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Abstract

In this thesis, I have explored the different approaches towards proving Artin’s

‘primitive root’ conjecture unconditionally and the elliptic curve analogue of the

same. This conjecture was posed by E. Artin in the year 1927, and it still remains an

open problem. In 1967, C. Hooley proved the conjecture based on the assumption

of the generalized Riemann hypothesis. Thereafter, the mathematicians tried to get

rid of the assumption and it seemed quite a daunting task. In 1983, the pioneering

attempt was made by R. Gupta and M. Ram Murty, who proved unconditionally

that there exists a specific set of 13 distinct numbers such that for at least one

of them, the conjecture is true. Along the same line, using sieve theory, D. R.

Heath-Brown reduced this set down to 3 distinct primes in the year 1986. This is

the best unconditional result we have so far. In the first part of this thesis, we will

review the sieve theoretic approach taken by Gupta-Murty and Heath-Brown. The

second half of the thesis will deal with the elliptic curve analogue of the Artin’s

conjecture, which is also known as the Lang-Trotter conjecture. Lang and Trotter

proposed the elliptic curve analogue in 1977, including the higher rank version, and

also proceeded to set up the mathematical formulation to prove the same. The

analogue conjecture was proved by Gupta and Murty in the year 1986, assuming

the generalized Riemann hypothesis, for curves with complex multiplication. They

also proved the higher rank version of the same. We will discuss their proof in

details, involving the sieve theoretic approach in the elliptic curve setup. Finally,

I will conclude the thesis with a refinement proposed by Gupta and Murty to find

out a finite set of points on the curve such that at least one satisfies the conjecture.
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Chapter 1

Introduction

“The deepest interrelationships in analysis are of an arithmetical nature”

- Hermann Minkowski

In the preface to his ‘Diophantische Approximationen’, Minkowski made this

famous remark which has become a proven conviction for all the number theorists

around the world. Gauss discovered and described such an amazing interrelation-

ship in his ‘Disquisitiones Arithmeticae’. Let us take a look at Gauss’s observation.

1.1 Gauss’s Observation

Gauss asked the following questions regarding the period length of decimal fractions

• Why does 1
17

= 0.05882352941176470588235294117647... have a period of 16?

• Why on the other hand 1
37

= 0.027027027... has a period length 3?

• Why does the binary fraction expansion of 1
99007599

has a period length of

nearly 50 million?

To answer these questions, Gauss observed the following. Let us assume that p

is a prime not equal to 2 or 5 and let

1

p
= 0.a1a2...ak...

be its decimal expansion with period k. Then, we can observe that

1

p
=
(a1

10
+

a2

102
+ · · ·+ ak

10k

)(
1 +

1

10k
+

1

102k
+ · · ·

)
=

M

10k − 1
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for some integer M , and hence 10k − 1 = Mp, i.e, 10k ≡ 1 (mod p) . So, from this

argument it is clear that the period of the decimal fraction expansion of 1
p

depends

on the least exponent k such that the above mentioned congruence relation holds

true. In other words, the period length is equal to the ‘order’ of 10 modulo p.

1.1.1 Order Modulo Primes

For a prime p, the multiplicative group (Z/pZ)∗ is cyclic of order p− 1. So, if the

order of 10 modulo p is the period length k, then we must have 0 < k ≤ p − 1.

Thus the largest period of the decimal expansion of 1
p

can occur if and only if 10

has order p− 1 modulo p, i.e, if 10 be a cyclic generator of the multiplicative group

(Z/pZ)∗. In number theory, we refer to the cyclic generators of this group as the

‘Primitive Roots’ of the prime p. So, the largest period will occur for 10 being a

primitive root of p. More generally, the period of the base a representation of 1
p

will be the largest, i.e, p − 1, if and only if a is a primitive root modulo p, i.e, a

satisfies the congruence relation ak ≡ 1 (mod p) for the smallest value of k = p− 1

with p - a. For a general integer n =
∏
pi which is a product of distinct primes pi,

if gcd(a, n) = 1 then the period length of 1
n

expanded in base a will be given by

lcm {ord (a) modulo pi} [16].

1.1.2 Primitive Roots of Primes

In the case of a given prime p, the number of its primitive roots is well known to be

φ(p− 1), where φ is the famous Euler’s totient function which counts the number

of positive integers less than or equal to a certain number which are coprime to it.

Gauss thought of reversing the question. Instead of fixing a prime p and asking

the number of its primitive roots, Gauss suggested to fix a random integer, 10 say,

and ask how many times it is a primitive root modulo p, where p varies over all the

primes. Though Gauss posed this question and also had an intuition that 10 will be

a primitive root for infinitely many primes, he did not provide any definite answer

or a general conjecture to show how often a number is a primitive root modulo

primes. His intuition was formalized in a number theoretic setting in terms of a

conjecture by E. Artin in 1927 [2].

2



1.2 Artin’s Conjecture

Conjecture 1.1 (Artin’s Conjecture) For any given integer a, if a 6= 0, 1,−1

and if a is not a perfect square, then there exist infinitely many primes p for which

a is a primitive root modulo p.

Moreover, if Na(x) denotes the number of primes p ≤ x for which a is a primitive

root, then the stronger version of the conjecture states

Conjecture 1.2 (Artin’s Conjecture: Stronger Form) If the integer a 6= 0, 1,−1

and a is not a perfect square, then there exists a positive constant A(a) depending

on a such that for x→∞, Na(x) ∼ A(a) x
log x

.

1.2.1 Artin’s Intuition

In the stronger form of the conjecture, the quantity x
log x

is just the density of primes

in integers, obtained from the prime number theorem. Regarding the positive

constant A(a), Artin’s intuition was as follows [2].

The necessary and sufficient condition for a being a primitive root of p is

a(p−1)/q 6≡ 1 (mod p)

for every prime divisor q of p− 1. This is because of the fact that if k is the order

of a modulo p, then k|(p− 1), and if k 6= (p− 1), then k|(p− 1)/q for some prime

divisor q of p − 1. From a heuristic point of view, a is a primitive root of p if the

following two events do not occur for any prime divisor q of p− 1

p ≡ 1 (mod q)

a(p−1)/q ≡ 1 (mod p)

Let us invert the problem scenario to fix q and find the probability that a prime

p satisfies the above two conditions. By Dirichlet’s theorem, q|(p − 1), i.e, p ≡ 1

(mod q) is true for primes p with frequency 1
q−1

. Again, a(p−1)/q ≡ 1 (mod p) occurs

with a probability of 1
q
. The probability that both these events occur simultaneously

is 1
q(q−1)

as they can be assumed to be independent. The probability that a is

a primitive root of p is equal to the probability that the above mentioned two

events do not occur for any q. Hence, the constant term A(a) which denotes this

probability can heuristically be estimated by∏
q prime

(
1− 1

q(q − 1)

)

3



1.3 Approaches to Prove Artin’s Conjecture

Since the proposal of the conjecture in 1927, a lot of mathematicians have tried

to prove it through different approaches. The first successful approach towards

proving the conjecture was by C. Hooley in the year 1967.

1.3.1 Hooley’s Conditional Approach

In his paper [11], Hooley proved the Artin’s conjecture as well as its stronger asymp-

totic version for Na(x) subject to the assumption of the generalized Riemann hy-

pothesis, which is a natural extension of the original Riemann hypothesis to the

Dedekind zeta function of a number field. The final implication of Hooley’s proof is

that if Artin’s conjecture is false, then the generalized Riemann hypothesis is false

as well.

1.3.2 Gupta and Murty’s Unconditional Approach

After Hooley proved the conjecture on a conditional base of Riemann hypothesis,

mathematicians started exploring the conjecture without any conditional assump-

tions. The first successful attempt in this case was pioneered by R. Gupta and

M. Ram Murty [7]. In 1983, they proved, without any conditions, that there is a

specific set of 13 distinct numbers such that for at least one of these 13 numbers,

Artin’s conjecture is true. This was the first unconditional proof of the existence

of some number for which the conjecture is true.

1.3.3 Heath-Brown’s Unconditional Approach

To prove the Artin’s conjecture completely and unconditionally, the set of 13 inte-

gers had to be reduced down to 1. Gupta, Kumar Murty and Ram Murty proved

the conjecture for a set of 7 integers. The largest break through came in 1986

from D.R. Heath-Brown [10]. He used a refined sieve theory result by Fouvry and

Iwaniec [6] and Chen’s ‘Reversal of Roles’ technique to reduce this set down to a set

of 3 primes. The implication of his result is that the conjecture is unconditionally

true for almost all, except at most 2 exceptional, primes.

We will discuss in details the unconditional approaches by Gupta-Murty and

Heath-Brown in Chapter 2, where we will notice the extent to which analysis and

sieving techniques are used in such a core arithmetical problem.
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1.4 Artin’s Conjecture: Elliptic Curve Analogue

It is a general trait in number theory to view a specific problem from different analo-

gous standpoints by constructing its analogues in various mathematical frameworks.

Similarly, an analogue of Artin’s conjecture for elliptic curves was formulated by

Lang and Trotter in 1977.

1.4.1 Lang and Trotter

The elliptic curve analogue of the Artin’s Conjecture was formulated by Lang and

Trotter [15] in 1977. As the original conjecture talks about the density of primes

for which a given integer would be a primitive root, the analogue deals with the

density of primes for which the reduction of an elliptic curve modulo that prime

would have a given rational point as a primitive point. So, we are essentially moving

to the frame of elliptic curve groups and points on the curves from the general space

of integers and primitive roots. They considered the analogue of a primitive root

to be a primitive point which is the generator of the elliptic curve group reduced

modulo a prime. With this setup, they proposed the following analogue of Artin’s

conjecture.

Conjecture 1.3 (Lang and Trotter) If we consider an elliptic curve E(Q) de-

fined over the rationals and a rational point a ∈ E(Q) of infinite order, then that

point a will be a primitive point of E(Fp), the reduction of E modulo p, for infinitely

many primes p, i.e, the point a, reduction of a modulo p, will generate E(Fp) for

infinitely many primes p.

They also proposed an analogous conjecture for the higher rank elliptic curves

and proceeded to set up the mathematical platform to prove these analogues. We

will discuss more about their approach in Chapter 3.

1.4.2 Gupta and Murty

The analogous conjecture proposed by Lang and Trotter was extended to form

an analogue of the stronger asymptotic version by R. Gupta and M. Ram Murty

[8] in 1986. In this paper, they also proved the stronger version of the elliptic

curve conjecture with the assumption of generalized Riemann hypothesis and for

the primes that split completely in some quadratic extension of Q where the elliptic

curve has complex multiplication over the whole ring of integers of that extension.

5



Gupta and Murty also proved that the higher rank version of the conjecture pro-

posed by Lang and Trotter is true under the assumption of the generalized Riemann

hypothesis for elliptic curves with rank as high as 18 with no complex multiplica-

tion or 10 in case of complex multiplication. In the same paper, they refined this

result to show that the assumption of GRH can be relaxed to an assumption of

α-GRH. We will discuss these results in details in Chapter 3. Besides, they also

proposed an unconditional approach in the elliptic curve analogue and obtained a

set of exceptional points, same as in the general unconditional approach. We will

discuss this refinement in the concluding portion of this thesis.

In this thesis, I will discuss the different approaches tried out so far in the

direction of proving Artin’s Conjecture. Chapter 2 will deal with the uncondi-

tional approaches taken by Gupta-Murty and Heath-Brown, using sieve theory and

techniques from analytic number theory. Chapter 3 deals with the elliptic curve

analogue of the conjecture in details and I will discuss the approaches taken by

Lang-Trotter and Gupta-Murty in proving the analogue. I will conclude the thesis

through an overall discussion of the latest progresses in this field of number theory.

6



Chapter 2

Artin’s Conjecture: Unconditional

Approach

The first successful attempt towards proving the Artin’s conjecture, without any

conditional assumption, was by R. Gupta and M. Ram Murty [7], in 1983. They

proved the theorem in Section 2.1 which essentially implies that the conjecture is

unconditionally true for almost all integers, except at most 12. Thereafter, D.R.

Heath-Brown reduced this set down to a set of 2 exceptional primes using refined

sieving techniques. We will discuss his approach in Section 2.2.

2.1 Result 1: Gupta and Murty

Gupta and Murty attempted to prove the stronger version of the Artin’s conjecture.

So, if we define

Na(x) = #{p ≤ x : a is a primitive root of p}

then, the following result by Gupta and Murty proposes an asymptotic estimate of

Na(x) without any conditional assumption.

Theorem 2.1 (Gupta and Murty, 1984) Let q, r and s denote three distinct

primes. If we define the following set

S =
{
qs2, q3r2, q2r, r3s2, r2s, q2s3, qr3, q2r3s, q3s, qr2s3, qrs

}
then for some a ∈ S, there exists a δ > 0 such that

Na(x) ≥ δx

log2 x

7



Proof. The proof of this theorem relies heavily on the following lemmas. We will

first proceed to prove the theorem assuming the results to be true, and then we will

subsequently prove the lemmas in the following subsection. For the proof of this

theorem and the lemmas in this section, we will write q, r and s to denote three

distinct primes.

Lemma 2.1 There exists a δ > 0 such that

#{p ≤ x : F∗p = 〈q, r, s〉} ≥ δx

log2 x

Proof. Proved in Section 2.1.1.

Lemma 2.2 Let us consider the 3-tuple of non-negative integers u = (u1, u2, u3),

where we denote qu1ru2su3 by (q, r, s)u. Now, if we have a set S1 of 3-tuples satisfying

(i) For any u ∈ S1, u 6≡ (0, 0, 0) (mod 2)

(ii) For each u ∈ S1, there is at most one v ∈ S1 such that v 6= u and v ≡ u

(mod 2)

(iii) For each 2-dimensional subspace V ⊂
( Z

2Z

)3
, any three elements of SV = {u ∈

S1 : u 6≡ v (mod 2) ∀ v ∈ V } are linearly independent

and if F∗p = 〈q, r, s〉, then for some u ∈ S1, (q, r, s)u is a primitive root modulo p

provided that (p− 1) has at most 3 odd prime divisors, all sufficiently large.

Proof. Proved in Section 2.1.1.

Now, with respect to the conditions (i) and (ii) in Lemma 2.2, we can construct

the following set of thirteen 3-tuples:

S1 = {(1, 0, 2),(3, 2, 0), (2, 1, 0), (0, 3, 2), (0, 2, 1), (2, 0, 3),

(1, 3, 0), (3, 1, 2), (0, 1, 3), (2, 3, 1), (3, 0, 1), (1, 2, 3), (1, 1, 1)}

where the elements of the first 6 pairs of 3-tuples are mutually congruent modulo 2.

We just need to verify the validity of condition (iii) to apply the result of Lemma

2.2 to this set S1. To verify this condition, we need to consider the following two

cases

8



I. Let the three elements x1, x2, x3 ∈ SV are incongruent modulo 2. If y1, y2, y3

be the reduction of x1, x2, x3 modulo 2, then we can observe that a · y1 6≡ 0

(mod 2) and a · y2 6≡ 0 (mod 2) implies a · (y1 + y2) ≡ 0 (mod 2), for a =

(a1, a2, a3) as in the proof of Lemma 2.2. Hence, y3 6= y1 + y2 as a · y3 6≡ 0

(mod 2). So, x1, x2, x3 are linearly independent.

II. Let two elements of the three are congruent, i.e. x1 ≡ x2 (mod 2), say. Then

the cross product of these two will surely be a multiple of one of the following

6 vectors:

(2,−3,−1), (−1, 2,−3), (−3,−1, 2), (−3, 1, 4), (4,−3, 1), (1, 4,−3)

In each of these cases, x1 and x2 are the only vectors in S1 which are orthogonal

to it. Thus, any three elements of this kind in S1 will be linearly independent.

Thus, we obtain that the set S1 as constructed above follows all the conditions

of Lemma 2.2. Therefore, if F∗p = 〈q, r, s〉, then for some u ∈ S1, (q, r, s)u is a

primitive root modulo p, provided that (p − 1) has at most 3 odd prime divisors,

all sufficiently large. By Lemma 2.1, we also know that there exists a δ > 0 such

that F∗p = 〈q, r, s〉 for at least δx
log2 x

primes p ≤ x. Hence, the theorem follows for

the set S which consists of the elements (q, r, s)u for u ∈ S1. �

2.1.1 Proof of Lemmas

Proof of Lemma 2.1

Proof of this lemma almost entirely depends on the following result. Actually, the

following result constructs the main framework behind proving Theorem 2.1.

Lemma 2.3 Let us fix a prime q and a constant 0 < ε < 1
4
. If α = 1

4
+ ε, then

there exists a constant c > 0 such that

#

{
p ≤ x :

(
q

p

)
= −1, t is prime and t|(p− 1) ⇒ t = 2 or t > xα

}
≥ cx

log2 x

Proof. This lemma is the key element in proving Theorem 2.1. The result can

be proved for the exponent α = 1
4
− ε using Theorem 1 of Iwaniec [13] and the

Bombieri-Vinogradov theorem. A finite set can be obtained in Theorem 2.1 just by

proving Lemma 2.3 with an exponent α > 0. The lower bound Selberg sieve can

be utilized along with the Bombieri-Vinogradov theorem to prove the same result

9



for α = 1
6
− ε. Gupta and Murty [7] used a finer result by Iwaniec [12] to get the

specific value of α = 1
4

+ ε and to obtain the thirteen element optimal set in this

case. The size of this set S in the theorem decreases if Lemma 2.3 is strengthened

by increasing the value of α. We will see a nice improvement to this Lemma by

Heath-Brown [10] in the next section which allows him to strengthen the theorem

by proving it true for a 3-element set. �

Now, let us embark on our path of proving Lemma 2.1. Let us consider the

primes p ≤ x such that p does not split in Q(
√
q), i.e.

(
q
p

)
= −1, and for t prime,

t|(p − 1) ⇒ t = 2 or t > x
1
4

+ε. Then, by Lemma 2.3, we obtain that the number

of such primes p is at least δx
log2 x

. Now, for these primes, let us count the number

of occasions where F∗p 6= 〈q, r, s〉. If F∗p 6= 〈q, r, s〉, let us assume that the prime t

divides the index of 〈q, r, s〉 in F∗p. Then, obviously t|(p− 1) and hence either t = 2

or t > x
1
4

+ε. But, if t = 2, then we obtain

2|[F∗p : 〈q〉] ⇒
(
q

p

)
= 1 ⇒ p splits in Q(

√
q)

which is a contradiction as per the choice of p. Therefore, we can say that

t|[F∗p : 〈q, r, s〉] ⇒ t > x
1
4

+ε ⇒ |〈q, r, s〉| < x
3
4
−ε

Now, we will require the following result to count the number of such exceptional

primes p for which |〈q, r, s〉| < x
3
4
−ε.

Lemma 2.4 Let us consider the following set

G =
{
qarbsc : a, b, c ∈ Z

}
and let Gp be the reduction of G modulo p for any prime p > max(q, r, s). Then

#{p : |Gp| < y} = O(y
4
3 )

Proof. To prove this lemma, we first count the 3-tuples (a, b, c) ∈ Z3 such that

|a| + |b| + |c| ≤ Y . Now, by lattice point counting arguments within a sphere, we

know that in such a case |Gp| ≥ 4
3
Y 3 + O(Y 2). To get the situation of the lemma,

i.e, |Gp| < y, we choose Y = y
1
3 . Now, if |Gp| < y, then there exists at least two

distinct 3-tuples (a, b, c) and (e, f, g) such that

qarbsc ≡ qerfsg (mod p)

Now, as we do not necessarily know whether a > e, b > f or c > g, we can

conclude at this point that p divides the numerator of (qa−erb−fsc−g − 1) where

10



|a − e| + |b − f | + |c − g| ≤ 2Y . The number of such 3-tuples, by the previous

argument, is 4
3
(2Y )3 + O(Y 2) and each such 3-tuple gives rise to at most O(Y )

number of prime factors in the numerator. So, the number of primes p which

satisfy |Gp| < y is O(Y 4), i.e, O(y
4
3 ). Hence the result follows. �

Using Lemma 2.4, we get that the number of exceptional primes p for which

|〈q, r, s〉| < x
3
4
−ε is O(x1−ε). This is the count of the exceptional primes for which

F∗p 6= 〈q, r, s〉, out of the initial set of δx
log2 x

primes. Hence, the result follows. �

Proof of Lemma 2.2

Let us consider g to be a primitive root of p and let us take

q ≡ ga1 (mod p), r ≡ ga2 (mod p), s ≡ ga3 (mod p)

If we write a = (a1, a2, a3), then a 6≡ 0 (mod 2) as gcd(a1, a2, a3, p − 1) = 1. In

that case, if V be the subspace of
( Z

2Z

)3
orthogonal to 〈a〉, then dim(V ) = 2. The

conditions (i) and (ii) imply that |SV | ≥ 7. Now, an element u ∈ SV will generate a

primitive root (q, r, s)u (mod p) if and only if a1u1 + a2u2 + a3u3 = a · u is coprime

to (p − 1). We know that 2 - a · u for all u ∈ SV . Furthermore, if we pick any 3

elements u, v, w ∈ SV , then for each odd prime t|(p− 1), t will divide at most two

of the numbers a · u, a · v, a · w. Hence, there exists at least one element u ∈ SV
for which gcd(a · u, p − 1) = 1 and therefore we will obtain at least one primitive

root (q, r, s)u (mod p). �

2.2 Result 2: Heath-Brown

In 1986, D. R. Heath-Brown [10] introduced an improvement of Gupta and Murty’s

result. He reduced down the critical set S, as defined in Theorem 2.1, to a set of

size 3 instead of 13. The result he proved is as follows.

Theorem 2.2 (Heath-Brown, 1986) Let us define the following set of multi-

plicatively independent non-zero integers

S̃ = {q, r, s}

that is if qerfsg = 1 then e = f = g = 0 for any e, f, g ∈ Z. Now, if we suppose

that none of q, r, s,−3qr,−3qs,−3rs, qrs is a square, then at least for one a ∈ S̃,

we have

Na(x)� x

log2 x

11



2.2.1 Proof of Theorem 2.2

The proof of this theorem relies on some crucial results and their improved versions.

We will first state the lemmas and prove the theorem based on those, and prove

the lemmas thereafter in the following subsection.

Lemmas and their refinements

The improvement proposed by Heath-Brown is primarily based on an strengthened

version of the sieve result stated as Lemma 2.3 by Gupta and Murty [7]. Let us

define a statement “n = Pr(α)” as follows.

Definition 2.1

“n = Pr(α)” ⇒ “n is a prime” OR

“n =
k∏
i=1

pi for k ≤ r and pi > nα ∀ i = 1, ..., k”

In view of this, Heath-Brown showed the following result.

Lemma 2.5 Let K = 2k for k = 1, 2 or 3. Also let u and v be coprime integers

such that K|(u−1), 16|v and
(
u−1
K
, v
)

= 1. Then there exists an α ∈ (1
4
, 1

2
], possibly

depending on k, u, v such that

#

{
p ≤ x : p ≡ u (mod v),

p− 1

K
= P2(α)

}
� x

log2 x

where the implied constant may depend on k, u, v and α.

Proof. Proved in Section 2.2.2.

Now let us define another statement “n = Pr(α, δ)” as follows.

Definition 2.2

“n = Pr(α, δ)” ⇒ “n is a prime” OR

“n =
k∏
i=1

pi for k ≤ r and nα < pi < n
1
2
−δ ∀ i = 1, ..., k”

Based on this definition, Heath-Brown modifies Lemma 2.5 to get a refined sieve

result as follows.

12



Lemma 2.6 Let us suppose K, k, u, v are defined as in Lemma 2.5. Then there

exist α ∈ (1
4
, 1

2
) and δ ∈ (0, 1

2
− α) such that

#

{
p ≤ x : p ≡ u (mod v),

p− 1

K
= P2(α, δ)

}
� x

log2 x

Proof. Proved in Section 2.2.2.

Construction of K, u and v

It is evident that if an integer is a quadratic residue modulo p, it cannot be a

primitive root. Hence, we want to construct the integers K, u and v as defined

in Lemma 2.5 such that q, r and s each are quadratic non-residues of every prime

p ≡ u (mod v). This choice of K, u, v will depend only on q, r and s. We can first

observe the following result.

Claim 2.1 The following equation has infinitely many solutions in prime p.(
−3

p

)
=

(
q

p

)
=

(
r

p

)
=

(
s

p

)
= −1

Proof. We know that for a fixed integer n, which is not a perfect square, we will

get
∑

p≤x

(
n
p

)
= o(π(x)) as x → ∞. Now, let us run n over all the 16 numbers

(−3)eqfrgsh with 0 ≤ e, f, g, h ≤ 1. In this case, n cannot be a square if e+f+g+h

is odd, since q, r, s are multiplicatively independent as per the assumption of the

theorem. Hence we get∑
p≤x

[
1−

(
−3

p

)][
1−

(
q

p

)][
1−

(
r

p

)][
1−

(
s

p

)]
=
∑
n

(−1)e+f+g+h
∑
p≤x

(
n

p

)

asymptotically approaching O(π(x)) as x→∞. Now, if any one of
(
−3
p

)
,
(
q
p

)
,
(
r
p

)
or
(
s
p

)
is 1, the term in the summand above will be 0. But as the sum is O(π(x)),(

−3

p

)
=

(
q

p

)
=

(
r

p

)
=

(
s

p

)
= −1

must have infinitely many solutions in primes p. Hence, the result follows. �

With the above result in mind, let us fix a particular prime p0 satisfying the

equation in Claim 2.1. We see that p0 ≡ 5 (mod 6) as −3 is a quadratic non-residue

modulo p0. Now, for each odd prime l|qrs, let us take ul = p0 if l - (p0 − 1) and

ul = 4p0 if l|(p0 − 1). We get the following result in such a case.

13



Claim 2.2 l - (ul − 1) in each of the cases discussed above.

Proof. If l - (p0−1), setting ul = p0 ensures l - (ul−1). In the case where l|(p0−1),

since p0 ≡ 5 (mod 6), we can write p0 = 6j + 5 and l|(6j + 4) ⇒ l|(3j + 2), as l is

odd. But in such a case, setting ul = 4p0 gives ul − 1 = 24j + 19 = 8(3j + 2) + 3

and hence l - (ul − 1). �

Let us also define u2 = p0 if 16 - (p0 − 1) and u2 = p0 − 8 if 16|(p0 − 1). Let

us set u to be solution of the simultaneous congruence equations u ≡ u2 (mod 16)

and u ≡ ul (mod l). Such a solution exists by the Chinese Remainder Theorem.

So, we get that if 2k|(u− 1), then k can be either 1,2 or 3 from the u2 congruence

relation. Again if we set v = 16qrs, then l - (u− 1) for any odd prime l|v, from the

ul congruence conditions. Hence,
(
u−1
K
, v
)

= 1 if we set K = 2k to be the highest

power of 2 dividing u− 1.

Further, if p ≡ u (mod v) then p ≡ p0 (mod 8) and p ≡ p0 or 4p0 (mod l) for

every odd prime l|v. Thus
(
q
p

)
=
(
q
p0

)
= −1, and similar for r and s. Now, based

on this construction of K, u and v, we will prove the theorem.

Proof of Theorem 2.2

As the construction of K, u and v satisfy the conditions of Lemma 2.6, we can

conclude that there exists a constant c such that there are at least cx/ log2 x primes

p ≤ x satisfying p 6≡ 1 (mod 16), (p − 1)/K = P2(α, δ) and
(
q
p

)
=
(
r
p

)
=
(
s
p

)
=

−1. Now, two cases may arise. Either (p − 1)/K is a prime or it is a product of

two primes p1 and p2.

Let us consider the first case, where (p− 1)/K is a prime itself. In such a case,

an element q can have order K or p− 1 in the group (Z/pZ)∗. Again, at least one

of q, r and s is not equal to ±1 as they are multiplicatively independent. Hence, q

is a primitive root modulo p if p > qK . Same argument holds for r and s.

Considering the second case, let (p− 1)/K = p1p2 with pα ≤ p1 ≤ p1/2−δ where

α > 1
4

and δ > 0. In this case, an element q may have order K,Kp1, Kp2 or

Kp1p2 = p− 1. For large enough p > qK , we can eliminate the first possibility. Let

us try to estimate the number of primes p ≤ x for which q has order Kp1.

#
{
p ≤ x : ord(q) = e ≤ x

1
2
−δ
}
≤

∑
e≤x1/2−δ

#{p|(qe − 1)}

�
∑

e≤x1/2−δ

log(qe − 1)�
∑

e≤x1/2−δ

e� x1−2δ

14



So, for a fixed q, there are O
(
x1−2δ

)
= o(x/ log2 x) primes p ≤ x for which one or

more of q, r or s has order Kp1.

Now let us consider the case where q, r and s all have order Kp2. In this case, all

the numbers n = qerfsg with 0 ≤ e, f, g ≤ 3x(1−α)/3 satisfy the relation nKp2 ≡ 1

(mod p) so that n takes at most Kp2 values modulo p. But there are at least

27x1−α ≥ 27p1−α ≥ 27p2 triples (e, f, g). Hence, by the pigeon hole principle, there

must be two distinct triples (e1, f1, g1) and (e2, f2, g2) such that

qe1rf1sg1 ≡ qe2rf2sg2 (mod p) ⇒ qe1−e2rf1−f2sg1−g2 ≡ 1 (mod p)

So, p divides the numerator of a number N = qerfsg−1 where |e|, |f |, |g| ≤ 3x(1−α)/3

and (e, f, g) 6= (0, 0, 0). The number of such prime factors p of the numerator of N

is bounded by log |N | � max(|e|, |f |, |g|)� x(1−α)/3. Again, the number of triples

(e, f, g) is O(x1−α). Hence the total number of possible primes p ≤ x for which q, r

and s all has order Kp2 is O(x4(1−α)/3) = o(x/ log2 x).

The analysis in the above two cases cover all the situations where none of q, r

or s is a primitive root of p. The number of such primes p ≤ x is o(x/ log2 x). This

proves the theorem. �

2.2.2 Proof of Lemmas

Proof of Lemma 2.5

To prove this Lemma, we will need to use the following result (Lemma 2.7) as a

platform. But, let us introduce a new term before that.

Definition 2.3 Recall that an arithmetic function is any function f : Z+ → C.

Let Q ≥ 1 and let λ(q) be an arithmetic function with support [1, Q]. Suppose that

for any M,N ≥ 1 with MN = Q, we can write λ as a convolution

λ(q) =
∑
mn=q

m≤M,n≤N

α(m)β(n)

where α and β are arithmetic functions which may depend on M and N respectively,

and for which |α(m)|, |β(n)| ≤ 1. Then we can say that λ is “a well factorable

function of level Q”.

Let us also define π(x; a, b) = #{p ≤ x : p prime, p ≡ b (mod a)}. Based on

these definitions, we can state the following result.
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Lemma 2.7 Let (u, v) = 1 and for any q such that (q, v) = 1, define u∗ to be the

solution of the congruences u∗ ≡ u (mod v) and u∗ ≡ 1 (mod q). Then, for any

well factorable function λ of level x
4
7
−ε, we have, for ε, A > 0∑

(q,v)=1

λ(q)

(
π(x; qv, u∗)− li(x)

φ(qv)

)
� x

(log x)A

where the implied constant may depend on u, v, ε and A.

Proof. If we look at the result closely, we will see that we are counting primes p

which satisfy the following condition

p ≡ u∗ (mod qv)⇒ p ≡ 1 (mod q) and p ≡ u (mod v)

Counting the primes for the first condition p ≡ 1 (mod q) can be performed

using the following result by Bombieri, Friedlander and Iwaniec [3].

Proposition 2.1 Let a 6= 0, ε > 0 and Q = x
4
7
−ε. For any well factorable function

λ(q) of level Q and any A > 0 we have∑
(q,a)=1

λ(q)

(
ψ(x; q, a)− x

φ(q)

)
� x

(log x)A

where the constant implied depends at most on ε, a and A and

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n)

with Λ being the von Mangoldt function.

Proof. See the proof of Theorem 10 in [3]. �

Based on Proposition 2.1, let us choose the constant a to be 1 and write ψ in

terms of π using partial summation as follows [1]

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n) =
∑
pm≤x

pm≡a (mod q)

log p

=
∑
p≤x

p≡a (mod q)

log p + O

(
x

(log x)B

)
for some B ≥ 1

= log x
∑
p≤x

p≡a (mod q)

1 + O

(
x

(log x)B

)
summing by parts

= log x · π(x; q, a) + O

(
x

(log x)B

)
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Now, we have to take care that we are counting primes p satisfying the second

condition p ≡ u (mod v) as well. To count these primes, a simple modification in

the proof of Theorem 10 in [3] will be required. The proof of Theorem 10 relies

on the Theorems 1, 2 and 5* of [3]. So, to introduce the second condition, we can

modify these theorems slightly and complete the proof of Theorem 10 [3] in that

line. The sketch of the proof with the modifications is outlined in [10], pp 29-30. �

Now, let us turn our attention to the proof of Lemma 2.5. Define the following

two sets

A =

{
p− 1

K
: p ≤ x, p ≡ u (mod v)

}
and B = {p ≤ x : p = 1 +Kp1p2p3 with some pi ≥ xα, and p ≡ u (mod v)}

where the different orderings of p1, p2 and p3 are counted distinctly, so that B is a

multiset. Now, if p is chosen such that p−1
K
∈ A, and if p−1

K
has no prime factors

less than xα, then either p−1
K

= P2(α) or p−1
K
∈ B. Considering all the 6 orderings

of p1, p2 and p3 in B, we obtain that

#

{
p ≤ x : p ≡ u (mod v),

p− 1

K
= P2(α)

}
≥ # {a ∈ A : (a, P (xα)) = 1} − 1

6
#{p ∈ B : p prime} + O

(
x1−α)

= S (A, xα) − 1

6
S
(
B, x

1
2

)
+ O

(
x1−α)

in the usual sieve theory notation [4], where P (xα) denotes the product of all the

primes below xα and S(A, y) denotes the set of all elements from A which have no

prime divisors less than y.

Let us start off by estimating S (A, xα). If (q, v) = 1, then in the notation of

Lemma 2.7, we can write

#{a ∈ A : q|a} = π(x; qv, u∗) =
lix

φ(qv)
+ r(q)

say, where r(q) denotes the remainder term in the sieving process. Note that we

have u ≡ 1 (mod K), v ≡ 0 (mod K) and (q, v) = 1. Thus, if p ≡ u (mod v) then

p ≡ 1 (mod Kq) ⇔ p ≡ 1 (mod q). Now, we can estimate S (A, xα) using the

linear sieve with Iwaniec’s bilinear form of the remainder term (Theorem 4, [12]). If

f be the usual lower bound function of the linear sieve and if we choose µ ∈ [2α, 1],

then for any ε > 0, there exist x0 and N , depending on ε, v and µ such that

S (A, xα) ≥ lix

φ(v)

∏
p≤xα

(
1− ω(p)

p

)(
f
(µ
α

)
− ε
)
− R0 −

N∑
n=1

Rn

17



for x ≥ x0, where ω(p) = p
φ(p)

and the remainder terms are

R0 =
∑

q<x
1
4 ,(q,v)=1

|r(q)| and Rn =
∑

(q,v)=1

λn(q)r(q)

for some well factorable function λn of level xµ. Here, we can easily restrict our

attention to the primes p - v since the elements of A are inherently coprime to v

because of the condition
(
u−1
K
, v
)

= 1. Also, we have r(q) = O
(

x
logA x

)
from Lemma

2.7 and hence by Bombieri’s theorem [4], we obtain R0 = O
(

x
log3 x

)
. Lemma 2.7

also gives us Rn = O
(

x
log3 x

)
if we choose µ < 4

7
. Hence, it follows that, for x large

enough

S (A, xα) ≥ lix

φ(v)

∏
p≤xα
p-v

(
1− 1

p− 1

)(
f

(
4

7α

)
− 2ε

)

Let us now turn our attention to S
(
B, x 1

2

)
. We observe that for (q, v) = 1,

#{b ∈ B : q|b} = #

{
p1p2p3 ≤

x− 1

K
: pi ≥ xα, p1p2p3 ≡ l (mod

qv

K
)

}
where l is a common solution to the congruences Kl+1 ≡ u (mod v) and Kl+1 ≡ 0

(mod q). Let us define the following terms

π(X; a, d, l) = #

{
p ≤ X

a
: ap ≡ l (mod d)

}
g(a) = # {p2p3 = a : p2, p3 ≥ xα}

and Y =
1

φ(v/K)

∑
a≤ y

xα

g(a)
(
π
(y
a

)
− π (xα)

)
where y = x−1

K
. Then, for (q, v) = 1, we have

#{b ∈ B : q|b} =
∑
a≤ y

xα

g(a)
(
π
(
y; a,

qv

K
, l
)
− π

(
axα; a,

qv

K
, l
))

= Y
ω(q)

q
+ rq

where ω(q) = q
φ(q)

as before and the remainder is

rq =
∑
a≤ y

xα

g(a)

[(
π
(
y; a,

qv

K
, l
)
− π(y/a)

φ(qv/K)

)
−
(
π
(
axα; a,

qv

K
, l
)
− π(xα)

φ(qv/K)

)]
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We can now use the upper bound linear sieve [13] to show that for positive

constants ε and A, there exists an x0(ε, A) for which

S
(
B, x

1
2

)
≤ Y

∏
p≤x

1
2

p-v

(
1− ω(p)

p

)
(F (1) + ε) + R

for x ≥ x0, with F being the usual upper bound function for which F (1) = 2eγ

where γ is the Euler’s constant. Note that we are again taking the estimate over

the primes p - v because the condition (u, v) = 1 implies (b, v) = 1 for all b ∈ B.

The remainder term R is given by

R =
∑

q≤x
1
2 (log x)−A

(q,v)=1

|rq|

To estimate this remainder term, let us first try estimating the error rq by

r
′

q =
∑
a≤ y

xα

(a, qv
K

)=1

g(a)

[(
π
(
y; a,

qv

K
, l
)
− π(y/a)

φ(qv/K)

)
−
(
π
(
axα; a,

qv

K
, l
)
− π(xα)

φ(qv/K)

)]

Since we have (qv/K, l) = 1, it implies π
(
y; a, qv

K
, l
)

= π
(
axα; a, qv

K
, l
)

= 0 for

(a, qv/K) 6= 1. Furthermore, π(y/a)
φ(qv/K)

� x log x
aq

and π(xα)
φ(qv/K)

� x log x
aq

. Thus

rq − r
′

q �
∑

a≤x1−α

(a,qv/K) 6=1

g(a)
x log x

aq

� x log x

q

∑
p2|qv/K
p2≥xα

1

p2

 ∑
xα≤p3≤x1−α/p2

1

p3


� x log x

q
x−α log x =

x1−α log2 x

q

So, if we replace rq by r
′
q to write

R
′

=
∑

q≤x
1
2 (log x)−A

(q,v)=1

∣∣∣r′q∣∣∣
then R = R

′
+O

(
x1−α log3 x

)
. Using Theorem 3 by Pan [17], we can now bound R

′

by O
(

x
log3 x

)
by taking sufficiently large value of A. We are now left with estimating

Y to calculate an upper bound for S
(
B, x 1

2

)
. In Y , the term involving π(xα)
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contributes O
(

x
log2 x

)
. Using prime number theorem on π(y/a) and summation by

parts thereafter, we obtain

Y ∼ x/K

log x
· 1

φ(v/K)

∫∫
θ,ψ≥α

θ+ψ≤1−α

1

1− θ − ψ
dθ

θ

dψ

ψ

=
x

φ(v) log x

∫ 1−2α

α

log

(
1− α− θ

α

)
dθ

θ(1− θ)

Again, the product term in S
(
B, x 1

2

)
can be estimated as∏

p≤X
p-v

(
1− ω(p)

p

)
=

∏
p≤X
p-v

(
1− 1

p− 1

)

∼ 2
∏

2<p≤X

(
1− 1

(p− 1)2

) ∏
p|v

2<p≤X

(
p− 1

p− 2

)∏
p≤X

(
1− 1

p

)

∼ 2e−γ

logX

∏
p>2

(
1− 1

(p− 1)2

)∏
p|v
p>2

(
p− 1

p− 2

)

Combining the estimates of S (A, xα) and S
(
B, x 1

2

)
, we obtain

#

{
p ≤ x : p ≡ u (mod v),

p− 1

K
= P2(α)

}
≥ (1 + o(1))

∏
p>2

(
1− 1

(p− 1)2

)∏
p|v
p>2

(
p− 1

p− 2

)

× x

φ(v) log2 x

(
2e−γ

α
f

(
4

7α

)
− 1

6
· 2e−γ · 4IF (1)

)
where f and F denote the usual bound functions of a linear sieve and I denotes

the integral

I =

∫ 1−2α

α

log

(
1− α− θ

α

)
dθ

θ(1− θ)
If 2 ≤ t ≤ 4 then f(t) = 2eγt−1 log(t− 1). Hence for 1

7
≤ α ≤ 2

7
, we have

2e−γ

α
f

(
4

7α

)
− 1

6
· 2e−γ · 4IF (1) = 7 log

(
4

7α
− 1

)
− 8

3
I

which is continuous in α. So, it is sufficient to prove that this term is positive when

α = 1
4
. For α = 1

4
, we have

7 log

(
16

7
− 1

)
− 8

3

∫ 1
2

1
4

log(3− 4θ)

θ(1− θ)
dθ ≥ 7 log

9

7

∫ 1
2

1
4

2− 4θ

θ(1− θ)
dθ

= 7 log
9

7
− 8

3
log

16

9
≥ 0.225 > 0
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Hence, for some α ∈
(

1
4
, 1

2

]
, we will have

#

{
p ≤ x : p ≡ u (mod v),

p− 1

K
= P2(α)

}
� x

log2 x

�

Proof of Lemma 2.6

The base for this lemma is Lemma 2.5 and we will improve upon that to prove this

result. Now, in Lemma 2.6, we are supposed to count

#

{
p ≤ x : p ≡ u (mod v),

(
p− 1

K

) 1
2
−δ

≥ p1 ≥
(
p− 1

K

)α}

= #

{
p ≤ x : p ≡ u (mod v), p1, p2 ≥

(
p− 1

K

)α}
− 2 ·#

{
p ≤ x : p = 1 +Kp1p2, p1 ≥

(
p− 1

K

) 1
2
−δ

, p1 ≤
(
p− 1

K

)α}
as we should count for both p1 and p2 in the second term. Let us assume that the

implied constant in Lemma 2.5 is c where c > 0. Lemma 2.5 tells us that in the

given situation, there exists an α ∈ (1
4
, 1

2
] such that

#

{
p ≤ x : p ≡ u (mod v), p1, p2 ≥

(
p− 1

K

)α}
=

cx

log2 x
+ o

(
x

log2 x

)
where p = 1 +Kp1p2. Hence, we have the following

#

{
p ≤ x : p ≡ u (mod v),

(
p− 1

K

) 1
2
−δ

≥ p1 ≥
(
p− 1

K

)α}

=
cx

log2 x
+ o

(
x

log2 x

)
− 2 ·#

{
p ≤ x : p = 1 +Kp1p2, p1 ≥

(
p− 1

K

) 1
2
−δ

, p1 ≤
(
p− 1

K

)α}

=
cx

log2 x
+ o

(
x

log2 x

)
− 2 ·#

{
x

log2 x
≤ p ≤ x : p = 1 +Kp1p2, p1 ≥ p

1
2
−δ, p1 ≤ pα

}
as the number of primes below x

log2 x
is o

(
x

log2 x

)
. Again, for x

log2 x
≤ p ≤ x, we have

p1 ≤ pα ⇒ p1 ≤ p
1
2 ≤ x

1
2

and p1 ≥ p
1
2
−δ ⇒ p1 ≥

(
x

log2 x

) 1
2
−δ

= x
1
2
−δ(log x)1−2δ ≥ x

1
2
−2δ
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as long as x is large enough such that log x ≤ x
δ

2δ−1 . Hence, we obtain

#

{
p ≤ x : p ≡ u (mod v),

(
p− 1

K

) 1
2
−δ

≥ p1 ≥
(
p− 1

K

)α}

=
cx

log2 x
+ o

(
x

log2 x

)
− 2 ·#

{
x

log2 x
≤ p ≤ x : p = 1 +Kp1p2, p1 ≥ p

1
2
−δ, p1 ≤ pα

}
=

cx

log2 x
+ o

(
x

log2 x

)
− 2 ·#

{
p ≤ x : p = 1 +Kp1p2, x

1
2
−2δ ≤ p1 ≤ x

1
2

}
and it suffices to prove that

#
{
p ≤ x : p = 1 +Kp1p2, x

1
2
−2δ ≤ p1 ≤ x

1
2

}
≤ cx

2 log2 x

Now, Theorem 3.12 in [9] states

Proposition 2.2 Let a, b, k, l be integers satisfying ab 6= 0, (a, b) = 1, 2|ab and

(k, l) = 1 for 1 ≤ k ≤ logA x. Then as x→∞, we have, uniformly in a, b, k, l, that

#
{
p ≤ x : p ≡ l (mod k), ap+ b = p

′
}
� x

log2 x

∏
p|kab
p 6=2

p− 1

p− 2

Proof. Please refer to the proof of Theorem 3.12 in [9]. �

Let us take p = p2, a = Kp1, b = 1, p
′

= p in the proposition and ignore the

congruence criterion to obtain

# {p2 ≤ X : Kp1p2 + 1 = p} � X

log2X

(
p1 − 1

p1 − 2

)
Now, if we take X = x−1

Kp1
so as to count all primes p ≤ x, we get

#

{
p2 ≤

x− 1

Kp1

: Kp1p2 + 1 = p

}
� x

p1 log2 x

Summing this quantity over all p1 in the range x
1
2
−2δ ≤ p1 ≤ x

1
2 , we obtain

#
{
p ≤ x : p = 1 +Kp1p2, x

1
2
−2δ ≤ p1 ≤ x

1
2

}
� x

log2 x

∑
x

1
2−2δ≤p1≤x

1
2

1

p1
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Again, we observe that∑
x

1
2−2δ≤p1≤x

1
2

1

p1

� ln ln
(
x

1
2

)
− ln ln

(
x

1
2
−2δ
)

= ln
1

2
+ ln lnx− ln

(
1

2
− 2δ

)
− ln lnx

= − ln (1− 4δ) = O(δ)

and hence the result follows if the constant δ is chosen to be sufficiently small. �

2.2.3 Corollaries

Corollary 2.1 Let q, r, s be three non-zero integers which are multiplicatively in-

dependent. Suppose that none of q, r, s,−3qr,−3rs,−3sq or qrs is a square. Then

#{p ≤ x : at least one of q, r or s is a primitive root modulo p} � x

log2 x

Proof. This comes directly from the statement of Theorem 2.2 for three multi-

plicatively independent integers. �

Corollary 2.2 There are at most two positive primes for which Artin’s conjecture

does not hold.

Proof. As any three positive primes are always multiplicatively independent, we

can take any arbitrary set of three primes and Theorem 2.2 says that Artin’s con-

jecture will be true for at least one of them. Hence, there can only be at most two

positive primes for which it fails. �

Corollary 2.3 There are at most three square free integers greater than 1 for which

Artin’s conjecture does not hold.

Proof. Let us consider the converse and assume that Artin’s conjecture fails for

four distinct square-free integers q, r, s, t, all of which are greater than 1. In the

subset {q, r, s}, Corollary 2.1 holds unless q, r, s are multiplicatively dependent.

Now, q, r, s can be multiplicatively dependent only if q = rs or r = sq or s = qr.

Hence, we must have qrs to be a square. Following a similar argument for the

subset {q, r, t}, we get that qrt has to be a square as well. So, qrs.qrt = (qr)2st has

to be a square, whence st is a square. But as both s and t are square free, we must

have s = t for st being a square. This contradicts our assumption of four distinct

integers failing Artin’s conjecture, and the result follows. �
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Corollary 2.4 Let S ⊂ Z be the set of integers for which Artin’s conjecture does

not hold and also suppose that S does not contain any squares. Then

#{n ∈ S : |n| ≤ x} � log2 x

Proof. Let us consider S ⊂ Z to be a set of integers k for which Artin’s conjecture

fails and S does not contain any squares. There may be two cases depending on

the interdependencies of the elements of S.

Case 1: If no three elements of S are multiplicatively independent, then we

can consider S to be contained in a set {±ka1kb2 : a, b ≥ 0}, with k1, k2 6= 0,±1. In

this case, we quite easily obtain

#{n ∈ S : |n| ≤ x} ≤ #{a, b ≥ 0 : |ka1kb2| ≤ x} � log2 x

Case 2: If there exists three multiplicatively independent elements k1, k2, k3 ∈
S, at least one of−3k1k2,−3k2k3,−3k3k1 is not a square. Without loss of generality,

let us assume that −3k1k2 is not a square. Let us denote the set S0 to be the subset

of S containing all the elements multiplicatively dependent on k1 and k2, i.e, S0 is

of the form {±ka1kb2 : a, b ≥ 0}. Then, if k ∈ S − S0, then for the set of integers

{k, k1, k2}, Corollary 2.1 holds unless one of −3kk1,−3kk2 or kk1k2 is a square. As

no element in S satisfies Artin’s conjecture, we may write S − S0 = S1 ∪ S2 ∪ S3,

where for each Si, there exists some li such that kli is a square whenever k ∈ Si. As

k is not a square, li cannot be a square either. Finally, let us concentrate on each Si

individually. If Si contains three multiplicatively independent elements m1,m2,m3,

then by Corollary 2.1, we must have at least one of −3m1m2,−3m2m3,−3m3m1 or

m1m2m3 to be a square. But this poses a contradiction as neither of m1,m2,m3, li

is a square and m1li,m2li,m3li are all squares as per our choice of Si. Hence, each

of the sets Si can be represented in the form {±ma
1m

b
2 : a, b ≥ 0} and consequently

#{n ∈ S : |n| ≤ x} = #{n ∈ S0 ∪ S1 ∪ S2 ∪ S3 : |n| ≤ x}

≤
3∑
i=0

#{n ∈ Si : |n| ≤ x}

=
3∑
i=0

#{a, b ≥ 0 : |ka1kb2| ≤ x} � log2 x

As we have considered all the possible configurations of S, the result follows for

any such set of integers. �
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This concludes our discussion of the unconditional approaches towards proving

the Artin’s conjecture. The result by D.R. Heath-Brown using the refined sieve

results is the best we have so far in this field. The conjecture will be proven

unconditionally if we can reduce the set defined by Heath-Brown to a single integer

which is not a square, 0 or ±1. In the next chapter, we will discuss the elliptic

curve analogue of Artin’s conjecture and its proof by Gupta and Murty.
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Chapter 3

Artin’s Conjecture: Elliptic Curve

Analogue

The elliptic curve analogue of the Artin’s Conjecture was formulated by Lang and

Trotter [15] in 1977. As the original conjecture talks about the density of primes

for which a given integer would be a primitive root, the analogue deals with the

density of primes for which the reduction of an elliptic curve modulo that prime

would have a given rational point as a primitive point. Let us first introduce some

new terms.

Definition 3.1 (Primitive Point) Given an elliptic curve E(Q) defined over the

rationals and a prime p, let the reduction of the elliptic curve modulo p be denoted

as E(Fp). Then, a rational point a ∈ E(Q) is said to be a primitive point of the

curve modulo p if a, the reduction of a modulo p generates E(Fp).

Based on this definition of a primitive point, the elliptic analogue of Artin’s

Conjecture is as follows.

Conjecture 3.1 (Lang and Trotter, 1977) If we consider an elliptic curve E(Q)

defined over the rationals and a rational point a ∈ E(Q) of infinite order, then a

will be a primitive point of E(Fp) for infinitely many primes p.

3.1 Approach 1: Lang and Trotter

In the same paper by Lang and Trotter [15], they took the first approach to prove

this analogous conjecture. For a being a primitive point for E(Fp), we mean the
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following

〈a〉 = E(Fp) ⇔ q - [E(Fp) : 〈a〉] ∀ primes q

Let us denote [E(Fp) : 〈a〉], the index of 〈a〉 in E(Fp), by i(p). Then the

criteria of divisibility of i(p) by any prime q is of prime importance for proving the

conjecture. Lang and Trotter tried to take a similar approach as Hooley took for

proving the classical conjecture in 1967 [11]. They considered the Galois extensions

Lq = Q(E[q], q−1a) analogous to the splitting fields of xq−a = 0 in Hooley’s proof.

Here E[q] denotes the q-division points of the elliptic curve E(Q) and q−1a denotes

the point b ∈ E(C) for which qb = a.

Now, the Galois group Gq of Lq/Q is a semidirect product of subgroups of

GL2(Fq) and E[q] and is not abelian. Hence, we can always denote the elements

σ ∈ Gq as pairs (γ, τ) with γ ∈ GL2(Fq) and τ ∈ E[q], such that the following

relation holds for u0 ∈ q−1a and u ∈ E[q]

(γ, τ)u = u0 + γ(u− u0) + τ

Therefore, we have

σu = u ⇔ (γ − 1)(u0 − u) = τ

Lang and Trotter tried to formulate a condition on the Frobenius element σp =

(γp, τp) ∈ Gq in order that q|i(p). It is quite obvious that we should choose p so

that we have a good reduction of the curve modulo p. This implies that p should be

unramified in the ring of integers OK and hence we cannot choose p|q∆E when ∆E

is the discriminant of the curve E. Based on these constraints, Lang and Trotter

proved the following result.

Lemma 3.1 The prime q divides the index i(p) if and only if the Frobenius element

σp ∈ Sq where

Sq = {(γp, τp) : (i) γp = 1 OR

(ii) γp has eigenvalue 1, ker(γp − 1) is cyclic, τp ∈ (γp − 1)E[q]}

Proof. See [15] for the proof.

When Lang and Trotter proceeded to prove the conjecture in light of the condi-

tion formulated above, they got that |Sq| � q2 in the complex multiplication (CM)

case and |Sq| � q4 in the non-CM case. This posed a problem because applying an

approach analogous to Hooley’s, assuming GRH, produced a very large error term.

27



3.2 Approach 2: Lang and Trotter

In the same paper, Lang and Trotter also proposed a general form of the conjecture

in case of higher rank elliptic curves. In this case, they considered the problem over

a free subgroup of the elliptic curve instead of assuming the whole group to be an

infinite cyclic one. Their approach was as follows.

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

In this case, the analogous problem of Artin’s conjecture would be to compute

the density of the primes p for which the elliptic curve group reduced modulo p is

generated by Γp, the reduction of the free subgroup modulo p. Lang and Trotter

formulated an index divisibility criterion in this case as well. Suppose that E(Fp)
and Γp be the reductions modulo p of E and Γ respectively. So, the index divisibility

criterion in this case will consider the divisibility of the index i(p) = [E(Fp) : Γp]

by primes q.

Now, fix a section λ : Γ → q−1Γ such that q(λa) = a for all a ∈ Γ. Consider

the Galois extension Mq = Q(E[q], q−1Γ) analogous to Lq in Approach 1. Then the

Galois group Gq of Mq/Q is a semidirect product of subgroups of GL2(Fq) and E[q].

Hence, we can always denote the elements σ ∈ Gq as pairs (γ, τ) with γ ∈ GL2(Fq)
and τ a translation, such that the following relation holds for u ∈ q−1Γ

(γ, τ)u = λqu+ γ(u− λqu) + τqu

Therefore, we have

σu = u ⇔ (γ − 1)(u− λqu) = −τqu

Analogous to Approach 1, Lang and Trotter tried to formulate a condition on

the Frobenius element σp = (γp, τp) ∈ Gq such that q|i(p). It is quite obvious that

we cannot take p|q∆E when ∆E is the discriminant of the curve E, as that would

give a ‘bad’ reduction of the curve modulo p. Based on these constraints, Lang and

Trotter proved the following result.

Lemma 3.2 The prime q divides the index i(p) if and only if the Frobenius element

σp ∈ Sq where

Sq = {(γp, τp) : (i) ker(γp − 1) is cyclic and τp(Γ) ⊂ (γp − 1)E[q] OR

(ii) ker(γp − 1) = E[q] and rank(τp(Γ)) = 0 or 1}
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Proof. See [15] for the proof.

The path to prove this higher rank analogue seemed quite formidable as well.

Lang and Trotter encountered problems regarding the estimation of |Sq| and prob-

lems with proving the analogue of the Brun-Titchmarsh sieve.

Both the conjecture and the higher rank analogue were finally proved, assuming

GRH, by Gupta and Murty in 1986 [8]. They took a different approach in charac-

terizing the divisibility of i(p) to prove the conjecture. We will spend the next few

sections analyzing the proofs by Gupta and Murty.

3.3 Result 1: Gupta and Murty

The paper by Gupta and Murty [8] deals with the elliptic curves E which has com-

plex multiplication by the entire ring of integers OK of some imaginary quadratic

extension K of Q. Moreover, their method captures only those primes p which split

completely in K, which does not pose a problem because there are infinitely many

primes satisfying this condition. Based on these criteria, the first result proved by

Gupta and Murty is as follows:

Theorem 3.1 (Gupta and Murty, 1986) Let E(Q) be an elliptic curve defined

over the rationals with complex multiplication by OK and let a be a rational point

of infinite order. If we define

N∗a (x) = #{p ≤ x : p - a, p splits completely in K, 〈a〉 = E(Fp)}

then under the assumption of generalized Riemann hypothesis, we obtain the fol-

lowing as x→∞:

N∗a (x) = CE(a)
x

log x
+ O

(
x log log x

log2 x

)

3.3.1 Index Divisibility Criteria

Before we start with the formal proof of the theorem, let us discuss the modified

index divisibility criteria introduced by Gupta and Murty. As we have seen before,

E(Fp) = 〈a〉 ⇔ i(p) = 1 ⇔ q - i(p) ∀ primes q

So, as we saw before, we take a look at the converse - “What does q|i(p) mean?”,

and formulate a divisibility criteria for the index. This analysis gives us the follow-

ing lemma.
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Lemma 3.3 Let p - q∆E. Then q|i(p) if and only if either

(i) E[q] ⊆ E(Fp) OR

(ii) The q-primary part of E(Fp) is non-trivial and cyclic and there exists b ∈
E(Fp) such that qb = a

Proof. We know that for the q-division points of the elliptic curve, E[q] ' (Z/qZ)×
(Z/qZ). So, if E[q] ⊆ E(Fp) holds, then E(Fp) contains both the copies of (Z/qZ).

But, 〈a〉 is cyclic and hence cannot contain more than one copy of (Z/qZ). Hence,

(Z/qZ) ⊆ (E(Fp)/〈a〉), i.e q|i(p).

If otherwise, E[q] * E(Fp) yet q|i(p), then E(Fp) contains exactly one copy

of (Z/qZ), the q-primary part. So, the q-primary part is non-trivial and cyclic.

Again, as q|i(p), we must have some b ∈ E such that qb ≡ a (mod p), i.e qb = a

for b ∈ E(Fp). �

Now, let us analyze the error occurring due to the primes p dividing q∆E. The

prime divisors of ∆E introduce an error of O(1). Again, if p = q, i.e if p|i(p),
then we must have p dividing |E(Fp)| = p + 1 − ap, where ap ≤ 2

√
p, satisfying

Hasse’s bound [19]. So, if p|i(p), then we must have ap ≡ 1 (mod p) for p > 5. By

Serre [18], the number of such primes is o(x/ log x). In the specific case of complex

multiplication we are considering, this error reduces down to O(
√
x/ log x), by

utilizing some elementary sieve logic. So, we can consider only the primes p such

that p - q∆E, without exceeding the error bounds.

We will use algebraic number theory to formulate the index divisibility criteria

properly. As per our initial assumption, the elliptic curve E has complex multipli-

cation by the entire ring of integers OK of some quadratic extension K of Q. We

consider only those primes p which split completely in K.

Let us suppose that p = πpπp be the splitting of p in K. Let us define an exten-

sion Kq over K, adjoining the q-division points of E, as Kq = K(E[q]). Again, given

a first degree prime ideal q of OK, let us define an extension as Lq = K(E[q], q−1a),

where E[q] denotes the q-division points of E and q−1a denote a point b ∈ E such

that αb = a where q = (α). Here, the elliptic curve E is defined over Q and we take

K to be an imaginary quadratic extension over Q. Now, as E has complex multipli-

cation over the entire ring of integers OK of K, we can prove that the extension K
has class number 1. This implies that all the ideals of OK are principal. So, we can

assume q to be principal without any loss of generality. Then, Lq is independent of

the choice of q−1a and is a normal extension of K. Depending on the extensions of
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K defined above, let us translate Lemma 3.3 to these fields to obtain the following

result.

Lemma 3.4 Suppose that p splits in K as p = πpπp and p - q∆E. Then

(i) If q is inert in K, then q|i(p) if and only if p splits completely in Kq.

(ii) If q ramifies or splits in K as q = q1q2, then q|i(p) if and only if (πp) splits

completely in Lq1 or Lq2 or Kq.

Proof. Before we go into proving this lemma for different cases depending on the

behavior of q in K, let us list some useful facts [19]

(a) |E(Fp)| = p+ 1− ap = N(πp − 1)

(b) φ : P 7→ πpP is a Frobenius endomorphism over E (mod πp)

Case 1: q is inert in K

q|i(p) ⇒ q||E(Fp)| ⇒ N(πp − 1) ≡ 0 (mod q) in Q

⇒ πp ≡ 1 (mod q) in K

⇒ φ acts trivially on the q-torsion points of E

Therefore, by the Ogg-Neron-Shafarevich criterion [19], πp splits completely in Kq =

K(E[q]), and so does πp by a similar argument. Hence, p splits completely in Kq.

Case 2: q = q1q2 splits in K

q|i(p) ⇒ q||E(Fp)| ⇒ N(πp − 1) ≡ 0 (mod q) in Q

⇒ πp ≡ 1 (mod q1) in K AND/OR

πp ≡ 1 (mod q2) in K

⇒ φ acts trivially on the q1-torsion points of E AND/OR

φ acts trivially on the q2-torsion points of E

Therefore, πp splits completely in Kq1 = K(E[q1]) AND/OR in Kq2 = K(E[q2]).

Again, solvability of qb ≡ a (mod p) implies that p has a first degree prime factor

in Q(q−1a). So, in this case, πp must have a first degree prime factor in K(q−1
1 a)

and in K(q−1
2 a). Hence, πp splits completely in Lq1 AND/OR Lq2 as defined before.

If both the cases hold, it is equivalent to saying that p splits completely in Kq.
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Case 3: q = q2 ramifies in K

q|i(p) ⇒ q||E(Fp)| ⇒ N(πp − 1) ≡ 0 (mod q) in Q

⇒ πp ≡ 1 (mod q2) in K OR

πp ≡ 1 (mod q) in K

⇒ φ acts trivially on the q2-torsion points of E OR

φ acts trivially just on the q-torsion points of E

If the first case holds, then the situation is similar to Case 1 and we can say that

p splits completely in Kq. If just the second condition holds, then similar to the

argument in Case 2, we obtain that πp splits completely in Lq. The result follows.

3.3.2 Proof of the Asymptotic Formula

Let us embark upon the path of proving Theorem 3.1. The first step is to prove

the asymptotic formula. Our goal is to find

N∗a (x) = #{p ≤ x | E(Fp) = 〈a〉}
= #{p ≤ x | q - i(p) ∀ primes q}

Let us define the following

N(x, y) = #{πp ∈ K | N(πp) ≤ x, πp does not split completely in

Lq or Kq for any N(q) ≤ y or q ≤ y}

Then, as we are counting two prime ideals πp and πp in K corresponding to each

prime p in Q, we have N∗a (x) ≤ 1
2
N(x, y). Again, let us define another term as

follows

M(x, y1, y2) = #{p ≤ x | πp splits completely in Lq or Kq

for some y1 ≤ N(q) ≤ y2 or y1 ≤ q ≤ y2}

Now, we know that for p ≤ x, q is bounded by |E(Fp)| = p + 1 − ap. We can

assume without loss of generality that q ≤ 2x. Hence, we get N∗a (x) ≥ 1
2
N(x, y)−

M(x, y, 2x). Combining the two bounds for N∗a (x), we obtain

1

2
N(x, y) ≤ N∗a (x) ≤ 1

2
N(x, y)−M(x, y, 2x)

N∗a (x) =
1

2
N(x, y) +O(M(x, y, 2x))
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Analogous to Hooley’s approach, we choose specific sub intervals to use spe-

cific sieve methods in estimating M(x, y, 2x). We break up the interval [y, 2x]

into the subintervals [y, x
1
2/ log2 x], [x

1
2/ log2 x, x

1
2 log2 x] and [x

1
2 log2 x, 2x] with

y = 1
12

log x. Thus, we obtain

N∗a (x) =
1

2
N

(
x,

1

12
log x

)
+O

(
M

(
x,

1

12
log x,

x
1
2

log2 x

))

+O

(
M

(
x,

x
1
2

log2 x
, x

1
2 log2 x

))
+O

(
M
(
x, x

1
2 log2 x, 2x

))

Estimate of M
(
x, x

1
2 log2 x, 2x

)
This estimate is the easiest to compute. If πp splits completely in Kq, then we must

have q2|(p+ 1− ap), i.e q ≤ 2
√
x. Now, the range we are considered here is beyond

2
√
x and hence we just need to count the number of πp splitting completely only

in Lq with N(q) in the given range.

If πp splits completely in Lq, then we must have

πpq
−1a ≡ q−1a (mod πp)

⇒ (πp − 1) q−1a ≡ 0 (mod πp)

⇒
(
πp − 1

β

)
a ≡ 0 (mod πp)

where β generates q. Here, q is a principal ideal because K has class number 1 and

hence all the ideals of OK are principal. Thus, we can write q = (β) with β ∈ OK.

This implies that α = πp−1

β
∈ OK and we can define a division polynomial for α.

Let us suppose we have E to be an elliptic curve in the Weierstrass normal form

with complex multiplication by an order OK. If P (x, y) is a point on the curve,

then the x co-ordinate of αP , for α ∈ OK, is given by (αP )x = fα(x)/gα(x) where

fα(x) and gα(x) are polynomials in x whose degrees depend on α. The roots of

gα(x) are the x-coordinates of the non-zero α division points and hence gα is called

the α division polynomial [19].

So, from the congruence relation above, we obtain gα(a) ≡ 0 (mod πp). Again,

we notice that for N(q) to be in the given range, we should have N(α) ≤ 2x1/2

log2 x
.

Therefore, M
(
x, x

1
2 log2 x, 2x

)
is bounded by the number of prime factors in the

numerator of ∏
x

1
2 log2 x≤N(q)≤2x

gα(a) =
∏

N(α)≤2x
1
2 log2 x

gα(a) = Gα, say
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The total number of prime factors in the numerator of Gα is bounded by

2 log |Gα|. Here, we need the following lemma to provide us with an estimate

of the coefficients of gα(a).

Lemma 3.5 The coefficients of gα(x) are bounded by exp(CN(α) logN(α)) for

some constant C depending only on the elliptic curve E.

Proof. Proved in Section 3.3.3.

By Lemma 3.5, we get that M
(
x, x

1
2 log2 x, 2x

)
is bounded by

2 log |Gα| �
∑

N(α)≤ 2x1/2

log2 x

N(α) logN(α)� x

log3 x

Estimate of M
(
x, x

1
2

log2 x
, x

1
2 log2 x

)
In this estimation, we relax the splitting condition a bit and count all the primes

πp with N(πp) ≤ x satisfying either πp ≡ 1 (mod q) or πp ≡ 1 (mod q) for some q

and q with x1/2

log2 x
≤ N(q) ≤ x1/2 log2 x and x1/2

log2 x
≤ q ≤ x1/2 log2 x.

To count the primes in arithmetic progression in Lq, we use the analogue of the

Brun-Titchmarsh theorem for number fields. For an ideal q, the number of primes

in arithmetic progression is given by

π1(x,Lq) = #{πp |N(πp) ≤ x, πp ≡ 1 (mod q)} � x

φ(q) log(x/N(q))

given that N(q) ≤ x. Here, in the specified range, we have N(q) ≤ x1/2 log2 x.

Hence, we have π1(x,Lq)� x
N(q) log x

. Similarly, using the same analogous sieve, we

obtain π1(x,Kq)� x
q2

in Kq. Therefore

M

(
x,

x
1
2

log2 x
, x

1
2 log2 x

)
� x

log x

∑
x1/2

log2 x
≤N(q)≤x1/2 log2 x

1

N(q)
+ x

∑
x1/2

log2 x
≤q≤x1/2 log2 x

1

q2

Using the appropriate summation formulae and plugging in the bounds for N(q)

and q, we obtain

M

(
x,

x
1
2

log2 x
, x

1
2 log2 x

)
� x log log x

log2 x

We are now left to deal with the estimates of 1
2
N(x, 1

12
log x) andM

(
x, 1

12
log x, x

1
2

log2 x

)
.

So far, we have obtained the following

N∗a (x) =
1

2
N(x,

1

12
log x) +O

(
M

(
x,

1

12
log x,

x
1
2

log2 x

))
+O

(
x log log x

log2 x

)

34



Estimate of N(x, 1
12

log x) and M
(
x, 1

12
log x, x

1
2

log2 x

)
Now, to estimate the main two terms, we need to define a new field extension tower

as follows. Let a be a square free integral ideal in OK which is only divisible by

prime ideal factors of degree one. Also let s be a square free integer. Define the

field extensions

La =
∏

q|a Lq = K(E[a], a−1a)

Ks =
∏

q|s Kq = K(E[s])

La,s = La ·Ks = K(E[as], a−1a)

with [La : K] = n(a), [Ks : K] = m(s) and [La,s : K] = n(a, s), say. Let the

discriminant of La,s over Q be denoted as d(a, s). Also define the following

π(x, a, s) = #{πp ∈ K |N(πp) ≤ x, πp splits completely in La,s}
π(x, q) = #{πp ∈ K |N(πp) ≤ x, πp splits completely in Lq}
π(x, q) = #{πp ∈ K |N(πp) ≤ x, πp splits completely in Kq}

Based on the terms defined above and with the help of an inclusion-exclusion

argument, we can write the following

N(x, y1) =
∑

N(q)≤y1 ∀q|a
q≤y1 ∀q|s

µ(a)µ(s)π(x, a, s)

M(x, y1, y2) ≤
∑

y1≤N(q)≤y2

π(x, q) +
∑

y1≤q≤y2

π(x, q)

where the functions µ(a) and µ(s) denote the natural Möbius functions for OK and

Z in respective cases. Here, we need to set y1 = 1
12

log x and y2 = x1/2/ log2 x and

it remains to estimate the function π to obtain the desired estimates of the terms

N(x, y1) and M(x, y1, y2).

We can obtain good estimates for the π functions using a theorem by Lagarias

and Odlyzko [14], which states

Theorem 3.2 (Lagarias-Odlyzko) Let L/K be a normal extension with degree

[L : K] = n and discriminant disc(L/Q) = d. Let πC(x,L) be the number of first

degree prime ideals of K whose Frobenius automorphism lies in a given conjugacy

class C of Gal(L/K). If the Dedekind zeta function of L satisfies the generalized

Riemann hypothesis, then

πC(x,L) =
|C|
n

li(x) +O

(
|C|x

1
2

(
log x+

log |d|
n

))
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In case of the π functions, we are counting the primes splitting completely in

the extension, which implies that the Frobenius automorphisms of the primes act

trivially and hence the conjugacy class is essentially trivial in this case. If we assume

that the Dedekind zeta function of La,s satisfies GRH, we obtain the following

L K C πC(x,L)

La,s K {1} π(x, a, s) = li(x)
n(a,s)

+O
(
x1/2

(
log x+ log |d(a,s)|

n(a,s)

))
Lq K {1} π(x, q) = li(x)

n(q)
+O

(
x1/2 log x

)
Kq K {1} π(x, q) = li(x)

m(q)
+O

(
x1/2 log x

)
Hence, we get the estimate of N(x, y1) as follows

N(x, y1) =
∑′

a,s

µ(a)µ(s)

n(a, s)
li(x) + O

(
x1/2

∑′

a,s

(
log x+

log |d(a, s)|
n(a, s)

))

where the dash over the summation denotes that N(q) ≤ y1 for all first degree

prime ideals q|a and q ≤ y1 for all primes q|s.

Now, we have the following results regarding the estimates of the degree and

discriminant of the field extensions

Lemma 3.6
log |d(a, s)|
n(a, s)

� logN(a) + log s

Proof. Proved in Section 3.3.3.

Lemma 3.7 If a and s are coprime to 6∆E, where ∆E is the discriminant of E,

and (a, s) denote the gcd of a and s, then

n(a, s) =
n(a)m(s)

φ((a, s))

Proof. Proved in Section 3.3.3.

Again, in the dashed summation, we have at most 23y1 pairs (a, s) and for any

ideal a,

N(a) ≤
∏

N(q)≤y1

N(q) ⇒ logN(a)� y1
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Similarly, we can also obtain log s � y1. With the help of this estimates and

Lemma 3.6, we get the error term in N(x, y1) to be

� x1/2
∑′

a,s

(log x+ logN(a) + log s) � x1/22
1
4

log x log x � x1−ε

for any ε > 0 for our prior choice of y1 = 1
12

log x. Hence, we obtain

N(x, y1) =
∑′

a,s

µ(a)µ(s)

n(a, s)
li(x) + O

(
x1−ε)

=
∑
a,s

µ(a)µ(s)

n(a, s)
li(x) +

∑′′

a,s

µ(a)µ(s)

n(a, s)
li(x) + O

(
x1−ε)

where the first summation is over all the square free ideals a and all square free

numbers s, and the double dash over the second summation indicates that either

N(a) ≥ y1 or s ≥ y1.

From Lemma 3.7, we obtain∑
a,s

µ(a)µ(s)

n(a, s)
≤
∑
a,s

1

n(a, s)
�
∑
a,s

φ((a, s))

n(a)m(s)

where the constant implied is due to the divisors of 6∆E which contribute to only

a finitely many sums if we decompose the original sum according to (a, s, 6∆E). As

φ((a, s)) is a multiplicative function in s for fixed a, we obtain∑
a,s

µ(a)µ(s)

n(a, s)
�
∑

a

1

n(a)

∏
q

(
1 +

φ((a, q))

m(q)

)
�
∑

a

1

n(a)

∏
(a,q)=1

(
1 +

1

m(q)

) ∏
(a,q) 6=1

(
1 +

φ((a, q))

m(q)

)

Now, since the first product term is a subsequence of
∏

q (1 + 1/m(q)), which con-

verges, we can write∑
a,s

µ(a)µ(s)

n(a, s)
�
∑

a

1

n(a)

∏
(a,q) 6=1

(
1 +

φ((a, q))

m(q)

)
�
∑

a

2w(a)

n(a)

where w(a) denotes the number of first degree prime ideal factors of a. As 2w(a) =

O(N(a)ε) and n(a) ≥ N(a)3/2 for all sufficiently large N(a), we have the last series

to be converging. Hence, we have the unrestricted sum to converge and we can fix∑
a,s

µ(a)µ(s)

n(a, s)
= δ
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The error term comprises of the double dashed summation which contributes the

following∑′′

a,s

µ(a)µ(s)

n(a, s)
≤
∑′′

a,s

1

n(a, s)
�

∑
N(a)≥y1

1

n(a)
+
∑
s≥y1

1

m(s)
� log log x

log x

utilizing some elementary estimates for the φ function and putting y1 = 1
12

log x.

Hence, we obtain

N(x,
1

12
log x) = δ li(x) +O

(
log log x

log x
li(x)

)
+O

(
x1−ε)

= δ li(x) +O

(
x log log x

log2 x

)
Again, from the degree estimates, we also get

M(x, y1, y2)�
∑

y1≤N(q)≤y2

(
li(x)

n(q)
+O(x1/2 log x)

)
+
∑

y1≤q≤y2

(
li(x)

m(q)
+O(x1/2 log x)

)

Plugging in the appropriate limits y1 = 1
12

log x, y2 = x1/2/ log2 x and utilizing the

estimates n(q)� N(q)2, m(q)� q2, we obtain

M(x,
1

12
log x,

x1/2

log2 x
) � x

log2 x

Combining the estimates of all the terms as derived above, we get

N∗a (x) =
δ

2
li(x) + O

(
x log log x

log2 x

)
This proves Theorem 3.1 as δ depends only on the elliptic curve E and a and

we can set CE(a) = δ/2. We will prove the lemmas in the following subsection and

the next section will deal with the characterization of the constant δ and analysis

of the cases where CE(a) > 0.

3.3.3 Proof of Lemmas

Proof of Lemma 3.5

Let us consider some basic facts about the division polynomial defined earlier. If we

have (αP )x = fα(x)/gα(x), then we have deg(fα) = N(α) and deg(gα) = N(α)− 1
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where N(α) is the norm of α over K. Again, if we normalize gα to have leading

coefficient α2, then it will have coefficients in K and we will have

gα(x) = α2
∏
u

(x− ℘(u))

where the product is over all the non-zero α-division points and ℘ is the Weierstrass

elliptic function. So, the coefficients of gα are bounded by

N(α)2N(α)
∏
u

max(1, |℘(u)|)

Now, we use the following result to prove this lemma.

Lemma 3.8 For any non-zero α-division point u, ℘(u)� N(α) and the constant

depends only on E.

Proof. Let us consider the lattice associated to E to be Λ = ω0OK. Then the

α-division point u will be u = βω0/α for some β ∈ OK with α - β. The distance

from u to Λ is given by

min
ω∈Λ
|u− ω| = min

γ∈OK
|ω0|

∣∣∣∣βα − γ
∣∣∣∣ = |ω0| min

γ∈OK

√
N(β − αγ)

N(α)
≥ |ω0|√

N(α)

Hence, by the definition of the Weierstrass ℘ function, we obtain

℘(u)� 1(
|ω0|/

√
N(α)

)2

and the result follows. �

If we use this result, we obtain that the coefficients of gα are bounded by

exp(CN(α) logN(α)) where C depends only on the number of α-division points

u of the curve E for which |℘(u)| > 1, that is only on E. �

Proof of Lemma 3.6

From a result of Hensel [18], we get that if L/Q is a normal extension of degree n

and ramified only at the points p1, ..., pm, then

1

n
log | disc(L/Q)| ≤ log n+

m∑
j=1

log pj

39



In this case, we clearly have n = n(a, s) ≤ n(a)m(s). Again, m(s) ≤ φ(sOK) and

n(a) ≤ φ(a)N(a) because

Gal(K(E[a])/K) ⊂ (OK/a)∗ ⇒ Gal(La/K) ⊂

{(
1 ∗
0 ∗

)
∈ GL2(OK/a)

}

So we obtain log n(a, s)� logN(a) + log s and hence

log |d(a, s)|
n(a, s)

� logN(a) + log s+
m∑
j=1

log pj

where the primes pj run over all the primes which ramify on the extension La.

To count these primes, it suffices to count the ones which ramify on the extension

Q(E[r], r−1a) for r = N(a)s, as La is contained in it. Now, this extension is ramified

only at primes which divide r and ∆E. Hence, we have

log |d(a, s)|
n(a, s)

� logN(a) + log s

where the implied constant depends upon E. �

Proof of Lemma 3.7

Let us suppose b = lcm(a, s). Then K(E[a])K(E[s]) = K(E[b]). Again it is well

known that if a prime p does not divide 6∆E, then K(E[p])/K is unramified outside

6p∆E but is totally ramified at p and it has Galois group equal to (OK/p)∗. Since

(b, 6∆E) = 1, we must have Gal(K(E[b])/K) = (OK/b)∗. Hence

[K(E[b]) : K] = φ(b) =
[K(E[a]) : K][K(E[s]) : K]

φ((a, s))

Now, we take the aid of the following result to complete the proof.

Lemma 3.9 Suppose that a, b, c are square free, a, c are products of first degree

primes, (a, 6∆E) = 1, a|b, c|b and (N(a), N(c)) = 1. Then

[K(E[b], a−1c−1a) : K(E[b], c−1a)] = [La : K(E[a])]

Proof. Let us consider the Galois group Gal(K(E[b], a−1c−1a)/K). This can be

identified with a subgroup G1 of{(
1 α

0 β

)
: α ∈ OK/ac, β ∈ (OK/b)∗

}
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Again, the Galois group Gal(La/K) can be identified with a subgroup G2 of{(
1 α

0 β

)
: α ∈ OK/a, β ∈ (OK/a)∗

}

Further, the subfields K(E[b], c−1a) and K(E[a]) correspond to the subgroups I1

and I2 of OK/ac and OK/a respectively, where

I1 =

{
α :

(
1 α

0 1

)
∈ G1, α ≡ 0 (mod c)

}
I2 =

{
α :

(
1 α

0 1

)
∈ G2

}

To prove the result, we need to show that |I1| = |I2|. Now, it will suffice to prove

that for each prime p|N(a), the projections φ1 : I1 → OK/(a, p) and φ2 : I2 →
OK/(a, p) have the same image.

Suppose p||N(a), such that (a, p) = p with N(p) = p. Then Im(φ1) and Im(φ2)

can be 0 or OK/p. Now, Im(φ1) = 0 if and only if p−1a ∈ K(E[b], c−1a) and Im(φ2)

= 0 if and only if p−1a ∈ K(E[a]). This is evident that p−1a ∈ K(E[a]) ⇒ p−1a ∈
K(E[b], c−1a) which proves Im(φ1) = 0 ⇒ Im(φ2) = 0. Conversely, if Im(φ1)

= 0, then the projection {α : ( 1 α
0 1 ) ∈ G1} → OK/p has a trivial image and

p−1a ∈ K(E[b]). This implies p−1a ∈ K(E[a]) since otherwise the non-abelian ex-

tension K(E[a], p−1a) would be contained in the abelian extension K(E[b]), which

is impossible. Thus, Im(φ1) = Im(φ2).

Now, let us assume p2||N(a) so that (a, p) = p1p2, say. Since Gal(K(E[p])/K) '
(OK/p)

∗, we have for any δ ∈ (OK/p)
∗, some β ∈ (OK/a)∗ and γ ∈ OK/a with β ≡ δ

(mod p) and
(

1 γ
0 β

)
∈ G2. Then for any α ∈ I2,(

1 γ

0 β

)−1(
1 α

0 1

)(
1 γ

0 β

)
=

(
1 αβ

0 1

)
∈ G2

This shows that Im(φ2) is an ideal in OK/p. Similarly, Im(φ1) is an ideal. Let us

assume φ
(j)
i : Ii → OK/pj, so that we can write

Im(φi) ' Im(φ
(1)
i )× Im(φ

(2)
i )

for i = 1, 2. With an argument as before we can prove individually that Im(φ
(j)
1 ) =

Im(φ
(j)
2 ) for j = 1, 2 and hence Im(φ1) = Im(φ2). This proves the result. �
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Now, taking c = 1 in the result above, we obtain

[K(E[b], a−1a) : K(E[b])] = [La : K(E[a])]

⇒[K(E[b], a−1a) : K(E[b])][K(E[b]) : K] =
[La : K(E[a])][K(E[a]) : K][K(E[s]) : K]

φ((a, s))

⇒[La,s : K] =
[La : K][Ks : K]

φ((a, s))

⇒n(a, s) =
n(a)m(s)

φ((a, s))
�

3.4 Result 2: Gupta and Murty

Theorem 3.3 (Gupta and Murty, 1986) If 2 and 3 are inert in K or if K =

Q(
√
−11), then CE(a) > 0. Hence, assuming GRH in these cases, we obtain

N∗a (x) � x

log x

Proof. We have obtained the density δ from the previous section as follows

δ =
∑
a,s

µ(a)µ(s)

n(a, s)

Now, to decompose δ in form of an infinite product, we need the following result

Lemma 3.10 Let a = a1b, s = s1b where (a1, 6∆E) = (s1, 6∆E) = 1 and b, b|6∆E.

Then n(a, s) = n(a1, s1)n(b, b).

Proof. Proved in Section 3.4.3.

Using Lemma 3.10 and the fact that Möbius function is a multiplicative function

over square free a and s, we can write

δ =
∑
a1,s1
b,b

µ(a1)µ(s1)

n(a1, s1)
· µ(b)µ(b)

n(b, b)
=
∑
b,b

µ(b)µ(b)

n(b, b)
·
∑
a1,s1

µ(a1)µ(s1)

n(a1, s1)
= δ0 · δ1

where

δ0 =
∑
b,b

µ(b)µ(b)

n(b, b)
and δ1 =

∑
a1,s1

µ(a1)µ(s1)

n(a1, s1)

where the above sums run over a1, s1 coprime to 6∆E and b, b the divisors formed by

the first degree prime ideal factors of (6∆E) and prime factors of 6∆E respectively.

We will analyze the two terms δ0 and δ1 individually to prove Theorem 3.3.
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3.4.1 Analysis of δ1

Let us take a look at the second term δ1 first. As we have (a1, 6∆E) = (s1, 6∆E) = 1,

we can utilize Lemma 3.7 to write

δ1 =
∑
a1,s1

µ(a1)µ(s1)

n(a1)m(s1)
φ(a1, s1) =

∑
s1

µ(s1)

m(s1)

∏
q

(
1− φ(q, s1)

n(q)

)
where the product is over the first degree prime ideals of OK. As q is a prime

ideal, (q, s1) 6= 1 only when q|s1. Again, in that case, φ(q, s1)/n(q) = φ(q)/n(q) =

1/N(q). Based on this, we can decompose the infinite product as follows

δ1 =
∏

q

(
1− 1

n(q)

)
·
∑
s1

µ(s1)

m(s1)

∏
q|s1

(
1− 1

N(q)

)(
1− 1

n(q)

)−1

=
∏

q inert in K
(q,6∆E)=1

(
1− 1

q2 − 1

)
·

∏
q splits in K
(q,6∆E)=1

(
1− 1

q2 − 1

)(
1− 1

q − 1

)(
1 +

1

q

)

=
∏

q inert in K
(q,6∆E)=1

(
1− 1

q2 − 1

)
·

∏
q splits in K
(q,6∆E)=1

(
1− 2

q(q − 1)
− 1

(q − 1)2
+

2

q(q − 1)2

)

Here, we do not see the prime factors which ramify in K because of the fact that

all those factors divide 6∆E. Hence, we can conclude that δ1 > 0. It remains to

analyze the cases where δ0 > 0

3.4.2 Analysis of δ0

We have obtained, for b and b running over the divisors of 6∆E formed by first

degree prime ideal factors of (6∆E) and prime factors of 6∆E respectively,

δ0 =
∑
b,b

µ(b)µ(b)

n(b, b)

Note that δ0 actually gives the density of prime ideals πp which do not split in any

extension Lb,b. Let us define a new term δ∗ which represents the density of prime

ideals πp which do not split completely in any Kq or K(E[q]). Hence, we obtain

δ0 ≥ δ∗. As we are considering only the imaginary quadratic field extensions K
with class number 1, our choices are restricted to K = Q(

√
−2), Q(

√
−3), Q(

√
−4),

Q(
√
−7), Q(

√
−8), Q(

√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163). Now,

we take up different cases to analyze the term δ∗ for different K.
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Case 1: 2 and 3 are inert in K

If 2 or 3 are inert in K, it means that K 6= Q(i) or Q(
√
−3). The extension fields

obtained by adjoining E(q) to K contain the ray class fields. For a given ideal a ∈
OK, the ray class field K(a) has degree φ(a)/w(a) where w(a) represents the number

of inequivalent units modulo a. Now let us consider the field Ta =
∏

p|a K(p), where

the product is over all the prime ideal divisors p of a. As p are distinct prime ideals,

we have the fields K(p) to be disjoint and hence

[Ta : K] =
∏
p|a

[K(p) : K] =
∏
p|a

φ(p)

w(p)

Now, from the definition of δ∗, we obtain

δ∗ ≥
∏

p|6∆E

(
1− w(p)

φ(p)

)
From the definition of w(p), we know that w(p) = 2 for all p 6= 2 and w(p) = 1

for p = 2. So, (1−w(p/φ(p)) = 0 only when p = 2 or 3. In this case, we have 2 and

3 to be inert in K, which means p 6= 2 or 3, and hence δ∗ > 0. So, we have proved

that δ0 > 0 ⇒ CE(a) > 0 for the cases K = Q(
√
−19),Q(

√
−43),Q(

√
−67) and

Q(
√
−163), where 2 and 3 are inert in K.

Case 2: K = Q(
√
−11)

This case is a little bit tricky, as 3 splits in Q(
√
−11). Let us suppose 3 splits as

p1p2. We will consider the extensions K(E[p1]) and K(E[p2]) instead of the trivial

ray class fields in this case. We can write K(E[3]) = K(E[p1])K(E[p2]) where

K(E[3]) is disjoint from the fields K(p) where p 6= p1 or p2. Hence we have

δ∗ ≥
(

1− 1

[K(E[p1]) : K]

)(
1− 1

[K(E[p2]) : K]

) ∏
p|6∆E

p 6=p1,p2

(
1− w(p)

φ(p)

)

Now, we also know that K(E[p1]) and K(E[p2]) are quadratic extensions of K.

Therefore, we can conclude δ∗ > 0 ⇒ δ0 > 0 ⇒ CE(a) > 0 in this case as well.

Case 3: K = Q(
√
−7)

In this case, if E has complex multiplication by the maximal order of OK, then 2

splits in K. Hence, all the 2-division points are contained in K. Now, if p splits in

K, then the 2-division points are contained in E(Fp) as well. Hence, from a similar

calculation as before, we see that δ0 = δ∗ = 0. So, CE(a) = 0 in this case.
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Case 4: K = Q(
√
−2)

For analyzing this case, we will need to utilize the following result.

Lemma 3.11 Let Ki, i ∈ I, be a finite set of non-trivial disjoint normal extensions

of K, and let L/K be a normal extension with prime degree. Then

(i) Either L *
∏

i∈I Ki or there is a unique minimal subset IL of I such that

L ⊂
∏

i∈IL Ki.

(ii) The density of first degree prime ideals which do not split completely in L or

any Ki is zero if and only if L ⊂
∏

i∈I Ki, [L : K] = 2, |IL| is even, and for

each i ∈ IL, [Ki : K] = 2.

Proof. Proved in Section 3.4.3.

Now in the case K = Q(
√
−2), 2 ramifies in K and 3 splits as p1p2, say. Analo-

gous to the case of K = Q(
√
−11), here the extensions K(E[2]),K(E[3]) and K(p)

for p|6∆E, p 6= p1, p2, (
√
−2) are non-trivial disjoint extension fields of K. Further,

only the fields K(E[p1]),K(E[p2]) and K(E[2]) are quadratic extensions of K.

Let us apply the result of Lemma 3.11 allowing Ki to range over K(E[p1]),K(E[p2]),

K(E[2]),K(p) and L = K((
√
−2)−1a). If L = K, then there exists some b ∈ E(K)

satisfying a =
√
−2b. This implies δ0 = 0. Otherwise, if L is a quadratic extension

of K, then L ⊂ K(E[p1])K(E[p2])K(E[2]) ⇒ L = K(E[2]) in the case where p1

and p2 do not ramify in L. In this case, we get δ0 > 0 from Lemma 3.11. Thus, we

obtain δ > 0 ⇒ CE(a) > 0 most of the time in this case.

3.4.3 Proof of Lemmas

Proof of Lemma 3.10

To prove n(a, s) = n(a1, s1)n(b, b), it suffices to show that [La,s : Lb,b] = [La1,s1 : K].

We know that if p| lcm(a1, s1), then K(E[p]) is an extension of K in which p ramifies

completely and the primes not dividing 6p∆E do not ramify at all. Again, p does

not ramify in Lb,b. Hence, for d = lcm(a, s) and c = lcm(a1, s1), we have

[K(E[d], b−1a) : Lb,b] = [K(E[c]) : K]

Furthermore, by Lemma 3.9, we have that

[La1 : K(E[a1])] = [La,s : K(E[d], b−1a)] = [La1,s1 : K(E[c])]
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Hence, we can obtain

[La,s : Lb,b] = [La,s : K(E[d], b−1a)][K(E[d], b−1a) : Lb,b]

= [La1,s1 : K(E[c])][K(E[c]) : K]

= [La1,s1 : K] �

Proof of Lemma 3.11

For a subset J ⊂ I, let us define KJ =
∏

i∈J Ki. Now, since the Ki are disjoint,

if L ⊂ KJ1 and L ⊂ KJ2 , we must have L ⊂ KJ1∩J2 . Thus, if L ⊂ KI , then there

exists a minimal subset IL ⊂ I such that L ⊂ KIL . Hence, the result in Lemma

3.11 (i) follows.

Let us suppose L 6⊂ KI . Then as [L : K] is prime, L must be disjoint from

all the Ki’s. Hence, we have positive density for the first degree prime ideals not

splitting completely in L or any Ki.

Now, if L ⊂ KI , the density of primes not splitting completely in L or any Ki

is given by∑
J⊂I

µ(J)

[KJ : K]
− 1

[L : K]

∑
J⊂I
IL 6⊂J

µ(J)

KJ : K
−
∑
J⊂I
IL⊂J

µ(J)

KJ : K

=
[L : K]− 1

[L : K]

∑
J⊂I

µ(J)

KJ : K
−
∑
J⊂I
IL⊂J

µ(J)

KJ : K


=

[L : K]− 1

[L : K]

(∏
i∈I

(
1− 1

[Ki : K]

)
− µ(IL)

[KIL : K]

∏
i 6∈IL

(
1− 1

[Ki : K]

))
Hence, the density is zero if and only if we have the following∏

i∈IL

(
1− 1

[Ki : K]

)
=

µ(IL)

[KIL : K]
= µ(IL)

∏
i∈IL

1

[Ki : K]

which implies [Ki : K] = 2 for all i ∈ IL, [L : K] = 2 and µ(IL) = 1. Hence, the

claim in Lemma 3.11 (ii) follows. �

3.5 Result 3: Gupta and Murty

In the same paper [8], Gupta and Murty proved the higher rank analogue of the

conjecture which was foreseen by Lang and Trotter [15]. They considered a free
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subgroup Γ of rational points instead of taking the whole group to be an infinite

cyclic one and formulated the conjecture in the lines of Lang and Trotter. Gupta

and Murty propose and prove the following theorem about the density of primes

p for which the free subgroup Γ will generate the elliptic curve group E under the

reduction modulo p, provided the rank of Γ is sufficiently large.

Theorem 3.4 (Gupta and Murty, 1986) Let E(Q) be an elliptic curve and let

Γ be a free subgroup of rational points. If we define

NΓ(x) = #{p ≤ x : Γp = E(Fp)}

where E(Fp) and Γp are the images of E and Γ modulo p respectively, under the

assumption of generalized Riemann hypothesis, there exists a constant CE(Γ) such

that as x→∞, we obtain:

NΓ(x) = CE(Γ)
x

log x
+ o

(
x

log x

)
and this holds for rank(Γ) ≥ 18 in the case where E has no complex multiplication

and for rank(Γ) ≥ 10 in the case where E has complex multiplication over the

entire ring of integers of some quadratic extension of Q.

3.5.1 Proof of Theorem 3.4

Let us assume that the points P1, P2, ..., Pr are r independent generators of the free

subgroup Γ, that is r = rank(Γ). Now, for a prime q, let us consider the extension

Mq = Q(E[q], q−1P1, ..., q
−1Pr)

This extension is a normal extension over Q and we can easily prove that the Galois

group

Gal(Mq/Q) ⊂ GL2(Fq) o E[q]r

So, we may view the elements of the Galois group as pairs σ = (γ, τ) where γ ∈
GL2(Fq) and τ ∈ E[q]r. Hence, we can state the index divisibility criterion to be

Lemma 3.2 as formulated by Lang and Trotter.

Now, the primes those divide the discriminant ∆E and result in a ‘bad’ reduction

introduce an error of O(1) and can be ignored. Again, if p = q, then as shown before

in Result 1, we obtain p + 1 − ap ≡ 0 (mod p). We know, due to Serre [18], that

these primes introduce an error of o(x/ log x). So, within our error bound, we can

assume that p - q∆E.
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It can easily be shown that the number of γp such that ker(γ − 1) is cyclic is

q+O(1) in the CM case and q3 +O(q2) in the non-CM case. Hence the number of

elements σp ∈ Gal(Mq/Q) satisfying condition (i) of Lemma 3.2 is qr+1 +O(qr) in

the CM case and qr+3+O(qr+2) in the non-CM case. Again, the number of elements

satisfying condition (ii) of Lemma 3.2 is qr+1 + qr − q because for sufficiently large

q, the Galois group Gal(Mq/Q(E[q])) is isomorphic to E[q]r given by the map

(q−1P1, ..., q
−1Pr) 7→ (q−1P1 + a1, ..., q

−1Pr + ar)

and clearly τ(Γ) is a subgroup of E[q] generated by a1, ..., ar.

To prove Theorem 3.4, we need to estimate the following quantity

NΓ(x) = #{p ≤ x | E(Fp) = Γp}
= #{p ≤ x | q - i(p) ∀ primes q}
= #{p ≤ x | σp(Mq/Q) 6∈ Sq ∀ primes q}

As in the case of Theorem 3.1, let us define the following two terms

NΓ(x, y) = #{p ≤ x | σp(Mq/Q) 6∈ Sq ∀ primes q < y}
MΓ(x, y1, y2) = #{p ≤ x | σp(Mq/Q) ∈ Sq for some prime y1 < q < y2}

Then, similar to the relation formulated in Result 1, we have

NΓ(x) = NΓ(x, y1) +O (MΓ(x, y1, 2x))

Estimate of NΓ(x, y1)

Let us consider the extension Ms =
∏

q|s Mq for a square-free integer s. Then, the

sets Sq’s for all prime divisors q of s determine a conjugacy class Ss ⊂ Gal(Ms/Q).

Let us define

πΓ(x, s) = #{p ≤ x | σp(Ms/Q) ∈ Ss}

Then, by an inclusion-exclusion argument, we obtain

NΓ(x, y1) =
∑′

s

µ(s)πΓ(x, s)

where the dashed summation represents a sum over all s such that q ≤ y1 for each

prime divisor q of s. To utilize the result of Theorem 3.2 in this case, let us take

C = Ss, n = | Gal(Ms/Q)|, d = disc(Ms/Q). Hence we obtain

NΓ(x, y1) =
∑′

s

µ(s)
|Ss|
n

lix + O

(
|Ss|x1/2

∑′

s

(
log x+

log |d|
n

))
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Following similar steps as in the proof of Result 1 and fixing y1 =
(

1
4

log x
)1/(r+2)

,

we get

NΓ(x, y1) =
∑′

s

µ(s)δ(s) lix + O
(
x1−ε)

where δ(s) = |Ss|/n. Again, as we have δ(s) = O(s−(r+1)), we obtain that if we

convert the restricted dashed sum to an unrestricted sum over all s by a procedure

similar to Result 1, then
∑

s µ(s)δ(s) is absolutely convergent. Hence, we can term

it CE(Γ) and we get

NΓ(x, y1) = CE(Γ)
x

log x
+ o

(
x

log x

)

Estimate of MΓ(x, y1, 2x)

Let us consider the extensions Vq,i = Q(E[q], q−1Pi) for each of the generators Pi

of Γ. Now, if we have σp(Mq/Q) ∈ Sq, then the restriction of σp over Vq,i should

satisfy the Lang and Trotter criterion mentioned in Lemma 3.1 for all i = 1, ..., r.

From Approach 1 of Lang and Trotter, we know that the image of Sq restricted to

Vq,i would be O(q2) in the CM case and O(q4) in the non-CM case. Then, we can

utilize Theorem 3.2 once again to obtain

MΓ(x, y1, y2) ≤
∑

y1<q<y2

(
1

q2
lix + O

(
qgx1/2 log x

))
where g = 2 in the CM case and g = 4 in the non-CM case. For our choice of

y1 =
(

1
4

log x
)1/(r+2)

, we have the summation of the first term to be o(x/ log x).

The error term is o(yg+1
2 x1/2). So, we choose yg+1

2 = x1/2/ log2 x so that the error

term becomes o(x/ log x). With this choice of y2, we obtain

MΓ(x, y1, 2x) = MΓ(x, y1, y2) +MΓ(x, y2, 2x) = o

(
x

log x

)
+MΓ(x, y2, 2x)

It remains to deal with the second term MΓ(x, y2, 2x). Let us break it apart as

follows

MΓ(x, y2, 2x) = MΓ(x, y2, y3) +MΓ(x, y3, 2x)

Now, for the second term, if σp(Mq/Q) ∈ Sq for y3 < q < 2x, then |Γp| < x/y3.

Here, we take the help of the following result to choose y3 as per requirement.

Lemma 3.12 The number of primes p satisfying |Γp| < y is O
(
y1+2/r

)
.
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Proof. Proved in Section 3.5.2.

Using this result, we obtain that in the range y3 < q < 2x, MΓ(x, y3, 2x) =

o
(
(x/y3)1+2/r

)
. Now, if we choose y3 = y2 logA x, then this condition gives us

MΓ(x, y3, 2x) = o

((
x1− 1

2(g+1) (log x)−A+ 2
g+1

)1+ 2
r

)
= o

(
x1− 1

(g+1)r
+ 2
r
− 1

2(g+1) (log x)(−A+ 2
g+1)(1+ 2

r )
)

So, for sufficiently large A, to obtain MΓ(x, y3, 2x) = o(x/ log x), we need

− 1

(g + 1)r
+

2

r
− 1

2(g + 1)
≥ 0 ⇔ r ≥ 4g + 2

We are only left with the term MΓ(x, y2, y3). This can be shown to be less than

the term M(x, y2, y3) as in the proof of Result 1. Further, we can use the Brun-

Titchmarsh sieve to prove that M(x, y2, y3) = o(x/ log x) for our choice of y2 and

y3. This proves that

MΓ(x, y1, 2x) = o

(
x

log x

)
for r ≥ 4g + 2

As stated earlier, we have g = 2 for CM case and g = 4 for the non-CM case.

Hence, we can conclude that for r ≥ 10 in the CM case and r ≥ 18 in the non-CM

case

NΓ(x) = CE(Γ)
x

log x
+ o

(
x

log x

)
This completes the proof of Theorem 3.4, where CE(Γ) is a positive constant de-

pending only on the choice of the elliptic curve E and the free subgroup of rational

points Γ.

In this context, let us consider the current record for the rank of elliptic curves.

Let E be an elliptic curve over Q. By Mordell’s theorem, E(Q) is a finitely generated

abelian group. This means that E(Q) = E(Q)tors × Zr. By Mazur’s theorem [19],

we know that E(Q)tors is one of the following 15 groups: Z/nZ with 1 ≤ n ≤ 10 or

n = 12 or Z/2Z×Z/2mZ with 1 ≤ m ≤ 4. But, it is not known what specific values

of rank r are possible for elliptic curves over Q. The ‘folklore’ conjecture is that

a rank can be arbitrary large. The current record is an example of elliptic curve

with r ≥ 28, found by Elkies in 2006 (the previous record was r ≥ 24, found by

Martin and McMillen in 2000). The highest rank of an elliptic curve which is known

exactly is r = 18, and it was found by Elkies in 2006. It improves previous records

due to Kretschmer (r = 10), Schneiders-Zimmer (r = 11), Fermigier (r = 14),

Dujella (r = 15) and Elkies (r = 17) [5]. Hence, we now have definite curves with

sufficiently higher ranks so as to follow Theorem 3.4.
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3.5.2 Proof of Lemmas

Proof of Lemma 3.12

As we have already assumed, let P1, ..., Pr be r independent generators of Γ. We

will utilize the concept of canonical height pairing by Néron and Tate [19], which is

a positive semidefinite bilinear pairing on E(Q) with the property that 〈P, P 〉 = 0

if and only if P is a torsion point on the curve. Let us denote the canonical

height pairing by H(P ) = 〈P, P 〉 and the naive a-height of a point P = (a, b) by

ha(P ) = log max(|r|, |s|) where a = r/s with r, s coprime. In that case, we have

H(P ) = ha(P ) + O(1) where the implied constant depends only on E. Let us

consider the following set

S = {(n1, ..., nr) ∈ Zr : H(n1P1 + · · ·+ nrPr) ≤ Cy2/r}

with the constant C satisfying (Cπ)
r
2/
√
RΓ
(
r
2

+ 1
)
> 1 where R = det(〈Pi, Pj〉).

Now, we will use the following result to prove this lemma.

Lemma 3.13

#{(n1, ..., nr) ∈ Zr : H(n1P1+· · ·+nrPr) ≤ x} =
(xπ)

r
2√

det(〈Pi, Pj〉)Γ
(
r
2

+ 1
)+O

(
x
r−1
2+ε

)
Proof.

# {(n1, ..., nr) ∈ Zr : H(n1P1 + · · ·+ nrPr) ≤ x}

= #

{
(n1, ..., nr) ∈ Zr :

〈
r∑
i=1

niPi,
r∑
i=1

niPi

〉
≤ x

}

= #

{
(n1, ..., nr) ∈ Zr :

∑
i,j

ninj〈Pi, Pj〉 ≤ x

}

which is equivalent to counting lattice points in the r-dimensional ellipsoid defined

by the quadratic form
∑

i,j ninj〈Pi, Pj〉 ≤ x. The number of lattice points in such

an ellipsoid is given by the expression in the lemma [8]. �

Using the result above, we get |S| > y. Again, we have |Γp| < y. Hence,

by the pigeon hole principle, we must have two distinct r-tuples (n1, ..., nr) and

(m1, ...,mr) such that

n1P1 + · · ·+ nrPr ≡ m1P1 + · · ·+mrPr (mod p)
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So, the denominator of the non-zero point
∑r

i=1(ni −mi)Pi = Q is divisible by p.

The number of such primes is obviously less than ha(Q) . Again, H(Q) 6= 0 as Q is

not a torsion point for independent P1, ..., Pr. Therefore, ha(Q)� H(Q) ≤ 2Cy2/r.

So, by Lemma 3.13, the number of such points Q is O(y). Now, each of these points

Q give rise to at most O(y2/r) prime factors. Hence, the total number of primes p

satisfying |Γp| < y is O(y1+2/r), as required. �

3.6 Result 4: Gupta and Murty

Continuing the work over the curves with higher ranks, Gupta and Murty noticed

that the assumption of generalized Riemann hypothesis can be somewhat relaxed

for elliptic curves of higher rank and having complex multiplication. In this case,

we will need to assume α-GRH, a weaker version of the original GRH, to obtain an

asymptotic formula.

Hypothesis 3.1 (α-GRH) The α-GRH claims that both the Riemann Zeta func-

tion and the Dirichlet L-function have zero free region of Re(s) > α for some

α > 1
2
.

Evidently, it is weaker than GRH which claims a zero free region for Re(s) > 1
2
.

Now, let us also assume that the elliptic curve E has CM over the ring of integers

of a quadratic extension K of Q. Then, we may state Result 4 by Gupta and Murty

as follows.

Theorem 3.5 (Gupta and Murty, 1986) Suppose that E is an elliptic curve

defined over Q and has complex multiplication over the entire ring of integers

of some quadratic extension K. Let Γ be a free subgroup of rational points with

rank(Γ) = r. Then, if we define:

ÑΓ(x) = #{p ≤ x : Γp = E(Fp), p splits in K}

where E(Fp) and Γp are the images of E and Γ modulo p respectively, then under

the assumption of r
r+1

-GRH (special case of α-GRH with α = r
r+1

), there exists a

constant C̃E(Γ) such that as x→∞, we obtain

ÑΓ(x) = C̃E(Γ)
x

log x
+ o

(
x

log x

)
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3.6.1 Proof of Theorem 3.5

Similar to the proof of Result 1 (rank 1 case), let us consider the field extensions

Kq = K(E[q]) and Lq = K(E[q], q−1Γ), where q is any first degree prime ideal in

the extension K. Analogous to the rank 1 case, we can say that for a prime p which

splits as πpπp in K, we will have E(Fp) = Γp if πp does not split completely in any

of Kq or Lq.

Let us define the terms ÑΓ(x, y1) and M̃Γ(x, y1, y2) analogous to the terms de-

fined in the previous proofs. Obviously, we obtain

ÑΓ(x) = ÑΓ(x, y1) + O(M̃Γ(x, y1, 2x))

Estimate of ÑΓ(x, y1)

Following exactly similar steps as we did in the proof of Result 1 (rank 1 case) and

assuming
(

r
r+1

)
-GRH for Theorem 3.2, we can prove that

ÑΓ(x, y1) = C̃E(Γ)
x

log x
+ o

(
x

log x

)
if we choose y1 = 1

6(r+1)
log x when r = rank(Γ). So, it remains to estimate the

second term.

Estimate of M̃Γ(x, y1, 2x)

Let us first break up the range (y1, 2x) into subdivisions (y1, y2), (y2, y3) and (y3, 2x)

to get

M̃Γ(x, y1, 2x) = M̃Γ(x, y1, y2) + M̃Γ(x, y2, y3) + M̃Γ(x, y3, 2x)

Then, for the first term, assuming the r
r+1

-GRH once again and following similar

steps as in the proof of Result 1 using Theorem 3.2, we obtain

M̃Γ(x, y1, y2) = o

(
x

log x

)
for a suitable choice of y2 = x1/(r+1) log−2 x.

Utilizing the Brun-Titchmarsh theorem for the second term, similar to that in

Result 1, we can prove

M̃Γ(x, y2, y3) = o

(
x

log x

)
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if we take y3 = x1/(r+1) log2 x. It remains to estimate M̃Γ(x, y3, 2x).

For this third term, we drop most of the conditions and just count the primes

q within the range which divide the index. Now, as per the range constraint,

x1/(r+1) log2 x < q,N(q) < 2x. If q|[E(Fp) : Γp], then two cases may arise:

Case 1: q|[E(Fp) : Γ̃p] where Γ̃ denotes the OK-module generated by Γ for E

having CM by an order OK in K and Γ̃p denotes the reduction of Γ̃ modulo πp. So,

we get |Γ̃p| < xr/(r+1) log−2 x. In this case, we use the following result to get the

estimate.

Lemma 3.14 Suppose E has complex multiplication by an order OK in K. Then

the number of primes p which split in K and for which |Γ̃p| < y is O(y1+1/r).

Proof. Proved in Section 3.6.2.

Hence, the number of primes q in consideration is given by o(x/ log x).

Case 2: q|[Γ̃p : Γp] where we use the regular notation. In this case, we use the

following result for the estimation.

Lemma 3.15 Let p split in K as πpπp. Then, if {1, ω} be the Z-basis for OK, then

we can write πp = cp + dpω, say. Now, if q be a prime dividing the index [Γ̃p : Γp],

then dp ≡ 0 (mod q).

Proof. Proved in Section 3.6.2.

So, in this case, we get πp ≡ 1 (mod q) which in turn means that πp splits

completely in Kq. Following a similar procedure as in the proof of Result 1, the

number of such prime ideals in this case is

O

 ∑
x1/(r+1)<q<2x

x

q2

 = O
(
x

1
r+1

)
= o

(
x

log x

)

Therefore we get M̃Γ(x, y1, 2x) = o(x/ log x) and this completes the proof of

Theorem 3.5 as we obtain

ÑΓ(x) = C̃E(Γ)
x

log x
+ o

(
x

log x

)
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3.6.2 Proof of Lemmas

Proof of Lemma 3.14

The proof of this lemma is directly in the lines of the proof of Lemma 3.12. We again

utilize the concept of canonical height pairing by Néron and Tate. We consider the

following set

S̃ = {(α1, ..., αr) ∈ OrK : H(α1P1 + · · ·+ αrPr) ≤ Cy1/r}

with the constant C satisfying some similar constraint depending on r and R =

det(〈Pi, Pj〉), as before. Now, we will use the following result instead of Lemma

3.13 to prove this lemma.

Lemma 3.16

#{(α1, ..., αr) ∈ OrK : H(α1P1 + · · ·+ αrPr) ≤ x} = O(xr)

Proof. We can assume K = Q(
√
−D), with D a square free integer, to be the

quadratic extension. To obtain a lower bound for our result, it suffices to count

only the αi’s of the form mi + ni
√
−D. So, we get

# {(α1, ..., αr) ∈ OrK : H(α1P1 + · · ·+ αrPr) ≤ x}

= #

{
(α1, ..., αr) ∈ OrK :

〈
r∑
i=1

αiPi,
r∑
i=1

αiPi

〉
≤ x

}

= #

{
(α1, ..., αr) ∈ OrK :

∑
i,j

T (i, j) ≤ x

}

where T (i, j) = mimj〈Pi, Pj〉+2minj〈Pi,
√
−DPj〉+ninj〈

√
−DPi,

√
−DPj〉. Now,

this is equivalent to counting lattice points in the 2r-dimensional ellipsoid defined

by the quadratic form
∑

i,j T (i, j) ≤ x. The number of lattice points in such an

ellipsoid is given by the expression CRx
r +O(xr−1) [8], and the result follows. �

Using the result above, we get |S̃| > y. Again, we have |Γ̃p| < y. Hence, by the

pigeon hole principle, we must have two distinct r-tuples (α1, ..., αr) and (β1, ..., βr)

such that

α1P1 + · · ·+ αrPr ≡ β1P1 + · · ·+ βrPr (mod p)

So, the denominator of the non-zero point
∑r

i=1(αi − βi)Pi = Q is divisible by p.

The number of such primes is obviously less than ha(Q) . Again, H(Q) 6= 0 as Q is
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not a torsion point for independent P1, ..., Pr. Therefore, ha(Q)� H(Q) ≤ 2Cy1/r.

So, by Lemma 3.16, the number of such points Q is O(y). Now, each of these points

Q contributes to at most O(y1/r) prime factors. Hence, the total number of primes

p satisfying |Γ̃p| < y is O(y1+1/r), as required. �

Proof of Lemma 3.15

We have Γ̃p = Γp + ωΓp for all primes p splitting in K. But we know that πp, as

an automorphism, fixes Γp. So, dp(ωΓp) ⊂ Γp and hence [Γ̃p : Γp]|dp. As q|[Γ̃p : Γp],

the result follows. �

With the proof of these lemmas, we come to an end of our discussion of the

elliptic curve analogue of Artin’s conjecture and its proof by Gupta and Murty. No

unconditional proof of the analogue has been proposed yet, but Gupta and Murty

formulated an unconditional approach to get a finite set of points, one of which will

surely satisfy the conjecture. We will outline their idea in the Conclusion chapter.
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Chapter 4

Conclusion

So far, we have discussed different unconditional approaches to prove the Artin’s

conjecture and the proofs of the elliptic curve analogue of the same. Let us try to

tie the knots and summarize the discussion.

4.1 Unconditional Approach

The result by D.R. Heath-Brown using the refined sieve results is the best we have

so far in this field. The conjecture will be proven unconditionally if we can reduce

the set defined by Heath-Brown to a single integer which is not a square, 0 or ±1.

But, the following question remains unanswered till date.

4.1.1 Open Question: Unconditional Proof

Though the conjecture has been proven for almost all integers, it has not been

proven completely without the assumption of the generalized Riemann hypothesis.

Again, though we know that there are at most 3 exceptional integers for which the

conjecture might fail, we cannot explicitly point those three out. Hence, if we go

back to Gauss’s question: “For how many primes is 10 a primitive root?”, we cannot

answer this question correctly, as 10 may be one of the 3 exceptional integers. This

still poses the unconditional proof of the Artin’s conjecture as an intriguing open

question in front of the mathematical society.

57



4.2 Elliptic Curve Analogue

In case of the elliptic curve analogue formulated by Lang and Trotter, we have a

more comprehensive answer. We have seen the proof of the conjecture assuming

generalized Riemann hypothesis and the proofs of the higher rank versions of the

conjecture. Apart from these, Gupta and Murty used refined sieving techniques for

the elliptic curves to get a lower bound on NΓ(x), as defined earlier in Chapter 3.

I will outline their idea in brief.

4.2.1 Lower Bound for NΓ(x)

Suppose we are assuming that the curve has complex multiplication over the ring

of integers of some quadratic extension K of Q. From a refined version of the lower

bound sieve proved by Fouvry and Iwaniec [6], we obtain

Sα(x) = #{p ≤ x : q|(p− 1) ⇒ q = 2 or q > xα} � x

log2 x

for α = 1
4

+ ε when we are counting only the primes which do not split in Q
(

1
2
Γ
)

and are inert in K. Now, each prime counted in Sα(x) has the property that if

q|[E(Fp) : Γp], then q > xα and hence |Γp| < x1−α. By Lemma 3.14, the number

of such primes is � (x1−α)
1+2/r

= O (x1−α) for r ≥ 6. Hence, apart from these

O (x1−α) primes, for all the other primes counted in Sα(x), we have E(Fp) = Γp.

Therefore, if rank of the curve r ≥ 6, then

NΓ(x)� x

log2 x

4.2.2 Corollary to obtain a Finite Set

From this result, Gupta and Murty proposed a corollary as follows

Corollary 4.1 There is a finite set S, which can be given explicitly, such that for

some a ∈ S, E(Fp) = 〈a〉 for infinitely many primes p, provided that the rank of

E(Q) is r ≥ 6.

For the outline of the proof of this corollary, please refer to Gupta and Murty’s

paper [8]. Now, this result gives us an analogue to the finite set approach in the

unconditional case. But still the following questions regarding the elliptic curve

analogue of Artin’s conjecture remain unanswered.
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4.2.3 Open Questions: Elliptic Analogue

In case of the elliptic curve analogue of the conjecture, we can state the open

problems as follows

• Is the analogous conjecture true unconditionally for all curves?

• Can we formulate the proof without the assumption of complex multiplication

of the curve?

• Is the analogue in case of higher rank elliptic curves true without the assump-

tion of GRH?

Though the conjecture still remains to be open from an unconditional point of

view and although we might not see a solution to the problem in the near future, it

has provided us with an insight of the intertwined fabric of algebraic and analytic

number theory with arithmetical problems.
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