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Abstract

The helicopter is a Multiple-Input Multiple-Output (MIMO) system with highly coupled

characteristics, which increases the complexity of the system dynamics. In addition, the sys-

tem dynamics of the helicopter are unstable [1], referring to its tendency to deviate from an

equilibrium when disturbed. Despite the complexity in its modelling and control, the benefit of

using a helicopter for unmanned, autonomous applications can be tremendous. One particular

application that motivates this research is the use of an unmanned small-scale helicopter in an

autonomous survey mission over an area struck by disaster, such as an earthquake.

The work presented in this thesis provides a framework for utilizing a platform system for

research and development of small-scale helicopter systems. A platform system enables testing

and analysis to be performed indoor in a controlled environment. This can provide a more con-

venient mean for helicopter research since the system is not affected by environmental elements,

such as wind, rain or snow condition. However, the presence of the platform linkages poses

challenges for analysis and controller design as it alters the helicopter system flight dynamics.

Through a six degree-of-freedom (6 DOF) platform model derived in this research, the criteria

for matching the trim conditions between the platform system and a stand alone helicopter have

been identified. With the matched trim conditions, linearization is applied to perform analysis

on the effects that the platform has on the system dynamics. The results of the analysis provide

insights into both the limitations and benefits of utilizing the platform system for helicopter

research.

Finally, a Virtual Joint Control scheme is proposed as an unified control strategy for both the

platform and the stand alone helicopter systems. Having a consistent control scheme between

the two systems allows for comparisons between simulation and experimental results for the two

systems to be made more readily. Furthermore, the Virtual Joint Control scheme represents a

novel flight control strategy for stand alone helicopter systems.
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Chapter 1

Introduction

There are many reasons for studying helicopter dynamics and flight control. Search-and-rescue,

surveillance, reconnaissance, and air-ambulance are examples of missions in which helicopters

play a significant role [2]. The importance of helicopters in these roles increases the desire to

improve their performance through better models and controllers.

There is also interest from the Autonomous Unmanned Vehicle (AUV) community in heli-

copter research [3, 4, 5, 6, 7]. Although the history of helicopter research can be dated back to

about a century ago [2], the focus in autonomous helicopter research is a recent trend. Early

helicopter research focused more on the design aspect; for example, the objectives of researchers

such as Igor Sikorsky were to design and build a flying machine that was capable of vertical take-

off and landing and hovering [2]. It is only recently, with the increased availability of computing

power and the increased understanding of helicopter aerodynamics, that autonomous helicopter

research is becoming more popular. Without human pilots, helicopters can be made smaller.

This will potentially reduce the operating cost. In addition, autonomous helicopters can be sent

to places that would otherwise be too dangerous for human-piloted aircraft to go. For example,

autonomous helicopters are better for tasks such as surveying over an active volcano, fire-fighting

and geophysical surveying in remote areas. Autonomy also has an advantage in repetitive tasks,

such as patrolling borders. As a result, many helicopter applications can benefit from the use of

controllers that allow autonomous flight.

Despite the many advantages of small-scale helicopters over full-sized ones, small model

helicopters are considerably harder to control than their full-sized counterparts since they are

1
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easily affected by aerodynamic disturbances [8]. Furthermore, as autonomous helicopter control

is a relative new area, only limited results are available in the literature, particularly in the areas

of flight path control strategies. Therefore, the focus of the research presented in this thesis

is on modelling and controller design for small-scale helicopters in order to formulate generic

techniques that will improve their capabilities and performance in autonomous tasks.

1.1 Background

A typical small-scale helicopter is shown in Figure 1.11. The main rotor provides lift as well as the

controls necessary, such as roll and pitch, for the helicopter to navigate in three-dimensional (3-D)

space. The tail rotor provides heading control by generating a yaw counter torque that prevents

the helicopter from spinning due to the reaction force and torque from the main rotor.

The dynamics of a helicopter are nonlinear

Figure 1.1: UAV

and highly coupled between its axes of mo-

tion, making it difficult to control. For ex-

ample, when the engine throttle is increased

to make a vertical climb, the helicopter will

tend to yaw due to the increased rotor reac-

tion torque. To compensate, the tail rotor

thrust must be increased, which will increase

the side force acting on the body. As a result,

the vertical motion of the helicopter is cou-

pled with both the yaw and the lateral movements. For control design and analysis, an effective

way to capture such complex dynamics is required.

In addition to being coupled and nonlinear, the helicopter dynamics are also inherently

unstable. This poses significant challenges in performing experiments to obtain the system model.

For instance, an experienced pilot is required to provide stable in-flight experimentation for data

collection. The complex and lengthy process for both prior and post flight maintenance are costly

and time consuming, especially if crashes have occurred. Furthermore, favourable environment

conditions, such as calm sunny days, are required to provide quality experimentation data. All

of these factors motivate the use of an indoor facility in the form of a platform experiment

1Courtesy of the Waterloo Aerial Robotics Group (WARG)
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to provide an efficient environment for research and development. The challenge in applying

such platform system for UAV research lies in the effect of the linkage over the system dynamics.

This necessitates the derivation of the platform system model to characterize the platform linkage

influence. Because of the difference in the system dynamics, alternate control scheme from the

conventional flight control strategies are needed for the platform system. The model of one such

platform system will be presented in this thesis, together with a proposed Virtual Joint Control

strategy that is applicable to both the platform system and its free-flying stand-alone helicopter

counterpart. The following section will provide a basic introduction to existing research issues

in the areas of helicopter modelling and control.

1.2 Literature Review

1.2.1 Modelling

Modelling complexity varies with the intended applications. A general approach in obtaining

a suitable flight mechanics model is to apply physical laws and principles such as Momentum

Theory and Blade Element Theory [9, 10, 1]. These models can be classified into three levels

according to their complexity [11, 12]. Level 1 models represent the simplest set of models that

are adequate in describing the system behaviour whereas Level 3 models consist of the most

detailed and complex set of models, which can accurately predict the system responses. In

Level 1 models, the helicopter structure is approximated as a rigid body and the rotor dynamics

are either ignored or simplified with rigid blade approximations. In contrast, Level 3 models

incorporate detailed modelling of the rotor, the blade and structural vibration modes and the

nonlinear aerodynamic airflow effects [12]. The complexity of Level 2 models fits in-between that

of Level 1 and Level 3 models. Level 2 models include limited nonlinear aerodynamic effects and

rotor blade vibration mode characteristics.

Within the autonomous helicopter research literature, Level 1 models (i.e. rigid body models)

are among the most common because of their manageable complexity. A typical rigid body model

is nonlinear and has the position, orientation, linear and angular velocities as states, resulting in

a 12th order system model [13]. Depending on the application, researchers have either simplified

or enhanced this basic model by adjusting the model order. For example, to provide better
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approximation of the system dynamics, Koo et al. [14] increase the number of states to 16 to

account for the rotor dynamics. Weilenmann et al. [15] and Walker et al. [16] further increase

the number of states to 18 and 19 respectively to include the dynamics of the DC motor of their

helicopter. Conversely, since their main focus is on attitude control only, Corban et al. [7] and

Prasad et al. [17] reduce the number of states in their linear model to 7 by including only the

linear and angular rates, together with the collective control signal.

Other alternatives in simplifying the system dynamics include using only the roll angle, pitch

angle, the linear and the angular rates as the states (8th order) [18]; using the linear and angular

rates together with the orientation as the states (9th order) [19]; and using the simplified 8th or

9th order model in combination with the rotor dynamics (10th or 11th order) [4, 8, 20, 21].

Because of their complexity, Level 2 and Level 3 models are rarely used for control purposes.

They are primarily used in the area of system (mechanical) design and simulation analysis (e.g.

training flight simulator), where effects such as rotor airflow and blade vibrations are significant.

In contrast, for a typical control application operating with slow, simple manoeuvres such as

hover, these higher order effects are less significant [12]. For the purpose of this research, a Level

1 rigid body model for the platform system will be derived.

1.2.2 Flight Control

There are many different controllers proposed in the literature for autonomous helicopters. The

type and complexity of the controller depend largely on the intended application. For instance,

to obtain precision hovering over some marked targets, Rock et al. [22] proposed a vision-based

controller. Through the images of the target taken from a camera on-board the helicopter,

hovering is maintained by keeping constant the relative orientation between the helicopter and

the target as seen in the image. The three typical layers of control are navigation, path/trajectory

and attitude control.

Navigational Control

The function of navigation controller for helicopters is to oversee the operation of the system

with the aim to reach the intended mission target. Navigation tasks include path and trajectory

planning, object and collision avoidance and multi-vehicle cooperation. Often, a navigation con-
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trol strategy is divided into a hierarchical structure with the upper-most level composed of some

decision-making directives and the lower-most level being the stabilization system, i.e. position

and attitude control. For example, the hierarchical structure proposed by Sanders et al. [4]

consists of a navigation filter, an inner-loop hover control system, a way-point guidance system,

and a ground-based flight manager. Similarly, the system described by Lai et al. [23] contains

a navigation manager, a flight path controller and an attitude/height stabilizing controller. In

both cases, the navigational control is usually on the highest level.

Naturally, the emphasis in navigational control is on the design of the overall control struc-

ture (the hierarchy) as well as the high level intelligence that is responsible for the planning

actions. Since the motion of the helicopter body is typically much slower than the rotor blades

responses [9], the guidance and intelligent system usually operates at a much slower rate than

the stabilization system. This difference in time scale means that a navigational control system

is inherently a hybrid system consisting of fast and slow components. Koo et al. [3] propose

a control system that explicitly addressed such hybrid control issues. Frazzoli et al. [24, 25]

also propose a hybrid control system that is suitable for aggressive manoeuvring of autonomous

helicopters. Both Koo et al. [3] and Frazzoli et al. [24, 25] provide only preliminary simulation

results of their systems.

Position Control

Position or path control differs from navigational control in that position control focuses on

the tracking of a path or trajectory by the vehicle instead of the generation of the path. An

example situation where path following is important is when a helicopter is used in assisting

fire-fighting. The helicopter has to move to the location of the fire and unload either water or

fire-extinguishing chemicals directly onto the fire. In such a case, the path that the helicopter

has to follow is predefined by the fire location.

One approach to handling this problem is to design a feedback linearization controller based

on the rigid-body system dynamics around the equilibrium (hover) position [14]. However, the

exact input-output feedback linearized system obtained from exact input-output linearization

has non-minimum phase zero dynamics, meaning that the system is not asymptotically stable.

Koo and Sastry [14] show that although tracking control based on exact linearization can stabi-
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lize the position outputs (achieving tracking performance), such a control approach resulted in

undesirable internal dynamics, such as oscillations in the roll and pitch angles. To address this,

Koo and Sastry [14] use an approximate linearization approach instead of the exact linearization.

They approximately linearize the system by neglecting the couplings between the rolling (pitch-

ing) moments and lateral (longitudinal) accelerations which are the cause of the non-minimum

phase characteristic exhibited by the exactly linearized system. The approximate control law

is shown, in simulation, to be able to stabilize the system internal dynamics. Experimental

implementation is not included.

Mahony and Lozano [26] also look at the non-minimum phase zero dynamics problem and

propose a different solution. Instead of performing linearization on the helicopter rigid body

model directly, Mahony and Lozano first simplify the system model. The reduced model is then

linearized. By doing so, the resulting linearized model does not contain non-minimum phase

zero dynamics. Hence, arbitrarily accurate tracking performance can be achieved with high gain

control, provided the tracking manoeuvres are slow. The restriction on the speed of motion

comes from the assumptions that the actuator and rotor dynamics are significantly faster than

the rigid body dynamics. There is no experimental result reported for verification.

In addition to system dynamics, characteristics of the desired trajectory are also important

factors in path controller design. Frezza [27] proposes a flight path controller that takes into

account the feasible trajectories of the system in coordinated flight. Control signals are generated

as a constrained problem. First, a connecting contour that would connect the current location of

the helicopter and the desired trajectory is identified from within the set of feasible trajectories.

Then, control signals are computed to achieve exact tracking of the connecting contour. No

experimental results are presented in regards to the performance of such a control strategy.

Attitude Control

The objective in attitude control is to regulate the orientation of the helicopter. Attitude control

is the lowest layer of control among the three levels. Because of this, attitude control has been

studied most extensively by researchers, as compared to navigational and path control. Among

the different orientations, hover is the most common attitude to be achieved by autonomous

helicopter controllers as it provides a complex, unstable, nonlinear and coupled, yet manageable
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problem for control case studies [28, 29, 30, 31]. There are two general themes in designing

attitude controllers: model-based and non model-based. In model-based control design, the

rigid body model is commonly used. A rigid body model considers the net force and moment

acting on the centre of gravity of the helicopter. As a result, individual blade and rotor dynamics

are ignored in the rigid body model. This can be done because the aerodynamic time constants

of the blades and the rotors are much faster than those of the rigid body dynamics (body roll,

pitch and yaw motions) [9]. Also, by including the aerodynamic forces and moments implicitly

as net force and moment, the resulting rigid body model is simpler and easier to handle, albeit

still nonlinear. With a nonlinear rigid body model, controllers are then designed using various

control design techniques.

Lee et al. [8] linearize the nonlinear rigid body model and design a state feedback Linear

Quadratic Gaussian (LQG) attitude controller. They apply the attitude controller to a small-

scale helicopter attached to a stand that allowed 3 degree-of-freedom (DOF) motions. Experi-

mental results show the attitude controller is successful in stabilizing the model helicopter and

further tuning of the controller promised to improve performance. Similar to the approach pro-

posed by Lee et al. [8], Morris et al. [28] also design a LQG controller with set-point tracking

for a small-scale helicopter on a stand and yielded similar results. However, neither group of re-

searchers provide suggestion on how to relate and extend their results to a stand alone helicopter

system.

Instead of designing controllers for the linearized system, Rebeschieß and Roloff [32] design

a feedback linearization controller for angular pitch control from the nonlinear model. The

feedback linearization controller linearizes the system, then the linearized system is controlled

by a linear Proportional-Integral (PI) controller to achieve the desired angular control. Another

nonlinear control strategy is proposed by Mahony et al. [30], who propose a Lyapunov control

law for hover control. The Lyapunov control law is designed using the backstepping technique,

which is an iterative procedure that generates, at each step, a virtual state feedback control

input such that a candidate Lyapunov function can be found to guarantee stability [33]. No

simulation or experimental results with respect to the performance of the Lyapunov controller

are given.

Shim et al. [34] examine and compare three different control strategies: linear robust multi-

variable control, fuzzy logic control with evolutionary tuning and nonlinear tracking control.
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Of these methods, both the linear robust controller and the nonlinear tracking controller use

a model-based approach, whereas the fuzzy logic controller is non model-based. The linear

robust controller is generated with the µ-synthesis technique on the linearized model dynamics.

The nonlinear controller is obtained using an approximate input-output linearization technique

similar to the one presented by Koo and Sastry [14]. The fuzzy controller is based on PID-

type rules and its gain factors are initially tuned manually. An evolutionary algorithm is then

implemented to adjust the gains to optimize the performance. All three of these controllers are

applied to a nonlinear helicopter model in simulations. Simulation results show that all three

controllers were capable, to a certain extent, of handling uncertainties and disturbances. Both

the linear robust controller and the fuzzy controller are limited to a relatively small operating

range, namely near-hover conditions. On the other hand, although the nonlinear controller

covers a substantially wider range of the flight envelopes, it requires significantly more accurate

knowledge about the system. This situation represents a typical trade-off between complexity

and performance in controller design.

The second theme in attitude control design addresses the problem of handling complex

helicopter dynamics by applying non model-based intelligent control techniques, such as the

fuzzy controller presented by Shim et al. [34]. These types of controllers typically require some

set of training data and their performance is directly related to how good the training data is

in describing the system dynamics. For instance, the neural network yaw controller presented

by Ma et al. [35] uses two neural networks (NN). The first NN, the NN model, simulates the

system dynamics (in this case, the yaw dynamics) through training with input-output data

collected during test flights. Once trained, this NN model would approximate the outputs of a

real helicopter given the same input. After that, a second neural network, the NN controller,

is cascaded with the NN model. The NN controller is then trained with the NN model using

backpropagation learning rules in order to stabilize the closed-loop system. The resulting NN

controller is shown to perform reasonably well when applied back to the original system.

A neural network, in general, is a function estimator [36]. It approximates the dynamics of a

helicopter as a nonlinear function, such as the NN model presented by Ma et al. [35] mentioned

above. With this in mind, Montgomery and Bekey [6] present a fuzzy-neural controller that

mimicked a human pilot (the teacher) in controlling the helicopter instead of the helicopter

dynamics. It is similar to the NN controller presented by Ma et al. [35]. The difference is that
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Ma et al. [35] train the NN controller with the objective of stabilizing the closed-loop system,

whereas Montgomery and Bekey [6] train the NN controller to mimic the behaviour of a human

pilot. Simulation results show that this teaching by showing controller is able to perform within

expectation levels, i.e. it is doing as good as the teacher pilot.

Neural Network controllers are trained with training data sets. These NN controllers can

handle the flying conditions that are captured in the training data very well (as those conditions

were the only information available to the NN controllers). Unfortunately, when an unexpected

situation occurs, such as a sudden wind gust, the NN controllers will have a hard time handling

the situation if the training data does not include such flying condition. A common solution is

to train the neural network on-line instead of a priori. For instance, the nonlinear controller

presented by Corban et al. [7] uses a neural network to adjust the parameters of the feedback lin-

earization controller to compensate for modelling error in the linearization process. Prasad et al.

[17] present a similar strategy. The learning fuzzy logic controller presented by Sasaki et al. [37]

is another way of achieving non model-based learning control. Here, a learning algorithm, based

on the gradient descent method, is applied to adjust the weights of consequence in different fuzzy

rules. The idea is to vary the weights of consequence to accommodate any changes in the system

dynamics that are unforeseen during the fuzzy rule design.

Although the non model-based approach is simple and easy to implement, it provides little

insights into the behaviour of the system for analysis. For the purpose of utilizing the platform

system as an experimentation tool for the stand-alone helicopter, since there is significant differ-

ence in the dynamics between the two systems, a model-based control approach is selected for

the research presented in this thesis.

1.3 Research Overview

The work presented in this thesis provides a framework for utilizing a platform system for research

and development of small-scale helicopter systems. The six degree-of-freedom (6 DOF) nonlinear

rigid body model with quasi-steady rotor dynamics [12] (a Level 1 model) of the Platform system

(capital P refers to the particular platform system that is used for this research) is derived

through the Principle of Virtual Power [38]. From the Platform model, the relationship between

the Platform model and a stand alone helicopter, to be referred to as the Unmanned Aerial
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Vehicle (UAV), model is presented through Theorem 2.1 and Lemma 2.1.

Through the results obtained from Theorem 2.1 and Lemma 2.1, the expression for the non-

dimensional apparent payload is derived. The apparent payload expression provides the condition

for matching the operating trim condition between the Platform and the UAV models. This forms

the basis for direct comparisons between the results obtained from these two systems. Further-

more, different Platform configurations can be defined based on the apparent payload expression

to study the effects of various aspects of the Platform on the system dynamic behaviour. Two

examples of such analysis, adjusting the Platform linkage mass and the rotor operating speed,

are presented. From these analysis, it is shown that direct equivalence between the Platform

and UAV systems are not achievable without active controls at the Platform joints. An exten-

sion to the Platform system for achieving dynamic equivalence to UAV systems are proposed in

Theorem 5.1 in Chapter 5 as one of the possible future research topics.

Finally, the Virtual Joint Control scheme is derived. The Virtual Joint Control scheme is

designed to be applicable to both the Platform and the UAV systems to facilitate comparisons

and research between them. It also provides an explicit mechanism for selecting the trade-

off between Attitude Tracking and Position Tracking performance. The Virtual Joint Control

scheme is extendable through the use of different stable joint control strategies. Two variant

forms of the Virtual Joint Control scheme are presented. Simulation results show both forms

of the Virtual Joint Control scheme are capable of stable control for both the Platform and the

UAV systems.

1.4 Thesis Outline

The remaining chapters of this thesis are organized as follows:

Chapter 2 introduces the six degree-of-freedom (6 DOF) nonlinear rigid body model with

quasi-steady rotor dynamics for both the Platform and the UAV systems. The

relationships between these two systems are derived.

Chapter 3 examines the Platform system model. The apparent payload expression is derived.

Different configurations for the Platform system setup based on the apparent
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payload expression are introduced and analyzed through linearization around the

hover trim condition.

Chapter 4 presents the proposed Virtual Joint Control scheme for the Platform and the

UAV systems. Two variant forms of the proposed control scheme are presented.

Simulation results show stable control for both the Platform and the UAV systems

under these control algorithms.

Chapter 5 summarizes the contributions in this research. Possible extensions to the current

research are presented as future work.

Appendix A describes the convention employed in this thesis for the definition of the rotational

transformation matrices.

Appendix B contains derivation of the helicopter rotor dynamics.

Appendix C contains the detailed kinematics relationships of the Platform linkages.

Appendix D contains the system matrices, such as the mass and inertial matrix, of the Plat-

form model.

Appendix E contains a list of helicopter parameter and controller gains values used in the

simulation results presented in Chapter 4.



Chapter 2

Modelling

In this chapter, the Platform system utilized in this research will be introduced. Its dynamic

model, together with that of a stand-alone small-scale helicopter, will be derived. The small-

scale helicopter is referred to as an Unmanned Aerial Vehicle (UAV). A photo of a typical UAV

is shown in Figure 1.1. The relationship between the two models will be established through

the derivation of a nonlinear mapping. This nonlinear mapping provides an important research

contribution as it allows a comparison to be made between the UAV model and the platform

system model. Such a comparative analysis will be demonstrated in subsequent chapters.

2.1 Helicopter Rigid Body Model

The dynamic model of a stand alone small-scale helicopter (UAV) will be derived in this section.

The model derivation will be divided into four subsections. First, the flight mechanism model

for a helicopter will be introduced. The net force and moment acting on the helicopter rigid

body will be derived next. This is followed by the derivation of the rotor dynamics equations.

Finally, the rigid body dynamic model for the UAV system will be obtained by applying the

Newton-Euler Method [39].

2.1.1 Flight Mechanism

In a conventional helicopter, flight is achieved through the combined action of two rotors: a

main rotor primarily responsible for generating lifting thrust and a tail rotor for controlling the

12



Chapter 2: Modelling 13

heading direction [2]. In the process of thrust generation, each of the rotors also exerts reaction

torques along the corresponding axis of rotation on the helicopter body due to the motion of the

blades. Furthermore, side forces are also generated by the rotors to facilitate helicopter motion

in the air. For the purpose of modelling, these rotor forces and moments can be described

by a set of four non-dimensional quantities: the thrust coefficient ĈT, the longitudinal planar

force coefficient Ĉlon, the lateral planar force coefficient Ĉlat, and the torque coefficient ĈQ.

Figure 2.1 illustrates the relative direction of these quantities with respect to the main rotor.

The corresponding quantities for the tail rotor are defined in a similar fashion relative to the rotor

orientation and are denoted as ĈTtail
, Ĉlontail

, Ĉlattail , and ĈQtail
respectively. The hat symbol

( ˆ ) denotes normalized quantities. For simplicity, the rolling and pitching moment generated by

the rotors, such as those from the gyroscopic effect [39], are assumed to be negligible and are not

included as part of this rotor force and moment description. Such an assumption can be justified

by the use of a fully articulated rotor with a small hinge offset [2, 9, 10, 1], where the presence of

hub hinges allows the blades to flap in response to the moments generated; thereby no moment

(or very little moment through the hinge offset) is transmitted to the helicopter body through

the rotor hub [2, 1, 10].

The use of non-dimensional coefficients to

ĈT

ĈQ

Ĉlat

Ĉlon

Figure 2.1: Helicopter Rotor Force

represent the force and moment generated by

the rotors facilitates analysis independent of

rotor size [10]. The non-dimensional coeffi-

cients are defined by dividing the magnitude

of the force and moment quantities by the

non-dimensional factors. The non-dimensional

factor for force is given by ρAdisc(ΩR)2, where

ρ is the air volume density with unit kg
m3 , R is

the main rotor radius with unit m, Ω is the

main rotor rotation speed with unit rad
s , and

Adisc = πR2 is the area of the main rotor disc

with unit m2 [10, 12]. The corresponding non-

dimensional factor for the torque is given by ρAdisc(ΩR)2R. Using the magnitude of the thrust

Tmain and Ttail generated by the main and tail rotor respectively, the corresponding thrust coef-
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ficients are given by:

ĈT =
Tmain

ρAdisc(ΩR)2
ĈTtail

=
Ttail

ρAdisctail(ΩtailRtail)2
(2.1)

Notice that the direction of the thrust vectors Tmain and Ttail are perpendicular (normal) to the

tip-path-plane (TPP) of the corresponding rotors. The TPP is the plane traced out by the tip of

the rotor blades as they rotate [10]. Recall the direction of the non-dimensional coefficients are

defined with respect to the helicopter body, as shown in Figure 2.1. As such, the relationships

defined in (2.1) are purely scalar, instead of, vector relationships.

The non-dimensional factor for the tail rotor is defined with respect to its corresponding

quantities: tail radius Rtail, tail rotor speed Ωtail, and tail rotor area Adisctail = πR2
tail. For

dimensional analysis, however, it is important to normalize the quantities with respect to the

same dimensional factor. As such, for subsequent sections, the normalized tail thrust is expressed

as:

T̂tail =
Ttail

ρAdisc(ΩR)2
= Â(Ω̂R̂)2ĈTtail

(2.2)

where

R̂ =
Rtail

R
Ω̂ =

Ωtail

Ω
Â =

Adisctail
Adisc

(2.3)

are the ratios between the radius, speed and disc area of the two rotors.

The longitudinal and lateral force coefficients for the main rotor are defined as:

Ĉlon =
Flon

ρAdisc(ΩR)2
Ĉlat =

Flat

ρAdisc(ΩR)2
(2.4)

where Flon and Flat are the main rotor longitudinal and lateral force respectively. The corre-

sponding coefficients for the tail rotor are defined as:

Ĉlontail
=

Flontail

ρAdisctail(ΩtailRtail)2
Ĉlattail =

Flattail
ρAdisctail(ΩtailRtail)2

(2.5)
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Similar to the normalized thrust, when normalized with respect to the main rotor, the normalized

tail forces are expressed in terms of their coefficients as:

F̂lontail
=

Flontail

ρAdisc(ΩR)2
= Â(Ω̂R̂)2Ĉlontail

F̂lattail =
Flattail

ρAdisc(ΩR)2
= Â(Ω̂R̂)2Ĉlattail (2.6)

Finally, the rotor torque coefficients are defined as:

ĈQ =
Qmain

ρAdisc(ΩR)2R
ĈQtail

=
Qtail

ρAdisctail(ΩtailRtail)2Rtail
(2.7)

where the rotor torques Qmain and Qtail are defined along the normal axis to the TPP. The

normalized tail torque with respect to the main rotor defined as:

Q̂tail =
Qtail

ρAdisc(ΩR)2R
= Â(Ω̂R̂)2R̂ĈQtail

(2.8)

The rotor force and moment are controlled by four rotor inputs [2, 1, 10]. For the main rotor,

there are three inputs: the collective θ0, the longitudinal cyclic B1 and the lateral cyclic A1. The

collective θ0 primarily controls the magnitude of the thrust for the main rotor; whereas the cyclic

inputs B1 and A1 are responsible mainly for the longitudinal and lateral side force respectively.

The longitudinal force corresponds to motion in the back and forth direction; while the lateral

force corresponds to motion in the sideways direction. However, because of the coupling nature

in the rotor aerodynamics, these inputs also have additional auxiliary effects. For example, since

thrust is generated by rotating blades, the magnitude of the thrust and the torque are coupled.

As a result, in addition to the thrust coefficient ĈT, the collective θ0 also affects the torque

coefficient ĈQ. As for the tail rotor, there is only one input, the rudder θtail. The tail rudder

θtail control is analogous to the collective θ0 control for the main rotor. It is responsible for

controlling the magnitude of the thrust generated by the tail rotor. There is no cyclic control

for the tail rotor because the primary function of the tail rotor is to provide counter torque for

heading control. Collecting these rotor inputs together, the input vector ~u for the helicopter

system can be defined as:

~u =
[
θ0 A1 B1 θtail

]T
(2.9)

A helicopter is then controlled by setting appropriate values to the input vector ~u, which then

generates the necessary rotor force and moment (as represented by the rotor coefficients) to
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achieve flight:

(θ0, A1, B1, θtail) −→ (ĈT, Ĉlon, Ĉlat, ĈQ, ĈTtail
, Ĉlontail

, Ĉlattail , ĈQtail
)

2.1.2 Body Force and Moment

The net force and moment acting on the helicopter rigid body consists of two components: rotor

effect and gravitational force.

τ̃ = τ̃ gb + τ̃R (2.10)

The rotor effect τ̃R, which is composed of actions from both the main and the tail rotor, will

be derived first. This is followed by the derivation of the gravitational component τ̃ gb . Other

body force and moment such as fuselage drag and aerodynamic moments from the fuselage, the

vertical and horizontal tail fins are assumed to be negligible. This assumption can be justified

for specific flight conditions such as in hover or flight with slow velocities, both of which are

typical under the platform system.

Rotor Effect

The rotor coefficients introduced in the previous section are defined with respect to the individual

rotor hub coordinates. The net rotor force and moment exerted on the helicopter body can be

obtained by combining the main and tail rotor force and moment in the body-fixed frame. The

normalized main and tail rotor force vectors in the body-fixed frame, expressed in terms of the

non-dimensional rotor coefficients, are defined as:

ˆ̃F main ,


X̂M

ŶM

ẐM

 =


−Ĉlon

−Ĉlat

−ĈT

 ˆ̃F tail ,


X̂T

ŶT

ẐT

 = Â(Ω̂R̂)2


−Ĉlontail

−ĈTtail

Ĉlattail

 (2.11)

where the tilde symbol ( ˜ ) denotes quantities expressed with respect to the body-fixed frame.

A diagram showing the body-fixed frame attached to the centre of gravity of the helicopter

is shown in Figure 2.2. The main rotor is offset from the centre of gravity by lM along the

body-fixed x axis and by hM along the body-fixed z axis; while the tail rotor is offset by lT and
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lT

Front View

y

z

hM

- Centre of Gravity (C. G.)

hT

y

lM

z

x

x

Top View

Side View

Figure 2.2: Helicopter Body-Fixed Reference Frame
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hT respectively. The helicopter configuration shown in Figure 2.2 assumes that there is no offset

between the two rotors along the body y axis. It is convenient to normalize these parameters by

the main rotor radius R:

ĥM =
hM
R

l̂M =
lM
R

ĥT =
hT
R

l̂T =
lT
R

(2.12)

From Figure 2.2, the normalized rotor offset vectors can be defined with respect to the body-fixed

frame as:

ˆ̃rmain =


− ˆlM

0

−ĥM

 ˆ̃rtail =


−l̂T
0

−ĥT

 (2.13)

The normalized rotor moment acting on the centre of gravity of the helicopter can be expressed

in terms of these normalized rotor offset vectors:

ˆ̃Mmain =


0

0

−ĈQ

+ ˆ̃rmain × ˆ̃F main
ˆ̃M tail =


0

Â(Ω̂R̂)2R̂ĈQtail

0

+ ˆ̃rtail × ˆ̃F tail (2.14)

A generalized force vector ˆ̃τ can be defined by augmenting the force and moment vectors

together. The normalized generalized force vector for the main and tail rotor expressed in the

body-fixed frame can be written as:

ˆ̃τM ,

 ˆ̃F main

ˆ̃Mmain

 ˆ̃τT ,

 ˆ̃F tail

ˆ̃M tail

 (2.15)

where the top half are the linear force along axes of the body-fixed frame and the bottom half

represent the corresponding moments about those axes. The net normalized generalized force

acting on the helicopter body generated by the rotors is obtained by adding up the effects from
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both rotors:

ˆ̃τR = ˆ̃τM + ˆ̃τT

,



X̂R

ŶR

ẐR

L̂R

M̂R

N̂R


=



−Ĉlon − Â(Ω̂R̂)2Ĉlontail

−Ĉlat − Â(Ω̂R̂)2ĈTtail

−ĈT + Â(Ω̂R̂)2Ĉlattail
−ĥM Ĉlat − Â(Ω̂R̂)2ĥT ĈTtail

ĥM Ĉlon − l̂M ĈT + Â(Ω̂R̂)2(ĥT Ĉlontail
+ l̂T Ĉlattail − R̂ĈQtail

)

l̂M Ĉlat − ĈQ + Â(Ω̂R̂)2 l̂T ĈTtail


(2.16)

The actual generalized rotor force acting on the helicopter rigid body (τ̃R) can be computed

by multiplying (2.16) with the dimensional factors:

τ̃R =

 ρAdisc(ΩR)2I3×3 03×3

03×3 ρAdisc(ΩR)2RI3×3

 ˆ̃τR (2.17)

where I3×3 and 03×3 are the identity and zero matrices of dimension 3× 3 respectively.

Given the rotor coefficients, the body force and moment generated by the rotors can be

obtained from (2.16) and (2.17):

 ĈT, Ĉlon, Ĉlat, ĈQ,

ĈTtail
, Ĉlontail

, Ĉlattail , ĈQtail

 −→ (X̂R, ŶR, ẐR, L̂R, M̂R, N̂R) −→ (XR, YR, ZR, LR,MR, NR)

where the rotor forces XR, YR and ZR are the dimensional counterpart to the normalized gen-

eralized forces X̂R, ŶR and ẐR. These dimensional force quantities can be obtained by multi-

plying their non-dimensional counterparts with the non-dimensional force factor ρAdisc(ΩR)2.

Similarly, the dimensional rotor moments LR, MR and NR are obtained by multiplying their non-

dimensional counterparts (L̂R, M̂R and N̂R) with the non-dimensional torque factor ρAdisc(ΩR)2R.

Gravity

Let the inertial frame be defined with z axis pointing downward positive, as is defined in the

body-fixed frame (see Figure 2.2). The horizontal axes are defined in such a way that the
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body-fixed x and y axes would align with the corresponding axes of the inertial frame when the

helicopter has zero roll, pitch and yaw (φ = 0, θ = 0, and ψ = 0). The gravity vector acting on

the helicopter rigid body can conveniently be expressed in the inertial frame as:

~F gb =


0

0

mbg

 (2.18)

where mb is the mass of the helicopter body and g is the gravitational acceleration. The inertial

gravity vector in (2.18) can be transformed into the body-fixed frame by multiplying with the

transpose of the rotation matrix Rbody
inertial = Rψ,θ,φ between the inertial and the body-fixed frame:

F̃ gb =
(
Rbody

inertial

)T
~F gb =


−mbg sin(θ)

mbg cos(θ) sin(φ)

mbg cos(θ) cos(φ)

 (2.19)

The rotation matrix Rψ,θ,φ is defined in (A.6). A generalized gravity force vector τ̃ gb can be

defined with respect to the body-fixed frame similar to the rotor generalized vector τ̃R in (2.17):

τ̃ gb =



−mbg sin(θ)

mbg cos(θ) sin(φ)

mbg cos(θ) cos(φ)

0

0

0


(2.20)

The normalized form of the generalized gravity vector is given as:

ˆ̃τ gb =



−mbg sin(θ)
ρAdisc(ΩR)2

mbg cos(θ) sin(φ)
ρAdisc(ΩR)2

mbg cos(θ) cos(φ)
ρAdisc(ΩR)2

0

0

0


=



−m̂bĝ sin(θ)

m̂bĝ cos(θ) sin(φ)

m̂bĝ cos(θ) cos(φ)

0

0

0


(2.21)
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where m̂b and ĝ are the normalized helicopter mass and the normalized gravitational acceleration

respectively. They are defined as:

m̂b =
mb

ρAdiscR
ĝ =

g

Ω2R
(2.22)

2.1.3 Rotor Dynamics

In the most basic view, a helicopter rotor can be modelled as an actuator disc that generates the

thrust required for flight by accelerating air through the rotating blades. The amount of thrust

generated by a rotor is dependent on several factors. In addition to the physical dimensions such

as the rotor radius (blade length), the width of the blade (chord length) and the type of air foil

(shape of the blade), the amount of thrust generated by the rotor also depends on the rotation

speed of the rotor, the relative movement of the rotor in the air and the relative angle between

the rotor blade and the incoming air stream (also known as the angle of attack of the blade).

For simplicity, the rotor rotation speed (denoted as Ω) is assumed to be constant [1, 10]. This is

justified through the use of a speed governor. Furthermore, since both the main and tail rotor

are often driven by a single engine through some transmission mechanism, the speed of the tail

rotor Ωtail is linked to the main rotor speed through a constant gear ratio Ω̂:

Ωtail = Ω̂Ω (2.23)

As the basic thrust generation mechanism between the main and tail rotor are the same,

the dynamics of the main rotor will be derived first through the use of the momentum theory

and the blade element method [10]. Then the dynamics of the tail rotor will be obtained by

modifying the main rotor equations accordingly.

Main Rotor Dynamics

Referring to Figure 2.3, the position of the blade around the rotor (the azimuth angle) is

denoted as Ψ. By convention, Ψ = 0◦ is when the blade is at the aft (backward) position of

the helicopter; while Ψ = 180◦ is at the fore (forward) position of the helicopter [10, 1, 9, 12].

The direction of Ψ is defined by the direction of rotation of the rotor blades. The blade rotation

shown in Figure 2.3 is positive in the clockwise direction when viewed from above. That is the
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direction of the rotor blade rotation for the test platform helicopter. This means Ψ = 90◦ is on

the left hand side; while Ψ = 270◦ is on the right hand side of the helicopter. A blade element

at a distance rs away from the rotor hub is marked in the diagram.

Recall the three inputs of the main rotor

Ψ = 270
◦

Ψ = 90
◦

Ψ = 0
◦

Ω = Ψ̇

Ψ = 180
◦

rs

Figure 2.3: Rotor Rotation Coordinates

are the collective θ0, the longitudinal cyclic

B1 and the lateral cyclic A1. These inputs

affect the pitch angle of the blade as it ro-

tates around the azimuth. The collective in-

put changes the rotor blade pitch evenly around

the rotor disc. This has a net effect of chang-

ing the magnitude of the rotor thrust (ĈT).

In contrast, the cyclic inputs vary the blade

pitch as the blade travels around the rotor.

This has a net effect of altering the direction of

the thrust vector which generates side forces

(Ĉlon and Ĉlat) responsible for body rotation

and side movement of the helicopter. Comb-

ing the collective and the cyclic effects, the

blade pitch θ can be expressed as a periodic

function of the azimuth angle Ψ [10]:

θ = θ0 −A1 cos(Ψ)−B1 sin(Ψ) (2.24)

The collective pitch θ0 is the nominal pitch of the blade. The longitudinal cyclic pitch B1

represents the pitch of the blade when it is at Ψ = 270◦ and Ψ = 90◦; whereas the lateral cyclic

pitch A1 represents the blade pitch as Ψ = 180◦ and Ψ = 0◦. As the lift generated by the rotor

blade is proportional to the blade pitch [10], the longitudinal cyclic pitch B1 causes the maximum

and minimum lift to be applied at Ψ = 270◦ and Ψ = 90◦ respectively. The variation in lift

experienced by the blade results in a steady state once-per-revolution out-of-plane (perpendicular

to the rotor disc) motion called flapping [10, 1]. For a rotor with flapping hinges (that is, the

blades are mounted to the rotor hub through the hinges to allow the blade to flap up and down
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freely), the flapping motion represents a harmonic response to a periodic excitation (the cyclic

pitch) [9]. Recall the plane traced out by the tip of the blades is called the tip-path-plane (TPP).

The net rotor thrust vector is defined as normal to the TPP [10]. Focusing only on the first

order harmonic, the blade flapping angle (β) can be expressed in a form similar to (2.24):

β = a0 − a1,s cos(Ψ) + b1,s sin(Ψ) (2.25)

where a0 is the coning angle, a1,s is the longitudinal flapping/tilt angle and b1,s is the lateral

flapping/tilt angle. The coning angle a0 is the angle at which the moment generated about the

flapping hinge by the forces acting on the rotor blade, such as the centrifugal force, lift and

gravity, equals to zero (in equilibrium) [1]. The longitudinal flapping angle a1,s represents the

maximum and minimum flapping at Ψ = 180◦ and Ψ = 0◦ respectively; whereas b1,s represents

the maximum and minimum flapping at Ψ = 90◦ and Ψ = 270◦ respectively.

The flapping harmonic motion is characterized by a 90◦ phase lag in the response. In the

case of the longitudinal pitch B1, the maximum (and minimum) lift at Ψ = 270◦ (and Ψ = 90◦)

results in maximum (and minimum) flapping 90◦ later at Ψ = 0◦ (and Ψ = 180◦). For steady

state harmonic motion, the amount of flapping is equal to the amount of cyclic blade angle [9].

In other words, one degree of cyclic pitch results in one degree of flapping [10]:

a1,s = −B1 b1,s = −A1 (2.26)

The blade pitch is typically achieved through the action of servo motors. The inputs to the

servo motors are denoted as δcoll, δlon and δlat. The blades are connected to the servo motors

through the control rods and the swashplate [12] in such a way that δcoll controls the collective

pitch θ0, δlon controls the longitudinal cyclic pitch B1, and δlat controls the lateral cyclic pitch

A1. These connections are shown in Figure 2.4.

Under normal flight condition (such as hover), the rigid body dynamics of the helicopter

is significantly slower than the servo dynamics [30] so that the servo dynamics can usually be

ignored. This simplifies the blade pitch to be proportional to the servo inputs:

θ0 = Kcollδcoll B1 = Klonδlon A1 = Klatδlat (2.27)
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SwashplateControl Rods

Servo Motors

Figure 2.4: Helicopter

Therefore, for simplicity, θ0, B1 and A1 will be taken as the input for the main rotor directly, as

well as the collective pitch of the tail rotor θtail (recall (2.9)):

~u =
[
θ0 A1 B1 θtail

]T
For a rotor disc operating in hover, the average speed of air v1 passing through as a result

of thrust generation can be related to the thrust T by applying the momentum theory and the

principle of conservation of energy [1] (see Appendix B.1 for details):

T = 2ρAdiscv
2
1 or v1 =

√
T

2ρAdisc
(2.28)

The velocity v1 is called the induced velocity. The implicit assumption here is that both the

thrust and the induced velocity are uniformly distributed across the rotor disc. For a general
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flight condition, the relationship between T and v1 is modified to include the rotor velocity

through air due to the motion of the helicopter [12]:

T = 2ρAdiscVairv1 or v1 =
T

2ρAdiscVair
(2.29)

where Vair is the rotor velocity through air given by:

Vair =
√
V 2

horizontal + (v1 + Vvertical)2 (2.30)

The component of the rotor velocity that lies in the plane of rotation of the blades is denoted as

Vhorizontal; while the perpendicular component is denoted Vvertical.

The horizontal velocity of the rotor disc is composed of both the linear and angular velocity

component of the helicopter rigid body motion projected along the direction of motion through

the side slip angle ηm:

Vhorizontal = u cos(ηm) + v sin(ηm) + hM
[
p sin(ηm)− q cos(ηm)

]
− lMr sin(ηm) (2.31)

where u, v, and w are the x, y, and z axis component of the linear velocity of the helicopter ~vb

expressed in the body-fixed frame respectively; while p, q, and r are the corresponding component

for the angular velocity vector ~ωb expressed in the body-fixed frame:

ṽb =


u

v

w

 ω̃b =


p

q

r

 (2.32)

The side slip angle ηm of the main rotor represents the ratio between the forward and the

sideways motion of the rotor and is defined as:

ηm = arctan
(
v − lMr + hMp

u− hMq

)
(2.33)

The vertical velocity component of the rotor disc is defined as:

Vvertical = −(w + lMq) (2.34)
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Notice that the direction of Vvertical is defined with the same positive direction as the induced

velocity v1, which is opposite to the body z axis.

The horizontal Vhorizontal and vertical Vvertical velocity of the main rotor disc, as well as the

averaged induced velocity v1 at the rotor, can be divided by the rotor tip speed ΩR to obtain

the non-dimensional velocities µ (also referred to as the advanced ratio), λz and λ1 (also known

as the inflow factor):

µ =
Vhorizontal

ΩR
λz =

Vvertical

ΩR
λ1 =

v1
ΩR

(2.35)

Similarly, the components of the angular velocity of the helicopter body can also be normal-

ized as:

υx =
p

Ω
υy =

q

Ω
υz =

r

Ω
(2.36)

The net thrust T generated by the rotor can be obtained by integrating the incremental

thrust generated by a small blade element based on its local conditions, such as local relative

speed and angle of attack. This method is referred to as the blade element method [1, 10]. For

a rotor with Nb number of blades in hover, the thrust, T , computed from applying the blade

element method is given by (see Appendix B.2 for details):

T =
1
2
ρNbcR(ΩR)2aL

(
1
3
θ0 −

1
2
v1
ΩR

)
(2.37)

where c is the blade chord length and aL is the lift curve coefficient whose value is dependent on

the shape of the air foil of the blades [1].

The thrust coefficient ĈT for the main rotor in hover can be obtained by dividing (2.37) by

the non-dimensional factor according to (2.1):

ĈT =
σaL
4

(
2
3
θ0 − λ1

)
(2.38)

where σ is the solidity, defined as the ratio between the total blade area Ab = NbcR and the
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rotor disc area Adisc = πR2 [10]:

σ =
Ab

Adisc
=
NbcR

πR2
=
Nbc

πR
(2.39)

Although the thrust coefficient ĈT defined in (2.38) might appear to be affine in the collective

input θ0, examination of the definition for the inflow factor λ1 given in (2.35) and (2.28) reveals

otherwise.

For general flight, the thrust coefficient becomes (see Appendix B.2):

ĈT =
σaL
4

[
2
3
θ0

(
1 +

3
2
µ2

)
− (λ1 + λz + µB̂1)−

µυx

2

]
(2.40)

where the longitudinal cyclic pitch input B̂1 is defined with respect to the hub-wind frame. The

hub-wind frame is obtained by rotating the main rotor hub frame by the side-slip angle ηm about

the hub z axis [9]. The main rotor hub frame has the same orientation as the body-fixed frame

except it is attached to the main rotor hub instead of the rigid body centre of gravity. The

relationship between the cyclic inputs defined previously in (2.9) and the rotated inputs can be

obtained through the rotation matrix between the hub and hub-wind frame (see Appendix A):

Â1 = sin(ηm)B1 + cos(ηm)A1 B̂1 = cos(ηm)B1 − sin(ηm)A1 (2.41)

Notice that when the side slip angle is zero (ηm = 0), such as when the helicopter is in hover or

forward flight, the cyclic inputs defined in (2.9) and (2.41) would be aligned and have the same

values.

In addition to the thrust, when the helicopter is in motion (such as in forward flight), the

asymmetry in the local angle of attack of the blades also produces net force within the disc

plane. The resulting longitudinal and lateral side forces, referred to as the planar Horizontal

Force (H-Force) [10], can be obtained by integrating the incremental drag force generated by the
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blade element analogous to those for the thrust (see Appendix B.2) [10]:

Ĉlon =
µσ

4
cD + a1,sĈT +

aLσ

4

(
(λ1 + λz − a1,sµ)

[
θ0µ−

1
2
(a1,s + B̂1)− υx

]
+ (b1,s + Â1)

[a0

3
− µ

8
(Kλ1 − υy)

]
+ a0

[
µa0

2
+

1
3
(Kλ1 − υy)

]
+ υx

[
θ0
3
− 3

8
µ(a1,s + B̂1)

])
(2.42)

Ĉlat =− b1,sĈT +
aLσ

4

(
(λ1 + λz − a1,sµ)

[
3a0µ+ (Kλ1 − υy) +

1
2
(b1,s + Â1)

]
+ (a1,s + B̂1)

[a0

3
+
µ

8
(Kλ1 − υy) + a0µ

2
]
− θ0

[
3
2
a0µ+

1
3
(Kλ1 − υy)

]
+ υx

[a0

3
+
µ

8
(b1,s + Â1)

])
(2.43)

The expressions for the coning angle (a0), the flapping coefficients (a1,s and b1,s) and the inflow

distribution factor K can be found in Appendix B.2. The drag coefficient cD is another air foil

dependent property similar to aL [10].

The longitudinal and lateral force coefficients in (2.42) and (2.43) are defined with respect to

the rotor hub-wind frame, which is rotated from the body-fixed frame by the side slip angle ηm

about the vertical axis. This means the longitudinal direction here is along the direction of the

incoming air stream; while the lateral direction is defined as perpendicular to the longitudinal

direction.

Finally, carrying out the same process for the torque in hover, the torque coefficient for the

main rotor ĈQ can be obtained (see Appendix B.2):

ĈQ =
σ

8
cD +

1√
2
Ĉ

3/2
T (2.44)

The corresponding expression for general flight is:

ĈQ =
σ

8
cD(1 + 3µ2) + (λ1 + λz)ĈT − µĈlon +

aLσ

γL
(a1,sυy + b1,sυx +Kλ1υx) (2.45)
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where γL is the Lock number [10, 12] defined as:

γL =
ρcaLR

4

Iblade

with Iblade representing the blade flapping inertia.

The rotor dynamics derived in this section is referred to as the quasi-steady rotor model

[12] for the assumption that the blade flapping response is fast relative to the rigid body dy-

namics of the rest of the system. The implication is that the rotor blade flapping dynamics

can be represented by the steady-state response (the flapping coefficients a0, a1,s, and b1,s, see

Appendix B.2).

Tail Rotor Dynamics

By taking into account the difference between the two rotors, the expressions for the tail rotor

coefficients can be obtained by modifying the corresponding main rotor equations. First, only

the collective control is available in the tail rotor. So, to obtain the expressions for the tail rotor,

the cyclic control inputs Â1 and B̂1 are set to zero; while the collective θ0 is replaced with θtail

instead of θ0. Second, the velocities the tail rotor experienced due to the motion of the helicopter

rigid body will be different from that of the main rotor because of the difference in position and

orientation of the tail rotor. Finally, the rotor parameter values for the tail rotor, such as the

rotor speed Ωtail, are used instead of those for the main rotor. A list of updated parameter values

for the tail rotor is shown below:

µtail =
u cos(ηt)− w sin(ηt)− q

[
lT sin(ηt) + hT cos(ηt)

]
ΩtailRtail

(2.46)

λztail =
−v + lT r − hT p

ΩtailRtail
(2.47)

υxtail
=
p cos(ηt)− r sin(ηt)

Ωtail
(2.48)

υytail = −
[
p sin(ηt) + r cos(ηt)

Ωtail

]
(2.49)

σtail =
Abtail
Adisctail

(2.50)
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where the side slip angle ηt for the tail rotor is defined as:

ηt = arctan
(
w + lT q

−u+ hT q

)
(2.51)

Updated Body Force and Moment Equations

Recall the rotor coefficient expressions derived in the previous sections were defined with respect

to the rotor hub-wind axis, while the expressions for the body force and moment in (2.16) are

defined with the assumption that the hub-wind frame be aligned with the body-fixed frame, such

as during hover or forward flight. For general flight, (2.16) needs to be updated by taking into

account the effect of the side slip angles ηm and ηt experienced by the two rotors.

X̂R =− cos(ηm)Ĉlon + sin(ηm)Ĉlat + Â(Ω̂R̂)2
[
sin(ηt)Ĉlattail − cos(ηt)Ĉlontail

]
(2.52)

ŶR =− cos(ηm)Ĉlat − sin(ηm)Ĉlon − Â(Ω̂R̂)2ĈTtail
(2.53)

ẐR =− ĈT + Â(Ω̂R̂)2
[
cos(ηt)Ĉlattail + sin(ηt)Ĉlontail

]
(2.54)

L̂R =− ĥM
[
cos(ηm)Ĉlat + sin(ηm)Ĉlon

]
− Â(Ω̂R̂)2ĥT ĈTtail

(2.55)

M̂R = ĥM
[
cos(ηm)Ĉlon − sin(ηm)Ĉlat

]
− l̂M ĈT + Â(Ω̂R̂)2

(
[
ĥT cos(ηt) + l̂T sin(ηt)

]
Ĉlontail

+
[
l̂T cos(ηt)− ĥT sin(ηt)

]
Ĉlattail − R̂ĈQtail

)
(2.56)

N̂R = l̂M
[
cos(ηt)Ĉlat + sin(ηt)Ĉlon

]
− ĈQ + Â(Ω̂R̂)2 l̂T ĈTtail

(2.57)

where the planar force coefficients Ĉlon, Ĉlat, Ĉlontail
and Ĉlattail are defined with reference to

their respective hub-wind frame. Notice that although the relations between the control inputs

(θ0, A1, B1 and θtail) and the rotor coefficients are nonlinear (see comment on (2.38) above),

the expressions for the generalized rotor forces shown in (2.52)-(2.57) are affine in the rotor

coefficients. This observation will be exploited in the proposed Virtual Joint Control scheme

presented in Chapter 4.



Chapter 2: Modelling 31

2.1.4 Rigid Body Dynamics

The rigid body dynamics of a stand alone helicopter (UAV) can be obtained by applying the

Newton-Euler formulation [12, 39]:

F̃
a
b = mb

(
∂ṽb
∂t

+ ω̃b × ṽb

)
M̃

a
b =

∂H̃b

∂t
+ ω̃b × H̃b (2.58)

where F̃
a
b and M̃

a
b are the net force and moment acting on the centre of gravity of the helicopter

rigid body:

F̃
a
b =


X

Y

Z

 = F̃ gb + F̃ R M̃
a
b =


L

M

N

 = M̃ gb + M̃R (2.59)

and H̃b is the angular momentum about the centre of gravity (C.G.) of the helicopter rigid body.

It is defined as the product between the inertia matrix Ib about the C.G. and the rigid body

angular velocity ω̃b expressed in the body-fixed frame [39]:

H̃b = Ibω̃b (2.60)

The inertia matrix Ib is defined with respect to the body-fixed frame:

Ib =


Ixxb

−Ixyb −Ixzb
−Ixyb Iyyb −Iyzb
−Ixzb −Iyzb Izzb

 (2.61)

where Ixxb
, Iyyb , and Izzb are the mass moment of inertia of the helicopter rigid body; while

Ixzb , Ixyb , and Iyzb are the products of inertia [39].

The form of the Newton-Euler equation of motions stated in (2.58) is expressed with respect

to the reference frame attached to the centre of gravity of the helicopter rigid body, referred to as

the body-fixed frame (see Figure 2.2). The use of this moving body-fixed frame as the reference

frame gives rise to the cross-product terms in (2.58) [38, 39]. Expanding (2.58), the resulting
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force and moment equations expressed with respect to the body-fixed frame are given by:

mb(u̇− rv + qw) = X

mb(v̇ − pw + ru) = Y

mb(ẇ − qu+ pv) = Z

(2.62)

and

Ixxb
ṗ− (Iyyb

− Izzb
)qr + Ixyb

(pr − q̇)− Ixzb
(pq + ṙ) + Iyzb

(r2 − q2) = L

Iyyb
q̇ + (Ixxb

− Izzb
)pr + Iyzb

(pq − ṙ) + Ixzb
(p2 − r2)− Ixyb

(qr + ṗ) = M

Izzb
ṙ − (Ixxb

− Iyyb
)pq − Iyzb

(pr + q̇) + Ixzb
(qr − ṗ) + Ixyb

(q2 + p2) = N

(2.63)

Equation (2.63) can be simplified if there is symmetry about the x–z plane of the body-fixed

coordinate. In most helicopters, this assumption is approximately true, with the exception in

the slight asymmetry in the tail due to the tail rotor arrangement. In the case where symmetry

applies, both the Ixy and Iyz product of inertia become zero [12], resulting in:

Ixxb
ṗ− (Iyyb

− Izzb
)qr − Ixzb

(pq + ṙ) = L

Iyyb
q̇ + (Ixxb

− Izzb
)pr + Ixzb

(p2 − r2) = M

Izzb
ṙ − (Ixxb

− Iyyb
)pq + Ixzb

(qr − ṗ) = N

(2.64)

The dynamic model for the helicopter rigid body defined in (2.62) and (2.64) can be combined

into a matrix equation form:

M̃ ¨̃Φ + h̃( ˙̃Φ) = τ̃ (~Θ, ˙̃Φ, ~u) (2.65)

where ˙̃Φ is the generalized body rate vector with the body-fixed linear and angular velocity as

its component:
˙̃Φ =

[
u v w p q r

]T
(2.66)

The vector ~Θ is the generalized position vector of the C.G. of the helicopter. It contains the

position, expressed in terms of the inertial frame coordinates, and the attitude, expressed in
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terms of Euler angles, of the helicopter body:

~Θ =
[
x y z φ θ ψ

]T
(2.67)

The generalized body rate vector ˙̃Φ can be expressed in terms of the rate of change of the

generalized position vector ~̇Θ through the rotation matrix Rinertial
body between the inertial and

body-fixed frame and the Euler rate mapping matrix REuler (see Appendix A.1.1 for details):

u

v

w

p

q

r


=

 Rinertial
body 03×3

03×3 REuler





ẋ

ẏ

ż

φ̇

θ̇

ψ̇


(2.68)

The mass-inertia matrix M̃ is defined as:

M̃ =



mb 0 0 0 0 0

0 mb 0 0 0 0

0 0 mb 0 0 0

0 0 0 Ixxb
0 −Ixzb

0 0 0 0 Iyyb 0

0 0 0 −Ixzb 0 Izzb


(2.69)

For the UAV model, the mass-inertia matrix is constant as it is expressed with respect to the

body-fixed frame.

The Coriolis and centrifugal terms h̃( ˙̃Φ) can be expressed as a product with the body rate
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vector h̃( ˙̃Φ) = C̃( ˙̃Φ) ˙̃Φ with the matrix C̃( ˙̃Φ) being defined as:

C̃( ˙̃Φ) =



0 −mbr mbq 0 0 0

mbr 0 −mbp 0 0 0

−mbq mbp 0 0 0 0

0 0 0 −Ixzbq −Iyybr Izzbq

0 0 0 Ixxb
r + Ixzbp 0 −(Izzbp+ Ixzbr)

0 0 0 −Ixxb
q Iyybp Ixzbq


(2.70)

Notice that the definition of C̃( ˙̃Φ) is not unique. Here, it is defined as

C̃( ˙̃Φ) =

 mbS(ω̃b) 03×3

03×3 S(ω̃b)Ib


where S(ω̃b) is the skew symmetric matrix for the angular velocity vector ω̃b [40]:

S(ω̃b) =


0 −r q

r 0 −p

−q p 0

 (2.71)

As derived in the previous sections, the generalized body force vector τ̃ defined in (2.10)

consists of effects generated from gravity and rotor dynamics. Therefore it is dependent on the

rotor input vector ~u, the generalized body rate vector ˙̃Φ, and the generalized positive vector ~Θ.

Just as the generalized force vector can be normalized, the matrix dynamic equation in (2.65)

can be non-dimensionalized as:

ˆ̃M
¨̃̂
Φ + ˆ̃C(

˙̃̂
Φ)

˙̃̂
Φ = ˆ̃τ (~̂Θ,

˙̃̂
Φ, ~u) (2.72)
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The normalized mass-inertial matrix ˆ̃M is defined as:

ˆ̃M =



m̂b 0 0 0 0 0

0 m̂b 0 0 0 0

0 0 m̂b 0 0 0

0 0 0 Îxxb
0 −Îxzb

0 0 0 0 Îyyb 0

0 0 0 −Îxzb 0 −Îzzb


(2.73)

where the normalized helicopter mass m̂b is defined in (2.22) and the normalized moment and

product of inertia are defined as:

Îxxb
=

Ixxb

ρAdiscR3
Îyyb =

Iyyb
ρAdiscR3

Îzzb =
Izzb

ρAdiscR3
Îxzb =

Ixzb
ρAdiscR3

(2.74)

The normalized generalized position and body rate vectors are defined as:

~̂Θ =



x
R

y
R

z
R

φ

θ

ψ


˙̃̂
Φ =



u
ΩR

v
ΩR

w
ΩR

p
Ω

q
Ω

r
Ω


(2.75)

Finally, the normalized ˆ̃C(
˙̃̂
Φ) matrix is given by:

ˆ̃C(
˙̃̂
Φ) =

 m̂bŜ(ˆ̃ωb) 03×3

03×3 Ŝ(ˆ̃ωb)Îb

 (2.76)

2.2 Platform Description

The Helicopter Test Platform used in this research consists of a small helicopter powered by an

electric motor and a 6 Degree-Of-Freedom (DOF) linkage platform. The helicopter is mounted at

the end of the 6 DOF platform, shown in Figure 2.5. The motion of the helicopter is constrained
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to the workspace of the platform linkage. This arrangement allows the helicopter to be operated

safely indoors.

Figure 2.5: Helicopter Test Platform

The airframe of the helicopter used on the platform is a Kyosho Concept 30 SE model R-C

(Remote-Controlled) helicopter. It is refitted so that it can be attached to the test platform.

A simplified diagram of the test platform (with the helicopter body mounted at the end of the

platform) is shown in Figure 2.6. The whole platform can be divided into five rigid bodies:

the base rod (Body 1), the bottom boom (Body 2), the main boom (Body 3), the vertical bar

(Body 4) and the helicopter body (Body 5). The four linkages form a parallelogram in the

vertical plane. As the main and bottom boom rotates about the Elbow joint up and down in

the vertical plane, the orientation of the vertical bar does not change and remains parallel to

the vertical axis. The platform linkage parallelogram rotates about the base rod for horizontal

movements.

The joints on the platform are not actuated. This means the motion of the platform is driven



Chapter 2: Modelling 37

Frame 1

Frame 4

Frame 3

Frame 2

Inertial Frame

Body Frame

x1

y2

y3

q̇1

l3

q2

q̇2

lsq3

ρ3

ρ2

xb

zb

q̇3

z4

x3

z1

l3 sin q2
l4

l2

x4 ρ4

ρ1

z

x

l1

x2

Figure 2.6: Helicopter Test Platform Diagram

through gravitational force and the rotors on the helicopter. A counter weight can be attached

to the main boom for gravity balance. Since the counter weight is rigidly attached to the main

boom, it is combined with the main boom into a single rigid body and is collectively referred

to as the main boom. The centre of gravity of each body is marked in Figure 2.6. They are

estimated based on the geometry of the platform.

The 6 DOF helicopter motion is parameterized through six joint variables on the platform

linkages. The six joints are designated as the base (Joint 1), the elbow (Joint 2), the rail/slider

(Joint 3), the yaw (Joint 4), the pitch (Joint 5) and the roll (Joint 6). All of the joints, except

Joint 3, are revolute joints. Joint 3 is a prismatic joint [40]. The range of motion for each

of the joints is adjustable, allowing testing of individual joints separately or in combination.

Potentiometers are attached to the joints to measure the joint variables.

The upper three joints (the yaw, pitch and roll joints) form a spherical joint. These three joint

variables are the Euler angles [41] describing the orientation (attitude) of the helicopter body

with respect to the platform. The Cartesian position of the helicopter body is described through

the lower three joints (the base, elbow and slider joints). The parallel linkage arrangement of
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the lower three joints is similar to a typical spherical manipulator configuration [40] with one

exception. The orientation of the slider joint (Joint 3) is constrained along the horizontal plane

instead of rotating with the previous revolute joint (Joint 2). This results in a slightly modified

workspace within which the helicopter can operate. This modified workspace is illustrated in

Figure 2.7.

Side View Top View
Figure 2.7: Helicopter Platform Workspace

From the geometry of the platform workspace, it can be seen that one set of singular points

for the platform is defined as when the elbow joint q2 is pointing vertically up or down (q2 =

±π/2). Furthermore, through the use of the Euler angles (q4, q5 and q6) to represent orientation

(attitude), another set of singular points is introduced at q5 = ±π/2 [39]. The programmed

reference trajectories used for control study in this thesis are designed to avoid these singularities

(see Chapter 4).

The motion of the helicopter is controlled through four Futaba FP-S148 digital servo motors,

which adjust the blade pitch of both the main and tail rotors. Three of the four servo motors

control the collective, longitudinal cyclic and lateral cyclic pitch of the main rotor blades; while

the last servo motor controls the collective pitch of the tail rotor blades.



Chapter 2: Modelling 39

2.3 Platform Model

The platform system can be viewed as a multibody system actuated by the helicopter rotor

force and moment. A selection of techniques such as the Newton-Euler method, the Euler-

Lagrange method [39] and the Principle of Virtual Power [38] can be used for model derivation

of multibody systems. Although the Principle of Virtual Power is presented in the subsequent

model derivation, the Euler-Lagrange method has also been applied to obtain the same model

for verification. The Principle of Virtual Power is selected for the convenience in obtaining the

Jacobian matrix from the projection relationships between the helicopter body velocities and

the generalized joint rates. Notice that for the Platform system, the constraints are purely

geometric (holonomic) with no velocity dependence. This means the Principle of Virtual Power

is equivalent to the Principle of Virtual Work when applying to the Platform system [38, 39].

For a n-link rigid body, given the mass mi, the velocity of the centre of gravity ~vi, the angular

momentum ~H i about the centre of gravity, the active force ~F
a

i and moment ~M
a

i acting on each

link, the statement of the Principle of Virtual Power for the kth generalized coordinate can be

expressed as [38]:

n∑
i=1

(
mi~̇vi − ~F

a

i

)
· ~βik +

n∑
i=1

(
~̇H i − ~M

a

i

)
· ~γik = 0 (2.77)

The rate projection vectors ~βik and ~γik associated with the linear velocity ~vi and the angular

velocity ~ωi respectively are defined as:

~βik =
∂~vi
∂q̇k

~γik =
∂~ωi

∂q̇k
(2.78)

Equation (2.77) states that the sum of both the linear and angular dynamic components projected

to the kth generalized coordinate through ~βik and ~γik is equal to zero. In other words, the power

associated with the constraint forces is zero [38].

For the helicopter platform, it is useful to rearrange (2.77) to separate out the force and

moment terms from the acceleration and angular momentum terms:

n∑
i=1

mi~̇vi · ~βik +
n∑
i=1

~̇H i · ~γik =
n∑
i=1

~F
a

i · ~βik +
n∑
i=1

~M
a

i · ~γik (2.79)
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This represents the familiar Newton-Euler formulation projected onto the kth generalized coor-

dinate.

In the case of the test platform, the generalized coordinates are the joint variables qk, with

k going from Joint 1 (the base joint) to Joint 6 (the roll joint). The joint state vector q̄ is then

defined as:

q̄ =
[
q1 q2 q3 q4 q5 q6

]T
(2.80)

where the over-bar (¯) is used to denote quantities expressed in terms of the generalized joint

space variables. The equations of motion for all six of the generalized coordinate in the platform

system can be collected together into a matrix equation form:

n∑
i=1



~β
T

i1 ~γTi1
...

...

~β
T

i6 ~γTi6


 mi~̇vi

~̇H i


 =

n∑
i=1



~β
T

i1 ~γTi1
...

...

~β
T

i6 ~γTi6


 ~F

a

i

~M
a

i


 (2.81)

There are six reference frames defined in Figure 2.6. The inertial frame (Frame 0) is fixed

in space, defined with the z axis as the vertical axis, positive pointing downward. Frame 1

is attached rigidly to the centre of gravity of the base rod (Joint 1) and thus rotates with it

through q1. Similarly, Frame 2 is attached to the bottom boom, Frame 3 to the main boom,

Frame 4 to the vertical bar and finally, the Body Frame is attached to the helicopter body. From

these frame definitions, the base joint, q1, rotates about the vertical z axis of the inertial frame.

The elbow joint, q2, rotates both the main and bottom boom about the z2 axis of Frame 2 (or

Frame 3, these two frames has the same orientation by virtue of the parallel link structure). It

is positive when the rotation brings the helicopter up (higher). The slider joint, q3, is a linear

joint constrained by the parallelogram configuration of the platform along the horizontal x4 axis

of Frame 4 (or Frame 1, which has the same orientation as Frame 4). It is positive when the

helicopter body moves away from the base rod (outward direction). The rotation from Frame 4

(or Frame 1) to the helicopter Body Frame consists of a series of three current axis rotations

[40]. First, the yaw joint, q4, rotates about the vertical z4 axis of Frame 4. It is then followed

by the pitch joint rotation q5 about the y axis of the resulting frame. Finally, the roll joint, q6,

rotates about the x axis of the resulting frame. The platform system Body Frame is defined to

be consistent with the body-fixed frame defined for the UAV case. The mappings between the
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UAV Euler angles and the platform joint angles are:

φ = q6 θ = q5 ψ = q1 + q4 (2.82)

Rotation matrices are used to represent these frame rotations [40]. For example, the rotation

matrix for the rotation between the inertial frame and Frame 1 is given by (see Appendix A for

details):

R1
0 =


Cq1 −Sq1 0

Sq1 Cq1 0

0 0 1

 (2.83)

where the short forms for the sine and cosine of the joint angles have been used:

Sqk = sin qk Cqk = cos qk k = 1, . . . , 6 (2.84)

The rotation matrices between the inertial frame and the rest of the frames are derived in

Appendix A.3.

2.3.1 Kinematics

Position Vector

Given the rotation matrices and the geometry of the platform linkages (See Figure 2.6), the

position vectors for the centre of gravity of each of the five rigid bodies can be expressed with

respect to the inertial frame in terms of the joint variables. Let ~ri be the position vectors of

the ith rigid body with respect to the platform base (origin of the inertial frame). The position

vectors for the five rigid bodies (the four platform linkages and the helicopter body) expressed
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in the inertial frame are given as:

~r1 =


0

0

−(l1 + ρ1)

 ~r2 =


0

0

−l1

+ R2
0


ρ2

0

0

 ~r3 =


0

0

−(l1 + l2)

+ R3
0


−ρ3

0

0



~r4 =


0

0

−(l1 + ρ4)

+ R2
0


l3

0

0

 ~rb =


0

0

−(l1 + l2)

+ R2
0


l3

0

0

+ Rb
0


ls + q3

0

−l4


(2.85)

Notice that a subscript b is used for the helicopter rigid body position instead of 5. This is done

to highlight the difference between the linkage rigid bodies of the platform and the helicopter

rigid body and to be consistent with the UAV case. For indexing purpose, the number of rigid

bodies in the system is n = 5 and hence ~rb is taken as ~r5 or b = 5. The expanded expressions for

the position vectors can be found in Appendix C.1. The rotation matrix Rb
0 between the inertial

and body-fixed frame is the same as Rbody
inertial referenced in (2.68) (see Appendix A for details).

Rate Vectors

The angular velocities ~ωi for each rigid body can be obtained by adding up the joint rotations

experienced by each body in the appropriate reference frames [39]:

~ω1 =


0

0

q̇1

 ~ω2 =


0

0

q̇1

+ R2
0


0

0

q̇2

 ~ω3 =


0

0

q̇1

+ R3
0


0

0

q̇2



~ω4 =


0

0

q̇1

 ~ωb =


0

0

(q̇1 + q̇4)

+ R4
0Rz,q4




0

q̇5

0

+ Ry,q5


q̇6

0

0




(2.86)

where Rz,q4 and Ry,q5 are the rotation matrices defined in Appendix A about the z and y axis

respectively. The rate of change of the joint variables with respect to time is denoted as q̇k = dqk
dt .

The angular velocities in (2.86) are expressed in the inertial frame. For the derivation of the

dynamic equations of the platform, it is convenient to transform the angular velocities into the
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respective local frames attached to the rigid bodies:

~ωl1 = R0
1~ω1 ~ωl2 = R0

2~ω2 ~ωl3 = R0
3~ω3 ~ωl4 = R0

4~ω4 ~ωlb = R0
b ~ωb (2.87)

where R0
b = (Rb

0)
T and Rb

0 is defined in Appendix A.3.3. The expanded expressions for the

angular velocities can be found in Appendix C.2.2. Since the local frame for the helicopter rigid

body refers to the body-fixed frame, the angular velocity ~ωlb defined here is the same as ω̃b

defined in (2.32) for the UAV model.

Next, the rigid body velocities ~vi are obtained by taking the time derivative of the position

vectors:

~v1 =


0

0

0

 ~v2 = Ṙ
2
0


ρ2

0

0

 ~v3 = Ṙ
3
0


ρ3

0

0



~v4 = Ṙ
2
0


l3

0

0

 ~vb = Ṙ
2
0


l3

0

0

+ Ṙ
b
0


(ls + q3)

0

−l4

+ Rb
0


q̇3

0

0


(2.88)

Similar to the angular velocities, the linear velocities can be expressed with respect to the local

frames through transformation:

~vl1 =


0

0

0

 ~vl2 = R0
2~v2 ~vl3 = R0

3~v3 ~vl4 = R0
4~v4 ~vlb = R0

b~vb (2.89)

Appendix C.2.1 contains the expanded expressions for the linear velocities. Again, the helicopter

body velocity ~vlb expressed in the body-fixed frame is the same as ṽb defined in (2.32). Both

the angular and linear velocities of the rigid bodies can be expressed in the form J ˙̄q where J is

the Jacobian matrix [40] and ˙̄q is the rate of change of the joint state vector defined as:

˙̄q =
[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T
(2.90)

Expanding (2.87) with the joint state vector in (2.90) and the Jacobian matrices Jωi of the



Chapter 2: Modelling 44

rigid bodies, the rigid body angular velocities ~ωli with respect to the associated local frames can

be written as:

~ωl1 =


0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

 ˙̄q = Jω1
˙̄q ~ωl4 = Jω4

˙̄q = Jω1
˙̄q

~ωl2 =


−Sq2 0 0 0 0 0

−Cq2 0 0 0 0 0

0 1 0 0 0 0

 ˙̄q = Jω2
˙̄q ~ωl3 = Jω3

˙̄q = Jω2
˙̄q

~ωlb = ω̃b =


−Sq5 0 0 −Sq5 0 1

Cq5Sq6 0 0 Cq5Sq6 Cq6 0

Cq5Cq6 0 0 Cq5Cq6 −Sq6 0

 ˙̄q = Jωb
˙̄q (2.91)

Correspondingly, for the linear velocities in (2.89), they can be expanded, using the joint state

vector in (2.90), as:

~vl2 = ρ2


0 0 0 0 0 0

0 1 0 0 0 0

Cq2 0 0 0 0 0

 ˙̄q = ρ2Jvp
˙̄q = Jv2

˙̄q ~vl3 = −ρ3Jvp
˙̄q = Jv3

˙̄q

~vl4 = l3


0 −Sq2 0 0 0 0

Cq2 0 0 0 0 0

0 −Cq2 0 0 0 0

 = Jv4
˙̄q ~vl1 =


0

0

0



~vlb = ṽb = R4
b


0 −l3Sq2 1 0 0 0

lhp 0 0 0 0 0

0 −l3Cq2 0 0 0 0

 ˙̄q = Jvb
˙̄q (2.92)

where lhp = (ls + q3 + l3Cq2) and R4
b is the transpose of Rb

4, which is the rotation matrix

from Frame 4 to the Body Frame of the helicopter. The rotation matrix Rb
4 is defined in

Appendix A.3.3. Appendix C.3 contains the expanded expressions of the Jacobian matrices.

From the angular and linear velocities defined in (2.91) and (2.92), the rate projection vec-

tors ~βik and ~γik, defined in (2.78), are the kth column of the Jacobian matrices Jvi and Jωi
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respectively:

Jvi =
[
~βi1

~βi2
~βi3

~βi4
~βi5

~βi6

]
Jωi =

[
~γi1 ~γi2 ~γi3 ~γi4 ~γi5 ~γi6

]
(2.93)

For example,

~βb1 =


lhpSq4Cq5

lhp(Sq4Sq5Sq6 + Cq4Cq6)

lhp(Sq4Sq5Cq6 − Cq4Sq6)

 ~γb1 =


−Sq5
Cq5Sq6

Cq5Cq6


Notice that by using the linear and angular velocities (~vli and ~ωli) expressed with respect to the

local frames to define the rate projection vectors (~βik and ~γik), the dot product in (2.79) will be

performed with respect to the local frames as well.

The angular momentum about the centre of gravity of each rigid body ~H li is defined as the

product between the inertia matrix Ii about the centre of gravity and the angular velocity ~ωli

of the rigid body expressed in the locally attached frame [39]:

~H li = Ii~ωli

The general form of the inertia matrix is given as:

Ii =


Ixxi −Ixyi −Ixzi
−Ixyi Iyyi −Iyzi
−Ixzi −Iyzi Izzi


Based on symmetry of the rigid bodies, the inertia matrix of each of the rigid bodies can be
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simplified to:

I1 =


Ixx1 0 0

0 Iyy1 0

0 0 Izz1

 I2 =


Ixx2 0 0

0 Iyy2 0

0 0 Izz2

 I3 =


Ixx3 0 0

0 Iyy3 0

0 0 Izz3



I4 =


Ixx4 0 0

0 Iyy4 0

0 0 Izz4

 Ib =


Ixxb

0 −Ixzb

0 Iyyb
0

−Ixzb
0 Izzb

 (2.94)

Acceleration Vectors

The linear acceleration for each of the rigid bodies are computed by taking the time derivative

of the linear velocities ~ali = ~̇vli :

~al2 = ρ2

[(
Jvp

¨̄q + J̇vp
˙̄q
)

+ ~ωl2 × Jvp
˙̄q
]

~al3 = −ρ3

[(
Jvp

¨̄q + J̇vp
˙̄q
)

+ ~ωl3 × Jvp
˙̄q
]

~al4 =
(
Jv4

¨̄q + J̇v4
˙̄q
)

+ ~ωl4 × Jv4
˙̄q ~alb =

(
Jvb

¨̄q + J̇vb
˙̄q
)

+ ~ωlb × Jvb
˙̄q

~al1 =
[

0 0 0
]T

(2.95)

The rate of change of the angular momentum ~̇H li is computed by taking the time derivative

of the angular momentum:

~̇H l2 = I2

(
Jω2

¨̄q + J̇ω2
˙̄q
)

+ ~ωl2 × I2~ωl2
~̇H l1 = I1Jω1

¨̄q

~̇H l3 = I3

(
Jω3

¨̄q + J̇ω3
˙̄q
)

+ ~ωl3 × I3~ωl3
~̇H l4 = I4Jω4

¨̄q

~̇H lb = Ib

(
Jωb

¨̄q + J̇ωb
˙̄q
)

+ ~ωlb × Ib~ωlb (2.96)

where the cross product terms ~ωli×Ii~ωli are the result of the angular velocities being expressed

with respect to the local moving frames [39].

2.3.2 Force and Moment

The source of the forces and moments acting on the platform rigid bodies are the weight of the

linkages and the aerodynamic effects generated by the rotor blades. To simplify the development
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of the platform model, a projected generalized force vector τ̄ is defined as:

τ̄ =
[
τ1 τ2 τ3 τ4 τ5 τ6

]T
(2.97)

where each of the projected generalized force τk is defined as the projected force and moment

terms on the right hand side of (2.79):

τk =
n∑
i=1

~F
a

i · ~βik +
n∑
i=1

~M
a

i · ~γik (2.98)

The gravitational force acting on each of the linkage body on the test platform ~F gi is simply

the product between the link mass mi and the gravitational acceleration g in the z direction of

the inertial frame (downward direction) projected to the respective local frame:

~F g2 = R0
2


0

0

m2g

 =


−m2gSq2

−m2gCq2

0

 ~F g1 =


0

0

m1g



~F g3 = R0
3


0

0

m3g

 =


−m3gSq2

−m2gCq2

0

 ~F g4 =


0

0

m4g



~F gb
= R0

b


0

0

mbg

 =


−m6gSq5

m6gCq5Sq6

m6gCq5Cq6

 (2.99)

With this, the projection of the gravity component to the generalized joint coordinate (τ̄ ) be-

comes:

τ̄ g =
4∑
i=1

JT
vi
~F gi + JT

vb
~F gb

=



0

− (m2ρ2 −m3ρ3 +m4l3) gCq2

0

0

0

0


+



0

−mbgl3Cq2

0

0

0

0


(2.100)
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where the subscript g denotes the gravity component.

Notice that the gravity component only has a non-zero entry in the component corresponding

to that of the elbow joint (q2). It is also independent of the slider joint variable q3. This is the

result of the modified workspace where the orientation of the slider joint is constrained to the

horizontal plane. As such, the elbow joint is the only joint that would move the platform in the

vertical direction.

Since none of the joints of the platform is actuated, the aerodynamic effects generated by the

two rotors of the helicopter are the remaining active force and moment acting on the platform

system. The rotor force and moment effects expressed in the body-fixed frame have be derived

in (2.52) – (2.57). The rotor effects acting on the platform system τ̄R can be obtained by

transforming the body-fixed effects τ̃R to the generalized joint space coordinate through the

Jacobian matrix J b between the joint rates and the body-fixed rates:

τ̄R = JT
b τ̃R (2.101)

where

J b ,

 Jvb

Jωb

 (2.102)

This mapping is analogous to the mapping of the end-effector force to the joint torque employed

in the end-effector force control method for robot manipulators [40].

2.3.3 Dynamic Equations

With the above definitions, the equations of motions for the test platform described by (2.77)

can be combined into a matrix form:

M̄(q̄)¨̄q + h̄(q̄, ˙̄q) = τ̄ (q̄, ˙̄q, ~u) (2.103)

where M̄(q̄) is the mass-inertial matrix, h̄(q̄, ˙̄q) contains the terms that are due to centrifugal

and Coriolis effects [40], and ~u is the helicopter control input vector. Similar to the UAV case,

the helicopter input vector consists of the collective θ0, the lateral cyclic A1 and the longitudinal

cyclic B1 pitch angles of the main rotor, and the rudder angle θtail of the tail rotor (the collective
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pitch angle of the tail rotor):

~u =
[
θ0 A1 B1 θtail

]T
(2.104)

The mass-inertial matrix M̄(q̄) is symmetric and has the form:

M̄(q̄) =



m11 0 0 m44 m15 m16

0 m22 m23 0 0 0

0 m23 m33 0 0 0

m44 0 0 m44 m15 m16

m15 0 0 m15 m55 m56

m16 0 0 m16 m56 m66


(2.105)

Appendix D.2 and D.3 contain the expanded expressions for M̄(q̄) and h̄(q̄, ˙̄q) respectively.

Contrary to the UAV case, the mass-inertia matrix of the platform system M̄(q̄) is not constant

and is dependent on the joint space variable vector q̄.

The platform model in (2.103) can be normalized similar to the UAV case:

ˆ̄M(ˆ̄q)¨̄̂q + ˆ̄h(ˆ̄q, ˙̄̂q) = ˆ̄τ (ˆ̄q, ˙̄̂q, ~u) (2.106)

The joint variable vector q̄ can be normalized according to the type of the joint variables:

ˆ̄q =
[
q1 q2

q3
R q4 q5 q6

]T
(2.107)

where only the slider joint q3 has dimensional length unit (m); the rest of the joints have non-

dimensional angular unit (rad). The corresponding normalized rate and acceleration joint vector

can be obtained as:

˙̄̂q =
[

q1
Ω

q2
Ω

q3
ΩR

q4
Ω

q5
Ω

q6
Ω

]T
¨̄̂q =

[
q̈1
Ω2

q̈2
Ω2

q̈3
Ω2R

q̈4
Ω2

q̈5
Ω2

q̈6
Ω2

]T (2.108)

Using the mass (ρAdiscR) and inertia (ρAdiscR
3) dimensional factors, the normalized mass-
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inertia matrix for the platform system can be defined as:

ˆ̄M(ˆ̄q) =



m̂11 0 0 m̂44 m̂15 m̂16

0 m̂22 m̂23 0 0 0

0 m̂23 m̂33 0 0 0

m̂44 0 0 m̂44 m̂15 m̂16

m̂15 0 0 m̂15 m̂55 m̂56

m̂16 0 0 m̂16 m̂56 m̂66


(2.109)

where the normalized mass quantity corresponds to the slider joint q3:

m̂33 =
m33

ρAdiscR
(2.110)

whereas the normalized inertia quantities correspond to the other rotatory joints:

m̂11 =
m11

ρAdiscR3
m̂22 =

m22

ρAdiscR3
m̂44 =

m44

ρAdiscR3

m̂55 =
m55

ρAdiscR3
m̂66 =

m66

ρAdiscR3
m̂15 =

m15

ρAdiscR3

m̂16 =
m16

ρAdiscR3
m̂56 =

m56

ρAdiscR3
(2.111)

and finally, the coupled normalized entries between q2 and q3 joints:

m̂23 =
m23

ρAdiscR2
(2.112)

The normalized ˆ̄h and ˆ̄τ can be obtained accordingly by dividing the appropriate dimensional

factors.

2.4 Platform and UAV Models Relation

Recall the platform system model in (2.103) has been developed to include the dynamics of both

the platform linkage and the helicopter rigid body. In comparison, the UAV model developed in

(2.65) consists only of the helicopter rigid body model. This means the UAV model is a special

case of the platform model. From these observations, the following theorem is formulated:
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Theorem 2.1 Assuming it is not near its singular points, the platform model defined in (2.103)

converges to the UAV Model defined in (2.65) as the mass and inertia of the platform linkages

approach zero.

Proof: Theorem 2.1

Recall the platform model in (2.103) was derived from the statement of the Principle of

Virtual Power. As the mass and inertia of the platform linkage goes to zero, the matrix equation

of the Principle of Virtual Power in (2.81) is reduced to:


β̃
T
b1 γ̃Tb1
...

...

β̃
T
b6 γ̃Tb6


︸ ︷︷ ︸

Jb(q̄)T

 mb
˙̃vb

˙̃Hb

 =


β̃
T
b1 γ̃Tb1
...

...

β̃
T
b6 γ̃Tb6


︸ ︷︷ ︸

Jb(q̄)T

 F̃
a
b

M̃
a
b

 (2.113)

With the assumption that the helicopter is not near its singularity points, this can now be

reduced to (2.65) by cancelling out JT
b and expanding the rate, acceleration, force and moment

vectors in the helicopter body fixed (local) frame.

Theorem 2.1 shows that in the limit as the platform mass and inertia vanish, so will their

effects on the system dynamics. In such a case, the system behaviour will be identical to that of

the UAV model. However, to relate the platform and the UAV models when the platform mass

and inertia are non-zero, a mapping between the two models is needed. Since the UAV model

is defined with respect to the body fixed frame of the helicopter, while the platform model is

defined in terms of the platform joint coordinates, a first step in relating the two cases is to

express the platform model in the helicopter body fixed frame. The following Lemma gives a

mapping of the platform model from the joint coordinates to the body fixed coordinates:

Lemma 2.1 Assuming the helicopter platform system is not near its singularity points, a map-

ping that relates the platform model in (2.103), where it is expressed in terms of the platform
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joint variables, to the one that is expressed in the body fixed frame can be defined as:

M̃(~Θ) =
[
J b(~Θ)−1

]T
M̄(~Θ)J b(~Θ)−1

h̃(~Θ, ˙̃Φ) =
[
J b(~Θ)−1

]T
h̄(~Θ, ˙̃Φ)− M̃(~Θ)J̇ b(~Θ)J b(~Θ)−1 ˙̃Φ

τ̃ (~Θ, ˙̃Φ, ~u) =
[
J b(~Θ)−1

]T
τ̄ (~Θ, ˙̃Φ, ~u)

(2.114)

such that

M̃(~Θ) ¨̃Φ + h̃(~Θ, ˙̃Φ) = τ̃ (~Θ, ˙̃Φ, ~u) (2.115)

where x̃ denotes quantities expressed in the helicopter body frame; while x̄ denotes quantities

expressed with respect to the generalized joint coordinates.

Proof: Lemma 2.1

The mapping between the coordinate vectors q̄ and ~Θ can be obtained in two steps. First,

the position and attitude of the helicopter body (~Θ) is expressed in terms of the joint variables

(q̄). Then, the desired mapping is obtained by solving for the inverse relationship to express q̄

in terms of ~Θ. The helicopter body position is given by expanding the position vector defined

in (2.85): 
x

y

z

 =


(ls + q3 + l3Cq2)Cq1

(ls + q3 + l3Cq2)Sq2

−(l1 + l2 + l4 + l3Sq2)

 (2.116)

From the geometry of the platform, the Euler angles of the helicopter body are given as

follows. 
φ

θ

ψ

 =


q6

q5

q1 + q4

 (2.117)
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Assuming the platform is not near its singularity points, the position and attitude equations

in (2.116) and (2.117) can be solved together to obtain the following inverse mapping:

q̄ =



q1

q2

q3

q4

q5

q6


=



arctan
( y
x

)
arcsin

(
− z+l1+l2+l4

l3

)
√
x2 + y2 − ls −

√
l23 − (z + l1 + l2 + l4)2

ψ − arctan
( y
x

)
θ

φ


, ~f(~Θ) (2.118)

The mapping between the joint rates and the body rates are defined by the inverse Jacobian:

˙̄q = J−1
b

˙̃Φ (2.119)

The rate of change of the helicopter position and attitude vector ~̇Θ can be expressed in terms

of the body rate vector ˙̃Φ by the following relationship:

~̇Θ =



ẋ

ẏ

ż

φ̇

θ̇

ψ̇


=

 Rb
0 03×3

03×3 (REuler)−1





u

v

w

p

q

r


, T (~Θ) ˙̃Φ (2.120)

which is derived by transforming the linear velocity in the body frame to the inertial frame

through the rotation matrix Rb
0 and mapping the angular body rate to the rate of change of the

Euler angles through (REuler)−1. The rotation matrix Rb
0 and matrix mapping (REuler)−1 can

be found in Appendix A.3.3 and Appendix A.1.1 respectively.

The rate of change of the body rate vector ¨̃Φ can be obtained from the time derivative of

the Jacobian relationship:
¨̃Φ = J̇ b ˙̄q + J b¨̄q (2.121)
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Substituting expressions for q̄, ˙̄q and ¨̄q from (2.118), (2.119), and (2.103), the above expression

can be re-arranged into:

M̄(~Θ)J b(~Θ)−1 ¨̃Φ +
[
h̄(~Θ, ˙̃Φ)−M(~Θ)J b(~Θ)−1J̇ b(~Θ)J b(~Θ)−1 ˙̃Φ

]
= τ̄ (~Θ, ˙̃Φ, ~u) (2.122)

where M̄(~Θ), h̄(~Θ), ˙̃Φ), and τ̄ (~Θ, ˙̃Φ, ~u) are components of the platform model expressed in

joint space, with the exception that the joint variables are substituted in terms of the body

position, attitude and rates according to (2.118) and (2.119).

Next, the relationship between the generalized force vectors τ̄ (~Θ, ˙̃Φ, ~u) and τ̃ (~Θ, ˙̃Φ, ~u) is:

τ̄ (~Θ, ˙̃Φ, ~u) = J b(~Θ)T τ̃ (~Θ, ˙̃Φ, ~u) (2.123)

This relationship is obtained by interpreting the generalized force expressed in the body frame as

an end-effector force applied to the platform linkage structure. Then through the use of virtual

work, the above relationship between τ̄ (~Θ, ˙̃Φ, ~u) and τ̃ (~Θ, ˙̃Φ, ~u) is obtained [40].

Finally, substituting (2.123) into (2.122) to get:([
J b(~Θ)−1

]T
M̄(~Θ)J b(~Θ)−1

)
¨̃Φ

+
[
J b(~Θ)−1

]T
h̄(~Θ, ˙̃Φ)−

([
J b(~Θ)−1

]T
M̄(~Θ)J b(~Θ)−1

)
J̇ b(~Θ)J b(~Θ)−1 ˙̃Φ

= τ̃ (~Θ, ˙̃Φ, ~u)

(2.124)

which gives the desired mapping relationship.

Lemma 2.1 provides a mapping to relate the platform model expressed in the joint space and

in the body-fixed frame. According to Theorem 2.1, the body components M̃(~Θ), h̃(~Θ, ˙̃Φ), and

τ̃ (~Θ, ˙̃Φ, ~u) defined in (2.114) will converge to those of the UAV model defined in (2.65) as the

mass and inertia of the platform linkage approaches zero. This represents the scenario where a

stand alone helicopter is attached to a virtual platform whose linkages have zero mass and inertia.

Such interpretation will be used in the development of a control strategy applicable for both the

UAV and the platform system. Furthermore, it will be shown that the nonlinear coordinate

mapping provides a systematic method to investigate the effect of the platform linkage setup,

such as counter balance configuration, on the dynamic behaviour of the platform system and
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how it relates to the UAV model.

2.5 Summary

In this chapter, the rigid body model of a stand alone helicopter (UAV model) has been derived

with a quasi-steady rotor model that accounts for the effect of the helicopter rigid body dy-

namics. In addition, the helicopter test platform used in this research has been introduced and

its nonlinear 6 DOF model has been derived. Through the derivation of the dynamic models

for both the UAV and the platform systems, it is shown that the platform model approaches

that of the UAV system as the mass and inertia of the platform linkage are reduced to zero.

Furthermore, a nonlinear mapping that transforms the platform model between joint space and

body frame coordinate was derived. This allows systematic analysis and comparison between

the platform model (derived in joint space) and the UAV model (derived in body frame).

In summary, the contributions presented in this chapter are:

� the nonlinear model for the platform system has been derived

� a systematic mapping between the platform and UAV model has been developed
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Model Analysis

In this chapter, the platform system model derived in Chapter 2 will be examined more closely.

In particular, the payload equation derived from the platform system dynamic model defined

in (2.103) will be analyzed. The payload equation gives rise to the investigation into the effect

of the platform counter weight configuration on the system operating point. Linearization is

then applied to both the UAV and the Platform system model around the same operating point

for comparisons. Linearization to the Platform system model around the same operating point

for the different counter weight configurations is also performed to examine the resulting mode

changes in the system dynamics. In total, four Platform configurations are examined: UAV,

BALANCED, REDUCED and HANGAR.

3.1 Helicopter Trim

A helicopter is referred to being at trim when it is operating in equilibrium (zero acceleration)

with fixed (constant) control inputs [12]. Typical trim conditions include hover (zero linear ve-

locity) and constant speed flight. Helicopter dynamic behaviour can vary significantly depending

on the the condition under which it is operating, such as whether it is in hover or in forward

flight [10, 12]. This makes the operating point a significant factor to consider when performing

system analysis. In this thesis, only the hover condition is studied for both the Platform and

the UAV systems.

For the UAV system, the hover trim condition is obtained by setting both the rate and

56
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acceleration of the helicopter to zero:

¨̃Φ =
[
u̇ v̇ ẇ ṗ q̇ ṙ

]T
= ~06×1, and ˙̃Φ =

[
u v w p q r

]T
= ~06×1, (3.1)

where u, v, and w are the linear and p, q, and r are the angular velocities of the helicopter,

expressed with respect to the body-fixed frame. When applying the hover trim condition to the

dynamic model of the UAV system in (2.65),

M̃ ¨̃Φ + h̃( ˙̃Φ) = τ̃ (~Θ, ˙̃Φ, ~u), (2.65)

the trim equations can be obtained as

τ̃ e(~Θe, ~06×1, ~ue) = ~06×1, (3.2)

where τ̃ e is the generalized body force of the helicopter at trim (which is, by definition, equal

to zero in equilibrium); ~Θe is the position and attitude (orientation) of the helicopter at trim;

and ~ue is the rotor trim control inputs. Obtaining the hover trim conditions for the helicopter

therefore involves solving the six equations represented in (3.2) for the six position and attitude

variables in ~Θe and the four rotor control input variables in ~ue:

~Θe =
[
xe ye ze φe θe ψe

]T
, and ~ue =

[
θ0e A1e B1e θtaile

]T
.

In general, to obtain the solution to the six hover trim equations, four out of the ten unknowns

are set arbitrarily. Upon examination of the trim equations in (3.2), the trim condition is

independent of the position (x, y, and z) and heading (ψ) of the helicopter. This is intuitive

since a helicopter is capable of hovering at arbitrary position and heading. As such, the hover

trim condition for the UAV helicopter is defined by the four rotor control inputs (θ0e , A1e , B1e ,

and θtaile), together with the roll (φe) and pitch (θe) angles of the helicopter rigid body.

Mapping the UAV hover trim conditions in (3.1) to that of the Platform system yields:

¨̄q =
[
q̈1 q̈2 q̈3 q̈4 q̈5 q̈6

]T
= ~06×1, and ˙̄q =

[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T
= ~06×1.

(3.3)
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Applying this hover trim condition to the corresponding dynamic model for the Platform system

derived in (2.103)

M̄(q̄)¨̄q + h̄(q̄, ˙̄q) = τ̄ (q̄, ˙̄q, ~u) (2.103)

would result in

τ̄ (q̄e, ~06×1, ~ue) = ~06×1. (3.4)

Similar to the UAV case, there are six equations with ten unknowns (six joint variables and

four inputs) to solve for. In this case, the position and heading of the helicopter rigid body are

represented by the lower four joints (q1 to q4). At first glance, the trim solution to (3.4) would

be dependent on these lower joint variables. In particular, the weight effect of the platform

linkage has a direct consequence on the gravity vector through the elbow joint q2, as illustrated

in (2.100). When the platform hover condition in (3.4) is expanded and re-arranged in terms of

the gravity and rotor components

0[
m̂2ρ̂2 − m̂3ρ̂3 + (m̂4 + m̂b)l̂3

]
ĝ cos(q̂2)

0

0

0

0


= Jb(q̄)T



ˆ̃XR

ˆ̃Y R

ˆ̃ZR

ˆ̃LR

ˆ̃MR

ˆ̃NR


, (3.5)

the component corresponding to the elbow joint q2 is the only non-zero element in the gravity

vector. This term represent the effective weight experienced by the helicopter rotors due to the

combined weight of the platform linkages and the helicopter body. Defining the non-dimensional

apparent payload Ŵp as

Ŵp ,
[
m̂2ρ̂2 − m̂3ρ̂3 + (m̂4 + m̂b)l̂3

] ĝ
l̂3
. (3.6)

When the trim equation in (3.5) is projected to the body-fixed frame through the Jacobian
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J b(q̄)T , it can be expressed in terms of the apparent payload Ŵp as

Ŵp



− sin(q5)

cos(q5) sin(q6)

cos(q5) cos(q6)

0

0

0


=



ˆ̃XR

ˆ̃Y R

ˆ̃ZR

ˆ̃LR

ˆ̃MR

ˆ̃NR


, (3.7)

where simplification has been applied assuming the Platform system is not operating near its

singular points.

The generalized rotor forces represented on the right hand side of (3.7) are defined in (2.52)–

(2.57) and are independent of the platform parameters. Recall the trim condition is defined by

the trim inputs (~u) and the roll (φ or q6) and the pitch (θ or q5) angles of the helicopter. This

means that the platform effect on the trim condition can be summarized into a single term in

the apparent payload Ŵp. Since the apparent payload is also independent of the lower joint

variables (q1 to q4), other than the restriction of not being near any of the singularities, the trim

condition is also independent of the position and attitude of the helicopter, just as in the UAV

case. Furthermore, for a fixed set of helicopter parameters, only the apparent payload defines

the trim condition. In other words, different platform configurations (such as moving the counter

weight location or using a different counter weight for balancing) would operate at the same trim

provided their apparent payload Ŵp are equal. Such scenarios will be explored in more details in

the subsequent sections.

3.2 Payload Equation

One of the consequences of being able to define the trim condition with the apparent payload

Ŵp is that it gives rise to the possibility of setting up different configurations of the platform

system to operate at the same trim. This allows direct comparison of the effects on the system

behaviour of various parameters (such as the location of the counter weight). More importantly,

it enables the potential to match the operating point of the platform system to any target UAV

systems, allowing comparison as well as potential derivation of equivalence conditions.
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From the result of Lemma 2.1, the UAV system model can be defined in terms of the joint

space variables qi as

M̄U(q̄)¨̄q + h̄U(q̄, ˙̄q) = τ̄U(q̄, ˙̄q, ~u), (3.8)

where the subscript U denotes the model for the UAV system. This model is expressed in

terms of the joint space coordinates q̄ and represents a target UAV system mounted on a virtual

platform (which has mass-less links). As the only difference between the system in (3.8) and the

one in (2.65) is the nonlinear coordinate mapping presented in Lemma 2.1, the two systems will

be used interchangeably hereinafter.

In non-dimensional form, the UAV system can be expressed as

ˆ̄MU(q̄)¨̄q + ˆ̄hU(q̄, ˙̄q) = ˆ̄τU(q̄, ˙̄q, ~u). (3.9)

The apparent payload of this UAV system is just the weight of the helicopter body

Ŵp = m̂bĝ. (3.10)

To match the operating point of the target UAV system to that of a platform system, where

the target UAV helicopter is mounted on real linkages, the two apparent payload expressions are

equated to form

m̂bĝ =
[
m̂2ρ̂2 − m̂3ρ̂3 + (m̂4 + m̂b)l̂3

] ĝ
l̂3
, (3.11)

which can be simplified as

m̂3ρ̂3 =
1

l̂3
(m̂2ρ̂2 + m̂4ρ̂4), (3.12)

where the term m̂3ρ̂3, representing the counter weight configuration on a platform system, has

been isolated. This gives the condition for matching the operating points between the UAV and

the Platform system. In fact, any platform systems whose counter weight configuration (defined

by the mass and location of the weight mounted in the main boom of the platform) satisfying

(3.12) would have the same trim as the UAV system. Such a platform system configuration

will be referred to as the BALANCED configuration, where the effective function of the counter

weight on the main boom is to gravity balance the mass of the platform linkage structure. Notice

that the balanced condition given in (3.12) is independent of the helicopter parameter (m̂b). That
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is a consequence of having the same helicopter for the target UAV and the Platform system.

This also means that the matching trim condition is independent of the material used for the

platform linkages, as long as appropriate counter weight is setup to satisfy (3.12). Furthermore,

the condition in (3.11) has been specified in term of non-dimensional parameters, allowing the

platform parameters to be scaled according to the non-dimensionalize force factor ρAdisc(ΩR)2.

One particular scenario is the scaling through the rotor speed Ω, which would have an effect on

the payload balance equation and will be examined later in this chapter.

3.2.1 Trim Values for the BALANCED Configuration

Using the parameter values for the UAV system listed in Appendix E, the trim conditions

obtained by solving (3.2) are shown in Table 3.1.

Variables Values Variables Values
θ0e 0.12 rad (6.9◦) θtaile 0.21 rad (12.3◦)
A1e 0.0 rad (0.0◦) B1e −0.053 rad (−3.0◦)
q5e −0.053 rad (−3.0◦) q6e 0.053 rad (3.0◦)

Table 3.1: Hover Trim Condition

With the same helicopter operating conditions as the UAV system (same rotor speed Ω and

rotor radius R), the BALANCED platform configuration will have the same trim conditions as

listed in Table 3.1, since (3.12) is satisfied. The model for the Platform system setup with the

BALANCED configuration will be denoted with the subscript B as

ˆ̄MB(ˆ̄q)¨̄̂q + ˆ̄hB(ˆ̄q, ˙̄̂q) = ˆ̄τB(ˆ̄q, ˙̄̂q, ~u) (3.13)

hereinafter.

3.3 Linearization

For comparison, the Platform system with the BALANCED configuration and the UAV system

will be linearized in this section about the hover trim conditions defined in Table 3.1 to examine

their respective dynamic modes. Let the state vector X̄ be defined as consisting of the joint
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variable vector q̄ and its rate vector ˙̄q:

X̄ =

 q̄

˙̄q

 . (3.14)

From the nonlinear models for the Platform system defined in (2.103), the rate of change of the

state vector X̄ is then defined by the following vector function F̄(X̄, ~u):

˙̄X = F̄(X̄, ~u) =

 ˙̄q

¨̄q

 =

 F̄1(X̄)

F̄2(X̄, ~u)

 =

 ˙̄q

M̄(q̄)−1
[
τ̄ (q̄, ˙̄q, ~u)− h̄(q̄, ˙̄q)

]
 . (3.15)

The linearization of the Platform model is obtained by expanding the nonlinear vector func-

tion defined in (3.15) around the hover equilibrium point (X̄e and ~ue) through a Taylor series

expansion [42]:

˙̄Xe + ∆ ˙̄X = F̄(X̄e, ~ue) +
∂F̄
∂X̄

∣∣∣∣
X̄e,~ue

∆X̄ +
∂F̄
∂~u

∣∣∣∣
X̄e,~ue

∆~u + Higher Order Terms, (3.16)

where ∆X̄ = X̄ − X̄e , X̄ and ∆~u = ~u − ~ue , ~U . Applying the hover definition of ˙̄X = 0 and

ignoring the higher order terms, the linearization of the Platform model becomes

∆ ˙̄X =
∂F̄
∂X̄

∣∣∣∣
X̄e,~ue

∆X̄ +
∂F̄
∂~u

∣∣∣∣
X̄e,~ue

∆~u

, ĀX̄ + B̄~U ,
(3.17)

where the system matrix Ā and the input matrix B̄ can be partitioned into

Ā =

 ∂F̄1
∂q̄

∣∣∣
X̄e,~ue

∂F̄1

∂ ˙̄q

∣∣∣
X̄e,~ue

∂F̄2
∂q̄

∣∣∣
X̄e,~ue

∂F̄2

∂ ˙̄q

∣∣∣
X̄e,~ue

 and B̄ =

 ∂F̄1
∂~u

∣∣∣
X̄e,~ue

∂F̄2
∂~u

∣∣∣
X̄e,~ue

 . (3.18)

The linear model for the UAV system can be obtained similarly by applying the linearization

procedure described above to the UAV model in (3.8).

The modes of a Multiple-Input Multiple-Output (MIMO) system, such as the Platform and

the UAV systems, are defined by the eigenvalues of the matrix Ā. Substituting the parameter

values for the UAV system listed in Appendix E to the linearized model, its modal frequencies
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around the hover trim condition are given by

eig(ĀU) =



~04×1

0.42± 1.08 j

0.34

0.15

−4.23

−2.24

−1.21

−0.75



, (3.19)

where the subscript U is used to denote the linearized model for the UAV system and j ,
√
−1 is

the imaginary number. The four poles at the origin represent the integrator dynamics associated

with the position and heading of the helicopter (see Appendix F). As they do not have any effects

on the flight dynamics, these modes are not usually considered by most helicopter models in the

flight control literature [8, 43, 14, 31, 44, 45, 46, 47]. This results in the more common eighth

order linear model instead of the twelfth order linear model represented in (3.17). Four of the

eight modes remaining belong to the longitudinal modes while the rest are the lateral modes.

The longitudinal modes consist of the unstable oscillatory mode in the complex pole pair at

0.42 ± 1.08 j, which is typically referred to as the phugoid mode that couples the dynamics

between forward speed (u) and pitching rate (q) [10, 12]. The other two longitudinal modes are

the stable poles at −2.24 and −0.75, which roughly correspond to the stable damped dynamics

for the pitch (θ) and heave (height) motion (w) respectively [10, 12]. The lateral modes consist

of the unstable poles at 0.34 and 0.15 that roughly correspond to the unstable side slip motion

that associates with the lateral velocity (v) and rolling rate (p). Finally, the two remaining stable

poles at −1.21 and −4.23 are associated with the damped yaw rate (r) and roll (φ) responses

respectively.

The linearized modal frequencies around the hover trim point for the Platform system with

the BALANCED configuration at its home position and heading (that is qi = 0 for i from 1 to
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4) is given by

eig(ĀB) =



~04×1

0.41± 1.08 j

0.2± 0.05 j

−4.36

−2.03

−1.16

−0.52


. (3.20)

For comparison, the eigenvalues for the UAV system are plotted side-by-side with those for

the BALANCED case in Figure 3.1(a) and Figure 3.1(b). Overall, the modes between the
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Figure 3.1: System Poles Around Hover (q4 = 0)

BALANCED and the UAV systems are very similar. The primary difference between them is in
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the unstable lateral modes. While the unstable lateral modes in the UAV systems are damped

(at 0.34 and 0.15), the one for the BALANCED case (at 0.2± 0.05 j) are oscillatory. This is the

effect of the added mass and inertia has on the lateral dynamic due to the heading orientation

of the helicopter relative to the platform (i.e. q4 = 0). Contrary to the linearization of the UAV

system, the linearization of the Platform system around the hover trim point is dependent on the

position and heading of the helicopter because of the presence of the additional mass and inertia

from the platform linkages. For instance, when the Platform system with the BALANCED

configuration is linearized about q4 = π/2, while keeping q1, q2, and q3 at zero, the platform

linkage effect is switched to the longitudinal modes. This is illustrated in Figure 3.2(a) and

Figure 3.2(b), where the modes of the BALANCED case with q4 = π/2 is plotted side-by-side

with the ones for the UAV case.
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Figure 3.2: System Poles Around Hover (q4 = π/2)
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The linear modal frequencies for the BALANCED case with q4 = π/2 is listed below:

eig(ĀB) =



~04×1

0.36± 0.96 j

0.33

0.16

−4.24

−2.17

−1.14

−0.52



. (3.21)

In this case (q4 = π/2), the primary difference with the UAV system is manifested in the longitu-

dinal modes due to the changes in the relative orientation. In particular, the UAV longitudinal

phugoid mode at 0.42 ± 1.08 j is reduced to 0.36 ± 0.96 j. Also the stable damped pitch and

heave mode at −2.24 and −0.75 are shifted to −2.17 and −0.52 respectively.

Additional change is observed in the yaw rate response. It went from −1.21 for the UAV

system to the BALANCED system of −1.16 and −1.14 for the q4 = 0 and q4 = π/2 cases

respectively. The reason the yaw rate response is affected in both of these cases is that the

absolute yaw orientation ψ of the helicopter is defined as the sum of the base (q1) and the yaw

(q4) joints of the platform:

ψ = q1 + q4.

As such, the effect of the platform linkage on the yaw rate response is similar regardless of the

yaw joint (q4).

The general trend of the effect of the platform linkages on the helicopter behaviour can be

observed by tracing out the variations in the poles while gradually increasing the values of the

link mass and inertia from zero, which corresponds to the UAV system attached to a virtual

platform. Figure 3.3 shows the trace plot of the poles for both the q4 = 0 and the q4 = π/2

cases. The cross symbol (×) denotes poles for the UAV system. These poles are then traced,

moving towards the4 symbol, as the mass and inertia of the platform linkages (mi, Ixxi , Iyyi , and

Izzi for i from 1 to 4) are increased gradually, while satisfying the payload condition in (3.12).

Notice that by satisfying (3.12), the system remains to be operating under the BALANCED
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configuration, hence under the same trim condition. In the case of Figure 3.3, the platform link
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Figure 3.3: BALANCED Pole Trace: Varying Mass and Inertia

mass and inertia are adjusted uniformly by dividing through a scaling factor ζp. This makes

satisfying (3.12) straightforward:

m̂3

ζp
ρ̂3 =

1

l̂3

(
m̂2

ζp
ρ̂2 +

m̂4

ζp
ρ̂4

)
(3.22)

As ζp → ∞, the mass and inertia will approach zero and the system will resemble the UAV

case. On the opposite end, as ζp is reduced, the mass and inertia will be increased. When ζp

is reduced to 1, the poles will correspond to those shown in Figure 3.1(a) and Figure 3.2(a).

Then, as ζp is reduced further, it represents systems with heavier platform linkages than the

target platform employed in this research (as defined by the parameter values listed under the

BALANCED configuration in Appendix E). The triangle symbol (4) represents the poles of a

system with ζp = 0.001, or with links about one thousandth times more massive than the target

platform in the BALANCED configuration.

From Figure 3.3, in both the q4 = 0 and the q4 = π/2 cases, as the platform linkages become

more and more massive (ζp → 0), most of the poles tend to converge towards the origin. The sole

exception is for the one pole associated with the stable damped roll (φ) response on the far left

of the complex plane, which moves towards negative infinity. This indicates that as the platform

linkages become more massive, the system behaviour tends to resemble more and more to those

of the integrator-like dynamics. This observation agrees with the intuition that the platform
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linkages dominate the rotor response of the helicopter and become the system dynamics as their

mass and inertia increases.

Figure 3.3 also illustrates how the the effect of the platform link mass and inertia on the

system dynamics is dependent on the helicopter heading orientation. For q4 = 0, the helicopter

longitudinal direction is aligned along the platform linkage. As such, the platform effect is

more significant for the lateral dynamics than for the longitudinal dynamics, as indicated in the

relatively stationary phugoid mode. On the other hand, for q4 = π/2, the longitudinal direction

is perpendicular to the platform linkages. Therefore, the platform mass and inertia has a more

significant impact on the longitudinal dynamics than the lateral dynamics. This is indicated by

the relatively large reduction in the phugoid mode.

Finally, notice that the pole trace plots shown in Figure 3.3 are obtained by applying lin-

earization repeatedly to the nonlinear system model as the scaling factor ζp is varied. These

plots provide a systematic tool for tracking changes in the system dynamics due to changes in

the system parameters. For instance, Figure 3.3 can be used to compare the dynamics between

two test platforms made up of different materials provided they are set up to operate at the

same trim condition.

3.4 Reduced Rotor Speed Configurations

The BALANCED configuration defined previously is assumed to have the same helicopter pa-

rameters as the UAV system. However, when operating in an indoor laboratory setting, certain

limitations might need to be imposed onto the operation of the Platform system such that the

helicopter parameters cannot be matched. For instance, the Platform system might need to be

operating under a reduced rotor speed. Such requirement could be due to safety concern arising

from the proximity of the experiment to the research personnel. Alternatively, the use of electric

motor instead of gas engine for indoor operation might limit the rotor power available, requiring

the operation be carried with reduced rotor speed. In this section, such a reduced main rotor

speed configuration, referred to as the REDUCED configuration, will be investigated.

Recall the UAV case refers to the case with a helicopter mounted on a virtual platform that

has the same geometrical dimensions as the platform in the BALANCED case. The UAV case

represents the reference or benchmark system to which research on the Platform system would
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be compared. Through the result from Lemma 2.1, it is also the theoretical equivalent to a

stand alone UAV system. The BALANCED configuration represents the ideal case under which

the Platform can be setup to mimic the UAV system behaviour. It addresses the need to have

physical platform linkages for support in the quest for safe indoor operations through the use

of the payload equation as the Platform setup criteria. In the REDUCED configuration, the

implementation of the Platform system for UAV research is taken a step further to address the

limitation in the main rotor speed within the indoor setting. It will be shown that the matching

trim criteria dictates that the counter weight setup be adjusted away from the BALANCED

configuration in order to compensate for the variation in the main rotor speed.

3.4.1 Main Rotor Speed/Counter Weight Trade-Off

Recall that the trim matching condition between the UAV and the Platform systems is defined

by matching the apparent payload between them. The apparent payload matching condition in

(3.11) is expressed in terms of non-dimensional parameters and is thus independent of helicopter

dimensional quantities, such as the rotor radius R and the rotor speed Ω. This means systems

with different rotor speed or rotor radius can still be configured to operate at the same trim as

long as their non-dimensional apparent payload satisfy (3.11). For the REDUCED–UAV config-

uration matching, the apparent payload matching condition in (3.11) can be expanded explicitly

in terms of the main rotor speed for the REDUCED (ΩD) and the UAV (ΩU) configurations as

(
mb

ρAdiscR

)(
g

Ω2
UR

)
=
[(

m2

ρAdiscR

)(ρ2

R

)
−
(

m3

ρAdiscR

)(ρ3

R

)
+
(
m4 +mb

ρAdiscR

)(
l3
R

)][
g/(Ω2

DR)
l3/R

]
, (3.23)

where the rotor radius R is assumed to be the same for both cases. This can be simplified into

m3ρ3 = −mbl3(Ω̌2 − 1) +m2ρ2 +m4l3, (3.24)

where Ω̌ , ΩD/ΩU is the ratio between the main rotor speed of the two configurations. The

quadratic constraint represented in (3.24) between the rotor speed ratio (Ω̌) and the counter

weight configuration parameters (represented by the product m3ρ3) is illustrated in Figure 3.4.
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The Platform systems that correspond to the points along the curve in Figure 3.4 would be

operating under the same trim condition. When Ω̌ = 1, (3.24) reverts back to the apparent

payload matching condition for the BALANCED–UAV case defined in (3.12) as expected. The

condition Ω̌ < 1 represents the set of Platform systems that are set to operate at a reduced

main rotor speed while maintaining the same trim condition when compared to the target UAV

system. The previously defined REDUCED configuration falls within this set. As the ratio of the

main rotor speed decreases, the counter weight configuration (m3ρ3) will need to be increased to

compensate for the reduction in thrust in order to maintain the trim condition. In the limit when

Ω̌ = 0, it represents the scenario where the counter weight configuration would have been set

to completely compensate for the effect caused by both the platform linkage and the helicopter

body

m3ρ3 = m2ρ2 + (m4 +mb)l3. (3.25)

Under such scenario, the trim condition is upheld solely by the counter weight instead of through

the thrust generated by the helicopter rotor. At the other end, when Ω̌ > 1, it represents the

scenario where the reduction in the counter weight effect (less gravity compensation) is offset

by the increase in thrust due to the increased rotor speed. When m3ρ3 = 0, the case where no

counter weight is used, the platform linkage effect is compensated completely by the increased

rotor thrust.

Recall the product m3ρ3 represents the

m3ρ3 = −mbl3(Ω̌
2
− 1) + m2ρ2 + m4l3

m3ρ3

mbl3

m2ρ2 + m4l3

Ω̌

Ω̌ = 1

Figure 3.4: Speed/Weight Trade-Off

parameter for the composite body consisting

of both the main boom and the counter weight

on the platform (Link 3 in Figure 2.6). When

discussing changes in the counter weight set-

ting, it is more convenient to consider the ef-

fect contributed by the bare main boom and

those by the counter weight separately. That

is because practically, when adjusting the plat-

form configuration, it is only the counter weight

portion that is varied. The bare main boom

portion would otherwise remain constant. For
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counter weight change discussion hereinafter, a set of parameters with subscript w, such as mw

and ρw, are introduced to denote quantities for the counter weight alone. Depending on the con-

text, the parameters with subscript 3 will then be understood as denoting quantities for either

the full composite main boom (including the counter weight effect) or the bare main boom only.

With this change of notation, the main rotor speed and counter weight trade-off constraint in

(3.24) can be updated into

mwρw = −mbl3(Ω̌2 − 1) +m2ρ2 −m3ρ3 +m4l3, (3.26)

where mw is the counter weight mass; ρw is the location of the centre of mass of the counter

weight relative to the elbow (q2) joint of the platform; m3 and ρ3 here refer to the mass and

centre of mass of the bare main boom. Notice that, for consistency, the direction for the location

of the centre of mass of the bare main boom ρ3 is kept the same as defined previously, which

results in ρ3 being negative for the bare boom only case (see Appendix E).

Pole Trace Plot for Varying Main Rotor Speed

Physically, there are two ways to satisfy the rotor speed and counter weight trade-off represented

by (3.26): either fixes the counter weight mass and adjusts its location; or fixes the mount location

but adjusts the counter weight mass. It is more convenient to do the former since varying the

mass mw necessitates change in the inertia associated with the counter weight as well (such as

Ixxw).

For the following analysis, the counter weight mass is assumed to be kept constant while its

mount location on the main boom is adjusted. In particular, the value of mw = 5.7 kg from the

BALANCED configuration (see Appendix E) will be used. Figure 3.5 illustrates the trace plots

for the poles of the Platform system as its main rotor speed is varied with respect to the one

for the BALANCED/UAV configuration while its counter weight setting is adjusted according

to (3.26). Figure 3.5(a) shows the trace plots for the q4 = 0 case while Figure 3.5(b) shows the

q4 = π/2 case. As an example, when the main rotor speed ratio is set to half of that from the

BALANCED/UAV configuration, that is Ω̌ = 0.5, the resulting location of the mw = 5.7 kg

counter weight is given by ρw = 0.919 m, with the parameter values for the BALANCED

configuration substituted into (3.26). The physical limit of mwρw = 0 for the counter weight
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setting imposes an upper bound for the main rotor speed ratio given by

Ω̌ ≤

√
m2ρ2 −m3ρ3 + (m4 +mb)l3

mbl3
, (3.27)

which yields the value of Ω̌ ≤ 1.17 for the BALANCED configuration parameter values from

Appendix E.
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Figure 3.5: Pole Trace: Varying Rotor Speed

The trace plots in Figure 3.5 start with the poles for the Platform system with a main rotor

speed ratio of Ω̌ = 1.15, denoted by the cross symbol (×). This represents a system operating

with a fifteen percent increase in the main rotor speed relative to the BALANCED/UAV con-

figuration, while maintaining the same trim condition with ρw = 0.046 m. The triangle symbol

(4) marks the poles for the Platform system with a main rotor speed ratio of Ω̌ = 0.3 and

the counter weight set at ρw = 1.049 m, representing a seventy percent decrease in the main

rotor speed relative to that of the BALANCED/UAV configuration. The effect of the helicopter

heading relative to the platform (q4) is minimal as the pole movement are similar for the two

cases shown in Figure 3.5. The movement of the poles tends uniformly towards the origin as

the main rotor speed is reduced. This means as the main rotor speed is reduced, the system

dynamic response would also slow down. An alternate interpretation of this is that as the main

rotor speed is reduced, (3.26) dictates that the counter weight be moved further and further

away from the elbow (q2) joint. That has a net effect analogous to those of increasing the mass

and inertia of the platform linkages as shown in Figure 3.3. Whereas the influence by changes
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in the link mass and inertia is dependent on the helicopter heading, changes in the main rotor

speed affect the system dynamics uniformly regardless of the heading.

The pole trace plots shown in Figure 3.5 illustrates the effects on the system modes by

changing the rotor speed while maintaining the same trim condition through the counter weight

location. This provides a guideline on how to compensate for variation in rotor speed with weight

configurations and vice versa.

Parameter Values for the Different Configurations

Configuration Description/Highlight
UAV � Served as the reference helicopter setup.

� Main rotor speed: Ω = 1761 RPM.
BALANCED � UAV setup with a physical platform.

� Same main rotor speed as UAV: Ω = 1761 RPM.
� Platform counter weight is setup for gravity balance: mw = 5.7 kg.

REDUCED � BALANCED configuration operated with reduced rotor speed.
� Same counter weight as the BALANCED case, but with location

changes to compensate for the reduced rotor speed: mw = 5.7 kg.
� Main rotor speed: Ω = 875 RPM.

HANGAR � REDUCED configuration operated with different counter weight.
� Heavier counter weight mass: mw = 14.8 kg.
� Main rotor speed: Ω = 875 RPM.

Table 3.2: Comparison between Configurations

Three Platform system configurations have been introduced thus far: the UAV, the BAL-

ANCED and the REDUCED configurations. There is a fourth configuration, referred to as

the HANGAR 1 configuration, defined in Appendix E. Recall the REDUCED configuration for

the Platform system has been introduced to address the need for a reduced main rotor speed

within the indoor laboratory environment. While the REDUCED configuration is obtained

from the BALANCED configuration by adjusting the location (ρw) of the counter weight mass

(mw = 5.7 kg) as the main rotor speed is varied; the HANGAR configuration uses a different

counter weight mass (mw = 14.8 kg) to achieve the trade-off balancing. The reason for this is

that the parameter values for the HANGAR configuration listed in Appendix E are obtained from

1HANGAR stands for the Helicopter Autonomous Navigation and Guidance Applied Research, a reference to
the laboratory in which this research originated.
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the actual experimentation setup in the laboratory for this research. The primary constraint

here is the limited power available through the electric motor. In this case, the main rotor speed

is constrained to operate at 875 RPM (Rotation-Per-Minute). The counter weight configuration

is then setup in such a way that the rotor running at 875 RPM can generate enough thrust for

the helicopter on the platform to lift off from its home position. This yields the values of

mw = 14.8 kg and ρw = 0.36 m,

as listed in Appendix E for the HANGAR configuration. Substituting the parameter values for

the HANGAR configuration into (3.26) would yield a main rotor speed ratio of

Ω̌ = 0.5,

which explains how the main rotor speed value for the BALANCED/UAV configuration defined

in Appendix E is obtained.

Stoppers

0.08 m

5 lb

25 lb

0.353 m

(a) HANGAR

Stoppers
0.353 m 0.08 m

10 lb

(b) BALANCED/REDUCED

Figure 3.6: Counter Weight Configuration Diagram

In the HANGAR case, the value for the counter weight mass of mw = 14.8 kg is realized as a

combination of two separate weights secured on the platform main boom by two stoppers. The

two weights used have weights of 5 lb (2.3 kg) and 25 lb (11.3 kg), with the heavier of the two

located further away from the elbow (q2) joint. Each stopper has a mass of 0.6 kg. Figure 3.6(a)

illustrates this counter weight arrangement. To obtain the BALANCED configuration from this
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counter weight setting would result in

ρw = 0.12 m,

which would have put the weight assembly illustrated in Figure 3.6(a) too close to the elbow joint

for practical realization. As a result, the two-weight arrangement illustrated in Figure 3.6(a) is

replaced by a single (10 lb) weight arrangement shown in Figure 3.6(b) for the BALANCED and

the REDUCED configurations. Parameter values for the BALANCED and REDUCED config-

urations found in Appendix E corresponds to this single (10 lb) weight arrangement. Although

the main rotor speed is the same for both the REDUCED and the HANGAR configurations,

they are defined separately to distinguish between the two counter weight settings used. In

particular, the REDUCED configuration, with mw = 5.7 kg and Ω̌ = 0.5, requires ρw = 0.92 m,

which is again out of bound for practical realization. Table 3.2 highlights the difference between

the four configurations introduced in this thesis.

REDUCED and HANGAR Configurations

Applying the linearization around the hover trim point (q4 = 0) for the REDUCED configuration

would yield the following eigenvalues for the linearized system matrix ĀD:

eig(ĀD) =



~04×1

0.2± 0.53 j

0.07± 0.06 j

−2.24

−0.9

−0.54

−0.15


. (3.28)
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These poles has been plotted in Figure 3.1(c). The corresponding eigenvalues for the linearized

system matrix ĀH for the HANGAR configuration is given by

eig(ĀH) =



~04×1

0.2± 0.53 j

0.09± 0.05 j

−2.21

−0.95

−0.57

−0.21


. (3.29)

These poles are plotted in Figure 3.1(d). As has been observed from Figure 3.5, the primary

effect of reducing the main rotor speed is in the migration of the poles towards the origin. The

difference between the REDUCED and HANGAR configurations is minimal, indicating that

the change in the counter weight settings is not significant. There is a slight reduction in the

magnitude of the poles for the HANGAR configuration when compared to the REDUCED case.

This can be attributed to the net increase in the platform linkage mass due to the change in the

counter weight.

The poles for the REDUCED configuration around the hover trim point for the case q4 = π/2

is given by

eig(ĀD) =



~04×1

0.15± 0.41 j

0.12± 0.02 j

−2.14

−1.02

−0.52

−0.15


. (3.30)
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The corresponding poles for the HANGAR configuration is given by

eig(ĀH) =



~04×1

0.17± 0.45 j

0.13

0.11

−2.14

−1.04

−0.55

−0.21



. (3.31)

These poles are plotted in Figure 3.2(c) and Figure 3.2(d) respectively. Similarly observations

to the q4 = 0 case can be made here.

3.5 Limitations on the use of the Platform System

One of the objectives of this research is to investigate the possibility of utilizing the Platform

system as a tool for UAV research. It is therefore desirable to relate the Platform system

behaviour to that of the UAV system. While Theorem 2.1 provides a theoretical basis for

obtaining the UAV system model from the Platform model, it is not directly applicable to the

physical system since it is not practical to reduce the mass and inertia of the platform linkages

to zero. A more relevant approach is to seek a set of conditions for the Platform system so that

its dynamic behaviour becomes equivalent to those of the UAV system.

Dimensional analysis can be used to achieve such dynamic equivalence between two systems

[48]. Ghanekar [48] illustrated the use of dimensional analysis to achieve scaling and dynamic

equivalence for robot manipulator systems similar to the Platform system employed in this

research. The key to obtaining the dynamic equivalence condition between two robot manipulator

systems of interest is in the matching of their corresponding non-dimensional models. The non-

dimensional model represents the normalized behaviour of each system. The actual system

response is scaled from the non-dimensional model through the characteristic force and torque

of the system. In the case of robot manipulators, the characteristic force can be represented

by the product between the base link mass m1, the radius of gyration k1 [39] of the base link
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and a system characteristic frequency Ω: m1k1Ω2 [48]. The corresponding characteristic torque

is represented by m1k
2
1Ω

2. By matching the non-dimensional models through the characteristic

force and torque, two systems can be made of different materials, or of different dimensions,

or even be operated under different gravitational effect (as in operating on a different planet,

such as on Mars instead of on Earth), dynamic equivalence between them can still be achieved.

Dimensional analysis is used extensively in the aerospace literature, especially pertaining to wind

tunnel research [49]. In regards to a helicopter, the characteristic thrust and torque are defined

by the product ρAdisc(ΩR)2 and ρAdisc(ΩR)2R respectively. Because of the dual nature of the

Platform system, which includes both the robot manipulator and the helicopter dynamics, and to

facilitate comparison with the UAV system, the characteristic thrust and torque for the helicopter

rotor, namely ρAdisc(ΩR)2 and ρAdisc(ΩR)2R, have been chosen and applied for normalization

in Chapter 2. The dimensional factor for mass, length, inertia and time are derived from the

characteristic thrust and torque as:

Mass : ρAdiscR; Length : R; Inertia : ρAdiscR
3; Time :

1
Ω
.

Applying the dynamic equivalence condition to the Platform system means matching the

non-dimensional Platform model defined in (2.106) to that of the UAV system in (3.9). While

the dynamics of the UAV model are independent of the position and the heading of the helicopter

(assuming environmental conditions, such as wind speed, remains uniform within the range of

operation), the same cannot be said for the Platform system. For instance, as the helicopter

operates further away from the base of the Platform, the inertia property about the base joint

(q1) will increase due to the increase in the slider joint variable q3. This effect manifests in the

mass-inertia matrix ˆ̄M(ˆ̄q), for example in m̂11 (from Appendix D):

m̂11 = Îzz1 + Îzz4 + (Îxx2 + Îxx3)S
2
q̂2 + (Îyy2 + Îyy3 +m2ρ̂

2
2 + m̂3ρ̂

2
3 + m̂4 l̂

2
3)C

2
q̂2

+ m̂b(l̂s + q̂3 + l̂3Cq̂2)
2 + Îxxb

S2
q̂5 + (ÎyybS

2
q̂6 + ÎzzbC

2
q̂6)C

2
q̂5 + 2ÎxzbCq̂6Sq̂5Cq̂5 .

(3.32)

In fact, based on the geometry of the Platform system, any possible equivalence with the UAV

system can only be achieved when the elbow (q2) and the slider (q3) joints remain constant.

This narrows to either point-to-point equivalence (such as during hover) or equivalence between

operating in a constant height circular flight path around the base (q1) joint. Furthermore, when
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comparing the two models closely, it can be concluded that equivalence between the Platform

and UAV systems cannot be achieved by adjusting the configuration parameters alone. This can

be illustrated by comparing the m̂22 entry of the mass-inertia matrix ˆ̄M of both systems (from

Appendix D):

m̂22 = Îzz2 + Îzz3 + m̂2ρ̂
2
2 + m̂3ρ̂

2
3 + (m̂4 + m̂b)l̂23, (3.33)

m̂22U = m̂b l̂
2
3. (3.34)

With the mass of the helicopter body m̂b being constrained by the m̂33 entry (see Appendix D),

m̂33 = m̂b,

the equivalence condition between the two m̂22 entries reduces to

Îzz2 + Îzz3 + m̂2ρ̂
2
2 + m̂3ρ̂

2
3 + m̂4 l̂

2
3 = 0, (3.35)

which is impossible to satisfy for any physical systems whose mass and inertia are positive

(non-zero). As a result, due to the difference in the model structures (that is, changes in the

configuration parameters) between the Platform and the UAV system, direct dynamic equiva-

lence cannot be achieved through the means of non-dimensional scaling as in the case of the robot

manipulator systems [48]. Although the Platform configuration parameters (such as the mass

and location of the counter weight on the main boom) can be adjusted according to the payload

equation in (3.12) to match the operating point, additional means will be needed to achieve

dynamic equivalence. In particular, the source of the discrepancy between the Platform and the

UAV systems is the additional mass and inertia of the platform linkages. As such, a possible

approach to achieve equivalence is to add servo control torque to the joints to compensate for the

additional mass and inertia. This requires changes to be made to the Platform system presented

in this research and is therefore out-of-scope here. A brief discussion on such an approach will

be presented in Chapter 5.
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3.6 Summary

In this chapter, four configurations of the Platform model have been defined and compared.

These four configurations are related through the payload equation, which constrains their op-

erating point to remain at the same hover trim point. The UAV configuration is the benchmark

system to which the remaining configurations are compared. The BALANCED configuration

is the case where the counter weight arrangement is set to statically gravity balance the plat-

form link mass about the elbow (q2) joint. This represents the ideal setup configuration for

the Platform system as the effect of the platform linkages on the system dynamics is kept to a

minimum. The REDUCED configuration is defined to address the need for reduced rotor speed

operation within the indoor laboratory environment. It explores the trade-off between counter

weight arrangement and the main rotor speed. Finally, the HANGAR configuration is obtained

to reflect the physical limitation of the Platform system in the laboratory. It is set up with a

counter weight large enough so that the Platform system is able to lift off using the reduced

main rotor speed.

Through linearization, the hover modes for each of the four configurations have been ob-

tained. It has been shown that while the hover dynamics of the UAV system is independent

of the helicopter position and heading, the same is not true about the BALANCED case. In

particular, the helicopter heading orientation relative to the platform linkages determines how

the longitudinal and lateral modes of the helicopter are affected by the link mass and inertia.

Furthermore, it has been shown that the platform linkage effect becomes dominant as the link

mass and inertia are increased. Similar effect is observed when the main rotor speed is reduced.

Both of these results conform to the intuition that the Platform system dynamics is dictated

by the relative prominence between the main rotor and the platform linkage dynamics. If the

platform linkage is massive relative to the thrust generated by the main rotor, the platform

dynamics will be dominant and vice versa.

Finally, through the use of dimensional analysis, it has been concluded that dynamic equiv-

alence between the Platform and the UAV systems cannot be achieved through adjustment in

configuration parameters alone. An approach that modifies the Platform system to achieve

equivalence will be presented in Chapter 5 as a possible future research topic.

In summary, the contributions presented in this chapter are:
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� derived the payload equation, which defines the trim equivalence condition;

� derived the rotor speed trade-off condition for the Platform system, which allows for com-

parison to be made between the UAV system and the reduced rotor speed operation within

the indoor laboratory environment;

� examined the effect that the main rotor speed and the link mass and inertia have on the

system dynamics;

� established the limitation on using the Platform system for direct model equivalence with

the UAV system.



Chapter 4

Platform Control Strategy

The objective of this chapter is to outline the Virtual Joint Control strategy for the Platform

system. Through simulation, it will be shown that this control method represents not only a

viable control strategy for the Platform system but it can also be viewed as an alternate control

strategy for stand alone helicopter (UAV) systems.

4.1 Motivation

The stand alone helicopter (UAV) system is inherently unstable [10, 12], as indicated by the

presence of the unstable phugoid and side slip modes near hover (see Figure 3.1(b)). Although

the effect of the platform link mass and inertia in the Platform system causes the system modes

to shift away from those in the UAV system, as illustrated in Figure 3.3, the unstable modes

remained. To perform experimentation on either system therefore requires the use of a stabilizing

controller. For the purpose of comparison and extension of the research results obtained on the

Platform system to the UAV system, it is desirable to devise a control strategy that is applicable

to both systems, despite the differences in their system dynamics.

4.1.1 Conventional Helicopter Flight Control

Numerous flight control strategies have been proposed in the literature for helicopter flight

control. The type and complexity of the controller depend largely on the intended appli-

cation. With its unstable, coupled and complex dynamics, the helicopter has been used as

82
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Figure 4.1: Helicopter Hierarchical Control

case study for various control laws throughout the years, such as adaptive control [50, 7, 31],

H∞ robust control [19, 51, 52, 53, 54, 55, 44], predictive control [56, 13], sliding mode con-

trol [57, 58], Lyapunov-based backstepping technique [59, 30, 60], Linear Quadratic Gaus-

sian/Regulator (LQG/LQR) control [18, 43], Input-Output linearization [34, 14], fuzzy logic

and neural network [61, 37, 62, 63, 64, 43, 34], and vision based tracking [65]. Due to the nature

of the helicopter dynamics, it is common to divide the overall control strategy into three layers:

navigational control, path/trajectory control, and attitude control. Such control hierarchy is

illustrated in Figure 4.1.

Navigational Control

In the context of autonomous helicopter flight control, the function of the navigation controller is

to oversee the operation of the system with the aim to reach the intended mission target. Recall

navigational tasks include path and trajectory planning [66, 67, 3, 68], object and collision

avoidance [22, 69] and multi-vehicle cooperation [70]. Often, a navigation control strategy is



Chapter 4: Control 84

divided into a hierarchical structure with the upper-most level composed of decision-making

directives and the lower-most level being the stabilization system, responsible for path, position

and attitude control. Naturally, the emphasis in navigational control is on the design of the

overall control structure (the hierarchy) as well as in the high level intelligence that is responsible

for the planning and execution of the various actions taken by the system. Since the goal of

the Platform research is to provide feasible testing facility for the investigation and control of

the system dynamics, which corresponds to the lower level control strategies such as for attitude

and path control, navigational control issues will be deferred to future research and will not be

addressed here.

Path Control

As the name suggests, the objective of the Flight Path Controller (FPC) is path control, such as

moving the helicopter from one location to another location with desired way-points in between.

This problem is multi-faceted. For instance, Frezza [27] viewed the tracking problem as an

approximation task. Frezza [27] approximated the desired trajectory by choosing among a set

of feasible trajectories. At each sample instance, a local feasible trajectory, called a connecting

contour, is chosen such that it connects the current location of the helicopter to the desired

trajectory. Linear feedback control is then applied to control the helicopter along the connecting

contour. The effective trajectory is the envelope of all of the connecting contours.

Another approach to path control focuses on the input-output characteristics of the system

as a whole. Koo and Sastry [14] take the nonlinear system dynamics and apply an input-

output feedback linearization algorithm for path control. Koo and Sastry find that a direct

input-output feedback linearization applied to the rigid body dynamics of the helicopter yields a

linearized system with non-minimum phase zero dynamics. This means that when the feedback

control law is implemented, some of the internal states may oscillate despite stable outputs. For

example, the helicopter may be rolling and pitching (oscillating) while tracking the desired path.

The source of the oscillations comes from the couplings between the rolling (pitching) moments

and lateral (longitudinal) accelerations. To overcome this problem, Koo and Sastry propose

to approximately linearize the system by neglecting the coupling terms. The end result is an

extended system that is minimum phase. Bounded tracking has been shown in simulations using

the approximate linearization technique. However, practical issues such as actuator saturation,
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which can pose a problem in the implementation of the feedback linearization controller [71],

have not been addressed by Koo and Sastry.

Alternatively, Mahony and Lozano [26] approach the coupling problem by manipulating the

mass distributions on the helicopter. The location of the control electronics, such as computers

and sensors, is adjusted such that the moment of inertia around the first two principal axes (the

roll and pitch axes) are equal. This simplifies the rotation dynamics and results in a linearized

model that has no zero dynamics. The idea is that control law design based on such a simplified

model would yield almost exact tracking control.

In addition to focusing on either the characteristic of the flight path [27] or on the system

input-output behaviour [14, 26], Frazzoli et al. [60] look at yet another aspect of path control:

attitude representation. Rigid body attitude is commonly parameterized through the Euler (roll,

pitch and yaw) angles. For the 3-2-1 Euler angle representation [40] employed in this research (see

Appendix A.1.1), singularities occur when the pitch angle θ is at ±90◦. This corresponds to the

situation when the helicopter is pointing vertically up or down. This singularity is artificial since

it arises from the mathematical representation instead of from physical constraints. According

to Euler’s theorem [39], general rotation can be parameterized by a rotation about a fixed

axis. Such a representation does not suffer from the singularities present in the Euler angle

representation. Frazzoli et al. [60] use this alternate form of attitude description and are able

to show, in simulation, autonomous path control of a helicopter executing complex manoeuvres,

such as looping, that are otherwise impossible for control laws with an Euler angle attitude

representation because of the presence of kinematic singularities.

The Platform system poses a slightly different set of problems for path control. First, its

operation is limited to within the reachable workspace of the platform linkages. Second, the

singularities are materialized by the physical constraints of the system. Finally, contrary to the

uniform dynamics exhibited by the UAV system with respect to its position and orientation,

the dynamics of the Platform system varies within the reachable workspace, as illustrated in

Figure 3.1 and Figure 3.2. All of these reasons necessitate an alternate control strategy for

path control on the Platform system. For the purpose of this research, path control focuses on

regulating the helicopter system to follow through a set of pre-defined way-points. The paths

through these way-points are assumed to be feasible and the issue of path generation will not be

addressed.
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Attitude Control System (ACS)

The objective in attitude control is to stabilize the helicopter in the air. Since the hover state

can be approximated using a tether (or be simulated by mounting the helicopter on a platform

like in this research) for safe operation and does not require a large flying field, hover control

has been studied most extensively in the literature. A majority of strategies on hover control

revolve around linearizing the nonlinear system model about the equilibrium point and using

the linearized model in the control design [8, 20, 28]. In particular, Shim et al. [20] show that a

linear multi-loop control strategy (with only proportional controllers) is capable of hover control

for a small-scale helicopter. Other approaches include robust control [16, 19, 51, 56, 52], model-

following adaptive control [50, 72] and control through feedback linearization [32, 30].

In addition to using linearized models, decoupled or reduced order models are often considered

for attitude control design near hover [8, 7, 37, 34]. This is because the coupling between the

longitudinal, lateral and yaw dynamics of the helicopter are weaker near hover [10, 12]. With

this assumption, controllers for the different subsystems can be designed and tested separately.

To facilitate the testing of the individual subsystems, test platforms with various configurations

are employed [73, 61, 74, 75]. With the ability to secure (lock down) each of its six joints

independently, different combinations of subsystem testing can be performed on the Platform

system utilized in this research. This makes the Platform system particularly suitable for attitude

control research.

As in the case of the path control, the varying dynamics with respect to the position and

heading orientation of the helicopter motivates the search for an alternate attitude control strat-

egy.

4.1.2 Robot Manipulator Control

Although the structure of the Platform system defined in (2.106),

ˆ̄M(ˆ̄q)¨̄̂q + ˆ̄h(ˆ̄q, ˙̄̂q) = ˆ̄τ (ˆ̄q, ˙̄̂q, ~u), (2.106)

is similar to those for a typical robot manipulator system [40, 41], their actuation mechanisms,

represented by the term ˆ̄τ (q̄, ˙̄̂q, ~u), are quite different. While most robot manipulator systems are
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actuated at the joints by servo motors, the joints of the Platform system utilized in this research

are not actuated. The actuation in the Platform system comes indirectly from the rotor thrust

through the helicopter body connection to the platform linkages. This means conventional control

strategies for robot manipulator systems cannot be applied directly to the Platform system.

Nonetheless, the concept of applying robot manipulator control to the Platform system is

appealing due to the well established stability results available in the literature. This provides

motivation for a virtual joint control scheme where the helicopter control signals are generated

in such a way that the resulting torque generated indirectly at the joints of the Platform system

by the rotor thrust would mimic those computed by joint control laws intended for a similarly

configured robot manipulator system. The term virtual here makes reference to the indirect

control of the joint torque of the Platform system through the helicopter rotor input. With

the result of Theorem 2.1, such virtual joint control scheme are equally applicable to the UAV

system, provided the coordinate change defined in Lemma 2.1 is utilized. Therefore, virtual can

also be referring to the control scheme for a stand alone helicopter attached to a virtual platform,

such as in the UAV system explored previously. A stable control scheme for the Platform system

can then be obtained by defining a stable manipulator joint control law as the mimicking target

for the virtual joint controller. Since linear joint PD control law with positive gains has been

shown capable of stabilizing the nonlinear dynamics of rigid link robot manipulator systems

[76, 40], a virtual joint PD control law will be derived and investigated for both the Platform

and the UAV systems.

4.2 Virtual Joint PD Control

The Virtual Joint Proportional-Derivative (PD) Control strategy consists of two steps: desired

joint torque generation and joint torque approximation. A block diagram for the closed-loop

Virtual Joint PD Control method applied to the Platform system is shown in Figure 4.2. The

desired torque generation step, represented by the first sub-block in Figure 4.2, is relatively

straight forward. The desired joint torque experienced by each of the platform joints are com-

puted from independent linear PD control laws. The use of PD control laws is motivated by the

well established stability result pertaining to the control of rigid link robot manipulator systems

[40]: when PD control signals are applied at the joints, the resulting system dynamic behaviour
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Figure 4.2: Joint PD Control

would be analogous to having springs and dampers mounted at the joints. This provides stability

to the system as energy is dissipated through the dampers over time. As a result, if the helicopter

rotor can be controlled to generate thrust whose projection to the joints matches exactly to those

computed from the linear PD control laws, the Virtual Joint PD Control strategy should provide

a stable control law for the Platform system.

However, due to the coupling constraints imposed by the helicopter dynamics, exact matching

between the desired and the actual joint torque is achievable only under limited conditions. An

illustration of such coupling constraints can be observed through the main rotor cyclic inputs of

the helicopter. Both the helicopter side forces (X̂R and ŶR in (2.52) and (2.53)) and rotation

(rolling and pitching) moments (L̂R and M̂R in (2.55) and (2.56)) are controlled through the

cyclic inputs (through Ĉlon and Ĉlat in (2.42) and (2.43)). This means, in general, the side force

cannot be specified independently from the moments. The root cause for this stemmed from

the helicopter system being under-actuated, having six Degree-Of-Freedom (DOF) but only four

control inputs are available:

(θ0, A1, B1, θtail) −→ (X̂R, ŶR, ẐR, L̂R, M̂R, N̂R).

Therefore, special provision has to be developed in the joint torque approximation step for

computing the rotor control inputs that would permit the resulting joint torque to mimic the
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(q̄1, q̄2, q̄3, q̄4, q̄5, q̄6) + ( ˙̄q1, ˙̄q2, ˙̄q3, ˙̄q4, ˙̄q5, ˙̄q6)yStep 1: desired joint torque generation

(X̂Rd
, ŶRd

, ẐRd
, L̂Rd

, M̂Rd
, N̂Rd

)yStep 2: joint torque approximation

(θ0, A1, B1, θtail)

Figure 4.3: Virtual Joint PD Control Algorithm Overview

desired PD control values as close as possible. An overview of the Virtual Joint PD Control

algorithm is depicted in Figure 4.3.

There is one particular case under which exact matching of the desired joint torque can be

realized. It is when the system is at trim, where the net body force and moment acting on

the helicopter is zero. Recall the trim computation from Section 3.1, in addition to having the

inputs set to their trim values (~̂ue), the roll and pitch angles of the helicopter are required to be

maintained at a specific trim level (φe and θe) to achieve trim:

(X̂Rd
, ŶRd

, ẐRd
, L̂Rd

, M̂Rd
, N̂Rd

) −→ (θ0, A1, B1, θtail) + (φe, θe).

Consequently, the desired joint torque should be generated in a way that would drive the system

towards the trim condition to ensure close approximation of the desired joint torque can be

attained. This corresponds to setting the reference/desired joint angles and rates of the PD

control law to their corresponding trim values.

4.2.1 Desired PD Joint Torque

For a rigid link 6 DOF robot manipulator system similar to the Platform system, a linear PD

control law specifying the desired decoupled servo torque to be generated at the joints can be

written as

τ̄PDd
=


Kp1

~0
. . .

~0 Kp6




∆q1
...

∆q6

+


Kd1

~0
. . .

~0 Kd6




∆q̇1
...

∆q̇6

 , (4.1)
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where ∆qi , qid − qi are the difference between the desired (qid) and the actual (qi) joint angles;

∆q̇i , q̇id − q̇i are the difference between the desired (q̇id) and the actual (q̇i) joint rate; and Kpi

and Kdi are the proportional and derivative gains respectively.

As mentioned previously, it is desirable to use the trim values for the joint angles and rates as

the reference quantities to allow for close approximation to be achieved by the rotor thrust. This

means when controlling the helicopter for hover or slow moving operations, the desired/reference

joint rates are set to zero:

˙̄qid = 0.

While the trim values for the roll and pitch angles are used as the reference for q6 and q5

respectively, the reference values for the position and heading orientation of the helicopter are

set according to the control objectives. In the case of hover, the reference position and heading

orientation (q1 to q4) would be constant. If the control objective is for path/way-point following,

the desired trajectory will be used as the reference.

Recall the PD controllers are analogous to springs and dampers at the joints for the robot

manipulator system. This means that the system will be stable for all positive PD gain values

[40] with the upper-bound limit imposed by actuator saturation. In the context of the virtual

joint PD control, actuator saturation represents the maximum joint torque achievable through

the rotor thrust projection, which is a complex function of the rotor stall conditions [10, 12]. As

such, contrary to the robot manipulator case, determination of the torque saturation limit for the

Platform system is not trivial. However, for hover or slow moving operations, with sufficiently

small PD gains, the Platform system should remain stable without reaching the saturation limit.

The desired PD joint torque τ̄PDd
, combined with the gravitational compensation term τ̄ g,

forms the total desired joint torque τ̄Rd
to be generated by the rotors:

τ̄Rd
= τ̄PDd

+ τ̄ g. (4.2)

Recall the gravitational component in the Platform model is dependent on the configuration
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setting through the apparent weight Wp and the elbow joint angle q2:

τ̄ g =



0

Wpl3 cos(q2)

0

0

0

0


, (4.3)

where Wp is defined in (3.6).

Once the desired joint torque τ̄Rd
has been obtained, it is then projected to the body-fixed

frame of the helicopter through the transpose of the Jacobian matrix inverse (JT
b )−1 to obtain

the corresponding desired rotor force and moment τ̃Rd
acting on the helicopter body:

τ̃Rd
= (JT

b )−1τ̄Rd
. (4.4)

4.2.2 Joint Torque Approximation

The body force and moment obtained from (4.4), combined with the rotor force equations in

(2.52)–(2.57), specify six desired conditions to be satisfied by the four rotor control inputs:

(X̂R, ŶR, ẐR, L̂R, M̂R, N̂R) −→ (θ0, A1, B1, θtail).

As mentioned, such condition can only be satisfied when the system is at trim (that is, its

roll and pitch are at φe and θe respectively). The objective of the torque approximation step,

represented by the second sub-block in Figure 4.2, is to define a rotor input inversion algorithm

that computes the rotor inputs from the desired body force and moment (τ̃Rd
) in such a way

that the resulting joint torque experienced by the Platform would match the desired joint torque

when the system is at trim and remain close to them when the system is deviated from trim.

There are many ways to define the rotor input inversion algorithm. For instance, the rotor

control inputs ~u can be obtained by posing the task of rotor input inversion as an optimization

problem where the objective (cost) function is represented by the error function defined as

the norm of the difference between the desired body force and moment vector (τ̃Rd
) and the
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computed values from the rotor inputs (τ̃R),

Error = ||τ̃Rd
− τ̃R||. (4.5)

The norm in the above error function represents a size measurement of how close the computed

body force and moment are in mimicking the desired values. From (2.52)–(2.57) and the ro-

tor equations derived in Appendix B.2, it can be seen that this represents a nonlinear global

optimization problem, which are typically solved by nonlinear programming methods such as

simulated annealing or genetic algorithms. However, there are three issues with solving for the

rotor input inversion as a global optimization problem: computational complexity, local opti-

mum solution, and lack of physical intuition. Due to the coupling and nonlinear nature of the

rotor dynamics, the computational complexity involved in solving for the optimal solution to

the rotor input inversion problem is necessarily high. This makes global optimization methods a

poor choice for computing the rotor control inputs as the computation is to be repeated at every

sampling period. Second, although the use of a local optimal (or sub-optimal) solution for rotor

control does not contradict the requirement of close approximation as specified by the Virtual

Joint Control scheme, the existence of multiple local optimal solutions poses the challenge of

defining appropriate criteria for selection among these solutions. This leads to the third issue of

the lack of physical intuition associated with global optimization solutions. Each of the possible

global optimization solutions (optimal or otherwise sub-optimal/local) represents an approxima-

tion to the desired control effort applied to the Platform system. However, given two possible

solutions, there is no direct correlation between the effect on the physical control objective, such

as the amount of control effort involved for the individual joints, and the degree of proximity

to the desired behaviour. This motivates the derivation of an alternate approach for solving the

rotor input inversion problem.

From the structure of the rotor input inversion problem, the difficulty in obtaining a so-

lution lies in the under-actuated nature of the problem: there are six objective criteria to be

satisfied via four available control inputs. If the number of objective criteria can be reduced

to match the number of available control inputs, that is choosing only four of the possible six

criteria in formulating a solution, such a reduced problem could potentially be solved efficiently

either analytically (albeit with a highly nonlinear and complex solution) or numerically (via
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iterative numerical methods or look-up table heuristics). With this approach, the solution from

the reduced problem can then be updated or adjusted to obtain a close approximation of the

desired control behaviour in that the residual error associated with the two remaining criteria

are bounded. Although this would result in a suboptimal solution to the rotor input inversion

problem, depending on the combination of the criteria chosen, physical insight and intuition can

be employed explicitly in the setting of the trade-off between multiple possible solutions.

In the subsequent sections, two of the fifteen possible combinations (
(
6
4

)
= 6!

4!2! = 15) of

selecting any four equations out of the six objective criteria, represented by the body force and

moment equations in (2.52)–(2.57), will be explored due to their apparent physical interpreta-

tions. The first combination corresponds to selecting the desired force for the body z axis (ẐRd
)

in (2.54), together with the three desired body moments (L̂Rd
, M̂Rd

and N̂Rd
) in (2.55)–(2.57).

This choice places emphasis on matching the force and moment associated with the attitude

orientation and height of the helicopter. This is analogous to the control objectives of a typical

Attitude Control System (ACS), as illustrated in Figure 4.1, in the helicopter control literature

[8, 34, 18, 77, 54, 46]. The second combination corresponds to selecting the three linear desired

forces (X̂Rd
, ŶRd

and ẐRd
) in (2.52)–(2.54), together with the direction moment of the heli-

copter (N̂Rd
) in (2.57). The emphasis in this case is placed on trajectory or path tracking. This

is analogous to the control objectives of a Flight Path Control (FPC) system in the literature

[15, 53, 14]. The overall rotor input inversion algorithm will then be obtained by combining the

solutions of these two options through a weighting factor (ζ). The weighting factor provides

an explicit parameter for scaling the relative emphasis of the input between attitude and path

control.

Rotor Input Inversion Algorithm - Attitude Tracking Option

In terms of solving for the four control inputs (θ0, A1, B1 and θtail) from the four desired criteria

represented by the body force ẐRd
and the moments L̂Rd

, M̂Rd
and N̂Rd

,

(ẐRd
, L̂Rd

, M̂Rd
, N̂Rd

) −→ (θ0, A1, B1, θtail)
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in the Attitude Tracking option, notice that (2.54)–(2.57) are implicit functions of the control

inputs through the rotor coefficients, such as ĈT and ĈTtail
, as the intermediate variables,

(ẐRd
, L̂Rd

, M̂Rd
, N̂Rd

) −→ (ĈT, Ĉlon, Ĉlat, ĈQ, ĈTtail
, Ĉlontail

, Ĉlattail , ĈQtail
) −→ (θ0, A1, B1, θtail).

From the definitions of the rotor coefficients given by (2.40), (2.42), (2.43) and (2.45), together

with the definitions of the various rotor state variables, such as the inflow factor λ1 in (2.35) and

the rotor flapping coefficients a0, a1,s and b1,s defined in Appendix B, it can be seen that the

rotor input inversion problem is coupled and highly nonlinear. Although an analytical solution to

this problem is feasible, the closed form solution has not been obtained due to the prohibitively

expensive complexity involved in computing it. Instead, an alternate approach through iteration

would be employed.

The desired body force and moments in (2.54)–(2.57) are affine in the rotor coefficients. This

can be exploited by solving for an analytical solution for a subset of the rotor coefficients. In

the iteration process, the rotor coefficients are divided into two groups. In the first step of the

iteration, initial values are chosen for the first group of rotor coefficients (ĈQ, ĈQtail
, Ĉlontail

,

Ĉlattail). These initial values, together with the desired body force and moment values, are then

substituted into (2.54)–(2.57) to obtain intermediate values for the second group of the rotor

coefficients (ĈT, Ĉlon, Ĉlat, ĈTtail
). In the second step, the values of the first group of rotor

coefficients are updated by solving the corresponding rotor coefficient equations (from (2.40),

(2.42), (2.43) and (2.45)) with the computed values of the second group of rotor coefficients.

The iteration process then repeats until the coefficients converged to within a specified tolerance

level. Figure 4.4 shows an overview of this iterative rotor input inversion algorithm.

(ẐRd
, L̂Rd

, M̂Rd
, N̂Rd

)
+

(ĈQ, ĈQtail
, Ĉlontail

, Ĉlattail)
↘

↘
↙ (ĈT, Ĉlon, Ĉlat, ĈTtail

)

↙

 iterate

(ĈT, Ĉlon, Ĉlat, ĈQ, ĈTtail
, Ĉlontail

, Ĉlattail , ĈQtail
)

↓
(θ0, A1, B1, θtail)

Figure 4.4: Rotor Input Inversion – Attitude Tracking (Overview)
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In this case, after the initial values are assigned to the first group of rotor coefficients (ĈQ,

ĈQtail
, Ĉlontail

, Ĉlattail), the values of the second group of the rotor coefficients (ĈT, Ĉlon, Ĉlat,

ĈTtail
) are obtained by solving for them from (2.54)–(2.57):

ĈT = −ẐRd
+ Â(Ω̂R̂)2

[
Ĉlontail

sin(ηt) + Ĉlattail cos(ηt)
]

(4.6)

Ĉlon =
cos(ηm)

ĥM

(M̂Rd
− l̂MẐRd

)− sin(ηm)

l̂TĥM − l̂MĥT

[
l̂TL̂Rd

+ ĥT(N̂Rd
+ ĈQ)

]
+ Â(Ω̂R̂)2R̂

cos(ηm)

ĥM

[
ĈQtail

− Ĉlontail

([
l̂T − l̂M

]
sin(ηt) + ĥT cos(ηt)

)
− Ĉlattail

([
l̂T − l̂M

]
cos(ηt)− ĥT sin(ηt)

)]
(4.7)

Ĉlat =
sin(ηm)

ĥM

(−M̂Rd
+ l̂MẐRd

)− cos(ηm)

l̂TĥM − l̂MĥT

[
l̂TL̂Rd

+ ĥT(N̂Rd
+ ĈQ)

]
+ Â(Ω̂R̂)2R̂

sin(ηm)

ĥM

[
− ĈQtail

+ Ĉlontail

([
l̂T − l̂M

]
sin(ηt) + ĥT cos(ηt)

)
+ Ĉlattail

([
l̂T − l̂M

]
cos(ηt)− ĥT sin(ηt)

)]
(4.8)

ĈTtail
=
l̂ML̂Rd

+ ĥM(N̂Rd
+ ĈQ)

Â(Ω̂R̂)2(l̂TĥM − l̂MĥT)
. (4.9)

Next, the updated value for the main rotor torque coefficient ĈQ is obtained by first comput-

ing the intermediate control inputs (θ0, A1 and B1) for the main rotor from (2.40), (2.42) and

(2.43) using the values of ĈT, Ĉlon and Ĉlat obtained from (4.6)–(4.8),

(ĈT, Ĉlon, Ĉlat) −→ (θ0, A1, B1).

This coupled and nonlinear inverse mapping is solved analytically using Maple� 1. The inter-

mediate control inputs are then substituted into (2.45) to obtain the updated ĈQ value. The

corresponding calculation for the tail rotor would use (2.40) to compute the θtail input with

the value of ĈTtail
obtained from (4.9). The updated value for the tail planar force coefficients

Ĉlontail
and Ĉlattail , and the torque coefficient ĈQtail

, are then computed from (2.42), (2.43) and

(2.45) with the cyclic input for the tail rotor set to zero. This iterative process is summarized

in Figure 4.5.

1Maple� is a symbolic mathematical tool made by Maplesoft. Maple� is a trademark of Waterloo Maple Inc.
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Figure 4.5: Rotor Input Inversion – Attitude Tracking (Expanded)

The choice of the rotor coefficients used in the reverse computation of the rotor control inputs

is motivated by their physical interpretation. The thrust coefficients ĈT and ĈTtail
are selected

since they have a direct correlation with the collective inputs of the two rotors θ0 and θtail. The

main rotor planar force coefficients Ĉlon and Ĉlat are used because of their similar relationship

with the cyclic inputs A1 and B1.

Rotor Input Inversion Algorithm - Position Tracking Option

The difference between the Position Tracking option and the Attitude Tracking option is in

the selection of the desired criteria. In the Position Tracking option, the desired criteria are

represented by the linear body forces X̂Rd
, ŶRd

and ẐRd
, and the direction moment N̂Rd

,

(X̂Rd
, ŶRd

, ẐRd
, N̂Rd

) −→ (θ0, A1, B1, θtail).

The iteration steps for the Position Tracking option are identical to those for the Attitude

Tracking option with the exception of using (2.52)–(2.54) and (2.57) instead of (2.54)–(2.57)

when solving for the rotor coefficients (ĈT, Ĉlon, Ĉlat, ĈTtail
). The resulting expressions of the
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rotor coefficients are given by:

ĈT = −ẐRd
+ Â(Ω̂R̂)2

[
Ĉlontail

sin(ηt) + Ĉlattail cos(ηt)
]

(4.10)

Ĉlon = cos(ηm)
(
− X̂Rd

+ Â(Ω̂R̂)2
[
Ĉlattail sin(ηt)− Ĉlontail

cos(ηt)
])

+
sin(ηm)

l̂M − l̂T
(l̂TŶRd

+ N̂Rd
+ ĈQ) (4.11)

Ĉlat = sin(ηm)
(
X̂Rd

+ Â(Ω̂R̂)2
[
Ĉlontail

cos(ηt)− Ĉlattail sin(ηt)
])

+
cos(ηm)

l̂M − l̂T
(l̂TŶRd

+ N̂Rd
+ ĈQ) (4.12)

ĈTtail
= −

N̂Rd
+ l̂MŶRd

+ ĈQ

Â(Ω̂R̂)2(l̂M − l̂T)
. (4.13)

The rotor input inversion algorithm for the Position Tracking case is summarized in Figure 4.6.

Comparing the iterative algorithms for the Attitude and Position tracking options presented in

(X̂Rd
, ŶRd

, ẐRd
, N̂Nd

)

+ +

(ĈQ)

(4.11),(4.12)

��

(4.13)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (ĈQtail
, Ĉlontail

, Ĉlattail)
(4.10)−(4.12)eeeeeeeeeeeeee

rreeeeeeeeeeeeeeeee
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(2.45)
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Figure 4.6: Rotor Input Inversion – Position Tracking (Expanded)

Figure 4.5 and Figure 4.6 respectively, it can be seen that the difference in the choice of the

desired criteria affects only the equations used in computing the rotor coefficients (ĈT, Ĉlon,

Ĉlat, ĈTtail
). For example, instead of using (4.6) to solve for ĈT, (4.10) is used in the Position

tracking option.
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Rotor Input Inversion Algorithm - Weighted Scale Option

The control inputs obtained from both of the options introduced previously ignore two of the

six desired criteria. In the case of the Attitude Tracking option, the criteria on the planar forces

X̂Rd
and ŶRd

are not utilized; for the Position Tracking option, it is the criteria on the rolling

and pitching moment L̂Rd
and M̂Rd

. The effect of this is that while the system would track

the selected criteria closely by design, the performance regarding the tracking of the remaining

criteria can vary depending on the operating condition of the system. For example, in the

Attitude Tracking option, since the planar forces of the helicopter are not controlled directly,

the helicopter could drift horizontally while maintaining a constant attitude and orientation. As

a result, a weighted scale option is derived to utilize all six of the desired criteria.

In the Weighted Scale option, the same iteration procedure, shown in Figure 4.5, for the

Attitude Tracking option is first carried out to obtain a set of converged values for the eight rotor

coefficients. Let this set of converged rotor coefficient values be designated with the subscript

ZLMN to indicate they are obtained from the Attitude Tracking option by solving (2.54)–(2.57):

(ĈT, Ĉlon, Ĉlat, ĈQ, ĈTtail
, Ĉlontail

, Ĉlattail , ĈQtail
)ZLMN.

Next, this set of coefficients are separated into three groups:

(ĈTtail
, Ĉlontail

, Ĉlattail)ZLMN, (Ĉlon, Ĉlat)ZLMN, (ĈT, ĈQ, ĈQtail
)ZLMN.

The first group, (ĈTtail
, Ĉlontail

, Ĉlattail)ZLMN, together with the desired planar forces (X̂Rd
, ŶRd

),

are substituted into (4.14) and (4.15) to obtain updated values of the main rotor planar coeffi-

cients (Ĉlon, Ĉlat)XY,

(Ĉlon)XY = cos(ηm)
(
− X̂Rd

+ Â(Ω̂R̂)2
[
Ĉlattail sin(ηt)− Ĉlontail

cos(ηt)
])

− sin(ηm)
[
ŶRd

+ Â(Ω̂R̂)2ĈTtail

]
(4.14)

(Ĉlat)XY = sin(ηm)
(
X̂Rd

+ Â(Ω̂R̂)2
[
Ĉlontail

cos(ηt)− Ĉlattail sin(ηt)
])

− cos(ηm)
[
ŶRd

+ Â(Ω̂R̂)2ĈTtail

]
. (4.15)

The expressions for Ĉlon and Ĉlat in (4.14) and (4.15) are obtained by solving for them from
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(2.52) and (2.53). At this point, there are two sets of main rotor longitudinal and lateral

planar force coefficients: one set is from the second group of rotor coefficients obtained from the

Attitude Tracking option calculations, denoted by (Ĉlon, Ĉlat)ZLMN; the second set, denoted as

(Ĉlon, Ĉlat)XY, is obtained from (4.14) and (4.15) where the desired planar force criteria X̂Rd

and ŶRd
are utilized. These two sets of main rotor planar force coefficients are then combined

through a scaling factor ζ to obtained a weighted average value:

(Ĉlon)Scaled = ζ(Ĉlon)XY + (1− ζ)(Ĉlon)ZLMN (4.16)

(Ĉlat)Scaled = ζ(Ĉlat)XY + (1− ζ)(Ĉlat)ZLMN (4.17)

where the scaling factor ζ has value between 0 and 1:

0 ≤ ζ ≤ 1.

The scaled value of the main rotor planar force coefficients (Ĉlon, Ĉlat)Scaled are then combined

with the main rotor thrust coefficient (ĈT)ZLMN from the third rotor coefficient group of the

Attitude Tracking option to solve for the main rotor control inputs (θ0, A1, B1) from (2.40),

(2.42) and (2.43). Finally, the control input for the tail rotor θtail is computed from (2.40) based

on the tail rotor thrust coefficient value (ĈTtail
)ZLMN obtained from the Attitude Tracking option.

An overview of this Weighted Scale option is depicted in Figure 4.7.

Notice from Figure 4.7 that the Weighted Scale option extends the Attitude Tracking option

by modifying the computation of the rotor control inputs (θ0, A1, B1, θtail) using the updated

weighted average value of the planar coefficients (Ĉlon, Ĉlat)Scaled; while keeping the values for

the rotor thurst coefficients (ĈT, ĈTtail
)ZLMN obtained from the Attitude Tracking iterations

constant during the computation. In doing so, the rotor force and moment generated from these

rotor control inputs would not satisfy all six of the desired criteria represented by (2.52)–(2.57)

exactly. Instead, only (2.54) for ẐRd
would be satisfied exactly, as it does not depend on the

planar coefficients (Ĉlon, Ĉlat). For the rest of the criteria, the agreement between the desired

and generated force and moment would depend on the value of the scaling factor ζ. When ζ = 0,

the update steps in (4.16) and (4.17) would effectively be turned off and the Weighted Scale

option is reverted back to the Attitude Tracking case, where the desired criteria for ẐRd
, L̂Rd

,

M̂Rd
and N̂Rd

in (2.54)–(2.57) are satisfied; while (2.52) and (2.53) for X̂Rd
and ŶRd

are not. On
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the other hand, for ζ = 1, the resulting body force and moment would satisfy (2.52)–(2.54) for

X̂Rd
, ŶRd

and ẐRd
; but not for L̂Rd

, M̂Rd
and N̂Rd

in (2.55)–(2.57). The behaviour in this case

would be similar to the Position Tracking option. For other values of ζ, the degree of agreement

between the resulting and the desired body force and moment would fall between the Attitude

Tracking and the Position Tracking cases. For control purposes, the scaling factor ζ provides

an explicit tuning parameter in selecting the trade-off between Attitude Tracking and Position

Tracking.
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,Ĉ

la
t)

Z
L
M

N

(4
.1

6
),

(4
.1

7
)

(1
−
ζ
)

��

(Ĉ
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,Ŷ

R
d
)

(4
.1

4
),

(4
.1

5
)

��
(Ĉ
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4.3 Extension to Virtual Joint Control

The central theme in the Virtual Joint PD Control technique presented in the previous section is

the idea of approximating stable joint control torques by the rotor generated forces and torques.

In that case, the desired stable joint control torques are computed through independent linear

joint PD control laws with constant gains. The choice of PD control laws is motivated by its

stability characteristic with respect to the platform linkage system [40]. In Ravichandran [78], a

general class of nonlinear controller of the form:

τ̄ = τ̄ff(q̄) + τ̄ fb(q̄, ˙̄q, q̄d, ˙̄qd), (4.18)

has been shown to provide stable control for a class of rigid body robot manipulator system that

includes the platform structure employed in this research. The τ̄ff component represents the

feed-forward term; while the τ̄ fb component represents the feedback term. The PD control law

presented in the previous section is a special case of this class of nonlinear controller where the

feed-forward term corresponds to the gravitational term τ̄ g defined in (4.3):

τ̄ff = τ̄ g. (4.19)

The feedback term corresponds to the desired PD joint torque defined in (4.1):

τ̄ fb = τ̄PDd
. (4.20)

For the purpose of this research, another special sub-class of nonlinear PD controllers de-

scribed by (4.18) will be considered for extending the Virtual Joint Control scheme. The gains

of this sub-class of nonlinear controllers have the following form:

KPi(∆qi) =
kpi

ai + |∆qi|
and KDi(∆qi,∆q̇i) =

kdi
(bi + |∆qi|)(ci + |∆q̇i|)

, (4.21)

where the gains are time varying functions of the system states (q̄ and ˙̄q). For positive values of

the parameters ai, bi and ci (ai > 0, bi > 0 and ci > 0), the resulting control torque generated
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by this nonlinear PD control law will be bounded, that is,∣∣∣∣ ∆qi
ai + |∆qi|

∣∣∣∣ < 1 and
∣∣∣∣ ∆q̇i
ci + |∆q̇i|

∣∣∣∣ < 1. (4.22)

With this choice of gain structure, the values of the parameters can be optimized for perfor-

mance objectives while the actuator saturation limits can be satisfied through the selection of

appropriate nominal gain values kpi and kdi [78]. This form of gain structure provides nonlinear

damping (through the derivative gains) to the system. When the error signals (∆qi and ∆q̇i)

are large, the effective damping will be small; conversely, when the system is near the desired

operating point, the increased effective damping will provide a settling characteristic similar to

those of over-damped systems. For the proportional gains, they provide large control action

when nearing the desired operating point to improve the speed of the output response but re-

duce the control effort when far away from the operating point to avoid actuator saturation. As

such, this property could be employed in the desired torque generation step to address the rotor

torque saturation issue through parameter and gain adjustments.

4.4 Simulation

4.4.1 Test Scenarios

Three test scenarios have been implemented in simulation to illustrate the performance of the

Virtual Joint Control strategy proposed earlier in this chapter. The first test scenario is a simple

hover test where the Platform system starts with an initial condition slightly deviated from the

trim point. The goal here is to illustrate the controller’s ability to stabilize the system around

its trim condition. In the second test scenario, a desired trajectory in the form of a square in the

horizontal plane is specified for the Platform system to follow. This highlights the controller’s

ability for path following while maintaining a constant heading. In addition, the sharp corners

of the square path would induce a step-like response of the system for observation. Finally,

in the third test scenario, the Platform system is tasked to follow a trajectory resembling the

shape of a Figure-8. The Figure-8 trajectory will reside on a plane tilted 45◦ from the horizontal

plane so that the platform helicopter is required to track both horizontal position and height.

Furthermore, the desired heading of the helicopter is set tangent to the path. As such, this
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test requires the controller to track both the position and attitude of the helicopter along the

trajectory. Details of each of these scenarios are given in the following sections.

Hover with Initial Perturbation

The initial condition for this test is obtained by changing the roll and pitch trim values from

Table 3.1 by ten percent to

q5 = −0.058 rad ≈ −3.3◦ and q6 = 0.058 rad ≈ 3.3◦. (4.23)

The goal of the controller is to compensate for this initial disturbance and restore the helicopter

back to its hover trim state as given by Table 3.1:

q5e = −0.053 rad ≈ −3.0◦ and q6e = 0.053 rad ≈ 3.0◦. (4.24)

The desired position and heading for the PD joint controllers are set to the Platform home

position and heading:

q1 = 0 rad, q2 = 0 rad, q3 = 0 rad, q4 = 0 rad. (4.25)

The corresponding desired joint rates are all set to zero for hover.

Horizontal Tracking of a Square path

Joint q1 q2 q3 q4 q5 q6
Value (rad) 0 0 0 0 −0.053 0.053

Table 4.1: Initial Condition – Square Path

In this test, the helicopter starts at trim from its home position, which corresponds to the

joint angle settings listed in Table 4.1.

The desired trajectory first leads the helicopter forward for 30 cm. Then the helicopter will

slide abruptly sideways to the right for 30 cm. From there, the helicopter will fly backward

for another 30 cm before sliding sideways to the left back to the home position. The heading

of the helicopter is to be kept pointing forward (ψ = 0◦) during this manoeuvre. Figure 4.8
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Figure 4.8: Horizontal Square Trajectory

shows this desired square trajectory in a three dimensional (3-D) plot. The dotted semi-circle

line represents the projected trajectory of the tip of the main boom onto the ground plane as the

base joint (q1) changes from −90◦ to 90◦. It is shown in the plot to provide a reference to the

ground plane. The desired x and y traces of the helicopter with respect to the platform base (the

origin) over time are shown in Figure 4.9. In Figure 4.9, two sets of reference trajectories are

shown. The solid line represents the square trajectory with step changes while the dash-dotted

line represents the trajectory that changes with a linear slope. Both sets of trajectories will be

applied to highlight the effects of the abrupt change in the step reference trajectory. For the

desired x position shown in Figure 4.9(a), the step reference (solid line) starts initially at 1.25m,

which is 30 cm away from the helicopter initial home position. This is contrasted with the sloped

reference (dash-dotted line) where it varies from 0.95 m to 1.25 m (a length of 30 cm) in the first

25 seconds. At around the 60 seconds mark, the reference x position is returned back to 0.95 m

via a corresponding step or linear slope change. The reference x position will remain at 0.95 m

until the end of the simulation. The desired y position, shown in Figure 4.9(b), follows a similar

pattern.
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Figure 4.9: Reference X and Y Position of the Desired Planar Square Trajectory

The corresponding joint values for these desired Cartesian coordinates are shown in Fig-

ure 4.10. Once again, the solid line denotes the reference trajectories for the step change case;

while the dash-dotted line denotes the linear slope change case. Here the horizontal planar mo-

tion is described through the base (q1), the slider (q3) and the yaw (q4) joints. The x and y

position is defined through q1 and q3; while the desired heading ψ = 0◦ is maintained by adjust-

ing the desired Yaw joint angle q4 so that ψ = q1 + q4 = 0◦. The desired values for the rest of

the joints (q2, q5 and q6) are kept to remain the same as their initial values listed in Table 4.1.

The desired values for the joint rates are all set to zero.
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Figure 4.11: Figure-8 Trajectory

In this test, the helicopter again starts at trim from its home position, which corresponds to

the joint angle settings listed in Table 4.2. Here, the initial Yaw joint angle q4 is set so that the

helicopter path is tangent to the desired trajectory. The initial point of the helicopter is located

at the middle point in the Figure-8 trajectory. The plane on which the Figure-8 trajectory is

defined is tilted at 45◦ about the y-axis so that the height of the helicopter, in addition to its

x and y position and heading ψ, will vary as it moves along the path. The 3-D plot of the

Figure-8 trajectory is shown in Figure 4.11. Figure 4.12 shows the time histories of the desired

x, y, z and ψ values for this Figure-8 trajectory. As the helicopter starts out facing in the

positive y-axis direction, it moves up along the z-axis while following the Figure-8 curve. Its

heading is maintained to remain tangent to the desired trajectory throughout the manoeuvre.

After reaching the highest point at the tip of the Figure-8 (at 30 cm above and 30 cm along
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Joint q1 q2 q3 q4 q5 q6
Value (rad) 0 0 0 π

2 −0.053 0.053
Table 4.2: Initial Condition – Figure-8 Path

the positive x-axis from the initial position), it starts to descend back to the initial position.

As the helicopter passes back through the home position, the desired trajectory brings it to the

opposite end of the Figure-8 (at 30 cm below and 30 cm along the negative x-axis from the

initial position). The Figure-8 loop trajectory is completed when the helicopter returns back to

the initial position. The duration of this manoeuvre is 120 seconds. The time histories of the

corresponding desired platform joint values are shown in Figure 4.13. In this case, all four lower

joints of the platform are utilized in defining the desired trajectory. The desired values for the

remaining roll (q6) and pitch (q5) joints are kept at their hover trim values. The desired rates

for all of the joints are set to zero as before.
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Figure 4.12: Reference Position and Heading of the Desired Figure-8 Trajectory
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4.4.2 Results

The three test scenarios defined previously have been applied to both the HANGAR and the

UAV configurations, defined in Chapter 3, of the Platform system to illustrate the applicability

of the Virtual Joint Control technique to the Platform system as well as a stand alone helicopter

system. The parameter values used for the simulations can be found in Appendix E.

For each test scenario, three values for the weight scaling factor ζ of the Virtual Joint PD

controller are used for comparison. Recall that a value of ζ = 0 corresponds to the Attitude

Control option (ACS), which is expected to be able to maintain the attitude orientation and

heading of the helicopter but not perform well for position/path tracking tasks. A value of ζ = 1

represents the opposite end of the spectrum where position/path tracking can be achieved at the

expense of attitude regulation. The result for a third value of ζ = 0.5 is shown as a representative

of the trade-off between Attitude and Path tracking. From (4.16) and (4.17), the value of ζ = 0.5

represents taking the average values of the desired main rotor planar force coefficients (Ĉlon and

Ĉlat) obtained from the attitude and position tracking criteria defined by (2.52)–(2.57).

An additional set of tests utilizing the nonlinear PD control (NPD) structure defined in

Section 4.3 instead of the linear PD controller for the desired torque generation is also shown.

This represents an extension to the proposed Virtual Joint Control scheme by using a different

stable joint control strategy for the desired joint torque generation. A value of ζ = 0.5 for the

weight scaling factor is used for the nonlinear PD controller tests.

HANGAR UAV
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Table 4.3: Summary of Simulation Test Results
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The results of the various test cases are summarized in Table 4.3. The circle symbol m

indicates a satisfactory tracking in all of the position, heading and attitude of the helicopter has

been observed in that test run. The cross symbol 6 indicates the overall tracking performance

is not satisfactory. The square symbol o indicates some aspect of the tracking performance is

not satisfactory.

Overall, the results are consistent between the different test scenarios regardless of the Plat-

form configuration. For instance, the results from the Joint PD control with ACS option (ζ = 0.0)

are not satisfactory for all three test scenarios under both the HANGAR and UAV configura-

tions; while those from the Joint PD control with the averaging option (ζ = 0.5) yield satisfactory

results for all of the test scenarios.

From the results, it can be seen that the averaging option (ζ = 0.5) provides the best overall

performance of the cases considered. This is expected since the averaging option represents a

trade-off between the Attitude Tracking (ACS) and the Position Tracking (FPC) options. Fur-

thermore, the consistency in the results shown across the two platform configurations (HANGAR

and UAV) illustrates that the proposed Virtual Joint Control scheme is indeed applicable to both

platform and stand alone helicopter systems. Finally, all three tests scenarios utilizing the non-

linear PD (NPD) control law for desired torque generation produced satisfactory results under

both platform configurations. This illustrates the possibility of extending the proposed Virtual

Joint Control scheme to use different stable joint control strategies.

Hover with Initial Perturbation

As stated previously, the purpose of this test is to illustrate the controller’s ability to stabilize

the system after initial perturbation from the equilibrium point. Figure 4.14 shows a set of four

three-dimensional (3-D) plots of the position of the helicopter with the HANGAR configuration

for the four control options. The four control options are the three values (0.0, 0.5 and 1.0) of

the weight scale factor ζ for the linear PD control case and the one nonlinear PD (NPD) control

case (with ζ = 0.5). With the exception of the case of the linear PD (PD) with ACS option

(ζ = 0.0), the helicopter remained close to the starting home position despite the initial attitude

perturbation.
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Figure 4.14: Helicopter 3-D Positions for Hover Tests with HANGAR Configuration
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The observed result for the case of PD with ACS option is consistent with the expected

performance by the controller. The weight scale factor value of zero (ζ = 0.0) places no emphasis

on the helicopter position tracking performance in the controller objective. Instead, the emphasis

is placed on tracking the desired attitude of the helicopter. As a consequence, the helicopter

position is not regulated by this control strategy. The effect of such emphasis can be observed

from the time response plot of the joint variables and their associated rates shown in Figure 4.15.

Given the initial perturbation in the helicopter roll and pitch angles, defined in (4.23), the

controller is able to achieve steady state tracking with respect to the attitude angles (q4, q5 and

q6) within a relatively short duration (about 10 seconds). However, during this transient period,

the helicopter has gained translational velocities through the coupled roll and pitch dynamics.

This, in turn, causes the position of the helicopter to drift indefinitely.
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On the other hand, the value of ζ = 1.0 in the case of PD with FPC option places emphasis

in the position tracking performance. As such, the controller in this case is able to maintain

the helicopter around its starting home position. However, judging the overall performance of

the controller by looking at just the 3-D plot in Figure 4.14 is deceptive as it does not provide

information on the attitude tracking performance. Mirroring the response of the PD with ACS

option (shown in Figure 4.15), Figure 4.16 portrays a split in the emphasis on the performance

between position and attitude tracking for the case of PD with FPC option. In this case,

while steady state is achieved for the position tracking, excessive oscillations, albeit damped,

are observed for the attitude angles (q4, q5 and q6). This contrasts with the ACS option in that

while the position of the helicopter is regulated by the controller, the response in the attitude

angles are not regulated. Instead of being allowed to drift, like the position in the ACS option,

the attitude angles here is constrained to oscillate back and forth by the desired joint torque for

position regulation.

This also illustrates the inherent inner-outer loop dynamic characteristics that is typical of

helicopter systems. The inner loop consists of the faster attitude (angular) dynamics; while the

outer loop consists of the typically slower position (linear) dynamics. It is precisely this inner-

outer loop dynamics that motivates the use of hierarchical control structures for helicopter flight

control in the literature, such as those found in [4, 23, 20]. With this context, the proposed

Virtual Joint Control strategy with the weight scale factor ζ provides a simple and explicit

mechanism for shifting the emphasis between the inner and outer loop dynamic performance

based on mission objective.

Furthermore, the oscillatory response in Figure 4.16 would suggest it is the same phenomenon

that Koo and Sastry [14] observed when direct input-output feedback linearization is applied.

Recall the objective of the approximate input-output feedback linearization strategy proposed

by Koo and Sastry [14] is to avoid excessive (unstable) oscillations in the internal dynamics of

the feedback system. This implies that by adjusting the value of the weight scale factor ζ, the

proposed Virtual Joint Control strategy is functionally similar to the approximate input-output

feedback linearization strategy proposed by Koo and Sastry [14]. Additional research efforts can

be made to establish such potential equivalence between these two strategies in the future.
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Figure 4.17 contains the position tracking responses for the UAV configuration. Overall,

the results mirror the corresponding cases for the HANGAR configuration. Recall the UAV

configuration is defined such that it is equivalent to the stand alone helicopter system mounted

on a virtual platform. The results in Figure 4.17 shows that the proposed Virtual Joint Control

scheme is applicable to a stand alone helicopter system as well.
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Figure 4.17: Helicopter 3-D Positions for Hover Tests with UAV Configuration
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Finally, the results shown in Figure 4.14 and Figure 4.17 show that for ζ = 0.5, both the

linear PD (PD) and nonlinear PD (NPD) controls are equally applicable. Recall the difference

between them is in the desired joint torque generation. Figure 4.18 shows the desired torque 2

for the six joints on the platform. The dash-dotted line represents the desired torque generated

by the linear PD control scheme; while the solid line represents those generated by the nonlinear

PD (NPD) control scheme.
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Figure 4.18: Desired Joint Torque Comparison: PD vs NPD (Hover, HANGAR, ζ = 0.5)

2Notice that for Joint 3, the slider joint, the reference/desired control τ3 refers to the linear force along the
slider instead of a joint torque. However, for simplicity, all of the desired joint controls are referred to as joint
torque, with exceptions to be noted separately when necessary.
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From Figure 4.18, it can be seen that the desired control joint torque is nearly identical

between the two cases. The is due to the chosen value of the parameters ai, bi and ci. In this

case, the values for all three of these parameters are set to 1.0 (see Appendix E). Recall the

definition of the nonlinear gains in (4.21), the effective gains for small errors (in both the joint

angles and rates), such as in this case, will be dominated by the ratio of the nominal gains (kpi

and kdi) and the controller parameters (ai, bi and ci):

KPi(∆qi) ≈
kpi
ai

KDi(∆qi,∆q̇i) ≈
kdi
bici

(4.26)

For comparison, the values of the nominal gains for the nonlinear PD controllers have been

chosen to match their corresponding values for the PD controllers (see Appendix E). As such,

the observed similarity in the test results between the PD and the NPD cases are expected for

this test scenario.

Figure 4.19 compares the transient yaw
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Figure 4.19: Yaw (PD vs NPD, HANGAR, ζ =

0.5)

(ψ) angle responses of the platform helicopter

with the HANGAR configuration under both

the PD and the NPD control for a test with

large initial error in the yaw angle. In this

test, all of the states of the helicopter are set

to their trim values at the beginning of the

simulation, except for the initial yaw angle.

The initial value of the helicopter yaw (ψ) an-

gle is set to 60◦ to the right. The controllers

are instructed to return the yaw angle back to 0◦ while keeping the helicopter hover at its start-

ing (home) position. When the error is large, the yaw angle under NPD control, denoted by

the solid line in Figure 4.19, converges towards the desired value faster than the corresponding

case under PD control, denoted by the dash-dotted line. Later, when the yaw angle approaches

the desired value, the rate of convergence for the yaw angle is slower under NPD control than it

is under PD control. This illustrates the nonlinear damping effect inherent in the NPD control

strategy. Despite the smaller initial damping, the magnitude of the initial desired control torque

for yaw (corresponds to τ1 and τ4) demanded by the NPD controller (denoted by the solid line)
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are smaller when compared to those demanded by the PD controller (denoted by the dash-dotted

line), as shown in Figure 4.20. In fact, for the rest of the control torques, the initial joint torque

for the NPD controller are either very close to (e.g. τ2 and τ3) or smaller than (e.g. τ5 and τ6)

those for the PD controller. Such behaviour is a direct consequence of the chosen nonlinear gain

structure. The degree to which the desired control torque are different can be adjusted through

the NPD parameters ai, bi and ci.
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Figure 4.20: Desired Joint Torque Comparison: PD vs NPD (Yaw Turn, HANGAR, ζ = 0.5)
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Horizontal Tracking of a Square Path

For the horizontal square path tracking, the objective is to test the controller’s ability to both

track a planar trajectory as well as handle discontinuity in the desired position trajectory, repre-

sented by the corners of the square path. Two sets of square path tests have been performed. In

the first set, shown in Figure 4.21, the reference planar square path, denoted by the dash-dotted

line, is specified with step changes. Similar to the hover test scenario, the square path test has

been applied to the same four control options (three for PD and one for NPD). Overall, the

observed responses are consistent with those obtained in the hover case, namely that reasonable

path tracking has been observed for all of the options except for the PD with ACS (ζ = 0.0)

option. Due to the large initial change in the position reference, all three of the remaining control
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Figure 4.21: Helicopter 3-D Positions for Square (Step) Path Tests with HANGAR Config.

options produced overshoot in the tracking results. Slight improvement in the position tracking

performance (less overshoot) can be observed in the PD with FPC option (ζ = 1.0) over the

other two options (both with ζ = 0.5). This reflects the relative emphasis placed on the position

tracking for the ζ = 1.0 case when compared to the cases with ζ = 0.5.
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When looking at the joint plot for the PD with FPC option (ζ = 1.0), shown in Figure 4.22,

it reveals that the trade-off for the improved position tracking performance is in the excessive

oscillations for the attitude (q5 and q6) of the helicopter.

Figure 4.23 shows the comparison between the desired joint torque produced by the PD and

NPD control options (with both option having ζ = 0.5). The peak values of the PD generated

desired joint torque (dash-dotted line) is observed to be slightly higher than those generated by

the NPD option (solid line). This is again consistent with the expected behaviour of the chosen

nonlinear PD gain structure.

Figure 4.24 shows the tracking responses of the second set of square path test, where the step

changes in the position reference have been replaced with a linear slope change. The objective of

this test is to illustrate that given a sufficiently slow varying path reference trajectory, reasonable

position tracking performance can be achieved with the proposed Virtual Joint Control scheme.

From Figure 4.24, the overall position tracking performance have indeed been improved for all

of the options (except for the ζ = 0.0, PD with ACS option).

Finally, the results of applying the square path tracking test with linear slope changes to the

Platform system using the UAV configuration are shown in Figure 4.25. In general, the results

for the UAV configuration are consistent with their counterpart for the HANGAR configuration.

This re-enforces the idea that, despite the changes in the configuration, the proposed Virtual

Joint Control scheme applies equally well to both configurations and is capable of producing

consistent results in both cases.
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Figure 4.23: Desired Torque Comparison: PD vs NPD (Square Step, HANGAR, ζ = 0.5)
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Figure 4.24: Helicopter 3-D Positions for Square Path Tests with HANGAR Configuration
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Figure 4.25: Helicopter 3-D Positions for Square Path Tests with UAV Configuration
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Figure-8 with changing Heading and Height

While the Square path test was designed to examine the step response of the controller, the

Figure-8 test expands the reference trajectory from a planar 2-D motion to include movement

in 3-D space, as well as combining changes in the helicopter heading. The resulting trajectories

of the helicopter under the four sets of control options are shown in Figure 4.26. Overall, the

results of the Figure-8 test are consistent with the responses observed in the previous two test

scenarios. The linear PD with ACS (ζ = 0.0) option once again produces unsatisfactory path

tracking performance while the rest of the control options produce varying degree of satisfactory

position tracking responses.
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Figure 4.26: Helicopter 3-D Positions for Figure-8 Tests with HANGAR Configuration

The trade-off in obtaining a slight improvement in the path trajectory for the FPC option

(ζ = 1.0, shown in Figure 4.26(c)) when compare to the averaged option (ζ = 0.5, shown in

Figure 4.26(b)) can be observed when examining the plots of the joint variables for the FPC
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option, shown in Figure 4.27. From there, oscillations occur once again in the roll (q6) and pitch

(q5) angles while satisfactory tracking performance are obtained for the remaining joints.

Similar responses are obtained when the control options are applied to the Platform system

with the UAV configuration, as shown in Figure 4.28. Recall the UAV configuration differs from

the HANGAR configuration in that the dynamics of the UAV configuration is uniform across

the workspace of the platform while it is non-uniform for the HANGAR configuration. This

indicates the proposed Virtual Joint Control scheme can provide a consistent testing facility to

perform comparison between the two platform configurations.
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Figure 4.28: Helicopter 3-D Positions for Figure-8 Tests with UAV Configuration
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4.5 Summary

The Virtual Joint Control scheme has been introduced for the purpose of providing an alternate

control strategy that is applicable to both Platform and stand alone helicopter (UAV) systems.

The fundamental theme of the Virtual Joint Control scheme lies in the rotor input inversion

algorithm that computes the rotor control input to generate torque at the platform joint that

would mimic those computed from stable platform joint controllers. The weight scale factor ζ in

the rotor input inversion algorithm provides an explicit tuning mechanism for determining the

degree of trade-off between attitude and path tracking.

Three simulation test scenarios have been designed to highlight various aspects of the pro-

posed Virtual Joint Control scheme. The hover with initial disturbance test is designed to

illustrate the controllers’ ability to stabilize the system within the proximity of the hover trim

condition. The planar square path test shows the step responses of the controllers, as well as their

tracking performances along the horizontal plane. The Figure-8 test expands the path tracking

requirement to include a reference trajectory and heading defined in the three-dimensional (3-D)

space.

The results of the simulation tests illustrate how the selection of the weight scale factor ζ can

indeed affect the relative emphasis placed between attitude control and path tracking control.

When ζ = 0.0, the controller’s emphasis is placed completely on tracking the reference attitude

while ignoring the reference position. On the other hand, when ζ = 1.0, position/path tracking

is maintained at the cost of excessive oscillations in the attitude of the helicopter. The ζ = 0.5

case is a representative of how adjusting the value of ζ can provide a trade-off effect between

having satisfactory tracking performances in both position and attitude.

Finally, two desired joint torque generation control strategies have been applied for the

proposed Virtual Joint Control scheme. The simulation tests demonstrated the feasibility of

extending the proposed Virtual Joint Control scheme to utilize different stable joint control

strategies. Such extension would expose the wealth of stable joint control strategies available in

the robot manipulator control literature for helicopter flight consideration.

In summary, the contributions presented in this chapter are:

� proposed a new Virtual Joint Control scheme for helicopter flight control using two variants
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of desired joint torque generation techniques: linear PD (PD) and nonlinear PD (NPD);

� illustrated the feasibility of applying the proposed Virtual Joint Control scheme to the test

Platform system through simulation with both HANGAR and UAV configuration settings;

� demonstrated the potential extension of the Virtual Joint Control scheme to utilize different

stable joint control strategies for desired joint torque generation, which could make the class

of stable robot manipulator joint control strategies available for helicopter flight control

research.



Chapter 5

Conclusions

The research presented in this thesis is motivated by the desire to utilize a test platform system for

helicopter studies. The results obtained from this study provide a foundation for achieving this

goal. A summary of the results will be given in this chapter. In addition, the novel contributions

of the research will be presented, followed by a list of proposed future research areas.

5.1 Summary

In this thesis, a nonlinear six degree-of-freedom (6 DOF) model for the Platform system has

been derived from the Principle of Virtual Power [38]. The model derivation has been verified

mathematically using the Maple� symbolic tool to avoid manipulation errors. The Platform

model utilizes a quasi-steady rotor model [12], together with the rigid body dynamics for both

the helicopter body and the platform linkages, to formulate the system dynamics. The resulting

model has a complexity equivalent to a Level 1 model [11, 12], which is suitable for control

design and analysis. Through the use of the Principle of Virtual Power, a mapping between the

Platform model and the stand alone helicopter (UAV) model has been derived and presented

through Theorem 2.1 and Lemma 2.1. Theorem 2.1 shows that the UAV model can be recovered

from the Platform model by setting the mass and inertia of the linkages to zero. Lemma 2.1

then defines the coordinate transformation mapping between the helicopter body frame and the

platform joint space. Taken together, Theorem 2.1 and Lemma 2.1 provide the basic framework

for utilizing the Platform system for UAV research.

134
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Using the mapping relationship between the Platform and UAV model, the expression for

the apparent payload Ŵp, which defines the hover trim condition for the Platform system, has

been derived. An application of the apparent payload expression is to derive the matching

criteria for the hover trim conditions between different Platform configurations, as well as with

other UAV systems. With the hover trim conditions matched, linearization can be applied

to various Platform configurations for analysis and comparisons. Four Platform configurations

have been introduced in Chapter 3: UAV, BALANCED, REDUCED, and HANGAR. The UAV

configuration represents a system in which a stand alone helicopter is attached to a virtual

platform whose link mass and inertia are set to zero. The BALANCED configuration represents

a Platform system set up in such a way that the effects of the mass and inertia of the linkages

around the elbow joint (q2) are statically balanced out by the counter weights. This has an effect

of matching its hover trim condition with the one in the UAV configuration for comparisons.

The REDUCED configuration represents a Platform setup with a slower rotor operation speed.

This is defined to address physical implementation constraints, such as availability of rotor

power and safety concerns. The rotor speed and counter weight trade-off constraint defined in

(3.26) is used to define the counter weight setting for the REDUCED configuration given the

reduced rotor speed. Finally, the HANGAR configuration uses the same rotor speed as in the

REDUCED configuration, but with a different counter weight combination. This is defined to

address the physical limitations imposed by the dimensions of the Platform linkages available

for this research.

Comparisons among the linearized models around hover for the four configurations reveal

two main observations. First, while the hover dynamics of the UAV system is independent of the

helicopter position and heading, the hover dynamics of the BALANCED case varies depending

on the helicopter body orientation relative to the Platform linkages. Second, as the Platform

linkage mass and inertia increase relative to the force generated by the rotor, they tend to

dominate the system dynamics and result in slower responses.

Further examination of the Platform system model through dimensional analysis shows that

dynamic equivalence between the Platform and UAV system is unattainable without active

control at the Platform joints. Due to the lack of actuators at the Platform system available for

this research, this represents a limitation on using the Platform system for direct equivalence

comparison with a stand alone UAV system. However, a modification to the Platform system
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will be proposed in a later section as a future research topic to extend the Platform system

in such a way that dynamic equivalence can be achieved between the Platform and the UAV

systems.

Despite the difference in their dynamic behaviour, it is still desirable to apply the same

control strategy to both the Platform and UAV systems. As such, a unified Virtual Joint Con-

trol scheme is presented. Simulation results show that the Virtual Joint Control scheme can

indeed provide a unified stable control strategy for both systems. Two variations on the desired

torque generation algorithm for the Virtual Joint Control scheme have been presented: lin-

ear Proportional-Derivative (PD) and Nonlinear Proportional-Derivative (NPD) control. These

variations illustrate that the Virtual Joint Control scheme can be expanded through the use

of different desired joint torque generation algorithms. This enables the wealth of stable joint

control strategies available in the robot manipulator control literature [40, 41, 79] to be consid-

ered for helicopter flight control applications. Finally, the weight scale factor ζ, defined in the

Virtual Joint Control scheme, provides an explicit tuning parameter for adjusting the perfor-

mance emphasis between position and attitude tracking. For example, when setting ζ = 0, the

Virtual Joint Controller exhibits Attitude Control System (ACS) type control behaviour where

the attitude and heading of the helicopter are maintained at the expense of uncontrolled drift

in its position. On the other hand, when ζ = 1, unstable internal dynamics, similar to the ones

reported by Koo and Sastry [14] when performing exact input-output feedback linearization for

path control, are observed in the form of excessive oscillations in the attitude (roll and pitch

angles) of the helicopter.

5.2 Contributions

The major contributions of this thesis are briefly summarized here:

� derived the trim equivalence condition based on the payload equation, which allows for

direct comparisons to be made between various configurations of the test Platform, as well

as with UAV systems

� proposed a new Virtual Joint Control scheme for helicopter flight control

� examined the effects of the main rotor speed and the link mass and inertia on the Platform



Chapter 5: Conclusions 137

system dynamics

Other contributions presented include:

� illustrated the feasibility of applying the proposed Virtual Joint Control scheme to the test

Platform system through simulation with both the HANGAR and the UAV configuration

settings

� demonstrated the extensibility of the proposed Virtual Joint Control scheme by examining

the behaviour, in simulation, of two of its variant forms, utilizing different desired torque

generation techniques: linear PD (PD) and nonlinear PD (NPD).

� derived the mapping relationship between the Platform system model and the UAV system

model

� derived the nonlinear 6 DOF model for the Platform system that is also applicable to stand

alone helicopter (UAV) systems

5.3 Future Research

The contributions presented in this thesis provide a theoretical basis for applying the test Plat-

form system to small-scale helicopter modelling and control research. To this end, a list of

possible avenues available for future pursuit are presented in the following sections.

5.3.1 Experimentation

For the model presented in Chapter 2, although some of the system parameters, such as mass,

can be obtained readily, others, such as inertia, are more difficult to derive. As such, system

identification [80] is necessary to obtain model parameters, as well as for verification of the sim-

ulation results presented thus far. The Platform model derived in this thesis and its subsequent

linearization can provide insight into the system model structure necessary for system identi-

fication. There are two main challenges in applying system identification to the test platform

system: quality sensor measurements for both joint angles and angular rates, and closed-loop

identification. Preliminary experimentation on the test platform shows that the joint angle mea-

surements provided by the potentiometers currently employed are too noisy to provide quality
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data for system identification (see Appendix F). Furthermore, to identify the dynamics of the

helicopter, rate sensor measurements are needed to improve the system identification results [28].

Due to the unstable dynamics inherent in the helicopter systems, closed-loop system identifica-

tion [81, 82] is necessary and therefore a stable controller for the system is required. To this

end, the Virtual Joint Control scheme proposed in this research can provide a candidate control

strategy for performing closed-loop system identification experiment.

Other challenges in performing experimentation on the Test Platform includes identification

of the joint friction, which has been neglected in the model presented. Also, real-time implemen-

tation of the Virtual Joint Control scheme is non-trivial due to the iterative loop in the torque

approximation step.

5.3.2 Model Improvement

Improvements to the Platform model can be obtained by using increased fidelity models for the

helicopter dynamics, such as including the joint friction effect, the drag effect caused by the

fuselage and body fins, more detailed rotor models to include such effects as rotor aerodynamic

moments, servo and blade dynamics (gyroscopic effects and hinge offset) [9, 10, 1, 12]. In

particular, the quasi-steady rotor model employed in this research does not take into account

the dynamics of the swashplate and the Bell-Hiller flybar assembly [83, 20, 84], which is common

for small-scale helicopters and can have a significant effect on the system dynamics for more

aggressive manoeuvres [85].

Another possible avenue to explore is to examine the model of platforms with different topolo-

gies. Although the parallel link structure employed in the Platform system presented provides a

convenient mechanism for counter balance setup, it might be possible to derive similar counter

balance trade-off condition for platforms with different topologies.

5.3.3 Further Analysis

The analysis presented in Chapter 3 focuses primarily on the effect of mass and inertia of the

Platform linkage and counter weight and how they are related to the rotor speed. Such analysis is

designed to address one of the key questions that motivates this research: how does the additional

mass and inertia of the Platform system affect the helicopter dynamics. The assumption inherent



Chapter 5: Conclusions 139

in the analysis there is that the same helicopter is used for both the Platform and the stand alone

systems. Further analysis can be performed utilizing different helicopter attributes for the two

systems. For example, the rotor radius R for the two systems could be made different instead

of/in addition to varying the rotor speed Ω.

Another possible extension in the analysis of the Platform model is to perform linearization

at an equilibrium point different from hover, such as cruising along a circular path about the

base joint at different speed. Comparisons can also be made between the behaviour of the system

operating at different radius of such circular paths.

Finally, to address the limitation of using the Platform system for direct dynamic equivalence

comparisons with the UAV system, a Servo Assisted Equivalence Algorithm is proposed below.

This algorithm calls for the addition of joint servo actuators in order to extend the existing

Platform system for UAV research.

Servo Assisted Equivalence Algorithm

Recall the model for the Platform system without actuated joints in (2.106):

ˆ̄M(ˆ̄q)¨̄̂q + ˆ̄h(ˆ̄q, ˙̄̂q) = ˆ̄τ (ˆ̄q, ˙̄̂q, ~u). (2.106)

If servo actuators can be added to the Platform system, the corresponding model would be

modified with the additional servo torque input ˆ̄τ s(ˆ̄q, ˙̄̂q, ~u) as

ˆ̄M(ˆ̄q)¨̄̂q + ˆ̄h(ˆ̄q, ˙̄̂q)− ˆ̄τ g(ˆ̄q) = ˆ̄τR(ˆ̄q, ˙̄̂q, ~u) + ˆ̄τ s(ˆ̄q, ˙̄̂q, ~u), (5.1)

where the generalized gravitational and rotor force components have been separated out into

ˆ̄τ g and ˆ̄τR respectively. The generalized gravitational term is defined in (2.100); while the

generalized rotor force component is defined in (2.101). The goal of the servo assisted equivalence

algorithm is to derive the control law for ˆ̄τ s(ˆ̄q, ˙̄̂q, ~u) such that the resulting system would be

equivalent to the UAV system in (3.9).

Theorem 5.1 Assuming the Platform system model described by (5.1) is not operating near its
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singularities, when the servo control law defined by

ˆ̄τ s(ˆ̄q, ˙̄̂q, ~u) = ˆ̄M(ˆ̄q)ˆ̄τ c(ˆ̄q, ˙̄̂q, ~u) + ˆ̄h(ˆ̄q, ˙̄̂q)− ˆ̄τ g(ˆ̄q), (5.2)

where

ˆ̄τ c(ˆ̄q, ˙̄̂q, ~u) = ˆ̄MU(ˆ̄q)−1
[
ˆ̄τRU

(ˆ̄q, ˙̄̂q, ~u) + ˆ̄τ gU(ˆ̄q)− ˆ̄hU(ˆ̄q, ˙̄̂q)
]
− ˆ̄M(ˆ̄q)−1ˆ̄τR(ˆ̄q, ˙̄̂q, ~u), (5.3)

is applied to it, the resulting closed-loop system dynamics will be equivalent to the UAV system

model in (3.9).

Proof: Theorem 5.1

Applying (5.2) to (5.1) would yield

ˆ̄M(ˆ̄q)¨̄̂q + ˆ̄h(ˆ̄q, ˙̄̂q)− ˆ̄τ g(ˆ̄q) = ˆ̄τR(ˆ̄q, ˙̄̂q, ~u) + ˆ̄M(ˆ̄q)ˆ̄τ c(ˆ̄q, ˙̄̂q, ~u) + ˆ̄h(ˆ̄q, ˙̄̂q)− ˆ̄τ g(ˆ̄q), (5.4)

which can be simplified to

ˆ̄M(ˆ̄q)¨̄̂q = ˆ̄τR(ˆ̄q, ˙̄̂q, ~u) + ˆ̄M(ˆ̄q)ˆ̄τ c(ˆ̄q, ˙̄̂q, ~u). (5.5)

Substituting in (5.3) and simplifying to yield

ˆ̄M(ˆ̄q)¨̄̂q = ˆ̄M(ˆ̄q)
(

ˆ̄MU(ˆ̄q)−1
[
ˆ̄τRU

(ˆ̄q, ˙̄̂q, ~u) + ˆ̄τ gU(ˆ̄q)− ˆ̄hU(ˆ̄q, ˙̄̂q)
])
, (5.6)

which can be further simplified by left multiplying both sides with the product ˆ̄MU(ˆ̄q) ˆ̄M(ˆ̄q)−1

and recognizing that

ˆ̄τU(ˆ̄q, ˙̄̂q, ~u) = ˆ̄τ gU(ˆ̄q) + ˆ̄τRU
(ˆ̄q, ˙̄̂q, ~u) (5.7)

to obtain the desired UAV model in (3.9).

Conceptually, the servo assisted equivalence algorithm defined in Theorem 5.1 is similar to

the Computed Torque Control Method in the robotics literature [41]. In the Computed Torque

Method, the servo control law has the form [41]

~τ = α~τ ′ + ~β, (5.8)
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where α and ~β represent the model-based component; while ~τ ′ represents a desired system

behaviour. The idea is to have the model-based component cancels out the nonlinearity in the

system model and makes the system behave like a second order linear system to the input ~τ ′.

Then the input ~τ ′ will be defined by the desired behaviour [41]. Drawing on the parallel with the

Computed Torque Method, the model-based portion of the servo assisted equivalence algorithm

defined in Theorem 5.1 is represented by ˆ̄τ s(ˆ̄q, ˙̄̂q, ~u) in (5.2) with

α = ˆ̄M(ˆ̄q) and ~β = ˆ̄h(ˆ̄q, ˙̄̂q)− ˆ̄τ g(ˆ̄q), (5.9)

while the desired behaviour is represented by ˆ̄τ c(ˆ̄q, ˙̄̂q, ~u) in (5.3). The principal difference be-

tween the servo assisted equivalence algorithm presented here and a conventional Computed

Torque Method is in the definition of the desired behaviour. It is not surprising that while the

typical desired response for robot manipulator systems under Computed Torque Control is a

well defined second order behaviour [41], the desired behaviour defined by (5.3) represents the

dynamics of the UAV system since it is the objective of the equivalence algorithm.

In terms of implementation, in addition to the limitations shared by the Computed Torque

Method, such as the need for precise knowledge of the system model parameters and computa-

tional complexity [40, 41], the use of the UAV model as the desired behaviour also introduces

the need to model the helicopter rotor dynamics adequately for the equivalence algorithm. In

particular, the generalized rotor force ˆ̄τR(ˆ̄q, ˙̄̂q, ~u) will need to be computed from the rotor con-

trol inputs ~u. However, considering that the servo assisted equivalence algorithm is designed to

augment any control strategy for the Platform system, it does not represent additional burden

with respect to implementation, with the possible exception of added computational complexity.

Finally, the servo assisted equivalence algorithm defined in Theorem 5.1 provides a systematic

approach to operate the Platform system so that its dynamic behaviour resembles that of the

target UAV system. With this algorithm, as long as the trim conditions are matched, equivalence

between the Platform and the UAV system can be extended beyond the point-to-point and

constant height circular path cases mentioned previously.
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Application to the HANGAR Configuration

Since the main rotor speed represents the normalization factor for time, when the Servo Assisted

Equivalence Algorithm defined in Theorem 5.1 is applied to the HANGAR configuration defined

previously, the resulting system dynamics is expected to be time scaled due to the change in

the main rotor speed. This is illustrated in Figure 5.1, where the servo assisted HANGAR

configuration is plotted side-by-side with those for the UAV configuration for comparison.
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Figure 5.1: HANGAR Poles Around Hover (Servo Assisted)

The eigenvalues of the linearized system matrix ĀHc of the compensated HANGAR system

is given by

eig(ĀHc) =



~04×1

0.21± 0.54 i

0.15

0.1

−2.13

−1.09

−0.61

−0.37



. (5.10)

Recall, the main rotor speed ratio between the HANGAR and the UAV case is Ω̌ = 0.5. When

comparing the eigenvalues for the compensated HANGAR configuration in (5.10) to those of

the UAV configuration in (3.19), it can be seen that ratio between the corresponding modes are
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indeed close to the main rotor speed ratio.

5.3.4 Stability Proof and Extension of Virtual Joint Control Scheme

Due to the nonlinear nature of the proposed Virtual Joint Control scheme, it is not trivial

to obtain a stability proof for it. Recall the desired joint torque is computed to drive the

system towards the trim condition such that the system behaviour would minic those of a robot

manipulator system under stable joint control. As such, a possible avenue for obtaining stability

condition for the Virtual Joint Control scheme is through examining the error between the desired

and the actual torque applied at the joints. Alternatively, for PD based variants (both linear and

nonlinear cases), a modified Lyapunov function [71] might be obtainable from the underlying

desired joint torque generation algorithms [40, 78].

The nonlinearity in the Virtual Joint Control scheme also poses a challenge for implementa-

tion, especially the presence of the iteration loop in the torque approximation step could result in

computation time that is too long for real time applications. One possible solution is to replace

the iteration loop with a multiple dimensional look-up table for computing the control inputs

from the desired rotor force and moment.

More in depth analysis on the effect of the weight scale factor ζ can also be performed to

explore the possibility of obtaining an optimal value given a certain mission objectives. Devel-

opment of an automatic tuning or online adaptive algorithms for adjusting the value of ζ can

also be explored. Furthermore, the effects of the gain values in the PD/NPD controller for the

desired torque generation can be explored in terms of performance enhancement with respect to

specific control objectives.

Finally, the two variant forms of the Virtual Joint Control scheme presented here is only

a proof of concept illustration on the extensibility of this control strategy. Other stable robot

control laws can also be explored for flight control case studies through this test platform setup.
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Rotation Matrix

A.1 General Rotation Matrix

The convention used to define rotation matrices in this document is similar to the one presented

in [40]. A rotation matrix Rb
a maps the coordinates of a vector expressed in frame b to the

coordinates expressed in frame a: 
xa

ya

za

 = Rb
a


xb

yb

zb

 (A.1)

Here, frame a is interpreted as the initial frame, while frame b is the resulting frame after the

rotation is applied. With this definition, the rotation matrices for rotations about the major axes

can be defined as follows. The positive sense of the rotation angles is defined by the standard

right-hand rule.

Rotation about x-axis by an angle of φ:

Rx,φ =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (A.2)

144
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Rotation about y-axis by an angle of θ:

Ry,θ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.3)

Rotation about z-axis by an angle of ψ:

Rz,ψ =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (A.4)

A.1.1 Roll, Pitch and Yaw

The orientation of an aircraft is typically

yψ

ψ

x

θ

θ

x̄

z

z̄

ȳ

Body-Fixed Frame

Inertial Frame
φ

φ

Figure A.1: Roll, Pitch and Yaw angles

measured in terms of the roll (φ), pitch (θ)

and yaw (ψ) angles that the aircraft body-

fixed axes make with the principal inertial axes

(see Figure A.1). These angles can be inter-

preted as the angles of rotation for the inertial

frame to transform into the body-fixed frame.

As such, a rotation matrix can be obtained

for each set of roll-pitch-yaw angles and it is

defined as follows:

Rψ,θ,φ = Rz,ψRy,θRx,φ (A.5)

The above rotation can be interpreted as a series of current-frame [40] rotations:

1. rotates about z-axis by ψ

2. rotates about the resulting y-axis by θ

3. rotates again about the current x-axis by φ
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Using (A.2) to (A.4), (A.5) can be written as:

Rψ,θ,φ =


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 (A.6)

The above rotation matrix can be used to transform vectors expressed between the body-fixed

frame (frame b) and the earth-fixed (inertial) surface frame (frame a):

Rbody
inertial = Rψ,θ,φ (A.7)

However, this matrix does not help in obtaining angular rate measurement from the raw data

into either frames. The reason is that the rate measurements (φ̇, θ̇, and ψ̇) are taken with respect

to the intermediate frames. As a result, another transformation is necessary [38]:
p

q

r

 =


1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ



φ̇

θ̇

ψ̇

 = REuler


φ̇

θ̇

ψ̇

 (A.8)

where p, q and r are the angular rates expressed with respect to the body-fixed frame x, y and

z axis respectively (frame b). Notice that the mapping in (A.8) is not an orthogonal rotation

matrix. The inverse mapping is given as:
φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



p

q

r

 (A.9)

A.2 Rotor Frame Rotations

In the derivation of rotor dynamics, two frames are defined for each rotors: hub and hub-wind

frame.
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A.2.1 Hub Frames

The hub frame for each rotor is defined by aligning the z axis with the direction of air flow

through the rotor.

Main Rotor Hub Frame

For the main rotor, the orientation of the hub frame is the same as the body-fixed frame:

Rhub
body =


1 0 0

0 1 0

0 0 1

 (A.10)

Tail Rotor Hub Frame

For the tail rotor, the hub frame is obtained by rotating the body-fixed frame about the x axis

by −π/2:

Rhub
body =


1 0 0

0 cos
(
−π

2

)
− sin

(
−π

2

)
0 sin

(
−π

2

)
cos
(
−π

2

)
 =


1 0 0

0 0 1

0 −1 0

 (A.11)

A.2.2 Hub-Wind Frame

The hub-wind frame for each rotor is obtained by rotating the hub frame about the z axis by

the side slip angle (ηm or ηt).

Main Rotor Hub-Wind Frame

Since the main rotor hub frame has the same orientation as the body-fixed frame, the rotation

matrix from both the body-fixed and hub frame to the hub-wind frame will be the same:

Rhub-wind
body = Rhub-wind

hub =


cos(ηm) − sin(ηm) 0

sin(ηm) cos(ηm) 0

0 0 1

 (A.12)
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Tail Rotor Hub-Wind Frame

From the tail rotor hub frame to the hub-wind frame, it is a simple rotation about the z axis by

the side slip angle (ηt):

Rhub-wind
hub =


cos(ηt) − sin(ηt) 0

sin(ηt) cos(ηt) 0

0 0 1

 (A.13)

To go from the body-fixed frame to the tail rotor hub-wind frame, the rotation matrix is obtained

by adding the rotation between the body-fixed frame and the tail hub frame:

Rhub-wind
body = Rhub

bodyR
hub-wind
hub =


cos(ηt) − sin(ηt) 0

0 0 1

− sin(ηt) − cos(ηt) 0

 (A.14)

A.3 Rotation Matrix for the Test Platform

Applying the rotation matrices defined in the previous section to the test platform, the rotation

matrices between the Inertial Frame and each of the frames fixed to the platform linkage can be

computed. They are listed in the following sections.

A.3.1 Base Rod and Vertical Bar - Frame 1 and Frame 4

The orientation of both Frame 1 and Frame 4 only rotates about the vertical z axis of the inertial

frame. So the rotation matrix is just Rz,q1 :

R1
0 = R4

0 =


Cq1 −Sq1 0

Sq1 Cq1 0

0 0 1

 (A.15)

where the short form for the sine and cosine of the joint angles have been used. For example,

Sq1 is the short form sin q1 and Cq1 is the short form for cos q1.
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A.3.2 Bottom and Main Boom - Frame 2 and Frame 3

Frame 2 and Frame 3 rotates through both q1 and q2. First, it is rotated by q1 about z. Then,

a rotation of −90◦ about the resulting x axis is performed to align the resulting z axis with

z2. Finally, a rotation of q2 about z2 brings the frame to align with Frame 2. As a result, the

rotation matrix is given by R3
0 = Rz,q1Rx,−90◦Rz,q2 :

R2
0 = R3

0 =


Cq1Cq2 −Cq1Sq2 −Sq1
Sq1Cq2 −Sq1Sq2 Cq1

−Sq2 −Cq2 0

 (A.16)

A.3.3 Helicopter Body - Body Frame

When applying the Roll (q6), Pitch (q5) and Yaw (q4) angle rotation of the platform directly

into the Euler rotation matrix derived in the previous section, the resulting rotation matrix

represents the rotation from Frame 4 (as defined in Figure 2.6) to the helicopter Body Frame.

Rb
4 =


cos q5 cos q4 sin q6 sin q5 cos q4 − cos q6 sin q4 cos q6 sin q5 cos q4 + sin q6 sin q4

cos q5 sin q4 sin q6 sin q5 sin q4 + cos q6 cos q4 cos q6 sin q5 sin q4 − sin q6 cos q4

− sin q5 sin q6 cos q5 cos q6 cos q5


(A.17)

However, Frame 4 is itself rotated by the motion of the base joint (q1). Therefore, to obtain

the rotation matrix for the helicopter Body Frame from the inertial frame, the Euler Yaw angle

is not q4, but it is actually the sum of q1 and q4. The corresponding mappings between the Euler

angles and the joint variables are given by:

φ = q6 θ = q5 ψ = (q1 + q4) (A.18)

The rotation matrix between the Inertial Frame and the Body Frame Rb
0 can therefore be

obtained by substituting (A.18) into (A.6).

Similarly, the relationship between the body fixed angular rates and the joint rates is given
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as: 
1 0 − sin q5

0 cos q6 cos q5 sin q6

0 − sin q6 cos q5 cos q6




q̇6

q̇5

(q̇1 + q̇4)

 =


p

q

r

 (A.19)

From this, the Jacobian for the helicopter body-fixed angular velocity can be defined as:


p

q

r

 =


−Sq5 0 0 −Sq5 0 1

Cq5Sq6 0 0 Cq5Sq6 Cq6 0

Cq5Cq6 0 0 Cq5Sq6 −Sq6 0





q̇1

q̇2

q̇3

q̇4

q̇5

q̇6


= Jωb

~̇q (A.20)
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Rotor Aerodynamics

A more detailed derivation of the rotor dynamics is included in this appendix for completeness.

The first section illustrates the application of the momentum theory in obtaining the relationship

between rotor thrust and the induced velocity.

B.1 Relating Thrust and Induced Velocity

For steady free flight conditions, such as during hover or constant speed cruise flight, the thrust

required is approximately equal to the weight of the helicopter body:

T ≈ mbg (B.1)

From momentum theory, the thrust generated at the rotor disc is equal to the product of the

rate of the air mass flow ρAdiscv1 and the change in the air mass velocity ∆v [10]:

T = ρAdiscv1∆v (B.2)

where v1 is the air velocity at the rotor disc. Let v0 denote the velocity of air far above the rotor

disc and v2 be that of air far below the rotor disc. The change of air velocity (due to the action

of the rotor disc) is then given as the difference between the two velocities:

∆v = v2 − v0 (B.3)

151
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Assume that the air velocity far above the rotor disc is zero (calm air), the change in air

velocity is therefore equal to ∆v = v2. The thrust equation then becomes:

T = ρAdiscv1v2 (B.4)

To examine how the rotor affects the pressure and velocity of the air stream that passes

through it, the principle of conservation of energy is applied to the system that includes the air

stream from far above through the rotor disc to the stream far below. This system is treated

as a closed system, that is ignoring external disturbance and assuming no loss of energy. For

aerodynamics, the conservation of energy is expressed in the form of the Bernoulli’s equation [86],

which states that the sum of the static and dynamics pressure is constant. Applying Bernoulli’s

equation to the air stream inflow above the rotor, the static pressure at far above p∞ is equal to

[1]:

p∞ = pdisc +
1
2
ρv2

1 (B.5)

where pdisc is the static pressure just above the rotor disc. The term 1
2ρv

2
1 represents the dynamic

pressure at the rotor disc with v1 being the air velocity at the rotor disc.

For the outflow below the rotor, the Bernoulli’s equation becomes:

pdisc + ∆p+
1
2
ρv2

1 = p∞ +
1
2
ρv2

2 (B.6)

The change in pressure resulted from the rotor disc action is denoted as ∆p. This equation

assumes that the static pressure at far below the rotor disc returns to the same level as that

at far above the rotor disc. Substituting the static pressure p∞ from the Bernoulli’s equation

for the rotor disc inflow into that for the outflow, the change in the static pressure ∆p can be

obtained:

∆p =
1
2
ρv2

2 (B.7)

This is the change in air pressure caused by the rotor disc pushing air downward to generate

thrust. Therefore, by definition, this change in pressure across the rotor disc is also equal to the
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thrust generated across the rotor disc divided by the disc area:

∆p =
T

Adisc
= ρv1v2 (B.8)

where the rotor thrust T is given by (B.4). Equating the two expressions for ∆p and solve for

the outflow air velocity v2 at far below the rotor disc yields:

v2 = 2v1 (B.9)

This gives the relationship between the thrust T and the air velocity at the rotor disc v1:

T = 2ρAdiscv
2
1 or v1 =

√
T

2ρAdisc
(B.10)

The velocity v1 is called the induced velocity. The implicit assumption here is that both the

thrust and the induced velocity are uniformly distributed across the rotor disc.

The expressions for the rotor thrust T and the induced velocity v1 in (B.10) were derived

for hover condition. For general flight condition, they are modified to include the rotor velocity

through air due to the motion of the helicopter [12]:

T = 2ρAdiscVairv1 or v1 =
T

2ρAdiscVair
(B.11)

where Vair is the rotor velocity through air given by:

Vair =
√
V 2

horizontal + (v1 + Vvertical)2 (B.12)

The component of the rotor velocity that lies in the plane of rotation of the blades is denoted as

Vhorizontal; while the perpendicular component is denoted Vvertical.

B.2 Rotor Coefficients

For a helicopter hovering in calm air, the relative air velocity along the plane of the rotor disc

flowing over the blade air foil is mainly due to the motion of the blade UT = Ωrs, where rs is the

position of the blade element along the blade span with respect to the rotor hub (See Figure 2.3).
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The planar velocity UT combines with the velocity perpendicular to the rotor disc plane, which

is the induced velocity UP = v1 for the hover case, forms the net air velocity ~U that the blade

element experienced. The angle that the net air velocity ~U made with respect to the rotor disc

plane is called the inflow angle φ:

φ = arctan
(
UP
UT

)
= arctan

(
v1
Ωrs

)
(B.13)

For small inflow angle, it can be approximated by:

φ ≈ UP
UT

=
v1
Ωrs

(B.14)

The difference between the blade pitch θ, measured relative to the rotor disc plane, and the

inflow angle φ is the effective angle of attack α [1]:

α = θ − φ (B.15)

UT = Ωr

d~T

d ~D

φ

Disc Plane

α ~U

θ

φ

UP = v1 d~L

Figure B.1: Force and Velocity Components on a Blade Element

As a lift generating surface, the aerodynamic forces acting on the blade element is similar

to those on an air foil of an airplane wing [42]. The force acting on the blade element can be

resolved into an incremental lift vector d~L and an incremental drag vector d ~D components that
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are perpendicular to each other. The lift is perpendicular to the net air velocity ~U over the

blade element; while the drag component is along that of ~U . The direction of these forces on

the blade element is shown in Figure B.1. Here, a distinction is made between the lift generated

by the blade (d~L) and the rotor thrust (d~T ). The rotor thrust is the component of the blade

aerodynamic force that is normal to the rotor disc plane.

The magnitude of the lift (drag) force component of the blade element has a general form of

a product of three terms: the dynamic pressure 1
2ρ
~U

2
, the lift (drag) coefficient cL (cD) and the

surface area of the blade element cdrs:

d~L =
1
2
ρ~U

2
cLcdrs and d ~D =

1
2
ρ~U

2
cDcdrs (B.16)

The dynamic pressure term 1
2ρ
~U describes the force and drag dependency on the air density

and the relative air speed. The dimensionless coefficients (cL and cD) measures the effectiveness

of the blade element at producing lift and drag. When operating with relatively small angle of

attack (α < 20◦), the lift coefficient cL is proportional to α [42]:

cL = aLα (B.17)

where aL is the lift curve coefficient and has a nominal value of around 6 for air foil typically

use on helicopter rotor blades [1].

Substituting the expressions for the air velocity ~U , the lift (drag) coefficient cL (cD), the

angle of attack α and the inflow angle (φ) into (B.16), the incremental lift (drag) becomes:

d~L =
1
2
ρU2

TaLc

(
θ − UP

UT

)
drs and d ~D =

1
2
ρU2

TaLcDcdrs (B.18)

Notice that the air velocity U is approximated by U ≈ UT as the tangential velocity is typically

an order of magnitude larger than the normal velocity UT >> UP for normal operations. Sub-

stituting the tangential and normal air velocity for hover, the incremental lift and drag becomes:

d~L =
1
2
ρac

[
θ(Ωrs)2 − v1(Ωrs)

]
drs and d ~D =

1
2
ρaLcDc(Ωrs)2drs (B.19)

When deriving the incremental lift and drag for general flight, the tangential and normal air
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velocity will be modified to include the effect of the rotor velocity due to helicopter motion [1]:

UT = Ωr + Vhorizontal sin(Ψ) (B.20)

UP = v1

[
1 +K

rs
R

cos(Ψ)
]
− Vvertical + Vhorizontalβ cos(Ψ) +

rs

[
β̇ + p sin(Ψ)− q cos(Ψ)

]
(B.21)

where v1 is the averaged induced velocity in hover and K is the velocity dependent factor to

account for the non-uniform distribution of the induced velocity due to the motion of the rotor

through air [12]:

K =

 tan
(
|χ|
2

)
|χ| ≤ π

2

cot
(
|χ|
2

)
π
2 < |χ|

(B.22)

The wake angle χ is defined as:

χ = arctan
(

µ

λ1 + λz

)
(B.23)

The first term in the normal velocity equation (B.21) represents the effect of forward speed

on the induced velocity. The second term is the component of the incoming velocity (due to the

motion of the helicopter) along the rotor shaft axis. The last two terms accounts for the effect

of blade flapping [9].

The incremental thrust (d~T ) is the sum of the projection of the incremental lift and drag

vector normal to the disc plane:

d~T = d~L cos(φ)− d ~D sin(φ) ≈ d~L (B.24)

The incremental thrust is approximated by the incremental lift because of the small magnitude of

the incremental drag vector relative to the incremental lift, as well as the small angle assumption

on the inflow angle φ. The net rotor thrust ~T is computed by integrating the incremental thrust

d~T along the span (length) of the blade and multiply by the number of blades Nb:

~T = Nb

∫ R

0
d~T (B.25)

For general flight, such as in forward flight, the incremental thrust needs to be averaged over the
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azimuth angle (Ψ) as well to account for the non-uniform induced velocity flow at the rotor:

~T =
Nb

2π

∫ R

0

∫ 2π

0
d~T (B.26)

Carrying out the integration in (B.25), the thrust for hover is given by:

~T =
1
2
ρNbcR(ΩR)2aL

(
θ0
3
− v1

2(ΩR)

)
(B.27)

The thrust equation can be written in a more compact form using the following non-dimensional

factors [10, 1, 9]:

Thrust Coefficient : ĈT =
T

ρAdisc(ΩR)2
(B.28)

Inflow Factor : λ1 =
v1

(ΩR)
(B.29)

Solidity : σ =
Ab

Adisc
=
NbcR

πR2
=
Nbc

πR
(B.30)

where Ab is the total blade area of the rotor.

The hover thrust coefficient is then given as:

ĈT =
σaL
4

(
2
3
θ0 − λ1

)
(B.31)

For general flight, the thrust coefficient becomes:

ĈT =
σaL
4

[
2
3
θ0

(
1 +

3
2
µ2

)
− (λ1 + λz + µB1)−

µυx

2

]
(B.32)

In addition to the thrust, when the helicopter is in motion (such as in forward flight), the

asymmetry in the local angle of attack of the blades also produces net force within the disc plane.

This force is called the planar Horizontal Force (H-Force). The component of the H-Force along

the direction of flight is called the longitudinal H-Force; the associated perpendicular component

is referred to as the lateral H-Force. The incremental longitudinal H-Force d ~H lon is defined as:

d ~H lon = d~L
[
φ sin(Ψ)− β cos(Ψ)

]
+ d ~D sin(Ψ) (B.33)
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and the incremental lateral H-Force d ~H lat is define as:

d ~H lat = −d~L
[
φ cos(Ψ) + β sin(Ψ)

]
− d ~D cos(Ψ) (B.34)

Similar to the rotor thrust, these can be integrated to obtain:

Ĉlon =
µσ

4
cD + a1,sĈT +

aLσ

4

(
(λ1 + λz − a1,sµ)

[
θ0µ−

1
2
(a1,s + B̂1)− υx

]
+(b1,s + Â1)

[a0

3
− µ

8
(Kλ1 − υy)

]
+ a0

[
µa0

2
+

1
3
(Kλ1 − υy)

]
+υx

[
θ0
3
− 3

8
µ(a1,s + B̂1)

])
(B.35)

Ĉlat = −b1,sĈT +
aLσ

4

(
(λ1 + λz − a1,sµ)

[
3a0µ+ (Kλ1 − υy) +

1
2
(b1,s + Â1)

]
+(a1,s + B̂1)

[a0

3
+
µ

8
(Kλ1 − υy) + a0µ

2
]
− θ0

[
3
2
a0µ+

1
3
(Kλ1 − υy)

]
+υx

[a0

3
+
µ

8
(b1,s + Â1)

])
(B.36)

where the H-forces have been written in the compact non-dimensional form defined similar to

the thrust coefficient as:

Ĉlon =
Hlon

ρAdisc(ΩR)2
Ĉlat =

Hlat

ρAdisc(ΩR)2
(B.37)

The expressions for the flapping coefficients a0, a1,s and b1,s, defined in (2.25), can be obtained

by summing the flapping (out-of-plane) moment on the rotor blade about the rotor hub hinge

at equilibrium [9]:

a0 =
γL

8

[
θ0(1 + µ2)− 4

3
(λ1 + λz + µB̂1)−

2
3
µυx

]
− 3

2
g

Ω2R
(B.38)

a1,s =
2µ

(1− µ2/2)

[
4
3
θ0 − (λ1 + λz + µB̂1)

]
− υx

(1− µ2/2)
− 16υy

γL(1− µ2/2)
− B̂1 (B.39)

b1,s =
−1

(1 + µ2/2)

[
4
3
a0µ+Kλ1 − υy

]
− 16υx

γL(1 + µ2/2)
− Â1 (B.40)



Appendix B: Aerodynamics 159

where γL is the Lock Number defined as [10]:

γL =
ρacR4

Iblade
(B.41)

with Iblade representing the blade flapping inertia.

Carrying out the same process for computing the rotor torque Q, the incremental torque d~Q

is defined as:

d~Q = r(d~Lφ+ d ~D) (B.42)

The torque coefficient for hover, obtained by integrating the incremental torque, is given as:

ĈQ =
σ

8
cD +

1√
2
Ĉ

3/2
T (B.43)

where the torque coefficient is defined by:

ĈQ =
Q

ρAdisc(ΩR)2R
(B.44)

The torque coefficient for general flight is:

ĈQ =
σ

8
cD(1 + 3µ2) + (λ1 + λz)ĈT − µĈlon +

aLσ

γL
(a1,sυy + b1,sυx +Kλ1υx) (B.45)
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Platform Kinematics

C.1 Position Vectors

The position vectors for the centre of gravity of each of the rigid body of the platform system

expressed with respect to the inertial frame are given as follows. The home position of the

platform system is when all of the joint variables are at zero. The Inertial Frame is defined on

the same level as the helicopter centre of gravity when it is at the home position. The location

of the centre of gravity of each of the rigid body in the platform system and their associated

reference frames are indicated in Figure 2.6.

~r1 =


0

0

l4 + ρ1

 ~r2 =


ρ2Cq1Cq2

ρ2Sq1Cq2

−(l1 + ρ2Sq2)

 ~r3 =


−ρ3Cq1Cq2

−ρ3Sq1Cq2

−(l1 + l2 − ρ3Sq2)



~r4 =


l3Cq1Cq2

l3Sq1Cq2

−(l1 + ρ4 + l3Sq2)

 ~rb =


(ls + q3 + l3Cq2)Cq1

(ls + q3 + l3Cq2)Sq1

−(l1 + l2 + l4 + l3Sq2)

 (C.1)

160
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C.2 Velocity Vectors

C.2.1 Linear Velocity Vectors

The linear velocity of each of the rigid body expressed in the inertial frame are given as follows.

~v1 =


0

0

0

 ~v2 =


−ρ2(Sq1Cq2 q̇1 + Cq1Sq2 q̇2)

ρ2(Cq1Cq2 q̇1 − Sq1Sq1 q̇2)

−ρ2Cq2 q̇2

 ~v3 =


ρ3(Sq1Cq2 q̇1 + Cq1Sq2 q̇2)

−ρ3(Cq1Cq2 q̇1 − Sq1Sq1 q̇2)

ρ3Cq2 q̇2



~v4 =


−l3(Sq1Cq2 q̇1 + Cq1Sq2 q̇2)

l3(Cq1Cq2 q̇1 − Sq1Sq1 q̇2)

−l3Cq2 q̇2

 ~vb =


−
[
(ls + q3 + l3Cq2)Sq1 q̇1 + (Sq2 q̇2 − q̇3)Cq1

]
(ls + q3 + l3Cq2)Cq1 q̇1 − (Sq2 q̇2 − q̇3)Sq1

−l3Cq2 q̇2


(C.2)

The linear velocity expressed with respect to the associated centre of gravity frame for each

rigid body is given as follows.

~vl1 =


0

0

0

 ~vl2 =


0

ρ2q̇2

ρ2Cq2 q̇1

 ~vl3 =


0

−ρ3q̇2

−ρ3Cq2 q̇1

 ~vl4 =


−l3Sq2 q̇2
l3Cq2 q̇1

−l3Cq2 q̇2



~vlb = (ls + q3 + l3Cq2)q̇1


Sq4Cq5

Sq4Sq5Sq6 + Cq4Cq6

Sq4Sq5Cq6 − Cq4Sq6



− l3q̇2


Sq2Cq4Cq5 − Cq2Sq5

Sq2(Cq4Sq5Sq6 − Sq4Cq6) + Cq2Cq5Sq6

Sq2(Cq4Sq5Cq6 + Sq4Sq6) + Cq2Cq5Cq6



+ q̇3


Cq4Cq5

Cq4Sq5Sq6 − Sq4Cq6
Cq4Sq5Cq6 + Sq4Sq6



(C.3)
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C.2.2 Angular Velocity Vectors

The angular velocity of each of the rigid body in the platform system expressed in the inertial

frame is given as follows.

~ω1 =


0

0

q̇1

 ~ω2 =


−Sq1 q̇2
Cq1 q̇2

q̇1

 ~ω3 =


−Sq1 q̇2
Cq1 q̇2

q̇1

 ~ω4 =


0

0

q̇1



~ωb =


− sin(q1 + q4)q̇5 + cos(q1 + q4)Cq5 q̇6

cos(q1 + q4)q̇5 + sin(q1 + q4)Cq5 q̇6

q̇1 + q̇4 − Sq5 q̇6


(C.4)

The angular velocity of the rigid bodies expressed in the associated local frames are given as

follows.

~ωl1 =


0

0

q̇1

 ~ωl2 =


−Sq2 q̇1
−Cq2 q̇1
q̇2

 ~ωl3 =


−Sq2 q̇1
−Cq2 q̇1
q̇2

 ~ωl4 =


0

0

q̇1



~ωlb = ω̃b =


−Sq5(q̇1 + q̇4) + q̇6

Cq5Sq6(q̇1 + q̇4) + Cq6 q̇5

Cq5Cq6(q̇4 + q̇4)− Sq6 q̇5


(C.5)

C.3 Jacobian Matrices

C.3.1 Linear Jacobian

The Jacobian matrix mapping between the joint rates and the linear velocity of each of the

rigid bodies in the platform system expressed in their associated local frames are listed in the

following.

The base rod is fixed to the ground and therefore its linear velocity Jacobian is zero:

Jv1 = 03×6 =
[
~β11

~β12
~β13

~β14
~β15

~β16

]
(C.6)
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where the jth column of the Jacobian matrix is the rate projection vector of the velocity vector

with respect to the jth generalized coordinate ~β1j .

For the bottom (Body 2) and main (Body 3) boom:

Jv2 = ρ2Jvp =
[
~β21

~β22
~β23

~β24
~β25

~β26

]
Jv3 = −ρ3Jvp =

[
~β31

~β32
~β33

~β34
~β35

~β36

] (C.7)

where

Jvp =


0 0 0 0 0 0

0 1 0 0 0 0

Cq2 0 0 0 0 0

 (C.8)

and for the vertical bar (Body 4):

Jv4 =


0 −l3Sq2 0 0 0 0

l3Cq2 0 0 0 0 0

0 −l3Cq2 0 0 0 0

 =
[
~β41

~β42
~β43

~β44
~β45

~β46

]
(C.9)

Finally, for the helicopter body:

Jvb
=


lhpSq4Cq5 −l3(Sq2Cq4Cq5 − Cq2Sq5) Cq4Cq5

lhp(Sq4Sq5Sq6 + Cq4Cq6) −l3(Sq2r12 + Cq2Cq5Sq6) r12 03×3

lhp(Sq4Sq5Cq6 − Cq4Sq6) −l3(Sq2r13 + Cq2Cq5Cq6) r13


=
[
~βb1

~βb2
~βb3

~βb4
~βb5

~βb6

] (C.10)

where lhp = (ls + q3 + l3Cq2), r12 = Cq4Sq5Sq6 − Sq4Cq6 , and r13 = Cq4Sq5Cq6 + Sq4Sq6 .

C.3.2 Angular Jacobian

The Jacobian matrix mapping between the joint rates and the angular velocities of the rigid

bodies of the platform system are listed in the following.

The motion of the base rod (Body 1) and the vertical bar (Body 4) are constrained by the
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parallelogram configuration of the platform so that they have the same angular velocities:

Jω1 = Jω4 =


0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0


=
[
~γ11 ~γ12 ~γ13 ~γ14 ~γ15 ~γ16

]
=
[
~γ41 ~γ42 ~γ43 ~γ44 ~γ45 ~γ46

] (C.11)

Similarly, the main and bottom boom have the same angular velocity:

Jω2 = Jω3 =


−Sq2 0 0 0 0 0

−Cq2 0 0 0 0 0

0 1 0 0 0 0


=
[
~γ21 ~γ22 ~γ23 ~γ24 ~γ25 ~γ26

]
=
[
~γ31 ~γ32 ~γ33 ~γ34 ~γ35 ~γ36

] (C.12)

Finally, the angular Jacobian for the helicopter body is:

Jωb
=


−Sq5 0 0 −Sq5 0 1

Cq5Sq6 0 0 Cq5Sq6 Cq6 0

Cq5Cq6 0 0 Cq5Cq6 −Sq6 0

 =
[
~γb1 ~γb2 ~γb3 ~γb4 ~γb5 ~γb6

]
(C.13)

C.3.3 Overall Jacobian

The overall Jacobian is obtained by augmenting the linear and angular Jacobian together. The

Jacobians for the rigid bodies of the platform system is therefore defined as:

J1 =

 Jv1

Jω1

 J2 =

 Jv2

Jω2

 J3 =

 Jv3

Jω3

 J4 =

 Jv4

Jω4

 J b =

 Jvb

Jωb

 (C.14)
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C.4 Acceleration Vectors

C.4.1 Linear Acceleration Vectors

The acceleration vectors of the platform system expressed in the inertial frame is given as follows.

~a1 =


0

0

0

 ~a2 = −ρ2~ahp ~a3 = ρ3~ahp ~a4 = −l3~ahp

~ab = −l3~ahp +


−(ls + q3)Sq1 q̈1 + Cq1 q̈3 − (ls + q3)Cq1 q̇

2
1 − 2Sq1 q̇1q̇3

(ls + q3)Cq1 q̈1 + Sq1 q̈3 − (ls + q3)Sq1 q̇
2
1 + 2Cq1 q̇1q̇3

0


(C.15)

where

~ahp =


Sq1Cq2 q̈1 + Cq1Sq2 q̈2 + Cq1Cq2(q̇

2
1 + q̇22)− 2Sq1Sq2 q̇1q̇2

−Cq1Cq2 q̈1 + Sq1Sq2 q̈2 + Sq1Cq2(q̇
2
1 + q̇22) + 2Cq1Sq2 q̇1q̇2

Cq2 q̈2 − Sq2 q̇22

 (C.16)
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Platform Matrices

D.1 Inertia Matrices

I1 =


Ixx1 0 0

0 Iyy1 0

0 0 Izz1

 I2 =


Ixx2 0 0

0 Iyy2 0

0 0 Izz2

 I3 =


Ixx3 0 0

0 Iyy3 0

0 0 Izz3



I4 =


Ixx4 0 0

0 Iyy4 0

0 0 Izz4

 Ib =


Ixxb

0 −Ixzb

0 Iyyb
0

−Ixzb
0 Izzb

 (D.1)

D.2 Mass Matrices

The mass matrix of the platform system expressed in joint space is symmetric and has the form:

M̄(q̄) =



m11 0 0 m44 m15 m16

0 m22 m23 0 0 0

0 m23 m33 0 0 0

m44 0 0 m44 m15 m16

m15 0 0 m15 m55 m56

m16 0 0 m16 m56 m66


(D.2)
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where

m11 = Izz1 + Izz4 + (Ixx2 + Ixx3)S
2
q2 + (Iyy2 + Iyy3 +m2ρ

2
2 +m3ρ

2
3 +m4l

2
3)C

2
q2

+mb(ls + q3 + l3Cq2)
2 + Ixxb

S2
q5 + (IyybS

2
q6 + IzzbC

2
q6)C

2
q5 + 2IxzbCq6Sq5Cq5

(D.3)

m22 = Izz2 + Izz3 +m2ρ
2
2 +m3ρ

2
3 + (m4 +mb)l23 (D.4)

m33 = mb (D.5)

m44 = Ixxb
S2
q5 + (IyybS

2
q6 + IzzbC

2
q6)C

2
q5 + 2Ixzb

Cq6Sq5Cq5 (D.6)

m55 = Iyyb
C2
q6 + Izzb

S2
q6 (D.7)

m66 = Ixxb
(D.8)

m15 =
[
(Iyyb

− Izzb
)Cq5Cq6 − Ixzb

Sq5
]
Sq6 (D.9)

m16 = −(Ixxb
Sq5 + Ixzb

Cq6Cq5) (D.10)

m23 = −mbl3Sq2 (D.11)

m56 = Ixzb
Sq6 (D.12)

D.3 Centrifugal and Coriolis Terms

The centrifugal and Coriolis vector h̄(q̄, ˙̄q) can be expressed as a product with the joint rate

vector ˙̄q:

h̄(q̄, ˙̄q) = C̄(q̄, ˙̄q) ˙̄q (D.13)

The C̄(q̄, ˙̄q) matrix has the following form:

C̄(q̄, ˙̄q) =



c11 c12 c13 c14 c15 c16

c21 0 0 0 0 0

c13 c32 0 0 0 0

c14 0 0 c14 c15 c16

c51 0 0 c51 c55 c56

c61 0 0 c61 c65 0


(D.14)
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where each of the elements are given by:

c11 =
[(
Ixx2 + Ixx3 −

[
Iyy2 + Iyy3 +m2ρ

2
2 +m3ρ

2
3 + (m4 +mb)l23

])
Cq2

−mbl3(ls + q3)
]
Sq2 q̇2 +mb(ls + q3 + l3Cq2)q̇3

+
[
(Ixxb

− IyybS
2
q6 − Izz6C

2
q6)Sq5Cq5 + Ixzb(C

2
q5 − S

2
q5)Cq6

]
q̇5

+
[
(Iyyb

− Izzb
)Cq5Cq6 − Ixzb

Sq5
]
Cq5Sq6 q̇6

(D.15)

c12 =
[(
Ixx2 + Ixx3 −

[
Iyy2 + Iyy3 +m2ρ

2
2 +m3ρ

2
3 + (m4 +mb)l23

])
Cq2

−mbl3(ls + q3)
]
Sq2 q̇1

(D.16)

c13 = mb(ls + q3 + l3Cq2)q̇1 (D.17)

c14 =
[
(Ixxb

− IyybS
2
q6 − Izz6C

2
q6)Sq5Cq5 + Ixzb(C

2
q5 − S

2
q5)Cq6

]
q̇5

+
[
(Iyyb

− Izzb
)Cq5Cq6 − Ixzb

Sq5
]
Cq5Sq6 q̇6

(D.18)

c15 =
[
(Ixxb

− IyybS
2
q6 − Izz6C

2
q6)Sq5Cq5 + Ixzb(C

2
q5 − S

2
q5)Cq6

]
(q̇1 + q̇4)

−
[
(Iyyb

− Izzb
)Sq5Cq6 + Ixzb

Cq5
]
Sq6 q̇5

− 1
2
[
Ixxb

− (Iyyb − Izzb)(C
2
q6 − S

2
q6)
]
Cq5 q̇6

(D.19)

c16 =
[
(Iyyb

− Izzb
)Cq5Cq6 − Ixzb

Sq5
]
Cq5Sq6(q̇1 + q̇4)

− 1
2
[
Ixxb

− (Iyyb − Izzb)(C
2
q6 − S

2
q6)
]
Cq5 q̇5 + IxzbCq5Sq6 q̇6

(D.20)

c21 = −c12 (D.21)

c31 = −c13 (D.22)

c32 = −mbl3Cq2 q̇2 (D.23)

c51 = −
[
(Ixxb

− IyybS
2
q6 − IzzbC

2
q6)Sq5Cq5 + Ixzb(C

2
q5 − S

2
q5)Cq6

]
(q̇1 + q̇4)

+
1
2

([
Ixxb

+ (Iyyb − Izzb)(C
2
q6 − S

2
q6)
]
Cq5 − 2IxzbSq5Cq6

)
q̇6

(D.24)

c55 = −(Iyyb − Izzb)Sq6Cq6 q̇6 (D.25)

c56 =
1
2

([
Ixxb

+ (Iyyb − Izzb)(C
2
q6 − S

2
q6)
]
Cq5 − 2IxzbSq5Cq6

)
(q̇1 + q̇4)

− (Iyyb − Izzb)Sq6Cq6 q̇5 + IxzbCq6 q̇6

(D.26)
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c61 = −

[[
(Iyyb − Izzb)Cq5Cq6 − IxzbSq5

]
Cq5Sq6(q̇1 + q̇4)

+
1
2

([
Ixxb

+ (Iyyb − Izz6)(C
2
q6 − S

2
q6)
]
Cq5 − 2Ixz6Sq5Cq6

)
q̇5

] (D.27)

c65 = −1
2

([
Ixxb

+ (Iyyb − Izz6)(C
2
q6 − S

2
q6)
]
Cq5 − 2Ixz6Sq5Cq6

)
(q̇1 + q̇4)

+ (Iyyb − Izzb)Sq6Cq6 q̇5
(D.28)
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Estimated Parameter Values

The system parameter values used in the numerical simulation results presented in this thesis

are obtained either through direct measurements (such as the mass and the length quantities)

or from estimation by the geometry of the physical objects (such as the moment and product of

inertia).

E.1 Common Parameters Across Configurations

E.1.1 Environmental Parameters

Gravitational acceleration and air density are assumed constant and are estimated as:

g = 9.81 m
s2

ρ = 1.225 kg
m3 (E.1)

170
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E.1.2 Platform Dimensions

Estimates of the characteristic dimensions for the Platform system:

l1 = 0.0 m

l2 = 0.153 m

l3 = 0.915 m

l4 = 0.2725 m

ls = 0.035 m

ρ2 = 0.4575 m

hM = 0.2 m

hT = 0.0 m

lM = 0.01 m

lT = 0.68 m

mb = 5.1 kg

Ixxb
= 0.021 kg ·m2

Iyyb = 0.13 kg ·m2

Izzb = 0.13 kg ·m2

Ixzb = 9.5 · 10−3 kg ·m2

E.1.3 Rotor Parameters

Estimated values for the parameters of the main and tail rotors are shown in Table E.1.

Table E.1: Rotor Parameters

Parameters Main Tail

R (m) 0.585 0.105

Nb 2 2

c (m) 0.05 0.025

Adisc (m2) 1.08 0.035

Ab (m2) 0.0585 5.25 · 10−3

σ 0.054 0.15

cD 0.01 0.01

Iblade (kg ·m2) 9.7 · 10−3 8.8 · 10−5

γL 4.45 0.25

aL 6.0 6.0

E.2 Configuration Parameters

Estimated values for the configuration parameters are shown in Table E.2
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Table E.2: System Configuration Parameters

XXXXXXXXXXXXXXXX
Parameters

Configurations
HANGAR REDUCED BALANCED UAV

Ω (RPM) 875 875 1761 1761

Ωtail (RPM) 3037 3037 6111 6111

ρ3 – w/ weight (m) 0.242 0.492 0.092 0.0

ρ3 – bare boom (m) −0.314 −0.314 −0.314 0.0

ρw (m) 0.36 .92 0.31 0.0

m2 (kg) 0.442 0.442 0.442 0.0

m3 – w/ weight (kg) 17.863 8.791 8.791 0.0

m3 – bare boom (kg) 3.055 3.055 3.055 0.0

mw (kg) 14.8 5.7 5.7 0.0

m4 (kg) 0.663 0.663 0.663 0.0

Ixx2 (kg ·m2) 1.23 · 10−5 1.23 · 10−5 1.23 · 10−5 0.0

Ixx3 – w/ weight (kg ·m2) 0.13 0.034 0.034 0.0

Ixx3 – bare boom (kg ·m2) 4.33 · 10−4 4.33 · 10−4 4.33 · 10−4 0.0

Ixxw (kg ·m2) 0.13 0.033 0.033 0.0

Iyy2 (kg ·m2) 0.031 0.031 0.031 0.0

Iyy3 – w/ weight (kg ·m2) 1.61 3.46 1.19 0.0

Iyy3 – bare boom (kg ·m2) 0.4 0.4 0.4 0.0

Iyyw (kg ·m2) 0.071 0.02 0.02 0.0

Izz1 (kg ·m2) 3.81 · 10−4 3.81 · 10−4 3.81 · 10−4 0.0

Izz2 (kg ·m2) 0.031 0.031 0.031 0.0

Izz3 – w/ weight (kg ·m2) 1.61 3.46 1.19 0.0

Izz3 – bare boom (kg ·m2) 0.4 0.4 0.4 0.0

Izzw (kg ·m2) 0.071 0.02 0.02 0.0
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E.3 Controller Parameters

The controller gains for the simulation presented in this thesis are obtained through trial-and-

error since the goal is only to obtain a stable controller as benchmark instead of obtaining specific

performance criteria through gain adjustments.

E.3.1 Linear PD Controller Gains

The linear PD control law for the ith joint can be expressed as:

ui = kpi∆qi + kdi
∆q̇i (E.2)

where the position (∆qi) and rate (∆q̇i) errors are defined as:

∆qi , qid − qi

∆q̇i , q̇id − q̇i

Table E.3 lists the proportional (kpi) and derivative (kdi
) gains for each of the six linear joint

controllers for desired torque generation. .

Joint kpi kdi

1 1 1.5
2 5 4
3 1 1.5
4 1 1.5
5 1 1.5
6 1 1.5

Table E.3: Linear PD Gains

E.3.2 Nonlinear PD Controller Gains

The nonlinear PD control law for the ith joint can be expressed as:

ui =
kpi

(ai + |∆qi|)
∆qi +

kdi

(b1 + |∆qi|)(ci + |∆q̇i|)
∆q̇i (E.3)
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where ∆qi and ∆q̇i are as defined previously.

Table E.4 lists the proportional (kpi) and derivative (kdi
) gains, together with the controller

parameters (ai, bi and ci) for each of the six nonlinear joint controllers for desired torque gener-

ation.

Joint kpi ai kdi
bi ci

1 1 1 1.5 1 1
2 5 1 4 1 1
3 1 1 1.5 1 1
4 1 1 1.5 1 1
5 1 1 1.5 1 1
6 1 1 1.5 1 1

Table E.4: Nonlinear PD Gains



Appendix F

System Identification

An overview of the Comprehensive Identification From FrEquency Responses (CIFER) technique

is given here. Preliminary testing of applying the CIFER technique to the test platform system

has been performed. A brief comment on these early results will be given at the end of this

appendix.

F.1 Comprehensive Identification From FrEquency Responses

(CIFER)

The Comprehensive Identification from FrEquency Responses (CIFER) technique computes a

parametric state-space or transfer function model through a set of non-parametric input-to-

output frequency responses identified from the measurement data [85]. The procedure is divided

into three main steps. First, frequency responses for each of the input-output pair in the system

(for the multiple-input, multiple-output case) are computed as the ratio [85]:

G(jωk) =
SY U (jωk)
SUU (jωk)

(F.1)
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where SY U (jω) and SUU (jωk) are the input-output cross-spectral density and the input auto-

spectral density estimates respectively. The spectral densities are defined as [87]:

SY U (jωk) = Y (k)U(k)

SUU (jωk) = U(k)U(k)

SY Y (jωk) = Y (k)Y (k)

(F.2)

where U(k) and Y (k) are the Discrete Fourier Transform (DFT) of the input and output signals

respectively. The over-bar denotes the complex conjugate of the signals. The DFT of the input

and output signals is computed using the Chirp-Z transform algorithm. The Chirp-Z transform

is a flexible Fast Fourier Transform (FFT) algorithm [85, 88]. It allows the transforms to be

computed within a user-selectable frequency range (“zoom” in) and requires less restrictions on

the number of data points used (data length does not need to be power of 2).

Typically when computing frequency transforms for finite length data records, a windowing

technique is used to reduce the effect of leakage error [89]. The full data record of length T is

divided into N sub-records or “windows”. The length of each sub-records is the window size

(Tw = T/N). The frequency spectrum for the data is then computed as the average of the

spectrum from the N sub-records. For a given total number of data records, the window size

determines the number of sub-records available for averaging. To minimize the effect of noise and

random error, the spectral densities should be averaged over as many sub-records as possible.

However, the minimum frequency ωmin in the spectrum identifiable from a finite length record

Tw is given by ωmin = 1/Tw (the maximum frequency is limited by the Nyquist frequency, which

is half of the sampling frequency ωs). As a result, there is a trade-off between the frequency

range and the number of windows available for averaging.

To solve this problem, the CIFER algorithm introduces a method to combine spectrum

estimations computed using different window sizes to obtain an improved frequency response es-

timate. The spectrum curves are combined using a nonlinear, least-squares optimization method

applied to the cost function [85]:

Jf =
nw∑
i=1

Wi

[(
SUUc − SUUi

SUUi

)2

+
(
SY Yc − SY Yi

SY Yi

)2

+
(
SUYc − SUYi

SUYi

)2

+5.0
(
γ2
c − γ2

i

γ2
i

)2
]

(F.3)
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where the subscript i denotes the individual window results and the subscript c denotes the com-

bined (composite) window results. Notice that for implementation, the complex cross-spectrum

term (second last term in (F.3)) is separated into real and imaginary parts. The weighting Wi

is tailored to each individual window’s frequency range. Up to five sets of frequency response

functions (nw = 5) can be used in the optimization for each input-output pair, corresponding to

five different choices of the window size. The coherence function γ2 is defined as [87, 89, 90]:

γ2(ω) =
|SUY (jω)|2

SUU (jω)SY Y (jω)
(F.4)

and it measures how much of the output power is coherent (linearly related) with the input power.

The coherence function estimates associated with each window size provide a good indication on

the quality of the identified frequency spectrum. The spectrum with a higher coherence estimate

is weighted more favourably in the optimization process through the cost function (F.3) [85].

Once the input-output frequency responses are identified, the final step is to identify the

parametric models (transfer function or state-space models) from these frequency responses. A

nonlinear least-squares optimization method is applied to the cost function [91]:

Jtf =
20
n

ωn∑
ω1

Wγ

[
Wg (|Tdata| − |Tmodel|)2 +Wp (∠Tdata − ∠Tmodel)

2

]
(F.5)

where n is the number of frequency points; ω1 and ωn are the starting and ending frequencies of

the fit, and Wγ ,Wg and Wp are the weighting factors for coherence, gain error and phase error

respectively. Tdata is the transfer function (magnitude and phase) obtained from the previously

identified frequency responses. Tmodel is the transfer function model to be identified. The

parameters of Tmodel are expressed in coefficient form:

Tmodel =
(b0sm + b1s

m−1 + · · ·+ bm)e−τs

sn + a1sn−1 + · · ·+ an
(F.6)

Due to the weighted “averaging” effect through the coherence function in the computation,

improved frequency response estimates can be obtained over the basic Empirical Transfer Func-

tion Estimate (ETFE) method, as is reported by Lai et al. [92].
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F.2 Preliminary Results

The preliminary system identification results of applying the CIFER technique to the individual

attitude channels (roll, pitch and yaw) have all indicated to have dynamics similar to that of a

second order integrator, i.e. 1
s2

. These results are consistent with the observations obtained from

the analysis of the platform system presented in Chapter 3. In particular, due to the type of sen-

sors currently available on the test platform system, i.e. angular readings through potentiometers

at the joints, the identified dynamics correspond to the integral kinematic relationships of the

attitude angles. The noise effects inherent in the potentiometer readings have prevented the use

of numerical differentiation on the data to identify the system modes associated with the rates.

As a result, additional rate sensor measurements are needed to identify the other rate related

modes present in the system for future work.
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Nomenclature

Acronyms

ACS : Attitude Control System

AUV : Autonomous Unmanned Vehicle

C.G. : Centre of Gravity

CIFER : Comprehensive Identification from FrEquency Responses technique

DC : Direct Current

DOF : Degree Of Freedom

FPC : Flight Path Controller

HANGAR : Helicopter Autonomous Navigation and Guidance Applied Research

LQG : Linear Quadratic Gaussian

MIMO : Multiple Input, Multiple Output

MISO : Multiple Input, Single Output

NN : Neural Network

PD : Proportional-Derivative Controller

PI : Proportional-Integral Controller

PID : Proportional-Integral-Derivative Controller

R-C : Radio-Controlled

RPM : Rotation/Revolution-Per-Minute

SISO : Single Input, Single Output

UAV : Unmanned Aerial Vehicle

WARG : Waterloo Aerial Robotics Group

Typeset Notations

~v : Vector quantity.

ṽ : Vector expressed in helicopter body-fixed frame.

v̄ : Vector expressed with respect to platform joint coordinates.
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Typeset Notations (continued)

R : Matrix quantity.

ẋ : Time derivative (absolute).

[ ] : Matrix or Vector elements.

x̂ : Normalized quantity.

Operators

∂ : Partial Derivative operator.

× : Cross Product for Vector. Multiplication for Scalar.

Sqk
, Cqk

: Short form for sin qk and cos qk.[ ]T
: Matrix or Vector transpose.[ ]−1

: Matrix or Vector inverse.

List of Symbols

0n×m : Zero matrix of dimension n×m.

A1, B1 : Lateral (A1) and Longitudinal (B1) Cyclic Pitch Input. (rad)

Ab : Blade area. (m2). Ab = NbcR

Adisc, Adisctail : Rotor Disc Area (Main and Tail). (m2). Adisc = πR2

Â : Ratio between main and tail rotor disc area. Â = Adisctail
Adisc

C̃, C̄ : Coriolis and centrifugal matrix for UAV model (C̃) and

Platform model (C̄) respectively.

Ĉlat, Ĉlattail : Lateral Rotor Coefficients (Main and Tail).

Ĉlon, Ĉlontail : Longitudinal Rotor Coefficients (Main and Tail).

ĈQ, ĈQtail : Rotor Torque Coefficients (Main and Tail).

ĈT, ĈTtail : Rotor Thrust Coefficients (Main and Tail).

Flat, Flattail : Lateral Planar Horizontal Force (H-Force). (N)

Flon, Flontail : Longitudinal Planar Horizontal Force (H-Force). (N)

F̄ main, F̃ main : Main rotor force vector in joint (F̄ main) and

body-fixed (F̃ main) coordinates.

F̄ tail, F̃ tail : Tail rotor force vector in joint (F̄ tail) and

body-fixed (F̃ tail) coordinates.
~F
a

i : Total active external force acting on the ith rigid body

of the Test Platform. (N)
~Hi : Angular momentum about the centre of gravity for the
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ith rigid body of the Test Platform. ~Hi = Ii ~ωli

In×n : Identity matrix of dimension n× n.

Ii : Inertia matrix about the centre of gravity for

the ith rigid body of the Test Platform.

Iblade : Blade flapping inertia about the hub. (kg ·m2).

Ixxi , Iyyi
, Izzi : Moment of inertia about the x, y, and z axis of the ith rigid body

of the Test Platform. (kg ·m2). Ixx =
∫

body

(y2 + z2) dm

Ixyi
, Ixzi , Iyzi : Product of inertia in the x− y, x− z, and y − z plane of

the ith rigid body of the Test Platform. (kg ·m2).

Ixy =
∫

body

xy dm , Ixz =
∫

body

xz dm , Iyz =
∫

body

yz dm

Jvi
, Jωi

: Jacobian matrices for the linear ~vli and angular ~ωli velocities.

K : Rotor inflow factor distribution factor.

Kcoll, Krud : Rotor servo gain coefficients (collective and rudder).

Klon, Klat : Rotor servo gain coefficients (cyclic).

KP , KD : Proportional and Derivative gain of a controller.

L, M , N : Scalar component of the net moment about the body fixed

x, y and z axis. (N ·m)

M̃ : Mass-inertia matrix of UAV expressed in body-fixed frame.

M̄main, M̃main : Main rotor moment in joint (M̄main) and body-fixed (M̃main) frames.

M̄ tail, M̃ tail : Tail rotor moment in joint (M̄ tail) and body-fixed (M̃ tail) frames.
~M
a

i : The total active external moment/torque acting on

the ith rigid body of the Test Platform. (N ·m)

Nb : Number of Blades.

Qmain, Qtail : Main and Tail rotor torque. (N ·m)

REuler : Mapping matrix from Euler rate to Body-Fixed rate.[
p q r

]T
= REuler

[
φ̇ θ̇ ψ̇

]T
Rψ,θ,φ : Inertial to Body-Fixed Frame Rotation matrix.

Rk
i : Rotation between Frame i and Frame k. ~vi = Rk

i ~vk

R, Rtail : Rotor blade radius (Main and Tail rotor). (m)

R̂ : Ratio between main and tail rotor radius. R̂ = Rtail
R

S(~ω) : Skew symmetric matrix for angular rate vector ~ω.

T , Tmain, Ttail : Rotor thrust magnitude (Main and Tail rotor). (N)

UP , UT : Perpendicular and planar relative air speed of blade. (m
s )
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~U : Net velocity experienced by the rotor blade element.

|~U | =
√
v2
1 + (Ωrs)2

Vair : Net rotor disc speed. (m
s )

Vhorizontal, Vvertical : Planar (Vhorizontal) and perpendicular (Vvertical)

rotor disc speed. (m
s )

X, Y , Z : Scalar component of the net force in the body fixed

x, y, and z direction. (N)

a0 : Blade coning angle. (rad)

a1,s, b1,s : Longitudinal and Lateral blade flapping angle of the rotor. (rad)

aL : Lift Curve Slope. Nominal value for helicopter blades [1]: aL = 6.0

ai, bi, ci : Parameters of Nonlinear PD controller.

~ali : Acceleration of the centre of gravity (w.r.t. local frame) of the ith

rigid body of the Test Platform. (m
s2 )

ax : Net acceleration of the rigid body in the x direction. (m
s2 )

c : Blade chord length. (m)

cL, cD : Lift and Drag coefficient for the blade element. cL = aLα

cik : The i, k element of the matrix C(q̄, ˙̄q).

g : Gravitational acceleration. (m
s2 ). g = 9.81

h̃, h̄ : Coriolis and centrifugal vector for UAV h̃

and Platform h̄ models.

hM , hT : Vertical (z axis) offset of the main and tail rotor from C.G. (m)

j : Imaginary number. j =
√
−1

kpi
, kdi

: Proportional (P) and derivative (D) gains of joint controllers.

l2, l3, l4, ls : Test Platform linkage lengths and offsets. (m)

lM , lT : Horizontal (x axis) offset of the main and tail rotor from C.G. (m)

m1, m2, m3, m4 : Mass of the Test Platform linkages. (kg)

mb : Total mass of the helicopter. (kg)

mik : The i, k element of the inertia matrix M(q̄).

n : Number of rigid bodies on the Test Platform. n = 5

p∞, pdisc : Static air pressure at and far below the rotor disc. ( N
m2 )

p, q, r : Scalar component of the angular rate vector in the

body fixed x, y, and z axis.

q̄ : Generalized coordinate vector for the Test Platform.

q̄ =
[
q1 q2 q3 q4 q5 q6

]T
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qk : kth generalized coordinate.

rs : Blade element span position. (m)

r(t) : Reference input signal.

~ri : Position vector of the ith rigid body of the Test Platform.

t : Time. (s)

u, v, w : Scalar component of the linear velocity in the

body fixed x, y and z axis. (m
s )

~u : Rotor Input Vector. ~u =
[
θ0, A1, B1, θtail

]T
v0, v2, v∞ : Air velocity far above and below rotor disc. (m

s )

v1 : Induced velocity. (m
s )

~vi : Linear velocity vector (w.r.t. inertial frame) of the centre of gravity

of the ith rigid body of the Test Platform. (m
s )

~vli : Linear velocity vector (w.r.t. local frame) of the centre of gravity

of the ith rigid body of the Test Platform. (m
s )

x, y, z : x, y, and z axis coordinate. (m)

α : Angle of attack. (rad)

β : Blade flapping angle. (rad)
~βik : Projection vector for the linear velocity ~vi onto

the generalized coordinate q̇k. ~βik = ∂~vi

∂q̇k

δcoll, δlat, δlon, δrud : Rotor servo inputs. (V)

ηm, ηt : Side slip angle (Main and Tail rotor). (rad)

γL : Lock number. γ = ρcaLR
Iblade

~γik : Projection vector for the angular velocity ~ωi onto

the generalized coordinate q̇k. ~γik = ∂~ωi

∂q̇k

ηm, ηt : Side slip angle (Main and Tail rotor). (rad)

λ1 : Inflow factor. λ1 = v1
ΩR

λz, λztail : Normalized perpendicular rotor disc velocity. λz = Vvertical
ΩR

µ, µtail : Advanced ratio (Main and Tail rotor).
˙̃Φ : Generalized body-fixed rate vector. ˙̃Φ =

[
u v w p q r

]T
φ : Inflow angle. (rad). φ ≈ v1

Ωr

Ψ : Azimuth angle of the rotor. (rad)

ρ : Air density. ( kg
m3 ). ρ = 1.225

ρ1, ρ2, ρ3, ρ4, ρw : Centre of mass location of the test platform linkages. (m)

φ, θ, ψ : Roll, Pitch and Yaw Euler angles. (rad)
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σ, σtail : Main and Tail rotor solidity. σ = Nbc
πR

τ̄ : Generalized force vector for the Test Platform in joint space.

τ̃ : Generalized force vector for the helicopter in body fixed frame.

τ̃ =
[
X Y Z L M N

]T
τ̄ g, τ̃ g : Gravity vector in joint (τ̄ g) and body-fixed (τ̃ g) coordinates.

τ̄R, τ̃R : Net rotor force in joint (τ̄R) and body-fixed (τ̃R) coordinates.

θ : Rotor blade pitch angle. (rad)

θ0 : Main Rotor Collective Input. (rad)

θtail : Tail Rotor Collective Input. (rad)
~Θ : Generalized position vector for the UAV.

~Θ =
[
x y z φ θ ψ

]T
Ω, Ωtail : Helicopter Rotor Rotation Speed (Main and Tail). ( rad

s )

Ω̂ : Ratio between main and tail rotor speed. Ω̂ = Ωtail
Ω

Ω̌ : Ratio between the main rotor speed of the HANGAR

and UAV configurations. Ω̌ = ΩH
ΩU

~ωi : Angular rate vector (w.r.t. inertial frame) of the ith rigid body

of the Test Platform. ( rad
s )

~ωli : Angular rate vector (w.r.t. local frame) of the ith rigid body

of the Test Platform. ( rad
s )

υx, υy, υz : Normalized rotor disc angular rate.

ζ : Virtual joint PD control scale factor.

ζp : Platform link mass and inertia scaling factor. Usage: mi/ζp.

List of Subscripts

B, H, U : BALANCED, HANGAR, and UAV configuration quantities.

T, Q : Thrust and torque.

w, b : Quantities for Platform Counter Weight (w) and Helicopter rigid body (b).

lon, lat : Longitudinal and lateral quantity.

m, main : Main rotor quantity.

t, tail : Tail rotor quantity.

e : Quantity at equilibrium.

g : Gravity component.

l : Quantity expressed with respect to the local frame.

x, y, z : x, y, z direction.


