first step involves solving a convection-

dominated partial differential equation which is discretized using a semi-Lagrangian

scheme. The second step determines the cash equivalent option value by using

Monte Carlo simulations or an analytical solution when applicable.

• To highlight the versatility of our pricing model, both classic stock options and

infinite reload options are valued from the holder’s perspective.

• While we noted in Chapter 2 that the reload feature significantly increases the

no-arbitrage price of an infinite reload option, we now demonstrate that the infi-

nite reload opportunities are significantly undervalued by the contract owner. Fur-

thermore, the contract value to the employee is shown to be highly sensitive to

assumptions made regarding the portfolio content of the contract owner.
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4.1 Mathematical Model

In this section, we outline details of the mathematical model used to determine the

value of employee stock options to contract holders. The pricing model adopts a utility

maximizing or certainty equivalence approach [64, 50]. We assume that the employee’s

total wealth or portfolio, denoted by W, is composed of ns units of company stock, no

stock options and some amount of cash w held in a risk-free bank account. The implied

assumption is that the employee does not invest in any other market instruments. Keep

in mind that executives are generally restricted in trading their employer’s stock. Hence,

the employee’s total wealth at time t, denoted as W(S,K,w, t), can be written as:

W(S,K,w, t) = nsS + noV (S,K, t) + w, (4.1)

where S is the current price of the company stock, K is the option strike price, t is

forward time and V (S,K, t) represents the value of a single stock option.

We assume that the employee has constant relative risk aversion (as in [64]) which

results in a power utility function denoted as:

U(W) =
W1−α

1 − α
, (4.2)

where α > 1 is the constant relative risk aversion coefficient of the contract holder.

To determine the option value to the contract holder, we apply a certainty equivalence

approach [64, 50]. This method determines the upfront cash payment that, when given

to the executive as part of his or her compensation package instead of employee stock

options, provides the equivalent expected utility level. This cash payment provides an

estimate of the intrinsic value of the stock options to the holder on the grant date.

More specifically, we are looking for the cash amount, denoted as c, that provides the
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same expected utility as when the employee is given stock options. Mathematically, we

have:

EP [U(W(S,K,w, t = T ))] = EP [U(Wc(t = T ))], (4.3)

where EP [·] denotes the expected value under the P measure [77], Wc(t) = nsS(t)+w(t)+

ertc is the portfolio value of the employee assuming cash is received instead of options

and the utility function U(W) is defined in (4.2). The cash amount c will represent the

private value of no stock options to the holder of the contract1.

Solving equation (4.3) numerically is a multi-step process since it requires the compu-

tation of two expected utility values. We evaluate the left-hand side of equation (4.3) by

solving a partial differential equation (PDE) to obtain an approximation of the employee’s

expected utility when given employee stock options. We then evaluate the right-hand side

of equation (4.3) using Monte Carlo simulations or an analytical expression when appli-

cable to estimate the employee’s utility when the stock options are replaced by cash.

Alternatively, computing the right-hand side of equation (4.3) could be done with PDEs.

However, this alternate approach would require the repeated solution of a PDE with at

least two time-dependent variables which can be computationally expensive. As such,

we prefer to use an analytical solution or Monte Carlo simulations to evaluate the right-

hand side of equation (4.3). Having determined an initial estimate for the expected utility,

Newton’s method is then used to obtain a more precise approximation of c. Each step is

described in more detail in the following sections.

1Note that there exists a unique solution c to equation (4.3) for a given stock price S(T ). In that case,
the expected value on the right-hand side of equation (4.3) becomes a constant function which crosses
the curve of EP [U(W(S, K, w, t = T ))] from the left-hand side of equation (4.3) at a single point.
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4.1.1 Step 1: Solving the PDE

We assume that the company stock price S follows the standard Brownian motion process:

dS = Sµdt + SσdZ, (4.4)

where µ is the drift rate, σ is the volatility and Z is a Wiener process. Taking into

consideration the Capital Asset Pricing Model [85], the drift rate is set to:

µ = r + β(rm − r) − q, (4.5)

where r is the risk-free interest rate, rm is the expected market return, β is the firm’s

systematic risk measure and q is the continuous dividend yield.

We assume that any dividends received by the owner are deposited in the risk-free

bank account containing the employee’s external wealth w. As such, the process for w is:

dw = (wr + qnsS)dt. (4.6)

While we assume that dividends are paid continuously, our pricing model could be ex-

tended to consider discrete dividend payments as well.

Applying Ito’s lemma [85, 54], we find that the employee’s expected utility, denoted

by U = U(S,K,w, t), satisfies the drift-dominated PDE (see [75]):

Ut + µSUS +
1

2
σ2S2USS + (wr + qnsS)Uw = 0. (4.7)

Defining τ as the time to expiry (τ = T − t), we can rewrite equation (4.7) as :

Uτ = µSUS +
1

2
σ2S2USS + (wr + qnsS)Uw. (4.8)
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While similar to the classic Black-Scholes equation, equation (4.8) does not include a

discounting term since we are determining the employee’s expected utility at maturity

(when t = T ). Also, notice that equation (4.8) is convection-dominated since there is no

diffusion term in the w direction.

Although equation (4.8) is enough to determine the employee’s expected utility when

given simple stock options, we may need to impose additional American-type constraints

when valuing more complex contracts such as reload options. In such cases, the pric-

ing problem becomes an impulse control problem resulting in a set of quasi-variational

inequalities. As in Chapters 2 and 3, we let AU = AU(S,K,w, t) denote the American-

type constraint applied when the employee owns more exotic stock options. In the case of

reload options for example, AU corresponds to the employee’s expected utility following

a reload event.

Defining the differential operator L as:

LU ≡ µSUS +
1

2
σ2S2USS, (4.9)

we can write the utility maximizing problem as an impulse control problem:

min (Uτ − (wr + qnsS)Uw −LU,U −AU) = 0. (4.10)

Equation (4.10) can also be written as a penalized problem:

lim
ε→0

(

Uτ − (wr + qnsS)Uw −LU − 1

ε
max(AU − U, 0)

)

= 0. (4.11)

To determine the employee’s expected utility value, equation (4.11) is solved numerically

working backward in time using a penalty method [44].

To localize the utility maximizing problem, we need to specify boundary and initial
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conditions for equation (4.8) (or (4.10) as the case may be). The initial utility values at

τ = 0 are calculated using the payoff of the stock option:

U(S,K,w, τ = 0) = U(W(S,K,w, τ = 0))

= U(nsS + no Payoff(S,K) + w), (4.12)

where:

Payoff(S,K) = max(0, S − K), (4.13)

for classic employee stock options2.

Depending on the stock option considered, the employee’s expected utility is a function

of two or more path-dependent variables, as well as time. The notation used thus far

assumes a rather complex case where the expected utility is a function of three variables

and time, namely S, K and w: U = U(S,K,w, τ). For simple contracts, such as classic

employee stock options, the dimensionality of the problem may be reduced. Therefore, the

boundary conditions necessary to fully define the pricing problem will be determined on

a case-by-case basis depending on the dimensionality of the pricing problem considered.

4.1.2 Semi-Lagrangian Solution

Recognizing that equation (4.8) is convection-dominated, we use a semi-Lagrangian dis-

cretization [36] when solving the utility maximizing problem in equation (4.10) numeri-

cally3.

The solution to equation (4.10) can be approximated by a penalty method [44] which

2Classic stock options are similar to vanilla European call options.

3See Section 3.2 for more information on semi-Lagrangian schemes.
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results in a non-linear PDE:

Uτ − (wr + qnsS)Uw = LU + P (U,AU), (4.14)

where LU is defined in equation (4.9) and P (U,AU) represents the penalty term which

imposes the American-type constraint AU .

To discretize equation (4.14) adequately, we assume that an unequally spaced grid has

been constructed in each of the S, K and w directions. Along the S direction, the grid

is built over the range [0, Smax] and the ith node is denoted as Si. Similar grids are built

along the K and w directions. Let Un
i,j,k = U(Si,Kj , wk, τ

n) denote the discrete value of

the employee utility when the current strike price is Kj and the non-firm related wealth

at time τn is wk.

We now outline details of the semi-Lagrangian discretization. Let us consider a tra-

jectory in the w direction denoted as ŵ = ŵ(τ ;S,K) where S and K are fixed. From

equation (4.6), the values along the trajectory ŵ satisfy:

dŵ

dτ
= −(wr + qnsS). (4.15)

Defining the Lagrangian derivative as:

DU

Dτ
=

∂U

∂τ
+

∂U

∂w

dŵ

dτ
, (4.16)

we can write equation (4.14) as:

DU

Dτ
= LU + P (U,AU). (4.17)

We assume that the trajectory of ŵ values arrives at the discrete node (Si,Kj , wk) at
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time τ = τn+1. We are looking to determine the departure point of the trajectory at time

τ = τn which is denoted as ŵ(τn) = ŵ(τn;Si,Kj , wk, τ
n+1). The departure point ŵ(τn)

does not necessarily coincide with a grid node wk since ŵ(τn) is determined by solving:

dŵ

dτ
= −wr − qnsSi,

S = Si , K = Kj , ŵ(τ) = wk at τ = τn+1, (4.18)

from τ = τn+1 to τ = τn. Therefore, we can estimate the initial wealth position ŵ(τ n)

by approximating the following integral along the characteristic curve numerically:

ŵ(τn) = wk −
∫ τn

τn+1

(wr + qnsS)dτ, (4.19)

where T ≥ τn+1 > τn.

In this particular case, we can find the exact value for ŵ(τ n) by solving equation (4.18).

Considering S as a constant term, we find that:

ŵ(τ) =
Ce−rτ − qnsS

r
, (4.20)

where C is a constant independent of w but a function of S and r. Using this result, we

can find an expression for wk at time τ = τn+1 and use it to obtain:

At time τn−1 : ŵ(τn−1) =wk +
(wkr + qnsSi)(e

r(τn+1−τn−1) − 1)

r
(4.21)

At time τn : ŵ(τn) =wk +
(wkr + qnsSi)(e

r(τn+1−τn) − 1)

r
(4.22)

Equations (4.21) and (4.22) are valid for T ≥ τ n+1 > τn > τn−1 ≥ 0 where T is the

contract maturity.

Let Un
i,j,k′ = U(Si,Kj , ŵ(τn), τn) denote the utility value at the departure point of
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the characteristic curve ŵ(τn). Limited quadratic interpolation along the w-axis can be

used when calculating Un
i,j,k′ [41]. Note that linear interpolation can also be used to

ensure monotonicity of the discrete scheme. For ease of explanation, we assume linear

interpolation is used in the following. Having determined the index p such that wp ≤

ŵ(τn) ≤ wp+1, linear interpolation along the w-axis can be written as:

Un
i,j,k′ = (1 − ξ)Un

i,j,p + ξUn
i,j,p+1, (4.23)

where the interpolation weight 0 ≤ ξ ≤ 1 is defined as:

ξ =
ŵ(τn) − wp

wp+1 − wp
. (4.24)

The discretization of equation (4.17) along the characteristic curve gives:

Un+1
i,j,k − Un

i,j,k′

∆τ
= (1 − θ)[LhU ]n+1

i,j,k + θ[LhU ]ni,j,k′ + P
(

Un+1
i,j,k ,AhUn+1

i,j,k

)

, (4.25)

where 0 ≤ θ ≤ 1 determines the timestepping method used4 and the discrete penalty

term P (Un+1
i,j,k ,AhUi,j,k)

n+1 is defined as:

P
(

Un+1
i,j,k ,AhUn+1

i,j,k

)

= Ln+1
i,j,k

[

AhUn+1
i,j,k − Un+1

i,j,k

]

, (4.26)

where

Ln+1
i,j,k = L

(

Un+1
i,j,k ,AhUn+1

i,j,k

)

=















1
ε

if AhUn+1
i,j,k > Un+1

i,j,k ,

0 otherwise.

(4.27)

4Recall that θ = 0 implies that fully implicit timestepping is used when solving equation (4.25), while
θ = 1/2 implies that Crank-Nicolson is chosen.
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The discrete differential operator Lh can be written as:

[LhU ]n+1
i,j,k = αi,jU

n+1
i−1,j,k + βi,jU

n+1
i+1,j,k − (αi,j + βi,j)U

n+1
i,j,k , (4.28)

where αi,j ≥ 0 and βi,j ≥ 0 are determined according to the algorithm in Appendix A.

4.1.3 Step 2: Monte Carlo Simulations

In this section, we describe the next step of the pricing process where we determine the

cash equivalent option value. Using the approach presented in Sections 4.1.1 and 4.1.2,

we can determine the employee’s expected utility when stock options are received as part

of his or her compensation package, which we denote by u∗:

u∗ = EP [U(W(S,K,w, t = T ))]. (4.29)

We are now looking to determine the cash equivalent value c∗ which satisfies:

EP [U(nsS(T ) + w(T ) + erT c∗)] = u∗, (4.30)

where S(T ) and w(T ) denote the value at maturity of the company stock and the em-

ployee’s non-firm related wealth respectively. We choose to carry-out Monte Carlo simu-

lations to solve equation (4.30) and determine c∗. Since equation (4.30) doesn’t involve

any optimal decisions, the use of Monte Carlo simulations is straight forward. Multiple

asset paths are generated and an estimate for the employee’s expected utility is obtained

using an initial estimate for c∗. A more precise approximation of c∗ is determined by

using Newton’s method.

Generating multiple asset paths translates into updating the following discrete equa-
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tions at each timestep ti, for i = 0, . . . , N , with tN = T :

Si+1 = Si + Si(µ∆ti + σφi
√

∆ti), (4.31)

wi+1 = wi + (wir + qnsS
i)∆ti, (4.32)

where the drift rate µ is defined in equation (4.5), φi is a random number drawn from a

standard Normal distribution and ∆ti = ti+1 − ti.

Since we only consider simple cases involving Brownian motion where µ and σ are

constant, we can solve equation (4.31) exactly. Equation (4.31) is then replaced by:

Si+1 = Si exp[(µ − σ2

2
)∆ti + σφi

√

∆ti]. (4.33)

However, keep in mind that equation (4.32) will not be solved exactly and will thus incur

some timestepping error.

At maturity tN = T , we calculate Uj(nsS
N + wN + erT c∗) for the jth asset path.

Once M asset paths are generated, we compute an estimate for the expected utility:

E[U(ns(T )S(T ) + w(T ) + erT c∗)] ' 1

M

M
∑

j=1

Uj(nsS
N + wN + erT c∗). (4.34)

Using path-wise differentiation [48], we apply Newton’s method and determine an

approximation for c∗ such that:

u∗ =
1

M

M
∑

j=1

Uj(nsS
N + wN + erT c∗). (4.35)

The final c∗ value represents the cash equivalent value to the employee of no stock options.
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4.1.4 Special case when q = 0

When there are no dividends associated with the company stock (i.e. q = 0), the use

of Monte Carlo simulations to solve equation (4.30) can be replaced by a closed-form

solution which is evaluated using numerical integration techniques. This provides a more

precise and efficient method for determining the certainty equivalence value of a given

stock option contract.

Assuming q = 0, the wealth process in equation (4.6) becomes deterministic and

simplifies to:

dw = wrdt. (4.36)

Consequently, the employee’s expected utility U = U(S,w, τ) now follows:

Uτ = µSUS +
1

2
σ2S2USS + wrUw, (4.37)

where µ = r + β(rm − r). Since we are looking to solve equation (4.37) analytically, we

closely follow the derivation of the solution to the Black-Scholes equation outlined in [85].

Details of the derivation can be found in Appendix F.

Note that this technique is not applicable when q > 0 due to the presence of a

partial derivative term added to equation (4.37) containing two variables. Other solution

methods, such as partial fractions, were considered for the more general case when q > 0

but to no avail.

As shown in Appendix F, the expected utility can be obtained by evaluating:

U(S,w, t) =
1

√

2π(T − t)σ

∫ ∞

0
e
−

(ln(S/S′)+(µ−
1
2 σ2)(T−t))2

2σ2(T−t)
(nsS

′ + werT + cerT )1−α

1 − α

dS′

S′
.

(4.38)

The integral in equation (4.38) can be evaluated numerically using a variety of numerical
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integration techniques 5. Evaluating equation (4.38) can be much more efficient then

carrying out numerous Monte Carlo simulations and this analytical technique will be

used whenever possible.

4.2 Valuing Classic Employee Stock Options

To validate our pricing model, we determine the cash equivalent value of classic employee

stock options and compare our results to those in [50]. Recall that in the no-arbitrage

context, a classic employee stock option has the same value as a European call option

with identical maturity. We begin by reviewing the utility pricing problem for classic

employee stock options (Section 4.2.1) and then present numerical results obtained with

this model (Section 4.2.2).

4.2.1 Mathematical Model

As outlined in Section 4.1.2, the first step of the pricing process involves solving a PDE to

determine the expected utility of the employee when given classic employee stock options

as part of his or her compensation package. When valuing classic employee stock options,

the expected utility depends on two path-dependent variables, namely S and w, as well

as time: U = U(S,w, τ). Since there is no American-type constraint, equation (4.8) is

solved numerically on a discrete two-dimensional [0, Smax] × [0, wmax] domain.

Additional boundary and initial conditions are necessary to fully specify the expected

utility problem for classic stock options. The initial conditions are outlined in equa-

tion (4.12) where the option payoff corresponds to that of a standard call option in

equation (4.13).

5We chose to use the numerical integration techniques included in the NAG Library of Numerical
Algorithms [2].
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Notice from equation (4.1) that the initial wealth W(S,K,w, 0) = 0 when S = w =

0. This causes a fundamental problem when computing the utility at this point when

α > 1. To avoid numerical complications, the initial wealth is set to some small value

W(0,K, 0, 0) = δ when S = w = 0, where 0 < δ � 1. Therefore, the initial conditions

can be written as:

U(S,w, τ = 0) = U (max(nsS + no Payoff(S,K) + w, δ)) . (4.39)

Though not presented here, numerical tests were conducted to determine the appropriate

value for δ. Based on these results, our choice of δ = 1 × 10−8 ensures a minimum of 8

digits of accuracy in the numerical solution.

Additional boundary conditions are necessary along the S and w directions. At S = 0,

we find that equation (4.8) becomes:

Uτ = wrUw ; S → 0. (4.40)

As S → ∞, we adopt the common assumption that USS = 0 [89], which implies:

U ≈ F (w, τ)S + B(w, τ), (4.41)

where F (w, τ) and B(w, τ) are independent of S. We further assume F (w, τ)S � B(w, τ)

which leads to:

U ≈ F (w, τ)S. (4.42)

Combining equation (4.42) with the differential equation in (4.8), we obtain:

F (w, τ)τ S = µF (w, τ)S + (wr + qnsS)F (w, τ)wS. (4.43)
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Therefore, we obtain the following approximation as S → Smax:

Uτ = µU + (wr + qnsS)Uw. (4.44)

Next, we consider the boundary conditions along the w direction. Assuming that

α > 1, we find that as wealth increases, the utility increases to zero. Therefore, we

assume that U → 0 as w → wmax. No boundary condition is required at w = 0 since this

is an outflow boundary.

To summarize the first step of the pricing process, we solve:

Uτ = µSUS +
1

2
σ2S2USS + (wr + qnsS)Uw, (4.45)

on a discrete two-dimensional [0, Smax] × [0, wmax] domain with initial conditions:

U(S,w, τ = 0) = U(max(nsS + no max(S − K, 0) + w, δ)), (4.46)

where 0 < δ � 1 is some small value. The boundary conditions used are:

Uτ − wrUw = 0 for S = 0, (4.47)

Uτ − µU − (wr + qnsS)Uw = 0 for S = Smax, (4.48)

Uτ −LU − (wr + qnsS)Uw = 0 for w = 0, (4.49)

U = 0 for w = wmax, (4.50)

where LU is defined in equation (4.9).

Once the employee’s expected utility is obtained, we use Monte Carlo simulations

exactly as described in Section 4.1.3 to determine the certainty equivalent cash value. No

modifications are necessary to this second part of the pricing process. The cash amount



4.2. VALUING CLASSIC EMPLOYEE STOCK OPTIONS 97

Portfolio Details Case 1 Case 2 Case 3 Case 4

Employee risk-aversion coefficient - α 2.0 3.0 2.0 3.0
Number of options - no 5000 5000 5000 5000
Investment in stock - Sns $3.35 mil. $3.35 mil. $2.5 mil. $2.5 mil.
Initial non-firm related wealth - w $1.65 mil. $1.65 mil $2.5 mil. $2.5 mil.

Table 4.1: Different employee situations or Cases as defined in [50]. Each case assumes one of
two employee portfolio allocations (Sns, no and w) and one of two risk-aversion levels (α).

obtained will correspond to the cash equivalent value of no stock options to the employee.

4.2.2 Numerical Results

This section presents numerical results obtained when determining the value of classic

employee stock options to the contract holder. We begin by carrying out a convergence

analysis of the utility values obtained from the first step of the pricing process, namely

when solving the equation (4.45). We then determine the cash equivalent value of a classic

stock option (using the numerical scheme presented in Section 4.2.1) for different portfolio

compositions. To enable comparison with results in [50], four specific cases are defined

in Table 4.1. Since we are assuming that q = 0, most of the results in this section are

obtained using the analytical solution presented in Section 4.1.4 in lieu of Monte Carlo

simulations.

We now examine in more detail the convergence obtained in the first step of the pricing

process when solving the PDE in equation (4.45). Table 4.2 presents the expected utility

value, and the corresponding cash equivalent option value, for different grid refinement

levels. The portfolio allocation of the employee corresponds to Case 1 as defined in

Table 4.1. The other parameters used in the computation are presented in Table 4.3.

Note that an unequally spaced grid containing 71 nodes is built in the S direction. Based

on numerical tests conducted, it was determined that choosing Smax = $20000 results

in 7 digits of accuracy for the utility values obtained. Similarly, an unequally spaced
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Expected Utility - Classic Employee Option

Nbr. Nbr. Nodes Expected Cash Equivalent
Ref. Timesteps S w Utility Difference Ratio Option Value

Fully Implicit

0 200 71 16 -1.046179e-07 n.a. n.a. 6.9548
1 400 141 31 -1.045471e-07 7.0764e-11 n.a. 7.4955
2 800 281 61 -1.045102e-07 3.6879e-11 1.92 7.7776
3 1600 561 121 -1.044965e-07 1.3710e-11 2.69 7.8826
4 3200 1121 241 -1.044917e-07 4.8652e-12 2.82 7.9198

Crank-Nicolson

0 200 71 16 -1.045734e-07 n.a. n.a. 7.2943
1 400 141 31 -1.045248e-07 4.8609e-11 n.a. 7.6659
2 800 281 61 -1.044991e-07 2.5741e-11 1.89 7.8629
3 1600 561 121 -1.044910e-07 8.1388e-12 3.16 7.9253
4 3200 1121 241 -1.044889e-07 2.0778e-12 3.92 7.9412

Table 4.2: Expected utility of the employee when given classic stock options with K = $30
when fully implicit or Crank-Nicolson timestepping is used. The cash equivalent option value is
presented in the last column of the table. The portfolio allocation of the employee corresponds to
Case 1 as defined in Table 4.1. The initial timestep is set to 0.05 years on the coarsest grid, and
halved at each refinement level. Other parameters used are presented in Table 4.3.

w grid is built containing 16 nodes where wmax = $25 million. Again, wmax is chosen

to ensure 7 digits of accuracy in the utility values obtained. Unless otherwise specified,

this same grid construction is used to generate all numerical utility values contained in

this section. As shown in Table 4.2, more than linear convergence is obtained when fully

implicit timestepping is used. Similarly, close to quadratic convergence is observed when

Crank-Nicolson timestepping is chosen.

To enable comparison with the results presented in [50], we consider alternate em-

ployee portfolio allocations. Table 4.4 presents the cash equivalent value of a classic

employee stock option for each of the four cases described in Table 4.1, as well as the

corresponding values presented in [50]. In [50], the authors adopt a certainty equivalence

approach and use a binomial tree to determine the employee’s expected utility at each

node while utilizing the CAPM theory. The authors in [50] use identical parameter values
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Parameter Value

α - Employee’s risk aversion coefficient 2.0
β - Firm’s systematic risk measure 1.0
σ - Asset volatility 0.30
r - Risk-free interest rate 0.06
rm - Expected market return 0.125
q - Dividend yield 0
K - Strike price $30
T - Contract maturity 10 years
Newton iteration tolerance 1 × 10−6

Table 4.3: Parameters used when pricing classic employee stock options in a utility context.

to those in Table 4.3 and take 50 timesteps per year. Although our results may appear

to be significantly different from those obtained in [50], we note that the authors do not

provide any error estimates. The numerical difference between our results and those in

[50] would appear to be due to the use of a more refined pricing grid on our part. Indeed,

the results presented in Table 4.4 support this conjecture. Table 4.4 presents cash equiv-

alent option values obtained after successive grid refinement operations during the PDE

solution process and enables us to gain some insight into the accuracy of the numerical

solution of equation (4.8). Focusing on Case 1, we note that the value of $7.41 reported

in [50] is between the values of $7.29 (level 0) and $7.67 (level 1) presented in Table 4.4.

Extrapolation of the results in Table 4.4 for Case 1 indicate that the converged solution

is about $7.95. In addition, we note that the company cost for the classic stock option

presented in [50], which is simply the value of a European call option, differs by over $0.15

from the value obtained when using our pricing software and/or Matlab. Consequently,

we are of the opinion that the results in [50] are simply inaccurate due to the use of a

coarse lattice.

Furthermore, the results in Table 4.4 confirm the now well-accepted theory that em-

ployees value stock options well below their no-arbitrage price [60, 70]. Keeping in mind

that the no-arbitrage price of a classic employee stock option is about $16.71, the data
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Refinement Case 1 Case 2 Case 3 Case 4

0 7.2943 9.2419 11.8030 16.4525
1 7.6659 5.9087 11.3631 10.5243
2 7.8629 5.0353 11.4057 9.1340
3 7.9253 4.8205 11.4351 8.7902
4 7.9412 4.7649 11.4422 8.6996

Values from [50] 7.41 3.49 10.51 6.41

Table 4.4: Cash equivalent value of a classic employee stock option as a function of the em-
ployee’s risk aversion coefficient and investment profile (see Table 4.1). Crank-Nicolson timestep-
ping (with 2 Rannacher steps) was used in the PDE portion of the solution process. Other param-
eters used are presented in Table 4.3.

in Table 4.4 demonstrates that an employee under-values his or her stock options by as

much as 72% (Case 2). Overall, the option values presented in Table 4.4 are consistently

higher (by $1 on average in each case) than those presented in [50]. Thus, while the

results in Table 4.4 are in accordance with those presented in [50], we obtain a more ac-

curate estimate of the gap between the no-arbitrage price and the cash equivalent value

of classic stock options.

4.3 Valuing Infinite Reload Options

In this section, we focus on valuing infinite reload options from a holder’s perspective using

the model described previously in Section 4.1. Limited work has been done regarding the

utility pricing of reload options. Only [64] and [61] present a method for valuing reload

options from an employee’s perspective. In [64], the authors adopt a utility maximizing

approach and use a trinomial tree coupled with backward induction to determine the

value of reload options to employees. Note that the numerical results in [64] are limited

to reload options with a finite number of reload opportunities. In [61], the author takes

a different approach and extends a no-arbitrage analytical pricing formula for infinite

reload options to determine the subjective option value. This is done by assuming that
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the interest-rate and dividend yield are a function of the employee’s risk aversion level

and personal wealth held in company stock.

The work on reload options presented in this section differs from what is done in [64]

in the following manner:

• Focusing exclusively on infinite reload options, we modify our general utility max-

imizing scheme presented in Section 4.1 to determine the cash equivalent value of

infinite reload options. For this contract, the first step of the pricing process in-

volves solving an impulse control problem with a penalty scheme. The second step

uses Monte Carlo simulations (described in Section 4.1.3) or an analytical solution

(described in Section 4.1.4) to determine the cash equivalent option value.

• In addition to demonstrating how significantly infinite reload options are under-

valued by employees, we determine the effect of portfolio composition on the cash

equivalent value of infinite reload options.

In Sections 4.3.1 and 4.3.2, we specify details of the pricing model when applied to infinite

reload options and then present results from numerical experiments in Section 4.3.3.

4.3.1 Mathematical Model

While the core of the valuation model described in Section 4.1 remains intact when applied

to infinite reload options, the additional reload feature must be taken into consideration

when determining the employee’s expected utility. Recall that the reload event provides

the employee with new reload options with strike price K = S. As such, the expected

utility is now a function of K and denoted as: U = U(S,K,w, τ). The reload constraint
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is denoted by AU = AU(S,K,w, τ) and can be written as [64]:

AU(S,K,w, τ) =















U(S, S,w, τ) when S > K,

0 otherwise.

(4.51)

The operator A defined in equation (4.51) can be considered as a non-local impulse

operator (see Chapter 1). In this case, the impulse operator A contains an intervention

term U(S, S,w, τ) but no cash-flow term (see equation (1.1) in Chapter 1). While the

number of shares held by the employee changes following a reload event, this information

is encapsulated in the utility value. Indeed, the strike price K essentially keeps track of

the number of shares held by the employee since K is the only variable required when

computing this quantity (see discussion below). Furthermore, since we assume that the

employee will not sell stock units received following a reload event, the reload constraint

AU as defined in equation (4.51) will not include a cash-flow term.

When applying the utility pricing model to infinite reload options, the following im-

pulse control problem is solved:

min (Uτ − (wr + qns(K)S)Uw −LU,U −AU) = 0, (4.52)

on a truncated three-dimensional S ×K ×w domain where the differential operator L is

defined in equation (4.9).

As noted in equation (4.52), the number of stock units ns(K), as well as the number

of reload options no(K), is no longer constant. Both no(K) and ns(K) depend on the

current strike price K due to previous reload events. Let us assume that the employee

initially owns no reload options with initial strike price Kinit and ns units of company

stock. For those nodes with K > Kinit, we know that at least one reload event has
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occurred. Assuming the employee only reloaded once, the owner paid the strike price

Kinit of each option using Kinit
K

stock units. The employee receives one unit of stock for

each option exercised and Kinit
K

new stock options with strike price K. Therefore, the

current number of stock options no(K) can be written as [64]:

no(K) = no
Kinit

K
, (4.53)

while the current number of stock units is:

ns(K) = ns + no

(

1 − Kinit

K

)

. (4.54)

While we have assumed that the employee only reloaded his or her option once, the

authors of [64] show that equations (4.53) and (4.54) hold even if the employee reloads a

larger number of times to obtain reload options with strike price K. Note that equations

(4.53) and (4.54) are only applicable to nodes where K > Kinit since it is only optimal

for the employee to reload his or her option if the strike price of the options received

following a reload event is greater than the current strike price [39].

Additional boundary and initial conditions are necessary to fully specify the expected

utility problem. At maturity, the initial conditions are:

U(S,w, τ = 0) = U
(

max(ns(K)S + no(K) Payoff(S,K) + w, δ)
)

,

where no(K) and ns(K) are defined in equations (4.53) and (4.54) respectively, Payoff(S,K)

corresponds to that of a standard call option in equation (4.13) and 0 < δ � 1 is included

to avoid numerical issues when S = w = 0 (see Section 4.2.1).

Since the employee’s expected utility depends on three path-dependent variables and

time, a truncated three-dimensional S×K×w domain is used: [0, Smax]× [Kinit,Kmax]×
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[0, wmax] where Kinit is the initial contract strike price. The domain in the K direction

is limited to [Kinit,Kmax] since only information from the problems where K ≥ Kinit are

required to determine the expected utility for options of strike Kinit.

To localize the utility maximization problem, we need to determine boundary condi-

tions in the K direction in addition to those outlined in Section 4.2.1 for classic stock

options. As K → Kinit, no additional boundary condition is necessary since this is an out-

flow boundary. However, the boundary at K → ∞ needs to be handled with some care.

While solving equation (4.52) adequately for large values of K remains feasible, applying

the reload constraint in equation (4.51) becomes problematic for some outlying points.

Since we truncate the K domain to [Kinit,Kmax], we lack the necessary information to

apply the reload constraint correctly for points where S > Kmax. A similar difficulty was

encountered when pricing infinite reload options in the no-arbitrage context in Chapter

2; this problem was alleviated by using a similarity reduction property to determine the

reload constraint for outlying points [13]. Such a property is not applicable here due to

the dependence of no(K) and ns(K) on K.

Therefore, an alternate approach is used to determine the reload constraint for points

where S > Kmax, which essentially involves placing a cap on the stock price at which

the employee can reload. Instead of applying the reload constraint in equation (4.51),

a modified version of the reload constraint will be used to determine the employee’s

expected utility:

AU(S,K,w, τ) = U(S = min(S,Kmax),K = min(S,Kmax), w, τ). (4.55)

Note that as Kmax → ∞, the expected utility obtained using the modified reload con-

straint in equation (4.55) will tend to the value obtained if the original reload constraint,

presented in equation (4.51), was applied to all grid nodes.
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In summary, the first step of the option pricing process involves solving the impulse

control problem:

min (Uτ − (wr + qns(K)S)Uw −LU,U −AU) = 0, (4.56)

where LU is defined in equation (4.9) and the reload constraint AU is defined as:

AU(S,K,w, τ) = U(S = min(S,Kmax),K = min(S,Kmax), w, τ). (4.57)

Equation (4.56) is solved using a penalty method [44] on the discrete domain [0, Smax] ×

[Kinit,Kmax] × [0, wmax] with initial conditions:

U(S,w, τ = 0) = U(max(ns(K)S + no(K)max(S − K, 0) + w, δ)), (4.58)

where 0 < δ � 1 and ns(K) and no(K) are defined in equations (4.53) and (4.54)

respectively. The following boundary conditions are used:

Uτ − wrUw − 1

ε
max(AU − U, 0) = 0 for S = 0, (4.59)

Uτ − µU − (wr + qns(K)S)Uw − 1

ε
max(AU − U, 0) = 0 for S = Smax, (4.60)

Uτ −LU − (wr + qns(K)S)Uw − 1

ε
max(AU − U, 0) = 0 for w = 0, (4.61)

U = 0 for w = wmax, (4.62)

Uτ −LU − (wr + qns(K)S)Uw − 1

ε
max(AU − U, 0) = 0 for K = Kinit, (4.63)

Uτ −LU − (wr + qns(K)S)Uw = 0 for K = Kmax. (4.64)

Having determined the employee’s expected utility, we can approximate the value of

the infinite reload option to the holder by using Monte Carlo simulations as outlined
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in Section 4.1.3. No modification needs to be made to the second step of the solution

process outlined in Section 4.1.3 since this step does not depend on the type of stock

option considered. Keep in mind that the portfolio content remains constant which means

ns = ns (in Section 4.1.3) for infinite reload options. Similarly, the analytical solution

presented in Section 4.1.4, which can replace Monte Carlo simulations, remains applicable

for cases where the underlying stock does not generate any dividends (i.e. q = 0).

4.3.2 Underlying Grid and Discrete Equations

This section specifies some of the solution details when determining the employee’s ex-

pected utility for infinite reload options in the first step of the pricing process. We first

describe how the underlying S ×K ×w grid is constructed and then specify the discrete

equations solved on this domain.

As previously stated, the employee’s expected utility when given infinite reload options

will be obtained by solving equation (4.52) on a [0, Smax]×[Kinit,Kmax]×[0, wmax] domain.

To construct the underlying grid, we build a set of discrete grid nodes {wk} for k =

0, . . . , kmax, where w0 = 0, wkmax = wmax and one of the nodes in {wk} corresponds to

the initial wealth of the employee.

Associated with each wk is a two-dimensional [0, Smax] × [Kinit,Kmax] grid. Since

equation (4.52) contains no K derivatives, the S × K domain is built using a set of one-

dimensional S-grids. A scaled grid is built on the [0, Smax]×[0,Kmax] domain as described

in Section 2.2.1 and subsequently truncated by eliminating the one-dimensional problems

with K < Kinit and renumbering the Kj nodes accordingly.

As outlined in Section 4.1.2, the discrete equations solved during the first step of the
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pricing process can be written as:

Un+1
i,j,k − Un

i,j,k′

∆τ
=(1 − θ)[LhU ]n+1

i,j,k + θ[LhU ]ni,j,k′ + P (Un+1
i,j,k ,AhUn+1

i,j,k ), (4.65)

where 0 ≤ θ ≤ 1 determines the timestepping method used, [LhU ]n+1
i,j,k is defined in equa-

tion (4.28) and P (Un+1
i,j,k ,AhUn+1

i,j,k ) represents the discrete penalty term in equation (4.26).

Note that Un
i,j,k′ may be obtained by linear interpolation as outlined in equation (4.23).

When calculating the reload constraint AhUn+1
i,j,k defined in equation (4.57), diago-

nal interpolation along the S = K line is used to determine U(S = min(S,Kmax),K =

min(S,Kmax), w, τ) as described in equation (2.30) (with p = 0). Defining the interpola-

tion weight 0 ≤ ω ≤ 1 as in equation (2.31) (with p = 0), we obtain:

U(Sj
i , S

j
i , wk, τ

n+1) '(1 − ω)Un+1
f,m,k + ωUn+1

f,m+1,k , (4.66)

where f is an index such that Sj
f = Kj and Un+1

f,m,k = U(Sm
f ,Km, wk, τ

n+1). Recall that

Un+1
f,j,k corresponds to a node in the grid for all pricing problems (see Section 2.2.1).

4.3.3 Numerical Results

This section presents numerical results obtained when valuing infinite reload options in a

utility framework. We start by examining the convergence of the PDE solution step of the

pricing process. Table 4.6 presents the expected utility value and the corresponding cash

equivalent option value for an infinite reload option with Kinit = $100 and a maturity

of T = 10 years. The employee is assumed to have a total wealth of $17 million divided

between company stock, infinite reload options and a risk-free bank account. We assume

that w = $5 million, while $8.4 million is invested in company stock and $3.6 million

in infinite reload options. Other parameter values are outlined in Table 4.5 and were
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Parameter Value

α - Employee’s risk aversion coefficient 2.0
β - Firm’s systematic risk measure 0.70
σ - Asset volatility 0.30
r - Risk-free interest rate 0.04
rm - Expected market return 0.10
q - Dividend yield 0
Kinit - Initial strike price $100
T - Contract maturity 10 years

Table 4.5: Parameters used when pricing infinite reload options in a utility framework.

chosen to be consistent with the benchmark firm presented in [65]. The underlying grid

is built as described in Section 4.3.2 with 90 nodes in the S direction, 62 nodes in the

K direction and 16 nodes in the w direction. As when pricing classic employee stock

options, numerical tests were conducted to determine the appropriate values for Kmax

and wmax. To ensure that the utility values obtained had 6 digits of accuracy, we chose

Kmax = $20000 and set wmax = $25 million. Our choice of Kmax implies that Smax = $4

million according to scaled grid construction (see Section 2.2.1 for more details ).

The expected utility values in Table 4.6 enable us to compute the convergence rate for

the PDE solution step of the pricing process. Results for only three refinement levels were

obtained due to the high dimensionality of the problem. Since a three-dimensional domain

is required to price infinite reload options, a refinement level of 3 or higher required more

memory than was available. Nonetheless, the results in Table 4.6 give some indication

of the convergence obtained when valuing infinite reload options. Close to quadratic

convergence is observed when using fully implicit and Crank-Nicolson timestepping during

the PDE solution step, as indicated by the convergence ratios in Table 4.6. Note that

the cash equivalent value, included in the last column of Table 4.6, converges at a similar

rate.

The results in Table 4.6 confirm the well-established notion that employees under-



4.3. VALUING INFINITE RELOAD OPTIONS 109

Infinite Reload Options

Nbr. Nbr. Nodes Expected Cash Equivalent
Ref. Timesteps S K w Utility Difference Ratio Option Value

Fully Implicit

0 500 90 62 16 -4.667776e-08 n.a. n.a. 26.9406
1 1000 179 123 31 -4.709204e-08 -4.1428e-10 n.a. 25.0409
2 2000 357 245 61 -4.720267e-08 -1.1063e-10 3.74 24.5399

Crank-Nicolson

0 500 90 62 16 -4.667253e-08 n.a. n.a. 26.9649
1 1000 179 123 31 -4.708504e-08 -4.1252e-10 n.a. 25.0727
2 2000 357 245 61 -4.720186e-08 -1.1682e-10 3.53 24.5435

Table 4.6: Expected utility of an employee when given infinite reload option at S = $100 when
fully implicit and Crank-Nicolson timestepping is used. The cash equivalent option value is in-
cluded in the last column. The employee is assumed to have $8.4 million in company stock, $3.6
million in options and $5 million of non-firm related wealth. Other pricing parameters used and
contract details are presented in Table 4.5. Constant timesteps were taken in both cases and the
initial timestep is ∆τ = 0.02 years on the coarsest grid.

value stock options. Knowing that the corresponding no-arbitrage price for an infinite

reload option is $64.67 [13], we see that the value to the employee is only about 40%

of the no-arbitrage price. Such a significant difference suggests that the company could

negotiate with employees to replace the infinite reload options by simpler stock options

with a lower no-arbitrage value or even a cash settlement.

However, the cash equivalent value of stock options is closely linked to the assumptions

made regarding the issuing firm and the portfolio composition of the employee. As such,

we consider different factors which affect the cash equivalent option value such as the

non-firm related wealth of the employee w, the dividend yield of the underlying stock

q and the balance between options and company stock in the employee’s portfolio. We

begin by considering different values of w to determine the effect on the employee’s option

value. Table 4.7 presents the cash equivalent value of an infinite reload option when the

employee is assumed to own $3.6 million of options, $8.4 million of company stock and

has non-firm related wealth ranging from $3 to $10 million. The results presented in
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Initial Wealth Level (w)
Refinement $3 mil. $5 mil. $7 mil. $10 mil.

0 22.1378 26.9649 30.3471 31.1250
1 21.0750 25.0727 27.9402 29.9378
2 21.0616 24.5435 26.9295 29.3030

Table 4.7: Cash equivalent value of an infinite reload option at S = $100 as a function of the
employee’s external wealth level (w). Recall that the no-arbitrage price of this infinite reload option
is $64.67. Crank-Nicolson timestepping (with 2 Rannacher steps) was used in the PDE portion
of the solution process. The employee is assumed to have $8.4 million in company stock and $3.6
million in options. Other parameters used are presented in Table 4.5.

Table 4.7 indicate that the option value increases significantly as w is increased. For

example, the value to the employee of an infinite reload option increases by 20% when w

goes from $3 to $5 million.

While our analysis has thus far focused on cases where the dividend yield is zero,

we now consider the effect of non-zero dividends on the executive’s valuation of infinite

reload options. Table 4.8 presents the cash equivalent value of an infinite reload option

with q = 1% or q = 2%. The employee is assumed to have $3.6 million in reload options,

$8.4 million of company stock and $3 million of non-firm related wealth. Crank-Nicolson

timestepping is used when solving the PDE in the first part of the pricing process and

Monte Carlo simulations are used to determine the final cash equivalent option value

when q > 0. Note that 5 million simulations were conducted in each case with a timestep

of ∆t = 5 × 10−4 years. Though not included here, results from previous refinement

levels enable us to estimate that the values in Table 4.8 for q > 0 are accurate to within

±$0.50. The cash equivalent value of an infinite reload options when q = 0, obtained

with the analytical formula presented in Section 4.1.4, is also included in Table 4.8 for

comparison purposes. The numerical results presented in Table 4.8 illustrate that the

effect of non-zero dividend yield on the cash equivalent value of an infinite reload option

is limited. Indeed, increasing the dividend yield from q = 0 to q = 2% only reduces the



4.3. VALUING INFINITE RELOAD OPTIONS 111

Dividend Yield

S q = 0% q = 1% q = 2%

90 17.3191 16.8533 16.3373
100 21.0616 20.8525 20.5895
110 24.8836 24.9708 25.1086

Table 4.8: Cash equivalent value of an infinite reload option as a function of the dividend
yield (q). Note that 5 million Monte Carlo simulations were conducted to obtain the option cash
value when q > 0. The employee is assumed to have $8.4 million in company stock, $3.6 million in
options and $3 million of non-firm related wealth. Crank-Nicolson timestepping (with 2 Rannacher
steps) was used in the PDE portion of the solution process. Results when q > 0 are accurate to
within ±$0.50. Other parameters used are presented in Table 4.5.

Error from Monte Carlo Simulations

Cash Equivalent Option Value
S Expected Utility Monte Carlo Analytical

90 -6.313089e-08 17.3261 17.3191
100 -5.826764e-08 21.0346 21.0616
110 -5.408418e-08 24.9134 24.8836

Table 4.9: Error when using Monte Carlo simulations to determine the cash equivalent value of
an infinite reload option when q = 0. For comparison, the analytical option value is presented in
the last column. When using Monte Carlo simulation, we conducted 5 million simulations with
∆t = 5 × 10−4 years. The employee is assumed to have $8.4 million in company stock, $3.6
million in options and $3 million of non-firm related wealth. Other parameters used are presented
in Table 4.5.

cash equivalent option value by about $0.40 when S = $100.

To estimate the error resulting from the use of Monte Carlo simulations, Table 4.9

presents the cash equivalent value for an infinite reload option when using the analytical

solution and Monte Carlo simulations with q = 0 in the second step of the pricing process.

The results in Table 4.9 indicate that carrying out 5 million Monte Carlo simulations with

the parameters stated above generates errors of about ±$0.05 which is much smaller that

the corresponding PDE solution error in some cases (see Table 4.7).

Thus far, we have assumed that 30% of the total firm-related wealth ($12 million) is

invested in options and 70% is invested in company stock. Assuming that w = $5 million,

we vary the proportion of the firm-related wealth invested in options and see how this
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Option and Stock percentage
30% options 40% options 60% options

Refinement 70% stock 60% stock 40% stock

0 26.9649 28.1301 28.7251
1 25.0727 26.9679 29.1311
2 24.5435 26.8579 29.3951

Table 4.10: Cash equivalent value of an infinite reload option as a function of the distribution
of the firm-related wealth (estimated at $12 million) between company stock and options. The
employee is assumed to have $5 million of non-firm related wealth. Recall that the no-arbitrage
price of this infinite reload option is $64.67. Note that Crank-Nicolson timestepping (with 2
Rannacher steps) was used in the PDE portion of the solution process. Other parameters used are
presented in Table 4.5.

affects the cash equivalent value of the infinite reload option to the employee. Table 4.10

presents the value of an infinite reload option obtained when the proportion of options

ranges from 30% to 60% of the firm-related wealth, which we assume to be $12 million.

Based on the results in Table 4.10, we see that the value of an infinite reload option to the

employee increases as a larger portion of the firm-related wealth is held in reload options.

For example, increasing the options from 30% to 60% of the firm-related wealth results

in an increase of about 20% of the option value.

4.4 Summary

In view of the wide range of existing employee stock options, we have developed a general

utility-based pricing framework that can be used to value stock options from a holder’s

perspective. Our pricing model is a multi-step process that involves computing two

expected utility values. First, we determine the employee’s expected utility when given

stock options as part of his or her compensation package by solving the appropriate

partial differential equation (or impulse control problem as the case may be). Second,

we determine the initial cash compensation that, when given instead of stock options,

provides the same expected utility level by using Monte Carlo simulations, or an analytical
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solution if applicable. This cash amount is an estimate of the value to the executive of

the stock options held in his or her portfolio.

To highlight our method’s versatility, we applied the pricing model to value simple

classic stock options and more complex infinite reload options. The numerical results

obtained when pricing classic employee stock options were consistent with previous liter-

ature and clearly show that employees place a much lower value on stock options when

compared to their no-arbitrage price. However, there is some question about the accuracy

of previously reported results for classic stock options. A similar gap was observed when

valuing infinite reload options.

Although it is now recognized that, from a no-arbitrage perspective, the reload feature

is very expensive, from an employee point of view, these features are not valued as highly.

The results included in this chapter suggest that there is an opportunity to negotiate with

employees, perhaps by paying a cash settlement, to eliminate some of the expensive (from

a no-arbitrage point of view) contractual features. Our research suggests that employees

would be willing to accept cash settlements at significantly less than the no-arbitrage

price of the option contracts. This would result in a net improvement in the company

balance sheet.

While the pricing model presented in this chapter is applicable to many different

employee stock options, a possible weakness of this utility approach lies in the fact that

the value depends on the individual situation of each employee. Since the pricing model

uses individual parameters such as the employee’s portfolio composition and risk-aversion

coefficient, it may be difficult to obtain a reliable cash equivalent option value. Often,

these values may need to be estimated as there may only be partial information available.

Nonetheless, once reasonable parameter values are chosen, this model provides a general

framework to obtain the utility-maximizing value of employee stock options.





Chapter 5

Valuing the Guaranteed Minimum

Death Benefit Clause with Partial

Withdrawals

A variable annuity or equity-linked insurance contract is a retirement and/or investment

vehicle created by insurance companies. It is a contract between the customer and the

insurance company where the insurer generally agrees to make periodic payments to the

client starting at a given date. These contracts are particularly popular in the United

States and the United Kingdom since the investment gains are tax-deferred until the

funds are withdrawn or annuitized at retirement. In addition to the tax deferral these

contracts may also include a death benefit. Specific examples of variable annuity contracts

include guaranteed minimum income benefits, guaranteed minimum withdrawal benefits

[73, 34, 25] and guaranteed minimum death benefits.

We are interested in the latter contract, the guaranteed minimum death benefit

(GMDB). In this case, if the customer passes away before the maturity of the contract,

115
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then the beneficiary receives the greater of the investment account value or the death

benefit. We consider the case of market guarantees, where some form of market returns

are guaranteed through periodic ratchet dates [74]. A GMDB contract has two phases:

the accumulation phase and the continuation phase. During the accumulation phase, the

value of the death benefit is reset periodically to the maximum of the current account

value or the prior death benefit value1. This initial phase begins when the contract is

purchased and typically ends when the client reaches 80 years of age [79]. Once the accu-

mulation phase is over, the continuation phase begins with the value of the death benefit

now remaining constant. The contract usually expires when the client turns 90 years

old [79]. At this time, the client receives the market value of the invested capital. Should

the client pass away prior to the contract maturity, the beneficiary receives the maximum

of either the guaranteed death benefit or the current investment account value. We also

allow partial withdrawals from the account, a common feature in GMDB contracts.

Determining the fair insurance fee for a GMDB contract allowing partial withdrawals

is a challenging and important problem. The first difficulty arises from the stochastic

nature of the contract maturity caused by the death benefit. These market guarantees

expose insurance companies to considerable risk during prolonged periods of weak equity

markets. Indeed, due to the stochastic nature of the contract maturity, GMDB contracts

have also been referred to as Titanic options [72]. Allowing for partial withdrawal of

funds introduces a second level of uncertainty to these contracts. Here the problem is that

some withdrawals are better than others in terms of overall return. As discussed in [30], a

conservative approach to pricing these guarantees is based on the optimal withdrawal at

any given instant (i.e. the worst case from the hedger’s point of view). Thus, determining

insurance fees for GMDB contracts with partial withdrawal becomes an optimal control

1Intuitively, this can be viewed as a discretely observed lookback option based on the maximum value
of the underlying [85].
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problem.

While many variable annuities have been well studied in the literature, the same can-

not be said for GMDB contracts. This is even more pronounced when partial withdrawal

is considered. Bauer, Kling and Russ [12] give a solution to the GMDB problem allowing

optimal withdrawal at discrete instances under a constant volatility Brownian motion

pricing model. In between the withdrawal times, the solution of a modified Black-Scholes

PDE is determined by a Green’s function integral, which is approximated numerically.

The optimal withdrawal at each withdrawal time is determined by a grid search. Previ-

ous to this, Mudavanhu and Zhuo [74] determine valuations of GMDB contracts where

the owner has the option to lapse after paying lapsation or surrender charges2. Thus,

withdrawals are allowed but they are of the all or nothing nature. Lapsation can then

be considered to be an American type option, which allows the authors in [74] to use a

numerical method based on Monte Carlo simulations for American options to price the

guarantee. Note that it is not clear how to extend this approach to the case of partial

withdrawals. Milevsky and Posner [72] determine the fair insurance charge such that the

risk-neutral present value of the contract benefits and the contract costs are equivalent.

However, partial withdrawals are not considered. Work in this area includes [45] (where

both actuarial and financial approaches are studied) and [28] (which focuses on the hedg-

ing of GMDB contracts) where again in these papers partial withdrawals are not allowed.

In addition, all the above papers rely on a constant volatility Brownian motion pricing

model.

In this chapter, we determine the fair insurance charge for a GMDB contract from a

combined no-arbitrage and actuarial approach (see [88]). We characterize the GMDB pric-

ing problem as an impulse control problem and develop a pricing model based on partial

2When a policy owner decides to lapse his policy, the investments are liquidated and the variable
annuity is terminated.
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differential inequalities. While valuing the GMDB guarantee from an issuer’s perspective,

this approach takes into account the partial withdrawal feature. Not surprisingly, our re-

sults show that the withdrawal feature is very valuable and results in significantly higher

insurance fees than found previously in the literature when withdrawals are ignored.

The assumption of a constant volatility pricing model used in [12, 74, 72, 45, 28] is

well-known to be inconsistent with the implied volatility observed in the market. In this

chapter, we value the insurance fee for GMDB contracts using both a constant volatility

pricing model (for comparative purposes) and a pricing model which switches randomly

between a finite number of states or regimes. Such regime-switching models can be

viewed as representing different economic states (e.g. economic growth or recession),

where each state has a different risk factor (i.e. volatility) and the underlying switches

randomly between these discrete states. Regime-switching is known to provide more

realistic models for market conditions, especially for long-term contracts.

Our valuations for the fair insurance fee of GMDB contracts are determined using a

partial differential equation (PDE) framework. We use a fully implicit penalty method to

solve this impulse control problem, where we allow both complete lapsation and partial

withdrawal. We are able to give a complete solution to the GMDB problem. By this

we mean that we: (a) give a complete specification of the problem in terms of PDEs,

including localized boundary conditions; (b) discretize the system of PDEs using a fully

implicit method; (c) compare the numerical results to those of previous work; and (d)

prove that the discrete equations converge to the viscosity solution [31] (assuming it

exists) away from ratchet dates. The last named property follows from proving that our

discrete equations are monotone, stable and consistent [8]. It is well known that the

viscosity solution is the financially relevant solution of option pricing problems.
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5.1 GMDB Model with Constant parameters

In this section, we derive the GMDB pricing model in the classic Black-Scholes frame-

work [85]. Since our goal is to compute the no-arbitrage insurance charge for such con-

tracts, the pricing model developed here determines the cost of the GMDB guarantee

from the issuer’s perspective, as opposed to the value of the whole contract (i.e. invest-

ment account plus guarantee). Let V̂ = V̂ (S,B,D, t) represent the cost of the GMDB

guarantee where:

• S is the current value of the underlying investment account,

• B is the current death benefit level,

• D is the current amount deposited in the investment account, and

• t denotes time.

When the GMDB contract is issued (t = 0), the death benefit is set to the initial deposit

D0 made by the policy owner, i.e. B = D0 at t = 0. The death benefit can then be

reset at each ratchet date to the maximum of the current investment account value or the

current benefit level. Generally, ratchet events only occur during the accumulation phase

of the contract and the last ratchet date is typically scheduled at the end of the policy

year when the owner turns 80 years old [79]. We denote a ratchet date by to and define

t−o and t+o as the times just before and after to. By standard no-arbitrage arguments, the

following jump condition is obtained:

V̂ (S,B+, D, t+o ) = V̂ (S,B−, D, t−o ), (5.1)

where B+ = max(B−, S).
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Should the policy owner pass away prior to the expiry of the GMDB contract, the

death benefit is exercised and the beneficiary receives the greater of the current benefit

level or the current investment account value. Consequently, the issuing company is liable

for any excess payment when the current death benefit is higher than the investment

account value.

When the holder of the contract makes a partial or full withdrawal (lapsing), a surren-

der charge, denoted as γ̂(t), is imposed. When the death benefit is exercised, the owner’s

estate does not pay a surrender charge. However, the issuer may have to pay a surrender

charge to the re-seller [79]. In this chapter, we consider the value of the guarantee from

the issuer’s perspective. To be concrete, we can think of the issuer of the guarantee as

a re-insurer, and the re-seller as an insurance company selling the guarantee to retail

customers. We assume that the surrender charge is calculated as a percentage of the

current deposit level D [79]. Generally, the surrender charge is highest at the start of the

contract and decreases annually. After the initial ts years of the contract, the surrender

charge disappears: γ̂(t) = 0 when t > ts years. Typically, ts = 7 years. Hence, the death

benefit exposure of the issuer, denoted by f = f(S,B,D, t), is defined as:

f(S,B,D, t) = max(B − S, 0) + γ̂(t)D. (5.2)

Note that when modelling the death benefit exposure, we use a mortality distribution as

discussed subsequently.

Annual fees associated with variable annuity contracts, referred to as mortality and

expense (M&E) fees, are charged to the policy owner. The mortality and expense fees,

denoted by ρtotal, are calculated as a predetermined percentage of the account value S,
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and include both management fees (ρman) and insurance charges (ρins):

ρtotal = ρman + ρins. (5.3)

Assuming the management fees (ρman) are known, we will determine in Section 5.5 the

value of ρins such that the issuer does not incur any loss, assuming the contract is hedged.

As outlined in [74], these M&E charges can be modeled similarly to dividends.

In this section, we will assume that the value of the underlying investment account (S)

follows a classic geometric Brownian motion process (under the risk-neutral measure)[54]:

dS

S
= (r − ρtotal)dt + σdZ, (5.4)

where r is the risk-free rate, σ is the asset volatility and dZ is the increment of a Wiener

process [85].

When the GMDB contract expires at time t = T , the owner, if still alive, receives a

payoff corresponding to the value of the invested capital at contract maturity. As such,

the issuing company is not liable for any additional payment at maturity beyond the

current investment account value. Consequently, at time t = T , we have:

V̂ (S,B,D, t = T ) = 0. (5.5)

Following the derivation in [86, 88], the cost of the GMDB guarantee in the Black-

Scholes framework is given by:

V̂t +
1

2
σ2S2V̂SS + (r − ρtotal)SV̂S − rV̂ − R̂(t)ρinsS + M̂(t)f = 0, (5.6)
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where M̂(t) represents the mortality function of the policy owners and R̂(t) is the survival

probability of policy owners. The mortality function is defined such that the fraction of

original owners who pass away during the time interval [t, t+dt] is M̂(t)dt. Consequently,

the portion of policy owners still alive at time t, denoted by R̂(t), is:

R̂(t) = 1 −
∫ t

0
M̂(n)dn, (5.7)

where the integral term represents the owners who have died during the period [0, t]. Note

that equation (5.6) is derived under the assumption that mortality risk is diversifiable

amongst many policy owners [72].

Many GMDB contracts include a feature allowing the policy owner to make partial

withdrawals from the invested capital at any time prior to the maturity of the contract

(during both the accumulation and continuation phase). When the owner makes a with-

drawal, both the deposit D and the death benefit B are reduced [79]. In this work, we

assume that D and B are reduced on a dollar-for-dollar basis following a partial with-

drawal. However, our PDE approach can easily be extended to model different withdrawal

policies. For example, an alternate withdrawal policy whereby the deposit is reduced by

the amount withdrawn but the death benefit is reduced on a proportional basis, could be

easily implemented.

The partial withdrawal feature enables the contract owner to withdraw any cash

amount up to the current account value S. However, to keep the policy active, a minimal

deposit amount must remain in the investment account. We denote the partial withdrawal

amount as W ∈ [0, S − ω], where ω is the minimal deposit amount. For each partial

withdrawal, a surrender charge, denoted by γ̂(t) and calculated as a percentage of W , is

imposed. The surrender charge γ̂(t) is also applied when the owner chooses to lapse his

policy. Recall that when an investor decides to lapse his policy, the investment account
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is liquidated and the GMDB policy cancelled. In this case, the surrender charge is a

percentage of the investment account value S.

While our goal is to determine the no-arbitrage insurance charge for the GMDB guar-

antee, for explanatory purposes, we first consider the effect of partial withdrawals on the

entire GMDB contract (investment account plus guarantee) and determine the appropri-

ate withdrawal constraint. The withdrawal constraint for the entire GMDB contract is

then used as a tool to derive the withdrawal constraint for the GMDB guarantee.

Let V̂ = V̂(S,B,D, t) represent the value of the entire GMDB contract (investment

account plus guarantee). Assuming optimal behavior and ignoring mortality effects for

the moment, the policy owner will maximize his return and choose W such that:

W = argmax
W ′∈[0,S−ω]

(

(1 − γ̂(t))W ′ + V̂(S − W ′,max(B − W ′, 0),max(D − W ′, 0), t)
)

. (5.8)

Taking into consideration the option to lapse, the value of the total GMDB contract

satisfies (after optimal withdrawal or lapsing):

V̂ = max

(

(1 − γ̂(t))S, (5.9)

max
W∈[0,S−ω]

(

(1 − γ̂(t))W + V̂(S − W,max(B − W, 0),max(D − W, 0), t)
)

)

.

While we have assumed in equation (5.9) that the contract owner will lapse whenever it

is optimal to do so, alternate assumptions could be made whereby the contract owner

would lapse at a pre-determined rate. See [86, 88] for more details on modeling investor

lapsing.

Since our goal is to determine the value of the GMDB guarantee, we now derive the

equivalent withdrawal constraint from the issuer’s perspective. Recall that we are looking

to value the GMDB guarantee in an aggregate sense by assuming that contracts are sold
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to a given population. As such, the mortality/survival function defined in equation (5.7)

must be taken into consideration when determining the withdrawal constraint. More

precisely, we redefine V̂(S,B,D, t) as the value of the whole contract to the issuer which

can be written as: V̂(S,B,D, t) = V̂ (S,B,D, t)+R(t)S. Notice that only the investment

account is affected by the survival probability since investor mortality is already included

in the differential equation for V̂ (S,B,D, t) presented as (5.6). Since only those owners

that are alive can conduct a withdrawal or choose to lapse, the cash flows associated with

both actions will also be scaled by the survival probability.

As such, integrating our cash flow assumption into equation (5.9), we obtain:

V̂ = max

(

R̂(t)(1 − γ̂(t))S,

max
W∈[0,S−ω]

(

R̂(t)(1 − γ̂(t))W + V̂(S − W,max(B − W, 0),max(D − W, 0), t)
)

)

= max

(

R̂(t)(1 − γ̂(t))S,

max
W∈[0,S−ω]

(

−R̂(t)γ̂(t)W + V̂ (S − W,max(B − W, 0),max(D − W, 0), t) + R̂(t)S
)

)

.

Since V̂(S,B,D, t) = V̂ (S,B,D, t) + R̂(t)S, we have:

V̂ = max

(

−R̂(t)γ̂(t)S, max
W∈[0,S−ω]

(

V̂ (S − W,max(B − W, 0),max(D − W, 0), t) − R̂(t)γ̂(t)W
)

)

.

Thus, we can denote the withdrawal constraint by AV̂ = AV̂ (S,B,D, t) with:

AV̂ ≡ max

(

− R̂(t)γ̂(t)S, (5.10)

max
W∈[0,S−ω]

(

V̂ (S − W,max(B − W, 0),max(D − W, 0), t) − R̂(t)γ̂(t)W
)

− c

)

,
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where c > 0 is a small fixed cost added to the constraint to ensure that the impulse

control problem is well-posed. While our theoretical formulation requires that c > 0,

the numerical scheme presented subsequently accepts both c = 0 and c > 0. We expect

in practice that very small values of c will have little effect on the numerical solution

obtained. This is confirmed by the examples included in Section 5.5.

We can write the pricing problem for the GMDB guarantee (away from the ratchet

dates) as an impulse control problem:

min

(

V̂t + LV̂ − R̂(t)ρinsS + M̂(t)f, V̂ −AV̂

)

= 0, (5.11)

where the differential operator L is defined as:

LV̂ =
1

2
σ2S2V̂SS + (r − ρtotal)SV̂S − rV̂ . (5.12)

Note that using equation (5.10) with c > 0 ensures that the second term in equation (5.11)

is not trivially zero which for example occurs when W = 0 since A = I in this case.

The GMDB pricing problem can also be written as a penalized problem:

lim
ε→0

(

Vτ −LV + R(τ)ρinsS −M(τ)f − 1

ε
max(AV − V, 0)

)

= 0, (5.13)

where τ = T − t is defined as the time to maturity and

V (S,B,D, τ) = V̂ (S,B,D, T−τ) , R(τ) = R̂(T−τ) , M(τ) = M̂(T−τ) , γ(τ) = γ̂(T−τ).

The pricing problem in equation (5.13) is solved numerically using the penalty method

outlined in [44, 34]. More specifically, using the terminal payoff in equation (5.5) as

initial conditions, we work backward in time to solve equation (5.13) while taking into
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consideration the jump condition in equation (5.1). Note that [3] demonstrates that the

penalty method is a good viscosity approximation for impulse control problems obtained

when pricing American options. In [4], the author also outlines properties for well-posed

impulse control problems.

5.1.1 Boundary Conditions

The GMDB guarantee pricing problem in equation (5.11) is solved on an S ×B ×D × τ

domain. Since B = D0 at τ = T (or t = 0), equation (5.1) indicates that the benefit level

B can only increase, unless a withdrawal occurs. Similarly, D = D0 at τ = T and the

deposit D decreases only when a partial withdrawal occurs. Since D is reduced by the

same amount as B following a withdrawal, we have that B ≥ D. As such, the solution

domain for V (S,B,D, τ) is defined as:

[0,∞] × [D,∞] × [0,D0] × [0, T ], (5.14)

where D0 is the initial investment deposit and T is the contract maturity.

To localize the GMDB pricing problem, additional boundary conditions are necessary.

As S → 0, the partial withdrawal policy is no longer applicable and the penalized problem

in equation (5.13) reduces to (noting the definition of f = f(S,B,D, τ) in equation (5.2)):

Vτ + rV −M(τ)(B + γ(τ)D) = 0. (5.15)

As S → ∞, we make the common assumption that VSS → 0 [89], which implies that

V is a linear function of S, along with the additional assumption that the linear term

dominates in size (see Appendix G). Using these assumptions, we obtain the following
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approximation to equation (5.13):

Vτ + ρtotalV + R(τ)ρinsS − 1

ε
max(AV − V, 0) = 0 ; S = Smax. (5.16)

As B → D, no additional boundary condition is required and the pricing equation

in (5.13) is solved. As B → ∞, equation (5.13) is solved but the jump condition in equa-

tion (5.1) needs to be modified to take into consideration the discrete solution domain.

For those grid nodes where S > Bmax, the discrete S × B plane does not contain the

required data to calculate the jump condition outlined in equation (5.1). We assume

that no ratchet events occur for those nodes where S > Bmax, which implies (in terms of

τ = T − t):

V (S,B,D, τ+
o ) =































V (S,B,D, τ−
o ) if S ≤ B,

V (S, S,D, τ−
o ) if B < S ≤ Bmax,

V (S,B,D, τ−
o ) if S > Bmax,

(5.17)

where τo denotes the ratchet date, while τ−
o and τ+

o denote the instants immediately

before and after a ratchet event. This is clearly an approximation but the resulting error

will be small, assuming Bmax is chosen sufficiently large. Numerical tests conducted in

Section 5.5 verify this to be the case.

In the D direction, no additional boundary condition is required as D → D0, since

AV requires information only from problems where D < D0 (from equation (5.10)).

As D → 0, the partial withdrawal feature remains applicable and the usual pricing

equation (5.13) is solved.

In summary, when valuing the GMDB guarantee, the following equation is solved
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numerically on a three-dimensional [0, Smax] × [D,Bmax] × [0,D0] domain:

Vτ −LV + R(τ)ρinsS −M(τ)f − 1

ε
max(AV − V, 0) = 0, (5.18)

where the differential operator L is defined in equation (5.12), f = f(S,B,D, τ) is defined

in equation (5.2) and the withdrawal constraint AV is defined in equation (5.10). The

initial conditions are:

V (S,B,D, τ = 0) = 0. (5.19)

The boundary conditions used are:

Vτ + rV −M(τ)(B + γ(τ)D) = 0 for S = 0, (5.20)

Vτ + ρtotalV + R(τ)ρinsS − 1

ε
max(AV − V, 0) = 0 for S = Smax, (5.21)

while the usual pricing equation in (5.18) is solved on the boundaries of the B×D plane.

Finally, the benefit jump condition in equation (5.17) is applied on pre-specified ratchet

dates.

5.2 Pricing the GMDB Guarantee with Regime-Switching

The assumption of constant volatility for option contracts is well-known to be inconsistent

with the implied volatility observed in the market. In this section, we introduce the con-

cept of regime-switching to the GMDB impulse control problem in equation (5.13). The

underlying assumption is that the volatility switches randomly between a finite number of

states or regimes. Each regime has a different volatility value and is meant to represent a

different economic state. While the underlying account value follows a log-normal process

within a given state, a jump in S occurs when the state of the economy changes.
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One could argue that stochastic volatility [85] is a valid alternative to regime-switching

when dealing with long-term contracts such as variable annuities. However, using a

stochastic volatility model implies solving a higher dimensional PDE. While both models

are valid remedies to unrealistic constant volatility models for long-term contracts, regime-

switching appears to be less expensive from a computational point of view and may be

somewhat more intuitive.

Introduced in [52], the concept of regime-switching has since been used extensively

when modeling both interest rates [49, 91, 27] and pricing option contracts [15, 38, 92,

18, 16]. In [15], the author develops a pentanomial lattice for valuing both European

and American type options with regime-switching. In [38], a family of option pricing

models is developed which incorporates regime-switching as well as a feedback effect on

volatility. Meanwhile, both [18] and [92] derive a system of option pricing PDEs that

incorporates the concept of regime-switching but apply differing boundary conditions.

In [16], the authors provide a regime-switching pricing model, based on PDEs, for more

exotic options such as Asian and lookback options. Working in another vein, the author

of [53] determines the appropriate parameters for a regime-switching lognormal model

using maximum likelihood estimation.

To extend our modelling framework to regime-switching, we introduce an additional

modeling variable E which represents the current state of the economy and define M

distinct states: E ∈ {e1, e2, . . . , eM}. Associated with each state em is a constant volatility

value denoted as σm. Assuming we are in state em, the value of the GMDB guarantee is

denoted as:

V̂ m = V̂ (S,B,D,E = em, σm, t). (5.22)

For a given regime em, the value of the underlying investment account S follows (under
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the risk neutral measure):

dS

S
=

(

r − ρtotal −
M
∑

l=1
l 6=m

λm→l(Jm→l − 1)

)

dt + σmdZ +

M
∑

l=1
l 6=m

(Jm→l − 1)dqm→l, (5.23)

where dqm→l is an independent Poisson process and Jm→l ≥ 0 (l 6= m) is an impulse

function producing a jump from S to Jm→lS when the state of the economy changes

from em to el. We define λm→l (l 6= m) as the risk-neutral probability of a jump from

economic state em to state el and have (for l 6= m):

dqm→l =















0 with probability 1 − λm→ldt,

1 with probability λm→ldt.

(5.24)

A system of coupled PDEs can then be derived to determine the value of the GMDB

guarantee in the regime-switching context. Each PDE represents a different economic

state and can be written as (see [27]):

V̂ m
t +

(

r − ρtotal −
M
∑

l=1
l 6=m

λm→l(Jm→l − 1)

)

SV̂ m
S +

1

2
σ2

mS2V̂ m
SS − rV̂ m

− R̂(t)ρinsS + M̂(t)f +

M
∑

l=1
l 6=m

λm→l(V̂ l(SJm→l, B,D, el, t) − V̂ m) = 0. (5.25)

For a given regime em, the withdrawal constraint AV̂ m = AV̂ m(S,B,D, em, t) can be

written as:

AV̂ m ≡ max

(

− R̂(t)γ̂(t)S, max
W∈[0,S−ω]

(

V̂ m(S − W,max(B − W, 0),max(D − W, 0), em, t)

− R̂(t)γ̂(t)W
)

− c

)

, (5.26)



5.2. GMDB GUARANTEE WITH REGIME-SWITCHING 131

where c is a small fixed cost. We remark that determining the optimal withdrawal amount

in equation (5.26) is a local optimization problem whose solution is discussed in Sec-

tion 5.3.3.

The jump condition applied at each ratchet date can be written as:

V̂ (S,B+, D, em, t+o ) = V̂ (S,B−, D, em, t−o ), (5.27)

where B+ = max(B−, S). The initial conditions for this pricing problem are similar to

those outlined in equation (5.5) and can be written as:

V̂ (S,B,D, em, t = T ) = 0. (5.28)

Consequently, we obtain a set of M impulse control problems which are solved simul-

taneously to determine the value of the GMDB guarantee. Assuming the economy is in

state em, we solve the following equation in terms of time to maturity (τ = T − t):

min

(

V m
τ −LV m + R(τ)ρinsS −M(τ)f, V m −AV m

)

= 0, (5.29)

where V (S,B,D, em, τ) = V̂ (S,B,D, em, T − τ) and LV m is now defined as:

LV m =
1

2
σ2

mS2V m
SS +

(

r − ρtotal −
M
∑

l=1
l 6=m

λm→l(Jm→l − 1)

)

SV m
S − rV m

+
M
∑

l=1
l 6=m

λm→l(V l(SJm→l, B,D, el, t) − V m). (5.30)
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Equation (5.29) can also be written in penalized form:

lim
ε→0

(

V m
τ −LV m + R(τ)ρinsS −M(τ)f − 1

ε
max

(

AV m − V m, 0
)

)

= 0. (5.31)

This set of coupled PDEs is solved, working backward in time, using an iterative penalty

scheme [44] to determine the value of the guarantee at each timestep.

5.2.1 Boundary Conditions

Additional boundary conditions need to be specified to localize the regime-switching

GMDB pricing problem. For each regime em, equation (5.31) is solved on a truncated

domain: [0, Smax] × [D,Bmax] × [0,D0] (see Section 5.1.1).

As S → ∞, the boundary condition must be considered carefully due to the presence

of jumps in S when the state of the economy changes. More specifically, the case when S

jumps outside the discrete domain following a regime change, i.e. SJ m→l > Smax, must

be dealt with in an appropriate manner. We assume that any asset value that jumps

outside the discrete S grid is set to Smax, which implies that the jump size Jm→l (l 6= m)

is a function of S:

Jm→l(S) =















Jm→l when 0 ≤ S ≤ Smax

Jm→l ,

Smax
S

when Smax

Jm→l < S ≤ Smax.

(5.32)

Again, this is an approximation, where we expect the error to be small as Smax → ∞.

This will be verified in some numerical tests in Section 5.5.

The penalized GMDB pricing equation with regime-switching can then be written as:

V m
τ −LV m + R(τ)ρinsS −M(τ)f − 1

ε
max

(

AV m − V m, 0
)

= 0, (5.33)
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where:

LV m =
1

2
σ2

mS2V m
SS +

(

r − ρtotal −
M
∑

l=1
l 6=m

λm→l(Jm→l(S) − 1)

)

SV m
S − rV m (5.34)

+

M
∑

l=1
l 6=m

λm→l(V l(Jm→l(S)S,B,D, el, τ) − V m).

Making the same assumption as in Section 5.1.1, the jump condition in equation (5.27)

becomes:

V (S,B,D, em, τ+
o ) =































V (S,B,D, em, τ−
o ) if S ≤ B,

V (S, S,D, em, τ−
o ) if B < S ≤ Bmax,

V (S,B,D, em, τ−
o ) if S > Bmax.

(5.35)

The boundary conditions for each regime are similar to those outlined in Section 5.1.1

and are:

V m
τ + rV m −M(τ)(B + γ(τ)D) −

M
∑

l=1
l 6=m

λm→l(V l(0, B,D, el, τ) − V m) = 0 for S = 0,

(5.36)

V m
τ + R(τ)ρinsS + ρtotalV

m −
M
∑

l=1
l 6=m

λm→lJm→l(S)
(

V l(S,B,D, el, τ) − V m
)

(5.37)

−1

ε
max(AV m − V m, 0) = 0 for S = Smax,

while the usual pricing equation in (5.33) is solved on the boundaries of the B×D plane.
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5.3 Numerical Solution of the GMDB Problem with Regime-

Switching

In this section, we present details for the numerical solution of the GMDB pricing problem.

Section 5.3.1 describes the construction of the underlying grid in each regime, while

Section 5.3.2 presents the discrete equations for the GMDB pricing problem. Finally,

Section 5.3.3 discusses how the local optimization problem is handled when determining

the value of the partial withdrawal constraint.

5.3.1 Construction of the Underlying Grid

The regime-switching pricing problem requires the addition of a fourth dimension to the

solution domain. As such, we build a discrete S × B × D × E domain where the E

grid contains M entries. The pricing equations for each economic state em are solved on

a discrete three-dimensional [0, Smax] × [D,Bmax] × [0,D0] grid. The three-dimensional

S×B×D grid is identical for each economic state em and its construction is now described

in more detail.

A set of discrete nodes is built in the D direction and denoted as {Dk}, for k =

0, . . . , kmax. Note that D0 = 0 and Dkmax = D0, where D0 is the initial deposit made

by the policy owner. Associated with each Dk value is a two-dimensional S × B plane.

Since equation (5.13) contains no derivatives in the B direction, each S × B plane is a

collection of one-dimensional problems. As the domain definition for B depends on Dk,

we begin by building a S×B grid on the larger [0, Bmax]× [0, Smax] domain which is then

truncated to the required size.

To construct the S ×B grid, we build a set of nodes over the domain [0, Bmax] which

we denote by {Bl} for l = 0, . . . , lmax where:

• B0 = 0 and Blmax = Bmax,
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B

B

0 S = B S Smax

max

maxS = D
B = D

Figure 5.1: Representation of a [0, Smax] × [D, Bmax] plane where each one-dimensional S grid
is built using the scaled grid technique defined in equation (5.38).

• each of the nodes in {Dk} is also included in the grid {Bl}, i.e. {Dk} ⊂ {Bl}, and

• the bulk of the nodes in {Bl} are placed around the initial deposit amount D0.

For a fixed Bl, we construct a set of S nodes {S l
i} using the scaled grid construction

(see Section 2.2.1):

Sl
i = Bi

Bl

D0
for i = 0, . . . , lmax − 1, and Sl

imax
=

(Blmax)
2

D0
. (5.38)

This scaled grid construction enables a more precise calculation of the jump condition in

equation (5.17). Note that interpolation is generally required when calculating the jump

condition in (5.17) on a scaled grid.

As specified previously, the discrete S × B grid is truncated according to the deposit

value Dk to which it is associated. More specifically, we will eliminate those entries in

{Bl} (and their associated S-grid) such that Bl < Dk. Therefore, assuming we have

determined the index p such that Bp = Dk, the grid along the B direction is truncated
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maxS0

B

B

B = D
D

Dmax

max

S

Figure 5.2: Three dimensional solution domain to price the GMDB guarantee in economic state
em. Each S × B plane is constructed as in Figure 5.1.

such that:

Bk
j = Bp+j for j = 0, . . . , jmax. (5.39)

Note that the notation Bk
j in (5.39) was chosen to highlight the dependence of the trun-

cated B-grid on Dk. The resulting S ×B grid for a fixed deposit amount Dk is shown in

Figure 5.1.

This grid construction ensures that we use the minimum number of nodes to solve

the GMDB pricing problem for each economic state em. The final three-dimensional

S × B × D domain is presented in Figure 5.2.

5.3.2 Discrete Equations

Let us now consider the discretization of equation (5.29) on the S ×B ×D × E domain.

We denote the discrete value as V n+1
i,j,k,m = V (Sj

i , B
k
j , Dk, em, τn+1), while AhV n+1

i,j,k,m =

AV (Sj
i , B

k
j , Dk, em, τn+1) represents the discrete version of the withdrawal constraint

defined in equation (5.26). In terms of notation, discrete operators will be denoted as Ah

and Lh where the superscript h represents the space discretization parameter.
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Assuming fully implicit timestepping is used, the discrete form of equation (5.29) is

obtained by applying standard finite difference approximations:

V n+1
i,j,k,m − V n

i,j,k,m

∆τ
= [LhV ]n+1

i,j,k,m−Rn+1ρinsS
j
i +Mn+1fn+1

i,j,k +
µn+1

i,j,k,m

ε

(

AhV n+1
i,j,k,m−V n+1

i,j,k,m

)

,

(5.40)

where

Mn+1 = M(τn+1), Rn+1 = R(τn+1), γn+1 = γ(τn+1), (5.41)

fn+1
i,j,k = f(Sj

i , B
k
j , Dk, τ

n+1) = max(Bk
j − Sj

i , 0) + γn+1Dk, (5.42)

µn+1
i,j,k,m =















1 if AhV n+1
i,j,k,m > V n+1

i,j,k,m,

0 otherwise.

(5.43)

The discrete differential operator Lh can be written as:

[LhV ]n+1
i,j,k,m = αi,j,mV n+1

i−1,j,k,m + βi,j,mV n+1
i+1,j,k,m − (αi,j,m + βi,j,m + r)V n+1

i,j,k,m

+
M
∑

l=1
l 6=m

λm→l(H(Jm→l)iV
n+1
j,k,l − V n+1

i,j,k,m), (5.44)

where αi,j,m, βi,j,m ≥ 0 are defined in Appendix A and H(Jm→l)iV
n+1
j,k,l represents the

interpolated guarantee value in regime el when the asset price jumps to Jm→l(S)S. As-

suming linear interpolation is chosen, we have:

H(Jm→l)iV
n+1
j,k,l = (1 − wi,j,m)V n+1

a,j,k,l + wi,j,mV n+1
a+1,j,k,l , (5.45)

where Sj
a ≤ Jm→l(Sj

i )S
j
i ≤ Sj

a+1 and the interpolation weight 0 ≤ wi,j,m ≤ 1 can be
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written as:

wi,j,m =
Jm→l(Sj

i )S
j
i − Sj

a

Sj
a+1 − Sj

a

. (5.46)

Since the node (Sj
i − W,max(Bk

j − W, 0),max(Dk − W, 0)) does not always coincide

with an existing grid node, interpolation must be used when calculating the discrete

withdrawal constraint AhV n+1
i,j,k,m. We define the vector I(W )i,j,k as the interpolation

operator used when calculating the value of the GMDB guarantee following a withdrawal

W . Thus, we have:

AhV n+1
i,j,k,m =max

(

−Rn+1γn+1Sj
i , max

W∈[0,S
j
i −ω]

[

I(W )i,j,kV
n+1
m − Rn+1γn+1W

]

− c

)

,

(5.47)

where V n+1
m is a vector containing the GMDB values for regime em:

V n+1
m =

























V n+1
0,0,0,m

V n+1
1,0,0,m

...

V n+1
imax−1,jmax,kmax,m

V n+1
imax,jmax,kmax,m

























, (5.48)

and I(W )i,j,k can be written as follows assuming linear interpolation:

I(W )i,j,kV
n+1
m =

∑

i,j,k

ηi,j,k,mV n+1
i,j,k,m , (5.49)

where 0 ≤ ηi,j,k,m ≤ 1 are the interpolation weights and:

∑

i,j,k

ηi,j,k,m = 1. (5.50)
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Letting W n+1
i,j,k,m denote the optimal withdrawal amount at node (Sj

i , B
k
j , Dk, em) and

time τn+1, and defining the indicator variable an+1
i,j,k,m as:

an+1
i,j,k,m =















1 if it is optimal to lapse,

0 if it is optimal to withdraw W n+1
i,j,k,m,

(5.51)

we can rewrite equation (5.47) as:

AhV n+1
i,j,k,m = −an+1

i,j,k,mRn+1γn+1Sj
i +(1−an+1

i,j,k,m)
(

I(W )i,j,kV
n+1
m − Rn+1γn+1W n+1

i,j,k,m − c
)

.

(5.52)

The numerical scheme in equation (5.40) is a positive coefficient discretization [43]

when the following definition is satisfied.

Definition 5.1 (Positive Coefficient Scheme). The numerical scheme defined in

equation (5.40) is a positive coefficient discretization when:

αi,j,m , βi,j,m ≥ 0, ∀i, j,m ,

r ≥ 0 ,

λm→l ≥ 0, when m 6= l ,

and the interpolation operators H(Jm→l)i and I(W )i,j,k represent linear interpolation.

Since αi,j,m, βi,j,m ≥ 0 by construction (see Appendix A), λm→l ≥ 0, when m 6= l and

r ≥ 0 for all problems considered, the numerical scheme in (5.40) is a positive coefficient

scheme.
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5.3.3 Optimal Withdrawal

In this section, we outline the method used to determine the optimal withdrawal W when

calculating the constraint in equation (5.26) at a discrete grid node (S j
i , B

k
j , Dk, em). We

solve this local optimization problem by considering all possible discrete withdrawals.

After checking that a withdrawal is possible by verifying S j
i > ω, where ω is the

minimal deposit amount, we carry out a linear search over all possible discrete withdrawals

W̄ where:

W̄ = min(Sj
l , S

j
i − ω), (5.53)

assuming Sj
l < Sj

i . For each W̄ considered, we calculate the effect of the partial with-

drawal to the issuer, denoted by A(W̄ ):

A(W̄ ) = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄ , (5.54)

where I(W̄ )i,j,k is defined in (5.49).

The optimal withdrawal is determined by taking the maximum of A(W̄ ) over all

discrete withdrawals W̄ and the final withdrawal constraint for node (Sj
i , B

k
j , Dk, em) is

computed as:

AhV n+1
i,j,k,m = max

(

−Rn+1γn+1Sj
i ,max

W̄

[

A(W̄ )
]

− c

)

. (5.55)

This search procedure is summarized in Algorithm 5.1.

5.4 Convergence to the Viscosity Solution

In [81], the authors demonstrate how some reasonable discretization schemes either never

converge or converge to a wrong solution. Thus, it is important to ensure that our
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W̄ = 0 ; A = 0 ; Amax = 0

if Sj
i > ω then

Determine maximum withdrawal: W̄ = Sj
i − ω

Calculate: Amax = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄

Determine index imax s.t.: Sj
i−1 < Sj

imax
< Sj

i − ω

for l = 0, . . . , imax do
Determine withdrawal: W̄ = Sj

l

Calculate: A = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄

Amax = max(A,Amax)
end for

end if

AhV n+1
i,j,k = max

(

Amax − c,−Rn+1γn+1Sj
i

)

Algorithm 5.1: Calculation of Withdrawal Constraint for GMDB Contracts

discretization method converges to the unique viscosity solution [31]. Assuming that a

unique, continuous viscosity solution to equation (5.40) exists, the numerical scheme in

(5.40) converges to the viscosity solution away from the ratchet dates if it satisfies certain

stability, consistency and monotonicity requirements [8, 11].

Assuming a given state em, the solution domain for the GMDB pricing problem in

equation (5.29) is [0, Smax] × [D,Bmax] × [0,D0]. When working backward in time, we

denote the ratchet dates as τu
o for u = 0, . . . , umax, and use τu−

o and τu+
o to denote the

times right before and after a ratchet event. Thus, we define the solution domains Πu

and Π by:

Πu = [0, Smax] × [D,Bmax] × [0,D0] × [τu+
o , τ (u+1)−

o ] for u = 0, . . . , umax − 1, and

Π =
⋃

u

Πu = [0, Smax] × [D,Bmax] × [0,D0] ×
⋃

u

[τu+
o , τ (u+1)−

o ].

This enables us to define the pricing problem for the GMDB guarantee in detail.

Definition 5.1 (GMDB Pricing Problem with Discrete Ratchets). The pricing
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problem for the GMDB guarantee with discrete ratchet events is defined in Π as follows:

within each domain Πu, for u = 0, . . . , umax − 1, we determine the solution to the pricing

problem presented in equation (5.29) with initial conditions expressed in equation (5.28)

when u = 0 or in equation (5.35) when u > 0, boundary conditions described in equa-

tions (5.36)–(5.37) and localization conditions in equations (5.32) and (5.35).

Note that we have not defined the pricing problem for the GMDB guarantee over the

entire contract lifetime τ ∈ [0, T ] since the solution can be discontinuous across ratchet

dates τu
o , for u = 0, . . . , umax − 1, due to the no-arbitrage condition in equation (5.35).

Assumption 5.2. We assume that a unique, continuous viscosity solution exists [8, 67,

78] for the localized pricing problem in Definition 5.1 which satisfies equations (5.36)–

(5.37) and localization conditions in equations (5.32) and (5.35). More specifically, we

assume that the unique viscosity solution is continuous within each domain Πu, for u =

0, . . . , umax − 1.

A unique, continuous viscosity solution exists if the PDE satisfies a strong compari-

son property (see Section 2.3). In the regime switching case, existence of a continuous,

viscosity solution is shown using properties of the value function in [78]. Note that the

definition of viscosity solution has to be generalized for systems of weakly coupled PDEs,

such as regime switching models [67, 78].

If Assumption 5.2 holds, then showing that the discrete equations are monotone, stable

and consistent will enable us to conclude that the solution of the numerical scheme in

equation (5.40) converges to the unique viscosity solution of the pricing problem outlined

in Definition 5.1.
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5.4.1 Stability

We begin by showing that the discrete equations in (5.40) satisfy the l∞-stability require-

ment which involves demonstrating that the discrete contract value V n+1
i,j,k,m is bounded.

We define:

∆Sj
max = max

i
(Sj

i+1−Sj
i ), ∆Bk

max = max
j

(Bk
j+1−Bk

j ), ∆Dmax = max
k

(Dk+1−Dk), ∆τ =
T

N
.

Definition 5.3 (Stability). For fixed Smax, Bmax and T , the numerical scheme presented

in equation (5.40) is l∞-stable if:

||V n||∞ ≤ C (5.56)

for 0 ≤ n ≤ N , as ∆τ → 0, maxj ∆Sj
max → 0, maxk ∆Bk

max → 0, ∆Dmax → 0 and ε → 0.

The constant C is independent of ∆τ , ∆Sj
max, ∆Bk

max, ∆Dmax and ε.

For notational convenience, we make the following assumption.

Assumption 5.4. We assume that ∆Bk
max, ∆Sj

max, ∆τ and ε are parametrized by:

∆Bk
max = c0h, ∆Sj

max = c1h, ∆τ = c2h and ε = c3h,

with c0, c1, c2 and c3 constants.

Theorem 5.5. Assume the numerical scheme satisfies Definition 5.1, that the boundary

conditions are described by the discrete version of equations (5.36)–(5.37), that the initial

conditions are given by the discrete version of equation (5.28) and that fully implicit

timestepping is used. Then:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dmax ∀i, j, k,m, n, (5.57)
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where the parameters 0 ≤ Cn+1
0 ≤ 1 and 0 ≤ Cn+1

1 are defined as:

Cn+1
0 = ∆τ

n+1
∑

i=0

Mi and Cn+1
1 = ∆τ

n+1
∑

i=0

Miγi. (5.58)

Proof. See Appendix H.

Theorem 5.5 enables us to conclude that the numerical scheme for V n+1
i,j,k,m, as defined

in equation (5.40), is stable according to Definition 5.3.

5.4.2 Monotonicity

In this section, we show that the discrete equations presented in (5.40) are monotone. To

facilitate exposition, we denote the discrete equations on interior nodes (when S j
i < Smax)

as:

G
(

h, x,V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}

)

=
V n+1

i,j,k,m − V n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m + Rn+1ρinsS
j
i

−Mn+1fn+1
i,j,k − 1

ε
max

(

AhV n+1
i,j,k,m − V n+1

i,j,k,m, 0
)

, (5.59)

where x = (Sj
i , B

k
j , Dk, em, τn+1), h is the discretization parameter, and {V n+1

a,p,u,l} repre-

sents all discrete nodes, other than V n+1
i,j,k,m and V n

i,j,k,m, included in the discrete equations.

Similarly, at the boundary when Sj
i = Smax, the discretization is given as:

G
(

h, x, V n+1
imax ,j,k,m, V n

imax,j,k,m, {V n+1
a,p,u,l}

)

=
V n+1

imax,j,k,m − V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

+ Rn+1ρinsS
j
imax

−
M
∑

l=1
l 6=m

λm→lJm→l
imax

(V n+1
imax,j,k,l − V n+1

imax,j,k,m)

− 1

ε
max

(

AhV n+1
imax,j,k,m − V n+1

imax,j,k,m, 0
)

. (5.60)

Definition 5.6 (Monotonicity). The numerical scheme G(h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l})
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presented in equations (5.59) and (5.60) is monotone if for all Y n
i,j,k,m ≥ V n

i,j,k,m:

G(h, x, V n+1
i,j,k,m, Y n

i,j,k,m, {Y n+1
a,p,u,l}) − G(h, x, V n+1

i,j,k,m, V n
i,j,k,m,{V n+1

a,p,u,l}) ≤ 0. (5.61)

Note that this definition of monotonicity is equivalent to the one presented in [8].

Theorem 5.7 (Monotone Discretization). Assuming that the discretization satisfies

Condition (5.1), the numerical scheme G(h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}) defined in equa-

tions (5.59) and (5.60), is monotone.

Proof. Notice that the numerical scheme presented in equations (5.59) and (5.60) is a

positive coefficient discretization since it satisfies Condition 5.1. In [43], the authors

demonstrate that a positive coefficient discretization of a control problem, such as the

one considered here, is monotone. Using the same technique as in [43], it is straightforward

to show that the numerical scheme presented in equations (5.59) and (5.60) is monotone

and satisfies Definition 5.6.

5.4.3 Consistency

We now show that the numerical scheme in equation (5.40) is consistent.

For the GMDB pricing problem, the impulse control problem can be written in com-

pact form as:

F (V (x)) = 0 for all x = (S,B,D, em, τ), (5.62)

where

F (V (x)) =















Fin(V (x)) if S < Smax,

Fbound(V (x)) if S = Smax.

(5.63)



146 CHAPTER 5. GMDB WITH PARTIAL WITHDRAWALS

The continuous problem evaluated at discrete interior nodes when S j
i < Smax is then:

Fin(V )n+1
i,j,k,m =

[

min

(

Vτ −LV + R(τ)ρinsS −M(τ)f, V −AV

)]n+1

i,j,k,m

= 0, (5.64)

while at boundary nodes when Sj
i = Smax we have:

Fbound(V )n+1
imax,j,k,m =

[

min

(

Vτ + ρtotalV −
M
∑

l=1
l 6=m

λm→lJm→l(S)
(

V (S,B,D, el, τ) − V
)

+ R(τ)ρinsS, V −AV

)]n+1

imax,j,k,m

= 0, (5.65)

where the continuous operator L is defined in equation (5.30) and f = f(S,B,D, τ) is

defined in equation (5.2).

Since ε > 0, the discrete scheme in equation (5.59) can be rewritten as:

Ĝ
(

h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}

)

=

min

(

ε

(

V n+1
i,j,k,m − V n

i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

+ V n+1
i,j,k,m −AhV n+1

i,j,k,m,

V n+1
i,j,k,m − V n

i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

= 0, (5.66)
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at interior nodes when Sj
i < Smax, while equation (5.60) can be rewritten as:

Ĝ
(

h, x, V n+1
imax,j,k,m, V n

imax,j,k,m, {V n+1
a,p,u,l}

)

= min

(

ε

(

V n+1
imax,j,k,m − V n

imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M
∑

l=1
l 6=m

λm→lJm→l
imax

(V n+1
imax,j,k,l − V n+1

imax,j,k,m) + Rn+1ρinsS
j
imax

)

+ V n+1
imax,j,k,m −AhV n+1

imax,j,k,m,
V n+1

imax,j,k,m − V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M
∑

l=1
l 6=m

(λm→lJm→l)imax(V
n+1
imax,j,k,l − V n+1

imax,j,k,m) + Rn+1ρinsS
j
imax

)

= 0, (5.67)

on the boundary when Sj
i = Smax.

To formally define the notion of consistency, we require the concept of upper and

lower semi-continuous envelope of a function from Definition 2.7.

Definition 5.8 (Consistency). For any smooth test function φ with bounded derivatives

of all orders with respect to S and τ , the numerical scheme Ĝ(h, x, φn+1
i,j,k,m, φn

i,j,k,m, {φn+1
a,p,u,l})

is consistent if, for all points x̂ = (Ŝ, B̂, D̂, em, τ̂) with x = (Sj
i , B

k
j , Dk, em, τn+1), we

have:

lim sup
h,ξ→0

x→x̂

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

≤ F ∗(φ(x̂)), (5.68)

lim inf
h,ξ→0
x→x̂

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

≥ F∗(φ(x̂)), (5.69)

where φn
i,j,k,m = φ(Sj

i , B
k
j , Dk, em, τn) and ξ ≥ 0.

Note that Remark 2.9 also applies to the GMDB pricing problem.

Theorem 5.9 (Consistent Discretization). The numerical scheme presented in equa-

tion (5.40) is consistent according to Definition 5.8.



148 CHAPTER 5. GMDB WITH PARTIAL WITHDRAWALS

Proof. See Appendix I.

5.5 Results from Numerical Experiments

This section focuses on determining the fair insurance charge associated with a GMDB

guarantee from the issuer’s perspective. More specifically, we are looking for ρins such

that:

V (ρins;S = D0, B = D0, D = D0, E = em, τ = T ) = 0, (5.70)

where D0 is the initial deposit made by the contract owner and T is the contract maturity

in years. Newton iteration is used to determine the fair insurance charge ρins that satisfies

equation (5.70) assuming an economic state em. The Newton iteration tolerance, denoted

by tol, ensures that:

|ρk+1
ins − ρk

ins|∞ ≤ tol, (5.71)

where tol = 1× 10−6 and k is the iteration index. Unless otherwise stated, this tolerance

level is used for all numerical results included in this section.

As a validation exercise, we compared our results with those presented in [72] when

valuing a special GMDB contact with continuous ratchet updates, a 25 year maturity

and no withdrawals; details of this comparison are presented in Appendix J.

5.5.1 Results for Constant Volatility

Assuming volatility is constant, we present numerical results when pricing the GMDB

guarantee. In a regime-switching sense, this is equivalent to assuming that only one

economic state, e0, exists. The volatility associated with e0, as well as other contract

parameters, are presented in Table 5.1. We are looking to determine the insurance fee
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State Information - e0

σ0 - Volatility 0.20

Contract Information

r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction

D0 - Initial deposit $100
Smax - Grid parameter $3.6 × 107

Bmax - Grid parameter $60000

Table 5.1: Parameter values used when pricing the GMDB guarantee in the classic Black-Scholes
context.

ρins which satisfies:

V (ρins;S = $100, B = $100, D = $100, E = e0, τ = T ) = 0. (5.72)

Additional assumptions are necessary regarding the owner of the GMDB contract.

We assume that the owner of the variable annuity is a male of 50 years of age at the time

of purchase. As such, the accumulation period of the contract, during which there are

periodical ratchet events, will last 30 years. The contract is assumed to come to maturity

when the owner turns 90 years old which implies that T = 40 years, as reflected in Table

5.1. The mortality data used to price the GMDB guarantee is taken from the Complete

life table, Canada, 1995-1997 for males and females found in [29].

Table 5.1 also specifies some grid construction details. While an unequally spaced

grid containing 36 nodes is built along S, the grid built in the D direction contains 21

nodes spanning [0,D0]. Though not presented here, numerical tests were carried out to

ensure that the choice of Bmax, and consequently Smax, provides a minimum of 6 digits of

accuracy. Recall that Smax = B2
max/D0, where D0 is the initial deposit (see Section 5.3.1
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for more details). Similarly, numerical tests show that choosing a sufficiently small fixed

cost, such as c = 1 × 10−10, results in values identical to those obtained when c = 0

up to at least 6 digits. Consequently, for all numerical experiments in this section, we

set c = 1 × 10−10. The penalty parameter ε (see equations (5.59) and (5.60)) is set to

ε = ∆τ × 10−6.

In addition to the parameters in Table 5.1, the surrender charge imposed when a

withdrawal occurs (denoted as γ̂(t) in equation (5.10)) is defined as in [74]:

γ̂(t) =















0.08 − 0.01dte t ≤ 7 years,

0.00 t > 7 years,

(5.73)

where d·e represents the ceiling function.

To determine the accuracy level that can be attained, we carry out a convergence

analysis when pricing the GMDB guarantee. Table 5.2 holds the cost of the GMDB

guarantee assuming ω = $80 for different refinement levels when the parameters in Table

5.1 are used. Note that we have set ρins = 0.008 for the time being. The top section of

Table 5.2 contains the values obtained when fully implicit timestepping is used while the

bottom panel presents the values recovered when Crank-Nicolson timestepping is used.

Constant timesteps are taken for both fully implicit and Crank-Nicolson timestepping

and the initial timestep is ∆τ = 0.05 years on the coarsest grid. To eliminate oscillations

in the final Crank-Nicolson solution, two fully implicit timesteps are taken at the start

of the solution process [82]. Note that Crank-Nicolson is not monotone, and hence is not

guaranteed to converge to the viscosity solution.

We see that the results for the highest refinement level in Table 5.2 provide an accept-

able level of accuracy. However, results from higher refinement levels would be required

to establish a definite conclusion about the convergence of the numerical scheme with
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Cost of a GMDB guarantee

Refinement Nodes
Level S B D Option Value Difference Ratio

Fully Implicit

0 36 36 21 1.653844 n.a. n.a.
1 71 71 41 1.728004 0.074161 n.a.
2 141 141 81 1.752456 0.024452 3.03

Crank-Nicolson

0 36 36 21 1.711003 n.a. n.a.
1 71 71 41 1.761588 0.050585 n.a.
2 141 141 81 1.769926 0.008338 6.07

Table 5.2: Cost of the GMDB guarantee when the owner is assumed to be a male of 50 years
old at the time of purchase, ω = $80 and ρins = 0.008. Other contract parameters are presented
in Table 5.1. Nodes - B indicates the maximum number of nodes in the B direction (i.e. when
D = 0). The initial timestep is ∆τ = 0.05 years on the coarsest grid.

Fair Insurance Fee for GMDB Guarantee

Refinement Nodes Insurance
Level S B D Fee (ρins)

0 36 36 21 0.009255
1 71 71 41 0.009225
2 141 141 81 0.009216

Table 5.3: Fair insurance fee (ρins) for a GMDB guarantee for different grid refinement levels
when the owner is assumed to be a male of 50 years old at the time of purchase and ω = $80.
Crank-Nicolson timestepping is used and the initial timestep is ∆τ = 0.05 years on the coarsest
grid. Other contract parameters are presented in Table 5.1. Nodes - B indicates the maximum
number of nodes in the B direction (i.e. when D = 0).

both timestepping methods considered. Clearly the results in Table 5.2 show that the

convergence has not settled down to the asymptotic rate. Results from higher refinement

levels were not generated due to the prohibitive running time for such large problems

(recall that this is a three-dimensional problem). Nonetheless, since our interest lies in

determining the fair insurance fee associated with the contract, the results in Table 5.2

provide adequate accuracy for our purposes.

Table 5.3 presents the convergence of the fair risk charge obtained when Crank-

Nicolson timestepping is used. We again assume that the owner is a male of 50 years old



152 CHAPTER 5. GMDB WITH PARTIAL WITHDRAWALS

Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing

Male 0.0090 0.0092 0.0097 0.0105 0.0122 0.0136 0.0077

Female 0.0067 0.0069 0.0073 0.0081 0.0095 0.0107 0.0053

Table 5.4: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual
ratchet events as a function of the minimal deposit amount (ω). Contract owners are assumed
to be 50 years old at the time of purchase. The parameters in Table 5.1 are used in the pricing
process.

when the contract is purchased and that ω = $80. Other contract parameters are set to

the values presented in Table 5.1. Results for the highest refinement level in Table 5.3

are accurate to within 2 × 10−5.

We now examine how the minimum deposit amount (ω) affects the fair insurance

charge ρins obtained when solving equation (5.72). Table 5.4 presents the fair insurance

charge for the GMDB clause with annual ratchet events when the minimum deposit ω

ranges from $10 to $90. For comparison purposes, we also include the fair insurance

charge for the GMDB clause when no withdrawals or contract lapsing are allowed. The

results for both male and female owners are presented in Table 5.4. Other parameter

values are specified in Table 5.1. In observing the results contained in Table 5.4, we see

that the minimum deposit amount ω significantly impacts the fair insurance charge for

the GMDB clause. Intuitively, as ω decreases, larger withdrawals can occur which is more

detrimental to the issuing company and, as such, results in a higher insurance charge.

The results in Table 5.4 show that the withdrawal feature is very valuable.

Table 5.4 also demonstrates the impact of the gender of the contract owner on the

required insurance charge. Since female owners generally live longer than their male

counterparts, a lower insurance fee is required. As shown in Table 5.4, this can be

observed for different values of ω, as well as when the GMDB does not allow withdrawals

or lapsing.

In [72], the authors state that certain contracts with a GMDB clause include longer
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Ratchet Interval
Owner 0.5 year 1 year 2 years 5 years 10 years

Male 0.0137 0.0122 0.0105 0.0080 0.0059
Female 0.0107 0.0095 0.0081 0.0062 0.0046

Table 5.5: Fair insurance charge (ρins) for a GMDB guarantee with different ratchet intervals
ranging from 0.5 to 10 years. The owner is assumed to be 50 years old at the time of purchase and
ω = $20. Other contract parameters used when solving equation (5.72) are presented in Table 5.1.

time intervals between ratchet dates such as 2 or 5 years. As such, numerical results

for pricing GMDB contracts with ω = $20 for different ratchet intervals ranging from 6

months to 10 years are presented in Table 5.5. Note that the parameter values presented

in Table 5.1 are used and that the owner is assumed to be 50 years of age when the

contract is purchased. The results of Table 5.5 demonstrate that a lower insurance charge

is imposed by the issuer as the ratchet interval is increased. With fewer ratchet events

during the contract lifetime, the death benefit exposure of the issuing company is generally

reduced resulting in a lower insurance fee. This relation is observed for both male and

female owners. Clearly, modifying the ratchet interval also significantly impacts the fair

insurance charge associated with the GMDB clause. It would appear that both the

withdrawal and ratchet features are very valuable when included in a GMDB contract.

5.5.2 Numerical Results with Regime Switching

We now consider results from numerical experiments where regime-switching is added

to the pricing model, as described in Section 5.2. In accordance with the calibration

carried out in [5], we assume that there are three economic regimes which we denote as

e1, e2 and e3. In [5], the authors assume that the underlying is in one of three regimes

of Brownian volatility and calibrate this model to an existing volatility smile. Therefore,



154 CHAPTER 5. GMDB WITH PARTIAL WITHDRAWALS

State Information - e1

σ1 - Volatility 0.0955
Jump sizes: J1→2 = 0.9095 ; J1→3 = 1.0279
Jump intensities: λ1→2 = 0.2405 ; λ1→3 = 3.3208

State Information - e2

σ2 - Volatility 0.0644
Jump sizes: J2→1 = 1.2502 ; J2→3 = 1.6512
Jump intensities: λ2→1 = 1.1279 ; λ2→3 = 0.0729

State Information - e3

σ3 - Volatility 0.0241
Jump sizes: J3→1 = 0.9693 ; J3→2 = 0.7732
Jump intensities: λ3→1 = 2.9882 ; λ3→2 = 0.2025

Contract Information

r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction

D0 - Initial deposit $100
Smax - Grid parameter $3.6 × 107

Bmax - Grid parameter $60000

Table 5.6: Parameter values used when pricing GMDB contracts with regime-switching. Jump
sizes and intensities taken from [5].

we will determine the fair insurance charge ρins that satisfies:

V (ρins;S = $100, B = $100, D = $100, E = e1, τ = 40 years) = 0. (5.74)

The data for all three states, e1, e2 and e3, is presented in Table 5.6 and is taken from [5].

Table 5.6 also includes additional information about contract parameters and details on

the grid construction used when solving equation (5.74) for different values of ω. We have

verified that our choice for Bmax, and consequently Smax, still provides a minimum of 5

digits of accuracy in the numerical results obtained. We choose to set the small fixed cost

to c = 1× 10−10 to ensure accuracy of at least 6 digits in the numerical results obtained.
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Fair Insurance Fee for GMDB Guarantee
with Regime-Switching

Refinement Nodes Insurance
Level S B D Fee (ρins)

0 119 36 11 0.006286
1 237 71 21 0.006085
2 473 141 41 0.005931

Table 5.7: Fair insurance fee (ρins) for a GMDB guarantee with regime-switching for different
grid refinement levels. The owner is assumed to be a male of 50 years old at the time of purchase
and ω = $80. Fully implicit timestepping is used and the initial timestep is ∆τ = 0.05 years on
the coarsest grid. Other contract parameters are presented in Table 5.1. Nodes - B indicates the
maximum number of nodes in the B direction (i.e. when D = 0).

Table 5.7 holds the fair insurance fee for a GMDB guarantee with regime-switching

assuming ω = $80 for different grid refinement levels. We further assume that the contract

owner is a male of 50 years of age when the contract is purchased. Additional contract

parameters are presented in Table 5.6 and constant timesteps are used with fully implicit

timestepping. The initial timestep is ∆τ = 0.05 years on the coarsest grid. Due to

the high dimensionality of the pricing problem considered, the coarsest grid in the D

direction is limited to 11 nodes and results from only 2 refinement levels were obtained.

We estimate that the results are correct to within 2× 10−4 when using a grid refinement

of 2. While results from higher refinement levels would be necessary to establish a more

definite convergence analysis, problem size and running time would be unmanageable.

We remind the reader that the regime switching HJB problem is four dimensional. Note

that typically, one obtains convergence estimates for nonlinear HJB equations which are

of the form O(hρ) where h is the discretization parameter. Estimates of ρ vary from

1/27 to 1/2 depending on assumptions about regularity of the solution and the PDE

coefficients. See [10] for an overview of recent work along these lines. Nonetheless, the

level of accuracy attained in Table 5.7 is deemed sufficient for our purposes.

Table 5.8 holds the fair insurance charge associated with the GMDB guarantee as a
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function of ω assuming the economy is in state e1. Based on previous comments, the

results in Table 5.8 are obtained with a grid refinement level 2. Note that the owner

is once again assumed to be 50 years of age when the contract is purchased. Other

contract parameters used during the pricing process are presented in Table 5.6. For

comparison purposes, the fair insurance charge associated with the GMDB guarantee

when no withdrawal or lapsing is allowed is included in the last column of Table 5.8. As

noted previously in Section 5.5.1, decreasing the minimum deposit amount ω increases

the insurance fee charged by the issuing company. For example, setting ω = $10 when

the contract owner is a man, requires a fee close to twice as large as that charged when

no partial withdrawals are allowed. Notice that this remark applies equally to both male

and female contract owners. In addition, the gender of the contract owner still affects

the fair insurance charge for a given value of ω. Assuming ω = $40, the fair insurance

charge for the GMDB guarantee when owned by a woman is about 25% less than what is

charged for a male contract owner. Thus, even when more realistic assumptions are made

regarding the state of the economy, we see that both the gender of the contract owner

and the value of ω have a significant impact on the fair insurance fee for the GMDB

guarantee.

The results presented in Table 5.8 are significantly different from those included in

previous work on the topic such as [72]. In [72], the authors consider a GMDB contract

with continuous ratchet events, no partial withdrawals and a shorter maturity period,

resulting in much lower insurance fees than those presented in Table 5.8. Thus, Table 5.8

clearly demonstrates that higher fees are required for GMDB contracts with a partial

withdrawal feature in a more realistic regime-switching context.
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Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing

Male 0.0058 0.0059 0.0063 0.0070 0.0082 0.0091 0.0049
Female 0.0044 0.0045 0.0049 0.0054 0.0065 0.0073 0.0034

Table 5.8: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual
ratchet events as a function of the minimal deposit amount (ω) assuming the economy is in regime
e1. Contract owners are assumed to be 50 years old at the time of purchase. The parameters in
Table 5.6 are used in the pricing process.

5.6 Summary

Increasingly popular in both the United States and the United Kingdom, variable annuity

contracts include many different features. Focusing on contracts with a guaranteed min-

imum death benefit (GMDB) clause, we characterize the pricing problem as an impulse

control problem. A pricing model based on partial differential equations was developed

to determine the fair or no-arbitrage insurance charge for contracts with a GMDB clause.

Regime-switching is also included in the pricing model due to the longer maturity of the

contract considered. A numerical scheme was given which was shown to converge to the

viscosity solution away from the ratchet dates. Based on results from numerical experi-

ments, we have also shown that a much higher insurance charge is required when partial

withdrawals are added to the GMDB guarantee. Previous work in the area [72] which

ignores the possibility of partial withdrawals results in lower insurance fees.

While we have focused on pricing the GMDB guarantee with periodical ratchet dates

and dollar-for-dollar withdrawals, alternate modelling assumptions are possible. For ex-

ample, some contracts may include a proportional withdrawal policy, which is sure to

impact the fair insurance fee. The most costly aspect of the computation of the guaran-

tee involves the linear search for finding the optimal withdrawal. Further work will focus

on techniques for speeding up this computation. We expect that parallelization will be

extremely helpful here. Finally, while we have shown that our procedure converges to the
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viscosity solution, we are not able to determine the rate of convergence. More research

is needed on this topic.



Chapter 6

Conclusion

The impulse control framework is considered by some as a rather general approach which

allows us to handle complex contractual features. In this thesis, two long-term option-type

contracts were characterized as impulse control problems, namely: a complex employee

stock option referred to as an infinite reload option and a variable annuity containing a

guaranteed minimum death benefit (GMDB) clause. Implicit numerical schemes based

on either a penalty method [44] or an operator splitting scheme [55] were developed and

tailored to both contracts. From a theoretical perspective, convergence to the viscosity

solution [31] was verified for both contracts. Assuming a strong comparison result applies,

the numerical solution is guaranteed to converge to the unique viscosity solution if the

discrete equations are stable, monotone and consistent [8].

While the main goal of this thesis was to show how impulse control problems can

be valued with an implicit timestepping method, additional modelling details for each

contract considered were also investigated. For infinite reload options, vesting periods

were successfully added to the infinite reload pricing model in Chapter 3. Furthermore,

Chapter 4 focused on determining the contract value to the holder by using a certainty

equivalence approach. Similarly, when pricing variable annuities with a GMDB clause

159
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in Chapter 5, the partial withdrawal feature was successfully integrate into the pricing

model.

Hence, the main contributions of this thesis can be summarized as follows:

• The increased reload pricing problem was outlined and characterized as an impulse

control problem [14], resulting in a Hamilton-Jacobi-Bellman variational inequality.

In our formulation, the infinite reload pricing problem becomes a special case of

the increased reload pricing problem where there is no increase in the reload strike.

From a financial perspective, we demonstrated that making small changes to the

reload contract can dramatically reduce the no-arbitrage contract value.

• A multi-step valuation model was developed to determine the value of employee

stock options to the contract holder based on a certainty equivalence approach [64].

Both simple stock options and infinite reload options were valued from an employee’s

perspective. For infinite reload options, it was shown that the contract value to

the employee is less than half of the no-arbitrage price and is highly sensitive to

assumptions made regarding the employee’s portfolio composition.

• A robust pricing model for the GMDB guarantee was developed. Cast as an impulse

control problem, the pricing model includes the partial withdrawal feature and

makes use of a regime-switching model [52]. Numerical results for the fair insurance

charge were used in showing that typical fees being charged by insurance companies

are not enough to fund hedging costs. This contrasts with previous results in the

literature [72, 74] which did not take into account optimal withdrawals.

Thus, we have shown that the numerical solution to financial impulse control problems

can be computed with an implicit solution method. While our focus was on option pricing

problems, the numerical methods considered herein could be easily applied to other areas

of finance where impulse control problems occur.
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6.1 Future Work

Some directions for future research in this area include:

• Since employee stock options are known to be under-valued by their owners, there

is room to negotiate new contract terms which would result in a reduced option ex-

pense for issuing companies. Alternate contract modifications to the one considered

in this thesis are sure to reduce the no-arbitrage price of employee stock options.

For example, a minimum holding period for new stock received following a reload

event may reduce the value of an infinite reload option.

• For variable annuity pricing, the numerical method developed here could be used to

determine the fair insurance fee for other complex contracts such as those containing

a GMDB with interest guarantees [71] or those with guaranteed minimum income

benefits (GMIB).

• Furthermore, it was observed that over half of the computation time when valuing

the GMDB clause was spent determining the optimal withdrawal. While we used

a linear search algorithm to accomplish this task, variable annuity pricing would

benefit from improvements to speed up this computation.

• Since singular stochastic control problems can be viewed as a subset of impulse

control problems (with infinitely small fixed cost, see Chapter 1), the implicit so-

lution methods considered here may potentially be applied to many such problems

occurring in finance.





Appendix A

Discretization

Similar discretization schemes are used when pricing infinite reload options in differ-

ent contexts and when determining the fair insurance charge for the GMDB guarantee.

Therefore, this appendix describes the discretization scheme in a high-level manner which

encompasses all pricing problems presented in this thesis.

Let us assume that we are considering a derivative contract V m = V (S,K,E = em, τ)

whose value is a function of the underlying stock price S, the contract strike price K

and the current economic regime denoted as E = em. We also assume that S follows

a regime-switching process as described in equation (5.23). The value of the derivative

contract can be obtained by solving the partial differential equation:

V m
τ =

(a(S,K, em, τ))2

2
V m

SS + b(S,K, em, τ)V m
S − c(S,K, em, τ)V m

+ d(S,K, em, τ)
(

V l − V m
)

+
1

ε
max(AV m − V m, 0), (A.1)

where AV m = AV (S,K, em, τ) represents the American-type constraint or impulse op-

erator and V l = V (Jm→lS,K, el, τ) represents the contract value in regime el following a

jump in S of amplitude Jm→l when the regime changes from em to el (see Section (5.2)).

163



164 APPENDIX A. DISCRETIZATION

The partial differential equation in (A.1) can be approximated by replacing derivatives

by finite difference approximations. Assuming V n
i,j,m = V (Sj

i ,Kj , em, τn) denotes the

discrete option value at (Sj
i ,Kj , em, τn), the discrete version of equation (A.1) can be

written as:

V n+1
i,j,m

[

1 + (1 − θ)∆τ
(

αn+1
i,j,m + βn+1

i,j,m + c(Sj
i ,Kj , em, τn+1) + d(Sj

i ,Kj , em, τn+1)
)

]

=

V n
i,j,m

[

1 − θ∆τ(αn
i,j,m + βn

i,j,m + c(Sj
i ,Kj , em, τn) + d(Sj

i ,Kj , em, τn)
)

]

+ (1 − θ)∆τ
(

βn+1
i,j,mV n+1

i+1,j,m + αn+1
i,j,mV n+1

i−1,j,m + d(Sj
i ,Kj , em, τn+1)V n+1

i,j,l

)

+ θ∆τ
(

βn
i,j,mV n

i+1,j,m + αn
i,j,mV n

i−1,j,m + d(Sj
i ,Kj , em, τn)V n

i,j,l

)

+ P (V n+1
i,j,m,AhV n+1

i,j,m), (A.2)

where 0 ≤ θ ≤ 1 indicates which timestepping method is used, P (V n+1
i,j,m,AhV n+1

i,j,m) is

the discrete penalty term and the value of both αn
i,j,m, βn

i,j,m depends on the choice of

discretization for the derivative terms in equation (A.1). For example, choosing the

higher order central difference scheme leads to the following values of αn
i,j,m and βn

i,j,m:

αn
i,j,m,central =

(a(Sj
i ,Kj , em, τn))2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
− b(Sj

i ,Kj , em, τn)

Sj
i+1 − Sj

i−1

,

βn
i,j,central =

(a(Sj
i ,Kj , em, τn))2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
+

b(Sj
i ,Kj , em, τn)

Sj
i+1 − Sj

i−1

. (A.3)

To ensure a positive coefficient discretization, assuming c(S j
i ,Kj , em, τn) ≥ 0 and

d(Sj
i ,Kj , em, τn) ≥ 0 for all n, it is preferable to choose other discretization techniques at
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if αn
i,j,m,central ≥ 0 and βn

i,j,m,central ≥ 0 then

αn
i,j,m = αn

i,j,m,central

βn
i,j,m = βn

i,j,m,central

else if βn
i,j,m,forward ≥ 0 then

αn
i,j,m = αn

i,j,m,forward

βn
i,j,m = βn

i,j,m,forward

else

αn
i,j,m = αn

i,j,m,backward

βn
i,j,m = βn

i,j,m,backward

end if

Algorithm A.1: Coefficient Discretization

the problem nodes such as forward or backward differences. Forward differences produces:

αn
i,j,m,forward =

(a(Sj
i ,Kj , em, τn))2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
,

βn
i,j,m,forward =

(a(Sj
i ,Kj , em, τn))2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
+

b(Sj
i ,Kj , em, τn)

Sj
i+1 − Sj

i

, (A.4)

while backward differences delivers:

αn
i,j,m,backward =

(a(Sj
i ,Kj , em, τn))2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
− b(Sj

i ,Kj , em, τn)

Sj
i+1 − Sj

i

,

βn
i,j,m,backward =

(a(Sj
i ,Kj , em, τn))2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
. (A.5)

Algorithmically, the decision between a central, forward or backward discretization at

each node is made based on the criteria presented as Algorithm A.1. The criteria in

Algorithm A.1 guarantees that both αn
i,j,m and βn

i,j,m are non-negative:

αn
i,j,m ≥ 0 ; βn

i,j,m ≥ 0 for all i, j, m, n. (A.6)





Appendix B

Proof of Theorem 2.4

In this appendix, we prove the following Theorem.

Theorem 2.4 (Bound for V n+1
i,j ). Assuming the numerical scheme satisfies Defini-

tion 2.1, that the boundary conditions are applied as outlined in Section 2.1.1 and that

the initial conditions are given by the discrete version of equation (2.18), the value of the

increased reload contract satisfies:

0 ≤ V n
i,j ≤ Sj

i ∀i, j, n, (B.1)

for fully implicit timestepping (θ = 0).

Before proving Theorem 2.4, we prove some utility lemmas. We define the vector

Zn+1 as:

Zn+1 =

























Zn+1
0,0

Zn+1
1,0

...

Zn+1
jmax−1,jmax

Zn+1
jmax,jmax

























, (B.2)
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and denote the the µth entry in Zn+1 as [Zn+1]i,j where µ = (i + 1) + j(jmax + 1).

Let Qn+1(V n+1) be the matrix of coefficients involving elements of V n+1 in discretiza-

tion (2.23). The matrix Qn+1(V n+1) is defined as:

[

Qn+1(V n+1)Zn+1
]

i,j
= Zn+1

i,j (1 + ∆τ(αn+1
i,j + βn+1

i,j + r + Ln+1
i,j )) − ∆ταn+1

i,j Zn+1
i−1,j

− ∆τβn+1
i,j Zn+1

i+1,j − ∆τLn+1
i,j

Kj

Sj
i

(

(1 − ω)Zn+1
l,m − ωZn+1

l,m+1

)

, (B.3)

when i < jmax, and we ignore for the moment any nodes where a similarity boundary

condition is applied (see equation (2.16)), and when i = jmax:

[

Qn+1(V n+1)Zn+1
]

jmax,j
=Zn+1

jmax,j(1 + Ln+1
jmax,j) − Ln+1

jmax,j min

(

1,
Kj(1 + p)

Kjmax

)

Zn+1
l,jmax

.

(B.4)

Remark B.1. For ease of exposition, we will not consider the case for interior nodes

where the similarity reduction boundary condition is applied. The following argument is

straightforward to apply to those nodes where Sj
i (1 + p) > Kjmax and is omitted. Note

that
Kj

S
j
i

≤ 1 and of course min
(

1,
Kj(1+p)
Kjmax

)

≤ 1.

Here, ω is defined in equation (2.31), Ln+1
i,j is defined in equation (2.27) and αn

i,j and

βn
i,j are determined according to the algorithm in Appendix A. Notice that Qn+1(V n+1)

is a function of the solution vector V n+1 since the value of Ln+1
i,j depends on the solution.

It is useful to note the following property of the matrix Qn+1(V n+1).

Lemma B.2 (M-matrix). The matrix Qn+1(V n+1) defined in equations (B.3) and (B.4)

is an M-matrix.

Proof. For any V n+1, the diagonal entries in Qn+1(V n+1) are positive while the off-

diagonal entries are negative or equal to zero. In addition, the row sum of the entries in

Qn+1(V n+1) is strictly positive for all rows. Thus, Qn+1(V n+1) is an M-matrix.
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Remark B.3 (Positive Inverse). Note that an M-matrix has the important property

that it is invertible with a positive inverse. In particular, for any vector V , Qn+1(V n+1)V ≥

0 implies that V ≥ 0.

Lemma B.4. The following are true.

(a) Let [Zn+1]i,j = V n+1
i,j where V n+1

i,j is the solution to equation (2.23) and define the

vector Ẑn+1 as:

[Ẑn+1]i,j =















V n+1
i,j if i < jmax,

Payoff(Sj
jmax

,Kj) if i = jmax,

(B.5)

where Payoff(Sj
i ,Kj) is defined in equation (2.2). Then:

Qn+1(V n+1)Zn+1 = Ẑn + F n+1,

where

[F n+1]i,j =















∆τLn+1
i,j (Sj

i − Kj) if i < jmax,

Ln+1
jmax,j(S

j
jmax

− Kj) if i = jmax.

(B.6)

(b) Let [Zn+1]i,j = Sj
i . Then:

Qn+1(V n+1)Zn+1 = Zn + F n+1,

where

[F n+1]i,j =















∆τ(qSj
i + Ln+1

i,j (Sj
i − Kj)) if i < jmax,

Ln+1
jmax,j(S

j
jmax

− Kj) if i = jmax.

(B.7)

Here, recall that q is the dividend yield.
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Proof. The first identity follows directly from the definition of Qn+1(V n+1) in equations

(B.3) and (B.4) and the discretization in equation (2.23). The second identity follows

from looking at the i, j components of the matrix Qn+1(V n+1).

We now present the proof of Theorem 2.4.

Proof. (of Theorem 2.4)

Let [Zn]i,j = V n
i,j for all i, j and define the vector Ẑn+1 as in equation (B.5). We will

show using induction that Zn > 0 for all n.

Since the option value is initially set to the payoff (defined in equation (2.2)), notice

that Z0 ≥ 0 and, similarly, Ẑ0 ≥ 0. Assume now that n > 0 and that Zn ≥ 0. These

assumptions imply that Ẑn ≥ 0.

Then, from Lemma B.2, we have:

Qn+1(V n+1)Zn+1 = Ẑn + F n+1, (B.8)

where F n+1 is defined in equation (B.6). From the definition of Ln+1
i,j in equation (2.27),

we see that:

Ln+1
i,j (Sj

i − Kj) ≥ 0 ∀i, j. (B.9)

Hence, equation (B.9) implies F n+1 ≥ 0.

Since Ẑn ≥ 0, we see that Qn+1(V n+1)Zn+1 ≥ 0. Since Qn+1(V n+1) is an M-matrix,

we make use of Remark B.3 and deduce Zn+1 ≥ 0. Thus, by induction, we have Zn ≥ 0

for all n, proving the first inequality of Theorem 2.4.

We now set [Zn+1]i,j = Sj
i − V n+1

i.j for all i, j and define Ẑn+1 as:

[Ẑn+1]i,j =















Sj
i − V n+1

i,j if i < jmax,

Sj
jmax

− Payoff(Sj
jmax

,Kj) if i = jmax.

(B.10)
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We will once again use induction to show that Zn ≥ 0 for all n.

Since V 0
i,j = max(Sj

i − Kj , 0), both Z0 ≥ 0 and Ẑ0 ≥ 0. We now assume that n > 0

and that Zn ≥ 0. Since Sj
jmax

≥ Payoff(Sj
jmax

,Kj) and Zn ≥ 0, we deduce from equation

(B.10) that Ẑn ≥ 0.

From Lemma B.4, we have:

Qn+1(V n+1)Zn+1 = Ẑn + F n+1, (B.11)

where

[F n+1]i,j =















∆τqSj
i if i < jmax,

0 if i = jmax.

(B.12)

Since the dividend yield q ≥ 0, we have F n+1 ≥ 0 which implies Qn+1(V n+1)Zn+1 ≥ 0.

Recalling that Qn+1(V n+1) is an M-matrix and making use of Remark B.3, we conclude

that Zn+1 ≥ 0. Hence, by induction, we have shown that Zn ≥ 0 for all n, which implies

V n
i,j ≤ Sj

i for all i, j, n.

Thus, we have shown that V n
i,j is bounded:

0 ≤ V n
i,j ≤ Sj

i for all i, j, n. (B.13)





Appendix C

Proof of Theorem 2.10

Before outlining the proof for Theorem 2.10, we prove a utility lemma. Note once again

that in the following we will not consider the consistency for interior nodes with a simi-

larity boundary condition (see equation (2.16)). The following argument can be applied

to these nodes in a straightforward manner but we omit this for brevity.

Lemma C.1. For any smooth test function φ with bounded derivatives of all orders with

respect to S and τ , with x = (Sj
i ,Kj , τ

n+1), we have:

ĝi,j(h, x, φn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ) − F (φ)n+1

i,j = O(h) + ξb(x),

(C.1)

where b(x) is a bounded function of x with

|b(x)| =















max

(

r, 1 − Kj

S
j
i

)

when i < jmax,

max
(

1, 1 − min
(

1,
Kj(1+p)

Kmax

))

when i = jmax.

Proof. To prove Lemma C.1, we determine the truncation error of the differential operator
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L and the penalty term, assuming fully implicit timestepping is used.

We denote the continuous operator L at node (Sj
i ,Kj , τ

n) as:

(Lφ)n+1
i,j , (C.2)

while the discrete version of the operator is denoted by:

[Lhφ]n+1
i,j . (C.3)

Using Taylor series expansion, we find:

[Lh(φ + ξ)]n+1
i,j − (Lφ)n+1

i,j = O(∆Sj
max) − rξ. (C.4)

Similarly, we assume that:

[Aφ]n+1
i,j (C.5)

denotes the continuous reload constraint evaluated at node (S j
i ,Kj , τ

n+1), while the dis-

crete version of the constraint is denoted by:

Ahφn+1
i,j . (C.6)

The discrete reload constraint is generally obtained using diagonal interpolation (see

equations (2.30) and (2.34)), which results in an error of the form:

Ah(φn+1
i,j + ξ) − [Aφ]n+1

i,j = O((∆Kmax)
2) +

Kj

Sj
i

ξ. (C.7)

Using the formulation in equation (2.50) and the discretization error estimates in
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equations (C.4) and (C.7), we find that for interior nodes (i < jmax):

∣

∣

∣

∣

ĝi,j(h, xφn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ) − Fin(φ)n+1

i,j

∣

∣

∣

∣

(C.8)

≤ max

(
∣

∣

∣

∣

ε

(

φn+1
i,j − φn

i,j

∆τ
− [Lh(φ + ξ)]n+1

i,j

)

+ φn+1
i,j + ξ −Ah(φn+1

i,j + ξ) − [φ −Aφ]n+1
i,j

∣

∣

∣

∣

,

∣

∣

∣

∣

φn+1
i,j − φn

i,j

∆τ
− [Lh(φ + ξ)]n+1

i,j − [φτ −Lφ]n+1
i,j

∣

∣

∣

∣

)

= max

(
∣

∣

∣

∣

ε

(

φn+1
i,j − φn

i,j

∆τ
− [Lh(φ)]n+1

i,j + rξ

)

+ O((∆Kmax)
2) + ξ

(

1 − Kj

Sj
i

)

∣

∣

∣

∣

,

∣

∣

∣

∣

O(∆Sj
max) + O(∆τ) + rξ

∣

∣

∣

∣

)

.

assuming fully implicit timestepping is chosen 1. Similarly, for the boundary nodes (i =

jmax), we have:

∣

∣

∣

∣

ĝjmax,j(h, x, φn+1
jmax,j + ξ, {φn+1

k,j + ξ}k 6=jmax , {φn
jmax,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ) − Fbound(φ)n+1

jmax,j

∣

∣

∣

∣

≤ max

(∣

∣

∣

∣

ε
(

φn+1
jmax,j + ξ − Payoff(Sj

jmax
,Kj)

)

+ φn+1
jmax,j + ξ −Ah(φn+1

jmax,j + ξ) − [φ −Aφ]n+1
jmax,j

∣

∣

∣

∣

,

∣

∣

∣

∣

φn+1
jmax,j + ξ − Payoff(Sj

jmax
,Kj) − [φ − Payoff(S,K)]n+1

jmax,j

∣

∣

∣

∣

)

= max

(∣

∣

∣

∣

ε

(

φn+1
jmax,j + ξ − Payoff(Sj

jmax
,Kj)

)

+ O((∆Kmax)
2)

+ ξ

(

1 − min

(

1,
Kj(1 + p)

Kmax

))
∣

∣

∣

∣

,

∣

∣

∣

∣

ξ

∣

∣

∣

∣

)

. (C.9)

Hence, recalling Assumption 2.3, we have shown that equation (C.1) holds.

We now provide the proof of Theorem 2.10.

Proof. (of Theorem 2.10)

1When no constraint is active and central weighting is active at node (i, j), then the truncation error
is locally second order in ∆τ , ∆Sj

max when Crank-Nicolson timestepping is used.
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We begin by proving that equation (2.53) holds. From the definition of lim sup, there

exists sequences hd, id, jd, nd, ξd where:

hd → 0, ξd → 0, xd = (Sjd
id

,Kjd
, τnd+1) → x̂ = (Ŝ, K̂, τ̂) as d → ∞ (C.10)

and

lim sup
d→∞

ĝid,jd
(hd, xd, φ

nd+1
id,jd

+ ξd, {φnd+1
k,jd

+ ξd}k 6=id , {φ
nd
id,jd

+ ξd}, φnd+1
l,m + ξd, φ

nd+1
l,m+1 + ξd)

= lim sup
ξ, h→0
x→x̂

ĝi,j(h, x, φn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ).

(C.11)

From Lemma C.1, we have:

ĝid,jd
(hd, φ

nd+1
id,jd

+ ξd, {φnd+1
k,jd

+ ξd}k 6=id , {φ
nd
id,jd

+ ξd}, φnd+1
l,m + ξd, φ

nd+1
l,m+1 + ξd)

= F (φ)nd+1
id,jd

+ ξdb(xd) + O(hd). (C.12)

Now consider a sequence of nodes xd as defined in equation (C.10) possibly containing

both interior (i < jmax) and boundary nodes (i = jmax). Combining equation (C.11) with

equation (C.12), we obtain:

lim sup
ξ, h→0
x→x̂

ĝi,j(h, x, φn+1
i,j + ξ, {φn+1

k,j + ξ}k 6=i, {φn
i,j + ξ}, φn+1

l,m + ξ, φn+1
l,m+1 + ξ)

≤ lim sup
d→∞

F (φ)nd+1
id ,jd

+ lim
d→∞

[O(hd) + ξdb(xd)] ≤ F ∗(φ(x̂)), (C.13)

since

lim
d→∞

[O(hd) + ξdb(xd)] = 0. (C.14)
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The same technique can be used to verify equation (2.53) holds; this is omitted for

brevity.

Thus, we conclude that the numerical scheme in equation (2.23) satisfies Definition 2.8

and is consistent.





Appendix D

Reload Options with Capped

Boundary Condition

In Section 2.1.1, one of the boundary conditions considered at K = Kmax for the increased

reload problem is to assume that the contract contains a cap. This implies that no reload

is possible when K ≥ Kmax. In this section, we present numerical results obtained when

pricing increased reload options using this alternate boundary condition at K = Kmax.

When K = Kmax, the pricing problem is:

Vτ −LV = 0, (D.1)

while the following is solved when K < Kmax:

min(Vτ −LV, V −AV ) = 0, (D.2)
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where the reload constraint AV = AV (S,K, t) is defined as:

AV (S,K, t) =















(S − K) + K
S

V (S, S∗(1 + p), t) if S > K,

0 otherwise,

(D.3)

where S∗ = min
(

S, Kmax
(1+p)

)

. When the capped boundary condition is used at K = Kmax,

no similarity reduction is possible which implies that the reload pricing problem will be

solved on a two-dimensional S × K domain. The underlying grid will still be built using

the scaled grid technique described in Section 2.2.1.

In the context of the capped boundary condition, the choice of Kmax is crucial in

ensuring accurate numerical results. As such, we consider four different grids each with

different values of Kmax and determine the error introduced by this choice. Table D.1

presents values of Kmax and Smax as well as the number of nodes (in both the S and K

directions) for each grid considered. Table D.2 presents the value of an increased reload

option contract when p = 0% on each of the four grids defined in Table D.1 for different

refinement levels. The contract considered has a maturity of 10 years and an initial strike

of K = $100. Other contract parameters used are presented in Table 2.1.

We see that the choice of Kmax has a significant impact on the numerical results

obtained and that even larger choices of Kmax introduce some numerical error. Recall

that the analytical value of an infinite reload contract is $64.67 at S = $100 [32]. While

the accuracy level attained for a refinement of level 3 for grids C and D is comparable to

the values presented in Section 2.5, numerical results from higher refinement levels are

not presented due to the impracticality of solving the reload pricing problem on such a

large grid. Note that grid B was used in Section 2.5 with a similarity boundary condition

(see equation (2.16)). In that case, the effect of increasing Kmax was only seen in the

sixth digit. When the capped boundary condition is applied, a larger value of Kmax is
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Nbr. Nodes Kmax Smax

Grid A 60 1000 10000
Grid B 61 2000 40000
Grid C 62 5000 250000
Grid D 63 10000 1000000

Table D.1: Characteristics of four different grid constructions. Nbr. Nodes refers to the initial
number of nodes in each of the S and K directions. Also, we have Kmax = Kjmax

and Smax = Sj
jmax

for any j.

Refinement Nodes Timesteps Option Value

Grid A

0 60 105 63.812320
1 119 232 64.362905
2 237 515 64.565822
3 472 1107 64.633061

Grid B

0 61 108 64.214477
1 121 237 64.533236
2 241 518 64.628285
3 481 1108 64.655974

Grid C

0 62 105 64.418463
1 123 232 64.595394
2 245 515 64.645230
3 489 1107 64.660752

Grid D

0 63 105 64.498454
1 123 235 64.613959
2 245 515 64.648246
3 489 1107 64.661248

Table D.2: Value of an increased reload option with p = 0% at S = $100 with a capped boundary
condition for different underlying grids defined in Table D.1. Note that Crank-Nicolson timestep-
ping was used with variable timesteps where ∆τ0 = 0.1 years on the coarsest grid. The other
parameter values chosen are specified in Table 2.1.

required to limit the error introduced by the modified reload constraint in (D.3). Based

on the results in Table D.2, choices such as Kmax = $5000 or Kmax = $10000 would

appear appropriate in this case.
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In summary, we have shown that the capped boundary condition remains an accept-

able choice for infinite reload options since a reasonable level of accuracy can be obtained,

assuming Kmax is chosen sufficiently large. However, there are two significant drawbacks

stemming from this alternate boundary condition which need to be taken into consid-

eration. First, no similarity reduction is possible when a capped boundary condition is

chosen. This implies that the full two-dimensional S × K grid will always be used when

pricing increased reload options. Second, a higher value of Kmax is required to limit the

error introduced by the boundary condition, resulting in a larger underlying grid. Both

of these observations imply higher computation times when the capped reload constraint

is used. Hence, it would appear that the use of a similarity reduction at Kmax is the

better of the two boundary conditions considered.



Appendix E

Pricing American Options with

Operator Splitting

In this section, we present numerical results obtained when pricing an American put

option using the operator splitting method. More specifically, we are looking to determine

the accuracy and convergence rate obtained when using the operator splitting method.

Denoting the option value as V = V (S,K, τ) where τ = T − t, we solve the following

pricing problem where V satisfies the Black-Scholes equation [85]:

min

(

Vτ −LV, V −AV

)

= 0, (E.1)

and LV is defined in equation (2.4). In this case, the American constraint AV =

AV (S,K, τ) is set to the payoff:

AV (S,K, τ) = Payoff(S,K) = max(K − S, 0), (E.2)

with V (S,K, τ = 0) = Payoff(S,K).
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To get a fair appraisal of the operator splitting method, the test contract is assumed

to have a maturity of 10 years. The other contract parameters are presented in Ta-

ble 3.1. The numerical values obtained when using both fully implicit and Crank-Nicolson

timestepping for different refinement levels are presented in Table E.1. Recall that each

refinement operation nearly doubles the number of grid nodes and cuts the timestep size

in half. Note that Table E.1 includes the values for Crank-Nicolson timestepping when

both constant and variable timesteps are used. See [44] for details on the timestep selector

used and an explanation of the importance of variable timestepping for American-type

constraints. Also, since the initial payoff is non-smooth, a few fully implicit timesteps are

taken at the start of the solution process when Crank-Nicolson timestepping is used, as

suggested in [82]. For the values in Table E.1, four such timesteps were taken. While past

research suggests that two Rannacher steps be taken, this was not sufficient to ensure

solution smoothness. It was found that four initial Rannacher steps were required to

eliminate oscillations from the final solution. This is consistent with the results in [47].

In observing the results in Table E.1, we first note that linear convergence is obtained

when the operator splitting method is used with fully implicit timestepping. This re-

sult is consistent with local truncation error analysis. However, when Crank-Nicolson

timestepping is used with constant or variable timesteps, the convergence ratios obtained

do not indicate quadratic convergence. When variable timesteps are used, we see that

the convergence ratios obtained are somewhat erratic and do not demonstrate consis-

tent quadratic convergence. When constant timesteps are taken, the convergence ratios

are more stable but tend towards linear rather than quadratic convergence. Thus, it

is highly unlikely that the operator splitting method will provide quadratic convergence

when pricing more complex contracts such as infinite reload options with Crank-Nicolson

timestepping.

For comparison purposes, Table E.2 presents numerical values obtained when pricing
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American Put Option - Operator Splitting

Refinement Nodes Option Value Difference Ratio

Fully Implicit

0 61 19.941103 n.a. n.a.
1 121 20.041845 0.100741 n.a.
2 241 20.079060 0.037215 2.71
3 481 20.092135 0.013075 2.85
4 961 20.096336 0.004201 3.11
5 1921 20.098177 0.001841 2.28
6 3841 20.099011 0.000834 2.21

Crank-Nicolson (variable timesteps)

0 61 19.959293 n.a. n.a.
1 121 20.027473 0.068179 n.a.
2 241 20.062075 0.034602 1.97
3 481 20.070472 0.008398 4.12
4 961 20.082887 0.012414 0.68
5 1921 20.091421 0.008534 1.45
6 3841 20.095639 0.004218 2.02

Crank-Nicolson (constant timesteps)

0 61 19.966965 n.a. n.a.
1 121 20.063030 0.096065 n.a.
2 241 20.088208 0.025178 3.82
3 481 20.096883 0.008675 2.90
4 961 20.098706 0.001823 4.76
5 1921 20.099381 0.000675 2.70
6 3841 20.099618 0.000237 2.85

Table E.1: Value of an American put option at S = $100 using fully implicit and Crank-Nicolson
timestepping, with both constant and variable timesteps, for different refinement levels. The initial
timestep is set to 0.05 years on the coarsest grid. The Nodes column indicates the number of nodes
in the underlying S-grid. Other parameter values are presented in Table 3.1.

the same American contract using the penalty scheme [44]. Results for fully implicit

timestepping as well as Crank-Nicolson timestepping, using variable timesteps, are pre-

sented. Once again, the parameters in Table 3.1 are used and four Rannacher timesteps

are taken when Crank-Nicolson is chosen. We first note that the sequence of convergence

ratios obtained when fully implicit timestepping is used tends to 2, which implies linear

convergence. Similarly, when Crank-Nicolson timestepping is used, the convergence ra-
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American Put Option - Penalty Method

Refinement Nodes Option Value Difference Ratio

Fully Implicit

0 61 19.949307 n.a. n.a.
1 121 20.061658 0.112351 n.a.
2 241 20.086357 0.024699 4.55
3 481 20.095559 0.009202 2.68
4 961 20.098164 0.002605 3.53
5 1921 20.099094 0.000930 2.80
6 3841 20.099470 0.000376 2.48

Crank-Nicolson (variable timesteps)

0 61 19.965757 n.a. n.a.
1 121 20.070863 0.105105 n.a.
2 241 20.091085 0.020222 5.20
3 481 20.097917 0.006832 2.96
4 961 20.099333 0.001416 4.83
5 1921 20.099676 0.000344 4.12
6 3841 20.099762 8.524000e-05 4.03

Table E.2: Value of an American put option at S = $100 using fully implicit and Crank-Nicolson
timestepping for different refinement levels when the penalty method is used. The initial timestep
is set to 0.05 years on the coarsest grid. The Nodes column indicates the number of nodes in the
underlying S-grid. Other parameter values are presented in Table 3.1.

tios in Table E.2 imply quadratic convergence. Thus, the penalty method would appear

to provide better convergence than the operator splitting method when Crank-Nicolson

timestepping is used.

As a side note, the results in Table E.1 indicate that using constant timesteps in

the context of the operator splitting method provides superior convergence for Crank-

Nicolson timestepping. Thus, only constant timestepping is used when generating the

numerical option values using the operator splitting method in Section 3.3.



Appendix F

Derivation of Analytical Solution

when q = 0

This section contains the derivation of the analytical solution that can be used to de-

termine the certainty equivalence value of employee stock options when the underlying

company stock does not have any dividends (i.e. q = 0). The analytical solution presented

here can replace Monte Carlo simulations in the second step of the pricing process when

determining the expected utility when the employee’s portfolio contains cash (instead of

options) as outlined in Section 4.1.3.

Assuming the underlying company stock has no dividends (i.e. q = 0), the expected

utility of the employee, U = U(S,w, τ), follows the differential equation:

Uτ = µSUS +
1

2
σ2S2USS + wrUw, (F.1)

where µ = r + β(rm − r). We are looking to solve equation (F.1) analytically and

provide an alternative to Monte Carlo simulations when solving the right-hand side of

equation (4.3). We follow the derivation of the solution to the Black-Scholes equation as
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outlined in [85].

We begin by setting ξ = ln(S) such that the employee’s expected utility is now denoted

as U = U(ξ, w, τ). Using the differential expressions:

∂

∂S
= e−ξ ∂

∂ξ
, (F.2)

∂2

∂S2
= e−2ξ ∂2

∂ξ2
− e−2ξ ∂

∂ξ
, (F.3)

equation (F.1) is updated and we obtain:

Uτ = (µ − 1

2
σ2)Uξ +

1

2
σ2Uξξ + wrUw. (F.4)

Defining y = ln(w), we now use this change of variable to simplify equation (F.4)

further. Consequently, the expected utility denoted by U = U(ξ, y, τ) and the associated

PDE now becomes:

Uτ = (µ − 1

2
σ2)Uξ +

1

2
σ2Uξξ + rUy. (F.5)

Next, we use the following variable definitions to further simplify equation (F.5):

x(τ) = y + rτ, (F.6)

z(τ) = ξ + (µ − 1

2
σ2)τ. (F.7)

For notational purposes, we let W (x(τ), z(τ), τ) = U(y, ξ, τ) and obtain the following

simplified PDE:

Wτ =
1

2
σ2Wzz. (F.8)
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Following the derivation outlined in [85], we obtain the following Green’s function:

G(z, z′, τ) =
1√

2πτσ
e−

(z−z′)2

2σ2τ , (F.9)

which is a solution of:

Gτ − 1

2
σ2Gzz = δ(τ)δ(z − z′), (F.10)

where δ(x) is Dirac’s delta function. The solution of equation (F.8) can now be written

as:

W (x, z, τ) =

∫ ∞

−∞
G(z, z′, τ)W (x, z′, 0)dz′, (F.11)

with W (x, z, τ) = U(y, ξ, τ).

Let us now consider the initial conditions to be used for U(S,w, τ). At contract

maturity (when τ = 0), we can determine the value of the employee’s expected utility in

our original coordinate system as follows:

U(w,S, τ = 0) =
(werT + nsS + cerT )1−α

1 − α
, (F.12)

or, in terms of the coordinate system for W (x(τ), z(τ), τ):

W (x, z, τ = 0) =
(ex + nse

z + cerT )1−α

1 − α
. (F.13)

Recall that α is the employee’s personal risk aversion coefficient.

To incorporate these initial conditions, we combine equations (F.11) and (F.13) to

obtain:

W (x, z, τ) =
1√

2πτσ

∫ ∞

−∞
e−

(z−z′)2

2σ2τ
(ex + nse

z′ + cerT )1−α

1 − α
dz′. (F.14)

Returning to our original coordinate system with time running forward (t = τ + T ), we
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find that equation (F.14) becomes:

U(S,w, t) =
1

√

2π(T − t)σ

∫ ∞

0
e
−

(ln(S/S′)+(µ−
1
2 σ2)(T−t))2

2σ2(T−t)
(nsS

′ + werT + cerT )1−α

1 − α

dS′

S′
.

(F.15)

Equation (F.15) provides us with an alternate method for solving the right-hand side

of equation (4.3). Indeed, equation (F.15) can be solved using numerical integration

techniques thus obtaining an accurate estimate for the employee’s expected utility. Using

the resulting expected utility, we can in turn determine the certainty equivalence value

of a given employee stock option contract.



Appendix G

Derivation of the Boundary

Condition as S → ∞

To determine the boundary condition for equation (5.13) as S → ∞, we make the common

assumption that VSS → 0 [89], which implies:

V ≈ H(B,D, τ)S + F (B,D, τ), (G.1)

where H(B,D, τ) and F (B,D, τ) are independent of S. We further assume that S is so

large that H(B,D, τ)S � F (B,D, τ), which leads to:

V ≈ H(B,D, τ)S. (G.2)

Equation (G.2) implies:

VS ≈ H(B,D, τ), (G.3)
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and hence, we can rewrite the differential equation in (5.13) as:

Hτ (B,D, τ)S = (r − ρtotal)H(B,D, τ)S − rH(B,D, τ)S −R(τ)ρinsS (G.4)

+ M(τ)max(B − S, 0) + M(τ)γ(τ)D +
1

ε
max

(

A(H(B,D, τ)S) − H(B,D, τ)S, 0

)

,

where

A(H(B,D,τ)S) =

max

(

−R(τ)γ(τ)S, max
W∈[0,S−ω]

(

H(max(B − W, 0),max(D − W, 0), τ)(S − W )

−R(τ)γ(τ)W
)

− c

)

. (G.5)

Since B � Smax and W ≤ D0 � Smax, we can simplify equation (G.4) as:

Hτ (B,D, τ)S ≈ (G.6)

− ρtotalH(B,D, τ)S −R(τ)ρinsS +
1

ε
max

(

A(H(B,D, τ)S) − H(B,D, τ)S, 0

)

.

As a result, we obtain the following approximation to equation (G.4):

Vτ = −ρtotalV −R(τ)ρinsS +
1

ε
max(AV − V, 0) ; S = Smax. (G.7)

A similar argument gives the boundary condition for large S when regime switching is

used.



Appendix H

Proof of Theorem 5.5

In this appendix, we show that the discrete GMDB cost V n+1
i,j,k,m is bounded. Before

proving Theorem 5.5, we prove some utility lemmas. We define the vector V n+1 as:

V n+1 =



















V n+1
1

V n+1
2

...

V n+1
M



















, (H.1)

where V n+1
m is defined in equation (5.48) and the κth entry of V n+1 is denoted as

[V n+1]i,j,k,m where:

κ = (i + 1) + j(imax + 1) + k(imax + 1)(jmax + 1) + (m− 1)(imax + 1)(jmax + 1)(kmax + 1).
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Let Pn+1 be defined as:

[Pn+1Zn+1]i,j,k,m =

(

1 + ∆τ

(

αi,j,m + βi,j,m + r +

M
∑

l=1
l 6=m

λm→l

)

)

Zn+1
i,j,k,m − ∆ταi,j,mZn+1

i−1,j,k,m

− ∆τβi,j,mZn+1
i+1,j,k,m − ∆τ

M
∑

l=1
l 6=m

λm→lH(Jm→l)iZn+1
j,k,l (H.2)

when i < imax and

[Pn+1Zn+1]imax,j,k,m =

(

1 + ∆τ

(

ρtotal +
M
∑

l=1
l 6=m

λm→lJm→l
imax

)

)

Zn+1
imax,j,k,m

− ∆τ
M
∑

l=1
l 6=m

λm→lJm→l
imax

Zn+1
imax,j,k,l (H.3)

when i = imax. Also, let Qn+1(V n+1) be defined by:

[Qn+1(V n+1)Zn+1]i,j,k,m =[Pn+1Zn+1]i,j,k,m +
∆τµn+1

i,j,k,m

ε
Zn+1

i,j,k,m

−
∆τµn+1

i,j,k,m

ε
(1 − an+1

i,j,k,m)I(W )i,j,kZn+1
m , (H.4)

valid for all i. Here, µn+1
i,j,k,m is defined in equation (5.43), an+1

i,j,k,m is defined in equa-

tion (5.51) and the interpolation operators H(Jm→l)i and I(W )i,j,k are defined in equa-

tions (5.45) and (5.49) respectively. The matrix Qn+1(V n+1) is the matrix of coeffi-

cients for all terms involving elements from V n+1 in the discretization (5.40). Note that

Qn+1(V n+1) is a function of the solution since the interpolation operators, the µ and a

values all depend on the solution.

It is useful to note the following property of the coefficient matrices Pn+1 and Qn+1(V n+1).

Lemma H.1 (M-matrix). The matrices Pn+1 and Qn+1(V n+1) as defined in equa-
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tions (H.2),(H.3) and (H.4) are M-matrices for any V n+1.

Proof. The diagonal entries in Pn+1 are positive while the off-diagonal entries are negative

or equal to zero. In addition, the row sum of the entries in both matrices are strictly

positive for all rows. The above are also true for the matrix Qn+1(V n+1) for any V n+1.

Thus both Pn+1 and Qn+1(V n+1) are M-matrices.

Remark H.2. We remark that an M-matrix has the important property that it is invert-

ible with a positive inverse. In particular, for any vector Z, Pn+1Z ≥ 0 or Qn+1(V n+1)Z ≥

0 implies that Z ≥ 0.

Lemma H.3. The following are true.

(a) Let [Zn+1]i,j,k,m = Cn+1
0 Bmax + Cn+1

1 Dmax (with Cn+1
0 , Cn+1

1 defined in (5.58)).

Then:

Qn+1(V n+1)Zn+1 > Zn+1

for any V n+1.

(b) Let [Zn+1]i,j,k,m = Sj
i . Then1:

Pn+1Zn+1 = (1 + ρtotal∆τ)Zn.

(c) Let Z solve the discrete equations (5.40). Then:

Qn+1(Zn+1)Zn+1 = Zn + ∆τRestn+1,

1Note that this is trivially true at Sj
0 = 0.
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where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m =Mn+1fi,j,k −Rn+1ρinsS
j
i −

µn+1
i,j,k,m

ε

[

an+1
i,j,k,mRn+1γn+1Sj

i

+ (1 − an+1
i,j,k,m)(Rn+1γn+1W n+1

i,j,k,m + c)

]

(H.5)

denotes the remaining terms of the discretization.

(d) Let Z solve the discrete equations (5.40). Then:

Pn+1Zn+1 = Zn + ∆τRestn+1,

where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m = Mn+1fi,j,k −Rn+1ρinsS
j
i +

µn+1
i,j,k,m

ε

[

−an+1
i,j,k,mRn+1γn+1Sj

i (H.6)

+(1 − an+1
i,j,k,m)(I(W )i,j,kZn+1

m −Rn+1γn+1W n+1
i,j,k,m − c) −Zn+1

i,j,k,m

]

.

Proof. Identity (a) follows by looking at the i, j, k,m components of the matrix form of

P and Q. For example, when i < imax we have

[Qn+1(V n+1)Zn+1]i,j,k,m = (1 + ∆τ(r + ai,j,k,m

µi,j,k,m

ε
))[Zn+1]i,j,k,m

> [Zn+1]i,j,k,m

with a similar inequality when i = imax. A similar argument holds for identity (b).

Identities (c) and (d) follow directly from the definitions of Q and P and the discretization

in (5.40).

We now present the proof of Theorem 5.5.
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Proof. (of Theorem 5.5)

Let Zn be the vector defined by [Zn]i,j,k,m = Sj
i + V n

i,j,k,m for all i, j, k,m. We will use

induction to show that Zn ≥ 0 for all n.

Notice that [Z0]i,j,k,m = Sj
i + V 0

i,j,k,m = Sj
i ≥ 0. Assume now that n > 0 and that

Zn ≥ 0. Then, from Lemma H.3(b)(d) we have:

[Pn+1Zn+1] = Zn + ∆τGn+1, (H.7)

with (since fi,j,k ≥ 0)

[Gn+1]i,j,k,m ≥(ρtotal −Rn+1ρins)S
j
i +

µn+1
i,j,k,m

ε

[

−an+1
i,j,k,mRn+1γn+1Sj

i (H.8)

+ (1 − an+1
i,j,k,m)(I(W )i,j,kV

n+1
m −Rn+1γn+1W n+1

i,j,k,m − c) − V n+1
i,j,k,m

]

.

Note that ρtotal −Rn+1ρins ≥ 0. Furthermore, notice that µn+1
i,j,k,m = 1 only when (see

equation (5.43)):

−an+1
i,j,k,mRn+1γn+1Sj

i +(1−an+1
i,j,k,m)(I(W )i,j,kV

n+1
m −Rn+1γn+1W n+1

i,j,k,m− c)−V n+1
i,j,k,m > 0

and µn+1
i,j,k,m = 0 otherwise. Hence, equation (H.8) implies that [Gn+1]i,j,k,m ≥ 0.

Since Zn ≥ 0, we see that Pn+1Zn+1 ≥ 0 and, since Pn+1 is an M-matrix, Zn+1 ≥ 0.

Thus, by induction Zn ≥ 0 for all n, proving the first inequality of (5.57).

Now let Z be the vector defined by [Zn]i,j,k,m = Cn
0 Bmax + Cn

1 Dmax for all i, j, k,m.

We will prove the second inequality of (5.57) by using induction to show that Z n−V n ≥ 0

for all n. Since (see equation (5.58)):

[Z0 − V 0]i,j,k,m = ∆τM0 Bmax + ∆τM0γ0Dmax ≥ 0, (H.9)
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the result is true for n = 0. Assume that n > 0 and that Zn − V n ≥ 0. From Lemma

H.3(a) along with the definition of Cn
0 and Cn

1 (see equation (5.58)) we have:

Qn+1(V n+1)Zn+1 > Zn+1 = Zn + ∆τ [Mn+1Bmax + Mn+1γn+1Dmax].

Hence, using Lemma H.3(c) gives:

Qn+1(V n+1)(Zn+1−V n+1) > (Zn−V n)+∆τ [Mn+1Bmax+Mn+1γn+1Dmax]−∆τRestn+1,

where the components of Restn+1 are given in equation (H.5). Let

G = [Mn+1Bmax + Mn+1γn+1Dmax] − Restn+1.

Then, for i < imax, and using:

0 ≤ fn+1
i,j,k = max(Bk

j − Sj
i , 0) + γn+1Dk ≤ Bmax + γn+1Dmax , (H.10)

we have:

[G]i,j,k,m = Mn+1
(

Bmax + γn+1Dmax − fi,j,k

)

+ Rn+1ρinsS
j
i

+
µn+1

i,j,k,m

ε

[

an+1
i,j,k,mRn+1γn+1Sj

i + (1 − an+1
i,j,k,m)(Rn+1γn+1W n+1

i,j,k,m + c)

]

≥ Rn+1ρinsS
j
i

+
µn+1

i,j,k,m

ε

[

an+1
i,j,k,mRn+1γn+1Sj

i + (1 − an+1
i,j,k,m)(Rn+1γn+1W n+1

i,j,k,m + c)

]

≥ 0, (H.11)

since there are only positive terms in the expression. This is also the case when i = imax.

As before, Zn − V n ≥ 0 so that Qn+1(V n+1)(Zn+1 − V n+1) ≥ 0 and, since Qn+1(V n+1)
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is an M-matrix, Zn+1 − V n+1 ≥ 0. Hence, by induction, Zn − V n ≥ 0 for all n.

Thus, we have shown that V n+1
i,j,k,m is bounded with:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dmax for all i, j, k,m, n. (H.12)

Note that the bound presented in equation (H.12) also holds immediately after each

ratchet date τu+
o . Recall that the value of the GMDB guarantee is updated on each

ratchet date τu
o according to equation (5.35), which implies (for the continuous problem):

V m(S,B,D, em, τu+
o ) =































V m(S,B,D, em, τu−
o ) if S ≤ B,

V m(S, S,D, em, τu−
o ) if B < S ≤ Bmax,

V m(S,B,D, em, τu−
o ) if S > Bmax.

(H.13)

Equation (H.13) implies that the bound for V n+1
i,j,k,m presented in equation (H.12) remains

applicable at times τu+
o .

Remark H.4 (Tighter Upper Bound). We remark that it is possible to obtain the

tighter bound for V n+1
i,j,k,m:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dk for all i, j, k,m, n. (H.14)

However, bound (5.57) is sufficient for our purposes.





Appendix I

Proof of Theorem 5.9

In this section, we show that the numerical scheme in equation (5.40) is consistent. Before

proving Theorem 5.9, we prove an important lemma.

Lemma I.1. For any smooth test function φ with bounded derivatives of all orders with

respect to S and τ , with x = (Sj
i , B

k
j , Dk, em, τn+1), we have (see equation (5.66)):

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

− F (φ)n+1
i,j,k,m = O(h) + ξb(x), (I.1)

where b(x) is a bounded function of x with |b(x)| ≤ max(r, ρtotal).

Proof. To prove Lemma I.1, we consider the truncation error for the differential operator

L and the penalty term.

Let

[Lφ]n+1
i,j,k,m (I.2)

represent the continuous operator L at node (Sj
i , B

k
j , Dk, em, τn+1), while the discrete

201
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version of the operator is denoted by:

[

Lhφ
]n+1

i,j,k,m
. (I.3)

Using Taylor series expansion, we have:

[

Lh(φ + ξ)
]n+1

i,j,k,m
−[Lφ]n+1

i,j,k,m = −rξ + O(∆Sj
max), (I.4)

when computing Hiφ
n+1
j,k,l using linear interpolation (see equation (5.45)).

Similarly, we assume that:

[Aφ]n+1
i,j,k,m (I.5)

represents the continuous withdrawal constraint evaluated at node (S j
i , B

k
j , Dk, em, τn+1),

while the discrete version of the withdrawal constraint is denoted as:

[Ahφ]n+1
i,j,k,m. (I.6)

Recall that the discrete withdrawal constraint is determined by linear search as in Algo-

rithm 5.1.

The discretization error associated with the penalty term occurs when it is optimal

for the owner to conduct a withdrawal, as opposed to lapsing his policy. Indeed, inter-

polation is required when calculating the penalty term when a withdrawal occurs, but

not when the owner lapses (see equation (5.47)). Since the maximum of a linearly inter-

polated value is obtained at the nodes, the linear interpolation truncation error is O(h2)

(noting Assumption 5.6). Taking the maximum of the linear interpolation function, as

done in Algorithm 5.1, is also second order correct. Assuming two-dimensional linear

interpolation is used when calculating the withdrawal constraint as described in equa-
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tion (5.49), the interpolation error will be O(∆S j
max∆Bu

max). Therefore, we obtain (from

equation (5.52)):

[Ah(φ + ξ)]n+1
i,j,k,m − [Aφ]n+1

i,j,k,m = ξ + O(∆Sj
max∆Bu

max) + O(h2) (I.7)

when it is optimal to withdraw and zero when it is optimal to lapse.

Recall from equation (5.59) that the discrete scheme G
(

h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}

)

is denoted as follows on interior nodes when Sj
i < Smax:

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
−[Lhφ]n+1

i,j,k,m+Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k −
1

ε
max

(

[Ahφ]n+1
i,j,k,m − φn+1

i,j,k,m, 0
)

= 0.

(I.8)

We re-arrange the penalized problem in equation (I.8) as:

min

[

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k − 1

ε

(

[Ahφ]n+1
i,j,k,m − φn+1

i,j,k,m

)

,

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

]

= 0. (I.9)

Equation (I.9) implies that one of the following holds with equality:

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k − 1

ε

(

[Ahφ]n+1
i,j,k,m − φn+1

i,j,k,m

)

≥ 0,

(I.10)

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k ≥ 0. (I.11)

Since ε > 0, equation (I.10) is equivalent to:

ε

(

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

+φn+1
i,j,k,m−[Ahφ]n+1

i,j,k,m ≥ 0.

(I.12)
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Similarly, equations (I.11) and (I.12) can be combined to obtain:

min

(

ε

(

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

+ φn+1
i,j,k,m − [Ahφ]n+1

i,j,k,m ,

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

= 0, (I.13)

which corresponds to the definition of Ĝ(h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}) in equation (5.66)

for interior nodes. Applying the same technique for the boundary nodes, we can show the

equivalence between the original scheme G(h, x, V n+1
imax ,j,k,m, V n

imax,j,k,m, {V n+1
a,p,u,l}) in equa-

tion (5.60) and Ĝ(h, x, V n+1
imax ,j,k,m, V n

imax,j,k,m, {V n+1
a,p,u,l}) in equation (5.67). This demon-

stration is omitted for brevity.

Using the result in equation (I.13) and the discretization error estimates in equa-

tions (I.4) and (I.7), we find for the interior nodes when S j
i < Smax (noting that |max(x, y)−

max(α, β)| ≤ max(|x − α|, |y − β|) ):

∣

∣

∣

∣

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

− Fin(φ)n+1
i,j,k,m

∣

∣

∣

∣

(I.14)

≤ max

(

∣

∣

∣

∣

(

φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)

−
[

φ −Aφ
]n+1

i,j,k,m

+ε

(

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lh(φ + ξ)]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)∣

∣

∣

∣

,

∣

∣

∣

∣

(

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lh(φ + ξ)]n+1

i,j,k,m + Rn+1ρinsS
j
i −Mn+1fn+1

i,j,k

)

−
[

φτ −Lφ + R(τ)ρinsS −M(τ)f
]n+1

i,j,k,m

∣

∣

∣

∣

)

= max

(

∣

∣

∣

∣

O(∆Sj
max∆Bu

max) + O(h2) + ε

(

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m + Rn+1ρinsS
j
i

−Mn+1fn+1
i,j,k − ξr

)
∣

∣

∣

∣

,

∣

∣

∣

∣

O(∆τ) + O(∆Sj
max) + rξ

∣

∣

∣

∣

)
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Similarly, for the boundary nodes when Sj
i = Smax, we have:

∣

∣

∣

∣

Ĝ
(

h, x, φn+1
imax ,j,k,m + ξ, φn

imax,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

− Fbound(φ)n+1
imax ,j,k,m

∣

∣

∣

∣

(I.15)

≤ max

(

∣

∣

∣

∣

(

φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)

−
[

φ −Aφ
]n+1

i,j,k,m
+ ε

(

φn+1
imax,j,k,m − φn

imax,j,k,m

∆τ

+ρtotal(φ
n+1
imax,j,k,m + ξ) −

M
∑

l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m) + Rn+1ρinsS
j
imax

)
∣

∣

∣

∣

,

∣

∣

∣

∣

(

φn+1
imax,j,k,m − φn

imax,j,k,m

∆τ
+ ρtotal(φ

n+1
imax,j,k,m + ξ)

−
M
∑

l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m) +Rn+1ρinsS
j
imax

)

−
[

φτ + ρtotalφ

−
M
∑

l=1
l 6=m

λm→lJm→l(S)
(

φ(S,B,D, el, τ) − φ
)

+ R(τ)ρinsS

]n+1

imax,j,k,m

∣

∣

∣

∣

)

= max

(∣

∣

∣

∣

O(∆Sj
max∆Bu

max) + O(h2) + ε

(

φn+1
imax,j,k,m − φn

imax,j,k,m

∆τ
+ρtotal(φ

n+1
imax,j,k,m + ξ)

−
M
∑

l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m) + Rn+1ρinsS
j
imax

)
∣

∣

∣

∣

,

∣

∣

∣

∣

O(∆τ) + O(∆Sj
max) + ρtotalξ

∣

∣

∣

∣

)

.

Using Assumption 5.4, we obtain:

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

= F (φ)n+1
i,j,k,m + O(h) + ξb(x), (I.16)

for both boundary and interior nodes, where b(x) is a bounded function with |b(x)| ≤

max(r, ρtotal).

We now present the proof of Theorem 5.9.
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Proof. (of Theorem 5.9)

We begin by proving that equation (5.68) holds. From the definition of lim sup, there

exists sequences hd, id, jd, kd, nd, ξd such that

hd → 0, ξd → 0, xd = (Sjd
id

, Bkd
jd

, Dkd
, em, τnd+1) → x̂ = (Ŝ, B̂, D̂, em, τ̂ ) as d → ∞,

(I.17)

and

lim sup
d→∞

Ĝ
(

hd,xd, φ
nd+1
id,jd,kd,m + ξd, φ

nd
id,jd,kd,m + ξd, {φnd+1

ad,pd,ud,l + ξd}
)

= lim sup
ξ, h→0

x→x̂

Ĝ
(

h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

. (I.18)

From our result in equation (I.1), we have:

Ĝ
(

hd, xd, φ
nd+1
id,jd,kd,m + ξd, φ

nd
id,jd,kd,m + ξd, {φnd+1

ad ,pd,ud,l + ξd}
)

= F (φ(xd)) + O(hd) + ξdb(xd),

(I.19)

where F (φ(x)) is defined in equation (5.63) for interior and boundary nodes.

Now consider a sequence of nodes xd as defined in equation (I.17) which may contain

both interior (Sjd
id

< Smax) and boundary nodes (Sjd
id

= Smax). Combining equation (I.19)

with equation (I.18), we get:

lim sup
ξ, h→0

x→x̂

Ĝ
(

h, x,φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)

≤ lim sup
d→∞

F (φ(xd)) + lim sup
d→∞

[O(hd) + ξdb(xd)] = F ∗(φ(x̂))
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where the last equality holds because of:

lim sup
d→∞

[O(hd) + ξdb(xd)] = 0. (I.20)

Verifying equation (5.69) can be done in a similar fashion.

Having shown that equations (5.68) and (5.69) hold, we conclude that the discrete

equations in (5.40) are consistent according to Definition 5.8.





Appendix J

Comparison with Previous

GMDB Numerical Results

In [72], the authors present an analytical model to price GMDB contracts with different

death benefit guarantees including return-of-premium, rising floor and ratchets. More

specifically, the authors determine the fair insurance charge that equates the present

value of the risk charges with the value of the death benefit guarantee. While mostly

focusing on guarantees with a rising floor, basic numerical results for contracts with a

continuous lookback or ratchet feature are included in [72]. To validate the GMDB pricing

model presented in Section 5.1, we attempt to reproduce the numerical results presented

in [72] when valuing a GMDB clause with ratchets.

For consistency with the problem considered in [72], we modify the GMDB pricing

problem presented in Section 5.1 to satisfy the following:

• Since the authors of [72] focus on determining the value for ρins, the contract

considered does not include any management fees. Consequently, we set ρman = 0.

• The contract considered in [72] does not include the partial withdrawal or lapsing

209
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feature. Thus, we will solve the following pricing equation:

Vτ =
1

2
σ2S2VSS + (r − ρins)SVS − rV −R(τ)ρinsS + M(τ)max(B − S, 0), (J.1)

without imposing an impulse control.

• To reproduce the continuous ratchet assumption, we apply the update feature pre-

sented in equation (5.17) discretely at each timestep during the solution process.

As ∆τ → 0, the value of the GMDB guarantee will converge to the contract value

with continuous ratchets.

In [72], the authors assume that the contract terminates when the owner is 75 years old

and consider a range of values for the age of the contract owner at the time of purchase

(namely 30, 40, 50, 60 and 65 years old). We will focus our analysis on the case most

similar to the rest of the results in this paper and assume that the contract owner is 50

years old at the time of purchase; this implies that T = 25 years in our pricing model.

To be consistent with [72], we set σ = 0.20 and r = 0.06. In addition, the mortality

data is generated with a Gompertz mortality distribution using the parameters presented

in [72] corresponding to the age of the contract owner when the contract is purchased.

The parameters in [72] are obtained by fitting a Gompertz mortality distribution to the

1994 Group Annuity Mortality Table (Basic) over the contract lifetime. In our case,

we approximate the continuous mortality function with a discrete mortality distribution

generated with ∆τ = 6.25× 10−4 years. Such a small ∆τ is chosen to avoid interpolation

issues for higher refinement levels.

Recall that we are looking to determine the fair insurance charge ρins that satisfies:

V (ρins;S = $100, B = $100, D = $100, τ = T ) = 0. (J.2)
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GMDB with Continuous Ratchet

Nodes Insurance Charge - ρins

Refinement Timesteps S B Male Female

0 2500 80 80 0.003960 0.002334
1 5000 159 159 0.004042 0.002383
2 10000 317 314 0.004086 0.002409
3 20000 633 633 0.004114 0.002426
4 40000 1265 1265 0.004133 0.002437

Value from [72] 0.00418 0.00246

Table J.1: Fair insurance charge ρins for a GMDB contract with discrete ratchet events when
the owner is assumed to be 50 years old when the contract is purchased. The contract assumptions
are chosen to approximate those in [72]. Crank-Nicolson timestepping with constant timesteps was
used. We assume σ = 0.20, r = 0.06, ρman = 0 and set the initial timestep is set to ∆τ = 0.01
years on the coarsest grid.

Newton iteration is used during the solution process and the tolerance is set to 1× 10−6.

The resulting insurance charges are presented in Table J.1.

We see that the results obtained in Table J.1 are consistent with those presented in [72]

but exhibit slow convergence. Keep in mind that the authors of [72] generate their results

with analytical formulas while we approximate the contract considered by using discrete

ratchet events. In Table J.1, we are essentially valuing a discrete lookback option which is

a difficult problem. As the ratchet interval is reduced, the value of a discrete lookback is

known to converge very slowly to the corresponding continuous lookback value [6, 26, 54].

Nonetheless, the numerical results in Table J.1 are certainly sufficient for practical

purposes. Similar levels of accuracy were observed when comparing our numerical results

to the analytical values in [72] for the remaining cases (i.e. when the owner is assumed

to be 30, 40, 60 and 65 years old).
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