
Sample size effect in ultrasonic testing of geomaterials - numerical and experimental study

by

Simon Bérubé

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Civil Engineering

Waterloo, Ontario, Canada, 2008

c©Simon Bérubé 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Nondestructive evaluation of civil structures is of increasing interest to utility owners. Sev-
eral methods exist to evaluate different properties of concrete, pavement, cemented sands
and others. UPVM is the most commonly used ultrasonic technique in civil structures due
to its simplicity and ease of use. UPVM is fast and requires minimal skill from operators.
It has been used for flaw detection, study of material contents, deduction of general deteri-
oration, determination of elastic properties , measurement of strength, and others. In such
applications, accurate measurements of velocity are essential for proper parameter evalua-
tion and thus to increase the validity of conclusions obtained from measurements. Previous
research in ultrasonic pulse velocity have found that UPVM are susceptible to specimen size,
attenuation and frequency but no clear conclusions have yet to be made on the fundamental
reason for the differences.

This work seeks to identify the main factors responsible for velocity differences due
to specimen size and measuring frequency in civil engineering materials. The effects are
investigated by first performing numerical simulations of concrete specimens of varying
sizes, and properties, excited by both a low (55 kHz) and high (850 kHz) frequency input
source. Simulations are used to model wave propagation in cylindrical concrete specimen.
Transducer sound fields are also numerically studied using known analytical solutions. An
experimental program is conducted to study variations in UPVM in 12 mortar and 11
concrete cylindrical specimens of varying widths and heights caused by different measuring
frequencies.

Simulations are completed for 12 specimen of different dimensions having heights of
5,10,20 and 30 cm as well as diameters of 10, 20 and 30 cm. Both a low (f0 = 55kHz)
and high (f0 = 850MHz) frequency input source are used on each specimen. Numerical
simulations using low frequencies are made for both a damped and undamped series of
specimen. Results from low frequency simulations of damped models indicate that wave
attenuation can lead to significant errors in first arrivals when complex wave interference is
present. Conditions for wave interference at the receiver location are studied and minimum
size conditions for both height and width are derived. These conditions guarantee proper
pulse separation for UPVM and are dependent on source size, and source pulse width. It is
argued that with proper use these conditions will lead to accuracy of measurement better
than one quarter of a period of the main excitation frequency when using a full waveform
and a skilled operator.

Finally, experiments are performed to assess differences in first arrivals between high and
low frequency measurements. Readings are made on 11 mortar and 12 concrete specimen
of different heights and widths. Experimentally significant time differences are observed
between high and low frequency readings. It is found that differences in first arrivals will
increase with specimen length but differences in velocity will decrease with length. Speci-
mens 4 wavelengths in height are deemed sufficient to diminish surface effects to a minimum
provided the specimens are healthy (e.g. no internal flaws). Any increase past 4 wavelengths
is found to have negligible effects on measured velocity in healthy specimens.

iii

Acknowledgements

I would like to express profound gratitude to my advisors, Dr. Giovanni Cascante and Dr.
Maria Anna Polak for their support, encouragements, supervision and useful suggestions
through this research work.

I am also thankful to Kinectrics Inc. and the Natural Sciences and Engineering Re-
search Council (NSERC) for providing funding and support through the NSERC Industrial
Postgraduate Scholarship. Specifically, I am grateful for the comments and guidance of Dr.
Andy Z. Chen and Dr. Alex Karpelson of Kinectrics Inc. during the course of this research.

I am, as ever, indebted to my parents for their continuous support and encouragement
through my entire university career. Their support and encouragement made this work
possible.

Finally, I would like to extend my gratitude to the technical staff at the University of
Waterloo Geotechnical Engineering Department for their help in properly conducting ex-
periments, fabricating specimen and operating the various heavy equipments needed for this
research.

iv

Contents

1 Introduction 1

2 Literature Review 4
2.1 Elastic Waves . 4

2.1.1 Semi-Infinite Half Space . 5
2.1.2 Layered Media . 6

2.2 Nondestructive Testing (NDT) Methods for Condition Assessment of Concrete 8
2.2.1 Electromagnetic Methods . 8
2.2.2 Acoustic Methods . 9
2.2.3 Recent Ultrasonic Applications . 12

2.3 Summary . 15

3 Theoretical Background 16
3.1 Mechanical Waves . 16

3.1.1 Plane Waves in a Homogeneous Medium 16
3.1.2 Elastic Waves . 19

3.2 Signal Analysis . 26
3.2.1 Fourier Transform . 26
3.2.2 Frequency Wave-number Transform 30
3.2.3 Convolution . 36
3.2.4 Hilbert Transform . 39

3.3 Transducer Characterization and Design . 42
3.3.1 Acoustic Field of a Piston Transducer 42

3.4 Numerical Simulations . 48
3.4.1 The Finite Element Method . 48
3.4.2 Model calibration and verification . 55

4 Numerical and Experimental Methodology 63
4.1 Numerical Simulations . 64

4.1.1 Parameter Definition Considerations 64
4.1.2 Lamb Calibration Model . 67
4.1.3 Layered Calibration Models . 71
4.1.4 Model Simulations of mortar specimens 76

4.2 Laboratory testing . 81

v

4.2.1 Calibration Methodology . 81
4.2.2 First Arrival Measurments . 85
4.2.3 Measurements Methodology . 89
4.2.4 Specimens . 90
4.2.5 Mortar specimen preparation . 90
4.2.6 Concrete sample preparation . 92

4.3 Applications . 93
4.3.1 Data Management and Processing . 93
4.3.2 Transducer Modeling . 95

5 Results and Discussion 100
5.1 Numerical Simulations . 100

5.1.1 Lamb’s Calibration Problem . 100
5.1.2 Single Layer Calibration Model . 105
5.1.3 Three Layer Calibration Model . 109
5.1.4 Numerical Simulations . 113
5.1.5 Transducer Field . 131

5.2 Experimental Velocity Measurements . 134
5.3 Discussion . 138

5.3.1 Calibration of Numerical Models . 138
5.3.2 Numerical Models . 141
5.3.3 Experimental Results . 149
5.3.4 Recommendations . 150

6 Conclusions 152

A LS-Dyna Input Decks 155
A.1 Lamb’s Problem Deck . 155
A.2 Punch Single Layer Model . 157
A.3 Punch Three Layer Model . 158
A.4 High Frequency Experimental Model - Sample 160
A.5 Low Frequency Experimental Model - Sample 161

B Python Classes 162
B.1 LayergenDyna . 162
B.2 modelGenerator1M . 171
B.3 modelGenerator50K . 172
B.4 tt . 173
B.5 ttlist . 181

C Field Solver Classes 188
C.1 array.h . 188
C.2 array.cc . 189
C.3 circtd.h . 194
C.4 circtd.cc . 194
C.5 impsine.h . 195

vi

C.6 impsine.cc . 195
C.7 impulse.h . 196
C.8 impulse.cc . 196
C.9 solver.h . 197
C.10 solver.cc . 198
C.11 transducer.h . 202

D Solver User Interface 203
D.1 main.cc . 203
D.2 pistonui.h . 203
D.3 pistonui.cc . 206
D.4 plotsolver.h . 219
D.5 plotsolver.cc . 220
D.6 td.h . 223
D.7 td.cc . 223
D.8 tdimport.h . 224
D.9 tdimport.cc . 225
D.10 types.h . 228
D.11 ui pistonui.h . 228
D.12 ui td.h . 237
D.13 ui tdimport.h . 240

E Numerical Data 251
E.1 Calibration Results . 251
E.2 Numerical Simulations of Experimental Models data 255

E.2.1 High Frequency . 255
E.2.2 Low Frequency . 286
E.2.3 Low Frequency – Damped . 298
E.2.4 Damped vs Undamped Time traces 311

F Experimental Data 316
F.1 Experimental Time Traces . 316

F.1.1 High Frequency . 316
F.1.2 Low Frequency . 325
F.1.3 First Arrivals . 333

Bibliography 337

vii

List of Figures

2.1 Pulse arrival according to Lapwood (1949) . 5

3.1 Representation of Snell’s Law. (a) Reflection/Transmission, (b) Angles 19
3.2 Surface wave coordinate system . 22
3.3 Sample of seismic trace . 31
3.4 Sample f-k Plot for Broad Band Input . 32
3.5 Broad Band Input Source (a) Time trace, (b) Magnitude of Fourier spectrum 33
3.6 Sample f-k Plot for Narrow Band Input . 34
3.7 Narrow Band Input Source (a) Time trace, (b) Magnitude of Fourier spectrum 35
3.8 Visual Representation of Convolution (a) signal wavelet , f, (b) Impulse Re-

sponse, g, and (c) convolved response, a. 38
3.9 Analytical Signal of time trace shown in Figure 3.8a. (a) Amplitude, (b)

Phase and (c) Frequency . 41
3.10 Circular piston transducer coordinate system 45
3.11 Impulse response of a circular transducer at selected locations 46
3.12 Near-field pressure acoustic field of a piston 47
3.13 Two Four-node elements structure . 49
3.14 Sample curve of frequency dependent damping ratio using ω1 = 628318, ωn

= 9424778, α = 47124 and β = 7.95775 ∗ 10−9 53
3.15 Lamb solution for the vertical and horizontal displacement due to a point

source (eq. 3.98) . 58

4.1 Time step instabilities in LS-DYNA . 67
4.2 Axisymmetric numerical model used for Lamb Solution Calibration (360,000

Elements) . 68
4.3 Lamb problem’s source for simulation . 70
4.4 Load for single layer model . 73
4.5 Load for three layer model . 75
4.6 Low Frequency Load for Experimental Model Simulations. (a) Time trace,

(b) Power spectrum . 78
4.7 High Frequency Load for Experimental Model Simulations. (a) Time trace,

(b) Power spectrum . 79
4.8 Damping curve used for low frequency excitation 80
4.9 Calibration Rods . 82
4.10 Water Calibration Data for Aluminum Rods 83

viii

4.11 Glycerin Calibration Data for Aluminum Rods 84
4.12 Experimental Ultrasonic Pulse Velocity Setup 85
4.13 Effect of coupling on signal strength using a high frequency measurement on

a 5 cm diameter aluminum rod. Amplitudes are normalized to highest peak
of water coupling. 89

4.14 Gradation curve of the sand used for mortar mix. 91
4.15 Database Scheme for Experimental Time Traces 94
4.16 Database Scheme for Numerical Time Traces 95
4.17 Field Solver class hierarchy . 96
4.18 Field Solver User Interface’s setup screen . 97
4.19 Field Solver User Interface’s setup screen . 98
4.20 Field Solver User Interface’s setup screen . 99

5.1 Lamb calibration model: numerical vs theoretical trace at 41mm 102
5.2 Lamb calibration model: numerical vs theoretical trace at 83mm 102
5.3 Lamb calibration mode: numerical vs theoretical trace at 125mm 103
5.4 Lamb calibration mode: numerical vs theoretical trace at 166mm 103
5.5 Lamb calibration model: numerical vs theoretical trace at 208mm 104
5.6 Lamb calibration model: sample numerical vs theoretical spectra at 166mm . 104
5.7 Comparison results for single layer model at 15 m 106
5.8 Comparison results for single layer model at 45 m 106
5.9 Comparison results for single layer model at 75 m 107
5.10 Comparison results for single layer model at 90 m 107
5.11 Comparison results of spectrum for single layer model at 15 m 108
5.12 Comparison results for three layer model at 15 m 110
5.13 Comparison results for three layer model at 45 m 110
5.14 Comparison results for three layer model at 75 m 111
5.15 Comparison results for three layer model at 90 m 111
5.16 Comparison results for three layer model at 15 m 112
5.17 Frequency-wavenumber plot for model “m1a” (H=9.24 λ0, D= 18.48 λ0) using

high frequency excitation (f0 = 850kHz, λ0 = 5.412mm). P indicates the
main p-wave, S indicates the main shear wave, RP is the reflected p-wave
and RS is the reflected shear wave. 114

5.18 Time history plot of central axis of model “m1a” using high frequency excitation115
5.19 Diagram of selected wavefronts in cylindrical specimen 116
5.20 Time history plot of vertical displacement of the top axis of model “m1a”

using high frequency excitation . 117
5.21 Time history plot of horizontal displacement of the top axis of model “m1a”

using high frequency excitation . 118
5.22 Time history plot of vertical displacement of the right axis of model “m1a”

using high frequency excitation . 119
5.23 Time history plot of horizontal displacement of the right axis of model “m1a”

using high frequency excitation . 120
5.24 Time history plot of vertical displacement of the bottom axis of model “m1a”

using high frequency excitation . 121

ix

5.25 Time history plot of vertical displacement of the bottom axis of model “m1a”
using high frequency excitation . 122

5.26 Frequency-wavenumber plot for model “m4a” (H=55.44 λ0, D= 18.48 λ0)
using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm). P is the
p-wave, S is the shear wave, and RP is the reflected p-wave. 123

5.27 Time history plot of vertical displacement of the bottom axis of model “m1a”
using high frequency excitation . 124

5.28 Frequency-wavenumber plot for model “m1a” (H=0.60 λ0, D=1.20 λ0) at low
frequency excitation (f0 = 55kHz, λ0 = 83.0mm). 125

5.29 Time history plot of model “m1a” (H=0.60 λ0, D=1.20 λ0) at low frequency
excitation (f0 = 55kHz, λ0 = 83.0mm). P is the p-wave arrival line and S is
the computed shear wave arrival line. 125

5.30 Time history plot of damped model “m1a” 127
5.31 Time history plot of damped model “m2a” 127
5.32 Time history plot of damped model “m3a” 128
5.33 Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =

1.5 ∗ 10−7) and undamped model “m1a” (H=0.60 λ0, D=1.20 λ0) at low
frequency excitation (f0 = 55kHz, λ0 = 83.0mm) 128

5.34 Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =
1.5 ∗ 10−7) and undamped model “m2a” (H=1.20 λ0, D=1.20 λ0) at low
frequency excitation (f0 = 55kHz, λ0 = 83.0mm) 129

5.35 Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =
1.5 ∗ 10−7) and undamped model “m3a” (H=2.41 λ0, D=1.20 λ0) at low
frequency excitation (f0 = 55kHz, λ0 = 83.0mm) 129

5.36 Arrival Time Comparison for numerical models 130
5.37 Pressure Field for High Frequency Transducer 132
5.38 Pressure Field for Low Frequency Transducer 133
5.39 Wave velocity differences from high (fh = 850kHz) and low (fl = 55kHz) fre-

quency measurements for different concrete specimens heights and diameters
(D=0.60, 1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm). 134

5.40 Wave velocity differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different mortar specimens heights and diameters
(D=0.60, 1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm) 135

5.41 Arrival time differences from high (fh = 850kHz) and low (fl = 55kHz) fre-
quency measurements for different concrete specimens heights and diameters
(D=0.60, 1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm). 135

5.42 Arrival time differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different mortar specimens heights and diameters
(D=0.60, 1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm). 136

5.43 Comparison of experimental waveforms for specimen “c1a” (H=5 cm, D=10
cm) between three independent readings using high frequency excitation (f0 =
850kHz). 136

5.44 Comparison of experimental waveforms for specimen “m1a” (H=5 cm, D=10
cm) between three independent readings using low frequency excitation (f0 =
55kHz). 137

5.45 Normalized measurement of theoretical specimen 144

x

5.46 Arrival time of high amplitude fronts . 145
5.47 Minimum Radius to Height ratio to ensure p-wave pulse separation in a spec-

imen . 146
5.48 Delay lag effect demonstration . 148

E.1 Water Calibration Data for Aluminum Rods 251
E.2 Water Calibration Data for Steel Rods . 252
E.3 Water Calibration Data for PVC Rods . 252
E.4 Glycerin Calibration Data for Aluminum Rods 253
E.5 Glycerin Calibration Data for Steel Rods . 253
E.6 Glycerin Calibration Data for PVC Rods . 254
E.7 High frequency seismic plot for axisymmetric axis of specimen “m1a” 255
E.8 High frequency seismic plot for axisymmetric axis of specimen “m1b” 256
E.9 High frequency seismic plot for axisymmetric axis of specimen “m1c” 257
E.10 High frequency seismic plot for axisymmetric axis of specimen “m2a” 258
E.11 High frequency seismic plot for axisymmetric axis of specimen “m2b” 259
E.12 High frequency seismic plot for axisymmetric axis of specimen “m2c” 260
E.13 High frequency seismic plot for axisymmetric axis of specimen “m3a” 261
E.14 High frequency seismic plot for axisymmetric axis of specimen “m3b” 262
E.15 High frequency seismic plot for axisymmetric axis of specimen “m3c” 263
E.16 High frequency seismic plot for axisymmetric axis of specimen “m4a” 264
E.17 High frequency seismic plot for axisymmetric axis of specimen “m4b” 265
E.18 High frequency seismic plot for axisymmetric axis of specimen “m4c” 266
E.19 High frequency seismic plot for bottom axis of specimen “m1a” 267
E.20 High frequency seismic plot for top axis of specimen “m1a” 268
E.21 High frequency seismic plot for side (right) axis of specimen “m1a” 269
E.22 High frequency seismic plot for bottom axis of specimen “m2a” 270
E.23 High frequency seismic plot for top axis of specimen “m2a” 271
E.24 High frequency seismic plot for side (right) axis of specimen “m2a” 272
E.25 High frequency seismic plot for bottom axis of specimen “m2a” 273
E.26 High frequency seismic plot for top axis of specimen “m3a” 274
E.27 High frequency seismic plot for side (right) axis of specimen “m3a” 275
E.28 High frequency seismic plot for bottom axis of specimen “m3a” 276
E.29 High frequency seismic plot for top axis of specimen “m4a” 277
E.30 High frequency seismic plot for side (right) axis of specimen “m4a” 278
E.31 High frequency seismic plot for bottom axis of specimen “m4a” 279
E.32 High frequency F-K plot for axisymmetric axis of specimen “m1a” 280
E.33 High frequency F-K plot for axisymmetric axis of specimen “m1b” 280
E.34 High frequency F-K plot for axisymmetric axis of specimen “m1c” 281
E.35 High frequency F-K plot for axisymmetric axis of specimen “m2a” 281
E.36 High frequency F-K plot for axisymmetric axis of specimen “m2b” 282
E.37 High frequency F-K plot for axisymmetric axis of specimen “m2c” 282
E.38 High frequency F-K plot for axisymmetric axis of specimen “m3a” 283
E.39 High frequency F-K plot for axisymmetric axis of specimen “m3b” 283
E.40 High frequency F-K plot for axisymmetric axis of specimen “m3c” 284
E.41 High frequency F-K plot for axisymmetric axis of specimen “m4a” 284

xi

E.42 High frequency F-K plot for axisymmetric axis of specimen “m4b” 285
E.43 High frequency F-K plot for axisymmetric axis of specimen “m4c” 285
E.44 Low frequency seismic plot for axisymmetric axis of specimen “m1a” 286
E.45 Low frequency seismic plot for axisymmetric axis of specimen “m1b” 286
E.46 Low frequency seismic plot for axisymmetric axis of specimen “m1c” 287
E.47 Low frequency seismic plot for axisymmetric axis of specimen “m2a” 287
E.48 Low frequency seismic plot for axisymmetric axis of specimen “m2b” 288
E.49 Low frequency seismic plot for axisymmetric axis of specimen “m2c” 288
E.50 Low frequency seismic plot for axisymmetric axis of specimen “m3a” 289
E.51 Low frequency seismic plot for axisymmetric axis of specimen “m3b” 289
E.52 Low frequency seismic plot for axisymmetric axis of specimen “m3c” 290
E.53 Low frequency seismic plot for axisymmetric axis of specimen “m4a” 290
E.54 Low frequency seismic plot for axisymmetric axis of specimen “m4b” 291
E.55 Low frequency seismic plot for axisymmetric axis of specimen “m4c” 291
E.56 Low frequency F-K plot for axisymmetric axis of specimen “m1a” 292
E.57 Low frequency F-K plot for axisymmetric axis of specimen “m1b” 292
E.58 Low frequency F-K plot for axisymmetric axis of specimen “m1c” 293
E.59 Low frequency F-K plot for axisymmetric axis of specimen “m2a” 293
E.60 Low frequency F-K plot for axisymmetric axis of specimen “m2b” 294
E.61 Low frequency F-K plot for axisymmetric axis of specimen “m2c” 294
E.62 Low frequency F-K plot for axisymmetric axis of specimen “m3a” 295
E.63 Low frequency F-K plot for axisymmetric axis of specimen “m3b” 295
E.64 Low frequency F-K plot for axisymmetric axis of specimen “m3c” 296
E.65 Low frequency F-K plot for axisymmetric axis of specimen “m4a” 296
E.66 Low frequency F-K plot for axisymmetric axis of specimen “m4b” 297
E.67 Low frequency F-K plot for axisymmetric axis of specimen “m4c” 297
E.68 Low frequency seismic plot for axisymmetric axis of specimen “m1a” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 298
E.69 Low frequency seismic plot for axisymmetric axis of specimen “m1b” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 299
E.70 Low frequency seismic plot for axisymmetric axis of specimen “m1c” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 299
E.71 Low frequency seismic plot for axisymmetric axis of specimen “m2a” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 300
E.72 Low frequency seismic plot for axisymmetric axis of specimen “m2b” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 300
E.73 Low frequency seismic plot for axisymmetric axis of specimen “m2c” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 301
E.74 Low frequency seismic plot for axisymmetric axis of specimen “m3a” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 301
E.75 Low frequency seismic plot for axisymmetric axis of specimen “m3b” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 302
E.76 Low frequency seismic plot for axisymmetric axis of specimen “m3c” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 302
E.77 Low frequency seismic plot for axisymmetric axis of specimen “m4a” using

damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 303

xii

E.78 Low frequency seismic plot for axisymmetric axis of specimen “m4b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 303

E.79 Low frequency seismic plot for axisymmetric axis of specimen “m4c” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 304

E.80 Low frequency F-K plot for axisymmetric axis of specimen “m1a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 305

E.81 Low frequency F-K plot for axisymmetric axis of specimen “m1b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 305

E.82 Low frequency F-K plot for axisymmetric axis of specimen “m1c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 306

E.83 Low frequency F-K plot for axisymmetric axis of specimen “m2a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 306

E.84 Low frequency F-K plot for axisymmetric axis of specimen “m2b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 307

E.85 Low frequency F-K plot for axisymmetric axis of specimen “m2c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 307

E.86 Low frequency F-K plot for axisymmetric axis of specimen “m3a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 308

E.87 Low frequency F-K plot for axisymmetric axis of specimen “m3b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 308

E.88 Low frequency F-K plot for axisymmetric axis of specimen “m3c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 309

E.89 Low frequency F-K plot for axisymmetric axis of specimen “m4a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 309

E.90 Low frequency F-K plot for axisymmetric axis of specimen “m4b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7 310

E.91 Low frequency F-K plot for axisymmetric axis of specimen “m4c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7 . 310

E.92 Comparison of time signal between damped and undamped model ’m1a’ at
low frequency . 311

E.93 Comparison of time signal between damped and undamped model ’m1b’ at
low frequency . 311

E.94 Comparison of time signal between damped and undamped model ’m1b’ at
low frequency . 312

E.95 Comparison of time signal between damped and undamped model ’m1c’ at
low frequency . 312

E.96 Comparison of time signal between damped and undamped model ’m2a’ at
low frequency . 313

E.97 Comparison of time signal between damped and undamped model ’m2b’ at
low frequency . 313

E.98 Comparison of time signal between damped and undamped model ’m2c’ at
low frequency . 314

E.99 Comparison of time signal between damped and undamped model ’m3a’ at
low frequency . 314

E.100Comparison of time signal between damped and undamped model ’m3b’ at
low frequency . 315

xiii

E.101Comparison of time signal between damped and undamped model ’m3c’ at
low frequency . 315

F.1 High frequency experimental time trace for 5 cm high mortar specimens . . . 316
F.2 Frequency spectrum of high frequency experimental time trace for 5 cm high

mortar specimens . 317
F.3 High frequency experimental time trace for 5 cm high mortar specimens . . . 317
F.4 Frequency spectrum of high frequency experimental time trace for 10 cm high

mortar specimens . 318
F.5 High frequency experimental time trace for 20 cm high mortar specimens . . 318
F.6 Frequency spectrum of high frequency experimental time trace for 20 cm high

mortar specimens . 319
F.7 High frequency experimental time trace for 30 cm high mortar specimens . . 319
F.8 Frequency spectrum of high frequency experimental time trace for 30 cm high

mortar specimens . 320
F.9 High frequency experimental time trace for 5 cm high mortar specimens . . . 321
F.10 Frequency spectrum of high frequency experimental time trace for 5 cm high

mortar specimens . 321
F.11 High frequency experimental time trace for 5 cm high mortar specimens . . . 322
F.12 Frequency spectrum of high frequency experimental time trace for 10 cm high

mortar specimens . 322
F.13 High frequency experimental time trace for 20 cm high mortar specimens . . 323
F.14 Frequency spectrum of high frequency experimental time trace for 20 cm high

mortar specimens . 323
F.15 High frequency experimental time trace for 30 cm high mortar specimens . . 324
F.16 Frequency spectrum of high frequency experimental time trace for 30 cm high

mortar specimens . 324
F.17 Low frequency experimental time trace for 5 cm high mortar specimens . . . 325
F.18 Frequency spectrum of low frequency experimental time trace for 5 cm high

mortar specimens . 325
F.19 Low frequency experimental time trace for 5 cm high mortar specimens . . . 326
F.20 Frequency spectrum of low frequency experimental time trace for 10 cm high

mortar specimens . 326
F.21 Low frequency experimental time trace for 20 cm high mortar specimens . . . 327
F.22 Frequency spectrum of low frequency experimental time trace for 20 cm high

mortar specimens . 327
F.23 Low frequency experimental time trace for 30 cm high mortar specimens . . . 328
F.24 Frequency spectrum of low frequency experimental time trace for 30 cm high

mortar specimens . 328
F.25 Low frequency experimental time trace for 5 cm high mortar specimens . . . 329
F.26 Frequency spectrum of low frequency experimental time trace for 5 cm high

mortar specimens . 329
F.27 Low frequency experimental time trace for 5 cm high mortar specimens . . . 330
F.28 Frequency spectrum of low frequency experimental time trace for 10 cm high

mortar specimens . 330
F.29 Low frequency experimental time trace for 20 cm high mortar specimens . . . 331

xiv

F.30 Frequency spectrum of low frequency experimental time trace for 20 cm high
mortar specimens . 331

F.31 Low frequency experimental time trace for 30 cm high mortar specimens . . . 332
F.32 Frequency spectrum of low frequency experimental time trace for 30 cm high

mortar specimens . 332

xv

List of Tables

2.1 Formulas used to calculated longitudinal and shear wave velocity 7

4.1 Layer properties for three layer model . 74
4.2 List of sizes for experimental model simulations 76
4.3 Size of calibration rods used. 81
4.4 Compiled calibration results . 83
4.5 Dimensions of specimens, selected assuming Vp = 4, 800m/s 90
4.6 Precise measurements of mortar samples . 92
4.7 Precise measurements for concrete specimens 93

5.1 Comparison of arrival time from damped and undamped numerical simulations.130

F.1 Raw data of velocity reading for 5 cm high mortar samples 333
F.2 Raw data of velocity reading for 10 cm high mortar samples 334
F.3 Raw data of velocity reading for 20 cm high mortar samples 334
F.4 Raw data of velocity reading for 30 cm high mortar samples 334
F.5 Raw data of velocity reading for 5 cm high concrete samples 335
F.6 Raw data of velocity reading for 10 cm high concrete samples 335
F.7 Raw data of velocity reading for 20 cm high concrete samples 336
F.8 Raw data of velocity reading for 30 cm high concrete samples 336

xvi

Variable Description
α Mass damping parameter
β Stiffness damping parameter
εv Volume expansion, defined as εv = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

θ(t) Time-dependent phase
θi Incidence angle
θr Reflected angle
θt Transmitted angle
ξ(m) Damping parameter
λ Wavelength
λl The first Lamé constant
µl The second Lamé constant
ν Poisson ratio
ρ Material density
σ̄ Fourier transform of normal stress
τl Frequency modulating constant for Lamb pulse
τ̄ Fourier transform of shearing stress
φ(t) Shear wave function
ψ̄(ω) Fourier transform of pressure on transducer’s face
ψ(t) Pressure wave function
ω Angular frequency
A(t) Time-dependent amplitude
ak Cosine fourier series constant
bk Sine fourier series constant
C Damping matrix
D(ω) Frequency dependent damping ratio
E Young’s modulus
f Frequency
f(x) Arbitrary function
f ′(x) Derivative of f(x)
fN Nyquist frequency
fkl Two-dimensional signal
f̄kl Fourier transform of two-dimensional time signal
F Amplitude factor for lamb’s solution load function
G Shear modulus
g(t) Arbitrary time signal
ḡ(f) Fourier transform of g(t)
h(t) Arbitrary time signal
h̄(f) Fourier transform of h(t)
ht(t) Hilbert filter
hi(x, y, t) Impulse response function
h̄i(x, y, ω) Fourier transform of hi(x, y, t)
H Displacement interpolation matrix
k Wavenumber
k Wave vector
K Stiffness matrix

xvii

Variable Description
M Discrete number of steps in a given dimension
M Mass matrix
N Discrete number of steps in a given dimension
p(x, y, t) Time-dependent pressure
p̄(x, y, ω) Fourier transform of pressure
P̄ Fourier transform of external load at top of a layer
Q Source load function for Lamb’s problem
R Reflection coefficient
R External load vector
S Stress vector
S̄ Fourier transform of stress vector, S
t Time
T Wave period
u Displacement of principal axis (usually x-axis)
ū Fourier transform of displacement
U Displacement vector
S̄ Fourier transform of displacement vector
s̄(f) Solution from Punch, in frequency domain
U̇ Velocity vector
Ü Acceleration vector
v Vertical displacement
V Wave velocity
Vp Longitudinal wave (P wave) velocity
Vs Shear wave (S Wave) velocity
Vr Rayleigh wave velocity
x Position vector
x(t) One-dimensional signal
x̄(k) Fourier transform of one-dimensional signal
Z Acoustic impedance

xviii

Chapter 1

Introduction

Nondestructive evaluation of civil structures is of increasing interest to utility owners. Sev-

eral methods exist to evaluate different properties of concrete, pavement, cemented sands

and others. Methods can be separated in two major types: electromagnetic and acoustic.

Electromagnetic methods include the use of ground penetrating radar (GPR), thermal imag-

ing, electrical resistance testing, and radiography. Acoustic methods include among others

impact echo, surface waves, seismic tomography and ultrasonic pulse velocity measurements

(UPVM) (Popovics, 2003; McCann and Forde, 2001).

Acoustic methods are more versatile, cheaper and more efficient for condition evaluation

than traditional intrusive or destructive testing. The largest limitation of these methods

is the need for complex data processing and/or skilled operators (Shickert, 2002). Unfor-

tunately, concrete have high attenuation characteristics making accurate assessment more

difficult than in metals. There is a large demand for simple, more portable acoustic tech-

niques, the most used of which is ultrasonic pulse velocity measurement.

UPVM is fast and requires minimal skill from operators. Velocity measurements are

traditionally made using commercial equipment where the output is an arrival time, or by

oscilloscope where arrival time is visually deduced. The latter provides a full waveform

1

output that is critical in accurately deducing and understanding the arrival time. UPVM

has been used for flaw detection (Sutan and Jaafar, 2003), study of material contents (Abo-

Qudais, 2005; Ohdaira and Masuzawa, 2000; Popovics, 2005), deducing general deterioration

(Ohdaira and Masuzawa, 2000), determination of elastic properties (Washer et al., 2005;

Prassianakis and Prassianakis, 2004), measuring strength (Chang et al., 2006), and others.

As such, velocity is an important measurable quantity in the calculation of more significant

engineering values such as strength, or other elastic properties. For these applications,

precise measurement of velocity is important to increase the accuracy, and thus the validity,

of conclusions obtained from the results. Several difficulties exist in measuring velocities in

concrete; most notably the rough surface condition and heterogeneous material composition.

These conditions lead to significant signal distortion making more precise high frequency

measurements (above 250 KHz) difficult in most field applications. The use of low frequency

(approx. 50 KHz) is thus prevalent in UPVM of concrete.

The use of low frequency pulses is the cause of several issues in velocity measurements.

Using UPVM, these frequencies have relatively large wavelength (approx. 8 cm) in typical

concrete. Thus, the ratio of sample height to wavelength is small for typical concrete

specimen leading to size and boundary effects. ASTM C597-02 dictates that specimen must

be at least 1 wavelength in length and width to avoid measurement error. Philippidis and

Aggelis (2005), however, show that a steady increase in frequency (25 KHz to 700 KHz) leads

to an increase in measured velocity and thus an increase in its estimated elastic properties.

These results indicate that the one wavelength rule referred by the ASTM C597-02 standard

may not fully account for effects of large wavelength UPVM.

This work seeks to identify the main factors responsible for velocity differences due

to specimen size and measuring frequency in civil engineering materials. The effects are

investigated by first performing numerical simulations of concrete specimens of varying

sizes, and properties, excited by both a low (55 kHz) and high (850 kHz) frequency input

source. Simulations are used to model wave propagation in cylindrical concrete specimen.

2

Transducer sound fields are also numerically studied using known analytical solutions. An

experimental program is conducted to study variations in UPVM in 12 mortar and 11

concrete cylindrical specimens of varying widths and heights caused by different measuring

frequencies.

In this work, size effects (boundary effects) of low frequency measurements (55 KHz) are

compared to high frequency readings (500-1500 KHz broadband). Numerical simulations

are conducted to study the full waveform for material characterization. Experiments are

conducted on 11 mortar and 12 concrete specimen having a combination of 5, 10, 20, 30

cm height and 10, 20, 30 cm width. Finite element simulations are conducted for the

corresponding specimens using the same low and high frequency source as an excitation.

Experimentally significant differences are observed between the low and high frequency

readings. Results are presented showing a link between signal transmission through specimen

surface and variation in velocity.

The arrival of important wavefronts are studied from numerical simulations. It is found

that low frequency measurements can have overlapping wavefronts for typical specimen

sizes (10 cm diameter, 30 cm length) using low frequency sources; this can affect first arrival

readings. A condition for minimal specimen size is presented to avoid those effects. Using

full waveform acquisition it is suggested that UPVM taken using the presented minimum

size conditions will lead to accuracy better than one fourth of the period of the received

signal at its main frequency.

3

Chapter 2

Literature Review

This chapter presents a review of relevant research in nondestructive evaluation of concrete.

First, a brief review of theoretical research in wave propagation is presented, followed by a

review of current research in nondestructive evaluation of concrete, with a focus on ultrasonic

methods.

2.1 Elastic Waves

Elastic waves represent the entire body of waves that propagate elastically in a solid. Elastic

waves exist in two fundamental modes: longitudinal (P waves) and shear (S waves). In an

semi-infinite half space, surface waves, or Rayleigh waves, are also created on the free surface.

Longitudinal waves propagate the fastest, followed by shear waves and then surface waves.

Conversely, surface waves have the largest amplitude, followed by shear waves and then

longitudinal waves.

In this section a review of relevant theoretical work in elastic wave propagation is pre-

sented.

4

2.1.1 Semi-Infinite Half Space

The solution of for surface wave propagation in an infinite half-space was first introduced

by Lamb (1904) for the case of an impulse vertical point load. Lamb’s solution is valid for a

point far from the source and includes separate solutions for three consecutive wave trains

of longitudinal, transverse, and surface waves.

Lamb’s solution was later expanded for the case of a buried line load and solved for

cases close to the source (Nakano, 1925). However, Nakano’s solution applies only for the

two dimensional case. Lapwood (1949) revisited previous attempts by Lamb (1904) and

Nakano (1925) and isolated the surface solution as an arrival of six different pulses on the

surface. These pulses are different based on whether the initial impulse in the material is

compressional or distortional.

For compressional excitation, the six pulses are in order: the direct P-pulse, the reflected

P-pulse, the reflected S-pulse, the surface S-pulse, the secondary S-pulse and the Rayleigh-

pulse. In the case of distortional excitation the pulses are: the reflected P-pulse, the surface

P-pulse, the direct S-pulse, the secondary P-pulse, the reflected S-pulse and the Rayleigh-

pulse. These pulses represent individual solutions to the equation presented by Lapwood

(1949) and together represent the total solution.

Figure 2.1: Pulse arrival according to Lapwood (1949). The numbers on the image identify
the six pulses in their order of arrival at an arbitrary point

5

2.1.2 Layered Media

First Arrival Maps

The more complex problem of wave propagation in a layered medium has been solved differ-

ently depending on the application. The simplest approach to studying wave propagation in

layered media is by first arrival maps, which is traditionally done using ray tracing algorithms

(Julian and Gubbins, 1977). Ray tracing algorithms are limited because they are compu-

tationally intensive, give only approximate solutions and are only valid for wavelengths of

negligible size compared to the dimensions of the medium.

Vidale (1988) suggested a different approach using finite-difference methods on two-

dimensional soil profiles to compute time of flight. The method propagates the wavefronts

both using linear rays, as occurs far from the source, and spherical wavefronts when values

are computed close to the source. The method, however, is very sensitive to abrupt changes

in velocities and is numerically unstable for discontinuous soil profiles. A three-dimensional

approach was later presented (Vidale, 1990).

A solution to the discontinuity problem was presented by Podvin and Lecomte (1991).

They show that the instabilities in Vidale’s approach are due to the treatment of wavefronts

as a single entity thus ignoring signal information. They solve this problem by separat-

ing the propagation fronts as transmission fronts, head waves, and diffracted wavefronts.

Solving each of the fronts and picking the most appropriate, this method can accommodate

discontinuities with impedance ratios up to 1:10.

Seismic traces

Cagniard (1939) was the first to suggest a method to solve the problem of wave propaga-

tion in a stratified media. The method, commonly known as the Cagniard-de Hoop-Pekeris

method due to later contribution by de Hoop (1960) and Pekeris (1955), consists on an-

alytically solving the inverse transform of the impulse response. The method is effective

analytically on homogeneous stratified medias and numerically on more complex configu-

6

rations (Chapman, 2004). However, the method is designed to solve ray refraction and

reflection thus not providing a solution for surface wave propagation.

Ray tracing methods solving the propagation of different wave fronts are common (Cer-

veny, 2001; Um and Thurber, 1987; Asakawa and Kawanaka, 1993; Smirnova, 1995). Ray

tracing methods are useful because they can be solved numerically for arbitrary configura-

tions. They also have the added benefit of providing information about amplitude, waveform

shapes and travel times (Cerveny, 2001). However, ray tracing methods are computationally

intensive, and have limited accuracy since they depend on infinite summations.

Kausel (1981) presented another approach by providing an explicit, closed-form solution

for the Green functions of dynamic loads acting on a layered medium. This approach is more

flexible than ray tracing as it is computationally more efficient and can model arbitrary layer

configurations.

Table 2.1: Formulas used to calculated longitudinal (Vp) and shear (Vs) wave velocity.
Together, these relationships form the basis for ultrasonic pulse velocity measurements. E
is the Young’s modulus, ρ is the density, and ν is the poisson ratio.

Velocity Type Formula

Longitudinal (P-Wave) Vp =
√

E(1−ν)
ρ(1+ν)(1−2ν)

Shear (S-Wave) Vs =
√

E
2(1+ν)

7

2.2 Nondestructive Testing (NDT) Methods for Condi-

tion Assessment of Concrete

The complexity of concrete as compared to standard metals makes nondestructive evalu-

ation difficult. Multiple methods have been suggested and used, each one with strengths

and weaknesses. The most common methods can be classified as either electromagnetic

or acoustic. Electromagnetic methods include ground penetrating radar, thermal imaging,

electrical resistance testing, radiography, etc. Acoustic methods include ultrasonic pulse ve-

locity measurements (UPV), impact echo, seismic tomography, and surface waves (Popovics,

2003; McCann and Forde, 2001; Yang et al., 2005).

2.2.1 Electromagnetic Methods

Radiography provides good results but requires expensive equipment, is not portable and

has limited penetration in concrete making it rarely used outside a laboratory (Popovics,

2003). Feng et al. (2000, 2002) attempted to solve this problem, to some extent, by using

microwave radiography on fiber reinforced plastic (FRP) jacketed concrete beams with some

success.

Conductivity and resistance testing is a less expensive, portable and efficient NDT

method, which can provide information about voids, reinforcing bar location, as well as

moisture and salt content (McCann and Forde, 2001). These electrical methods are used

mainly for complementary information as they do not provide direct condition assessment

of structures.

For example, the half cell potential method (HCP) uses the potential difference between a

reinforcement bar and an electrode placed on the structure’s surface. Variations in potential

are used to assess corrosion of the rebar but offer limited information on the health of the

concrete.

8

2.2.2 Acoustic Methods

Acoustic methods are economical, efficient and can be powerful methods for the condition

assessment of structures. The largest limitation of these methods is the need for complex

data processing and skilled operators. There is also a lack of engineering standards (Shickert,

2002).

Impact Echo

The impact-echo technique is commonly used as a simple field method but it requires signifi-

cant data processing. In this method, a hammer strike or falling ball is used as an excitation

source; the resulting echo from an anomaly or boundary is recorded by a transducer. Data

processing can then be performed to extract information from the resonance condition of

the echo (Popovics and Rose, 1994). Tawhed and Gassman (2002) successfully used the

impact echo technique in the study of bridge decks, they were able to detect the onset of

crack propagation before visual damage could be observed. The cracks ranged in sizes but

were all larger than at least half the smallest wavelength of the source. Sutan and Jaafar

(2003) used impact-echo for the detection of flaws much larger than the main wavelength

generated and were able to detect crack location on concrete as young as 3 days old with

58% accuracy.

Ultrasonic Pulse Velocity

Ultrasonic pulse velocity (UPV) is the simplest and most commonly used NDT method for

concrete. It consists of deducing specimen condition based on travel time information. The

UPV method requires a contact transducer on each side of a specimen or a single source

acting as both transmitter and receiver. Sutan and Jaafar (2003) used UPV measurements

on voids and found it half as accurate as impact echo for crack location.

Abo-Qudais (2005) studied the effect of concrete mixture on velocity values and found

that velocities vary widely based on type of concrete mixtures, aggregate size and specifically

9

water content. Similarly, Ohdaira and Masuzawa (2000) studied the effect of water content

on pulse velocity and found a 7% increase in water content (from dry) can lead to a 12.5%

increase in velocity. They used concrete samples of 10 cm in diameter and 20 cm in length.

The source impulse used had a frequency band of 20 to 100 kHz corresponding to wavelengths

of 20 and 4 cm for the measured velocity of 4,000 m/s (or height to wavelength ratio

of 1 and 5). They suggested that velocity readings could be related to the strength of

concrete through the deduced water content; however, no tests were performed to confirm

this statement. Hernandez et al. (2000) tried to evaluate concrete deterioration caused by

environmental damage by deducing concrete porosity using ultrasonic pulse velocity. They

concluded that while it was possible to do so, it would only be conclusive on elastic, isotropic

concrete with randomly distributed pores and require previous knowledge of the concrete

composition.

Popovics (2005) studied the effect of uneven moisture distribution inside concrete on

UPV results. He used 10 cm and 15 cm deep slabs as specimens and used an ultrasonic source

with frequency of up to 100 kHz (λ = 4.5cm, distance/λ ≈ 2 and 3, respectively where λ is

the wavelength of the P-wave). He concludes that the moisture content distribution makes

it difficult to accurately estimate an average moisture content from UPV measurements. He

also found that the effect of moisture distribution inside a crack is a significant factor when

determining its length through UPV methods.

UPV was also used by Washer et al. (2005) on reactive powder concrete where they con-

cluded that it could be used to assess the modulus of elasticity of specimens. They used both

10 cm cubes and cylinders 15 cm in length and 7.5 cm in diameter. The largest aggregate

size used in the mixtures was 0.6 mm and the tests were performed with frequencies ranging

from 0.5 to 1 MHz. The use of higher frequencies is possible only because of the small

aggregates used in this type of materials (largest aggregate is roughly 1 order of magnitude

smaller than smallest wavelength). Prassianakis and Prassianakis (2004) obtained similar

conclusions when testing standard concrete and marble using UPV versus destructive tests.

10

They tested cylindrical specimens 15 cm in diameter and 30 cm in length as well as 15 cm

cubic samples. The source used was excited at 1 MHz but no mention of the frequency

bandwidth was made. Both Washer et al. (2005) and Prassianakis and Prassianakis (2004)

used uniform specimens for which the composition and curing process were well known.

This information was critical to properly evaluate the material properties from ultrasonic

velocity.

Chang et al. (2006) claim that, for young (7-56 days) lightweight aggregate concrete, a

change in strength of up to 37% leads to an increase of velocity of only 7%. This low change

is directly related to the known relationship of Young’s modulus and velocity: Vp ∝
√

(E).

The specimens used were cylinders 10 cm in diameter and 20 cm in length, excited by a 1 kHz

to 100 kHz source with measured peak frequency at 9.07 kHz (corresponding wavelength

2.4 times larger than specimen height). The low frequency used could explain the small

difference in velocity observed.

Philippidis and Aggelis (2005) studied the effect of frequency and geometry on UPV

readings and found that higher frequency measurements gave higher velocities. They further

noted that different geometry, and where the measurements is taken (eg. side to side or

top to bottom), had an effect on velocity. Additionally, they found that the size of the

specimen had an effect on the results. They compared results of 7.3 cm and 15 cm cubes at

frequencies ranging from 25 kHz (λ = 18cm, height/λ ≈ 0.4 for 7.3 cm specimen) to 700

kHz (λ = 0.6cm, height/λ ≈ 12 and 24 respectively). The smaller specimen had marginally

higher velocities, less than 3% higher, for frequencies between 25 and 100 kHz (λ = 18 and

4.5 cm, height/λ ≈ 0.4 and 1.2 for 7.3 cm specimen) and the reverse was true for frequencies

up to 700 kHz (λ = 0.6, height/λ ≈ 12 for 7.3 cm specimen). They do not conclude on a

possible cause for these effects but suggest that higher frequency measurements, above 100

kHz (λ = 4.5cm, height/λ ≈ 1.2 for 7.3 cm specimen), be used for parameter estimation.

The ASTM standard C597-02 states that pulse velocity measurements are independent of

specimen size and shapes as long as their sizes are in the order of one wavelength or more

11

of the source used. The standard also recommend use of frequencies between 20 and 100

kHz. The results by Philippidis and Aggelis (2005) indicate that such a requirement might

not adequately eliminate variations in velocities due to frequency and size.

2.2.3 Recent Ultrasonic Applications

Several methods are emerging as effective solutions for the acoustic nondestructive evalua-

tion of concrete. These techniques are more complex to use on the field and required more

data processing but also extend the usefulness of ultrasonic methods.

Wave Attenuation Measurements

Wave attenuation is an important source of information for nondestructive testing but the

difficulties in getting consistent results make it less popular. A thin crack in a concrete

specimen does not produce a measurable change in wave velocity (practically no change

in distance), whereas it produces a significant change in the wave amplitude because of

the impedance mismatch at the crack boundary. The attenuation of a propagating front

through a medium can contain information about its structural integrity. Gaydecki et al.

(1992) suggested the use of frequency dependent attenuation to determine the aggregate

distribution in a concrete specimen; because aggregates scatter waves differently depending

on their size relative to the wavelength. They used an excitation frequency bandwidth in

the range of 100 to 500 kHz (λ = 4 and 0.8 cm, height/λ ≈ 2.5 and 12.5 respectively for a 10

cm specimen) on cylindrical specimens of 50 cm diameter and with lengths varying from 10

to 50 cm. Philippidis and Aggelis (2005) state that the quantity of aggregate significantly

affects velocity whereas the size of the aggregate affects attenuation. They concluded this

from testing on cubic specimens of 7.3 and 15 cm using a frequency range of 25 kHz to 700

kHz.

Goueygou et al. (2001, 2002) found similar results looking at degradation of concrete

covers; where a small velocity change from the degradation (24%) could translate in a ten-

12

fold increase in attenuation. They used slabs 30x15 cm in area and 5 cm deep with testing

centre frequencies of 1 MHz for P-waves and 0.5 MHz for S-waves (height/λ ≈ 11 mm

for P-waves using a velocity of 4500 m/s and height/λ ≈ 22 for S-waves). Chaix et al.

(2003) found that wave attenuation could be used in assessing thermal damage in concrete

when measuring the response of a scattered signal. They used cylindrical specimens 11 cm

in diameter and 21 to 22 cm in length. They induced varying heat damage on concrete

specimens and compared the results to measurements on healthy samples using signals from

26 kHz to 2.5 MHz, corresponding to 1 and 100 wavelength per sample height respectively.

Surface Waves

Surface waves have convenient properties for NDT. They require access to only one surface,

their penetration depth can be controlled by changing frequency, and they contain most of

the wave energy. Popovics et al. (2000) introduced the use of surface waves for detection of

surface breaking cracks. They used slabs of 41 x 41 cm in area and 10 cm in depth. Different

frequencies (5 to 95 kHz) and their corresponding attenuation are used to determine the

depth of a surface breaking crack. Yang et al. (2005) improved this method by introducing

a new transducer configuration and the use of the wavelet transform.

Rayleigh waves were used by Goueygou et al. (2002) at high frequencies (0.5 to 1 MHz)

to assess chemical damage at the top of concrete surfaces. Their method used the dispersion

curve of high frequency surface waves to evaluate the condition. The tests were done on

slabs 30x15 cm in area and 5 cm in depth (or 5 to 10 wavelength in depth for P-wave

velocity). They find the dispersion curves of surface waves to be useable for field use in

evaluating surface condition.

Digital Signal Processing

One of the greatest problem of ultrasonic methods is the difficulty to interpret complex

experimental data. Digital signal analysis methods are used to extract more information.

13

Bilgutay et al. (2001) reviewed several signal analysis methods such as the split spec-

trum and self-compensating signal transmission. The split spectrum processing uses high

frequency measurement over a certain bandwidth to average out the effect of particle scat-

tering in concrete. The self-compensating signal transmission method is analogous to the

transmission coefficients proposed by Popovics et al. (2000) and Yang et al. (2005). It uses

a source with two receivers to obtain an excitation-independent attenuation measurement.

Kim et al. (2005) suggested the use of various artificial intelligence techniques to assess

the strength of concrete samples based on algorithm training of control specimens. The

technique monitor features in the ultrasonic signal such as: signal’s statistical variance,

number of zero crossings, mean frequency, the AR model coefficients and the linear cepstrum

coefficient. The latter two parameters are based on spectral statistics. They used cylinders

15 cm in diameter and 30 cm in length along with a 54 kHz centre frequency source. They

cast many specimens at varying strength levels for training of the algorithm. Under ideal

conditions, they had a 92% success rate in strength categorization of their samples.

Chang and Wang (1997) used an array of transducers to effectively detect a crack in 3

dimensions. By triangulating backscatter echos from different sources at different locations

the precise tip of a surface breaking crack can be imaged. They achieved high resolution

measurements by using a 300 kHz source. Glushkov et al. (2006) solved a similar problem

theoretically, with an improved integral equation method that solves the inverse problem of

locating and sizing a crack by measuring the surface movement. The method is computa-

tionally cheaper than the traditional travel time methods.

Another detection method was suggested by Hatanaka et al. (2005), they used the wavelet

transform for signal processing prior to localizing the flaws. They successfully reconstructed

a flaw inside a large slab (90x50 cm in area and 25 cm deep) using a 250 kHz excitation.

The signal processing was used solely for feature extraction from the time signal, making

flaw reconstruction easier.

14

2.3 Summary

A review of significant research of wave propagation in infinite half space and layered media

was presented. Methods for calculating theoretical time traces at a surface were introduced

for both the infinite half space and the layered media case.

Current and upcoming NDE methods in concrete were presented in terms of electro-

magnetic and acoustic methods, with a strong focus on acoustic techniques. Overview of

current research in impact echo, ultrasonic pulse velocity, and emerging ultrasonic methods

was also presented. All of the presented research on ultrasonic pulse velocity used speci-

men with at least one wavelength per specimen height, in accordance with ASTM C597-02.

Studies by Sutan and Jaafar (2003), Abo-Qudais (2005), Ohdaira and Masuzawa (2000),

used low frequencies (below 100 kHz) to measure velocities on similarly cast and sized

specimens to evaluate physical properties. Similarly, Washer et al. (2005), and Prassianakis

and Prassianakis (2004) studied UPVM for estimation of Young’s modulus but did so using

high frequencies (0.5 to 1 MHz). In all of these studies, velocity is expected to change in

accordance to a studied parameter, as such velocity differences are not fully evaluated in

terms of experimental error. Philippidis and Aggelis (2005) studied the effects of specimen

size, transducer location, specimen composition and frequency on velocity values and found

that each of these can have an effect on velocity measured.

15

Chapter 3

Theoretical Background

3.1 Mechanical Waves

This section presents the fundamental theory behind elementary wave propagation in a

homogeneous, linear and elastic solid. First, an introduction to body waves is presented

followed by a brief description of Rayleigh waves and their properties. Finally, general

properties of wave generation, near field effects, and wave attenuation are discussed.

3.1.1 Plane Waves in a Homogeneous Medium

In an infinite homogeneous media, waves are described by the well known Helmholtz equation

(Chapman, 2004; Hecht, 2002; Bullen and Bolt, 1985):

∇2ψ = V 2
p

∂2ψ

∂t2
(3.1)

for which the general solution is:

16

ψ = Aei(kx−ωt) (3.2)

where ψ is the waveform function, Vp is the wave velocity, A is wave amplitude, t is the

time, k is the wave vector (direction of propagation, magnitude is wave-number), x is the

position vector and ω is the angular frequency. Thus, waveforms traveling in a homogeneous

infinite media must be a superposition of multiple variations of equation 3.2. It follows from

this that each wave front is a harmonic sequence with a period T along the time axis, and

wavelength λ along the direction of propagation. The velocity of propagation is given as

the ratio of wavelength over period.

T =
2π
ω
, λ =

2π
|k|
, Vp =

λ

T
(3.3)

Reflection and Refraction across boundaries

Waves traveling across boundaries are reflected and transmitted in varying proportions based

on the acoustic impedance on each side of the boundary. The impedance of a material (Z)

is given in terms of the density (ρ) and wave velocity (V) by: (Chapman, 2004)

Z = ρV (3.4)

The wave energy after crossing the boundary is split between the reflected and trans-

mitted wave according to the reflection and transmission coefficients: (Chapman, 2004)

17

RAA =
(
ZB − ZA

ZA + ZB

)2

(3.5)

RAB =
(

2
√
ZAZB

ZA + ZB

)2

(3.6)

where RAA is the reflection coefficient, RAB is the transmission coefficient from material A

to material B (figure 3.1a), and ZA, ZB are the impedances of materials A and B respectively.

The reflection/transmission coefficients represent the ratio of reflected/transmitted energy

to the total incident energy. Due to conservation of energy, the sum of RAA and RAB must

always be 1.

The transmission and reflection of the wave also affects the directionality of outgoing

rays (figure 3.1). The directional behavior of rays is governed by Snell’s law; which states

that an incoming wave vector (Chapman, 2004):

ki

ω
=

 kxi

kyi

 =
1
VA

 sin θi

− cos θi

 (3.7)

must have reflected wave vector:

kr

ω
=

 kxr

kyr

 =
1
VA

 sin θr

cos θr

 (3.8)

and transmitted wave vector:

kt

ω
=

 kxt

kyt

 =
1
VB

 sin θt

− cos θt

 (3.9)

18

where θi, θr, θt are the incident, reflected, and transmitted angles from the normal (figure

3.1b). VA, VB are the velocities of material A and B respectively. In order to satisfy conti-

nuity, the wave must have the same frequency and wavelength along the boundary (x axis).

Thus, the x component of the wave vector must be equal for all wave types. Applying this

condition to equations 3.7, 3.8, and 3.9 it is obtained that:

θi = θr (3.10)

VB sin θi = VA sin θt (3.11)

(a) (b)

Figure 3.1: Representation of Snell’s Law. (a) Reflection/Transmission, (b) Angles

3.1.2 Elastic Waves

In an elastic solid, waves propagate according to the material’s elastic properties. Waves

still follow the basic principles of plane wave propagation and Snell’s law but are described

in terms of elastic properties of the material.

19

Body Waves

In a homogeneous, isotropic and perfectly elastic solid with no body forces the equation of

motion of the waves is described by: (Bullen and Bolt, 1985)

ρ
∂2ui

∂t2
= (λl + µl)

∂εv
∂xi

+ µ∇2ui (3.12)

where ui = u1, u2, u3 is the displacement in all three principal axis (x,y and z), xi is the

coordinate of the point as compared to a fixed set of rectangular coordinates, εv is the

volume expansion given by εv = ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

, and λl, µl are the Lamé constants, which

are related to the Young’s modulus (E), and the shear modulus (G) by:

λl =
νE

(1 + ν)(1− 2ν)
(3.13)

µl = G =
E

2(1 + ν)
(3.14)

where ν is the Poisson ratio.

To isolate wave propagation, two mathematical tools are used: the divergence and the

curl. The divergence operation, ∇·, which represents the flow through an enclosing area.

Waveforms expanding as described by the divergence operation propagate in the strain

direction. Conversely, the curl operator, ∇× , represents the rate of rotation; the movement

is perpendicular to the flow. Taking the divergence of equation 3.12, the compressional

wave, or P-wave, equation is obtained:

∂2εv
∂t2

=
λl + 2µl

ρ
∇2εv (3.15)

where, comparing to equation 3.1, the corresponding velocity is:

20

Vp =

√
λ+ 2µ
ρ

=

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(3.16)

Similarly, using the curl operation on both sides of equation 3.12 , and simplifying, the

shear wave, or S-wave, equation is obtained:

∂2

∂t2
∇× ui =

µ

ρ
∇2∇× ui (3.17)

which leads to a shear wave velocity:

Vs =
√
µ

ρ
=

√
E

2(1 + ν)
(3.18)

Rayleigh Waves

Rayleigh waves are a special case of surface waves that occur at an interface. The more

general case of surface waves exists for any interface between two materials. The surface

wave exists on the boundary (x1-x2 plane) and must be continuous across it (figure 3.2).

For a plane wave traveling in the x1 direction crossing the boundary; any derivative towards

x2 vanishes. The displacement of the particles is given by (Bullen and Bolt, 1985):

u1 =
∂φ

∂x1
+
∂ψ

∂x3
u3 =

∂φ

∂x3
− ∂ψ

∂x1
(3.19)

where φ, ψ are potential functions defined as:

21

Figure 3.2: Surface wave coordinate system

∇2φ = θ (3.20)

∇2ψ =
∂u1

∂x3
− ∂u1

∂x1
(3.21)

The functions φ, ψ are related to P waves and vertical S waves respectively. The solutions

of u1, u3 presented in equation 3.19 satisfy relation 3.12 if the relations:

∂2φ

∂t2
= V 2

p ∇2φ

∂2ψ

∂t2
= V 2

s ∇2ψ

∂2u2

∂t2
= V 2

s ∇2u2 (3.22)

are valid for material A. Similarly, an identical set with V ′p , V
′
s must be valid for material B.

These relations are simply wave equations and their solutions are given by:

22

φ = f(x3)eiκ(x1−Vrt) (3.23)

ψ = g(x3)eiκ(x1−Vrt) (3.24)

u2 = h(x3)eiκ(x1−Vrt) (3.25)

where Vr is the surface wave velocity, and f, g, h are unknown functions in material A. A

similar set of relations, using f ′, g′, h′ is also valid in material B. These solutions are simple

plane waves with unknown amplitude functions. A solution in material A (at boundary) is

found by substituting equation 3.25 into 3.22:

[
d2

dx2
3

+ κ2

(
V 2

r

V 2
s

− 1
)]

h = 0 (3.26)

which is a second order differential equation with solution for h:

h(x3) = Ce
−iκ

r
V 2

r
V 2

s
−1x3

+ Fe
iκ

r
V 2

r
V 2

s
−1x3

(3.27)

where C, F are integration constants. This procedure is easily repeated for functions

f, g, f ′, g′. For the solution to be physical, φ, ψ, u2 must vanish away from the boundary.

This implies the exponent must be negative in x3 for x3 > 0 and positive for x3 < 0. Thus,√
V 2

r

V 2
s
− 1 must be imaginary. Furthermore, the positive exponent must vanish, otherwise

the solution diverges, simplifying the solutions as:

23

φ = Ae
iκ

„
−

r
V 2

r
V 2

p
−1x3

«
eiκ(x1−Vrt) (3.28)

ψ = Be
iκ

„
−

r
V 2

r
V 2

s
−1x3

«
eiκ(x1−Vrt) (3.29)

u2 = Ce
iκ

„
−

r
V 2

r
V 2

s
−1x3

«
eiκ(x1−Vrt) (3.30)

where A,B,C are constants, and Vr < Vs < Vp such that the roots are always imaginary.

Similar solutions exists, with different constants and velocities, for material B. The problem

of solving for the constants can then be approached using the continuity of displacements

and stresses at the boundary.

The case of interest being Rayleigh waves on a half space, the constants A′, B′, C ′ are

zero if material B is a void. Therefore, only the first boundary condition is required to

find a solution. Thus, continuity at the boundary implies u1 = u2 = u3 = 0 and, by using

solutions for φ, ψ, it is obtained that:

A = B

√
V 2

r

V 2
s

− 1 (3.31)

B = −A

√
V 2

r

V 2
p

− 1 (3.32)

C = 0 (3.33)

and solving for A, B leads to:

(
2− V 4

r

V 4
s

)2

− 4
(

1− V 2
r

V 2
p

) (
1− V 2

r

V 2
s

)
= 0 (3.34)

further simplifying gives:

24

V 6
r

V 6
s

− 8
V 4

r

V 4
s

+ V 2
r

(
24
V 2

s

− 16
V 2

p

)
− 16

(
1− V 2

s

V 2
p

)
= 0 (3.35)

which can be used to solve for Vr. The approximate solution to this operation is given by

Vinh and Ogden (2004) and Vinh and Malischewsky (2006) as:

Vr

Vs
≈ 0.874 + 0.196ν − 0.043ν2 − 0.055ν3 (3.36)

for poisson ratio ν ∈ [−1, 0.5].

25

3.2 Signal Analysis

Wave signals are often difficult to interpret unless the geometry of the problem is simple (e.g.

homogeneous half-space) because the effects of reflections, attenuation and scattering make

a signal difficult to analyze. Several methods have been suggested over the years to extract

clear signals from complex time domain traces, each with their own quirks and limitations.

Four common transform methods are covered next: Fourier transforms, Frequency wave-

number transform, convolution, and Hilbert transform.

3.2.1 Fourier Transform

The Fourier transform is one of the most used mathematical transforms in signal analysis

and also serves as the basis of many other linear transforms. The properties of this transform

are covered in the literature (Hecht, 2002; Hatton et al., 1986; Robinson and Tritel, 1980).

This section briefly covers the basics of the Fourier transform and discrete Fourier transform.

Fourier Transform

The Fourier transform is based on the Fourier series, which expresses any periodic signal as

an infinite series of sines and cosines of increasing frequencies. A Fourier series is defined

by:

x(t) = a0 + 2
∞∑

k=1

(
ak cos

(
2πkt
T

)
+ bk sin

(
2πkt
T

))
(3.37)

where ak, bk are constants defined by:

ak =
1
T

∫ T

0

x(t) cos
(

2πkt
T

)
dt, k ≥ 0 (3.38)

bk =
1
T

∫ T

0

x(t) sin
(

2πkt
T

)
dt, k > 0 (3.39)

26

If T becomes infinite the Fourier transform is obtained, which is a special case for a

signal with an infinite period (i.e. non-periodic). Using equation 3.37-3.39 with Euler’s

formula (eiθ = cos θ + i sin θ) the Fourier transform can be expressed as:

x̄(f) =
∫ ∞

−∞
x(t)e−i2πftdt (3.40)

with the inverse transform:

x(t) =
∫ ∞

−∞
x̄(f)ei2πftdf (3.41)

Discrete Fourier Transform

The Fourier transform itself is rarely used in signal analysis as the discrete Fourier trans-

form (DFT) is much better suited for numerical use. The DFT is, as the name implies, a

discretized version of the Fourier transform used to eliminate the integration term.

For a signal x ∈ [0, T] sampled at interval ∆t, then approximating the integral by a

Riemann sum equation 3.40 gives:

Xk =
1
N

N−1∑
r=0

xre
−i2πkr/N (3.42)

where N = T
∆t , r is an integer in the range (0, . . . , N-1), and xr is the value of the signal at

index r. Similarly, the inverse DFT can be found as:

xr =
1
N

N−1∑
k=0

Xke
i2πkr/N (3.43)

27

Symmetry Properties of Real Signals

The periodic nature of the Fourier series implies that Xk has period N such that XN+i = Xi,

where i is an arbitrary integer i ∈ [1, N −1]. Taking the complex conjugate of Xk, assuming

xr is real, the symmetry properties can be studied further.

X∗
k =

1
N

N−1∑
r=0

xre
i2πkr/N

=
1
N

N−1∑
r=0

xre
−i2π(−k)r/N (3.44)

This relation implies that

X∗
k = X−k (3.45)

and, consequently,

X∗
0 = X̄N = X0 (3.46)

thus, X0 and all its periodic equivalent are real values. Using periodicity and equation 3.45

it follows that:

X∗
N/2 = X−N/2 = XN/2 (3.47)

thus, XN/2 and all its periodic equivalents are also real.

28

Discretization Effects

As the periodicity property implies, Xk has unique values only in the range k = 0, 1, . . . , N−

1. Furthermore, this range is reduced by the symmetry property to k = 0, 1 . . . , N/2. Thus,

only frequencies up to k = N/2 can be represented by the DFT. This correspond to angular

frequencies:

|ω| ≤ 2πN/2
T

=
π

∆t
(3.48)

or frequencies:

|f | ≤ N/2
T

=
1

2∆t
(3.49)

This maximum upper frequency is called the Nyquist frequency. Any frequencies present in

the original signals that are higher than the Nyquist frequency are not accurately represented

and instead they are aliased as a lower frequency.

An aliased frequency is represented in the lower frequency range as wrapped around the

N/2 frequency. For example, a frequency corresponding to 1.25fN , where fN is the Nyquist

frequency, is seen as:

f = fN − (1.25fN − fN) = 0.75fN (3.50)

Thus, to have a proper representation of the signal below the Nyquist frequency, the higher

frequencies must be filtered from the signal prior to transforming it. Alternatively, a higher

sampling rate can be used if possible.

The Nyquist frequency range is a bandwidth limit, not an absolute range. If the fre-

29

quency content is known prior to processing, and contains no frequencies outside that range

it is possible to obtain an accurate spectrum of high frequencies even at low sampling rates.

3.2.2 Frequency Wave-number Transform

The frequency wave-number plot is a two dimensional Fourier transform performed over

time (x-axis) and distance (y-axis) (figure 3.3). The two dimensional DFT has properties

similar to the one dimensional DFT along each of its axes and it is given by:

f̄pl =
1√
MN

M−1∑
m=0

N−1∑
n=0

fmne
−j2π(p m

M +l n
N) (3.51)

with the reverse transform given by:

fmn =
1√
MN

M−1∑
p=0

N−1∑
l=0

f̄ple
j2π(p m

M +l n
N) (3.52)

where p, l,m, n are integer indices of the discrete signal. A f-k plot is a useful tool in studying

wave propagation along a surface by giving information on wave velocity, wave directionality

and dispersion. A propagating wave front can be identified as a series of peaks on the f-k

plot as shown in figure 3.4. This works best using signals with a broad frequency band as

narrow band signals will have few peaks to use (figure 3.6).

The group wave velocity in a certain frequency range can be determined by taking the

slope at a point:

V =
∆ω
∆k

(3.53)

where the slope is taken as being the linear trace along two or more consecutive peaks.

30

The wave directionality can be obtained from the location of the peaks. Peaks in the

positive frequency domain represent waves propagating in the positive x direction whereas

peaks in negative frequency domain propagate backwards. This property is useful for sepa-

rating transmitted and reflected waves.

The dispersion curve is obtained from the curve formed by a series of consecutive peaks.

This curve in the frequency-wavenumber domain defines the phase velocity for each fre-

quency component (Vph = ω/k). A visual representation of the f-k plots is given in figure

3.3 to 3.4 for different input sources.

Figure 3.3: Sample of seismic trace

31

Figure 3.4: Sample f-k Plot for broad band signals shown in 3.3. The right wave (positive
incline) is the longitudinal wave propagating forward while the left wave (negative incline)
is the reflected wave. The velocity of a wave is given as the slope of a line on a f-k plot.

32

(a)

(b)

Figure 3.5: Broad Band Input Source (a) Time trace, (b) Magnitude of Fourier spectrum

33

Figure 3.6: Sample f-k Plot for Narrow Band Input

34

(a)

(b)

Figure 3.7: Narrow Band Input Source (a) Time trace, (b) Magnitude of Fourier spectrum

35

3.2.3 Convolution

The convolution is a mathematical representation of the coupling of linear systems (Hatton

et al., 1986). This operation couples one signal with another to produce a third convoluted

signal which is a combination of both. The operation is especially useful as it is reversible

if one of the two original signal is known. The convolution of two signal f(t) and g(t) is

represented as:

a(t) = h(t) ? g(t) (3.54)

where ? is defined as the convolution operator. For continuous functions, the convolution is

defined as:

h(t) ? g(t) =
∫ te

t0

h(τ)g(t− τ)dτ (3.55)

where t0, te is the window in which the signals are defined. For an infinite signal t0 = −∞

and te = ∞. The discrete convolution can be directly derived from equation 3.55 to give:

ak =
Lw∑
j=0

hjgk−j (3.56)

where j = 0, 1, . . . , Lw, j = 0, 1, . . . , Le. This simple discretized method is computationally

expensive and rarely used in practice. Instead, the fast convolution algorithm is used. Fast

convolution uses the convolution theorem:

FT (h ? g) = FT (h)FT (g) (3.57)

36

where FT denotes the Fourier transform operation. Thus, the convolution is obtained

by taking the transform of f and g, multiplying them, and finally performing the inverse

transform. Due to the efficiency of the fast Fourier transform algorithm, the convolution is

computed more efficiently in the frequency domain.

37

(a)

(b)

(c)

Figure 3.8: Visual Representation of Convolution (a) signal wavelet , f, (b) Impulse Re-
sponse, g, and (c) convolved response, a.

38

3.2.4 Hilbert Transform

The Hilbert transform is used to obtain the analytic representation of a real function. The

analytic representation is a complex trace with the original signal as the real part and its

Hilbert transform as the imaginary part (Taner et al., 1979).

The Hilbert transform (ŝ(t)) can be obtained by the convolution of a signal (s(t)) with

the impulse response of a Hilbert filter:

ht(t) =
1
πt

(3.58)

then

ŝ(t) = ht(t) ? s(t) (3.59)

The analytical signal is mathematically represented as:

y(t) = s(t) + iŝ(t) (3.60)

This complex trace can be used to extract time-dependent properties from the original

signal. The three principal features are amplitude, phase, and angular frequency:

A(t) =
√
s2(t) + ŝ2(t) (3.61)

θ(t) = tan−1

(
ŝ(t)
s(t)

)
(3.62)

ω(t) =
dθ(t)
dt

(3.63)

39

These properties are demonstrated in figure 3.9 for the time signal shown in figure 3.8a.

The amplitude, A(t), represents the envelope of the function, θ(t) is the immediate phase

and ω(t) is the immediate frequency of the signal.

40

(a)

(b)

(c)

Figure 3.9: Analytical Signal of time trace shown in Figure 3.8a. (a) Amplitude, (b) Phase
and (c) Frequency

41

3.3 Transducer Characterization and Design

It is often overlooked in nondestructive tests of civil engineering materials that the trans-

mitter has a particular acoustic field that depends on its mechanical, and electrical charac-

teristics.

Transducer specific acoustic fields can have significant consequences when using pulse-

echo methods, attenuation measurements, or even frequency domain comparisons (Fink and

Cardoso, 1984). Depending on the type of transducer used, defects react differently because

of the different pressure field being scattered. Precise descriptions of acoustic fields vary by

transducer model. This research focuses on the flat uniformly excited transducer, or piston

transducer, which has well known theoretical solutions.

3.3.1 Acoustic Field of a Piston Transducer

The exact solution for the acoustic field of a piston transducer can be found provided

the impulse function is known. Using current methods it is possible to find the impulse

function of arbitrary piston transducer shapes using discretization (Jenden and Svendsen,

1992). Closed-form solutions exist for simple shapes such as circles and rectangles and any

combination of these shapes (Lockwood and Willette, 1973). Using superposition of the

previous models it is also possible to simulate non-uniformly excited surfaces.

The following approach can be taken to solve for the pressure field of a transducer. Using

a time domain Green’s function approach, Lockwood and Willette (1973) find the frequency

domain pressure distribution to be:

p̄(x, y, ω) = −ψ̄(w)
∫

s

e−jωr/Vp

2πr
dS (3.64)

r2 = x2 + y2 (3.65)

where ω is the angular frequency of vibration, ψ̄(w) is the Fourier transform of the pressure

42

function on the transducer’s face, r is the distance from the point of interest to a point

on the transducer’s surface, s and dS represent an integration over the entire transducer’s

surface and Vp is the speed of sound in the system.

Within the assumption of a linear system, the transfer function and the impulse response

of the system are given by:

h̄i(x, y, ω) = −
∫

s

e−jωr/Vp

2πr
dS (3.66)

hi(x, y, t) = −
∫

s

δ(t− r/Vp)
2πr

dS (3.67)

where the impulse response, hi(x, y, t) is taken to be the direct inverse Fourier transform

of the transfer function h̄i(x, y, ω) and δ is the Dirac’s delta function. The pressure can be

given as:

p̄(x, y, ω) = ψ̄(ω)h̄i(x, y, ω) (3.68)

or, by the convolution theorem:

p(x, y, t) = hi(x, y, t) ? ψ(t) (3.69)

Hence, assuming that the time-varying pressure on the transducer, ψ(t), is known the

pressure at any point can be computed with knowledge of the impulse response. The impulse

response function contains all information relating to the transducer shape and size. The

circular piston transducer is of most interest as it was used for all the tests performed in

this work. Lockwood and Willette (1973) cites the solution of pressure wave for the circular

piston (figure 3.10) as follows:

43

For the case y < a

1
Vp
h(x, y, t) =



0, t < t1

1, t1 < t < t2

1
π cos−1

(
V 2

p t2−x2+y2−a2

2y(V 2
p t2−x2)1/2

)
, t2 < t < t3

0, t3 < t

(3.70)

For the case y ≥ a

1
Vp
h(x, y, t) =


0, t < t2

1
π cos−1

(
V 2

p t2−x2+y2−a2

2y(V 2
p t2−x2)1/2

)
, t2 < t < t3

0, t3 < t

(3.71)

For time limits:

t1 =
x

Vp
(3.72)

t2 =
1
Vp

[
x2 + (y − a)2

]1/2
(3.73)

t3 =
1
Vp

[
x2 + (y + a)2

]1/2
(3.74)

where t is the time of interest, t1, t2 and t3 represent the shortest travel time from the

transducer to the point of interest, and from the edges of the transducer to the point of

interest, respectively, a is the transducer radius, x, y represent location from transducer as

shown in figure 3.10 and Vp is the pressure wave velocity. A visual representation of this

impulse response is shown in figure 3.11.

The pressure is computed using a computer program developed in this work to evaluate

44

equation 3.69 numerically (Appendix C.10). A sample output can be seen in Figure 3.12.

Figure 3.10: Circular piston transducer coordinate system

45

Figure 3.11: Impulse response of a circular transducer at selected locations

46

(a)

(b)

Figure 3.12: Snapshot of near-field acoustic field for a circular piston assuming a velocity
Vp of 1 m/s and a ratio a/λ = 5 from an 81 s sine impulse. (a) Pressure, (b) Envelope of
pressure

47

3.4 Numerical Simulations

The use of numerical methods to model wave propagation in NDT tests is very useful to

obtain a better understanding of a system and to extrapolate laboratory results.

As the propagation through solid materials includes shear waves, the most appropriate

methods available are finite element or finite differences analysis.

The finite difference method is a direct approximation of the equation of motion through

a Taylor expansion of the displacement function that leads to a discretization of the differ-

entials. The method is significantly faster than finite element methods but is more prone to

numerical errors due to discretization effects and requires a minimum discretized step size to

prevent numerical instabilities (Bathe, 1982). Discretization effects occur from a non-zero

step size in the definition of a differential.

f ′(x) = lim
x→0

f(x+ ∆x)− f(x)
∆x

(3.75)

The finite element method, consists of transforming the system into a finite mesh of

elements with multiple nodes each with their own characteristics and movements. A system

can be represented by a series of matrices in terms of mass, stiffness and damping. The

solution given in this method is not directly the differential equations but rather the es-

timation of equilibrium of the system given the loading conditions. Thus, finite elements

rely on an estimation of the solution rather than an estimation of the differential equation.

Generally, finite element analysis is slower than finite differences as each steps may require

large matrix operations.

3.4.1 The Finite Element Method

The equilibrium condition of any linear, elastic solid in a static condition having surface

traction, body forces, and concentrated forces can be represented as:

48

Figure 3.13: Two Four-node elements structure

MÜ + CU̇ +KU = R (3.76)

where M is the mass matrix, C is damping matrix, K is stiffness matrix, U is displacement

vector, Ü is acceleration vector, U̇ is velocity vector and R is the external load vector.

The mass and stiffness matrices are built based on the physical conditions of the problem

and are constructed first. The damping matrix is not easy to determine because damping

has to be evaluated experimentalfly and depends on a number of parameters such as strain,

frequency, wave velocity, and boundary conditions, which are difficult to evaluate.

The damping matrix is often constructed using a combination of the stiffness and mass

matrix, called Rayleigh damping, to generate a set of uncoupled equations. Other methods

can also be used to approximate different damping types.

Upon constructing all matrices, equation 3.76 is then transformed into a series of un-

coupled differential equations of second order. These are called the static solutions as they

represent only one point in time.

49

Assembling Mass and Stiffness Matrices

The construction of the stiffness and mass matrices is procedural provided the geometry

of the specimen is fully known. To be accurate during element integration, the discretized

elements must properly account for changes between nodes. This can be achieved by building

the displacement interpolation matrix, H(m)(x, y, z), which provides a continuous variation

between connected nodal points for an element m (Bathe, 1982):


u(m)(x, y, z)

v(m)(x, y, z)

w(m)(x, y, z)

 = HÛ (3.77)

where Û is a vector of length 3N containing the displacement of each nodal point in all

directions (U,V,W). The coordinate system is chosen to be convenient and does not need

to be orthogonal. In the following example, the origin is defined as the centre of an ele-

ment. Using the two four-nodes elements system represented in figure 3.13, the following

interpolation matrices are defined:

H(1) =
[
H(1)

0 H(1)
1

]
(3.78)

H(2) =
[
H(2)

0 H(2)
1

]
(3.79)

with:

50

H
(1)
0 =

1

4

264 (1− 2x)(1 + 2y) (1 + 2x)(1 + 2y) 0 (1− 2x)(1− 2y) (1 + 2x)(1− 2y) 0

0 0 0 0 0 0

375
H

(1)
1 =

1

4

264 0 0 0 0 0 0

(1− 2x)(1 + 2y) (1 + 2x)(1 + 2y) 0 (1− 2x)(1− 2y) (1 + 2x)(1− 2y) 0

375
H

(2)
0 =

1

4

264 0 (1− 2x)(1 + 2y) (1 + 2x)(1 + 2y) 0 (1− 2x)(1− 2y) (1 + 2x)(1− 2y)

0 0 0 0 0 0

375
H

(2)
1 =

1

4

264 0 0 0 0 0 0

0 (1− 2x)(1 + 2y) (1 + 2x)(1 + 2y) 0 (1− 2x)(1− 2y) (1 + 2x)(1− 2y)

375

where x, y are the coordinates from the centre of the element investigated. These matrices

are set for a vector:

Û =
[
U1 U2 U3 U4 U5 U6 V1 V2 V3 V4 V5 V6

]
(3.80)

The significance of the H(m) vector is to interpolate discrete values of displacement in Û

to a continuous representation within each element. The H(m) matrix is used as a building

block for the mass and stiffness matrices:

K =
∑
m

K(m) =
∑
m

∫
V (m)

B(m)T D(m)B(m)dV (m) (3.81)

M =
∑
m

M(m) =
∑
m

∫
V (m)

ρ(m)H(m)T H(m)dV (m) (3.82)

C =
∑
m

C(m) =
∑
m

∫
V(m)

κ(m)H(m)T H(m)dV (m) (3.83)

where D(m) is the standard stress-strain matrix, ρm is the density of element m, κ(m) is

51

the element’s damping parameter, V (m) define integration over the volume (3D) or surface

(2D) of element m, and B is defined as:


∂u(m)

∂x1

∂v(m)

∂x2

∂w(m)

∂x3

 = BÛ (3.84)

and can be easily obtained from differentiating H appropriately. The damping parameter,

κ(m), is frequency dependent and thus difficult to obtain for finite element models. As such,

the damping matrix is usually estimated as a combination of mass and stiffness matrices

called Rayleigh Damping. This damping matrix simulates material damping (damping due

to scattering, heat losses, friction, and others) and is defined as:

C = αM + βK (3.85)

where α is the mass damping parameter, and β is the stiffness damping parameter. The

mass damping parameter influences low frequency attenuation such as solid body motion

whereas stiffness damping affects higher frequency vibrations. The values of damping simu-

late physical signal attenuation and can be set to zero if no damping is required. Practically,

α, β can be defined as (Zerwer et al., 2002):

α =
2D(ω)ω1ωn

ω1 + ωn
(3.86)

β =
2D(ω)
ω1 + ωn

(3.87)

where D(ω) is the frequency dependent damping ratio, ω1 is the first natural frequency

52

of interest, and ωn is the highest frequency of importance. Knowing α, β the frequency

dependent damping ratio is given by:

D(ω) =
α

2ω
+
βω

2
(3.88)

a typical variation of damping with frequency is presented in figure 3.14.

Figure 3.14: Sample curve of frequency dependent damping ratio using ω1 = 628318, ωn =
9424778, α = 47124 and β = 7.95775 ∗ 10−9

Dynamics

The methods available to solve equation 3.76 when the external load, R, is a function of

time can be separated into two group: explicit and implicit methods. In explicit methods,

the solution depends only on a previous state of the system; whereas in an implicit method

solution at time t depends on past and future solutions. The advantage of an explicit

method is that it is much faster and requires less matrix operations but it is significantly

influenced by the choice of time steps. Only explicit methods are covered in this document

as they are used in all simulations presented. For simple linear elastic systems, the most

53

common explicit integration solution used for stepping an equilibrium in time is that of

central differences. From equation 3.76 above, the time-evolving solutions of Ü , U̇ and U

are found by Taylor expansion of U:

U(t+ ∆t)− U(t)
∆t

= U̇(t) +O(∆t) (3.89)

U(t−∆t)− U(t)
−∆t

= U̇(t) +O(∆t) (3.90)

O(∆t) is an error term which represents the lowest order of unaccounted error given by this

expression, in this case ∆t. Adding equation 3.89 and 3.90 a relationship for U̇ is obtained:

U̇(t) =
U(t+ ∆t) + U(t−∆t)

2∆t
+O(∆t)2 (3.91)

Using a similar method, but expanding series up to second derivative term, the acceler-

ation is given by:

Ü(t) =
U(t−∆t)− 2U(t) + U(t+ ∆t)

(∆t)2
+O(∆t)2 (3.92)

Thus, with equations 3.91 and 3.92 equation 3.76 can be written as a function of dis-

placement only.

[
M

(∆t)2
+

C
2(∆t)

]
U(t+ ∆t) =

[
−2M
(∆t)2

+ K
]
U(t) +

[
M

(∆t)2
+

C
2(∆t)

]
U(t−∆t) (3.93)

Given M, and C are known matrices and ∆t is a known constant, it is possible to find

solutions at t+ ∆t provided that the initial conditions for displacement at t and t−∆t are

known. For a typical problem, initial conditions are only given at t = 0 and thus a special

54

solution is needed to find a second set of solution at t−∆t. Bathe (1982) suggests that this

can be easily found using a starting procedure that obtains the backwards time using:

U(−∆t) = U(0)−∆tU̇(0) +
(∆t)2

2
Ü(0) (3.94)

which is the undamped equation of motion for a solid body applied at every node.

Conditions for Accuracy

The explicit method is valid only within a certain parameter range. A good solution must

have convergence, accuracy and speed. An increase in accuracy is generally obtained by

using a smaller time step; whereas convergence is guaranteed only if the time step is small

enough compared to the period of the loading function. The solution, using the central

difference method, is convergent only if the time step, ∆t, is smaller than the smallest

period of the applied loads. The choice of time step can greatly influence accuracy and

computing time (Bathe, 1982). The actual value of ∆t is selected by the software or the

user, based on the wave propagation velocity of the materials.

In wave propagation problems, another important factor is the discretization of the mesh,

or the distance between each node (Marfurt, 1984). Four-node elements act as low pass fil-

ters and won’t be able to resolve high frequencies (i.e. wavelengths smaller than the distance

between the nodes). It has been found by Zerwer et al. (2002) the frequency-wavenumber

plot can be used to select the appropriate mesh size to avoid numerical dispersion; further-

more, the use of at least 10 elements for the smallest wavelength of interest is commonly

accepted to obtain good time-domain results (Zerwer et al., 2002).

3.4.2 Model calibration and verification

Validation of finite element models, in any field, requires the comparison of results for

theoretical data. As the models get more complex, theoretical solutions are less likely to

55

exist leading to the use of simplified models for validation. Simplified models often offer

little certainty because they are too different from the actual problem. Fortunately, the

problem of Rayleigh wave propagation in an infinite half-space has long ago been solved

analytically by Lamb (1904). However, the Lamb problem does not consider more complex

geometries such as layered media, which are of prime interest in nondestructive tests.

Lamb’s Problem

Lamb (1904) solved analytically the behavior of waves propagating through a semi-infinite

half-space due to a point source for both continuous harmonic loads and time-dependent

impulses. He found solutions for both horizontal and vertical displacements, separately, for

each type of impulse. Lamb (1904) made no distinctions between different sources; and the

full analytical solution was only provided for one case.

While Lamb’s theoretical solution is available for both 2D and 3D models, only the more

general three-dimensional case, which is easily replicated by an axisymmetric numerical

simulation, is considered here. Lamb (1904) simplified the 3D Rayleigh wave propagation

problem at the surface of an infinite half space, far from the source, to solve the radial

propagation problem (eq. 3.95), and the vertical propagation problem (eq. 3.96).

u =
H

πµl

∂

∂r

∫ ∞

0

Q

(
t− r

Vr
coshu

)
du+ C0 (3.95)

v =
K

Vrπµl

∂

∂t

∫ ∞

0

Q′
(
t− r

Vr
coshu

)
du+ C1 (3.96)

Q′(t) =
1
π

∫ ∞

0

dp

∫ ∞

−∞
Q (λ) sin p (t− λ) dλ (3.97)

where u, v are horizontal and vertical displacements respectively, H and K are constants

that depend on material properties, µl is the Lamé elastic constant, r is the radius from the

source origin, λ, p are variables used for integration, Vr is the velocity of the surface wave,

t is time, Q is the applied load function, Q′ (eq. 3.97) is a transform of Q and C0, C1 are

56

integration constants.

Vertical displacements are commonly measured in practice. Solving the actual equations

for vertical displacement is difficult for arbitrary pulses and different geometries, however it

can be achieved using numerical methods. On the other hand, for certain pulses, solutions

can be found analytically as shown by Lamb (1904) and in a slightly simplified discussion

by Bath and Berkhout (1984).

Using the load curve defined below:

Q (t) =
F

π

τ

t2 + τ2
(3.98)

Lamb (1904) suggested the use of the following equation as a primed transform of equation

3.98 and it can be shown to satisfy relation 3.97.

Q′ (t) =
F

π

t

t2 + τ2
(3.99)

where τ is a parameter affecting frequency content of the pulse, and F is a constant scaling

the amplitude of the source. A small value of τ generates high frequencies.

Using these source values, solutions for vertical and horizontal displacement can be found

using 3.96 and 3.95 respectively. The resulting displacement solutions are represented below.

u =
HQ̄

4πµτ2Vr

√
2τVr

r
sin

(
π

4
− 3

2
ν

)
cos3/2 ν (3.100)

v =
KQ̄

4πµτ2Vr

√
2τVr

r
cos

(
π

4
− 3

2
ν

)
cos3/2 ν (3.101)

tan ν =
(
t− r

Vr

τ

)

where r is the distance from the source. Displacements on the surface due to longitudinal

57

and transverse waves are ignored given their relatively small amplitudes compared to the

Rayleigh wave signal. The Lamb’s solutions, however, allow for finding the P and S waves

solutions if required. A sample solution for horizontal and vertical displacement is presented

in figure 3.15.

Figure 3.15: Lamb solution for the vertical and horizontal displacement due to a point
source (eq. 3.98)

58

Layered Media

The computation of the response of a layered media can be obtained following finite element

principles. However, the specific description of the problem can lead to computationally

efficient solutions such as those presented by Kausel (1981). These solutions are quite

involved but their principle can be succinctly explained.

Assuming a one-dimensional soil profile excited by a line source, the definition of its

harmonic solutions can be simplified as (Kausel, 1981):

U
S

 =
1
2π

∫ ∞

−∞

Ū
S̄

 e−ikxdk (3.102)

with:

S̄ =


τ̄xz

τ̄yz

iσ̄z

 (3.103)

Ū =


ūx

ūy

iūz

 (3.104)

where ū, τ̄ , σ̄ is the displacement, shearing stress and normal stress in the frequency-wavenumber

domain. U, S, Ū , S̄ are the displacement and stress vectors in the time and frequency domain

respectively.

The above system can be solved by using the stiffness matrix approach in which the soil

is divided in discrete elements and the equilibrium is found for each discrete layer. Assuming

each layers is composed of two nodes corresponding to the top and bottom respectively, the

stiffness matrix composition of the first layer composed of node 1 and 2 is given as:

59

P̄ = KmŪ (3.105)

or, in semi-expanded form:

P̄1

P̄2

 =

K11 K12

K21 K22


Ū1

Ū2

 (3.106)

where Km is the stiffness matrix, P̄1 = S̄1 is the external load at the top, and P̄2 = −S̄2

is the external load at the bottom; the loads are so defined to preserve equilibrium within

the layer. For N number of layers, N+1 elements, the stiffness matrix is a symmetric square

matrix of size 3N+3 corresponding to each node’s three degree of freedom.

The solution of the displacements can be found by multiplying both sides of 3.106 by

the inverse stiffness matrix, K−1, such that:

Ū = K−1P̄ (3.107)

Kausel (1981) suggested the use of a thin layer formulation for the evaluation of the

stiffness matrix. In this approach, each layer is divided into a number of smaller ones such

that each sub-layer is about one sixth of the smallest wavelength studied. By doing so, the

stiffness matrix can be estimated as:

Km = Amk
2 + Bmk + Gm − ω2Mm (3.108)

where k is the wave-number and matrices are defined as:

60

Am =
h

6



2(λ+ 2G) 0 0 λ+ 2G 0 0

0 2G 0 0 G 0

0 0 2G 0 0 G

λ+ 2G 0 0 2(λ+ 2G) 0 0

0 G 0 0 2G 0

0 0 G 0 0 2G


(3.109)

Bm =
1
2



0 0 λ−G 0 0 −(λ+G)

0 0 0 0 0 0

λ−G 0 0 λ+G 0 0

0 0 λ+G 0 0 −(λ−G)

0 0 0 0 0 0

−(λ+G) 0 0 −(λ−G) 0 0


(3.110)

Gm =
1
h



G 0 0 −G 0 0

0 G 0 0 −G 0

0 0 λ+ 2G 0 0 −(λ+ 2G)

−G 0 0 G 0 0

0 −G 0 0 G 0

0 0 −(λ+ 2G) 0 0 λ+ 2G


(3.111)

Mm =
ρh

6



2 0 0 1 0 0

0 2 0 0 1 0

0 0 2 0 0 1

1 0 0 2 0 0

0 1 0 0 2 0

0 0 1 0 0 2


(3.112)

where λl is the Lamé constant, G is the shear modulus, ρ is the mass density, and h is

61

the layer thickness. From this approximation, the stiffness matrix can be built using only

known material properties.

Practically, finding K−1 and solving for displacement is computationally expensive. The

solutions proposed by Kausel (1981) propose the use of spectral decomposition for obtaining

the inverse stiffness matrix and the use of Green’s functions as impulse loads to find solutions

of single frequency harmonic excitations. Kausel (1981) has a fully implemented solver in

the form of an application named “Punch”.

62

Chapter 4

Numerical and Experimental

Methodology

This chapter presents the numerical and experimental methodology used for this research.

Aspects pertaining to numerical simulations are presented followed by description of the

laboratory experiment program.

First numerical models are validated using Lamb’s solution and further verified using

Punch as a trusted output in simulating wave propagation. Then, methodology for the

simulation of experimental specimen is presented.

Second, experimental setup for the study on 11 mortar and 12 concrete specimen is

presented.

Finally, the model used in the piston-ui application is presented. Piston-ui is used to

model the pressure field of any circular transducers based on an arbitrary impulse.

63

4.1 Numerical Simulations

The theoretical or empirical relationships used for choosing critical parameters as well as

their relevance to the final results are presented in different sections. All numerical sim-

ulations, unless otherwise noted, are performed with LS-DYNA version 970 revision 6763.

LS-DYNA is an advanced explicit/implicit dynamic finite element solver (Hallquist, 2006).

The numerical simulations are split in two important parts. First, the calibration section

is used as confirmation of the accuracy of our finite element parameters and models. For

calibration the well known Lamb problem is compared with its theoretical solution, and

a layered soil profile is compared to a different, well proven code: “Punch”. Second, the

numerical simulations representing the laboratory tests are explained.

4.1.1 Parameter Definition Considerations

Basic finite element parameters common to all models such as element size, time step and

damping govern the accuracy of the models. The conditions for accuracy are heavily de-

pendent on the application, geometry and physics of individual models. Empirical relations

shown to give good results for wave propagation in elastic solids are discussed next.

Element Size

The mesh size or size of individual elements is chosen to satisfy stability conditions for the

frequency range of interest. The choice of mesh size is critical as it affects computational

demand, storage space, and memory usage. Any finite element will act as a low-pass filter

with a cut-off frequency inversely proportional to element size.

The choice of an element size is based on the slowest traveling wave at its highest

frequency (smallest wavelength). In the case of waves in elastic solids, waves such as lon-

gitudinal, transversal and, in surface problems, the Rayleigh surface waves are of interest.

Thus, a relationship for element size can be given as (Zerwer et al., 2002)

64

∆s ≤ ξλmin = ξ
Vmin

fmax
(4.1)

where ∆s is the element size, ξ is a constant, λmin is the minimum wavelength of interest,

Vmin is the slowest wave velocity and fmax is the maximum frequency.

For square elements, the ξ must be, ξ ≤ 0.5 in order to satisfy the Nyquist sampling rate

(e.g. ∆s < λmin/2). Further numerical constraints require that ξ < 0.2 to avoid numerical

dispersion in practical applications (Valliappan and Murti, 1984). Using a relatively large ξ

value could give acceptable results in frequency space but poor time-domain representation

of high frequencies. In this project, ξ < 0.05 in order to have at a minimum 20 nodes per

largest studied wavelength (section 3.4.1).

The choice of frequency range is problem dependent and has to be determined either

by considering the applied wave excitation or, if the excitation is not known, by doing a

separate modal analysis of the problem. A modal analysis is useful in determining which

frequencies are most relevant to the motion being investigated.

The accuracy of the final results can be confirmed by observing the behavior of the

frequency-wavenumber plot. The results are deemed acceptable if there is no numerical

dispersion (Zerwer et al., 2002).

Time Stepping

Time stepping refers to the selection of the time step to achieve a stable solution. Most

modern software have algorithms to automatically determine and adjust the time steps for

stability during a simulation. LS-DYNA computes the critical time step for elastic shell

elements as (Hallquist, 2006):

∆tc =
Lc

Vp
(4.2)

65

where Lc is the characteristic length defined by

Lc1 =
(1 + β)As

max(L1, L2, L3, (1− β)L4)
(4.3)

Lc2 =
(1 + β)As

max(D1, D2)
(4.4)

where Ac is the area of the element, β is a parameter equal to 1 if the element is triangular

and 0 otherwise and Li are the length of each sides 1,2,3 and 4. D1, D2 are the length of

diagonals and finally Vp is the longitudinal wave velocity (eq. 4.5).

Vp =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(4.5)

where E is the Young’s modulus, ν is the Poisson’s ratio and ρ is the density. Generally, eqn.

4.4 gives a smaller, more conservative time step and is more suitable for waves travelling

diagonally as well as longitudinally through elements. Unlike element size which can be

set for each individual components of a model, the time step has to be global, thus the

immediate time step is:

∆tn+1 = a ∗min {∆t1,∆t2, . . . ,∆tN} (4.6)

where N is total number of elements, n is the current time step and ∆ti is the time step

calculated for each individual element. The value a is a scale factor, which is set to a

maximum of 0.9 by default to assure stability. The time steps vary widely during the

simulation depending on the state of deformation of the problem. An overly small time

step is a common cause of instability as it implies that an element has collapsed onto itself,

or crossed over an impenetrable boundary such as an adjacent cell (see Figure 4.1). The

66

former causes the simulation to run slowly and provide wrong results while the later causes

the program to stop due to the presence of a negative volume. These issues can be solved

by reducing the momentum given by the load, reducing the time step, or increasing element

size. Given the side effects of reducing the time step and increasing element size it is more

convenient to simply reduce the load as the wave propagation is elastic.

(a) (b)

Figure 4.1: Finite elements representation of time step instabilities in LS-DYNA. (a) Neg-
ative volume error, (b) Time step instability

4.1.2 Lamb Calibration Model

The model used for the Lamb calibration is described in Figure 4.2. All elements in the

model are squares with a total of 360,000 elements. The termination time was chosen as 0.1

ms in order to eliminate the effect of reflections. Quiet boundaries are used to prevent some

of the reflection from p-waves but are not accurate enough to fully absorb surface waves.

The dimensions are large enough to prevent surface data from including reflections from

either the right side, or the bottom of the model.

67

Figure 4.2: Axisymmetric numerical model used for Lamb Solution Calibration (360,000
Elements)

68

Material Properties

As Lamb’s problem assume a linear elastic material the numerical simulation also follows a

similar assumption. The material is given a Poisson’s Ratio ν = 0.33, Density of ρ = 2102

kg/m3 and Young’s Modulus of E = 29.578 GPa. Using the following relations for velocity:

Vp =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(4.7)

Vs =

√
E

2ρ(1 + ν)
(4.8)

Vr

Vs
≈ 0.874 + 0.196ν − 0.043ν2 − 0.055ν3 (4.9)

where Vp, Vs are the P and S wave velocities respectively and Vr is the approximate Rayleigh

wave velocity. this leads to theoretical velocities of Vp = 4566.0 m
s , Vs = 2300.0 m

s and

Vr = 2143.6 m
s . The Rayleigh wave velocity approximation is over 0.01% accurate for this

material’s poisson ratio (Vinh and Ogden, 2004; Vinh and Malischewsky, 2006).

Load Curve

The load curve used follows equation 3.98, shifted in time. The time shift is used to prevent

the numerical simulation from experiencing a sudden jerk at the start time. The time shifted

load curve is represented by:

Q(t) = F
τl

(t− t0)2 + τ2
l

(4.10)

where t0 = 0.032 is the time shift, F is the amplitude modulation term, and τl = 0.002 is

the frequency modulation constant. Amplitude is chosen to avoid instabilities due to high

amplitudes while also being large enough to avoid discretization errors.

69

(a)

(b)

Figure 4.3: Lamb problem’s source for simulation. (a) Time trace, (b) Power spectrum

70

LS-Dyna Input Deck

The LS-Dyna Input file used for the simulation is presented below. Input decks for other

simulations can be found in Appendix A.1. The whole node and element information is not

included due to excessive length but can be reconstructed from information in figure 4.2.

*KEYWORD
*TITLE
Autmatically generated by cylgenDyna.py
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

0.100000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc

0.000 0
*DATABASE_GLSTAT
$# dt binary

0.160000 1
*DATABASE_NODOUT
$ DT BINARY
$# dt binary

0.080000 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc

0.160000 0 0 0
$# ioopt

0
*LOAD_NODE_POINT
$ NODE DOF LCID SF CID M1 M2 M3
$# nid dof lcid sf cid m1 m2 m3

1 2 1 1.000000 0 0 0 0 *PART
$# title
Part 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000 0.000 0.000 0.000 1 0.000
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 0.002100 29578.000 0.330000 0.000 0.000 0

4.1.3 Layered Calibration Models

Calibration using layered media is done by comparing results of similar models between LS-

Dyna and Punch(Kausel, 1981). Punch is the numerical implementation of the thin layer

71

model presented in section 3.4.2. The comparison is achieved by an automatic generation

utility, LayergenDyna, that takes a Punch configuration file as an input and automatically

generates a matching LS-Dyna input deck. The source code for the utility is presented in

appendix B.1. Two models are used for comparison. The first model is a single layer model,

which simulates an infinite half space similar to the Lamb’s problem. The second model is

a simple three layer soil profile.

Single layer model

The single layer model is defined by a single 500m deep layer split into 300 sub-layers. It has

a density ρ = 1800kg/m3, a poisson ratio ν = 0.33 and a shear wave velocity Vs = 500m/s.

The element size for the LS-Dyna model is chosen to be 0.4167001 m. This element size has

at least 10 elements per smallest wavelength, for shear wave velocity of the medium. The

load curve for the model is presented in figure 4.4. It has a centre frequency of 25 Hz with

a top frequency of 40 Hz. The LS-Dyna input file can be found in appendix A.2.

Punch considers an impulse load and provides the solution in the frequency domain. A

time trace for an arbitrary excitation can be obtained by the following operation:

h(t) = FT−1 (s̄(f)ḡ(f)) (4.11)

where h(t) is the resulting time domain solution, s̄(f) is the frequency domain solution

from Punch, FT−1 denotes the inverse Fourier transform operation and ḡ(f) is the Fourier

transform of the applied excitation.

72

(a)

(b)

Figure 4.4: Input load for single layer calibration model. (a) Time trace, (b) Power spectrum

73

Three layer model

The three layers of this model have properties listed in table 4.1.3. The LS-Dyna model uses

an element size of 1.0 m based on the same conditions as previous models. The load curve for

this model is presented in figure 4.5. It has a centre frequency of 10 Hz and a top frequency

of 17.5 Hz. The larger element size is used to compensate for the larger model (lower number

of elements) and the frequency of the load is lowered to avoid numerical dispersion due to

the larger element size. The LS-Dyna input deck can be found in appendix A.3.

Table 4.1: Layer properties for three layer model

Sub-layers Height (m) ρ Vs ν

75 100 1800 200 0.33
38 100 1800 400 0.33
155 500 1800 500 0.33

74

(a)

(b)

Figure 4.5: Input load for three layer calibration model. (a) Time trace, (b) Power spectrum

75

4.1.4 Model Simulations of mortar specimens

This set of simulations is meant as a direct representation of the experimental setup. The

models consist of cylinders excited by circular transducers. These are represented as rect-

angular axisymmetric simulations. A total of 24 different runs are performed for 12 dif-

ferent sizes, as shown in 4.1.4, each being run for two transducer settings. The models

are automatically created using three computer programs written in Python: cylgenDyna,

modelGenerator1M, and modelGenerator50K. Source code for these utilities is presented in

appendix B.1 to B.3.

Table 4.2: List of sizes for experimental model simulations
Height (mm) Diam. (mm)

50 100
100 100
200 100
300 100
50 200
100 200
200 200
300 200
50 300
100 300
200 300
300 300

76

Material Properties

For consistency, all simulations are performed using the same material properties and ele-

ment size. The material is linear elastic with a density ρ = 2102 Kg/m3, Young’s modulus

E = 29.578 GPa and Poisson ratio ν = 0.33 giving a velocity Vp = 4566 m/s. The element

size is set to 0.25 mm using the same rules as previous simulations.

Load Curves

Two load curves are used; which are determined experimentally by measuring the field

produced by the transmitter going through a large aluminum block, avoiding any reflections

in the received pulse. The low frequency transducer excitation corresponds to a 2 inch

diameter circular transducer with centre frequency of 55 KHz (figure 4.6) when excited by

an impulse. The second, high frequency, transducer is a 1 inch diameter circular transducer

with peak frequency at 850 KHz (figure 4.7) when excited by an impulse.

Impulse for low frequency transducers is provided by a Pundit Pulser/Receiver using no

attenuation. The impulse for the high frequency transducer pair was generated by a Pana-

metrics PR5200 Pulser/Receiver using the lowest energy setting (1) and zero attenuation.

Both devices are operated in pitch-catch mode.

A sample input file for each transducer configuration is presented in appendix A.4 and

A.5.

77

(a)

(b)

Figure 4.6: Low Frequency Load for Experimental Model Simulations. (a) Time trace, (b)
Power spectrum

78

(a)

(b)

Figure 4.7: High Frequency Load for Experimental Model Simulations. (a) Time trace, (b)
Power spectrum

79

Damping Curve

Damping is applied to a set of low frequency simulations for comparison with undamped

results. For this purpose, damping parameters α = 4435.2, β = 1.5 ∗ 10−7 are used. The

damping curve obtained from these parameters is presented in figure 4.8.

Figure 4.8: Damping curve used for low frequency excitation

80

4.2 Laboratory testing

4.2.1 Calibration Methodology

Calibration of the ultrasonic equipment is the initial step taken prior to the velocity readings;

16 calibration rods split into 3 different materials are used for this purpose. Table 4.3

describes the calibration rods used. The calibration ensures a good agreement between the

low and high frequency transducers under similar circumstances.

Table 4.3: Size of calibration rods used.

Aluminum Steel PVC
Height (mm) Diam. (mm) Height (mm) Diam. (mm) Height (mm) Diam. (mm)

49.74 50.75 49.18 49.75 50.99 51.50
74.26 50.75 73.62 49.75
98.28 50.75 98.90 49.75 101.18 51.50
123.22 50.75 123.90 49.75
149.01 50.75 157.98 49.75 150.54 51.50
198.92 50.75 198.62 49.75 200.92 51.50

Using standard measurement methods, readings are taken for the high-frequency Pana-

metrics transducers. The low-frequency transducers are not used during calibration as the

equipment has an adjustable delay time. As such, it can be calibrated using the data ob-

tained from the high frequency transducers. For calibration, water is used as a couplant as

it gives better correlation on the arrival time versus height curves.

Using rods of varying sizes makes it possible to accurately determine the sum of the effects

of electronics, human bias and coupling agents. All rods of a similar material originate from

a single original rod ensuring they have a similar velocity. Calibration is achieved by plotting

the arrival time data of each rod of a material against its height. The slope of which gives

an accurate value of velocity with the intercept being the delay time of the system as is

shown by equation 4.12. Sample results of the calibrations are shown in figure 4.10 to figure

4.11 with the final velocity data compiled in Table 4.4. All calibration figures can be found

in Appendix E.1. Each calibration was done twice with one set using water as coupling

and the other using glycerin. These two sets clearly show some of the differences between

81

Figure 4.9: Calibration Rods

coupling agents. The variation of travel time for the specimens is given by:

t = Vph+ d (4.12)

where t is travel time, Vp is the medium velocity, h is the height of the specimen and d is

the delay time of the system.

The accurate velocity of the calibration rod is used to adjust the low-frequency system.

This is done by computing expected arrival time for a calibration rod (200 mm PVC used)

and using this time as a target for the system. Uniformity of results can be achieved by

matching the readings of the high frequency transducers with those of the low frequency

setup.

82

Table 4.4: Compiled calibration results

Material Coupling Vp d r2

Aluminum Water 6329.4 0.377 0.999970
Aluminum Glycerin 6384.1 1.74 0.999978

Steel Water 5737.7 0.115 0.999996
Steel Glycerin 5770.4 1.79 0.999999
PVC Water 2309.1 -0.230 0.999999
PVC Glycerin 2320.2 0.331 0.999992

Figure 4.10: Water Calibration Data for Aluminum Rods

83

Figure 4.11: Glycerin Calibration Data for Aluminum Rods

84

4.2.2 First Arrival Measurments

The setup used for velocity measurements uses an oscilloscope connected to a computer for

data recording and a pulser-receiver as a source. The oscilloscope has many advantages

over most affordable ultrasonic pulse velocity equipment as it captures the entire waveform,

provides a significantly better resolution and has the ability to average data and accurately

identify points of interest. Velocity is measured using visual inspection on the oscilloscope

using identification in a fully zoomed setting for increased accuracy. This reading is then

confirmed using the computer data as it is saved. Best results are obtained by scaling the

waveform to saturation in the oscilloscope as to have a more accurate view of the small first

arrival window. The data is then averaged 256 times in order to increase signal to noise

ratio which makes it possible to spot low intensity arrivals.

Visual identification of first arrival is used instead of automated identification in order

to get better consistency when the signal is noisy, or very low intensity. These problems

are very common in measurements of mortar and concrete specimens. On the test setup

Figure 4.12: Experimental Ultrasonic Pulse Velocity Setup

85

used, vertical voltage resolution is 2 mV/div with a time resolution varying depending on

the waveform, its amplitude and the transducer pair used.

High Frequency Transducer

The high frequency measurements are taken using a set of Panametrics V-102 transducers

driven by a Panametrics 5052-PR Pulser Receiver in pitch-catch mode. The system was set

to maximum amplification for better first arrival identification.

86

Low Frequency Transducer

Low frequency measurements are performed using a set of high power transducer with centre

frequency at 55 KHz driven by a high power pundit pulser-receiver. This system is used in

pitch-catch mode and requires calibration before each use.

Coupling Agent

The coupling agent used varied depending on the surface condition of the specimen. Water

is an ideal coupling agent due to its high fluidity and bulk modulus, ease of cleaning and its

inert nature on most materials. The high fluidity of water makes the thickness of couplant

minimal in turn reducing time delay in the readings. As seen in Figure 4.13, water is also

the most effective couplant on a clean, smooth surface.

Water is only of use on smooth solid surfaces such as those of calibration rods and other

clean metal samples. For smoothed concrete surfaces, water is also effective provided that

the readings are taken quickly as water drying out alters the waveforms over the many

averages. For the cases when drying is a problem, glycerin is used. Glycerin has similar

properties to water but does not dry out during averages. Glycerin has other drawbacks

such as aiding bacterial and fungal growth if uncleaned and being slightly more viscous than

water. This viscosity leads to a thicker couplant layer, which lowers couplant effectiveness

and may add a delay to the signal.

Finally, for the case of very rough surfaces such as unsanded concrete, it is preferable to

use vacuum grease as a coupling agent. Vacuum grease can easily fill holes in a porous surface

and act as an excellent coupling medium. The main drawback of Silicon Gel is its relative

thickness compared to water and glycerin making it unattractive for high precision readings,

like calibrations. Figure 4.13 shows silicon gel as a poor couplant compared to glycerin and

water. However, this only applies to clean smooth surfaces where the effectiveness of water

and Glycerin is high. Rough surfaces eliminate the advantage of more liquid couplants as

it provides only partial contact with the surface.

87

Another factor that plays an important role in coupling effectiveness is the applied

pressure to the transmitter. Large variations in amplitude are thus common for silicon gel

due to its relatively variable thickness. These major issues are one of the significant factors

affecting amplitude-based nondestructive techniques of concrete (Warnemuende and Wu,

2004).

88

Figure 4.13: Effect of coupling on signal strength using a high frequency measurement on a
5 cm diameter aluminum rod. Amplitudes are normalized to highest peak of water coupling.

4.2.3 Measurements Methodology

Travel time readings on concrete specimen requires more attention than the calibration

measurements because of the rough surface. For the mortar specimens, with sanded surface,

water could be used as a coupling agent at the bottom surface, which is smooth from the

casting process. The top surface required glycerin as it is a coarser surface. In the case

of the concrete specimen, silicon gel is used for the top surface and water at the smooth

bottom surface.

To ensure repeatability of readings, the location of the transducer is marked clearly on

the concrete with the location of each transducer sets being exactly concentric. Each first

arrival reading was taken 5 times per specimen, per transducer set. Each reading is taken

89

Table 4.5: Dimensions of specimens, selected assuming Vp = 4, 800m/s

Name Height (mm) Diam. (mm) Height/λ0.85MHz Diam./λ0.85MHz Height/λ55kHz Diam./λ55KHz

m1a 50 100 8.87 17.74 0.57 1.15
m2a 100 100 17.74 17.74 1.15 1.15
m3a 200 100 35.46 17.74 2.29 1.15
m4a 300 100 53.19 17.74 3.44 1.15
m1b 50 200 8.87 35.46 0.57 2.29
m2b 100 200 17.74 35.46 1.15 2.29
m3b 200 200 35.46 35.46 2.29 2.29
m4b 300 200 53.19 35.46 3.44 2.29
m1c 50 300 8.87 53.19 0.57 3.44
m2c 100 300 17.74 53.19 1.15 3.44
m3c 200 300 35.46 53.19 2.29 3.44
m4c 300 300 53.19 53.19 3.44 3.44

after full disassembly and reassembly of the equipment to assure repeatability of results.

This procedure is used to assess the uncertainty of the results.

4.2.4 Specimens

In order to properly study size effects, multiple test specimens are built. The choice of sizes

for each specimen is based on the expected wavelength of the transducers. Specimens are

large enough such that the high frequency transducer (Panametrics NDT-V102), would

have a centre wavelength with a height to centre wavelength ratio of at least 10. Whereas,

the low frequency transducers (55KHz centre frequency) have wavelength comparable to

the size of the specimen with a height to centre wavelength ratio from 0.5 to 3. These

considerations also apply to specimen width.

Using 0.85 MHz as the centre frequency for the Panametrics NDT-V102 transducer,

figure 4.7, and 55 KHz for the low frequency transducers, figure 4.6, the size configurations

described by table 4.2.4 are chosen.

The summary of all specimen geometries is shown in Table 4.2.4.

4.2.5 Mortar specimen preparation

Mortar specimen are prepared from a fine sand, its gradation curve is shown in figure 4.14.

The sand used in the mortar preparation is first sieved through a #100 (0.150 mm) mesh

90

to remove the small particles which would absorb too much water when mixing. A sieve

#16 (1.18 mm) is also used to remove large particles that would create a less homogeneous

specimen.

Figure 4.14: Gradation curve of the sand used for mortar mix.

The mortar mix is prepared using a 3:1 sand-cement ratio and a 0.65 water-cement ratio

by weight to reduce the volume change of the specimen during curing. The relatively high

water-cement ratio is necessary for the workability of the mix.

The mortar is left to solidify for 24 hours in open air, with occasional wettings, after

which the moulds are removed and the specimens cured for 28 days in a humidity room.

Once curing is complete, the surface of each sample is smoothed using a drill press with

coarse sand paper to provide a better contact for the transducers. This smoothing method

introduces some curvature to the top surface of the specimen requiring extra couplant for

good contact.

All mortar specimens are cast simultaneously from the same batch to minimize differences

between specimen. The 70 L pan-mixer available for mixing does not have the required

capacity for casting all specimens at once leaving the 30 cm diameter by 30 cm height

91

Table 4.6: Precise measurements of mortar samples
Name Height (mm) Width (mm)

m1a 45.9 100
m1b 46.4 200
m1c 46.4 300
m2a 92.1 100
m2b 94.1 202
m2c 98.7 300
m3a 187.2 100
m3b 187.4 202
m3c 192.6 300
m4a 280.2 100
m4b 280.09 202

sample to be left out of the batch. A list of all the mortar specimens and their accurate

measurements can be found in table 4.2.5.

4.2.6 Concrete sample preparation

The concrete specimen are cast from an industrial concrete batch mixed in a concrete mixing

vehicle. Unlike the mortar, the concrete has several additives and plasticizers added which

significantly reduced their curing time.

The concrete models were not smoothed at the surface since the solidity of their matrix

and large aggregate were likely to lead to significant pore creation at the surface. This had

negligible effects on coupling.

All concrete specimens were cast at the same time and left to solidify for 5 hours after

which the moulds were removed and the samples put in a humidity room for 28 days. The

concrete specimens are described in Table 4.7.

92

Table 4.7: Precise measurements for concrete specimens

Name Height (mm) Width (mm)

c1a 49.0 100
c1b 52.7 200
c1c 49.6 300
c2a 98.5 100
c2b 98.0 200
c2c 100.9 300
c3a 194.3 100
c3b 192.6 200
c3c 176.5 300
c4a 280.7 100
c4b 289.0 200
c4c 290.4 300

4.3 Applications

In this section, two major applications are presented. Software used for storing, analyzing,

processing and retrieving of data is shown as well as an application for modeling the field

of a piston transducer.

4.3.1 Data Management and Processing

As there are large amounts of numerical data in this work, as well as a significant number of

experimental time traces, a system is discussed below to store, organize, process and present

the data.

Time Trace Storage

To facilitate retrieval, backup and usage of gathered information, a SQL database was used

for all information. Due to their different nature, experimental and numerical time traces

had to be stored in independent database schemes. A representation of the each database

scheme in shown in figure X and Y.

93

Time Trace Processing

Gathered information consisted of time traces having different properties based on appli-

cations. Tools were developed in Python 2.5 using available scientific libraries SciPy 0.6,

NumPy 1.0.4 and Matplotlib 0.9. Python offers most of the signal processing facilities of-

fered by Matlab(TM) for free and has the added benefit of having a more flexible object

oriented programming language.

The underlying core routines consisted of two classes: a time trace class and a time trace

list class. The time trace class(tt) is responsible for handling time traces information and

provide routines for consistent plotting, transforms and manipulation of its data.

The time trace list(ttlist) class was created to handle multiple time trace(tt) classes at

once. The class is populated using a database connection to the stored data and can be

used to save, modify or create new information.

Source code for both these classes and some of their derivates can be found in appendix

B. All scripts and processing were done using those classes as a basis.

Figure 4.15: Database Scheme for Experimental Time Traces

94

Figure 4.16: Database Scheme for Numerical Time Traces

4.3.2 Transducer Modeling

Modeling of transducer field is an important qualitative piece of information that helps

in understanding energy distribution during readings. This modeling was performed by

numerical implementation of the theory presented in section 3.3.

The modeling application was split into two independent components: the field solver

and the user interface.

Field Solver

The field solver, or solver, is the component implementing the theory of section 3.3. The

algorithm was developed in ANSI C and used FFTW3F as Fourier transform pack. FFTW3F

was chosen for its performance and reliability over other free implementations.

The field solver consists of three main parts: impulses, transducers, and solver. The

solver contains one or more transducers which each contain one impulse.

95

Impulse Class The impulse is a simple implementation of a time trace and provides

procedures for easily creating and extracting needed information. Complete source code is

shown in C.8.

Transducer Class The transducer class implements the impulse response of a specific

transducer shape. Each one of these class contain an impulse which is used in computing

the time-dependent impulse response needed for convolution. Complete source code of the

class and its derivative is shown in C.11.

Solver Class The solver class contains all information about the medium and includes

the specialized algorithms to compute the field. The solver also contains a list of all the

transducers in the simulation as well as the final solved data.

The convolution used for in the algorithm is a direct implementation of the convolution

theorem shown in equation 3.57. This class can present the data both in terms of time

dependent pressure or pressure amplitude. Pressure amplitude is a more convenient way to

present the information and is the result of applying a Hilbert Transform, equation 3.61, to

the time dependent pressure and presenting the resulting amplitude.

Figure 4.17: Field Solver class hierarchy

User Interface The user interface for the Field Solver was implemented in C++ using

Qt 4.3.2 along with Qwt 5.0.3 as a plotting library. The user interface’s only purpose was

96

to facilitate creating configurations and impulses as well as presenting the data. The full

code for the user interface is presented in D.

Software usage first consists of a setup phase where the transducers, and their impulses

are set as well as the properties of the media such as width, height, velocity and element

size. Furthermore, the time step and end time are also set in this phase prior to solving.

The setup screen is shown in figure 4.18. The settings are unit-less so long as a consistent

unit system is used. Any value are acceptable provided that the combination of number of

time steps, coupled with the number of elements to solve for does not exceed the computer’s

memory. The maximum resolution and time steps achieved on a system with 2 gigabyte of

memory is 162 by 162 medium resolution with 8193 time steps.

Figure 4.18: Field Solver User Interface’s setup screen

97

Any number of transducer is added by clicking the ”Add” button and setting the prop-

erties as shown in figure 4.19. Transducer type can be either circular or rectangular, size is

the transducer’s radius and can be any value compatible with the chosen unit system while

”Loc X” and ”Loc Y” are the x and y coordinates of the transducer respectively. Impulse

properties include the signal type which can be either a sine, gaussian modulated sine or a

custom signal imported from Matlab(tm). Other properties include the delay before start of

signal, frequency if the impulse chosen is a sine, or gaussian modulated sine and a gaussian

width that is applied only if the gaussian modulated sine is chosen.

Figure 4.19: Field Solver User Interface’s setup screen

Upon completion of the setup, the user choses to either solve for the raw time-dependent

pressure or its Hilbert transform. The amplitude of the Hilbert’s transform correspond to

the pressure amplitude.

Resulting data can be viewed using the appropriate pane as shown in figure 4.20. Viewing

can be controlled in the time direction by the slider positioned below the data window while

the color map can be adjusted by moving the intensity slider at the bottom right. By default

data is presented as a color-coded scalar plot but can optionally be shown as a contours

using the appropriate checkbox at the bottom left of the screen.

98

Figure 4.20: Field Solver User Interface’s setup screen

99

Chapter 5

Results and Discussion

This chapter presents results from the described numerical simulations and experiments.

First, numerical calibrations are investigated for the Lamb problem and for the compari-

son with the Punch software. Second, numerical simulations of experimental models are

presented for both high and low frequencies. Third, first arrival experimental results are

presented and finally the results are discussed for each of the presented section.

5.1 Numerical Simulations

5.1.1 Lamb’s Calibration Problem

This section compares the results from LS-Dyna lamb model (section 4.1.2) with the far field

theoretical solution. Figure 5.1 through 5.5 show comparisons of measurements at distances

of 41 mm to 208 mm (1.34 to 6.8 λR for λR = 30.6mm is the Rayleigh wave wavelength at

75 kHz) away from the vertical point source. All points are taken at the top surface, where

the source is located.

All results show good agreement on the sharp pulse rise and drop-off. However, the

initial inverted pulse is well matched only for larger distances from the source. Arrival

100

times coincide for every tested signal based on the computed surface wave velocity. The

mismatch is also seen prior to the surface wave’s arrival in the form of a small pulse in the

LS-Dyna data. These are the P and S wave pulses, which are not accounted for by the

theoretical model.

101

Figure 5.1: Lamb Calibration model (f0 = 850kHz): numerical vs theoretical trace at 41mm
(1.32 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz). P is the p-wave
and R is the surface wave.

Figure 5.2: Lamb Calibration model (f0 = 850kHz): numerical vs theoretical trace at 83mm
(2.71 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz). P is the p-wave
and R is the surface wave.

102

Figure 5.3: Lamb Calibration model (f0 = 850kHz): numerical vs theoretical trace at
125mm (4.08 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz). P is the
p-wave and R is the surface wave.

Figure 5.4: Lamb Calibration model (f0 = 850kHz): numerical vs theoretical trace at
166mm (5.42 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz). P is the
p-wave and R is the surface wave.

103

Figure 5.5: Lamb Calibration model (f0 = 850kHz): numerical vs theoretical trace at
208mm (6.80 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz). P is the
p-wave and R is the surface wave.

Figure 5.6: Lamb Calibration model (f0 = 850kHz): sample numerical vs theoretical spectra
at 166mm (5.42 λR for λR = 30.6mm is the Rayleigh wave wavelength at 75 kHz).

104

5.1.2 Single Layer Calibration Model

Calibration results for a single layer model (section 4.1.3) are presented in this section.

Results are shown at distances from 15 to 90 m (0.75 to 4.5 λ for Vs = 500m/s and

f0 = 25Hz) from the source in figures 5.7 through 5.10. Figure 5.7 shows results at 15

m (0.75 λ), close to the source. The match between the Punch application and LS-Dyna

is best at this distance. Figure 5.8 through 5.10 show results getting progressively worse

as distance increases. Differences are noted by small differences in signal amplitude at the

peaks but first arrivals and signal shape, are not affected.

105

Figure 5.7: Time trace comparison between LS-Dyna and Punch output for single layer
model at 15 m from source (0.75 λ for Vs = 500m/s and f0 = 25Hz).

Figure 5.8: Time trace comparison between LS-Dyna and Punch output for single layer
model at 45 m from source (2.25 λ for Vs = 500m/s and f0 = 25Hz).

106

Figure 5.9: Time trace comparison between LS-Dyna and Punch output for single layer
model at 75 m from source (3.75 λ for Vs = 500m/s and f0 = 25Hz).

Figure 5.10: Time trace comparison between LS-Dyna and Punch output for single layer
model at 90 m from source (4.50 λ for Vs = 500m/s and f0 = 25Hz).

107

Figure 5.11: Spectrum comparison between LS-Dyna and Punch output for single layer
model at 15 m from source (0.75 λ for Vs = 500m/s and f0 = 25Hz).

108

5.1.3 Three Layer Calibration Model

Calibration results for a three layer calibration model (section 4.1.3) are presented in this

section. Similar to the single layer model, results are shown at distances of 15 to 90 m from

the source (0.75 to 4.5 λ for Vs = 200, top layer shear wave velocity, and f0 = 10Hz) in

figure 5.12 through 5.15. It is to be noted that the thickness of the layers is of 5, 2.5 and

10 lambda using their respective shear wave velocities of 200 m/s, 400 m/s and 500 m/s.

Figure 5.12 shows results at 15 m (0.75λ), close to the source. The match is still best

at this close distance. Figure 5.13 through 5.15 show results getting progressively worse

as distance increases. Differences are more pronounced than in the single-layer model but

show the same characteristics. All near-field features, and reflections, are accurately matched

between both simulations. As distance increases the LS-Dyna first main oscillation, seen on

figure 5.15, is marginally late compared to the Punch simulation. This phase difference is

not propagated to the rest of the signal.

109

Figure 5.12: Time trace comparison between LS-Dyna and Punch output for three layer
model at 15 m from source (0.75 λ for Vs = 200m/s and f0 = 10Hz).

Figure 5.13: Time trace comparison between LS-Dyna and Punch output for three layer
model at 45 m from source (2.25 λ for Vs = 200m/s and f0 = 10Hz).

110

Figure 5.14: Time trace comparison between LS-Dyna and Punch output for three layer
model at 75 m from source (3.75 λ for Vs = 200m/s and f0 = 10Hz).

Figure 5.15: Time trace comparison between LS-Dyna and Punch output for three layer
model at 90 m from source (4.5 λ for Vs = 200m/s and f0 = 10Hz).

111

Figure 5.16: Spectrum comparison between LS-Dyna and Punch output for three layer
model at 15 m from source (0.75 λ for Vs = 200m/s and f0 = 10Hz).

112

5.1.4 Numerical Simulations

Wave propagation inside the models

Data from numerical simulations discussed in section 4.1.4 are presented in this section. Sig-

nals are based on the central, axisymmetric, axis of each model unless otherwise noted. The

axisymmetric axis has zero displacement in the horizontal direction at all times. Hence, only

vertical displacement is shown. Figures 5.17 through 5.25 show the frequency-wavenumber

(F-K) plot, and the time history plots for axisymmetric, top, right and bottom boundaries

of the “m1a” (H=9.24 λ0, D= 18.48 λ0 using f0 = 850kHz, λ0 = 5.412mm) model (table

4.2.5). Top, right and bottom boundaries are presented to better understand wave patterns

in the axisymmetric axis and are presented for both vertical and horizontal displacement.

The “m1a” model is presented as its small size presents all of the wave features. Figure 5.26

shows the same plot, except for top, right and bottom boundaries, for the longer specimen

“m4a” (H=55.44 λ0, D= 18.48 λ0). This long and thin specimen shows the effect of close

boundaries on the central axis and has similar pattern to “m1a”. Data for other models

presents similar wave patterns and is provided in section E.2.1. Time history traces for all

presented figures use individually normalized time traces at each height for added visual

detail.

Figure 5.28 and 5.29 show central axis F-K plot vertical displacement for the low fre-

quency source. The very long pulse makes it prohibitive to identify individual wave reflec-

tions as is done with the higher frequencies. Data for other models presents similar wave

patterns and is provided in section E.2.2. The same is also true for low frequency damped

models (see Appendix E.2.3).

113

Figure 5.17: Frequency-wavenumber plot for model “m1a” (H=9.24 λ0, D= 18.48 λ0) using
high frequency excitation (f0 = 850kHz, λ0 = 5.412mm). P indicates the main p-wave,
S indicates the main shear wave, RP is the reflected p-wave and RS is the reflected shear
wave.

114

Figure 5.18: Time history plot of central axis of model “m1a” (H=9.24 λ0, D= 18.48 λ0)
using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm). P, RP are the main p-
wave and first reflected p-wave respectively, S is the high intensity area of the shear wave
originating from the transducer, RS1 is the reflected and mode converted shear wave created
at the bottom boundary from P, RS2 is the reflected shear wave from S, “a” is the edge of
S from the transducer’s corners, “b” is the mode converted p-wave created by the surface
wave impacting the side boundary and “c” is the p-wave reflection from the sides.

115

Figure 5.19: Diagram of selected wavefronts in cylindrical specimen. All presented wave-
fronts represent those shown in figure 5.18. P, RP are the main p-wave and first reflected
p-wave respectively, S is the high intensity area of the shear wave originating from the trans-
ducer, RS1 is the reflected and mode converted shear wave created at the bottom boundary
from P, RS2 is the reflected shear wave from S, “a” is the edge of S from the transducer’s
corners, “b” is the mode converted p-wave created by the surface wave impacting the side
boundary and “c” is the p-wave reflection from the sides.

116

Figure 5.20: Time history plot of vertical displacement of the top axis of model “m1a”
(H=9.24 λ0, D= 18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
S and “a” are the centre and edge of the shear wave as described in figure 5.18, R is the
surface wave, and d is the reflected p-wave from the bottom. S and R are hard to distinguish
due to the transducer’s width creating a wide pulse in terms of distance on the surface.

117

Figure 5.21: Time history plot of horizontal displacement of the top axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
S and “a” are the centre and edge of the shear wave as described in figure 5.18, R is the
surface wave, and d is the reflected p-wave from the bottom. S and R are hard to distinguish
due to the transducer’s width creating a wide pulse in terms of distance on the surface.

118

Figure 5.22: Time history plot of vertical displacement of the right axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
“b” is the mode converted p-wave created from the surface wave impact on the side boundary
as desribed in figure 5.18, R is the surface wave originating from the top surface, g is the
shear originating from the transducer’s closest corner, and e is the p-wave arrival on the
sides.

119

Figure 5.23: Time history plot of horizontal displacement of the right axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
“b” is the mode converted p-wave created from the surface wave impact on the side boundary
as desribed in figure 5.18, R is the surface wave originating from the top surface, g is the
shear originating from the transducer’s closest corner, e is the p-wave arrival on the sides,
and f is the interaction between mode converted waves created by e impacting the bottom
right corner.

120

Figure 5.24: Time history plot of vertical displacement of the bottom axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
P is the p-wave arrival, f is the interaction between mode converted waves from P impacting
the corner as well as the p-wave reflection from the right boundary, and S is the arrival of
the first shear wave.

121

Figure 5.25: Time history plot of vertical displacement of the bottom axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
P is the p-wave arrival, f is the interaction between mode converted waves from P impacting
the corner as well as the p-wave reflection from the right boundary, and S is the arrival of
the first shear wave.

122

Figure 5.26: Frequency-wavenumber plot for model “m4a” (H=55.44 λ0, D= 18.48 λ0) using
high frequency excitation (f0 = 850kHz, λ0 = 5.412mm). P is the p-wave, S is the shear
wave, and RP is the reflected p-wave.

123

Figure 5.27: Time history plot of vertical displacement of the bottom axis of model “m1a”
(H=9.24 λ0, D=18.48 λ0) using high frequency excitation (f0 = 850kHz, λ0 = 5.412mm).
P is the first p-wave, S is the high intensity area of the shear wave originating from the
transducer, “a” is the edge of S from the transducer’s corners, “b” is the mode converted p-
wave created by the surface wave impacting the side boundary, “c” is the p-wave reflection
from the side, and “d” is the mode converted shear wave created by the surface wave
impacting the side.

124

Figure 5.28: Frequency-wavenumber plot for model “m1a” (H=0.60 λ0, D=1.20 λ0) at low
frequency excitation (f0 = 55kHz, λ0 = 83.0mm).

Figure 5.29: Time history plot of model “m1a” (H=0.60 λ0, D=1.20 λ0) at low frequency
excitation (f0 = 55kHz, λ0 = 83.0mm). P is the p-wave arrival line and S is the computed
shear wave arrival line.

125

First arrival in low frequency models (55 kHz transducer) – damped versus

undamped

This section presents results of first arrivals between the damped an undamped models

(section 4.1.4) when excited by the low frequency source (55 kHz). Undamped time history

plots are similar to those shown in figure 5.29 and are presented in Appendix E.2.2. Damped

seismic plots do not provide clear indication of wave front arrival as the excitation is the

same large pulse as in the undamped model. The damping curve used is presented in figure

4.8 and has damping parameters α = 4435.2, and β = 1.5 ∗ 10−7. These value were chosen

to have material damping of approximately 2.5% at the main frequency (55 kHz).

First arrivals in the undamped model are, as expected, a straight line in distance (figure

5.29) with slope being the model’s velocity Vp = 4566m/s. Damped models, on the other

hand, show a non-linear P-wave first arrival slope (figure 5.30 to 5.32) with increased cur-

vature as the model gets longer. This curvature would be interpreted as a slower overall

velocity for the specimen given that UPVM setups measure velocity only from the received

first arrival. This curvature is observed on all specimen as shown in Appendix E.2.3.

Figure 5.33 to 5.35 compare the damped and undamped model time trace at the receiver

location (centre of bottom boundary) for specimen of different heights. Figures for all

specimen are presented in Appendix E.2.4. Compiled results representing the difference in

first arrival are shown in table 5.1.4 and plotted in figure 5.36. Information of first arrival

for the longest damped models is not available due to the signal being damped below the

numerical precision of LS-Dyna (double precision).

126

Figure 5.30: Time history plot of damped model (Dmin = 0.025, α = 4435.2, β = 1.5∗10−7)
“m1a” (H=0.60 λ0, D=1.20 λ0) at low frequency excitation (f0 = 55kHz, λ0 = 83.0mm)

Figure 5.31: Time history plot of damped model (α = 4435.2, β = 1.5∗10−7) “m2a” (H=1.20
λ0, D=1.20 λ0) at low frequency excitation (f0 = 55kHz, λ0 = 83.0mm)

127

Figure 5.32: Time history plot of damped model (Dmin = 0.025, α = 4435.2, β = 1.5∗10−7)
“m3a” (H=2.41 λ0, D=1.20 λ0) at low frequency excitation (f0 = 55kHz, λ0 = 83.0mm).
The coarse amplitudes at high heights are caused by limitations in the numerical precision
of the solver.

Figure 5.33: Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =
1.5∗10−7) and undamped model “m1a” (H=0.60 λ0, D=1.20 λ0) at low frequency excitation
(f0 = 55kHz, λ0 = 83.0mm)

128

Figure 5.34: Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =
1.5∗10−7) and undamped model “m2a” (H=1.20 λ0, D=1.20 λ0) at low frequency excitation
(f0 = 55kHz, λ0 = 83.0mm)

Figure 5.35: Comparison of time signal between damped (Dmin = 0.025, α = 4435.2, β =
1.5∗10−7) and undamped model “m3a” (H=2.41 λ0, D=1.20 λ0) at low frequency excitation
(f0 = 55kHz, λ0 = 83.0mm)

129

Table 5.1: Comparison of arrival time from damped and undamped numerical simulations.
Model tundamped (ms) tdamped (ms) Vundamped (m/s) Vdamped (m/s) % Difference

m1a 0.011 0.018 4546 2778 38.8
m1b 0.011 0.017 4546 2941 35.3
m1c 0.011 0.018 4546 2778 38.8
m2a 0.022 0.046 4546 2174 52.2
m2b 0.022 0.046 4546 2174 52.2
m2c 0.022 0.044 4546 2273 50.0
m3a 0.044 0.134 4546 1493 67.2
m3b 0.044 0.134 4546 1493 67.2
m3c 0.044 0.134 4546 1493 67.2
m4a 0.065 N/A 4615 N/A N/A
m4b 0.065 N/A 4615 N/A N/A
m4c 0.065 N/A 4615 N/A N/A

Figure 5.36: Difference in Arrival time (in ms) by height between damped and undamped
numerical models

130

5.1.5 Transducer Field

This section presents the fields of p-waves from the experimental transducers presented in

section 4.1.4. Figures 5.37 show the field of the high frequency source as it progresses in

time. Similarly, figures 5.38 show the progress in time of the low frequency transducer

source.

The high-frequency transducer field produces localized high pressure zones that are fo-

cused near the central axis. On the other hand, the low frequency transducer produces a

field that is analogous to a point source and thus, provides no focusing. This implies that the

high frequency source have a strong initial p-wave front as compared to the low frequency

source, all else being equal.

131

(a) (b)

(c)

Figure 5.37: Pressure envelope of 1M transducer during excitation. (a) Near-field (less than
λ), (b) mid-field (1λ to 3λ) and (c) far field (above 3λ) where λ = 4.8mm

132

(a) (b)

(c)

Figure 5.38: Pressure envelope of 50K transducer during excitation. The field behaves as a
point source since the source transducer is smaller (1/2 λ) than the main wavelength. (a)
during excitation, and (b) mid-excitation and (c) late excitation.

133

5.2 Experimental Velocity Measurements

This section presents experimental results of first arrival times on all tested mortar and

concrete specimens. Average results for each specimen (see Appendix F.1.3) are compiled

in graphical form in figure 5.39 and 5.40 in terms of velocities while figure 5.41 and 5.42

compares first arrival times in terms of percentage difference. Captured waveforms for

different readings on a single specimen are presented in figure 5.43 and 5.44 and show good

waveform consistency in first pulse arrival between independent readings. Sample waveforms

for each specimens are presented in Appendix F.1.

Figure 5.39: Wave velocity differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different concrete specimens heights and diameters (D=0.60,
1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm).

134

Figure 5.40: Wave velocity differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different mortar specimens heights and diameters (D=0.60, 1.2
and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm)
.

Figure 5.41: Arrival time differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different concrete specimens heights and diameters (D=0.60,
1.2 and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm).

135

Figure 5.42: Arrival time differences from high (fh = 850kHz) and low (fl = 55kHz)
frequency measurements for different mortar specimens heights and diameters (D=0.60, 1.2
and 2.4 λ0 for f0 = 55kHz, λ0 = 83.01mm).

Figure 5.43: Comparison of experimental waveforms for specimen “c1a” (H=5 cm, D=10
cm) between three independent readings using high frequency excitation (f0 = 850kHz).

136

Figure 5.44: Comparison of experimental waveforms for specimen “m1a” (H=5 cm, D=10
cm) between three independent readings using low frequency excitation (f0 = 55kHz).

137

5.3 Discussion

Results are discussed in three sections. First, numerical calibration results are evaluated

to ensure that the numerical models are appropriate to simulated wave propagation. Sec-

ond, findings from the numerical simulations are explained. Finally, the numerical and

experimental results are compared.

5.3.1 Calibration of Numerical Models

First, the comparison between the Lamb’s theoretical solution and LS-Dyna results are

covered. Second, the solutions of for different layered models from Punch (Kausel (1981))

and LS-Dyna are compared. The first comparison is used to simulate wave propagation at

the surface on an infinite half space whereas Punch is used as an independent confirmation

for simulations on more complex layered models.

Lamb Solution

The theoretical solution to Lamb’s problem assumes a point very far away from the source

(section 3.4.2). This is referred to as the far field assumption. Due to size limitations in

finite element simulations of wave propagation, it is prohibitive to obtain results that are

far enough from the source to suit this condition. The far field is often defined, as a rule of

thumb, as approximately twice the largest wavelength of the source signal using the surface

wave velocity. Such a condition is not easily applied to this model as the original source

has a significant zero frequency component, which has infinite wavelength. Instead, model

dimensions are chosen such that most of the energy (over 90% as defined by area of power

spectrum) is in the far field near the end of the model. In Lamb’s theoretical solution

only the surface wave component is taken into account. Hence, all P and S waves are not

accounted for in the theoretical trace.

Using known material properties, it is calculated that velocities for P, S and surface waves

are 4566, 2300, and 2144 m/s respectively. The main pulse has a width of approximately

138

0.02 ms (1.4 (1/f0forf0 = 75kHz)); thus, clear separation of the P and surface wave pulse

occurs near 91 mm (2.97λr for lambdaR = 30.6mm) distance from the source, or closer if

the tail of the surface pulse is ignored. This is observed in figure 5.2 where both pulses show

a clear separation. Differences between S and surface wave velocities are small, thus, they

take much longer to separate. In the model dimensions used, clear separation between S

and surface wave does not occur.

Given the above considerations the discrepancies in each of figures 5.1 to 5.5 can be

explained. The small pulse arriving before the main surface wave is the P wave component

of the simulation. This is verified by comparing the expected P wave location with the

observed pulse arrival for all figures. Second, the matching improves significantly as distance

increases. Therefore, as the far field is approached the match becomes increasingly better.

Finally, due to the dimensions used, it is difficult to clearly identify effects of the surface

waves. However, at longer distances, the shear wave can be seen separating from the inverted

pulse (figure 5.5). Finally, the presented results confirm the suggested rules for numerical

simulations and good results can thus be expected for reflection free data, at a boundary.

Layered Media

Comparisons between Punch and LS-Dyna results are used to assess the ability of LS-Dyna

to handle reflections, and refractions of wave propagation. Such aspects are not readily

verified by previous comparisons.

Unlike the Lamb’s model, data from Punch accurately models the near field and the

far field. Differences exist, however, in the way both programs compute the wave field.

Punch uses an iterative approach to solve the problem in frequency domain(Kausel, 1981).

This leads to loss of accuracy in the higher frequencies unless the number of thin layers is

increased. Conversely, LS-Dyna solves by stepping through time, which implies that inac-

curacies are propagated, and compounded, in the time domain. These errors are minimized

by using elements of a small enough size for the frequencies investigated and an adequately

small time step.

139

The settings used in Punch satisfies the condition that there should be at least 4 sub-

layers per smallest wavelength. As such, no significant inaccuracies are expected. Similarly,

LS-Dyna models have element size small enough such that there is at least 10 elements per

smallest wavelength. Therefore, both models are expected to be accurately represented.

Results for both the single layers (figure 5.7 to 5.10) and the three layer model (figure 5.12

to 5.15) show good agreement. Both cases show best results for distances close to the source.

Differences become more pronounced at the far distances. The only difference between the

models used in both simulation is that the Punch model uses slight material damping to

achieve a stable solution. Material damping is set as a percentage in Punch (0.1% in the

used models). Effects of damping are frequency dependent and therefore unpredictable on

the signal. Damping, however, causes changes that accentuates as distance increases from

the source, which is in line with the observed discrepancies. As the signal is normalized,

those changes are not easily visible in amplitude but would only show themselves in phase

and pulse shape.

In conclusion, the calibration models using Punch confirm the results from LS-Dyna

models.

140

5.3.2 Numerical Models

Numerical results are shown at the central axis of each model, where horizontal displace-

ments are zero due to the axisymmetric condition. This axis is most important since first

arrival times are measured at the centre of the specimens in practice. Results presented

include sets for high frequency transducers, low frequency transducer, and low frequency

transducer on damped model.

High Frequency Simulations

High frequency simulations are of most interest in understanding the arrivals of different

wavefronts in the models. These wavefronts are caused entirely by the specimen’s geom-

etry and are thus applicable to all frequencies. Higher frequency sources with broadband

pulses have very narrow pulse widths ensuring good separation of individual wavefronts.

Frequency-wavenumber plots presented in figure 5.17 and 5.26 show the presence of forward

and reflected P and S waves. No surface waves are present since this data is not at a bound-

ary. The F-K plots do not show numerical dispersion for the wavefronts mentioned. This

information is also presented in figure 5.18 and 5.27 in the form of seismic traces.

Specimen “m1a” (H=0.60 λ0, D=1.20 λ0 for λ0 = 5.412mm) is used to understand

the propagation of important wavefronts due to its small size. This ensures that relevant

boundary effects are properly accounted for in the time-scales of the simulation. Figures

5.17 through 5.25 show the time history plots for each boundary of the specimen and are

thus used to study the various wavefronts that may affect perceived first arrival of signals.

Figure 5.18 shows the time history of the central axis, most relevant to first arrivals. Due

to the narrow pulse in the signal, the p and s wavefronts are easily observed and clearly

separated. However, both those waves are wide in time as they are created by a wide

transducer. The effect of transducer shape on signal is complex and depends on transducer

shape, input signal and the medium in which the wave is propagated. For the case of the

high frequency input signal used in simulation, the energy concentration of the principal

141

p-wave pulse as it forms in time is shown in figure 5.37. It is observed that the energy is

strongly concentrated near the central axis of the medium with a slight front being created

from each of the transducer’s corners. The corner fronts will create extra p and s wavefronts,

of lower amplitude, closer to the side boundaries.

From figures 5.18 to 5.25 it seen that the main wavefronts (higher amplitude wavefronts)

arriving at the bottom boundary are the principal p-wave, shear wave front from centre

of source, shear wave front from corners of source, P wave reflection from the side and

mode-converted p front created by the surface wave impacting the sides. Other fronts also

arrive at the bottom boundary before or after the mentioned fronts but their amplitudes

are relatively low, or they are reflections from the top boundary which only occur in the

special case of the small specimen height. The order of arrival of these fronts varies based

on specimen size as can be seen by comparing to figure 5.27. In that case, the P wave fronts,

mode converted or otherwise, arrive before the shear wave fronts as the long length gives

them more time to overtake shear wave modes. Of all these wavefronts, the most significant

in terms of amplitude length at the bottom receiver is the mode-converted P wave created by

the surface wave impact on the side boundary. Simulations for larger widths confirm those

results and are presented in section E.2.1 for completeness. It is clear from these results

that first arrivals are well separated for all of the widths tested and would thus indicate

accurate velocity values for UPVM.

Low Frequency Simulations

The use of a low frequency transducer (f0 = 55kHz) for the signal coupled with the small

specimen size (0.5 to 3 λ at f0 = 55kHz and Vp = 4566m/s) limits the resolution of the

wavenumber axis in the low frequency F-K plots. Resolution depends on the number of

traces and the distance between receivers. This resolution is given as:

∆k =
1

2∆x
2
N

(5.1)

142

where ∆k is the wavenumber resolution, ∆x is the distance between each point and N is

the total number of points. In the smallest model the resolution is dk = 1.69 1
λ55kHz

, λ55kHz

is the p-wave wavelength at 55 kHz, while dk = 0.28 1
λ55kHz

for the longest specimen. Thus,

only 1 points per 1.5 wavelength are available for the small specimen as opposed to 3.5

per wavelength for the longest specimen at peak frequency. In addition, the high frequency

source (f0 = 850kHz), has 9.25 and 55.5 points per main wavelength. Longer specimens do

provide improved clarity but are problematic for obtaining clear conclusions about numerical

dispersion and propagating waves. As such, F-K plots are of limited utility in the study

of wave propagation in the central axis of specimen less than 4 wavelength in height. F-K

plots for low frequency results are presented in Appendix E.2.2 for undamped models and

E.2.3 for damped models.

Time history traces for low frequency simulations show a definitive first arrival but

independent wavefronts are difficult to observe. The large pulse of the 55 kHz signal makes

it difficult to differentiate between P or S waves and their reflections.

Seismic plots for the damped models (figure 5.30 to 5.32) show similar results to those

of the undamped model in that only first arrivals information is easily obtained. The major

difference between both is the continuously slowing velocity in the model as distance from

source increases. This is visible on time traces for all heights except for the longest model

where signal falls below the resolving capability of LS-Dyna in double precision. Seismic

traces for all seismic plots use individually normalized time trace for each height for added

visual detail.

Figures 5.33 through 5.35 compare the time signal from the damped and undamped

model at the end surface for the thinnest specimens. Differences between both traces show

a distinct perceived lag in first arrival for the damped signal. This lag is accentuated

the farther the signal travels from the source. This implies damping can leads to larger

perceived arrival times. It is expected that this lag is limited by the pulse width and is thus

of increasing significance for lower frequencies and/or long pulses regardless of specimen

143

size.

For example, if a specimen x wavelengths in height and y wavelengths in width is tested

using a broadband source of radius R wavelengths having a wavelet n oscillations wide at

main frequency, and the time taken for the p-wave to reach the bottom boundary is defined

as the normalized time unit t0 = xT (figure 5.45). Then, the main P and S waves arrive

at time t0 and rst0 respectively where rs = Vp

Vs
is the ratio of P and S wave velocities.

Furthermore, strong p-wave reflections from the boundary are expected to arrive at ts and

tr where (figure 5.46):

Figure 5.45: Normalized measurement of theoretical specimen

tshear =
(
rs(y −R) +

√
y2 + x2

) t0
x

(5.2)

tsurface =
(
rr(y −R) +

√
y2 + x2

) t0
x

(5.3)

rr =
Vp

Vr
(5.4)

where tshear is the mode converted p-wave reflection caused by the shear wave impacting the

side, tsurface is the mode converted p-wave reflection caused by the surface wave impacting

the side and rr is the ratio of shear to surface wave velocity. The time tsurface is also

representative of the arrival time of the surface wave created by the impacting p-wave at

the bottom corners of the specimen. The times tsurface and tshear are derived using s-

144

wave propagation at the top surface and p-wave propagation towards the receiver after the

collision, or conversely p-wave propagation towards the corner followed by surface wave

propagation towards the receiver. These values indicate first arrival of the wavefronts as

created (received) by the corners of the transducer (receiver), not their highest amplitude

area which are near the centre of the source (receiver). Reflection of p-waves at the side (from

corner or otherwise) are also an important arrival but, under all circumstances for a uniform

isotropic specimen, will be of smaller amplitude than the principal p-wave traveling at the

centre. Consequently, if the main p-wave is attenuated enough to affect UPVM readings,

so is its reflection from the side. Thus, the p-wave reflection from the side is assumed to

have negligible effects on UPVM. These first arrivals calculations are valid regardless of

frequency.

From the above it can be deduced that a minimum height, x, for initial p and s wave

separation is given by:

Figure 5.46: Arrival time of high amplitude fronts in terms of P wave arrival for rs = 2, rr =
2.15, R = 0.3. The value of R implies a transducer smaller than its produced wavelength,
typical of lower frequency (55 kHz) readings in concrete.

145

x ≥ (rs − 1)n (5.5)

and the minimum width for separation of p-wave from both main boundary reflections is

given by (figure 5.47):

y ≥
rs(n+ x+ rsR)−

√
r2s(n+ x+ rsR)2 − (r2s − 1) [(n+ x)2 + rsR(rsR+ 2(n+ x))− x2)]

r2s − 1
(5.6)

Figure 5.47: Minimum Radius to Height ratio to ensure p-wave pulse separation in a spec-
imen for rs = 2, rr = 2.15, R = 0.3. The value of R implies a transducer smaller than its
produced wavelength, typical of lower frequency (55 kHz) readings in concrete.

where the above condition guarantees ts ≥ t0+nT . These conditions ensure that the p-wave

pulse itself is separated but the rest of the wave fronts may not. Separation of wavefront is

useful for UPVM as an attenuated first arrival is clearly identifiable, which is not the case

otherwise. For example, the first p-wave may be damped out but the constructive wave

146

interactions from other wavefronts may still give the impression of proper first arrival. This

is especially valid since, as is shown in figure 5.18, the highest amplitude waves originate

from side boundary effects. Furthermore, it is shown in figure 5.38 that the first p-wave

emitted by sources smaller than their main wavelength are not focused, hence producing

a weaker p-wave at the receiving end. Conversely, the boundary reflections do not require

focusing to achieve their high amplitudes, implying that the initial p-wave may be easily

overshadowed by these stronger pulses if not separated. This result is in contrast to the

high frequency source shown in figure 5.37.

Low Frequency Simulations – First arrivals

As discussed in the previous section, the delay between damped and undamped signals may

occur from the observation of a first arrival of a different waveform than the first p-wave.

This effect can be avoided with proper pulse separation and a full waveform inspection. In

the numerical simulations of low-frequency transmitter (f0 = 55kHz), the conditions for

pulse separation are not met for any model. This is directly related to the very wide pulse

used. Hence a “delay lag” is observed between damped and undamped results at the receiver

location.

The delay lag is caused by attenuation of the rising edge of a pulse below a given noise

floor, leaving higher amplitude sections of the pulse to determine pulse arrival (figure 5.48).

A delay lag can be observed even with proper pulse separation. However, when the initial p-

pulse is separated, the effect is limited to less than a quarter of the pulse’s period (a quarter

period is the distance from rise to first peak of a full sine) as measured using the main pulse’s

frequency at the receiver end. This value is given with the assumption that the pulse shape

is known by the operator. Any delay larger than a quarter of a period would be identifiable

by the operator in the form of a missing peak in the waveform. These considerations are

not applicable to commercial equipment that do not provide a full waveform.

Without pulse separation, delay lag is unbounded. That is, the observed delay cannot

be limited by the operator by any means other than reducing the loss of amplitude of

147

the signal. Philippidis and Aggelis (2005) results on pulse velocity of concrete showed an

increase in velocity with frequency. This is in line with previous numerical observations.

Higher frequencies have reduced periods and smaller wavelengths. Hence, provided the

source is excited by a broadband pulse, the conditions for pulse separation are improved.

Furthermore, once the pulse is properly separated, experimental uncertainty is reduced

due to a reduction of the period. It is not possible to tell wether the effects observed by

Philippidis and Aggelis (2005) are caused by potential experimental error or actual physical

phenomenon as no pulse width information is given.

Such lag effects are classically avoided by measuring first arrival using the first peak of

the received signal. This method is accurate at higher frequencies where the pulse width is

well known. However, such an approach would give unpredictable results on non-separated

pulses, which have peaks change based on interference (figure 5.33, 5.34). Thus, accurate

UPVM using peak arrival methods are only viable when criteria for pulse separation are

met.

Figure 5.48: Delay lag effect demonstration

148

5.3.3 Experimental Results

The experiments performed are designed to validate the findings of numerical simulations:

higher frequency readings have higher perceived velocity than low frequency readings. A

low-frequency transducer (f0 = 55kHz) with a wide pulse is used to show the case when

the specimen does not meet the criteria for pulse separation. Proper pulse separation exists

for high frequency readings (f0 = 850kHz).

Figure 5.41 and 5.42 show that first arrivals for all specimens have a noticeable difference

between high and low frequency readings. It is also observed that width has no noticeable

effect on the readings other than experimental differences in the specimen. This is expected

as the low frequency source does not have proper pulse separation for any of the width used.

Concrete specimens show the most consistent behavior in width in terms of velocity

difference vs height (figure 5.39). Differences in velocities decrease as height increase for all

three widths. Conversely, differences in first arrival increases steadily with height (figure

5.41). This is attributed to an absolute cause of error (e.g. surface contact) in arrival time

that decreases as a percentage when calculating velocity over a larger distance.

Mortar specimens show consistent behavior for 200 and 300 mm wide samples but have

a clear difference in the 100 mm wide specimen set. All mortar samples were cast simi-

larly. However as their standard diameter of 100 mm permitted, these samples had their

surfaces smoothed by a concrete surface grinder in order to improve signal coupling but it

instead exposed a significant amount of small voids. These voids lead to very poor coupling

compared to other larger width specimen. Figure 5.40 show for the 200 and 300 mm wide

samples that velocity remains flat with height. The 100 mm sample shows behavior similar

to that of the concrete specimen. Consistent with previous observations in concrete, all

mortar specimens have an increasing first arrival time difference with height.

The increasing first arrival difference with height confirm the perceived lag effect does

increase with signal loss as seen in numerical simulations. Decreasing velocity difference

with height (concrete and thin mortar specimens) suggest a constant signal loss factor.

149

This is confirmed by figure 5.42 where 100 mm wide samples have a significantly higher

perceived first arrival difference compared to other specimen with better surface coupling.

The principal factor that is constant between transducers, yet differing between specimen,

is the coupling with the specimen surface.

Loss in signal amplitude, either from surface coupling or from material attenuation, leads

to a significant perceived late first arrival when using lower frequency ultrasound without

pulse separation. Effects from the surface can be diminished by using long specimens to

effectively dilute the constant error over length (reduced percentage error). Effects of signal

loss caused by material attenuation (attenuation due to the material itself, not external

conditions) can be limited to a quarter period of the main pulse frequency at the receiving

location if conditions for pulse separation are met and the waveform is properly captured

as part of the experiment.

5.3.4 Recommendations

Use of higher frequencies (above 100 Khz) is rare in the inspection of geomaterials such as

concrete due to the high attenuation. The use of low frequency (below 100 kHz) transducers

for velocity is thus inevitable. Conclusions from numerical and experimental results indicate

that large effects on velocity measurements are preventable if specimen size, and excitation

pulse are controllable and the waveform is accessible by the operator. Using the pulse

separation criteria, it is possible to determine adequate specimen size to avoid these effects.

If size, or source, are not controllable the difference is expected to come mainly from two

attenuation sources: surface coupling and specimen length.

Experimental results show that the most significant effect (in terms of velocity difference)

is due to surface coupling. These effects are most significant when the specimen is short as

the difference in arrival time is a large percentage of total arrival time. As the specimen get

longer, the effect becomes a lower percentage of total arrival time and the effect on velocity

is much less. As such, if no physical alteration of the specimen is possible, use of longer

150

specimen is an easy way to minimize these effects. Specimen 4 wavelength in height was

sufficient to diminish surface effects to a minimum. Any increase past 20 cm has negligible

effects on measured velocity.

Effects due to specimen length are best seen from 5.42 and 5.40. It is observed from

figure 5.42 that delay in the smallest specimens (excluding surface ground specimen) is 0.2

ms. This delay is negligibly small given experimental uncertainty and is linked to surface

effect since the specimen is short (0.5 λ55kHz). These specimens show a near-flat velocity

difference with length that is below 100 m/s. Thus, it can be said that lag effects due

to material attenuation is negligible for specimens less than 4 wavelength in height in the

absence of pulse separation.

Further studies are suggested to improve on the main conclusions of this work. Rigorous

studies of surface coupling in terms of absolute signal attenuation on different surfaces is

suggested. Furthermore, a more in depth study of material damping is recommended to

fully understand the effects of varying damping values on both high and low frequencies.

Further work is also of interest in the more subtle effects of transducer size and location

during UPVM for both receivers and transmitters (e.g. off-centre, misaligned).

151

Chapter 6

Conclusions

Description of current and emerging nondestructive methods for civil engineering structures

are presented. Distinctions are made between electromagnetic and acoustic methods with

a focus on discussing the more versatile acoustic techniques. Current research in ultrasonic

NDT is presented with particular attention to pulse velocity measurements (UPVM). It is

mentioned that UPVM is fast and requires minimal skill from operators and has been used

for flaw detection (Sutan and Jaafar, 2003), study of material contents (Abo-Qudais, 2005;

Ohdaira and Masuzawa, 2000; Popovics, 2005), deducing general deterioration (Ohdaira and

Masuzawa, 2000), determination of elastic properties (Washer et al., 2005; Prassianakis and

Prassianakis, 2004), measuring strength (Chang et al., 2006), and others. In these applica-

tions, accurate measurements of velocity are essential for proper evaluation. It is found by

Philippidis and Aggelis (2005) that UPVM are susceptible to specimen size, attenuation and

frequency but no clear conclusions are made on the fundamental reason for the differences.

In this work, numerical simulations are presented to study the size effect of different

specimen geometries on first arrival of wave signal. All numerical simulations are performed

using the LS-Dyna 970 double precision solver. Numerical models are first calibrated to

ensure accurate results using theoretical models and then using a known numerical code

152

“Punch”. It is found that the results from theoretical models and “Punch” confirm the

validity of LS-Dyna models. Calibration include the choice of element size, time step and

frequencies.

Simulations are completed for 12 specimen of different dimensions having heights of

5,10,20 and 30 cm as well as diameters of 10, 20 and 30 cm. Both a low (f0 = 55kHz)

and high (f0 = 850MHz) frequency input source are used on each specimen. Numerical

simulations using low frequencies are made for both a damped and undamped series of

specimen.

Arrival of different wave fronts are discussed using the high frequency numerical simula-

tions. Low frequency simulations using undamped models are found to be of limited use in

studying wave arrivals due to complex wave front interference. Results from low frequency

simulations of damped models indicate that wave attenuation can lead to significant errors

in first arrivals when complex wave interference is present. Conditions for wave interfer-

ence at the receiver location are studied and minimum size conditions for both height and

width are derived. These conditions guarantee proper pulse separation for UPVM and are

dependent on source size, and source pulse width. It is argued that with proper use these

conditions will lead to accuracy of measurement better than one quarter of a period of the

main excitation frequency when using a full waveform and a skilled operator.

Finally, experiments are performed to assess differences in first arrivals between high and

low frequency measurements. Readings are made on 11 mortar and 12 concrete specimen

of different heights and widths. Experimentally significant time differences are observed

between high and low frequency readings. It is found that differences in first arrivals will in-

crease with specimen length but differences in velocity will decrease with length. Specimens

4 wavelengths in height are deemed sufficient to diminish surface effects to a minimum. Any

increase past 4 wavelengths has negligible effects on measured velocity.

Effects due to specimen length are best seen from 5.42 and 5.40. It is observed from

figure 5.42 that delay in the smallest specimens (excluding surface ground specimen) is 0.2

153

ms. This delay is negligibly small given experimental uncertainty and is linked to surface

effect since the specimen is short (0.5 λ55kHz). These specimens show a near-flat velocity

difference with length that is below 100 m/s. Thus, it can be said that lag effects due

to material attenuation is negligible for specimens less than 4 wavelength in height in the

absence of pulse separation.

Further studies are suggested to improve on the main conclusions of this work. Rigorous

studies of surface coupling in terms of absolute signal attenuation on different surfaces is

suggested. Furthermore, a more in depth study of material damping is recommended to

fully understand the effects of varying damping values on both high and low frequencies.

Further work is also of interest in the more subtle effects of transducer size and location

during UPVM for both receivers and transmitters (e.g. off-centre, misaligned).

154

Appendix A

LS-Dyna Input Decks

A.1 Lamb’s Problem Deck
*KEYWORD
*TITLE
Autmatically generated by cylgenDyna.py
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

0.100000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc

0.000 0
*DATABASE_GLSTAT
$# dt binary

0.160000 1
*DATABASE_NODOUT
$ DT BINARY
$# dt binary

0.080000 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc

0.160000 0 0 0
$# ioopt

0
*LOAD_NODE_POINT
$ NODE DOF LCID SF CID M1 M2 M3
$# nid dof lcid sf cid m1 m2 m3

1 2 1 1.000000 0 0 0 0
*PART
$# title
Part 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000 0.000 0.000 0.000 1 0.000
*MAT_ELASTIC_TITLE
Material Layer

155

$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 0.002100 29578.000 0.330000 0.000 0.000 0

156

A.2 Punch Single Layer Model
*KEYWORD
*TITLE
Autmatically generated by layergenDyna.py
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

2.500000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc

0.000 0
*DATABASE_GLSTAT
$# dt binary
7.5000E-4 1

*DATABASE_NODOUT
$ DT BINARY
$# dt binary

0.002000 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc
10.000000 0 0 0

$# ioopt
0

*LOAD_NODE_POINT
$ NODE DOF LCID SF CID M1 M2 M3
$# nid dof lcid sf cid m1 m2 m3

1 2 1 1.000000 0 0 0 0
*PART
$# title
Layer 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000 0.000 0.000 0.000 1 0.000
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 1800.0000 1.1997E+9 0.330000 0.000 0.000 0

157

A.3 Punch Three Layer Model
*KEYWORD
*TITLE
Autmatically generated by layergenDyna.py
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

3.000000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc

0.000 0
*DATABASE_GLSTAT
$# dt binary

0.002000 1
*DATABASE_NODOUT
$ DT BINARY
$# dt binary

0.005000 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc
25.000000 0 0 0

$# ioopt
0

$# id1
*LOAD_NODE_POINT
$ NODE DOF LCID SF CID M1 M2 M3
$# nid dof lcid sf cid m1 m2 m3

1 2 1 1.000000 0 0 0 0
*PART
$# title
Layer 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000 0.000 0.000 0.000 1 0.000
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 1800.0000 1.9195E+8 0.330000 0.000 0.000 0
*PART
$# title
Layer 2
$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 0 0 0 0 0
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

2 1800.0000 7.6781E+8 0.330000 0.000 0.000 0
*PART
$# title
Layer 3
$# pid secid mid eosid hgid grav adpopt tmid

3 1 3 0 0 0 0 0
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

158

3 1800.0000 1.1997E+9 0.330000 0.000 0.000 0

159

A.4 High Frequency Experimental Model - Sample
*KEYWORD
*TITLE
Autmatically generated by cylgenDyna.py

*PART
$# title

Part 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 0.00210 29578 0.33 0 0.00 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000000 0.000000 0.000000 0.000000 1 0.000000

*DATABASE_NODOUT
$ DT BINARY
$# dt binary

0.000012 1

*DATABASE_GLSTAT
$# dt binary

0.000040 1
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc

0.100000 0 0 0
$# ioopt

0
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

0.050000 0 0.000000 0.000000 0.000000
*CONTROL_TIMESTEP
$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000000 0.900000 0 0.000000 0.000000 0 0
$# dt2msf dt2mslc

0.000000 0

160

A.5 Low Frequency Experimental Model - Sample
*KEYWORD
*TITLE
Autmatically generated by cylgenDyna.py

*PART
$# title

Part 1
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0
*MAT_ELASTIC_TITLE
Material Layer
$ MID RO E PR DA DB
$# mid ro e pr da db not used

1 0.00210 29578 0.33 0 0.00 0
*SECTION_SHELL_TITLE
P-1
$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
$# secid elform shrf nip propt qr/irid icomp setyp

1 15 0.830000 4 1 0 0 1
$# t1 t2 t3 t4 nloc marea

0.000000 0.000000 0.000000 0.000000 1 0.000000
*CONTROL_TERMINATION

$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
$# endtim endcyc dtmin endeng endmas

0.250000 0 0.000000 0.000000 0.000000
*CONTROL_TIMESTEP

$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000000 0.900000 0 0.000000 0.000000 0 0
$# dt2msf dt2mslc

0.000000 0

161

Appendix B

Python Classes

B.1 LayergenDyna
#! /usr/bin/python
""" Scripts to generate an elastic cylinder of fully
integrated LS-DYNA 2D Axisymmetric elements in the
form of a homogeneous cylinder of specified dimensions.
The dimensions, element size, transducer size, input
trace are all entered at the command line.

This is a somewhat specialized script and should only
be used by people that have knowledge of the internal
workings of this scripts. It has a lot of specialized
functions used in a specific research project.
4
Author: Simon Berube, 2007
Usage: (All sizes in mm)

cylgenDyna.py nX nY dX dY td_size impulse_file dir Output_file rho E p_r t_t n_1? n_2?
cylgenDyna.py 101 101 0.25 0.25 30 1M_Pulse.txt DIR m1a.k 0.00210 27440 0.33 0.05

python cylgendyna.py 280 526 0.25 0.25 20 sineIn_out.txt ./ alum.k 0.002713 73000 0.33 0.25

Load Curve: tau = 0.001, skip = 0.00002*800 t=arage(0,1000)*0.0005
cylgendyna 600 600 0.4167 0.4167 1 ./lsource.txt ~/code/Lamb/ lamb.k 0.00210 29578 0.33 0.1

"""
import pickle
from numpy import array,zeros, arange, sqrt #For array management
import sys #For system arguments
import upv #For time traces, and reading from oscilloscope

Done and Working
def getInputInfo(pfn):

#Information needed : Max Frequency, Layer Information
fid = open(pfn) #open punch input file
for i in range(4): #Skip lines until Frequency information

fid.readline() #Skip line

f_max = fid.readline().split()
nbf = int(f_max[0])
f_max = (nbf-1.0)*float(f_max[1]) + float(f_max[2]) #This is max frequency

cnt = int(fid.readline().split()[0]) #Number of layers
fid.readline() #Skip descriptor line

layers = []
for i in range(cnt):

162

s = fid.readline()
vtmp = map(float,s.split()[0:7])
vtmp[0] = int(vtmp[0])

#Conver this to useful data V_p V_s E v rho height
#Get E = V_s^2 2\rho(1+\nu)
E = vtmp[3]**2 * 2 * (vtmp[2]) *(1+vtmp[4]) #Density is in 1000 kG/m^3 -> Convert to g/mm^2
V_p = sqrt(E*(1-vtmp[4])/((1+vtmp[4])*(1-2*vtmp[4])*(vtmp[2])))
layers.append([V_p,vtmp[3],E, vtmp[4], vtmp[2], vtmp[1]])

fid.readline()
fid.readline()

#Get number of item information
tmpnbR = map(float, fid.readline().split()[0:3]) #Get number of radii distances
tmpnbR[0] = int(tmpnbR[0])

nbR = tmpnbR[0];
dR = tmpnbR[2] - tmpnbR[1];
if (tmpnbR[1] == 0): #If the first distance is zero, ignore it

nbR = nbR - 1;

fid.readline(); #Skip line
nbD = int(fid.readline().split()[0]) #Get the number of depths

fid.close()
return [f_max,layers,nbR,nbD,dR,nbf]

def layeredDyna(punch_fn, dx, load_fn, out_fn, t_t):
#Obtain and Simplify Input arguments
td_sz = 1
dir = ’’
n_1 = -1
n_2 = -1
#Read information of Input file (PUNCH file)
pif = getInputInfo(punch_fn)
aL = array(pif[1]) #Array of Layers
tH = sum(aL[:,5])
dy = dx #We only care about square (Reflections, etc..)
max_x = int(tH/dx)
max_y = max_x
lHinNodes = map(int,aL[:,5].cumsum()/sum(aL[:,5])*max_y)

HB = [] #List of Horizontal Boundaries
HB.append(arange(max_x)+1) #Top boundary
for i in arange(len(pif[1])):

HB.append(arange(max_x)+ (lHinNodes[i]-1)*max_y + 1)

HB = array(HB)

print "Dimensions will be %i by %i" % (max_x, max_y)

#Define the mesh, boundaries vectors
NODES = zeros((6,max_x*max_y))
NODES[0,:] = arange(1, max_x*max_y+1)
LB = zeros(max_y) #Left Boundary
RB = zeros(max_y) #Right Boundary

""" NODES Setup:
NODES[0,:] - NODE ID
NODES[1,:] - X COORD
NODES[2,:] - Y COORD
NODES[3,:] - Z COORD
NODES[4,:] - tc flag
NODES[5,:] - rc flag

163

"""
#Set up Nodes Vectors
dxv = arange(max_x)*dx

for i in range(max_y):
NODES[1,i*max_x:(i+1)*max_x] = dxv
NODES[2,i*max_x:(i+1)*max_x] = i*dy
LB[i] = i*max_x + 1
RB[i] = (i+1)*max_x

#Set up Shells
""" SHELL Setup:

SHELL[0,:] - ELEMENT ID
SHELL[1,:] - PART ID
SHELL[2,:] - NODE 1
SHELL[3,:] - NODE 2
SHELL[4,:] - NODE 3
SHELL[5,:] - NODE 4
"""

#SEPARATE SHELLS IN PARTS BASED ON NODES LOCATION IN LAYERS.
SHELL = zeros((6 , (max_x-1)*(max_y-1)))
SHELL[0,:] = arange(1, (max_x-1)*(max_y-1) +1) #Sequential Shells
SHELL[1,:] = 1 # Only one part
tmp = arange(1, max_x)
part = 1;
for i in range((max_y-1)):

#Find part
for j in range(len(lHinNodes)):

if (i < lHinNodes[j]):
part = j+1
break

#Construct Elements
SHELL[1,i*(max_x-1):(i+1)*(max_x-1)] = part
SHELL[2,i*(max_x-1):(i+1)*(max_x-1)] = tmp + i*max_x
SHELL[3,i*(max_x-1):(i+1)*(max_x-1)] = tmp + 1 + i*max_x
SHELL[4,i*(max_x-1):(i+1)*(max_x-1)] = tmp + 1 + (i+1)*max_x
SHELL[5,i*(max_x-1):(i+1)*(max_x-1)] = tmp + (i+1)*max_x

#Set up LOAD Curve, Normalize
#load_tr = upv.ascii2upvtt(load_fn)
load_tr = upv.ascii2upvtt(load_fn)
load_tr = upv.upvtt((load_tr.time - load_tr.time[0]), (load_tr.data-load_tr.data[0])/max(load_tr.data))

Write the Data to LSDYNA ".k" file
fo = open(out_fn, "w")
fo.write(’*KEYWORD\n’)
fo.write(’*TITLE\n Autmatically generated by layergenDyna.py\n’)

#*parts #WRITE ALL PARTS HERE -- Done

for i in arange(len(aL)):
fo.write(’*PART\n’)
fo.write(’$# title\n’)
fo.write(’Layer %i\n’ % (i+1))
fo.write(’$# pid secid mid eosid hgid grav adpopt tmid\n’)
fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % (i+1,1,i+1,0,0,0,0,0))

#*mat #WRITE ALL MATS HERE
for i in arange(len(aL)):

fo.write(’*MAT_ELASTIC_TITLE\n’)
fo.write(’Material Layer\n’);
fo.write(’$ MID RO E PR DA DB\n’);
fo.write(’$# mid ro e pr da db not used\n’)
fo.write(’%10i%10.2f%10.0f%10.2f%10.0f%10.2f%10i\n’ % (i+1,aL[i][4],aL[i][2],aL[i][3],0.0, 0.0, 0))

164

#*section - Same section for everything
fo.write(’*SECTION_SHELL_TITLE\n’)
fo.write(’P-1\n’);
fo.write(’$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP\n’)
fo.write(’$# secid elform shrf nip propt qr/irid icomp setyp\n’)
fo.write(’%10i%10i%10f%10i%10i%10i%10i%10i\n’ % (1,15,0.83,4,1,0,0,1))
fo.write(’$# t1 t2 t3 t4 nloc marea\n’)
fo.write(’%10f%10f%10f%10f%10i%10f\n’ % (0.0, 0.0, 0.0, 0.0, 1, 0.0))

#*define_curve_Title
if (n_1 > 0):

fo.write(’*DEFINE_CURVE_TITLE\n’)
fo.write(’Damping Curve\n’)
fo.write(’$ LCID SIDR SFA SFO OFFA OFFO DATTYP\n’)
fo.write(’$# lcid sidr sfa sfo offa offo dattyp\n’)
fo.write(’%10i%10i%10f%10f%10f%10f%10i\n’ % (2, 0, 1.0, 1.0, 0.0, 0.0, 0))
fo.write(’$# a1 o1\n’)
fo.write(’%20f%20f\n’ % (0.0, n_1))
fo.write(’%20f%20f\n’ % (100.0, n_1))

fo.write(’*DAMPING_PART_MASS\n’)
fo.write(’$# pid lcid sf flag\n’)
fo.write(’%10i%10i%10f%10f\n’ % (1,2,1.0,0))
fo.write(’*DAMPING_PART_STIFFNESS\n’)
fo.write(’$# pid coef\n’)
fo.write(’%10i%10f\n’ % (1, -n_2))

fo.write(’*DEFINE_CURVE_TITLE\n’)
fo.write(’Lamb_Source\n’)
fo.write(’$ LCID SIDR SFA SFO OFFA OFFO DATTYP\n’)
fo.write(’$# lcid sidr sfa sfo offa offo dattyp\n’)
fo.write(’%10i%10i%10f%10f%10f%10f%10i\n’ % (1, 0, 1.0, 1e-8, 0.0, 0.0, 0))
fo.write(’$# a1 o1\n’)

for i in arange(len(load_tr.time)):
fo.write(’%20f%20f\n’ % (load_tr.time[i], load_tr.data[i]))

fo.write(’*LOAD_NODE_POINT\n’)
fo.write(’$ NODE DOF LCID SF CID M1 M2 M3\n’)
fo.write(’$# nid dof lcid sf cid m1 m2 m3\n’)
for i in range(td_sz): #First td_sz nodes are loaded equally by the same curve

fo.write(’%10i%10i%10i%10.1f%10i%10i%10i%10i\n’ % (i+1, 2, 1, 1.0, 0, 0, 0, 0))

Output Database
fo.write(’*DATABASE_NODOUT\n’)
fo.write(’$ DT BINARY\n’)
fo.write(’$# dt binary\n’)
fo.write(’%10f%10i\n’ % ((load_tr.time[1]-load_tr.time[0]), 1))
fo.write(’*DATABASE_HISTORY_NODE_ID\n’)
fo.write(’$# id1 heading\n’)
outnodes = set(list(HB.flat) + list(LB) + list(RB))
for i in outnodes:

fo.write(’%10i%70s\n’ % (i,’Output_Point’))

fo.write(’*DATABASE_GLSTAT\n’)
fo.write(’$# dt binary\n’)
fo.write(’%10f%10i\n’ % ((load_tr.time[1]-load_tr.time[0])*2, 1))

fo.write(’*DATABASE_BINARY_D3PLOT\n’)
fo.write(’$# dt lcdt beam npltc\n’)
fo.write(’%10f%10i%10i%10i\n’% ((load_tr.time[1]-load_tr.time[0])*5000,0,0, 0))
fo.write(’$# ioopt\n’)
fo.write(’%10i\n’ % (0))

#termination
fo.write(’*CONTROL_TERMINATION\n’)
fo.write(’$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS\n’)
fo.write(’$# endtim endcyc dtmin endeng endmas\n’)

165

fo.write(’%10f%10i%10f%10f%10f\n’ % (t_t, 0, 0.0, 0.0, 0.0))

#time steps
fo.write(’*CONTROL_TIMESTEP\n’)
fo.write(’$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST\n’)
fo.write(’$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st\n’)
fo.write(’%10f%10f%10i%10f%10f%10i%10i\n’ % (0.0, 0.9, 0, 0.0, 0.0, 0, 0))
fo.write(’$# dt2msf dt2mslc\n’)
fo.write(’%10f%10i\n’ % (0.0, 0))

#left boundary
fo.write(’*SET_NODE_LIST_TITLE\n’)
fo.write(’LB\n’);
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (1, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)

for i in arange(len(LB)/8):
fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(LB[i*8:(i+1)*8]))

for i in arange(len(LB)%8):
fo.write(’%10i’ % LB[(len(LB)/8)*8 + i])

#right boundary
fo.write(’\n*SET_NODE_LIST_TITLE\n’)
fo.write(’RB\n’)
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (2, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)
for i in arange(len(RB)/8):

fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(RB[i*8:(i+1)*8]))
for i in arange(len(RB)%8):

fo.write(’%10i’ % RB[(len(LB)/8)*8 + i])

#Horizontal Boundaries
fo.write(’\n*SET_NODE_LIST_TITLE\n’)
fo.write(’TB\n’)
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (3, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)
for i in arange(len(list(HB.flat))/8):

fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(HB.flat[i*8:(i+1)*8]))
for i in arange(len(list(HB.flat))%8):

fo.write(’%10i’ % HB.flat[(len(list(HB.flat))/8)*8 + i])

#Shells
fo.write(’\n*ELEMENT_SHELL\n’);
fo.write(’$ EID PID NID1 NID2 NID3 NID4\n’)
fo.write(’$# eid pid n1 n2 n3 n4\n’)
for i in arange(len(SHELL[0,:])):

fo.write(’%8i%8i%8i%8i%8i%8i\n’ % tuple(SHELL[:,i]))

#NODES
fo.write(’*NODE\n’);
fo.write(’$ NID X Y Z TC RC\n’);
fo.write(’$# nid x y z tc rc\n’);
for i in arange(len(NODES[0,:])):

fo.write(’%8i%16f%16f%16f%8i%8i\n’ % tuple(NODES[:,i]))

#END
fo.write(’*END\n’)
fo.close()

#########
#Save Boundary Information Data for Database Import
#########

166

print HB.tolist()
fo = open(dir + "HBs", "w")
pickle.dump(HB.tolist(), fo)
fo.close()

fo = open(dir + "RB", "w")
pickle.dump(RB.tolist(), fo)
fo.close()

fo = open(dir + "LB", "w")
pickle.dump(LB.tolist(), fo)
fo.close()

TD1 = range(td_sz)
fo = open(dir + "TD1", "w")
pickle.dump(TD1, fo)
fo.close()

\end{lstlisting}

\section{CylgenDyna}
\label{sec:cylgendyna}

\begin{verbatim}
#! /usr/bin/python
""" Scripts to generate an elastic cylinder of fully
integrated LS-DYNA 2D Axisymmetric elements in the
form of a homogeneous cylinder of specified dimensions.
The dimensions, element size, transducer size, input
trace are all entered at the command line.

This is a somewhat specialized script and should only
be used by people that have knowledge of the internal
workings of this scripts. It has a lot of specialized
functions used in a specific research project.

Author: Simon Berube, 2007
Usage: (All sizes in mm)

cylgenDyna.py nX nY dX dY td_size impulse_file dir Output_file rho E p_r t_t n_1? n_2?
cylgenDyna.py 101 101 0.25 0.25 30 1M_Pulse.txt DIR m1a.k 0.00210 27440 0.33 0.05

python cylgendyna.py 280 526 0.25 0.25 20 sineIn_out.txt ./ alum.k 0.002713 73000 0.33 0.25

Load Curve: tau = 0.001, skip = 0.00002*800 t=arage(0,1000)*0.0005 -THANK YOU!
cylgendyna 600 600 0.4167 0.4167 1 ./lsource.txt ~/code/Lamb/ lamb.k 0.00210 29578 0.33 0.1

"""
import pickle
from numpy import array,zeros, arange #For array management
import sys #For system arguments
import upv #For time traces, and reading from oscilloscope

#Obtain and Simplify Input arguments
max_x = int(sys.argv[1])
max_y = int(sys.argv[2])
dx = float(sys.argv[3])
dy = float(sys.argv[4])
td_sz = int(sys.argv[5])
load_fn = sys.argv[6]
dir = sys.argv[7]
out_fn = dir + sys.argv[8]
rho = float(sys.argv[9])
E = float(sys.argv[10])
p_r = float(sys.argv[11])
t_t = float(sys.argv[12])
try:
n_1 = float(sys.argv[13])

167

n_2 = float(sys.argv[14])
except:
n_1 = -1
n_2 = -1

#Define the mesh, boundaries vectors
NODES = zeros((6,max_x*max_y))
NODES[0,:] = arange(1, max_x*max_y+1)
LB = zeros(max_y) #Left Boundary
RB = zeros(max_y) #Right Boundary

""" NODES Setup:
NODES[0,:] - NODE ID
NODES[1,:] - X COORD
NODES[2,:] - Y COORD
NODES[3,:] - Z COORD
NODES[4,:] - tc flag
NODES[5,:] - rc flag
"""

#Set up Nodes Vectors
dxv = arange(max_x)*dx
TB = arange(max_x)+1 #First max_x nodes are top boundary
BB = arange(max_x)+(max_x*(max_y-1)) + 1 #Bottom Boundary
for i in range(max_y):

NODES[1,i*max_x:(i+1)*max_x] = dxv
NODES[2,i*max_x:(i+1)*max_x] = i*dy
LB[i] = i*max_x + 1
RB[i] = (i+1)*max_x

#Set up Shells
""" SHELL Setup:

SHELL[0,:] - ELEMENT ID
SHELL[1,:] - PART ID
SHELL[2,:] - NODE 1
SHELL[3,:] - NODE 2
SHELL[4,:] - NODE 3
SHELL[5,:] - NODE 4
"""

SHELL = zeros((6 , (max_x-1)*(max_y-1)))
SHELL[0,:] = arange(1, (max_x-1)*(max_y-1) +1) #Sequential Shells
SHELL[1,:] = 1 # Only one part
tmp = arange(1, max_x)
for i in range((max_y-1)):

SHELL[2,i*(max_x-1):(i+1)*(max_x-1)] = tmp + i*max_x
SHELL[3,i*(max_x-1):(i+1)*(max_x-1)] = tmp + 1 + i*max_x
SHELL[4,i*(max_x-1):(i+1)*(max_x-1)] = tmp + 1 + (i+1)*max_x
SHELL[5,i*(max_x-1):(i+1)*(max_x-1)] = tmp + (i+1)*max_x

#Set up LOAD Curve, Normalize
#load_tr = upv.ascii2upvtt(load_fn)
load_tr = upv.ascii2upvtt(load_fn)
load_tr = upv.upvtt((load_tr.time - load_tr.time[0])*1000, (load_tr.data-load_tr.data[0])/max(load_tr.data))

Write the Data to LSDYNA ".k" file
fo = open(out_fn, "w")
fo.write(’*KEYWORD\n’)
fo.write(’*TITLE\n Autmatically generated by cylgenDyna.py\n’)
#*part
fo.write(’*PART\n’)
fo.write(’$# title\n’)
fo.write(’%80s\n’ % (’Part 1’))
fo.write(’$# pid secid mid eosid hgid grav adpopt tmid\n’)
fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % (1,1,1,0,0,0,0,0))

#*mat
fo.write(’*MAT_ELASTIC_TITLE\n’)

168

fo.write(’Material Layer\n’);
fo.write(’$ MID RO E PR DA DB\n’);
fo.write(’$# mid ro e pr da db not used\n’)
fo.write(’%10i%10.5f%10.0f%10.2f%10.0f%10.2f%10i\n’ % (1,rho,E,p_r,0.0, 0.0, 0))

#*section
fo.write(’*SECTION_SHELL_TITLE\n’)
fo.write(’P-1\n’);
fo.write(’$ SECID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP\n’)
fo.write(’$# secid elform shrf nip propt qr/irid icomp setyp\n’)
fo.write(’%10i%10i%10f%10i%10i%10i%10i%10i\n’ % (1,15,0.83,4,1,0,0,1))
fo.write(’$# t1 t2 t3 t4 nloc marea\n’)
fo.write(’%10f%10f%10f%10f%10i%10f\n’ % (0.0, 0.0, 0.0, 0.0, 1, 0.0))

#*define_curve_Title
if (n_1 > 0):
fo.write(’*DEFINE_CURVE_TITLE\n’)
fo.write(’Damping Curve\n’)
fo.write(’$ LCID SIDR SFA SFO OFFA OFFO DATTYP\n’)
fo.write(’$# lcid sidr sfa sfo offa offo dattyp\n’)
fo.write(’%10i%10i%10f%10f%10f%10f%10i\n’ % (2, 0, 1.0, 1.0, 0.0, 0.0, 0))
fo.write(’$# a1 o1\n’)
fo.write(’%20f%20f\n’ % (0.0, n_1))
fo.write(’%20f%20f\n’ % (100.0, n_1))

fo.write(’*DAMPING_PART_MASS\n’)
fo.write(’$# pid lcid sf flag\n’)
fo.write(’%10i%10i%10f%10f\n’ % (1,2,1.0,0))
fo.write(’*DAMPING_PART_STIFFNESS\n’)
fo.write(’$# pid coef\n’)
fo.write(’%10i%10f\n’ % (1, -n_2))

fo.write(’*DEFINE_CURVE_TITLE\n’)
fo.write(’Lamb_Source\n’)
fo.write(’$ LCID SIDR SFA SFO OFFA OFFO DATTYP\n’)
fo.write(’$# lcid sidr sfa sfo offa offo dattyp\n’)
fo.write(’%10i%10i%10f%10f%10f%10f%10i\n’ % (1, 0, 1.0, 1e-8, 0.0, 0.0, 0))
fo.write(’$# a1 o1\n’)

for i in arange(len(load_tr.time)):
fo.write(’%20f%20f\n’ % (load_tr.time[i], load_tr.data[i]))

fo.write(’*LOAD_NODE_POINT\n’)
fo.write(’$ NODE DOF LCID SF CID M1 M2 M3\n’)
fo.write(’$# nid dof lcid sf cid m1 m2 m3\n’)
for i in range(td_sz): #First td_sz nodes are loaded equally by the same curve

fo.write(’%10i%10i%10i%10.1f%10i%10i%10i%10i\n’ % (i+1, 2, 1, 1.0, 0, 0, 0, 0))

Output Database
fo.write(’*DATABASE_NODOUT\n’)
fo.write(’$ DT BINARY\n’)
fo.write(’$# dt binary\n’)
fo.write(’%10f%10i\n’ % (t_t/4096., 1))
fo.write(’*DATABASE_HISTORY_NODE_ID\n’)
fo.write(’$# id1 heading\n’)
outnodes = set(list(BB) + list(TB) + list(LB) + list(RB))
for i in outnodes:

fo.write(’%10i%70s\n’ % (i,’Output_Point’))

fo.write(’*DATABASE_GLSTAT\n’)
fo.write(’$# dt binary\n’)
fo.write(’%10f%10i\n’ % ((load_tr.time[1]-load_tr.time[0])*2, 1))

fo.write(’*DATABASE_BINARY_D3PLOT\n’)
fo.write(’$# dt lcdt beam npltc\n’)
fo.write(’%10f%10i%10i%10i\n’% ((load_tr.time[1]-load_tr.time[0])*5000,0,0, 0))
fo.write(’$# ioopt\n’)
fo.write(’%10i\n’ % (0))

169

#termination
fo.write(’*CONTROL_TERMINATION\n’)
fo.write(’$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS\n’)
fo.write(’$# endtim endcyc dtmin endeng endmas\n’)
fo.write(’%10f%10i%10f%10f%10f\n’ % (t_t, 0, 0.0, 0.0, 0.0))

#time steps
fo.write(’*CONTROL_TIMESTEP\n’)
fo.write(’$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MS1ST\n’)
fo.write(’$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st\n’)
fo.write(’%10f%10f%10i%10f%10f%10i%10i\n’ % (0.0, 0.9, 0, 0.0, 0.0, 0, 0))
fo.write(’$# dt2msf dt2mslc\n’)
fo.write(’%10f%10i\n’ % (0.0, 0))

#left boundary
fo.write(’*SET_NODE_LIST_TITLE\n’)
fo.write(’LB\n’);
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (1, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)

for i in arange(len(LB)/8):
fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(LB[i*8:(i+1)*8]))

for i in arange(len(LB)%8):
fo.write(’%10i’ % LB[(len(LB)/8)*8 + i])

#right boundary
fo.write(’\n*SET_NODE_LIST_TITLE\n’)
fo.write(’RB\n’)
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (2, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)
for i in arange(len(RB)/8):

fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(RB[i*8:(i+1)*8]))
for i in arange(len(RB)%8):

fo.write(’%10i’ % RB[(len(LB)/8)*8 + i])

#top boundary
fo.write(’\n*SET_NODE_LIST_TITLE\n’)
fo.write(’TB\n’)
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (3, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)
for i in arange(len(TB)/8):

fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(TB[i*8:(i+1)*8]))
for i in arange(len(TB)%8):

fo.write(’%10i’ % TB[(len(TB)/8)*8 + i])

#bottom boundary
fo.write(’\n*SET_NODE_LIST_TITLE\n’)
fo.write(’BB\n’)
fo.write(’$ SID DA1 DA2 DA3 DA4\n’)
fo.write(’%10i%10f%10f%10f%10f\n’ % (4, 0.0, 0.0, 0.0, 0.0))
fo.write(’$ NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8\n’)
for i in arange(len(BB)/8):

fo.write(’%10i%10i%10i%10i%10i%10i%10i%10i\n’ % tuple(BB[i*8:(i+1)*8]))
for i in arange(len(BB)%8):

fo.write(’%10i’ % BB[(len(BB)/8)*8 + i])

#Shells
fo.write(’\n*ELEMENT_SHELL\n’);
fo.write(’$ EID PID NID1 NID2 NID3 NID4\n’)
fo.write(’$# eid pid n1 n2 n3 n4\n’)
for i in arange(len(SHELL[0,:])):

fo.write(’%8i%8i%8i%8i%8i%8i\n’ % tuple(SHELL[:,i]))

#NODES

170

fo.write(’*NODE\n’);
fo.write(’$ NID X Y Z TC RC\n’);
fo.write(’$# nid x y z tc rc\n’);
for i in arange(len(NODES[0,:])):

fo.write(’%8i%16f%16f%16f%8i%8i\n’ % tuple(NODES[:,i]))

#END
fo.write(’*END\n’)
fo.close()

#########
#Save Boundary Information Data for Database Import
#########
fo = open(dir + "TB", "w")
pickle.dump(TB.tolist(), fo)
fo.close()

fo = open(dir + "BB", "w")
pickle.dump(BB.tolist(), fo)
fo.close()

fo = open(dir + "RB", "w")
pickle.dump(RB.tolist(), fo)
fo.close()

fo = open(dir + "LB", "w")
pickle.dump(LB.tolist(), fo)
fo.close()

TD1 = range(td_sz)
fo = open(dir + "TD1", "w")
pickle.dump(TD1, fo)
fo.close()

B.2 modelGenerator1M
#! /usr/bin/python
""" Script that generates directory structure, as well as LS-DYNA files for
each of our concrete specimen. The program then proceeds to solve the problem
with standard settings.

"""
import os

#Configuration (mm, ms, N, g) - Assuming V_p = 4600m/s
dx = 0.25
dy = 0.25
rho = 0.002102
E = 29578
p_r = 0.33
end_time = 0.05

#damping?
#n_1 = 107711.657 #Mass Damping
#n_2 = 7.2757e-9 #Stiff Damping

n_1 = 0
n_2 = 0

folder = ’1M’
MTDInput = ’1M_Pulse.txt’
MTDSize = ’60’ #This depends on the DX set
solver = ’C:\LSDYNA2\program\ls970_s_6763_win32.exe MEMORY=180000000 I=’

Name:(Height, Width)
spec = {’m1a’:(50,50),

171

’m2a’:(100,50),
’m3a’:(200,50),
’m4a’:(300,50),
’m1b’:(50,100),
’m2b’:(100,100),
’m3b’:(200,100),
’m4b’:(300,100),
’m1c’:(50,150),
’m2c’:(100,150),
’m3c’:(200,150),
’m4c’:(300,150)}

#Create files and directories
os.mkdir(folder)
for k,v in spec.iteritems():
os.mkdir(folder + "/" + k)
cmd = (’python cylgenDyna.py ’ \
+ str(int(v[1]/dx+1)) + ’ ’ \
+ str(int(v[0]/dy+1)) + ’ ’ \
+ str(dx) + ’ ’ + str(dy) + ’ ’ \
+ MTDSize + ’ ’ + MTDInput + ’ ’ \
+ ’./’ + folder + ’/’ + k + ’/ ’ + k + ’.k ’ \
+ str(rho) + ’ ’ + str(E) + ’ ’ \
+ str(p_r) + ’ ’ + str(end_time))

if (n_1 > 0):
cmd = cmd + ’ ’ + str(n_1) + ’ ’ + str(n_2)
os.system(cmd)

#Now, Solve!!!!
os.chdir(folder)
for k, v in spec.iteritems():
os.chdir(k)
os.system(solver + k + ’.k’)
os.chdir(’..’)

B.3 modelGenerator50K
#! /usr/bin/python
""" Script that generates directory structure, as well as LS-DYNA files for

each of our concrete specimen. The program then proceeds to solve the problem with standard settings.
"""
import os

#Configuration (mm, ms, N, g) - Assuming V_p = 4600m/s
dx = 0.25
dy = 0.25
rho = 0.002102
E = 29578
p_r = 0.33
end_time = 0.05

#damping?
#n_1 = 107711.657 #Mass Damping
#n_2 = 7.2757e-9 #Stiff Damping

n_1 = 0
n_2 = 0

folder = ’1M’
MTDInput = ’1M_Pulse.txt’
MTDSize = ’60’ #This depends on the DX set
solver = ’C:\LSDYNA2\program\ls970_s_6763_win32.exe MEMORY=180000000 I=’

172

Name:(Height, Width)
spec = {’m1a’:(50,50),

’m2a’:(100,50),
’m3a’:(200,50),
’m4a’:(300,50),
’m1b’:(50,100),
’m2b’:(100,100),
’m3b’:(200,100),
’m4b’:(300,100),
’m1c’:(50,150),
’m2c’:(100,150),
’m3c’:(200,150),
’m4c’:(300,150)}

#Create files and directories
os.mkdir(folder)
for k,v in spec.iteritems():
os.mkdir(folder + "/" + k)
cmd = (’python cylgenDyna.py ’ \
+ str(int(v[1]/dx+1)) + ’ ’ \
+ str(int(v[0]/dy+1)) + ’ ’ \
+ str(dx) + ’ ’ + str(dy) + ’ ’ \
+ MTDSize + ’ ’ + MTDInput + ’ ’ \
+ ’./’ + folder + ’/’ + k + ’/ ’ + k + ’.k ’ \
+ str(rho) + ’ ’ + str(E) + ’ ’ \
+ str(p_r) + ’ ’ + str(end_time))

if (n_1 > 0):
cmd = cmd + ’ ’ + str(n_1) + ’ ’ + str(n_2)
os.system(cmd)

#Now, Solve!!!!
os.chdir(folder)
for k, v in spec.iteritems():
os.chdir(k)
os.system(solver + k + ’.k’)
os.chdir(’..’)

B.4 tt
"""
Database time trace utility objects. See objects for details.
Developped by: Simon Berube, 2007
"""
#Scientific Tools
from numpy import ndarray, array, arange, angle, trapz, mean, hstack,zeros, where, mean, ceil
from numpy import log, log10
from numpy.fft import rfft, fft2
from numpy.lib import unwrap
from pylab import plot, title, xlabel, ylabel, show, xlim, ylim, subplot, ion
from pylab import ioff, isinteractive, savefig, close, polyfit, legend, axes, imshow
from pylab import figure, rcParams, gca, show, setp, connect, draw, contourf, contour
import pylab
from matplotlib.transforms import Bbox, Value, Point, get_bbox_transform, unit_bbox

#PostgreSQL and Regexp
from psycopg2 import connect
import re
import datetime

""" ===
Generally Useful Functions

=== """

173

def lst2sql(lst):
s = "%s" % str(lst)
s = re.sub("\[","{", s)
s = re.sub("\]","}", s)
s = re.sub(" ", "", s)
return s

def sql2lst(lst):
lst = re.sub(’{’,’’, lst)
lst = re.sub(’}’,’’, lst)
lst = re.sub(’,’,’ ’, lst)
lst = map(float, lst.split())
return lst

""" ====================================
OBJECTS tt, upvtt, upvtt_list

==================================== """

class tt(dict):
""" Time trace class, contains procedures for handling,
processing and visualizing basic time traces of any
kind. It contains a dictionary of non-related paramters
that can be used to identify and categorize the traces.
This is mostly useful for database interaction whereas
database values can be stored inside the object.

These properties can be accessed using dictionary structures
such as:

tt[KEY] = Value OR Value = tt[KEY]

#DEV_ITEM
Has operator overloading of addition, substractions
and multiplication. Please see the operator description
for their behaviors.

Also clean up PLOT function to take in **kwargs instead
of godawfully long function descriptions
#END_DEV_ITEM

Accessible Class Members
Name Type Desc
==
time ndarray The time vector (R0)
data ndarray The data vector (R0)
T ndarray Fourier Transform of the time trace (RO)
f ndarray Frequency vector of the Fourier Transform (RO)
P ndarray Power Spectrum corresponding to f (RO)
phi ndarray Phase angle corresponding to f (RO)

mset set() Contains keys of changed dictionary values
cval dict() Contains dictionary values. Not to use directly!
"""

""" +++++++++++++++++++++++++
DATA ACCESSORS(RO)

+++++++++++++++++++++++++ """
def get_t(self): return self._time
def get_d(self): return self._data
def get_f(self):

self._comp_fft()
return self._f #Frequency Vector (Hz)

def get_T(self):
self._comp_fft()
return self._T #Raw FFT complex data

def get_P(self):
self._comp_fft()

174

#Power (Amplitude squared)
return (self._T * self._T.conj())/len(self.time)

def get_phi(self):
self._comp_fft()
return angle(self.T) #Phase angle

time = property(get_t, None, None, "Time")
data = property(get_d, None, None, "Data")
f = property(get_f, None, None, "Frequency")
T = property(get_T, None, None, "Transform - Complex")
P = property(get_P, None, None, "Power")
phi = property(get_phi, None, None, "Phase Angle")

""" ++
SEMI-PRIVATE CLASS FUNCTIONS

++ """
def __init__(self,t= None, d = None, vdict = {}):

""" Initilization of time trace:
__init__(time, data)

t:
The time vector, as numpy ndarray. This
is only mandatory if you do not define a
trng value.

d:
data vector, as numpy ndarray, mandatory
value must be given for all initializations.

vdict: dictionary of key/value pairs of any kind to
keep track of time trace properties. This is
intended to be flexible and used as the user
sees fit. The use was originally intended
to hold database information about a specific
time trace.

#DEV_ITEM: Add mode that stores P,Phi instead of r
ecomputing

"""
super(tt, self).__init__()

#Check and init variables
if (isinstance(d, ndarray) and isinstance(t,ndarray)):

if (len(d) == len(t)):
self._data = d
self._time = t

else:
raise ValueError(’Vector Dimension Mismatch’)

else:
raise TypeError(’Wrong data type for d or t’)

#Init other class variables
self._T = None
self.cval = {}
self.mset = set()

if isinstance(vdict, dict):
self.cval = vdict;

else:
raise TypeError(’Wrong data type for vdict’)

def _comp_fft(self):
""" Computes the FFT data whenever it is used.
Does not compute again if already calculated.

TODO: Add option to zero average signal
"""
if (self._T == None):

175

#Now compute the FFT
f_n =self.sfreq()/2.0
self._T = rfft(self.data)
self._f =arange(0, len(self._T))/float(len(self._T)-1)*f_n

if len(self.T) != len(self.f):
raise ValueError(’Stuff %i, %i’ % (len(self.T),

len(self.f)))

def __repr__(self):
return "<tt object at 0x%x>" % id(self)

def __str__(self):
return "<tt object at 0x%x>" % id(self)

def __len__(self):
return len(self.time) #Length is number of time elements

def _amp_maxplot(self):
return abs(self.data.max()) #Return maximum data

def __getitem__(self, name):
return self.cval[name]

def _amp_tot_freq(self):
Simply use trapz(self.f,self.P) or somesuch
return trapz(self.P, self.f)

def __setitem__(self, name, value):
self.mset.add(name)
self.cval[name] = value #Update Value

""" ++
PUBLIC CLASS FUNCTIONS

++ """
def plot(self, *args, **kwargs):

""" Plots the time trace using the matplotlib library.
can be called with no input argument for a default full
plot of the data.

This works best in iPython, if not make sure your
matplotlibrc file is setup accurately to handle
a back-end that works with your system.
(Tk should have best compatibility)

Available Options: (Same as matplotlib plot, and axes)

All **kwargs will be redirected to axes as follows:
axes.set(**kwargs)
EXCEPT:

’on_axes’:? can be used to set
an existing axe for plotting. This
is useful when embedding in a GUI
application.

All *args will be redirected to plot as follows:

If only 1 arg is given, it will be appended
after the x, y arguments (set by default)

If no args are given, defaults x, y, color
will be set

if 2 or more arguments are given, they
are passed directly to pylab.plot(*args)

Usage:
plot(self, *args, **kwargs)

176

Defaults:
title = ’Time Trace’
xlabel =’Time’
ylabel =’Amplitude’
on_axes = None

"""
defaults = { ’title’:’Time Trace’,

’xlabel’:’Time’,
’ylabel’:’Amplitude’,
’on_axes’: None,
}

for k, v in defaults.iteritems():
if k not in kwargs:

kwargs[k] = v

if not len(args): args = (self.time, self.data, ’b’)
elif len(args) == 1: args = (self.time, self.data, args[0])

iset = False
do_show = False
on_axes = kwargs.pop(’on_axes’)

if (isinteractive()):
ioff() #Disable Interactive Mode if active
iset = True

if (on_axes == None):
plot(*args)
ax = gca()
do_show = True

else:
on_axes.plot(*args)
ax = on_axes

ax.set(**kwargs)

if do_show: show() #If no renderers, simply create a new backend
if iset: ion()

def plotP(self, *args, **kwargs):
""" Plot of the Power Spectrum of the time trace,
See self.plot() """

defaults = { ’title’:’Power Spectrum’,
’xlabel’:’Frequency (Hz)’,
’ylabel’:’Power’,
’on_axes’: None }

for k, v in defaults.iteritems():
if k not in kwargs:

kwargs[k] = v

self.plot(self.f, self.P, *args, **kwargs)

def plotT(self, *args, **kwargs):
""" Plots the amplitude and unwrapped phase angle of
the computed Fourier Spectrum. As two subplots.

This function is not very customizable, unlike
self.plot() and self.plotP() it will not react
to the following kwargs:

’title’, ’ylabel’, ’ylim’

But has will accept a current figure

177

’on_fig’
"""
defaults = { ’xlabel’:’Frequency (Hz)’,

’on_fig’: None }

for k, v in defaults.iteritems():
if k not in kwargs:

kwargs[k] = v

phi = unwrap(self.phi) #Compute once, for efficiency
amp = abs(self.T)
on_fig = kwargs.pop(’on_fig’)

#Top Amplitude Plot
if not on_fig:

subplot(2,1,1)
ax = gca()

else:
ax = on_fig.add_subplot(211)

kwargs[’title’] = ’Amplitude Spectrum’
kwargs[’ylabel’] = ’Amplitude’
kwargs[’on_axes’] = ax
self.plot(self.f, amp, *args, **kwargs)

if not on_fig:
subplot(2,1,2)
ax = gca()

else:
ax = on_fig.add_subplot(212)

kwargs[’title’] = ’Phase Spectrum’
kwargs[’ylabel’] = ’Angle’
kwargs[’on_axes’] = ax
self.plot(self.f, phi, *args, **kwargs)

if not on_fig:
show()
#Change focus, this is to fix bug with GTKAgg backend.
#DEV_ITEM: Fix this hack solution
subplot(2,1,2)

def sfreq(self):
""" Returns the sampling frequency of the time trace (dt) """
return 1/(self.time[1] - self.time[0])

def amp(self, method=’maxplot’):
""" Calculates the amplitude of the time trace using the
selected method. Available methods are:

’maxplot’ - Returns the maximum value at any point in the
time trace

’tot_freq’ - Returns the area (integration) of the frequency
domain information of the time trace.

"""
if method == ’maxplot’:

return self._amp_maxplot()
elif method == ’tot_freq’:

return self._amp_tot_freq()

def updSQL(self, items, pkeys):
""" Builds an update SQL statement that will save every
modified values of this class as described by mset. For
description of items, pkeys input as well as output
please refer to self.insSQL() """
#Finish up by building the WHERE statement

178

#Builds a simple SQL statement for every modified arguments
#and concatenate them into a single string. This is not the
#most efficient but significantly reduces code complexity

SQL = {}
for k, v in pkeys.iteritems():

SQL[k] = ’’
if v[0] in self.mset:

raise ValueError(’Primary Key of %s was modified in object! Aborting Save.’ % k)

for item in self.mset:
if item in items.keys():

tbl = items[item]
SQL[tbl] += ’UPDATE "%s" SET "%s"=’ % (items[item], item)

if isinstance(self[item], str):
SQL[tbl] += "’%s’" % self[item]

else:
SQL[tbl] += str(self[item])

SQL[tbl] += ’ WHERE "%s"=\’%s\’;\n’ % \
(pkeys[items[item]][0], self[pkeys[items[item]][0]])

return SQL

def insSQL(self, items, pkeys):
""" Returns a dictionary of SQL INSERT Statements that saves
all key(columns)/Value pairs of tt. The function returns
a dictionary of format:

{’table_name’: SQL INSERT STATEMENT,
’table_name_2’: SQL..., ... }

items dictionary of format: (items)

’item’:’table_name’
...

Primary keys is another dictionary containing the table:key
names as follow:

’table_name’:(’primary_key_column’, ’link1’, ’link2’)

’link1’ and ’link2’ are not used or needed but the
input must still be a tuple dictionary to have
seamless compatibility with tt_list.

If object already exists, you can use updSQL() function
that sends an SQL statement updating only the modified
values.

Usage:
toSQL(self, items, pkey)
toSQL(self, {’name’:’upvtt’, ’data’:’upvtt’, ...},

{’upvtt’:(’name’,)})
"""
if (self.keys().__len__() == 0):

raise ValueError(’tt object has no dictionary keys’)

SQL_Dict = {}
#Init all keys (This is inefficient and repeated, but.. meh)
for k, v in pkeys.iteritems():

SQL_Dict[k] = ’INSERT INTO ’ + k + ’("’
if v[0] in self.mset:

raise ValueError(’Primary Key of %s was modified in object! Aborting Save.’ % k)

#Build the ’(name1,name2,...) ’ part
for k, v in items.iteritems():

SQL_Dict[v] += k + ’", "’

179

for k in SQL_Dict.keys():
SQL_Dict[k] = SQL_Dict[k][0:-3] + ’) VALUES (’

#Build the ’(value1, value2, value3, ...)’ part
for k, v in items.iteritems():

if k in self.keys():
if isinstance(self[k], str):

SQL_Dict[v] += "’%s’, " % self[k]
elif isinstance(self[k], datetime.date):

SQL_Dict[v] += "’%s’, " % str(self[k])
elif self[k] is None:

SQL_Dict[v] += "NULL, "
else:

SQL_Dict[v] += str(self[k]) + ", "
elif k == "time":

SQL_Dict[v] += "’%s’, " % lst2sql(self.time.tolist())
elif k == "data":

SQL_Dict[v] += "’%s’, " % lst2sql(self.data.tolist())
else: #No value

SQL_Dict[v] += "NULL, "

for k in SQL_Dict.keys():
SQL_Dict[k] = SQL_Dict[k][0:-2] + ’);’

#Return the dictionary with all tables. (Main table will have to be saved
#First.
return SQL_Dict

def tslice(self, start=None, end=None, nbpts=None):
""" Returns a tt object of the sliced trace which
contains data from start to end as a time value.

If no end or out of bound is given, last point assumed.
If no start or out of bound is given, first point assumed.

tslice(self, start=None, end=None) NpuFIFij3DdxRT
"""

istart = 1
if (start != None):

if (self.time.min() < start):
istart = (self.time < start).nonzero()[0].max()

else:
pass

iend = None
if (end != None):

if (self.time.max() > end):
iend = (self.time > end).nonzero()[0].min()

else:
pass

if (nbpts == None):
return tt(self.time[istart:iend], self.data[istart:iend],

self.cval)
else:

#Zero pad
dt = self.time[1] - self.time[0]
t=arange(self.time[istart],self.time[istart]+(nbpts)*dt,dt)
dat = self.data[istart:iend]
dat = hstack([dat, zeros(nbpts - len(dat))])

return tt(t,dat, self.cval)

def clearSet(self):
"""Clears mset """
self.mset = set()

def keys(self):
return self.cval.keys()

180

def values(self):
return self.cval.values()

def iteritems(self):
return self.cval.iteritems()

def iterkeys(self):
return self.cval.iterkeys()

def itervalues(self):
return self.cval.itervalues()

def get(self):
return self.cval.get()

def has_key(self, key):
return self.cval.has_key(key)

B.5 ttlist

class tt_list(list):
""" Specialized class managing tt objects taken from a
PGSQL Database, the list is table and database independent
so it is useful as a base class for more specialized database
designs.

tt items are referred as a list. This is simpler for iterations and
ordering. Dictionary listing do not have ordering which may cause
problems when sorting values.

All available values, as well as the column to which they belong are
stored as key:value pairs (column : table) inside the self.columns
dictionary.

IMPORTANT NOTE:
While the class is table independent you should still have
columns named "time" and "data" that contain a string of
the time and data array like:

time = "{1,2,3,4,5,6}" or 2D as "{{1,2,3},{1,2,3}}

Otherwise, the program will fail with an appropriate error.

IMPORTANT NOTE2:
As of yet, this class does not support one-to-many
relationships. Each table must be directly linked
as a one-to-one. (This may be changed when a clear
need arises)

DEV_ITEM: Add plot, slice and other multi-trace functions here
"""

""" ++
SEMI-PRIVATE CLASS FUNCTIONS

++ """
def __init__(self, conn, tables, ptable, *args, **kwargs):

"""
Gets items in the database that match the given creterias.
and store them in this list object.

__init__(self, conn, tables, pkey, *args, **kwargs)

conn:
A standard API 2.0 database connection object. This
was programmed for psycopg2 on PostgreSQL 8.2.

181

tables:
Dict the secondary tables and how they aer linked
to the main table. The following format should
be used.

{’main_table’:(’pkey’)
’table1’:(’pkey’, ’main_table_col’, ’table1_col’),
’table2’:(’pkey’, ’main_table_col’, ’table2_col’),
...
}

The first table MUST BE THE MAIN TABLE and contain
time and data vectors

ptable:
The name of the primary table, which must also be in
tables as a key. With the value of taht key being
a tuple, not a string.

At least ONE of the following is required:

*args:
Arguments passed as SQL WHERE conditions that will
be used to pull objects from database.

At least ONE of the following is required:

*args:
Arguments passed as SQL WHERE conditions that will
be used to pull objects from database.

e.g. __init__(’date_created > SOME_DATE’)
Gives SQL:
SELECT ... WHERE date_created > SOME_DATE

**kwargs:
keyword:value pairs that will search for similar
objects in the database.

e.g.: name=’m1%’ --> WHERE name LIKE ’m1%’
"""
super(tt_list, self).__init__()
#Set some class values for reference
self.conn = conn
self.tables = tables

###
#Builds the list
curs = conn.cursor()
self.columns = []
self.cdict = {}
tables = tables.keys() #All tables
self.ptable = ptable

for table in tables:
#POSTGRE DEPENDENT SQL
SQL = "SELECT column_name FROM " \

+ "information_schema.columns " \
+ "WHERE table_name = ’" + table \
+ "’ ORDER BY ordinal_position;"

curs.execute(SQL)

for elem in curs:
#Do not overwrite
if elem[0] not in self.cdict.keys():

self.cdict[elem[0]] = str(table)
self.columns.append(elem[0])

else:

182

print "Warning: Duplicate keys found: " + elem[0]

#Make sure we have "time" and "data" columns
if("time" not in self.columns) \

or ("data" not in self.columns):
raise ValueError("No time or data columns in table")

###
Build basic SQL statement to get all columns/tables
sql_base = ’SELECT ’
for col in self.columns: #Use for ordering

sql_base += ’"%s"."%s", ’% (self.cdict[col], col)
sql_base = sql_base[0:-2] #remove last coma
sql_base += " FROM "

for table in tables:
sql_base += ’"%s", ’ % str(table)

sql_base = sql_base[0:-2] #remove last coma

sql_base += " WHERE "
for k, v in self.tables.iteritems():

if k != self.ptable:
sql_base += ’"%s"."%s" = "%s"."%s" AND ’ % \

(self.ptable, v[1], k, v[2])

###
*args and **kwargs logic
for arg in args:

if not isinstance(arg, str) :
#We are passed an existing list of (hopefully) tt
#objects, Integrate it in the class.
if isinstance(arg, list):

for obj in arg:
self.append(obj)

else:
self.append(arg)

else:
#Otherwise, treat it as an SQL WHERE request.
curs.execute(sql_base + arg)
for obj in curs: self._cur2upvtt(obj)

if len(kwargs) != 0:
s = ’’
for k, v in kwargs.iteritems():

if isinstance(v, str):
s += "\"%s\".\"%s\" LIKE ’%s’ AND " % \

(self.cdict[k], k, v)
else:

s += "\"%s\".\"%s\" LIKE %s AND " % \
(self.cdict[k], k, v)

SQL = ’%s %s;’ % (sql_base, s[0:-4])
curs.execute(SQL)
for obj in curs: self._cur2upvtt(obj)

def _cur2upvtt(self, curfetch):
"""Helper function that sets a new tt entry in the self[id]
storage of this class."""
#Due to order in which items were asked, columns should be
#ordered
pkcol = self.columns.index(self.tables[self.ptable][0])

#Convert these two columns (time, data) as arrays
d = array(sql2lst(curfetch[self.columns.index("data")]))
t = array(sql2lst(curfetch[self.columns.index("time")]))

183

#Create the dictionary of all variables except time, data
vdict = {}
for i in range(0,len(self.columns)):

if self.columns[i] not in ("time", "data"):
vdict[self.columns[i]] = curfetch[i]

self.append(tt(t, d, vdict))

def __str__(self):
return str(self.keys())

def __repr__(self):
return "<tt_list object at 0x%x with %d items>" % \

(id(self), len(self))

""" ++
PUBLIC CLASS FUNCTIONS

++ """
def toMatrix(self, order):

""" Returns a matrix of all the data in the list in the format
- Data of [0]
- Data of [1]
...
- Data of [n]

Packages the data in a list of the format
"x-axis(time), y_axis(order), data matrix"

The data is sorted by "order" on the vertical axis
and simply follows "time" on the horizontal axis.

"""
try:

y = self.col2vec(order)[0]
x = self[0].time

except:
raise ValueError(’Cannot create matrix of empty list’)

if (not isinstance(y, ndarray)):
raise ValueError(’Cannot Create Matrix out of non-arrays’)

y_orig = y.copy()
y.sort()

#TODO: Optimize where() statements for vectors?
Allocate
mat = []
for v in y:

idx = where(y_orig == v)[0]
if (len(idx) != 1):

raise ValueError(’Cannot proceed. Y Axis cannot have duplicate values’)

#Since "y" is sorted, matrix can be built from this order
mat.append(self[idx].data)

return (x,y, array(mat))

def col2vec(self, *args):
""" Returns the vector data(ndarray)
of all the columns passed as arguments
using all the traces inside this tt_list
object.

col2vec(self, *args)

Ex: col2vec(self, "time", "data", "name")
"""
lst = []
for arg in args:

184

if arg in self.columns:
lst.append([])
for k in self:

lst[len(lst)-1].append(k[arg])
else:

raise ValueError(’Invalid Column Name’)
lst = array(lst) #Convert to array type
return lst

def linePlots(self, order, ylab = ’’, maxPlots = 50, norm = False,xmin = 0 ,xmax = 0):
""" Creates a multiple-line seismograph-like plot of all the time
traces in the tt_list. They will be sorted by order.

Tested to work well with LS-DYNA Simulations.

NOTE: This is working well only for zero-centered signals. (Not necessarily zero mean)

This is based off the MultilinePlots example in the matplotlib cookbook.
http://www.scipy.org/Cookbook/Matplotlib/MultilinePlots
"""

if ylab == ’’:
ylab = order

bulk = self.toMatrix(order)

dat = bulk[2]
l = len(dat)
mod = 1

if (l > maxPlots):
mod = ceil(l/maxPlots)

i = 0
dat2 = []
new_y = []
for sig in dat:

if not (i % mod):
new_y.append(bulk[1][i])
if (norm):

sig = sig/sig.max()
dat2.append(sig)

i += 1

dat = array(dat2)

lineprops = dict(linewidth=1, color=’black’, linestyle=’-’)
fig = figure() #Create figure
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

scale = abs(dat[0]).max() #TO be changed

if not (scale):
scale = 1

boxin = Bbox(Point(ax.viewLim.ll().x(), Value(-scale)),
Point(ax.viewLim.ur().x(), Value(scale)))

height = ax.bbox.ur().y() - ax.bbox.ll().y()

boxout = Bbox(Point(ax.bbox.ll().x(), Value(-0.5)*height),
Point(ax.bbox.ur().x(), Value(0.5)*height))

transOffset = get_bbox_transform(unit_bbox(), Bbox(
Point (Value(0), ax.bbox.ll().y()),
Point (Value(1), ax.bbox.ur().y())))

ticklocs = []

185

for i, s in enumerate(dat):
trans = get_bbox_transform(boxin, boxout)
offset = (i+1.)/(len(dat)+1.)
trans.set_offset((0, offset), transOffset)

ax.plot(bulk[0], s, transform=trans, **lineprops)
ticklocs.append(offset)

ax.set_yticks(ticklocs)
ax.set_yticklabels(new_y)

all = []
labels = []
ax.set_yticks(ticklocs)
for tick in ax.yaxis.get_major_ticks():

all.extend((tick.label1, tick.label2, tick.tick1line, tick.tick2line, tick.gridline))
labels.append(tick.label1)

setp(all, transform=ax.transAxes)
setp(labels, x=-0.01)

ax.set_xlabel(’time (s)’)
ax.set_ylabel(ylab)

def set_ygain(direction):
set_ygain.scale += (direction)*(scale/5.)
if set_ygain.scale <= 0:

set_ygain.scale -= (direction)*(scale/5.)
return

for line in ax.lines:
trans = line.get_transform()
box1 = trans.get_bbox1()
box1.intervaly().set_bounds(-set_ygain.scale, set_ygain.scale)

draw()

set_ygain.scale = scale

def keypress(event):
if event.key in (’+’, ’=’): set_ygain(-1)
elif event.key in (’-’,’_’): set_ygain(1)

pylab.connect(’key_press_event’, keypress)
ax.set_title(’Use + / - to change y gain’)

if (xmax == 0):
xmax = bulk[0].max()

xlim([xmin,xmax])
show()

def contourf(self,order, ylab = ’’, *args, **kwargs):
""" Contour plot of a tt list data matrix. Similar
to linePlots. Order describes how the matrix is ordered by
in the Y direction, ylab gives the y label and
*args and **kwargs are the standard matplotlib contourf. """
dat = self.toMatrix(order)
contourf(dat[0], dat[1], dat[2], *args, **kwargs)
xlabel(’Time (s)’)
ylabel(ylab)

def fkPlot(self, order, ylab = ’Wavenumber (1/m)’, N = 100, scale=True):
""" Produces a FK plot of a seismic trace provided an order.
To be useful, the order must be evenly spaced traces in any
directions so long as they are consistant.

Example orders are x, y and possibly R for radial, if supported.

186

"""

#Prepare the data.
t,x,dat = self.toMatrix(order)
l = len(dat)
x = -x

#perform optical transform to rearrange data for plotting
for i in arange(dat.shape[0]):

for j in arange(dat.shape[1]):
if ((i+j)%2): #If i+j not even, take negative

dat[i][j] = -dat[i][j]

tdat = fft2(dat)
#Compute nyquist vectors
f_n = 1/(2.0*(t[1]-t[0]))
k_n = 1/(2.0*(x[1]-x[0]))

f = arange(0, dat.shape[1])/float(dat.shape[1]-1)*2*f_n - f_n
k = arange(0, dat.shape[0])/float(dat.shape[0]-1)*2*k_n - k_n

if scale:
tdat = log10(1+ abs(tdat))

#Add padding in k-dir ?

contour(k, f, abs(tdat.T), N)

def save(self, tbl_list):
""" Saves all the changes made to every upvtt instances of
this object back into the database. This will only save
elements that have been modified """

curs = self.conn.cursor()
for tts in self:

#For every trace, INSERT OR UPDATE - Check pkey exists
UPD = tts.updSQL(self.cdict, self.tables)
INS = tts.insSQL(self.cdict, self.tables)
for table in tbl_list:

t = self.tables[table][0]
SQL = "SELECT \"%s\" FROM %s WHERE \"%s\"=’%s’;" % \

(t, table, t, tts[t])
curs.execute(SQL)
if len(curs.fetchall()):

#If primary key existss, update
if UPD[table] != ’’:

curs.execute(UPD[table])
self.conn.commit()

else: #Insert
curs.execute(INS[table])
self.conn.commit()

tts.clearSet()

def append(self, obj, bypass=False):
""" Adds a tt object to the list """
#If passed a list, call self on each object
if isinstance(obj, tt) or bypass:

super(tt_list, self).append(obj)
else:

raise TypeError(’Cannot add non tt object to list’)

187

Appendix C

Field Solver Classes

C.1 array.h
/*
* Author : Simon Berube
*/

#ifndef __ARRAYS_H__
#define __ARRAYS_H__

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <fftw3.h>

#define SUCCESS 0
#define ERROR 1

/*
* Floats
*/

// Floating Point Array Struct
typedef struct _ARRAYF {

unsigned int size;
float * p_data;

} ARRAYF, *PARRAYF;

// Floating Point Matrix Struct
typedef struct _MATRIXF {

unsigned int size_x; // Across (Columns)
unsigned int size_y; // Down (Rows)
unsigned int size;
float ** p_data;

} MATRIXF, *PMATRIXF;

// Utilities
ARRAYF toArrayf(float * p_data, unsigned int size);
int matcmp(PMATRIXF p_src, PMATRIXF p_dat, float * result);
int arrcmp(PARRAYF p_src, PARRAYF p_dat, float * result);
// Matlab Compatible Output
int loadAsciiMatrixf(char * filename, PMATRIXF p_data, unsigned int sx, unsigned int sy);
int loadAsciiArrayf(char * filename, PARRAYF p_data);
int saveAsciiMatrixf(char * filename, PMATRIXF p_data);
int saveAsciiArrayf(char * filename, PARRAYF p_data);

// Smaller, Ascii Output (May add compression later)

188

int saveArrayf(char * filename, PARRAYF p_data);
int saveMatrixf(char * filename, PMATRIXF p_data);
int loadInitArrayf(char * filename, PARRAYF p_raw);
int loadInitMatrixf(char * filename, PMATRIXF p_raw);

// Initializes/Delete memory for various object
int initArrayf(PARRAYF array, unsigned int size);
int initMatrixf(PMATRIXF matrix, unsigned int size_x, unsigned int size_y);
int delArrayf(PARRAYF array);
int delMatrixf(PMATRIXF matrix);

/*
* Doubles
*/

// Double Array Struct
typedef struct _ARRAYD {

unsigned int size;
double * p_data;

} ARRAYD, *PARRAYD;

// Floating Point Matrix Struct
typedef struct _MATRIXD {

unsigned int size_x; // Across (Columns)
unsigned int size_y; // Down (Rows)
unsigned int size;
double ** p_data;

} MATRIXD, *PMATRIXD;

// Initializes/Delete memory for various object
int init_arrayd(PARRAYF array, unsigned int size);
int init_matrixd(PMATRIXF matrix, unsigned int size_x, unsigned int size_y);
int del_arrayd(PARRAYF array);
int del_matrixd(PMATRIXF matrix);

#endif

C.2 array.cc
#include "array.h"
/*
* Utilities
*/

/*
* Converts a float array of a known size into an
* ARRAYF container. Does not copy, or allocate
* memory but simply wraps existing data.
*
* This function should be used with care as the
* data has been allocated somewhere else and is
* most likely not reliable! Use only if you know
* what you are doing.
*
* This was originally intended to convert a MATRIXF
* row into a convenient ARRAYF for some computations.
*/

ARRAYF toArrayf(float* p_data, unsigned int size) {
ARRAYF a;
a.p_data = p_data;
a.size = size;
return a;

}

189

/*
* Compares two matrixf matrices and compute their
* total error. This function simply converts the
* matrices into two vectors and uses arrcmp() to
* compare them.
*
* Unlike arrcmp(), this method is ONLY VALID for
* matrices of EXACTLY the same size. An error will
* be returned otherwise.
*/

int matcmp(PMATRIXF p_src, PMATRIXF p_dat, float * result) {
ARRAYF src, dat;

if (p_src->size_x != p_dat->size_x || p_src->size_y != p_dat->size_y)
return ERROR;

src = toArrayf(p_src->p_data[0], p_src->size);
dat = toArrayf(p_dat->p_data[0], p_dat->size);
return arrcmp(&src,&dat,result);

}

/*
* Compares two arrayf vectors and compute their total
* error difference. Only the first N elements of p_dat
* are checked where N is the size of the source vector.
*
* Returns error if the size of p_src is greater than
* the size of p_dat.
*
* This has been tested.
*/

int arrcmp(PARRAYF p_src, PARRAYF p_dat, float * result) {
float err = 0;

if (p_src->size > p_dat->size)
return ERROR;

for (unsigned int i=0; i < p_src->size; i++)
err += p_src->p_data[i] - p_dat->p_data[i];

*result = err;
return 0;

}

/*
* Loads a ASCII file Matrix as saved by the command
* "save file matrix -ASCII"
* in Matlab
*
* Will load data in the column direction (x) until sx
* numbers have been read. And then repeat for sy lines.
*
* This has been tested to be working
*/

int loadAsciiMatrixf(char * filename, PMATRIXF p_data, unsigned int sx, unsigned int sy) {
FILE * fi;

fi = fopen(filename, "r");
if (fi == NULL)

return ERROR;

for(unsigned int i =0; i<sy; i++)
for (unsigned int j =0; j<sx; j++)

fscanf(fi, "%e", &p_data->p_data[i][j]);

fclose(fi);
return 0;

}

190

/*
* Savess a ASCII file Matrix as saved by the command
* "save file matrix -ASCII"
* in Matlab
*
* This has been tested to be working
*/

int saveAsciiMatrixf(char * filename, PMATRIXF p_data) {
FILE * fi;

fi = fopen(filename, "w");
if (fi == NULL)

return ERROR;

for(unsigned int i =0; i<p_data->size_y; i++) {
for (unsigned int j =0; j<p_data->size_x; j++)

fprintf(fi, "%16e", p_data->p_data[i][j]);

fprintf(fi, "\n");
}

fclose(fi);
return 0;

}

/*
* Loads a ASCII file vector as saved by the command
* "save file vector -ASCII"
* in Matlab
*
* Will load data until either p_data is filled, or end
* of file is reached.
*
* This has been tested to be working
*/

int loadAsciiArrayf(char * filename, PARRAYF p_data) {
FILE * fi;
unsigned int i = 0;

fi = fopen(filename, "r");
if (fi == NULL)

return ERROR;

while (i < p_data->size && fscanf(fi, "%e", &p_data->p_data[i]) != EOF)
i++;

fclose(fi);
return 0;

}

/*
* Save a ASCII file vector as saved by the command
* "save file vector -ASCII"
* in Matlab
*
*/

int saveAsciiArrayf(char * filename, PARRAYF p_data) {
FILE * fi;
unsigned int i = 0;

fi = fopen(filename, "w");
if (fi == NULL)

return ERROR;

for (i =0; i < p_data->size; i++)

191

fprintf(fi, "%16e", p_data->p_data[i]);

fclose(fi);
return 0;

}

int saveArrayf(char * filename, PARRAYF p_data) {
FILE * fi;

fi = fopen(filename, "w");
if (fi == NULL)

return ERROR;
fwrite(&p_data->size, sizeof(int), 1, fi);
fwrite(p_data->p_data, sizeof(float), p_data->size, fi);

fclose(fi);
return 0;

}

int saveMatrixf(char * filename, PMATRIXF p_data) {
FILE * fi;

fi = fopen(filename, "w");
if (fi == NULL)

return ERROR;

fwrite(&p_data->size, sizeof(int), 1, fi);
fwrite(&p_data->size_x, sizeof(int), 1, fi);
fwrite(&p_data->size_y, sizeof(int), 1, fi);
fwrite(p_data->p_data[0], sizeof(float), p_data->size, fi);

fclose(fi);
return 0;

}

int loadInitArrayf(char * filename, PARRAYF p_raw) {
FILE * fi;
unsigned int s;

fi = fopen(filename, "r");
if (fi == NULL)

return ERROR;

if (fread(&s, sizeof(int), 1, fi) == 0) {
fclose(fi);
return ERROR;

}

initArrayf(p_raw, s);

if (fread(p_raw->p_data, sizeof(float), p_raw->size, fi) != p_raw->size) {
delArrayf(p_raw);
fclose(fi);
return ERROR;

}

fclose(fi);
return 0;

}

int loadInitMatrixf(char * filename, PMATRIXF p_raw) {
FILE * fi;
unsigned int sx, sy, s;

192

fi = fopen(filename, "w");
if (fi == NULL)

return ERROR;

if (fread(&s, sizeof(int), 1, fi) == 0)
return ERROR;

if (fread(&sx, sizeof(int), 1, fi) == 0)
return ERROR;

if (fread(&sy, sizeof(int), 1, fi) == 0)
return ERROR;

initMatrixf(p_raw, sx, sy);

if (fread(p_raw->p_data[0], sizeof(float), p_raw->size, fi) != p_raw->size) {
delMatrixf(p_raw);
return ERROR;

}

fclose(fi);
return 0;

}

/*
* Init and Deletes
*/

int initArrayf(PARRAYF array, unsigned int size) {
array->size = size;
array->p_data = (float*)fftwf_malloc(size*sizeof(float));

if (array->p_data == NULL) {
array->size = 0;
return 1;

}

return 0;
}

int initMatrixf(PMATRIXF matrix, unsigned int size_x, unsigned int size_y) {
unsigned int i = 0;

// Set Sizes
matrix->size = size_x*size_y;
matrix->size_x = size_x;
matrix->size_y = size_y;

// Allocate(Matrix is continuous memory block, start at p_data[0]
matrix->p_data = (float**)fftwf_malloc(size_y*sizeof(float*));
if (matrix->p_data == NULL)

return ERROR;

matrix->p_data[0] = (float*)fftwf_malloc(matrix->size*sizeof(float));
if (matrix->p_data[0] == NULL)

return ERROR;

for (i=0; i<(size_y-1); i++)
matrix->p_data[i+1] = matrix->p_data[0] + (i+1)*size_x;

return 0;
}

int delArrayf(PARRAYF array) {
fftwf_free(array->p_data);
return true;

193

}

int delMatrixf(PMATRIXF matrix) {
fftwf_free(matrix->p_data[0]); // This should free entire memory block
return true;

}

C.3 circtd.h
/*
* Author : Simon Berube
*/

#ifndef __CIRCTD_H__
#define __CIRCTD_H__

#define SIZE_TOO_LARGE 1
#define DT_TOO_BIG 2
#define PI 3.14159265

#include <math.h>
#include "array.h"
#include "transducer.h"
#include "impulse.h"

// Circular Transducer Container
class CircTD : public Transducer {

public:
CircTD(double radius, double x, double y, Impulse * imp)
{ m_size = radius; m_TDloc_x = x; m_TDloc_y = y; m_p_impulse = imp;} // -- Done

int GetIR(double vel, double x, double y, unsigned int size, PARRAYF time, PARRAYF data); // -- Done
};

#endif

C.4 circtd.cc
#include "circtd.h"

int CircTD::GetIR(double vel, double x, double y, unsigned int size, PARRAYF time, PARRAYF data) {
float t_1, t_2, t_3;

// Fix Coordinates (Make sure they are relative to transducer)
x = fabs(x - m_TDloc_x);
y = fabs(y - m_TDloc_y);

// Make sure data vector large enough
if (data->size < size || time->size < size)
return SIZE_TOO_LARGE;

// Compute constants
t_1 = y/vel;
t_2 = (1.0/vel)*pow(pow(y,2.0)+ pow(x-m_size, 2.0), 0.5);
t_3 = (1.0/vel)*pow(pow(y,2.0)+ pow(x+m_size, 2.0), 0.5);

// Fill the data vector
for (unsigned int i = 0; i< size; i++) {

if(x <= m_size) {
if (time->p_data[i] < t_1)

data->p_data[i] = 0.0;
else if (time->p_data[i] <= t_2)

data->p_data[i] = vel;
else if (time->p_data[i] < t_3)

194

data->p_data[i] = (vel/PI)*
acos((pow(vel, 2.) * pow(time->p_data[i], 2.) - pow(y, 2.) + pow(x, 2.) - pow(m_size, 2.))
/ (2.0*x* pow(pow(vel, 2.)* pow(time->p_data[i] , 2.) - pow(y, 2.), 0.5)));

else
data->p_data[i] = 0;

}
else {
if (time->p_data[i] < t_1)

data->p_data[i] = 0;
else if (time->p_data[i] <= t_2)

data->p_data[i] = 0;
else if (time->p_data[i] < t_3)

data->p_data[i] = (vel/PI)*
acos((pow(vel, 2.) * pow(time->p_data[i], 2.) - pow(y, 2.) + pow(x, 2.) - pow(m_size, 2.))
/ (2.0*x* pow(pow(vel, 2.)* pow(time->p_data[i] , 2.) - pow(y, 2.), 0.5)));

else
data->p_data[i] = 0;

}
}

return 0;
}

C.5 impsine.h
#ifndef __IMPSINE_H__
#define __IMPSINE_H__

// TODO : Add self memory management to class as option. E.G. ImpSine(float,float, PARRAYF time) constructors.
#include <math.h>
#include <string.h>
#include "array.h"
#include "impulse.h"
#define PI 3.14159265

class ImpSine : public Impulse {
private:
void setup(float freq, float delay);

public:
ImpSine(PARRAYF data, float freq, float delay, float dt, float st, float et); // -- Done
ImpSine(PARRAYF data, float freq, float delay, PARRAYF time); // -- Done
~ImpSine() {};

};

#endif

C.6 impsine.cc
#include "impsine.h"

ImpSine::ImpSine(PARRAYF data, float freq, float delay, float dt, float st, float et) : Impulse(data, dt, st, et) {
setup(freq, delay);

}

ImpSine::ImpSine(PARRAYF data, float freq, float delay, PARRAYF time) :
Impulse(data, time->p_data[1] - time->p_data[0], time->p_data[0], time->p_data[time->size-1]) {
setup(freq, delay);

}

195

void ImpSine::setup(float freq, float delay) {

unsigned int i_dly, i_sz;

i_dly = (int)floor(delay/m_dt);
i_sz = (int)floor((m_et-m_st)/m_dt);

if (m_data->size < i_sz) {
m_et = m_dt*(m_data->size - 1);
i_sz = (int)floor((m_et-m_st)/m_dt);

}

memset(m_data->p_data, 0, m_data->size*sizeof(float)); // Zero all data first

for (unsigned int i=i_dly; i< i_sz; i++)
m_data->p_data[i] = sin((i*m_dt - delay)*freq*2*PI);

}

C.7 impulse.h
/*
* Author : Simon Berube
*/

#ifndef __IMPULSE_H__
#define __IMPULSE_H__

#define SIZE_TOO_SMALL 1

#include <stdio.h>
#include "array.h"

/* Base Impulse class. Has public function GetData which
* will return the vector of the impulse stored. This is
* a basic impulse which has to be fully supplied by the
* user.
*
* Functionning :
* Returns
*/

class Impulse {
protected:

PARRAYF m_data;
float m_dt, m_st, m_et;

public:
Impulse(PARRAYF data, float dt, float st, float et); // -- Done
Impulse(PARRAYF data, PARRAYF time); // -- Done
~Impulse() {};

int GetDataCopy(PARRAYF data);
PARRAYF GetDataPtr() { return m_data; } // -- Done

float Get_dt() { return m_dt; } // -- Done
float Get_Start_Time() { return m_st; } // -- Done
float Get_End_Time() { return m_et; } // -- Done

};

#endif

C.8 impulse.cc

196

#include "impulse.h"

Impulse::Impulse(PARRAYF data, float dt, float st, float et) : m_data(data), m_dt(dt), m_st(st), m_et(et) {

}

Impulse::Impulse(PARRAYF data, PARRAYF time) : m_data(data) {
m_st = time->p_data[0];
m_dt = time->p_data[1] - time->p_data[0];
m_et = time->p_data[time->size-1];

}

int Impulse::GetDataCopy(PARRAYF data) {
if (data->size < m_data->size)
return SIZE_TOO_SMALL;

memcpy(data->p_data, m_data->p_data, m_data->size * sizeof(float));
return 0;

}

C.9 solver.h
#ifndef __SOLVER_H__
#define __SOLVER_H__

#define TD_LIST_SIZE_INITIAL 128
#define MODE_NORMAL 0
#define MODE_AMP 1

#include <math.h>

#include "array.h"
#include "impulse.h"
#include "transducer.h"

class Solver {
private:

// Convolution of x with y, saved in result.
// x and y must be equal length such as to satisfy : x = [x_data + zeros(length of y - 1)]
// y = [y_data + zeros(length of x - 1)]
// Input data for x, y WILL BE DESTROYED by this function. However, results will be copied
// in "results" memory location.
// The length of result should be x.size + y.size - 1 (floats)
int convf(fftwf_plan p_r2c_x, fftwf_plan p_r2c_y, fftwf_plan p_c2r, PARRAYF p_x, PARRAYF p_y, int N);
int hilbert(int N, float*, PARRAYF, fftwf_plan , fftwf_plan);

protected:
// Transducer List In the Medium
Transducer ** m_p_td_list;
int m_td_list_sz;
int m_td_list_sz_alloc;

// Solver Settings
PARRAYF m_p_time;
MATRIXF m_results; // Matrix, for results
bool m_isSolved;

int m_size_x; // Discrete Resolution in x
int m_size_y; // Discrete Resolution in y
double m_dx; // dx step in x direction
double m_dy; // dy step in y direction
double m_vel;

int m_mode;

197

public:
Solver(PARRAYF time, int res_x, int res_y, double dx, double dy, double vel); // -- Done
~Solver(); // -- Done

// Transducer Functions
int AddTD(Transducer * td); // Add Transducer to List -- DONE
Transducer * GetTD(int id); // Return a Transducer (by ID) for modification (change delays, etc..) -- DONE
int RemTD(int id); // Remove a transducer from the list. -- DONE

int Solve();
int SaveToFile(char* file);

int setSolutionMode(int);
int getSolutionMode();

};

#endif

C.10 solver.cc
#include "solver.h"

Solver::Solver(PARRAYF time, int res_x, int res_y, double dx, double dy, double vel):
m_p_time(time), m_size_x(res_x), m_size_y(res_y), m_dx(dx), m_dy(dy), m_vel(vel)

{
// Init Mem
m_p_td_list = (Transducer**)malloc(TD_LIST_SIZE_INITIAL * sizeof(Transducer*));
m_td_list_sz = 0;
m_td_list_sz_alloc = TD_LIST_SIZE_INITIAL;

m_isSolved = false;
m_results.p_data = NULL;
m_results.size = 0;

m_mode = MODE_AMP;
}

Solver::~Solver() {
free(m_p_td_list);
if (m_isSolved)

delMatrixf(&m_results);
}

int Solver::AddTD(Transducer * td) {
// If memory full, allocate more space and delete old one.
// The transducer Count is incremented here
if (++m_td_list_sz >= m_td_list_sz_alloc) {

//Increase amount of memory for td_list
m_td_list_sz_alloc += TD_LIST_SIZE_INITIAL;
Transducer ** tmp = (Transducer**)malloc(m_td_list_sz_alloc * sizeof(Transducer *));
memcpy(tmp, m_p_td_list, m_td_list_sz * sizeof(Transducer *));
free(m_p_td_list); // Free old memory
m_p_td_list = tmp; // Replace by new allocation

}

// Add Transducer To List
m_p_td_list[m_td_list_sz-1] = td;
return 0;

}

Transducer * Solver::GetTD(int id) {
if (id < m_td_list_sz)

return m_p_td_list[id];

198

return NULL;
}

int Solver::RemTD(int id) {
if (!(id<m_td_list_sz))

return ERROR;

memmove(&m_p_td_list[id], &m_p_td_list[id+1], (m_td_list_sz-id-1)*sizeof(Transducer *)); // Shift memory over
m_td_list_sz--;

return 0;
}

int Solver::SaveToFile(char* file) {
if (!m_isSolved)

return ERROR;

return saveAsciiMatrixf(file, &m_results);
}

int Solver::getSolutionMode() {
return m_mode;

}

int Solver::setSolutionMode(int mode) {
m_mode = mode;
return SUCCESS;

}

int Solver::Solve() {
ARRAYF h, H, imp, IMP, hbt;
fftwf_plan p_r2c_h, p_r2c_imp, p_c2r, p_hilF = NULL, p_hilB = NULL;
int sz, N;

if (m_td_list_sz == 0)
return ERROR; // No Transducer to compute

if (m_isSolved)
delMatrixf(&m_results);

// Init
/*
* Sizes here are as follows. The size of the impulse should be of
* I = 2^K+1
* With the size of the Impulse Response being
* H = 2^K or H = I -1
* Such that, the size of the convolution which is C = H + I - 1
* is
* C = 2*I - 2 or C = 2^(K+1)
* This ensures that all the FFTs will be performed on powers of 2
* for faster computations.
*
* NOTE: Due to data padding needed for output transforms, the actual
* size of arrays is 2*(K/2 + 1) or K + 2, which in our case gives
* C = 2*I - 2 + 2 = 2*I
*/

sz = m_p_time->size;
N = 2*sz -2;

if(initMatrixf(&m_results, N, m_size_x * m_size_y))
return ERROR;

if (initArrayf(&h, N) || initArrayf(&imp, N) || initArrayf(&H, N+2) || initArrayf(&IMP, N+2))
return ERROR;

199

// Compute FFT of vector h->H and imp->IMP. Then, given our convf works, take the resulting
// data in IMP (which is the result of the convolution in Frequency domain, and revert back
// to time domain.

p_r2c_h = fftwf_plan_dft_r2c_1d(N, h.p_data, (fftwf_complex*)(H.p_data), FFTW_MEASURE);
p_r2c_imp = fftwf_plan_dft_r2c_1d(N, imp.p_data, (fftwf_complex*)(IMP.p_data), FFTW_MEASURE);
p_c2r = fftwf_plan_dft_c2r_1d(N, (fftwf_complex*)(IMP.p_data), H.p_data, FFTW_MEASURE);

// If signal enveloppe is needed, we need two more FFT plans.
if (m_mode == MODE_AMP) {

if (initArrayf(&hbt, 2*N))
return ERROR;

p_hilF = fftwf_plan_dft_1d(N, (fftwf_complex*)(hbt.p_data),
(fftwf_complex*)(hbt.p_data), FFTW_FORWARD, FFTW_MEASURE);

p_hilB = fftwf_plan_dft_1d(N, (fftwf_complex*)(hbt.p_data),
(fftwf_complex*)(hbt.p_data), FFTW_BACKWARD, FFTW_MEASURE);

}

// Compute
for (int i=0; i < m_size_y; i++)

for (int j=0; j < m_size_x; j++) {
for (int k=0; k < m_td_list_sz; k++) {

// Get h -- Zero h first
memset(h.p_data, 0, h.size*sizeof(float)); // Zero
m_p_td_list[k]->GetIR(m_vel, (float)(j*m_dx), (float)(i*m_dy), sz - 1, m_p_time, &h); // Copy impulse

// Get imp -- Zero imp first
memset(imp.p_data, 0, imp.size*sizeof(float)); // Zero
m_p_td_list[k]->GetImpulseDataCopy(&imp); // Copy impulse

// Compute
convf(p_r2c_h, p_r2c_imp, p_c2r, &IMP, &H, N);

// Copy result to matrix - or add to previous results if more then 1 td.
if (k == 0)

memcpy(m_results.p_data[i*m_size_y + j], H.p_data, N*sizeof(float));
else

for (int l=0; l<N; l++)
m_results.p_data[i*m_size_y+j][l] += H.p_data[l];

}

// Once done with all of the transducers, transform into analytical signal, if desired.
if (m_mode == MODE_AMP) {

hilbert(N, m_results.p_data[i*m_size_y+j], &hbt, p_hilF, p_hilB);
int N2 = N*N;

// Normalize effect of FFTs. 4 FFTs performed on data here (2 FWD, 2 BCK)
for (int k=0; k<N; k++)

m_results.p_data[i*m_size_y+j][k] = m_results.p_data[i*m_size_y+j][k]/(float)(N2);
} else {

// Normalize FFTs done to data (1 FWD, 1 BCK)
for (int k=0; k<N; k++)

m_results.p_data[i*m_size_y+j][k] = m_results.p_data[i*m_size_y+j][k]/(float)N;
}

}

m_isSolved = true;

delArrayf(&h);
delArrayf(&H);
delArrayf(&imp);
delArrayf(&IMP);

200

if (m_mode == MODE_AMP)
delArrayf(&hbt);

return 0;
}

/*
* Private/Protected
*/

/*
* Convolution Algorithm using FFTWF for use ONLY by Solver. It’s quite specialized.
*
* The two plans are run first and MUST be defined such that the result of each plan saves in either p_x
* or p_y. Then, the resulting FFT data is multiplied and saved into p_x as a fftw_complex.
*
* Thus, the c2r plan MUST take p_x as a source and save it somewhere else. Where c2r saves is not important as
* long as the source is p_x, which hold sthe results of the convolution in frequency domain.
* TODO: Check to make sure FFT is normalized
*/

int Solver::convf(fftwf_plan p_r2c_x, fftwf_plan p_r2c_y, fftwf_plan p_c2r, PARRAYF p_x, PARRAYF p_y, int N) {
int i = 0;
float re, im;

// Run the FFTs Forward, this will save data in itslef at p_x->data and p_y->data respectively. (in complex form)
fftwf_execute(p_r2c_x);
fftwf_execute(p_r2c_y);

// Multiply two transforms
for(i = 0; i<(N/2 + 1); i++) {

re = (p_x->p_data[2*i] * p_y->p_data[2*i] - p_x->p_data[2*i+1]*p_y->p_data[2*i+1])/(float)N;
im = (p_x->p_data[2*i] * p_y->p_data[2*i+1] + p_x->p_data[2*i+1]*p_y->p_data[2*i])/(float)N;

p_x->p_data[2*i] = re;
p_x->p_data[2*i+1] = im;

}

// Take the ifft, which gives us the convolution product
fftwf_execute(p_c2r);

return 0;
}

// Hilbert transform algorithm. Tested to be exact against Matlab’s "hilbert()" function.
int Solver::hilbert(int N, float* p_in, PARRAYF p_work, fftwf_plan p_fwd, fftwf_plan p_bck) {

if(p_work->size % 2 != 0)
return ERROR;

if(N*2 != (int)p_work->size)
return ERROR;

// 1) Copy the float array ’p_in’ into the ’p_work’ vector as complex data.
// Zero the p_work vector
memset(p_work->p_data, 0, p_work->size*sizeof(float));
// Copy the input vec into p_work. Keep complex values zero.
for(int i=0; i<N; i++)

p_work->p_data[2*i] = p_in[i];

// 2) Perform Forward FFT on p_work data to get the complex FFT of p_work.
fftwf_execute(p_fwd);

// 3) Kill all the negative frequencies
memset(&(p_work->p_data[2*(N/2 + 1)]),0, 2*(N/2 - 1)*sizeof(float));

// 4) Double all ’inside’ frequencies. That is all positive frequencies except edges
for(int i=1; i<N/2; i++) {

p_work->p_data[2*i] = 2*p_work->p_data[2*i];

201

p_work->p_data[2*i+1] = 2*p_work->p_data[2*i+1];
}

// 5) Reverse the FFT
fftwf_execute(p_bck);

// 6) Now, only store the magnitude information
for(int i=0; i<N; i++)

p_in[i] = sqrt(p_work->p_data[2*i]*p_work->p_data[2*i] + p_work->p_data[2*i+1]*p_work->p_data[2*i+1]);

return 0;
}

C.11 transducer.h
/*
* Author : Simon Berube
*/

#ifndef __TRANSDUCER_H__
#define __TRANSDUCER_H__

#include "array.h"
#include "impulse.h"

/*
* Transducer Class, holds Time-Impulse and creates a custom
* impulse response depending on type of transducer.
*
* This should be implemented
* for each different type of transducers. This is meant to be expandable
* to any future transducer types
*/

class Transducer {
protected:

Impulse * m_p_impulse;

double m_TDloc_x;
double m_TDloc_y;

double m_size;

public:
virtual ~Transducer() {};

virtual int GetIR(double vel, double x, double y, unsigned int size, PARRAYF time, PARRAYF data) = 0; // -- Done
int GetImpulseDataCopy(PARRAYF data) { return m_p_impulse->GetDataCopy(data); } // -- DONE

// Getter and Setters
Impulse * GetImpulse() { return m_p_impulse; } // -- DONE
double GetTDLoc_x() { return m_TDloc_x; } // -- DONE
double GetTDLoc_y() { return m_TDloc_y; } // -- DONE
double GetSize() { return m_size; } // -- DONE

int SetImpulse_F(Impulse * p_impulse) { m_p_impulse = p_impulse; return 0; } // -- DONE
int SetLoc(double x, double y) { m_TDloc_x = x; m_TDloc_y = y; return 0; } // -- DONE
int SetSize(double size) { m_size = size; return 0; } // -- DONE

};

#endif

202

Appendix D

Solver User Interface

D.1 main.cc
#include <QApplication>
#include "pistonui.h"

int main(int argc, char *argv[])
{

QApplication app(argc, argv);
PistonUi *ui = new PistonUi(); // Alloc

ui->show();
return app.exec();

}

D.2 pistonui.h
#ifndef __PISTONUI_H__
#define __PISTONUI_H__
// C
#include <stdio.h>
// Qt
#include <QStringListModel>
#include <QtGui>
// Qwt
#include <qwt_plot.h>
#include <qwt_plot_marker.h>
#include <qwt_plot_curve.h>
#include <qwt_legend.h>
#include <qwt_data.h>
#include <qwt_text.h>
#include <qwt_plot_spectrogram.h>
#include <qwt_color_map.h>
#include <qwt_scale_widget.h>
#include <qwt_scale_draw.h>
#include <qwt_plot_zoomer.h>
#include <qwt_plot_panner.h>
#include <qwt_plot_layout.h>
#include <qwt_plot_picker.h>
// Piston-ir
#include <array.h>
#include <circtd.h>
#include <impsine.h>
#include <impgaus.h>
// Local

203

#include "ui_pistonui.h"
#include "td.h"
#include "tdimport.h"
#include "types.h"
#include "plotsolver.h"

// Fancy Zoomer Class extending Default QwtPlotZoomer
class MyZoomer: public QwtPlotZoomer
{
public:

MyZoomer(QwtPlotCanvas* canvas):
QwtPlotZoomer(canvas)

{
setTrackerMode(QwtPicker::AlwaysOn);

}

protected:
virtual QwtText trackerText(const QwtDoublePoint& p) const
{

QwtText t(QwtPlotPicker::trackerText(p));

QColor c(Qt::white);
c.setAlpha(180);
t.setBackgroundBrush(QBrush(c));
return t;

}
};

// Main Class
class PistonUi: public QMainWindow {

Q_OBJECT

public:
PistonUi();
~PistonUi();

public slots:
// Transducer Slots
void td_add();
void td_added(); // Will be called when td->td_add is clicked()
void td_selected(const QModelIndex & index);
void td_rem();
void td_clear();
void td_import();
void td_imported();

// Radio Buttons
void impulse();
void response();
void locEdited();

void modeNormal();
void modeAmp();

// Viewing Slots
void solve();
void tslider(int value);
void islider(int value);
void spectrogram(bool checked);
void contours(bool checked);
void maxAmpMode();
void timeMode();
void pickerPick(const QwtDoublePoint &);

204

protected:
// Ui Components
Ui::MainWindow ui;
TD *tdui;
TDIMP *tdimpui;
QStringListModel *tdListModel;
QStringList tdStringList;

// Computation Components
int m_mode;
ARRAYF **impData; // Struct
ARRAYF m_time; // Struct

PlotSolver *plotSolver; // Class
Transducer **tds; // Class
Impulse **imps; // Class

int m_tds_count;
bool m_isSolved;

// Plot Components
QwtPlotCurve * m_p_td_curve;
ARRAYF m_tempIR;
double * m_p_x_data; // on delete
double * m_p_y_data; // on delete
int m_current_index;
int m_plot_data_size;

// Other plot components
QwtPlotCurve * m_p_tCurve;
QwtPlotCurve * m_p_hCurve;
QwtPlotCurve * m_p_vCurve;

double * m_p_vxData;
double * m_p_vyData;
int m_vDataSize;
double * m_p_hxData;
double * m_p_hyData;
int m_hDataSize;
double * m_p_txData;
double * m_p_tyData;
int m_tDataSize;

// Raster Plot Components
QwtPlotSpectrogram * m_p_spec;
MyZoomer * m_p_zoom;
QwtPlotPanner * m_p_panner;
QwtPicker * m_p_picker;
bool m_rasterSet;

// Slider Variables
double m_maxIntensity;
bool m_isNegative;

private:
void setupRasterPlot();
void clearSolver();
void addTransducer(float size, float x, float y, float dly, float f, float gwidth,

int imp_type, int td_type);

};

#endif

205

D.3 pistonui.cc
#include "pistonui.h"

PistonUi::PistonUi() {
// TODO: Make Table View Non-Editable
// TODO: Test Import Impulse
// TODO: FIX ImpSine delay times
// TODO: FIX PlotSolver::Copy() to be proper (modify solver to know if it is a copy or original)
// TODO: Fix Density in Solver and divide by 2Pi, make sure it is real "pressure" value
// TODO: Implement "remove"
// TODO: Replace LocX, LocY by sliders
// TODO: Add Cartesian to Polar display
// TODO: Max Amplitude Display
// TODO: Create a SOLVER_MEM class that manages memory by itself. Redo this class without memory crap. Bad Design
// TODO: Store all parameters resx,resy, dx,dy, etc... after solving to prevent checking them again
// TODO: Describe Unit Consistency when using .LAW file import.
// TODO: Add Combo Box for #Time steps
// TODO: When memSolver done, make it able to change dt, # time steps on the fly

ui.setupUi(this);
tdui = new TD();
tdimpui = new TDIMP();
tdListModel = new QStringListModel(this);

// Set up default Values
ui.stp_list->setModel(tdListModel);
ui.stp_dx->setText(DEFAULT_DX);
ui.stp_dy->setText(DEFAULT_DY);
ui.stp_maxx->setText(DEFAULT_SX);
ui.stp_maxy->setText(DEFAULT_SY);
ui.stp_vel->setText(DEFAULT_VEL);
ui.stp_dt->setText(DEFAULT_DT);
ui.stp_size->setText(DEFAULT_LT);
ui.stp_X->setText(DEFAULT_X);
ui.stp_Y->setText(DEFAULT_Y);
m_mode = MODE_NORMAL;

// Set Button Connections
connect(ui.stp_add, SIGNAL(clicked()), this, SLOT(td_add()));
connect(tdui->ui.add, SIGNAL(clicked()), this, SLOT(td_added()));
connect(tdimpui->ui.accept, SIGNAL(clicked()), this, SLOT(td_imported()));
connect(ui.stp_rem, SIGNAL(clicked()), this, SLOT(td_rem()));
connect(ui.stp_clear, SIGNAL(clicked()), this, SLOT(td_clear()));
connect(ui.stp_import, SIGNAL(clicked()), this, SLOT(td_import()));
connect(ui.stp_solve, SIGNAL(clicked()), this, SLOT(solve()));
connect(ui.stp_list, SIGNAL(pressed(const QModelIndex&)), this, SLOT(td_selected(const QModelIndex &)));
connect(ui.stp_impulse, SIGNAL(clicked()), this, SLOT(impulse()));
connect(ui.stp_response, SIGNAL(clicked()), this, SLOT(response()));
connect(ui.view_spec, SIGNAL(clicked(bool)), this, SLOT(spectrogram(bool)));
connect(ui.view_cont, SIGNAL(clicked(bool)), this, SLOT(contours(bool)));
connect(ui.stp_X, SIGNAL(editingFinished()), this, SLOT(locEdited()));
connect(ui.stp_Y, SIGNAL(editingFinished()), this, SLOT(locEdited()));
connect(ui.view_maxAmp, SIGNAL(clicked()), this, SLOT(maxAmpMode()));
connect(ui.view_time, SIGNAL(clicked()), this, SLOT(timeMode()));
connect(ui.stp_Normal, SIGNAL(clicked()), this, SLOT(modeNormal()));
connect(ui.stp_Amp, SIGNAL(clicked()), this, SLOT(modeAmp()));

// Sliders
connect(ui.view_slider, SIGNAL(valueChanged(int)), this, SLOT(tslider(int)));
connect(ui.view_intensity, SIGNAL(valueChanged(int)), this, SLOT(islider(int)));
ui.view_slider->setEnabled(false);
ui.view_intensity->setEnabled(false);
ui.stp_rem->setEnabled(false);

206

// Allocate memory for Transducers and Impulses and Initialize Values
tds = (Transducer**)malloc(INITIAL_NB_TD_ALLOC*sizeof(Transducer*));

impData = (ARRAYF**)malloc(INITIAL_NB_TD_ALLOC*sizeof(PARRAYF));
for (int i = 0; i< INITIAL_NB_TD_ALLOC; i++) {

impData[i] = (PARRAYF)malloc(sizeof(ARRAYF));
impData[i]->size = 0;
impData[i]->p_data = NULL;

}

imps = (Impulse **)malloc(INITIAL_NB_TD_ALLOC*sizeof(Impulse*));

m_tds_count = 0;
m_time.size = 0;
m_time.p_data = NULL;
plotSolver = NULL;
m_isSolved = false;

// Plot Stuff
ui.stp_plot->setCanvasBackground(Qt::white);
ui.stp_plot->setAxisTitle(ui.stp_plot->xBottom, "Time");
ui.stp_plot->setAxisTitle(ui.stp_plot->yLeft, "Velocity");
ui.stp_plot->setTitle("Transducer Impulse");

m_vDataSize = 0;
m_hDataSize = 0;
m_tDataSize = 0;
m_p_hxData = NULL;
m_p_hyData = NULL;
m_p_vxData = NULL;
m_p_vyData = NULL;
m_p_txData = NULL;
m_p_tyData = NULL;

m_tempIR.size = 0;
m_tempIR.p_data = NULL;
m_p_td_curve = new QwtPlotCurve("Transducer Impulse");
m_p_tCurve = new QwtPlotCurve("Time Values");
m_p_hCurve = new QwtPlotCurve("Horizontal Values");
m_p_vCurve = new QwtPlotCurve("Vertical Values");
m_p_x_data = NULL;
m_p_y_data = NULL;
m_plot_data_size=0;
m_current_index=-1;
m_rasterSet = false;
m_p_spec = NULL;
m_p_zoom = NULL;
m_p_panner = NULL;
m_p_picker = NULL;

}

// Free memory
PistonUi::~PistonUi() {

tdui->close();
delete tdui;
delete tdListModel;
if (plotSolver != NULL) delete plotSolver;
delete m_p_td_curve;
delete m_p_x_data;
delete m_p_y_data;
delete m_p_tCurve;
delete m_p_hCurve;
delete m_p_vCurve;

if (m_p_hxData != NULL) delete m_p_hxData;
if (m_p_hyData != NULL) delete m_p_hyData;

207

if (m_p_vxData != NULL) delete m_p_vxData;
if (m_p_vyData != NULL) delete m_p_vyData;
if (m_p_txData != NULL) delete m_p_txData;
if (m_p_tyData != NULL) delete m_p_tyData;

// Delete Plot Data if set
if (m_rasterSet) {

delete m_p_spec;
delete m_p_zoom;
delete m_p_panner;
delete m_p_picker;

}

if (m_time.size != 0)
delArrayf(&m_time);

for (int i=0; i<m_tds_count; i++) {
delete tds[i];
delArrayf(impData[i]);
delete imps[i];

}

for (int i=0; i<INITIAL_NB_TD_ALLOC; i++)
free(impData[i]);

free(tds);
free(impData);
free(imps);
delArrayf(&m_tempIR);

}

void PistonUi::modeNormal() {
m_mode = MODE_NORMAL;

}

void PistonUi::modeAmp() {
m_mode = MODE_AMP;

}

void PistonUi::td_add() {
tdui->exec();

}

void PistonUi::maxAmpMode() {
if (m_isSolved) {

m_isNegative = false;
ui.view_slider->setEnabled(false);
plotSolver->setMode(PlotSolver::ModeAmplitude);

ui.view_plot->replot();
}

}

void PistonUi::timeMode() {
if (m_isSolved) {

// TODO: Reset colobar to original range
m_isNegative = m_mode == MODE_NORMAL;
ui.view_slider->setEnabled(true);

plotSolver->setMode(PlotSolver::ModeNormal);
ui.view_plot->replot();

}

}

/*
* This function takes information from a tdEntry
* input dialog and converts it to a Transducer
* class. This class is then added to the current

208

* solver.
*/

void PistonUi::td_added() {
float size, dly, x, y, f, gw;
bool ok;

// Transducer Properties Loading
size = tdui->ui.td_sz->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Size");
return;

}

x = tdui->ui.td_x->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Location X");
return;

}

y = tdui->ui.td_y->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Location Y");
return;

}

dly = tdui->ui.sig_dly->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Delay Time");
return;

}

f = tdui->ui.sig_f->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Frequency");
return;

}

gw = tdui->ui.sig_gwidth->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Gaussian Width");
return;

}

addTransducer(size,x,y,dly,f,gw, tdui->ui.sig_type->currentIndex(), tdui->ui.td_type->currentIndex());
}

void PistonUi::td_rem() {
}

void PistonUi::td_import() {
tdimpui->exec();

}

void PistonUi::td_imported() {
if (tdimpui->ready()) {

for (int i=0; i< tdimpui->nTDs(); i++) {
addTransducer(tdimpui->sz(), tdimpui->x(i), 0, tdimpui->del() + tdimpui->tDelay(i),

tdimpui->freq(), (float)tdimpui->nCycles()/(float)tdimpui->freq(),
tdimpui->ui.sig_type->currentIndex(), tdimpui->ui.td_type->currentIndex());

}
}

}

void PistonUi::addTransducer(float size, float x, float y, float dly, float f, float gwidth, int imp_type, int td_type) {
char buf[256];
bool ok;

209

QString fn;

// If the first transducer is added create time vector
if (m_tds_count == 0) {

if (m_time.size != 0)
delArrayf(&m_time); // Delete if previously set

int i_size = ui.stp_size->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(this, "Error", "Invalid Time Vector Size");
return;

}

float dt = ui.stp_dt->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(this, "Error", "Invalid dt");
return;

}

initArrayf(&m_time, i_size);

// Set the time vector
for (int i=0; i< i_size; i++) {

m_time.p_data[i] = i*dt;
}

}

if (m_tds_count >= INITIAL_NB_TD_ALLOC) {
QMessageBox::critical(tdui, "Error", "Maximum Number of Transducers Reached");
return;

}

// Create Impulse
switch(imp_type) {

case SIGNAL_SINE: if(initArrayf(impData[m_tds_count], m_time.size)) {
QMessageBox::critical(tdui, "Error", "Could not Allocate Memory for Impulse");
return;

}

imps[m_tds_count] = new ImpSine(impData[m_tds_count], f, dly, &m_time);
break;

case SIGNAL_GAUSSIAN_SINE: if (initArrayf(impData[m_tds_count], m_time.size)) {
QMessageBox::critical(tdui, "Error", "Could not Allocate Memory for Impulse");
return;

}

imps[m_tds_count] = new ImpGaus(impData[m_tds_count], f, dly, gwidth, &m_time);
break;

case SIGNAL_CUSTOM: fn = QFileDialog::getOpenFileName(tdui, "Open Saved Array","./", "All Files (*.*)");
if (fn.isEmpty()) // If choice cancelled, exit

return;

// Load and check if loading works.
if(loadInitArrayf(fn.toAscii().data(), impData[m_tds_count]) == ERROR) {

QMessageBox::critical(tdui, "Error", "Could not load impulse file");
return;

}

imps[m_tds_count] = new Impulse(impData[m_tds_count-1], &m_time);
break;

}

// Now create the transducer
switch(td_type) {

210

case TYPE_CIRCULAR: tds[m_tds_count] = new CircTD(size,x,y,imps[m_tds_count]);
sprintf(buf, "CircTD, Size: %.2f, X:%.2f, Y:%.2f", size, x, y);
break;

}

m_tds_count++;

// Disable the time slot
if (m_tds_count == 1) {

ui.stp_size->setEnabled(false);
ui.stp_dt->setEnabled(false);

}

// Now add the information to the List.
tdStringList << buf;
tdListModel->setStringList(tdStringList);

}

void PistonUi::td_clear() {
clearSolver();

// If time is already set, reset it.
if (m_time.size) {

delArrayf(&m_time);
// Disable the time slot

ui.stp_size->setEnabled(true);
ui.stp_dt->setEnabled(true);

}

tdStringList.clear();

// Clear memory for transducers
for (int i=0; i<m_tds_count; i++) {

delete tds[i];
delArrayf(impData[i]);
delete imps[i];

}

m_tds_count = 0;
tdListModel->setStringList(tdStringList); // Remove transducer list

// Disable Sliders
ui.view_slider->setEnabled(false);
ui.view_intensity->setEnabled(false);

}

void PistonUi::td_selected(const QModelIndex & index) {
char buf[64];
int row = index.row();

if (row >= m_tds_count || row < 0)
return;

if(m_plot_data_size == 0) { // If first plot
m_p_td_curve->setRenderHint(QwtPlotItem::RenderAntialiased);
m_p_td_curve->setPen(QPen(Qt::red));
m_p_td_curve->attach(ui.stp_plot);

}

if (m_plot_data_size != (int)m_time.size) {
if (m_plot_data_size != 0) {// If this is not first initialization, delete old first

delete m_p_x_data;
delete m_p_y_data;

}

211

m_p_x_data = new double[m_time.size];
m_p_y_data = new double[m_time.size];
m_plot_data_size = m_time.size;

}

// If we wanted to plot the impulse
if (ui.stp_impulse->isChecked()) {

sprintf(buf, "Transducer Impulse %i", index.row());
ui.stp_plot->setTitle(buf);

// Update the data
for (unsigned int i=0; i<m_time.size; i++) {

m_p_x_data[i] = m_time.p_data[i];
m_p_y_data[i] = impData[row]->p_data[i];

}
}
// Or, if we wanted to plot the response to the impulse
else if (ui.stp_response->isChecked()) {

double x,y,vel;
bool ok;

if (m_tempIR.size != m_time.size)
initArrayf(&m_tempIR, m_time.size);

// Read values from form

x = ui.stp_X->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid X Location for Trace");
return;

}

y = ui.stp_Y->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Y Location for Trace");
return;

}

vel = ui.stp_vel->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Velocity");
return;

}

tds[row]->GetIR(vel, x, y, m_time.size, &m_time, &m_tempIR);

// Update the data (Float to double, cannot memcpy)
for (unsigned int i=0; i<m_time.size; i++) {

m_p_x_data[i] = m_time.p_data[i];
m_p_y_data[i] = m_tempIR.p_data[i];

}
}

m_current_index = row;
m_p_td_curve->setData(m_p_x_data, m_p_y_data, m_plot_data_size);

ui.stp_plot->replot();
}

void PistonUi::impulse() {
if (m_tds_count) {

ui.stp_response->setChecked(false);
td_selected(ui.stp_list->currentIndex());

}
}

212

void PistonUi::response() {
if (m_tds_count) {

ui.stp_impulse->setChecked(false);
td_selected(ui.stp_list->currentIndex());

}
}

void PistonUi::locEdited() {
td_selected(ui.stp_list->currentIndex());

}

void PistonUi::solve() {
int res_x, res_y;
bool ok;
double dx,dy,vel;

// Get Variables
if (m_tds_count == 0) {

QMessageBox::critical(this, "Error", "Nothing to solve");
return;

}

res_x = ui.stp_maxx->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Max x");
return;

}

res_y = ui.stp_maxy->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Max y");
}

dx = ui.stp_dx->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid dx");
return;

}

dy = ui.stp_dy->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid dy");
return;

}

vel = ui.stp_vel->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Medium Velocity");
return;

}

if (m_isSolved)
clearSolver();

// Create Solver
plotSolver = new PlotSolver(&m_time, res_x, res_y, dx, dy, vel);

for (int i=0; i<m_tds_count; i++)
plotSolver->AddTD(tds[i]);

// Solve
plotSolver->setSolutionMode(m_mode); // Set solution mode to solve
if(plotSolver->Solve())

QMessageBox::critical(this, "Error", "Could not allocate memory to solve");

213

// Set Data and Sliders
ui.view_slider->setEnabled(true);
ui.view_intensity->setEnabled(true);

plotSolver->setTimeIndex(0);

ui.view_slider->setRange(0, plotSolver->getMaxTimeIndex());

m_maxIntensity = plotSolver->maxValue()*1.05;
m_isNegative = m_mode == MODE_NORMAL;

// Plot
setupRasterPlot();
islider(ui.view_intensity->maximum()); // Activate slider max (to set scale correctly)
m_isSolved = true;

}

void PistonUi::tslider(int value) {
if (!m_rasterSet || !m_isSolved) // Plot not set, nothing to do

return;

char buf[32];
sprintf(buf, "Time : %fs", plotSolver->getSetTime());

plotSolver->setTimeIndex(value);
ui.statusbar->showMessage(buf);
ui.view_plot->replot();

}

void PistonUi::islider(int value) {
if (!m_rasterSet || !m_isSolved) // Plot not set, nothing to do

return;

int max;
max = ui.view_intensity->maximum();

if (m_isNegative)
plotSolver->setRange(-value*(m_maxIntensity/(float)max),

value*(m_maxIntensity/(float)max));
else

plotSolver->setRange(0, value*(m_maxIntensity/(float)max));

ui.view_plot->axisWidget(QwtPlot::yRight)->setColorMap(m_p_spec->data().range(), m_p_spec->colorMap());
ui.view_plot->setAxisScale(QwtPlot::yRight,

m_p_spec->data().range().minValue(),
m_p_spec->data().range().maxValue());

m_p_spec->setContourLevels(plotSolver->getContours(DEFAULT_NB_CONTOURS));

ui.view_plot->replot();
}

void PistonUi::clearSolver(){
if (m_isSolved) {

if (m_rasterSet) {
if(m_p_panner != NULL) delete m_p_panner;
if(m_p_zoom != NULL) delete m_p_zoom;
if(m_p_spec != NULL) delete m_p_spec;
if(m_p_picker != NULL) delete m_p_picker;

// Line Plots

214

m_vDataSize = 0;
m_hDataSize = 0;
m_tDataSize = 0;

if (m_p_hxData != NULL) delete m_p_hxData;
if (m_p_hyData != NULL) delete m_p_hyData;
if (m_p_vxData != NULL) delete m_p_vxData;
if (m_p_vyData != NULL) delete m_p_vyData;
if (m_p_txData != NULL) delete m_p_txData;
if (m_p_tyData != NULL) delete m_p_tyData;

m_p_hxData = NULL;
m_p_hyData = NULL;
m_p_vxData = NULL;
m_p_vyData = NULL;
m_p_txData = NULL;
m_p_tyData = NULL;

}
m_rasterSet = false;
m_isSolved = false;

}
}

void PistonUi::contours(bool checked) {
if(m_p_spec == NULL)

return;

m_p_spec->setDisplayMode(QwtPlotSpectrogram::ContourMode, checked);
ui.view_plot->replot();

}

void PistonUi::spectrogram(bool checked) {
if (m_p_spec == NULL)

return;

m_p_spec->setDisplayMode(QwtPlotSpectrogram::ImageMode, checked);
m_p_spec->setDefaultContourPen(checked ? QPen() : QPen(Qt::NoPen));
ui.view_plot->replot();

}

void PistonUi::pickerPick(const QwtDoublePoint & pt) {

plotSolver->getXAxis(m_hDataSize, m_p_hxData);
plotSolver->getYAxis(m_vDataSize, m_p_vxData);
plotSolver->getTAxis(m_tDataSize, m_p_txData);

plotSolver->getXData(pt.y(), m_hDataSize, m_p_hyData);
plotSolver->getYData(pt.x(), m_vDataSize, m_p_vyData);
plotSolver->getTData(pt.x(), pt.y(), m_tDataSize, m_p_tyData);

// Update all the data sets
m_p_tCurve->setData(m_p_txData, m_p_tyData, m_tDataSize);
m_p_hCurve->setData(m_p_hxData, m_p_hyData, m_hDataSize);
m_p_vCurve->setData(m_p_vxData, m_p_vyData, m_vDataSize);

ui.view_horizPlot->replot();
ui.view_vertPlot->replot();
ui.view_timePlot->replot();

}

void PistonUi::setupRasterPlot() {
int res_x, res_y, res_t;
bool ok;

if (!m_rasterSet) {
// If not initialized
m_p_spec = new QwtPlotSpectrogram();
m_p_zoom = new MyZoomer(ui.view_plot->canvas());

215

m_p_panner = new QwtPlotPanner(ui.view_plot->canvas());
m_p_picker = new QwtPlotPicker(ui.view_plot->canvas());

res_x = ui.stp_maxx->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Max x");
return;

}

res_y = ui.stp_maxy->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid Max y");
}

res_t = ui.stp_maxy->text().toInt(&ok, 0);
if(!ok) {

QMessageBox::critical(tdui, "Error", "Invalid time");
}

m_p_hxData = new double[res_x];
m_p_hyData = new double[res_x];
m_p_vxData = new double[res_y];
m_p_vyData = new double[res_y];
m_p_txData = new double[plotSolver->getMaxTimeIndex()];
m_p_tyData = new double[plotSolver->getMaxTimeIndex()];

m_hDataSize = res_x;
m_vDataSize = res_y;
m_tDataSize = plotSolver->getMaxTimeIndex();

m_p_tCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
m_p_tCurve->setPen(QPen(Qt::blue));
m_p_tCurve->attach(ui.view_timePlot);

m_p_hCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
m_p_hCurve->setPen(QPen(Qt::green));
m_p_hCurve->attach(ui.view_horizPlot);

m_p_vCurve->setRenderHint(QwtPlotItem::RenderAntialiased);
m_p_vCurve->setPen(QPen(Qt::black));
m_p_vCurve->attach(ui.view_vertPlot);

}

// Setup Picker
m_p_picker->setTrackerMode(QwtPicker::AlwaysOff);
m_p_picker->setSelectionFlags(QwtPicker::PointSelection);
connect(m_p_picker, SIGNAL(selected(const QwtDoublePoint &)), this, SLOT(pickerPick(const QwtDoublePoint &)));

// Setup Colormap
QwtLinearColorMap colorMap(Qt::darkCyan, Qt::red);
colorMap.addColorStop(0.0, Qt::darkBlue);
colorMap.addColorStop(0.01, Qt::darkBlue);
colorMap.addColorStop(0.4, Qt::cyan);
colorMap.addColorStop(0.5, Qt::green);
colorMap.addColorStop(0.6, Qt::yellow);
colorMap.addColorStop(0.8, Qt::red);
colorMap.addColorStop(0.99, Qt::darkRed);
colorMap.addColorStop(1.0, Qt::darkRed);

// Set color map, data, and attach to viewing area
m_p_spec->setColorMap(colorMap);
m_p_spec->setData(*plotSolver);
m_p_spec->attach(ui.view_plot);

QwtScaleWidget *rightAxis = ui.view_plot->axisWidget(QwtPlot::yRight);

216

rightAxis->setTitle("Intensity");
rightAxis->setColorBarEnabled(true);
rightAxis->setColorMap(m_p_spec->data().range(), m_p_spec->colorMap());

ui.view_plot->setAxisScale(QwtPlot::yRight,
m_p_spec->data().range().minValue(),
m_p_spec->data().range().maxValue());

ui.view_plot->enableAxis(QwtPlot::yRight);

ui.view_plot->setAxisScale(QwtPlot::xBottom, 0, plotSolver->getMaxX());
ui.view_plot->setAxisScale(QwtPlot::yLeft, 0, plotSolver->getMaxY());

ui.view_plot->plotLayout()->setAlignCanvasToScales(true);
ui.view_plot->setCanvasBackground(Qt::white);
ui.view_plot->replot();

// LeftButton for the zooming
// MidButton for the panning
// RightButton: zoom out by 1
// Ctrl+RighButton: zoom out to full size

m_p_zoom->setMousePattern(QwtEventPattern::MouseSelect2,
Qt::RightButton, Qt::ControlModifier);

m_p_zoom->setMousePattern(QwtEventPattern::MouseSelect3,
Qt::RightButton);

m_p_panner->setAxisEnabled(QwtPlot::yRight, false);
m_p_panner->setMouseButton(Qt::MidButton);

// Avoid jumping when labels with more/less digits
// appear/disappear when scrolling vertically
const QFontMetrics fm(ui.view_plot->axisWidget(QwtPlot::yLeft)->font());
QwtScaleDraw *sd = ui.view_plot->axisScaleDraw(QwtPlot::yLeft);
sd->setMinimumExtent(fm.width("100.00"));

const QColor c(Qt::darkBlue);
m_p_zoom->setRubberBandPen(c);
m_p_zoom->setTrackerPen(c);

m_rasterSet = true;
}

/*
OLD TD_IMPORT
File Format:
N_TD(int) N_Time(int)
Time Vector(float vector)
Loc_x Loc_y Size Data-Vector(float vector);
.
.
.

void PistonUi::td_import() {
FILE* file_in;
QString fn;
int ntd = 0, nt = 0;
float x, y, size;
char buf[256];

fn = QFileDialog::getOpenFileName(this, "Import Transducer Setup","./", "All Files (*)");

if (fn.isEmpty()) // If choice cancelled, exit
return;

// Load and check if loading works.

217

file_in = fopen(fn.toAscii().data(), "r");

if(file_in == NULL) {
QMessageBox::critical(tdui, "Error", "Could not load file");

return;
}

fscanf(file_in, "%d", &ntd);
fscanf(file_in, "%d\n", &nt);

if (ntd <= 0 || nt <= 0) {
fclose(file_in);

QMessageBox::critical(tdui, "Error", "Invalid File Format - Invalid sizes given");
return;

}

if (ntd > INITIAL_NB_TD_ALLOC) {
QMessageBox::critical(tdui, "Error", "List contains too many transducer.");
return;

}
td_clear(); // Clear current status

// Read time
initArrayf(&m_time, nt); // Create Time vector
for(int i =0; i<nt; i++) {

if (fscanf(file_in, "%f", &(m_time.p_data[i])) != 1) {
QMessageBox::critical(tdui, "Error", "Invalid File Format - Could not read time vector");
td_clear();
return;

}
}

fscanf(file_in, "\n");

// Read Transducer List
for(int i=0; i<ntd; i++) {

// Scan line header
if (fscanf(file_in, "%f", &x) != 1 | fscanf(file_in, "%f", &y) != 1 || fscanf(file_in, "%f", &size) != 1) {

QMessageBox::critical(tdui, "Error", "Invalid File Format - Invalid Impulse Header");
td_clear();
return;

}

// Fill the rest with impulse data
initArrayf(impData[i], nt); // Init data vector
for(int j=0; j<nt; j++){

if (fscanf(file_in, "%f", &(impData[i]->p_data[j])) != 1) {
QMessageBox::critical(tdui, "Error", "Invalid File Format - Could not read impulses");
td_clear();
return;

}
}

// Create the Impulse, then the Transducer
imps[i] = new Impulse(impData[i], &m_time);
tds[i] = new CircTD(size,x,y,imps[i]);

sprintf(buf, "CircTD, Size: %.2f, X:%.2f, Y:%.2f", size, x, y);
tdStringList << buf;
fscanf(file_in, "\n");

}

m_tds_count = ntd;
tdListModel->setStringList(tdStringList);
ui.stp_size->setEnabled(false);

ui.stp_dt->setEnabled(false);
} */

218

D.4 plotsolver.h
#include <solver.h>
#include <qwt_valuelist.h>
#include <qwt_raster_data.h>
#include <math.h>

typedef unsigned int uint;

class PlotSolver : public Solver, public QwtRasterData {
private:

double m_range[2];
unsigned int m_i_Time;
unsigned int m_currentMode;

ARRAYF m_modeAmp; // Holds mode2 data when selected. This uses memory but saves a re-computing.
bool m_ModeAmpSolved;

void setupMode(int mode);

public:
// Static Constants
static const unsigned int ModeNormal = 0;
static const unsigned int ModeAmplitude = 1;
static const unsigned int ModeHilbert = 2;

PlotSolver(PARRAYF time, int res_x, int res_y, double dx, double dy, double vel);
~PlotSolver();

// Custom Functions
int setRange(double min, double max);
int setTimeIndex(int index);
double getSetTime();
double getMaxTime();
int getMaxTimeIndex();
double getMaxX();
double getMaxY();
double maxValue();

int setMode(const int mode);
int getMode();

int getXAxis(int size, double * data);
int getYAxis(int size, double * data);
int getTAxis(int size, double * data);

int getXData(double x, int size, double * data); // Get data accross
int getYData(double y, int size, double * data); // Get data vertically
int getTData(double x, double y, int size, double * data); // Get data through time

QwtValueList getContours(unsigned int nbCont);

// QwtRasterData virtual Functions implementations
virtual QwtRasterData *copy() const;
virtual QwtDoubleInterval range() const;
virtual double value(double x, double y) const;

};

219

D.5 plotsolver.cc
#include "plotsolver.h"

PlotSolver::PlotSolver(PARRAYF time, int res_x, int res_y, double dx, double dy, double vel)
: Solver(time,res_x,res_y,dx,dy,vel), QwtRasterData() {

m_currentMode = 0;
m_range[0] = -1.0;
m_range[1] = 1.0;
m_i_Time = 0;

// Init other things
m_modeAmp.size = 0;
m_modeAmp.p_data = NULL;
m_ModeAmpSolved = false;

}

PlotSolver::~PlotSolver() {
if (m_modeAmp.p_data != NULL)
delArrayf(&m_modeAmp);

}

int PlotSolver::setRange(double min, double max) {
m_range[0] = min; m_range[1] = max;
return 0;

}

int PlotSolver::setTimeIndex(int index) {
m_i_Time = 0; // Default to zero

if (m_isSolved)
if(index >= 0 && index < (int)m_results.size_x)

m_i_Time = index;

return 0;

}

double PlotSolver::getSetTime() {
return m_i_Time * (m_p_time->p_data[1]-m_p_time->p_data[0]);

}

double PlotSolver::getMaxTime() {
if (m_isSolved)

return (m_results.size_x-1) * (m_p_time->p_data[1]-m_p_time->p_data[0]);

return 0;
}

int PlotSolver::getMaxTimeIndex() {
if (m_isSolved)

return m_results.size_x-1;

return 0;
}

double PlotSolver::getMaxX() {
if (m_isSolved)

return (m_size_x-1)*m_dx;

return 0;
}

double PlotSolver::getMaxY() {
if (m_isSolved)

220

return (m_size_y-1)*m_dy;

return 0;
}

QwtValueList PlotSolver::getContours(unsigned int nbCont) {
double step;

// Set Contours
step = (m_range[1] - m_range[0])/nbCont;

QwtValueList contourLevels;
if (m_currentMode == ModeNormal)

for (unsigned int i = 1; i < nbCont/2; i++) {
contourLevels += i*step;
contourLevels += i*(-step);

}

return contourLevels;
}

int PlotSolver::setMode(const int mode) {
if (mode < 3) {

m_currentMode = mode;
setupMode(mode);

}

return 0;
}

int PlotSolver::getMode() {
return m_currentMode;

}

QwtRasterData * PlotSolver::copy() const {
return (QwtRasterData* const)this;

}

QwtDoubleInterval PlotSolver::range() const {
return QwtDoubleInterval(m_range[0], m_range[1]);

}

double PlotSolver::value(double x, double y) const {
unsigned int i_x, i_y;

i_x = abs((unsigned int)floor(x/m_dx));
i_y = abs((unsigned int)floor(y/m_dy));

if (!(m_isSolved && i_x < m_size_x && i_y < m_size_y))
return 0.0;

if (m_currentMode == ModeNormal) {
return m_results.p_data[i_y*m_size_y + i_x][m_i_Time];

}
else if (m_currentMode == ModeAmplitude)

return (double)m_modeAmp.p_data[0];//i_y*m_size_y + i_x];

return 0; // Else return 0 (no data)
}

double PlotSolver::maxValue() {
double max = 0.0;
int N;

if (!m_isSolved)
return 0.0;

221

N = getMaxTimeIndex();
for (int j=0; j<m_size_x*m_size_y; j++)

for (int i=0; i<= N; i++)
if (fabs(m_results.p_data[j][i]) > max)

max = fabs(m_results.p_data[j][i]);

return max;
}

int PlotSolver::getXAxis(int size, double * data) {

if (size >= m_size_x) {
for (int i = 0; i < m_size_x; i++)

data[i] = i*m_dx;
return SUCCESS;

}
return ERROR;

}

int PlotSolver::getYAxis(int size, double * data) {
if (size >= m_size_y) {

for (int i = 0; i < m_size_y; i++)
data[i] = i*m_dy;

return SUCCESS;
}
return ERROR;

}

int PlotSolver::getTAxis(int size, double * data) {
int sz = getMaxTimeIndex();
double dt = m_p_time->p_data[1]-m_p_time->p_data[0];

if (size >= sz) {
for (int i = 0; i < sz; i++)

data[i] = i*dt;

return SUCCESS;
}

return ERROR;
}

int PlotSolver::getXData(double y, int size, double * data) {

if (size >= m_size_x) {
for (int i = 0; i < m_size_x; i++)

data[i] = value(i*m_dx, y);
return SUCCESS;

}
return ERROR;

}

int PlotSolver::getYData(double x, int size, double * data) {

if (size >= m_size_x) {
for (int i = 0; i < m_size_x; i++)

data[i] = value(x, i*m_dy);
return SUCCESS;

}
return ERROR;

}

int PlotSolver::getTData(double x, double y, int size, double * data) {
int sz = getMaxTimeIndex();
double dt = m_p_time->p_data[1]-m_p_time->p_data[0];

222

int idx = m_i_Time;

if (size >= sz) {
for (int i = 0; i < sz; i++) {

setTimeIndex(i);
data[i] = value(x, y);

}

setTimeIndex(idx);
return SUCCESS;

}
return ERROR;

}

/* Private Functions */
// This sets up the data and transform necessary for certain display modes
void PlotSolver::setupMode(int mode) {
// Compute maximum at each point.
if (!m_isSolved)
return;

if (mode == ModeAmplitude && !m_ModeAmpSolved) {
initArrayf(&m_modeAmp, m_size_x*m_size_y);

for (unsigned int i=0; i<m_results.size_y; i++) {
m_modeAmp.p_data[i] = m_results.p_data[i][0];
for(unsigned int j=1; j<m_results.size_x; j++)
if (m_results.p_data[i][j] > m_modeAmp.p_data[i])
m_modeAmp.p_data[i] = m_results.p_data[i][j];
}
m_ModeAmpSolved = true;
}

}

D.6 td.h
#ifndef __TD_H__
#define __TD_H__

#include <QtGui>
#include <transducer.h>
#include "ui_td.h"
#include "types.h"

class TD: public QDialog {
public:

TD(QWidget *parent = 0);
Ui::tdEntry ui;

};

#endif

D.7 td.cc
#include "td.h"

TD::TD(QWidget *parent) {
QStringList a,b;

ui.setupUi(this);

223

a << "Circular";
ui.td_type->addItems(a);
ui.td_sz->setText(DEFAULT_TD_SIZE);
ui.td_x->setText(DEFAULT_TD_X);
ui.td_y->setText(DEFAULT_TD_Y);

b << "Sine" << "Gaussian Mod. Sine" << "Custom";
ui.sig_type->addItems(b);
ui.sig_dly->setText(DEFAULT_TD_DELAY);
ui.sig_f->setText(DEFAULT_TD_F);
ui.sig_gwidth->setText(DEFAULT_TD_GWIDTH);

this->setParent(parent);
}

D.8 tdimport.h
#ifndef __TDIMPORT_H__
#define __TDIMPORT_H__

#include <QtGui>
#include <stdlib.h>
#include <transducer.h>
#include "ui_tdimport.h"
#include "types.h"

#define MAX_LAWS 256
#define MAX_ELEM 64

class TDIMP: public QDialog {

Q_OBJECT

public:
TDIMP(QWidget *parent = 0);
Ui::tdImport ui;
bool m_hasImported;

int nTDs() { return m_Ntds[m_currentLaw];}
int freq() { return m_freq[m_currentLaw]*1000;} // in Hz
int nCycles() { return m_cycles[m_currentLaw];}
int velocity() { return m_velocity[m_currentLaw];}
bool ready() {return m_hasImported;}
float sz(); // in meters
float del(); // in seconds

float tDelay(int i) {return (float)m_t_delay[m_currentLaw][i]*1e-9;} // in Seconds
float x(int i);

private:
int m_currentLaw;
QStringList m_laws;
QStringList m_elems;
QStringListModel m_listModel;
// //
// Laws
// //
int m_NLaws;
float m_ver;

// Law Descriptor Variables
int m_Ntds[MAX_LAWS], m_filter[MAX_LAWS], m_r_angle[MAX_LAWS], m_s_angle[MAX_LAWS];
int m_t_first[MAX_LAWS], m_r_first[MAX_LAWS], m_scan_offset[MAX_LAWS], m_index_offset[MAX_LAWS];
int m_g_delay[MAX_LAWS], m_f_depth[MAX_LAWS], m_velocity[MAX_LAWS], m_freq[MAX_LAWS], m_cycles[MAX_LAWS];
int m_sum_gain[MAX_LAWS], m_mode[MAX_LAWS];

224

// Element Variables
int m_e_number[MAX_LAWS][MAX_ELEM], m_fl_gain[MAX_LAWS][MAX_ELEM], m_t_delay[MAX_LAWS][MAX_ELEM];
int m_r_delay[MAX_LAWS][MAX_ELEM], m_amplitude[MAX_LAWS][MAX_ELEM], m_pulse_width[MAX_LAWS][MAX_ELEM];

public slots:
void lawImport();
void lawChanged(int index);
void elemSelected(const QModelIndex & index);

};
#endif

D.9 tdimport.cc
#include "tdimport.h"

TDIMP::TDIMP(QWidget *parent) {
QStringList a,b;

ui.setupUi(this);

a << "Circular";
ui.td_type->addItems(a);
ui.td_sz->setText(DEFAULT_TD_SIZE);
ui.td_dx->setText(DEFAULT_TD_DX);

b << "Sine" << "Gaussian Sine";
ui.sig_type->addItems(b);
ui.sig_dly->setText(DEFAULT_TD_DELAY);

connect(ui.law_import, SIGNAL(clicked()), this, SLOT(lawImport()));
connect(ui.elem_list, SIGNAL(pressed(const QModelIndex&)), this, SLOT(elemSelected(const QModelIndex &)));
connect(ui.elem_list, SIGNAL(activated(const QModelIndex&)), this, SLOT(elemSelected(const QModelIndex &)));
connect(ui.law_num, SIGNAL(currentIndexChanged(int)), this, SLOT(lawChanged(int)));
m_hasImported = false;

ui.elem_list->setModel(&m_listModel);
this->setParent(parent);

}

void TDIMP::lawImport() {
FILE* file_in;
char buf[16];
QString fn;

fn = QFileDialog::getOpenFileName(this, "Import Focal Law File","./", "Law Files (*.law)");

if (fn.isEmpty()) // If choice cancelled, exit
return;

// Load and check if loading works.
file_in = fopen(fn.toAscii().data(), "r");
ui.law_filename->setText(fn.toAscii().data());

if(file_in == NULL) {
QMessageBox::critical(this, "Error", "Could not load file");
return;

}

// Read the file
fscanf(file_in, "V%f", &m_ver);
fscanf(file_in, " %d", &m_NLaws);

225

// Read Every Focal Law
for (int i = 0; i< m_NLaws; i++) {

sprintf(buf, "%d", i+1);
m_laws << buf;

// Read descriptor line
fscanf(file_in, "%d", &m_Ntds[i]);
fscanf(file_in, "%d", &m_freq[i]);
fscanf(file_in, "%d", &m_cycles[i]);
fscanf(file_in, "%d", &m_sum_gain[i]);
fscanf(file_in, "%d", &m_mode[i]);
fscanf(file_in, "%d", &m_filter[i]);
fscanf(file_in, "%d", &m_r_angle[i]);
fscanf(file_in, "%d", &m_s_angle[i]);
fscanf(file_in, "%d", &m_r_first[i]);
fscanf(file_in, "%d", &m_scan_offset[i]);
fscanf(file_in, "%d", &m_index_offset[i]);
fscanf(file_in, "%d", &m_t_first[i]);
fscanf(file_in, "%d", &m_g_delay[i]);
fscanf(file_in, "%d", &m_f_depth[i]);
fscanf(file_in, "%d", &m_velocity[i]);

for (int j = 0; j < m_Ntds[i]; j++) {
fscanf(file_in, "%d", &m_e_number[i][j]);
fscanf(file_in, "%d", &m_fl_gain[i][j]);
fscanf(file_in, "%d", &m_t_delay[i][j]);
fscanf(file_in, "%d", &m_r_delay[i][j]);
fscanf(file_in, "%d", &m_amplitude[i][j]);
fscanf(file_in, "%d", &m_pulse_width[i][j]);

}
}

ui.law_num->addItems(m_laws);
m_currentLaw = 0;
lawChanged(m_currentLaw);
m_hasImported = 1;

}

void TDIMP::lawChanged(int i) {
char buf[256];

m_currentLaw = i;

// Setup the law data
sprintf(buf, "%d", m_velocity[i]);
ui.law_medVel->setText(buf);
sprintf(buf, "%d", m_freq[i]);
ui.law_freq->setText(buf);
sprintf(buf, "%d", m_sum_gain[i]);
ui.law_sumgain->setText(buf);
sprintf(buf, "%d", m_mode[i]);
ui.law_mode->setText(buf);
sprintf(buf, "%d", m_cycles[i]);
ui.law_cycles->setText(buf);
sprintf(buf, "%d", m_g_delay[i]);
ui.law_gDelay->setText(buf);
sprintf(buf, "%d", m_t_first[i]);
ui.law_tFirst->setText(buf);
sprintf(buf, "%d", m_index_offset[i]);
ui.law_indexOffset->setText(buf);
sprintf(buf, "%d", m_scan_offset[i]);
ui.law_scanOffset->setText(buf);
sprintf(buf, "%d", m_r_first[i]);
ui.law_rFirst->setText(buf);

226

sprintf(buf, "%d", m_s_angle[i]);
ui.law_sAngle->setText(buf);
sprintf(buf, "%d", m_r_angle[i]);
ui.law_rAngle->setText(buf);
sprintf(buf, "%d", m_filter[i]);
ui.law_filter->setText(buf);
sprintf(buf, "%d", m_f_depth[i]);
ui.law_fDepth->setText(buf);

// Fill the element list
m_elems.clear();
for (int j =0; j< m_Ntds[i]; j++) {

sprintf(buf, "%d", j+1);
m_elems << buf;

}

m_listModel.setStringList(m_elems);
}

void TDIMP::elemSelected(const QModelIndex &index) {
int row = index.row();
int i = m_currentLaw;
char buf[256];

if (row < 0)
return;

sprintf(buf, "%d", m_fl_gain[i][row]);
ui.elem_flGain->setText(buf);
sprintf(buf, "%d", m_t_delay[i][row]);
ui.elem_tDelay->setText(buf);
sprintf(buf, "%d", m_r_delay[i][row]);
ui.elem_rDelay->setText(buf);
sprintf(buf, "%d", m_amplitude[i][row]);
ui.elem_amplitude->setText(buf);
sprintf(buf, "%d", m_pulse_width[i][row]);
ui.elem_pWidth->setText(buf);

}

float TDIMP::sz(){
bool ok;

float size = ui.td_sz->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(this, "Error", "Invalid Size");
return 0.0;

}

return size;
}

float TDIMP::del() {
bool ok;

float delay = ui.sig_dly->text().toFloat(&ok);
if(!ok) {

QMessageBox::critical(this, "Error", "Invalid Delay Time");
return 0.0;

}

return delay;
}

float TDIMP::x(int i) {
bool ok;

float dx = ui.td_dx->text().toFloat(&ok);

227

if(!ok) {
QMessageBox::critical(this, "Error", "Invalid dx value");
return 0.0;

}

return i*dx;
}

D.10 types.h
#ifndef __TYPE_H__
#define __TYPE_H__

#define INITIAL_NB_TD_ALLOC 128

#define TYPE_CIRCULAR 0
#define TYPE_RECTANGULAR 1

#define SIGNAL_SINE 0
#define SIGNAL_GAUSSIAN_SINE 1
#define SIGNAL_CUSTOM 2

#define DEFAULT_DX "2.5e-4"
#define DEFAULT_DY "2.5e-4"
#define DEFAULT_SX "64"
#define DEFAULT_SY "64"
#define DEFAULT_VEL "1500"
#define DEFAULT_DT "1e-8"
#define DEFAULT_LT "4097"
#define DEFAULT_TD_SIZE "1e-3"
#define DEFAULT_TD_GWIDTH "1e-6"
#define DEFAULT_TD_X "0"
#define DEFAULT_TD_Y "0"
#define DEFAULT_TD_DELAY "0"
#define DEFAULT_TD_F "1e6"
#define DEFAULT_TD_DX "1e-3"
#define DEFAULT_X "0"
#define DEFAULT_Y "0"
#define DEFAULT_NB_CONTOURS 10

#endif

D.11 ui pistonui.h
/**
** Form generated from reading ui file ’pistonui.ui’
**
** Created: Thu Nov 1 16:08:39 2007
** by: Qt User Interface Compiler version 4.3.2
**
** WARNING! All changes made in this file will be lost when recompiling ui file!
**/

#ifndef UI_PISTONUI_H
#define UI_PISTONUI_H

#include <QtCore/QVariant>
#include <QtGui/QAction>
#include <QtGui/QApplication>
#include <QtGui/QButtonGroup>
#include <QtGui/QCheckBox>
#include <QtGui/QGridLayout>

228

#include <QtGui/QGroupBox>
#include <QtGui/QHBoxLayout>
#include <QtGui/QLabel>
#include <QtGui/QLineEdit>
#include <QtGui/QListView>
#include <QtGui/QMainWindow>
#include <QtGui/QPushButton>
#include <QtGui/QRadioButton>
#include <QtGui/QScrollBar>
#include <QtGui/QSpacerItem>
#include <QtGui/QStatusBar>
#include <QtGui/QTabWidget>
#include <QtGui/QVBoxLayout>
#include <QtGui/QWidget>
#include "qwt_plot.h"

class Ui_MainWindow
{
public:

QWidget *centralwidget;
QGridLayout *gridLayout;
QGridLayout *gridLayout1;
QTabWidget *tabWidget;
QWidget *stp;
QGridLayout *gridLayout2;
QGridLayout *gridLayout3;
QGroupBox *stp_box_medium;
QGridLayout *gridLayout4;
QLabel *label;
QLabel *label_2;
QLineEdit *stp_dx;
QLineEdit *stp_dy;
QLabel *label_3;
QLabel *label_4;
QLineEdit *stp_maxx;
QLineEdit *stp_maxy;
QVBoxLayout *vboxLayout;
QLabel *label_5;
QLineEdit *stp_vel;
QGroupBox *stp_box_time;
QLabel *label_33;
QLineEdit *stp_dt;
QLineEdit *stp_size;
QLabel *label_32;
QLabel *label_31;
QWidget *layoutWidget;
QHBoxLayout *hboxLayout;
QRadioButton *stp_Normal;
QRadioButton *stp_Amp;
QPushButton *stp_solve;
QGroupBox *stp_box_transducers;
QGridLayout *gridLayout5;
QListView *stp_list;
QVBoxLayout *vboxLayout1;
QPushButton *stp_add;
QPushButton *stp_rem;
QPushButton *stp_clear;
QPushButton *stp_import;
QwtPlot *stp_plot;
QHBoxLayout *hboxLayout1;
QLabel *label_7;
QLineEdit *stp_X;
QLineEdit *stp_Y;
QRadioButton *stp_impulse;
QRadioButton *stp_response;
QSpacerItem *spacerItem;
QWidget *view;
QGridLayout *gridLayout6;

229

QwtPlot *view_plot;
QwtPlot *view_vertPlot;
QwtPlot *view_horizPlot;
QwtPlot *view_timePlot;
QScrollBar *view_slider;
QGridLayout *gridLayout7;
QVBoxLayout *vboxLayout2;
QCheckBox *view_spec;
QCheckBox *view_cont;
QVBoxLayout *vboxLayout3;
QRadioButton *view_time;
QRadioButton *view_maxAmp;
QSpacerItem *spacerItem1;
QGridLayout *gridLayout8;
QLabel *label_6;
QPushButton *view_load;
QScrollBar *view_intensity;
QPushButton *view_save;
QStatusBar *statusbar;

void setupUi(QMainWindow *MainWindow)
{
if (MainWindow->objectName().isEmpty())

MainWindow->setObjectName(QString::fromUtf8("MainWindow"));
MainWindow->resize(1024, 760);
QSizePolicy sizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding);
sizePolicy.setHorizontalStretch(0);
sizePolicy.setVerticalStretch(0);
sizePolicy.setHeightForWidth(MainWindow->sizePolicy().hasHeightForWidth());
MainWindow->setSizePolicy(sizePolicy);
MainWindow->setMinimumSize(QSize(1024, 760));
MainWindow->setMaximumSize(QSize(1024, 760));
MainWindow->setBaseSize(QSize(800, 600));
centralwidget = new QWidget(MainWindow);
centralwidget->setObjectName(QString::fromUtf8("centralwidget"));
gridLayout = new QGridLayout(centralwidget);
gridLayout->setObjectName(QString::fromUtf8("gridLayout"));
gridLayout1 = new QGridLayout();
gridLayout1->setObjectName(QString::fromUtf8("gridLayout1"));

gridLayout->addLayout(gridLayout1, 0, 0, 1, 1);

tabWidget = new QTabWidget(centralwidget);
tabWidget->setObjectName(QString::fromUtf8("tabWidget"));
QSizePolicy sizePolicy1(QSizePolicy::MinimumExpanding, QSizePolicy::MinimumExpanding);
sizePolicy1.setHorizontalStretch(0);
sizePolicy1.setVerticalStretch(0);
sizePolicy1.setHeightForWidth(tabWidget->sizePolicy().hasHeightForWidth());
tabWidget->setSizePolicy(sizePolicy1);
stp = new QWidget();
stp->setObjectName(QString::fromUtf8("stp"));
gridLayout2 = new QGridLayout(stp);
gridLayout2->setObjectName(QString::fromUtf8("gridLayout2"));
gridLayout3 = new QGridLayout();
gridLayout3->setObjectName(QString::fromUtf8("gridLayout3"));
stp_box_medium = new QGroupBox(stp);
stp_box_medium->setObjectName(QString::fromUtf8("stp_box_medium"));
QSizePolicy sizePolicy2(QSizePolicy::Minimum, QSizePolicy::Minimum);
sizePolicy2.setHorizontalStretch(0);
sizePolicy2.setVerticalStretch(0);
sizePolicy2.setHeightForWidth(stp_box_medium->sizePolicy().hasHeightForWidth());
stp_box_medium->setSizePolicy(sizePolicy2);
stp_box_medium->setMinimumSize(QSize(210, 230));
stp_box_medium->setMaximumSize(QSize(210, 230));
gridLayout4 = new QGridLayout(stp_box_medium);
gridLayout4->setObjectName(QString::fromUtf8("gridLayout4"));
label = new QLabel(stp_box_medium);
label->setObjectName(QString::fromUtf8("label"));

230

label->setMaximumSize(QSize(16777215, 25));
label->setAlignment(Qt::AlignCenter);

gridLayout4->addWidget(label, 0, 0, 1, 1);

label_2 = new QLabel(stp_box_medium);
label_2->setObjectName(QString::fromUtf8("label_2"));
label_2->setMaximumSize(QSize(16777215, 25));
label_2->setAlignment(Qt::AlignCenter);

gridLayout4->addWidget(label_2, 0, 1, 1, 1);

stp_dx = new QLineEdit(stp_box_medium);
stp_dx->setObjectName(QString::fromUtf8("stp_dx"));

gridLayout4->addWidget(stp_dx, 1, 0, 1, 1);

stp_dy = new QLineEdit(stp_box_medium);
stp_dy->setObjectName(QString::fromUtf8("stp_dy"));

gridLayout4->addWidget(stp_dy, 1, 1, 1, 1);

label_3 = new QLabel(stp_box_medium);
label_3->setObjectName(QString::fromUtf8("label_3"));
label_3->setMaximumSize(QSize(16777215, 25));
label_3->setAlignment(Qt::AlignCenter);

gridLayout4->addWidget(label_3, 2, 0, 1, 1);

label_4 = new QLabel(stp_box_medium);
label_4->setObjectName(QString::fromUtf8("label_4"));
label_4->setMaximumSize(QSize(16777215, 25));
label_4->setAlignment(Qt::AlignCenter);

gridLayout4->addWidget(label_4, 2, 1, 1, 1);

stp_maxx = new QLineEdit(stp_box_medium);
stp_maxx->setObjectName(QString::fromUtf8("stp_maxx"));

gridLayout4->addWidget(stp_maxx, 3, 0, 1, 1);

stp_maxy = new QLineEdit(stp_box_medium);
stp_maxy->setObjectName(QString::fromUtf8("stp_maxy"));

gridLayout4->addWidget(stp_maxy, 3, 1, 1, 1);

vboxLayout = new QVBoxLayout();
vboxLayout->setObjectName(QString::fromUtf8("vboxLayout"));
label_5 = new QLabel(stp_box_medium);
label_5->setObjectName(QString::fromUtf8("label_5"));
label_5->setMaximumSize(QSize(200, 25));
label_5->setAlignment(Qt::AlignCenter);

vboxLayout->addWidget(label_5);

stp_vel = new QLineEdit(stp_box_medium);
stp_vel->setObjectName(QString::fromUtf8("stp_vel"));

vboxLayout->addWidget(stp_vel);

gridLayout4->addLayout(vboxLayout, 4, 0, 1, 2);

gridLayout3->addWidget(stp_box_medium, 0, 0, 2, 1);

stp_box_time = new QGroupBox(stp);
stp_box_time->setObjectName(QString::fromUtf8("stp_box_time"));

231

QSizePolicy sizePolicy3(QSizePolicy::Fixed, QSizePolicy::Ignored);
sizePolicy3.setHorizontalStretch(0);
sizePolicy3.setVerticalStretch(0);
sizePolicy3.setHeightForWidth(stp_box_time->sizePolicy().hasHeightForWidth());
stp_box_time->setSizePolicy(sizePolicy3);
stp_box_time->setMinimumSize(QSize(210, 200));
label_33 = new QLabel(stp_box_time);
label_33->setObjectName(QString::fromUtf8("label_33"));
label_33->setGeometry(QRect(20, 80, 171, 61));
QSizePolicy sizePolicy4(QSizePolicy::Fixed, QSizePolicy::Fixed);
sizePolicy4.setHorizontalStretch(0);
sizePolicy4.setVerticalStretch(0);
sizePolicy4.setHeightForWidth(label_33->sizePolicy().hasHeightForWidth());
label_33->setSizePolicy(sizePolicy4);
label_33->setWordWrap(true);
stp_dt = new QLineEdit(stp_box_time);
stp_dt->setObjectName(QString::fromUtf8("stp_dt"));
stp_dt->setGeometry(QRect(20, 50, 81, 23));
sizePolicy4.setHeightForWidth(stp_dt->sizePolicy().hasHeightForWidth());
stp_dt->setSizePolicy(sizePolicy4);
stp_size = new QLineEdit(stp_box_time);
stp_size->setObjectName(QString::fromUtf8("stp_size"));
stp_size->setGeometry(QRect(110, 50, 81, 23));
sizePolicy4.setHeightForWidth(stp_size->sizePolicy().hasHeightForWidth());
stp_size->setSizePolicy(sizePolicy4);
label_32 = new QLabel(stp_box_time);
label_32->setObjectName(QString::fromUtf8("label_32"));
label_32->setGeometry(QRect(110, 30, 81, 20));
sizePolicy4.setHeightForWidth(label_32->sizePolicy().hasHeightForWidth());
label_32->setSizePolicy(sizePolicy4);
label_32->setAlignment(Qt::AlignCenter);
label_31 = new QLabel(stp_box_time);
label_31->setObjectName(QString::fromUtf8("label_31"));
label_31->setGeometry(QRect(20, 30, 81, 21));
sizePolicy4.setHeightForWidth(label_31->sizePolicy().hasHeightForWidth());
label_31->setSizePolicy(sizePolicy4);
label_31->setAlignment(Qt::AlignCenter);
layoutWidget = new QWidget(stp_box_time);
layoutWidget->setObjectName(QString::fromUtf8("layoutWidget"));
layoutWidget->setGeometry(QRect(10, 170, 191, 21));
hboxLayout = new QHBoxLayout(layoutWidget);
hboxLayout->setObjectName(QString::fromUtf8("hboxLayout"));
hboxLayout->setContentsMargins(0, 0, 0, 0);
stp_Normal = new QRadioButton(layoutWidget);
stp_Normal->setObjectName(QString::fromUtf8("stp_Normal"));
stp_Normal->setChecked(true);

hboxLayout->addWidget(stp_Normal);

stp_Amp = new QRadioButton(layoutWidget);
stp_Amp->setObjectName(QString::fromUtf8("stp_Amp"));

hboxLayout->addWidget(stp_Amp);

gridLayout3->addWidget(stp_box_time, 0, 1, 1, 1);

stp_solve = new QPushButton(stp);
stp_solve->setObjectName(QString::fromUtf8("stp_solve"));
sizePolicy2.setHeightForWidth(stp_solve->sizePolicy().hasHeightForWidth());
stp_solve->setSizePolicy(sizePolicy2);
stp_solve->setMinimumSize(QSize(210, 25));
stp_solve->setMaximumSize(QSize(16777215, 25));

gridLayout3->addWidget(stp_solve, 1, 1, 1, 1);

gridLayout2->addLayout(gridLayout3, 0, 0, 1, 1);

232

stp_box_transducers = new QGroupBox(stp);
stp_box_transducers->setObjectName(QString::fromUtf8("stp_box_transducers"));
QSizePolicy sizePolicy5(QSizePolicy::MinimumExpanding, QSizePolicy::Fixed);
sizePolicy5.setHorizontalStretch(0);
sizePolicy5.setVerticalStretch(0);
sizePolicy5.setHeightForWidth(stp_box_transducers->sizePolicy().hasHeightForWidth());
stp_box_transducers->setSizePolicy(sizePolicy5);
gridLayout5 = new QGridLayout(stp_box_transducers);
gridLayout5->setObjectName(QString::fromUtf8("gridLayout5"));
stp_list = new QListView(stp_box_transducers);
stp_list->setObjectName(QString::fromUtf8("stp_list"));
sizePolicy1.setHeightForWidth(stp_list->sizePolicy().hasHeightForWidth());
stp_list->setSizePolicy(sizePolicy1);
stp_list->setEditTriggers(QAbstractItemView::NoEditTriggers);

gridLayout5->addWidget(stp_list, 0, 0, 1, 1);

vboxLayout1 = new QVBoxLayout();
vboxLayout1->setObjectName(QString::fromUtf8("vboxLayout1"));
stp_add = new QPushButton(stp_box_transducers);
stp_add->setObjectName(QString::fromUtf8("stp_add"));

vboxLayout1->addWidget(stp_add);

stp_rem = new QPushButton(stp_box_transducers);
stp_rem->setObjectName(QString::fromUtf8("stp_rem"));

vboxLayout1->addWidget(stp_rem);

stp_clear = new QPushButton(stp_box_transducers);
stp_clear->setObjectName(QString::fromUtf8("stp_clear"));

vboxLayout1->addWidget(stp_clear);

stp_import = new QPushButton(stp_box_transducers);
stp_import->setObjectName(QString::fromUtf8("stp_import"));

vboxLayout1->addWidget(stp_import);

gridLayout5->addLayout(vboxLayout1, 0, 1, 1, 1);

gridLayout2->addWidget(stp_box_transducers, 0, 1, 1, 1);

stp_plot = new QwtPlot(stp);
stp_plot->setObjectName(QString::fromUtf8("stp_plot"));
sizePolicy1.setHeightForWidth(stp_plot->sizePolicy().hasHeightForWidth());
stp_plot->setSizePolicy(sizePolicy1);

gridLayout2->addWidget(stp_plot, 1, 0, 1, 2);

hboxLayout1 = new QHBoxLayout();
hboxLayout1->setObjectName(QString::fromUtf8("hboxLayout1"));
label_7 = new QLabel(stp);
label_7->setObjectName(QString::fromUtf8("label_7"));
label_7->setMaximumSize(QSize(75, 25));

hboxLayout1->addWidget(label_7);

stp_X = new QLineEdit(stp);
stp_X->setObjectName(QString::fromUtf8("stp_X"));
sizePolicy4.setHeightForWidth(stp_X->sizePolicy().hasHeightForWidth());
stp_X->setSizePolicy(sizePolicy4);
stp_X->setMinimumSize(QSize(50, 25));
stp_X->setMaximumSize(QSize(50, 25));

233

hboxLayout1->addWidget(stp_X);

stp_Y = new QLineEdit(stp);
stp_Y->setObjectName(QString::fromUtf8("stp_Y"));
sizePolicy4.setHeightForWidth(stp_Y->sizePolicy().hasHeightForWidth());
stp_Y->setSizePolicy(sizePolicy4);
stp_Y->setMinimumSize(QSize(50, 25));
stp_Y->setMaximumSize(QSize(50, 25));

hboxLayout1->addWidget(stp_Y);

stp_impulse = new QRadioButton(stp);
stp_impulse->setObjectName(QString::fromUtf8("stp_impulse"));
stp_impulse->setChecked(true);

hboxLayout1->addWidget(stp_impulse);

stp_response = new QRadioButton(stp);
stp_response->setObjectName(QString::fromUtf8("stp_response"));
stp_response->setMinimumSize(QSize(90, 0));

hboxLayout1->addWidget(stp_response);

gridLayout2->addLayout(hboxLayout1, 2, 0, 1, 1);

spacerItem = new QSpacerItem(381, 31, QSizePolicy::Expanding, QSizePolicy::Minimum);

gridLayout2->addItem(spacerItem, 2, 1, 1, 1);

tabWidget->addTab(stp, QString());
view = new QWidget();
view->setObjectName(QString::fromUtf8("view"));
gridLayout6 = new QGridLayout(view);
gridLayout6->setObjectName(QString::fromUtf8("gridLayout6"));
view_plot = new QwtPlot(view);
view_plot->setObjectName(QString::fromUtf8("view_plot"));
sizePolicy1.setHeightForWidth(view_plot->sizePolicy().hasHeightForWidth());
view_plot->setSizePolicy(sizePolicy1);

gridLayout6->addWidget(view_plot, 0, 0, 3, 1);

view_vertPlot = new QwtPlot(view);
view_vertPlot->setObjectName(QString::fromUtf8("view_vertPlot"));

gridLayout6->addWidget(view_vertPlot, 0, 1, 1, 2);

view_horizPlot = new QwtPlot(view);
view_horizPlot->setObjectName(QString::fromUtf8("view_horizPlot"));

gridLayout6->addWidget(view_horizPlot, 1, 1, 1, 2);

view_timePlot = new QwtPlot(view);
view_timePlot->setObjectName(QString::fromUtf8("view_timePlot"));

gridLayout6->addWidget(view_timePlot, 2, 1, 1, 2);

view_slider = new QScrollBar(view);
view_slider->setObjectName(QString::fromUtf8("view_slider"));
view_slider->setTracking(false);
view_slider->setOrientation(Qt::Horizontal);

gridLayout6->addWidget(view_slider, 3, 0, 1, 3);

gridLayout7 = new QGridLayout();
gridLayout7->setObjectName(QString::fromUtf8("gridLayout7"));
vboxLayout2 = new QVBoxLayout();
vboxLayout2->setObjectName(QString::fromUtf8("vboxLayout2"));

234

view_spec = new QCheckBox(view);
view_spec->setObjectName(QString::fromUtf8("view_spec"));
sizePolicy4.setHeightForWidth(view_spec->sizePolicy().hasHeightForWidth());
view_spec->setSizePolicy(sizePolicy4);
view_spec->setChecked(true);

vboxLayout2->addWidget(view_spec);

view_cont = new QCheckBox(view);
view_cont->setObjectName(QString::fromUtf8("view_cont"));
sizePolicy4.setHeightForWidth(view_cont->sizePolicy().hasHeightForWidth());
view_cont->setSizePolicy(sizePolicy4);

vboxLayout2->addWidget(view_cont);

gridLayout7->addLayout(vboxLayout2, 0, 0, 1, 1);

vboxLayout3 = new QVBoxLayout();
vboxLayout3->setObjectName(QString::fromUtf8("vboxLayout3"));
view_time = new QRadioButton(view);
view_time->setObjectName(QString::fromUtf8("view_time"));
view_time->setChecked(true);

vboxLayout3->addWidget(view_time);

view_maxAmp = new QRadioButton(view);
view_maxAmp->setObjectName(QString::fromUtf8("view_maxAmp"));

vboxLayout3->addWidget(view_maxAmp);

spacerItem1 = new QSpacerItem(71, 20, QSizePolicy::Expanding, QSizePolicy::Minimum);

vboxLayout3->addItem(spacerItem1);

gridLayout7->addLayout(vboxLayout3, 0, 1, 1, 1);

gridLayout6->addLayout(gridLayout7, 4, 0, 1, 2);

gridLayout8 = new QGridLayout();
gridLayout8->setObjectName(QString::fromUtf8("gridLayout8"));
label_6 = new QLabel(view);
label_6->setObjectName(QString::fromUtf8("label_6"));
QSizePolicy sizePolicy6(QSizePolicy::MinimumExpanding, QSizePolicy::Preferred);
sizePolicy6.setHorizontalStretch(0);
sizePolicy6.setVerticalStretch(0);
sizePolicy6.setHeightForWidth(label_6->sizePolicy().hasHeightForWidth());
label_6->setSizePolicy(sizePolicy6);
label_6->setAlignment(Qt::AlignCenter);

gridLayout8->addWidget(label_6, 0, 0, 1, 1);

view_load = new QPushButton(view);
view_load->setObjectName(QString::fromUtf8("view_load"));
sizePolicy4.setHeightForWidth(view_load->sizePolicy().hasHeightForWidth());
view_load->setSizePolicy(sizePolicy4);

gridLayout8->addWidget(view_load, 0, 1, 1, 1);

view_intensity = new QScrollBar(view);
view_intensity->setObjectName(QString::fromUtf8("view_intensity"));
view_intensity->setMinimum(1);
view_intensity->setMaximum(100);
view_intensity->setValue(100);
view_intensity->setTracking(true);
view_intensity->setOrientation(Qt::Horizontal);

235

gridLayout8->addWidget(view_intensity, 1, 0, 1, 1);

view_save = new QPushButton(view);
view_save->setObjectName(QString::fromUtf8("view_save"));
sizePolicy4.setHeightForWidth(view_save->sizePolicy().hasHeightForWidth());
view_save->setSizePolicy(sizePolicy4);

gridLayout8->addWidget(view_save, 1, 1, 1, 1);

gridLayout6->addLayout(gridLayout8, 4, 2, 1, 1);

tabWidget->addTab(view, QString());

gridLayout->addWidget(tabWidget, 1, 0, 1, 1);

MainWindow->setCentralWidget(centralwidget);
statusbar = new QStatusBar(MainWindow);
statusbar->setObjectName(QString::fromUtf8("statusbar"));
MainWindow->setStatusBar(statusbar);

retranslateUi(MainWindow);

tabWidget->setCurrentIndex(0);

QMetaObject::connectSlotsByName(MainWindow);
} // setupUi

void retranslateUi(QMainWindow *MainWindow)
{
MainWindow->setWindowTitle(QApplication::translate("MainWindow", "Piston Transducer Simulation", 0, QApplication::UnicodeUTF8));
stp_box_medium->setTitle(QApplication::translate("MainWindow", "Medium", 0, QApplication::UnicodeUTF8));
label->setText(QApplication::translate("MainWindow", "dx", 0, QApplication::UnicodeUTF8));
label_2->setText(QApplication::translate("MainWindow", "dy", 0, QApplication::UnicodeUTF8));
label_3->setText(QApplication::translate("MainWindow", "Max x", 0, QApplication::UnicodeUTF8));
label_4->setText(QApplication::translate("MainWindow", "Max y", 0, QApplication::UnicodeUTF8));
label_5->setText(QApplication::translate("MainWindow", "Medium Velocity", 0, QApplication::UnicodeUTF8));
stp_box_time->setTitle(QApplication::translate("MainWindow", "Solver Parameters", 0, QApplication::UnicodeUTF8));
label_33->setText(QApplication::translate("MainWindow",
"*For faster computations, \"Size\" must follow S=2^N + 1, where N is an integer", 0, QApplication::UnicodeUTF8));
label_32->setText(QApplication::translate("MainWindow", "Size*", 0, QApplication::UnicodeUTF8));
label_31->setText(QApplication::translate("MainWindow", "dt", 0, QApplication::UnicodeUTF8));
stp_Normal->setText(QApplication::translate("MainWindow", "Normal", 0, QApplication::UnicodeUTF8));
stp_Amp->setText(QApplication::translate("MainWindow", "Hilbert", 0, QApplication::UnicodeUTF8));
stp_solve->setText(QApplication::translate("MainWindow", "Solve", 0, QApplication::UnicodeUTF8));
stp_box_transducers->setTitle(QApplication::translate("MainWindow", "Transducer", 0, QApplication::UnicodeUTF8));
stp_add->setText(QApplication::translate("MainWindow", "Add", 0, QApplication::UnicodeUTF8));
stp_rem->setText(QApplication::translate("MainWindow", "Remove", 0, QApplication::UnicodeUTF8));
stp_clear->setToolTip(QApplication::translate("MainWindow", "Import a Transducer set", 0, QApplication::UnicodeUTF8));
stp_clear->setText(QApplication::translate("MainWindow", "Clear", 0, QApplication::UnicodeUTF8));
stp_import->setToolTip(QApplication::translate("MainWindow", "Import a Transducer set", 0, QApplication::UnicodeUTF8));
stp_import->setText(QApplication::translate("MainWindow", "Import", 0, QApplication::UnicodeUTF8));
label_7->setText(QApplication::translate("MainWindow", "X, Y Loc :", 0, QApplication::UnicodeUTF8));
stp_impulse->setText(QApplication::translate("MainWindow", "Impulse", 0, QApplication::UnicodeUTF8));
stp_response->setText(QApplication::translate("MainWindow", "Response", 0, QApplication::UnicodeUTF8));
tabWidget->setTabText(tabWidget->indexOf(stp), QApplication::translate("MainWindow", "Setup", 0, QApplication::UnicodeUTF8));
view_vertPlot->setProperty("propertiesDocument", QVariant(QApplication::translate("MainWindow", "Vertical",
0, QApplication::UnicodeUTF8)));
view_horizPlot->setProperty("propertiesDocument", QVariant(QApplication::translate("MainWindow", "Horizontal",
0, QApplication::UnicodeUTF8)));
view_timePlot->setProperty("propertiesDocument", QVariant(QApplication::translate("MainWindow", "Time", 0, QApplication::UnicodeUTF8)));
view_spec->setText(QApplication::translate("MainWindow",
"Spectrogram", 0, QApplication::UnicodeUTF8));
view_cont->setText(QApplication::translate("MainWindow", "Contour", 0, QApplication::UnicodeUTF8));
view_time->setText(QApplication::translate("MainWindow", "Time Slice", 0, QApplication::UnicodeUTF8));
view_maxAmp->setText(QApplication::translate("MainWindow", "Max. Amp.", 0, QApplication::UnicodeUTF8));

236

label_6->setText(QApplication::translate("MainWindow", "Intensity", 0, QApplication::UnicodeUTF8));
view_load->setText(QApplication::translate("MainWindow", "Load", 0, QApplication::UnicodeUTF8));
view_save->setText(QApplication::translate("MainWindow",
"Save", 0, QApplication::UnicodeUTF8));
tabWidget->setTabText(tabWidget->indexOf(view), QApplication::translate("MainWindow", "Viewing", 0, QApplication::UnicodeUTF8));
Q_UNUSED(MainWindow);
} // retranslateUi

};

namespace Ui {
class MainWindow: public Ui_MainWindow {};

} // namespace Ui

#endif // UI_PISTONUI_H

D.12 ui td.h
/**
** Form generated from reading ui file ’td.ui’
**
** Created: Thu Nov 1 16:08:39 2007
** by: Qt User Interface Compiler version 4.3.2
**
** WARNING! All changes made in this file will be lost when recompiling ui file!
**/

#ifndef UI_TD_H
#define UI_TD_H

#include <QtCore/QVariant>
#include <QtGui/QAction>
#include <QtGui/QApplication>
#include <QtGui/QButtonGroup>
#include <QtGui/QComboBox>
#include <QtGui/QDialog>
#include <QtGui/QGridLayout>
#include <QtGui/QGroupBox>
#include <QtGui/QHBoxLayout>
#include <QtGui/QLabel>
#include <QtGui/QLineEdit>
#include <QtGui/QPushButton>

class Ui_tdEntry
{
public:

QGridLayout *gridLayout;
QGroupBox *groupBox;
QGridLayout *gridLayout1;
QLabel *label_2;
QComboBox *td_type;
QLabel *label;
QLineEdit *td_sz;
QLabel *label_3;
QLineEdit *td_x;
QLabel *label_4;
QLineEdit *td_y;
QGroupBox *groupBox_2;
QGridLayout *gridLayout2;
QLabel *label_5;
QComboBox *sig_type;
QLabel *label_6;
QLineEdit *sig_dly;
QLabel *label_7;
QLineEdit *sig_f;
QLabel *label_8;

237

QLineEdit *sig_gwidth;
QHBoxLayout *hboxLayout;
QPushButton *add;
QPushButton *done;

void setupUi(QDialog *tdEntry)
{
if (tdEntry->objectName().isEmpty())

tdEntry->setObjectName(QString::fromUtf8("tdEntry"));
tdEntry->setWindowModality(Qt::NonModal);
tdEntry->resize(450, 210);
QSizePolicy sizePolicy(QSizePolicy::MinimumExpanding, QSizePolicy::MinimumExpanding);
sizePolicy.setHorizontalStretch(0);
sizePolicy.setVerticalStretch(0);
sizePolicy.setHeightForWidth(tdEntry->sizePolicy().hasHeightForWidth());
tdEntry->setSizePolicy(sizePolicy);
tdEntry->setMinimumSize(QSize(450, 210));
tdEntry->setMaximumSize(QSize(450, 210));
tdEntry->setBaseSize(QSize(320, 200));
tdEntry->setModal(false);
gridLayout = new QGridLayout(tdEntry);
gridLayout->setObjectName(QString::fromUtf8("gridLayout"));
groupBox = new QGroupBox(tdEntry);
groupBox->setObjectName(QString::fromUtf8("groupBox"));
gridLayout1 = new QGridLayout(groupBox);
gridLayout1->setObjectName(QString::fromUtf8("gridLayout1"));
label_2 = new QLabel(groupBox);
label_2->setObjectName(QString::fromUtf8("label_2"));

gridLayout1->addWidget(label_2, 0, 0, 1, 1);

td_type = new QComboBox(groupBox);
td_type->setObjectName(QString::fromUtf8("td_type"));

gridLayout1->addWidget(td_type, 0, 1, 1, 1);

label = new QLabel(groupBox);
label->setObjectName(QString::fromUtf8("label"));

gridLayout1->addWidget(label, 1, 0, 1, 1);

td_sz = new QLineEdit(groupBox);
td_sz->setObjectName(QString::fromUtf8("td_sz"));

gridLayout1->addWidget(td_sz, 1, 1, 1, 1);

label_3 = new QLabel(groupBox);
label_3->setObjectName(QString::fromUtf8("label_3"));

gridLayout1->addWidget(label_3, 2, 0, 1, 1);

td_x = new QLineEdit(groupBox);
td_x->setObjectName(QString::fromUtf8("td_x"));

gridLayout1->addWidget(td_x, 2, 1, 1, 1);

label_4 = new QLabel(groupBox);
label_4->setObjectName(QString::fromUtf8("label_4"));

gridLayout1->addWidget(label_4, 3, 0, 1, 1);

td_y = new QLineEdit(groupBox);
td_y->setObjectName(QString::fromUtf8("td_y"));

gridLayout1->addWidget(td_y, 3, 1, 1, 1);

gridLayout->addWidget(groupBox, 0, 0, 2, 1);

238

groupBox_2 = new QGroupBox(tdEntry);
groupBox_2->setObjectName(QString::fromUtf8("groupBox_2"));
groupBox_2->setMinimumSize(QSize(0, 166));
gridLayout2 = new QGridLayout(groupBox_2);
gridLayout2->setObjectName(QString::fromUtf8("gridLayout2"));
label_5 = new QLabel(groupBox_2);
label_5->setObjectName(QString::fromUtf8("label_5"));

gridLayout2->addWidget(label_5, 0, 0, 1, 1);

sig_type = new QComboBox(groupBox_2);
sig_type->setObjectName(QString::fromUtf8("sig_type"));

gridLayout2->addWidget(sig_type, 0, 1, 1, 1);

label_6 = new QLabel(groupBox_2);
label_6->setObjectName(QString::fromUtf8("label_6"));

gridLayout2->addWidget(label_6, 1, 0, 1, 1);

sig_dly = new QLineEdit(groupBox_2);
sig_dly->setObjectName(QString::fromUtf8("sig_dly"));

gridLayout2->addWidget(sig_dly, 1, 1, 1, 1);

label_7 = new QLabel(groupBox_2);
label_7->setObjectName(QString::fromUtf8("label_7"));

gridLayout2->addWidget(label_7, 2, 0, 1, 1);

sig_f = new QLineEdit(groupBox_2);
sig_f->setObjectName(QString::fromUtf8("sig_f"));

gridLayout2->addWidget(sig_f, 2, 1, 1, 1);

label_8 = new QLabel(groupBox_2);
label_8->setObjectName(QString::fromUtf8("label_8"));

gridLayout2->addWidget(label_8, 3, 0, 1, 1);

sig_gwidth = new QLineEdit(groupBox_2);
sig_gwidth->setObjectName(QString::fromUtf8("sig_gwidth"));

gridLayout2->addWidget(sig_gwidth, 3, 1, 1, 1);

gridLayout->addWidget(groupBox_2, 0, 1, 1, 1);

hboxLayout = new QHBoxLayout();
hboxLayout->setObjectName(QString::fromUtf8("hboxLayout"));
add = new QPushButton(tdEntry);
add->setObjectName(QString::fromUtf8("add"));

hboxLayout->addWidget(add);

done = new QPushButton(tdEntry);
done->setObjectName(QString::fromUtf8("done"));

hboxLayout->addWidget(done);

gridLayout->addLayout(hboxLayout, 1, 1, 1, 1);

retranslateUi(tdEntry);
QObject::connect(done, SIGNAL(clicked()), tdEntry, SLOT(close()));

239

QMetaObject::connectSlotsByName(tdEntry);
} // setupUi

void retranslateUi(QDialog *tdEntry)
{
tdEntry->setWindowTitle(QApplication::translate("tdEntry", "Transducer Entry", 0, QApplication::UnicodeUTF8));
groupBox->setTitle(QApplication::translate("tdEntry", "Transducer Information", 0, QApplication::UnicodeUTF8));
label_2->setText(QApplication::translate("tdEntry", "Type", 0, QApplication::UnicodeUTF8));
label->setText(QApplication::translate("tdEntry", "Size", 0, QApplication::UnicodeUTF8));
label_3->setText(QApplication::translate("tdEntry", "Loc X", 0, QApplication::UnicodeUTF8));
label_4->setText(QApplication::translate("tdEntry", "Loc Y", 0, QApplication::UnicodeUTF8));
groupBox_2->setTitle(QApplication::translate("tdEntry", "Impulse", 0, QApplication::UnicodeUTF8));
label_5->setText(QApplication::translate("tdEntry", "Signal", 0, QApplication::UnicodeUTF8));
label_6->setText(QApplication::translate("tdEntry", "Delay", 0, QApplication::UnicodeUTF8));
label_7->setText(QApplication::translate("tdEntry", "Frequency", 0, QApplication::UnicodeUTF8));
label_8->setText(QApplication::translate("tdEntry", "Gaus. Wi.", 0, QApplication::UnicodeUTF8));
add->setText(QApplication::translate("tdEntry", "Add", 0, QApplication::UnicodeUTF8));
done->setText(QApplication::translate("tdEntry", "Done", 0, QApplication::UnicodeUTF8));
Q_UNUSED(tdEntry);
} // retranslateUi

};

namespace Ui {
class tdEntry: public Ui_tdEntry {};

} // namespace Ui

#endif // UI_TD_H

D.13 ui tdimport.h
/**
** Form generated from reading ui file ’tdimport.ui’
**
** Created: Thu Nov 1 16:08:39 2007
** by: Qt User Interface Compiler version 4.3.2
**
** WARNING! All changes made in this file will be lost when recompiling ui file!
**/

#ifndef UI_TDIMPORT_H
#define UI_TDIMPORT_H

#include <QtCore/QVariant>
#include <QtGui/QAction>
#include <QtGui/QApplication>
#include <QtGui/QButtonGroup>
#include <QtGui/QComboBox>
#include <QtGui/QDialog>
#include <QtGui/QGridLayout>
#include <QtGui/QGroupBox>
#include <QtGui/QHBoxLayout>
#include <QtGui/QLabel>
#include <QtGui/QLineEdit>
#include <QtGui/QListView>
#include <QtGui/QPushButton>
#include <QtGui/QSpacerItem>
#include <QtGui/QVBoxLayout>
#include <QtGui/QWidget>

class Ui_tdImport
{
public:

QGroupBox *groupBox_5;
QGridLayout *gridLayout;
QVBoxLayout *vboxLayout;

240

QLabel *label_10;
QListView *elem_list;
QSpacerItem *spacerItem;
QHBoxLayout *hboxLayout;
QLabel *label_34;
QLineEdit *elem_flGain;
QHBoxLayout *hboxLayout1;
QLabel *label_36;
QLineEdit *elem_tDelay;
QHBoxLayout *hboxLayout2;
QLabel *label_38;
QLineEdit *elem_rDelay;
QHBoxLayout *hboxLayout3;
QLabel *label_40;
QLineEdit *elem_amplitude;
QHBoxLayout *hboxLayout4;
QLabel *label_42;
QLineEdit *elem_pWidth;
QPushButton *accept;
QWidget *layoutWidget;
QVBoxLayout *vboxLayout1;
QHBoxLayout *hboxLayout5;
QPushButton *law_import;
QLineEdit *law_filename;
QGroupBox *groupBox_4;
QGridLayout *gridLayout1;
QHBoxLayout *hboxLayout6;
QLabel *label_9;
QComboBox *law_num;
QHBoxLayout *hboxLayout7;
QLabel *label_11;
QLineEdit *law_fDepth;
QHBoxLayout *hboxLayout8;
QLabel *label_33;
QLineEdit *law_scanOffset;
QHBoxLayout *hboxLayout9;
QLabel *label_13;
QLineEdit *law_freq;
QHBoxLayout *hboxLayout10;
QLabel *label_27;
QLineEdit *law_sAngle;
QHBoxLayout *hboxLayout11;
QLabel *label_16;
QLineEdit *law_filter;
QHBoxLayout *hboxLayout12;
QLabel *label_12;
QLineEdit *law_cycles;
QHBoxLayout *hboxLayout13;
QLabel *label_35;
QLineEdit *law_tFirst;
QHBoxLayout *hboxLayout14;
QLabel *label_41;
QLineEdit *law_medVel;
QHBoxLayout *hboxLayout15;
QLabel *label_15;
QLineEdit *law_sumgain;
QHBoxLayout *hboxLayout16;
QLabel *label_21;
QLineEdit *law_rFirst;
QHBoxLayout *hboxLayout17;
QLabel *label_37;
QLineEdit *law_indexOffset;
QHBoxLayout *hboxLayout18;
QLabel *label_39;
QLineEdit *law_gDelay;
QHBoxLayout *hboxLayout19;
QLabel *label_25;
QLineEdit *law_rAngle;

241

QHBoxLayout *hboxLayout20;
QLabel *label_22;
QLineEdit *law_mode;
QHBoxLayout *hboxLayout21;
QGroupBox *groupBox;
QGridLayout *gridLayout2;
QLabel *label_2;
QComboBox *td_type;
QLabel *label;
QLineEdit *td_sz;
QLabel *label_3;
QLineEdit *td_dx;
QGroupBox *groupBox_2;
QGridLayout *gridLayout3;
QLabel *label_5;
QComboBox *sig_type;
QLabel *label_6;
QLineEdit *sig_dly;

void setupUi(QDialog *tdImport)
{
if (tdImport->objectName().isEmpty())

tdImport->setObjectName(QString::fromUtf8("tdImport"));
tdImport->setWindowModality(Qt::NonModal);
tdImport->resize(820, 500);
QSizePolicy sizePolicy(QSizePolicy::MinimumExpanding, QSizePolicy::MinimumExpanding);
sizePolicy.setHorizontalStretch(0);
sizePolicy.setVerticalStretch(0);
sizePolicy.setHeightForWidth(tdImport->sizePolicy().hasHeightForWidth());
tdImport->setSizePolicy(sizePolicy);
tdImport->setMinimumSize(QSize(820, 500));
tdImport->setMaximumSize(QSize(820, 500));
tdImport->setBaseSize(QSize(320, 200));
tdImport->setModal(false);
groupBox_5 = new QGroupBox(tdImport);
groupBox_5->setObjectName(QString::fromUtf8("groupBox_5"));
groupBox_5->setGeometry(QRect(510, 72, 281, 200));
groupBox_5->setMinimumSize(QSize(0, 200));
groupBox_5->setMaximumSize(QSize(16777215, 200));
groupBox_5->setSizeIncrement(QSize(0, 200));
gridLayout = new QGridLayout(groupBox_5);
gridLayout->setObjectName(QString::fromUtf8("gridLayout"));
vboxLayout = new QVBoxLayout();
vboxLayout->setObjectName(QString::fromUtf8("vboxLayout"));
label_10 = new QLabel(groupBox_5);
label_10->setObjectName(QString::fromUtf8("label_10"));
label_10->setMaximumSize(QSize(80, 16777215));
label_10->setAlignment(Qt::AlignCenter);

vboxLayout->addWidget(label_10);

elem_list = new QListView(groupBox_5);
elem_list->setObjectName(QString::fromUtf8("elem_list"));
elem_list->setMaximumSize(QSize(80, 16777215));

vboxLayout->addWidget(elem_list);

gridLayout->addLayout(vboxLayout, 0, 0, 6, 1);

spacerItem = new QSpacerItem(141, 20, QSizePolicy::Expanding, QSizePolicy::Minimum);

gridLayout->addItem(spacerItem, 0, 1, 1, 1);

hboxLayout = new QHBoxLayout();
hboxLayout->setObjectName(QString::fromUtf8("hboxLayout"));
label_34 = new QLabel(groupBox_5);
label_34->setObjectName(QString::fromUtf8("label_34"));

242

label_34->setMinimumSize(QSize(80, 0));
label_34->setMaximumSize(QSize(80, 16777215));

hboxLayout->addWidget(label_34);

elem_flGain = new QLineEdit(groupBox_5);
elem_flGain->setObjectName(QString::fromUtf8("elem_flGain"));
elem_flGain->setMinimumSize(QSize(70, 0));
elem_flGain->setMaximumSize(QSize(70, 16777215));

hboxLayout->addWidget(elem_flGain);

gridLayout->addLayout(hboxLayout, 1, 1, 1, 1);

hboxLayout1 = new QHBoxLayout();
hboxLayout1->setObjectName(QString::fromUtf8("hboxLayout1"));
label_36 = new QLabel(groupBox_5);
label_36->setObjectName(QString::fromUtf8("label_36"));
label_36->setMinimumSize(QSize(80, 0));
label_36->setMaximumSize(QSize(80, 16777215));

hboxLayout1->addWidget(label_36);

elem_tDelay = new QLineEdit(groupBox_5);
elem_tDelay->setObjectName(QString::fromUtf8("elem_tDelay"));
elem_tDelay->setMinimumSize(QSize(70, 0));
elem_tDelay->setMaximumSize(QSize(70, 16777215));

hboxLayout1->addWidget(elem_tDelay);

gridLayout->addLayout(hboxLayout1, 2, 1, 1, 1);

hboxLayout2 = new QHBoxLayout();
hboxLayout2->setObjectName(QString::fromUtf8("hboxLayout2"));
label_38 = new QLabel(groupBox_5);
label_38->setObjectName(QString::fromUtf8("label_38"));
label_38->setMinimumSize(QSize(80, 0));
label_38->setMaximumSize(QSize(80, 16777215));

hboxLayout2->addWidget(label_38);

elem_rDelay = new QLineEdit(groupBox_5);
elem_rDelay->setObjectName(QString::fromUtf8("elem_rDelay"));
elem_rDelay->setMinimumSize(QSize(70, 0));
elem_rDelay->setMaximumSize(QSize(70, 16777215));

hboxLayout2->addWidget(elem_rDelay);

gridLayout->addLayout(hboxLayout2, 3, 1, 1, 1);

hboxLayout3 = new QHBoxLayout();
hboxLayout3->setObjectName(QString::fromUtf8("hboxLayout3"));
label_40 = new QLabel(groupBox_5);
label_40->setObjectName(QString::fromUtf8("label_40"));
label_40->setMinimumSize(QSize(80, 0));
label_40->setMaximumSize(QSize(80, 16777215));

hboxLayout3->addWidget(label_40);

elem_amplitude = new QLineEdit(groupBox_5);
elem_amplitude->setObjectName(QString::fromUtf8("elem_amplitude"));
elem_amplitude->setMinimumSize(QSize(70, 0));
elem_amplitude->setMaximumSize(QSize(70, 16777215));

hboxLayout3->addWidget(elem_amplitude);

243

gridLayout->addLayout(hboxLayout3, 4, 1, 1, 1);

hboxLayout4 = new QHBoxLayout();
hboxLayout4->setObjectName(QString::fromUtf8("hboxLayout4"));
label_42 = new QLabel(groupBox_5);
label_42->setObjectName(QString::fromUtf8("label_42"));
label_42->setMinimumSize(QSize(80, 0));
label_42->setMaximumSize(QSize(80, 16777215));

hboxLayout4->addWidget(label_42);

elem_pWidth = new QLineEdit(groupBox_5);
elem_pWidth->setObjectName(QString::fromUtf8("elem_pWidth"));
elem_pWidth->setMinimumSize(QSize(70, 0));
elem_pWidth->setMaximumSize(QSize(70, 16777215));

hboxLayout4->addWidget(elem_pWidth);

gridLayout->addLayout(hboxLayout4, 5, 1, 1, 1);

accept = new QPushButton(tdImport);
accept->setObjectName(QString::fromUtf8("accept"));
accept->setGeometry(QRect(680, 440, 111, 32));
layoutWidget = new QWidget(tdImport);
layoutWidget->setObjectName(QString::fromUtf8("layoutWidget"));
layoutWidget->setGeometry(QRect(10, 10, 498, 471));
vboxLayout1 = new QVBoxLayout(layoutWidget);
vboxLayout1->setObjectName(QString::fromUtf8("vboxLayout1"));
vboxLayout1->setContentsMargins(0, 0, 0, 0);
hboxLayout5 = new QHBoxLayout();
hboxLayout5->setObjectName(QString::fromUtf8("hboxLayout5"));
law_import = new QPushButton(layoutWidget);
law_import->setObjectName(QString::fromUtf8("law_import"));

hboxLayout5->addWidget(law_import);

law_filename = new QLineEdit(layoutWidget);
law_filename->setObjectName(QString::fromUtf8("law_filename"));

hboxLayout5->addWidget(law_filename);

vboxLayout1->addLayout(hboxLayout5);

groupBox_4 = new QGroupBox(layoutWidget);
groupBox_4->setObjectName(QString::fromUtf8("groupBox_4"));
groupBox_4->setMinimumSize(QSize(495, 200));
groupBox_4->setMaximumSize(QSize(495, 200));
gridLayout1 = new QGridLayout(groupBox_4);
gridLayout1->setObjectName(QString::fromUtf8("gridLayout1"));
hboxLayout6 = new QHBoxLayout();
hboxLayout6->setObjectName(QString::fromUtf8("hboxLayout6"));
label_9 = new QLabel(groupBox_4);
label_9->setObjectName(QString::fromUtf8("label_9"));
label_9->setMinimumSize(QSize(70, 0));
label_9->setMaximumSize(QSize(70, 16777215));
label_9->setAlignment(Qt::AlignCenter);

hboxLayout6->addWidget(label_9);

law_num = new QComboBox(groupBox_4);
law_num->setObjectName(QString::fromUtf8("law_num"));
law_num->setMinimumSize(QSize(60, 0));
law_num->setMaximumSize(QSize(60, 16777215));

244

hboxLayout6->addWidget(law_num);

gridLayout1->addLayout(hboxLayout6, 0, 0, 1, 1);

hboxLayout7 = new QHBoxLayout();
hboxLayout7->setObjectName(QString::fromUtf8("hboxLayout7"));
label_11 = new QLabel(groupBox_4);
label_11->setObjectName(QString::fromUtf8("label_11"));
label_11->setMinimumSize(QSize(55, 0));
label_11->setMaximumSize(QSize(55, 16777215));

hboxLayout7->addWidget(label_11);

law_fDepth = new QLineEdit(groupBox_4);
law_fDepth->setObjectName(QString::fromUtf8("law_fDepth"));
law_fDepth->setMinimumSize(QSize(70, 0));
law_fDepth->setMaximumSize(QSize(70, 16777215));

hboxLayout7->addWidget(law_fDepth);

gridLayout1->addLayout(hboxLayout7, 0, 1, 1, 1);

hboxLayout8 = new QHBoxLayout();
hboxLayout8->setObjectName(QString::fromUtf8("hboxLayout8"));
label_33 = new QLabel(groupBox_4);
label_33->setObjectName(QString::fromUtf8("label_33"));
label_33->setMinimumSize(QSize(80, 0));
label_33->setMaximumSize(QSize(80, 16777215));

hboxLayout8->addWidget(label_33);

law_scanOffset = new QLineEdit(groupBox_4);
law_scanOffset->setObjectName(QString::fromUtf8("law_scanOffset"));
law_scanOffset->setMinimumSize(QSize(70, 0));
law_scanOffset->setMaximumSize(QSize(70, 16777215));

hboxLayout8->addWidget(law_scanOffset);

gridLayout1->addLayout(hboxLayout8, 0, 2, 1, 1);

hboxLayout9 = new QHBoxLayout();
hboxLayout9->setObjectName(QString::fromUtf8("hboxLayout9"));
label_13 = new QLabel(groupBox_4);
label_13->setObjectName(QString::fromUtf8("label_13"));
label_13->setMinimumSize(QSize(55, 0));
label_13->setMaximumSize(QSize(55, 16777215));

hboxLayout9->addWidget(label_13);

law_freq = new QLineEdit(groupBox_4);
law_freq->setObjectName(QString::fromUtf8("law_freq"));
law_freq->setMinimumSize(QSize(70, 0));
law_freq->setMaximumSize(QSize(70, 16777215));

hboxLayout9->addWidget(law_freq);

gridLayout1->addLayout(hboxLayout9, 1, 0, 1, 1);

hboxLayout10 = new QHBoxLayout();
hboxLayout10->setObjectName(QString::fromUtf8("hboxLayout10"));
label_27 = new QLabel(groupBox_4);
label_27->setObjectName(QString::fromUtf8("label_27"));
label_27->setMinimumSize(QSize(55, 0));
label_27->setMaximumSize(QSize(55, 16777215));

245

hboxLayout10->addWidget(label_27);

law_sAngle = new QLineEdit(groupBox_4);
law_sAngle->setObjectName(QString::fromUtf8("law_sAngle"));
law_sAngle->setMinimumSize(QSize(70, 0));
law_sAngle->setMaximumSize(QSize(70, 16777215));

hboxLayout10->addWidget(law_sAngle);

gridLayout1->addLayout(hboxLayout10, 1, 1, 1, 1);

hboxLayout11 = new QHBoxLayout();
hboxLayout11->setObjectName(QString::fromUtf8("hboxLayout11"));
label_16 = new QLabel(groupBox_4);
label_16->setObjectName(QString::fromUtf8("label_16"));
label_16->setMinimumSize(QSize(80, 0));
label_16->setMaximumSize(QSize(80, 16777215));

hboxLayout11->addWidget(label_16);

law_filter = new QLineEdit(groupBox_4);
law_filter->setObjectName(QString::fromUtf8("law_filter"));
law_filter->setMinimumSize(QSize(70, 0));
law_filter->setMaximumSize(QSize(70, 16777215));

hboxLayout11->addWidget(law_filter);

gridLayout1->addLayout(hboxLayout11, 1, 2, 1, 1);

hboxLayout12 = new QHBoxLayout();
hboxLayout12->setObjectName(QString::fromUtf8("hboxLayout12"));
label_12 = new QLabel(groupBox_4);
label_12->setObjectName(QString::fromUtf8("label_12"));
label_12->setMinimumSize(QSize(55, 0));
label_12->setMaximumSize(QSize(55, 16777215));

hboxLayout12->addWidget(label_12);

law_cycles = new QLineEdit(groupBox_4);
law_cycles->setObjectName(QString::fromUtf8("law_cycles"));
law_cycles->setMinimumSize(QSize(70, 0));
law_cycles->setMaximumSize(QSize(70, 16777215));

hboxLayout12->addWidget(law_cycles);

gridLayout1->addLayout(hboxLayout12, 2, 0, 1, 1);

hboxLayout13 = new QHBoxLayout();
hboxLayout13->setObjectName(QString::fromUtf8("hboxLayout13"));
label_35 = new QLabel(groupBox_4);
label_35->setObjectName(QString::fromUtf8("label_35"));
label_35->setMinimumSize(QSize(55, 0));
label_35->setMaximumSize(QSize(55, 16777215));

hboxLayout13->addWidget(label_35);

law_tFirst = new QLineEdit(groupBox_4);
law_tFirst->setObjectName(QString::fromUtf8("law_tFirst"));
law_tFirst->setMinimumSize(QSize(70, 0));
law_tFirst->setMaximumSize(QSize(70, 16777215));

hboxLayout13->addWidget(law_tFirst);

246

gridLayout1->addLayout(hboxLayout13, 2, 1, 1, 1);

hboxLayout14 = new QHBoxLayout();
hboxLayout14->setObjectName(QString::fromUtf8("hboxLayout14"));
label_41 = new QLabel(groupBox_4);
label_41->setObjectName(QString::fromUtf8("label_41"));
label_41->setMinimumSize(QSize(80, 0));
label_41->setMaximumSize(QSize(80, 16777215));

hboxLayout14->addWidget(label_41);

law_medVel = new QLineEdit(groupBox_4);
law_medVel->setObjectName(QString::fromUtf8("law_medVel"));
law_medVel->setMinimumSize(QSize(70, 0));
law_medVel->setMaximumSize(QSize(70, 16777215));

hboxLayout14->addWidget(law_medVel);

gridLayout1->addLayout(hboxLayout14, 2, 2, 1, 1);

hboxLayout15 = new QHBoxLayout();
hboxLayout15->setObjectName(QString::fromUtf8("hboxLayout15"));
label_15 = new QLabel(groupBox_4);
label_15->setObjectName(QString::fromUtf8("label_15"));
label_15->setMinimumSize(QSize(55, 0));
label_15->setMaximumSize(QSize(55, 16777215));

hboxLayout15->addWidget(label_15);

law_sumgain = new QLineEdit(groupBox_4);
law_sumgain->setObjectName(QString::fromUtf8("law_sumgain"));
law_sumgain->setMinimumSize(QSize(70, 0));
law_sumgain->setMaximumSize(QSize(70, 16777215));

hboxLayout15->addWidget(law_sumgain);

gridLayout1->addLayout(hboxLayout15, 3, 0, 1, 1);

hboxLayout16 = new QHBoxLayout();
hboxLayout16->setObjectName(QString::fromUtf8("hboxLayout16"));
label_21 = new QLabel(groupBox_4);
label_21->setObjectName(QString::fromUtf8("label_21"));
label_21->setMinimumSize(QSize(55, 0));
label_21->setMaximumSize(QSize(55, 16777215));

hboxLayout16->addWidget(label_21);

law_rFirst = new QLineEdit(groupBox_4);
law_rFirst->setObjectName(QString::fromUtf8("law_rFirst"));
law_rFirst->setMinimumSize(QSize(70, 0));
law_rFirst->setMaximumSize(QSize(70, 16777215));

hboxLayout16->addWidget(law_rFirst);

gridLayout1->addLayout(hboxLayout16, 3, 1, 1, 1);

hboxLayout17 = new QHBoxLayout();
hboxLayout17->setObjectName(QString::fromUtf8("hboxLayout17"));
label_37 = new QLabel(groupBox_4);
label_37->setObjectName(QString::fromUtf8("label_37"));
label_37->setMinimumSize(QSize(80, 0));

hboxLayout17->addWidget(label_37);

law_indexOffset = new QLineEdit(groupBox_4);

247

law_indexOffset->setObjectName(QString::fromUtf8("law_indexOffset"));
law_indexOffset->setMinimumSize(QSize(70, 0));
law_indexOffset->setMaximumSize(QSize(70, 16777215));

hboxLayout17->addWidget(law_indexOffset);

gridLayout1->addLayout(hboxLayout17, 3, 2, 1, 1);

hboxLayout18 = new QHBoxLayout();
hboxLayout18->setObjectName(QString::fromUtf8("hboxLayout18"));
label_39 = new QLabel(groupBox_4);
label_39->setObjectName(QString::fromUtf8("label_39"));
label_39->setMinimumSize(QSize(55, 0));
label_39->setMaximumSize(QSize(55, 16777215));

hboxLayout18->addWidget(label_39);

law_gDelay = new QLineEdit(groupBox_4);
law_gDelay->setObjectName(QString::fromUtf8("law_gDelay"));
law_gDelay->setMinimumSize(QSize(70, 0));
law_gDelay->setMaximumSize(QSize(70, 16777215));

hboxLayout18->addWidget(law_gDelay);

gridLayout1->addLayout(hboxLayout18, 4, 0, 1, 1);

hboxLayout19 = new QHBoxLayout();
hboxLayout19->setObjectName(QString::fromUtf8("hboxLayout19"));
label_25 = new QLabel(groupBox_4);
label_25->setObjectName(QString::fromUtf8("label_25"));
label_25->setMinimumSize(QSize(55, 0));
label_25->setMaximumSize(QSize(55, 16777215));

hboxLayout19->addWidget(label_25);

law_rAngle = new QLineEdit(groupBox_4);
law_rAngle->setObjectName(QString::fromUtf8("law_rAngle"));
law_rAngle->setMinimumSize(QSize(70, 0));
law_rAngle->setMaximumSize(QSize(70, 16777215));

hboxLayout19->addWidget(law_rAngle);

gridLayout1->addLayout(hboxLayout19, 4, 1, 1, 1);

hboxLayout20 = new QHBoxLayout();
hboxLayout20->setObjectName(QString::fromUtf8("hboxLayout20"));
label_22 = new QLabel(groupBox_4);
label_22->setObjectName(QString::fromUtf8("label_22"));
label_22->setMinimumSize(QSize(80, 0));
label_22->setMaximumSize(QSize(80, 16777215));

hboxLayout20->addWidget(label_22);

law_mode = new QLineEdit(groupBox_4);
law_mode->setObjectName(QString::fromUtf8("law_mode"));
law_mode->setMinimumSize(QSize(70, 0));
law_mode->setMaximumSize(QSize(70, 16777215));

hboxLayout20->addWidget(law_mode);

gridLayout1->addLayout(hboxLayout20, 4, 2, 1, 1);

vboxLayout1->addWidget(groupBox_4);

248

hboxLayout21 = new QHBoxLayout();
hboxLayout21->setObjectName(QString::fromUtf8("hboxLayout21"));
groupBox = new QGroupBox(layoutWidget);
groupBox->setObjectName(QString::fromUtf8("groupBox"));
groupBox->setMinimumSize(QSize(232, 166));
groupBox->setMaximumSize(QSize(232, 16777215));
gridLayout2 = new QGridLayout(groupBox);
gridLayout2->setObjectName(QString::fromUtf8("gridLayout2"));
label_2 = new QLabel(groupBox);
label_2->setObjectName(QString::fromUtf8("label_2"));

gridLayout2->addWidget(label_2, 0, 0, 1, 1);

td_type = new QComboBox(groupBox);
td_type->setObjectName(QString::fromUtf8("td_type"));

gridLayout2->addWidget(td_type, 0, 1, 1, 1);

label = new QLabel(groupBox);
label->setObjectName(QString::fromUtf8("label"));

gridLayout2->addWidget(label, 1, 0, 1, 1);

td_sz = new QLineEdit(groupBox);
td_sz->setObjectName(QString::fromUtf8("td_sz"));

gridLayout2->addWidget(td_sz, 1, 1, 1, 1);

label_3 = new QLabel(groupBox);
label_3->setObjectName(QString::fromUtf8("label_3"));

gridLayout2->addWidget(label_3, 2, 0, 1, 1);

td_dx = new QLineEdit(groupBox);
td_dx->setObjectName(QString::fromUtf8("td_dx"));

gridLayout2->addWidget(td_dx, 2, 1, 1, 1);

hboxLayout21->addWidget(groupBox);

groupBox_2 = new QGroupBox(layoutWidget);
groupBox_2->setObjectName(QString::fromUtf8("groupBox_2"));
groupBox_2->setMinimumSize(QSize(245, 166));
groupBox_2->setMaximumSize(QSize(245, 166));
gridLayout3 = new QGridLayout(groupBox_2);
gridLayout3->setObjectName(QString::fromUtf8("gridLayout3"));
label_5 = new QLabel(groupBox_2);
label_5->setObjectName(QString::fromUtf8("label_5"));

gridLayout3->addWidget(label_5, 0, 0, 1, 1);

sig_type = new QComboBox(groupBox_2);
sig_type->setObjectName(QString::fromUtf8("sig_type"));
sig_type->setModelColumn(0);

gridLayout3->addWidget(sig_type, 0, 1, 1, 1);

label_6 = new QLabel(groupBox_2);
label_6->setObjectName(QString::fromUtf8("label_6"));

gridLayout3->addWidget(label_6, 1, 0, 1, 1);

sig_dly = new QLineEdit(groupBox_2);
sig_dly->setObjectName(QString::fromUtf8("sig_dly"));

gridLayout3->addWidget(sig_dly, 1, 1, 1, 1);

249

hboxLayout21->addWidget(groupBox_2);

vboxLayout1->addLayout(hboxLayout21);

retranslateUi(tdImport);
QObject::connect(accept, SIGNAL(clicked()), tdImport, SLOT(close()));

QMetaObject::connectSlotsByName(tdImport);
} // setupUi

void retranslateUi(QDialog *tdImport)
{
tdImport->setWindowTitle(QApplication::translate("tdImport",
"Focal Law Impulse and Tranducer Setup", 0, QApplication::UnicodeUTF8));
tdImport->setProperty("", QVariant(QString()));
groupBox_5->setTitle(QApplication::translate("tdImport", "Elements", 0, QApplication::UnicodeUTF8));
label_10->setText(QApplication::translate("tdImport", "Elements", 0, QApplication::UnicodeUTF8));
label_34->setText(QApplication::translate("tdImport", "FL Gain", 0, QApplication::UnicodeUTF8));
label_36->setText(QApplication::translate("tdImport", "T Delay", 0, QApplication::UnicodeUTF8));
label_38->setText(QApplication::translate("tdImport", "R Delay", 0, QApplication::UnicodeUTF8));
label_40->setText(QApplication::translate("tdImport", "Amplitude", 0, QApplication::UnicodeUTF8));
label_42->setText(QApplication::translate("tdImport", "P Width", 0, QApplication::UnicodeUTF8));
accept->setText(QApplication::translate("tdImport", "Accept", 0, QApplication::UnicodeUTF8));
law_import->setText(QApplication::translate("tdImport", "Import", 0, QApplication::UnicodeUTF8));
groupBox_4->setTitle(QApplication::translate("tdImport", "Law Information", 0, QApplication::UnicodeUTF8));
label_9->setText(QApplication::translate("tdImport", "Law Num", 0, QApplication::UnicodeUTF8));
label_11->setText(QApplication::translate("tdImport", "F Depth", 0, QApplication::UnicodeUTF8));
label_33->setText(QApplication::translate("tdImport", "Scan Offset", 0, QApplication::UnicodeUTF8));
label_13->setText(QApplication::translate("tdImport", "Freq.", 0, QApplication::UnicodeUTF8));
label_27->setText(QApplication::translate("tdImport", "S Angle", 0, QApplication::UnicodeUTF8));
label_16->setText(QApplication::translate("tdImport", "Filter", 0, QApplication::UnicodeUTF8));
label_12->setText(QApplication::translate("tdImport", "Cycles", 0, QApplication::UnicodeUTF8));
label_35->setText(QApplication::translate("tdImport", "T First", 0, QApplication::UnicodeUTF8));
label_41->setText(QApplication::translate("tdImport", "Med. Vel.", 0, QApplication::UnicodeUTF8));
label_15->setText(QApplication::translate("tdImport", "SumGain", 0, QApplication::UnicodeUTF8));
label_21->setText(QApplication::translate("tdImport", "R First", 0, QApplication::UnicodeUTF8));
label_37->setText(QApplication::translate("tdImport", "Index Offset", 0, QApplication::UnicodeUTF8));
label_39->setText(QApplication::translate("tdImport", "G Delay", 0, QApplication::UnicodeUTF8));
label_25->setText(QApplication::translate("tdImport", "R Angle", 0, QApplication::UnicodeUTF8));
label_22->setText(QApplication::translate("tdImport", "Mode", 0, QApplication::UnicodeUTF8));
groupBox->setTitle(QApplication::translate("tdImport", "Transducer Information", 0, QApplication::UnicodeUTF8));
label_2->setText(QApplication::translate("tdImport", "Type", 0, QApplication::UnicodeUTF8));
label->setText(QApplication::translate("tdImport", "Size", 0, QApplication::UnicodeUTF8));
label_3->setText(QApplication::translate("tdImport", "dx", 0, QApplication::UnicodeUTF8));
groupBox_2->setTitle(QApplication::translate("tdImport", "Impulse", 0, QApplication::UnicodeUTF8));
label_5->setText(QApplication::translate("tdImport", "Signal", 0, QApplication::UnicodeUTF8));
label_6->setText(QApplication::translate("tdImport", "Delay", 0, QApplication::UnicodeUTF8));
Q_UNUSED(tdImport);
} // retranslateUi

};

namespace Ui {
class tdImport: public Ui_tdImport {};

} // namespace Ui

#endif // UI_TDIMPORT_H

250

Appendix E

Numerical Data

E.1 Calibration Results

Figure E.1: Water Calibration Data for Aluminum Rods

251

Figure E.2: Water Calibration Data for Steel Rods

Figure E.3: Water Calibration Data for PVC Rods

252

Figure E.4: Glycerin Calibration Data for Aluminum Rods

Figure E.5: Glycerin Calibration Data for Steel Rods

253

Figure E.6: Glycerin Calibration Data for PVC Rods

254

E.2 Numerical Simulations of Experimental Models data

E.2.1 High Frequency

Seismic Plots

Figure E.7: High frequency seismic plot for axisymmetric axis of specimen “m1a”

255

Figure E.8: High frequency seismic plot for axisymmetric axis of specimen “m1b”

256

Figure E.9: High frequency seismic plot for axisymmetric axis of specimen “m1c”

257

Figure E.10: High frequency seismic plot for axisymmetric axis of specimen “m2a”

258

Figure E.11: High frequency seismic plot for axisymmetric axis of specimen “m2b”

259

Figure E.12: High frequency seismic plot for axisymmetric axis of specimen “m2c”

260

Figure E.13: High frequency seismic plot for axisymmetric axis of specimen “m3a”

261

Figure E.14: High frequency seismic plot for axisymmetric axis of specimen “m3b”

262

Figure E.15: High frequency seismic plot for axisymmetric axis of specimen “m3c”

263

Figure E.16: High frequency seismic plot for axisymmetric axis of specimen “m4a”

264

Figure E.17: High frequency seismic plot for axisymmetric axis of specimen “m4b”

265

Figure E.18: High frequency seismic plot for axisymmetric axis of specimen “m4c”

266

Figure E.19: High frequency seismic plot for bottom axis of specimen “m1a”

267

Figure E.20: High frequency seismic plot for top axis of specimen “m1a”

268

Figure E.21: High frequency seismic plot for side (right) axis of specimen “m1a”

269

Figure E.22: High frequency seismic plot for bottom axis of specimen “m2a”

270

Figure E.23: High frequency seismic plot for top axis of specimen “m2a”

271

Figure E.24: High frequency seismic plot for side (right) axis of specimen “m2a”

272

Figure E.25: High frequency seismic plot for bottom axis of specimen “m2a”

273

Figure E.26: High frequency seismic plot for top axis of specimen “m3a”

274

Figure E.27: High frequency seismic plot for side (right) axis of specimen “m3a”

275

Figure E.28: High frequency seismic plot for bottom axis of specimen “m3a”

276

Figure E.29: High frequency seismic plot for top axis of specimen “m4a”

277

Figure E.30: High frequency seismic plot for side (right) axis of specimen “m4a”

278

Figure E.31: High frequency seismic plot for bottom axis of specimen “m4a”

279

Frequency Wavenumber Plots

Figure E.32: High frequency F-K plot for axisymmetric axis of specimen “m1a”

Figure E.33: High frequency F-K plot for axisymmetric axis of specimen “m1b”

280

Figure E.34: High frequency F-K plot for axisymmetric axis of specimen “m1c”

Figure E.35: High frequency F-K plot for axisymmetric axis of specimen “m2a”

281

Figure E.36: High frequency F-K plot for axisymmetric axis of specimen “m2b”

Figure E.37: High frequency F-K plot for axisymmetric axis of specimen “m2c”

282

Figure E.38: High frequency F-K plot for axisymmetric axis of specimen “m3a”

Figure E.39: High frequency F-K plot for axisymmetric axis of specimen “m3b”

283

Figure E.40: High frequency F-K plot for axisymmetric axis of specimen “m3c”

Figure E.41: High frequency F-K plot for axisymmetric axis of specimen “m4a”

284

Figure E.42: High frequency F-K plot for axisymmetric axis of specimen “m4b”

Figure E.43: High frequency F-K plot for axisymmetric axis of specimen “m4c”

285

E.2.2 Low Frequency

Seismic Plots

Figure E.44: Low frequency seismic plot for axisymmetric axis of specimen “m1a”

Figure E.45: Low frequency seismic plot for axisymmetric axis of specimen “m1b”

286

Figure E.46: Low frequency seismic plot for axisymmetric axis of specimen “m1c”

Figure E.47: Low frequency seismic plot for axisymmetric axis of specimen “m2a”

287

Figure E.48: Low frequency seismic plot for axisymmetric axis of specimen “m2b”

Figure E.49: Low frequency seismic plot for axisymmetric axis of specimen “m2c”

288

Figure E.50: Low frequency seismic plot for axisymmetric axis of specimen “m3a”

Figure E.51: Low frequency seismic plot for axisymmetric axis of specimen “m3b”

289

Figure E.52: Low frequency seismic plot for axisymmetric axis of specimen “m3c”

Figure E.53: Low frequency seismic plot for axisymmetric axis of specimen “m4a”

290

Figure E.54: Low frequency seismic plot for axisymmetric axis of specimen “m4b”

Figure E.55: Low frequency seismic plot for axisymmetric axis of specimen “m4c”

291

Frequency Wavenumber Plots

Figure E.56: Low frequency F-K plot for axisymmetric axis of specimen “m1a”

Figure E.57: Low frequency F-K plot for axisymmetric axis of specimen “m1b”

292

Figure E.58: Low frequency F-K plot for axisymmetric axis of specimen “m1c”

Figure E.59: Low frequency F-K plot for axisymmetric axis of specimen “m2a”

293

Figure E.60: Low frequency F-K plot for axisymmetric axis of specimen “m2b”

Figure E.61: Low frequency F-K plot for axisymmetric axis of specimen “m2c”

294

Figure E.62: Low frequency F-K plot for axisymmetric axis of specimen “m3a”

Figure E.63: Low frequency F-K plot for axisymmetric axis of specimen “m3b”

295

Figure E.64: Low frequency F-K plot for axisymmetric axis of specimen “m3c”

Figure E.65: Low frequency F-K plot for axisymmetric axis of specimen “m4a”

296

Figure E.66: Low frequency F-K plot for axisymmetric axis of specimen “m4b”

Figure E.67: Low frequency F-K plot for axisymmetric axis of specimen “m4c”

297

E.2.3 Low Frequency – Damped

Seismic Plot

Figure E.68: Low frequency seismic plot for axisymmetric axis of specimen “m1a” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

298

Figure E.69: Low frequency seismic plot for axisymmetric axis of specimen “m1b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.70: Low frequency seismic plot for axisymmetric axis of specimen “m1c” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

299

Figure E.71: Low frequency seismic plot for axisymmetric axis of specimen “m2a” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.72: Low frequency seismic plot for axisymmetric axis of specimen “m2b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

300

Figure E.73: Low frequency seismic plot for axisymmetric axis of specimen “m2c” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.74: Low frequency seismic plot for axisymmetric axis of specimen “m3a” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

301

Figure E.75: Low frequency seismic plot for axisymmetric axis of specimen “m3b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.76: Low frequency seismic plot for axisymmetric axis of specimen “m3c” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

302

Figure E.77: Low frequency seismic plot for axisymmetric axis of specimen “m4a” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.78: Low frequency seismic plot for axisymmetric axis of specimen “m4b” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

303

Figure E.79: Low frequency seismic plot for axisymmetric axis of specimen “m4c” using
damping coefficients α = 4435.2, β = 1.5 ∗ 10−7

304

Frequency Wavenumber Plots

Figure E.80: Low frequency F-K plot for axisymmetric axis of specimen “m1a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.81: Low frequency F-K plot for axisymmetric axis of specimen “m1b” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

305

Figure E.82: Low frequency F-K plot for axisymmetric axis of specimen “m1c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.83: Low frequency F-K plot for axisymmetric axis of specimen “m2a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

306

Figure E.84: Low frequency F-K plot for axisymmetric axis of specimen “m2b” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.85: Low frequency F-K plot for axisymmetric axis of specimen “m2c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

307

Figure E.86: Low frequency F-K plot for axisymmetric axis of specimen “m3a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.87: Low frequency F-K plot for axisymmetric axis of specimen “m3b” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

308

Figure E.88: Low frequency F-K plot for axisymmetric axis of specimen “m3c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.89: Low frequency F-K plot for axisymmetric axis of specimen “m4a” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

309

Figure E.90: Low frequency F-K plot for axisymmetric axis of specimen “m4b” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

Figure E.91: Low frequency F-K plot for axisymmetric axis of specimen “m4c” using damp-
ing coefficients α = 4435.2, β = 1.5 ∗ 10−7

310

E.2.4 Damped vs Undamped Time traces

Figure E.92: Comparison of time signal between damped and undamped model ’m1a’ at
low frequency

Figure E.93: Comparison of time signal between damped and undamped model ’m1b’ at
low frequency

311

Figure E.94: Comparison of time signal between damped and undamped model ’m1b’ at
low frequency

Figure E.95: Comparison of time signal between damped and undamped model ’m1c’ at
low frequency

312

Figure E.96: Comparison of time signal between damped and undamped model ’m2a’ at
low frequency

Figure E.97: Comparison of time signal between damped and undamped model ’m2b’ at
low frequency

313

Figure E.98: Comparison of time signal between damped and undamped model ’m2c’ at
low frequency

Figure E.99: Comparison of time signal between damped and undamped model ’m3a’ at
low frequency

314

Figure E.100: Comparison of time signal between damped and undamped model ’m3b’ at
low frequency

Figure E.101: Comparison of time signal between damped and undamped model ’m3c’ at
low frequency

315

Appendix F

Experimental Data

F.1 Experimental Time Traces

F.1.1 High Frequency

Figure F.1: High frequency experimental time trace for 5 cm high mortar specimens

316

Figure F.2: Frequency spectrum of high frequency experimental time trace for 5 cm high
mortar specimens

Figure F.3: High frequency experimental time trace for 5 cm high mortar specimens

317

Figure F.4: Frequency spectrum of high frequency experimental time trace for 10 cm high
mortar specimens

Figure F.5: High frequency experimental time trace for 20 cm high mortar specimens

318

Figure F.6: Frequency spectrum of high frequency experimental time trace for 20 cm high
mortar specimens

Figure F.7: High frequency experimental time trace for 30 cm high mortar specimens

319

Figure F.8: Frequency spectrum of high frequency experimental time trace for 30 cm high
mortar specimens

320

Figure F.9: High frequency experimental time trace for 5 cm high mortar specimens

Figure F.10: Frequency spectrum of high frequency experimental time trace for 5 cm high
mortar specimens

321

Figure F.11: High frequency experimental time trace for 5 cm high mortar specimens

Figure F.12: Frequency spectrum of high frequency experimental time trace for 10 cm high
mortar specimens

322

Figure F.13: High frequency experimental time trace for 20 cm high mortar specimens

Figure F.14: Frequency spectrum of high frequency experimental time trace for 20 cm high
mortar specimens

323

Figure F.15: High frequency experimental time trace for 30 cm high mortar specimens

Figure F.16: Frequency spectrum of high frequency experimental time trace for 30 cm high
mortar specimens

324

F.1.2 Low Frequency

Figure F.17: Low frequency experimental time trace for 5 cm high mortar specimens

Figure F.18: Frequency spectrum of low frequency experimental time trace for 5 cm high
mortar specimens

325

Figure F.19: Low frequency experimental time trace for 5 cm high mortar specimens

Figure F.20: Frequency spectrum of low frequency experimental time trace for 10 cm high
mortar specimens

326

Figure F.21: Low frequency experimental time trace for 20 cm high mortar specimens

Figure F.22: Frequency spectrum of low frequency experimental time trace for 20 cm high
mortar specimens

327

Figure F.23: Low frequency experimental time trace for 30 cm high mortar specimens

Figure F.24: Frequency spectrum of low frequency experimental time trace for 30 cm high
mortar specimens

328

Figure F.25: Low frequency experimental time trace for 5 cm high mortar specimens

Figure F.26: Frequency spectrum of low frequency experimental time trace for 5 cm high
mortar specimens

329

Figure F.27: Low frequency experimental time trace for 5 cm high mortar specimens

Figure F.28: Frequency spectrum of low frequency experimental time trace for 10 cm high
mortar specimens

330

Figure F.29: Low frequency experimental time trace for 20 cm high mortar specimens

Figure F.30: Frequency spectrum of low frequency experimental time trace for 20 cm high
mortar specimens

331

Figure F.31: Low frequency experimental time trace for 30 cm high mortar specimens

Figure F.32: Frequency spectrum of low frequency experimental time trace for 30 cm high
mortar specimens

332

F.1.3 First Arrivals

Table F.1: Raw data of velocity reading for 5 cm high mortar samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m1a 1 11.2 0.1 12.6 0.1
m1a 2 11.1 0.1 12.7 0.1
m1a 3 11.3 0.1 12.5 0.2
m1a 4 11.2 0.1 12.6 0.2
m1a 5 11.2 0.1 12.5 0.2
m1a AVG 11.20 0.05 12.58 0.08
m1b 1 11.3 0.1 11.7 0.2
m1b 2 11.3 0.1 11.6 0.2
m1b 3 11.4 0.1 11.5 0.2
m1b 4 11.4 0.1 11.5 0.2
m1b 5 11.3 0.1 11.4 0.2
m1b AVG 11.34 0.05 11.54 0.09
m1c 1 10.7 0.1 11.0 0.2
m1c 2 10.8 0.1 11.0 0.2
m1c 3 10.8 0.1 10.9 0.2
m1c 4 10.7 0.1 10.8 0.2
m1c 5 10.8 0.1 10.9 0.2
m1c AVG 10.76 0.05 10.92 0.09

333

Table F.2: Raw data of velocity reading for 10 cm high mortar samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m2a 1 22.0 0.1 23.4 0.1
m2a 2 22.1 0.1 23.6 0.2
m2a 3 22.2 0.1 23.5 0.2
m2a 4 22.1 0.1 23.4 0.2
m2a 5 22.1 0.1 23.4 0.2
m2a AVG 22.10 0.05 23.46 0.09
m2b 1 22.3 0.1 22.6 0.2
m2b 2 22.2 0.1 22.5 0.2
m2b 3 22.3 0.1 22.4 0.2
m2b 4 22.2 0.1 22.3 0.2
m2b 5 22.3 0.1 22.5 0.2
m2b AVG 22.26 0.05 22.46 0.09
m2c 1 23.3 0.1 23.8 0.2
m2c 2 23.2 0.1 23.6 0.2
m2c 3 23.2 0.1 23.7 0.2
m2c 4 23.2 0.1 23.5 0.2
m2c 5 23.2 0.1 23.6 0.2
m2c AVG 23.22 0.05 23.64 0.09

Table F.3: Raw data of velocity reading for 20 cm high mortar samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m3a 1 45.6 0.1 47.1 0.2
m3a 2 45.7 0.1 47.1 0.2
m3a 3 45.7 0.1 47.1 0.2
m3a 4 45.6 0.1 47.0 0.2
m3a 5 45.6 0.1 47.1 0.2
m3a AVG 45.64 0.05 47.08 0.09
m3b 1 44.5 0.1 45.3 0.2
m3b 2 44.4 0.1 45.4 0.2
m3b 3 44.5 0.1 45.4 0.2
m3b 4 44.4 0.1 45.6 0.2
m3b 5 44.4 0.1 45.4 0.2
m3b AVG 44.44 0.05 45.42 0.09
m3c 1 45.4 0.1 46.5 0.2
m3c 2 45.3 0.1 46.6 0.2
m3c 3 45.4 0.1 46.4 0.2
m3c 4 45.4 0.1 46.4 0.2
m3c 5 45.4 0.1 46.3 0.2
m3c AVG 45.38 0.05 46.44 0.09

Table F.4: Raw data of velocity reading for 30 cm high mortar samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m4a 1 69.4 0.2 71.2 0.2
m4a 2 69.5 0.2 71.2 0.2
m4a 3 69.4 0.2 71.2 0.2
m4a 4 69.5 0.2 71.1 0.2
m4a 5 69.5 0.2 71.2 0.2
m4a AVG 69.46 0.09 71.18 0.09
m4b 1 67.1 0.2 68.2 0.2
m4b 2 67.0 0.2 68.0 0.2
m4b 3 67.0 0.2 68.0 0.2
m4b 4 66.9 0.2 67.9 0.2
m4b 5 67.0 0.2 68.1 0.2
m4b AVG 67.00 0.09 68.04 0.09

334

Table F.5: Raw data of velocity reading for 5 cm high concrete samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m1a 1 9.36 0.06 10.1 0.15
m1a 2 9.37 0.09 10.2 0.15
m1a 3 9.39 0.08 10.1 0.2
m1a 4 9.30 0.08 10.1 0.2
m1a 5 9.39 0.09 10.0 0.2
m1a AVG 9.362 0.04 10.1 0.08
m1b 1 11.3 0.1 11.85 0.2
m1b 2 11.2 0.1 11.8 0.2
m1b 3 11.2 0.1 11.9 0.2
m1b 4 11.1 0.1 11.9 0.2
m1b 5 11.1 0.1 11.8 0.2
m1b AVG 11.18 0.05 11.86 0.09
m1c 1 9.94 0.09 10.7 0.2
m1c 2 9.98 0.09 10.7 0.2
m1c 3 10.02 0.08 10.7 0.2
m1c 4 9.98 0.09 10.8 0.2
m1c 5 9.94 0.08 10.6 0.2
m1c AVG 9.97 0.04 10.70 0.09

Table F.6: Raw data of velocity reading for 10 cm high concrete samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m2a 1 19.03 0.06 20.2 0.2
m2a 2 18.99 0.06 20.1 0.2
m2a 3 19.05 0.06 20.2 0.2
m2a 4 19.02 0.06 20.2 0.2
m2a 5 19.00 0.06 20.0 0.2
m2a AVG 19.03 0.03 20.14 0.09
m2b 1 19.06 0.06 20.4 0.15
m2b 2 19.04 0.06 20.3 0.15
m2b 3 19.07 0.06 20.4 0.2
m2b 4 19.09 0.06 20.3 0.15
m2b 5 19.09 0.06 20.3 0.15
m2b AVG 19.07 0.03 20.34 0.07
m2c 1 20.45 0.06 21.5 0.15
m2c 2 20.40 0.06 21.4 0.15
m2c 3 20.44 0.06 21.4 0.15
m2c 4 20.40 0.06 21.5 0.15
m2c 5 20.43 0.06 21.4 0.15
m2c AVG 20.42 0.03 21.44 0.07

335

Table F.7: Raw data of velocity reading for 20 cm high concrete samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m3a 1 38.1 0.2 39.5 0.2
m3a 2 38.3 0.2 39.4 0.2
m3a 3 38.2 0.2 39.4 0.2
m3a 4 38.1 0.2 39.3 0.2
m3a 5 38.3 0.2 39.3 0.2
m3a AVG 38.20 0.09 39.38 0.09
m3b 1 38.4 0.2 39.4 0.2
m3b 2 38.3 0.2 39.3 0.2
m3b 3 38.2 0.2 39.1 0.2
m3b 4 38.3 0.2 39.2 0.2
m3b 5 38.3 0.2 39.3 0.2
m3b AVG 38.30 0.09 39.26 0.09
m3c 1 34.8 0.2 36.2 0.2
m3c 2 34.7 0.2 36.3 0.2
m3c 3 34.7 0.2 36.2 0.2
m3c 4 34.7 0.2 36.0 0.2
m3c 5 34.6 0.2 36.3 0.2
m3c AVG 34.70 0.09 36.20 0.09

Table F.8: Raw data of velocity reading for 30 cm high concrete samples
Model Reading # t1M (ms) Error (ms) t50K (ms) Error (ms)

m4a 1 56.8 0.2 58.4 0.2
m4a 2 56.7 0.2 58.1 0.2
m4a 3 56.9 0.2 58.1 0.2
m4a 4 56.7 0.2 58.2 0.2
m4a 5 56.7 0.2 58.3 0.2
m4a AVG 56.76 0.09 58.22 0.09
m4b 1 58.0 0.2 59.2 0.2
m4b 2 57.8 0.2 59.5 0.2
m4b 3 57.9 0.2 59.4 0.2
m4b 4 57.9 0.2 59.4 0.2
m4b 5 58.0 0.2 59.3 0.2
m4b AVG 57.92 0.09 59.36 0.09
m4c 1 58.4 0.2 60.2 0.2
m4c 2 58.4 0.2 60.3 0.2
m4c 3 58.4 0.2 60.2 0.2
m4c 4 58.3 0.2 60.3 0.2
m4c 5 58.4 0.2 60.2 0.2
m4c AVG 58.38 0.09 60.24 0.09

336

Bibliography

Abo-Qudais, S. A. (2005). Effect of concrete mixing parameters on propagation of ultrasonic

waves. Construction and Building Materials, 19:257–263.

Asakawa, E. and Kawanaka, T. (1993). Seismic ray tracing using linear traveltime interpo-

lation. Geophysical Prospecting, 41(1):99–111.

Bath, M. and Berkhout, A. J. (1984). Mathematical aspects of seismology. Klaus Helbig

and Sven Trietel, eds., Geophysical, London.

Bathe, K.-J. (1982). Finite Element Procedures in Engineering Analysis. Prentice-Hall.

Bilgutay, N., Popovics, J., Popovics, S., and Karaoguz, M. (2001). Recent developments in

concrete nondestructive evaluation. IEEE.

Bullen, K. and Bolt, B. A. (1985). An introduction to the theory of seismology. Cambridge

University Press, 4th edition.

Cagniard, L. (1939). Réflexion et réfraction des ondes séismiques progressives. Cauther-

Villard, Cambridge, MA.

Cerveny, V. (2001). Seismic Ray Theory. Cambridge University Press.

Chaix, J.-F., Garnier, V., and Corneloup, G. (2003). Concrete damage evolution analysis

by backscattered ultrasonic waves. NDTE International, 36:461–469.

337

Chang, T.-P., Lin, H.-C., Chang, W.-T., and Hsiao, J.-F. (2006). Engineering properties

of lightweight aggregate concrete assessed by stress wave propagation methods. Cement

Concrete Composites, 28:57–68.

Chang, Y.-F. and Wang, C.-Y. (1997). A 3-d image detection method of a surface opening

crack in concrete using ultrasonic transducer arrays. Journal of Nondestructive Evalua-

tion, 16(4).

Chapman, C. H. (2004). Fundamentals of Seismic Wave Propagation. Cambridge University

Press.

Daponte, P., Maceri, F., and olivito, R. S. (1995). Ultrasonic signal-processing techniques

for the measurement of damage growth in structural materials. IEEE Transactions on

Instrumentation and Measurement, 44:1003–1008.

de Hoop, A. (1960). A modification of Cagniard’s method of solving seismic pulse problems.

Applied Scientific Research B.

Feng, M. Q., De Flaviis, F., and Kim, Y. J. (2002). Use of microwaves for damage detection

of frp-wrapped oncrete structures. ASCE Journal of Engineering Mechanics, 128(2):172–

183.

Feng, M. Q., De Flaviis, F., Kim, Y. J., and Diaz, R. (2000). Application of electromag-

netic waves in damage detection of concrete structures. Proceedings of the International

Symposium on Smart Structures and Materials, SPIE.

Fink, M. A. and Cardoso, J.-F. (1984). Diffraction effects in pulse-echo measurement. IEEE

Transactions on Sonics and Ultrasonics, SU-31(4).

Gaydecki, P. A., Burdein, F. M., Damaj, W., John, D. G., and Payne, P. A. (1992). The

propagation and attenuation of medium-frequency ultrasonic waves in concrete: a signal

analytical approach. Measurments Science and Technology, 3:126–134.

338

Glushkov, E., Glushkova, N., Ekhlakov, A., and Shapar, E. (2006). An analytically based

computer model for surface measurements in ultrasonic crack detection. Wave Motion,

43:458–473.

Goueygou, M., Naffa, S. O., Piwakowski, B., and Buyle-Bodin, F. (2001). Non destructive

evaluation of degraded concrete cover using high-frequency ultrasound. IEEE Ultrasonics

Symposium, pages 761–764.

Goueygou, M., Naffa, S. O., Piwakowski, B., Fnine, A., and Buyle-Bodin, F. (2002). Mea-

surments of ultrasonic attenuation and rayleigh wave dispersion for testing concrete with

subsurface damage. IEEE Ultrasonics Symposium, pages 861–863.

Hallquist, J. O. (2006). LSDYNA Theory Manual. Livermore Software Technology Corpo-

ration, 2006 edition.

Hatanaka, H., Kawano, Y., Ido, N., Hato, M., and Tagami, M. (2005). Ultrasonic test-

ing with advanced signal processing for concrete structures. Nondestructive Testing and

Evaluation, 20(2):115–124.

Hatton, L., Worthington, M. H., and Makin, J. (1986). Seismic Data Processing. Blackwell

Scientific Publications.

Hecht, E. (2002). Optics. Addison Wesley, 4th edition.

Hernandez, M., Izquierdo, M., Ibanez, A., Anaya, J., and Ullate, L. (2000). Porosity esti-

mation of concrete by ultrasonic nde. Ultrasonics, 38:531–533.

Jenden, J. A. and Svendsen, N. B. (1992). Calculation of pressure fields from arbitrarily

shped, apodized, and excited ultrasound transducers. IEEE Transactions on Ultrasonics,

Ferroelectrics and Frequency Control, 39(2).

Julian, B. R. and Gubbins, D. (1977). Three dimensional seismic ray tracing. Journal of

Geophysics Research, 43:95–114.

339

Kausel, E. (1981). An explicit solution for the green functions for dynamic loads in layered

media. Research Report R81-13 699, Massachusetts Institute of Technology, Dept. of Civil

Eng., MIT, Cambridge Massachusetts 02139.

Kim, S.-D., Shin, D.-H., Lim, L.-M., Lee, J., and Kim, S.-H. (2005). Designed strength

identification of concrete by ultrasonic signal processing based on artificial intelligence

techniques. IEEE Transactions on Sonics and Ultrasonics, 52(7):1145–1151.

Lamb, H. (1904). On the Propagation of Tremors over the Surface of an Elastic Solid. Royal

Society of London Philosophical Transactions Series A, 203:1–42.

Lapwood, E. (1949). The disturbance due to a line source in a semi-infinite elastic medium.

Phil. Trans. of the Royal Society of London. Series A, 242(841):63–100.

Lockwood, J. and Willette, J. (1973). High-speed method for computing the exact solution

for the pressure variations in the nearfield of a baffled piston. Journal of the Acoustical

Society of America, 53(3):735–741.

Marfurt, K. J. (1984). Accuracy of finite-differences and finite-element modeling of the

scalar and elastic wave equations. Geophysics, 49(5):533–549.

McCann, D. M. and Forde, M. (2001). Review of ndt methods in the assessment of cncrete

and masonry structures. NDTE International, 34:71–84.

Nakano, H. (1925). On rayleigh waves. Japanese Journal of Astrophysics and Geophysics,

2:233–326.

Ohdaira, E. and Masuzawa, N. (2000). Water content and its effect on ultrasound propa-

gation in concrete - the possibility of nde. Ultrasonics, 38:546–552.

Pekeris, C. L. (1955). The seismic surface pulse. Proceedings of the National Academy of

Science, 41:469–480.

340

Philippidis, T. and Aggelis, D. (2005). Experimental study of wave dispersion and attenu-

ation in concrete. Ultrasonics, 43:584–595.

Podvin, P. and Lecomte, I. (1991). Finite difference computation of traveltimes in very

contrasted velocity models: a massively parallel approach and its associated tools. Geo-

physical Journal International, 105:271–284.

Popovics, J., Song, W.-J., Ghandehari, M., Subramaniam, K. V., Achenbach, J. D., and

Shah, S. P. (2000). Application of surface wave transmission measurements for crack

depth determination in concrete. ACI Materials Journal, 97(2).

Popovics, J. S. (2003). Nde techniques for concrete and masonry structures. Prog. Struct.

Engng Mater., 5:49–59.

Popovics, J. S. and Rose, J. L. (1994). A survey of developments in ultrasonic nde of

concrete. IEEE Transactions on Sonics and Ultrasonics, 41(1).

Popovics, S. (2005). Effects of uneven moisture distribution on the strength of and wave

velocity in concrete. Ultrasonics, 43:429–434.

Prassianakis, I. and Prassianakis, N. (2004). Ultrasonic testing of non-metallic materials:

concrete and marble. Theoretical and Applied Fracture Mechanics, 42:191–198.

Robinson, E. A. and Tritel, S. (1980). Geophysical Signal Analysis. Prentice-Hall.

Shickert, M. (2002). Ultrasonic nde of concrete. IEEE Ultrasonics Symposium, pages 739–

747.

Smirnova, N. S. (1995). An algorithm for determining wave fields in multilayer elastic media.

Journal of Mathematical Science, 73(3).

Sutan, N. M. and Jaafar, M. S. (2003). Evaluating efficiency of nondestructive detection of

flaws in concrete. Russian Journal of Nondestructive Testing, 39(2):87–93.

341

Taner, M. T., Koehler, F., and Sheriff, R. E. (1979). Complex seismic trace analysis.

Geophysics, 44(6):1041–1063.

Tawhed, W. F. and Gassman, S. L. (2002). Damage assessment of concrete bridge decks

using impact-echo method. ACI Materials Journal, 99(3).

Um and Thurber (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the

Seismological Society of America, 78(3):1190–1198.

Valliappan, H. and Murti, V. (1984). Finite element constraints in the analysis of wave

propagation problems. UNICIV Rep. No. R-218 School of Civil Engineering, Univsersity

of New South Wales, New South Wales, Australia.

Vidale, J. (1988). Finite-difference calculation of travel times. Bulletin of the Seismological

Society of America, 78(6):2062–2076.

Vidale, J. (1990). Finite-difference calculation of travel times in 3d. Geophysics, 55:521–526.

Vinh, P. C. and Malischewsky, P. G. (2006). Explanation for malischewsky’s approximate

expression for the rayleigh wave velocity. Ultrasonics, 45:77–81.

Vinh, P. C. and Ogden, R. (2004). Formulas for the rayleigh wave speed. Wave Motion,

39:191–197.

Warnemuende, K. and Wu, H.-C. (2004). Actively modulated acoustic nondestructive eval-

uation of concrete. Cement and Concrete Reearch, 34:563–570.

Washer, G., Fuchs, P., Rezai, A., and Ghasemi, H. (2005). Ultrasonic measurement of the

elastic properties of ultra high performance concrete (uhpc). Proc. of SPIE, 5767:416–422.

Yang, Y., Cascante, G., and Polak, M. A. (2005). Detection of depth of surface-breaking

cracks in concrete pipes. In 1st Canadian Conference on Effective Design of Structures,

McMaster University.

342

Zerwer, A., Cascante, G., and Hutchinson, J. (2002). Parameter estimation in finite element

simulations. Journal of Geotechnical and Geoenvironmental Engineering., 128(3):250–261.

343

