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Abstract 

 The low back loading to which an individual is exposed has been linked to injury and the 

reporting of low back pain.  Despite extensive research on the spine and workplace loading 

exposures, statistics indicate that efforts to date have not led to large reductions in the reporting of 

these injuries.  One possible cause for the apparent ineffectiveness of interventions may be a poorly 

defined understanding of the mechanical exposures of the spine during work related activities.  There 

are sophisticated models that can predict spine loads and are responsive to how an individual moves 

and uses their muscles, however the models are complex and require extensive data collection to be 

implemented.  This fact has prevented these models from being employed in industrial settings and 

the simplified surrogate methods that are being employed may not be predicting load exposures well.  

Therefore, this work focused on examining surrogate methods that can produce estimates of spine 

loading equal to our most complex laboratory based models.  In addition, our understanding of spine 

tolerance to combined motion and load has been based upon in-vitro work that has not accurately 

represented coupled physiologic compression and flexion or has not investigated potentially 

beneficial loading scenarios.  The result has been a lack of clear data indicating when motion should 

be treated as the primary influence in injury development or when load is the likely injury causing 

exposure.  As a result, research was conducted to determine the interplay between load and motion in 

cumulative injury development, as well as investigating the potential of static rest periods in 

mitigating the effects of cumulative compression.  

 Study one examined the potential utility of artificial neural networks as a data reduction 

approach in obtaining estimates of time-varying loads and moments equal in magnitude to those of 

EMG-assisted and rigid link models.  It was found that the neural network approach under predicted 

peak force and moment exposures, but produced strong predictions of average and cumulative 
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exposures.  Therefore this method may be a viable approach to document cumulative loads in 

industrial settings.   

 Study two compared the load and moment estimates from a currently employed, posture 

match based ergonomic assessment tool (3DMatch) to those obtained with an EMG-assisted model 

and those predicted with a rigid link modeling approach.  The results indicated that 3DMatch over 

predicted peak moments and cumulative compression.  However, simple correction approaches were 

developed which can adjust the predictions to obtain more physiologic estimates. 

 Study three employed flexion/extension motion with repetitive compression loading profiles 

in an in-vitro study, with both load and motion profiles being obtained from measures in study 1.  It 

was found that at loads above 30% of a spine’s compressive tolerance, repetitive flexion/extension 

would not lead to intervertebral disc injury prior to an endplate or vertebral fracture occurring.  

However, as loads fall below 30% the likelihood of experiencing a herniation increases, while the 

overall likelihood of an injury occurring decreases.  Comparison to relevant studies indicated that 

while repetitive flexion did not alter the site of injury it appeared to degrade the ability of the spine to 

tolerate compression. 

 Finally, study four employed dynamic compression while the spine was maintained in a 

neutral posture to investigate the effects of ‘rest’, or periods of static low level loading, on altering the 

amount of load tolerated prior to injury.  It was found that there was a non-linear relationship between 

load magnitude and compressive tolerance, with increasing load magnitude exposures leading to 

decreasing cumulative load tolerances.  Periods of low level static loading did not alter the resistance 

of the spinal unit to cumulative compression or impact the number of cycles tolerated to failure. 

 In summary, this work has examined methods that may allow for better predictions of spine 

loading in the workplace without the large data demands of sophisticated laboratory approaches.  
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Where possible, suggestions for optimal implementation of these surrogates have been developed.  

Additionally, in-vitro work has indicated a load threshold of 30%, above which herniation is not 

likely to occur during dynamic repetitive loading.  Furthermore, the insertion of static rest periods 

into dynamic loading scenarios did not improve the spine’s failure tolerance to loading, indicating 

that care should be exercised when determining optimal loading paradigms.  In combination, the 

applied methods that have been developed and the information regarding injury development that has 

been obtained will help to refine our understanding of the exposures and tolerances that define 

mechanical injury in the spine. 
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Chapter 1 
Introduction 

 The large volume of research that has been conducted on the relationships between the 

workplace, spinal loading and injury indicates that spine injury and low back pain have become a 

societal problem.  Simply searching the key words ‘low back pain’ on the search engine Pubmed 

(www.pubmed.com) resulted in 12032 results dating back to 1949.  In fact, low back pain has been 

deemed one of the top three occupational health problems to be watched by the World Health 

Organization for the Americas region (Choi et al., 2001) and has been stated to be the most frequently 

filed compensation claim in the United States, with an estimated prevalence rate of 17.6% in 1988 

(22.4 million cases)(Guo et al., 1995).  Of all the reported back pain cases in the United States for 

1988, greater than 70% were attributed to the low back (Guo et al., 1995).  Despite all the research 

efforts, statistics do not support any substantial reduction in work related low back pain reporting 

(figure 1-1).  
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Figure 1-1:  Solid line - The percentage of workers compensation claims attributed to the back in 
Ontario through the years of 1988 to 2004.  Dashed line – The percentage of workers compensation 
claims attributed to the low back in Ontario through the years of 1996 to 2004.  Data are taken from 
the 1995 and 2004 statistical supplements published by the Workplace Safety and Insurance Board 
(www.wsib.on.ca). 
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If the arguable assumption is accepted that the statistics regarding the reporting of pain are 

linked to the occurrence of injury in the spine it follows that research efforts have not been entirely 

successful in reducing work related spinal injury.  In 1997, Professor McGill indicated that injuries in 

the spine occurred due to mechanical load exposure in excess of tissue tolerance limits (McGill, 

1997).  Although the contribution of numerous other factors to spinal injury have been highlighted, 

this relationship between load exposure and tolerance lies at the core of all injury theories (Marras, 

2005).  It has been suggested that the one reason for the ineffectiveness of research to date in reducing 

pain or injury is that causality may not be sufficiently understood to yield the desired benefits 

(Marras, 2005).  This lack of understanding implies that the relationship between load exposure and 

tissue tolerance has not been sufficiently characterized to allow appropriate injury reducing 

interventions to be implemented.  As stated by Parnianpour et al. (1997), “The fundamental inability 

to determine “How much of a risk factor is too much?” has been one of the most critical hindrances to 

the development of an ergonomics guideline for design of safe manual material handling tasks”.  One 

rationale for the poor causality may be that load exposures and tissue thresholds have not been 

adequately quantified in the appropriate settings.   

In order to assess the load exposure of the spine several techniques have been employed, 

varying in complexity.  Early attempts to estimate loading employed simplified two-dimensional 

models of the body combined with hand loads to estimate reaction forces in the spine (Smith et al., 

1982; McGill and Norman, 1985; Leskinen et al., 1983a; Leskinen et al., 1983b; Ekholm et al., 

1982).  These models were followed by gradual increases in sophistication, starting with the 

movement to simplified three-dimensional models which ignored angular velocities and accelerations 

(Buseck et al., 1988; Bush-Joseph et al., 1988; Herrin et al., 1986).  Eventually, three-dimensional 

fully dynamic models were developed (de Looze et al., 1992a; Kingma et al., 1996a).  While these 
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models were able to quantify loading due to external loads and body segment mass, they did not 

reflect the contribution of muscle forces to spinal loading.  In order to more accurately reflect the 

loading of the spine, joint models have been developed.  Initially these models began by employing 

one muscle force to represent the combined contribution of all back musculature, where the product 

of this force and its moment arm must balance the external moment (Bejjani et al., 1984; Leskinen, 

1985; Wood and Hayes, 1974; Morris et al., 1961; Chaffin, 1969).  As research has continued, these 

models have evolved to more accurately replicate spinal anatomy, including multiple muscles which 

can contribute to moments about all movement axes (flexion/extension, lateral bend and axial twist) 

(McGill and Norman, 1986; McGill, 1992b; Granata and Marras, 1995a; Marras and Sommerich, 

1991a; van Dieen and Kingma, 2005).  Some of these models have employed optimization algorithms 

to yield estimates of spinal loading through predictions of muscular activation (van Dieen and 

Kingma, 2005), while others use measured muscle activations as inputs to the model (McGill and 

Norman, 1986; McGill, 1992b; Granata and Marras, 1995a; Marras and Sommerich, 1991a).  

Although these models provide the most realistic estimates of spinal loads due to their anatomical 

detail, their high demand for multiple quality inputs (joint positions, velocities, muscle activation 

levels, external load measures) has limited their use in analyzing the load exposures experienced by 

workers performing industrial tasks outside of the laboratory environment (McGill et al., 1996b; 

Mirka and Marras, 1993; Granata and Marras, 1995b; Lee et al., 2003).  As these models cannot be 

widely applied in industry, surrogate measures have been employed which do not have the same 

demands for inputs but also do not contain the same amount of biological fidelity.  These measures 

may not have accurately determined the load exposure of various jobs and therefore we may not truly 

understand loads as they are experienced in industry.  In order to address the limitations surrounding 

simplified estimates of work related spine loading, this thesis examined the use of artificial neural 

networks and posture matching (through 3DMatch, a custom software program) as potential methods 
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to provide estimates of joint moments and forces that would be equivalent to estimates produced with 

more demanding laboratory based methods.  If these methods were proven successful despite the 

reduced information demands, it may be possible to document industrial spine loading more 

accurately and on a larger scale than is currently possible.  In the future, these estimated loads can be 

incorporated into theoretical tissue injury models to enhance predictions of injury risk.  

In addition to the issues surrounding the establishment of true load exposures, the 

development of tissue based load thresholds has also been subject to some limitations.  Much of the 

early work surrounding spinal tissue failure focused on the resistance of the spine to acute 

compression (Callaghan and McGill, 1995; Edmondston et al., 1997; Hansson et al., 1980; Hansson 

and Roos, 1983; Hutton et al., 1979; Roaf, 1960; Rockoff et al., 1969; Thomsen et al., 2002).  As 

testing methodologies improved, researchers began to address the issues surrounding the dynamic 

nature of physiologic loading.  Initial attempts to understand the response of the spine to dynamic 

loading involved the application of saw-tooth or sine compressive waveforms (Brinckmann et al., 

1988; Gordon et al., 1991; Gardner-Morse and Stokes, 2003; Adams and Hutton, 1983a; Adams and 

Hutton, 1985; Liu et al., 1983; Hansson et al., 1987; Smeathers and Joanes, 1988; Hasegawa et al., 

1995).  While these waveforms reflect the idea that load exposure of the spine is time-varying, they 

are not necessarily biological and likely reflect the limitations of the testing apparatuses.  More recent 

work has been able to employ customized waveforms which will allow the application of dynamic 

loads as they are experienced in industrial tasks (Parkinson and Callaghan, 2006).  Apart from the 

time-varying changes in load, researchers have developed methods to assess the impact of alterations 

in joint posture.  Again, the initial work focused on the effects of static changes in posture and has 

progressed to time-varying posture change (Adams et al., 1994; Adams and Hutton, 1982; Adams and 

Hutton, 1983b; Adams and Hutton, 1980; Gallagher et al., 2005; Gallagher et al., 2006; Gunning et 

al., 2001; Callaghan and McGill, 2001).  The results have indicated that postural changes under low 
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level loading can alter the injury mechanism, resulting in injury to the intervertebral disc (Callaghan 

and McGill, 2001), as opposed to the endplate and trabecular injuries observed with excessive load 

(Parkinson and Callaghan, 2007b).  While the above studies have acknowledged the need to assess 

the impact of dynamic load and posture alterations, no research has yet been able to apply 

physiological load and posture changes concurrently to further determine the tissue threshold to 

injury. This research is further complicated by the multi-factorial exposure, making it difficult to 

determine which factor is responsible for the injury.  Therefore, work contained within this thesis has 

been performed to identify a transition loading magnitude where the risk of a posture driven injury 

(intervertebral disc herniation) occurring increases.  In addition, the effect of dynamic postural 

changes on the ability of the spine to tolerate cyclic loading will be addressed.  In the future, this 

knowledge can be combined with loading estimates in a theoretical injury model to further improve 

estimates of injury risk and subsequently lead to improved injury prevention standards. 

One interesting commonality with much of the previous tissue research is the consistent 

failure of vertebrae in the endplate and underlying trabecular bone when exposed to cyclic 

compression (Brinckmann et al., 1988; Hansson et al., 1987; Parkinson and Callaghan, 2007b).  This 

consistency indicates that the central region of the vertebrae may be more prone to injury than the 

periphery.  However, research has shown that when the endplate is loaded statically, the large central 

stresses decreased while the peripheral stresses increased (van Dieen et al., 2001).  This redistribution 

of stresses may present a viable injury prevention paradigm to enhance the tolerance of the endplate 

and underlying trabecular bone to cyclic compression.  If this redistribution were effective, it could 

increase the cumulative compressive tolerance of the spine; however this mechanism has not yet been 

studied.  The final study included in this body of work addresses this issue of load redistribution with 

the intent of improving the understanding of work cycles and rest, which in turn will provide valuable 
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information regarding methods of altering tissue tolerance, which can be incorporated into tissue 

injury models and lead to improved injury risk assessments. 

Therefore, before research moves away from the theoretical injury models based on load 

exposure and injury threshold, attempts should be made to improve our estimates of industrial load 

exposure by implementing tools to provide the best possible load exposure estimates and at the same 

time improve tissue threshold estimates through the implementation of coupled load/motion profiles 

for in-vitro testing to better reflect industrial exposures.  Enhancing the understanding of the types of 

injuries associated with different exposures (load vs. posture) may lead to an improved ability to 

focus interventions on the correct mode of injury.  Additionally, examining mechanisms which may 

increase the cumulative tolerance of the osteoligamentous spine may provide insight into the design 

of adequate time-varying loading paradigms to limit the risk of vertebral fracture. 
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1.1 Global Thesis Questions and Hypotheses: 

1.  Can the data needed to use our most sophisticated biomechanical tools be reduced to a level that 

can be obtained in industry in order to facilitate large scale documentation of spinal load exposure in 

the workplace? 

 

Hypothesis 1: 

Artificial neural networks will allow for a reduction in the amount of input information needed to 

obtain estimates of spinal load and moment exposures equivalent to those of rigid link and EMG 

assisted spine models. 

  

Study 1 addressed this hypothesis by examining the potential for artificial neural networks to develop 

relationships from a limited number of industrially obtainable inputs and relate these inputs to 

biologically meaningful outputs (moments and joint forces in the spine). 

 

Hypothesis 2: 

The errors associated with a quasi-dynamic posture matching tool (3DMatch) relative to rigid link 

and EMG-assisted models can be quantified and accounted for to allow physiologically reasonable 

estimates of spine loading in industrial settings. 

 

Study 2 addressed this hypothesis by comparing estimates of joint moments and forces (compression 

and shear) between 3DMatch, a three-dimensional bottom-up inverse dynamic model and an EMG-

assisted model. 
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2.  Can new information regarding spinal exposure to compression and sagittal flexion/extension be 

used to expand our current understanding of tissue injury mechanisms and thresholds? 

 

Hypothesis 1: 

By applying physiologic dynamic kinetic and kinematic profiles to isolated porcine spinal units it will 

be possible to elucidate injury mechanisms associated with excessive load or excessive motion and 

from the combined loading paradigm identify a transition in injury mechanisms. 

 

Study 3 addressed this hypothesis by exposing isolated porcine spinal units to differing combinations 

of dynamic load and flexion profiles (obtained from study 1) and recording the changes in the 

vertebrae and intervertebral disc that occur as injury progresses.   

 

3.  Is it possible that loads can be redistributed across the vertebral endplate in such a way as to 

enhance the ability of the spine to withstand cumulative compression? 

 

Hypothesis 1: 

By inserting periods of low level static loading between dynamic load applications the spinal unit will 

be capable of tolerating greater amounts of cumulative compression. 

 

Study 4 addressed this hypothesis by exposing isolated porcine spinal units to differing combinations 

of dynamic load and static rest duration and monitoring changes in mechanical behaviour until injury 

occurred. 
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Chapter 2 
General Review of Literature 

 

2.1 Overview 

While chapter 1 has highlighted the rationale for conducting the research contained within 

this thesis, the following sections will provide a more in depth review of literature focusing on the 

issues underlying this work.  Specifically, this chapter will detail the background underlying spine 

modeling as it applies to force and moment predictions, provide a summarized history of artificial 

neural networks as they have been used in biomechanics, and summarize the progression of in vitro 

spine testing. 

 

2.2 Rigid Link Modeling and Top-down vs. Bottom-up Approaches  

Industrial surveillance has shown that the maximum moment a worker was exposed to was 

the most discriminating variable between those workers who were and were not at risk of developing 

low back pain in the workplace, with an odds ratio of 5.17:1 (Marras et al., 1995).  This finding 

signifies the influence joint moment may have on injury development and pain reporting in the low 

back, as well as the need for biomechanics researchers to accurately quantify this variable.  

Additionally, joint moments within the spine are used as inputs for sophisticated spine models where 

they can be decomposed into compression and shear forces within the joint (McGill and Norman, 

1986; Marras and Sommerich, 1991a).  These joint forces have been shown to result in injury of the 

spine if of sufficient magnitude (Gunning et al., 2001; Callaghan and McGill, 1995; Yingling et al., 

1997; Allan et al., 1990; Burklein et al., 2001; Hansson et al., 1987; McBroom et al., 1985; Yingling 

et al., 1999).     
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To understand the exposure of the spine to reaction forces and moments an inverse dynamics 

approach has been employed to estimate spine kinetics (Kromodihardjo and Mital, 1986; Lariviere 

and Gagnon, 1998; Lavender et al., 1999; Freivalds et al., 1984; Mital and Kromodihardjo, 1986; 

Gagnon and Gagnon, 1992; Kingma et al., 1998a; Kingma et al., 1998b; Kingma et al., 1996b).  In 

order to employ these methods, several pieces of information are required.  First, anthropometric 

measures (mass, mass distribution and center of gravity) are required.  Second, the location of the 

body segments in space must be known.  In addition it is necessary to know any external force(s) and 

moment(s) applied to the segments.  From this information the forces and moments at each joint can 

be predicted, with estimates at more proximal joints being obtained by proceeding through the distal 

rigid bodies until the desired joint is reached.  As the process can be moved in any direction, it is 

theoretically possible to obtain the same force and moment estimates moving either from the hands to 

the spine (top-down) or from the feet to the spine (bottom-up) (figure 2-1) or completely through the 

linkage from one extremity to the other (i.e. hands to feet).   
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Figure 2-1:  (A) Free body diagram of the whole body, the red squares indicate the forces and 
moments at the L5/S1 joint.  (B) Isolation of the top-down portion of the model illustrating how 
information regarding the forces at the hands, body segment motion and body segment parameters 
could be employed to estimate the forces and moments at the L5/S1 joint.  (C)  Isolation of the 
bottom-up portion of the model illustrating how information regarding the forces at the feet, body 
segment motion and body segment parameters could be employed to estimate the forces and moments 
at the L5/S1 joint.  The original figure was taken from Freivalds et al. (Freivalds et al., 1984). 

 

This theoretical equality has allowed authors to test the agreement of their models and search 

for sources of error.  Kingma et al. (1996b) compared the moments about L5/S1 as they were 

predicted from two-dimensional bottom-up and top-down models and found high correlations (0.990-

0.997) for four types of lifting technique and two different anthropometric approaches.  The model or 

anthropometric approach used did not significantly alter the absolute mean or peak differences, 

indicating that all approaches provided magnitude equivalent estimates (Kingma et al., 1996b).  

Lariviere and Gagnon (1998) directly compared moments about L5/S1 predicted from three-

dimensional bottom-up and top-down models and looked at the influence of changes in body segment 

parameters, lift asymmetry, load magnitude, lift rate and shoulder joint center location.   For the 

bottom-up model each foot was placed on a force plate and calculations were performed segment by 
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segment.  The bottom-up model was composed of 7 segments, including the feet, shanks, thighs and 

pelvis while the top-down model was composed of 9 segments, including the hands, arms, upper 

arms, head, T12/L1-shoulders and L5/S1-T12/L1.  Hand forces were determined from the mass of the 

objects in the hand and the linear accelerations.  Lariviere and Gagnon (1998) concluded that for 

static analysis no systematic differences existed between the models, finding the largest absolute 

difference between models for lateral bend moments (8.3 Nm).  In contrast, the largest absolute 

difference in dynamic tasks was for extension moments (15 Nm).  The study illustrated that the 

difference between the top-down and bottom-up models was much higher in dynamic tasks.  The top-

down approach appeared to underestimate the extension moment at the initiation of the lift (Lariviere 

and Gagnon, 1998).  Both models were found to be sensitive to alterations in load magnitude and load 

distribution (between hands) while the downward model was shown to be more sensitive to 

alterations in anthropometric measures (segment mass, center of mass, radius of gyration).  

Movement of the L5/S1 joint center did not significantly alter extension moments in either model; 

however the models were sensitive to errors in marker location, with translation of the marker along 

the longitudinal axis of the pelvis leading to errors in moment estimation (Lariviere and Gagnon, 

1998).  However both models were similarly affected and the maximal differences between model 

estimates did not change.  Use of differing shoulder joint center location methods had a greater effect 

on shoulder moments than those estimated at L5/S1, with errors of 14 and 2 Nm respectively 

(Lariviere and Gagnon, 1998). 

In an earlier study it was shown that top-down and bottom-up models resulted in similar 

estimates of forces and moments at the L5/S1 joint, with correlations typically above 0.95 

(Plamondon et al., 1996).  The lowest correlations were found for moments about the longitudinal 

axis for slow (0.76) and fast (0.78) lifting speeds.  The root mean square difference between force 

estimates of the two models were larger for greater lifting speeds, but remained under 15 N.  
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Similarly, the root mean square difference in moment estimates was larger during the fast lifts and 

ranged from 4 to 9 Nm (Plamondon et al., 1996).  The maximum differences in force and moment 

estimates observed were 59 N and 38 Nm respectively (Plamondon et al., 1996).   

One argument against the use of a bottom-up model is that the use of a force plate may 

constrain foot placement (de Looze et al., 1994).  Additionally, it has been shown that errors in the 

center of pressure location of 1 and 0.5 cm can lead to errors in moment estimation of 14 and 7% 

when averaged across the hip, knee and ankle joints (McCaw and DeVita, 1995).  This finding 

supports the conclusions of Plamondon et al. (1996) who found that the bottom-up model was most 

sensitive to noise in the ground reaction force.  Displacements in the joint center location of L5/S1 of 

3-10mm can lead to differences in moment estimation up to 12 Nm in flexion/extension, 10 Nm in 

lateral bending and 3 Nm for axial torsion (Gagnon and Gagnon, 1992).  Additionally, it has been 

shown that errors in the knee joint center location can lead to alterations in force and moment 

estimations at the joint (Nissan, 1980).  In contrast top-down models are influenced by estimates of 

trunk mass (Pearsall et al., 1994), trunk mass locations and shoulder joint center identification.  As 

inverse dynamic approaches assume that the links of the body are rigid and connected by simple 

articulations it stands to reason that the trunk may be more problematic as it is a flexible structure 

(Freivalds et al., 1984).  Pearsall et al. (1994) provide information regarding inertial properties of the 

trunk, which are critical in a top-down model and contribute greatly to the estimated forces and 

moments about the L5/S1 joint (Lindbeck and Arborelius, 1991).  The trunk represents the segment 

with the most divergent reported values of mass, ranging in the literature from 43.6% to 52.4% of 

total body mass (Pearsall et al., 1994).  The difficulty in accurately estimating trunk mass and mass 

distribution is reflected in the findings that top-down models are more sensitive to alterations in body 

segment parameters (Plamondon et al., 1996).  Kingma et al. (1996b) have shown that the trunk has 

the largest impact on moment estimation in the spine, with alterations in trunk mass or trunk center of 
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gravity estimates leading to the largest differences in moment estimation between top-down and 

bottom-up models.  De Looze et al. (1992b) concluded that the largest variation in link length occurs 

in the trunk during motion (6.2% or 2.8 cm).  Errors may also exist due to techniques of prediction.  

Typical analyses employ segment mass, length, center of gravity and radius of gyration.  For the 

extremities these measures are more easily obtained as the pivot points are assumed at the joint 

centers and the center of mass falls near a line connecting two joint centers.  The trunk is more 

complicated as the vertebral column permits many different types of motion and pivot points are not 

easily defined (Plagenhoef et al., 1983).  These trunk associated errors may explain why work 

comparing estimates of the ground reaction force as determined through a top-down inverse dynamics 

assessment to measured ground reaction forces found a correlation of only 0.43, indicating substantial 

error (Freivalds et al., 1984).  In contrast, when dealing with the lower extremities their contribution 

in terms of inertial effects is small (Lindbeck and Arborelius, 1991), and therefore errors in estimation 

of inertial properties may not exert as great an influence on joint load estimation. 

As there is no method to determine systematic errors associated with the choice of top-down or 

bottom-up models, model selection becomes a choice dictated by the capabilities and goals of the 

researcher.  Obtaining complete three-dimensional data during complex tasks is very demanding in 

terms of resources, regardless of model selection. Three-dimensional analysis demands a minimum of 

three non-collinear markers per segment.  Based on a nine segment model top-down model, such as 

that employed by Lariviere and Gagnon (1998), this would require a minimum of 27 markers to be 

visible at all times throughout data collection (ignoring additional marker demands for calibration).  

This number could be reduced if a seven segment bottom-up model were used, although the demands 

for visibility are consistent.  In terms of marker visibility range of motion must be considered.  When 

performing lifting tasks, the hands and upper limb segments will cover a greater distance than the leg 

segments.  Additionally, the rotation capability of the upper limb can result in hand and forearm 
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segment markers moving out of the visible field.  Although the legs will also move, the motions are 

expected to be smaller and out of range rotations are not as likely to occur.  Therefore a bottom-up 

model may provide a practical advantage in terms of positional data collection.  In addition, 

measurement of external forces in a top-down model can be difficult.  Top-down modeling requires 

either mounted force transducers, accelerometers, or the manipulation of Newton’s second law, which 

can be represented by the equation F = ma.  While the use of transducers can be complicated in a load 

return system due to cabling and interfacing the transducer between the hands and the objects 

handled, the estimation of force based on hand accelerations can lead to difficulty in determining 

when the load in is the hands (set down and lifted) and may induce errors at the initiation of the lift 

with large hand accelerations (Plamondon et al., 1996).  When these practical limitations in data 

collection are combined with the impact of trunk anthropometrics in joint kinetic estimates it appears 

that the bottom-up model may be a more practical approach in the laboratory. 

However, the same conclusions may not be drawn for the estimation of joint loading in 

industry due to the practical issues in acquiring force and movement data.  Bottom-up modeling 

requires the measurement of ground reaction forces, typically obtained with a force plate.  The 

implementation of a force plate for data collection in industry is not practical due to the nature of the 

industrial environment and the need for workers to move through a larger area than that allowed by 

the instrument.  Recent research has begun to investigate novel methods of obtaining forces and 

moments at the feet with wearable six degree of freedom load cells, with promising results 

(Carmichael et al., 2006).  However further work needs to be conducted investigating industrial 

usability.  A similar problem exists for top-down modeling in that instrumentation of industrial loads 

for direct force recording is also often impractical.  Additionally, both approaches are limited in terms 

of motion analysis.  The motion capture systems employed in the laboratory are expensive, require 

calibration of a limited capture space, and have extensive marker demands.  These properties render 
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the systems impractical and therefore surrogate measures of three-dimensional motion and force 

exposure are necessary to obtain estimates of spinal loading.  These surrogates may consist of 

positional data comprised of two or three-dimensional co-ordinates, joint angles (estimated from 

pictures, video data, or direct observation), static hand loads or self reported loading. 

As no techniques or instrumentation can directly measure the moment or force exposure of 

the spine in vivo it is not known which of these methods or surrogate measures contain the necessary 

information to allow accurate prediction of spinal loading.  In contrast, it is possible to measure 

external loads and movement in the laboratory with a much higher degree of accuracy, although this 

does not provide a direct estimate of industrial exposure.  If research hopes to accurately predict 

industrial load and moment exposures it is necessary to be able to apply the laboratory techniques in 

the industrial setting.  While this may not be physically practical, it may be possible through 

numerical techniques. 

 

2.3 The EMG-assisted model 

The joint model employed in this thesis was based on the joint model developed in the Ohio 

State Biodynamics Laboratory by Dr. Marras.  This model has been chosen due to its ability to reflect 

anatomical differences due to gender and its previous implementation in the examination of industrial 

lifting scenarios.  The following model timeline will describe the model from its initially reported 

state through the most recently published changes, highlighting those aspects which are relevant to 

the implementation of the model for this work. 
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The model was initially described in 1991 as an approach to predict 

dynamic spinal loading under laboratory conditions (Marras and 

Sommerich, 1991a) and required the input of trunk EMG from 10 

channels (bilaterally from the latissimus dorsi, erector spinae, 

rectus abdominus, and both internal and external obliques), subject 

characteristics (height, weight, trunk breadth and depth at L5), 

trunk kinematics (flexion angle and angular velocity) and kinetics 

(trunk moment).  EMG data was normalized to maximal activation, 

and used to predict force output (Marras and Sommerich, 1991a).  

The EMG signal was then further adjusted for velocity, length, 

cross-sectional area and gain, where gain is the maximum force 

producing capability of the muscle per unit area.  The force-

velocity relationship was obtained by multiplying the EMG signal 

at each point by a ratio composed of the average normalized EMG 

signal obtained for a muscle at a certain trunk angle, external 

torque production, and 0 velocity (numerator) and the average 

EMG response at the same trunk angle, torque production at the 

velocity of the trial (denominator).  This ratio was based on EMG 

signals within a database of the laboratory (Marras and Sommerich, 

1991a).  Not all muscles were adjusted for velocity, only the 

latissimus dorsi, erector spinae and internal obliques.    The force-

length relationship employed was stated to be obtained from 

equations derived from graphs in textbooks, in conjunction with 

trial and error.  Force-length adjustments were only made to the  
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latissimus dorsi, erector spinae and rectus abdominus muscles.  

Muscle area was determined from trunk measures and coefficients 

from Schultz et al. (1982).  The gain factor was an adjustable value 

used to ensure that predicted muscle forces resulted in an internal 

moment that balanced the external moment, compensating for 

deficiencies in other modulators (Marras and Sommerich, 1991a).  

The model was initially run with a gain value of 10 and the lateral 

torque due to muscle forces was determined.  If this value was 

within 5% of the recorded average torque, the gain was determined 

to be sufficient and muscle forces and spinal loading were 

considered correct.  If not the gain was increased and the process 

repeated.  The initial model did not predict loads at all points 

within a trial, but at characteristic event times with linear 

interpolation used to fill in the remainder (Marras and Sommerich, 

1991a).  While this was the first full description of the model and 

its implementation in predicting absolute loads, an earlier version 

was published, but was limited to relative comparisons and did not 

make EMG-force adjustments (Reilly and Marras, 1989).  Initial 

model architecture is depicted in figure 2-2. 
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1991 

 

 

 

 

 

 

 

 

 

1993 

 

INOR – internal oblique right                   β – internal oblique angle

INOL – internal oblique left                     δ – external oblique angle

EXOR – external oblique right                 γ – latissimus dorsi angle

EXOL – external oblique left

ERSR – erector spinae right

ERSL – erector spinae left

LATR – latissimus dorsi right

LATL – latissimus dorsi left

RCAR – rectus abdominus right

RCAL – rectus abdominus left

IAP – intra abdominal pressure

C – compression

S – medial lateral shear

a – anterior posterior shear

INOR – internal oblique right                   β – internal oblique angle

INOL – internal oblique left                     δ – external oblique angle

EXOR – external oblique right                 γ – latissimus dorsi angle

EXOL – external oblique left

ERSR – erector spinae right

ERSL – erector spinae left

LATR – latissimus dorsi right

LATL – latissimus dorsi left

RCAR – rectus abdominus right

RCAL – rectus abdominus left

IAP – intra abdominal pressure

C – compression

S – medial lateral shear

a – anterior posterior shear  

Figure 2-2:  The original model architecture employed in the Ohio 
State Biodynamics laboratory, based on the work of Schultz and 
Andersson (1981).  The figure has been taken from Reilly and 
Marras (Reilly and Marras, 1989). 

 

Marras and Sommerich conducted a validation of their model 

(1991b).  As internal compression and shear cannot be measured to 

allow a direct validation of the model, predicted and measured joint 

torques about L5/S1 were compared (Marras and Sommerich, 

1991b).  Comparison of the torque estimates and measurements 

found that over 85% of the comparison pairs displayed correlation 

coefficients greater than 0.7.  The authors concluded that this was a 

good correlation, given that the exertions were dynamic and 

included asymmetry (Marras and Sommerich, 1991b). 

  

In 1993, Granata and Marras reported on some adjustments to the 

model, including moving to a point by point analysis from the 

linear interpolation method initially used.  Additionally, the  
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mechanics employed in modeling were extensively described.  

First, two co-ordinate systems were established.  A sacral based 

axis system (coincident with the laboratory system) and a lumbar 

spine axis system are used.  While both system origins are located 

in the sacrum, the lumbar spine system is free to move with the 

trunk.  The systems are aligned with the subject in upright standing 

posture.  Vector components of external moment are resolved in 

the lumbar reference frame and then transferred to the sacral frame 

to allow comparison and gain matching (Granata and Marras, 

1993).  Moments about L5/S1 attributed to muscles are predicted 

from the summation of vector products between moment arms and 

muscle forces.  When the summed muscle moments equal the 

external moments it is assumed that the muscle forces are correct.  

Vector summation was then employed to determine spinal 

compression and shear (Granata and Marras, 1993).  The model 

was further assumed valid if the gain values employed fall within 

the range of 30-100 N/cm2.  This model review highlighted the fact 

that over 80% of 2160 trials were predicted with a correlation 

coefficient of 0.8 or more (Granata and Marras, 1993). 

  

In 1995, the model was improved to allow prediction of joint loads 

in less constrained dynamic lifting scenarios (Granata and Marras, 

1995a).  The 10 muscle sites were the same as before, and the 

normalized EMG signal was again multiplied by several  
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modulating factors to allow estimation of muscle force.  The 

normalized signal was subsequently multiplied by force-length and 

force-velocity factors (Granata and Marras, 1995a).  This model 

description differed from the previous as it included the equations 

to determine the force-length and force-velocity coefficients: 

Force-length (equations 2-1 and 2-2): 

3)(6.42)(4.10)(2.102.3)( lengthlengthlengthlengthf +−+−= (2-1) 

For concentric velocities: 

2)(72.0)(99.02.1)( velocityvelocityvelocityf +−=                   (2-2) 

For eccentric velocities: 

2.1)( =velocityf  

These equations employ length and velocity factors which are 

based on the muscle resting lengths.  For this study, it was found 

that the average gain values in the sagittal plane were 64.9 ± 27.6 

N/cm2; while they were lower (50.2 ± 31.9 N/cm2) in the lateral 

plane (Granata and Marras, 1995a).  Gain values were found to 

differ significantly between subjects, but not within a subject.  

Velocity and exertion level did not significantly alter the gain 

value, although trunk asymmetry altered the gain value.  Sagittal 

plane correlation coefficients averaged 0.81, while for the lateral 

plane the correlation coefficients averaged 0.76.  The model 

predicted sagittal trunk moments with an average error of 17.5 Nm, 

less than 15% of the peak moment.  The error in the lateral plane  
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was lower in terms of absolute magnitude (14.6 Nm); however this 

represented a higher relative error (24%) (Granata and Marras, 

1995a). 

 

Also in 1995, the model was applied to axial twist exertions 

(Marras and Granata, 1995).  The authors conducted the study as 

previous attempts to model twisting motions resulted in non-  

physiologic estimates of muscle force capability, and therefore they 

could not replicate muscle forces.  The unique contribution of this 

paper in terms of the model was a description of how the anatomy 

was employed.  The 10 representative muscle vectors originated 

from a plane parallel to the iliac crest while insertions were given 

in a plane parallel to the 12th rib (figure 2-3). 
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RCA – Rectus abdominus

ErS – Erector Spinae

Lat – Latissimus Dorsi

ExO – External Oblique

InO – Internal Oblique

RCA – Rectus abdominus

ErS – Erector Spinae

Lat – Latissimus Dorsi

ExO – External Oblique

InO – Internal Oblique

 

Figure 2-3:  Schematic diagram depicting the more recent model 
architecture.  The use of the planes allows the description of 
muscle origins and insertions as well as changes in these locations 
with alterations in the relationship between the planes.  This figure 
was taken from Marras and Granata (1995). 

 

These co-ordinates change with motion of the spine allowing 

muscle length and velocity changes to be accounted for  

(Marras and Granata, 1995).  Scaleable three-dimensional co-

ordinates were provided allowing determination of muscle 

properties in three-dimensions.  Along with origin and insertions, 

muscle areas were also provided.  In terms of model performance, 

the average gain value was 35.4±23.4 N/cm2, well within the 

physiologic range.  The average correlation coefficient for all trials 

was 0.8, with coefficients greater than 0.8 occurring in 65% of the 

trials.  Correlation coefficients of 0.9 or greater occurred in 36% of 

the trials.  Spinal loads were found to change depending on the  
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exertion level, direction of torque, and velocity of twisting (Marras 

and Granata, 1995).  It was found that loading increased 

concurrently with increased velocity.   

    

The model has also been employed to examine the loading 

consequences of lateral bending exertions (Marras and Granata, 

1997a).  The authors hypothesized that increasing lateral bending 

velocity would require higher levels of co-contraction and result in 

higher levels of spinal loading.  Modifications were made to the 

previously described model to more accurately reflect the force-

velocity relationship at higher velocity rates (Marras and Granata, 

1997a). 

For concentric velocities: 

)025./exp(35.065.0)( velocityvelocityf −×+=            (2-3) 

For eccentric velocities: 

5.1)( =velocityf                                                                 

In addition, the force-length equation was expanded to read: 

3)(59.42)(40.10)(20.1025.3)( lengthlengthlengthlengthf +−+−=
                                                                                                    (2-4) 

It was found that the lateral bending moments were mainly induced 

by agonistic muscles with horizontal orientation vectors, including 

the ipsilateral latissimus dorsi, and the internal and external oblique 

muscles (Marras and Granata, 1997a).  The model resulted in an 

average gain of 64.9 N/cm2 with an average absolute error ranging  
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from 6-10%.  The gain values were not altered by trunk angle, 

velocity or load magnitude.  The average absolute error was found 

to be higher for dynamic contractions than for static.  The average 

correlation coefficient for all trials was 0.91.   

 

The model has also been examined for its performance in lowering 

exertions (Davis et al., 1998).  Until this time, the spine model 

performance had only been examined in situations of concentric 

lifting, and it remained unknown if the empirical relationships 

within the model were robust to the direction of motion.  In order 

to develop empirical relationships for force-length and force- 

velocity the average variation in the ratio between internal and 

external moments was minimized as a function of length and  

velocity (Davis et al., 1998).  The results for force-length were 

given in the form of a moment ratio vs. muscle length curve.  It 

was found that the moment ratio – muscle length curve for 

lowering was very similar to that for lifting, with differences  
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appearing at the more extreme muscle lengths (figure 2-4).  

 

Figure 2-4:  The length-strength (force-length) relationship 
obtained by Davis et al. while investigating lowering exertions.  
Figure taken from Davis et al. (1998). 

 

The resulting moment ratio – muscle velocity curve (figure 2-5) 

resulted in an exponentially decreasing force generation at 

increasing concentric velocities while it was found that a constant 

modulation factor existed for lowering (1.56), indicating that 

subjects were 56% stronger while lowering (Davis et al., 1998). 
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Figure 2-5:  The force-velocity relationship obtained by Davis et 
al. while investigating lowering exertions.  Figure taken from 
Davis et al. (1998). 

 

Model performance was again assessed based on gain values, 

correlation coefficients and average absolute error.  The results 

indicated that gain values were unchanged by the direction of 

loading and fell within the physiological range. It was found that 

coefficients of correlation between measured and predicted 

moment were higher for lowering exertions (0.95) than for lifting 

exertions (0.88).  The same pattern was observed for joint 

moments, with higher agreement in moment magnitude for 

lowering than lifting, although sagittal moments for both directions 

were predicted within 10%.  To further test the model, data were 

obtained from another study in which participants performed 

sagittally symmetric lifts of different  
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weights and speeds (Davis et al., 1998).  Implementation of the 

model with the above described relationships resulted in good 

agreement between measured and predicted moments (r2 = 0.91 

and average error of 7.23% of maximum sagittal moment). 

 

The model has also been tested for variability in estimation 

between trials occurring within the same day and trials performed 

on different days (Marras et al., 1999).  The model was shown to 

be quite stable.  For within day analysis, the model performance 

parameters (gain, r2, and average absolute error) were shown to be 

robust.  Analysis of the sources of variability revealed that for the 

gain factor, subject specific properties exert the most influence (54-

65% of variability), followed by the trial (17-25%).  Investigation 

of the between day behaviour revealed that 20.6% of the gain 

variability was due to subject experience.  Correlation variance was 

most influenced by the trial (42-49% of variation).  However, 

experience was also a large contributor (31-34%).  In terms of 

error, experience explained 22-37.38% while trial accounted for 

34-51%.  Weight was found to exert minimal influence (0.68-2%) 

(Marras et al., 1999).   
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 Gender Differences: 

Although several anatomical differences have been noted in the male and female spines, such 

as the ratio of pelvic width to height (Brinckmann et al., 1981), moment arms of the trunk 

musculature at the T7, T12, L3 and L5 levels (Kumar, 1988b), cross-sectional area of the torso 

muscles (Reid and Costigan, 1985; Cooper et al., 1992) and the amount of lumbar lordosis (Fernand 

and Fox, 1985), these studies did not present this information in such a way as to allow direct 

implementation into biomechanical models.  However, more recent work has directly addressed 

gender differences in spinal anatomy. 

Jorgensen et al. (2001) performed an examination of the gender differences in the moment 

arms of males and females in order to provide valuable data to those modeling the spine to account 

for gender differences.  By improving the accuracy of the anatomy of the model, the content validity 

of the model rises and theoretically, the accuracy of the model predictions can be increased.  Earlier 

studies which documented the moment arm length of female torso muscles were conducted on older 

women (Chaffin et al., 1990; Kumar, 1988a; Moga et al., 1993), which may not reflect the anatomy of 

young healthy females.  The implementation of magnetic resonance imaging allowed the study of 

younger participants.  As well as improving upon the current knowledge of male and female torso 

anatomy, the authors sought to develop equations that could be employed to predict gender specific 

moment arms based on external measures (Jorgensen et al., 2001).  Ten male and 10 female subjects 

were recruited for study.  Eleven scans were obtained per subject, intersecting the vertebral bodies 

from T8 through to S1.  The area centroid was obtained for each muscle within each scan through 

digital inscription of the scans.  Muscle moment arms were determined as the absolute difference 

between the coordinates of the vertebral body centroid and the muscle area centroid in the sagittal and 

coronal planes (figure 2-6). 
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Figure 2-6:  (A) Coronal plane moment arms at L3.  (B) Sagittal plane moment arms at L3.  Figure 
taken from Jorgensen et al. (Jorgensen et al., 2001). 

   

In the coronal plane it was found that the moment arms of the torso musculature differed 

between males and females, but these differences were not consistent among the spinal levels 

measured (Jorgensen et al., 2001).  The rectus abdominus was unusual in that for the left side, the 

moment arms were not found to differ.  Moment arms were found to be larger for males than females 

at all levels for the latissimus dorsi, erector spinae (excluding right side, L4-S1), right rectus 

abdominus (not at L5) and the right external oblique, psoas major and quadratus lumborum.  Overall, 

males exhibited 14.2% larger moment arms in the coronal plane.  In the sagittal plane, the erector 

spinae moment arms for males were larger than for females with the exceptions of L1-L3 and L5 on 

the right (Jorgensen et al., 2001).  As well, the moment arms of the rectus abdominus were smaller in 

females except for the S1 level.  Differences were not consistently observed for the internal obliques, 

external obliques or psoas major.  When combined, the results indicate 17.5% longer moment arms 

for males in the sagittal plane.  Several regression equations were developed, and it was found that the 

most significant predictor of female sagittal muscle moment arms was the product of height (m) and 

mass (kg).  For males, it appeared that the best sagittal moment arm predictor was trunk depth 

measured at the xyphoid process.  In the coronal plane, variations of height and mass (products, 

ratios) were all found to be significant predictors of female moment arms (Jorgensen et al., 2001).  
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The same result was found for males.  By providing the muscle moment arms for males and females, 

the authors provided a means through which future modeling of the spine can be made gender 

specific. 

Employing the same methodology and participant pool as above, it was found that males 

exhibited larger anatomical cross sectional area (ACSA) of the torso muscles, as well as larger sizes 

of the vertebrae and trunk (Marras et al., 2001).  Additionally, symmetry was not maintained.  Both 

males and females exhibited 10% larger right side latissimus dorsi when compared to the left 

(physiological cross sectional area – PCSA), and females displayed larger left side psoas major and 

quadratus lumborum.  Regression equations were developed to allow prediction of muscle PCSAs 

from externally obtainable anthropometric measures.  For male latissimus dorsi, height and mass 

combinations resulted in the best predictions, whereas for females measurements around the torso at 

the level of the xyphoid process were most predictive (Marras et al., 2001).  The erector spinae could 

be best predicted with combinations of height and mass for both genders.  In terms of the abdominal 

musculature, the rectus abdominus PCSA of females was best predicted by measures of BMI and 

measures taken about the xyphoid process.  For males, combinations of height and mass were 

significant predictors of rectus abdominus PCSAs.  Measurements about the xyphoid process were 

the best predictors of female external obliques and male left external obliques (Marras et al., 2001).  

Again, measures about the xyphoid process (as well as BMI) were significant predictors of the female 

internal obliques.  For males, subject mass was the best predictor of internal oblique PCSA.  While 

the correlation coefficients in this study ranged from 0.20 to 0.72, this was the first study to provide 

predictive regression equations for the determination of anatomically corrected muscle areas for such 

a variety of muscles across genders (Marras et al., 2001). 

 The issue of gender specific moment arms was revisited by Jorgensen et al. in 2005 to try and 

address the issues associated with the supine posture used to study gender differences in moment 
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arms in their previous 2001 study (Jorgensen et al.).  The use of a supine posture may result in under 

estimates of rectus abdominus muscle moment arms (McGill et al., 1996a), and any such differences 

must be known and adjusted or corrected.  Five female volunteers underwent upright sagittal and 

axial MRI scanning.  The resulting scans were digitized and the borders of the intervertebral disc and 

rectus abdomini were outlined (Jorgensen et al., 2005).  Subsequently, the x and y co-ordinates of the 

muscle and disc centroid were recorded.  Sagittal plane moment arms were determined as the distance 

between the intervertebral disc and muscle centroids.  A correction was employed to adjust for the 

fact that the moment arms determined in the upright scans were obtained along a plane aligned with 

the orientation of the intervertebral disc, whereas previous studies (supine position) obtained the 

moment arms from transverse scans.  It was found that the moment arms were largest at the upper and 

lower regions of the lumbar spine and shortest in the middle (Jorgensen et al., 2005).  Measurements 

indicated that the moment arms were symmetrical and not different from one another.  When 

compared to the literature, it was found that the upright scanning procedure resulted in moment arms 

27.5% longer than those obtained from supine analysis (7.3-43.7%), in strong agreement with the 

conclusions of McGill et al. (1996a).  The resulting percentage differences may be employed in 

biomechanical models to account for the differences in muscle moment arms due to the supine 

postures of the participants during measurement (Jorgensen et al., 2005). 

 Further MRI studies have found that males and females do not differ in lumbar lordosis, 

regardless of torso flexion angle, when lying on their side (Jorgensen et al., 2003).  Although this 

study was conducted to determine the effects of changing trunk angle on erector spinae moment arms, 

it also investigated these effects across genders.  While females were again shown to display shorter 

moment arms, the moment arms of both males and females decreased with flexion from 0 to 450, with 

decreases of 8.9% and 9.7% for males and females at the L5/S1 level respectively (Jorgensen et al., 

2003).  At the L4/L5 level, the difference in moment arm for the male erector spinae was 2.8 mm 
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(5.2%) and for females was 2.1 mm (3.6%).  This study was also able to provide some of the 

strongest predictive equations for estimating sagittal plane moment arms of both males and females 

based on anthropometric measures (R2 at L5/S1 of 0.76) (Jorgensen et al., 2003). 

 

Model Summary as Implemented in this thesis: 

The model contains 10 muscle vectors that each originate at the L5/S1 level and insert at a 

higher level (T12 for this work).  The origin of all muscle co-ordinates is taken at the center of the 

L5/S1 disc.  The insertion points at the T12 level are rotated based upon the spine angles obtained 

from the LMM.  As the LMM is mounted to the sacrum the assumption is made that it is measuring 

relative rotation of the T12 level relative to L5, so global rotations of both the origin and insertion co-

ordinates prior to relative rotation is not necessary.  Once rotated, the muscle force for each of the 10 

muscles was predicted based upon the equation:   

)()(
max

velocityflengthf
EMG

EMGareaGainForce ××××=                           (2-5) 

EMGmax – muscle activation recorded during maximum voluntary contraction 

Area – cross-sectional area of the muscle 

)(lengthf  – Force-length modulation factor, calculated as (Granata and Marras, 1995a): 

3)(6.42)(4.10)(2.102.3)( lengthlengthlengthlengthf +−+−=                                         (2-1) 

)(velocityf - Force-velocity modulation factor, calculated as (Granata and Marras, 1995a): 

2)(72.0)(99.02.1)( velocityvelocityvelocityf +−=                                                           (2-2) 
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2.4 Artificial Neural Networks in Biomechanics 

Artificial Neural Networks (ANN) are mathematical models designed to reflect the biological 

nervous system, being composed of ‘neurons/units’ and interconnected pathways.  The unique 

property of ANNs that makes their application to biological systems promising is that they can ‘learn’ 

to map a set of inputs onto a set of outputs through adaptation of their structure.  ANNs are composed 

of an input layer, an output layer, and one or more hidden layers, where the hidden units are contained 

(figure 2-7).   

 

Figure 2-7:  Schematic representation of an artificial neural network, taken from Prentice and Patla 
(2006). 

 

These hidden units can be thought to act like a principal component analysis, where 

waveform features are characterized and subsequently used to recreate individual signals (Prentice et 

al., 1998).  To train the network, a series of inputs (with known outputs) are presented and based on 

initial network weights, an output prediction is obtained.  This output is compared to the known 

output of the presented input, and if the error is sufficiently low training is terminated (figure 2-8).  If 

not, the process is repeated, whereby the network weights are adjusted (or the number of hidden units 

is changed) and a new network prediction is obtained.   
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Figure 2-8:  Schematic representation of the training process, indicating the feedback of error 
resulting in changes to the network.  Figure taken from the Matlab Neural Network Toolbox User’s 
Guide (Demuth et al., 2006). 

 

The training generated weights are then applied to new input signals as they move into the 

hidden layer and through the network to result in a novel output.  The benefit of this modeling 

approach is that complex relationships can be represented with relatively simple model architecture 

(Prentice and Patla, 2006).  These properties have been exploited by in several biomechanical studies 

for a large variety of reasons, ranging from classification of signals to modeling muscle activation 

dynamics.  A summary of these studies is presented in table 2-1.  Given the history of ANN use in 

biomechanics as well as the success of the models in accurately reproducing biomechanical 

relationships, it appears that the numerical technique may provide a means to obtain laboratory 

quality estimates of joint moments and forces with data that can be obtained in industry.  

Additionally, the variety of network architectures that can be developed may provide a means to 

allow neural networks to produce these predictions with a lower number of inputs than more complex 

models without the need for the explicit definition and development of a complex numerical model of 

the relationships between the reduced inputs and the target outputs. 
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Table 2-1:  Summary of neural network applications in biomechanics. 

MAPPING EMG SIGNALS TO JOINT MOMENTS 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 

Song and 
Tong (2005) 

EMG:  Biceps 
brachii, medial 
triceps brachii and 
brachioradialis 
 
Elbow angle and 
angular velocity 

One layer 
 
Varied the 
number of 
nodes until a 
minimum error 
was found in 
terms of both 
training and test 
data 
 
 

Elbow 
torque 

Levenberg-
Marquardt 
algorithm for 
back 
propagation 
training 
 
Terminated 
when sum of 
squared errors 
changes 
<0.5% over 50 
iterations 
 
 

RMS 
differences of 
5.96% for full 
model, 12.42% 
for EMG input 
only 

Output torque 
was used as a 
recurrent input 
 
Signals 
normalized 
between 0.1 and 
0.9 
 
Tested full model 
and model with 
only EMG inputs 
 
 

Luh et al. 
(1999) 

EMG:  Biceps 
brachii and lateral 
triceps brachii 
 
Elbow joint angle 
and velocity 

One layer 
 
No reduction in 
error of 
estimation with 
an increase in 
the number of 
nodes from 5 to 
20 

Elbow 
torque 

Maximum 
60,000 
iterations 
 
Used a 
dynamic 
learning rate 
algorithm 

Average r of 
0.9, with 
average RMS 
difference of 
0.1413 

Signals 
normalized 
between 0.1 and 
0.9 

Uchiyama et 
al. (1998) 

7 channels 
collected from 
shoulder and arm 
 
Elbow and joint 
angles 

One layer 
 
5 to 15 hidden 
units, no 
improvement in 
learning speed 
with greater 
than 10 

Elbow 
torque 

Based on 
ensemble 
average data 
 
Errors 
summed from 
all training 
data 
 
Training 
terminated 
when error of 
estimation < 
0.01% 

Not provided Used to allow 
understanding of 
EMG and joint 
torque 
throughout a 
range of joint 
angles while 
allowing the 
input of constant 
muscular 
activation 

Sepulveda et 
al. (1993) 

EMG of 16 
muscles 

1 hidden layer, 
32 hidden units 

Angle 
and 
moment 
at the hip, 
knee and 
ankle 
through 
the gait 
cycle 

Used data 
from another 
source for 
training 
 
A tolerance of 
0.025 was 
used for EMG 
to joint angle 

Perturbations to 
the training data 
of ± 20% 
resulted in 
differences in 
predicted 
outputs (joint 
angle and 
moment) of < 

Looked at both 
EMG to joint 
moment and 
EMG to joint 
angle 
relationships 
 
All signals 
normalized 
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mapping 7%  
Looked at 
perturbations to 
the input signals 
used for training 
to generate the 
test data 

 
 

MAPPING JOINT MOMENTS TO MUSCULAR ACTIVATION 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 

Nussbaum 
and Chaffin 
(1996) 

Flexion, extension 
and right and left 
lateral bend 
moments 
measured about 
L3/L4 

Tested 3 and 8 
hidden unit 
models 

Activation 
of the 
erector 
spinae, 
latissimus 
dorsi, 
rectus 
abdominus 
and 
external 
obliques 
bilaterally 

15 of 60 load-
position 
combinations 
were used for 
training 

Assessed 
correctly 75% 
of the active 
muscle states 
 
Predicted 
activation 
levels with an 
error less than 
0.63% for the 
45 remaining 
load-position 
combinations 
 
Latissimus 
dorsi showed 
poor correlation 
values 
 
Correlations for 
the remaining 
muscles ranged 
from 0.87 to 
0.98 
 
Model 
predicted ↓ 
EMG levels at 
extrapolated 
larger moment 
applications 

Assessed the 
model 
performance 
with external 
data sets as well 
as that collected 
for development 
and testing of the 
ANN 
 
ANN showed 
good agreement 
with 
optimization 
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Nussbaum 
et al. (1995) 

Same as above Tested a range 
of hidden unit 
numbers 
 
There was no 
improvement in 
the number of 
training cycles 
with >5 hidden 
units 

Same as 
above 

Training was 
found to be 
able to reduce 
the errors of 
estimation 
below 1%, 
however the 
threshold used 
for 
termination 
was not stated 

Majority of 
errors were 
<6% 
ANNs with >3 
hidden units 
showed higher 
correlations 
with measured 
levels than 
optimization 
 
Errors of 
estimation with 
ANN were 
<2.1%, 
compared to 5.3 
and 3.4% for 
the 
optimization 
methods 
 
ANN predicted 
co-contraction 

Compared results 
to that of 
optimization 
models 
 
 

Lee et al. 
(2003) 

Linguistic 
descriptors of 
trunk lateral 
moment 
 
 

None – 2 layer 
network 

Fuzzy 
rules 
regarding 
the 
activation 
level of 10 
trunk 
muscles 
(same as 
above + 
internal 
obliques) 

Not provided Hybrid 
approach 
resulted in 
lower errors of 
estimation 
(6.4%) than 
reported for 
ANN alone 
 
Lower 
correlations (r2 
of 0.59) were 
found for 
hybrid 
approach than 
ANN alone (r2 
of 0.95) 
 

Hybrid ANN and 
fuzzy modeling 
approach 
 
ANN was used 
to generate fuzzy 
rules 

Nussbaum 
et al. (1997) 

External moments 
about each of the 
anatomical axes 

Two layers 
 
The second 
layer had 10 
nodes, to mimic 
the 10 muscles 
of the torso (see 
above) 

Internal 
moments 
about each 
of the 
anatomical 
axes 

Training was 
conducted 
until the error 
in moment 
estimation 
was reduced 
below 3 Nm 
about each 
axis 
 
Used a back 

ANN predicted 
joint moments 
with a standard 
error less than 
1.66 Nm and 
correlation 
coefficient of 
0.99 
 
Model over 
predicted 

The idea behind 
this ANN was to 
actually use the 
output of the 
second hidden 
layer to represent 
the contribution 
of each muscle to 
the moment 
about each axis 
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propagation 
algorithm 
 
This technique 
can get stalled 
in local 
minima, but 
these 
occurrences 
were not 
analyzed 

activation 
levels when 
activation was 
low 
 
Predicted 
activation 
levels well at 
higher levels 
 
Latissimus 
dorsi 
predictions 
were poorly 
correlated with 
measured levels 

Used an 
inhibitory signal 
within the ANN 

 
 

ANNs AS ALTERNATIVES TO OTHER MODELS 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 

Rosen et al. 
(1999) 

EMG:  Biceps 
brachii, triceps 
brachii (medial 
and lateral head), 
brachioradialis 
 
Elbow angle, 
angular velocity 
and shoulder 
angle 

1 hidden layer 
 
Tested 100, 50 
and 25 hidden 
unit 
configurations 

Elbow 
moment 

200,000 
iterations 

Hill-based 
muscle model 
resulted in an 
average error of 
4.2 Nm, 
compared to 
0.012 Nm with 
the ANN 

Compared 
performance of 
the ANN to a 
Hill-type muscle 
model 

Kingma et 
al. (2001) 

EMG from erector 
spinae at T10 and 
L3 levels 
bilaterally 
 
Trunk tilt angle, 
angular velocity 
and linear 
accelerations of 
the trunk 

Not provided L5/S1 
moment 

Split data 
collected 
during 
repeated trunk 
motion into 
training and 
validation sets, 
but details of 
success not 
provided 

EMG peak 
moment 
predictions 
exceeded those 
from the rigid 
link model by 
25.5% 
 
ANN peak 
estimates were 
17.3% lower 
than those of 
the rigid link 
model 
 
r2 of 0.656 
between the 
EMG and rigid 
link models, 
0.744 between 
the ANN and 

Compared a rigid 
link model, EMG 
estimation 
technique and 
ANN 
 
Lifting exertions 
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rigid link model 
 
ANN 
predictions 
were the most 
repeatable 

 
 

MAPPING EMG TO KINEMATICS 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 
Dipietro et 
al. (2003) 

EMG:  pectoralis 
major, anterior 
and posterior 
deltoid, biceps 
and triceps brachii 

1 hidden layer 
with 2 units 

X and y 
co-
ordinate 
trajectories 
of the 
wrist 

Completed 
after 
1,000,000 
iterations 
 
Trained 
separately for 
each subject 
 
Used a 
validation set 
of data 
presented 
every 500 
iteration to 
determine 
training 
effects 

Average RMS 
difference of 
0.092 units, or 
9.2% 

Recurrent back 
propagation 
approach to deal 
with time 
varying inputs 
and outputs 
 
Trials were not 
normalized in 
time 

Koike and 
Kawato 
(1995) 

Raw EMG input, 
signals from 
different muscles 
dependent upon 
joint were input to 
first layer (10 
upper limb 
muscles 
collected) 
 
The second layer 
accepted the 
outputs of the first 
layer as well as 
joint angle and 
angular velocity 

One hidden 
layer 

Joint 
torque 

Model was 
first trained to 
obtain the 
desired 
impulse 
response to 
describe the 
quasi-tension 
of the muscle 
using 10,000 
data points 
 
Subsequent 
training was 
performed 
using both 
static and 
dynamic trials 
 
Training was 
continued 
until the error 
in the test data 
increased 

Dynamic torque 
predicted with 
an r2 of 0.887 
 
Trajectory 
predicted with 
an r2 of 0.948 

Used a modular 
network, with 
different sections 
responsible for 
posture and 
movement 
 
Method also 
employed a 
gating network 
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MAPPING KINEMATICS TO EMG 

Authors Inputs Hidden Layer Outputs Training Performance Specifics 
Prentice et 
al. (2001) 

Horizontal and 
vertical 
displacement of 
hip and toe 
 
Sagittal hip and 
knee angles, 
frontal hip angle 
 
Velocity of all 
displacement 
inputs 

1 hidden layer 
with 14 hidden 
units 

Activation of  
medial 
gastrocnemius, 
soleus, tibialis 
anterior, 
peroneus 
longus, biceps 
femoris, rectus 
femoris, 
gluteus 
medius, 
erector spinae 

Data was 
intentionally 
separated so 
that the trials 
remaining for 
model testing 
would assess 
both ANN 
interpolation 
and 
extrapolation 
 
Training was 
conducted 
until no 
further ↓ in 
error was 
observed 

94 of 96 trials 
had RMS 
differences 
<0.10 units. 
 
61% of trials 
showed r2 
>0.90, 94% > 
0.80  

Based on 1 
subject, with 
variations in gait 
parameters 
(cadence, stride 
length, stance 
width, foot 
clearance) 
 
All signals 
normalized in 
amplitude and 
time 

Prentice et 
al. (1998) 

Temporal stride 
information 
(stride rate) 
represented with 
sinusoidal waves 

1 hidden layer 
 
Tested the use 
of 16, 4, 2, or 1 
hidden units 

Muscle 
activation 

Data was 
intentionally 
separated so 
that the trials 
remaining for 
model testing 
would assess 
both ANN 
interpolation 
and 
extrapolation 
 
Training was 
conducted 
until no 
further ↓ in 
error was 
observed 

RMS 
difference < 
20% for 83% 
of cases 
 
r2  ranged from 
0.1 to 0.9 
 
The use of a 
higher number 
of hidden units 
resulted in 
better 
representation 
of the more 
subtle 
variations 

Broke stride 
information into 
sine and cosine 
waves to use 
with ANN 

Hou et al. 
(2004b) 

Trunk kinematics 
(angle, velocity 
and acceleration) 
 
Trunk moments 
(about the 
anatomical axes) 
 
Participant 
anthropometrics 
 
Timing variable 

2 hidden layers 
 
Subject 
variables were 
directly input 
into the 2nd 
hidden layer to 
give them 
higher 
importance 
 
200 global 
hidden units, 

Activation of 
10 trunk 
muscles 

Training was 
initially slow 
when data 
was input on 
a point by 
point basis, 
moved to a 
vector 
approach 

Mean average 
error of 
prediction 
ranged from 
0.9 to 11.1% 

Authors 
employed a 
timing variable 
to avoid what 
they termed a 
“static model” 
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35 regional 
Karwowski 
et al. 
(2006) 

Fuzzy inputs 
 
Trunk moments 
about all three 
anatomical axes 
 
Pelvic tilt and 
rotation 
 
Sagittal, lateral 
and axial trunk 
angles 

Not provided, 
although the 
hybrid model 
does not 
function in a 
purely ANN 
sense 

Activation of 
10 trunk 
muscles 

Data from 10 
subjects was 
used for 
training while 
data from an 
additional 10 
subjects was 
used for 
testing 

Errors of 
estimation 
were shown to 
range from 
2.5-27.5%, 
with an 
average of 
9.9% 

Used a multiple 
input single 
output model 
(MISO), so 
created 10 
ANNs 
 
Used a hybrid 
approach 
employing 
Fuzzification 
and an ANN 

 
 
 

MAPPING EMG TO MUSCLE AND JOINT FORCES 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 
Liu et al. 
(1999) 

Varied from 20 to 
30 
 
20 EMG inputs 
(20 points prior to 
point of interest) 
 
10 kinematic data 
points (the 5 joint 
angles and 
velocities prior to 
the point of 
interest) 

2 hidden layers, 
the first 
contained 20 
hidden units, 
the second 10 

Muscle 
force 
(soleus) 

Looked at the 
inclusion of 
non-specific 
trials within 
the training 
and found no 
benefit 
 
Used a 
threshold 
error level, 
but did not 
report 
 
Reported to 
train network 
in 600 – 1000 
iterations 

Inter-animal 
testing revealed 
the model 
predicted 
muscle force 
with an r > 0.9 
and RMS error 
< 15%. 
 
Inclusion of 
kinematic data 
did not improve 
estimates of 
force for inter-
subject 
predictions 
 
Intra-animal 
predictions 
were found to 
result in r 
values ranging 
from 0.66 to 
0.94, dependent 
upon speed 
 
Intra-session 
predictions 
showed r values 
ranging from 
0.96 to 0.98 
with an RMS 
error < 8% 
 

Feline model 
 
Attempting to 
predict 
relationship 
between EMG 
and dynamic 
muscle force 
 
Muscles forces 
recorded with an 
implantable 
transducer 
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Hou et al. 
(2005) 

Kinematics (trunk 
moment, angle, 
velocity and 
acceleration 
about all three 
axes) 
 
Subject 
anthropometrics 
 
Task variables 
(weight of object, 
lifting height, 
handedness and 
lifting style) 
 
EMG signals are 
an intermediate 
output and are fed 
back into the 
model as an input 
(10 trunk 
muscles) 

1 hidden layer 
with 35 hidden 
units 

Lateral 
shear, 
anterior-
posterior 
shear and 
compression 
 
10 trunk 
muscle 
activation 
levels 

Not reported Assessed 
through 
comparison to a 
biomechanical 
model 
 
Qualitatively 
comparisons 
showed some 
increase in 
error for 
nonsymmetrical 
motions 
 
Mean absolute 
errors ranged 
from 22.2 to 
201.1 N 

Recurrent hybrid 
neuro-fuzzy 
approach 
 
Incorporated 
kinematic-EMG 
and EMG-joint 
force 
relationships 
 
Normalized 
signals 

Wang and 
Buchanan 
(2002) 

Normalized EMG 
from 10 upper 
limb muscles 

2 hidden layers, 
each with 15 
hidden units 

Muscle 
activation of 
the 10 
muscles 

Joint moment 
was used as 
the training 
comparator as 
muscle 
activation 
cannot be 
measured 
 
Data from one 
exertion level 
(75% of 
maximal 
exertion) was 
used for 
training 
 
Training error 
decreased 
below 3% 
after 1000 
cycles and < 
1.5% after 
3000 cycles.  
Error was 
reduced to < 
0.8% if 
training was 
continued to 

Model 
predicted joint 
moments 
within 8.3% 
 
When 
examined at a 
lower exertion 
level than used 
in training, 
moments were 
predicted 
within 4.9% 
 
When used to 
predict joint 
moments for 
maximal 
contractions, 
the average 
relative error 
reached 34.2% 
 
ANN was 
shown to 
exhibit a 0.3-
0.4 unit bias 
when EMG was 
zero 

Believed 
previous efforts 
linking EMG 
directly to force 
ignored the 
explicit 
statement of 
some known 
relationships 
(such as force-
velocity) 
 
Looked at using 
ANN to model 
activation 
dynamics and 
combining these 
activations with 
a Hill-type 
muscle model 
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10,000 cycles  
 

 
 

USING ANNs AS CLASSIFICATION TOOLS 
Authors Inputs Hidden Layer Outputs Training Performance Specifics 
Zurada et 
al. (1997) 

Lift rate 
 
Peak twist 
velocity 
 
Peak moment 
 
Peak sagittal 
angle 
Peak lateral bend 
velocity 

1 hidden layer 
with 10 hidden 
units 

0 or 1, 
depending 
on low or 
high risk 
classification 

148 jobs were 
used as the 
training data 
set (74 low 
risk and 74 
high risk) 

Classified 65 of 
87 cases 
correctly 
 
14 of 50 low 
risk jobs were 
classified 
incorrectly 
 
8 of 37 high 
risk jobs were 
incorrectly 
classified 
 
This 
performance 
was better than 
that of either 
NIOSH 
equation 

Looked at ANN 
as a tool to 
classify jobs in 
terms of 
potential to 
develop low 
back pain 
 
Signals 
normalized 

Bishop et 
al. (1997) 

Questionnaire 
data 
 
Spine motion trial 
information 
(velocity, shape 
and symmetry) 

Not provided Group (pain 
or no pain) 
 
Pain type 

Not provided Accurately 
distinguished 
between pain 
and no pain in 
86% of cases 
 
Successfully 
classified 72% 
of the pain 
cases 

Used 2 networks 
cascaded 
together 
 
Sort people first 
according to 
pain reporting 
and then classify 
those who report 
pain 
 
Used a radial 
basis function 
network 

Kelly et al. 
(1991) 

Power spectra 
density data of 
each muscle were 
used as inputs 

Tested one and 
two hidden 
layer networks 
 
2 hidden layer 
network had 8 
hidden units 
 
Single layer 
network 

Effort 
direction 
(flexion, 
extension, 
pronation 
and 
supination) 

Training was 
terminated 
when a stable 
minimum 
error occurred 

ANN was able 
to correctly 
identify 
contraction 
types 67 - 93% 
of the time 
 
Improved these 
results by 
having network 

Classifying 
EMG signals to 
allow for control 
of a prosthesis 
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functioned 
better in terms 
of accuracy and 
speed of 
training 

function on 
pairs of data 
(correct 
classification in 
71-95% of 
cases) 

 
USING ANNs TO AVOID OPTIMIZATION RELATED PROBLEMS 

Authors Inputs Hidden Layer Outputs Training Performance Specifics 

Zatsiorsky 
et al. (2002) 

Central neural 
drive 

Some of the 
inputs passed 
straight through 
to the outputs to 
represent those 
muscles with 
connections to 
only one digit 
 
Muscles which 
connect to 
several fingers 
passed through 
the hidden layer 
 
1 hidden layer 

Finger 
forces 

Back 
propagation 
algorithm, 
satisfactory 
results were 
obtained after 
500 iterations 
 
Trained in 
several ways: 
 
1.  No 
validation 
data, all 15 
sets used for 
training 
 
2.  1 of 15 sets 
used as a 
validation set 
 
3.  Selective 
training using 
select data sets 

Finger force 
production was 
estimated with a 
RMS error of 
2.3 N 
 
Error in force 
estimation ↓ 
from 3.18 to 
0.57 N when 
the number of 
fingers involved 
↑ from 1 to 4  

Looked at model 
as a way to 
predict neural 
input to the 
muscles of the 
hand 
 
Investigated the 
ceiling effect, 
where force 
production is less 
with multi-finger 
recruitment 
 
Also looked at 
enslaving effects 
 
Optimization 
approaches did 
not predict co-
contraction 

 

 

 

 

 

 

 

 

 

 

 



 

  46

2.5 In-vitro Spine Testing 

The following brief overview of in-vitro spine testing will highlight some of the relevant 

studies as they have progressed from acute load applications through to more complex, physiologic 

loading paradigms.  This information is provided for the reader who may be interested in how some 

of the methods used in chapters 6 and 7 have been developed through past research. 

 

2.5.1 Acute Loading 

 In order to understand the compressive properties of the spine and its constituent tissues, 

researchers have used axial compression of isolated vertebrae, vertebrae with adjacent intervertebral 

disc material, or spinal units (intervertebral disc and passive structures with the adjacent vertebrae).  

Acute compressive tests have been performed to investigate vertebral body compressive failure as 

caused by a singular load application (Roaf, 1960; Rockoff et al., 1969; Hutton et al., 1979; Hansson 

et al., 1980; Hansson and Roos, 1983; Callaghan and McGill, 1995; Edmondston et al., 1997; 

Thomsen et al., 2002).  In these experiments, including those where the intervertebral disc was 

present (in whole or in part), failure occurred in the vertebrae.  Vertebral failures in experiments that 

have included intervertebral discs or disc material have revealed that the vertebrae are the weakest 

component of a spinal unit exposed to compression.  Rockoff et al. (1969) performed preliminary 

experiments testing the compressive strength of the vertebral body and the intervertebral disc, 

concluding that the peak compressive strength of the intervertebral disc was in excess of the vertebral 

body strength. 

 The vertebral body is capped inferiorly and superiorly by cartilaginous endplates, which 

provide separation from the intervertebral disc (Genaidy et al., 1993).  The vertebral body is 

composed of a thin shell of cortical bone, which surrounds a cylindrical core of cancellous bone 

(Genaidy et al., 1993).  The cancellous (trabecular) bone is formed by relatively long trabeculae 
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connected by shorter transversely oriented bony elements (Fyhrie and Schaffler, 1994).  

Microstructure examination has shown that it is the transversely oriented components that fracture 

first, whereas the primary weight bearing trabeculae appear to accumulate microscopic matrix 

damage prior to buckling (Fyhrie and Schaffler, 1994).  Upon buckling, vertebrae can exhibit multiple 

fracture patterns, including: stellate, step-like, endplate, transverse, edge, and Y-fractures, as well as 

disc intrusion (figure 2.1).  More recent work has added another classification, denoted ‘crack and 

defined by a single crack that ran across the endplate, without the height change that defines a step 

fracture (Parkinson and Callaghan, 2007b). 

 

Figure 2-9:  Fracture classifications as defined by Brinckmann et al. (1988), pg S11). 
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2.6 Cyclic Loading 

2.6.1 Bone 

The behavior of bone when exposed to cyclic loading has been the subject of much study.  

Carter and Caler (1983) obtained a non-linear relationship between strain range and cycles to failure 

in machined sections of cadaveric femoral bone during tensile and fully reversed testing protocols.  

The same research group (Caler and Carter, 1989) later tested machined femoral samples in 

compressive cyclic loading and found the relationship between normalized stress range (stress 

range/elastic modulus) and cycles to failure to be non-linear.  From this data, Caler and Carter (1989) 

were able to conclude that the time to failure in compressive testing can be predicted by the 

accumulation of cycle dependent damage.  The non-linear relationship between stress and cycles to 

failure was also exhibited in the work of Choi and Goldstein (1992), Michel et al. (1993), Bowman et 

al. (1998), and Ziopous and Casinos (1998).  The behavior of trabecular bone in fatigue testing has 

been further quantified by Michel et al. (1993), who investigated changes in secant modulus 

(stiffness) in bovine trabecular bone exposed to fatigue testing.  Interestingly, two distinctly different 

behavior patterns arose.  In high cycle fatigue (lower strain – 1%) the bone samples showed an initial 

increase in modulus, whereas samples exposed to low cycle fatigue (higher strain – 2.1%) showed an 

immediate decrease (Michel et al., 1993).  The decrease in secant modulus has been confirmed in 

more recent studies of machined bone samples (Pattin et al., 1996; Bowman et al., 1998; Moore and 

Gibson, 2003b).  However, more recently the increase in secant modulus (although attributed to end 

effects by the authors) has been reflected by an increase in stiffness of whole vertebrae exposed to 

repetitive cyclic compression (Lu et al., 2004).   

Bone samples have been characterized by an abrupt drop in modulus prior to failure (Michel 

et al., 1993), also demonstrated in the work of Moore and Gibson (2003b).  In addition, microscopic 

examination has revealed two distinct methods of fracture.  Brittle-like fractures resulted in a fracture 
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with no identifiable buckling or buckling-like failure, which involved splitting and buckling of the 

trabeculae (Michel et al., 1993).  The fracture types were found to be related to the direction of 

loading, with brittle fractures occurring in trabeculae transverse to the direction of the load, and 

buckling-like failures occurring predominantly parallel or oblique to the loading axis (Michel et al., 

1993).  Quantification of fracture behavior in bovine cortical bone exposed to cyclic loading has 

revealed that microcracks accumulate rapidly during the first 10,000 cycles, with a reduction in 

accumulation rate occurring until 50,000 cycles were reached (O'Brien et al., 2003).  After 50,000 

cycles, crack accumulation occurred rapidly until failure.  In addition, the propagation of microcracks 

was measured and found to occur in 8% of all cracks (O'Brien et al., 2003).  Stating that 92% of 

cracks do not propagate may be an over estimation, as the machining technique used to section the 

sample can lead to classification of a propagating crack in two staining stages, resulting in the 

incorrect assumption that they are individual cracks (O'Brien et al., 2003).  The use of multiple 

staining agents indicates that crack propagation only occurred from one end of the microcrack 

(O'Brien et al., 2003).  The propagation of the microcracks appears to be limited by the location of 

osteons and cement lines, as there are a low number of cracks within the osteons until 50,000 cycles 

are surpassed, at which time there is a large increase (O'Brien et al., 2003).  The accumulation of 

microfractures has also been shown in trabecular bone, when whole vertebrae were exposed to cyclic 

compression (Lu et al., 2004).  Microfractures were shown to increase in number when the applied 

cyclic load magnitude was increased (Lu et al., 2004).  The appearance of microcracks has been 

shown to correlate with a decrease in stiffness, with a stiffness loss of greater than 15% often 

indicating extensive damage (Burr et al., 1998).  As with many mechanical relationships of bone, the 

relationship between crack density and stiffness is non-linear (Burr et al., 1998).  While 

microfractures and microcracks have been treated as a tissue failure, there is also evidence that they 

may serve a role in protecting the bone from further damage.  Sobelman et al. (2004) found that 
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cadaveric femoral bone samples with higher initial crack densities withstood a greater number of 

loading cycles prior to failure. 

 In addition to damage accumulating from the cyclically applied loads, it appears that creep 

may contribute to damage in fatigue testing.  Cotton et al. (2003) demonstrated that permanent strain 

occurs during cyclic testing, and linked this accumulation to behavior observed in creep tests 

performed by several other researchers.  Bowman et al. (1998) concluded that time to failure was also 

significantly related to stress range with a power law relationship, and that creep loading can lead to 

reductions in residual bone strength.  Additionally, the authors indicated that early in fatigue testing, 

damage due to creep was a greater contributor to overall damage than damage/crack growth 

(Bowman et al., 1998).  As fatigue testing continues, the contribution of creep damage diminishes, 

but remains important throughout (Bowman et al., 1998).  These findings reinforce the statement of 

Carter and Caler (1985), who concluded that testing with a non-zero mean stress will include both 

creep and cycle dependent damage.  The mathematical characterization of the creep-fatigue damage 

interaction performed by Carter and Caler (1985) is in agreement with the data of Bowman et al. 

(1998) which indicates a greater contribution of creep damage at low cycle numbers.  However, 

recent work (Moore et al., 2004) has argued against creep as a contributor to fatigue behavior as the 

predicted contributions of fatigue to the strain behavior of the bone samples was negligible in 

comparison to the actual strain behavior. 

 Although there is much evidence for damage due to fatigue loading, there exists a threshold 

level (endurance limit) below which there will be no observable change in the structural or 

mechanical properties of bone (Moore and Gibson, 2003b; Moore and Gibson, 2003a).  Moore and 

Gibson (2003b), through extrapolation of their results, found a threshold level of 0.5% strain in 

compressive tests of bovine trabecular bone, below which they did not observe any changes in the 

mechanical properties of machined sections.  Some microscopic damage was noted in control 
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specimens and those exposed to preload conditions only, however the damage was external and 

attributed to specimen preparation (Moore and Gibson, 2003a).  Very little observable damage was 

found to occur until a yield strain of 0.8% was reached, and extrapolation of the results confirmed the 

threshold strain of 0.5% found in the mechanical testing (Moore and Gibson, 2003b).  The results of 

Moore and Gibson (2003a; 2003b) support the earlier suggestion of Pattin et al. (1996) of a threshold 

(4000 microstrain) for mechanical property changes in cyclic compressive testing of bone. 

 The role of stress history or previous loading on the fatigue behavior of bone has been studied 

by Zioupos and Casinos (1998).  The authors employed a two step loading protocol, with specimens 

being first cycled at a low or high stress level, followed by cycling at the opposite stress level until 

failure.  It was demonstrated that the fatigue damage accumulation is affected by the initial stress 

level, the difference between applied stress levels, and the amount of damage caused in the first 

loading scenario (Zioupos and Casinos, 1998). 

2.6.2 Spinal Units 

The mechanical behavior of the intervertebral disc and vertebrae exposed to sub-failure cyclic 

loading has been investigated by several researchers.  The intervertebral disc exposed to cyclic 

compression undergoes many changes.  Geometric changes include a decrease in nucleus pulposus 

height and nucleus pulposus anterior-posterior length, an increase in anterior and posterior 

longitudinal ligament bulge, and an overall decrease in intervertebral disc thickness (Yu et al., 2003).  

Cyclic loading has also been shown to result in dehydration, buckling of the annulus fibrosus, and 

bleeding (Yu et al., 2003).  In vivo porcine spinal units exposed to cyclic loading (50 N peak load at 5 

Hz and 100N peak load at 5 Hz, separated by one hour of rest) responded with an initial rapid 

increase in displacement, followed by a stable, much less rapid constant increase (Ekstrom et al., 

1996).  A similar study was able to show that the intervertebral disc will respond to loading at higher 

frequencies with increasing stiffness up to 20 Hz (a further increase in cyclic frequency to 25 Hz lead 
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to a decrease in stiffness, attributed to resonance) (Kaigle et al., 1998).  Additionally, the 

intervertebral discs exposed to several loading periods showed an increase in stiffness after the first 

load set, despite rest intervals between loading periods (Kaigle et al., 1998).  This observation is in 

agreement with the findings of Johannessen et al. (2004) who found that cyclic loading increased the 

stiffness of ovine spinal units in vitro.  An increase in joint stiffness after cyclic loading has also been 

demonstrated in an in vivo murine model once tension develops, which occurs at greater angles due to 

an increase in joint laxity (Ching et al., 2003). 

Few authors (Liu et al., 1983; Hansson et al., 1987; Brinckmann et al., 1988; Holmes and 

Hukins, 1994) have looked at the effects of cyclic axial compressive loads on the fatigue failure of 

spinal units.  Holmes and Hukins (1994) tested the intervertebral disc with adjacent endplates under 

cyclic compressive loading to a peak of 1.9 kN.  It was observed that displacement was small during 

the initial stages of testing, but increased rapidly until the cutoff value of 1.5 mm of endplate 

displacement was reached.  Liu et al. (1983) tested specimens up to 10,000 cycles, but failed to report 

the cycle number where failure had occurred.  The authors found two different responding groups, 

those that showed a stable increase in displacement, and those that responded abruptly.  Radiographic 

examination after cyclic testing revealed that specimens showing an abrupt response had undergone 

subchondral bony failure within the vertebrae (Liu et al., 1983).  Failure in the cancellous bone was 

also responsible for the vertebral failure observed in the fatigue tests of Hansson et al. (1987).  Loads 

ranging from 60 to 100 % of the estimated compressive strength of the spinal units were applied using 

a sine wave function until failure or 1000 cycles, resulting in the failure of 16 out of 17 specimens 

(Hansson et al., 1987).  In a more recent fatigue study, Brinckmann et al. (Brinckmann et al., 1988) 

applied cyclic loads using a triangular function up to a maximum of 5005 cycles.  Failure occurred 

prior to the cycle limit in 52 of the 70 spinal segments subjected to the fatigue tests.  As with earlier 

fatigue studies, specimen failure occurred within the endplate or body of the vertebrae (Brinckmann 
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et al., 1988).  More recently, Parkinson and Callaghan exposed porcine cervical spinal units to 

dynamic repetitive compression at normalized compressive loads of 40, 50, 70 and 90% and have 

shown there to be a highly non-linear relationship between the peak compressive load magnitude and 

the cumulative load tolerated to failure (Parkinson and Callaghan, 2007b).  As the load magnitude 

increases, there is a disproportionate decrease in the ability to withstand cyclic loading, a relationship 

that should be considered when assessing injury risk. 

 

2.6.3 The Role of Posture 

The effects of postural change have progressed through time from the initial studies 

examining the effects static postures have on compressive tolerance to those which have examined 

dynamic loading profiles and their impact on injury development.  In 1982, Adam and Hutton were 

able to demonstrate that flexion exceeding the normal range of motion in combination with 

compression was able to induce prolapsed intervertebral discs.  Work examining the injury 

mechanisms with the spine in less extreme flexed postures found that the porcine cervical spine is 

able to tolerate 23-47% less compression than when in a neutral posture, dependent upon the prior 

loading history or hydration state (Gunning et al., 2001).   

While these studies are examples of how posture can affect injury behaviour in acute 

situations, loading is experienced dynamically so knowledge of how the spine responds during cyclic 

loading is critical.  Gallagher et al. (2005) have shown that if the spine is statically flexed and then 

repetitively compressed, specimens in neutral postures are able to tolerate a far greater number of 

cycles to failure for equivalent loading exposures (8253±2895 cycles to failure for neutral posture, 

3257±4443 cycles to failure for moderate flexion and 263±646 cycles to failure for the greatest 

amount of flexion).  While this work illustrates that the neutral posture may allow for the greatest 

load tolerance, the postures applied were static and did not reflect those that someone would 
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experience in normal activities of daily living.  Adams and Hutton (1985), through the application of 

dynamic compression and passive postural changes were able to show that disc herniation may result 

when the spine is exposed to combined compression and flexion.  In order to isolate the effects of 

flexion, Callaghan and McGill (2001) exposed porcine cervical spinal units to repetitive flexion under 

low level static compressive loads and found that with high cycle numbers disc herniations were 

consistently observed, directly implicating dynamic, repetitive flexion motion as a major contributor 

to disc injury. 
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Chapter 3 
Methodological Considerations 

The following subsections provide some further insight into the methods adopted in the 

following chapters.  It is the goal of this chapter to provide the reader with more detailed insight into 

the steps taken to arrive at some of the key assumptions and procedures underlying the work 

contained within this thesis. 

3.1 Adjustments to the EMG-assisted Model 

3.1.1 Force-velocity approach 

While it is often cited that an eccentric cap be employed (a maximum force-velocity factor of 

1.5 based upon Marras and Granata (1997a)) when muscles are producing force while lengthening, 

comparison of correlations indicated better agreement with no eccentric cap (table 3-1).  As the 

purpose of the model was to best represent the loading the spine is exposed to (as compared to the 

predictions of net joint moments) it was felt that which ever method provided the highest agreement 

was the most reasonable.  Application of this approach allowed force-length factors during eccentric 

contractions to reach values exceeding three. 
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Table 3-1:  Correlations (r2) between predicted muscle moments and reaction moments for sagittal 
lifting trials in which an eccentric maximum was not applied and those in which it was. 

Subject Without Eccentric Maximum With Eccentric Maximum 

Female 1, session 1 0.8328 0.6792 

Female 1, session 2 0.8162 0.5571 

Male 1, session 1 0.7977 0.8643 

Male 1, session 2 0.8222 0.829 

Male 2, session 1 0.7629 0.5889 

Male 2, session 2 0.8052 0.5825 

Female 2, session 1 0.8340 0.7182 

Female 2, session 1 0.8139 0.665 

  

3.1.2 Gain Factor Determination 

In order to complete the force prediction, a gain factor must be obtained.  In equation 2-5, it is 

assumed that the gain factor represents variation in maximum muscle stress.  However, as it is a 

multiplier it can theoretically account for discrepancies across any of the modulators, as it is 

determined to ensure that a sum of all modeled muscle forces balance the external or net joint 

moment.  For this work only the sagittal moment was used in determining the gain value.  In all 

sessions, participants completed a floor to waist lift and lower, which was used to determine the gain 

value for all lifts and lowers completed during that session.  No attempt was made to gain the model 

on a point by point basis, rather to provide the best amplitude fit for the entire gain trial.   

In order to determine if this provided the best estimate of the gain value, several participants were 

chosen at random and multiple trials were analyzed to determine the gain value.  It was found that in 

general the sagittal lift provided the highest correlations between the predicted muscle moments and 

reaction moments obtained through inverse dynamics, so it was decided to apply this approach as a rule 
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across all participants.  Examples of the values obtained with this approach are found in table 3-2. 

Additionally, the stability of the gain value was examined by having several subjects perform 5 repeats 

of the calibration lift.  The results indicated that the gain predictions were stable (Table 3-3). 

 

Table 3-2:  Correlations (r2) and root mean square errors (RMSE) between the predicted muscle 
moments and the external reaction moments for one male and one female participant.  The gain trial 
is in bold lettering. 

Male Female 
Lift Type Gain R2 RMSE Lift Type Gain r2 RMSE 
Center 
waist to 
shoulder, 
light 

53.03 0.791 11.29 Center 
floor to 
shoulder, 
heavy 

10.91 0.421 27.99 

Left floor 
to right 
shoulder, 
heavy 

37.19 0.778 12.83 Left waist 
to 
shoulder, 
light 

39.12 0.586 11.68 

Center 
waist to 
shoulder, 
heavy 

56.26 0.799 12.18 Left waist 
to 
shoulder, 
light 

46.44 0.6347 17.43 

Left floor 
to 
shoulder, 
heavy 

37.39 0.669 19.91 Center 
waist to 
shoulder, 
light 

46.29 0.597 10.76 

Sagittal 
calibration 

50.69 0.7595 11.17 Sagittal 
calibration 

9.256 0.834 17.02 

 

Table 3-3:  Gain value from sagittal calibration trial, for five repeats within a testing session. 

Subject 
1 
Session 
1 

Subject 
1 
Session 
2 

Subject 
2 
Session 
1 

Subject 
2 
Session 
2 

Subject 
3 
Session 
1 

Subject 
3 
Session 
2 

Subject 
4 
Session 
1 

Subject 
4 
Session 
2 

Subject 
5 
Session 
1 

Subject 
5 
Session 
2 

6.63 5.14 5.21 10.35 24.87 9.83 10.6 14.71 109.50 44.80 
6.02 3.51 4.26 7.35 24.86 7.15 10.4 14.34 135.20 37.25 
6.20 4.01 4.20 8.09 19.24 7.27 10.9 10.99 107.50 32.54 
7.00 4.03 5.06 6.71 14.45 7.23 5.13 12.80 112.70 34.92 
7.78 4.10 4.01 6.65 13.05 7.95 9.66 15.40 100.50 31.85 
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3.1.3 Gender Specific Anatomy and Passive moments: 

                In order to enhance the biologic fidelity of the model, it was developed to contain two sets 

of anatomy, one for males and one for females.  The moment arms and vector lines of action, while 

not scalable for each individual, provided the gender specific muscle orientation based upon the MRI 

work of Jorgensen et al. (2001).  In addition, individually scalable muscle cross-sectional areas were 

obtained from the MRI work of Marras et al.  (2001). 

 To further enhance the physiologic relevance of the model, gender specific passive moments 

were also included.  The passive moments were determined based on the instantaneous position of the 

spine about all three axes, and were included as restorative moments.  The equations for these passive 

moments were adapted from Dolan et al. (1994) for male and female trunk flexion, while extension, 

lateral bend and axial twist moments were predicted based upon equations provided in McGill et al. 

(1994).  These equations were applied to the reaction moment as determined with the inverse 

dynamics approach, and therefore impacted the subsequent gain determination.  Examination of the 

effect of passive moment inclusion on the gain values found that accounting for passive moment 

contributions resulted in lower gain values, small changes in correlations and decreases in the root 

mean square error (Table 3-4).  One limitation of this approach was that the equations to predict the 

passive moments when the spine was flexed required that the flexion angle was normalized to a 

maximum range of motion (Dolan et al., 1994).  The experimental setup employed for studies one 

and two did not allow for maximum range of motion trials to be collected, therefore literature values 

for maximum ranges of motion (table 3-5) were applied as obtained from Van Herp et al. (2000) 
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Table 3-4:  Gain value, coefficient of determination (r2) and root mean square error (RMSE) for 
sagittal calibration trials with and without the inclusion of gender specific passive moments.  
Percentage differences relative to the predictions with inclusion of passive moments are also 
included. 

 With Passive Moments Without Passive Moments 
Subject Gain r2 RMSE Gain % 

Difference 
r2 % 

Difference 
RMSE % 

Difference 
1, 
session 1 

33.74 0.7943 18.2 50.26 -48.96 0.7707 2.97 28.6 -57.14 

1, 
session 2 

53.34 0.7903 15.0 93.14 -74.62 0.7941 -0.48 25.3 -68.67 

2, 
session 1 

9.12 0.8320 17.3 12.11 -32.79 0.8320 0 22.6 -30.64 

2, 
session 2 

9.32 0.8113 15.7 12.82 -37.55 0.7848 3.27 22.8 -45.22 

3, 
session 1 

15.96 0.8081 18.0 22.63 -41.79 0.8598 -6.40 20.6 -14.44 

3, 
session 2 

10.30 0.7563 14.0 18.31 -77.77 0.8051 -6.45 20.2 -44.29 

 
 

Table 3-5:  Maximum range of motion values (degrees) taken from Van Herp et al. (2000) for males 
and females aged 20-29. 

Direction Male Female 
Flexion 58.9 56.4 
Extension 37.0 22.5 
Right Lateral Bend 26.3 25.8 
Left Lateral Bend 25.1 26.2 
Right Axial Twist 18.6 14.4 
Left Axial Twist 18.6 12.8 
 

 

3.1.4 Nodal Points: 

 Initial work with the model produced extremely large predictions of posterior muscle force 

when participants were lifting, due to the large amount of spine flexion.  It was determined this was 

due to the straight-line muscle representation vectors developing a line of action much more parallel 

to the shear axis of the joint when the end range of motion was approached.  As there were no 

physical constraints programmed into the model to ensure that the muscles wrapped around the spine 

and did not pass through structures in a non-realistic fashion, the muscle lines of action were 
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assuming non-physiologic directions.  In order to correct for this, muscle co-ordinates were taken 

from Jorgensen et al. (2001) for the latissimus dorsi and erector spinae muscle vectors at the L4 level.  

Subsequent use of the model employed a proportional rotation of the L4 co-ordinates (21.8% of 

flexion, 20.7% of lateral bend, and 15.4% of axial twist) to determine the location of the nodal point 

through which these muscles were constrained to pass.  Once employed, these nodal points resulted in 

more reasonable shear values through the range of postures observed in studies 1 and 2.  This 

indicates that interpretations of shear magnitudes must be made with caution, as they are heavily 

reliant on the predicted model anatomy. 

 

 

3.2 Artificial Neural Network Development 

Overview: 

 While the final neural network approach is described in chapter 4, it was felt that the reader 

of this thesis might benefit from some additional information.  Therefore, the following section will 

briefly highlight some of the steps taken in determining the eventual network configurations as well 

as present the necessary weighting factors and bias values in order to allow testing and use of the 

networks external to this work. 

 

The linear transfer function: 

 As many researchers (Song and Tong, 2005; Luh et al., 1999; Uchiyama et al., 1998; 

Nussbaum et al., 1995; Nussbaum et al., 1997; Dipietro et al., 2003; Koike and Kawato, 1995; Taha 

et al., 1997; Liu et al., 1999; Wang and Buchanan, 2002; Rosen et al., 1999) have reported the use of 

non-linear transfer functions in previous biomechanical neural network applications, this was the first 

approach employed in network development.  However, it was found that the mean square error in 
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training was higher when employing the non-linear transfer functions (tansig function, Neural 

Network ToolboxTM (Matlab 7.4.0, The Mathworks, MA, USA)).  Further examination of the data 

indicated that the predicted outputs of the neural network were ‘capped’ at a maximum value when 

using this approach (figure 3-1) due to the inherent dictation of maximums when using such a non-

linear function.  In order to try and work around the limitation associated with a fixed maximum 

prediction, networks were also developed that had a linear transfer function in the output layer, which 

followed the non-linear transfer function approach employed in the hidden layer.  However, this 

combination approach did not improve the results as the ‘capped’ maximum values were still 

observed. 

 

Figure 3-1:  Time series of extension (+)/flexion(-) moments (Nm) for all participants downsampled 
to 8 Hz.  Notice that the predictions obtained with the neural network employing a non-linear transfer 
function (simulated, grey line) have a maximum limit and do not replicate variations in peak moment 
exposure well relative to the moments determined with an inverse dynamics approach (Original, 
black line). 
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Do the networks perform better with all of the time varying inputs? 

 In order to answer this question, various tests were conducted based upon the neural networks 

designed to predict the spine loads.  First, a network was designed to account for spine angle, spine 

angular velocity and spine angular acceleration.  The training results indicated no improvement over 

the reduced approach.  Second, a network was designed that would employ all channels of EMG 

along with spine angle and anthropometry (18 total inputs).   While the results of including all of the 

data in training indicated an improvement in the mean squared error, the magnitude of the 

improvement was not large enough to warrant the necessary additional data collection.  Additionally, 

as the muscle activations of the erector spinae and internal obliques were also correlated with each 

other (although not strongly) a network was designed to employ only one muscle activation pattern, 

which may represent all muscles.  However, it was found that the training error increased indicating 

that important information can be obtained by employing the other muscle activations.  The mean 

square error differences from all of the approaches were similar enough that one could argue for the 

strength of each approach.  It was decided to employ the study 1 approach (four channels of EMG). 

There is inherent value in these EMG channels that can be obtained (fatigue measures, gaps analysis, 

etc) so if the data can be obtained reasonably it is of value apart from this neural network approach.  

As four channels of EMG can be obtained with a portable data logger, this method was selected.  The 

training data is summarized in table 3-6.  Note that these tests were conducted on data from one 

participant. 
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Table 3-6:  Root mean square error (RMSE) and epoch number determined during training of the 
neural network to data from one female.  The 5 reduced data approaches from study 1 (approach 1), 
an approach involving spine velocities and accelerations (approach 2), an approach using all time 
varying inputs (approach 3) and an approach using only one channel of EMG are included for 
comparison (right erector spinae is approach 4, left erector spinae is approach 5). 

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 

RMSE Epoch RMSE Epoch RMSE Epoch RMSE Epoch RMSE Epoch 

521.2 N 351 469.5 N 851 519.6 N 251 540.5 N 100 550.4 N 226 

 

 

Can the network be too simple? 

 While the network architecture presented in this thesis is quite simple, it could be further 

reduced, perhaps representing the desired relationships with as little as one hidden unit. In order to 

test the possibility, a network with only one hidden unit was developed and trained with the data from 

the same participant as the above tests reported in Table 3-6.  Again, it was found that this 

architecture did not greatly alter the mean square error during training (525.9 vs. 521.2 N from table 

3-6 above).  However, as increasing the number of hidden units is known to improve the generalizing 

ability of neural networks, it was felt that the limited increase in network complexity associated with 

employing five hidden units versus one was justified if a better generalizing network was desired (see 

tables 3-7 and 3-8 for weighting coefficients and biases of the study 1 neural networks).  The cost of 

increasing the number of hidden units in a neural network is in the potential for over fitting of the 

data, resulting in noisy predictions.  In order to avoid over fitting, two approaches can be employed.  

The first is to ensure an adequate number of data points (Demuth et al., 2006).  Given the number of 

data points in this work and the need for down sampling this goal was achieved.  Second, presenting 

the network with validation and test sets of data, along with the data used for training can allow the 

network to stop training when the error between the provided and predicted test data increases, even 
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when the error for training may still be decreasing (Demuth et al., 2006).  This procedure was used in 

all neural network tests described in the thesis in order to ensure over training was not a concern. 

 

Table 3-7:  Weighting coefficients and biases for the network used to relate spine posture and hand 
forces to joint moment. 
Layer 1 Flexion 

Angle 
Lateral 

bend 
angle 

Axial 
twist 
angle 

Right 
vertical 

hand force 

Left vertical 
hand force 

Height Weight Gender 

Unit 1 -1.0663 -0.462 -1.0586 0.2125 1.5621 0.0135 -0.9361 -0.7364 

Unit 2 -0.1094 0.9781 0.1656 -0.5647 0.0567 0.7116 -0.3075 0.5755 

Unit 3 -0.1384 0.6363 0.1341 0.2655 -0.0425 -0.1778 -0.0241 -0.5943 

Unit 4 -0.7678 1.1566 1.0741 0.5476 0.6446 -0.5015 0.0012 -1.3417 

Unit 5 0.6561 -0.2945 0.0597 0.2502 -0.3868 0.2973 -0.7693 -0.2003 

Layer 1 
continued 

Trunk 
width 

Trunk depth Flexion 
acceleration 

Bend 
acceleration 

Twist 
acceleration 

Bias 

Unit 1 0.1346 -0.1711 0.4478 -0.1142 -0.206 -0.3574 

Unit 2 1.1606 -0.3672 -0.3798 -0.2785 0.8624 -0.749 

Unit 3 -0.3664 0.7547 0.8101 -0.8409 0.41 -0.3378 

Unit 4 -0.5019 0.3248 -0.1818 0.1054 -0.5061 0.1939 

Unit 5 -0.1614 -0.3194 1.0025 0.0932 -0.4361 0.8174 

 
Layer 2 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Bias 
Unit 1 -0.5256 -0.6092 0.2029 -0.3823 -0.3283 -0.0742 

Unit 2 0.4029 -0.5952 -0.1212 -0.8972 -0.4842 0.8387 

Unit 3 -0.0039 -0.0217 -0.0317 -0.0194 0.0138 -0.6409 
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Table 3-8:  Weighting coefficients and biases for the network used to relate spine posture and muscle 
activation to joint forces. 
Layer 1 Right 

erector 
spinae 

Left 
erector 
spinae 

Right 
internal 
oblique 

Left 
internal 
oblique 

Spine 
flexion 

Height Weight Gender 

Unit 1 -0.8468 0.2605 -0.0081 -0.5667 -0.953 -0.2975 1.3575 0.2012 

Unit 2 -0.7925 -0.2633 -0.9445 -0.2774 -0.9913 -0.4486 -2.4661 -0.501 

Unit 3 1.9937 0.0524 0.6787 -0.1291 1.6884 1.0564 1.5999 -0.2175 

Unit 4 0.1005 0.6117 -0.5188 -0.4871 1.1128 1.3392 0.2286 0.6235 

Unit 5 1.7853 2.0953 0.9022 -0.3668 2.7477 0.4197 1.6528 -0.3005 

Layer 1 
continued 

Trunk 
width 

Trunk depth Bias 

Unit 1 -5.0441 -2.1127 0.2821 

Unit 2 5.2767 1.7417 -0.0114 

Unit 3 -5.1384 -2.4719 -0.2778 

Unit 4 -0.1217 0.7311 0.805 

Unit 5 -2.9224 -0.9622 0.0273 

 
Layer 2 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Bias 
Unit 1 0.9935 -0.4095 1.6053 0.0175 -0.7899 0.3638 

Unit 2 -2.0111 1.3412 -0.7277 -0.4481 -0.3979 0.1572 

Unit 3 4.8761 -4.5067 4.2983 -0.1485 2.1787 -0.405 

 

 

Was the limitation in the number of hidden units a contributor to the observed differences? 

 Although multiple hidden unit numbers were examined with the data in study 1 (5, 15 and 25) 

the volume of data that was being used in training prohibited any effects of a larger numbers of 

hidden units from being studied.  In order to ensure that any observed differences were not due to the 

number of hidden units employed, a set of only 200 data points (representing the sagittal calibration 

lifts from one male) was isolated and used to train neural networks to predict joint forces based on the 

reduced inputs employed in study 1.  Two networks were created, one employing a hidden layer of 

five hidden units, and one with a hidden layer containing 100 hidden units.  Examination of the 

maximum and average errors as well as the correlation coefficients between the EMG-assisted 

predictions of joint force and those obtained from the neural network indicated that being able to 
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increase the number of hidden units beyond the maximum of 25 examined in study 1 was not likely to 

alter the results (table 3-9). 

 

Table 3-9:  Maximum difference, average difference and correlation coefficient between the EMG-
assisted predictions of spine compression and those obtained using two different neural networks, one 
with a 5 unit hidden layer, another with a 100 unit hidden layer.  

Variable 5 Hidden Units 100 Hidden Units 

Maximum Difference 1853.0 1853.0 

Average Difference -3.09×10-7 4.23×10-4 

R 0.85 0.85 

 

 

3.3 A Comparison of 3DMatch and Lumbar Motion Monitor Predicted Spine 
Angles 

Overview:   

 While the neural network and 3DMatch studies (chapters 4 and 5) are clearly related in that 

they are attempts to better understand tools that may be used in place of more complex models, they 

share common inputs – three-dimensional spine angles.  While the work examining neural networks 

and EMG-assisted modeling obtained spine angles from the Lumbar Motion Monitor (LMM, Biomec 

Inc., Cleveland, USA), spine angles for the rigid link model underlying 3DMatch are based upon 

video observer based posture matching.  In order to quantify the differences in spine angles between 

the two methods 23 trials from the larger data set employed in chapter 5 were randomly selected and 

a comparison was performed between 3DMatch predicted spine angles and those obtained with the 

LMM. 

 The results of paired t-tests indicated that the two methods of angle determination differ in 

maximum extension angle (p = 0.04), average flexion angle (p = 0.005) and peak right (maximum) 

twist (p < 0.0001).  There were no differences in predicted peak flexion, peak left twist or average 
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twist angles (figure 3-2).  While differences were found, it is important to note that the magnitudes of 

angle differences are quite small.  Additionally, statistics were not performed for any of the lateral 

bend measures as lateral bend was not predicted using 3DMatch in any of the analyzed trials.  In 

terms of agreement in time series, flexion angle was shown to have an average correlation coefficient 

of 0.87±0.16 between the two approaches, while axial twist was found to show much lower 

agreement (0.27±0.17).  Again, the agreement in lateral bend was not quantifiable as lateral bend as 

documented by the video observer using 3DMatch did not show any time variation. 

 Based on these results, there is now evidence that 3DMatch angles, particularly in flexion 

agree well with those obtained concurrently using the LMM.  However, care should be taken if 

attempting to replace LMM based inputs for the neural network with those obtained from 3DMatch 

due to the issue of binning (see chapter 5) and the reduced sample rate (5 Hz) in calculating velocities 

and accelerations. 



 

  68

 

Figure 3-2:  (A)  Barplot of average maximum, minimum and mean (±1 standard deviation) spine 
flexion angle as predicted using 3DMatch and the LMM. (B)  Barplot of average maximum (right), 
minimum (left) and mean (±1 standard deviation) lateral bend angle as predicted using 3DMatch and 
the LMM.  (C)  Barplot of average maximum (right), minimum (left) and mean (±1 standard 
deviation) axial twist angles as predicted using 3DMatch and the LMM.  Statistically significant 
comparisons are denoted with a (*).  There were no comparisons performed for lateral bend as the 
3DMatch approach did not predict any deviation from neutral. 
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3.4 Issues in Tissue Testing 

3.4.1 The Use of a Porcine Animal Model 

In order to conduct the tissue research included in this thesis, porcine cervical spinal units 

were employed as an analog to the human lumbar spine.  While this approach has the obvious 

scientific benefit of allowing large samples to be tested, it is subject to some limitations.  The 

following section will outline the work that has led to the choice of the porcine cervical spine as a 

suitable model. 

When performing in vitro tests for the purposes of determining safe limits for the human 

body, it would be ideal to use human tissues.  However, cadaveric materials can be difficult to obtain 

and costly (Yoganandan et al., 1996).  Furthermore, cadaver use would act to increase the variability 

of testing results by providing a non-homogenous population (Allan et al., 1990).  The variability of 

results will be increased with the use of cadaveric material as it has been shown that age, activity, 

degeneration and ethnic background can affect the physical and mechanical properties of the 

intervertebral tissues (Gower and Pedrini, 1969; Andersson and Schultz, 1979; Horst and 

Brinckmann, 1981; Postacchini et al., 1983; Koeller et al., 1986; Porter et al., 1989; Bush et al., 

1956).  Due to differences between people in these factors as well as those of genetics, diet and 

illness, it would not be possible to obtain a homogenous experimental population.  The use of an 

animal model allows control over these factors (Gunning et al., 2001; Yingling et al., 1999), 

decreasing the variability in experimental results by providing a more homogenous population.   

 Many animal models have been used in the study of spinal tissues and structures, including 

canine (Fitzgerald, 1975), ovine (Costi et al., 2002; Kettler et al., 2000; Wilke et al., 1998; Mitton et 

al., 1997), bovine (van Dieen et al., 2001; Race et al., 2000b; Oden et al., 1998), (Race et al., 2000b; 

Oden et al., 1998) and porcine (Gunning et al., 2001; Tsai et al., 1998; Callaghan and McGill, 2001; 

Oxland et al., 1991).  One issue with the listed models is that the animals are quadrupeds, with 
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gravity acting along the spine perpendicular to the direction in a biped.  This may indicate that 

quadruped spines are not loaded in axial compression like the spines of bipeds.  However, researchers 

have shown that the muscular action in a quadruped leads to a loading pattern similar to that in 

humans (Smit, 2002).  This conclusion is based on the direction of trabeculae growth (Lin et al., 

1997).  Based on Wolff’s law (that tissues, in this case trabeculae, are aligned in the direction of force 

application), it was concluded that the quadruped spine is loaded mainly in axial compression (Lin et 

al., 1997; Smit, 2002). 

 In a recent article on comparative morphology, McLain et al. (2002) stated that the choice of 

a proper animal model can aid in avoiding incongruencies and assumptions, which can lead to 

improved research.  For a study on injury mechanics, it is important that the chosen model has a 

similar structure and exhibits the same mechanism of failure.  Anatomic comparisons of porcine and 

human vertebrae have concluded that porcine vertebrae are generally smaller (Yingling et al., 1999; 

McLain et al., 2002).  However, it has been found that the facet and ligamentous structures of porcine 

and human spines are similar, despite the presence of anterior processes on the porcine cervical spine 

(Oxland et al., 1991; McLain et al., 2002; Yingling et al., 1999).  The anterior processes do not 

appear to serve any load-bearing purpose, and therefore would not affect mechanical testing (Oxland 

et al., 1991).  More recently, dissection work has shown that while the porcine cervical intervertebral 

disc is smaller than that of the human lumbar spine and contains fewer annular layers the fiber 

orientation and general structure make it a suitable model in studies examining repetitive flexion and 

extension (Tampier, 2006). 

In 1999, Yingling et al. investigated the response of porcine vertebral motion segments to 

compression, and compared their results to human data available in the literature.  The authors 

concluded that common compression fractures occurring in human vertebrae (stellate and edge 



 

  71

fractures) also occur in the porcine vertebrae (Yingling et al., 1999).  Porcine tissues also showed 

results in shear loading consistent with those in cadaveric material (Yingling et al., 1999). 

Based on the anatomical similarities and consistency of mechanical behaviour it was felt that 

the porcine cervical intervertebral joints (C3/C4 and C5/C6) would provide a reasonable 

representation of human lumbar joint behaviour while allowing for the testing of a large number of 

homogenous specimens.  The homogeneity of the specimens has been previously confirmed between 

independent samples obtained from the supplier used in this work, illustrating that separate samples 

did not differ in average endplate size, bone mineral content or compressive tolerance (Parkinson et 

al., 2005). 

 

3.4.2 Frozen Storage 

Given the current laboratory and specimen supply infrastructures, it was not realistic to test 

numerous specimens concurrently, nor was it possible to test each specimen as soon as materials 

became available.  Therefore, it was necessary to store the tissues so that they could be obtained when 

available and tested when possible.  In order to accomplish this, many authors have slowly frozen the 

tissues (Adams and Hutton, 1983a; Oxland et al., 1991; Asano et al., 1992; Holmes et al., 1993; Lin 

et al., 1997; Tsai et al., 1998; Gunning et al., 2001).  The slow freezing process has the potential to 

injure or alter the tissues.  Slow freezing causes the extracellular matrix to freeze first leading to 

solute exclusion, water then moves out of the cells to achieve equilibrium across the membrane, 

causing cellular dehydration (Knox et al., 1980; Rubinsky et al., 1990).  Upon thawing, the water 

moves back into the cell, leading to large amounts of swelling (Knox et al., 1980).  Therefore, both 

the formation of ice crystals and the water movement have potential to injure the tissues of interest, 

individually or in combination. 
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 The effects of freezing on ligament tensile behavior were examined by Woo et al. (1986).  

Rabbit was chosen as the animal model, and the medial collateral ligament was examined.  The use of 

this model allowed paired specimens to be used in the comparison.  The investigators subjected the 

ligaments to -200 C for 1.5 and 3 months.  No difference was found between fresh and frozen 

specimens in terms of the load, deformation, and energy absorbing capability at failure (Woo et al., 

1986).  Furthermore, no changes were found in the cyclic stress relaxation or the load-deformation 

characteristics (Woo et al., 1986).  The researchers did find that hysteresis in the stored samples was 

significantly lower than in the fresh samples, but this difference was diminished with repeated loading 

and reached non-significant levels (Woo et al., 1986).   

 Frozen storage effects on the material of the intervertebral disc have also been studied.  

Hickey and Hukins (1979) used x-ray diffraction to look for the effects of freezing on the distribution 

of the collagen within the annulus fibrosus of rabbits.  They found that preservation through freezing 

in liquid nitrogen, freezing, and fixation in saline were all acceptable, as none of the methods led to 

disruption of the collagen fibril arrangement (Hickey and Hukins, 1979).  Furthermore, freezing had 

no effect on the collagen molecules within a fibril (Hickey and Hukins, 1979).  The effects of freezing 

on the mechanics of the intervertebral disc have also been examined.  A 1997 study examining the 

effects of freezing on the creep properties of porcine intervertebral discs found that the permeability 

of frozen discs (-200 C) was 82% higher than fresh and the swelling pressure was 25% lower (Bass et 

al., 1997).  However, permeability was determined with a mathematical model and did not isolate a 

biological change in the disc.  The investigators also observed that repeated creep cycles did not 

decrease the magnitude of the differences between fresh and frozen specimens, indicating that the 

damage due to freezing may be permanent (Bass et al., 1997).  In contrast, Dhillon et al. (2001) used 

the same 3 parameter fluid transport model and showed that freezing of cadaveric intervertebral discs 

at -200 C did not affect the creep behavior in terms of endplate permeability, strain dependence, or 
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annular creep.  Due to the non-destructive nature of the tests, the same segment was tested prior to 

and after freezing, removing the variability that may be present in studies examining intervertebral 

discs from different donors.  The authors also tested adjacent levels, which eliminated the effects of 

the prolonged testing protocol required to test the same specimen twice and reached the same 

conclusions (Dhillon et al., 2001).  The effects of frozen storage on trabecular bone have also been 

examined.  Machined sections of tibial bone were obtained and stored at -200 C for 1, 10, or 100 days 

(Linde and Sorensen, 1993).  Thawed tibial specimens were then compressed to 0.45% strain, and 

stress-strain curves were plotted. Freezing did not significantly alter the stiffness, elastic energy, or 

hysteresis of the bone samples (Linde and Sorensen, 1993).  

 Although testing of isolated ligaments, intervertebral discs, and trabecular bone has been 

performed, it is necessary to test freezing effects upon these structures when they are combined into a 

functional unit as they would be in the body.  Gleizes et al. (1998) looked at segments of sheep spine 

containing three vertebrae and found that freezing at -180 C did not significantly affect the range of 

motion or stiffness of the intervertebral disc in flexion-extension or right and left lateral flexion.  The 

researchers did report that the C6/C7/T1 fresh and frozen segments did respond differently; however 

the conditions of validity were not met so statistical analysis was not performed (Gleizes et al., 1998).  

Panjabi et al. (1985) also tested the effects of frozen storage (-18 0 C) on cadaveric thoracic motion 

segments.  Segments were tested fresh, frozen for 21 days, or frozen for 232 days.  No significant 

differences were noted between the three groups for measures of anterior shear, axial rotation, and 

lateral bending (Panjabi et al., 1985).  Smeathers and Joanes (1988) quantified the effects of -18 0 C 

frozen storage on the hysteresis and axial dynamic compressive stiffness of cadaveric lumbar 

intervertebral joints.  It was found that freezing caused less than a 1% change in the hysteresis and 

compressive stiffness during cyclic testing, indicating that no damage had occurred (Smeathers and 

Joanes, 1988).  The consistency of stiffness between fresh and frozen specimens was supported by 
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Callaghan and McGill (1995).  It was also found that the displacement at failure and failure 

mechanism are not altered by frozen storage at -200 C for 1 month (Callaghan and McGill, 1995).  

However, their investigation of the compressive properties of porcine cervical spinal units revealed 

that frozen storage increases the energy absorbed to failure by 33% and the ultimate compressive load 

by 24% (Callaghan and McGill, 1995).  

 It is clear from the available literature that there is controversy regarding the effects of 

freezing on intact intervertebral joints as well as the tissues that comprise them.  However, due to 

limitations in infrastructure and specimen availability it is necessary to continue to freeze spinal 

tissues to allow storage. Since all specimens were treated in the same fashion it was assumed that any 

changes observed would be due to the experimental treatments and not attributable to any artifact due 

to storage. 

 

3.4.3 Hydration 

As the tissues that make up the spine are viscoelastic, their hydration state may affect the 

measure of interest.  The effects of hydration on the properties of vertebral cancellous bone were 

examined by Mitton et al. (1997).  The authors found that the stiffness of the bone (quantified using 

Young’s modulus) was significantly lowered in the hydrated sample (p = 0.0015) (Mitton et al., 

1997).  However, the authors failed to maintain a constant temperature exposure (hydrated samples 

tested at body temperature, air samples tested at room temperature), which may have created or 

contributed to the observed differences.  Similarly, Costi et al. (2002) concluded that spinal units 

tested in saline solution were less stiff than those tested in air.  Similarly to Mitton et al. (1997), the 

temperatures used were not equivalent so changes may not be entirely attributable to hydration state.  

Although temperature may have influenced the results of the above-mentioned studies, their results 

have been supported by the findings of other studies.  In an investigation of the effects of hydration 
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on bovine intervertebral discs, Race et al. (2000a) found that specimens exposed to long term creep, 

that induced dehydration, showed a rapid increase in compressive stiffness over the first 30 minutes 

followed by a slower continuous increase. 

 The effect of hydration on the material of the intervertebral disc (annulus fibrosus) was 

studied as early as 1967 by Hirsch and Galante .  The authors immersed strips of annulus in various 

solutions and measured the tensile properties at multiple times.  It was found that swelling resulted 

with immersion, and subsequently the material became more extensible, and that energy dissipation 

increased while recovery decreased (Hirsch and Galante, 1967). 

 Apart from affecting the stiffness of the vertebral bone and intervertebral discs, hydration 

state can also affect compressive strength as well as the failure mechanism.  When the maximum 

compressive strength of vertebral cancellous bone was adjusted for apparent bone density, bone 

samples tested in saline were less resistant to compression (Mitton et al., 1997).  This decreased 

strength was also found in the intervertebral discs of porcine cervical spines (Gunning et al., 2001).  

The investigators observed that super hydrated specimens (placed unloaded in physiological saline 

solution for 6 hours) displayed 71-78% of the strength of dehydrated specimens (Gunning et al., 

2001).  Furthermore, dehydration was found to alter the compressive failure mechanisms, with 

dehydrated specimens displaying edge fractures significantly (p < 0.001) more often than the other 

three hydration states (Gunning et al., 2001).  However, there is conflicting literature available.  

Callaghan (1994) investigated the effects of testing in a chamber filled with air and testing in a 

physiological saline filled chamber on the compressive strength, slope, maximum deformation, 

energy absorbed to failure, and the nature of injury.  Immersion in saline produced no significant 

effects on any of the mechanical properties measured (Callaghan, 1994).  During testing, the 

specimens were loaded while immersed in the saline, which can act to control swelling (Pflaster et al., 

1997), and therefore may limit changes in the mechanical properties. 
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 Given the evidence in the literature that indicates hydration state can alter the results of 

mechanical testing of viscoelastic tissues, there are varied techniques for controlling hydration.  Some 

authors have developed chambers that expose the test segment to solution or 100% humidity (Adams 

and Hutton, 1983a; Adams and Hutton, 1985; Brinckmann et al., 1988; Asano et al., 1992; Hasegawa 

et al., 1995).  However, to avoid damaging the sensitive measuring equipment (Wilke et al., 1998), 

corrosion effects (Wilke et al., 1998), and greatly complicating the experimental setup and 

procedures, many authors wrap the specimen in saline soaked gauze and/or wrap the specimen in 

plastic (Gordon et al., 1991; Holmes and Hukins, 1994; Adams et al., 2000; Callaghan and McGill, 

2001; Gardner-Morse and Stokes, 2003).  Regardless of the chosen method, equal application across 

all load groups to ensure consistency of experimental conditions will prevent confounding factors of 

varying hydration state on study results.  Given the amount of motion necessary with the apparatus 

used in studies three and four, it was felt that a saline soaked gauze wrap was the most appropriate 

approach. 

 

3.4.4 Synchronization of the Angular and Vertical Motion Systems   

In order to apply motion and load profiles together, two separate systems were employed.  

For vertical loading, an Instron materials testing system (8872, Instron Canada, Toronto, Canada) was 

employed while a Galil motion controller (Galil DMC-18x0) was used to control the application of 

rotations through a rotational motor (Kollmorgen AKM23D-BNCNC-00) in series with a torque 

transducer (SensorData T120-106).  This approach was limited by the fact that although the Instron 

load and position channels were sampled by the Galil program, adjustments to the Instron system 

itself through this control system were not possible.  Similarly, it was not possible to drive the 

rotational motor through the Instron system’s software.  The independence of the systems presented a 

difficulty in ensuring that the desired angular positions and load applications were occurring at the 
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correct time relative to one another.  In order to deal with this, the Galil program was designed to 

ensure that the rotational motor did not induce motion until after a certain load magnitude was 

reached.  As the duration of each load and motion cycle was maintained constant, this would ensure 

synchronization.  In situations where the two systems became poorly timed, the Galil program would 

simply wait until the next cycle to resume motion.  In only four of fifty tests was this approach unable 

to maintain proper timing. 
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Chapter 4 

The use of Artificial Neural Networks to reduce data collection demands in determining spine 

loading:  A laboratory based analysis. 

 

Robert J. Parkinson, and Jack P. Callaghan 

Submitted to Computer Methods in Biomechanics and Biomedical Engineering 

 

4.1 Abstract 

 The data collection demands required to perform three-dimensional inverse dynamics or to 

employ a joint model to estimate spinal loading exposures creates a barrier to the development of 

advanced injury prevention standards in the workplace.  Alternative methods of obtaining exposure 

estimates of equal quality to laboratory estimates without the equivalent data demands are desirable.  

This work examined the potential of feed forward artificial neural networks (ANNs) for this purpose 

and compared predictions to three-dimensional rigid link (RLM) and EMG-assisted (EMG) models.  

Data were collected on 10 males and 10 females who performed a variety of free dynamic lifts on 

each of two testing days.  All modeling approaches were applied and comparisons of predicted joint 

moments (RLM vs. ANN) and joint forces (EMG vs. ANN) were evaluated.  The results indicated 

that while the ANN significantly under predicted peak extension moments (p = 0.0261) and peak joint 

compression (p < 0.0001), predictions of average (p = 0.5744) and cumulative extension moments (p 

= 0.8293) as well as average (p = 0.7710) and cumulative joint compression (p = 0.9557) were not 

different between the model types.  Testing the ANN with novel data not used in the training process 

did not alter these conclusions.  These results indicate that ANNs may be used to obtain laboratory 

quality estimates of average and cumulative exposure variables with greatly reduced input demands, 

however they should not be applied to determine the peak loading demands of a worker’s exposure.   

Keywords:  Spine, cumulative loading, artificial neural network 
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4.2 Introduction 

The reporting of low back pain and the occurrence of injury have been associated with 

mechanical loading measures, such as compression and moment exposures (Norman et al., 1998; 

Kumar, 1990; Marras et al., 1995).  In order to assess these exposures several techniques have been 

employed, varying in complexity.  Early attempts to estimate loading employed simplified two-

dimensional models of the body combined with hand loads to estimate reaction forces in the spine 

(Smith et al., 1982; McGill and Norman, 1985; Leskinen et al., 1983a; Leskinen et al., 1983b; 

Ekholm et al., 1982).  These models were followed by gradual increases in sophistication, starting 

with the movement to simplified three-dimensional models which ignored angular velocities and 

accelerations (Buseck et al., 1988; Bush-Joseph et al., 1988; Herrin et al., 1986).  Eventually, three-

dimensional fully dynamic models were developed (de Looze et al., 1992a; Kingma et al., 1996a).  

While these models were able to quantify loading due to external loads and body segment mass, they 

did not reflect the contribution of muscle forces to spinal loading.  In order to more accurately reflect 

the loading of the spine, joint models need to be partnered with the reaction forces and moments 

calculated.  Initially these models began by employing one muscle force to represent the combined 

contribution of all back musculature, where the product of this single force vector and its moment arm 

must balance the calculated external moment (Bejjani et al., 1984; Leskinen, 1985; Wood and Hayes, 

1974; Morris et al., 1961; Chaffin, 1969).  As research has continued, these models have evolved to 

more accurately replicate spinal anatomy, including multiple muscles which can contribute to 

moments about all movement axes (flexion/extension, lateral bend and axial twist) (McGill and 

Norman, 1986; McGill, 1992b; Granata and Marras, 1995a; Marras and Sommerich, 1991a; van 

Dieen and Kingma, 2005).  While these models may provide the most realistic estimates of spinal 

loads due to their anatomical detail, their high demand for multiple quality inputs (segment positions, 

angular velocities, muscle activation levels, external load measures) has limited their use in analyzing 
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load exposures experienced by workers performing industrial tasks outside of the laboratory 

environment (McGill et al., 1996b; Mirka and Marras, 1993; Granata and Marras, 1995b; Lee et al., 

2003).   

This limitation has led to the implementation of simplified approaches in order to estimate 

risks, which can be categorized as examining peak loading or time-varying (cumulative) loading.  

Tools examining peak loading investigate postural and load demands at a single point in time, and 

involve measures of the task dimensions along with manipulative equations to determine risk (such as 

the NIOSH equation (Waters et al., 1993)) or posture matching, whereby mannequins are 

manipulated into a position mimicking that of the worker and calculations of loading are performed 

based on an underlying rigid link model (such as Three-Dimensional Static Strength Prediction 

ProgramTM (3DSSPP)).  Other work has examined the prediction of joint forces through 

implementation of regression equations based on industrially attainable measurements (location of 

load to be lifted, travel distances, anthropometrics, etc)(Potvin et al., 1992; Potvin, 1997).  While 

these methods can identify instances of excessive loading, they cannot account for individual 

variation in task performance through time, or differences in joint loading due to varied muscle 

recruitment patterns.  Individual muscle recruitment patterns can contain valuable information and 

have shown potential in separating individual’s who experience pain due to low level activation from 

those that do not (Veiersted et al., 1993).  If multiple frames are analyzed for a given task, it is 

possible to use these approaches to obtain time-series data of load exposures.  However this process is 

time-consuming, which may limit its usefulness in large scale industrial studies.  This has led 

researchers to look for ways to obtain time-series estimates of spine loading with less time-intensive 

methods than required of posture matching.  Mientjes et al. (1999), based on the work of Potvin et al. 

(1990), employed compression normalized EMG as a method of tracking spine compression, 

reporting an average amplitude error of 14.9% as obtained from amplitude probability distribution 
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function analysis, with a range of 15.5-46.5%.  In another attempt to track spine loading Fathallah et 

al. (1999) employed regression models capable of predicting continuous estimates of compression, in 

addition to anterior-posterior (AP) and medial lateral (ML) shear.  The simplest regression model was 

able to predict spine compression with a standard error of 1001 N, AP shear with a standard error of 

241 N and ML shear with a standard error of 136 N.  More recently, researchers have employed 

artificial neural networks (ANN) as a method to obtain estimates of time-varying joint moment 

(Kingma et al., 2001) and joint force (Hou et al., 2004a; Hou et al., 2005; Hou et al., 2007).  Kingma 

et al. (2001) were able to demonstrate that an ANN, trained with EMG and trunk motion variables, 

was able to predict L5/S1 moments with a root mean square difference of 31.4 Nm and a correlation 

of 0.744 when compared to predictions obtained from a dynamic three-dimensional rigid link model.  

On average, the ANN under predicted the average moment by 3.1% when compared with the rigid 

link model approach, while under estimating the peak moment by 17.3%. When the ANN moment 

predictions were compared with moments determined with an EMG based approach the ANN over 

predicted the average moment by 17.7%, again under predicting the peak moment (37.2%).  

Examination of the graphed time-series data (figure 1, page 341) indicates that the EMG based 

approach predicts faster rise and fall times in joint moments, along with larger peak estimates and 

shorter exposure durations.    These predicted patterns of moment exposure, if integrated through 

time, may yield similar estimates of cumulative moment.  Similarly, Hou et al. (2007) have shown 

that a recurrent fuzzy neural network can be employed to successfully predict the amplitude and 

timing of both EMG signals and spine loads (ML shear, AP shear and compression) with mean 

absolute errors of 12.5, 52,7 and 147.7 N respectively.  As with the work of Kingma et al. (2001), 

visual examination of the graphical data provided (figures 6 and 7, page 107) indicates that the neural 

network predictions may provide good estimates of cumulative exposure when compared with those 

obtained from an EMG-assisted model, however this was not quantified. 
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 The potential for ANNs to yield strong predictions of joint moments and joint loads in 

combination with their ability to obtain these predictions through time with reduced inputs (compared 

to a three-dimensional rigid link or EMG-assisted joint model) may make them an ideal approach to 

obtain laboratory quality estimates of spine loading in industry.  While previous research has 

indicated that an ANN approach can provide reasonable estimates of load exposure, to the authors’ 

knowledge these findings have not been extended to examine the estimation of cumulative exposures.  

Therefore, this study was conducted to examine the potential utility of ANNs as a data reduction 

approach to provide high quality estimates of cumulative spine loading. 

 

4.3 Methods 

4.3.1 Participant Selection 

 Twenty participants (10 male and 10 female, table 4-1) were recruited from the University 

of Waterloo population for involvement in this study.  Participants attended two testing sessions, 

separated by a minimum of one week.  The study received ethics clearance through the University of 

Waterloo Office of Research Ethics and individuals were required to provide written consent and to 

have had no non-muscular low back pain for the previous 12 months.     

   

Table 4-1:  Average subject age (years), mass (kg) and height (m).  Standard deviations are expressed 
in parentheses. 

 Age(years) Mass(kg) Height(m) 

Male 25.2(3.3) 86.8(7.9) 1.82(0.08) 

Female 22.2(2.2) 69.7(8.0) 1.66(0.07) 
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4.3.2 Task Description 

In order to replicate industrial conditions, participants were asked to perform multiple lifting 

and lowering trials of an instrumented lifting rig, between the floor and shelving located at 0.67 

(approximating waist height) and 1.2m (approximating shoulder height).  Participants completed 

these lifts under two load conditions (level 1 – 7.6 kg and level 2 – 9.7 kg) and through various 

directions and combinations of lifting asymmetry (right, center, and left).  In order to prevent fatigue, 

participants only completed four trials in which they altered direction, these were moving from the 

right floor to left shoulder under light and heavy conditions, and moving from the left floor to right 

shoulder heights under light and heavy conditions.  These lifts were chosen to represent a ‘worst case’ 

ergonomic lifting situation.  These combinations resulted in a total of 132 lifts and 132 lowers (22 

lifting trials×6 lift/lower cycles) representing both symmetric and asymmetric tasks for each 

participant.  During the lifts, participants were free to perform the lift in any manner as long as they 

remained on the force plate; technique and lifting speed were not controlled.  Participants completed 

all of the required lifts during each testing session, with the order of presentation being randomized 

for all sessions.  Due to the large size of the force plate participants were free to move in any way 

they felt comfortable and could complete the lifts at a self-selected pace (figure 4-1). 
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Figure 4-1:  Male participant performing a left floor to right shoulder lift. 

 

4.3.3 Data Collection and Analysis 

In order to estimate the reaction forces and moments at the L5/S1 joint, a bottom-up, three-

dimensional, dynamic rigid link model (RLM) was employed.  Ground reaction forces and moments 

were measured at 2048 Hz with a force plate (900mm × 900mm, Model BP900900, Advanced 

Medical Technology Inc., Watertown, USA) while segment kinematics were determined from 

infrared light emitting diodes (IREDS) that were affixed on cuffs attached to the lower legs, thighs, 

and pelvis.  Diodes were applied directly over the first and fifth metatarsal bones, heel and dorsum of 

the foot, as well as the acromion processes to allow for tracking of the trunk and feet.  Segment based 

co-ordinate systems were determined from an upright standing calibration trial in which the medial 

and lateral malleoli, medial and later epicondyles of the knee (aligned to flexion/extension axis of the 

joint) and greater trochanter were also identified through placement of additional IREDS.  Marker 
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position in three-dimensions was recorded at 32 Hz using an optoelectronic system (Optotrak Certus, 

Northern Digital Inc, Waterloo, Canada).  Marker co-ordinates and voltages recorded from the force 

plate were input into Visual3D motion analysis software (C-Motion, Inc., Ontario, Canada) where 

inverse dynamic calculations were performed in order to determine reaction forces and moments at 

the L5/S1 joint using a bottom-up approach.  Prior to model calculations, all raw marker data was 

low-pass filtered (dual pass) with a Butterworth filter (6 Hz cut-off frequency).  The calculated 

moments and forces were dual pass filtered with a low-pass Butterworth filter (2.5 Hz cut-off) prior to 

being exported from the software.  Additionally, upper body joint (elbow, wrist) angles were 

determined at 32 Hz for all lifts using the locations of markers placed over the 3rd metacarpal, wrist, 

elbow and shoulder joint centers.  Bilateral hand loads were also collected with two force cubes 

mounted in the rig (Model MC3A – 500, Advanced Medical Technology Inc., Watertown, USA) 

during all lifts.  This data, when combined with trunk angle represented the time-varying information 

needed to implement a top-down model capable of predicting joint loads at the L5/S1 joint.  This data 

was obtained for use in ANN development as it was felt that a top-down model would better reflect 

industrial data collections.  Research has shown correlations of 0.990-0.997 between bottom-up and 

top-down two-dimensional models (Kingma et al., 1996b), while analysis of magnitude differences in 

a dynamic three-dimensional model found the largest absolute differences to be 15 Nm (Lariviere and 

Gagnon, 1998).  Therefore, it was felt reasonable to assume that moments predicted from the bottom-

up model would reasonably represent those that would be expected from a full three dimensional top-

down approach. 

 An EMG-assisted model was employed to obtain estimates of bone on bone (joint) 

compression and (joint) shears.  Muscle activation levels were recorded from five bilateral trunk 

muscle sites, including the erector spinae (at the L3 level), latissimus dorsi, internal oblique, external 

oblique and rectus abdominus (Mirka and Marras, 1993) using self-adhesive surface electrodes (Blue 
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Sensor, Medicotest Inc., Ølstykke, Denmark).  EMG signals were band pass filtered (10-1000 Hz) 

and differentially amplified (common mode rejection ratio of 115 dB at 60 Hz, input impedance of 10 

GΩ, Model AMT-8, Bortec Biomedical Ltd., Calgary, Canada).  In order to allow normalization of 

EMG levels, maximum voluntary contractions were performed for the extensor musculature through 

exertions with the participant lying prone with their lower body supported on a table while they 

attempted to maximally extend their back.  Maximum abdominal exertions were obtained through a 

series of contractions in which the participant attempted to maximally flex, bend and twist about their 

low back.  For the extensor and abdominal exertions resistance was applied manually by the 

researcher to limit motion.  Maximal latissimus dorsi activation was achieved through a pull-down 

type contraction, where the participant pulled down on a handle that was rigidly fixed to the ceiling.  

The handle was adjustable to ensure that participants could assume a posture in which their upper arm 

was abducted and externally rotated 900 and their elbow flexed 900.  All EMG data was sampled at 

2048 Hz and synchronized to the marker and force plate data through the collection software (NDI-

Toolbench v3.00.39).  Post-collection, raw EMG data was high-pass filtered at 33 Hz to remove 

contamination from heart rate (Drake and Callaghan, 2006) and the Optotrak system, and notch 

filtered to remove any 60 Hz contamination (Mello et al., 2007a).  This filtered data was then full-

wave rectified and low pass-filtered using a low-pass 2.5 Hz cut-off Butterworth filter (Brereton and 

McGill, 1998).  In addition, spine posture was measured using the Lumbar Motion Monitor (LMM, 

Biomec Inc., Cleveland, USA), sampled at 2048 Hz and dual pass filtered (1.5 Hz low pass 

Butterworth filter (Beach et al., 2006)). 

The EMG-assisted model employed was based upon the work of Granata and Marras (1995a) 

and includes gender specific anatomy (Jorgensen et al., 2001; Marras et al., 2001) and gender specific 

passive moments (McGill et al., 1994; Parkinson et al., 2004; Dolan et al., 1994).  Passive moments 

were determined based upon the instantaneous position of the spine, and their contribution to the 
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bending moment about each axis was accounted for.  The EMG-assisted model also included nodal 

points that the erector spinae and latissimus dorsi muscles pass through at the L4 level in order to 

prevent excessive shear forces from developing when participants near full flexion.  The model was 

scaled for gender, participant height and mass as well as trunk dimensions.  A model gain trial was 

performed in which the participant lifted a mass (7.56 or 14.2 kg) from the floor to waist height, and 

returned it to the ground.  This allowed for the determination of a participant and session specific gain 

value based on the rationale that the predicted muscle moment must be equal in magnitude to the 

reaction moment.  Only the moment about the flexion/extension axis was used for determination of 

the gain value.  The trial (7.56 vs. 14.2 kg) that was selected provided the best agreement between the 

measured and predicted traces (r value) for each participant.  Once determined, this gain value was 

applied to all lifts conducted within the same testing session. 

 

4.3.4 Artificial Neural Network Development 

 Building on the evidence that both moment and force exposures can be related to the 

likelihood of reporting low back pain or experiencing injury, two ANNs were developed, one to 

predict three-dimensional joint moments and one to predict three-dimensional joint forces.  Each set 

of network inputs was based upon the type of model, which would be employed to obtain estimates of 

the values in the laboratory.  Therefore, the network designed to predict low back moments 

incorporated motion variables of the trunk and arms, hand forces, and anthropometric measures as 

these inputs represent those that would be used in a top-down rigid link model to obtain the same 

estimates.  In contrast, the network designed to predict bone on bone forces was based upon trunk 

motion, anthropometrics and EMG, as these inputs reflect those that would be needed to obtain bone 

on bone forces from an EMG-assisted joint model.  In order to allow data reduction, correlations were 

calculated between all time-varying input variables and the desired out come measures.  Those 
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variables that showed the strongest correlations, along with anthropometric measures, were 

subsequently used as inputs for the neural networks.   

 Once the inputs were identified, network architecture was determined.  For this work a three-

layer feed forward network architecture was employed where both the hidden layer and output layer 

employed linear transfer functions.  The number of inputs was determined based upon the correlation 

analysis, while the number of outputs was fixed at three for both models.  The number of hidden units 

was determined from the training error (mean square error between network predicted moments and 

forces and those predicted from the RLM or EMG-assisted approaches, respectively), where the 

minimum number of hidden units necessary to achieve stable error estimates dictated the final 

architecture.  Trials from the first testing session were used to develop a network training set.  In 

order to improve generalization and achieve early stopping in training, the session one (training) data 

was further divided by randomly selecting 60% of the data for training, 20% for validation and 20% 

for testing.  In order to ensure stable determination of network parameters, networks were trained 

three times with newly initialized parameters (weights and biases).  All training was conducted using 

back propagation, employing a momentum technique which can avoid local minima by providing 

information on the error surface (Demuth et al., 2006).  Data from the second experimental day was 

used to test the networks ability to generalize predictions to a ‘partially novel’ data set.  The data is 

only partially novel as the network was trained on the same people with the same anthropometrics; 

however it had not seen any time-varying data from the second day in training.  Additionally, data 

from two males and three females was withheld from the network in order to be able to test the ability 

of the network to predict joint load exposures when presented with completely novel data.  The ANN 

approach employed in this study used the Neural Network ToolboxTM (Matlab 7.4.0, The Mathworks, 

MA, USA) that has also been used in previous ANN studies (Song and Tong, 2005; Rosen et al., 

1999). 
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4.3.5 Statistical Analysis 

Statistical comparison of the outcome measures (peak and average moments about the 

flexion/extension, lateral bend and axial twist axes and cumulative extension moment along with peak 

and average compression, AP shear, ML shear and cumulative compression) was performed using a 

two-way analysis of variance (data source (original or simulated) and gender), with subject nested in 

gender.  Comparisons between data source and gender were conducted for the session 1 training data 

(source data) as well as the session 2 test data (partially novel).  Only the comparisons between data 

source were carried out for the novel data, gender effects were not assessed due to the small number 

of participants (two male and three female).  All tests with p < 0.05 were considered statistically 

significant. 

 

4.4 Results 

4.4.1 Joint Moments 

4.4.1.1 Network Development 

 Removal of data for testing of network generalization, as well as the loss of one female data 

set due to technical issues resulted in complete training data from eight males and six females.  Due to 

the very large data set, incorporating all trials sampled at 32 Hz resulted in memory errors when 

trying to train the networks, so only those trials in which the upper limb markers remained visible 

(192/244 session 1 trials, table 4-2) were employed and data was further down sampled to 8 Hz for 

network training.  The correlation analysis indicated that trunk angles (flexion, twist and lateral bend) 

were most highly correlated with the time-varying joint moments (table 4-3).  Additionally, the 

vertical hand forces were among the most strongly correlated variables with joint moment.  However, 

none of the variables demonstrated what would be classified as strong correlations with any of the 
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three moments (table 4-3).  Based on these results, spine angles and vertical hand forces were selected 

for use within the neural network.  In addition, the spine accelerations about each of the three axes 

were included as it was felt that they may exhibit a strong relationship with the moments (∑moments 

= inertia×angular acceleration or ∑M = Iα) and they would require no additional data collection 

above that required to obtain the spine angles.  This resulted in eight time-varying inputs, four 

anthropometric measures (participant height, mass, trunk depth and trunk width at the level of the 

umbilicus) and one gender factor (1 for males, 0 for females).  A hidden layer was designed to 

contain 5 hidden units, as this architecture was capable of producing moment estimates in training 

similar to those when hidden layers containing 15 and 25 hidden units were employed, with no 

meaningful change in the number of training epochs (table 4-4).  The training data set was too large to 

employ hidden layers with greater than 25 hidden units.  ANN predicted were further down sampled 

to 4 Hz for all subsequent analysis.  A summary of network performance can be found in table 4-5. 
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Table 4-2:  Table indicating the number of trials from each lifting condition chosen from session 1 

for development of the artificial neural network used to predict joint moments. 

  Starting position for load level 1 lifts 
  right 

floor 
right 
waist 

right 
shoulder

center 
floor 

center 
waist 

center 
shoulder

left 
floor 

left 
waist 

left 
shoulder

Right 
floor xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
Right 
waist  2 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx xxxxxx xxxxxx xxxxxx 
Right 
shoulder  5 8 xxxxxx xxxxxx xxxxxx xxxxxx 11 xxxxxx xxxxxx 
Center 
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx Xxxxxx 
Center 
waist  xxxxxx xxxxxx xxxxxx 9 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
Center 
shoulder  xxxxxx xxxxxx xxxxxx 7 5 xxxxxx xxxxxx xxxxxx xxxxxx 
left  
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
Left 
waist  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 4 xxxxxx xxxxxx 
Left 
shoulder  7 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 3 8 xxxxxx 
  Starting position for load level 2 lifts 
  right 

floor 
right 
waist 

right 
shoulder

center 
floor 

center 
waist 

center 
shoulder

left 
floor 

left 
waist 

Left 
shoulder

Right 
floor xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

Right 
waist  2 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

Right 
shoulder  6 7 xxxxxx xxxxxx xxxxxx xxxxxx 8 xxxxxx xxxxxx 

Center 
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

Center 
waist  xxxxxx xxxxxx xxxxxx 7 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

Center 
shoulder  xxxxxx xxxxxx xxxxxx 3 2 xxxxxx xxxxxx xxxxxx xxxxxx 

left  
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

Left 
waist  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 6 xxxxxx xxxxxx 

Left 
shoulder  8 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 6 8 xxxxxx 

Single lifts 
Light calibration 

 
Heavy calibration Right lateral bend Left lateral bend Standing 

 

33 11 7 9 4 
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Table 4-3:  Coefficients of determination (r2) between the time-varying measured variables and the 
predicted joint moments and bone on bone forces.  Underlined variables were chosen for use as inputs 
to the artificial neural network.     

Joint Moments Bone on Bone Forces 
Variable Flexion/ 

Extension 
Lateral 
Bend 

Axial 
Twist 

Variable ML 
Shear 

AP 
Shear 

Compression 

Flexion Angle 0.39 0.06 0.07 RL3 0.05 0.12 0.27 
Left Vertical 
Hand Force 

0.36 0.01 0.01 LL3 0.04 0.12 0.24 

Right Vertical 
Hand Force 

0.35 0.03 0.02 RIO 0.06 0.11 0.26 

Lateral Bend 
Angle 

0.09 0.07 0.19 LIO 0.04 0.11 0.25 

Axial Twist 
Angle 

0.02 0.27 0.17 Flexion 
Angle 

0.06 0.21 0.24 

Right Wrist 
Angle 

0.04 0.01 0.02 Lateral Bend 
Angle 

0.03 0.05 0.06 

Left Wrist 
Angle 

0.03 0.01 0.01 Axial Twist 
Angle 

0.06 0.03 0.01 

Right Elbow 
Angle 

0.03 0.01 0.01 Right Lat 0.10 0.07 0.09 

Left Elbow 
Angle 

0.02 0.01 0.01 Left Lat 0.03 0.05 0.10 

Right AP Hand 
Force 

0.07 0.04 0.02 REO 0.02 0.02 0.05 

Left AP Hand 
Force 

0.09 0.02 0.02 LEO 0.01 0.03 0.04 

Right ML 
Hand Force 

0.02 0.03 0.01 RRA 0.02 0.03 0.06 

Left ML Hand 
Force 

0.02 0.02 0.01 LRA 0.02 0.03 0.06 

ML – medial/lateral, AP – anterior posterior, Right and Left Lat – Right and left Latissimus dorsi 
activation, RL3 and LL3 – right and left erector spinae (L3 level) activation, RRA and LRA – right 
and left rectus abdominus activation, REO and LEO – right and left external oblique activation, RIO 
and LIO – right and left internal oblique activation. 

 

 

Table 4-4:  The average training error (MSE – mean square error) and average number of epochs 
resulting from training attempted with 5, 15 and 25 hidden units in the hidden layer.  Standard 
deviations are in parentheses. 

 Joint Moments Bone on Bone Forces 

Hidden Unit # MSE Epochs MSE Epochs 

5 373.9(2.6) 180.7(20.6) 141828.3(804.4) 105.3(12.7) 

15 367.4(1.1) 274.3(19.7) 144773.7(785.7) 114.7(43.0) 

25 372.4(3.6) 148.7(55.7) 144648.7(1056.0) 144(72.1) 
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Table 4-5:  Average network performance parameters (mean absolute error (MAE) and correlation 
coefficients(r)) for the source data, partially novel data and novel data for the joint moment neural 
network (Moment, based upon the flexion extension moments) and joint force (Force, based upon 
compression force) neural network.  Standard deviations are in parentheses. 

 Source Partially Novel Novel 

 Moment Force Moment Force Moment Force 

MAE 19.2(4.8) 

Nm 

392.4(79.3) 

N 

19.1(5.2) 

Nm 

419.8(140.2) 

N 

21.7(7.3) 

Nm 

645.8(374.5) 

N 

r 0.8(0.06) 0.6(0.06) 0.8(0.06) 0.6(0.06) 0.8(0.1) 0.6(0.06) 

 

 

4.4.1.2 Peak Moments 

 Analysis indicated that the ANN significantly under predicted the following moments: peak 

extension (p = 0.0261), peak right bend (significant gender×data source interaction (p = 0.0151), p = 

0.0028 for males, p = 0.0107 for females), peak left bend (p = 0.0084), peak right twist in males (p = 

0.003, significant gender×data source interaction (p = 0.0115)), and peak left twist (p = 0.0074) for 

the source data, while peak flexion was not significantly different between the original and simulated 

data sets (p = 0.1773, figure 4-2a, the ranges of peak differences are provided in table 4-6).  In terms 

of the partially novel data, significant differences existed between the original and simulated data for 

peak flexion moment (p = 0.0463), peak extension moment (p = 0.0479), peak right bend moment (p 

= 0.0041), peak left bend moment (p = 0.0041), peak right twist moment for males (significant 

gender×data source interaction (p = 0.0181), p = 0.0019) and peak left twist moment (p = 0.0023, 

figure 4-2b).  Additionally, males demonstrated significantly greater peak extension moments than 

females (151.9±46.5 vs. 123.9±15.1 Nm, p = 0.0479).  In contrast, when the novel data was presented 

to the network, peak flexion (p = 0.0702), peak extension (p = 0.1431), and peak left bend (p = 

0.1104) predictions were not different between original and simulated data.  However, significant 

differences were found between peak right bend (p = 0.0349), peak right twist (p= 0.0012) and peak 

left twist moments (p = 0.0099, figure 4-2c). 



 

  94

Table 4-6:  The range of maximum (expressed in both absolute magnitudes and normalized to 
original data average peak values (%)) and average differences in predicted extension moments (Nm) 
and predicted joint compressive forces (N), along with the range of correlation coefficients within 
each data group. 

 Extension Moment Joint Compression 
Data Group Source Partially 

Novel 
Novel Source Partially 

Novel 
Novel 

Average 
Peak Value 

171.1 Nm 155.9 Nm 167.8 Nm 5770.1 N 7015.7 N 8071.1 N 

Maximum 
Peak 
Difference 

287.7- 
37.9 Nm 

213.1- 
38.6 Nm 

220.2- 
46.5 Nm 

6537.5-
1712.2 N 

17158.0-
1714.8 N 

8052.4-
4939.8 N 

% Range 
 

168.1-22.2% 136.7-24.8% 131.2-27.7% 113.3-29.7% 244.6-24.4% 100.2-61.2% 

Average 
Peak 
Difference 

9.4- 
(-10.3) Nm 

5.5- 
(-17.5) Nm 

20.7- 
(-3.5) Nm 

407.2- 
(-361.5) N 

716.2- 
(-490.3) N 

1267.8-
104.1 N 

r 0.88-0.63 0.90-0.65 0.86-0.58 0.72-0.54 0.72-0.52 0.68-0.55 
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Figure 4-2:  (A)  Bar plot of average peak extension moment (+ 1 standard deviation) and average 
peak flexion moment (- 1 standard deviation) averaged within a data source group.  (B)  Bar plot of 
average peak right lateral bend moment (+ 1 standard deviation) and average peak left lateral bend 
moment (- 1 standard deviation) averaged within a data source group.  (C)  Bar plot of average peak 
right axial twist moment (+ 1 standard deviation) and average peak left axial twist moment (- 1 
standard deviation) averaged within a data source group.  In all plots significant differences are 
denoted with capital letters.  Comparisons marked with (*) showed a significant gender×data source 
interaction, although both genders shared the same relative relationship as the grouped data.  Rigid 
link model based predictions are labeled as ‘original’, artificial neural network predictions as 
‘simulated’. 
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4.4.1.3 Average and Cumulative Moments 

There were no significant differences in average extension moment (p = 0.5744, ranges of 

differences in average extension moment are provided in table 4-6), average lateral bend (p = 0.5262) 

or average axial twist moment (p = 0.1707) for the source data.  Gender had a significant effect on the 

average extensions moment (p = 0.0270), with males experiencing greater average extension 

moments (table 4-6).  Similarly, cumulative extension/flexion moment predictions were not different 

between the original and simulated data (p = 0.0602, figure 4-3c).  When the partially novel data was 

presented to the network, there were no significant differences for any of the average moments (p = 

0.2471, 0.7599 and 0.6737 for extension, lateral bend and axial twist, respectively, table 4-7).  

Additionally, there was no significant differences between the original and simulated data for 

cumulative extension/flexion moment (p = 0.7016), although males were shown to have significantly 

higher average cumulative loading than females (18462.1±8492.5 vs. 6958.0±2818.0 Nms, p = 

0.0089).  As with the other data sets, there were no significant differences in average predicted 

extension (p = 0.1338), lateral bend (p = 0.2111) or axial twist moments (p = 0.1666) when the novel 

data was presented to the network (table 4-7).  Cumulative extension/flexion moment predictions 

were not significantly different between the original and simulated data sets (p = 0.0955, figure 4-3c).

  



 

  97

 

Figure 4-3: (A)  Time series of extension (+) and flexion (-) moment as predicted using a rigid link 
model (denoted as ‘original’) and an artificial neural network (denoted as ‘simulated’) obtained from 
one participant.  Note that the data was concatenated for viewing and therefore should not be viewed 
as continuous lifts.  (B)  The cumulative extension moment (Nms) as determined through trapezoidal 
integration of the extension/flexion time series in (A).  (C)  Bar plot of average cumulative extension 
moment (+ 1 standard deviation) for the source, partially novel and novel data sets.  There were no 
significant differences between the rigid link model (original) and artificial neural network 
(simulated) based estimates. 
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Table 4-7:  The average moments about each movement axes for the original (O) and neural network 
simulated (S) data, separated by gender.  Source data was used for training the neural network, while 
partially novel and novel data was used to test generalization.  Standard deviations are in parentheses.  
The only significant difference occurred for gender, for average extension moment in the source data, 
denoted by the letters a and b. 

 Source Partially Novel Novel 

Gender Male(a) Female(b) Male Female All 

 O S O S O S O S O S 

Extension 

(a,b) 

38.3 

(11.2) 

37.0 

(8.1) 

32.4 

(12.0) 

33.1 

(8.8) 

33.1 

(11.6) 

35.7 

(7.2) 

24.3 

(10.9) 

26.3 

(12.4) 

41.5 

(12.4) 

32.6 

(7.6) 

Lateral 

Bend 

-1.0 

(5.9) 

-2.3 

(4.2) 

-3.2 

(5.0) 

-3.3 

(5.2) 

-2.3 

(9.0) 

-2.7 

(5.2) 

-1.2 

(3.1) 

-1.8 

(5.2) 

-0.3 

(5.6) 

-2.3 

(5.2) 

Axial 

Twist 

1.2 

(1.6) 

0.7 

(0.2) 

-0.2 

(1.8) 

0.9 

(0.2) 

1.4 

(3.5) 

0.7 

(0.3) 

-0.6 

(1.9) 

0.8 

(0.3) 

-0.8 

(19.8) 

0.7 

(15.8) 

 

 

 

4.4.2 Joint Forces 

4.4.2.1 Network Development 

 After removing two males and three females to create a novel data set, the data from eight 

males and seven females was used.  As with the joint moment approach, it was necessary to reduce 

the total number of trials used due to data volume.  In order to do this, only trials in which the 

correlation coefficient between the EMG-assisted extension moments and RLM extension moments 

was equal or greater than 0.5 were used (246/560 session 1 trials, table 4-8) and this data was further 

down sampled to 8 Hz for network development.  While this approach may represent the use of the 

best case data by excluding trials in which correlations were poor, it was felt to be justified in this 

work examining the potential utility of artificial neural networks.  The correlation analysis indicated 

that only four channels of EMG explained more than 10% of the variance in bone on bone 

compression, and were subsequently included as inputs for the neural network (table 4-3).  
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Additionally, spine flexion angle appeared among the most strongly correlated variables and was 

included as an input to the network.  As with the joint moment correlations, none of the input 

variables exhibited very strong correlations to the output measures (table 4-3).  The correlation 

analysis resulted in five time-varying inputs, four anthropometric measures (participant height, mass, 

trunk depth and trunk width at the level of the umbilicus) and one gender factor (1 for males, 0 for 

females) for a total of 10 inputs.  Subsequent network training again indicated that implementation of 

5 hidden units resulted in errors lower than those predicted with an increased number of hidden units, 

with a lower number of training cycles required (table 4-4).  After network development and 

simulations, all data was down sampled to 4 Hz for further analysis.  A summary of network 

performance can be found in table 4-5.  
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Table 4-8: Table indicating the number of trials from each lifting condition chosen from session 1 for 

development of the artificial neural network used to predict joint forces. 

  Starting position for load level 1 lifts 
  right 

floor 
right 
waist 

right 
shoulder

center 
floor 

center 
waist 

center 
shoulder

left 
floor 

left 
waist 

left 
shoulder

right 
floor xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
right 
waist  2 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx xxxxxx xxxxxx xxxxxx 
right 
shoulder  6 7 xxxxxx xxxxxx xxxxxx xxxxxx 10 xxxxxx xxxxxx 
center 
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx Xxxxxx 
center 
waist  xxxxxx xxxxxx xxxxxx 12 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
center 
shoulder  xxxxxx xxxxxx xxxxxx 10 11 xxxxxx xxxxxx xxxxxx xxxxxx 
left  
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 
left 
waist  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 4 xxxxxx xxxxxx 
left 
shoulder  7 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 6 8 xxxxxx 
  Starting position for load level 2 lifts 
  right 

floor 
right 
waist 

right 
shoulder

center 
floor 

center 
waist 

center 
shoulder

left 
floor 

left 
waist 

Left 
shoulder

right 
floor xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

right 
waist  3 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

right 
shoulder  7 8 xxxxxx xxxxxx xxxxxx xxxxxx 10 xxxxxx xxxxxx 

center 
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

center 
waist  xxxxxx xxxxxx xxxxxx 9 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

center 
shoulder  xxxxxx xxxxxx xxxxxx 10 10 xxxxxx xxxxxx xxxxxx xxxxxx 

left  
floor  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 

left 
waist  xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 7 xxxxxx xxxxxx 

left 
shoulder  7 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx 6 9 xxxxxx 

Single lifts 
Light calibration 

 
Heavy calibration Right lateral bend Left lateral bend Standing 

 

35 13 8 9 4 
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4.4.2.2 Peak Forces 

 Statistical analysis of the original and simulated source data indicated that the neural network 

approach significantly underestimated the peak bone on bone forces in all directions (p < 0.01), with 

p < 0.0001 for compression (the ranges of differences in peak and average compression are provided 

in table 4-5), p = 0.0003 for anterior shear, p < 0.0001 for posterior shear, p < 0.0001 for right shear 

and p = 0.0106 for left shear (figure 4-4).  The same significant underestimations occurred for the 

partially novel data, with p = 0.0002 for compression, p = 0.0002 for anterior shear, p < 0.0001 for 

posterior shear, p = 0.0001 for right shear and p = < 0.001 for left shear (figure 4-4).  Peak left shear 

force was also significantly (p = 0.0424) smaller in males than in females (-286.9±370.9 vs. -

496.0±508.9 N).  Again, the significant underestimation was also observed when the novel data was 

presented to the network, with p = 0.0017 for compression, p = 0.0121 for anterior shear, p = 0.0142 

for posterior shear, p = 0.0086 for right shear and p = 0.0013 for left shear (figure 4-4).    
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Figure 4-4:  (A)  Bar plot of average peak compression (+ 1 standard deviation) averaged within a 
data source group.  (B)  Bar plot of average peak anterior shear (+ 1 standard deviation) and average 
peak posterior shear (- 1 standard deviation) averaged within a data source group.  (C)  Bar plot of 
average peak right lateral shear (+ 1 standard deviation) and average peak left lateral shear (- 1 
standard deviation) averaged within a data source group.  In all plots marked with different letters 
analysis indicated a significant difference between the rigid link model and artificial neural network 
predictions.   
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4.4.2.3 Average and Cumulative Forces 

 There were no significant differences in the average ML shear (p = 0.4432), AP shear (p = 

0.8532) or compression (p = 0.7710) predicted with the EMG-assisted or neural network based 

approaches for the source data.  However, both average AP shear (p = 0.0031) and average 

compression (p = 0.0363) were significantly affected by gender, with males showing higher force 

magnitudes in both cases (-208.8±76.2 vs. -120.1±76.4 N for AP shear and 1097.2±255.0 vs. 

834.2±206.5 N for compression).  As with the source data, the partially novel data did not display any 

significant differences between the original and simulated ML shear (p = 0.9452), AP shear (p = 

0.4762) or compression (p = 0.3918).  AP shear again exhibited significant gender effects, with males 

exhibiting higher magnitudes of loading than females (-238.2±80.0 vs. -127.7±81.8 N, p = 0.0160).  

When the novel data was examined, it was found that AP shear and compression were not 

significantly different (p = 0.2057 and 0.0676, respectively) while average ML shear was found to be 

significantly greater in the model based data than in the simulated data, and was of the opposite 

direction (p = 0.0158, table 4-9).  Cumulative compression was not found to be significantly affected 

by gender (p = 0.0609, p = 0.1009, and p = 0.0788 for source, partially novel, and novel data 

respectively) or method (p = 0.9557, p = 0.7290 and p = 0.0788 for source, partially novel and novel 

data respectively, figure 4-5). 
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Table 4-9:  The average bone on bone force along each axis for the original (O) and neural network 
simulated (S) data, separated by gender.  Source data was used for training the neural network, while 
partially novel and novel data was used to test generalization.  Standard deviations are in parentheses.    
Values that displayed gender differences are italicized within a data group.  Values that displayed 
differences between the original and simulated data are bold. 

 Source Partially Novel Novel 

Gender Male Female Male Female All 

 O S O S O S O S O S 

ML Shear 

 

38.1 

(71.7) 

34.7 

(49.0) 

10.5 

(64.2) 

-16.6 

(39.8) 

12.5 

(44.7) 

34.2 

(46.7) 

10.5 

(42.2) 

-11.0 

(42.8) 

80.6 

(57.7) 

-6.3 

(24.4) 

AP Shear -244.9 

(62.3) 

-226.7 

(63.9) 

-107.6 

(92.4) 

-132.7 

(61.2) 

-248.8 

(89.2) 

-227.6 

(74.1) 

-128.9 

(102.9) 

-134.4 

(79.0) 

-208.7 

(76.2) 

-149.2 

(68.0) 

Comp 1096.8 

(294.8) 

1097.6 

(229.1) 

851.0 

(197.6) 

817.3 

(219.7) 

1025.2 

(263.4) 

1098.8 

(280.1) 

983.0 

(318.0) 

794.1 

(285.5) 

1374.4 

(447.3) 

850.5 

(300.8) 

ML – medial/lateral, AP – anterior/posterior, Comp - compression. 
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Figure 4-5: (A)  Time series of compression (N) as predicted using a rigid link model (denoted as 
‘original’) and an artificial neural network (denoted as ‘simulated’) obtained from one participant.  
Note that the data was concatenated for viewing and therefore should not be viewed as continuous 
lifts.  (B)  The cumulative compression (Ns) as determined through trapezoidal integration of the 
compression time series in (A).  (C)  Bar plot of average cumulative compression (+ 1 standard 
deviation) for the source, partially novel and novel data sets.  There were no significant differences 
between the rigid link model (original) and artificial neural network (simulated) based estimates. 
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4.5 Discussion 

 The results of this study indicate that simple ANNs can be used in combination with a 

reduced number of inputs to yield estimates of average and cumulative joint moments and joint forces 

equivalent to methods that are used in the laboratory (three-dimensional dynamic rigid link modeling 

and EMG-assisted joint models), that have much greater input demands.  These relationships were 

consistent with increasingly novel inputs to the network, indicating that the network architecture was 

successful at generalization.  This statement must reflect the fact that novel, in the sense employed in 

this work, related to data that had not been included within the network training sets.  It did not reflect 

novel tasks, such as pulling instead of lifting.  Future work should test the robustness of the ANN to 

respond to such novel tasks.  The necessary inputs to drive both of the developed artificial neural 

networks can be obtained in industry with the LMM, four channels of EMG and dynamic hand loads.  

The strength of these results lies in the fact that these measures can be obtained with a portable data 

logger (the LMM is wireless) removing the need to tether a worker to a collection station.  

Additionally, no kinematics beyond spine angles are required, removing the expense and time 

intensive labour of video based analysis.  These findings highlight the potential of this approach to be 

implemented in field investigations of cumulative loading of the low back.  However, it is clear that 

the ANNs employed significantly under predicted the peak moments and forces acting on the spine.  

In situations where the risk of an acute injury is high, application of the ANN approach could lead to 

a severe under prediction of the risk of injury.  Additionally, it should be noted that although the 

averaged data indicated that the ANN predicted equivalent magnitudes of average and cumulative 

loads its implementation at the participant level resulted in both over and under estimates of exposure 

relative to the more complex models.  Therefore, although this method appears promising for large 

scale studies where average exposures are of interest, it does not appear a reasonable approach to 
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obtain individualized estimates of exposure based upon the range of predicted errors observed for 

both peak moments and forces. 

 Comparison of the moment and force estimations of this work with those from similar studies 

indicates that the under prediction of peak moments and strong prediction of average moments may 

be an inherent property of the networks employed.  Kingma et al. (2001) found that an ANN trained 

to predict L5/S1 moments under predicted peak moments by 17.3% when compared to a RLM and 

under predicted an EMG based moment prediction by 37.2%.  When the average moments were 

compared, the ANN under predicted the RLM model by 3.1% and over predicted the EMG based 

approach by 17.7%.  Additionally, examination of the graphical data (pg. 107, figures 6 and 7) 

provided by Hou et al. (2007) indicates the dynamic recurrent fuzzy neural network also under 

predicted peak spine loads although peak differences were not quantified.  As the neural networks 

employed here were trained to minimize the error between the target signal (RLM moments or EMG-

assisted forces in this work) they did not react to short duration peaks and valleys causing errors in 

peak estimates, while they strongly reflected the general trends in the training data leading to strong 

agreement in average and cumulative predictions (figure 4-6).  However, other research examining 

constrained movements, such as repetitive flexion/extension of the elbow at a controlled velocity has 

found much lower errors between measured and predicted moments (Song and Tong, 2005), while 

also employing the Matlab Neural Network™ toolbox to train the network based on minimization of 

the squared error, similar to the approach employed here.  While the inputs to obtain joint moments 

were different (EMG and joint angle in the work of Song and Tong (2005) vs. spine kinematics in this 

study) it may be that the ability of participants in this study to complete the lifting tasks at any rate 

and using any technique that they chose induced a larger amount of variability into the relationship 

between the input variables and moment predictions that cannot be as strongly accounted for in the 
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network approach employed.  Evidence for this variation is found in the low correlation values 

between all time-varying inputs and the RLM based estimates of joint moment.   

 

 

 

 

Figure 4-6:  Small window of time series compression from one participant, illustrating how 
the artificial neural network (ANN) predicted compression (grey line) follows the trend of 
the EMG-assisted predicted compression (black line).  Note that although the ANN 
prediction follows the general shape of the EMG-assisted compression, it does not replicate 
the peaks. 
 

 

Interestingly, the insensitivity of network performance while increasing the number of hidden 

units above 5 is in direct agreement with the work of Nussbaum et al. (Nussbaum et al., 1995) who 

found that in using a feed forward neural network to predict muscle activations from input joint 

moments there were no differences in the number of required training cycles while the criterion error 

was reached in all configurations.  Luh et al. (Luh et al., 1999), in estimating elbow joint torque from 

surface EMG and joint kinematics, also found no improvement in network performance with an 
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increase in the number of hidden units above 5.  The use of simple network architecture is further 

supported by the conclusions of Sietsma et al. (Sietsma and Dow, 1991) who found in simulated 

classification problems that smaller networks (with repetitive and useless hidden units removed 

through pruning) are better able to generalize to new data . 

 As with all research, this study was subject to several limitations.  First, although participants 

were free to move while completing the lifts, they were limited to lifting only two relatively light 

loads.  While restriction of the loads was intentional to prevent fatigue related changes in the EMG 

amplitude (Dolan et al., 1995; Potvin and Norman, 1993), it is possible that the inclusion of larger 

loads may have improved the predictions of the network.  However the effects of increasing the load 

lifted on other predictive models have been dichotomous, where increases in load during symmetric 

lifting have improved estimates of spinal compression, while decreasing accuracy of compression 

estimates in asymmetrical lifting (Fathallah et al., 1999).   

Additionally, there are a great number of network architectures that exist.  While it was a goal 

of this work to develop simple networks that can be implemented with out high level programming 

experience, this may not have lead to an optimal network configuration.  One characteristic of 

networks that was not used in this work was that of recurrence, or having data from an earlier time 

step fed back into the network to provide information on a previous state (as in (Hou et al., 2004a; 

Hou et al., 2005)).  As RLMs employ determinations of angular accelerations and the EMG-force 

equation underlying the EMG-assisted model employs velocity correction factors, there is clearly a 

time-dependence within the models.  However, the ability to assimilate data from many participants 

along with the randomization of that data into training, validation and test sets precluded the use of 

recurrent inputs as it would have been necessary to isolate participant data and maintain the order of 

the time-series.  While this study focused on developing models based upon group data, recurrence in 

individual models may improve the prediction of peak loads and moments.  Another limitation was in 
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the size of the novel data set, comprised of only two males and three females, one testing session 

each.  Although each testing session was comprised of a large number of lifts and lowers the low 

participant number prevents comparisons of network simulations between males and females.  Future 

research should expand upon this novel data set by increasing the number of males and females, and 

also look to include experienced workers.  As research indicates that increased lifting experience 

leads to lower spinal compression loads at lower moment exposure levels (Marras et al., 2006) and 

that experienced lifters have been shown to take less time to complete a lifting task (Smith et al., 

1982) it would be an important assessment of the network to see if altered lifting strategies based 

upon experience would be reflected in average and cumulative loading predictions.   

Despite the limitations, this study represents the first attempt at extending the use of artificial 

neural networks into determinations of cumulative exposures.  The examination of industrially 

relevant lifting tasks indicates promise for this tool as a means to obtain high quality estimates of 

time-varying spine loads without the need for extensive data collections.  For example, 

implementation of the artificial neural network described to estimate joint forces requires only the 

collection of 4 channels of EMG and spine flexion obtained with the lumbar motion monitor in 

contrast to the full laboratory method which required the collection of ten channels of EMG, all three 

spine angles as obtained with the lumbar motion monitor along with the force plate data and full 

marker set-up as required to perform inverse dynamics to obtain joint moments and allow gain setting 

for implementation of the EMG-assisted model.  Additionally, data processing time is drastically 

reduced from several minutes for a 60 second trial to seconds, which is an additional benefit if large 

scale implementation is desired.  These results are based on the strongest obtained data (highest 

correlations between the rigid link model and EMG-assisted predictions of extension moment) and 

therefore represent a best case scenario, and may have been altered with the inclusion of the lower 

quality trials.  
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While the neural networks do not appear to predict peak loads well, future work should be 

conducted to determine the usability of this approach in documenting cumulative exposures, 

exploiting its potential to predict loading through extended periods of time.  Additionally, future work 

may be targeted at developing alternative networks that are better able to predict peak spine loads 

which may in turn further improve the ability of the neural networks to predict cumulative load on an 

individual level as the results of this study are based upon average network performance. 
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Chapter 5 

A comparison of low back kinetic estimates obtained through posture matching, rigid link 

modeling and an EMG-assisted model. 

 

Robert J. Parkinson, Marty Bezaire and Jack P. Callaghan 

Submitted to Applied Ergonomics 

5.1 Abstract 

 

 The purpose of this study was to examine any errors introduced by a video based posture 

matching approach (3DMatch) relative to a dynamic, three-dimensional rigid link model (Visual3D) 

as well as an EMG-assisted model on low back kinetics.  Eighty-eight lifting trials composed of 

various combinations of starting and finishing heights (floor, 0.67, 1.2 m), asymmetry (left, right and 

center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, 

segment orientations and muscle activity levels were simultaneously documented.  Calculations were 

performed to obtain three-dimensional joint moments (L5/S1) as well as reaction and joint forces.  

The results indicated that posture matching over predicted the peak, average and cumulative 

extension moment (p < 0.0001 for all variables); however correction factors were developed that 

reduced these differences.  There was no difference between the peak compression estimates obtained 

with posture matching or the EMG-assisted approaches (p = 0.7987), although the posture matching 

approach over predicted the cumulative (p < 0.0001) compressive loading due to a large compressive 

bias in upright standing.  Use of an individualized bias correction eliminated these differences.  These 

results demonstrate that posture matching approaches provide a method to analyze three-dimensional 

industrial lifting exposures that will predict kinetic values similar to those of a rigid link model and 

EMG-assisted approach, provided necessary corrections are applied.  

Keywords:  Spine loading, posture matching, 3DMatch 
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5.2 Introduction 

The collection of motion and electromyographic (EMG) data related to spine loading in 

industry is difficult as it is restricted by the cost of the collection equipment, environmental 

constraints, access to employees, tethering of equipment to personnel and the cost of manufacturing 

interruptions to the company.  This has lead researchers to look for less invasive methods to obtain 

estimates of spinal loading.  One approach is to combine video based estimates of posture with rigid 

link modeling.  This is advantageous as workers and tasks can be captured on video in the workplace, 

providing valuable information regarding task demands and worker performance that would not be 

obtained in a laboratory mock up.  Additionally, video can be preserved indefinitely and analyzed at 

the researcher’s or ergonomists’s convenience.  These advantages have been reflected in the use of 

video in both industrial and laboratory settings (Callaghan et al., 2001; Neumann et al., 2001; 

Daynard et al., 2001; Jager et al., 2000; Norman et al., 1998).  A recent survey of the existing 

literature has found video based posture analysis to be the most commonly employed tool in 

assessments of cumulative loading (Waters et al., 2006).  While video analysis provides a non-

invasive and cost effective approach to assess workplace loading, it is not sensitive to individual 

levels of muscle activation which have been shown to vary based on gender (Marras et al., 2002) and 

simultaneous mental processing (Davis et al., 2002), despite constant external task demands.  

 One tool developed to analyze video to estimate low back loading is 3DMatch (University 

of Waterloo, Waterloo, Canada).  The software allows for captured video to be opened into an 

interactive user interface, which guides the user through the selection of postures that correspond to 

those of the worker captured on the video.  These postures, along with subject anthropometrics and 

hand forces are combined with a ‘hands-down’ quasi-dynamic three-dimensional rigid link model 

(RLM) to predict the external loads and moments acting on the spine (Hogan, 2005; Callaghan et al., 

2003).  Predicted moments are used in conjunction with a polynomial equation (McGill et al., 1996b) 
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to adjust for the role of the torso musculature in spinal compression (Callaghan et al., 2003).  Muscle 

based anterior/posterior (AP) shear is based on the implementation of a single muscle equivalent, 

employing a 6 cm moment arm (McGill and Norman, 1987) and 5.30 extensor line of pull.  Previous 

assessments of 3DMatch performance found that when the calculated moments were compared to 

those from a two-dimensional RLM, 3DMatch underestimated the extension moment in a sagittal 

symmetric lifting task in both frame-by-frame and cumulative instances, although errors were below 

15% (Callaghan et al., 2003).  However, 3DMatch predictions of low back kinetics have not been 

compared to a dynamic three-dimensional RLM, nor have the model based estimates of compression 

and shear been compared to those obtained from an EMG-assisted spine model.  Recently, Sutherland 

et al. (2008) compared the spine kinetics derived from 3DMatch based postures to spine kinetics 

derived from postures obtained with an eight sensor electromagnetic tracking system.  The study 

employed the same underlying quasi-dynamic three-dimensional model and found strong agreement 

in cumulative extension moment and compression, although a dynamic comparison was not 

performed (Sutherland et al., 2008).  As early 3DMatch research has indicated potential for this 

software to become a valuable tool in ergonomic assessments of low back kinetic exposures, this 

study was conducted to compare 3DMatch based moment predictions to those obtained from a 

dynamic, three-dimensional RLM.  Additionally, it is critical to quantify any differences that may 

exist between the bone on bone forces obtained with the polynomial and single muscle equivalent 

approaches employed in 3DMatch and force estimates obtained with an EMG-assisted model that is 

sensitive to an individual’s task performance.    
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5.3 Methods 

5.3.1 Participant Selection 

 Data for this study was obtained from a larger data set that included full analysis of 10 male 

and 10 female participants, recruited from the University population.  Although 20 participants were 

involved in data collection, given the large number of trials performed in each session data analysis 

was limited to 6 males and 6 females (Table 5-1). These participants were chosen in order to ensure 

one representative trial for each gender, lifting condition and session.  No attempt was made to 

balance the design between the 12 participants.  The trials to be analyzed were chosen based on ease 

of identification of the start and end frames (determined by light trigger in the video) as well as the 

clarity of the video data.  As a result, 88 trials were analyzed as in four lifting conditions only three 

trials were available due to video quality.  Each trial consisted of six continuous lifts and lowers.  The 

study received ethics clearance through the University Office of Research Ethics and participants 

were required to provide written consent to participate and have had no low back pain for the 

previous 12 months.     

Table 5-1:  Average subject height (m), mass (kg) and age (years).  Standard deviations are expressed 
in parentheses. 

Gender Height Mass Age 

Male 181.8(6.7) 88.3(8.5) 26.2(2.9) 

Female 168.0(7.1) 72.5(7.6) 22.3(2.6) 

 

 

5.3.2 Task Description 

In order to replicate industrial conditions participants were asked to perform multiple lifting 

and lowering trials using an instrumented rig between the floor and shelving located at approximately 

waist (0.67m) and shoulder heights (1.2m).  Participants completed these lifts under two load 
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conditions (level 1 – 7.6 kg and level 2 – 9.7 kg) and through each combination of directions (right, 

center, and left).  In order to prevent fatigue, participants only completed four trials in which they 

altered direction, these were moving from the right floor to left shoulder heights under light and 

heavy conditions, and moving from the left floor to right shoulder heights under light and heavy 

conditions.  It was felt that these lifts would represent a worst case scenario in terms of postural 

demands.  During the lifts, participants were free to perform the lift in any manner as long as they 

remained on the force plate; technique and lifting speed were not controlled. 

 

5.3.3 Data Collection and Analysis 

5.3.3.1  Rigid Link and EMG-assisted models 

In order to estimate the forces and moments acting on the spine, a bottom-up, three-

dimensional, dynamic RLM was employed.  Ground reaction forces and moments were measured at 

2048 Hz with a force plate (900mm × 900mm, Model BP900900, Advanced Medical Technology 

Inc., Watertown, MA, USA) while segment kinematics were determined from infrared light emitting 

diodes that were affixed on cuffs attached to the lower legs, thighs, and pelvis.  Diodes were applied 

directly over the first and fifth metatarsal bones, heel and dorsum of the foot, as well as the acromion 

processes to allow for tracking of the trunk and feet.  Segment based co-ordinate systems were 

determined from an upright standing calibration trial in which the medial and lateral malleoli, medial 

and later epicondyles of the knee (aligned to flexion/extension axis of the joint) and greater trochanter 

were also identified through placement of diodes.  Marker position in three-dimensions was recorded 

at 32 Hz using an optoelectronic system (Optotrak Certus, Northern Digital Inc, Waterloo, Canada).  

Marker co-ordinates and voltages recorded from the force plate were input into Visual3D motion 

analysis software (C-Motion, Inc., Kingston, Canada) where a geometric model of each participant 

was constructed and inverse dynamic calculations were performed in order to determine forces and 
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moments at the L5/S1 joint.  Visual3D predicted moments and forces were dual pass filtered with a 

low-pass Butterworth filter (2.5 Hz cut-off). 

 In addition to the Visual3D approach, an EMG-assisted model was also employed to obtain 

estimates of bone on bone (joint) compression and bone on bone (joint) shear.  Muscle activation 

levels were recorded from five bilateral trunk muscle sites, including the erector spinae, latissimus 

dorsi, internal oblique, external oblique and rectus abdominus (Mirka and Marras, 1993) using self-

adhesive surface electrodes (Blue Sensor, Medicotest Inc., Ølstykke, Denmark).  EMG signals were 

band pass filtered (10-1000 Hz) and differentially amplified (common mode rejection ratio of 115 dB 

at 60 Hz, input impedance of 10 GΩ, Model AMT-8, Bortec Biomedical Ltd., Calgary, Canada).  In 

order to allow normalization of EMG levels, maximum voluntary contractions (MVCs) were 

performed for the extensor musculature through exertions with the participant lying prone with their 

lower body supported on a table and the upper body hanging.  MVCs for the abdominal musculature 

were obtained through a series of contractions in which the participant attempted to maximally flex, 

bend and twist about their low back.  For the extensor and abdominal exertions resistance was applied 

manually by the researcher to limit motion.  Latissimus dorsi MVCs were performed using a pull-

down type contraction where the participant pulled down on a handle that was rigidly fixed to the 

ceiling.  The handle was adjustable to ensure that participants could assume a posture in which their 

upper arm was abducted and externally rotated 900 and their elbow flexed 900.  All EMG signals were 

sampled at 2048 Hz and synchronized to the marker and force plate data.  Post-collection, raw EMG 

data was high-pass filtered at 33 Hz to remove contamination from heart rate (Drake and Callaghan, 

2006) and the Optotrak system, and notch filtered to remove any 60 Hz contamination (Mello et al., 

2007b).  This filtered data was then full-wave rectified and low pass-filtered using a low-pass 2.5 Hz 

cut-off Butterworth filter (Brereton and McGill, 1998).  In addition, spine posture was measured 
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using the Lumbar Motion Monitor (LMM, Biomec Inc., Cleveland, USA), sampled at 32 Hz and dual 

pass filtered using a 1.5 Hz low pass Butterworth filter (Beach et al., 2006). 

The model employed was based upon the work of Granata and Marras (1995a) and includes 

gender specific anatomy (Jorgensen et al., 2001; Marras et al., 2001) and gender specific passive 

moments (McGill et al., 1994; Parkinson et al., 2004; Dolan et al., 1994).  The EMG-assisted model 

included nodal points that the erector spinae and latissimus dorsi muscles pass through at the L4 level 

in order to prevent excessive shear forces from developing when participants near full flexion.  The 

model was scaled based upon gender, participant height and mass as well as trunk dimensions.  A 

model gain trial was performed in which the participant lifted a mass (7.56 or 14.2 kg) from the floor 

to waist height, and returned it to the ground.  This allowed for the determination of a participant and 

session specific gain value based on the rationale that the predicted muscle moment must be equal in 

magnitude to the reaction moment.  Only the moment about the flexion/extension axis was used for 

determination of the gain value.  The trial (7.56 vs. 14.2 kg) was selected based upon the magnitude 

of agreement between the measured and predicted traces (r value) for the participant.   

 

5.3.3.2 Video Data and 3DMatch 

Video data was collected using a digital video camera (Panasonic Digital Palmcorder, Model 

PVDV202-K, Matsushita Industrial Electric Company Ltd., Saijo Ehim, Japan) oriented at 900 from 

the sagittal plane with the participant facing forward.  Video data was synchronized to the Optotrak 

collection system using a light source visible in the camera view, which was triggered by a voltage 

signal generated on initiation of the Optotrak system.  All video data was converted to AVI format 

and reduced to a 5 Hz sample rate from the original 30 Hz (Callaghan et al., 2001).  All video files 

were imported into 3DMatch and posture matched by a single user.  Posture match bins included six 

for trunk flexion/extension, three options for lateral bend, three options for trunk rotation, four bins 
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for neck flexion/extension and two for neck lateral bend.  There were six bins for shoulder flexion, 

four for shoulder abduction and three bins for elbow flexion (Sutherland et al., 2008).  Resulting 

posture files were combined with dynamic hand loads obtained from force cubes mounted in series 

with the handles of the load rig (Model MC3A – 500, Advanced Medical Technology Inc., 

Watertown, MA, USA).  The dynamic hand forces were collected at 32 Hz, low pass-filtered using a 

dual pass Butterworth filter with a cut-off frequency of 1.5 Hz, interpolated and resampled to 5 Hz to 

match the frequency of the 3DMatch posture data. 

The combined posture and force data were used to drive a three-dimensional quasi-static 

RLM within the 3DMatch software.  The RLM produces joint moments which are translated into 

bone on bone compression using a polynomial equation (McGill et al., 1996b) that employs the 

moments about all three axes, while AP bone on bone shear is predicted using a single equivalent 

muscle approach employing a 6 cm moment arm (McGill and Norman, 1987) and 5.30 angle of pull. 

 

5.4 Statistical Analysis 

 A two-way analysis of variance (ANOVA) was used to test for significant method (Visual3D, 

3DMatch, EMG-assisted) or gender based differences in peak and cumulative moments as well as the 

peak and cumulative forces (compression and AP shear).  In cases where a significant gender×method 

interaction was observed the data was assessed using a one-way ANOVA within gender.  Where 

indicated by significant main effects a Tukey’s post hoc test was employed to isolate between group 

differences.  All tests with p<0.05 were considered significantly different. 

5.5 Corrective Factors 

 In situations where differences between extension moments existed, corrective factors were 

determined based upon the average error between the variable of interest as determined by 3DMatch 
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and that predicted with Visual3D (Visual3D was assumed to be the ‘gold standard’ rigid link 

modeling approach, equation 5-1).  The differences in predicted values were calculated for each trial 

and then averaged prior to determination of the corrective factors.  Once the corrective factor was 

determined it was multiplied by the 3DMatch predicted value for each trial, and the corrected values 

were subsequently used in further analysis.  The Visual3D approach was chosen to act as the main 

comparator as the methodology is well established, whereas various EMG-assisted models are in use 

(McGill and Norman, 1986; van Dieen, 1997; Marras and Granata, 1997b) and subsequently a greater 

variance in predicted moments and loads would be expected.  In cases where there were differences in 

predicted bone on bone compression, a correction was applied to account for the large bias present in 

the polynomial approach (McGill et al., 1996b).  This correction involved adjusting the polynomial 

based prediction of compression in upright standing (1068 N in the presence of 0 moments used in 

3DMatch) to equal the compression in upright standing predicted by the EMG-assisted method.  

Focus was given to flexion/extension moment and bone on bone compression as they have been 

associated with the risk of low back pain and injury (Marras et al., 1995; Norman et al., 1998; Seidler 

et al., 2001; Seidler et al., 2003), although this principle of corrective factors could have been applied 

to all variables. 
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5.6 Results 

5.6.1 Peak Moments 

 Statistical analysis indicated that there was a significant effect of the method employed in 

determining peak extension moment (p<0.0001).  It was found that 3DMatch predicted significantly 

greater peak extension moments than either the EMG-assisted or Visual3D approaches, which were 

also significantly different (figure 5-1a).  Application of the correction factor (0.62 based upon 

equation 5-1) eliminated the significant difference between the Visual3D and 3DMatch methods and 

resulted in a change from a 53.2% average overestimate to a 4.8% average underestimate.  There 

were no significant interactions (p = 0.4072) or gender effects (p = 0.1984).  3DMatch predicted 

significantly lower positive (right) lateral bend moments than either the EMG-assisted or Visual3D 

methods (figure 5-1b, p < 0.0001).  Neither the gender effects (p = 0.2374) nor the interaction were 

statistically significant (p = 0.6160).  However, a significant interaction was found for negative (left) 

lateral bend (p < 0.0001).  Examination of within gender effects indicated that for males there was a 

significant method effect (P < 0.0001), with 3DMatch predicting lower bending moments than either 

Visual3D or EMG-assisted approaches, which were significantly different from each other.  For the 

females, 3DMatch predicted lower moments than the EMG assisted approach, but did not differ from 

the Visual3D method (figure 5-1c).  Peak right and left twisting moments were found to be 

significantly different depending upon the method of determination (p < 0.0001), with no interaction 

(p = 0.1741 (right) and p = 0.6613 (left)) or gender effects (p = 0.3755 (right) and p = 0.2730 (left)).  

For left and right twist, the EMG-assisted and Visual3D approaches predicted moments significantly 

larger than 3DMatch, but were not significantly different from each other. 
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Figure 5-1:  (A)  Bar plot of average (+ 1 standard deviation) peak extension moment (Nm).  (B)  Bar 
plot of average (+ 1 standard deviation) peak lateral bend moment (Nm).  (C)  Bar plot of average (+ 
1 standard deviation) peak axial twist moment (Nm).  Bars denoted by the same capital or lowercase 
letter are not significantly different when compared within a direction. 
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5.6.2 Cumulative Moments 

 A significant gender×method interaction was found for cumulative extension moment (p = 

0.0054).  For males, a significant method effect was observed (p<0.0001), with the 3DMatch and 

RLM approaches (which did not differ) predicting significantly greater cumulative moments than the 

EMG-assisted approach (figure 5-2).  For females, a significant method effect was also observed (p < 

0.0001) where 3DMatch predicted significantly greater moments than either the Visual3D or EMG-

assisted approach while the Visual3D method predicted significantly greater cumulative moment 

exposure than the EMG-assisted method.  Although males did not exhibit statistically significant 

differences between the Visual3D and 3DMatch approach in predicting cumulative moment, a 

corrective factor of 0.836 was found.  Application of this corrective factor resulted in a reduction in 

average error from 19.65 to 0.03%.  For females, a corrective factor of 0.518 was found and applied, 

successfully eliminating the significant difference between the 3DMatch and Visual3D approaches 

(figure 5-2), with the percentage difference decreased from 92.92 to 0.07%.   
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Figure 5-2:  Bar plot of average (+ 1 standard deviation) cumulative extension moment (Nms).  Bars 
denoted by the same letter are not significantly different for males, while bars denoted by the same 
number are not significantly different for females. 

  

A significant gender×method interaction was also found for cumulative (p = 0.0071) and 

average (p =0.0125) lateral bend moment.  Subsequent analysis of method effects within gender 

revealed no significant differences in cumulative (p = 0.6257) lateral bend moment for males, 

regardless of the method of determination.  However, cumulative lateral bend moment predictions 

were significantly different dependent upon the method used for females (p < 0.0001).  Post hoc 

analysis revealed that 3DMatch predicted significantly different cumulative lateral bend moments 

(73.5±95.9 Nms, right) than the Visual3D (-146.4±333.5 Nms, left) or EMG-assisted (-443.3±615.5 

Nms, left) approaches.     
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 No gender×method interaction was found for cumulative axial twist (p = 0.9627), however 

significant method and gender effects were observed (p = 0.0067 and p = 0.0003, respectively).  Post 

hoc analysis indicated that the 3DMatch and EMG-assisted approaches predicted cumulative axial 

twist moments were not significantly different and shared the same directionality (figure 5-3a).  In 

contrast, the Visual3D approach predicted significantly lower cumulative moments with the opposite 

polarity.  Analysis of gender effects indicated that significantly higher cumulative axial twist 

moments were found for males than females (p = 0.0067, figure 5-3b).  
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Figure 5-3:  (A)  Bar plot of average (± 1 standard deviation) cumulative axial twist moment (Nms) 
isolated by method.  (B)  Bar plot of average (+ 1 standard deviation) cumulative axial twist moment 
(Nms) isolated by gender.  Bars denoted by the same letter are not significantly different.  

 

5.6.3 Reaction Compression and AP Shear 

 As the EMG-assisted model does not predict reaction forces, only the Visual3D and 3DMatch 

approaches are included in these results.  A significant gender×method interaction was found for 

reaction compression (p = 0.0480), although males (p < 0.0001) and females (p < 0.0001) both 
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exhibited significant method effects with Visual3D predicting higher reaction compression than 

3DMatch for both genders (figure 5-4).  In contrast there were no significant interaction (p = 0.4313), 

gender (p = 0.8653) or method (p = 0.4284) effects for AP shear. 

 

Figure 5-4:  Bar plot of average (+ 1 standard deviation) reaction compression (N).  Bars denoted by 
the same letter are not significantly different for males, while bars denoted by the same number are 
not significantly different for females. 

 

5.6.4 Bone on Bone Forces 

 The peak bone on bone compression predicted using 3DMatch (3769.2±1216.6 N) and the 

EMG-assisted (3703.0±2118.8 N) approaches were not found to be significantly affected by gender (p 

= 0.1308) or method (p = 0.7987) or gender×method interaction (p = 0.2376).  Cumulative 

compression also exhibited no significant interaction (p = 0.1268) or gender (p = 0.3099) effects, with 

method significantly altering the determination of cumulative compression (p < 0.0001).  The 

3DMatch method predicted significantly greater cumulative compression than the EMG-assisted 
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approach, however when the individualized compressive bias correction was applied, this difference 

was decreased to non-significant levels (figure 5-5), over-estimation reduced from an average 

percentage error of 73.05 to 12.96%).  Peak posterior shear forces were found to be significantly 

different dependent on the method of determination (table 5-2, p < 0.0001), while unaffected by 

gender (p = 0.6633) or gender×method interaction (p = 0.8534).  Peak anterior shear force exhibited a 

significant gender×method (p = 0.0065), where male predictions were not affected by method (p = 

0.0944) while female predictions were (table 5-2, p = 0.0016).   

 

Figure 5-5:  Bar plot of average (+ 1 standard deviation) cumulative compression (Ns).  Bars denoted 
by the same letter are not significantly different. 
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Table 5-2:  Average peak shear forces (±1 standard deviation) as predicted using EMG-assisted and 
3DMatch approaches.  Significant differences existed between posterior shear force and female 
anterior shear force.  Values of male anterior shear force were not significantly different. 

Anterior Shear Force (N) Method Posterior Shear Force (N) 

Female Male 

EMG-assisted 735.0±435.1  669.4±1078.0 186.1±274.8 

3DMatch 165.43±90.0 124.1±29.5 115.7±24.7 

 

 

5.6.5 Correlation Values 

 As each trial consisted of 6 lifts and 6 lowers (figure 5-6), it was possible to determine the 

correlation coefficient (r) between the various methods of variable estimation.  In terms of 

flexion/extension joint moment prediction, the greatest agreement was found between the Visual3D 

and 3DMatch methods, although correlations between all methods exceeded 0.6 (figure 5-7).  Much 

lower correlations were observed for lateral bend and axial twist moments, regardless of the methods 

used.  In terms of force, the lowest correlations were observed for reaction compression and bone on 

bone AP shear (table 5-3).  Reaction AP shear and bone on bone compression both exhibited 

correlation coefficients greater than 0.5. 

 

Table 5-3:  Minimum, maximum, average and standard deviation of correlation coefficients for 
reaction and bone on bone forces.  Reaction force comparisons were between 3DMatch and Visual3D 
methods, while bones on bone comparisons were between 3DMatch and EMG-assisted methods. 

Reaction Forces Bone on Bone Forces  

Compression 

(N) 

AP Shear (N) Compression 

(N) 

AP Shear (N) 

Minimum -0.435 -0.518 -0.038 -0.739 

Maximum 0.939 0.962 0.875 0.833 

Average 0.243 0.577 0.541 0.193 

Standard Deviation 0.421 0.343 0.208 0.442 
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Figure 5-6:  (A)  Time series of flexion/extension moment (Nm) as determined using a rigid link 
model (Visual3D, grey line), EMG-assisted model (dashed black line) and 3DMatch (solid black 
line).  (B)  Time series of compression (N) as determined using an EMG-assisted model (dashed 
black line) and 3DMatch (solid black line).  Note that both (A) and (B) are from the same trial. 
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Figure 5-7:  Bar plot of average (+/- 1 standard deviation) correlation coefficient across comparison 
and moment axis. 

 

5.7 Discussion 

 The results of this study indicate that 3DMatch is a viable tool for determining kinetic 

exposures of the low back, although corrective factors need to be implemented.  In the case of peak, 

average and cumulative flexion/extension moment, it is clear that the uncorrected 3DMatch approach 

will over estimate the exposure level, subsequently leading to a conservative determination of risk 

level.  Several factors may have contributed to the observed differences in peak extension moment.  

3DMatch employs a quasi-dynamic model that includes dynamic hand loads while ignoring the 

inertial components of the segments.  The error associated with this approach varies widely in the 

literature, ranging from overestimating fully dynamic peak extension moments by as much as 25% 

(McGill and Norman, 1985) to underestimates of 3% (Lindbeck and Arborelius, 1991).  Additionally, 
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3DMatch implements a hands down modeling approach, which has been shown to lead to over 

estimates in average extension moment of 3.6%, with overestimates in peak moment of 10.9% when 

compared to a bottom-up approach (de Looze et al., 1992a), as employed in the RLM method used 

here.  While the impact of these potential sources of error has not been quantified in this study, the 

application of a simple correction factor can reduce the differences in moment predictions to non-

significant levels, leading to much improved estimates of joint moment exposure.  Female differences 

required lower correction values, reflecting a greater over estimation in moment magnitude by 

3DMatch than determined with the RLM approach.  Some portion of this difference may be due to 

the anthropometric model underlying 3DMatch, which incorporates gender specific segment mass 

calculations while the determination of segment length and center of mass locations are based upon 

height and are not corrected for gender differences.  In average and cumulative flexion/extension 

moments, the EMG-assisted approach yielded the lowest predictions.  Examination of the moment 

traces indicates large drops in EMG-assisted predictions when participants are fully flexed.  This 

occurrence is likely due to a drop in muscular activity near full flexion (Callaghan and Dunk, 2002; 

Dickey et al., 2003).  Additionally, in lifting conditions where participants chose to perform the task 

using more of a twisting motion to maneuver the load around the shelving as opposed to pulling the 

load closer to themselves (when lifting from the waist height to shoulder height) the EMG-assisted 

approach predicted much lower extension moments than the other methods.  While differences in 

moment predictions about the other axes (lateral bend and twist) were also observed, the moment 

magnitudes were small and therefore corrective factors are not likely to reflect meaningful biological 

differences.  The observed correlation coefficients were much higher for flexion/extension than for 

other axes, although they indicated that time-variations in the various predictions were not consistent 

between methods.  This result is not surprising when the number of differences in data collection and 
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signal processing are considered (such as variations in filter cut-offs, down sampling to match sample 

rates, etc.).   

 In terms of predicted loads, it appears that where peak compression is of interest 3DMatch 

predicts values equal to those predicted with a more detailed anatomical EMG-assisted approach.  As 

3DMatch employs a polynomial derived from predictions made using an EMG-assisted approach 

(McGill et al., 1996b) this would be the expected outcome, however the EMG-assisted model used to 

determine the polynomial was not the same as the EMG-assisted model employed in this study.  The 

consistency of results supports not only the use of 3DMatch in determining peak compressive forces, 

but also provides an indirect means of validating the equivalence of two different EMG-assisted 

approaches.  For this work, the specific EMG assisted approach was selected due to its ability to 

account for gender, however a large variety of models exist so caution should be extended to not treat 

this particular model as a ‘gold standard’ in predicting joint loads.   

When 3DMatch is used to predict loads over time (either as an average or cumulative 

approach) it greatly overestimates the loading.  This is a result of the large bias in upright standing, 

which overestimated the predicted upright standing compression in this study by an average of 569 N.  

Removal of this bias (which could be determined for an individual as the difference between 

3DMatch predicted compression in upright stand and an estimate of upper body mass obtained 

through anthropometrics) resulted in large decreases in this overestimation, eliminating any 

significant differences.  Peak AP shear loads were shown to be much higher when employing the 

EMG-assisted approach than 3DMatch, likely due to instances of greater muscle activation translating 

into greater force exposure.  As 3DMatch does not account for individual task performance through 

muscle activation it does not predict these instances of greater loading.  The higher instances of 

loading with the EMG-assisted approach are also reflected in greater average shear loads.  

Additionally, 3DMatch employs a constant muscular angle of pull (5.30) regardless of gender or 
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posture.  Anatomical differences and flexion of the spine during lifting will alter this angle of pull and 

may lead to altered predictions of shear.  One final contributor to the differences in shear may be the 

binning method employed in 3DMatch, which assigns a segment angle value equal to the mid-point 

of the posture bin.  For example, if the 15-450 trunk flexion bin is selected, the trunk angle would be 

assigned a value of 300, regardless if the actual angle was 16 or 440.  In comparison, the EMG-

assisted approach would incorporate the measured angle and would not be subject to the effects of 

binning.  This limitation has been discussed previously (Sutherland et al., 2008). 

 While this study presents a first attempt at examining the quality of 3DMatch predictions of 

joint moments (relative to a fully dynamic, three-dimensional bottom-up rigid link model) and joint 

loads (relative to a gender specific scalable EMG-assisted model) it is subject to several limitations.  

First, it is not a true repeated measures design.  As trials were chosen from a larger research study 

based upon the quality of video data, the participants were not represented in equal numbers.  Due to 

the comparative nature of the study, with each method within each trial being obtained from one 

participant, it was not felt that this would alter the observed relationships.  Additionally, only two 

loads were employed, both of relatively low magnitude.  These loads were chosen to allow 

examination of multiple load levels without leading to muscular fatigue, due to the large number of 

lifts involved for each participant.  While larger load levels may improve the generalization of the 

results, it is reasonable to expect improved agreement in the cumulative and average compression 

measures as load levels would greatly exceed those in upright standing, reducing the relative 

contribution of the bias of the polynomial approach.  One additional limitation is the comparison of 

force predictions to only one EMG-assisted approach.  While the EMG-assisted approach used here 

has been well developed (Granata and Marras, 1995a; Marras and Sommerich, 1991a), several others 

exist (McGill and Norman, 1986; McGill, 1992a; van Dieen, 1997) which incorporate different 

anatomy, as well as length and velocity modulators.  Therefore the EMG-assisted approach employed 
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for this work should not be treated as a ‘gold standard’ of comparison, and caution should be 

employed when relating these findings to other joint models.  Finally, the joint model and RLM 

calculations were performed about the L5/S1 joint, not L4/L5 like 3DMatch.  Based upon the 

anatomy, there is an expectation of slightly higher loads at L5/S1 due to additional mass above the 

joint location, however this difference would likely be compensated for by the increased forward tilt 

of L5/S1 relative to L4/L5, which would result in a lower amount of the vertical load being projected 

onto the compressive axis.  However, this would increase the amount of shear loading and therefore 

the absolute magnitude of shear values presented should be interpreted with caution. 

 Based on this research 3DMatch has the potential to be a valuable ergonomic tool in industry, 

where video is often the most realistically useable tool.  In its current form, 3DMatch overestimates 

extension moments and cumulative compression.  However, the errors in variable determination are 

easily corrected with the developed correction factors.  The correction factors are designed to correct 

for the average amount of error between the posture matching and inverse dynamics based estimates 

of error should be implemented in studies examining multiple workers.  However, caution should be 

extended that they represent the average error and when applied to an individual prediction of loading 

may alter the loading predictions unpredictably if another measure (such as RLM based estimations 

of moments) is not present to ensure correction is necessary.  It is worth noting that these correction 

factors are based upon the industrial situation for which 3DMatch was created, that being lifting.  

While it is unknown how these corrections may be altered in situations of altered loading exposures, 

for example one handed pushing, it is felt that implementation of these factors would still result in 

better predictions of loading when applied to grouped data than currently available.  In contrast, the 

correction approach developed for predictions of cumulative compression should always be applied, 

as the bias is always present.  Additionally, the similarity of the 3DMatch based predictions of peak 

compression those using the more sophisticated EMG-assisted model supports the use of the 
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polynomial approach in estimating compression from joint moments and provides evidence of strong 

agreement between different EMG-assisted approaches in their ability to predict peak loads.  Future 

work should be conducted to determine if these relationships will be consistent when the tool is used 

in industry, in particular examining the consistency of the corrective factors to ensure that the best 

possible estimates of exposure are being used in any determination of injury risk.   
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Chapter 6 
 

The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. 

 

Robert J. Parkinson and Jack P. Callaghan 

Submitted to Clinical Biomechanics 

 

6.1 Abstract 

 Evidence indicates that the loads and postures to which an individual is exposed are related to 

their risk of reporting low back pain or incurring a spine injury.  In-vitro research has shown that 

cyclic flexion under static compressive loads can lead to disc herniation, while repetitive compression 

in neutral or flexed postures leads to vertebral failure.  However, no research has examined the 

likelihood of altering injury site (disc vs. bone) when dynamic load exposures are varied concurrently 

with cyclic flexion.  In order to address this issue, 50 porcine cervical spinal units were assigned to 

one of five groups based on peak normalized loads of 10, 30, 50, 70 and 90% of the unit’s predicted 

tolerance.  Specimens underwent passive range of motion tests to determine individual range of 

motion.  Once individualized loads and angles were determined, specimens were cyclically 

compressed and flexed based on profiles obtained from a floor to waist height lift, until failure 

occurred or 12 hours elapsed.  Upon failure specimens were dissected to identify injury site, and 

cumulative exposures sustained to failure were calculated.  Disc injury was not observed when peak 

loads exceeded 30% of the tolerance, while they occurred with increasing frequency when decreasing 

from the 30 and 10% groups.  Those specimens exhibiting disc injury tolerated significantly greater 

number of cycles to failure (p < 0.0001), greater cumulative compression (p < 0.001), shear (p < 

0.001) and angular excursion (p < 0.001).  These results indicate that people exposed to greater levels 

of load, in the presence of repetitive flexion, are more likely to exhibit vertebral fracture. In contrast, 
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the likelihood of disc injury in the presence of repetitive flexion increases as peak load levels 

decrease. 

Keywords:  Spine, posture, load, fracture, herniation 

 

 

6.2 Introduction 

 

 Evidence has shown that spinal injury and reporting of low back pain may be due to 

accumulated load (Kumar, 1990; Norman et al., 1998; Seidler et al., 2001; Seidler et al., 2003), and 

therefore research has been conducted to understand injuries due to cyclic loading.  In 1983, Liu et al. 

exposed spinal units to cyclic compressive loads shaped with a sine waveform for up to 10,000 

cycles, concluding that specimens showing an abrupt increase in displacement had developed a 

fracture within the vertebrae (Liu et al., 1983).  Fracture of the vertebral bone was also the injury 

mechanism observed in 16 of 17 cyclically compressed spinal units in the work of Hansson et al. 

(1987) and 52 of the 70 spinal units loaded by Brinckmann et al. (1988).  These conclusions are 

supported by more recent research which has implemented physiologic loading profiles, also showing 

that cyclic repetitive compression leads to vertebral fracture (Parkinson and Callaghan, 2007b).   

 While this evidence implicates repetitive compression in vertebral fracture, it has focused on 

neutral postures.  Additional research has shown that flexion significantly reduced the compressive 

strength of the spinal unit when compared to the neutral posture, 32-47% depending on the prior 

loading history (Gunning et al., 2001).  More recently, cadaveric units were tested for their resistance 

to loading while in one of three postures based on trunk flexion of 0, 22.5 and 450 (Gallagher et al., 

2005).  Spinal units were cyclically compressed at load rates and magnitudes based on predictions of 

loading at each of the three fixed torso angles while holding a 9 kg load.  It was found that loading in 
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a flexed posture resulted in a significantly lower tolerance to compression, with specimens most 

flexed lasting only 263 cycles compared to 3257 cycles for those moderately flexed and 8253 cycles 

for those loaded while in a neutral posture (Gallagher et al., 2005).  Injury assessment of the vertebrae 

after loading found failure typically occurred in the endplate, regardless of posture.  The morphology 

of the injury appeared posture dependent, with neutral postures resulting in endplate depression with 

no macroscopic disruption, while clear fractures occurred with joint flexion (Gallagher et al., 2005).   

While these studies indicate a role of posture in modifying vertebral tolerance to compression, injury 

occurred in the vertebral bone and endplates.  Therefore, static postural changes may modify the 

likelihood of injury, but they do not appear to change the site of occurrence.   

   In 2001, Callaghan and McGill extended the study of postural effects on the injury 

mechanisms of the spine through the application of a controlled dynamic kinematic profile.  Each 

specimen was assigned one of three low-level compressive magnitudes (260, 867 or 1472 N) and 

subjected to cyclic flexion.  It was found that intervertebral disc herniation could be induced with low 

levels of compression through high cycle numbers (Callaghan and McGill, 2001).  Specimens 

exposed to the lowest magnitude of compression did not display any herniations, regardless of the 

number of applied cycles.   

While this study demonstrated that dynamic application of postural changes can lead to injury 

in the intervertebral disc, damage occurred under the application of static compression.  As other 

work has shown that exposure to higher levels of acute or repetitive compression in neutral postures 

leads to failure in the endplate and underlying vertebral bone, it remains unknown how the spine may 

become injured with concurrent dynamic applied loads and postures.  Based on the evidence from 

static postural tests, it would appear that vertebral fracture occurs when the spine is exposed to 

excessive load, regardless of posture.  However, if the load is not of sufficient magnitude to lead to 

bone or endplate failure (as in Callaghan and McGill (2001)) injury may be induced in the 
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intervertebral disc in the presence of concurrent flexion.  As this relationship has not yet been 

quantified, the purpose of this work was to examine the role of concurrent dynamic motion and 

loading in determining injury risk and location. 

 

6.3 Methods 

6.3.1 Specimen Preparation 

 

 Fifty cervical Functional Spinal Units (FSU, C3/4 and C5/6) were isolated from porcine 

spines.  These adjacent spinal levels have been previously shown to be equivalent in endplate area, 

bone mineral content and compressive strength (Parkinson et al., 2005).  Spines were obtained frozen 

and allowed to thaw prior to dissection.  Surrounding musculature was removed in order to isolate the 

osteoligamentous segment, consisting of two vertebrae, the intervertebral disc and all associated 

ligaments.  The exposed endplates of the superior and inferior vertebrae were measured along the 

midline in the anterior-posterior (A) and medial-lateral (B) directions allowing calculation of endplate 

area (π/4×A×B), and averaging of the resultant areas.  This average represented the area of the FSU 

and was used to predict the compressive tolerance of the spinal unit without destructive testing 

(Parkinson et al., 2005), allowing for normalization of the peak loads.   

Prior to mounting, the anterior processes and exposed facets were trimmed to ensure that the 

endplates were responsible for load carriage across the segment.  Screws were inserted into the 

anterior processes and 19 gauge wires were looped around the lamina and tightened against custom 

aluminum cups.  Once specimens were rigidly fixed to each aluminum cup, non-exothermic dental 

plaster (Denstone, Miles, South Bend, USA) was placed around the segment to enhance fixation 

between the specimen, wires, screws and the aluminum cup.  Specimens were then injected with 

approximately 0.7 cm3 of barium sulphate (radio-opaque), blue dye (Coomassie Brilliant Blue G-mix: 
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0.25% dye, 2.5% MeOH, 97.25% distilled water), and distilled water in a relative mixture of 2:1:2 

(Callaghan and McGill, 2001) and an initial sagittal plane X-ray was obtained from the specimen’s 

right side.  X-rays were developed using a digital X-ray system (Kodak DirectView CR500, 

Carestream, Toronto, Canada) and were repeated throughout testing, although the frequency of 

examination was altered depending on the load level (10% - every 3000 cycles, 30% - every 3000 

cycles, 50% - every 200 cycles, 70 and 90% - after failure). 

 

6.3.2 Loading 

The superior cup was mounted to a custom flexion/extension rig which was rigidly fixed to 

the load cell of a servo-hydraulic materials testing machine (8872, Instron Canada, Toronto, ON, 

Canada).  Flexion/extension moments were applied to the rig through a rotational brushless 

servomotor (Kollmorgen, Model AKM23D-BNCNC-00, Danaher Motion, Il., USA) and 

subsequently to the upper vertebrae.  Moments were measured with a moment transducer (SensorData 

Technologies Inc., Model T120-106-1K, Sterling Heights, MI., USA) mounted in series with the 

servomotor.  Control of the servomotor was accomplished through an ISA bus motion controller 

(model DMC18x0, Galil Motion Control, Rocklin, USA).  The lower cup rested on a bearing table 

allowing anterior-posterior and medial-lateral translations and axial rotation (figure 6-1).  
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Figure 6-1:  A mounted specimen prior to loading.   

 

After mounting, each FSU was preloaded at 300 N for 15 minutes (Callaghan and McGill, 

1995; Gunning et al., 2001; Yingling et al., 1999) prior to cyclic testing.  During this period, the 

servomotor sought a position for which no external moment was present (elastic equilibrium), this 

position was taken as neutral.  In order to determine a specimen specific range of motion (ROM), 

passive flexion extension was performed while under 300 N of compression in order to obtain 

moment-angle curves.  Three repeats of the ROM test were performed; maximum flexion and 

extension angles were obtained from the third cycle.  Maximum flexion and extension angles were 

determined by identifying the angle where the moment-angle curve began to deviate from linearity 

(figure 6-2). 
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Figure 6-2:  Moment-angle curve obtained from the third cycle of a passive range of motion test.  
Straight lines have been added to the linear portion of the curve to improve visualization of how test 
flexion and extension angles were chosen. 

 

Upon completion of the preload and ROM tests, specimens were randomly assigned to one of 

five normalized loading groups, corresponding to peak loads of 10, 30, 50, 70 and 90% of the 

compressive tolerance of the specimen.  Both load and motion profiles were obtained from a floor to 

waist height lift performed by a male.  Joint compression was determined through the use of an EMG-

assisted spine model based upon the work of Granata and Marras (1995a), while spine angle was 

measured using the Lumbar Motion Monitor (Biomec Inc., Cleveland, OH, USA).  Spine angle and 

compression were normalized in time to match the desired cycle frequency of 0.5Hz as well as 

normalized in amplitude to allow scaling to appropriate normalized compression and ROM values 

(figure 6-3).   
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Figure 6-3:  Sample compression and angle curves normalized in amplitude (0 to 1) and time (0.5 Hz 
loading frequency).  The compression curve was obtained using an EMG-assisted spine model while 
a male subject performed a single floor to waist height lift.  The spine angle was obtained during the 
same lift using the Lumbar Motion Monitor. 

 

The compression waveform was scaled to run from a minimum of 300 N up to the desired 

peak load, with 300 N being chosen to represent the weight of the upper body during upright 

standing.  Additionally, this load has been identified in our laboratory as resulting in an equalization 

of height with no excessive creep over a 15 minute period for in-vitro testing.  Note that the applied 

compressive load is not the compression experienced across the joint (except at 00) as it is translated 

into compressive and shear components through the loading rig.  Therefore the global angle of the rig 

was also calculated to allow determination of the anatomical compression and shear values. 
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6.3.3 Failure Analysis 

All specimens were cyclically compressed and flexed until failure occurred or a maximum of 

12 hours (21600 cycles) had elapsed.  If failure was indicated through height loss (more than 9 mm) 

or X-ray documentation, testing was stopped.  Failure was identified in X-rays by the loss of nuclear 

visualization, nuclear presence within the vertebral body or the appearance of nuclear material in the 

posterior annular layers.  Throughout testing, compressive load, vertical position, joint angle and 

rotational moment were sampled at 25 Hz.  Determination of the injury cycle in bone failure was 

based upon stiffness and displacement.  When fracture occurs, it is indicated by a drop in compressive 

stiffness (equation 3) and an increase in vertical displacement (Brinckmann et al., 1988; Hansson et 

al., 1987; Parkinson and Callaghan, 2007b).  Failure based upon X-ray analysis was taken to occur at 

the last cycle prior to obtaining the X-ray in which the injury was observed.  Cycles to failure, height 

loss at failure, cumulative excursion (time integrated angular displacement), cumulative moment, and 

cumulative compression to failure were also determined.  All cumulative variables were calculated 

using trapezoidal integration. 
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Upon termination of cyclic loading, specimens were dissected to determine the site of injury.  

First, the posterior elements were removed to determine if there were any visible signs of injury to the 

posterior disc.  Second, the external vertebral surfaces were examined for signs of fracture and finally 

the intervertebral disc was cut to allow visualization of any endplate fractures or internal disc damage.  

Endplate fractures were classified as crack (Parkinson and Callaghan, 2007b), step (Brinckmann et 

al., 1988), stellate (Brinckmann et al., 1988) or crush (Hansson et al., 1987).  The direction and 

location of any disc damage was identified by the presence of blue dye in the posterior annular layers. 
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6.3.4 Statistical Analysis 

 Specimen randomization was assessed using a one-way analysis of variance (ANOVA) to test 

for load group differences in endplate area, ultimate load, maximum flexion angle, and maximum 

extension angle.  A one-way ANOVA was also performed to identify any between group differences 

in injury cycle, maximum and minimum moment exposure, cumulative compression, cumulative 

excursion, cumulative shear, and cumulative moments due to load exposure.    One-way ANOVAs 

were performed to identify significant differences in these measures between those specimens that 

exhibited failure and those that did not, as well as between those that underwent bony failure and 

those that experienced disc damage.  Significant pair-wise differences (where necessary) were 

identified through a Tukey’s post hoc test.  All tests with p<0.05 were considered statistically 

significant.   

 

6.4 Results 

6.4.1 Specimen Randomization 

 Due to difficulties in synchronization of the compression and flexion/extension axes, two 

specimens in each of the 10 and 30% loading groups were excluded, resulting in a total of 46 

samples.  Based on these samples, there were no significant differences found between the loading 

groups for endplate area (p = 0.447), maximum flexion angle (p = 0.8718) or maximum extension 

angle (p = 0.6317).  No significant differences were found in these measures when specimens that 

underwent failure were compared with those that did not (endplate area (p = 0.0948), maximum 

flexion angle (p = 0.5929), maximum extension angle (p = 0.0855)).  When comparisons were 

performed based on injury site (disc vs. bone), there were no significant differences in these values 

(endplate area (p = 0.9442), maximum flexion angle (p = 0.6664), maximum extension angle (p = 

0.3481)) (Table 6-1). 
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Table 6-1:  Specimen number, average endplate area, maximum flexion angle and maximum 
extension angle of specimens tested under each loading condition, those specimens which failed and 
those which survived, as well as for specimens which developed disc injury and those that exhibited 
bone injury.  Standard deviations are presented in parentheses.  There were no significant differences 
in endplate area, flexion or extension angles between any load groups. 

Group Specimen 
Number 

Endplate Area 
(mm2) 

Maximum Flexion Angle 
(degrees) 

Maximum Extension 
Angle (degrees) 

10% 8 692.7(35.4) 14.9(2.9) 4.1(2.8) 
30% 8 660.9(49.9) 14.3(3.0) 2.9(3.0) 
50% 10 653.1(39.2) 15.0(2.8) 4.0(1.7) 
70% 10 669.8(65.4) 14.5(6.1) 3.7(2.1) 
90% 10 654.1(47.0) 16.0(2.1) 4.4(2.4) 
Failed 41 664.7(48.3) 14.8(4.1) 4.2(2.1) 
Non-
Failed 

5 703.3(35.5) 15.8(2.3) 2.4(1.7) 

Bone 
Injury 

34 660.8(48.7) 15.0(3.8) 3.9(2.0) 

Disc 
Injury 

7 659.3(51.5) 14.3(3.5) 4.7(2.8) 

 

6.4.2 Load Magnitude 

 Analysis revealed a significant effect of load magnitude exposure on the number of cycles 

tolerated to failure (Table 6-2, p<0.0001).  Post hoc analysis indicated that the 50 and 70%, and 70 

and 90% comparisons were not significantly different, with those specimens exposed to higher 

compressive loads sustaining fewer cycles to injury.  Significant between group differences were also 

identified for cumulative compression (figure 6-4a, p < 0.001).  Specimens loaded to 10% of their 

estimated tolerance tolerated a greater amount of cumulative compression than those loaded to 50, 70 

or 90%.  Specimens loaded to 30% of their maximum tolerance sustained more cumulative 

compression than those loaded to 50, 70 or 90%, which were not different from one another.  The 

same relationships were found for cumulative shear (figure 6-4b, p < 0.0001).  Cumulative excursion 

was also found to differ between the loading groups (figure 6-4c, p < 0.0001), with the 50-70%, 70-

90% and 50-90% between group comparisons being non-significant.  Specimens exposed to the 

lowest levels of compression (10 and 30%) tolerated significantly higher cumulative moment 

exposures than those exposed to greater loads (figure 6-4d, p < 0.0001), although they did not differ 
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from each other.  Specimens loaded to 50, 70 or 90% did not differ statistically in terms of cumulative 

moment exposure.  Load magnitude significantly altered height loss at failure (p = 0.0012), with those 

specimens loaded to a maximum of 30% of their estimated tolerance exhibiting significantly greater 

height loss than specimens exposed to greater loads.  No statistical difference in height loss was 

observed between the 10 and 30% groups (Table 6-3). 

 

Table 6-2:  Average injury cycle.  Values marked with the same letter are not significantly different 
within a comparison group.  Standard deviations are presented in parentheses.  *As all non-failed 
specimens tolerated 21600 cycles, no variance exists and statistical comparisons were not performed. 

Average Injury Cycle with Load Magnitude (%) Grouping 
10% 30% 50% 70% 90% 

14400(6858.6) 
A 

5030.7(3943.9) 
D 

154.7(167.0) 
B 

21.8(26.2) 
BC 

3.7(2.8) 
C 

              Average Injury Cycle Number for Failed     vs.    Average Injury Cycle Number for Non-Failed 
2782.2(5445.0) 

* 
21600(NA) 

* 
     Average Injury Cycle Number for Disc Injuries  vs.  Average Injury Cycle Number for Bone Injuries 

9000(5477.2) 
A 

929.9(3754.4) 
B 
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Figure 6-4:  (A)  Bar chart of average cumulative compression (MNs + 1 standard deviation) 
tolerated to failure at each level of peak load magnitude.  (B)  Bar chart of average cumulative shear 
(MNs + 1 standard deviation) tolerated to failure at each level of peak load magnitude.  (C)  Bar chart 
of average cumulative excursion (degrees + 1 standard deviation) tolerated to failure at each level of 
peak load magnitude.  (D)  Bar chart of average cumulative moment (Nms + 1 standard deviation) 
tolerated to failure at each level of peak load magnitude.  For all figures, groups marked by the same 
letter are not significantly different. 
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Table 6-3:  Average height loss at failure (mm).  Values marked with the same letter are not 
significantly different within a comparison group.  Standard deviations are presented in parentheses.   

Average Height Loss Within Load Magnitude (%) Group 
10% 30% 50% 70% 90% 

3.3(0.4) 
AB 

4.7(1.3) 
B 

2.6(1.6) 
A 

2.3(1.8) 
A 

1.5(1.2) 
A 

Average Height Loss for Failed Specimens vs. Average Height Loss for Non-Failed Specimens 
2.9(1.7) 

A 
4.3(2.6) 

A 
                      Average Height Loss for Disc Injuries vs. Average Height Loss for Bone Injuries 

4.1(1.0) 
A 

2.4(1.7) 
B 

 

6.4.3 Failed vs. Non-failed 

 Of the 46 specimens tested, five survived 2 hours (four from the 10% group, 1 from the 30% 

group).  Surviving specimens were exposed to significantly lower peak loads (1618.9±916.0N  vs. 

4886.8±2255.2 N, p = 0.003 for compression, 298.4±246.5 N vs. 1070.8±698.9 N, p = 0.0203 for 

shear) and tolerated a greater number of cycles (Table 6-2).  All cumulative variables reflected this 

relationship, with surviving specimens tolerating greater cumulative compression (22.9±8.0 MNs vs. 

3.3±5.8 MNs, p < 0.001), cumulative excursion (305961.2±34092.5 degs vs. 39642.9±77156.6 degs, 

p < 0.0001), cumulative shear (3.4±1.5 MNs vs. 0.5±1.0 MNs, p < 0.0001) and cumulative moment 

(244058.6±98243.3 Nms vs. 26545.7±53214.7 Nms, p < 0.001).  The surviving specimens exhibited 

greater height loss, but the difference was not statistically significant (Table 6-3, p = 0.1209).  

 

6.4.4 Disc Injury vs. Bone Injury 

 Observable disc injuries constituted 17.1% of all injuries (41).  Three of these injuries 

occurred in specimens loaded to a maximum of 10%, while the remainder occurred in the 30% load 

group.  Specimens exhibiting vertebral fracture received significantly higher load applications 

(6155.3±2032.1 vs. 2132.1±969.9, p < 0.001 for compression, 1299.6±687.3 vs. 570.4±332.1, p = 
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0.0097 for shear) and tolerated significantly fewer cycles to failure (Table 6-2, p < 0.0001).  

Cumulative exposure measures reflected this relationship, with specimens exhibiting vertebral 

fracture tolerating lower cumulative compression (10.9±6.4 MNs vs. 1.1±3.4 MNs, p < 0.001), 

cumulative excursion (130809.7±72519.2 degs vs. 12714.7±53102.3 degs, p < 0.001), cumulative 

shear (1.8±1.3 MNs vs. 0.2±0.5MNs, p < 0.001), and cumulative moment (88328.3±63536.0 Nms vs. 

8367.4±33117.7 Nms, p < 0.001).  Specimens exhibiting bony failure lost significantly less height 

prior to failure (Table 6-3, p = 0.0172). 

 

6.4.5 Injury Analysis 

 Examination of the injury site determined that in all specimens exposed to peak loads equal to 

or exceeding 50% failure occurred within the endplate or vertebral bone.  In 27 of 34 cases the 

resulting fracture exhibited the crack morphology (Table 6-4).  The next most frequently observed 

injury was endplate depression, which occurred in 4 cases.  Bone failure was also observed at lower 

load magnitudes, but at decreasing frequencies.  When exposed to peak normalized loads of 30%, 

bone and disc injuries occurred in 43 and 57% of failed specimens, respectively.  Bone/endplate 

failure comprised only 25% of the observed injuries when peak loads of 10% were employed.  In two 

instances the fracture occurred in one of the external endplates in contact with the aluminum cup.  

While this occurs infrequently, it indicates that the applied compressive loads are being carried 

through the endplates as intended.  Intervertebral disc damage only occurred in the two groups 

receiving the lowest amounts of compression.  In all cases the herniation traveled in a posterior 

direction and was indicated by a loss of visible nuclear material in X-ray and an accumulation of blue 

dye in the annular layers (figure 6-5).  Complete prolapse was observed in only 1 case, although in 

another specimen the blue dye was clearly visible in the outer annular layers prior to dissection of the 

disc.  The observation of rare complete prolapse is likely due to the study goal of attempting to 
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identify the injury as close to the initiating cycle as possible.  If the tests were allowed to progress 

beyond the termination point it is possible that more of the disc herniations would have progressed to 

complete prolapse. 

 

Table 6-4:  Number of occurrences of fracture type grouped according to normalized peak load 
magnitude. 

 Fracture Type 

Load Magnitude (%) Crack Endplate 
Depression 

Step Stellate Crush 

10% 1 0 0 0 0 

30% 2 1 0 0 0 

50% 7 2 1 0 0 

70% 7 1 0 1 1 

90% 10 0 0 0 0 
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Figure 6-5:  (A)  Photograph of a herniated specimen.  Note the presence of blue dye in the posterior 
annulus.  X-rays of the same specimen taken prior to (B) and after (C) disc damage.  Notice the 
absence of any visible radio-opaque solution in the post injury X-ray.  Due to the sagittal nature of the 
X-ray, the screws inserted through the anterior processes are visible; however they have not entered 
the vertebral body. 

 

6.5 Discussion 

 The results of this study indicate that in scenarios where peak load magnitudes exceed 50% of 

a spinal level’s estimated compressive tolerance, the presence of concurrent dynamic flexion will not 



 

  154

change the site of injury from the vertebrae to the intervertebral disc.  This conclusion supports 

epidemiologic evidence that the lifting of loads is not associated with the appearance of intervertebral 

disc injury (Kelsey, 1975).  More recent epidemiologic evidence indicates that there may be instances 

where disc injury can be observed under larger exposures,  however the loads must be quite large 

(>11.3 kg) and the relative lifting frequency high (>25 times/day) (Kelsey et al., 1984).  However, as 

peak loads decrease below this level the likelihood of sustaining a disc injury becomes greater than 

that of sustaining a bone or endplate injury.  However, this decrease in load exposure also reduces the 

over-all likelihood of any injury occurring.  The presence of repetitive flexion did not alter the 

existence of a non-linear relationship between peak load magnitude exposure and injury cycle, as 

described in earlier work (Parkinson and Callaghan, 2007a).  The decrease in tolerated cycles to 

failure in those groups exposed to higher loading is reflected in decreases in tolerance to cumulative 

compression, cumulative shear, cumulative excursion and cumulative moment.  The same 

conclusions can be drawn when comparing those specimens, which exhibited injury to those that did 

not, or when comparing those specimens that experienced disc injury to those that experienced 

vertebral fracture.  Those joints in which a disc injury was observed were exposed to lower loads and 

exhibited significantly greater height loss.  This enhanced height loss may indicate the presence of a 

greater creep component prior to failure, also explaining the significantly greater height loss exhibited 

in the lowest loading groups. 

 Although posture does not appear to be the primary injury mechanism at larger loads, it 

appears to play a substantial role in reducing compressive tolerance when compared to the data from 

earlier work.  Earlier work found compressive tolerances (average number of cycles at injury) of 2.8 

MNs(434), 1.1 MNs(129.4), and 0.1 MNs(8.6) for porcine cervical spine specimens exposed to cyclic 

compression in a neutral posture with peak load exposures of 50%, 70% and 90% respectively 

(Parkinson and Callaghan, 2007a).  The same peak magnitude load exposures employed in this study 
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resulted in cumulative compressive tolerances (average injury cycles) of 0.4 MNs(154), 0.07 

MNs(21.8), and 0.01 MNs(3.7).  The specimens tested in the current study exhibited much lower 

tolerance to cumulative compression, with the major experimental difference being the application of 

concurrent dynamic flexion.  Although other experimental differences exist in that slightly different 

compressive profiles were employed in the studies and that the specimens in the current study were 

injected with solution for X-ray purposes, the large differences in observed tolerances are most likely 

due to the inclusion of postural changes as flexion has been shown to reduce compressive tolerances 

when applied statically (Gunning et al., 2001).  Examination of the number of cycles to injury in 

those specimens undergoing disc injury reveals that dynamic compression may alter tolerance to 

cyclic flexion.  Previous work examining the role of dynamic repetitive flexion in intervertebral disc 

herniation reported the lowest injury cycle number of 34974 to occur under the largest static 

compressive load of 1472 N (Callaghan and McGill, 2001).  While this cycle number is higher than 

that of the current study (9000±5477.2) for specimens displaying disc injury, the maximum applied 

compression in this study was larger (2132.1 N).  However, this represents only the peak load of a 

dynamic profile.  The average compressive load, taken across all specimens that exhibited disc injury 

is 667 N.  As the same animal model was used under similar test conditions (the earlier study testing 

was conducted at body temperature; however this would be expected to accelerate injury due to 

accelerating tissue deterioration) it is reasonable to attribute the large differences in tolerated cycle 

numbers to the difference in static and dynamic loading profiles.  This relationship provides underling 

mechanical evidence for the fact that workers in sedentary jobs, particularly those who operate motor 

vehicles (which would induce low level dynamic load profiles and flexed postures) are at higher risk 

of developing intervertebral disc herniation (Kelsey, 1975).  The lower average compressive load may 

also explain the large differences in reported height loss between the two studies.   
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 A major limitation of this study lies in the need to identify injury through crude measures.  In 

order to identify disc injury, an X-ray approach was taken.  While this approach has been used 

previously (Callaghan and McGill, 2001), it is limited as it requires removal of the specimen from the 

loading apparatus in order to allow an X-ray to be obtained.  This limits the frequency of imaging, 

leading to coarse measures in the number of cycles to failure.  In order to allow for improved 

identification of the injury cycle, different X-ray intervals were applied based upon the peak load 

exposure with specimens exposed to higher peak load magnitudes being imaged more frequently.  

When an injury was identified, it was assumed to have occurred at the last loading cycle prior to 

imaging.  It was felt that this would provide a conservative estimate of the injury cycle number and 

was applied as a rule to all specimens.  Identification of fractures, although based upon distinct 

changes in displacement and stiffness behaviour, was done after testing was stopped based on height 

loss (>9mm).  Therefore, in some cases the initial injury may have occurred many cycles prior to 

termination of loading and for this reason the morphology of the fracture may have been altered from 

the injury at initiation.    

Additionally, an animal model was employed which may limit the direct transferability of the 

results to human samples.  This was done to ensure an adequate sample number, as well as to control 

for diet, activity, genetics, illness and age.  The anatomical and functional similarities between the 

human and porcine spine have been previously demonstrated (Yingling et al., 1999; Oxland et al., 

1991) and additional work has determined that the trabeculae display similar architecture (Lin et al., 

1997).  A very recent dissection study has shown that although differences between species do exist, 

the porcine cervical disc is a reasonable analog to the human lumbar disc for studies involving 

repetitive flexion/extension (Tampier, 2006).  Additionally Haddock et al. (2004) have indicated that 

trabecular bone may show similar fatigue response in different species.  Previous work on porcine 

cervical samples from the same supplier developed an equation that allows estimation of the 
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compressive strength of a spinal unit without the need for destructive testing (Parkinson et al., 2005).  

This allows normalized loads to be applied, leading to enhanced comparison between studies as well 

as improved interpretation when compared to human in vivo loading scenarios.  In this regard, the 

applied angles were also normalized to each specimen’s maximum flexion and extension range to 

ensure consistent motion demands within the experiment as well as improve transferability to 

examinations of human motion.   

 Based on this work, it appears that the spine is at greater risk of intervertebral disc herniation 

when loads are lower (below 30% of the estimated compressive tolerance) and at greater risk of 

vertebral fracture if the loads are larger.  When the loads exceed 50%, intervertebral disc herniation 

will not occur prior to fracture, if the dynamic flexion does not exceed the normal range of the joint.  

Although disc herniation will not occur, it appears that the inclusion of repetitive flexion at higher 

loads may lead to a decrease in the ability of the joint to tolerate loading.  Conversely, the application 

of a dynamic loading profile in concert with repetitive flexion appears to lead to disc herniation at 

much lower cycle numbers than would be observed if the motion was coupled with low level static 

loading.  The coupling of dynamic flexion with cyclic compression resulted in non-linear 

relationships between peak load magnitude levels and cumulative exposure variables.  The results of 

this study can be applied to improve understanding of injury, focusing attention on the disc as the 

tissue likely to be injured in low level loading and the vertebrae in instances of larger compressive 

loads.  Future work should be conducted to further understand the interactions between load and 

posture, specifically focused on identifying the exact location where intervertebral disc herniations 

will begin to occur. 
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Chapter 7 

Can Periods of Static Loading be used to enhance the Resistance of the Spine to Cumulative 

Compression? 

 

Robert J. Parkinson and Jack P. Callaghan 

Journal of Biomechanics, 40(13), 2944-2952 

7.1 Abstract 

Results of in-vitro studies conducted on isolated bone specimens have indicated a higher 

tolerance to static load than exists when exposed to cyclic loading, when controlled for creep rate.  If 

this difference in load tolerance exists it may be exploited to extend the life of vertebral bone exposed 

to repetitive compression, and potentially alter the development of spinal injury.  However, little work 

has been conducted on functional spinal units to determine if bone displays this characteristic within 

an intact joint.  Additionally, static loading may result in load redistribution within the intervertebral 

disc forcing more of the compressive load towards the periphery of the endplate away from the 

nucleus.  In order to examine these potential mechanisms, 218 osteoligamentous porcine functional 

spinal units were assigned to one of fifteen loading scenarios.  This involved one of three normalized 

peak load magnitudes (50, 70 and 90% of estimated compressive tolerance) and one of five 

normalized static load applications (0%, 50%, 100%, 200% and 1000% of the total dynamic work 

duration).  Load magnitude significantly altered the resistance to cumulative compression, with 

decreased peak magnitudes corresponding to both increased cumulative load tolerance and increased 

height loss.  Static load periods did not alter the resistance of the spinal unit to cumulative 

compression or impact the number of cycles tolerated to failure.  The insertion of static load periods 

impacted the total survival time to failure, but only for the 1000% static load group, an exposure 

unlikely to occur for most in-vivo exposures.  The insertion of static load periods decreased the 
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amount of height loss during testing which may play a protective role by allowing load redistribution 

within the vertebral bone and intervertebral disc. 

Keywords:  Spine, cumulative load, compression, fracture, creep 

 

 

7.2 Introduction 

Previous in-vitro work has shown that repetitive compression of the spine leads to failure in 

vertebrae at load magnitudes below those tolerated under acute loading (Brinckmann et al., 1988; 

Hansson et al., 1987; Parkinson and Callaghan, 2007b).  Although these studies differed in testing 

conditions a commonality exists in that failure occurred within the trabeculae underlying the vertebral 

endplate and the endplate itself.  Therefore efforts should be directed toward investigating 

mechanisms to improve resistance of the bone to cumulative fatigue.  Such a mechanism may provide 

a means to reduce the risk of spinal injury through alterations in load exposure. 

The fatigue behaviour of isolated bone has been studied under both tensile and compressive 

cyclic loading (Moore and Gibson, 2003b; Moore et al., 2004; Lu et al., 2004; Carter and Caler, 

1983; Carter and Hayes, 1976; Pattin et al., 1996; Michel et al., 1993; Bowman et al., 1998; Zioupos 

et al., 2001; Ganguly et al., 2004; Carter and Caler, 1985; Haddock et al., 2004; Rapillard et al., 

2006; Caler and Carter, 1989).  One finding of interest is that specimens exposed to static loading will 

survive longer than those exposed to cyclic loading (Bowman et al., 1998).  This conclusion was 

extended by Moore et al. (2004) who performed creep calculations based on the work of Bowman et 

al. (1998), and determined that statically loaded specimens survive one to four times longer than if 

loaded cyclically.   

These studies indicate that bone exposed to time varying loading regimes would fail before 

bone loaded statically.  As these studies were conducted on isolated bone the survival time would be 

due to properties of the bone, not to interactions with surrounding tissues. Van Dieën et al. (2001), 
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while using a bovine model, provided a potential mechanism for changes within the joint induced by 

compressive creep loading that may alter the fatigue resistance.  Under sustained compression, larger 

stresses initially observed in the inner area of the endplate decreased while stress in the outer area of 

the endplate increased, leading to an increased uniformity of stress and a larger distribution area (van 

Dieen et al., 2001).  This redistribution may be beneficial in protecting the central endplate area, 

known to be a compression failure site, through transference of the loads to stronger trabecular and 

endplate regions.  However, isolated bone testing indicates that trabeculae in the periphery may be 

less capable of bearing load, with central regions being 1.16 to 1.26 times stronger than the periphery 

(Keller et al., 1989; Keller et al., 1989; Lin et al., 1997).  In contrast, more recent work has 

demonstrated that the central endplate region is weaker than the peripheral endplate areas in isolated 

cadaveric endplates (Grant et al., 2001; Grant et al., 2002).  These studies indicate a potential 

mechanism where periods of static loading may increase the fatigue resistance of the intervertebral 

joint. 

As no previous work has tested these mechanisms we were driven to examine the effects of 

static load duration on the resistance of the spinal unit to repetitive compression.  Numerous studies 

(Moore and Gibson, 2003b; Moore et al., 2004; Haddock et al., 2004; Michel et al., 1993; Rapillard 

et al., 2006; Caler and Carter, 1989) have indicated an effect of load magnitude on the fatigue 

resistance of bone and spinal units (Hansson et al., 1987; Brinckmann et al., 1988; Parkinson and 

Callaghan, 2007b), necessitating an examination of load magnitude effects and any interaction with 

static load duration. 
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7.3 Methods 

7.3.1 Specimen Dissection 

 218 porcine cervical functional spinal units (FSU) were obtained frozen from a local abattoir 

(111 C3C4 and 107 C5C6).  Spines were stored frozen and thawed overnight prior to dissection, 

during which the osteoligamentous FSU was isolated by removal of surrounding musculature. Once 

isolated the exposed endplates were measured along the midline in the anterior-posterior (A) and 

medial-lateral (B) directions allowing calculation of endplate area based on the surface area of an 

ellipse (π/4×A×B).  The surface area of the two exposed endplates was calculated and the average 

represented the FSU. 

FSUs were mounted in aluminum cups, aligning the midplane of the intervertebral disc 

parallel to the surface of the cups.  In order to maintain natural lordosis of the segments, dental plaster 

(Denstone, Miles, South Bend, IN, U.S.A.) was placed in the cups and allowed to harden around the 

endplates to support the segment without reinforcing the exterior surface of the vertebrae.  The 

superior cup was mounted to the load cell of a servo-hydraulic materials testing machine (8872, 

Instron Canada, Toronto, ON, Canada).  The lower cup rested on a bearing table allowing anterior-

posterior and medial-lateral translations and axial rotation (figure 7-1).   

After mounting, the FSU was preloaded at 300 N for 15 minutes (Callaghan and McGill, 

1995; Gunning et al., 2001; Yingling et al., 1999) prior to cyclic testing.  Throughout testing 

specimens were wrapped in saline soaked gauze and plastic to prevent moisture loss.   
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Figure 7-1:  A mounted specimen prior to loading.  The saline soaked gauze and plastic have been 
removed to allow visualization of the spinal unit. 

 

7.3.2 Loading Scenario 

In order to interpret the results of this animal model study in terms of human load exposures, 

lifting was chosen as a representative activity.  To mimic this physiologic exposure an L4/L5 joint 

compression profile was obtained using a biomechanical rigid link model during a floor to waist 

height lift.  Loads were estimated for the L4/L5 joint as it has been examined in in-vivo studies 

examining the links between cumulative loading and the reporting of low back pain (Norman et al., 

1998).  This waveform was normalized to run from 0 to 1 (figure 7-2).   
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Figure 7-2:  Sample compressive loading curves, normalized to peak loads of 0.5 (50% of the 
estimated compressive tolerance).  (A) 0% rest, (B) 50% rest, (C) 100% rest, (D) 200% rest, (E) 
1000% rest. 
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 The desired peak compressive load was then used to scale the waveform to run from 

a minimum of 300 N up to the desired peak load.  300 N was chosen to represent the weight of the 

upper body during upright standing.  This load has been identified in our laboratory as the load that 

resulted in an equalization of height with no excessive creep over a 15 minute period for in-vitro 

testing.  Maximum compressive tolerance was estimated using the average endplate area and a 

previously developed regression equation (Parkinson et al., 2005).  Three peak loading magnitudes of 

50, 70 and 90% of the maximum compressive tolerance were investigated.  In addition, each 

specimen was assigned to one of five static load durations, expressed as a percentage of the 0.5 Hz 

loading cycle (Holmes and Hukins, 1994; Brinckmann et al., 1988; Hansson et al., 1987; Parkinson 

and Callaghan, 2007b).  Normalized durations of 0, 50, 100, 200 and 1000% of the loading cycle (2 

seconds) were examined.  During these periods the load was returned to 300 N.  Cyclic loading was 

continued until failure or the maximum test duration of 12 hours was reached.  Load and 

displacement data were sampled at 10 Hz.  Average cycle stiffness was calculated for each cycle 

(equation 6-1, chapter 6), which was comprised of the dynamic load application and static load 

period.  Failure was identified by an increase in displacement and decrease in cycle stiffness 

(Brinckmann et al., 1988; Hansson et al., 1987; Parkinson and Callaghan, 2007b).  Height loss at 

failure was calculated as the difference in displacement (the minimum cycle displacement) between 

the first cycle and the failure cycle.  Survival duration and cycles to failure were documented for each 

specimen.  Cumulative load, in units of MNs, was calculated through trapezoidal integration of the 

loading profile up to the failure cycle.  After failure, specimens were dissected and fracture 

morphology was recorded. 
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7.4 Statistical Analysis 

To assess the success of specimen randomization a two-way (rest duration by load 

magnitude) analysis of variance (ANOVA) was used to test for differences in endplate area.  A two-

way ANOVA was performed to analyze between group differences for cumulative load tolerated to 

failure, number of cycles tolerated to failure, survival time and height loss.  A one way ANOVA was 

employed to test for differences in the height loss between specimens which survived the testing and 

those that failed.  A protected least significant difference post hoc test was used to identify significant 

between group differences.  All tests with p<0.05 were considered statistically significant.   

 

7.5 Results 

7.5.1 Specimen Randomization 

Specimens were successfully randomized as no differences were found in the endplate areas 

between groups (table 7-1, p = 0.535).    One specimen exhibited an extremely high cumulative load 

tolerance in the 50% load magnitude and 50% static load duration group.  This specimen had an 

endplate area below the group mean (627 mm2 vs. 668 mm2) with a peak load exposure of 4.6 kN and 

tolerated 12400 cycles to failure and 74.5 MNs of cumulative compression.  All group analyses 

excluded this specimen. 
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Table 7-1:  Average endplate area (mm2) and total number of specimens tested for each combination 
of normalized load magnitude and normalized static load period.  Standard deviation of the endplate 
area is expressed in parentheses.  There were no significant differences in area between any of the 
load magnitude or static load period groups. 

 Load Magnitude (% of Compressive Tolerance) 
 50% 70% 90% 

0% 699(91) 
N = 14 

671(52) 
N = 16 

646(59) 
N = 14 

50% 668(45) 
N = 14 

652(47) 
N = 14 

694(56) 
N = 14 

100% 676(62) 
N = 15 

665(58) 
N = 15 

685(53) 
N = 14 

200% 670(65) 
N = 15 

662(62) 
N = 14 

687(58) 
N = 16 

 
 
Static Load 
Duration (% of 
load cycle) 

1000% 663(68) 
N = 14 

655(58) 
N = 15 

679(38) 
N = 14 

 

7.5.2 Specimen Survival 

Examination of the survival numbers indicated the highest survival rate among load 

magnitudes occurred for cyclic loading to a peak load of 50% (table 7-2).    The lowest survival rate 

occurred in specimens exposed to static load durations of 100% (table 7-2). 

Table 7-2:    Percentage of spinal units tested at each combination of normalized load magnitude and 
normalized static load period that tolerated 12 hours of loading without failure. 

Load Magnitude (% of Compressive Tolerance)   

50% 70% 90% Total 

0% 28.57 0 0 9.09 

50% 14.29 0 0 4.76 

100% 6.67 0 0 2.27 

200% 20.00 0 0 6.67 

Static Load 
Duration (% 
of load cycle) 

1000% 14.29 6.67 0 6.98 

 Total 16.67 1.35 0 5.96 
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7.5.3 Fracture Morphology 

All fractures occurred adjacent to the intervertebral disc and displayed one of four fracture 

patterns including:  crack (Parkinson and Callaghan, 2007b), step (Brinckmann et al., 1988), stellate 

(Brinckmann et al., 1988) and crush (Hansson et al., 1987).  Fractures exhibiting the crack 

morphology occurred most often, while step fractures were observed in the fewest number of cases 

(figure 7-3).  It appeared that increasing periods of static loading did not greatly alter the fracture 

type, however increasing the load magnitude above 50% led to a large increase in the number of 

stellate and crush type fractures (figure 7-3). 
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Figure 7-3:  (A) A histogram depicting the number of specimens displaying each of the fracture types 
separated according to static load duration.  (B)  A histogram depicting the number of specimens 
displaying each of the fracture types separated according to load magnitude exposure. 
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7.5.4 Cumulative Load Tolerance 

Cumulative load tolerated to failure was not significantly affected by insertion of static load periods 

(p = 0.1646).  Although not statistically significant, moderate static load periods (50 and 100%) result 

in lower cumulative tolerances than 0 or 1000% durations at moderate load magnitudes, resulting in a 

“u” shaped relationship (Figure 7-4a).  Load magnitude significantly altered cumulative load 

tolerance (p<0.0001), with specimens in the 50% loading group exhibiting higher cumulative load 

tolerance than those in the 70 and 90% groups (Figure 7-4b).   
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Figure 7-4:  (A) Bar chart of average cumulative load (MNs + 1 standard deviation) tolerated to 
failure at each level of static load duration.  No significant differences were found for between group 
comparisons.  (B)  Bar chart of average cumulative load (MNs + 1 standard deviation) tolerated to 
failure at each level of load magnitude.  Significantly different groups are marked with different 
letters; groups marked by the same letter are not significantly different.  Note that in (A) and (B) the 
Y axes are logarithmic. 
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7.5.5 Height Loss 

 Height loss was significantly altered by load magnitude (p < 0.0001) and static load duration 

(p = 0.0301), with no interaction between these variables (p = 0.4262).  Post hoc analyses indicated 

that increased peak loading levels resulted in decreased height loss prior to failure, with all between 

group comparisons significant (figure 7-5a).  At moderate load levels, 50 and 100% static load 

durations resulted in the lowest height loss (figure 7-5b).  Surviving specimens demonstrated greater 

height loss than those that failed (4.76mm vs. 2.11mm, p < 0.0001). 

 

 

 



 

  172

 
Figure 7-5:  (A) Bar chart of average height loss (mm + 1 standard deviation) tolerated to failure at 
each level of load magnitude.  Significantly different groups are marked with different letters.  (B)  
Bar chart of average height loss (mm + 1 standard deviation) tolerated to failure at each level of static 
load duration. Those specimens that had no static load exposure demonstrated significantly greater 
height loss than those receiving 50%, 100% or 1000% static load durations.  Significantly different 
groups are marked with different letters; groups marked by the same letter are not significantly 
different. 
 

7.5.6 Survival Time 

A significant interaction was found between load magnitude and static load duration effects 

on survival time (p = 0.0002).  Examination of the effects of static load duration at each load level 
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revealed that static loading only significantly effected survival time at 50% (p = 0.0076) and 70% (p 

= 0.0190) load magnitudes.  Post hoc analysis of the results for the 50% and 70% loading groups 

revealed that insertion of 1000% static load durations resulted in a greater increase in survival time 

than all other load periods (table 7-3).  Analysis of load magnitude effects at each rest duration 

revealed that specimens exposed to static load periods of 0% (p = 0.0003), 200% (p = 0.0303) and 

1000% (p = 0.0062) were significantly influenced by the peak load magnitude.  Post hoc analysis 

indicated those specimens loaded to a peak magnitude of 50% lasted significantly longer than those 

exposed to 70% or 90% (table 7-3).   

 

Table 7-3:  Average survival time (seconds) for each combination of normalized load magnitude and 
normalized static load period.  Standard deviations are expressed in parentheses.  Groups marked with 
an asterisk (*) do not significantly differ in survival time when compared within a load magnitude 
and across static load duration.  Groups with different letters display a significantly different survival 
time when compared within a static load period and across load magnitude. 

 Static Load Duration (% of work cycle) 
 0% 50% 100% 200% 1000% 
50% 

 
867.8 

(673.6) A 
* 

906.8 
(1434.8) A 

* 

1227.4 
(2342.4)  

A 
* 

2972.5 
(5311.9)  

A 
* 

10796.5 
(15288.5)  

A 
 

70% 258.9 
(500.3) B 

* 

370.5 
(978.0)  

A 
* 

209.6 
(351.8)  

A 
* 

562.7 
(1187.0)  

B 
* 

1769.4 
(2669.7)  

B 
 

Load 
Magnitude (% 
of Compressive 

Tolerance) 

90% 17.1 
(28.9)  

B 
* 

15.6 
 (29.9)  

A 
* 

27.4  
(62.0)  

A 
* 

22.5 
(35.1)  

B 
* 

53.4 
(75.1)  

B 
* 
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7.5.7 Cycles to Failure 

Analysis of cycles to failure found that load magnitude significantly altered the number of 

cycles to failure (p < 0.0001) with those loaded to a peak of 50% tolerating a higher number of cycles 

prior to failure than either the 70% or 90% groups, which were not significantly different (Figure 7-

6).  Static load duration did not alter the number of cycles tolerated to failure (p = 0.8344). 

 
Figure 7-6:  Bar chart of average number of cycles (+ 1 standard deviation) tolerated to failure at 
each level of load magnitude.  Significantly different groups are marked with different letters; groups 
marked by the same letter are not significantly different.  Note the Y axis is logarithmic. 
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7.6 Discussion 

This study has shown that long static load periods (1000%) increased the time to failure in the 

porcine cervical spine.  It appears that static load periods impact the cumulative load tolerated to 

failure but differences were not statistically significant due to high variability in response.  Similarly, 

differences in cycles to failure were not significantly altered by static load exposure.  Load magnitude 

was found to affect the survival rate, cumulative load, cycles to failure, height loss and the survival 

time of the spinal units.   

The effects of load magnitude on cumulative load tolerance were expected based on previous 

research (Parkinson and Callaghan, 2007b).  Additionally, studies examining fatigue failure in bone 

have shown that increasing load magnitudes decreased tolerance to loading (Michel et al., 1993; 

Bowman et al., 1998; Caler and Carter, 1989; Haddock et al., 2004; Moore et al., 2004; Moore and 

Gibson, 2003b; Zioupos et al., 2001; Rapillard et al., 2006).  Higher loads also resulted in 

significantly lower amounts of height loss prior to failure, a result not found in the work of Parkinson 

and Callaghan (2007b).  This may indicate a different mechanism of failure, with intervertebral disc 

changes (creep) not being as influential at higher loading magnitudes due to a decreased exposure 

time prior to failure.  The amount of height lost across load groups may also be influenced by load 

rate.  To maintain the curve shape and loading frequency the loading rate differed between load 

groups, with the largest difference occurring between specimens loaded to peaks of 90% and 50%, 

with the larger load application resulting in a load rate 1.7 times greater.  Research has found that 

spinal units subjected to higher loading rates lose less height than those loaded at lower rates 

(Yingling et al., 1997; Race et al., 2000b).   

Based on previous in-vivo work which found static loading generated larger intervertebral 

disc height loss than dynamic loading (Ching et al., 2003) it was expected that exposure to the longest 

static loading duration would create the greatest height loss.  However, specimens which did not 
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receive static loading lost the most height.  This may be due to an inability to maintain fluid content 

within the intervertebral disc without static load periods.  To prevent fluid loss to the atmosphere, 

specimens were surrounded in saline soaked gauze and plastic, however no measures were taken to 

prevent fluid loss or transfer between tissues of the FSU.  The absence of static low level load periods 

may have prevented fluid recovery and led to increased height loss. 

Specimens displaying the greatest height loss may have received beneficial effects from 

associated changes.  Creep loading, which induces height loss (Adams et al., 1996; Keller et al., 

1987; Race et al., 2000b; McNally and Adams, 1992), has been shown to alter load distribution 

within the disc.  With creep an increasing amount of load is carried in the periphery of the disc and 

less load is carried centrally (Adams et al., 1996; McNally and Adams, 1992).  This redistribution of 

load may improve the fatigue resistance of the centrally located trabeculae which appear to be the site 

of failure under fatiguing compressive loads (Brinckmann et al., 1988; Hansson et al., 1987; 

Parkinson and Callaghan, 2007b) by increasing the load distribution area (van Dieen et al., 2001).  

This transfer of load from the central area of the disc to the periphery has been demonstrated in 

injured segments (Adams et al., 2000) providing a mechanism for continued load carriage despite 

injury.  If this redistribution mechanism does alter the load tolerance of the spine it appears to play a 

role in the duration of loading tolerated and did not influence the cumulative load or cycle tolerance 

of the FSU.  It was found that the surviving specimens exhibited more than twice the average height 

loss of the failed specimens, perhaps indicating an ability of survivors to redistribute load throughout 

the disc and thereby extend the life of the FSU and underlying bone. 

 This study is subject to several limitations that should be acknowledged, the first of which is 

the use of a porcine model.  The porcine spine model has been heavily employed (Callaghan and 

McGill, 2001; Callaghan and McGill, 1995; Yingling et al., 1997; Gardner-Morse and Stokes, 2003; 

Goertzen et al., 2004; Tsai et al., 1998) and allows control over age, size, genetics, illness and diet of 
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the animals.  Previous research has shown that separate spine samples obtained from the current 

supplier did not differ in size, bone mineral composition, or compressive tolerance indicating a 

homogenous sample (Parkinson et al., 2005).  The anatomical and functional similarities between the 

human and porcine spine have been demonstrated (Yingling et al., 1999; Oxland et al., 1991) and 

additional work has determined that the trabeculae display similar architecture (Lin et al., 1997).  

Additionally Haddock et al. (2004) have shown a similarity in behaviour between young bovine and 

aged human trabecular bone indicating that trabecular bone may show similar fatigue response in 

different species.   

 The potential effects of repair and recovery should be acknowledged.  This study employed 

cycle numbers exceeding those previously reported, which were less than 7000 (Brinckmann et al., 

1988; Hansson et al., 1987; Holmes and Hukins, 1994).  One thousand cycles has been previously 

chosen to simulate an hours worth of vigorous activity (Hansson et al., 1987).  Here, the maximum 

cycle number allowed was dictated by a 12 hour time limit and varied based on the static load 

duration, ranging from 21600 to 1964 cycles for 0% and 1000% static load duration respectively.  

The greater cycle number allowed fractures to develop at lower loads, which may not have occurred 

with lower cycle numbers.  Although it is important to acknowledge that no physiological repair 

processes were occurring, their impact would have been minimal over the durations observed.  Lotz et 

al. (1998) concluded that murine intervertebral discs exposed to one week of compression failed to 

fully recover one month after removal of compression while researchers investigating fracture repair 

of bone obtained measures of bone repair initiation one week after injury (Garavello-Freitas et al., 

2003; Tami et al., 2003), although clotting can occur at a fracture site within 6 to 8 hours of injury 

(Tortora and Grabowski, 1996).  As 93% of the specimens that failed in this study failed within 1 

hour, tissue repair would not have affected the fatigue responses.  In addition to the lack of cellular 
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repair, physiologic fluid flow (blood, extracellular) does not exist in this testing approach and its 

effects are unknown. 

 An additional limitation exists in the prediction of the maximum compressive tolerance of the 

spinal units.  The equation used had an error of estimation of 11% (Parkinson et al., 2005), which 

could have resulted in under and over estimation of the peak loads applied in this work.  It was 

expected that errors in estimation would be equally distributed between over and under estimations 

and would therefore not alter the relationships observed.  While these errors are acknowledged and 

may contribute to the variability reported, earlier research indicates that the implementation of more 

sophisticated tools in estimation of ultimate compressive strength do not lead to any improvements 

(Parkinson et al., 2005). 

 The results of this study indicated that the cumulative load tolerance of vertebral trabecular 

bone in intact spinal units is significantly altered by the loading magnitude but not significantly 

altered by the insertion of static load periods.  Static load periods extend the survival time of spinal 

units if the load periods are sufficiently long although they did not alter the cumulative load tolerance 

at moderate load magnitudes.  At high load magnitudes (90% of the estimated compressive load 

tolerance) static load periods of any duration did not alter cumulative load tolerance or survival 

duration.  Therefore the cumulative compressive tolerance of the spinal unit cannot be significantly 

increased by the insertion of periods of static load.  The inclusion of moderate length static loading 

periods may even lower the resistance to cumulative compression by limiting height loss and load 

redistribution which may function to enhance resistance to loading.  Based on these results, it does 

not appear that periods of static rest can be employed to reduce the risk of compression induced 

injuries of the spine.  These results have been used to generate a weighting approach that can be used 

to account for the effects of load magnitude and rest exposure on the risk of injury due to cumulative 
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loading (Appendix A).  Future research should be conducted to examine the impact of dynamic rest to 

determine if it may be more effective in reducing the risk of injury. 
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Chapter 8 
Conclusions 

 

8.1 Addressing the Global Hypothesis 

 

1.  Can the data needed to use our most sophisticated biomechanical tools be reduced to a level that 

can be obtained in industry in order to facilitate large scale documentation of spinal load exposure in 

the workplace? 

 

Hypothesis 1: 

Artificial neural networks will allow for a reduction in the amount of input information needed to 

obtain estimates of spinal load and moment exposures equivalent to those of rigid link and EMG 

assisted spine models. 

 

The results of study one have indicated that artificial neural networks may provide a method to allow 

documentation of cumulative and average moments and load exposures through time.  However, they 

do not appear capable of providing accurate peak exposure predictions and should not be 

implemented in scenarios where it is believed that the risk of acute excessive loading is the primary 

injury mechanism. 
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Hypothesis 2: 

The errors associated with a quasi-dynamic posture matching tool (3DMatch) relative to rigid link 

and EMG-assisted models can be quantified and accounted for to allow physiologically reasonable 

estimates of spine loading. 

  

Study two has shown that 3DMatch based estimates of peak loads should be corrected for over 

estimation errors, and these corrections should be gender specific (0.62 for male and female peak 

extension moment, 0.836 for males and 0.518 for females when predicting cumulative extension 

moments).  In terms of load exposures, 3DMatch proved to provide peak bone on bone compression 

estimates equal in magnitude to those obtained with an EMG-assisted model.  If 3DMatch is to be 

used for determination of cumulative exposure, it should be corrected for the compression bias that 

exists under zero-moment or low external moment conditions. 

 

2.  Can new information regarding spinal exposure to compression and sagittal flexion/extension be 

used to expand our current understanding of tissue injury mechanisms and thresholds? 

 

Hypothesis 1: 

By applying physiologic dynamic kinetic and kinematic profiles to isolated spinal units it will be 

possible to elucidate injury mechanisms associated with excessive load or excessive motion and from 

the combined loading paradigm identify a transition in injury mechanisms. 

 

The loading paradigm employed in study three was able to produce a clear delineation of where 

intervertebral disc herniation becomes the dominant injury mechanism (at loads less than 30% of the 
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estimated compressive tolerance of the spine).  Disc herniation is not likely to be the primary injury 

mechanism when loads exceeding 30% are applied, in these scenarios the endplate or vertebral bone 

will fracture first.  However, it does appear that the application of repetitive flexion and extension 

motion decreases the ability of the spinal unit to tolerate compression.  This information can be used 

in ergonomic assessments to help in focusing on load and motion as separate injury mechanisms 

based upon the particular exposure. 

 

 

3.  Is it possible that loads can be redistributed across the vertebral endplate in such a way as to 

enhance the ability of the spine to withstand cumulative compression? 

 

Hypothesis 1: 

By inserting periods of low level static loading between dynamic load applications the spinal unit will 

be capable of tolerating greater amounts of cumulative compression. 

 

By examining various lengths of low level static ‘rest’ periods study four was able to show that the 

inclusion of these periods between dynamic loading cycles did not result in an enhancement of the 

spine’s resistance to cumulative loading.  In fact, it appeared that periods of moderate static rest might 

actually decrease tolerance to this dynamic load profile.  Therefore care should be taken when 

attempting to manipulate work rest scenarios to ensure that the targeted changes are actually 

beneficial, not neutral or even detrimental. 
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8.1.1 Summary 

This work has highlighted several approaches that may be used to document peak and 

cumulative load and moment exposures while industrial tasks are performed.  These tools were 

compared to the most sophisticated biomechanical models that are currently employed in laboratory 

settings.  While relative errors between the methods have been quantified and corrective approaches 

identified, the work has not yet been extended into industry.  While the conclusions of studies one and 

two support the viability of the posture matching and artificial neural network approaches, research 

must still be performed to determine how well the obtained exposure estimates will relate to the 

reporting of injury. 

 In addition, tissue based evidence has been provided to clarify the effects of rest and posture 

on injury development in the osteoligamentous spine.  Based upon the observations, it would appear 

that disc herniation is not a likely injury mechanism when load exposures are sufficiently large and 

are more likely to occur in jobs that require repetitive flexion under very light loads.  Additionally, 

the results of study four indicate that static periods of rest do not enhance the ability of the 

osteoligamentous spine to tolerate cumulative load and therefore the use and benefit of rest periods in 

work cycles must be interpreted with caution. 

 The four studies included in this thesis are all related in that they provide new information 

regarding methods that may be used to predict load exposures and tissue tolerances.  The studies 

regarding artificial neural network and 3DMatch provided kinematics, joint moments and joint load 

exposures that were used to determine the loading profile used in examining the role of motion in 

cumulative injury development (figure 8-1).  The predicted joint kinetics can also be used in future 

work to determine reasonable load exposures given similar task demands.  The tissue based studies 

provided valuable new information on spine tolerances to load, motion and rest that can be 

incorporated into current tissue injury models.  
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Figure 8-1:  Flow chart highlighting the interconnections between the studies comprising this thesis.  

Note that the dashed lines indicate results obtained from simplified models.  The orange lines indicate 

variables which were carried directly from the in-vivo studies to the in-vitro studies. 

 

8.1.2 Future Directions 

Although this work stands as a new contribution to the fields of biomechanics, injury 

determination and ergonomics, perhaps its greatest strength is in the development of future lines of 

inquiry.  The obvious extension of any laboratory based study is to take the new methods and 

conclusions and test them in an applied setting, in this case industrial based manual materials 

handling tasks.  To truly determine the effectiveness of the artificial neural networks and 3DMatch 
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approaches they need to be assessed under true industrial conditions to assess their ability to isolate 

jobs that pose a greater risk of injury from those that do not.  In doing such experimentation it is 

hoped that these tools will also allow for the documentation of industrial exposures as they are altered 

by personal factors that may influence loading exposures despite constant task demands.  

Additionally, it is hoped that this work will raise the profile of artificial neural networks as a potential 

tool in predicting joint loads.  While a thorough approach was applied to try and develop the best 

neural network configurations for the desired predictions there may have been inherent limitations 

present in using the preset network forms contained within the Matlab software.  It may be possible to 

develop neural networks that are more accurate in their prediction of peak and cumulative loads, and 

it would be a disservice to the potential of this approach to not explore alternative configurations.  In 

addition, it would be beneficial to examine a wider variety of industrially related tasks to determine 

the ability of the neural network and 3DMatch approaches to adapt to more novel exposures. 

The tissue based values determined in this thesis are intended to improve our understanding of 

how tissue tolerance can be altered by modifying factors, an understanding which is critical in 

assessments of injury risk.  However, this work was based upon an animal model and as such should 

not be taken to reflect the absolute magnitude of exposures expected to lead to injury in the human 

spine, but should be understood to reflect the general shape of the exposure-injury curves due to 

morphological and mechanical similarities between the human and animal spines.  Future work 

should be undertaken to determine proper scaling or transfer functions that may allow for a direct 

comparison of the animal model resultant magnitudes to those of humans.  This line of research will 

need to marry the results from animal, cadaver, and epidemiological studies.   
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Appendix A 

 The following paper, entitled ‘Quantification of the relationship between load magnitude, rest 

duration and cumulative compressive tolerance of the spine: development of a weighting system for 

adjustment to a common injury exposure level’ presents the results of chapter 7 as they were 

employed to develop weighting factors to account for the role of load and rest in the development of 

cumulative injuries.  The data is presented in a more theoretical manner and equations are provided to 

allow determination of appropriate weighting factors based upon peak load exposures and rest 

durations.  It is intended to illustrate how knowledge about tissue tolerance can be transferred out of 

the laboratory and employed in situations of injury risk determination. 
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