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Abstract

The objective of adaptive control is to design a controller that can adjust its
behaviour to tolerate uncertain or time-varying parameters. An adaptive controller
typically consists of a linear time-invariant (LTI) compensator together with a
tuning mechanism which adjusts the compensator parameters and yields a nonlinear
controller. Because of the nonlinearity, the transient closed-loop behaviour is often
poor and the control signal may become unduly large. Although the initial objective
of adaptive control was to deal with time-varying plant parameters, most classical
adaptive controllers cannot handle rapidly changing parameters.

Recently, the use of a linear periodic (LP) controller has been proposed as a new
approach in the field of model reference adaptive control [20]. In this new approach,
instead of estimating plant parameters, the ideal control signal (what the control
signal would be if the plant parameters and states were measurable) is estimated.
The resulting controller has a number of desirable features:

• it handles rapid changes in the plant parameters,

• it provides nice transient behaviour of the closed-loop system,

• it guarantees that the effect of the initial conditions declines to zero exponen-
tially, and

• it generates control signals which are modest in size.

Although the linear periodic controller (LPC) has the above advantages, it has some
imperfections. In order to achieve the desirable features, a rapidly varying control
signal and a small sampling period are used. The rapidly time-varying control
signal requires fast actuators which may not be practical. The second weakness of
the LPC [20] is poor noise rejection behaviour. The small sampling period results
in large controller gains and correspondingly poor noise sensitivity, since there is
a clear trade-off between tracking and noise tolerance. As the last drawback, this
controller requires knowledge of the exact plant relative degree.

Here we extend this work in several directions:

i In [20], the ∞-norm is used to measure the signal size. Here we redesign the
controller to yield a new version which provides comparable results when the
more common 2-norm is used to measure signal size.

ii A key drawback of the controller of [20] is that the control signal moves rapidly.
Here we redesign the control law to significantly alleviate this problem.

iii The redesigned controller can handle large parameter variation and in the case
that the sign of high frequency gain is known, the closed-loop system is re-
markably noise-tolerant.

iv We prove that in an important special case, we can replace the requirement of
knowledge of the exact relative degree with that of an upper bound on the
relative degree, at least from the point of view of providing stability.
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v A number of approaches to improve the noise behaviour of the controller are
presented.
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Chapter 1

Introduction

1.1 The Control Problem

A significant part of control engineering is the application of the mathematical study
of systems. These applications span a range of complexities from the nanoscopic
to the macroscopic and a range of scales from operational amplifiers to hydro-
electric power plants. The central concept in control theory is to regulate the
dynamic behaviour of a system (the plant) by using a device (the controller) such
that the response or output of the system satisfies a set of specified constraints.
Since controllers are described by mathematical equations, it is necessary to have a
mathematical model of the plant to achieve the control objectives; the more accu-
rate the mathematical model, the closer its responses to those of the actual plant.
A good model is simple enough to be practical for the control design and com-
plicated enough to accurately describe the behaviour of the actual plant. This
trade-off introduces an elementary error into the system. The error is compounded
by incomplete or inexact data from identification experiments, introducing a dis-
crepancy between the mathematical model and the actual plant. Collectively, these
inaccuracies are termed uncertainty. Uncertainties may be classified as being one
of two types: structured and unstructured [1, 4] . A structured uncertainty in the
plant model may be expressed in terms of parameters such as gains, pole and zero
locations and also in terms of the transfer function parameters [2]. Unstructured
uncertainties are associated with unmodeled dynamics, truncation of high frequency
modes, nonlinearities, and the effects of linearization and even time-variation and
randomness in the system [2]. In addition to uncertainty, in some cases the plant
parameters are time-varying.

For a controller to keep the plant within specified constraints, the controller
must satisfy the desired properties of both the mathematical model (e.g., asymp-
totic behaviour) and the physical plant (e.g., adapting to the discrepancies between
the model and reality). Two common techniques for designing controllers to deal
with uncertainty and variable parameters are robust control and adaptive control.
The goal of robust control is to design a fixed (time-invariant) controller which pro-
vides both stability and acceptable performance, even in the presence of uncertain

1
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parameters.
Adaptive control is another design method for controlling uncertain plants. An

adaptive controller typically consists of an LTI compensator together with a tuning
mechanism, which adjusts the compensator gains to match the plant. Because
of the modification law, a typical adaptive controller is nonlinear. Model reference
adaptive control (MRAC) is one of the most important schemes in adaptive control.
This approach uses a pre-designed stable reference model describing the desired
input-output relationship; the objective is to modify the controller parameters such
that the output of the plant with unknown parameters asymptotically tracks the
reference model output. Because of the modification law, an MRAC is nonlinear.

Although MRAC was investigated as far back as Whitaker et al. [34, 41] in the
mid 1950’s and early 1960’s, the proof of global stability was completed almost two
decades later [6, 8, 24, 31, 32]. The solution is achievable under certain assumptions:

(i) the plant is minimum phase, and

(ii) an upper bound of the plant order,

(iii) the plant relative degree, and

(iv) the sign of high-frequency gain

are known. Later attempts showed that in assumption (iii) an upper bound of the
plant relative degree is sufficient [38], and assumption (iv) is unnecessary [27].

Further work pointed out that the adaptive controllers of the 1970’s cannot
tolerate unmodeled dynamics and/or bounded disturbances and yield instability
[36]. Robust adaptive control [9, 11, 12, 13, 28, 29] uses controller redesign to help
reduce this problem. An adaptive controller is robust if the global stability of
the closed-loop is guaranteed in the presence of reasonable classes of unmodeled
dynamics and bounded disturbances. By the mid 1990’s several efforts were carried
out on performance and transients of the MRAC; one is based on multiple models,
switching, and selection or tuning [10, 25, 26, 30].

Although the initial motivation of adaptive control was that of handling time-
varying plant parameters, the initial schemes were able to control plants with un-
known but fixed parameters. The first efforts were made in the mid 1980’s; these
control designs were based on applying a persistent exciting disturbance to the
control signal or restriction of the parameter variations to be slow or have a known
form [7, 15, 16, 33, 39, 40]. Another drawback of most classical adaptive controllers
is that they are nonlinear, which may make it difficult to predict the transient
closed-loop behaviour, and there may be large transients, especially if the initial
estimate of parameters is poor. Furthermore, this undesired feature may cause a
large control signal, which might lead to saturation.

To sum up, most adaptive control methods have the following disadvantages:

• they may not handle time-varying plant parameters well,

• the transient closed-loop behaviour may be poor,
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• because of the nonlinearity, it is not proved that the effect of initial conditions
decays exponentially to zero, and

• the control signal may be large.

So the question is: can we design an adaptive controller that does not have
these imperfections? Miller [20] proposed a new approach to the model reference
adaptive control problem which does not have the mentioned drawbacks. The early
versions of this work discuss the problem for the first-order plants [19, 18]. This
approach uses a linear sampled-data periodic controller; unlike classical adaptive
control methods, which are based on parameter estimation, this method directly
estimates the control signal. This point of view has been applied on LQR [23],
model matching [22], and H∞ problems [21] as well. This new approach, when
applied to the MRAC problem, has the following advantages:

• it can handle time-varying plant parameters,

• the transient behaviour of the system is improved; immediate tracking can be
achieved if the initial conditions of the plant and controller are the same, and
if the initial conditions are not the same, then the deviation goes exponentially
to zero, and

• the control signal is not large and it can be as close as desired to the ideal
control signal (the ideal control signal is the one obtained if the plant param-
eters and state were known and the ideal LTI compensator would be applied;
this signal is modest in size).

The LPC has its own undesired properties as well:

• during each controller period the control signal takes different values; since
the controller period is small, this requires fast actuators,

• in order to achieve the desired tracking, a small sampling period is used
which results in large controller gains; this may lead the system to poor noise
tolerance; in fact, there is a trade-off between the desired tracking and noise
tolerance, and

• the plant relative degree must be known.

Here we extend this work in several directions.
First of all, in [20] the time-domain ∞-norm is used to measure signal size.

However, the time-domain 2-norm is an equally (if not more) common way to
measure signal size. Here we extend the approach so that results can be obtained
in the 2-norm setting which are comparable to those of [20]. This new setting
requires a structural change in the control law together with new proofs of key
steps.

Second of all, in [20] the control signal moves vigorously, in particular during
the so-called Estimation Phase, when probing takes place; the control signal jumps
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rapidly from one value to another. Here the controller is redesigned to reduce
the size and number of the jumps. The approach is as follows. In the signal
control law [20], the controller is periodic with each period consisting of two phases:
in Estimation Phase the ideal control law is estimated, while in Control Phase a
naturally scaled version of this estimate is applied. Here we estimate the change
in the ideal control signal law between periods, which typically reduces the size of
the probing signal. We also carry out the probing more efficiently, to reduce the
number of jumps in the control signal as well. While proving this approach requires
a good deal of effort, the results are very nice: the control signal is smoother, the
controller can handle large parameter variation, the performance is better (for a
given sampling period), and in the case that the sign of the high frequency gain is
fixed the closed-loop system is remarkably noise tolerant.

The third part of this PhD thesis is focussed on the plant relative degree as-
sumption. One of the undesired aspects of the LPC is that the plant relative degree
should be known. In this work, we show that under some restrictive assumptions,
this requirement can be relaxed to that of requiring an upper bound of the plant
relative degree, at least from the point of view of providing stability.

Finally, to improve the noise rejection, four different approaches are presented.
In the first approach, a low pass filter is used at the plant output. In the second
approach, we modify the LPC in order to obtain a smaller estimation error, which
allows us to choose larger sampling times and consequently better noise tolerance.
While the idea of MMSE estimation is used in the third approach to minimize the
effect of noise, the fourth approach is based on applying a probing signal with a
larger size in order to obtain better noise rejection. Finally, we combine the fourth
approach with the redesigned controller (in the case that the sign of high frequency
gain can change) to achieve the advantages of both methods. The noise tolerant
redesigned LPC attains better noise rejection and performance as well as a better
behaved control signal.

The outline of this work is as follows. In the next section we present some
preliminary mathematics. Chapter 2 gives an overview of classical adaptive control.
A high level explanation of the LPC proposed in [20] is presented in Chapter 3. In
Chapter 4, a controller redesign is carried out so that the LPC [20] works when using
the 2-norm. To achieve a smoother control signal and a larger sampling period, we
redesign the LPC in Chapter 5. The robustness of the LPC, i.e. providing stability
for plants with lower relative degree, is discussed in Chapter 6. Four different
approaches to obtain better noise rejection are proposed in Chapter 7; in this
chapter, we also present the noise tolerant redesigned LPC. Last of all, in Chapter
8, we provide a summary, concluding remarks and discuss future work.
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1.2 Preliminary Mathematics

The Euclidean norm of the vector x ∈ Rn, used to measure its size, is

‖x‖ =

(
n∑
i=1

x2
i

) 1
2

= (xxT )
1
2 ,

and the corresponding induced norm of the matrix M ∈ Rm×n is

‖M‖ = sup
‖x‖=1

‖Mx‖
‖x‖

.

The 2-norm of the continuous vector signal y(t) is defined as

‖y‖2 =

(∫ ∞
0

yT (t)y(t)dt

) 1
2

,

while the 2-norm of the discrete vector signal y(kT ) is defined as:

‖y‖2 = (
∞∑
k=0

yT (kT )y(kT ))
1
2 .

For vector signals y1, y2, · · · , yn we have

‖y1 + y2 + · · ·+ yn‖2
2 ≤ n(‖y1‖2

2 + ‖y2‖2
2 + · · ·+ ‖yn‖2

2),

so
‖y1 + y2 + · · ·+ yn‖2 ≤

√
n(‖y1‖2 + ‖y2‖2 + · · ·+ ‖yn‖2).

We also define

‖y‖2, [t1,t2) =

(∫ t2

t1

yT (t)y(t)dt

) 1
2

,

so if 0 ≤ t1 ≤ t1 ≤ · · · ≤ tn then

n−1∑
i=1

‖y‖2, [ti,ti+1) ≤
√
n ‖y‖2, [t1,tn). (1.1)

We will be using several Cauchy-Schwartz inequalities:

(i) For real numbers xi, yj, i, j = 1, 2, · · · , n we have

|x1y1 + x2y2 + · · ·+ xnyn| ≤
√
x2

1 + x2
2 + · · ·+ x2

n

√
y2

1 + y2
2 + · · ·+ y2

n.

(ii) For integrable functions f1(x) and f2(x) on [a, b] we have∫ b

a

f1(x)f2(x)dx ≤

√∫ b

a

f 2
1 (x)dx

√∫ b

a

f 2
2 (x)dx.
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We denote the set of piecewise continuous functions from R+ to Rn×m as
PC(Rn×m). For f ∈ PC(Rn×m), define

‖f‖∞ := esssupt∈R+‖f(t)‖.

We let PC∞(Rn×m) denote the set of f ∈ PC(Rn×m) for which ‖f‖∞ < ∞. A
function f ∈ PC(Rn×m) is piecewise smooth on [a, b] ⊂ R if there exists a finite
set of points {xi},

a = x1 < x2 < · · · < xk = b,

such that, on each interval (xi, xi+1), i = 1, · · · , k, the functions f and ḟ are
continuous and bounded, and both have finite limits as x → xi and x → xi+1. If
f ∈ PC(Rn×m) is piecewise smooth on every finite interval [a, b] ⊂ R+, then it is
piecewise smooth and we write f ∈ PS(Rn×m). If for f ∈ PS(Rn×m) , we have
‖f‖∞ < ∞ and ‖ḟ‖∞ < ∞, f ∈ PC(Rn×m), then we write PS∞(Rn×m). For
m ≥ 1, we say that f ∈ PSm(Rn×m) if f, f (1), · · · , f (m−1) are absolutely continuous
and f (m) ∈ PS(Rn×m); we also define PSm∞(Rn×m) to be the set of f ∈ PSm(Rn×m)
for which ‖f‖∞, ‖ḟ‖∞, · · · , ‖f (m+1)‖∞ are all bounded. With T > 0, PS(Rn×m, T )
is the set of functions f such that every discontinuity of f and ḟ are at most T time
units apart; in a similar way PS∞(Rn×m, T ), PSm(Rn×m, T ), and PSm∞(Rn×m, T )
are defined. For simplicity, instead of writing PC(Rn×m) we omit (Rn×m) and
write PC; in a similar way we simply write PC∞, PS, PS∞, PSm, PSm∞, PS(T ),
PS∞(T ), PSm(T ), and PSm∞(T ).

We say that f : R+ → Rn×m is of order T j, and write f = O(T j), if there exists
constants c1 > 0 and T1 > 0 so that

||f(T )|| ≤ c1T
j, T ∈ (0, T1).

On occasion we have a function f which depends not only on T > 0 but also depends
implicitly on a variable θ restricted to a set P ⊂ PS; we say that f = O(T j) if
there exist constants c1 > 0 and T1 > 0 so that

||f(T )|| ≤ c1T
j, T ∈ (0, T1), θ ∈ P .



Chapter 2

Classical Adaptive Control

2.1 Introduction

The objective of this chapter is to introduce classical identifier-based adaptive con-
trol methods together with their strengths and weaknesses. In this approach, an
adaptive controller typically consists of an LTI compensator together with a tun-
ing mechanism that adjusts the compensator parameters to match the plant, as
illustrated in Figure 2.1. Because of tuning mechanism, the resulting controller is
nonlinear.

Classical adaptive control has two different principal approaches: the indirect
and direct methods. The indirect method recursively estimates plant parameters,
and updates the controller parameters accordingly. The direct method adjusts
controller parameters directly with no plant parameter identification [8]. Adaptive
control has two important branches based on two different control objectives: model
reference control and pole placement. In model reference control the objective is
asymptotic tracking of a large class of signals as it is restricted to minimum phase
plants; in pole placement the objective is stability and possibly asymptotic tracking
of a small class of signals such as steps, and the minimum phase property is not
required.

This chapter is organized in the following manner. Section 2.2 presents an

Figure 2.1: A typical adaptive system diagram

7
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Figure 2.2: Block diagram of an MRAS [13]

overview of model reference adaptive control. The pole placement adaptive control
problem is presented in Section 2.3. In each section, the structure of the controller
is explained by an example.

2.2 Model Reference Adaptive Control (MRAC)

One of the most important schemes in adaptive control is MRAC. Figure 2.2 shows
the block diagram of a classical MRAC. In this approach, there is a stable refer-
ence model, which describes the desired input-output properties of the closed-loop
system. The control system consists of an LTI compensator C(θ) with modifi-
able parameters θ together with a modification mechanism (as tuning mechanism),
which estimates the controller parameters θ(t) online. Here r is exogenous signal,
which e = y− ym is the tracking error between the reference model output and the
plant output.

The goal is to design the control law such that signals in the closed-loop sys-
tem are bounded and for every bounded reference signal r all the tracking error e
converges asymptotically to zero with time. The classical assumptions [8, 24, 32]
are

• the plant is minimum phase,

• an upper bound on the plant order is known,

• the plant relative degree is known, and

• the sign of the plant high frequency gain is known.

2.2.1 Example

To illustrate MRAC, a simple example is presented. Consider the first-order,
discrete-time plant

y(t+ 1) = ay(t) + bu(t), y(0) = y0, t ≥ 0, (2.1)
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where y and u are the plant output and input signals, respectively, and a and b are
fixed but unknown plant parameters. The stable scalar reference model is described
as follows:

ym(t+ 1) = amym(t) + bmr(t), ym(0) = ym0 , t ≥ 0,

where ym and r are the reference model output and input signals, respectively, and
|am| < 1. The control objective is to design the control signal such that u and y
are bounded and the tracking error e(t) = y(t) − ym(t) decays to zero. Here the

unknown plant parameters are θ∗ =

[
a
b

]
∈ R2, so if we choose the control law to

be

u(t) =
1

b
(bmr(t) + (am − a)y(t))

=
[
−(a−am)

b
bm
b

]
︸ ︷︷ ︸

k∗(θ∗)

[
y(t)
r(t)

]
︸ ︷︷ ︸

φ(t)

, (2.2)

then the closed-loop system is as follows:

y(t+ 1) = amy(t) + bmr(t), y(0) = y0.

Since a and b are unknown, k∗ cannot be calculated directly, so it will be estimated.
The idea is to recursively estimate θ∗, and then use this estimate in (2.2). Since
we have a division by b in (2.2) , we must take care that the estimate of b is never
zero. To this end, we adopt the Projection Algorithm (see [9]) for estimating the
plant parameters.

With c > 0, θ̂(0) =

[
â(0)

b̂(0)

]
∈ R2 satisfying b̂(0) 6= 0, and δ ∈ (0, 1)∪ (1, 2), we

define the prediction error by

eM(t) = y(t)− am y(t− 1)− φT (t− 1) θ̂(t− 1),

together with the parameter estimate update law:[
â(t)

b̂(t)

]
= θ̂(t) = θ̂(t− 1) + γ(t)

φ(t− 1)

c+ φ(t− 1)Tφ(t− 1)
eM(t), θ̂(0) = θ̂0;

the gain γ(t) is given by

γ(t) =

{
1 if [θ̂(t− 1) + φ(t−1)

c+φ(t−1)Tφ(t−1)
eM(t)] 6= 0,

δ otherwise,

which ensures that b̂(t) 6= 0 for t ≥ 0. We now set

u(t) =
1

b̂(t)
[−(â− am)y(t) + bmr(t)].
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Figure 2.3: The simulation results for the first-order system and the MRAC applied
with good initial estimates.

The control law is clearly highly nonlinear.
A simulation was carried out (see Figure 2.3) with a = 3, b = 1.5, am = −0.5,

bm = −1, c = 1, δ = 1.5, the reference input r(t) = cos(πt/2), the initial conditions
y(0) = 1, ym(0) = 0, and θ̂(0) = θ = [2.5 2]T . We see that the tracking error
decays to zero and the control signal is bounded.
Remark 2.1: If the initial parameter estimate error is small, then the control signal
is modest in size, the tracking error converges to zero, and the transient behaviour
is guaranteed.

In the next simulation (see Figure 2.4) the initial estimates are poor, θ̂(0) =
[−1 − 1]T . Figure 2.4 shows that although the tracking error converges to zero
and the estimation of parameters converges to the actual ones, but because the
initial estimates are poor, the transient behaviour is poor, and the control signal is
large.
Remark 2.2: In the face of poor initial estimates, the MRAC may yield a large
control signal, and the transient behaviour is not guaranteed.

In the next simulation, the effect of time-varying parameters are studied. First
we consider the case that the rate of parameters change is low. In this simulation,[

a(t)
b(t)

]
=

[
−2 + cos(λt)
1.5 + cos(λt)

]
, am = −0.5, bm = −1, c = 1, δ = 1.5,

the reference input r(t) = cos(πt/2), the initial condition u(0) = 0, y(0) = −1,
ym(0) = 0, and θ̂(0) = [1 1]T . In Figure 2.5 we set λ = 0.01, so that the plant
parameters are slowly time-varying; we see that the tracking error is small, the
control and output signals are bounded, and the estimated parameters are close to
the actual ones. In Figure 2.6, we set λ = 0.1, so the rate of parameters change is
high; both the tracking error and the parameter estimation error are large, which
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Figure 2.4: The simulation results for the first-order system and the MRAC applied
with poor initial estimates.

illustrates that this controller cannot handle rapidly changing parameters.

2.3 Pole Placement Adaptive Control (PPAC)

In MRAC it is assumed that the plant is minimum phase, which allows a guarantee
of exact asymptotic tracking. PPAC is an approach that does not require the plant
to be minimum phase. However, exact asymptotic tracking is now guaranteed
for only a small class of reference signals [9]. The other difference of MRAC and
PPAC is the knowledge of plant order. While in MRAC, the designer needs to
know an upper bound of the plant order, in PPAC the requirement is the exact
plant order. In this method, a pole placement algorithm and parameter estimation
are combined to yield a controller that attempts to place the closed-loop poles at
desired locations; if designed properly, asymptotic tracking can be guaranteed for
sinusoids of prescribed frequencies.

2.3.1 Example

In this section the structure of a PPAC is explained using a simple example. Con-
sider the second-order system

y(t+ 2) = a1y(t+ 1) + a2y(t) + b1u(t+ 1) + b2u(t),

which can be a non-minimum phase system (i.e. | b2
b1
| > 1) with unknown parameters

a1, a2, b1, and b2. The desired closed-loop characteristic polynomial is as follows:

a∗(q−1) = 1− am1 q
−1 − am2 q

−2 − am3 q
−3, (2.3)
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Figure 2.5: The simulation results for the first-order system with slowly time-
varying parameters and the MRAC applied with λ = 0.01.

Figure 2.6: The simulation results for the first-order system with rapidly time-
varying parameters and the MRAC applied with λ = 0.1.
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where the operator q−1 is a unit delay [9]. The control objective is to design the
controller such that u and y are bounded, and such that, in certain sense, the
closed-loop characteristic polynomial asymptotically reaches (2.3); we also have a
reference input y∗(t). The PPAC requires that

a(q−1) = 1− a1q
−1 − a2q

−2, b(q−1) = b1q
−1 + b2q

−2

be co-prime. Define the vector of unknown parameters as

θ∗ =


a1

a2

b1

b2

 ∈ R4.

Since polynomials a(q−1) and b(q−1) are co-prime, we can use the Sylvester matrix
to find polynomials

l(q−1) = 1 + l1q
−1, p(q−1) = p0 + p1q

−1,

such that
a(q−1)l(q−1) + b(q−1)p(q−1) = a∗(q−1),

If we choose the control law as

u(t) = [−l1u(t− 1) + p0(y∗(t)− y(t)) + p1(y∗(t− 1)− y(t− 1))],

then the closed-loop system is as follows:

[a∗(q−1)y](t) = [b(q−1)p(q−1)y∗](t).

Since θ∗ is unknown, the ideal control law cannot be calculated. Instead, the
elements of θ are estimated; estimates of l and p are computed accordingly, and
these estimates are used in the control law. Since we need the estimates of a and b to
be co-prime, we assume prior knowledge of a convex closed set S in the parameter
space R4 for which the corresponding polynomials are co-prime. Because of the
properties of S, we can project any estimate that is located outside S uniquely to
the closest one in S; we label this projection Π.

With c > 0, θ̂(0) = θ̂0 ∈ R4, and β ∈ (0, 2), we define the control law as follows:

eP (t) = y(t)− φT (t− 1) θ̂p(t− 1),

θ̂(t) = Π[θ̂(t− 1) + β
φ(t− 1)

c+ φ(t− 1)Tφ(t− 1)
eP (t)], θ̂(0) = θ̂0,

â(t, z−1) = 1 + θ̂(1)(t)z
−1 + θ̂(2)(t)z

−2,

b̂(t, z−1) = θ̂(3)(t)z
−1 + θ̂(4)(t)z

−2,

solve
â(t, z−1)l̂(t, z−1) + b̂(t, z−1)p̂(t, z−1) = a∗(z−1),
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Figure 2.7: The simulation results for the second-order system when the PPAC is
applied

uniquely for l̂, b̂, and then set

u(t) = −l̂1(t)u(t− 1) + p̂0(t)(y∗(t)− y(t)) + p̂1(t)(y∗(t− 1)− y(t− 1))

Similar to the case of MRAC, it is clear that this control law is nonlinear. A
simulation was carried out (see Figure 2.7) with a(z−1) = 1 + 2z−2, b(z−1) =
5z−1 + 3z−2, a∗(z−1) = 1 + z−1 + 0.25z−2, c = 1, β = 1, the reference input
y∗(t) = cos(πt/2) + sin(πt/3), the initial condition y(0) = y(1) = 1, u(0) = u(1) =
u(2) = 0, and θ̂0 = [−1 − 1 − 1 1]T . We see the control and output signals
are bounded and because the estimated parameters converge to the actual ones,
the closed-loop polynomial converges to the desired one. As Figure 2.7 shows, the
estimation error ep declines to zero. However, in this case as well, the transients
are large.

2.4 Summary and Concluding Remarks

In this chapter we introduced classical adaptive control methods, and demonstrated
their strengths and weaknesses. In these methods an identifier is used to estimate
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unknown plant (or LTI compensator) parameters, and these are used to update
compensator parameters accordingly. The approach can tolerate parameter un-
certainty and slowly time-varying parameters. While the asymptotic behaviour is
always guaranteed, the transient behaviour may be poor if the parameter uncer-
tainty is too large and the initial estimate is poor. Furthermore, the nonlinearity
embedded in the controller makes the behaviour hard to predict. In the next chap-
ter we discuss an alternative approach to adaptive control which alleviates these
drawbacks and tolerates rapid parameter variation.



Chapter 3

A Linear Periodic Approach to
MRAC

3.1 Introduction

As discussed in Chapter 2, classical identifier-based adaptive control methodologies
have several negative features:

• they cannot handle rapidly time-varying plant parameters,

• the transient closed-loop behaviour may be poor,

• they are nonlinear, which may make the control signal unduly large, the effect
of the initial conditions and the input cannot be separated out, and it is not
proven that the effect of initial conditions declines to zero.

In response to this, a new approach to the MRAC was proposed in [20]. The
approach yields a linear periodic controller (LPC), and it has the following desirable
features:

• it allows for rapidly time-varying parameters,

• it provides smooth transient behaviour (immediate tracking rather than asymp-
totic),

• the effect of initial conditions decays exponentially to zero, and

• the control signal is modest in size.

This chapter presents an overview to the idea together with its strengths and
weaknesses. In this approach, instead of estimating controller parameters (direct
method) or plant parameters (indirect method), the ideal control signal (what the
control signal would be if the plant states and parameters were known) is estimated.
The system is periodically probed to estimate the value of the ideal control signal,
and then a suitably weighted estimate is applied. The control period is divided
into two phases: an Estimation Phase and a Control Phase; during the Estimation

16
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Phase the ideal control signal is estimated, while in the Control Phase a suitably
weighted estimate of the ideal control signal is applied to the plant.

The outline of this chapter is as follows. The problem setup is presented in
Section 3.2. Section 3.3 deals with modeling of the uncertain plant. A high level
explanation of the LPC is presented in Section 3.4. While Section 3.5 gives the
controller construction, in Section 3.6 everything is pulled together to prove the
main result. Finally we carry out two simulations in Section 3.7.

3.2 Problem Formulation

In this section the structure of the set of uncertain plants, reference model, and the
controller are presented. The SISO linear, time-varying plant P is described by

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,
y(t) = C(t)x(t),

(3.1)

with x(t) ∈ Rn the plant state, u(t) ∈ R the plant input, and y(t) ∈ R the plant
output; we associate the plant with the triple (A(t), B(t), C(t)). We allow a good
deal of model uncertainty, to be described in detail later on; the set of possible
models is labelled P .

The stable SISO LTI reference model Pm is given by

ẋm(t) = Amxm(t) +Bmum(t), xm(t0) = xm0 ,
ym(t) = Cmxm(t),

with xm(t) ∈ Rnm the reference model state, um(t) ∈ R the reference model input,
and ym(t) ∈ R the reference model output. The reference model describes the
desired behaviour of the closed-loop system, and is chosen to be stable. The goal
is to design a controller that provides stability and makes the plant output track
the model reference output. To this end, we define the tracking error as

e(t) := ym(t)− y(t).

The controller is a sampled data controller, which periodically samples um and
y. We use an anti-aliasing filter before sampling um: with σ > 0 we choose an
anti-aliasing filter of the form

˙̄um = −σūm + σum, ūm(t0) = ūm0 , (3.2)

whose input-output map (with zero initial conditions) is labelled Fσ. Accordingly,
we define a new version of the reference model with ūm as the input:

˙̄xm = Amx̄m +Bmūm, x̄m(t0) = xm0 ,
ȳm = Cmx̄m.

(3.3)

If we choose γm > 0 and λm < 0 so that

||eAmt|| ≤ γme
λmt, t ≥ 0,
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Figure 3.1: The feedback diagram

it follows that

|ȳm(t)− ym(t)| ≤ ||Bm|| × ||Cm||
γm + 1

σ − ||Am||
eλmt|ūm0|+

||Bm|| × ||Cm||
σ − ||Am||

[γm
||Am||
|λm|

+ 1] ||um||∞, t ≥ 0. (3.4)

Last of all, let us define the linear periodic controller by

z[k + 1] = F (k)z[k] +G(k)y(kh) +H(k)x̄m(kh) + J(k)ūm(kh),
z[k0] = z0 ∈ Rl,

u(kh+ τ) = L(k)z[k] +M(k)y(kh), τ ∈ [0, h),
(3.5)

whose gains F,G,H, J, and L are periodic of period p ∈ N; the sampling time is h
and the period of the controller is T := ph, and we associate this system with the
7-tuple (F,G,H, J, L, h, p). Observe that (3.5) can be implemented with a sampler,
a zero-order-hold, and an lth order periodically time-varying, discrete-time system
of period p .

Remark 3.1: The reference model is chosen by the control system designer to
embody the desired closed-loop behaviour. Hence, we can consider our controller to
be a combination of the anti-aliasing filter (3.2), the reference model (3.3), and the
discrete-time, periodic compensator (3.5), as indicated in Figure 3.1.

The feedback configuration is given in Figure 3.1. As the figure shows, the
controller is a mixture of discrete and continuous subsystems, so the closed-loop
state is a combination of discrete and continuous states, defined as

xsd(t) =


x(t)
x̄m(t)
ūm(t)
z[k]

 , t ∈ [kh, (k + 1)h).

Definition 3.1 [20]: The controller (3.2), (3.3) and (3.5) exponentially stabilizes
P if there exist constants γ > 0 and λ < 0 so that, for every P ∈ P, set of initial
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conditions x0, x̄m0, ūm0, and z0, set of initial times k0 ∈ Z+ and t0 = k0h, with
um(t) = 0 for t ≥ t0 we have

‖xsd(t)‖ ≤ γeλ(t−t0)‖xsd(t0)‖, t ≥ t0.

3.3 Modeling of the Uncertain Plant

At this point we must explain in more detail the class of model uncertainty which
will be tolerated here. We adopt the setup of [20], which we repeat here for the
reader’s convenience. The classical assumptions adopted in MRAC are: (i) the
plant is minimum phase, and (ii) an upper bound n on the plant order is known,
(iii) the plant relative degree m is known, and (iv) the sign of the high-frequency
gain g is known. We make natural time-varying generalizations of Assumptions
(i), (ii), and (iii), and replace (iv) by a lower bound on its magnitude. Given that
we wish to prove uniform tracking, independent of the plant parameters, we will
require that the parameters lie in a compact set. We also make some technical
assumptions on the smoothness of certain parameters.

We start with a general LTV differential of an input-output form, defined in
terms of the auxiliary variable η:∑n

i=0 ai(t)D
iη = g(t)u

y =
∑n−m

i=0 bi(t)D
iη;

(3.6)

we assume that the differential equation is normalized such that an = bn−m = 1.

Using the definition (Dif)(t) := dif
dti

(t), we define the input and output operators
by

a(D, t) :=
n∑
i=0

ai(t)D
i, b(D, t) :=

n−m∑
i=0

bi(t)D
i.

Clearly if the parameters are time-invariant, then the differential equation yields a
transfer function of

g
b(s)

a(s)
.

Following [20], the goal is to isolate the zero dynamics and then use the feedback
linearization technique. With the definition of the state variables as

w :=


η
Dη
...

Dn−m−1η

 , v :=


y
Dy
...

Dm−1y

 ,
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we can write the zero dynamics as follows:

ẇ(t) =


1

. . .

1
−b0(t) −b1(t) · · · −bn−m−1(t)


︸ ︷︷ ︸

=:A1(t)

w(t) +

 0
...
1


︸ ︷︷ ︸

=:b1

y(t). (3.7)

Now we need to express v̇ in terms of v and w. It is enough to find polynomials

β(D, t) =
m∑
i=0

βi(t)D
i, α(D, t) =

n−m−1∑
i=0

αi(t)D
i

with βm(t) = 1, which satisfy

v̇(t) =


1

. . .

1
−β0(t) −β1(t) · · · −βm−1(t)


︸ ︷︷ ︸

=:A2(t)

v(t) +

 0
...
1


︸ ︷︷ ︸

=:b2

[
α0(t) · · · αn−m−1(t)

]︸ ︷︷ ︸
=:c1(t)

w(t) +

 0
...
1

 g(t)u(t). (3.8)

With
c2 =

[
1 0 · · · 0

]
, (3.9)

we would thereby end up with a state-space model of[
ẇ(t)
v̇(t)

]
=

[
A1(t) b1c2

b2c1(t) A2(t)

]
︸ ︷︷ ︸

:=A(t)

[
w(t)
v(t)

]
︸ ︷︷ ︸

:=x(t)

+g(t)

[
0
b2

]
︸ ︷︷ ︸

:=B

u(t)

y =
[

0 c2

]︸ ︷︷ ︸
:=C

[
w(t)
v(t)

]
. (3.10)

In the case that the differential equation is time-invariant (a and b are fixed), α
and β can be obtained by long division:

a(s)

b(s)
= β(s)− α(s)

b(s)
.

Now the question is: under what conditions on a, b, and g are sufficient to guarantee
that we can find the polynomials of α and β satisfying (3.8)?
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It turns out that it is sufficient that there be bounds on the derivative(s) of
these parameters, although jumps are also tolerated. To proceed we collect all of
the parameters of the plant (3.6) into a single vector:

θ(t) :=
[
a0(t) · · · an−1(t) b0(t) · · · bn−m−1(t) g(t)

]T ∈ R2n−m+1.

The parameters of the transformed system (3.10) can be collected into another
vector:

θ̄(t) :=
[
α0(t) · · · αn−m−1(t) β0(t) · · · βm−1(t) b0 · · · bn−m−1 g(t)

]T
.

Now we list some assumptions on the original parameter θ which are sufficient for
the existence of θ̄.

Assumptions on the vector θ [20].

Assumption 1: (Compact set) There exists a compact set Γ ⊂ R2n−m+1 so that

θ(t) ∈ Γ for all t ≥ 0.

Assumption 2: (Infrequent jumps) There exists a T0 > 0 so that θ ∈ PS∞(T0).

Assumption 3: (Bounded derivative) There exists a constant µ1 so that ‖θ̇‖∞ ≤
µ1.

Assumption 4: (Regularity of g) There exists a positive constant g so that

|g(t)| ≥ g, t ≥ 0.

Assumption 5: (Smoothness of b) The parameters bi ∈ PSm∞(T0), i =

0, 1, · · · , n−m− 1; also, there are constants δj > 0, j = 1, · · · ,m+ 1, so that

‖Dj(bi)‖∞ ≤ δj, i = 0, 1, . . . , n−m− 1, j = 1, · · · ,m+ 1.

Assumption 6: (Uniformly exponentially stable zero dynamics) There exist

constants γ0 > 0 and λ0 < 0 so that the transition matrix ΦA1 corresponding to

A1 satisfies

‖ΦA1(t, t0)‖ ≤ γ0e
λ0(t−t0), t ≥ t0 ≥ 0.

Remark 3.2: Observe that because of the use of “essential supremum” in the
definition of the norm, Assumption 3 does not rule out jumps in the parameters.
Also, note that Assumption 6 is a generalization of the classical minimum phase
requirement. Assumption 5 is a technical condition needed to ensure that we can
carry out the desired transformation.
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Hence, for every n ≥ m ≥ 1, compact set Γ ⊂ R2n−m+1, set of positive constants
µ1, T0, δ1, · · · , δm+1, g, and γ0, and negative constant λ0, there exists a natural class
of models of the form (3.6) which satisfy Assumptions 1-6; we label this class

P(n,m,Γ, µ1, T0, δ1, · · · , δm+1, g, γ0, λ0).

It turns out that Assumptions 1-6 are sufficient to guarantee the existence of α, β,
and hence θ̄. Before showing that, we list some key properties that we will require
of the transformed vector θ̄.

Assumptions on the vector θ̄ [20].

Assumption 1′: (compact set) There exists a compact set Γ̄ so that θ̄(t) ∈ Γ̄ for

all t ≥ 0.

Assumption 2′: (Infrequent jumps) There exists a T̄0 > 0 so that θ̄ ∈ PS∞(T̄0).

Assumption 3′: (Bounded derivative) There exists a constant µ̄1 so that ‖ ˙̄θ‖∞ ≤
µ̄1.

Assumptions 4, 6

For every n ≥ m ≥ 1, compact set Γ̄ ⊂ R2n−m+1, set of positive constants µ̄1,
T̄0, g, and γ0, and negative constant λ0, there exists a natural class of models of
the form (3.7) and (3.8) which satisfy Assumptions 1′ − 3′ and Assumptions 4 and
6; we label this class

P̄(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0).

We will not distinguish between the vector θ̄ and the corresponding model of the
form (3.7) and (3.8).
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Proposition 3.1 [20]: For every set of uncertainty of the form

P(n,m,Γ, µ1, T0, δ1, · · · , δm+1, g, γ0, λ0)

there exist constants µ̄0 and T̄0 as well as a compact set Γ̄ ⊂ R2n−m+1 so that for

every

θ ∈ P(n,m,Γ, µ1, T0, δ1, · · · , δm+1, g, γ0, λ0)

there exist polynomials α(D, t) and β(D, t) satisfying (3.8) so that the correspond-

ing new parameter vector θ̄ satisfies

θ̄ ∈ P̄(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0).

From now on we will assume that our set of plant uncertainty is of the form

P(n,m,Γ, µ1, T0, δ1, · · · , δm+1, g, γ0, λ0)

which, in turn, induces a class of uncertainty in our new parameter vector θ̄ of the
form

P̄(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0)

(or simply P̄) with corresponding state space models of the form (3.7) and (3.8). At
this point we combine the plant, reference model and anti-aliasing filter to obtain
the generalized plant:

ẇ
v̇
˙̄xm
u̇m

 =


A1(t) b1c2 0 0
b2c1(t) A2(t) 0 0

0 0 Am bm
0 0 0 −σ


︸ ︷︷ ︸

=:Ā(t)


w
v
x̄m
um


︸ ︷︷ ︸

=:x̄

+g(t)


0
b2

0
0


︸ ︷︷ ︸

=:B̄

u(t) +


0
0
0
σ


︸ ︷︷ ︸

=:Ē

um(t), x̄(t0) = x̄0, (3.11)

y =
[

0 c2 0 0
] 

w
v
x̄m
um

 , (3.12)

ē =
[

0 −c2 Cm 0
]︸ ︷︷ ︸

=:C̄


w
v
x̄m
um

 . (3.13)
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The goal is to construct the control law u(t) such that the closed-loop stability is
guaranteed and the map of um → ē is small. At this point we make a natural
assumption on the relative degree of the reference model.

Assumption 7: The relative degree of the reference model is at least m.

3.4 The Approach

In this section, the proposed LPC is presented. We start with a high level descrip-
tion and then turn to a more concrete one. We start with a description of the ideal
LTI control law which we would use in the case of complete state and parameter
information. We then explain a sequence of three approximations to this control
law, with the last one being of the form (3.5).

3.4.1 The Ideal Controller

To motivate the ideal control law, we start with the time-invariant, first-order case
(so y = x and ym = xm):

ẏ = ay + gu,

˙̄ym = amȳm +Bmūm. (3.14)

The control objective is to make the tracking error of ē = ȳm− y small. Start with
the tracking error dynamics:

( ˙̄ym − ẏ) = am(ȳm − y) + [bmūm − gu+ (am − a)y].

If we set
bmūm − gu+ (am − a)y = 0,

then the mismatch decays to zero like eamt, which leads us to the following definition
of the ideal control law:

u =
1

g
(bmūm + (am − a)y) =

1

g

[
am − a 0 bm

]︸ ︷︷ ︸
=:K

 y
ȳm
ūm

 .
This controller provides both stability and model matching.

The ideal control law in the general case uses the same basic idea. We first
define

Λ2 :=


1

. . .

1
0 0 · · · 0

 , f2(t) :=
[
β0(t) · · · βm−1(t)

]
. (3.15)
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Since (Λ2, b2) is controllable, we can choose a vector of f̄2 so that Ā2 := Λ2 + b2f̄2 is
stable with eigenvalues with real parts less than λm, which means that there exists
a constant γ̄m > γm so that

‖eĀ2t‖ ≤ γ̄me
λmt, t ≥ 0.

If we now set

u(t) =
1

g(t)
[−c1(t)w(t) + (f̄2 − f2(t))v(t)] + un(t),

with un representing a feed-forward term to be chosen below, then we will decouple
v from w and stabilize v, yielding

v̇ = Ā2v + b2[g(t)un(t)],

y = c2v.

Because of Assumption 7 we can choose k1 ∈ R1×nm and k2 ∈ R so that

Pm(s)

c2(sI − Ā2)−1b2

= k2 + k1(sI − Am)−1Bm. (3.16)

Now we choose the feed-forward term un by

un(t) =
1

g(t)
[k2ūm(t) + k1x̄m(t)],

which yields the ideal control law of

u(t) =
1

g(t)

[
−c1(t) f̄2 − f2(t) k1 k2

]︸ ︷︷ ︸
=:K(t)

x̄(t). (3.17)

By labelling this control signal u0(t) and the corresponding generalized plant re-
sponse x̄0, the ideal closed-loop system is as follows:

˙̄x0(t) =


A1(t) b1c2 0 0

0 Ā2 b2k1 b2k2

0 0 Am Bm

0 0 0 −σ


︸ ︷︷ ︸

=:Ācl(t)

x̄0(t) +


0
0
0
σ

um(t),

ē0(t) =
[

0 −c2 Cm 0
]
x̄0(t)

Since the plant is minimum phase, A1 is exponentially stable, so it follows that this
closed-loop system is exponentially stable and the map from um 7−→ ē0 is 0.
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3.4.2 The First Approximation

Since the plant parameters and system states are not completely known, the ideal
control law (3.17) cannot be implemented exactly. Instead, this quantity will be
periodically estimated and applied. The 1

g
term will be problematic in carrying out

the estimation, so we will approximate it by a polynomial, which will be easier to
deal with. To this end, from Assumptions 1 and 4, it follows that the set G defined
by

G := {g ∈ R : there exists a ψ ∈ R2n−m so that

[
ψ
g

]
∈ Γ̄}

is a compact set, which does not include zero; indeed, there exists a constant ḡ > 0
so that G ⊂ [−ḡ,−g]∪ [g, ḡ]. From the Stone-Weierstrass Approximation Theorem
[37], we know that we can approximate 1/g arbitrarily well over G via a polynomial.

Proposition 3.2 [20]: The summation
∑∞

i=0
(−1)i

(ḡ2)i+1 g(g2 − ḡ2)i converges uni-

formly to 1
g

on G.

Proof: Carry out a Taylor Series expansion of 1
g2

about ḡ2 and then multiply
both expressions by g.

�

Unfortunately, Taylor Series expansions tend to converge slowly. There have
been investigations into optimal approximation, e.g. [5] (pp. 126-138). In any
event for every ε > 0 there exist q ∈ N and ci ∈ R such that the polynomial
f̂ε(g) =

∑q
i=0 cig

i satisfies ∣∣∣1− gf̂ε(g)
∣∣∣ < ε, g ∈ G. (3.18)

This brings us to the first approximation of (3.17): we define the approximate
ideal control law to be

u(t) = f̂ε(g)K(t)x̄(t). (3.19)

When (3.19) is applied to the generalized plant (3.11)-(3.13), we let uε denote the
corresponding control signal, x̂ε denote the corresponding state, and êε denote the
corresponding error; the equations describing this closed-loop system are

˙̄xε(t) = Ācl(t)x̄
ε(t) + Ēum(t) + [g(t)f̂ε(g(t))− 1]B̄K(t)x̄ε(t)

=: Āεcl(t)x̄
ε(t) + Ēum(t),

ēε(t) = C̄x̄ε(t).

We label the transition matrices corresponding to Acl(t) and A
ε

cl(t) by Φcl(t, τ) and
Φε
cl(t, τ), respectively.
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Proposition 3.3 [20]: Suppose that λ ∈ (max {λ0, λm} , 0). Then there exist

constants ε > 0 and γ > 0 so that for every ε ∈ (0, ε) and θ̄ ∈ P̄, the closed-loop

system (with t0 = 0) satisfies∥∥x̄ε(t)− x0(t)
∥∥ ≤ γε(eλt ‖x0‖+ ‖um‖∞)

‖ēε(t)− C̄Φcl(t, 0)x0‖ ≤ γε(eλt ‖x0‖+ ‖um‖∞)

‖x̄ε(t)‖ ≤ γeλt ‖x0‖+ γ ‖um‖∞ t ≥ 0;

furthermore, the transition matrix satisfies

‖Φε
cl(t, τ)‖ ≤ γeλ(t−τ), t ≥ τ ≥ 0.

Remark 3.3: This result states, in particular, that when x̄0 = 0, the deviations
between the tracking error and the state of the closed-loop system when the approx-
imated control law (3.19) is applied, namely x̄ε(t) and ēε(t), and the tracking error
and states of the closed-loop system when the ideal control law (3.17) is applied,
namely x̄0(t) and ē0, can be made as small as desired by selecting the parameter
ε > 0.

So, as expected, as the approximation of 1
g

improves, the steady-state tracking

error improves. At this point we freeze λ ∈ (max{λ0, λm}, 0) and λ1 ∈ (maxλ0, λm}, λ).
From Proposition 3.2, we can choose ε > 0, a polynomial f̂ε(g) =

∑q
i=0 cig

i satis-
fying (3.18), and a constant γ > 0 so that for all θ̄ ∈ P̄ , we have

‖Φε
cl(t, τ)‖ ≤ γeλ1(t−τ), t ≥ τ ≥ 0.

3.4.3 The Second Approximation

Since neither g nor x̄ is measurable, (3.19) cannot be implemented, so the goal is to
approximate (3.19) in a linear fashion. We use h small and with q the order of the
polynomial approximation to 1

g
, we choose p > (2q+ 1)m; recall that the controller

period is T = ph. The second approximation is as follows:

u(t) =

{
0, t ∈ [kT, kT + (2q + 1)mh),

p
p−(2q+1)m

f̂ε(g(kT ))K(kT )x̄ε(kT ), t ∈ [kT + (2q + 1)mh, (k + 1)T ).

(3.20)

Clearly if h and T are both small, this is a close approximation of

u(t) = f̂ε(g(kT ))K(kT )x̄ε(kT ), t ∈ [kT, (k + 1)T ),

which, in turn, is a good approximation of (3.19). We cannot construct (3.20) for
the same reason that we cannot construct (3.19), but the former is amenable to
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Figure 3.2: A control period consisting of the Estimation and Control Phases [20]

estimation. Every period is divided into two phases: an Estimation Phase and a
Control Phase, as illustrated in Figure 3.2. In the Estimation Phase, the quantity
f̂ε(g(kT ))K(kT )x̂ε(kT ) is estimated; although a degree of probing is used, it is
carried out in such a way that its effect at the end of the Estimation Phase is very
small. In the Control Phase, the above estimate, scaled by p

p−(2q+1)m
, is applied to

the plant; this scaling is chosen to reflect the fact that the Control Phase is exactly
p−(2q+1)m

p
of the whole period. In the next two subsections we will explain how the

Estimation Phase is implemented.

3.5 Controller Construction

In this subsection, the implementation of the above LPC is presented. We start by
explaining how to carry out the Estimation Phase. Define two (m + 1) × (m + 1)
matrices:

Sm =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...
1 m m2 · · · mm

 , Hm(h) =


1

h
h2/(2!)

. . .

hm/(m!)

 .(3.21)

First consider the simple system with transfer function g
sm with a state-space rep-

resentation of

ẋ =


1

. . .

1
0 0 · · · 0

x+


0
...
0
g

u,
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y =
[

1 0 · · · 0
]
x.

By setting
u(t) = ū, t ∈ [0,mh),

it follows that

y(t) =
[

1 t t2

2!
· · · tm−1

(m−1)!

]
x(0) +

tm

m!
ū

=
[

1 t t2

2!
· · · tm−1

(m−1)!
tm

m!

] [ x(0)
gū

]
, t ∈ [0,mh].

If we define the sequence of output samples by

Y(t) :=


y(t)

y(t+ h)
...

y(t+mh)

 ,
it follows that

Hm(h)−1S−1
m Y(0) =

[
x(0)
gū

]
.

The following lemma illustrates how this form of estimation can be carried out in
the general case.

Lemma 3.1 (Key Estimation Lemma (KEL-3)) [20]: There exist constants

γ > 0 and h̄ > 0 so that for all t0 ∈ R+, x0 ∈ Rn+nm+1, um ∈ PC∞, h ∈ (0, h̄),

and θ̄ ∈ P̄, the solution of (3.11)-(3.13) with

u(t) = ū, t ∈ [t0, t0 +mh)

has the following two properties :

(i) In all cases

‖x̄(t)− x̄(t0)‖ ≤ γh(‖x̄(t0)‖+ ‖ū‖+ ‖um‖∞), t ∈ [t0, t0 +mh),

‖Hm(h)−1S−1
m Y(t0)‖ ≤ γ(‖x̄(t0)‖+ ‖ū‖+ ‖um‖∞).

(ii) If θ̄(t) is absolutely continuous on [t0, t0 +mh], then we can obtain a tighter

approximation:

‖Hm(h)−1S−1
m Y(t0)−

[
v(t0)

f2(t0)v(t0) + c1(t0)w(t0) + g(t0)ū

]
‖ ≤

γh(‖x̄(t0)‖+ ‖ū‖+ ‖um‖∞).
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Now let us see how KEL-3 can be applied. First, for simplicity, we assume that
θ̄ ∈ P̄ is absolutely continuous. By setting

u(t) = 0, t ∈ [kT, kT +mh),

and considering the definition of K(t) in (3.17), it follows that

[
f̄2 −1

]
Hm(h)−1S−1

m Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
≈ K(kT )x̄(kT ).

Choose a scaling factor ρ > 0, and set

u(t) = ρ× estimate of K(kT )x̄(kT ), t ∈ [kT +mh, kT + 2mh);

it follows that

1

ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT +mh)− Y(kT )] ≈ g(kT )K(kT )x̄(kT ).

If we repeat this procedure then a close estimate of

1

g(kT )
K(kT )x̄(kT ) ≈

q∑
i=0

ci g(kT )iK(kT )x̄(kT )︸ ︷︷ ︸
=:φi(kT )

can be obtained by the end of the Estimation Phase (the interval [kT, kT + (2q +
1)mh]); in the Control Phase a suitably weighted of this estimate is applied. If
the sampling time T is small enough, then any discontinuity will be infrequent and
the controller will work. With the above motivation, we end up with the controller
structure as:
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THE PROPOSED CONTROLLER [20] (t0 = 0)

Estimation Phase: [kT, kT + (2q + 1)mh)

φ̂i(kT ) =


[
f̄2 −1

]
Hm(h)−1S−1

m Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
, if i = 0,

1
ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m

[
Y(kT + (2i− 1)mh)− Y(kT )

]
,

if i = 1, · · · , q,

(3.22)

u(t) =


0 t ∈ [kT, kT +mh),

ρφ̂i−1(kT ) t ∈ [kT + (2i− 1)mh, kT + 2imh), i = 1, · · · , q
−ρφ̂i−1(kT ) t ∈ [kT + 2imh, kT + (2i+ 1)mh), i = 1, · · · , q.

(3.23)

Control Phase: [kT + (2q + 1)mh, (k + 1)T )

u(t) =
p

p− (2q + 1)m

q∑
i=0

ciφ̂i(kT ), t ∈ [kT + (2q + 1)mh, (k + 1)T ). (3.24)

Lemma 3.2 [20]: The control law (3.22)-(3.24) has a representation of the

form (3.5) (with parameters (F,G,H, J, L,M, h, p)) which is deadbeat; in fact,

F (0) = 0.

Now we present a proposition which consider the closed-loop system over one period.
It is shown that the closed-loop system with control law (3.22)-(3.24) behaves very
much the same as the closed-loop system with the approximated ideal control law
(3.19).
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Lemma 3.3 (Key Control Lemma (KCL-3)) [20]: There exist constants

γ > 0 and T > 0 so that for all k ∈ Z+, T ∈ (0, T ), and θ̄ ∈ P̄, the solution of

(3.11) with u given by (3.22)-(3.24) has the following properties:

(i) In all cases

∥∥∥∥x̄(t)− Φε
cl(t, kT )x̄(kT )−

∫ t

kT

Φε
cl(t, τ)Eum(τ)dτ

∥∥∥∥ ≤ γT (‖x̄(kT )‖+ ‖um‖∞),

‖u(t)‖ ≤ γ(‖x̄(kT )‖+ ‖um‖∞), t ∈ [kT, (k + 1)T ),

(ii) If θ̄(t) is absolutely continuous on [kT, (k + 1)T ], then

‖x̄((k + 1)T )− Φε
cl((k + 1)T, kT )x̄(kT )−

∫ (k+1)T

kT

Φε
cl((k + 1)T, τ)Ēum(τ)dτ‖

≤ γT 2(‖x̄(kT )‖+ ‖um‖∞).

KCL-3 describes the closed-loop system behaviour during each period. By the
following proposition, it is proven that the proposed controller (3.22)-(3.24) acts
like the approximated ideal control law (3.19) for all time. We adopt the following
notation: we let ûε denote the control signal, ˆ̄xε denote the state, ˆ̄eε denote the
error, and ˆ̄yε denote the plant output when (3.22)-(3.24) is applied. Recall that we
use x̄ε and ēε to denote the corresponding signals when (3.19) is applied.

Proposition 3.4 [20]: There exist constants T̄ > 0, λ < 0 and γ > 0 so that for

every θ̄ ∈ P̄, x̄0 ∈ Rn+nm+1, um ∈ PC∞ and T ∈ (0, T̄ ), we have

‖x̄ε(t)− ˆ̄xε(t)‖ ≤ γTeλt‖x̄0‖+ γT‖um‖∞, t ≥ 0.

3.6 The Main Result

Now we can put together all results of the last few sections to prove that the LPC
provides both stability and good tracking for all admissible models.
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Theorem 3.1 [20]: For every δ > 0 and λ ∈ (max{λ0, λm}, 0) there exists

a controller of the form (3.2), (3.3), and (3.5) so that for every θ̄ ∈ P̄, x̄0 ∈
Rn+nm+1, and um ∈ PC∞, we have that the closed-loop system is exponentially

stable, and when t0 = k0 = 0, we have

|ˆ̄yε(t)− ym(t)− C̄Φcl(t, 0)x̄(0)| ≤ δeλt‖x̄0‖+ δ‖um‖∞, t ≥ 0.

Remark 3.4: This result states that the deviation between the output of the closed-
loop system when the proposed control law (3.22)-(3.24) is applied, namely ˆ̄yε(t),
and the output of the closed-loop system when the ideal control law (3.17) is applied,
namely

ym(t) + C̄Φcl(t, 0)x̄0,

can be made as small as desired by selecting the controller parameters ε > 0 and
T > 0.
Remark 3.5: Theorem 3.1 and the control law (3.22)-(3.24) demonstrate that,
unlike classical adaptive control methods, the proposed controller has these desirable
features:

• the controller is linear,

• there is no tuning phase and near exact tracking is achieved immediately,

• the eλt‖x̄0‖ term shows that the effect of non-zero initial conditions decays
exponentially to zero,

• since the ideal control law (3.17) is modest in size and the applied control
signal is similar to it, the control signal is not large,

• parameters can be time-varying without pre-specified structure.

Remark 3.6: It is clear that to achieve good tracking, we need to have a good
estimate of 1

g
which needs a small ε > 0; this good estimate yields a high order

polynomial f̂ε(g) =
∑q

i=0 cig
i. We also need to have the sampled-data controller

period T be small. These two facts result in the sampling period h = T
p
< T

(2q+1)m

(recall that m is the plant relative degree) must be very small which means that
some of the controller gains should be large (looking at the control law (3.22)-(3.24)
shows that some are proportional to 1

hm ). Large controller gains lead to poor noise
tolerance, which is one of the imperfections of the proposed controller.

3.7 Examples

Here we present two examples to illustrate the proposed design methodology and
its positive and negative features.
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3.7.1 Example 1

The plant model is first order:

ẏ(t) = a(t)y(t) + g(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g2 ∈ [1, 1.4]},

P = P(n = 1, m = 1, Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

While the reference model is

˙̄xm = −x̄m + ūm,

the anti-aliasing filter is
˙̄um = −50ūm + 50um.

We set ρ = 1.
For approximating the polynomial 1

g
, we use the approximation of:

f̂0.01(g) = 2.1647g − 1.5153g3 + 0.3433g5,

so q = 5, and we choose p = 25 > 2(2q + 1), i.e. the control phase is 66% of the
time. We set T = 0.25 (so that h = 0.01). Figure 3.3 shows the simulation results
with y0 = 3, ūm0 = 0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
a(t) = cos(t/2) and g(t) = [1.2 + 0.2cos(t/2)] ∗ sign[cos(t/4)];

as shown in Figure 3.3, the effect of the initial conditions declines exponentially to
zero, the tracking is quite close, and the control signal is modest in size, even with
time-varying plant parameters. We add a noise signal of the form

h * random sequence uniformly distributed between ±1
to the output measurement at the time t = 66 sec; we see that it degrades the
tracking slightly. In Figure 3.4 we provide a close-up of the control signal during
the first three periods.
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Figure 3.3: Example with a and g varying with time

Figure 3.4: A close-up of the control signal
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3.7.2 Example 2

In this example a minimum phase relative degree two model of a DC motor is
considered [17]:

ẋ =

[
0 1
0 β1(t)

]
︸ ︷︷ ︸

=:A(t)

x+

[
0
g(t)

]
︸ ︷︷ ︸

=:B(t)

u,

y =
[

1 0
]︸ ︷︷ ︸

=:C

x.

The set of plant uncertainty is given by

Γ̄ = {

 β0

β1

g

 ∈ R3 : β0 = 0, β1 ∈ [−5,−1], g ∈ [1, 2]},

P̄ = P̄(n = 2,m = 2, Γ̄, µ̄1 = 1, T̄0 = 10, γ0 = 1, λ0 = −5}.

The reference model is relative degree two with the state space representation:

ẋm =

[
0 1
−1 −2

]
xm +

[
0
1

]
um,

ym =
[

1 0
]
xm.

The anti-aliasing filter is chosen as

˙̄um = −50ūm + 50um.

We set ρ = 1.
For the approximation of 1

g
, we use the polynomial

f̂0.01(g) = 2.1647− 1.5153g + 0.3433g2,

so q = 2 and we choose p = 25 > 2(2q + 1)m and set T = 0.25 (so that h = 0.01).
A simulation was carried out (see Figure 3.5) with x0 = [1 1]T , ym0 = ūm0 = 0, um
a square wave given by

um = sign(cos(
2πt

15
)),

and
β1(t) = −3 + 2 ∗ cos(t/2) and g(t) = 1.5 + 0.5 ∗ sin(t/4).

We see that the tracking is quite good and the control signal is modest in size, even
in the face of significant time variations. We add a noise signal of the form

h2 * random sequence uniformly distributed between ±1
to the output measurement at the time t = 66 sec; we see that it degrades the
tracking slightly. In Figure 3.6 we provide a close-up of the control signal during
the first three periods.
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As these two examples show, although the noise signals are much smaller (pro-
portional to the sampling time in Example 1, and to the square of the sampling
time in Example 2) than the reference signals, they have noticeable effects on the
output signals. In other words, the closed-loop system has poor noise tolerance,
which is a drawback of the LPC. To see another undesired feature of the LPC, we
provided a close-up of the control signals during the first three periods (see Figure
3.4 and Figure 3.6); observe that during the Estimation Phase, the control signals
take a range of values, which results in a rapidly time-varying control signal, which
requires a fast actuator.

3.8 Summary and Concluding Remarks

The underlying motivation of the LPC [20] is to design a model reference adap-
tive control scheme for time-varying minimum phase systems, which, unlike most
classical MRACs, is linear and periodic. Rather than estimating parameters, the
LPC directly estimates what the control signal would be if the plant parameters
and states were known and the ideal LTI compensator were applied. This control
method has the following positive features:

i it handles rapidly time-varying parameters,

ii it provides smooth transient behaviour,

iii the effect of initial conditions decays exponentially to zero, and

iv the control signal is modest in size.

In contrast to the desirable features, the LPC [20] has its own drawbacks. In order
to achieve the aforementioned advantages, a small sampling period is required,
which results in a rapidly time-varying control signal. This control signal requires
fast actuators, which may not be practical. The second disadvantage of the LPC
[20] is poor noise tolerance. A small sampling period results in large controller gains
and consequently poor noise tolerance behaviour. The last drawback is that this
controller requires knowledge of the exact plant relative degree. While in the next
chapter we redesign the controller so that it works in the context of the 2-norm,
Chapters 5, 6, and 7 are devoted to redesigning the approach to alleviate these
drawbacks.
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Figure 3.5: Example with β1 and g varying with time

Figure 3.6: A close-up of the control signal



Chapter 4

The Linear Periodic MRAC in the
Context of the 2-Norm

4.1 Introduction

As discussed in Chapter 3, to overcome the undesirable features of most adaptive
control methodologies, a new approach to the model reference adaptive control
problem was proposed in [20]. In this approach, rather than estimating the plant or
controller parameters, as is often done in the classical approach, the quantity being
estimated is the ideal control signal, which could be used if the plant parameters and
states were known. The approach yields an LPC, with nice transient and steady-
state tracking properties, as well as an ability to handle rapid time-variations.

In the LPC [20], the time-domain∞-norm is used to measure signal size. How-
ever, the time-domain 2-norm is an equally common way to measure signal size and
is the one used in the popular H∞ paradigm. Here we extend the approach so that
results can be obtained in the 2-norm settling which are comparable to those of
[20]. This requires structural change in the control law together with new proofs of
key steps. Since we will be using a sampled-data controller, we will need to add an
anti-aliasing filter before sampling the plant output1. The filter can be incorporated
into the plant and the reference model at the expense of increasing the complexity
and worsening the performance and noise tolerance of the closed-loop system.

The outline of this work is as follows. The problem setup is presented in Section
4.2. A high level explanation of the LPC is presented in Section 4.3. In Section 4.4,
a controller redesign is carried out so that the idea works when using the 2-norm.
To show how the proposed controller works, two examples are presented in Section
4.5. Last of all, Section 4.6 provides a summary and concluding remarks.

1This is not required when using the∞-norm to measure the size of a time-domain signal, since
the discrete-time ∞-norm of a sampled signal is bounded above by the continuous-time ∞-norm
of this signal.

39
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4.2 Problem Formulation

The problem setup is similar to that of Chapter 3, except we have added an anti-
aliasing filter before sampling the plant output. The SISO linear time-varying plant
P is described by

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,
y(t) = C(t)x(t),

(4.1)

with x(t) ∈ Rn the plant state, u(t) ∈ R the plant input, and y(t) ∈ R the plant
output; we associate the plant with the triple (A(t), B(t), C(t)). We allow a good
deal of model uncertainty, to be described in detail later on; the set of possible
models is labelled P .

The stable SISO LTI reference model is given by

ẋm(t) = Amxm(t) +Bmum(t), xm(t0) = xm0 ,
ym(t) = Cmxm(t),

with xm(t) ∈ Rnm the reference model state, um(t) ∈ R the reference model input,
and ym(t) ∈ R the reference model output. The reference model describes the
desired behaviour of the closed-loop system, and is chosen to be stable. The goal
is to design a controller that provides stability, and makes the plant output track
the model reference output. To this end, we define the tracking error as

e(t) := ym(t)− y(t).

The controller is a sampled data controller, which periodically samples um and
y. We use an anti-aliasing filter before sampling um: with σ > 0 we choose an
anti-aliasing filter of the form

˙̄um = −σūm + σum, ūm(t0) = ūm0 , (4.2)

whose input-output map is labelled Fσ. Accordingly, we define a new version of the
reference model with ūm as the input:

˙̄xm = Amx̄m +Bmūm, x̄m(t0) = xm0 ,
ȳm = Cmx̄m.

(4.3)

If we choose γm > 0 and λm < 0 so that

||eAmt|| ≤ γme
λmt, t ≥ 0,

it follows that

||ȳm − ym||2 ≤
1

σ

[
||Cm||.||Bm||+ ||Cm||.||Am||.||Bm||

γm
|λm|

]
||um||2 +

γm
|λm|
||Cm||.||Bm|| ×

1√
2σ
||ūm0||. (4.4)
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Figure 4.1: The feedback diagram in the context of the 2-norm

Since sampling a continuous time signal with finite energy may yield a discrete-
time signal with infinite energy2, we need to make changes to the controller of [20]
for it to work in this new setting. Clearly, an anti-aliasing filter is in order, which
we place at the plant output. Hence, with σ > 0 we choose the anti-aliasing filter
at the plant output as follows:

˙̄y = −σȳ + σy, ȳ(t0) = ȳ0. (4.5)

Finally let us define the linear periodic controller by

z[k + 1] = F (k)z[k] +G(k)y(kh) +H(k)x̄m(kh) + J(k)ūm(kh), z[k0] = z0 ∈ Rl,
u(kh+ τ) = L(k)z[k] +M(k)y(kh), τ ∈ [0, h),

(4.6)

whose gains F,G,H, J , and L are periodic of period p ∈ N; the sampling time is
h, and the period of the controller is T := ph. We associate this system with the
7-tuple (F,G,H, J, L, h, p). Observe that (4.6) can be implemented with a sampler,
a zero-order-hold, and an lth order periodically time-varying discrete-time system
of period p.

Remark 4.1: The reference model is chosen by the control system designer to
embody the desired closed-loop behaviour. Hence, we can consider our controller
to be a combination of the anti-aliasing filter (4.2), the reference model (4.3), the
anti-aliasing filter (4.5), and the discrete-time periodic compensator (4.6).

2An example of such signal is

x(t) =
{
a kT ≤ t < kT + b

2k

0 kT + b
2|k| ≤ t < (k + 1)T

a ∈ R, 0 < b ≤ T, k ∈ Z, t ∈ [kT, (k + 1)T ).
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The feedback configuration is given in Figure 4.1. As shown in the figure, the
controller is a mixture of discrete and continuous subsystems, so the closed-loop
state is a combination of discrete and continuous states, defined as

xsd(t) =


x(t)
ȳ(t)
x̄m(t)
ūm(t)
z[k]

 , t ∈ [kh, (k + 1)h).

Definition 4.1: The controller (4.2), (4.3), (4.5), and (4.6) exponentially stabi-
lizes P if there exist constants γ > 0 and λ < 0 so that, for every P ∈ P, set of
initial conditions x0, ȳ0, x̄m0, ūm0, and z0, and set of initial times k0 ∈ Z+ and
t0 = k0h, with um(t) = 0 for t ≥ t0 we have

‖xsd(t)‖ ≤ γeλ(t−t0)‖xsd(t0)‖, t ≥ t0.

Accordingly, we have the new version of the generalized-plant:
ẇ
v̇
˙̄y

˙̄xm
˙̄um

 =


A1(t) b1c2 0 0 0
b2c1(t) A2(t) 0 0 0

0 σc2 −σ 0 0
0 0 0 Am Bm

0 0 0 0 −σ


︸ ︷︷ ︸

=:Ā(t)


w
v
ȳ
x̄m
ūm


︸ ︷︷ ︸

=:x̄

+g(t)


0
b2

0
0
0


︸ ︷︷ ︸

=:B̄

u(t) +


0
0
0
0
σ


︸ ︷︷ ︸

=:Ē

um(t), x̄(t0) = x̄0, (4.7)

ȳ =
[

0 0 1 0 0
]︸ ︷︷ ︸

=:C̄1


w
v
ȳ
x̄m
ūm

 . (4.8)

The plant output and the corresponding tracking error are given by

y =
[

0 c2 0 0 0
]︸ ︷︷ ︸

=:C̄


w
v
ȳ
x̄m
ūm

 , (4.9)
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ē =
[

0 −c2 0 Cm 0
]︸ ︷︷ ︸

=:C̄2


w
v
ȳ
x̄m
ūm

 . (4.10)

The goal is to construct the control law u(t) such that the closed-loop stability is
guaranteed and the map of um → ē is small.

Remark 4.2: In the new setup, the measured and controlled outputs are ȳ and y,
respectively.

4.3 The Approach

In this section, the proposed LPC is presented; the design is based on that of
[20], with a modification arising from the anti-aliasing filter applied to y. We start
with a high level description and then turn to a more concrete one. We start
with a description of the ideal LTI control law which we would use in the case of
complete state and parameter information. We then explain a sequence of these
approximations to this control law, with the last one being of the form (4.6).

4.3.1 The Ideal Control Law

To motivate the ideal control law, we start with a time-invariant, first-order case
(so y = x and ym = xm):

ẏ = ay + gu,
˙̄y = −σȳ + σy,
˙̄ym = amȳm + bmūm.

 (4.11)

The control objective is to make the plant act like the reference model, so we would
like the tracking error of ē = ȳm − y to be small. Start with the tracking error
dynamics:

( ˙̄ym − ẏ) = am(ȳm − y) + [bmūm − gu+ (am − a)y].

If we set
bmūm − gu+ (am − a)y = 0,

then the mismatch decays to zero like eamt, which leads us to the following definition
of the ideal control law:

u =
1

g
(bmūm + (am − a)y) =

1

g

[
am − a 0 0 bm

]︸ ︷︷ ︸
=:K


y
ȳ
ȳm
ūm

 .
The controller provides both stability and model matching.
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The ideal control law in the general case requires the same idea as the LPC
[20] explained in Chapter 3. With (Λ2, b2) defined in equations (3.8) and (3.15)
of Chapter 3, Sections 3.3 and 3.4, since (Λ2, b2) is controllable, we can choose a
vector of f̄2 so that Ā2 := Λ2 + b2f̄2 is stable with eigenvalues with real parts less
than λm, which means that there exist γ̄m > γm so that

‖eĀ2t‖ ≤ γ̄me
λmt, t ≥ 0.

If we now set

u(t) =
1

g(t)
[−c1(t)w(t) + (f̄2 − f2(t))v(t)] + un(t),

with un representing a feed-forward term to be chosen below, then we will decouple
v from w and stabilize v, yielding

v̇ = Ā2v + b2[g(t)un(t)]

y = c2v.

Because of Assumption 7 of Chapter 3 we can choose k1 ∈ R1×nm and k2 ∈ R so
that

Pm(s)

c2(sI − Ā2)−1b2

= k2 + k1(sI − Am)−1Bm. (4.12)

Now we choose the feed-forward term un by

un(t) =
1

g(t)
[k2ūm(t) + k1x̄m(t)],

which yields the ideal control law of

u(t) =
1

g(t)

[
−c1(t) f̄2 − f2(t) 0 k1 k2

]︸ ︷︷ ︸
=:K(t)

x̄(t). (4.13)

By labelling this control signal u0(t) and the corresponding generalized plant re-
sponse x̄0, the ideal closed-loop system is as follows:

˙̄x0(t) =


A1(t) b1c2 0 0 0

0 Ā2 0 b2k1 b2k2

0 σc2 −σ 0 0
0 0 0 Am Bm

0 0 0 0 −σ


︸ ︷︷ ︸

=:Ācl(t)

x̄0(t) + Ēum(t)

ȳ0(t) = C̄1x̄
0(t),

ē0(t) = C̄2x̄
0(t),

Since the plant is minimum phase, A1 is exponentially stable, so it follows that this
closed-loop system is exponentially stable and the map from um 7−→ ē0 is 0.
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4.3.2 The First Approximation

Since the plant parameters and system states are not completely known, the ideal
control law (4.13) cannot be implemented exactly. Instead, this quantity will be
periodically estimated and applied. The 1

g
term will be problematic in carrying out

the estimation, so we will approximate it by a polynomial, which will be easier to
deal with. To this end, from Assumptions 1 and 4 of Chapter 3, it follows that the
set G defined by

G := {g ∈ R : there exists a ψ ∈ R2n−m so that

[
ψ
g

]
∈ Γ}

is a compact set, which does not include zero; indeed, there exists a constant ḡ > 0
so that G ⊂ [−ḡ,−g]∪[g, ḡ]. From Proposition 3.2 of Chapter 3 we can approximate
1/g arbitrarily well over G via a polynomial, i.e. for every ε > 0 there exist q ∈ N
and ci ∈ R such that the polynomial f̂ε(g) =

∑q
i=0 cig

i satisfies∣∣∣1− gf̂ε(g)
∣∣∣ < ε, g ∈ G. (4.14)

This brings us to the first approximation of (4.13): we define the approximate
ideal control law to be

u(t) = f̂ε(g(t))K(t)x̄(t). (4.15)

When (4.15) is applied to the generalized plant (4.7)-(4.10), we let uε denote the
corresponding control signal, x̂ε denote the corresponding state, and êε denote the
corresponding error; the equations describing this closed-loop system are

˙̄xε(t) = Ācl(t)x̄
ε(t) + Ēum(t) + [g(t)f̂ε(g(t))− 1]B̄K(t)x̄ε(t)

=: Āεcl(t)x̄
ε(t) + Ēum(t),

ēε(t) = C̄x̄ε(t).

We label the transition matrices corresponding to Acl(t) and A
ε

cl(t) by Φcl(t, τ) and
Φε
cl(t, τ), respectively.



CHAPTER 4. THE LINEAR PERIODIC MRAC IN THE CONTEXT . . . 46

Proposition 4.1: Suppose that λ ∈ (max {λ0, λm} , 0). Then there exist con-

stants ε > 0 and γ > 0 so that for every ε ∈ (0, ε) and θ̄ ∈ P̄, the closed-loop

system (with t0 = 0) satisfies ∥∥x̄ε − x0
∥∥

2
≤ γε(‖x0‖+ ‖um‖2),

(

∫ ∞
0

|ēε(t)− C̄Φcl(t, 0)x0|2dt)
1
2 ≤ γε(‖x0‖+ ‖um‖2),

‖x̄ε‖2 ≤ γ(‖x0‖+ ‖um‖2);

furtheremore, the transition matrix satisfies

‖Φε
cl(t, τ)‖ ≤ γeλ(t−τ), t ≥ τ ≥ 0.

Proof: See Appendix A.

Thus, as expected, as the approximation of 1
g

improves, the steady-state tracking

error improves. At this point we freeze λ ∈ (max{λ0, λm}, 0) and λ1 ∈ (maxλ0, λm}, λ).
From Proposition 4.1, we can choose ε > 0, a polynomial f̂ε(g) =

∑q
i=0 cig

i satis-
fying (4.14), and a constant γ > 0 so that for all θ̄ ∈ P̄ , we have

‖Φε
cl(t, τ)‖ ≤ γeλ1(t−τ), t ≥ τ ≥ 0.

4.3.3 The Second Approximation

Observe that (4.15) cannot be implemented, since neither g nor x̄ is measurable,
so the goal is to approximate (4.15) in a linear fashion. We adopt the technique of
Chapter 3. We use h to be small and with q the order of the polynomial approxi-
mation set to 1

g
, we choose

p > (2q + 1)(m+ 1);

recall that the controller period is T = ph. The second approximation is as follows:

u(t) =

{
0 t ∈ [kT, kT + (2q + 1)(m+ 1)h),

p
p−(2q+1)(m+1)

f̂ε(g(kT ))K(kT )x̄ε(kT ) t ∈ [kT + (2q + 1)(m+ 1)h, (k + 1)T );

(4.16)

clearly if h and T are both small, (4.16) is a close approximation of

u(t) = f̂ε(g(kT ))K(kT )x̄ε(kT ), t ∈ [kT, (k + 1)T ),
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Figure 4.2: A control period consisting of the Estimation and Control Phases [20]

which, in turn, is a good approximation of (4.15). We cannot construct (4.16) for
the same reason that we cannot construct (4.15), but the former is amenable to
estimation. Every period is divided into two phases: an estimation phase and a
control phase, as illustrated in Figure 4.2. In the Estimation Phase, the quantity

f̂ε(g(kT ))K(kT )x̂ε(kT )

is estimated; although a degree of probing is used, it is carried out in such a way
that its effect at the end of the Estimation Phase is very small. In the Control
Phase, the above estimate, scaled by

p

p− (2q + 1)(m+ 1)
,

is applied; this scaling is chosen to reflect the fact that the Control Phase is exactly

p− (2q + 1)(m+ 1)

p

of the whole period. In the next two subsections we will explain how the Estimation
Phase is implemented.

4.3.4 The First-Order Case (constant parameters and q =
1)

Here we consider the simplest possible case, that of first order with constant pa-
rameters, as displayed in equation (4.11). The error satisfies

( ˙̄ym − ẏ) = am(ȳm − y) + [bmūm − gu+ (am − a)y],
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and ideally we would like to set

u(t) = f̂ε(g)Kx̄(t) =

q∑
i=0

cig
i[bmūm(t) + (am − a)y(t)].

(Recall that we’ve chosen p > 2(2q+1) = 6 and h > 0, and have set T = ph.) First
we look at the first period [0, T ). For simplicity, we consider the case of q = 1, so
the first step is to construct an approximation of

1∑
i=0

ci g
i[bmūm(0) + (am − a)y(0)]︸ ︷︷ ︸

=:φi(0)

.

Since the controller does not directly measure the output signal y, first we need to
estimate the terms containing y(0). From the filter equation (4.5) we have

y(t) =
1

σ
˙̄y(t) + ȳ(t). (4.17)

Assuming that ȳ is smooth, we have

˙̄y(0) ≈ 1

h
[ȳ(h)− ȳ(0)]

≈ 1

h
[ȳ(2h)− ȳ(h)]

≈ 1

2h
[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)]. (4.18)

Combining (4.17) and (4.18) results in

amy(0) ≈ am
2σh

[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)] + amȳ(0).

The assumption of smoothness of ȳ also yields

¨̄y(0) ≈ 1

h2
[ȳ(0)− 2ȳ(h) + ȳ(2h)]. (4.19)

To obtain an estimate of ay, we combine the filter equation (4.5) with the plant
equation:

˙̄y = −σȳ + σy

⇒ ¨̄y = −σ ˙̄y + σẏ

= −σ ˙̄y + σay + σbu. (4.20)

Suppose that we initially set

u(t) = 0, t ∈ [0, 2h),

so regarding (4.20), we obtain

¨̄y(t) = −σ ˙̄y(t) + σay(t), t ∈ [0, 2h).
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Thus, assuming once again that ȳ is smooth, we have

ay(0) =
1

σ
¨̄y(0) + ˙̄y(0)

≈ 1

σh2
[ȳ(0)− 2ȳ(h) + ȳ(2h)] +

1

2h
[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)].

Hence, we can make a good estimate of

φ0(0) := bmūm(0) + (am − a)y(0),

namely

φ̂0(0) := bmūm(0) + amȳ(0) +
am
2σh

[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)]−
1

2h
[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)]− 1

σh2
[ȳ(0)− 2ȳ(h) + ȳ(2h)]

≈ φ0(0).

To form an estimate of φ1(0) = gφ0(0), we will carry out some experiments.
With ρ > 0 a scaling factor (we make this factor small so that it does not disturb
the system very much), set

u(t) = ρφ̂0(0), t ∈ [2h, 4h).

Of course, in completing this experiment, we have excited the state. This can be
largely undone by applying

u(t) = −ρφ̂0(0), t ∈ [4h, 6h).

To obtain an estimate of bu(2h) = ρgφ̂0(0), we return to (4.20) which we rewrite as

bu(2h) =
1

σ
[¨̄y(2h) + σ ˙̄y(2h)− σay(2h)]

=
1

σ
¨̄y(2h) + ˙̄y(2h)− ay(2h)

≈ 1

σ
¨̄y(2h) + ˙̄y(2h)− ay(0)

≈ 1

σ
¨̄y(2h) + ˙̄y(2h)− 1

σ
¨̄y(0)− ˙̄y(0);

combining this equation with (4.18) and (4.19) results in

bu(2h) ≈ 1

σh2
[ȳ(2h)− 2ȳ(3h) + ȳ(4h)] +

1

2h
[−ȳ(4h) + 4ȳ(3h)− 3ȳ(2h)]−

1

σh2
[ȳ(0)− 2ȳ(h) + ȳ(2h)]− 1

2h
[−ȳ(2h) + 4ȳ(h)− 3ȳ(0)].

Hence,

φ̂1(0) :=
1

2ρh
[−ȳ(4h) + 4ȳ(3h)− 3ȳ(2h) + ȳ(2h)− 4ȳ(h) + 3ȳ(0)] +

1

σρh2
[−ȳ(0) + 2ȳ(h)− ȳ(2h) + ȳ(2h)− ȳ(3h) + ȳ(4h)]

≈ φ1(0). (4.21)
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At the end of the Estimation Phase, we are at t = 6h, and we have an estimate of
φ1(0) to form our control signal to be applied during the Control Phase. We now
set u during the Control Phase to be

u(t) =
p

p− 6
[c0φ̂0(0) + c1φ̂1(0)], t ∈ [6h, ph).

It follows that

y(ph) = y(T )

= epahy(0) +

∫ T

0

ea(T−τ)gu(τ)dτ

≈ eaTy(0) + Tgf̂(g)[bmūm(0) + (am − a)y(0)]

≈ eamTy(0) +

∫ T

0

eam(T−τ)bmūm(τ)dτ,

as desired.
The above analysis was quite informal although reasonably intuitive. In the

next section we extend this to the general case and rigorously prove a result on
estimation.

4.3.5 The General Case

Now we will show the controller construction for the general nth order case with
time-varying parameters. First, we need some notation. Let us define 1× (m+ 2)
vector

c̃2 :=
[

0 0 · · · 0 1 0
]
, (4.22)

and with two (m + 2) × (m + 2) matrices Sm+1 and Hm+1(h) defined by equation
(3.21) of Section 3.5, b2 and c2 defined by equations (3.8) (3.9), respectively, of
Section 3.3, and Λ2 defined by equation (3.15) of Section 3.4, we define two (m +
2)× (m+ 2) matrices

Λ̃2 :=

 Λ2 0 b2

σc2 −σ 0
0 0 0

 , F̄m+1(σ) :=


c̃2

c̃2Λ̃2
...

c̃2Λ̃m
2

c̃2Λ̃m+1
2

 . (4.23)
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To motivate the upcoming result, first consider the special case in which the plant
is LTI with transfer function g

sm , which means that w has zero dimension:

v̇ =


0 1

. . . . . .

1
0


︸ ︷︷ ︸

=Λ2

v +


0
...
0
1


︸ ︷︷ ︸

=b2

gu,

ȳ(t) =
[

1 0 · · · 0
]︸ ︷︷ ︸

=c2

v,

so combining the plant with the output filter yields[
v̇(t)
˙̄y(t)

]
=

[
Λ2 0
σc2 −σ

]
︸ ︷︷ ︸

=:Λ̄2

[
v(t)
ȳ(t)

]
+

[
b2

0

]
︸ ︷︷ ︸

=:b̄2

gu(t),

ȳ(t) = [0 1]︸ ︷︷ ︸
=:c̄2

[
v(t)
ȳ(t)

]
. (4.24)

Now suppose that u is a constant:

u(t) = ū, t ≥ 0.

Then we combine this equation with (4.24): [ v̇(t)
˙̄y(t)

]
gu̇(t)

 =

[
Λ̄2 b̄2

0 0

]
︸ ︷︷ ︸

=Λ̃2

 [ v(t)
ȳ(t)

]
gu(t)

 ,

ȳ(t) = [c̄2 0]︸ ︷︷ ︸
=c̃2

 [ v(t)
ȳ(t)

]
gu(t)

 , t ≥ 0;

notice that (c̃2, Λ̃2) is observable. It is easy to see that

ȳ(t) =
[

1 t · · · tm+1

(m+1)!

]
c̃2

c̃2Λ̃2
...

c̃2Λ̃m+1
2


 v(0)
ȳ(0)
gū

+O(tm+2)

 v(0)
ȳ(0)
gū

 .
If we sample ȳ(t) at multiples of h, we obtain

ȳ(0)
ȳ(h)

...
ȳ((m+ 1)h)

 = Sm+1Hm+1(h)F̄m+1(σ)

 v(0)
ȳ(0)
gū

+O(hm+2)

 v(0)
ȳ(0)
gū

 ,



CHAPTER 4. THE LINEAR PERIODIC MRAC IN THE CONTEXT . . . 52

so

F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1


ȳ(0)
ȳ(h)

...
ȳ((m+ 1)h)

 =

 v(0)
ȳ(0)
gū

+O(h)

 v(0)
ȳ(0)
gū

 .
Indeed, as long as u(t) is constant (equal to ū) on t ∈ [0, (m + 1)h), then we can
estimate v(0) and gū (we do not need to estimate ȳ(0) since we can measure it).
Since we are using a sequence of m+ 2 samples of ȳ(t) we define

Ȳ(t) :=
[
ȳ(t) ȳ(t+ h) · · · ȳ(t+ (m+ 1)h)

]T
.

The following result shows how to do estimation in the general case, with a precise
bound on the estimation error.

Lemma 4.1: (Key Estimation Lemma (KEL-4)) There exist constants γ > 0

and h̄ > 0 so that for all t0 ∈ R+, x̄0 ∈ Rn+nm+2, um ∈ PC∞, h ∈ (0, h̄), and

θ̄ ∈ P̄, the solution of (4.7)-(4.10) with

u(t) = ū, t ∈ [t0, t0 + (m+ 1)h)

has the following two properties:

(i) In all cases

‖x̄(t)− x̄(t0)‖ ≤ γ(h‖x̄(t0)‖+ h‖ū‖+ h
1
2‖um‖2 [t0,t)), t ∈ [t0, t0 + (m+ 1)h),

‖F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1Ȳ(t0)‖ ≤ γ(‖x̄(t0)‖+ ‖ū‖+ h

1
2‖um‖2 [t0,t0+(m+1)h)).

(ii) If θ̄(t) is absolutely continuous on [t0, t0 + (m+ 1)h), then we can obtain a

tighter approximation:

‖F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1Ȳ(t0) −

 v(t0)
f2(t0)v(t0) + c1(t0)w(t0) + g(t0)ū

ȳ(t0)

 ‖ ≤
γh(‖x̄(t0)‖ + ‖ū‖ + h

1
2‖um‖2 [t0,t0+(m+1)h)).

Proof: See Appendix A.
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To see the application of KEL-4, suppose that θ̄ ∈ P̄ is absolutely continuous.
If we set

u(t) = 0, t ∈ [kT, kT + (m+ 1)h),

with K(t) defined by (4.13), it follows that

[
f̄2 −1 0

]
F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1Ȳ(kT ) +

[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
≈ K(kT )x̄(kT ).

Similar to Chapter 3, with ρ > 0 a scaling factor, now set

u(t) = ρ× estimate of K(kT )x̄(kT ), t ∈ [kT + (m+ 1)h, kT + 2(m+ 1)h);

then it follows

1

ρ

[
0 · · · 0 1 0

]
F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1[Ȳ(kT + (m+ 1)h)− Ȳ(kT )] ≈

g(kT )K(kT )x̄(kT ).

Similar to the Chapter 3 approach, repeating this procedure, a close estimate of

1

g(kT )
K(kT )x̄(kT ) ≈

q∑
i=0

ci g(kT )iK(kT )x̄(kT )︸ ︷︷ ︸
=:φi(kT )

can be obtained by the end of the Estimation Phase (the interval [kT, kT + (2q +
1)(m+ 1)h)); in the Control Phase a suitably weighted of this estimate is applied.
If the sampling time T is small enough, then any discontinuity will be infrequent,
and the controller will work. Finally, we end up with the controller structure as:
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THE PROPOSED CONTROLLER (t0 = 0)

Estimation Phase: [kT, kT + (2q + 1)(m+ 1)h)

φ̂i(kT ) =



[
f̄2 −1 0

]
F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1Ȳ(kT ) +

[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
if i = 0,

1
ρ

[
0 · · · 0 1 0

]
F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1×[

Ȳ(kT + (2i− 1)(m+ 1)h)− Ȳ(kT )
]

if i = 1, · · · , q,

(4.25)

u(t) =



0 t ∈ [kT, kT + (m+ 1)h),

ρφ̂i−1(kT ) t ∈ [kT + (2i− 1)(m+ 1)h, kT + 2i(m+ 1)h),
i = 1, · · · , q,

−ρφ̂i−1(kT ) t ∈ [kT + 2i(m+ 1)h, kT + (2i+ 1)(m+ 1)h),
i = 1, · · · , q.

(4.26)

Control Phase: [kT + (2q + 1)(m+ 1)h, (k + 1)T )

u(t) =
p

p− (2q + 1)(m+ 1)

q∑
i=0

ciφ̂i(kT ), t ∈ [kT + (2q + 1)(m+ 1)h, (k + 1)T ).

(4.27)

Lemma 4.2: The control law (4.25)-(4.27) has a representation of the form (4.6)

(with parameters (F,G,H, J, L,M, h, p)) and is deadbeat; in fact, F (0) = 0.

Proof: See Appendix A.
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Now we present a proposition which considers the closed-loop system over one
period. It is shown that the closed-loop system with control law (4.25)-(4.27)
behaves very much the same as the closed-loop system with the approximate ideal
control law (4.15).

Lemma 4.3:(Key Control Lemma (KCL-4)) There exist constants γ > 0 and

T > 0 so that for all k ∈ Z+, T ∈ (0, T ), and θ̄ ∈ P̄, the solution of (4.7)-(4.10)

with u given by (4.25)-(4.27) has the following properties:

(i) In all cases ∥∥∥∥x̄(t)− Φε
cl(t, kT )x̄(kT )−

∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ

∥∥∥∥
≤ γ(T ‖x̄(kT )‖+ T

1
2 ‖um‖2,[kT,t)),

‖u(t)‖ ≤ γ(‖x̄(kT )‖+ T
1
2 ‖um‖2,[kT,t)), t ∈ [kT, (k + 1)T ).

(ii) If θ̄(t) is absolutely continuous on [kT, (k + 1)T ), then

‖x̄((k + 1)T )− Φε
cl((k + 1)T, kT )x̄(kT )−

∫ (k+1)T

kT

Φε
cl((k + 1)T, τ)Ēum(τ)dτ‖

≤ γ(T 2‖x̄(kT )‖+ T
3
2 ‖um‖2, [kT,(k+1)T )).

Proof: See Appendix A.

The KEL-4 and KCL-4 describe the closed-loop system behaviour during each
period. In the following result, it is proven that the proposed controller (4.25)-(4.27)
acts like the approximated ideal control law (4.15) for all time. Before proceeding,
we need some notation: we let ûε denote the control signal, ˆ̄xε denote the state,
ˆ̄eε denote the error, and ŷε denote the plant output when (4.25)-(4.27) is applied.
Recall that we use x̄ε, ēε, and yε to denote the corresponding signals when (4.15)
is applied.
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Proposition 4.2: There exist constants T̄ > 0, λ < 0, and γ > 0 so that for

every θ̄ ∈ P̄, um ∈ PC∞, and T ∈ (0, T̄ ), we have

‖ˆ̄xε(t)‖ ≤ γ(eλt‖x̄0‖+ ‖um‖2 [0,t)), t ≥ 0,

‖x̄ε − ˆ̄xε‖2 ≤ γ(T‖x̄0‖+ T‖um‖2).

Proof: See Appendix A.

4.4 The Main Result

Now we can put together all of the results of this chapter to prove that the proposed
LPC provides both stability and good tracking in the face of plant uncertainty.

Theorem 4.1: For every δ > 0 and λ ∈ (max{λ0, λm}, 0) there exists a

controller of the form (4.2),(4.3), (4.5), and (4.6) so that for every θ̄ ∈ P̄,

x̄0 ∈ Rn+nm+1, and um ∈ PC∞, we have that the closed-loop system is exponen-

tially stable, and when t0 = k0 = 0, we have

(

∫ ∞
0

|ŷε(t)− ym(t)− C̄Φcl(t, 0)x̄(0)|2dt)
1
2 ≤ δ(‖x̄0‖+ ‖um‖2), t ≥ 0.

Remark 4.3: If x̄(0) = 0, then this means that

‖ŷε − ym‖2 ≤ δ‖um‖2.

Remark 4.4: Theorem 4.1 states that the difference between the output ŷε, of the
closed-loop system when the proposed controller is applied, and the output of the
closed-loop system when the ideal control law (4.13) is applied, namely,

ym(t) + C̄Φcl(t, 0)x̄0,

can be made as small as desired by selecting the controller parameters ε > 0 and
T > 0 properly.

Remark 4.5: Often we may have reference signals which have infinite 2-norm,
such as a sinusoidal. Because of causality, Theorem 2 also means that, for every
τ > 0

(

∫ τ

0

|ŷε(t)− ym(t)− C̄Φcl(t, 0)x̄(0)|2dt)
1
2 ≤ δ‖x̄0‖+ δ(

∫ τ

0

|um(t)|2dt)
1
2 , τ ≥ 0.
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Proof:

First suppose that t0 = k0 = 0. We start with the bound on the transients. If
we choose σ > 0 sufficiently large that

1

σ

[
||Cm||.||Bm||+ ||Cm||.||Am||.||Bm||

γm
|λm|

]
+

γm
|λm|
||Cm||.||Bm|| ×

1√
2σ
≤ δ

3
,

it follows from (4.4) that

||ȳm − ym||2 ≤ (δ/3) (||x̄0||+ ||um||2). (4.28)

Let λ ∈ (max{λ0, λm}, 0) and λ1 ∈ (max{λ0, λm}, λ); from Proposition 4.1
there exist constants ε̄ > 0 and γ > 1 so that for every ε ∈ (0, ε̄) and θ̄ ∈ P̄ , the
closed-loop system satisfies

‖Φε
cl(t, τ)‖ ≤ γ1e

λ1(t−τ), t ≥ τ ≥ 0,

‖x̄ε‖2 ≤ γ1(‖x̄0‖+ ‖um‖2), (4.29)

(

∫ ∞
0

|ēε(t)− C̄Φcl(t, 0)x̄0|2dt)
1
2 ≤ γ1ε(‖x̄0‖+ ‖um‖2).

Thus, now choose ε ∈ (0, ε̄) so that

γ1ε < δ/3.

It follows that

(

∫ ∞
0

|ēε(t)− C̄Φcl(t, 0)x̄0|2dt)
1
2 ≤ (δ/3)(‖x̄0‖+ ‖um‖2), t ≥ 0. (4.30)

From Proposition 4.2 there exist T̄ > 0 and γ2 > 0 so that for every θ̄ ∈ P̄ ,
um ∈ PC∞, and T ∈ (0, T̄ ) we have

‖ˆ̄xε(t)‖ ≤ γ2(eλt‖x̄0‖+ ‖um‖2,[0,t)), t ≥ 0,

‖ˆ̄eε − ēε‖2 ≤ γ2(T‖x̄0‖+ T‖um‖2),

‖ˆ̄xε − x̄ε‖2 ≤ γ2(T‖x̄0‖+ T‖um‖2).

(4.31)

Choose T ∈ (0, T̄ ) so that
γ2T < δ/3;

it follows that
‖ˆ̄eε − ēε‖2 ≤ (δ/3)(‖x̄0‖+ ‖um‖2).
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If we combine this equation with (4.28) and (4.30) we end up with

(

∫ ∞
0

|ŷε(t)− ym(t)− C̄Φcl(t, 0)x̄0|2dt)
1
2

≤ (

∫ ∞
0

|ŷε(t)− yε(t) + yε(t)− ȳm(t) + ȳm(t)− ym(t)− C̄Φcl(t, 0)x̄0|2dt)
1
2

≤ ‖ˆ̄eε − ēε‖2 + ||ȳm − ym||2 + (

∫ ∞
0

|ēε(t)− C̄Φcl(t, 0)x̄0|2dt)
1
2

≤ (δ/3)(‖x̄0‖+ ‖um‖2) + (δ/3)(‖x̄0‖+ ‖um‖2) + (δ/3)(‖x̄0‖+ ‖um‖2)

≤ δ(‖x̄0‖+ ‖um‖2), t ≥ 0.

Hence, the controller given by (4.25)-(4.27) (with a representation of the form (4.6))
together with (4.2),(4.3), and (4.5) satisfies the constraints on the error.

It remains to prove that this controller provides exponentially stability. So first
suppose that t0 = k0 = 0 and that um = 0. From Proposition 4.2, there exists a
constant γ3 > 0 such that

‖ˆ̄xε(t)‖ ≤ γ3e
λt‖x̄0‖, t ≥ 0.

From Lemma 4.2 we know that the representation (4.6) of (4.25)-(4.27) is deadbeat;
indeed, F (0) = 0. Hence, if we solve (4.6), it follows that there exists a constant
γ4 > 0 so that

‖z[k]‖ ≤ γ4 max{‖ˆ̄xε(k − j)‖ : 0 ≤ j ≤ p, k − j ≥ 0}
≤ γ3γ4e

λ(k−p)T‖x̄0‖
≤ γ3γ4e

−λpT̄︸ ︷︷ ︸
=:γ5

eλkT‖x̄0‖, k ≥ 1.

Recall that the state of the closed loop system is defined by

xsd(t) :=

[
ˆ̄xε(t)
z[k]

]
, t ∈ [kT, (k + 1)T ),

so it follows that

‖xsd(t)‖ ≤ (γ3 + γ5e
−λT̄ )︸ ︷︷ ︸

=:γ6

eλt‖xsd(0)‖, t ≥ 0.

Now we turn to the case when t0 = k0h ≥ 0. Since the controller (4.6) is periodic
of period T , it follows that if our starting point is t0 = jT , then

‖xsd(t)‖ ≤ γ6e
λ(t−jT )‖xsd(jT )‖, t ≥ jT.

Since the plant parameters are uniformly bounded, it is straight-forward to prove
that nothing un-toward happens if we start between samples: there exists a constant
γ7 so that for every t0 = k0h ≥ 0, we have

‖xsd(t)‖ ≤ γ7e
λ(t−t0)‖xsd(t0)‖, t ≥ t0,

i.e., we have exponential stability.

�
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4.5 Examples

In this section two examples as Chapter 3 are presented, one with relative degree
one and one with relative degree two.

4.5.1 Example 1

The plant model is first order:

ẏ(t) = a(t)y(t) + g(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g2 ∈ [1, 1.4]},

P = P(Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

The reference model is
˙̄xm = −x̄m + ūm,

while reference model anti-aliasing filter is chosen to be

˙̄um = −50ūm + 50um,

as is the anti-aliasing output filter:

˙̄y = −50ȳ + 50y.

For approximating the polynomial 1
g
, we use

f̂0.01(g) = 2.1647g − 1.5153g3 + 0.3433g5,

so q = 5, and we choose p = 50 > 2(2q + 1), i.e. the Control Phase is 66% of
the time. We set T = 0.1 (so that h = 0.002) and ρ = 1. Figure 4.6 shows the
simulation results with y0 = 3, ūm0 = 0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
a(t) = cos(t/2) and g(t) = [1.2 + 0.2cos(t/2)] ∗ sign[cos(t/4)];

we add a noise signal of the form
h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 66 sec. We see that the effect of the
initial condition decays to zero and finally good tracking is attained, even in the
presence of rapid time-variations and noisy measurements, although it is clear that
the effect of the tiny amount of noise is quite significant.
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Figure 4.3: Example with a and g varying with time and the output anti-aliasing
filter

4.5.2 Example 2

In this example a minimum phase relative degree two model of a DC motor is
considered [17]:

ẋ =

[
0 1
0 β1(t)

]
︸ ︷︷ ︸

=:A(t)

x+

[
0
g(t)

]
︸ ︷︷ ︸

=:B(t)

u,

y =
[

1 0
]︸ ︷︷ ︸

=:C

x.

The set of plant uncertainty is given by

Γ̄ = {

 β0

β1

g

 ∈ R3 : β0 = 0, β1 ∈ [−5,−1], g ∈ [1, 2]},

P̄ = P̄(n = 2,m = 2, Γ̄, µ̄1 = 1, T̄0 = 10, γ0 = 1, λ0 = −5}.
The reference model is relative degree two with the state space representation:

ẋm =

[
0 1
−1 −2

]
xm +

[
0
1

]
um,

ym =
[

1 0
]
xm.
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The anti-aliasing filter is chosen as

˙̄um = −50ūm + 50um,

and the anti-aliasing output filter is given by

˙̄y = −50ȳ + 50y.

The range of g is smaller than in Example 1, so for the approximation of 1
g
, we use

the polynomial
f̂0.01(g) = 2.1647− 1.5153g + 0.3433g2,

so q = 2, we choose p = 40 > 2(2q + 1)m, and set T = 0.04 (so that h = 0.001),
and ρ = 1. A simulation was carried out (see Figure 4.4 ) with x0 = [1 1]T ,
ym0 = ūm0 = 0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
β1(t) = −3 + 2 ∗ cos(t/2) and g(t) = 1.5 + 0.5 ∗ sin(t/4).

We add a noise signal of the form
h2 * random sequence uniformly distributed between ±1

to the output measurement at the time t = 66 sec. While Figure 4.4 illustrates the
simulation results, Figure 4.5 provides a close-up of the control signal during the
first three periods. As shown in these two examples, the tracking is quite close,
the control signal is modest in size, and the effect of the initial conditions declines
exponentially to zero even with time-varying plant parameters.
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Figure 4.4: Example with β1 and g varying with time

Figure 4.5: A close-up of the control signal
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4.5.3 Example 3

In this example we analyze the performance and the noise behaviour of the closed-
loop system. We compute the L∞ induced norm when the plant parameters are
fixed and investigate how the performance and the noise behaviour of the sampled-
data system depends on the sampling period. The first computation of the L∞
induced norm of the LPC [20] was carried out by Xiaosong [43]. The tool that is
used is the lifting technique (see Chen and Francis [3] which establishes a strong
correspondence between periodic systems and time invariant infinite-dimensional
systems.

We adopt one admissible plant model of the set of plant uncertainty of Example
1 of this chapter as

ẏ(t) = y(t) + u(t).

In the LPC [20], for approximating the polynomial 1
g
, we use the estimation poly-

nomial
f̂(g) = g.

For the LPC both in L1 framework (∞-norm) and H∞ framework (2-norm). With
the controller designed as above but with h free, in Figure 4.6, we plot ||Tum||
and ||Tn|| as a function of h. As expected, for both controllers, while the former
goes to zero, the latter goes to infinity as h −→ 0. As this figure illustrates, for
the new framework H∞ (2-norm) the closed-loop performance and noise-tolerance
deteriorate.
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Figure 4.6: The ||um → e|| and ||n→ e||map for two controllers; the high frequency
gain sign is fixed

4.6 Summary and Conclusion

The performance of many controllers is determined by the size of specified signals.
The dependence of the 2-norm on the entire signal as well as its measurement of
energy both in time and frequency domains make it more commonly used, e.g. in
the H∞ framework, than the ∞-norm for measuring signals in control designs.

Miller [18, 17, 20] proposed a model reference adaptive control for time vary-
ing, minimum phase systems, which unlike most MRACs, is linear and periodic.
Rather than estimating parameters, the linear periodic time-varying controller di-
rectly estimates the control signal (what the control signal would be if the plant
parameters and states were known, and the ideal linear time-invariant compensator
was applied). The obtained results are in the ∞-norm.

In this chapter, we modified the controller [20] by adding an anti-aliasing filter
to the plant output measurement, and produced results which hold when using
the 2-norm to measure the signal size. Adding this filter resulted in increasing the
complexity and deteriorating the performance and noise tolerance of the closed-loop
system.



Chapter 5

The Redesigned LPC

5.1 Introduction

In the adaptive control technique of [20], discussed in Chapter 3 and extended
in Chapter 4, the adaptive controller operates periodically, first estimating the
ideal control signal using a probing signal, and then applying this (suitably scaled)
quantity. Carrying out estimation and control in series is different than that used in
classical adaptive control, where it is done in parallel. That, in itself, is not a major
concern, although doing estimation and control in parallel is more aesthetically
pleasing than in series. The real problem arises from the fact that the probing
signal is quite large and must be of short duration for the approach to work, which
is hard on the actuator. Since the goal is to estimate the ideal control signal and
this quantity does not change rapidly, it is reasonable to expect that consecutive
estimates are quite similar, so it would make more sense to estimate the difference
in the value of the ideal control signal between consecutive periods, for that should
be roughly proportional in size to the size of the period. While this idea is intuitively
reasonable, the details are involved and the proof is intricate. Since the probing is
now a second-order effect rather than a first-order effect as in [20], it has additional
advantage that we need not cancel out the effect of the probing, which reduces
the number of experiments (or probes) during a given period. Because of the fact
that the control signal is always close to the ideal control signal, we might expect
the required period T to be larger than in the similar design for the same level of
performance.

Remark 5.1: If the sole concern is an active actuator, an obvious solution would be
to put a low-pass-filter at the plant input, and proceed as before. Using the original
technique of [20], the input to the low-pass-filter would still be discontinuous and
rapidly moving, but the control signal would be continuous. Of course, the relative
degree of the augmented plant (the plant together with the low-pass-filter) would
increase by one, which would increase the size of the gains, and therefore decrease
the noise tolerance, which is a major drawback. If this is not a major concern then
this could be considered with the new idea of simultaneous estimation and control

65
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discussed above.

5.2 The Problem Formulation

In the following we adopt the same setup as in [20], which was discussed in Chapter
3. For completeness we collect relevant notation. We start with the linear time-
varying plant:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,
y(t) = C(t)x(t).

(5.1)

We will allow a good deal of model uncertainty: the set of possible models is
labelled P̄ ; roughly speaking, the set of models corresponding to a time-varying
counterpart of the classical set with a compactness requirement added. We adopt
the approach illustrated in Figure 5.1, which we borrow from Chapter 3. It includes
an anti-aliasing filter Fσ applied to um before it is sampled

˙̄um = −σūm + σum, ūm(t0) = ūm0 , (5.2)

a reference model Pm which embodies the desired closed loop behaviour with the
state-space representation:

˙̄xm = Amx̄m +Bmūm, x̄m(t0) = xm0 ,
ȳm = Cmx̄m,

(5.3)

and last, but most important, a sampled-data periodic controller, listed below:

z[k + 1] = F (k)z[k] +G(k)y(kh) +H(k)x̄m(kh) + J(k)ūm(kh), z[k0] = z0 ∈ Rl,
u(kh+ τ) = L(k)z[k] +M(k)y(kh), τ ∈ [0, h)

(5.4)

with z representing the state. The input-output map is labelled K and the gains
F , G, H, J , L and M are periodic of period p ∈ N; the period of the controller is
T := ph, and we associate this system with the 8-tuple (F,G,H, J, L,M, h, p). As
noted before, but worth emphasizing, observe that (5.4) can be implemented with a
sampler, a zero-order-hold, and an lth order periodically time-varying discrete-time
system of period p .

Following Chapter 3, we can characterize our time-varying plant by the vector
θ̄ which lies in the set

P̄(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0).

Each admissible θ̄ corresponds to a plant model of the form[
ẇ(t)
v̇(t)

]
=

[
A1(t) b1c2

b2c1(t) A2(t)

]
︸ ︷︷ ︸

=:A(t)

[
w(t)
v(t)

]
︸ ︷︷ ︸

=:x(t)

+ g(t)

[
0
b2

]
︸ ︷︷ ︸

=:B

u(t),

y(t) =
[

0 c2

]︸ ︷︷ ︸
=:C

[
w(t)
v(t)

]
;

(5.5)
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Figure 5.1: The feedback diagram. (Here P̄m(s) = (sI − Am)−1Bm.)

here the system parameters A1, A2, b1, b2, c1, c2 have rich structure (for details
see Chapter 3) and are implicitly functions of θ̄.

It is convenient at this point to combine the plant, the reference model and the
pre-filter together to form a generalized plant:

ẇ
v̇
x̄m
˙̄um

 =


A1(t) b1c2 0 0
b2c1(t) A2(t) 0 0

0 0 Am Bm

0 0 0 −σ


︸ ︷︷ ︸

=:Ā(t)


w
v

xm(t)
ūm(t)


︸ ︷︷ ︸

=:x̄

+ g(t)


0
b2

0
0


︸ ︷︷ ︸

=:B̄

u(t) +


0
0
0
σ


︸ ︷︷ ︸

=:Ē

um, x̄(t0) = x̄0, (5.6)

y =
[

0 c2 0 0
]︸ ︷︷ ︸

=: ¯̄C


w
v
x̄m
ūm

 (5.7)

ē =
[

0 −c2 Cm 0
]︸ ︷︷ ︸

=:C̄


w
v
x̄m
ūm

 ; (5.8)

here ē represents the difference between y and the reference model Pm driven by
the filtered reference model input ūm, and can be proven to be close to the actual
tracking error e (see equation (3.4) of Chapter 3). Hence, for each model in our
class of models P̄ , we have a well-defined generalized plant. Our control objective
will be to make the closed loop map from um 7−→ ē small while guaranteeing closed
loop stability.

To find our ’ideal control law’ we need to define several gains. Arguing as in
Chapter 3, we can choose k1 ∈ R1×nm , k2 ∈ R and f̄2 ∈ R1×nm (independent of
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θ̄ ∈ P̄) so that the ideal control law given by

u(t) =
1

g(t)

[
−c1(t) f̄2 − f2(t) k1 k2

]︸ ︷︷ ︸
=:K(t)

x̄(t) (5.9)

both stabilizes the system and yields a transfer function from ūm → ē to be exactly
zero, the time-varying components of the closed loop system have been removed).
Of course, to implement this control law requires knowledge of both the generalized
plant state x̄ and the plant parameters g(t), f2(t) and c1(t), none of which are
accessible. Hence, we require a sequence of approximations.

In the first approximation, we observe that g(t) takes values in a compact set
G not containing zero; indeed, there exists a constant ḡ > 0 so that G ⊂ [−ḡ,−g]∪
[g, ḡ]. From Proposition 3.2 of Chapter 3 we can approximate 1/g arbitrarily well
over G via a polynomial, i.e. for every ε > 0 there exist q ∈ N and ci ∈ R such
that the polynomial f̂ε(g) =

∑q
i=0 cig

i satisfies

|1− gf̂ε(g)| < ε, g ∈ G. (5.10)

Hence, the approximate ideal control law is

u(t) = f̂ε(g(t))K(t)x̄(t). (5.11)

As shown in [20] and Proposition 3.2 of Chapter 3, if ε is chosen small enough, then
the approximate ideal control law works almost as well as the ideal control
law.

With ε > 0 chosen to be small enough that the approximate ideal control
law is near optimal in a sense made precise in [20] and Chapter 3, clearly the
control law

f̂ε(g(kT ))K(kT )x̄(kT ), t ∈ [kT, (k + 1)T ),

should work almost as well as the approximate ideal control law. Since this cannot
be implemented either, we now turn to the control law implemented in [20] and
discussed in Chapter 3: with

φ̂i(kT ) := estimate of g(kT )iK(kT )x̄(kT ), i = 0, 1, · · · , q,

and ρ > 0, the control law is

u(t) =



0 t ∈ [kT, kT +mh),

ρφ̂i−1(kT ) t ∈ [kT + (2i− 1)mh, kT + 2imh),
i = 1, · · · , q

−ρφ̂i−1(kT ) t ∈ [kT + 2imh, kT + (2i+ 1)mh),
i = 1, · · · , q

p
p−(2q+1)m

∑q
i=0 ciφ̂i(kT ) t ∈ [kT + (2q + 1)mh, (k + 1)T ).

(5.12)
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Figure 5.2: A typical control signal over a period for the controller of [20].

Hence, the controller operates by first estimating g(kT )iK(kT )x̄(kT ) for i = 0, 1, · · · , q,
combining them to form f̂ε(g(kT ))K(kT )x̄(kT ), and then applying this suitably
scaled quantity. It turns out that the forming of the estimates φ̂i(kT ) can be car-
ried out linearly, resulting in a linear periodic controller, and the approach can be
proven to be as close to the optimal control law as desired by choosing ε and T
sufficiently small. This control methodology is illustrated in Figure 5.2.

As mentioned in the previous section, and clearly visible in Figure 5.2, the
estimation and control are done in series, and results in a control signal which
switches rapidly between different values. It is intuitively reasonable that

f̂ε(g(kT ))K(kT )x̄(kT )

should be quite close to

f̂ε(g(kT − T ))K(kT − T )x̄(kT − T ),

so it would clearly make sense to apply

f̂ε(g(kT − T ))K(kT − T )x̄(kT − T )

as the nominal control law during [kT, (k + 1)T ) and try to estimate

f̂ε(g(kT ))K(kT )x̄(kT )− f̂ε(g(kT − T ))K(kT − T )x̄(kT − T )

by suitable experiments, hopefully without disturbing the plant very much, from
which we can obtain an estimate of

f̂ε(g(kT ))K(kT )x̄(kT );

this idea is illustrated pictorially in Figure 5.3. While the approach is intuitively
reasonable, it requires a careful design and completely new proofs to show that it
works, which is the goal of this chapter. It turns out that as long as ε < 1, this
approach works: this is completely unexpected, but the mechanism at work will be
explained in the next section.
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Figure 5.3: A typical control signal over a period for the new controller.

5.3 Controller Construction

In this section we present the redesigned controller. We start with the high level
motivation of the approach. We then move on to the controller design for the first-
order case, followed by a reasonably straight-forward extension to the general case.
Next we present the formal controller definition, followed by a proof that it satisfies
our objective.

5.3.1 The High Level Analysis

In the LPC of [20], the term φ̂0(kT ) provides an estimate of K(kT )x̄ε(kT ) and
φ̂1(kT ) provides an estimate of g(kT )iK(kT )x̄ε(kT ); we use these estimations to
form a good estimate of the approximated ideal control law f̂ε(g(t))K(t)x̄(t):
constants ci, i = 0, 1, · · · , q, are chosen so that

f̂ε(g(kT ))K(kT )x̄ε(kT ) ≈
q∑
i=0

ciφ̂i(kT ).

Here the goal is to estimate the ideal control law rather than approximate
the ideal control law. As in [20], with ε > 0 we first choose a polynomial
f̂ε(g) =

∑q
i=0 cig

i so that

|1− gf̂ε(g)| < ε, g ∈ G,

although now we will not require ε to be small. Here the variable ûo(kT ) is used to
represent an estimate of the ideal control signal at time kT . We apply this control
signal on [kT, (k + 1)T ), and apply an additional probing signal to create a new
estimate ûo[(k + 1)T ] to be used during the following period. It turns out that if
we apply the same formula for φ̂i as in [20] then the presence of ûo(kT ) will affect
the estimates φ̂i(kT ): if all plant parameters are continuous on [kT, (k+ 1)T ) then

(i)
φ̂0(kT ) ≈ [K(kT )x̄(kT )− g(kT )ûo(kT )]
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rather than
φ̂0(kT ) ≈ K(kT )x̄ε(kT ),

and

(ii)

φ̂i(kT ) ≈ g(kT )iφ̂0(kT )

≈ g(kT )i [K(kT )x̄(kT )− g(kT )ûo(kT )]

rather than

φ̂i(kT ) ≈ g(kT )iφ̂0(kT )

≈ g(kT )iK(kT )x̄ε(kT ).

Notice that now 1
g(kT )

φ̂o(kT ) gives a good approximation to how much û0(kT )

differs from 1
g(kT )

K(kT )x̄(kT ), so it is natural to define

ûo[(k + 1)T ] = ûo(kT ) +

q∑
i=0

ciφ̂i(kT )

≈ ûo(kT ) +

q∑
i=0

cig(kT )iφ̂0(kT )

≈ ûo(kT ) + f̂ε(g(kT ))[K(kT )x̄(kT )− g(kT )ûo(kT )]

= [1− g(kT )f̂ε(g(kT ))]ûo(kT ) + f̂ε(g(kT ))K(kT )x̄(kT ).

(5.13)

Now

|1− gf̂ε(g)| ≤ ε, g ∈ G;

we impose the reasonable condition that ε < 1. If g, K, and x̄ are slowly moving,
it is clear that if T is small, then after some initial transients

ûo[(k + 1)T ] ≈ 1

g(kT )
K(kT )x̄(kT ),

which is quite close to the ideal value

1

g((k + 1)T )
K((k + 1)T ) x̄((k + 1)T ).

Hence, this mechanism should do a good job of estimating the ideal control law

1

g(t)
K(t)x̄(t)
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rather than a good job of estimating the approximate ideal control law

f̂ε(g(t))K(t)x̄ε(t).

While a small ε was required in [20] to ensure good performance, here all we need
is ε ∈ [0, 1); this is totally unexpected and an extremely desirable feature.

Remark 5.2: Because of Assumption 1, Chpater 3, page 21, on P̄, the set G is
compact and does not include zero.

(i) If every element of G has the same sign (all positive or all negative), then there
exist g, ḡ ∈ R satisfying

0 < g < ḡ or − ḡ < −g < 0,

G ⊂ [g, ḡ] or G ⊂ [−ḡ,−g].

If we set

f̂ε(g) =
1

2ḡ

if every element of G is positive and

f̂ε(g) =
−1

2ḡ

when every element of G is negative, then it is easy to confirm that

|1− gf̂ε(g)| ≤ 1−
g

2ḡ︸ ︷︷ ︸
=:ε

< 1, g ∈ G.

This means that we can use a zero-th order polynomial if we so desire, which
means that probing is not required at all!

(ii) Now suppose G contains both positive and negative values. Then there exist
g, ḡ ∈ R satisfying

0 < g < ḡ,

G ⊂ [−ḡ,−g] ∪ [g, ḡ].

If we set

f̂ε(g) =

(
1

2ḡ2

)
g,

then it is easy to confirm that

|1− gf̂ε(g)| ≤ 1− 1

2

(
g

ḡ

)2

︸ ︷︷ ︸
=:ε

< 1, g ∈ G.

This means that we can use a first-order polynomial in this case. Hence, in
this new design approach we only need to probe once!
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5.3.2 The First-Order Case (constant parameters)

Here we consider the simplest possible case, that of first-order with constant pa-
rameters borrowed from Chapter 3:

ẏ = ay + gu,

˙̄ym = amȳm + bmūm.

The error satisfies

( ˙̄ym − ẏ) = am(ȳm − y) + [bmūm − gu+ (am − a)y],

and ideally we would like to set

u(t) =
1

g

[
am − a 0 bm

]︸ ︷︷ ︸
=:K

 y
x̄m
ūm


︸ ︷︷ ︸

=:x̄

,

or its sampled-data approximation:

u(t) =
1

g
Kx̄(kT ), t ∈ [kT, (k + 1)T ).

We proceed as follows. We start with an estimate of the ideal control signal, which
we label ûo(0); the goal is to apply this estimate while at the same time probing
the system to obtain a good estimate at time t = T , namely ûo(T ). Motivated by
the last subsection, we would like to form an approximation of

q∑
i=0

ci g
i[bmūm(0) + (am − a)y(0)− gûo(0)]︸ ︷︷ ︸

:=φi(0)

.

Suppose we initially set
ū(t) = ûo(0), t ∈ [0, h).

Since a and g are constrained to compact sets, it follows that

y(h) = eahy(0) + g

∫ h

0

eaτ ûo(0)dτ

= [1 + ah+O(h2)]y(0) + [gh+O(h2)]ûo(0).

Hence

1

h
[y(h)− y(0)] = ay(0) + gûo(0) +O(h)y(0) +O(h)ûo(0).

Thus, at this point we have a good estimate of ay(0) + gûo(0), with the quality of
the estimate improving as h→ 0. Hence, we can form an accurate estimate of

φ0(0) := bmūm(0) + (am − a)y(0)− gûo(0),
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namely

φ̂0(0) := bmūm(0) + amy(0)− 1

h
[y(h)− y(0)]

= bmūm(0) + (am − a)y(0)− gûo(0) +O(h)y(0) +O(h)ûo(0)

= φ0(0) +O(h)y(0) +O(h)ûo(0).

To form estimates of φi(0) = giφ0(0), we will carry out some experiments. With
ρ > 0 a scaling factor (we make this factor small so that it does not disturb the
system very much), set

u(t) = ρφ̂0(0) + ûo(T ), t ∈ [h, 2h).

Then

y(2h) = e2ahy(0) + g

∫ h

0

ea(2h−τ)ûo(0)dτ + g

∫ 2h

h

ea(2h−τ)[ρφ̂0(0) + ûo(0)]dτ

= [1 + 2ah+O(h2)]y(0) + [2gh+O(h2)]ûo(0) + [gh+O(h2)]ρφ̂0(0)

= [1 + 2ah]y(0) + 2ghûo(0) + ρghφ̂0(0) +O(h2)y(0) +O(h2)ûo(0) +

O(h2)ūm(0).

Hence, define

φ̂1(T ) :=
1

ρh
[y(2h)− 2y(h) + y(0)]

= gφ0(0) +O(h)y(0) +O(h)ûo(0) +O(h)ūm(0)

= φ1(0) +O(h)y(0) +O(h)ûo(0) +O(h)ūm(0).

Of course, in completing this experiment, we have excited the state. This can be
largely undone by applying

u(t) = −ρφ̂0(0) + ûo(0), t ∈ [2h, 3h);

however, to save time we may as well do two steps at once by (almost) cancelling
out the effect of this experiment at the same time as we do a new experiment: set

u(t) = ρφ̂1(0)− ρφ̂0(0) + ûo(0), t ∈ [2h, 3h).

This results in

y(3h) = e3ahy(0) + g

∫ h

0

ea(3h−τ)ûo(0)dτ + g

∫ 2h

h

ea(3h−τ)[ρφ̂0(0) + ûo(0)]dτ +

g

∫ 3h

2h

ea(3h−τ)[ρφ̂1(0)− ρφ̂0(0) + ûo(0)]dτ

= [1 + 3ah+O(h2)]y(0) + [3gh+O(h2)]ûo(0) + [gh+O(h2)]ρφ̂1(0) +

O(h2)φ̂0(0)

= [1 + 3ah]y(0) + 3ghûo(0) + ρghφ̂1(0) +O(h2)y(0) +O(h2)ûo(0) +

O(h2)ūm(0),
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which means that

1

ρh
[y(3h)− y(2h)− y(h) + y(0)] = gφ1(0)− gφ̂0(0) +

O(h)y(0) +O(h)ûo(0) +O(h)ūm(0).

Using the fact that φ̂1(0) ≈ gφ̂0(0), a good estimate of φ2(0) is

φ̂2(0) =
1

ρh
[y(3h)− y(2h)− y(h) + y(0)] + φ̂1(0)

= gφ1(0)− gφ̂0(0) + φ̂1(0) +O(h)y(0) +O(h)ûo(0) +O(h)ūm(0)

= φ2(0) +O(h)y(0) +O(h)ûo(0) +O(h)ūm(0).

This can be repeated q − 2 more times. At t = (q + 1)h, we have estimates of
φ0(0), · · · , φq(0); the last step is to approximately cancel out the effect of the last
probe:

u(t) = −ρφ̂q−1(0) + ûo(0), t ∈ [(q + 1)h, (q + 2)h).

So we set T := (q + 2)h, update the estimate of the optimal control signal:

ûo(T ) := ûo(0) +

q∑
i=0

ciφ̂0(0),

and repeat the procedure.

Remark 5.3: Now we carry out estimation and control simultaneously. This is both
intuitively appealing as well as more efficient. We shall soon see via a simulation
study that this also has better performance for a sampling period h.

5.3.3 The General Case

Now we will show how this approach works for the general nth order case with
time-varying parameters. Since the key ideas are the same and only the details are
different, we only summarize the approach. We do so on the interval [kT, (k+1)T ).

We start with an estimate of uo(kT ), which we denote by ûo(kT ). If we set

u(t) = ûo(kT ), t ∈ [kT, kT +mh),

and consider the definition of K(t) in (5.9), it follows from KEL-3 that we should
define

φ̂0(kT ) :=
[
f̄2 −1

]
Hm(h)−1S−1

m Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
≈ K(kT )x̄(kT )− g(kT )ûo(kT ).
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By choosing a scaling factor ρ > 0, we set

u(t) = ρ× estimate of [K(kT )x̄(kT )− g(kT )ûo(kT )] + ûo(kT )

= ρφ̂0(kT ) + ûo(kT ), t ∈ [kT +mh, kT + 2mh);

it follows that we should define

φ̂1(kT ) =
1

ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT +mh)− Y(kT )]

≈ g(kT )[K(kT )x̄(kT )− g(kT )ûo(kT )]

≈ g(kT )φ̂0(kT ).

In the next stage in order to achieve a close estimate of φ2(kT ) = g(kT )φ1(kT ), we
apply ρφ̂1(kT ) as the probing signal and at the same time cancel out the effect of
φ̂0(kT ) by setting

u(t) = ρφ̂1(kT )− ρφ̂0(kT ) + ûo(kT ), t ∈ [kT +mh, kT + 2mh).

This results in

1

ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT + 2mh)− Y(kT )]

≈ g(kT )[φ̂1(kT )− φ̂0(kT )]

≈ g(kT )φ̂1(kT )− φ̂1(kT ),

which means that we should define

φ̂2(kT ) :=
1

ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT + 2mh)− Y(kT )] + φ̂1(kT )

≈ g(kT )φ̂1(kT ).

If we repeat this procedure then we can obtain a good estimate of φi(kT ), i =
3, 4, · · · , q, which we can use to update our estimate of the optimal control signal:

ûo[(k + 1)T ] = ûo(kT ) +

q∑
i=0

ciφ̂i(kT )

≈ ûo(kT ) +

q∑
i=0

cig(kT )i[K(kT )x̄(kT )− g(kT )ûo(kT )]

= [1− f̂ε(g(kT ))g(kT )]ûo(kT ) + f̂ε(g(kT ))K(kT )x̄(kT );

here, we set

T :=

{
mh if q = 0,
(q + 2)mh else.

If ε < 1, we would expect ûo(kT ) to converge to a good estimate of K(kT )x̄(kT ),
assuming that T is small enough. Of course, the above high level analysis assumes
that there are no discontinuities in the plant parameters; if the sampling period
is small enough, then any discontinuity will be infrequent and we will be able to
prove that the controller still works.
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THE PROPOSED CONTROLLER (t0 = 0)

For k ∈ Z+:

φ̂i(kT ) =



[
f̄2 −1

]
Hm(h)−1S−1

m Ym(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
, if i = 0,

1
ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m

[
Ym(kT +mh)− Ym(kT )

]
,

if i = 1,

1
ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m

[
Ym(kT + imh)− Ym(kT )

]
+

φ̂i−1(kT ), if i = 2, · · · , q,

(5.14)

If q = 0 then

u(t) = ûo(kT ), t ∈ [kT, kT +mh) = [kT, (k + 1)T ),

and if q > 0

u(t) =



ûo(kT ) t ∈ [kT, kT +mh),

ρφ̂0(kT ) + ûo(kT ) t ∈ [kT +mh, kT + 2mh), i = 1

ρφ̂i−1(kT )− ρφ̂i−2(kT ) + ûo(kT ) t ∈ [kT + imh, kT + (i+ 1)mh),
i = 2, · · · , q,

−ρφ̂q−1(kT ) + ûo(kT ) t ∈ [kT + (q + 1)mh,
kT + (q + 2)mh).

(5.15)

ûo[(k + 1)T ] = ûo(kT ) +

q∑
i=0

ciφ̂i(kT ), t ∈ [kT + (p− 1)h, (k + 1)T ). (5.16)

At this stage, the goal is to prove that the state of the system can be made as close
as desired to the approximate ideal control law. We first examine a single period.
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Lemma 5.1 (Key Control Lemma (KCL-5)): There exist constants γ > 0

and T > 0 so that for all k ∈ Z+, T ∈ (0, T ), and θ̄ ∈ P̄, the solution of (5.6)-

(5.8) with u given by (5.14)-(5.16) has the following properties:

(i) In all cases ∥∥∥∥x̄(t)− Φcl(t, kT )x̄(kT )−
∫ t

kT

Φcl(t, τ)Ēum(τ)dτ

∥∥∥∥
≤ γT (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),

‖u(t)‖ ≤ γ(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), t ∈ [kT, (k + 1)T ),

‖ûo[(k + 1)T ]‖ ≤ γ(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),

(ii) If θ̄(t) is absolutely continuous on [kT, (k + 1)T ], then

|ûo[(k + 1)T ]− [1− f̂ε(g(kT ))g(kT )]ûo(kT )− f̂ε(g(kT ))K(kT )x̄(kT )|

≤ γT (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),

‖x̄((k + 1)T )− Φcl((k + 1)T, kT )x̄(kT )−
∫ (k+1)T

kT

Φcl((k + 1)T, τ)Ēum(τ)dτ −∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄[g(kT )u(kT )−K(kT )x̄(kT )]dτ ||

≤ γT 2(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞).

Proof: See the Appendix B.

Now by the following proposition, it is proven that the proposed controller (5.14)-
(5.16) acts like the ideal control law (5.9) for all time. To be precise, we let ûo denote
the estimate of the ideal control signal at time kT , ˆ̄x denote the state, ˆ̄e denote the
error, and ŷ denote the plant output when (5.14)-(5.16) is applied. Recall that we
use x̄, ē and y to denote the corresponding signals when ideal control law (5.9) is
applied.
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Proposition 5.1: There exist constants T̄ > 0, λ < 0 and γ > 0 so that for

every θ̄ ∈ P̄, um ∈ PC∞, and T ∈ (0, T̄ ), we have

‖x̄(t)− ˆ̄x(t)‖ ≤ γT
1
2 eλt(‖x̄0‖+ |ûo0|) + γT

1
2‖um‖∞, t ≥ 0,

|ûo(kT )| ≤ γeλkT (‖x̄0‖+ |ûo0|) + γ‖um‖∞, k ≥ 0.

Proof: See the Appendix B.

In the next lemma, the controller structure and stability are discussed.

Lemma 5.2: The control law (5.14)-(5.16) has a representation of the form

(5.4) given by (F,G,H, J, L,M, h, p) with F periodic with period p and F and z

partitioned as

F (jp+ i) =

[
F11(jp+ i) F12(jp+ i)
F21(jp+ i) F22(jp+ i)

]
, z[jp+ i] =

[
z1[jp+ i]
z2[jp+ i]

]
,

j ∈ Z+, i ∈ {0, · · · , p− 1},

with the following properties:

(i) F22(jp+ i) = 1, j ∈ Z+, i ∈ {0, · · · , p− 1}.

(ii) The second state is associated with ûo in the following sense:

z2[jp+ i] =

{
ûo(jT ), i ∈ {0, · · · , p− 2},
ûo[(j + 1)T ], i = p− 1,

j ∈ Z+.

(iii) The first sub-system is deadbeat in the following sense:

F11(p− 1)F11(p− 2) · · ·F11(0) = 0.

Proof: See the Appendix B.

Now we need to prove that the new controller provides both stability and close
tracking for all admissible models.
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Theorem 5.1: For every δ > 0 and λ ∈ (max{λ0, λm}, 0) there exists a controller

of the form (5.2), (5.3), and (5.4) with the following properties:

(i) the controller exponentially stabilizes P̄, and

(ii) for every θ̄ ∈ P̄, x̄0 ∈ Rn+nm+1, and um ∈ PC∞, when t0 = k0 = 0 the

closed-loop system satisfies

|ŷ(t)− ym(t)− C̄Φcl(t, 0)x̄(0)| ≤ δeλt(‖x̄0‖+ |ûo0|) + δ‖um‖∞, t ≥ 0.

Proof:
First suppose that t0 = k0 = 0. We start with the bound on the transients. To

proceed, following the derivation of equation (3.4) of Chapter 3, Section 3.2, first
we choose σ > ||Am|| sufficiently large that

||Bm|| × ||Cm||
σ − ||Am||

[γm + 1] +
||Bm|| × ||Cm||
σ − ||Am||

[γm
||Am||
|λm|

+ 1] ≤ δ/2,

it follows from (3.4) that

|ȳm(t)− ym(t)| ≤ (δ/2) (eλmt||x̄0||+ ||um||∞) t ≥ 0. (5.17)

Recall that x̄ and y are the closed-loop system state and output respectively when
the ideal control law (5.9) is applied, so there exist λ1 < 0 and γ1 > 0 so that

‖x̄(t)‖ ≤ γ1e
λ1t‖x̄0‖+ γ1‖um‖∞,

‖y(t)‖ ≤ γ1e
λ1t‖x̄0‖+ γ1‖um‖∞, t ≥ 0. (5.18)

From Proposition 5.1 there exist T̄ > 0, λ2 < 0, and γ2 > 0 so that for every
θ̄ ∈ P̄ and T ∈ (0, T̄ ) we have

‖ˆ̄x(t)− x̄(t)‖ ≤ γ2T
1
2 eλ2t(‖x̄0‖+ |ûo0|) + γ2T

1
2‖um‖∞, t ≥ 0,

|ûo(kT )| ≤ γ2e
λ2kT (‖x̄0‖+ |ûo0|) + γ2‖um‖∞, k ≥ 0.

(5.19)

Choose T ∈ (0, T̄ ) so that

γ2T
1
2 || ¯̄C|| < δ/2;

then it follows that

|ŷ(t)− y(t)| ≤ (δ/2)[eλ1t(‖x̄0‖+ |ûo0|) + ‖um‖∞], t ≥ 0.

With λ := max{λ1, λ2, λm}, if we combine this with (5.17) and use the fact that
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the map ūm → ē is zero, i.e. ē(t)− C̄Φcl(t, 0)x̄(0) = 0, we have

|ŷ(t) − ym(t)− C̄Φcl(t, 0)x̄(0)| ≤ |ŷ(t)− y(t) + y(t)− ȳm(t) +

ȳm(t)− ym(t)− C̄Φcl(t, 0)x̄(0)|
≤ |ŷ(t)− y(t)|+ | y(t)− ȳm(t)− C̄Φcl(t, 0)x̄(0)︸ ︷︷ ︸

=0

|+ |ȳm(t)− ym(t)|

≤ (δ/2)[eλ2t(‖x̄0‖+ |ûo0|) + ‖um‖∞)] + (δ/2)(eλmt‖x̄0‖+ ‖um‖∞)

≤ δ[eλt(‖x̄0‖+ |ûo0|) + ‖um‖∞], t ≥ 0.

Hence, the controller given by (5.14)-(5.16) (with a representation of the form (5.4))
together with (5.2) and (5.3) guarantees property (ii).

It remains to prove that this controller provides exponentially stability. Thus,
first suppose that t0 = k0 = 0 and that um = 0. From (5.18) and (5.19) we see that

‖ˆ̄x(t)‖ ≤ (γ1 + δ/2)︸ ︷︷ ︸
=:γ3

eλt(‖x̄0‖+ |ûo0|), t ≥ 0. (5.20)

Now let us look at the controller states. Recall that Lemma 5.2 states that with
the controller states z partitioned as

z =

[
z1

z2

]
we have

|z2[jp+ i]| ≤ max{|ûo(jT )|, |ûo[(j + 1)T ]|}, j ∈ Z+, i ∈ {0, · · · , p− 1},

and the first subsystem is deadbeat, so there exists a constant γ4 > 0 so that

||z1[jp+ i]|| ≤ γ4

(
max{||ˆ̄x((jp+ i− l)h)|| : 0 ≤ i− l ≤ p− 1}+

max{|ûo(jT )|, |ûo[(j + 1)T ]|}) , j ∈ Z+, i ∈ {0, · · · , p− 1}.

If we use the obtained bound (5.19) for ûo(jT ), and then (5.20) to get a bound on
max{||ˆ̄x(jp+ i− l)|| : 0 ≤ i− l ≤ p− 1, j ∈ Z+, i ∈ {0, · · · , p− 1}, we have

||z1[jp+ i]|| ≤ γ3γ4e
λ(jp+i−l)h(‖x̄0‖+ |ûo0|) + γ2γ3e

λjT (‖x̄0‖+ |ûo0|)
≤ (γ3γ4e

−λpT̄ + γ2γ3e
−λpT̄ )︸ ︷︷ ︸

=:γ4

eλ(jp+i)h(‖x̄0‖+ |ûo0|),

j ∈ Z+, i ∈ {0, · · · , p− 1}.

Thus,

||z[jp+ i]|| ≤ ||z1[jp+ i]||+ ||z2[jp+ i]||
≤ (γ4 + γ2e

−λT̄ )︸ ︷︷ ︸
=:γ5

eλ(jp+i)h(‖x̄0‖+ |ûo0|),

j ∈ Z+, i ∈ {0, · · · , p− 1}.
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Setting k = jp+ i yields

||z[k]|| ≤ γ5e
λkh(‖x̄0‖+ |ûo0|), k ∈ Z+.

Hence, with

xsd(t) :=

[
ˆ̄x(t)
z[k]

]
, t ∈ [kh, (k + 1)h),

so it follows that

‖xsd(t)‖ ≤ (γ3 + γ5e
−λT̄ )︸ ︷︷ ︸

=:γ6

eλt‖xsd(0)‖, t ≥ 0.

Now we turn to the case when t0 = k0h > 0 and um(t) = 0 for t ≥ 0. Since
the controller (5.4) is periodic of period T , it follows that if our starting time is an
integer of multiple of T , i.e. of the form t0 = jT , then from above

‖xsd(t)‖ ≤ γ6e
λ(t−t0)‖xsd(t0)‖, t ≥ t0.

Since the plant and controller parameters are uniformly bounded, it is straight-
forward to prove that nothing un-toward happens if we start between periods:
there exists a constant γ7 ≥ γ6 so that for every k0 ≥ 0, with t0 := k0h we have

‖xsd(t)‖ ≤ γ7e
λ(t−t0)‖xsd(t0)‖, t ≥ t0,

i.e. we have exponential stability.

�

5.4 Examples

In this section several examples with relative degree one and one with relative
degree two are presented. In all cases, we compare the new controller to that of
[20].

5.4.1 Example 1

The plant model is first order:

ẏ(t) = a(t)y(t) + b(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g ∈ [0.5, 1.5]},

P = P(Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).
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The reference model is
˙̄xm = −x̄m + ūm,

while reference model anti-aliasing filter is chosen to be

˙̄um = −50ūm + 50um.

For the LPC of [20], we approximate the polynomial 1
g
, as in [20]:

f̂0.01(g) = 2.1647− 1.5153g + 0.3433g2,

so q = 2, and we choose p = 10 > 2m(2q + 1) = 10, i.e. the Control Phase is 50%
of the controller period. For the new approach, since every element of the compact
set G := [0.5, 1.5] is positive, we can apply Remark 5.2 and set f̂ε(g) = 1

3
and p = 1.

In both controllers, we set ρ = 1, and h = 0.01, so in the LPC [20] T = 0.1 and in
the redesigned LPC, T = 0.01. Figure 5.4 shows the simulation results with y0 = 3,
ūm0 = 0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
a(t) = cos(t/2) and g(t) = [1 + 0.5sin(t/4)];

we add a noise signal of the form
h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 66 sec. In Figure 5.5 we provide a
close-up of the control signal during the time interval t ∈ [0, 0.4] sec. As shown in
Figures 5.4 and 5.5, the redesigned LPC has significantly better noise rejection and
performance and a smoother control signal.
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Figure 5.4: The plant output and control signal with a and g varying with time

Figure 5.5: A close-up of the control signal
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5.4.2 Example 2

The plant model is first order:

ẏ(t) = a(t)y(t) + b(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g2 ∈ [1, 1.4]},

P = P(n = 1, m = 1, Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

The reference model is
˙̄xm = −x̄m + ūm,

and the anti-aliasing filter is

˙̄um = −50ūm + 50um.

For the LPC of [20], we approximate the polynomial 1
g
, as in [20]:

f̂0.01(g) = 2.1647g − 1.5153g3 + 0.3433g5,

so q = 5, and we choose p = 25 > 2m(2q + 1) = 22, i.e. the Control Phase
is 56% of the controller period. For the new approach, since the compact set
G := [−1.4,−1] ∪ [1, 1.4] contains both positive and negative values, we can apply
Remark 5.2 and set f̂ε(g) = 1

2.8
g and p = 3. In both controllers, we set ρ = 1, and

h = 0.01, so in the LPC [20] T = 0.25 and in the redesigned LPC, T = 0.03.
Figure 5.6 shows the simulation results with y0 = 3, ūm0 = 0, um a square wave

given by

um = sign(cos(
2πt

15
)),

and
a(t) = cos(t/2) and g(t) = [1.2 + 0.2cos(t/2)] ∗ sign[cos(t/4)];

we add a noise signal of the form
h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 66 sec. As shown in Figure 5.6,
the redesigned LPC has better noise rejection and performance. In Figure 5.7 we
provide a close-up of the control signal during the time interval t ∈ [0, 1] sec.
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Figure 5.6: The plant output and control signal with a and g varying with time

Figure 5.7: A close-up of the control signal
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5.4.3 Example 3

In this example a minimum phase relative degree two model of a DC motor is
considered [17]:

ẋ =

[
0 1
0 β1(t)

]
︸ ︷︷ ︸

=:A(t)

x+

[
0
g(t)

]
︸ ︷︷ ︸

=:B(t)

u,

y =
[

1 0
]︸ ︷︷ ︸

=:C

x.

The set of plant uncertainty is given by

Γ̄ = {

 β0

β1

g

 ∈ R3 : β0 = 0, β1 ∈ [−5,−1], g ∈ [1, 2]},

P̄ = P̄(n = 2,m = 2, Γ̄, µ̄1 = 1, T̄0 = 10, γ0 = 1, λ0 = −5}.
The reference model is relative degree two with the state space representation:

ẋm =

[
0 1
−1 −2

]
xm +

[
0
1

]
um,

ym =
[

1 0
]
xm.

The anti-aliasing filter is chosen as

˙̄um = −50ūm + 50um.

For the LPC of [20], we approximate the polynomial 1
g
, as in [20]:

f̂0.01(g) = 2.1647− 1.5153g + 0.3433g2,

so q = 2, and we choose p = 25 > 2m(2q + 1) = 20, i.e. the Control Phase is 60%
of the controller period. For the redesigned LPC, since the compact set G := [1, 2]
contains only positive values, we can apply Remark 5.2 and set f̂ε(g) = 1

4
and

p = m = 2. In both controllers, we set ρ = 1, and h = 0.01, so in the LPC [20]
T = 0.25 and in the redesigned LPC, T = 0.02.

A simulation was carried out (see Figure 5.8 with x0 = [1 1]T , ym0 = ūm0 = 0,
um a square wave given by

um = sign(cos(
2πt

15
)),

and
β1(t) = −3 + 2 ∗ cos(t/2) and g(t) = 1.5 + 0.5 ∗ sin(t/4).

We add a noise signal of the form
h2 * random sequence uniformly distributed between ±1

to the output measurement at the time t = 66 sec; we see that it degrades the
tracking slightly. In Figure 5.9 we provide a close-up of the control signal during
the time interval t ∈ [0, 1] sec. As Figures 5.8 and 5.9 illustrate, the redesigned LPC
has much better noise tolerance and performance and a smoother control signal.
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Figure 5.8: The plant output and control signal with β1 and g varying with time

Figure 5.9: A close-up of the control signal
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5.4.4 Example 4: Large Range of Parameter Variation and
Noise Size

In the next three simulations, we show that the redesigned LPC handles large
parameter variation and in the case that every element of G has the same sign (all
positive or all negative) this controller is remarkably noise tolerant.

(a) Relative Degree One and the High Gain Frequency Sign is Fixed: In
the first simulation we adopt the setup of Example 1 of this chapter but with
larger parameter variation. The plant model is first order:

ẏ(t) = a(t)y(t) + g(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−15, 15], g ∈ [−37,−1]},

P = P(Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

The reference model is
˙̄xm = −x̄m + ūm,

and the anti-aliasing filter is

˙̄um = −50ūm + 50um.

Since every element of the compact set G := [−37,−1] is negative, we apply
Remark 5.2 and set f̂ε(g) = −1

100
and p = 1. We also set ρ = 1, and h = 0.0004,

so T = 0.0004.

Figure 5.10 shows the simulation results and plant parameters with y0 = 3,
ūm0 = 0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
a(t) = 15 cos(t/2) and g(t) = [−19− 18sin(t/4)];

we add a noise signal of the form

100h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 20 sec. As Figure 5.10 shows,
although the size of noise is large (a hundred times of the sampling time), the
plant output has not been disturbed largely. This illustrates the significant
noise tolerance of the redesigned LPC in the case that the high frequency gain
does not change sign.
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Figure 5.10: Example 4, part (a) with a relative degree one plant, large plant
parameter variation and noise size, and the fixed high frequency gain sign

(b) Relative Degree Two and the High Gain Frequency Sign is Fixed: In
the second simulation we adopt the setup of Example 3 of this chapter but
with larger parameter variation. In this simulation a minimum phase relative
degree two model of a DC motor is considered [17]:

ẋ =

[
0 1
0 β1(t)

]
︸ ︷︷ ︸

=:A(t)

x+

[
0
g(t)

]
︸ ︷︷ ︸

=:B(t)

u,

y =
[

1 0
]︸ ︷︷ ︸

=:C

x.

The set of plant uncertainty is given by

Γ̄ = {

 β0

β1

g

 ∈ R3 : β0 = 0, β1 ∈ [−9, 1], g ∈ [0.5, 11.5]},

P̄ = P̄(n = 2,m = 2, Γ̄, µ̄1 = 1, T̄0 = 10, γ0 = 1, λ0 = −5}.
The reference model is relative degree two with the state space representation:

ẋm =

[
0 1
−1 −2

]
xm +

[
0
1

]
um,

ym =
[

1 0
]
xm.
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Figure 5.11: Example 4, part (b) with a relative degree two plant, large plant
parameter variation and noise size, and the fixed high frequency gain sign

The anti-aliasing filter is chosen as

˙̄um = −50ūm + 50um.

Since the compact set G := [0.5, 11.5] contains only positive values, we apply
Remark 5.2 and set f̂ε(g) = 1

12
and p = m = 2. We also set ρ = 1, and

h = 0.001, so T = 0.002.

A simulation was carried out (see Figure 5.11 with x0 = [1 1]T , ym0 = ūm0 =
0, um a square wave given by

um = sign(cos(
2πt

15
)),

and
β1(t) = −4 + 5 ∗ cos(t/2) and g(t) = 6 + 5.5 ∗ sin(t/4).

We add a noise signal of the form

5h2 * random sequence uniformly distributed between ±1

to the output measurement at the time t = 20 sec. As Figure 5.11 shows,
with large noise size, the plant output has not been disturbed largely.

(c) Relative Degree One and the High Gain Frequency Sign is Varying:
In this simulation we adopt the setup of Example 2 of this chapter but with
larger parameter variation. The plant model is first order:

ẏ(t) = a(t)y(t) + b(t)u(t).
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The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−3, 3], g2 ∈ [1, 16]},

P = P(Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

The reference model is
˙̄xm = −x̄m + ūm,

and the anti-aliasing filter is

˙̄um = −50ūm + 50um.

Since the compact set G := [−4,−1]∪[1, 4] includes both positive and negative
values, we apply Remark 5.2, page 69, and set f̂ε(g) = g

20
and p = 3. We also

set ρ = 1, and h = 0.0004, so T = 0.0012.

Figure 5.12 shows the simulation results and plant parameters with y0 = 3,
ūm0 = 0, um square a wave given by

um = sign(cos(
2πt

15
)),

and

a(t) = 3 cos(t/2) and g(t) = [2.5 + 1.5 cos(t/2)] ∗ sign[cos(t/4)].

We add a noise signal of the form

h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 20 sec. As Figure 5.12 shows, the
controller handles large parameter variation.

As shown in Figures 5.10, 5.11, and 5.12 the redesigned LPC remarkably handles
a large range of plant parameter variation. Also Figures 5.10 and 5.11 illustrate
that in the case that the high frequency gain sign is fixed, the redesigned LPC is
significantly noise tolerant.
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Figure 5.12: Example 4, part (c) with a relative degree one plant, large plant
parameter variation, and high frequency gain sign changing

5.4.5 Example 5: Performance and Noise Behaviour

In this example we analyze the performance and the noise behaviour of the closed-
loop system. We compute the L∞ induced norm when the plant parameters are
fixed and investigate how the performance and the noise behaviour of the sampled-
data system depends on the sampling period. The first computation of the L∞
induced norm of the LPC [20] was carried out by Xiaosong [43]. The tool that is
used is the lifting technique (see Chen and Francis [3] which establishes a strong
correspondence between periodic systems and time invariant infinite-dimensional
systems.

We consider two cases: (i) the high frequency gain sign is fixed and (ii) the high
frequency g can obtain both positive and negative values. We inject noise n at the
plant output; we let Tum denote the map from um −→ e and Tn denote the map
from n −→ e.

(a) The high frequency gain sign is fixed: We adopt one admissible plant model
of the set of plant uncertainty of Example 1 of this chapter as

ẏ(t) = y(t) + u(t).

In the LPC [20], for approximating the polynomial 1
g
, we use the estimation

polynomial
f̂(g) = 2.1647− 1.5153g + 0.3433g2.
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For the redesigned LPC, the estimation polynomial f̂ε(g) = 1
3

is used. With
the controller designed as above but with h free, in Figure 5.13, we plot ||Tum||
and ||Tn|| as a function of h. As expected, for both controllers, the former goes
to zero as h −→ 0, with that of the new controller goes to zero much faster;
indeed, the gain of ||Tn|| for the redesigned LPC converges to a constant as
h −→ 0, while that for the LPC [20] blows up. This demonstrates that the
noise behaviour is significantly improved.

Figure 5.13: The ||um → e|| and ||n → e|| map for two controllers; the high
frequency gain sign is fixed
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(b) The high frequency gain can obtain positive and negative values: We
adopt one admissible plant model of the set of plant uncertainty of Example
2 as

ẏ(t) = y(t) + u(t).

In the LPC [20], for approximating the polynomial 1
g
, we use the estimation

polynomial
f̂(g) = 2.1647g − 1.5153g3 + 0.3433g5.

For the redesigned LPC, the estimation polynomial f̂ε(g) = g
2.8

is used. With
the controller designed as above but with h free, in Figure 5.14, we plot
||Tum|| and ||Tn|| as a function of h. As expected, for both controllers, while
the former goes to zero, the latter goes to infinity as h −→ 0. As the figure
shows the redesigned LPC remarkably improves both noise behaviour and
performance.

Figure 5.14: The ||um → e|| and ||n → e|| map for two controllers; the high
frequency gain can obtain positive and negative values
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5.4.6 Example 6: Effect of c0

In the next simulation, the stability analysis of the redesigned LPC with respect to
c0 is carried out. We consider the case when the high frequency gain g is known,
since in the next chapter we deal with this case and small values of c0. We inject
noise n at the plant output; we let Tum denote the map from um −→ e and Tn
denote the map from n −→ e.

We adopt one admissible plant model of the set of plant uncertainty of Example
1 of this chapter as

ẏ(t) = y(t) + u(t).

For the redesigned LPC, the estimation polynomial f̂ε(g) = c0 is used. With
the controller designed as above but with h free, in Figure 5.15, we plot ||Tum|| and
||Tn|| as a function of h. As this figure shows, small values of c0 result in instability
of the closed-loop system in smaller sampling times. This result matches (5.13),
since small values of c0 make the term

1− g(kT )f̂ε(g(kT ))

closer to the critical value one and consequently instability margin. In Chapter 6,
we will show that with c0 small (which demands small sampling time) and some
other conditions, the redesigned LPC provides stability for plants with lower relative
degree.

Figure 5.15: The ||um → e|| and ||n→ e|| map for the redesigned LPC and different
values of c0; the high frequency gain is positive
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5.5 Summary and Concluding Remarks

In [20] Miller presented a new adaptive control technique. This method was dis-
cussed in Chapter 3 and extended in Chapter 4. This adaptive control technique
has a number of significant desirable features:

• it handles rapid changes in the plant parameters,

• it provides nice transient behaviour of the closed-loop system,

• it guarantees that the effect of the initial conditions declines to zero exponen-
tially, and

• it generates control signals which are modest in size.

Having these advatages, we look at its drawbacks:

• during each controller period the control signal takes different values; since
the controller period is small, this requires fast actuators,

• in order to achieve the desired tracking, a small sampling period is used
which results in large controller gains; this may lead the system to poor noise
tolerance; in fact, there is a trade-off between the desired tracking and noise
tolerance, and

• the plant relative degree must be known.

In the LPC [20], the control signal moves vigorously, in particular during the
Estimation Phase, when probing takes place; the control signal jumps rapidly from
one value to another. Here the controller is redesigned to reduce the size and
number of the jumps. The approach is as follows. In the signal control law [20],
the controller is periodic with each period consisting of two phases: in Estimation
Phase the ideal control law is estimated, while in Control Phase a naturally scaled
version of this estimate is applied. In the redesigned controller, we estimate the
change in the ideal control signal law between periods, which reduces the size of
the probing during the Estimation Phase. We also carry out the probing more
efficiently, to reduce the number of jumps in the control signal as well. While
proving this approach required a good deal of effort, the results were good: the
control signal is smoother, the performance and noise tolerance are considerably
better (for a given period). While in this chapter the LPC was redesigned to
improve the first two drawbacks, the next chapter is devoted to modifying the LPC
to relax the last undesirable feature.



Chapter 6

Analyzing the Relative Degree

6.1 Introduction

Knowledge of the plant relative degree is typically assumed in model reference
adaptive control. While in early works, knowledge of the exact relative degree
was required, later attempts [38] relaxed this requirement and showed that an
upper bound of the plant relative degree is sufficient. Unfortunately, the LPC [20]
demands knowledge of the exact plant relative degree. In this chapter, we deal with
this requirement in the context of the redesigned LPC introduced in Chapter 5. The
goal is to analyze and possibly redesign the redesigned LPC to relax this demand;
instead of the exact relative degree, only an upper bound is required, at least in an
important special case. More specifically, we will show that the redesigned LPC,
developed for relative degree l ≥ 1, provides stability for plants with lower relative
degree, i.e. an upper bound of the (instead of the exact) plant relative degree is
sufficient, if

(i) the plant high frequency gain is known and always has the same sign,

(ii) to approximate the term 1
g
, we use the constant approximation polynomial

f̂ε(g) = c0 6= 0, and c0 has the same sign of the high frequency gain and |c0|
is very small, (which requires small sampling time).

(iii) the controller parameters vector f̄2 is chosen large in an appropriate sense,
and

(iv) the plant is time-invariant.

Now for an outline of this chapter. In Section 6.2, we show that assumption
(i) is necessary for the redesigned LPC to require only an upper bound, instead
of the exact, relative degree of the plant; a counterpart-example proves that if the
approximation polynomial order is higher than zero, the controller may result in an
unstable closed-loop system for plants with lower relative degree. Finally Section
6.3 proves that if conditions (i)-(iv) are met, then in the redesigned LPC, an upper
bound (instead of the exact) on the plant relative degree is sufficient.

98
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6.2 The Requirement on the Sign of the High

Frequency Gain

In this section we present a counter-example to show that, if the sign of the high
frequency gain g is unknown, and the LPC is applied to a plant with a lower relative
degree, then closed-loop stability is not guaranteed.

To proceed, we use a very simple example; specifically, suppose that the uncer-
tainty used for designing the controller is the set of transfer functions

{ g

s2 + a1s+ a0

: g = ±1, |ai| ≤ ā, i = 0, 1}, (6.1)

with a corresponding state-space model

ẋ =

[
0 1
−a0 −a1

]
x+

[
0
g

]
u,

y =
[

1 0
]
x,

while the actual plant lies in

{ g

s+ α
: g = ±1, |α| ≤ ᾱ},

with a corresponding state-space model of

ẏ = −αy + gu. (6.2)

(We can certainly define the corresponding P with the usual notation, but we omit
this for brevity). Thus, we apply the approach of Chapter 5 for the relative degree
two case: we choose a stable reference model

˙̄xm =

[
0 1
−ā0 −ā1

]
︸ ︷︷ ︸

=Am

x̄m +

[
0
ḡ

]
︸ ︷︷ ︸
=Bm

ūm,

ȳm =
[

1 0
]︸ ︷︷ ︸

=Cm

xm.

With

f̄2 =
[
−f1 −f2

]
,

chosen so that [
0 1
−f1 −f2

]
,

is stable1, then we can design the ideal control law for the modelled plant, which
is of the form

u =
1

g

[
a0 − f1 a1 − f2

]
x+

1

g
k1x̄m +

1

g
ūm.

1This is clearly the case if and only if f1 > 0 and f2 > 0.
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Now we apply the sampled-data controller introduced in Chapter 5. Given that
g = ±1 in the nominal model class, it is natural to choose an estimate of 1

g
to be

g; indeed, we get an exact match by setting

f̂ε(g) = f̂0(g)

= g.

Hence, we have ρ = 1, m = 2, and T = 3mh, so we define

φ̂0(kT ) :=
[
−f1 −f2 −1

]  1 0 0
0 h 0

0 0 h2

2

−1  1 0 0
1 1 1
1 2 4

−1

×

 y(kT )
y(kT + h)
y(kT + 2h)

+ k2ūm(kT ) + k1x̄m(kT ),

φ̂1(kT ) :=
[

0 0 1
]  1 0 0

0 h 0

0 0 h2

2

−1  1 0 0
1 1 1
1 2 4

−1

×

 y(kT + 2h)− y(kT )
y(kT + 3h)− y(kT + h)
y(kT + 4h)− y(kT + 2h)

 .
Since f̂ε(g) = g, the control signal is given by

u(t) =


ûo(kT ), t ∈ [kT, kT + 2h),

ûo(kT ) + φ̂0(kT ), t ∈ [kT + 2h, kT + 4h),

ûo(kT )− φ̂0(kT ), t ∈ [kT + 4h, kT + 6h),

(6.3)

and

ûo[(k + 1)T ] = ûo(kT ) + φ̂1(kT ). (6.4)

When this control law is applied to the nominal model class (6.1), we know from
Theorem 5.1 that we get closer and closer to optimal behaviour as T (or h)→ 0.

Now let us apply the control law (6.3) to the system (6.2). Here we have

u(t) = ûo(kT ), t ∈ [kT, kT + 2h).

Combining this with the first-order system (6.2), yields

y(kT + h) = e−αhy(kT ) +

∫ h

0

ge−ατ ûo(kT )dτ

≈ (1− αh+
(αh)2

2
)y(kT ) + g(h− αh

2

2
)ûo(kT )

y(kT + 2h) = e−α2hy(kT ) +

∫ 2h

0

ge−ατ ûo(kT )dτ

≈ (1− 2αh+
(α2h)2

2
)y(kT ) + g(2h− α(2h)2

2
)ûo(kT ),
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for small h, which results in

φ̂0(kT ) ≈ (−f1 + αf2 − α2)y(kT ) + g(α− f2)ûo(kT ) + k1x̄m(kT ) + k2ūm(kT ).

(6.5)

Using the obtained value of φ̂0(kT ) in (6.5), if we apply (6.3) to the system (6.2),
we will have

y(kT + 3h) = e−α3hy(kT ) +

∫ 3h

0

e−ατgûo(kT )dτ +

∫ 3h

2h

e−α(3h−τ)gφ̂0(kT )dτ

≈ (1− α3h+
(α3h)2

2
)y(kT ) + g(3h− α(3h)2

2
)ûo(kT ) + g(h− αh

2

2
)φ̂0(kT ),

and

y(kT + 4h) = e−α4hy(kT ) +

∫ 4h

0

e−ατgûo(kT )dτ +

∫ 4h

2h

e−α(4h−τ)gφ̂0(kT )dτ

≈ (1− α4h+
(α4h)2

2
)y(kT ) + g(4h− α(4h)2

2
)ûo(kT ) + g(2h− α(2h)2

2
)φ̂0(kT ),

which leads to

φ̂1(kT ) ≈ −αgφ̂0(kT )

≈ −αg
[
(−f1 + αf2 − α2)y(kT ) + g(α− f2)ûo(kT )+

k1x̄m(kT ) + k2ūm(kT )] .

For T small, if we apply the corresponding control signal (6.3) to the plant (6.2)
we obtain

y[(k + 1)T ] = e−αTy(kT ) + g

∫ T

0

e−α(T−τ)u(kT + τ)dτ

≈ e−αTy(kT ) + gT ûo(kT ).

The update on the control signal is

ûo[(k + 1)T ] = ûo(kT ) + φ̂1(kT )

= ûo(kT )− αg[(−f1 + αf2 − α2)y(kT ) + g(α− f2)ûo(kT ) +

k1x̄m(kT ) + k2ūm(kT )].

Combining the last two equations results in the following closed-loop system:[
y[(k + 1)T ]
ûo[(k + 1)T ]

]
≈

[
e−αT gT

−αg(−f1 + αf2 − α2) 1− g2α(α− f2)

] [
y(kT )
ûo(kT )

]
+[

0
−αg

]
[k1x̄m(kT ) + k2ūm(kT )],
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with the characteristic polynomial

η(λ) := λ2 + λ [−e−αT − 1 + g2α(α− f2)]︸ ︷︷ ︸
=:S1

+

e−αT − e−αTg2α(α− f2) + αg2T (−f1 + αf2 − α2)︸ ︷︷ ︸
=:S2

,

which is Hurwitz if the roots stay in the open-unit disc. It is easy to show that this
polynomial is not always Hurwitz. For example if α > 0 is small, then

S1 → −2 + g2α(α− f2) < −2,

as T → 0, so η(λ) has roots outside the open-unit disc, which results in closed-loop
instability. Thus, the control law (6.3) does not gurantee the closed-loop stability.

We conclude that, even in a very simple case, if the relative degree is unknown,
then more information about the system parameters are required for our approach
to work. In the next section we will demonstrate that knowledge of the sign of the
high frequency gain is sufficient.

6.3 Stability of the LPC for Plants with Lower

Relative Degree

In this section we prove that if the sign of the high frequency gain is known, then
the redesigned LPC, designed for plants with relative degree l, provides closed-
loop stability for the LTI plants for lower/equal relative degrees m = 1, 2, · · · , l, if
certain controller parameters are designed properly.

6.3.1 The Set of Uncertainty

At this point we explain the class of model uncertainty which will be handled here.
We adopt the setup [20], which was repeated in Section 3.3 of Chapter 3:

P̄m(n,m, Γ̄, µ̄1, T̄0, δ1, · · · , δm+1, g, γ0, λ0).

Now with ni ≥ i ≥ 1, i = 1, · · · , l we define the following sets of plant uncertainty
with different relative degrees:

P̄1(n1,m = 1, Γ̄1, µ̄1, T̄0, δ1, δ2, g, γ0, λ0),

P̄2(n2,m = 2, Γ̄2, µ̄1, T̄0, δ1, · · · , δ3, g, γ0, λ0),

...

P̄l(nl,m = l, Γ̄l, µ̄1, T̄0, δ1, · · · , δl+1, g, γ0, λ0),

so that the high frequency gains g1, · · · , gl have the same sign. For this section the
class of plant uncertainty is of the form

P̄ = ∪li=1P̄i.
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6.3.2 The Controller Structure

In this section we present the redesigned LPC of Chapter 5, designed for a system
with the relative degree l which stabilizes plants with lower relative degree. First,
let us recall two (l+ 1)× (l+ 1) matrices Sl and Hl(h), which are defined in (3.21)
of Section 3.5 of Chapter 3, and the sequence of output samples by

Y(t) :=
[
y(t) y(t+ h) · · · y(t+ lh)

]T
.

Recall that we choose f̄2 ∈ R1×l so that the eigenvalues of
0 1

. . . . . .

1
0


︸ ︷︷ ︸

Λ2

+


0
...
0
1


︸ ︷︷ ︸

b2

f̄2

lie to the left of those of Am.To achieve closed-loop stability we will see that we
have to define r0, r1, . . . , rl so that all polynomials

sm +
rm−1

rm
λ∗sm−1 +

rm−2

rm
λ∗

2

sm−2 + · · ·+ r1

rm
λ∗

m−1

s+
r0

rm
λ∗

m

,

m = 1, 2, · · · , l, rl := 1,

are Hurwitz. Now if we choose λ∗ large enough and define the vector f̄2 as

f̄2(λ∗) :=
[
−r0λ

∗l −r1λ
∗l−1 · · · −rl−1λ

∗
]
,

then Λ2 + b2f̄2 is Hurwitz with eigenvalues on the left of those of Am.
Because we have assumed that the sign of the high frequency gain is known,

according to Remark 5.2 we can choose f̂ε to be a constant, i.e. the constant
approximation polynomial f̂ε(g) = c0. Hence, q = 0, so the control law is as
follows:

THE PROPOSED CONTROLLER (t0 = 0)

u(t) = ûo(kT ), t ∈ [kT, kT + lh),

φ̂0(kT ) =
[
f̄2(λ∗) −1

]
Hl(h)−1S−1

l Yl(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
ûo[(k + 1)T ] = ûo(kT ) + c0φ̂0(kT ).

(6.6)
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6.3.3 Applying the Control Law, Designed for Plants with
Relative Degree l, to Plants with Relative Degree m ≤
l

In this section we apply the control law (6.6), designed for plants with relative
degree l to a plant with relative degree m ≤ l and analyze the closed-loop stability
and performance. In this analysis, we assume that the plant is time-invariant and
the rest of analysis is based on this assumption. Before proceeding, observe that
with x(t), A, B, and C defined in (5.5) and x̄(t), Ā, B̄, and ¯̄C defined in equations
(5.6) and (5.7) of Chapter 5, Section 5.2, we have

¯̄CĀix̄(kT ) = CAix(kT ),
¯̄CĀjB̄ = CAjB,

i ∈ {0, 1, · · · , l}, i ∈ {0, 1, · · · , l − 1}, k ∈ Z+.

Recall that
u(t) = ûo(kT ), t ∈ [kT, kT + lh),

so from Lemma 3.1 (KEL-3) 2 of Chapter 3, for every l ∈ N we have:

H−1
l (h)S−1

l Yl(kT )−


C
CA

...
CAl

x(kT ) +


0
CB

...
CAl−1B

 ûo(kT )

= H−1
l (h)S−1

l Yl(kT )−


¯̄C

¯̄CĀ
...

¯̄CĀl


︸ ︷︷ ︸

=:Ol

ˆ̄x(kT ) +


0

¯̄CB̄
...

¯̄CĀl−1B̄


︸ ︷︷ ︸

=:pl

ûo(kT )

= O(h)(||ˆ̄x(kT )||+ |ûo(kT )|).

Thus, with

φ̂0(kT ) =
[
f̄2 −1

]
H−1
l (h)S−1

l Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
,

we have

φ̂0(kT ) =
[
f̄2 −1

]
Ol ˆ̄x(kT ) +

[
f̄2 −1

]
plû

o(kT ) +[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
+O(T )||ˆ̄x(kT )||+O(T )|ûo(kT )|.

2 Technically speaking, a bound is proven in this theorem. Since we need an equality, we use
the above equality form.
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If we combine this equation with the update rule for ûo in (6.6) then it follows

ûo[(k + 1)T ) = c0

[
f̄2 −1

]
Ol ˆ̄x(kT ) +

(
1 + c0

[
f̄2 −1

]
pl
)
ûo(kT ) +

c0

[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
+

O(T )||ˆ̄x(kT )||+O(T )|ûo(kT )|. (6.7)

Now observe that we can choose perturbations ∆1 and ∆2, satisfying

||∆1(kT )|| ≤ T 2||ˆ̄x(kT )||,
||∆2(kT )|| ≤ T 2||ûo(kT )||,

so that applying the control law (6.6) yields

ˆ̄x[(k + 1)T ] = eĀT ˆ̄x(kT ) +

∫ T

0

eĀ(T−τ)B̄ûo(kT )dτ

= (I + ĀT )ˆ̄x(kT ) + TB̄ûo(kT ) + ∆1(kT ) + ∆2(kT ),

for small T . If we combine this equation, (6.6), and (6.7) together, we have[
ˆ̄x[(k + 1)T ]
ûo[(k + 1)T ]

]
=

[
I + ĀT + ∆1(kT ) B̄T + ∆2(kT )

c0

[
f̄2 −1

]
Ol +O(T ) 1 + c0

[
f̄2 −1

]
pl +O(T )

]
×[

ˆ̄x(kT )
ûo(kT )

]
+ c0

[
0 0
k1 k2

] [
x̄m(kT )
ūm(kT )

]
. (6.8)

The following result shows that under certain conditions this closed-loop system is
stable.

Lemma 6.1: There exists a constant T > 0 so that for all T ∈ (0, T ), the

closed-loop system (6.8) is stable for all θ̄ ∈ P̄ if

(i) supθ̄∈P̄
∣∣1 + c0

[
f̄2 −1

]
pl
∣∣ < 1, and

(ii) there exists a compact set Υ ⊂ C− so that

sp

[
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈ P̄ .

Proof: See Appendix C.

To prove closed-loop stability, we need to show that conditions (i) and (ii) of
Lemma 6.1 are satisfied if f̄2 is chosen properly. Lemma 6.2 states under certain
conditions parts (i) and (ii) of Lemma 6.1 are met.
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Lemma 6.2: There exist constants λ∗∗ >> 1 large enough and 1 >> c̄0 > 0

small enough so that for all θ̄ ∈ P̄ and λ∗ ≥ λ∗∗ if

(a) the high frequency gain g is known,

(b) 0 < |c0| ≤ c̄0 and c0 has the same sign as the high frequency gain g, and

(c) the coefficients r0, r1, . . . , rl are defined so that the polynomials

sm +
rm−1

rm
λ∗sm−1 + · · ·+ r1

rm
λ∗

l−1

s+ r0λ
∗l , m = 1, 2, · · · , l, rl := 1,

are Hurwitz and f̄2 is given by

f̄2(λ∗) :=
[
−r0λ

∗l −r1λ
∗l−1 · · · −rl−1λ

∗
]
,

and

(d) the plant is time-invariant, then

(i) supθ̄∈P̄
∣∣1 + c0

[
f̄2 −1

]
pl
∣∣ < 1, and

(ii) there exists a compact set Υ ⊂ C− so that sp

[
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂

Υ, θ̄ ∈ P̄ .

Proof: See Appendix C.

Now we need to prove that the new controller provides stability for plants with
lower relative degree.

Theorem 6.1: There exist constants T > 0, λ∗∗ >> 1 large enough, and 1 >>

c̄0 > 0 small enough so that for all θ̄ ∈ P̄, T ∈ (0, T ), and λ∗ ≥ λ∗∗ if conditions

(a)-(d) of Lemma 6.2 are satisfied then the control law (6.6) designed for plants

with relative degree l provides stability for all plants with lower relative degree.

Proof:
Recall that if we apply the control law (6.6) designed for plants with relative

degree l to plants with relative degree m ≤ l, then the closed-loop system is given
by (6.8). Regarding Lemma 6.2, there exist constants λ∗∗ >> 1 large enough and



CHAPTER 6. ANALYZING THE RELATIVE DEGREE 107

c̄0 small enough so that if conditions (a)-(c) of this lemma, which are conditions
(a)-(c) of Theorem 6.1, are met then

(i) supθ̄∈P̄
∣∣1 + c0

[
f̄2 −1

]
pl
∣∣ < 1, and

(ii) there exists a compact set Υ ⊂ C− so that sp

[
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈

P̄ ,

which are the conditions (i) and (ii) of Lemma 6.1. Thus, based on Lemma 6.1 the
closed-loop system (6.8) is stable for all θ̄ ∈ P̄ and relative degree m ≤ l.

�

6.4 Example

In this section one example is presented. In this simulation the plant relative degree
is one and the controller, designed for a plant with relative degree two, provides
stability for the first-order plant. The time-invariant plant model is first order:

ẏ(t) = ay(t) + gu(t),

with a = 3 and g = −4. The set of plant uncertainty is given by

Γ1 = {
[
a
g1

]
∈ R2 : a = 3, g1 = −4},

Γ2 = {

 a1

a2

g2

 ∈ R3 : g2 ∈ [−4,−1]},

P = P1(n = 1,m = 1,Γ1, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5) ∪
P2(n = 2,m = 2,Γ2, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5),

Since the high frequency gains g1 and g2 are both negative, we can apply Remark
5.2 and set f̂ε(g) = −1

200
and p = 2. We set ρ = 1, and h = 0.01, so T = 0.02.

Figure 6.1 shows the simulation results with y0 = 1, ūm0 = 0, um a square wave
given by

um = sign(cos(
2πt

15
));

as shown in Figure 6.1, the redesigned LPC designed for relative degree two, pro-
vides stability for the first-order plant, but unfortunately the tracking provided is
very poor.
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Figure 6.1: The plant output and control signal of the first-order plant and the
redesigned LPC designed for relative degree two

6.5 Summary and Concluding Remarks

One of the undesirable features of the LPC [20] is that knowledge of the exact
plant relative degree is required. This chapter is devoted to this requirement of
the redesigned LPC, introduced in Chapter 5. We showed that in the redesigned
controller an upper bound of the (instead of the exact) plant relative degree is
sufficient, if

(i) the plant high frequency gain is known and always has the same sign,

(ii) the approximation polynomial is chosen a constant with a small size and has
the same sign of the high frequency gain,

(iii) the controller gains are chosen large, and

(iv) the plant is time-invariant.



Chapter 7

Improving the Noise behaviour

7.1 Introduction

In many control designs, noise tolerance is an important goal. Two main sources
of noise effect are actuators and sensors. When applying the control signal, there
can be noise acting on the actuator at the plant input. Noise can also affect mea-
surement sensors when determining the plant output.

Although the LPC [20] has significant desirable features, it suffers from poor
noise tolerance. The reason is that in order to achieve good tracking performance,
a small sampling period is used. This results in large controller gains and con-
sequently poor noise tolerance. There is a clear trade-off between noise rejection
and performance. This chapter is devoted to improving the noise tolerance of the
LPC [20] as well as examining and improving the noise tolerance of the redesigned
controller of Chapter 5. Figure 7.1 illustrates the LPC [20] feedback configuration
with noises. In this diagram, n1 and n2 are the noise effects on the actuators and
measurement sensors, respectively. This chapter deals with the most problematic
term, namely the measurement noise n2, and presents several methods to achieve
better noise tolerance behaviour.

The outline of this chapter is organized as follows. In Section 6.2, we present
four different ideas of noise reduction of the measurement noise n2. In the first
method, we apply a low-pass filter after the output. In the second approach, we
redesign the LPC to obtain a smaller estimation error, which allows us to choose
larger sampling time which hopefully will produce better noise rejection. In the
third approach, the MMSE estimators are used to minimize the effect of noise. In
the last approach, we adopt a more vigorous probing signal in order to achieve
better noise tolerance. Finally, in Section 6.3, we combine the last approach with
the redesigned controller of Chapter 5 to take advantage of both methods. The
noise tolerant redesigned LPC is more tolerant to noise, has better performance,
and requires slower actuators.

109
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Figure 7.1: The feedback diagram with noises.

7.2 Noise Rejection Ideas

In this section, we present four different controller redesigns to improve noise tol-
erance of the controller of [20]. We carry out a time-domain simulation to produce
a glimpse of the noise behaviour and we also compute the noise gain and tracking
error gain (in the induced norm sense) as a function of the sampling period.

In the time-domain simulations, we simulate the plant and the controllers and
then plot the plant output, the reference model output, and the control signal. In
all time-domain simulations of Section 7.2, we adopt the following example:
The plant model is first order:

ẏ(t) = a(t)y(t) + g(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g ∈ [0.8, 1.2]},

P = P(Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

For approximating the polynomial 1
g
, we use

f̂0.01(g) = g,

so q = 1. In all controllers, we set ρ = 1, and h = 0.005. The simulations are
carried out with y0 = 3, ūm0 = 0, um a square wave:

um = sign(cos(
2πt

15
)),

and
a(t) = cos(t/2) and g(t) = [1 + 0.2sin(t/4)];

we add a noise signal of the form
h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 30 sec.
An analysis of performance and the noise rejection is also carried out. We inject

noise n at the plant output1; we let Tum denote the map from um −→ e and Tn

1We use n to denote the noise signal rather than n2 to minimize notation.
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Figure 7.2: The time-domain simulation results for the LPC [20] and the controller
with a low pass filter for different values of σ.

denote the map from n −→ e. With the designed controllers but with h free, we
plot ||Tr|| and ||Tn|| as a function of h. As we will see, in all approaches, the former
goes to zero as h −→ 0, while the latter goes to infinity as h −→ 0.
In all cases, the plant is an admissible plant model of the set of plant uncertainty
of the time-domain simulation example, namely

ẏ(t) = y(t) + u(t), t ≥ 0.

7.2.1 Using a Low-Pass Filter

In the first approach, to reduce the effect of the measurement noise, we add a first-
order low pass filter Fσ(s) = σ

s+σ
at the plant output. To redesign the LPC [20]

in Chapter 3 to deal with the 2-norm case, we added an anti-aliasing filter at the
plant output. Here we do the same: we add this filter at the plant output, which
results in increasing the relative degree by one2.

Figure 7.2 shows the time-domain simulation results for different values of σ. As
the figure illustrates, this method does not improve the noise rejection. In Figure
7.3, we provide the operator gains. This method worsens the performance as well
as the noise rejection, and larger values of σ make the performance even worse.

The reason of this deterioration is that using a low-pass filter increases the
relative degree by one which results in the longer estimation phase.

2Since the high frequency gain of the resulting plant is the high frequency of the original plant
times σ, large σ results in instability.
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Figure 7.3: The performance, ||um → e||, and the noise rejection behaviour, ||n→
e||, of the LPC [20] and the controller with an output low pass filter and different
values of σ.

7.2.2 Controller With the Smaller Estimation Error

In the design of [20], the control signal is chosen to make sure that the error is
O(h). In this approach, we redesign the controller [20] such that the error is O(h2).
So, to reach good tracking, we can choose larger values of the sampling time, which
should lead to better noise rejection.

For simplicity, let us examine the first-order case:

( ˙̄ym − ẏ) = am(ȳm − y) + [bmūm − gu+ (am − a)y]

and we would like to set

u(t) = f̂ε(g)Kx̄(t) =

q∑
i=0

cig
i[bmūm(t) + (am − a)y(t)].

Recall that we’ve chosen p > 2(2q + 1) = 6 and h > 0, and have set T = ph. First
we look at the first period [0, T ). In the first step we would like to construct an
approximation of

1∑
i=0

ci g
i[bmūm(0) + (am − a)y(0)]︸ ︷︷ ︸

=:φi(0)

.

Now we need to approximate ay(0). Suppose that we initially set

ū(t) = 0, t ∈ [0, 2h),
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so it follows that

y(h) = eahy(0) = [1 + ah+
a2h2

2
+O(h3)]y(0),

y(2h) = e2ahy(0) = [1 + 2ah+
a2(2h)2

2
+O(h3)]y(0).

Hence

1

2h
[−y(2h) + 4y(h)− 3y(0)] = ay(0) +O(h2)y(0).

So at this point we have a good estimate of amy(0) and ay(0), with the quality of
the estimate improving as h→ 0. Hence, we can make a good estimate of

φ0(0) := bmūm(0) + (am − a)y(0),

namely

φ̂0(0) = bmūm(0) + amy(0)− 1

2h
[−y(2h) + 4y(h)− 3y(0)]

= φ0(0) +O(h2)y(0),

so

φ0(0) = φ̂0(0) +O(h2)y(0).

To form an estimate of φ1(0) = gφ0(0), we will carry out some experiments. With
ρ > 0 a scaling factor (we make this small so that it does not disturb the system
very much), set

u(t) = ρφ̂0(0), t ∈ [2h, 4h).

Of course, in completing this experiment we have given the state a boost. This can
be largely undone by applying

u(t) = −ρφ̂0(0), t ∈ [4h, 6h),

Then

y(4h) = e4ahy(0) + (
∫ 2h

0
eaτdτ)gu(2h)

= [1 + 4ah+
(4ah)2

2
+O(h3)]y(0) + [2h+ a

(2h)2

2
+O(h3)]gφ̂0(0),

y(3h) = e3ahy(0) + (
∫ h

0
eaτdτ)gu(2h)

= [1 + 3ah+
(3ah)2

2
+O(h3)]y(0) + [h+ a

h2

2
+O(h3)]gφ̂0(0).

Hence

gφ̂0(0) =
1

−2h
[y(4h)− 4y(3h) + 6y(2h)− 4y(h) + y(0)] +O(h2)y(0),
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so define

φ̂1(0) =
1

−2h
[y(4h)− 4y(3h) + 6y(2h)− 4y(h) + y(0)]

= φ1(0) +O(h2)y(0).

which is a good estimate of φ1(0). At the end of the estimation phase, we are at
t = 6h, and we have estimate of φ1(0) to form our control signal to be applied
during the control phase. We now set u during the control phase to be

u(t) =
p

p− 6
φ̂1(0), t ∈ [6h, ph).

It follows that

y(ph) = y(T ) = epahy(0) + Tgφ̂1(0) +O(h)y(0) +O(h2)ȳ(0)

= eaTy(0) + Tgf̂(g)[bmūm(0) + (am − a)y(0)] +

O(h)y(0) +O(h2)ȳ(0)

≈ eamTy(0) +

∫ T

0

eam(T−τ)bmūm(τ)dτ,

as desired. Figure 7.4 shows the time-domain simulation results for the controller
[20] and the proposed controller. In Figure 7.5 the operator gains are illustrated.
As these figures show, this method worsens both the performance and the noise
rejection.

Although the new approach has a smaller estimation error, the response has not
been improved. The reason is that, although the smaller estimation error improves
performance, it requires a longer estimation phase which worsens the performance.
In fact, there is a trade-off between the estimation error and the length of the
estimation phase.

7.2.3 Using MMSE Estimation

In all previous approaches, estimation is carried out in only one way. The following
approach is based on getting different samples in order to approximate. Let n ∈
N [0, δ2] define a realization of a normal random vector with mean value 0 and the
variance δ2, representing the noise signal. Now we begin with a first-order system
and the controller [20]:

u(t) = 0, t ∈ [kT, kT + 2h),

which gives

y(kT + h) = (1 + ah)y(kT ) +O(h2),

y(kT + 2h) = (1 + 2ah)y(kT ) +O(h2).
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Figure 7.4: The time-domain simulation results for the LPC [20] and the controller
with smaller estimation error.

Figure 7.5: The performance, ||um → e||, and the noise rejection behaviour, ||n→
e||, of the LPC [20] and the controller with smaller estimation error.
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Let yn denote the measured output. The measured output is a combination of the
real output and the noise; in fact, what we get as the measured output is as follows

yn(kT ) = y(kT ) + n(kT ),

yn(kT + h) = y(kT + h) + n(kT + h),

yn(kT + 2h) = y(kT + 2h) + n(kT + 2h).

We can approximate ay(kT ) in three different ways as follows:

S1(kT ) =
yn(kT + 2h)− yn(kT + h)

h
=

y(kT + 2h) + n(kT + 2h)− y(kT + h)− n(kT + h)
h

= ay(0) +
n(kT + 2h)− n(kT + h)

h︸ ︷︷ ︸
:=n̄1(kT )

+O(h),

S2(kT ) =
yn(kT + h)− yn(kT )

h
=

y(kT + h) + n(kT + h)− y(kT )− n(kT )
h

= ay(kT ) +
n(kT + h)− n(kT )

h︸ ︷︷ ︸
:=n̄2(kT )

+O(h),

S3(kT ) =
yn(kT + 2h)− yn(kT )

2h
=

y(kT + 2h) + n(kT + 2h)− y(kT )− n(kT )
2h

= ay(kT ) +
n(kT + 2h)− n(kT )

2h︸ ︷︷ ︸
:=n̄3(kT )

+O(h),

which can be rewritten as[
S1(kT ) S2(kT ) S3(kT )

]T︸ ︷︷ ︸
:ST (kT )

≈
[

1 1 1
]T︸ ︷︷ ︸

:=HT

ay(kT ) +

[
n̄1(kT ) n̄2(kT ) n̄3(kT )

]T
,

with n̄1 ∈ N [0, 2 δ
2

h2 ] , n̄2 ∈ N [0, 2 δ
2

h2 ] , n̄3 ∈ N [0, δ2

2h2 ], random vectors with mean
value 0. Now let us define the weighting matrix

W =

 2 δ
2

h2 0 0

0 2 δ
2

h2 0

0 0 δ2

2h2

 .
If we use the method of MMSE [35] estimation, the best estimation of ay(0) is as
follows:

Est[ ˆay(kT )] = (HTW−1H)−1HTW−1S(kT )

= 0.25S1(kT ) + 0.25S2(kT ) + 0.5S3(kT ).
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In order to construct the term φ0, we need the term y(kT ). Although we have this
term, we use the same method to find the best estimation. The term φ1 = bφ0 is
estimated by this method as well.

To compare the performance of this controller, two simulations are carried out.
The results of the time-domain simulation are shown in Figure 7.6. As the figure
illustrates, the MMSE has better noise rejection. The operator gains are illustrated
in Figure 7.7. As the figure shows, the new method improves the noise rejection
but worsens the performance.

In summary, since the MMSE uses different samples, which requires longer
estimation phase, the performance drops down. However, this method improves
the noise rejection.
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Figure 7.6: The response and the control signal of the closed-loop system with the
controller [20] and the MMSE estimating method.

Figure 7.7: The performance, ||um → e||, and the noise rejection behaviour, ||n→
e||, of the controller [20] and the MMSE estimating method.
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Figure 7.8: The procedure of the continuous estimate of the unknown term ay(kT ).

7.2.4 The Vigorous Probing Controller

In this approach, we use two techniques: (i) obtaining a continuous approximation,
instead of a discrete one, of the term φ̂0(kT ), and (ii) applying larger values of the
free parameter for the control signal.

For simplicity, consider a first-order plant. First, we need to obtain a continuous
estimate of the term φ0(kT ). To do this we have

φ0(kT ) = (am − a)y(kT ) + bmum(kT )

= −ay(kT )︸ ︷︷ ︸
continuous estimate

+ amy(kT ) + bmum(kT )︸ ︷︷ ︸
measureable

.

Now, the term ay(t) can be written as:

ẏ(t) = ay(t) + bu(t) (7.1)

⇒ ay(t) = ẏ(t)− bu(t). (7.2)

So to have a continuous estimate of ay(kT ), we can simply estimate the two terms
ẏ(kT ) and bu(kT ). Figure 7.8 shows how the continuous estimate can be carried
out by a filter, which is a differentiator rolled off at high frequencies; in this filter,
τ should be small.

Now, we need to have an estimation of bu(kT ). Let us define the term

bmūm(kT ) + (am − a)y(kT ) := u∗(kT ).

Recall that in the proposed controller [20], first we estimate φ0(kT ) = u∗(kT ) and
then we define φ1(kT ) by

φ1(kT ) = bu∗(kT ).

In (7.2), we need the term bu(kT ) so we also define φ1(kT ) = bu∗(KT ).
In the next step, we probe the plant more vigorously when trying to estimate

biφ̂0(kT ). With σ ∈ (0, 1), we set

u(t) =


0 t ∈ [kT, kT +mh),

ρh−σφ̂i−1(kT ) t ∈ [kT + (2i− 1)mh, kT + 2imh), i = 1, · · · , q,
−ρh−σφ̂i−1(kT ) t ∈ [kT + 2imh, kT + (2i+ 1)mh), i = 1, · · · , q.

(7.3)



CHAPTER 7. IMPROVING THE NOISE BEHAVIOUR 120

Finally, we combine two the ideas together: the continuous estimate of ay(kT ) and
the vigorous control signal (7.3).

Figure 7.9 presents the time-domain simulation results for the controller [20]
and the proposed vigorous probing controller with different values of σ. In this
simulation, we choose τ = 0.04 in the estimator. As the figure shows, the vigorous
probing controller has good noise rejection, especially for higher values of σ, but
the control signal is big, which is a negative aspect of this method. In Figure 7.10,
we plot operator gains; as expected, vigorous probing controller has better noise
rejection, especially for bigger values of σ, but poorer performance.

To sum up, probing the control signal with larger values improves the noise
rejection, worsens the performance, and makes a larger control signal.



CHAPTER 7. IMPROVING THE NOISE BEHAVIOUR 121

Figure 7.9: The output and control signal of the closed-loop system with the con-
troller [20], and the vigorous probing controller for different values of σ.

Figure 7.10: The performance, ||um → e||, and the noise rejection behaviour, ||n→
e||, of the controller [20] and the vigorous probing controller with different values
of σ.
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7.3 The Noise Tolerant Redesigned LPC

In Chapter 5 we saw that in the case that the high frequency gain does not change
sign, the redesigned LPC significantly improves the noise tolerance, but when the
sign change is allowed, the noise rejection is not improved too much. The objective
of this subsection is to show that if we increase the value of the scaling factor ρ, but
not too much, then the new controller of Chapter 5 yields a larger control signal
and poorer performance but improves the noise tolerance.

7.3.1 Examples

In this subsection, two examples are presented to illustrate the proposed method-
ology.

Time Domain Example

We adopt the setup of Example 2 of Chapter 5, Section 5.4.2; the plant model is
first order:

ẏ(t) = a(t)y(t) + g(t)u(t).

The set of plant uncertainty is given by

Γ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g2 ∈ [1, 1.4]},

P = P(n = 1, m = 1, Γ, µ1 = 1, T0 = 5, γ0 = 1, λ0 = −5).

While the reference model is

˙̄xm = −x̄m + ūm,

the anti-aliasing filter is
˙̄um = −50ūm + 50um.

As the LPC [20], for approximating the polynomial 1
g
, we use the approximation

of:
f̂0.01(g) = 2.1647g − 1.5153g3 + 0.3433g5,

so q = 5, and we choose p = 25 > 2m(2q + 1) = 22, i.e. the Control Phase
is 56% of the controller period. For the redesigned LPC, since the compact set
G := [−1.4,−1] ∪ [1, 1.4] contains both positive and negative values, we can apply
Remark 5.2 and set f̂ε(g) = 1

3
g and p = 3. We also set h = 0.01, so in the LPC [20]

T = 0.25 and in the redesigned LPC, T = 0.03. Moreover, in the LPC [20], we set
ρ = 1, and for the redesigned LPC we use different values of ρ.

Figure 7.11 shows the simulation results with y0 = 3, ūm0 = 0, um a square
wave given by

um = sign(cos(
2πt

15
)),
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and
a(t) = cos(t/2) and g(t) = [1.2 + 0.2cos(t/2)] ∗ sign[cos(t/4)].

We add a noise signal of the form
h * random sequence uniformly distributed between ±1

to the output measurement at the time t = 30 sec. As shown in Figure 7.11, the
noise tolerant redesigned LPC, designed for the case that the plant high frequency
gain sign can have both positive and negative values, has much better noise rejection
and higher performance when ρ is larger than 1, but not too large.

Figure 7.11: The output and control signal of the closed-loop system with the
controller [20], and the noise tolerant redesigned LPC for different values of ρ.

Performance and Noise Behaviour

In this simulation we analyze the performance and the noise behaviour of the closed-
loop system. We compute the L∞ induced norm when the plant parameters are
fixed and investigate how the performance and the noise behaviour of the sampled-
data system depends on the sampling period. The first computation of the L∞
induced norm of the LPC [20] was carried out by Xiaosong [43]. The tool that is
used is the lifting technique (see Chen and Francis [3] which establishes a strong
correspondence between periodic systems and time invariant infinite-dimensional
systems.

We inject noise n at the plant output; we let Tum denote the map from um −→ e
and Tn denote the map from n −→ e. We adopt one admissible plant model of the
set of plant uncertainty of the time domain example of this subsection as

ẏ(t) = y(t) + u(t).
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In the LPC [20], for approximating the polynomial 1
g
, we use the estimation poly-

nomial
f̂(g) = 2.1647g − 1.5153g3 + 0.3433g5.

For the redesigned LPC, the estimation polynomial f̂ε(g) = g
3

is used. With the
controller designed as above but with h free, in Figure 7.12, we plot ||Tum|| and
||Tn|| as a function of h. As expected, for both controllers, while the former goes
to zero, the latter goes to infinity as h −→ 0.

As the figure shows, increasing ρ results in better noise tolerance, but dete-
riorates the performance. We see that while increasing ρ from 1 to ρ = 3 or
ρ = 5 remarkably improves noise tolerance, it slightly worsens the performance.
Meanwhile increasing ρ from 5 to ρ = 10 results in minor noise tolerance improve-
ment and performance deterioration. These results show that the noise tolerant
redesigned LPC with ρ larger than 1 but not too large values significantly improves
performance and noise tolerance compared with the LPC [20].

Figure 7.12: The ||um → e|| and ||n → e|| for the LPC [20] and the noise tolerant
redesigned LPC with different values of ρ
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7.4 Summary and Concluding Remarks

Although the LPC [20] has several advantages, it suffers from poor noise tolerance.
In this controller, in order to achieve the desirable features, a small sampling period
is used. This results in large controller gains and consequently poor noise tolerance.
There is a clear trade-off between noise rejection and performance. In this chap-
ter, we presented four different ideas of noise reduction of the measurement noise
and examined a way to improve the noise tolerance of the redesigned controller of
Chapter 5.

In the first method, we applied a low-pass filter after the output. Using a low
pass filter to reduce the noise effect of a signal works only when the signal has
enough time to settle down. In this approach, we take a few samples of the output
in a short time. Thus, using the filter does not improve the noise rejection. This
approach also leads to poorer performance, since using a low-pass filter increases
the relative degree by one and consequently results in a longer Estimation Phase.

In the second approach, we redesigned the LPC to obtain a smaller estimation
error, allowing us to choose larger sampling time and achieving better noise re-
jection. Although the new approach has a smaller estimation error, the response
has not been improved. The reason is that, although the smaller estimation error
improves performance, it requires a longer Estimation Phase, which worsens the
performance. In fact, there is a trade-off between the estimation error and the
length of Estimation Phase.

In the third approach, the MMSE estimators are used to minimize the effect
of noise. The MMSE approach improves the noise rejection but worsens the per-
formance, since this method uses different samples, requiring a longer Estimation
Phase.

In the last approach, we probed the control signal with larger values in order
to achieve better noise tolerance. Probing the control signal with larger values,
improves the noise rejection but worsens the performance and makes a larger control
signal.

In short, none of the attempts at modifying the LPC [20] were very successful at
improving the noise tolerance-tracking performance trade-off. Thus, we examined
the redesigned controller of Chapter 5. In the case that the high frequency gain
does not change sign, this controller is significantly noise tolerant. In the case
that the high frequency gain sign can have both positive and negative values, we
considered the free parameter ρ and determined that for large (but not too large)
values we could improve the noise tolerance with minimal change in the tracking
performance.
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Conclusions

8.1 A Summary

Adaptive control is a widely used approach which deals with plants with uncer-
tain or time-varying parameters. An adaptive controller typically consists of an
LTI compensator together with a tuning mechanism which adjusts the compen-
sator gains to match the plant. Because of the adjustment law, a typical adaptive
controller is nonlinear. This nonlinearity often results in poor transient closed-loop
behaviour and large control signal. Although the initial motivation for adaptive
control was to cope with time-varying plant parameters, most classical adaptive
controllers cannot handle rapidly changing parameters.

Recently Miller [20] proposed an LPC as a new approach in the field of model
reference adaptive control. This approach uses a linear sampled-data periodic con-
troller; unlike classical adaptive control schemes, which are based on parameter
estimation, this method directly estimates the control signal. The achieved con-
troller has the following advantages:

• it can handle time-varying plant parameters,

• the transient behaviour of the system is improved; immediate tracking can be
achieved if the initial conditions of the plant and controller are the same, and
if the initial conditions are not the same, then the deviation goes exponentially
to zero,

• the control signal is not large and it can be as close as desired to the ideal
control signal (the ideal control signal is the one obtained if the plant param-
eters and state were known and the ideal LTI compensator would be applied;
this signal is modest in size).

Although the LPC [20] has the above desirable features, it has some imperfections:

• during each controller period the control signal takes different values; since
the controller period is small, this requires fast actuators,

126
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• in order to achieve the desired tracking, a small sampling period is used
which results in large controller gains; this may lead the system to poor noise
tolerance; in fact, there is a trade-off between the desired tracking and noise
tolerance,

• the plant relative degree must be known.

In this PhD research, we extended this work in several directions.
First of all, in [20] the time-domain ∞-norm is used to measure signal size.

However, the time-domain 2-norm is an equally (if not more) common way to
measure signal size. Here we extended the approach so that results can be obtained
in the 2-norm setting which are comparable to those of [20]. This new setting
requires a structural change in the control law together with new proofs of key
steps.

Second of all, in [20] the control signal moves vigorously, in particular during
the so-called Estimation Phase, when probing takes place; the control signal jumps
rapidly from one value to another. In this research the controller has been re-
designed to reduce the size and number of the jumps. The approach is as follows.
In the signal control law [20], the controller is periodic with each period consisting
of two phases: in Estimation Phase the ideal control law is estimated, while in Con-
trol Phase a naturally scaled version of this estimate is applied. In this work, we
estimated the change in the ideal control signal law between periods, which reduces
the size of the probing. We also carried out the probing more efficiently, to reduce
the number of jumps in the control signal as well. While proving this approach re-
quires a good deal of effort, the results are very nice: the control signal is smoother,
the controller can handle large parameter variation, the performance is better (for
a given sampling period), and in the case that the sign of high frequency gain is
fixed the closd-loop system is remarkably noise tolerant.

The third part of this PhD thesis has been focussed on the plant relative degree
assumption. One of the undesired aspects of the LPC is that the plant relative
degree should be known. In this work, we show that under some restrictive as-
sumptions, this requirement can be relaxed to that of requiring an upper bound of
the plant relative degree, at least from the point of view of providing stability.

Finally, to improve the noise rejection, four different approaches were presented.
In the first approach, a low pass filter has been used at the plant output. In the
second approach, we modified the LPC in order to obtain a smaller estimation
error, which allows us to choose larger sampling times and consequently better noise
tolerance. While the idea of MMSE estimation has been used in the third approach
to minimize the effect of noise, the fourth approach has been based on applying a
probing signal with a larger size in order to obtain better noise rejection. Finally,
we demonstrated that the degree of freedom present in the redesigned controller,
mentioned above, can be used to achieve the advantages of both methods. The
noise tolerant redesigned LPC attains better noise rejection and performance as
well as a better behaved control signal, as compared to the original controller of
[20].
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8.2 Future Research

In Chapter 5, we proposed the redesigned LPC with considerable desirable features,
such as a smoother control signal, higher noise tolerance, and better performance.
These advantages make an appropriate controller of the redesigned LPC for practi-
cal adaptive control applications: a smoother control signal alleviates the require-
ment of fast actuators, higher noise tolerance is of great benefit in real-life control
problems which demand noisy environments, and finally better performance eases
the necessity of fast sampling which is an advantageous aspect in practical con-
trol purposes. Implementation of the redesigned LPC for control of time-varying
systems, such as fuel consumption, would be an extension of this research work.

The LPC [20] uses a linear sampled-data periodic controller; unlike classical
adaptive control methods, which are based on parameter estimation, this method
directly estimates the control signal. We modified this controller to achieve the
redesigned LPC of Chapter 5. The modification is based on the idea of combining
the Estimation and Control Phases. This idea might be used on [21, 22, 23] which
apply the same point of view of that of the LPC [20].

In Chapter 6 we modified the redesigned LPC of Chapter 5 and showed that
with the new setting, the controller provides stability for plants with the same/lower
relative degrees. We could perhaps redesign/modify this controller to achieve both
stability and performance.

In the redesigned LPC of Chapter 5, in the case that the high frequency sign
can change, the controller period is three sampling times. We would adopt more
effective approach to carry out the control in two sampling times, instead of three.
This modification could result in higher noise-tolerance and better performance.
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.1 APPENDIX A

Before starting the proofs, four technical results are presented, which are used in
other proofs. In these results, B(t) is a time-varying vector and A(t) is a time-
varying square matrix; we let ΦA denote the transition matrix corresponding to
A.

Lemma A.1 of [17]: Consider the differential equation

η̇(t) = A(t)η(t),

with A ∈ PC∞ and c := ‖A‖∞. Then

‖ΦA(t, t0)‖ ≤ ec(t−t0),

‖ΦA(t, t0)− I‖ ≤ (ec(t−t0) − 1), t ≥ t0.

Lemma A.2 of [17]: Consider the differential equation

η̇(t) = [A(t) + ∆(t)]η(t),

and suppose that there exist c > 0 and λ < 0 satisfying

‖ΦA(t, t0)‖ ≤ ceλ(t−t0), t ≥ t0.

With λ1 ∈ (λ, 0) and ‖∆‖∞ ≤ |λ−λ1|
2c

, it follows that

‖ΦA+∆(t, t0)‖ ≤ 2ceλ1(t−t0), t ≥ t0.

Lemma A.3: Consider the time-varying system

η̇(t) = A(t)η(t) +B(t)u(t), η(t0) = η0.

Suppose that b := supt≥0 ||B(t)|| < ∞, and that there exist c > 0 and λ < 0
satisfying

‖ΦA(t, t0)‖ ≤ ceλ(t−t0), t ≥ t0.

Then

‖η(t)‖ ≤ ceλ(t−t0) ‖η(t0)‖+
bc√
2 |λ|

‖u(t)‖2 [t0,t)
, t ≥ t0.

Proof:

Since the system is linear, we can partition η(t) into its zero-input-response and
zero-state-response

η(t) = ηZIR(t) + ηZSR(t).
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The zero-input-response satisfies

‖ηZIR(t)‖ ≤ ceλ(t−t0) ‖η(t0)‖ , t ≥ t0. (1)

While the zero-state-response satisfies

‖ηZSR(t)‖ ≤
∫ t

t0

ceλ(t−τ)b ‖u(τ)‖ dτ, t ≥ t0.

If we apply the Cauchy Swartz inequality to this integral, we obtain

‖ηZSR(t)‖ ≤ bc√
2 |λ|

‖u‖2 [t0,t)
, t ≥ t0. (2)

Combining this equation with (1) yields

‖η(t)‖ ≤ ceλ(t−t0) ‖η(t0)‖+
bc√
2 |λ|

‖u‖2 [t0,t)
, t ≥ t0.

�

Lemma A.4: Consider the time-varying system

η̇(t) = A(t)η(t) +B(t)u(t).

Suppose that b := supt≥0 ||B(t)|| < ∞, and that there exist c > 0 and λ < 0
satisfying

‖ΦA(t, t0)‖ ≤ ceλ(t−t0), t ≥ t0.

Then

‖η(t)‖2 [t0,∞) ≤
c√
2 |λ|

‖η(t0)‖+
bc

|λ|
‖u‖2 [t0,∞) .

Proof:

We adopt the method of the previous proof. ηZIR(t) and ηZSR(t) are the zero-
input-response and zero-state-response, respectively. For the zero-input-response
we have

‖ηZIR(t)‖ ≤ ceλ(t−t0) ‖η(t0)‖ , t ≥ t0,

so

‖ηZIR(t)‖2 [t0,∞) ≤
c√
2 |λ|

‖η(t0)‖ . (3)
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For the zero-state-response we have

‖ηZSR(t)‖ ≤
∫ t

t0

ceλ(t−τ)b ||u(τ)||dτ.

We can regard the RHS output of an LTI system with transfer function bc
s−λ , driven

by ||u(t)||, so using Parseval’s Theorem it follows that

‖ηZSR‖2 [t0,∞) ≤
bc

|λ|
‖u‖2, [t0,∞) .

If we combine this equation with (3), then it follows that

‖η(t)‖2 [t0,∞) ≤
c√
2 |λ|

‖η(t0)‖+
bc

|λ|
‖u‖2 [t0,∞) .

�

Proof of Proposition 4.1:

First we examine Φcl. Let Φ1 denote the transition matrix associated with A1;
it follows from Assumption 6 of Chapter 3 that there exist constants γ0 and λ0 < 0
so that, for every θ̄ ∈ P̄ , we have

||Φ1(t, τ)|| ≤ γ0e
λ0(t−τ), t ≥ τ.

Observe that −σ < λm by hypothesis and that Am and Ā2 have all eigenvalues with
a real part less than λm. Now let λ ∈ (max{λ0, λm}, 0); with λ1 ∈ (max{λ0, λm}, λ),
it follows from the structure of Acl that there exists a γ1 > 0 so that for every θ̄ ∈ P̄ ,
we have

||Φcl(t, τ)|| ≤ γ1e
λ1(t−τ), t ≥ τ ≥ 0. (4)

γ1√
2|λ1|

‖x0‖+
γ1||Ē||
|λ1|

‖um‖2 ≤ max{ γ1√
2|λ1|

,
γ1||Ē||
|λ1|

}︸ ︷︷ ︸
:=γ2

(‖x0‖+ ‖um‖2). (5)

Now define
∆ε(t) := B[g(t)f̂ε(g(t))− 1]K(t);

which means that
Aεcl(t) := Acl + ∆ε(t).

By definition of f̂ε and the boundedness of the plant parameters, there exists a
constant γ3 so that for every ε > 0 we have

‖∆ε(t)‖ ≤ γ3ε, θ̄ ∈ P̄ , (6)
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so it follows from Lemma A.2 and (4) that there exist constants γ4 > 0 and ε1 > 0
so that for every ε ∈ (0, ε1) and θ̄ ∈ P̄ , we have

‖Φε
cl(t, τ)‖ ≤ γ4e

λ(t−τ), t ≥ τ ≥ 0. (7)

Now let us define
¯̄xε(t) := x0(t)− x̄ε(t).

Then
˙̄̄xε(t) = A

ε

cl(t)¯̄xε(t)−∆ε(t)x
0(t).

Using this equation, Lemma A.4, (5), (6), (7), and the fact that x0 = 0, it follows
that for all ε ∈ (0, ε1) and θ̄ ∈ P̄ , we have

‖¯̄xε‖2 ≤
γ3γ4√
2 |λ|︸ ︷︷ ︸

:=γ5

ε ‖x0‖2 .

If we combine this equation with (5) we have that, for all ε ∈ (0, ε1) and θ̄ ∈ P̄ :

‖¯̄xε‖2 ≤ γ2γ5ε(‖x0‖+ ‖um‖2). (8)

Since the map of um → ē is zero, if we multiply both sides of this inequality by
‖C̄‖, the bound on the error follows immediately. Last of all, using (5) and (8) it
follows that for all ε ∈ (0, ε1) and θ̄ ∈ P̄ , we have

‖x̄ε‖2 ≤ (γ2 + γ2γ5ε1)(‖x0‖+ ‖um‖2).

�

Proof of Lemma 4.1 (KEL-4):

We have

˙̄x(t) = Ā(t)x̄(t) + g(t)B̄u+ Ēum(t), t ∈ [t0, t0 + (m+ 1)h). (9)

Define

γ1 := sup
θ̄∈P̄

(‖Ā‖∞ + ||g||∞‖B̄‖+ ‖Ē‖+

||f2||∞ + ||c1||∞ + ||g||∞ + ||ḟ2||∞ + ||ċ1||∞ + ||ġ||);

it follows from the standing assumptions that γ1 is finite. (Notice that the∞-norm
contains an essential supremum, so that infinite derivatives at the discontinuities
do not show up when computing γ1.)

Let us first prove the first bound. Let Φ(t, τ) denote the transition matrix
associated with Ā(t). From Lemma A.1 we have that

‖Φ(t, τ)‖ ≤ eγ1(t−τ), ‖Φ(t, τ)− I‖ ≤ eγ1(t−τ) − 1, t ≥ τ ≥ 0.
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If we solve (9) and apply the Cauchy-Schwartz inequality, we see that for small h
we have

‖x̄(t)− x̄(t0)‖ ≤ (eγ1(t−t0) − 1)‖x̄(t0)‖+

∫ t

t0

eγ1(t−τ)γ1‖ū‖ dτ +∫ t

t0

eγ1(t−τ)γ1‖um‖ dτ

≤ (eγ1(t−t0) − 1)(‖x̄(t0)‖+ ‖ū‖) +
γ1

√
e2γ1(t−t0) − 1√

2γ1

‖um‖2 [t0,t)

≤ 2γ1mh(‖x̄(t0)‖+ ‖ū‖) + γ1

√
2m
√
h‖um‖2 [t0,t)

≤ γ2(h‖x̄(t0)‖+ h‖ū‖+ h
1
2‖um‖2 [t0,t)), t ∈ [t0, t0 + (m+ 1)h),

(10)

where γ2 := 2γ1m. This yields the first part of (i) of Lemma 4.1.
Now let us look at v in detail. Observe that

v̇(t) = (Λ2 + b2f2(t))v(t) + b2c1(t)w(t) + g(t)b2ū

= Λ2v(t) + b2 [f2(t)v(t) + c1(t)w(t) + g(t)ū]︸ ︷︷ ︸
=:ψ(t)

.

Using the bound on v and w from equation (10) and the fact that f2, c1, and g are
bounded by γ1, it follows that there exists a constant γ3 so that for small h we have

|ψ(t)| ≤ γ3(‖x̄(t0)‖+ ‖ū‖+ h
1
2‖um‖2 [t0,t)), t ∈ [t0, t0 + (m+ 1)h). (11)

Combining the differential equations for v an ȳ yields[
v̇(t)
˙̄y(t)

]
=

[
Λ2 0
σc2 −σ

]
︸ ︷︷ ︸

=Λ̄2

[
v(t)
ȳ(t)

]
︸ ︷︷ ︸

=:v̄(t)

+

[
b2

0

]
︸ ︷︷ ︸

=b̄2

ψ(t), (12)

ȳ(t) = [0 1]︸ ︷︷ ︸
=c̄2

[
v(t)
ȳ(t)

]
. (13)

Solving this differential equation yields

v̄(t) = eΛ̄2(t−t0)v̄(t0) +

∫ t

t0

eΛ̄2(t−τ)b̄2ψ(τ) dτ,

which results in

ȳ(t) = c̄2e
Λ̄2(t−t0)v̄(t0) +

∫ t

t0

c̄2e
Λ̄2(t−τ)b̄2ψ(τ) dτ︸ ︷︷ ︸

=:∆̄(t)

.
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From the form of Λ̄2, b̄2, and c̄2 it follows that

c̄2e
Λ̄2t =

m+1∑
i=0

c̄2
Λ̄i

2t
i

i!
+O(tm+2)

=
[

1 t · · · tm+1

(m+1)!

]
c̄2

c̄2Λ̄2
...

c̄2(Λ̄2)m+1

+O(tm+2),

and

c̄2e
Λ̄2tb̄2 =

m∑
i=0

c̄2
Λ̄i

2b̄2t
i

i!
+O(tm+1)

= c̄2
Λ̄m

2 b̄2t
m

m!
+O(tm+1).

Hence, solving the differential equation for ȳ results in

ȳ(t) =
[

1 t− t0 · · · (t−t0)m+1

(m+1)!

]
c̄2

c̄2Λ̄2
...

c̄2Λ̄m+1
2

 v̄(t0) +O(tm+2)v̄(t0) + ∆̄(t),

From the form of Λ̄2, b̄2, and c̄2 it follows that there exists a constant γ4 > 0 so
that for small h we have

|| c̄2e
Λ̄2t −

m+1∑
i=0

c̄2
Λ̄i

2t
i

i!︸ ︷︷ ︸
=:∆1(t)

|| = ||c̄2e
Λ̄2t −

[
1 t · · · tm+1

(m+1)!

]
c̄2

c̄2Λ̄2
...

c̄2(Λ̄2)m+1

 ||
≤ γ4t

m+2, t ∈ [0, (m+ 1)h),

and

|| c̄2e
Λ̄2tb̄2 −

m∑
i=0

c̄2
Λ̄i

2t
i

i!
b̄2︸ ︷︷ ︸

=:∆2(t)

|| = ||c̄2e
Λ̄2tb̄2 − c̄2

Λ̄m
2 t

m

m!
b̄2||

≤ γ4t
m+1, t ∈ [0, (m+ 1)h).
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Hence, solving the equation (12) for ȳ yields, for small h:

ȳ(t) =
[

1 (t− t0) · · · (t−t0)m+1

(m+1)!

]
c̄2

c̄2Λ̄2
...

c̄2Λ̄m+1
2

 v̄(t0) +

∆1(t− t0)v̄(t0) + c̄2
Λ̄m

2

m!
b̄2

∫ t

t0

(t− τ)mψ(τ)dτ +

∫ t

t0

∆2(t− τ)ψ(τ)dτ︸ ︷︷ ︸
=:∆3(t)

,

t ∈ [t0, t0 + (m+ 1)h). (14)

Now observe that

c̃2Λ̃i =
[
c̄2 0

] [ Λ̄2 b̄2

0 0

]i
=

[
c̄2 0

] [ Λ̄i
2 Λ̄i−1

2 b̄2

0 0

]
=

[
c̄2Λ̄i

2 c̄2Λ̄i−1
2 b̄2

0 0

]
,

which means that

c̄2Λ̄iv̄(t0) = c̃2Λ̃i

[
v̄(t0)

0

]
.

Hence, (14) can be rewritten as

ȳ(t) =
[

1 (t− t0) · · · (t−t0)m+1

(m+1)!

]
F̄m+1(σ)

[
v̄(t0)

0

]
+ ∆3(t),

t ∈ [t0, t0 + (m+ 1)h). (15)

Using the above bounds on ∆1(t) and ∆2(t) given above together with the bound
on ψ given in (11), it follows that there exists a constant γ5 so that for small h:

||∆3(t)|| ≤ γ4(t− t0)m+2||v̄(t0)||+

|c̄2
Λ̄m

2

m!
b̄2|
∫ t

t0

(t− τ)mdτ × γ3(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t)) +

γ4

∫ t

t0

(t− τ)m+1dτ × γ3(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t))

= γ4(t− t0)m+2||v̄(t0)||+

γ3|c̄2
Λ̄m

2

(m+ 1)!
b̄2| (t− t0)m+1(||x̄(t0)||+ ||ū||+ h

1
2 ||um||2, [t0,t)) +

γ3γ4

m+ 2
(t− t0)m+2(||x̄(t0)||+ ||ū||+

h
1
2 ||um||2, [t0,t))

≤ γ5(t− t0)m+1(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t0+(m+1)h)), t ∈ [t0, t0 + (m+ 1)h).
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Hence, if we substitute this equation into (15) and evaluate it at t = t0, t0 +
h, · · · , t0 + (m+ 1)h we obtain, for small h:

||ȳ(t0)− Sm+1Hm+1(h)F̄m+1(σ)

[
v̄(t0)

0

]
|| =


∆3(t0)

∆3(t0 + h)
...

∆3(t0 + (m+ 1)h)


≤ γ5

(
m+1∑
j=1

jm+1

) 1
2

hm+1(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t0+(m+1)h)),

t ∈ [t0, t0 + (m+ 1)h);

using the fact that ||H−1
m+1(h)|| = (m+1)!

hm+1 , it follows that for small h:

||F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1ȳ(t0)−

[
v̄(t0)

0

]
|| ≤

||F̄−1
m+1(σ)|| ||S−1

m+1|| γ5h
m+1

(
m+1∑
j=1

jm+1

) 1
2

(||x̄(t0)||+ ||ū||+

h
1
2 ||um||2, [t0,t0+(m+1)h)),

which is the second part of (i).
Now let us assume that g and Ā are absolutely continuous on [t0, t0 +(m+1)h).

Now we re-examine (12) and take this into account. To proceed, using the definition
of ψ observe that

ψ̇(t) = ḟ2(t)v(t) + f2(t)v̇(t) + c1(t)ẇ(t) + ċ1(t)w(t) + ġ(t)ū; (16)

using the bound on x̄ given in (10), we can obtain a bound on v̇ and ẇ, while γ1

provides a bound on ||ḟ2(t)||, ||ċ1(t)||, and |ġ(t)|, so there exists a constant γ6 so
that for small h,

|ψ̇(t)| ≤ γ6(‖x̄(t0)‖+ ‖ū‖+ h
1
2‖um‖2 [t0,t)), t ∈ [t0, t0 + (m+ 1)h).

Now we can rewrite (12), (13), and (16) :[
˙̄v(t)

ψ̇(t)

]
=

[
Λ̄2 b̄2

0 0

]
︸ ︷︷ ︸

=Λ̃2

[
v̄(t)
ψ(t)

]
︸ ︷︷ ︸

=:ṽ(t)

+

[
0
1

]
︸ ︷︷ ︸

=:b̃2

ψ̇(t),

ȳ(t) =
[
c̄2 0

]︸ ︷︷ ︸
=c̃2

[
v̄(t)
ψ(t)

]
. (17)

From the form of Λ̃2, b̃2, and c̃2 it follows that there exists a constant γ7 so that
for small h we have

|| c̃2e
Λ̃2t −

m+1∑
i=0

c̃2
Λ̃i

2t
i

i!︸ ︷︷ ︸
=:∆4(t)

|| ≤ γ7t
m+2, t ∈ [0, (m+ 1)h),
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and

|| c̃2e
Λ̃2tb̃2︸ ︷︷ ︸

=:∆5(t)

|| = ||
∞∑

i=m+1

c̃2
Λ̃i

2t
i

i!
b̃2||

≤ γ7t
m+1, t ∈ [0, (m+ 1)h).

Hence, solving equation (17) we obtain

ȳ(t) =
[

1 (t− t0) · · · (t−t0)m+1

(m+1)!

]
c̃2

c̃2Λ̃2
...

c̃2Λ̃m+1
2

 ṽ(t0) +

∆4(t− t0)ṽ(t0) +

∫ t

t0

∆5(t− τ)ψ̇(τ)dτ︸ ︷︷ ︸
=:∆6(t)

, t ∈ [t0, t0 + (m+ 1)h). (18)

Now it follows that there exists a constant γ8 so that for small h:

||∆6(t)|| ≤ γ7(t− t0)m+2||ṽ(t0)||+∫ t

t0

γ7(τ − t0)m+1dτ × γ6(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t0+(m+1)h))

≤ γ7(t− t0)m+2||ṽ(t0)||+ γ6γ7

m+ 2
(t− t0)m+2(||x̄(t0)||+ ||ū||+

h
1
2 ||um||2, [t0,t0+(m+1)h))

≤ γ8(t− t0)m+2(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t0+(m+1)h)), t ∈ [t0, t0 + (m+ 1)h).

Hence, if we substitute this into (18) and evaluate it at t = t0, t0 + h, · · · , t0 +
(m+ 1)h, we obtain, for small h:

||ȳ(t0)− Sm+1Hm+1(h)F̄m+1(σ)ṽ(t0)|| =


∆6(t0)

∆6(t0 + h)
...

∆6(t0 + (m+ 1)h)


≤ γ8

(
m+1∑
j=1

jm+2

) 1
2

hm+2(||x̄(t0)||+ ||ū||+ h
1
2 ||um||2, [t0,t0+(m+1)h));

using the fact that

||H−1
m+1(h)|| = (m+ 1)!

hm+1
,

and

ṽ(t0) =

 v(t0)
ȳ(t0)

f2(t0)v(t0) + c1(t0)w(t0) + g(t0)ū

 ,
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it follows that for small h:

||F̄−1
m+1(σ)H−1

m+1(h)S−1
m+1ȳ(t0)−

 v(t0)
ȳ(t0)

f2(t0)v(t0) + c1(t0)w(t0) + g(t0)ū

 || ≤
||F̄−1

m+1(σ)|| ||S−1
m+1|| γ8h

(
m+1∑
j=1

jm+2

) 1
2

(m+ 1)! (||x̄(t0)||+ ||ū||+

h
1
2 ||um||2, [t0,t0+(m+1)h)),

as desired.

�

Proof of Lemma 4.2:

To prove this, the interval of [jT, (j+ 1)T ) will be analyzed. In this regard, the
state z has dimension 2(m+ 1) + 2 = 2m+ 4:

• z1 keeps track of

1

ρ

[
0 1 0

]
F̄−1
m+1Hm+1(h)−1S−1

m+1︸ ︷︷ ︸
=:
[
δ0 δ1 · · · δm+1

]


ȳ(jT )

ȳ(jT + h)
...

ȳ(jT + (m+ 1)h)

 .

• z2 keeps track of the current φ̂i(jT ), i = 1, · · · , p, being constructed. We
define [

δ̄0 δ̄2 · · · δ̄m+1

]
:=
[
f̄2 −1 0

]
F̄−1
m+1H

−1
m+1(h)S−1

m+1,

to be used in the construction of φ̂0(jT ).

• z3 is used to construct the control signal to be used during the Estimation
Phase.

• z4 is used to construct the control signal to be applied during the Control
Phase.

The periodically time-varying gains F , G, H, J , and L (with period p) are parti-
tioned as

F (k) =


F1(k)
F2(k)
F3(k)
F4(k)

 , G(k) =


G1(k)
G2(k)
G3(k)
G4(k)

 , H(k) =


H1(k)
H2(k)
H3(k)
H4(k)

 , J(k) =


J1(k)
J2(k)
J3(k)
J4(k)

 ,
L(k) =

[
L1(k) L2(k) L3(k) L4(k)

]
.
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Since the controller is periodic of period T , for simplicity we will assume that j = 0
which means that we are analyzing the first period [0, T ). We would like z1 to keep
track of a weighted version of ȳ(0):

z1(k) =
[

0 1 0
]
F̄−1
m+1H

−1
m+1(h)S−1

m+1︸ ︷︷ ︸[
δ0 δ1 · · · δm+1

]


ȳ(0)
ȳ(h)

...
ȳ((m+ 1)h)

 , k = m+ 2, · · · , p,

so we set

(F1, G1, H1, J1)(k) =


(
[

0 0 0 0
]
, δ0, 0, 0) k = 0,

(
[

1 0 0 0
]
, δi, 0, 0, ) k = 1, · · · ,m+ 1,

(
[

1 0 0 0
]
, 0, 0, 0) k = m+ 2, · · · , p− 1.

The objective of z2 is to construct the current φ̂i(0), i = 1, · · · , q. To this end,
we set

(F2, G2, H2, J2)(k) =



(0, 0, 0, 0) k = 0, · · · ,m,
(
[
−1 0 0 0

]
, δ0, 0, 0) k = (2i− 1)(m+ 1),

(i = 1, · · · , q),
(
[

0 1 0 0
]
, δj, 0, 0) k = (2i− 1)(m+ 1) + j,

(i = 1, · · · , q),
(j = 1, · · · ,m+ 1),

(
[

0 1 0 0
]
, 0, 0, 0) all remaining k ∈ {0, · · · , p− 1}.

This choice of parameters results in

z2(2i(m+ 1) + j) = φ̂i(0), j = 1, · · · ,m+ 1, i = 1, · · · , q.
The state z3 is used to construct the control signal to be used during the Es-

timation Phase. While z2 captures φ̂1(0), · · · , φ̂q−1(0), we can obtain φ̂0(0) from
samples of ȳ, x̄m, and ūm. To this end, set

(F3, G3, H3, J3)(k) =


(0, δ̄0, k1, k2) k = 0,
(
[

0 0 1 0
]
, δ̄k, 0, 0) k = 1, · · · ,m+ 1,

(
[

0 1 0 0
]
, 0, 0, 0) k = (2i+ 1)(m+ 1)− 1,

(i = 1, · · · , q),
(
[

0 0 1 0
]
, 0, 0, 0) all remaining k ∈ {0, · · · , p− 1}.

Hence,

z3((m+ 1) + j) = z3(m+ 1) + δ̄m+1ȳ((m+ 1)h) = φ̂0(0), j = 1, · · · , 2(m+ 1)− 1,

z3((2i+ 1)(m+ 1) + j) = φ̂i(0), i = 1, · · · , q, j = 0, · · · ,m.
The state z4 is used to form the control signal to be used during the Control

Phase. To this end, we set

(F4, G4, H4, J4)(k) =


(0, 0, 0, 0) k = 0,
(
[

0 0 c0 1
]
, 0, 0, 0) k = m+ 2,

(
[

0 ci 0 1
]
, 0, 0, 0) k = 2i(m+ 1) + 1,

(i = 1, · · · , q),
(
[

0 0 0 1
]
, 0, 0, 0) all remaining k ∈ {0, · · · , p− 1}.
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So

z4(k) =

q∑
i=0

ciφ̂i(0), k = 2q(m+ 1) + 2, · · · , p.

The construction of the control signal is as follows

(L,M)(k) =



(0, 0) k = 0, · · · ,m,
(
[

0 ρ 0 0
]
, ρδ̄m+1) k = m+ 1,

(
[

0 0 ρ 0
]
, 0) k = (2i+ 1)(m+ 1) + j,

(i = 0, · · · , q − 1) (j = 0, · · · ,m),
(
[

0 0 −ρ 0
]
, 0) k = (2i+ 2)(m+ 1) + j,

(i = 0, · · · , q − 1) (j = 0, · · · ,m),

(
[

0 0 0 p
p−2q−1

]
, 0) k = (2q + 1)(m+ 1), · · · , p− 1.

By examining the definitions of F1, F2, F3, and F4 it follows that F (0) = 0, so

F (p− 1)× · · · × F (1)× F (0) = 0,

which means that the controller is deadbeat.

�

Proof of Lemma 4.3 (KCL-4):

First define

γ1 = esssupt≥0(‖Ā(t)‖+ ||g(t)||.||B̄||+ ||Ē||+ ||c1(t)||+ ||f2(t)||),
γ2 = esssupt≥0(‖ ˙̄A(t)‖+ ||ġ(t)||+ ||ċ1(t)||+ ||ḟ2(t)||);

it follows from the standing assumptions that γ1 and γ2 are finite. Now let us
examine the equation given in (4.8), namely

˙̄x(t) = Ā(t)x̄(t) + g(t)Bu(t) + Eum(t). (19)

Thus, using Lemma A.1 and the Cauchy-Schwartz inequality it follows that

‖x̄(t)‖ ≤ eγ1T ‖x̄(kT )‖+(e2γ1T−1)
1
2γ1(‖u(t)‖2,[kT,t)+‖um‖2,[kT,t)), t ∈ [kT, (k+1)T ).

From KEL-4 there exists a constant γ3 so that for small T

‖φ̂0(kT )‖ ≤ γ3(‖x̄(kT )‖+ T
1
2 ‖um‖2,[kT,kT+(m+1)h)),

‖φ̂i(kT )‖ ≤ γ3(‖x̄(kT )‖+ ‖x̄(kT + (2i− 1)(m+ 1)h)‖+ ρ‖φ̂i−1(kT )‖+

T
1
2 ‖um‖2,[kT,kT+2i(m+1)h)) i = 1, 2, · · · , q. (20)

From KEL-4 we also have that there exists a constant γ4 so that for small T

‖x̄(kT + (m+ 1)h)‖ ≤ γ4(‖x̄(kT )‖+ T
1
2 ‖um(t)‖2,[kT,kT+(m+1)h)),

‖x̄(kT + 2(m+ 1)h)‖ ≤ γ4(‖x̄(kT + (m+ 1)h)‖+ ρT‖φ̂0(kT )‖+

T
1
2 ‖um‖2,[kT+(m+1)h,kT+2(m+1)h))

≤ γ2
4 ‖x̄(kT )‖+ ργ4T‖φ̂0(kT )‖+

γ4(γ4 + 1)︸ ︷︷ ︸
=:γ5

T
1
2 ‖um‖2,[kT,kT+2(m+1)h)),
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If we repeat this procedure, then there exists a constant γ6 such that

‖x̄(kT + (2i− 1)(m+ 1)h)‖ ≤ γ6(‖x̄(kT )‖+ ρT
i−2∑
j=0

‖φ̂j(kT )‖+

T
1
2‖um‖2,[kT,kT+(2i−1)(m+1)h)), i = 1, 2, · · · , q.

Combining this with (20) we see that there exists a constant γ7 so that for small T

| φ̂i(kT )‖ ≤ γ7(‖x̄(kT )‖+ ρT
i−2∑
j=0

‖φ̂j(kT )‖+ ρ‖φ̂i−1(kT )‖+

T
1
2 ‖um‖2,[kT,kT+2i(m+1)h)), i = 1, · · · , q.

Solving iteratively, we see that there exists a constant γ8 so that for small T

‖φ̂i(kT )‖ ≤ γ8(‖x̄(kT )‖+ T
1
2 ‖um‖2,[kT,kT+2i(m+1)h)), i = 1, · · · , q. (21)

From the definition of the controller we have

u(t) = 0, t ∈ [kT, kT + (m+ 1)h),

‖u(t)‖ = ρ‖φ̂i−1(kT )‖, i = 1, · · · , q,
t ∈ [kT + (2i− 1)(m+ 1)h, kT + (2i+ 1)(m+ 1)h),

and

‖u(t)‖ ≤ p

p− (2q + 1)(m+ 1)

q∑
i=0

|ci| ‖φ̂i(kT )‖,

t ∈ [kT + (2q + 1)(m+ 1)h, (k + 1)T ),

so

‖u(t)‖ ≤ p(q + 1)

p− (2q + 1)(m+ 1)
c︸ ︷︷ ︸

γ9

max
i

{
‖φ̂i(kT )‖

}
,

i = 0, 1, · · · , q, t ∈ [kT + (2q + 1)(m+ 1)h, (k + 1)T ),

where
c = max{1,maxi {ci}}.

Combining this with (21) we see that for small T

‖u(t)‖ ≤ γ8γ9(‖x̄(kT )‖+ T
1
2 ‖um‖2,[kT,t)), t ∈ [kT, (k + 1)T ). (22)

If we now solve (19) once again and use Lemma A.1,

‖x̄(t)− x̄(kT )‖ ≤ (eγ1T − 1) ‖x̄(kT )‖+ γ1

∫ T

0

eγ1(T−τ)‖u(kT + τ)‖dτ +

1√
2γ1

(e2γ1T − 1)γ1 ‖um‖2,[kT,t) , t ∈ [kT, (k + 1)T ).
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Combining this with (22), there exists a constant γ10 > 0 such that for small T :

‖x̄(t)− x̄(kT )‖ ≤ γ10(T‖x̄(kT )‖+ T
1
2 ‖um‖2,[kT,t)), t ∈ [kT, (k + 1)T ). (23)

From Lemma A.1 we have that there exists a constant γ11 so that for all θ̄ ∈ P̄ , we
have

‖Φε
cl(t, kT )− I‖ ≤ (e‖A

ε
cl‖∞(t−kT ) − 1) ≤ γ11T,

∥∥∥∥∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ

∥∥∥∥ ≤ (∫ t

kT

e2‖Aε
cl‖∞(t−τ)

∥∥Ē∥∥2
dτ

) 1
2

‖um‖2,[kT,t) ,

≤ γ11T
1
2 ‖um‖2,[kT,t) , t ∈ [kT, (k + 1)T ).

If we combine these inequalities with (23) we have∥∥∥∥x̄(t)− Φε
cl(t, kT )x̄(kT )−

∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ

∥∥∥∥ ≤ γ10(T ‖x̄(kT )‖+

T
1
2 ‖um‖2,[kT,t)) + γ11T ‖x̄(kT )‖+ γ11T

1
2 ‖um‖2

2,[kT,t) , t ∈ [kT, (k + 1)T ),

so there exists a constant γ12 such that for small T :∥∥∥∥x̄(t)− Φε
cl(t, kT )x̄(kT )−

∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ

∥∥∥∥ ≤
γ12(T ‖x̄(kT )‖+ T

1
2 ‖um‖2,[kT,t)), t ∈ [kT, (k + 1)T ).

Now we look at the more interesting case when θ̄ ∈ P̄ is absolutely continuous
on [kT, (k + 1)T ). Define

L(t) = [c1(t) f2(t) 0 0 0].

From KEL-4 we know that there exists a constant γ13 so that for small T we have

‖φ̂0(kT )−K(kT )x̄(kT )‖ ≤ γ13(T‖x̄(kT )‖+ T
3
2‖um‖2, [kT,kT+(m+1)h)) (24)

and

‖φ̂i(kT ) − 1

ρ
L(kT + (2i− 1)(m+ 1)h) x̄(kT + (2i− 1)(m+ 1)h) +

1

ρ
L(kT )x̄(kT )− g(kT + (2i− 1)(m+ 1)h)φ̂i−1(kT )‖ ≤

γ13(T‖x̄(kT )‖+ T‖x̄(kT + (2i− 1)(m+ 1)h)‖+ T‖φi−1(kT )‖+

T
3
2‖um‖2, [kT,kT+(m+1)h) + T

3
2‖um‖2, [kT+(2i−1)(m+1)h,kT+2i(m+1)h)),

i = 1, 2, · · · , q.
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Using (21) to obtain a bound on ||φ̂i−1(kT )||, and (23) to obtain a bound on ||x̄(t)||
for t ∈ [kT, (k + 1)T ), we see that there exists a constant γ14 so that

‖φ̂i(kT ) − 1

ρ
L(kT + (2i− 1)(m+ 1)h) x̄(kT + (2i− 1)(m+ 1)h) +

1

ρ
L(kT )x̄(kT )− g(kT + (2i− 1)(m+ 1)h) φ̂i−1(kT )‖

≤ γ14(T‖x̄(kT )‖+ T
3
2‖um‖2, [kT,kT+2i(m+1)h)).

Now we combine this with (23) and the fact that L is a sub-matrix of Ā and is
absolutely continuous on [kT, (k+1)T ) to obtain a nice relationship between φ̂i(kT )
and φ̂i−1(kT ):

|φ̂i(kT ) − g(kT )φ̂i−1(kT )| ≤
1

ρ
|(L(x̄(kT + (2i− 1)(m+ 1)h)− L(kT ))x̄(kT + (2i− 1)(m+ 1)h)|+

1

ρ
|L(kT )(x̄(kT + (2i− 1)(m+ 1)h)− x̄(kT ))|+

|[g(kT + (2i− 1)(m+ 1)h)− g(kT )]φ̂i−1(kT )|+
γ14(T‖x̄(kT )‖+ T

3
2‖um‖2, [kT,kT+2i(m+1)h))

≤ 1

ρ
γ2T

[
(1 + γ10T )‖x̄(kT )‖+ γ10T

1
2‖um‖2, [kT,kT+(2i−1)(m+1)h)

]
+

1

ρ
γ1γ10(T‖x̄(kT )‖+ T

1
2‖um‖2, [kT,kT+(2i−1)(m+1)h)) +

γ2γ14(T‖x̄(kT )‖+ T
3
2‖um‖2, [kT,kT+(2i−1)(m+1)h)) +

γ14(T‖x̄(kT )‖+ T
3
2‖um‖2, [kT,kT+2i(m+1)h)),

so that there exists a constant γ15 so that for small T we have

|φ̂i(kT )− g(kT )φ̂i−1(kT )| ≤ γ15(T‖x̄(kT )‖+ T
1
2‖um‖2, [kT,kT+2i(m+1)h)),

i = 1, 2, · · · , q.

If we combine this with our bound on φ̂0(kT ) given in (24), it follows that there
exists a constant γ16 so that for small T

|φ̂i(kT )− g(kT )iK(kT )x̄(kT )| ≤ γ16(T‖x̄(kT )‖+ T
1
2‖um‖2, [kT,kT+2i(m+1)h)),

i = 0, 1, · · · , q.

This means, in turn, that there exists a constant γ17 so that for small T

|
q∑
i=0

ciφ̂i(kT )− f̂ ε(g(kT ))K(kT )x̄(kT )| ≤ γ17(T‖x̄(kT )‖+ T
1
2‖um‖2, [kT,(k+1)T )).

(25)
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Now let us look at x. We have

˙̄x(t) = Ā(t)x̄(t) + Ēum(t) + g(t)B̄u(t)

= Āεcl(t)x̄(t) + Ēum(t) + (Ā(t)− Āεcl(t))x̄(t) + g(t)B̄u(t).

Roughly speaking, we need to prove that

ψ(t) :=

∫ t

kT

Φε
cl(t, τ)[(Ā(τ)− Āεcl)x̄(τ) + g(τ)B̄u(τ)], t ∈ [kT, (k + 1)T ),

when evaluated at T = (k + 1)T , goes to zero as T
3
2 as T → 0. But

(Ā(t)− Āεcl(t))x̄(t) = −g(t)f̂ ε(g(t))B̄K(t)x̄(t),

so it follows that

ψ̇(t) = Āεcl(t)ψ(t) + g(t)B̄ [−f̂ ε(g(t))K(t)x̄(t) + u(t)]︸ ︷︷ ︸
=:η(t)

, ψ(kT ) = 0.

Using (23) and the bounds on the plant parameters and their derivatives, it follows
that there exists a constant γ18 so that for small T

|η(t)− u(t) + f̂ ε(g(kT ))K(kT )x̄(kT )|
≤ ‖f̂ ε(g(kT ))K(kT )− f̂ ε(g(t))K(t)‖ × ‖x̄(kT )‖+ ‖f̂ε(g(t))K(t)‖ ×
‖x̄(t)− x̄(kT )‖
≤ [|f̂ ε(g(kT ))− f̂ ε(g(t))| × sup

τ≥0
||K(τ)||‖x̄(kT )‖+ |f̂ ε(g(t))| ×

‖K(t)−K(kT )‖]× ‖x̄(kT )‖+ (sup
τ≥0
||g(τ)||+ ε) sup

τ≥0
||K(τ)|| × ‖x̄(t)− x̄(kT )‖

≤ γ18(T‖x̄(kT )‖+ T
1
2‖um‖2, [kT,t)), t ∈ [kT, (k + 1)T ).

Arguing in a similar way, it follows that there exists a constant γ19 so that

‖g(t)η(t)− g(kT )u(t) + g(kT )f̂ ε(g(kT ))K(kT )x̄(kT )‖
≤ γ19(T‖x̄(kT )‖+ T

1
2‖um‖2, [kT,t)), t ∈ [kT, (k + 1)T ).

(26)

From Lemma A.2 we have that for small T

‖Φε
cl(t, τ)− I‖ ≤ 2γ1(t− τ), t ≥ τ ≥ 0, |t− τ | ≤ T.

Using this equation and (22) and (23) to obtain a bound on η, it follows that there
exists a constant γ20 so that

‖ψ((k + 1)T ) −
∫ (k+1)T

kT

B̄g(τ)η(τ)dτ‖ = ‖
∫ (k+1)T

kT

(Φε
cl(t, τ)− I)B̄g(τ)η(τ)dτ‖

≤ 2γ1
T 2

2
‖B̄‖ × sup

τ≥0
‖g(τ)‖ max

τ∈[kT,(k+1)T ]
|η(τ)|

≤ γ20T
2(‖x̄(kT )‖+ ‖um‖2, [kT,(k+1)T )).
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Combining this equation with (26), it follows that there exists a constant γ21 so
that for small T

‖ψ((k + 1)T )− g(kT )B̄
∫ (k+1)T

kT
[u(τ)− f̂ ε(g(kT ))K(kT )x̄(kT )]dτ‖

≤ γ21(T 2‖x̄(kT )‖+ T
3
2‖um‖2, [kT,(k+1)T )).

(27)

Using the definition of u, it follows that for small T∫ (k+1)T

kT

[u(τ)− f̂ ε(g(kT ))K(kT )x̄(kT )] dτ = T

q∑
i=0

ci[φ̂i(kT )−

g(kT )iK(kT )x̄(kT )].

If we now use (25) to provide an estimate of φ̂i(kT ), it follows that for small T

‖
∫ (k+1)T

kT

[u(τ)− f̂ ε(g(kT ))K(kT )x̄(kT )]dτ‖ ≤ γ17(T 2‖x̄(kT )‖+ T
3
2‖um‖[kT,(k+1)T )).

If we now combine this with (27), we see that for small T

‖ψ((k + 1)T )‖ ≤ (γ1γ17 + γ21)(T 2‖x̄(kT )‖+ T
3
2‖um‖2, [kT,(k+1)T )),

as required.

�

Proof of Proposition 4.2:

The system equation for x̄ε is

x̄ε(t) = Φε
cl(t, kT )x̄ε(kT ) +

∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ, t ≥ kT. (28)

By hypothesis ε has been chosen so that there exists a constant γ1 so that

‖Φε
cl(t, τ)‖ ≤ γ1e

λ1(t−τ), t ≥ τ,

so

‖x̄ε(t)‖ ≤ γ1e
λ1t‖x̄0‖+

γ1√
2|λ1|

‖Ē‖
√
|e2λ1t − 1| × ‖um‖2, [0,t), t ≥ 0, (29)

and

‖x̄ε‖2 ≤
γ1√
2|λ1|

‖x̄0‖+
γ1√
2|λ1|

‖Ē‖ × ‖um‖2, t ≥ 0.
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We can use KCL-4 to get bounds on ˆ̄xε and ûε. There exists a constant γ2 so
that for small T :

‖ˆ̄xε(t)− Φε
cl(t, kT )ˆ̄xε(kT ) −

∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ‖ ≤

γ2(T‖ˆ̄xε(kT )‖ + T
1
2‖um‖2, [kT,t)), (30)

‖ûε(t)‖ ≤ γ2(‖ˆ̄xε(kT )‖+ T
1
2‖um‖2,[kT,t)), t ∈ [kT, (k + 1)T ), (31)

and when θ̄(t) is absolutely continuous on [kT, (k + 1)T ), for small T we have:

‖ˆ̄xε[(k + 1)T ] − Φε
cl((k + 1)T, kT )ˆ̄xε[kT ]−

∫ (k+1)T

kT

Φε
cl((k + 1)T, τ)Ēum(τ)dτ‖

≤ γ2(T 2(‖ˆ̄xε(kT )‖+ T
3
2‖um‖2, [kT,(k+1)T ). (32)

Now we will prove that ˆ̄xε is well-behaved at the sample points when T is small.
Since we have to allow for the occasional parameter jump, our proof is a little
tricky: we will require that our period T be much smaller than the lower bound T0

on the time between the parameter jumps. To this end, we will introduce a new
integer valued variable

r(T ) = integer part of (
T0

T
);

it follows that
r(T )T ≤ T0,

and r(T )T → T0 as T → 0.
Now let us proceed with our analysis of ˆ̄xε. Using the differential equation for ˆ̄xε

and (30) and (32), we see that we can choose perturbations ∆1, · · · ,∆4, satisfying

‖∆1(kT )‖ ≤ γ2T
2‖ˆ̄xε(kT )‖,

‖∆2(kT )‖ ≤
{

0 if θ̄(t) is a.c. on [kT, (k + 1)T )
γ2T‖ˆ̄xε(kT )‖ else,

‖∆3(kT )‖ ≤ γ2T
3
2‖um‖2, [kT,(k+1)T ),

‖∆4(kT )‖ ≤
{

0 if θ̄(t) is a.c. on [kT, (k + 1)T )

γ2T
1
2‖um‖2, [kT,(k+1)T ) else,

so that

ˆ̄xε[(k + 1)T ] = Φε
cl((k + 1)T, kT )ˆ̄xε[kT ] +

∫ (k+1)T

kT

Φε
cl((k + 1)T, τ)Ēum(τ)dτ +

∆1(kT ) + ∆2(kT ) + ∆3(kT ) + ∆4(kT ). (33)

Using our bound on ‖Φε
cl(t, τ)‖, we end up with

‖ˆ̄xε(kT )‖ ≤ γ1e
λ1kT‖x̄0‖+

k−1∑
i=0

γ1e
λ1(k−1−j)T [γ1

‖Ē‖√
2 |λ1|

√
1− eλ1T ×

‖um‖2, [kT,(k+1)T ) + ‖∆1(kT )‖+ ‖∆2(kT )‖+ ‖∆3(kT )‖+ ‖∆4(kT )‖].
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Let ψ(kT ) denote the RHS of this equation. Then

ψ[(k + 1)T ] = eλ1Tψ(kT ) + γ1[γ1
‖Ē‖√
2 |λ1|

√
1− eλ1T × ‖um‖2, [kT,(k+1)T ) +

‖∆1(kT )‖+ ‖∆2(kT )‖+ ‖∆3(kT )‖+ ‖∆4(kT )‖]. (34)

Since
‖ˆ̄xε(kT )‖ ≤ ψ(kT ),

ψ(0) = γ1‖ˆ̄xε(0)‖ = γ1‖x̄0‖,
it is enough to get a bound on ψ.

The goal is to obtain a tight bound on ψ. Before proceeding, observe that for
small T > 0 we have

eλ1T + γ2T
2 ≤ e(λ1+λ)T/2 =: eλ2T . [λ2 := (λ1 + λ)/2]

Hence, from (34) it follows that there exists a constant γ3 > 0 so that for small T
we have

ψ[(k + 1)T ] ≤


eλ2Tψ(kT ) + γ3T

1
2‖um‖2, [kT,(k+1)T ) if θ̄(t) is a.c. on

[kT, (k + 1)T )

(1 + γ2T )ψ(kT ) + γ3T
1
2‖um‖2, [kT,(k+1)T ) else.

(35)

Now we analyze the system every r(T ) steps apart, and use the fact that θ̄(t) will
be absolutely continuous except for at most one of these steps to obtain a crude
bound on ψ:

ψ[kT + r(T )T ] ≤ eλ2T [r(T )−1](1 + γ2T )ψ[kT ] +

γ3T
1
2

k+r(T )−1∑
j=k

(1 + γ2T )(k+r(T )−1−j)‖um‖2, [jT,(j+1)T ),

≤ eλ2T [r(T )−1](1 + γ2T )ψ[kT ] + γ3T
1
2

[
(1 + γ2T )2r(T ) − 1

(1 + γ2T )2 − 1

] 1
2

×

‖um‖2, [kT,(k+r(T ))T ),

which for small T :

ψ[kT + r(T )T ] ≤ eλ2T [r(T )−1]eγ2Tψ[kT ] +

(
γ3

√
e2γ2T0 − 1

2γ2

+ 1

)
︸ ︷︷ ︸

=:γ4

×

‖um‖2, [kT,(k+r(T ))T ).

For small T we have
λ2T [r(T )− 1] + γ2T ≤ λr(T )T,

λr(T )T ≤ 1

2
λT0;
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then

ψ[kT + r(T )T ] ≤ eλr(T )Tψ[kT ] + γ4‖um‖2, [kT,kT+r(T )T )

⇒ ψ[ir(T )T ] ≤ (eλT )ir(T )ψ(0) + γ4

i−1∑
l=0

eλT (i−1−l)r(T )‖um‖2, [lr(T )T,(l+1)r(T )T ).

(36)

It follows that for small T :

ψ[ir(T )T ] ≤ (eλT )ir(T )ψ(0) + γ4

√
1 + e2λTr(T ) + e4λTr(T ) + · · ·‖um‖2, [0,ir(T )T )

≤ (eλT )ir(T )ψ(0) + γ4
1√

1− eλT0/2
‖um‖2, [0,ir(T )T ).

To see what happens at the sample points between ir(T )T and (i + 1)r(T )T , for
j ∈ {0, 1, · · · , r(T )− 1} we can use the crude bound provided in (35) and argue as
above:

ψ[ir(T )T + jT ] ≤ (eγ2T )r(T )ψ[ir(T )T ] + γ4 ‖um‖[ir(T )T,ir(T )T+jT )

≤ (eγ2T )r(T ) {(eλT )ir(T )ψ(0) + γ4
1√

1− eλT0/2
‖um‖2, [0,ir(T )T ) }+

γ4 ‖um‖[ir(T )T,ir(T )T+jT )

≤ eγ2T0e−λT0(eλT )ir(T )+jψ(0) + γ4(1 +
1√

1− eλT0/2
)︸ ︷︷ ︸

=:γ5

×‖um‖2, [0,ir(T )T+jT ),

(37)

for small T . Hence, for small T

‖ψ(kT )‖ ≤ e(γ2−λ)T0(eλT )kψ(0) + γ5‖um‖2, [0,kT ),

so using the definition of ψ, it follows that

‖ˆ̄xε(kT )‖ ≤ ψ(kT )

≤ γ1e
(γ2−λ)T0︸ ︷︷ ︸
=:γ6

(eλT )k‖x̄0‖+ γ5‖um‖2, [0,kT ). (38)

We now examine the deviation between ˆ̄xε and x̄ε(kT ) . To this end, define

˜̄xε(t) := ˆ̄xε(t)− x̄ε(t).

Using (33) and (38) it follows immediately that there exists a constant γ7 > 0 so
that for small T > 0 we have that the following crude bound holds at the sample
points:

‖˜̄xε(kT )‖ ≤ γ7(eλkT‖x̄0‖+ ‖um‖2, [0,kT )), k ≥ 0.
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Now we use (30) to prove that nothing untoward happens between sample points.
So for t ∈ [kT, (k + 1)T ):

‖ˆ̄xε(t)− ˆ̄xε(kT )‖ ≤ ‖(Φε
cl(t, kT )− I)ˆ̄xε(kT )‖+

∫ t

kT

‖Φε
cl(t, τ)‖ ‖Ē‖ ‖um(τ)‖dτ +

γ2(T‖ˆ̄xε(kT )‖+ T
1
2‖um‖2 [kT,t)).

It follows that there exists a constant γ8 > 0 such that

‖ˆ̄xε(t)− ˆ̄xε(kT )‖ ≤ γ8 (T‖ˆ̄xε(kT )‖+ T
1
2‖um‖2 [kT,t)), t ∈ [kT, (k + 1)T ).

(39)

Combining this with (38), for small T :

‖ˆ̄xε(t)‖ ≤ (1 + γ8T )‖ˆ̄xε(kT )‖+ γ8T
1
2‖um‖2 [kT,t)

≤ (1 + γ8T )γ6((eλT )k‖x̄0‖+ γ5‖um‖2, [0,kT )) + γ8T
1
2‖ūm‖2 [kT,t)

≤ (1 + γ8T )γ6e
λte−λT‖x̄0‖+ ((1 + γ8T )γ6γ5 + γ8T

1
2 )‖um‖2 [kT,t),

t ∈ [kT, (k + 1)T ).

Thus there exists a constant γ9 > 0 such that for small T

‖ˆ̄xε(t)‖ ≤ γ9(eλt‖x̄0‖+ ‖um‖2 [0,t)), t ≥ 0, (40)

as desired.
Now we will examine ˜̄xε to get a bound on

∑∞
k=0 ‖x̃ε(kT )‖2. Before proceed-

ing, we need a technical result, which is handy for the rest of the proof of this
proposition:

Claim A.1:

∞∑
j=0

‖ˆ̄xε[jT ]‖2 = O(
1

T
)‖x̄0‖2 +O(

1

T
)‖um‖2

2.

Proof: The proof of Claim A.1 is given below.

First examine the behaviour of x̃ε at the sample points. If we combine (28)
evaluated at t = (k + 1)T with (33), we end up with

˜̄xε[(k + 1)T ] = Φε
cl((k + 1)T, kT )˜̄xε[kT ] + ∆1(kT ) + ∆2(kT ) + ∆3(kT ) + ∆4(kT ),
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so

˜̄xε[(k + 1)T ] ≤ γ1

k−1∑
j=0

eλ1(k−1−j)T (‖∆1(kT )‖+ ‖∆2(kT )‖+ ‖∆3(kT )‖+ ‖∆4(kT )‖)

=
k−1∑
j=0

γ1e
λ1(k−1−j)T‖∆1(kT )‖︸ ︷︷ ︸

=:S1[k]

+
k−1∑
j=0

γ1e
λ1(k−1−j)T‖∆2(kT )‖︸ ︷︷ ︸

=:S2[k]

+

k−1∑
j=0

γ1e
λ1(k−1−j)T‖∆3(kT )‖︸ ︷︷ ︸

=:S3[k]

+
k−1∑
j=0

γ1e
λ1(k−1−j)T‖∆4(kT )‖︸ ︷︷ ︸

=:S4[k]

.

Now from the definition of ∆1 and ∆2 together with Claim A.1 it follows that

‖S1‖2 ≤ (
γ2

1

1− e2λ1T
)

1
2 (
∞∑
j=0

‖∆1(jT )‖2)
1
2

≤ γ2T
2(

γ2
1

1− e2λ1T
)

1
2‖ˆ̄xε‖2

= O(T 2)O(
1

T
)

1
2 (O(

1

T
)

1
2‖x̄0‖+O(

1

T
)

1
2‖um‖2)

= O(T )‖x̄0‖+O(T )‖um‖2,

and for small T :

‖S2‖2 ≤ (
γ2

1

1− e2λr(T )T
)

1
2 (
∞∑
j=0

‖∆2(jT )‖2)
1
2 ,

≤ γ2T (
2γ2

1

1− eλT0
)

1
2‖ˆ̄xε‖2,

= O(T ) O(1) (O(
1

T
)

1
2‖x̄0‖+O(

1

T
)

1
2‖um‖2),

= O(T
1
2 )‖x̄0‖+O(T

1
2 )‖um‖2.

Using the definition of ∆3 we can write

‖S3‖2 ≤ (
γ2

1

1− e2λ1T
)

1
2 (
∞∑
j=0

‖∆3(jT )‖2)
1
2

≤ γ2T
3
2 (

γ2
1

1− e2λ1T
)

1
2‖um‖2

= O(T
3
2 )O(T

−1
2 )‖um‖2

= O(T )‖um‖2.
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Using the definition of ∆4, for small T we have

‖S4‖2 ≤ (
γ2

1

1− e2λ1r(T )T
)

1
2 (
∞∑
k=0

‖∆4(kT )‖2)
1
2

≤ γ2T
1
2 (

2γ2
1

1− eλ1T0
)

1
2‖um‖2

= O(T
1
2 )‖um‖2.

Combining S1, S2, S3 and S4 together gives

(
∞∑
k=0

‖˜̄xε(kT )‖2)
1
2 = O(T

1
2 )‖x̄0‖+O(T

1
2 )‖um‖2. (41)

Now we use the bound on
∑∞

k=0 ‖˜̄xε(kT )‖2 given in (41) and the bound on∑∞
k=0 ‖ˆ̄xε(kT )‖2 given in Claim A.1 to obtain a bound on ‖ˆ̄xε − x̄ε‖2. By the

definition of 2-norm, it follows that

‖ˆ̄xε − x̄ε‖2
2 =

∫ ∞
0

‖ˆ̄xε(t)− x̄ε(t)‖2dt =
∞∑
k=0

∫ (k+1)T

kT

‖ˆ̄xε(t)− x̄ε(t)‖2dt.

If we use the formula for x̄ε from (28) it follows that

‖ˆ̄xε − x̄ε‖2
2 =

∞∑
k=0

(∫ (k+1)T

kT

‖ˆ̄xε(t)− Φε
cl(t, kT )x̄ε(kT )−∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ‖2dt

)
≤ 2

∞∑
k=0

[∫ (k+1)T

kT

‖ˆ̄xε(t)− Φε
cl(t, kT )ˆ̄xε(kT )+∫ t

kT

Φε
cl(t, τ)Ēum(τ)dτ‖2dt+

∫ (k+1)T

kT

‖Φε
cl(t, kT ) (ˆ̄xε(kT )− x̄ε(kT ))‖2︸ ︷︷ ︸
≤‖Φε

cl(t,kT )‖2 ‖ˆ̄xε(kT )−x̄ε(kT )‖2

dt

 .
Using (30) it follows that

‖ˆ̄xε − x̄ε‖2
2 ≤ 2

∞∑
k=0

[

∫ (k+1)T

kT

2γ2
2(T 2‖ˆ̄xε(kT )‖2 + T‖um‖2

2, [kT,t))dt+

γ2
1

∫ (k+1)T

kT

‖ˆ̄xε(kT )− x̄ε(kT )‖2dt].

This equation yields

‖ˆ̄xε − x̄ε‖2
2 ≤ 2T

∞∑
k=0

[
2γ2

2(T 2‖ˆ̄xε(kT )‖2 + T‖um‖2
2, [kT,(k+1)T ))+

γ2
1‖ˆ̄xε(kT )− x̄ε(kT )‖2

]
.
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Using Claim A.1 and (41), it follows that

‖ˆ̄xε − x̄ε‖2
2 = O(T 3)(O(

1

T
)‖x̄0‖2 +O(

1

T
)‖um‖2

2) +O(T 2)‖um‖2
2 +

O(T )(O(T )‖x̄0‖2 +O(T )‖um‖2)

= O(T 2)‖x̄0‖2 +O(T 2)‖um‖2
2.

It follows that there exists a γ10 > 0 such that for small T

‖ ˆ̄̄xε − x̄ε‖2 ≤ γ10(T‖x̄0‖+ T‖um‖2),

as desired.

�

Proof of Claim A.1:

We need to prove:

∞∑
j=0

‖ˆ̄xε[jT ]‖2 = O(
1

T
)‖x̄0‖2 +O(

1

T
)‖um‖2

2.

From (36) we have

ψ[ir(T )T ] ≤ (eλT )ir(T )ψ(0)︸ ︷︷ ︸
t1[i]

+γ4

i−1∑
l=0

eλT (i−1−l)r(T )‖um‖2, [lr(T )T,(l+1)r(T )T )︸ ︷︷ ︸
t2[i]

,

so

∞∑
i=0

|ψ[ir(T )T ]|2 =
∞∑
i=0

|t1[i] + t2[i]|2

≤ 2
∞∑
i=0

|t1[i]|2 + 2
∞∑
i=0

|t2[i]|2.

But for small T

∞∑
i=0

|t1[i]|2 =
∞∑
i=0

(e2λTr(T ))i ψ2(0)

=
1

1− e2λTr(T )
ψ2(0)

≤ 2

1− e2λT0
ψ2(0)

= O(1)ψ2(0). (42)

With the definition of g[i] := ‖um‖2, [ir(T )T,(i+1)r(T )T ), we can obtain t2[i] as the
output of a digital filter as shown in Figure 1. Parseval’s theorem states that for
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Figure 1: Block diagram of t2[i] and g[i]

small T
∞∑
i=0

|t2[i]|2 ≤ sup
|z|=1

| γ4z

z − eλ Tr(T )
|2

∞∑
i=0

|g[i]|2

= | γ4

1− eλ Tr(T )
|2 ‖um‖2

2

≤ 2γ2
4

(1− eλ T0/2)2
‖um‖2

2

= O(1)‖um‖2
2. (43)

Combining this equation with (42), it follows that
∞∑
i=0

|ψ[ir(T )T ]|2 = O(1)ψ2(0) +O(1)‖um‖2
2;

this means that there exists a constant γ11 so that for small T :
∞∑
i=0

|ψ[ir(T )T ]|2 ≤ γ11ψ
2(0) + γ11‖um‖2

2. (44)

Now let us look between multipliers of r(T )T . To this end, using the fact that
the controller is periodic of period T , it follows from (36) that for every i ∈ Z+ and
j ∈ {0, 1, · · · , r(T )}:

ψ[ir(T )T + jT ] ≤ (eλT )ir(T )ψ(jT ) +

γ4

i−1∑
l=0

eλT (i−1−l)r(T )‖um‖2, [lr(T )T+jT,(l+1)r(T )T+jT ).

If we argue in the same way as that used to obtain (44), we have
∞∑
i=0

|ψ[ir(T )T + jT ]|2 ≤ γ11ψ
2(jT ) + γ11‖um‖2

2, j = 0, 1, · · · , r(T )− 1.

Hence
∞∑
k=0

|ψ[kT ]|2 =

r(T )−1∑
j=0

∞∑
i=0

|ψ[ir(T )T + jT ]|2

≤
r(T )−1∑
j=0

(γ11|ψ(jT )|2 + γ11‖um‖2
2)

≤

r(T )−1∑
j=0

γ11|ψ(jT )|2
+ γ11r(T )‖um‖2

2. (45)
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Using (35) it follows that

ψ[(k + 1)T ] ≤ (1 + γ2T )ψ[kT ] + γ3T
1
2‖um‖2, [kT,(k+1)T )

⇒ ψ[kT ] ≤ (1 + γ2T )kψ[0] + γ3T
1
2

k−1∑
j=0

‖(1 + γ2T )k−1−j‖um‖2, [jT,(j+1)T ).

Now for k ∈ 0, 1, · · · , r(T )− 1 we have

(1 + γ2T )k ≤ (eγ2T )r(T ) ≤ eγ2T0 ,

so

ψ[kT ] ≤ eγ2T0ψ[0]︸ ︷︷ ︸
=:ψ1[kT ]

+ γ3T
1
2

k−1∑
j=0

eγ2T0‖um‖2, [jT,(j+1)T )︸ ︷︷ ︸
=:ψ2[kT ]

,

which results in

r(T )−1∑
j=0

ψ2[jT ] ≤ 2

r(T )−1∑
j=0

ψ2
1[jT ] + 2

r(T )−1∑
j=0

ψ2
2[jT ]. (46)

It is easy to see that

r(T )−1∑
j=0

ψ2
1[jT ] ≤ r(T )e2 γ2T0ψ2[0].

Since r(T ) = O( 1
T

), we have

r(T )−1∑
j=0

ψ2
1[jT ] ≤ O(

1

T
)ψ2[0]. (47)

Now we need to get a bound for
∑r(T )−1

j=0 ψ2
2[jT ]. First we rewrite ψ2[kT ], k ∈

0, 1, . . . , r(T )− 1, in matrix form:
ψ2[0]
ψ2[T ]

...
ψ2[(r(T )− 1)T ]

 = γ3T
1
2 eγ2T0


0

1
. . .
. . .

1 1 · · · 1 0


︸ ︷︷ ︸

Wr(T )


‖um‖2, [0,T )

‖um‖2, [T,2T )
...

‖um‖2, [(r(T )−1)T,r(T )T )

 .

Using Greshgorin Circles [42], it can be easily proven that ‖Wk‖2 ≤ 1
2
k2, so we
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have

r(T )−1∑
j=0

ψ2
2[jT ] ≤ γ2

3 T e2γ2T0‖Wr(T )‖2

r(T )−1∑
j=0

‖um‖2
2, [jT,(j+1)T )

≤ γ2
3 T e2γ2T0

1

2
r2(T )

r(T )−1∑
j=0

‖um‖2
2, [jT,(j+1)T )

= O(
1

T
)‖um‖2

2, [0,r(T )T )

≤ O(
1

T
)‖um‖2

2.

Combining this equation with (45), (46), (47) and using the definition of ψ, it
follows that:

∞∑
k=0

‖ˆ̄xε[kT ]‖2 ≤ γ2
11

r(T )−1∑
j=0

|ψ(jT )|2 + γ11r(T )‖um‖2
2

≤ 2γ2
11

r(T )−1∑
j=0

|ψ1(jT )|2 +

r(T )−1∑
j=0

|ψ2(jT )|2
+ γ11r(T )‖um‖2

2

= 2γ2
11

(
O(

1

T
)ψ2(0) +O(

1

T
)‖um‖2

2,

)
+ γ11O(

1

T
)‖um‖2

2

= O(
1

T
)ψ2(0) +O(

1

T
)‖um‖2

2

= O(
1

T
)‖x̄0‖2 +O(

1

T
)‖um‖2

2,

as desired.

�
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.2 APPENDIX B

Proof of Lemma 5.1 (KCL-5):
First define

γ1 := sup
θ̄∈P̄

(‖Ā‖∞ + ‖Ācl‖∞ + ‖gB̄‖∞ + ‖Ē‖+ ||g||∞ + ||B̄||∞),

γ2 := sup
θ̄∈P̄

(‖ ˙̄A‖∞ + ‖ġ‖∞);

it follows from the standing assumptions that both γ1 and γ2 are finite. (Notice
that our ∞-norm contains an essential supremum, so that infinite derivatives at
the discontinuities do not show up when computing γ2.)

First we look at the worst case scenario, in which there may be a parameter
jump during a period. From the KEL there exists a constant γ3 > 0 so that for
small T

‖φ̂0(kT )‖ ≤ γ3(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),

‖φ̂1(kT )‖ ≤ γ3

(
‖x̄(kT )‖+ ‖x̄(kT +mh)‖+ |ûo(kT )|+ ‖φ̂0(kT )‖+ ‖um‖∞

)
,

‖φ̂i(kT )‖ ≤ γ3 (‖x̄(kT )‖+ ‖x̄(kT + imh)‖+ |ûo(kT )|+

‖φ̂i−1(kT )‖+ ‖φ̂i−2(kT )‖+ ‖um‖∞
)
, i = 2, · · · , q.

Solving iteratively, it follows that there exists a constant γ̃3 > 0 so that for small
T :

‖φ̂i(kT )‖ ≤ γ̃3

(
max

τ∈[kT,(k+1)T ]
‖x̄(τ)‖+ |ûo(kT )|+ ‖um‖∞

)
, i = 1, · · · , q. (48)

From the definition of the controller we have

||u(t)|| =



||ûo(kT )|| t ∈ [kT, kT +mh),

||ρφ̂0(kT ) + ûo(kT )||
t ∈ [kT +mh, kT + 2mh),

||ρφ̂i−1(kT )− ρφ̂i−2(kT ) + ûo(kT )||
t ∈ [kT + imh, kT + (i+ 1)mh),
i = 2, · · · , q,

|| − ρφ̂q−1(kT ) + ûo(kT )|| kT + (q + 1)mh, kT + (q + 2)mh),

and

ûo(kT + T ) = ûo(kT ) +

q∑
i=0

ciφ̂i(kT ).
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Combining this with (48) and we see that there exists a constant γ4 so that for
small T

‖u(t)‖ ≤ γ4( max
τ∈[kT,(k+1)T ]

‖x̄(τ)‖+ |ûo(kT )|+ ‖um‖∞), t ∈ [kT, (k + 1)T ) (49)

|ûo(kT + T )| ≤ γ4( max
τ∈[kT,(k+1)T ]

‖x̄(τ)‖+ |ûo(kT )|+ ‖um‖∞). (50)

Now let us examine the system equation

˙̄x(t) = Āx̄(t) + g(t)B̄u(t) + Ēum(t). (51)

Solving this equation, using Lemma A.1, and the bound on u, it follows that

‖x̄(t)‖ ≤ eγ1T‖x̄(kT )‖+ (eγ1T − 1)[γ4 max
τ∈[kT,(k+1)T ]

‖x̄(τ)‖+ γ4|ûo(kT )|+

(1 + γ4)‖um‖∞)] , t ∈ [kT, (k + 1)T ].

By simplifying this implicit inequality in ||x̄(t)||, it follows that for small T we have

‖x̄(t)‖ ≤ 1 + 2γ1T

1− 2γ1γ4T
‖x̄(kT )‖+ 2γ1

γ4

1− 2γ1γ4T
T |ûo(kT )|+

2γ1
1 + γ4

1− 2γ1γ4T
T‖um‖∞, t ∈ [kT, (k + 1)T ]. (52)

If we now solve (51) once again and use Lemma A.1, we end up with

‖x̄(t)− x̄(kT )‖ ≤ (eγ1T − 1)‖x̄(kT )‖+ (eγ1T − 1) ×
[γ4 max

τ∈[kT,(k+1)T ]
‖x̄(τ)‖+ γ4|ûo(kT )|+ (1 + γ4)‖um‖∞],

t ∈ [kT, (k + 1)T ].

If we combine this with (49), (50), and (52) and the definition of u it follows that
there exists a constant γ5 so that for small T we have

‖x̄(t)− x̄(kT )‖ ≤ γ5T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),
‖u(t)‖ ≤ γ5(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), t ∈ [kT, (k + 1)T ],

|ûo(kT + T )| ≤ γ5(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),
|φi(kT )| ≤ γ5(‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), i = 0, 1, · · · , q.

 (53)

From Lemma A.1 applied to Ācl(t), it follows that there exists a constant γ6 so that
for all θ̄ ∈ P̄ , we have

‖Φcl(t, kT )− I‖ ≤ (e‖Ācl‖∞(t−kT ) − 1) ≤ γ6T,

‖
∫ t

kT

Φcl(t, τ)Ēum(τ)dτ‖ ≤
∫ t

kT

[e‖Ācl‖∞(t−τ)‖Ē‖ × ‖um‖∞]dτ

≤ γ6T‖um‖∞, t ∈ [kT, (k + 1)T ],



159

for small T . If we combine this with (53) we have

‖x̄(t) − Φcl(t, kT )x̄(kT )−
∫ t

kT

Φcl(t, τ)Ēum(τ)dτ‖

≤ ‖x̄(t)− x̄(kT )‖+ ‖(Φcl(t, kT )− I)x̄(kT )‖+ ‖
∫ t

kT

Φcl(t, τ)Ēum(τ)dτ‖

≤ γ5T (‖x̄(kT )‖+ |ûo(kT )|+ |um‖∞) + γ6T‖x̄(kT )‖+ γ6T‖um‖∞
≤ (γ5 + γ6)T (‖x̄(kT )‖+ |ûo(kT )|+ |um‖∞), t ∈ [kT, (k + 1)T ],

for small T , as required. If we combine this with (53), the proof of part (i) is
complete.

Now we look at the more interesting case of when θ̄ ∈ P̄ is absolutely continuous
on [kT, (k + 1)T ). Define

L(t) =
[
c1(t) f2(t) 0 0

]
.

From the KEL we know that there exists a constant γ7 so that for small T we have

‖φ̂0(kT )−K(kT )x̄(kT )+g(kT )ûo(kT )‖ ≤ γ7T (‖x̄(kT )‖+|ûo(kT )|+‖um‖∞), (54)

‖φ̂1(KT )− 1

ρ
L(kT +mh)x̄(kT +mh) +

1

ρ
L(kT )x̄(kT )−

g(kT +mh)φ̂0(kT ) +
1

ρ
g(kT )ûo(kT )− 1

ρ
g(kT +mh)ûo(kT )‖

≤ γ7T (‖x̄(kT )‖+ ‖x̄(kT +mh)‖+ ‖φ0(kT )‖+ |ûo(kT )|+ ‖um‖∞),

and

‖φ̂i(KT )− 1

ρ
L(kT + imh)x̄(kT + imh) +

1

ρ
L(kT )x̄(kT )−

g(kT + imh)φ̂i−1(kT ) +
1

ρ
g(kT )ûo(kT )− 1

ρ
g(kT + imh)ûo(kT ) + g(kT + imh)φ̂i−2(kT )− φ̂i−1(kT )‖

≤ γ7T (‖x̄(kT )‖+ ‖x̄(kT + imh)‖+ ‖φi−1(kT )‖+ ‖φi−2(kT )‖+

|ûo(kT )|+ ‖um‖∞), i = 2, · · · , q;

using (53) we see that there exists a constant γ8 so that

‖φ̂1(KT )− 1

ρ
L(kT +mh)x̄(kT +mh) +

1

ρ
L(kT )x̄(kT )−

g(kT +mh)φ̂0(kT ) +
1

ρ
g(kT )ûo(kT )− 1

ρ
g(kT +mh)ûo(kT )‖

≤ γ8T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),
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and for i = 2, . . . , q, we have

‖φ̂i(KT )− 1

ρ
L(kT + imh)x̄(kT + imh) +

1

ρ
L(kT )x̄(kT )−

g(kT + imh)φ̂i−1(kT ) +
1

ρ
g(kT )ûo(kT )− 1

ρ
g(kT + imh)ûo(kT ) + g(kT + imh)φ̂i−2(kT )− φ̂i−1(kT )‖

≤ γ8T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞).

Now we use (53) together with the fact that L is a sub-matrix of Ā and is absolutely
continuous on [kT, (k + 1)T ) to show that for small T :

||φ̂1(kT ) − g(kT )φ̂0(kT )|| ≤ 1

ρ
||[L(kT +mh)− L(kT )]x̄(kT +mh)||+

1

ρ
||L(kT )[x̄(kT +mh)− x̄(kT )]||+

||[g(kT +mh)− g(kT )]φ̂0(kT )||+ 1

ρ
|[g(kT +mh)− g(kT )]ûo(kT )|+

γ8T (||x̄(kT )||+ |ûo(kT )|+ ||um||∞)

≤ 1

ρ
γ2T (1 + γ5T )[||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +

1

ρ
γ1γ5T [||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +

γ2γ5T [||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +
1

ρ
γ2T |ûo(kT )|

γ8T (||x̄(kT )||+ |ûo(kT )|+ ||um||∞),
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and for i = 2, · · · , q:

||φ̂i(kT ) − g(kT )φ̂i−1(kT )|| ≤ 1

ρ
||[L(kT + imh)− L(kT )]x̄(kT + imh)||+

1

ρ
||L(kT )[x̄(kT + imh)− x̄(kT )]||+

||[g(kT + imh)− g(kT )]φ̂i−1(kT )||+
1

ρ
|[g(kT + imh)− g(kT )]ûo(kT )|+

|φ̂i−1(kT )− g(kT )φ̂i−2(kT )|+ |[g(kT + imh)− g(kT )]φ̂i−2(kT )|+
γ8T (||x̄(kT )||+ |ûo(kT )|+ ||um||∞)

≤ 1

ρ
γ2T (1 + γ5T )[||x̄(kT )||+ |ûo(kT )|+

||um||∞] +
1

ρ
γ1γ5T [||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +

γ2γ5T [||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +
1

ρ
γ2T |ûo(kT )|+

|φ̂i−1(kT )− g(kT )φ̂i−2(kT )|+ γ2γ5T [||x̄(kT )||+ |ûo(kT )|+ ||um||∞] +

γ8T (||x̄(kT )||+ |ûo(kT )|+ ||um||∞),

It follows by iteration that there exists a constant γ9 so that for small T , if θ̄ ∈ P̄
is absolutely continuous on [kT, (k + 1)T ) then we have

|φ̂i(kT )− g(kT )φ̂i−1(kT )| ≤ γ9T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), i = 1, · · · , q.

If we combine this equation with the bound on φ̂0(kT ) given in (54), it follows that
there exists a constant γ10 so that for small T , if θ̄ ∈ P̄ is a.c. on [kT, (k + 1)T )
then

|φ̂i(kT ) − g(kT )i[K(kT )x̄(kT )− g(kT )ûo(kT )]|
≤ γ10T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), i = 0, 1, · · · , q. (55)

Recall that ûo(kT + T ) is constructed by

ûo(kT + T ) = ûo(kT ) +

q∑
i=0

ciφ̂i(kT ).



162

Combining this equation with (55) and defining c̄ := max{1,maxi{ci}} yields:

|ûo(kT + T )− [1− f̂ ε(g(kT ))g(kT )]ûo(kT )− f̂ ε(g(kT ))K(kT )x̄(kT )|

= |ûo[(k + 1)T ]− ûo(kT )−
q∑
i=0

cig(kT )i[K(kT )x̄(kT )− g(kT )ûo(kT )]|

= |
q∑
i=0

ciφ̂i(kT )−
q∑
i=0

cig(kT )i[K(kT )x̄(kT )− g(kT )ûo(kT )]|

= |
q∑
i=0

ci

[
φ̂i(kT )− g(kT )i[K(kT )x̄(kT )− g(kT )ûo(kT )]

]
|

≤ (q + 1)c̄γ10︸ ︷︷ ︸
=:γ11

T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞);

hence, for small T , if θ̄ ∈ P̄ is a.c. on [kT, (k + 1)T ) then

|ûo(kT + T ) − [1− f̂ ε(g(kT ))g(kT )]ûo(kT )− f̂ ε(g(kT ))K(kT )x̄(kT )|
≤ γ11T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞),

which is the first equation in (ii).
Now let us look at x̄. We have

˙̄x(t) = Ā(t)x̄(t) + Ēum(t) + g(t)B̄u(t)

= Ācl(t)x̄(t) + Ēum(t) + (Ā(t)− Ācl(t))︸ ︷︷ ︸
=−B̄K(t)

x̄(t) + g(t)B̄u(t)

= Ācl(t)x̄(t) + Ēum(t) + B̄[g(t)u(t)−K(t)x̄(t)].

So we need to prove that

ψ(t) :=

∫ t

kT

Φcl(t, τ)B̄[g(τ)u(τ)−K(τ)x̄(τ)− g(kT )ûo(kT ) +K(kT )x̄(kT )︸ ︷︷ ︸
=:η(τ)

]dτ,

when evaluated at t = (k + 1)T is of the form

O(T 2)(||x̄(kT )||+ |ûo(kT )|+ ||um||∞)

when T is small and θ̄ ∈ P̄ is a.c. on [kT, (k + 1)T ). Now rewrite ψ as

ψ[(k + 1)T ] =

∫ (k+1)T

kT

B̄η(τ)dτ +

∫ (k+1)T

kT

[Φcl((k + 1)T, τ)− I]B̄η(τ)dτ

⇒ ||ψ[(k + 1)T ]|| ≤ ||B̄|| × ||
∫ (k+1)T

kT

η(τ)dτ ||+∫ (k+1)T

kT

||Φcl(t, τ)− I|| × ||B̄|| × ||η(τ)||dτ.
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Next we obtain a crude bound on η. From (53) and the fact that ||K|| is uniformly
bounded as a function of θ̄ ∈ P̄ , we see that there exists a constant γ12 so that
when T is small and θ̄ ∈ P̄ is a.c. on [kT, (k + 1)T ):

||η(t)|| ≤ γ1(||u(t)||+ ||ûo(kT )||) + ||K||∞(||x̄(t)||+ ||x̄(kT )||)
≤ ||K||∞(2 + γ5 + γ5T )(||x̄(kT )||+ |ûo(kT )|+ ||um||∞)

≤ γ12(||x̄(kT )||+ |ûo(kT )|+ ||um||∞),

and from Lemma A.1 we have

||Φcl(t, τ)− I|| ≤ 2γ1(t− τ), t ≥ τ ≥ 0, |t− τ | ≤ T,

so ∫ (k+1)T

kT

||Φcl(t, τ)− I|| × ||B̄|| × ||η(τ)||dτ ≤ 2γ1γ12T
2(||x̄(kT )||+

|ûo(kT )|+ ||um||∞). (56)

Now we obtain a crisper bound on η. Using (53) and the facts that K, g, and ġ
are uniformly bounded function of θ̄ ∈ P̄ , it follows that there exists a constant
γ13 so that when T is small and θ̄ ∈ P̄ is a. c. in [kT, (k + 1)T ):

||η(t) − g(kT )[u(t)− ûo(kT )]|| = ||[g(t)− g(kT )]u(t) + [K(kT )−K(t)]x̄(kT ) +

K(t)[x̄(kT )− x̄(t)]||
≤ T ||ġ||∞ × ||u(t)||+ T ||K̇||∞ × ||x̄(kT )||+ ||K||∞||x̄(kT )− x̄(t)||
≤ γ13T (||x̄(kT )||+ |ûo(kT )|+ ||um||∞), t ∈ [kT, (k + 1)T ).

Using this equation together with the definition of u means that when T is small
and θ̄ ∈ P̄ is a. c. in [kT, (k + 1)T ):

||
∫ (k+1)T

kT

η(τ)dτ || ≤ ||
∫ (k+1)T

kT

g(kT )[u(τ)− ûo(kT )]dτ ||+

||
∫ (k+1)T

kT

[η(τ)− g(kT )[u(τ)− ûo(kT )]]dτ ||

≤ 0 + γ13T
2(||x̄(kT )||+ |ûo(kT )|+ ||um||∞).

If we combine this with (56), it follows that when T is small and θ̄ ∈ P̄ is a. c. in
[kT, (k + 1)T ):

||ψ((k + 1)T )|| ≤ T 2[γ1γ12 + γ13||B̄||] [||x̄(kT )||+ |ûo(kT )|+ ||um||∞],

as desired.

�
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Proof of Proposition 5.1:
Set t0 = 0 and let λ ∈ (max{λ0, λm}, 0). The system equation for x̄0 is

x̄0(t) = Φcl(t, kT )x̄0(kT ) +

∫ t

kT

Φcl(t, τ)Ēum(τ)dτ, t ≥ kT. (57)

By Assumption 5 and the choice of K(t) it follows that there exist a λ1 < λ and a
constant γ1 so that

||Φcl(t, τ)|| ≤ γ1e
λ1t, t ≥ τ, (58)

which means that

||x̄0(t)|| ≤ γ1e
λ1t||x̄0||+

γ1

|λ1|
||Ē|| × ||um||∞, t ≥ 0. (59)

We now use KCL to obtain bounds on ˆ̄x0 and ûo. There exists a constant γ2 so
that for small T :

||ˆ̄x(t)− Φcl(t, kT )ˆ̄x(kT ) −
∫ t

kT

Φcl(t, τ)Ēum(τ)dτ ||

≤ γ2T (||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞), (60)

||û(t)|| ≤ γ2T (||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞),

t ∈ [kT, (k + 1)T ), (61)

||ûo[(k + 1)T ]|| ≤ γ2(||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞), (62)

and when θ̄ is absolutely continuous on [kT, (k + 1)T ), for small T we have

||ˆ̄x[(k + 1)T ]− Φcl((k + 1)T, kT )ˆ̄x(kT )−
∫ (k+1)T

kT

Φcl((k + 1)T, τ)Ēum(τ)dτ −∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄[g(kT )ûo(kT )−K(kT )x̄(kT )]dτ ||

≤ γ2T
2(||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞), t ≥ kT, (63)

and

|ûo[(k + 1)T ]− [1− f̂ε(g(kT ))g(kT )]ûo(kT )− f̂ε(g(kT ))K(kT )ˆ̄x(kT )|
≤ γ2T (||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞). (64)

Now we will prove that ˆ̄x is well-behaved at the sample points when T is small.
Since we have to allow for an occasional parameter jump, the proof is a bit tricky.
Recall that, by hypothesis, there is a lower bound T0 on the time between parameter
jumps. To this end, recall that t0 = 0, and let {ti : i ∈ N} denote a sequence of
times satisfying

• t1 ≥ 0, and t1 = 0 if θ̄(t) is discontinuous at t = 0,
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• ti+1 − ti ≥ T0, i ∈ N, and

• θ̄(t) is absolutely continuous on (ti, ti+1), i ∈ N;

these constant times are typically not unique. For a given sampling period T , we
identify the problematic periods on which θ̄(t) loses absolute continuity: define
n0(T ) := 0 and

ni(T ) :=

⌊
ti
T

⌋
, i ∈ N.

This means that θ̄ is absolutely continuous on

∪∞i=0[(ni(T ) + 1)T, ni+1(T )T ),

with all discontinuities contained in

∪∞i=0[ni(T )T, ni(T )T + T ).

Notice as well that for i ∈ N

lim sup
T→0

[ni+1(T )T − [ni(T ) + 1]T ] ≥ T0;

the case of i = 0 is special since there could be a discontinuity very soon after the
starting time t0.

To proceed, we need to define an indicator function which is active during
problematic periods: we define

χ : Z+ ×R+ → {0, 1},

by

χ(j, T ) =

{
1 if j ∈ {ni(T ) : i ∈ Z+}
0 else.

Hence, for a given T , χ(j, T ) equals 1 at exactly those j for which [jT, (j + 1)T )
contains an element of {ti : i ∈ Z+}. With this notation in hand, we can rewrite
equations (60)-(64): there exists a constant γ̃2 ≥ γ2 so that for small T :

||ˆ̄x[(k + 1)T ]− Φcl((k + 1)T, kT )ˆ̄x(kT )−
∫ (k+1)T

kT

Φcl((k + 1)T, τ)Ēum(τ)dτ −∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄[g(kT )ûo(kT )−K(kT )ˆ̄x(kT )]dτ ||

≤ [γ2T
2 + γ̃2Tχ(k, T )](||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞), k ≥ 0, (65)

and

|ûo[(k + 1)T ]− [1− f̂ε(g(kT ))g(kT )]ûo(kT )− f̂ε(g(kT ))K(kT )ˆ̄x(kT )|
≤ [γ2T + γ̃2χ(k, T )](||ˆ̄x(kT )||+ |ûo(kT )|+ ||um||∞), k ≥ 0. (66)
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At this point we recall that ûo(kT ) is trying to capture a good estimate of
1

g(kT )
K(kT )ˆ̄x(kT ), so it is natural to introduce a new state variable:

η̂[kT ] := ûo[kT ]− 1

g(kT )
K(kT )ˆ̄x(kT ). (67)

It follows immediately that the generalized plant state equation becomes

||ˆ̄x[(k + 1)T ]− Φcl((k + 1)T, kT )ˆ̄x(kT )−
∫ (k+1)T

kT

Φcl((k + 1)T, τ)Ēum(τ)dτ −∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄g(kT )η̂(kT )dτ ||

≤ [γ2T
2 + γ̃2Tχ(k, T )](||ˆ̄x(kT )||+ ||η̂(kT )||+ ||um||∞), k ∈ Z+. (68)

Using the fact that

K(kT )

g(kT )
− K((k + 1)T )

g((k + 1)T )
=

{
O(T ), if θ̄ is a.c. on [kT, (k + 1)T )
O(1), else,

after more algebra it is easy to verify that there exists a constant γ3 ≥ max{γ2, γ̃2}
so that for small T

||η̂[(k + 1)T ] − [1− f̂ε(g(kT ))g(kT )]η̂(kT )||
≤ [γ3T + γ3χ(k, T )](||ˆ̄x(kT )||+ ||η̂(kT )||+ ||um||∞),

k ∈ Z+. (69)

Now let us examine the difference equation in more details. Combining (58)
and (68) yields:

||ˆ̄x[kT ]|| ≤ γ1e
λ1(k−k0)T ||ˆ̄x[k0T ]||+

k−1∑
j=k0

γ1e
λ1(k−1−j)T [γ1T ||Ē|| × ||um||∞+

γ1T ||B̄|| × ||g||∞||η̂(jT )||+
[γ3T

2 + γ3Tχ(k, T )](||ˆ̄x(jT )||+ ||η̂(jT )||+ ||um||∞)
]
, k ≥ k0 ≥ 0,

and solving (69) yields:

||η̂[kT ]|| ≤ εk−k0||η̂(k0)||+
k−1∑
j=k0

εk−1−j[γ3T + γ3χ(j, T )](||ˆ̄x(jT )||+ ||η̂(jT )||+ ||um||∞),

k ≥ k0 ≥ 0.

These two inequalities are tedious to handle. To this end, with γ4 := ||B̄|| supθ̄∈P̄ ||g||∞
we consider two associated difference equations:

ψ[(k + 1)T ] = eλ1Tψ[kT ] + γ1T ||Ē|| × ||um||∞ + γ1γ4Tυ[kT ] +

[γ3T
2 + γ3Tχ(k, T )](ψ[kT ] + υ[kT ] + ||um||∞),

ψ[0] = ||ˆ̄x(0)||, k ≥ 0,

υ[(k + 1)T ] = ευ[kT ] + [γ3T + γ3χ(k, T )](ψ[kT ] + υ[kT ] + ||um||∞),

υ[0] = |η̂(0)|, k ≥ 0.
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Claim B.1:

||ˆ̄x(kT )|| ≤ γ1ψ[kT ],

||η̂(kT )|| ≤ υ[kT ], k ≥ 0.

Proof: The proof of Claim B.1 is given below.
We can combine these two equations into a state space form:[
Ψ[(k + 1)T ]
υ[(k + 1)T ]

]
=

[
eλ1T + γ3T

2 γ1γ4T + γ3T
2

γ3T ε+ γ3T

] [
Ψ[kT ]
υ[kT ]

]
+[

γ1T ||Ē||+ γ3T
2

γ3T

]
||um||∞ +

χ(k, T )

[
γ3T
γ3

]
(Ψ(kT ) + υ(kT ) + ||um||∞), k ≥ 0. (70)

Claim B.2: Define

n̄i(T ) :=

⌈
ti +
√
T

T

⌉
, i ∈ N.

For every λ2 ∈ (λ1, λ) there exists a T̄ > 0 and γ5 > 0 so that for every θ̄ ∈
PC, x̄0 ∈ Rn+nm+1, and T ∈ (0, T̄ ), we have

Ψ[kT ] ≤ γ5e
λ2kT (Ψ[0] + υ[0]) + γ5||um||∞,

υ[kT ] ≤ γ5e
λ2kT (Ψ[0] + υ[0]) + γ5||um||∞, k ∈ Z+,

and

υ[kT ] ≤ γ5

√
Teλ2kT (Ψ[0] + υ[0]) + γ5

√
T ||um||∞, n̄i(T ) ≤ k ≤ ni+1(T ),

i ∈ Z+.

Proof: The proof of Claim B.2 is given below.

We can use Claims B.1 and B.2 to immediately conclude that, with γ6 := γ1γ5,
for small T we have

||ˆ̄x(kT )|| ≤ γ6e
λ2kT (||ˆ̄x(0)||+ ||η̂(0)||) + γ6||um||∞,

||η̂(kT )|| ≤ γ6e
λ2kT (||ˆ̄x(0)||+ ||η̂(0)||) + γ6||um||∞, k ≥ 0,

||η̂(kT )|| ≤ γ6

√
Teλ2kT (||ˆ̄x(0)||+ ||η̂(0)||) + γ6

√
T ||um||∞,

n̄i(T ) ≤ k ≤ ni+1(T ), i ∈ Z+.
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Using (67) and the fact that

sup
θ̄∈P̄

sup
t≥0
||K(t)

g(t)
|| <∞,

it follows that there exists a constant γ7 so that for small T :

||ˆ̄x(kT )|| ≤ γ7e
λ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + γ7||um||∞,

||ûo(kT )|| ≤ γ7e
λ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + γ7||um||∞,

||η̂(kT )|| ≤ γ7e
λ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + γ7||um||∞, k ≥ 0,

||η̂(kT )|| ≤ γ7

√
Teλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + γ7

√
T ||um||∞,

n̄i(T ) ≤ k ≤ ni+1(T ), i ∈ Z+.

 (71)

This yields the second inequality of the proposition.
Now that we have proven that ˆ̄x is well behaved at integer multiples of T , we

will proceed to show that it is very close to x̄o there. To this end, define

˜̄x := x̄o − ˆ̄x.

Combining (57) and (68) and the fact that γ3 ≥ max{γ2, γ̄2} yields

||˜̄x[(k + 1)T ]− Φcl((k + 1)T, kT )˜̄x(kT )−
∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄g(kT )η̂(kT )dτ ||

≤ [γ3T
2 + γ3Tχ(k, T )](||ˆ̄x(kT )||+ |η̂(kT )|+ ||um||∞).

Now

||
∫ (k+1)T

kT

Φcl((k + 1)T, τ)B̄g(kT )η̂(kT )dτ || ≤ γ1||B̄|| × ||g(kT )|| × T ×

||η̂(kT )||;

since g is uniformly bounded over all θ̄ ∈ P̄ , it follows that there exists a constant
γ8 so that for T :

||˜̄x(kT )|| ≤
k−1∑
j=0

γ1e
λ1(k−1−j)T [γ8T ||η̂(jT )||]︸ ︷︷ ︸

=:f1(kT )

+

k−1∑
j=0

γ1γ3e
λ1(k−1−j)TT 2[||ˆ̄x(jT )||+ ||η̂(jT )||+ ||um||∞]︸ ︷︷ ︸

=:f2(kT )

+

k−1∑
j=0

γ1γ3e
λ1(k−1−j)TTχ(j, T )[||ˆ̄x(jT )||+ ||η̂(jT )||+ ||um||∞]︸ ︷︷ ︸

=:f3(kT )

. (72)
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The second term f2(kT ) is easy to handle; using (71) it follows that

f2(kT ) ≤ γ1γ3
1 + 2γ7

1− eλ1T
T 2||um||∞ +

2γ2γ3γ7

1− e(λ1−λ2)T e−λ2T
T 2eλ2kT ×

(||ˆ̄x(0)||+ ||ûo(0)||)
= O(T )[eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞]. (73)

The third term f3(kT ) takes a bit more work. Using the fact that

ti+1 − ti ≥ T0,

ni+1(T )− ni(T ) ≥ T0 − 2T, i ∈ N,

it follows that

k−1∑
j=0

eλ1(k−1−j)Tχ(j, T ) =
k−1∑
j=0

eλ1jTχ(k − 1− j, T )

≤ 1 + (1 + eλ1(T0−2T ) + e2λ1(T0−2T ) + · · · )

= 1 +
1

1− eλ1(T0−2T )
(for small T )

= O(1),

and

k−1∑
j=0

eλ1(k−1−j)Tχ(j, T )eλ2jT =
k−1∑
j=0

eλ1jTχ(k − 1− j, T )eλ2(k−1−j)T

= eλ2kT e−λ2T

k−1∑
j=0

e(λ1−λ2)jTχ(k − 1− j, T )

≤ eλ2kT e−λ2T [1 + e(λ1−λ2)(T0−2T ) +

e2(λ1−λ2)(T0−2T ) + · · · ]
= O(1)eλ2kT .

Combining these observations with (71) yields

f3(kT ) = O(T )[eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞]. (74)

The first term f1(kT ) is the trickiest to deal with. Define the set of integers

N(T ) := (∪∞i=0[ni(T ), n̄i(T )]) ∩ Z+.
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Using (71), it follows that

f1(kT ) = γ1γ8T
k−1∑
j=0

eλ1(k−1−j)T ||η̂(jT )||

≤ γ1γ8T
k−1∑

j=0, j∈N(T )

eλ1jT [γ7e
λ2(k−j−1)T (||ˆ̄x(0)||+ ||ûo(0)||) + γ7||um||∞] +

γ1γ8T
k−1∑

j=0, j /∈N(T )

eλ1jT [γ7

√
Teλ2(k−1−j)T (||ˆ̄x(0)||+ ||ûo(0)||) +

γ7

√
T ||um||∞].

But

n̄i(T )− ni(T ) =

⌈
ti +
√
T

T

⌉
−
⌊
ti
T

⌋

≤

(
ti +
√
T

T

)
−
(
ti
T
− 1

)
≤ ti +

√
T − ti
T

+ 1

= O(
1√
T

),

so with some careful analysis we see that the first summation looks like

O(T
1
2 )[eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞],

while with some straight forward analysis the second summation clearly is of the
form

O(T
1
2 )[eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞].

Hence,
f1(kT ) = O(T

1
2 )[eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞].

If we combine this with (73) and (74), we have that there exists a constant γ9 so
that for small T :

||x̃(kT )|| ≤ γ9T
1
2 [eλ2kT (||ˆ̄x(0)||+ ||ûo(0)||) + ||um||∞], k ∈ Z+. (75)

Now we prove that everything is smooth between sample points. From (57),
(60), and Lemma A.1 it follows that there exists a constant γ10 > 0 so that for
small T :

‖x̄0(t)− x̄0(kT )‖ ≤ γ10T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞), t ∈ [kT, kT + T ],

‖ˆ̄x(t)− ˆ̄x(kT )‖ ≤ γ10T (‖ˆ̄x(kT )‖+ |ûo(kT )|+ ‖um‖∞), t ∈ [kT, kT + T ].
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Hence, using these two equations together with (75), it follows that for δ ∈ [0, T ]
we have

‖˜̄x(kT + δ)‖ ≤ ‖˜̄x(kT )‖+ ‖˜̄x(kT + δ)− ˜̄x(kT )‖
≤ ‖˜̄x(kT )‖+ ‖x̄(kT + δ)− x̄(kT )‖+ ‖ˆ̄x(kT + δ)− ˆ̄x(kT )‖
≤ γ9

√
T (eλ2kT‖x̄0‖+ eλ2kT |ûo0|+ ‖um‖∞) +

γ10T (‖x̄(kT )‖+ |ûo(kT )|+ ‖um‖∞) +

γ10T (‖ˆ̄x(kT )‖+ |ûo(kT )|+ ‖um‖∞).

Using (59) for a bound on ||x̄0(kT )|| and (71) for a bound on ||ˆ̄x(kT )||, and observing
that ˆ̄x(0) = x̄0(0) = x̄0, it follows that there exists a constant γ11 > 0 so that for
small T > 0 we have

‖˜̄x(t)‖ ≤ γ11

√
Teλ2t(‖x̄0‖+ |ûo0|) + γ11

√
T‖um‖∞, t ≥ 0,

which proves the first inequality of the proposition.

�

Proof of Claim B.2:

The key idea is as follows. We see from (70) that

[
Ψ[(k + 1)T ]
υ[(k + 1)T ]

]
=

[
eλ1T + γ3T

2 γ1γ4T + γ3T
2

γ3T ε+ γ3T

] [
Ψ[kT ]
υ[kT ]

]
+[

γ1T ||Ē||+ γ3T
2

γ3T

]
||um||∞,

k /∈ {n0(T ), n1(T ), n2(T ), · · · }, (76)

and that there exists a constant γ̄1 so that for small T

ψ[(ni(T ) + 1)T ] ≤ (eλ1T + γ3T
2 + γ3T )ψ[ni(T )T ]+

γ̄1T [υ(ni(T )T ) + ||um||∞],
υ[(ni(T ) + 1)T ] ≤ γ̄1[ψ[ni(T )T ] + υ(ni(T )T ) + ||um||∞].

(77)

Now, we apply a similarity transformation to (76) to diagonalize the difference
equation, which greatly simplifies the analysis; we then use (77) to get a bound on
the size of the jump in the state on the problematic intervals [ni(T )T, (ni(T )+1)T ).
We then glue the intervals together to prove the desired result.

To proceed, we first diagonalize the state matrix

M :=

[
eλ1T + γ3T

2 γ1γ4T + γ3T
2

γ3T ε+ γ3T

]
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of (76); we do so in two steps. The first goal is to choose real-valued L(T ) so that
the (2,1) element of [

1 0
L 1

]
M

[
1 0
−L 1

]
(78)

is zero. Equivalently, we want

(eλ1T + γ3T
2)L+ γ3T − (γ1γ4T + γ3T

2)L2 − (ε+ γ3T )L = 0, (79)

which results in

L =
ε+ γ3T

eλ1T + γ3T 2
L+

γ1γ4T + γ3T
2

eλ1T + γ3T 2
L2 − γ3T

eλ1T + γ3T 2︸ ︷︷ ︸
f1(L)

;

notice that f1 is a continuous function of its argument. Since ε ∈ (0, 1), for T small
we have that

f1 : [0, 1]→ [0, 1);

hence, by Brouwer’s Fixed Point Theorem there exists a solution to the above
equation; in fact, it can be obtained by iteration, and it is easy to confirm that it
is O(T ) 1, i.e. there exists a γ̄2 so that, for small T ,

||L(T )|| ≤ γ̄2T.

Now we apply another similarity transformation to (78) to diagonalize it: more
specifically, the goal is to choose real-valued p(T ) so that[

1 p
0 1

] [
1 0
L 1

]
M

[
1 0
−L 1

] [
1 −p
0 1

]
=

[
1 p
0 1

] [
eλ1T + γ3T

2 − (γ1γ4T + γ3T
2)L γ1γ4T + γ3T

2

0 ε+ γ3T + (γ1γ4T + γ3T
2)L

]
×[

1 −p
0 1

]
,

is diagonal. Equivalently, we want

[ε+ γ3T + (γ1γ4T + γ3T
2)L − eλ1T − γ3T

2 + (γ1γ4T + γ3T
2)L]p

+ γ1γ4T + γ3T
2 = 0,

so p is O(T ): there exists a constant γ̄3 so that for small T :

||p(T )|| ≤ γ̄3T.

1One can obtain a closed form expression for L by solving the quadratic equation (79), but it
is tedious to analyse.
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Using these similarity transformations, we can now define a new state:[
ψ̄(kT )
ῡ(kT )

]
:=

[
1 p
0 1

] [
1 0
L 1

] [
ψ(kT )
υ(kT )

]
.

Equation (70) becomes:[
ψ̄[(k + 1)T ]
ῡ[(k + 1)T ]

]
=[

eλ1T + γ3T
2 − (γ1γ4T + γ3T

2)L(T ) 0
0 ε+ γ3T + (γ1γ4T + γ3T

2)L(T )

]
×[

ψ̄(kT )
ῡ(kT )

]
+[

[1 + p(T )L(T )](γ1T ||Ē||+ γ3T
2) + γ3Tp(T )

γ3T + L(T )(γ1T ||Ē||+ γ3T
2)

]
||um||∞ +

χ(k, T )

[
γ3T [1 + p(T )L(T )] + γ3p(T )

γ3 + γ3TL(T )

]
×[

(1− L(T ))ψ̄(kT ) + (1 + L(T )p(T )− p(T ))ῡ(kT ) + ||um||∞
]

=:

[
p1(T ) 0

0 p2(T )

] [
ψ̄(kT )
ῡ(kT )

]
+

[
Ē1(T )
Ē2(T )

]
||um||∞ +

χ(k, T )

[
B1(T )
B2(T )

]
×[

(1− L(T ))ψ̄(kT ) + (1 + L(T )p(T )− p(T ))ῡ(kT ) + ||um||∞.
]

(80)

For small T

p1(T ), p2(T ) ∈ [0, 1),

p1(T ) ≤ e(λ1+λ)T/2 =: eλ2T [λ2 := (λ1 + λ)/2],

p2(T ) ≤ ε+ 1

2
.

Solving this difference equation yields, for i ∈ Z+:

ψ̄[kT ] ≤ p1(T )k−ni(T )−1ψ̄[ni(T )T + T ] +

k−ni(T )−2∑
j=0

p1(T )k−ni(T )−2−jĒ1(T )||um||∞

≤ p1(T )k−ni(T )−1ψ̄[ni(T )T + T ] +
p1(T )k−ni(T )−1 − 1

p1(T )− 1
Ē1(T )||um||∞

= p1(T )k−ni(T )−1ψ̄[ni(T )T + T ] +O(1)||um||∞, k = ni(T ) + 1, · · · , ni+1(T ),

(81)
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and

ῡ[kT ] ≤ p2(T )k−ni(T )−1ῡ[ni(T )T + T ] +

k−ni(T )−2∑
j=0

p2(T )k−ni(T )−2−jĒ2(T )||um||∞

≤ p2(T )k−ni(T )−1ῡ[ni(T )T + T ] +
p2(T )k−ni(T )−1 − 1

p2(T )− 1
Ē2(T )||um||∞

= p2(T )k−ni(T )−1ῡ[ni(T )T + T ] +O(T )||um||∞,
k = ni(T ) + 1, · · · , ni+1(T ). (82)

Now from (80)

ψ̄[(ni(T ) + 1)T ] ≤ p1(T )ψ̄(ni(T )T ) + Ē1(T )||um||∞ + B̄1(T )×[
(1− L(T ))ψ̄(ni(T )T )+

(1 + L(T )p(T )− p(T ))ῡ(ni(T )T ) + ||um||∞]

≤ (1 +O(T ))ψ̄(ni(T )T ) +O(T )ῡ(ni(T )T ) +O(T )||um||∞,
(83)

and

ῡ[(ni(T ) + 1)T ] ≤ O(1)ψ̄(ni(T )T ) +O(1)ῡ(ni(T )T ) +O(1)||um||∞. (84)

Combining (81)-(84) and evaluating at k = ni+1(T ) yields

ψ̄[ni+1(T )T ] ≤ p1(T )(ni+1(T )−ni(T ))
{

(1 +O(T ))ψ̄(ni(T )T ) +O(T )ῡ[ni(T )T ]
}

+

O(1)||um||∞,

ῡ[ni+1(T )T ] ≤ p2(T )(ni+1(T )−ni(T )) ×{
O(1)ψ̄(ni(T )T ) +O(1)ῡ(ni(T )T ) +O(1)||um||∞

}
+O(T )||um||∞.

Now

lim inf
T→0

(ni+1(T )− ni(T ))T ≥ T0,

lim
T→0

p2(T ) = ε,

p1(T ) = e(λ1+O(T ))T ,

so using the fact that λ2 ∈ (λ1, 0), it follows that there exists a γ̄4 so that for small
T we have

ψ̄[ni+1(T )T ] + ῡ[ni+1(T )T ] ≤ eλ2(ni+1(T )−ni(T ))T [ψ̄(ni(T )T ) + ῡ(ni(T )T )] +

2γ̄4||um||∞,



175

as well as

ψ̄[kT ] ≤ (1 + γ4T )eλ2(k−ni(T ))T [ψ̄(ni(T )T ) + ῡ(ni(T )T )] + γ̄4||um||∞,
ῡ[kT ] ≤ γ4e

λ2(k−ni(T ))T [ψ̄(ni(T )T ) + ῡ(ni(T )T )] + γ̄4||um||∞,
ni(T ) ≤ k ≤ ni+1(T ),

so for small T this leads to

ψ̄[ni(T )T ] + ῡ[ni(T )T ] ≤ eλ2[ni(T )−n1(T )]T
{
ψ̄[n1(T )T ] + ῡ[n1(T )T ]

}
+

3γ̄4

1− eλ2T0
||um||∞, i ∈ N.

and

ψ̄[kT ] + ῡ[kT ] ≤ (1 + γ4 + γ4T )eλ2(k−ni(T ))T [ψ̄(ni(T )T ) + ῡ(ni(T )T )] +

2γ̄4||um||∞, ni(T ) ≤ k ≤ ni+1(T ).

If we combine these it follows that for small T and ni(T ) ≤ k ≤ ni+1(T ):

ψ̄[kT ] + ῡ[kT ] ≤ (1 + γ̄4 + γ̄4T )eλ2[k−ni(T )]T ×
[
ψ̄[ni(T )T ] + ῡ[ni(T )T ]

]
+

2γ̄4||um||∞
≤ (1 + 2γ̄4)eλ2[k−n1(T )]T ×

[
ψ̄[n1(T )T ] + ῡ[n1(T )T ]

]
+

[(1 + 2γ̄4)
3γ̄4

1− eλ2T0
+ 2γ̄4]︸ ︷︷ ︸

=:γ̄5

||um||∞, (85)

which means that

ψ̄[kT ] + ῡ[kT ] ≤ γ̄5e
λ2[k−n1(T )]T ×

[
ψ̄[n1(T )T ] + ῡ[n1(T )T ]

]
+ γ̄5||um||∞,

k ≥ n1(T ). (86)

Now we have to extend this bound back to t = 0. We have two possibilities:

(i) If t1 = 0, then n1(T ) = 0, so we are done.

(ii) If t1 > 0, then θ̄(t) is continuous on [0, n1(T )T ), so solving (80) clearly yields
a slightly modified version of (81) and (82): there exists a γ̄6 so that for all
small T

ψ̄[kT ] ≤ eλ2kT ψ̄(0) + γ̄6||um||∞,
ῡ[kT ] ≤ eλ2kT ῡ(0) + γ̄6||um||∞, 0 ≤ k ≤ n1(T ),

so

ψ̄[kT ] + ῡ[kT ] ≤ eλ2kT
[
ψ̄[0] + ῡ[0]

]
+ 2γ̄6||um||∞, 0 ≤ k ≤ n1(T ).

If we combine this with (86), we have

ψ̄[kT ] + ῡ[kT ] ≤ γ̄5e
λ2kT

[
ψ̄[0] + ῡ[0]

]
+ (γ̄5 + 2γ̄5γ̄6)||um||∞, k ≥ 0.

(87)
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Hence, clearly (87) holds in all cases. If we now solve for

[
ψ
υ

]
in terms of[

ψ̄
ῡ

]
:

[
ψ(kT )
υ(kT )

]
=

[
1 −p(T )
−L(T ) 1 + L(T )p(T )

] [
ψ̄(kT )
ῡ(kT )

]
, (88)

and use the fact that L(T ) = O(T ) and p(T ) = O(T ), it follows that there exists a
constant γ̄7 so that, for small T :

ψ[kT ] ≤ γ̄7e
λ2kT (ψ(0) + υ(0)) + γ̄7||um||∞,

υ[kT ] ≤ γ̄7e
λ2kT (ψ(0) + υ(0)) + γ̄7||um||∞, k ≥ 0,

(89)

as desired.
It remains to find a tighter bound which holds during the last part of each

interval [ni(T )T, ni+1(T )T ). To this end, define

n̄i(T ) =

⌈
ti +
√
T

T

⌉
, i ∈ N;

henceforth we assume that T is sufficiently small that

n̄i(T ) < ni+1(T ).

Notice that

(n̄i(T )− ni(T ))T ≥
√
T

T
.

From (82) and (84) there exists a γ̄8 > 0 so that for small T :

ῡ[kT ] ≤ γ̄8(
ε+ 1

2
)k−ni(T )[ῡ(ni(T )T ) + ψ̄(ni(T )T ) + ||um||∞] +

γ̄8T ||um||∞, ni(T ) ≤ k ≤ ni+1(T ),

so

ῡ[kT ] ≤ γ̄8

(
ε+ 1

2

)√T
T

eλ2(k−n̄i(T ))T [ῡ(ni(T )T ) + ψ̄(ni(T )T ) + ||um||∞] +

γ̄8T ||um||∞, n̄i(T ) ≤ k ≤ ni+1(T ).

Now ε+1
2
< 1, so it is easy to confirm that(

ε+ 1

2

) 1√
T

= O(
√
T ),
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so there exists a constant γ̄9 so that for small T :

ῡ[kT ] ≤ γ̄9

√
Teλ2(k−n̄i(T ))T [ῡ(ni(T )T ) + ψ̄(ni(T )T )] + γ̄9

√
T ||um||∞,

n̄i(T ) ≤ k ≤ ni+1(T ).

Combining this with (87) and using the fact that eλ2(ni(T )−n̄i(T ))T → 1 as T → 0, it
follows that there exists γ̄10 so that for small T :

ῡ[kT ] ≤ γ̄10

√
Teλ2kT [ῡ(0) + ψ̄(0)] + γ̄10

√
T ||um||∞,

n̄i(T ) ≤ k ≤ ni+1(T ), i ∈ Z+.

Now

υ(kT ) = O(T )ψ̄(kT ) + (1 +O(T 2))ῡ(kT ),

so combining the above equation with (87) and (88), it follows that there exists a
constant γ̄11 so that for small T :

υ[kT ] ≤ γ̄11

√
Teλ2kT [υ(0) + ψ(0)] + γ̄11

√
T ||um||∞,

n̄i(T ) ≤ k ≤ ni+1(T ), i ∈ Z+,

as desired.

�

Proof of Lemma 5.1:
The states of ψ and υ satisfy

ψ[kT ] = eλ1kTψ(0) +
k−1∑
j=0

eλ1(k−1−j)T [γ1T ||Ē|| × ||um||∞ + γ1γ4Tυ[jT ]+

[γ3T
2 + γ3Tχ(j, T )](ψ[jT ] + υ[jT ] + ||um||∞)

]
, (90)

υ[kT ] = εkυ(0) +
k−1∑
j=0

εk−1−j[γ3T + γ3χ(j, T )](ψ[jT ] + υ[jT ] + ||um||∞). (91)

Clearly

||ˆ̄x(0)|| = ψ(0) ≤ ψ(0),

||η̂(0)|| = υ(0) ≤ υ(0).

So suppose {
||ˆ̄x(jT )|| ≤ ψ[jT ],
||η̂(jT )|| ≤ υ[jT ],

j = 0, 1, ..., k − 1;
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we must prove that they hold for j = k. Let’s examine the update laws for ˆ̄x and
η̂. We have

||ˆ̄x[kT ]|| ≤ γ1e
λ1kT ||ˆ̄x(0)||+

k−1∑
j=0

γ1e
λ1(k−1−j)T [γ1T ||Ē|| × ||um||∞+

γ1γ4T ||η̂[jT ]||+ [γ3T
2 + γ3Tχ(j, T )](||ˆ̄x[jT ]||+ ||η̂[jT ]||+ ||um||∞)

]
≤ γ1ψ[kT ],

||η̂[kT ]|| ≤ εk||η̂(0)||+
k−1∑
j=0

εk−1−j[γ3T + γ3χ(j, T )](||ˆ̄x[jT ]||+ ||η̂[jT ]||+ ||um||∞)

≤ υ[jT ].

�

Proof of Lemma 5.2:
Proof of Lemma 5.2:

To prove this result, the interval of [jT, (j + 1)T ) will be analyzed. Here we
analyze two cases: (i) q = 0, and (ii) q ≥ 1. While in the first case the state z has
dimension 2, in the second case the state z has dimension 7. First we prove the
lemma for the case q = 0:

• z1 is used to construct φ̂0(jT ):

φ̂0(jT ) =
1

ρ

[
f̄2 −1

]
Hm(h)−1S−1

m︸ ︷︷ ︸
=:
[
δ̄0 δ̄1 · · · δ̄m

]


y(jT )

y(jT + h)
...

y(jT +mh)

+
[
k1 k2

] [ x̄m(jT )
ūm(jT )

]
.

• z2 is used to construct and keep track of ûo(jT ).

The periodically time-varying gains F , G, H, J , and L (with period p) are
partitioned accordingly as

F (k) =

[
F1(k)
F2(k)

]
, G(k) =

[
G1(k)
G2(k)

]
, H(k) =

[
H1(k)
H2(k)

]
, J(k) =

[
J1(k)
J2(k)

]
,

L(k) =
[
L1(k) L2(k)

]
.

Since the controller is periodic of period T , for simplicity we will assume that
j = 0 which means that we are analysing the first period [0, T ). The state z1 is
used to construct φ̂0(0). We have

(F1, G1, H1, J1)(k) =


(
[

0 0
]
, δ̄0, k1, k2) k = 0, p = 1,

(
[

0 0
]
, δ̄0, 0, 0) k = 0, p > 1

(
[

1 0
]
, δ̄k, 0, 0, ) k = 1, · · · ,m

(
[

1 0
]
, 0, 0, 0) k = m+ 1, · · · , p− 1, p > m+ 1.
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The state z2 is used to form the ûo(jT ). To this end, we set

(F2, G2, H2, J2)(k) =



(
[
c0 1

]
, c0δ̄1, 0, 0) k = 0, p = 1

(
[

0 1
]
, c0δ̄k+1, c0k1, c0k2) k = 0, p > 1, p = m.

(
[

0 1
]
, 0, 0, 0) k = 0, p > 1, p > m

(
[
c0 1

]
, c0δ̄k, 0, 0) k = p− 1, p = m, m ≥ 1

(
[
c0 1

]
, 0, 0, 0) k = p− 1, p > m m ≥ 1

(
[

0 1
]
, 0, 0, 0) all remaining

k ∈ {1, · · · , p− 2}.

In the case that p = m, m ≥ 1 the initial value of the states should be chosen as[
z1(0)
z2(0)

]
=

[
(0)

−c0δ̄k+1y(0).

]
The construction of the control signal is as follows

(L,M)(k) =



(
[
c0 1

]
, c0δ̄1, 0, 0) k = 0, p = 1

(
[

0 1
]
, c0δ̄k+1, 0, 0) k = 0, p = m, m > 1

(
[

0 1
]
, 0, 0, 0) k = 0, p > m, m > 1

(
[

0 1
]
, 0, 0, 0) k = p− 1, p = m, m ≥ 1

(
[

1 1
]
, 0, 0, 0) k = p− 1, p > m m ≥ 1

(
[

0 1
]
, 0, 0, 0) all remaining

k ∈ {1, · · · , p− 2}.

The difference equation for the states is as[
z1(pj + i+ 1)
z2(pj + i+ 1)

]
=

[
F1(1)(pj + i) F1(2)(pj + i)
F2(1)(pj + i) F2(2)(pj + i)

] [
z1(pj + i)
z2(pj + i)

]
+[

G1(pj + i)
G2(pj + i)

]
y(jT + ih) +

[
H1(pj + i)

0

]
x̄m(jT + ih) +[

J1(pj + i)
0

]
ūm(jT + ih), j ∈ Z+, i ∈ {0, · · · , p− 1}.

Recall that the matrices F1, F2, G1, G2, H1, H2, J1 and J2 are periodic with period p
for j ∈ N. From the controller construction, it is easy to show that F2(2)(pj+ i) =
1, j ∈ N, i ∈ {0, · · · , p− 1} and

z2 = ûo(jT )

as desired in parts (i) and (ii) of Lemma 5.2. To prove part (iii), using the fact that
F1(0), it follows

F1(p− 1)F1(p− 2) · · ·F1(0) = 0,

i.e. the first sub-system is deadbeat, as desired in part (iii) of Lemma 5.
Now we prove the lemma for the case q ≥ 1 and the state z has dimension 7:
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• z1 keeps track of the following entry, used to construct the φ̂i(jT ) terms:

1

ρ

[
0 1

]
Hm(h)−1S−1

m︸ ︷︷ ︸
=:
[
δ0 δ1 · · · δm

]


y(jT )

y(jT + h)
...

y(jT +mh)

 .

Construction of the φ̂i(jT ) terms is carried out using two states:

• z2 keeps track of the current φ̂i(jT ) − δmy(jT + (i + 1)mh), i = 1, · · · , q,
which is being constructed.

[
δ0 δ1 · · · δm

]


y(jT + imh)− y(jT )
y(jT + imh+ h)− y(jT + h)

...
y(jT + (i+ 1)mh)− y(jT +mh)

+ φ̂i−1(jT )−

δmy(jT + (i+ 1)mh), i = 1, · · · , q.

• z3 keeps track of the current φ̂i(jT ), i = 1, · · · , q, which is being constructed.

[
δ0 δ1 · · · δm

]


y(jT + imh)− y(jT )
y(jT + imh+ h)− y(jT + h)

...
y(jT + (i+ 1)mh)− y(jT +mh)

+ φ̂i−1(jT ),

i = 1, · · · , q.

• z4 is used to construct φ̂0(jT ):

φ̂0(jT ) =
1

ρ

[
f̄2 −1

]
Hm(h)−1S−1

m︸ ︷︷ ︸
=:
[
δ̄0 δ̄1 · · · δ̄m

]


y(jT )

y(jT + h)
...

y(jT +mh)

+
[
k1 k2

] [ x̄m(jT )
ūm(jT )

]
.

• z5 is used to keep track of the current φ̂i−1(jT ), i = 1, · · · , q; this is
essentially a delyed versionof z3.

• z6 is used to construct
∑q

i=0 ciφ̂i(jT ).

• z7 is used to construct and keep track of ûo(jT ).
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The periodically time-varying gains F , G, H, J , and L (with period p) are
partitioned accordingly as

F (k) =



F1(k)
F2(k)
F3(k)
F4(k)
F5(k)
F6(k)
F7(k)


, G(k) =



G1(k)
G2(k)
G3(k)
G4(k)
G5(k)
G6(k)
G7(k)


, H(k) =



H1(k)
H2(k)
H3(k)
H4(k)
H5(k)
H6(k)
H7(k)


, J(k) =



J1(k)
J2(k)
J3(k)
J4(k)
J5(k)
J6(k)
J7(k)


,

L(k) =
[
L1(k) L2(k) L3(k) L4(k) L5(k) L6(k) L7(k)

]
.

Since the controller is periodic, for simplicity we will assume that j = 0.
For z1 we have

(F1, G1, H1, J1)(k) =


(
[

0 0 0 0 0 0 0
]
, δ0, 0, 0) k = 0

(
[

1 0 0 0 0 0 0
]
, δk, 0, 0, ) k = 1, · · · ,m

(
[

1 0 0 0 0 0 0
]
, 0, 0, 0) k = m+ 1, · · · , p− 1.

This means that

z1(k) =
[

0 1
]
Hm(h)−1S−1

m Ym(0), k = m+ 1, · · · , p− 1.

The objective of z2 is to construct of the current φ̂i(0) − δmy((i + 1)mh), i =
1, · · · , q. To this end, we set

(F2, G2, H2, J2)(k) =



(
[

0 0 0 0 0 0 0
]
, 0, 0, 0) k = 0, · · · ,m− 1

(
[

0 1 0 0 0 0 0
]
, δk−m, 0, 0) k = m, · · · , 2m− 2

(
[
−1 1 0 0 0 0 0

]
, δm−1, 0, 0) k = 2m− 1

(
[

0 0 0 0 0 0 0
]
, δ0, 0, 0) i = 2, · · · , q, k = im

(
[

0 1 0 0 0 0 0
]
, δk−im, 0, 0) i = 2, · · · , q,

k = im+ 1, · · · , (i+ 1)m− 2,
(
[
−1 1 0 1 0 0 0

]
, δm−1, 0, 0) i = 2, · · · , q,

k = (i+ 1)m− 1,
(
[

0 1 0 0 0 0 0
]
, 0, 0, 0) all remaining

k ∈ {0, · · · , p− 1},

which results in

z2(im+m) = φ̂i(0)− δmy((i+ 1)mh), i = 1, · · · , q.

The state z3 is used to construct the current φ̂i(0), i = 1, · · · , q. We have

(F3, G3, H3, J3)(k) =


(
[

0 0 0 0 0 0 0
]
, 0, 0, 0, ) k = 0, · · · , 2m− 1

(
[

0 1 0 0 0 0 0
]
, δm, 0, 0) i = 1, · · · , q,

k = (i+ 1)m,
(
[

0 0 1 0 0 0 0
]
, 0, 0, 0) all remaining

k ∈ {0, · · · , p− 1},
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which results in

z3(k) = φ̂i(0), i = 1, · · · , q, k = (i+ 1)m+ 1, · · · , (i+ 2)m.

The state z4 is used to construct φ̂0(0). We have

(F4, G4, H4, J4)(k) =


(
[

0 0 0 0 0 0 0
]
, δ̄0, k1, k2) k = 0

(
[

0 0 0 1 0 0 0
]
, δ̄k, 0, 0, ) k = 1, · · · ,m

(
[

0 0 0 1 0 0 0
]
, 0, 0, 0) k = m+ 1, · · · , p− 1.

The state z5 is used to keep track of current φ̂i−1(0), i = 1, . . . , q. To this end,
set

(F5, G5, H5, J5)(k) =


(0, 0, 0, 0) k = 0, · · · , 2m
(
[

0 0 0 1 0 0 0
]
, 0, 0, 0) k = 2m+ 1

(
[

0 0 1 0 0 0 0
]
, 0, 0, 0) i = 2, · · · , q, k = (i+ 1)m

(
[

0 0 0 0 1 0 0
]
, 0, 0, 0) all remaining

k ∈ {0, · · · , p− 1}.

The state z6 is used to form
∑q

i=0 ciφ̂i(0). To this end, we set

(F6, G6, H6, J6)(k) =



(
[

0 0 0 0 0 0 0
]
, 0, 0, 0) k = 0, · · · ,m

(
[

0 0 0 c0 0 0 0
]
, 0, 0, 0) k = m+ 1

(
[

0 0 ci 0 0 1 0
]
, 0, 0, 0) k = (i+ 1)m+ 1
(i = 1, · · · , q − 1)

(
[

0 0 cq 0 0 1 0
]
, δm, 0, 0) k = (q + 1)m

(
[

0 0 0 0 0 1 0
]
, 0, 0, 0) all remaining

k ∈ {0, · · · , p− 1}.

Thus,

z6(k) =

q∑
i=0

ciφ̂i(0), k = (q + 1)m+ 1, · · · , p.

The state z7 is used to form the ûo(0). To this end, we set

(F7, G7, H7, J7)(k) =


(
[

0 0 0 0 0 1 1
]
, 0, 0, 0) k = p− 1

(
[

0 0 0 0 0 0 1
]
, 0, 0, 0) all remaining

k ∈ {0, · · · , p− 2}.

The construction of the control signal is as follows

(L,M)(k) =



(
[

0 0 0 0 0 0 1
]
, 0) k = 0, · · · ,m− 1

(
[

0 0 0 ρ 0 0 1
]
, ρδ̄m) k = m

(
[

0 0 0 ρ 0 0 1
]
, 0) k = m+ 1, · · · , 2m− 1

(
[

0 0 0 ρ −ρ 0 1
]
, ρδm) k = (i+ 1)m

(i = 1, · · · , q − 1)
(
[

0 0 0 ρ −ρ 0 1
]
, 0) k = (i+ 1)m+ 1, · · · , (i+ 2)m− 1

(i = 1, · · · , q − 1)
(
[

0 0 0 0 −ρ 0 1
]
, 0) k = (q + 1)m, · · · , (q + 2)m− 1

(
[

0 0 0 0 0 p
p−2q−1

1
]
, 0) k = (q + 2)m, · · · , p− 1.
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Now let us divide the states into two parts: ζ :=


z1

z2

z3

z4

z5

z6

 and z7. Before proceed-

ing, with an arbitrary (1×n) vector Q we define the vector Q[i:j], i ≤ j ≤ n, equal

to a (1× (j − i+ 1)) row vector consisting of elements ith to jth of Q. Regarding
this partitioning and definition, we define the following matrices

F11 :=


F1[1:6]

F2[1:6]

F3[1:6]

F4[1:6]

F5[1:6]

F6[1:6]

 , F12 :=


F1[7:7]

F2[7:7]

F3[7:7]

F4[7:7]

F5[7:7]

F6[7:7]

 , F21 := F7[1:6], F22 := F7[7:7]

Ḡ1 :=


G1[1:1]

G2[1:1]

G3[1:1]

G4[1:1]

G5[1:1]

G6[1:1]

 , H̄1 :=


H1[1:1]

H2[1:1]

H3[1:1]

H4[1:1]

H5[1:1]

H6[1:1]

 , J̄1 :=


J1[1:1]

J2[1:1]

J3[1:1]

J4[1:1]

J5[1:1]

J6[1:1]

 ;

thus, the difference equation for the states is as[
ζ(pj + i+ 1)
z6(pj + i+ 1)

]
=

[
F11(pj + i) F12(pj + i)
F21(pj + i) F22(pj + i)

] [
ζ(pj + i)
z6(pj + i)

]
+[

Ḡ1(pj + i)
0

]
y(jT + ih) +

[
H̄1(pj + i)

0

]
x̄m(jT + ih) +[

J̄1(i)
0

]
ūm(jT + ih), j ∈ Z+, i ∈ {0, · · · , p− 1}.

Recall that the matrices F11, F12, F21, F22, Ḡ1 H̄1, and J̄1 are periodic with period
p. From the controller construction, it is easy to show that F22(k) = 1, k ∈ Z+,
and z6 is constructed as

z6(pj + i) =

{
ûo(jT ), i ∈ {0, 1, · · · , p− 2}
ûo[(j + 1)T ], i = p− 1,

, j ∈ Z+,

as desired in parts (i) and (ii) of Lemma 5.2. To prove part (iii), using the fact that
F1(0), F2(0), · · · , F6(0) are all zero vectors, it follows that F11(0) = 0 and so

F11(p− 1)F11(p− 2) · · ·F11(0) = 0,

i.e. the first sub-system is deadbeat, as desired in part (iii) of Lemma 5.2.

�
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.3 APPENDIX C

Before starting the proofs, a technical result is presented which is used in other
proofs.

Lemma C.1 [14]:
Consider the square matrix

A =

[
A11 A12

A21 A22

]
,

where A22 is nonsingular. On defining L0 := A−1
22 A21 and A0 := A11 − A12L0, if

||A−1
22 || ≤

1

3
(||A0||+ ||A12|| ||L0||)−1,

then there exists a matrix M with the property that

||M || ≤ 2||A0|| ||L0||
||A0||+ ||A12|| ||L0||

,

such that if L := L0 +M , then[
I 0
L I

] [
A11 A12

A21 A22

] [
I 0
−L I

]
=

[
A11 − A12L A12

0 A22 + LA12

]
.

Proof of Lemma 6.1:

Suppose that the two conditions (i) and (ii) hold. Examining (6.8), the closed-loop
system is stable if and only if eigenvalues of

Aclosed :=

[
I + ĀT + ∆1(kT ) B̄T + ∆2(kT )

c0

[
f̄2 −1

]
Ol +O(T ) 1 + c0

[
f̄2 −1

]
pl +O(T )

]
,

stay in the open unit disk. To proceed, we first carry out a similarity transformation
to make the (2,1) element small, while maintaining the (1,2) element small. First
we need some notation:

J :=

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl
,

and we define the similarity transformation T1 as

T1 :=

[
I 0
J 1

]
.



185

Then

Āclosed := T1AclosedT
−1
1 =

I + (Ā− B̄J)T + ∆1(kT )−∆2(kT )J︸ ︷︷ ︸
=:∆11(kT )

TĀJ + TJĀ+ J∆1(kT ) +O(T )− TJB̄J + J∆2(kT )J −O(T )J︸ ︷︷ ︸
=:∆21(kT )

B̄T + ∆2(kT )︸ ︷︷ ︸
=:∆12(kT )

1 + c0

[
f̄2 −1

]
pl +O(T ) + TJB̄ + J∆2(kT )︸ ︷︷ ︸

=:∆22(kT )


=:

[
a11(T ) a12(T )
a21(T ) a22(T )

]
;

recall that there is a γ1 > 0 so that

||∆1(kT )|| ≤ γ1T
2,

||∆2(kT )|| ≤ γ1T
2,

so there exists a constant γ2 > 0 so that

||∆11(kT )|| ≤ γ2T
2,

||∆12(kT )|| ≤ γ2T,

||∆21(kT )|| ≤ γ2T,

||∆22(kT )|| ≤ γ2T.

Now we carry out a second similarity transformation to put Āclosed into upper
triangular form, so that stability will be determined by the diagonal terms. Before
proceeding, define

α := sup
θ̄∈P̄
|1 + c0

[
f̄2 −1

]
pl|,

which is less than one. Now we define the second similarity transformation as

T2 :=

[
I 0

W (T ) 1

]
,
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W (T ) will be defined in such a way that T2ĀclosedT
−1
2 is upper triangular. We have

T2ĀclosedT
−1
2 =[

a11(T )− a12(T )W (T )
W (T )a11(T ) + a21(T )−W (T )a12(T )W (T )− a22(T )W (T )

a12(T )
a22(T ) +W (T )a12(T )

]
.

(92)

Now we would like the (2,1) element to be zero, which is true if and only if

W (T ) = a21(T )a11(T )−1 −W (T )a12(T )W (T )a11(T )−1 − a22(T )W (T )a11(T )−1︸ ︷︷ ︸
=:η(W (T ))

.

Now we have

a11(T ) = I +O(T ),
a12(T ) = O(T ),
a21(T ) = O(T ),
a22(T ) = 1 + c0

[
f̄2 −1

]
pl +O(T ),

so

η(W (T )) = [I +O(T )]O(T ) + [I +O(T )]W (T )O(T )W (T ) +

[I +O(T )]
{

1 + c0

[
f̄2 −1

]
pl +O(T )

}
W (T ).

Hence, if ||W (T )||2 ≤ 1, then there exists a γ3 > 0 so that for small T :

||η(W (T ))|| ≤ (1 + γ3T )γ3T + (1 + γ3T )γ3T ||W (T )||2 +

(1 + γ3T )(α + γT )||W (T )||
≤ α + 7γ3T. (93)

Hence, for small T , say T ∈ (0, ¯̄T ):

||η(W (T ))|| ≤ α + 1

2
, θ̄ ∈ P̄ .

According to Brouwer’s Fixed Point Theorem, the equation

W (T ) = η(W (T ))

has a solution for T ∈ (0, T̄ ) satisfying

||W (T )|| ≤ 1.

A tighter bound on its size can be obtained by examining (93):

||W (T )|| = ||η(W (T ))||
≤ (1 + γ3T )γ3T +

(1 + γ3T )γ3T ||W (T )||+ (1 + γ3T )(α + γ3T )||W (T )||
⇒ [1− (1 + γ3T )(α + 2T )] ||W (T )|| ≤ (1 + γ3T )γ3T ;
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for small T we have

(1 + γ3T )(α + 2T ) ≤ α + 1

2
,

so for such T :

(1− α + 1

2
) ||W (T )|| ≤ (1 + γ3T )γ3T

⇒ ||W (T )|| ≤ (1 + γ3T )γ3T

1−
(
α+1

2

)
= O(T ).

Now we return to (92). For small T the closed-loop system is stable if and only
if

sp[a11(T )− a12(T )W (T )] ⊂ D, θ̄ ∈ P̄ ,

and

|a22(T ) +W (T )a12(T )| < 1, θ̄ ∈ P̄ .

Now we have

a22(T ) +W (T )a12(T ) = 1 + c0

[
f̄2 −1

]
pl +O(T ),

so for small T

|a22(T ) +W (T )a12(T )| ≤ α + 1

2
, θ̄ ∈ P̄ .

Also

a11(T )− a12(T )W (T ) = I + (Ā− B̄J)T +O(T 2)

= I + T [(Ā− B̄J)T +O(T )].

From condition (ii) it follows that there exists a compact set Υ̂ ⊂ C− containing υ
so that for small T

sp[Ā− B̄J +O(T )] ⊂ Υ̂, θ̄ ∈ P̄ .

Hence, for such a range of T

sp[I + T (Ā− B̄J +O(T ))] ⊂ {1 + Tυ : υ ∈ Υ̂};

but this lies in D for small T . Hence, we conclude that there exists a T̄ > 0 so that
we have closed-loop stability for all θ̄ ∈ P̄ and T ∈ (0, T̄ ).

To prove the closed-loop stability we need to show that the controller states z
are well behaved. First suppose that t0 = k0 = 0. From the stability of the Aclosed
it follows that there exist constants γ4 > 0 and λ < 0 so that

||ˆ̄x(kT )|| ≤ γ4e
λkT (||x̄0||+ |ûo0|) + γ4||um||∞,

|ûo(kT )| ≤ γ4e
λkT (||x̄0||+ |ûo0|) + γ4||um||∞,

k ∈ Z+. (94)
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Using an identical argument to that used in Theorem 5.1 we can show that there
exists a constant γ5 > 0 so that

|z[k]| ≤ γ5e
λkh(||x̄0||+ |ûo0|) + γ5||um||∞, k ∈ Z+.

It remains to prove that ˆ̄x is well behaved between sample points. However, it
follows from solving the system equation that for t ∈ [kT, (k + 1)T ) that

ˆ̄x(t) = (I +O(T ))ˆ̄x(kT ) +O(T )||um||∞ +O(T )||ûo(kT )||,

so it follows that there exists a γ6 > 0 so that

ˆ̄x(t) ≤ γ6e
λt||x̄0||+ γ6||um||∞.

In the more general case of t0 = k0h > 0, we simply argue in the same way as in
the proof of Theorem 5.1.

Hence, with

xsd(t) :=

[
ˆ̄x(t)
z[k]

]
, t ∈ [kh, (k + 1)h),

so it follows that

‖xsd(t)‖ ≤ (γ5e
−λT̄ + γ6)︸ ︷︷ ︸

=:γ7

(eλt‖xsd(0)‖+ ‖um‖∞), t ≥ 0,

as desired.

�

Proof of Lemma 6.2:
Recall that regarding Condition (d), the plant is time-invariant, so we observe the
following two properties

• Property 1:

C =
[

0̄ 1 0 · · · 0
]

CA =
[

0̄ 0 1 · · · 0
]

...

CAm−1 =
[

0̄ 0 · · · 0 1
]

CAm =
[
α0 · · · αn−m−1 −β0 · · · −βm−1

]
CAm+1 =

[
−b0αn−m−1 − α0βm−1 · · · βm−1 + β2

m−1

]
.

For simplicity let us define:

CAm+1 =
[
−b0αn−m−1 − α0βm−1 · · · βm−1 + β2

m−1

]
:=

[
ζ0,0 · · · ζn−1,0

]
.

If we do the same procedure we will have

CAl =
[
ζ0,l−m · · · ζn−1,l−m

]
.
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• Property 2:

CB = 0

CAB = 0
...

CAm−2B = 0

CAm−1B = g

CAmB = −gβm−1.

For simplicity let us define:

CAmB = ϑ0.

If we do the same procedure we will have

CAl−1B = ϑl−m−1.

First we prove part (i) of Lemma 6.2. To proceed, we use these properties to obtain

1 + c0

[
f̄2 −1

]
pl,

and [
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
.

It is easy to show that[
f̄2 −1

]
pl = −grmλ∗

l−m − ϑ0rm+1λ
∗l−m−1 − · · · − ϑl−m−2rl−1λ

∗ − ϑl−m−1,

and since λ∗ is very large we have[
f̄2 −1

]
pl ≈ −grmλ∗

l−m

,

and so

1 + c0

[
f̄2 −1

]
pl ≈ 1− c0grmλ

∗l−m

;

it is easy to show that
|1− c0grmλ

∗l−m| < 1,

if and only if c0 and g have the same sign and

0 < |c0| <
1

rm|g|λ∗l−m ,

is small enough; thus, with this two conditions

|1 + c0

[
f̄2 −1

]
pl| < 1,
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as desired in part (i) of Lemma 6.2.
Now we prove part (ii) of Lemma 6.2. The objective is to design the controller

gains appropriately so that for all θ̄ ∈ P̄ there exists a compact set Υ ⊂ C− so that

sp

[
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈ P̄ .

To proceed, let us define

µi := −ζl−m,i −
l−m−1∑
j=0

ζi,jrm+jλ
∗l−m−j

≈ −ζ0,irmλ
∗l−m

, i ∈ {0, · · · , n−m− 1},

then[
f̄2 −1

]
Ol =[

µ0 · · · µn−m−1 −r0λ
∗l + µn−m · · · −rm−1λ

∗l−m+1
+ µn−1

]
≈
[
−ζ0,0rmλ

∗l−m · · · −ζ0,n−m−1rmλ
∗l−m −r0λ

∗l · · · −rm−1λ
∗l−m+1

]
.

Thus,

B̄
[
f̄2 −1

]
Ol =

≈ g



0 · · · 0 0 · · · 0
. . . . . .

0 · · · 0 0 · · · 0

−ζ0,0rmλ
∗l−m · · · −ζ0,n−m−1rmλ

∗l−m −r0λ
∗l · · · −rm−1λ

∗l−m+1

0 · · · 0 0 · · · 0
. . . . . .

0 · · · 0 0 · · · 0


.

This structure yields

Ā− B̄
[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

=

 A−B
[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

0 0

0 Am Bm

0 0 −σ

 , (95)

which is a diagonal matrix. Observe that Am is stable and σ > 0, so we only need to
design the controller gains so that for all θ̄ ∈ P̄ , there exists a compact set Υ ⊂ C−

so that

sp

[
A−B

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈ P̄ .
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Now let us analyze this matrix. It is easy to show that

A−B
[
f̄2 −1

]
Ol[

f̄2 −1
]
pl
≈




0 1

. . .

0 0 . . . 1
−b0 −b1 . . . −bn−m−1




0 0
. . .

0 0 . . . 0
α0 + ζ0,0 α1 + ζ0,1 . . . αn−m−1 + ζ0,n−m−1




0 0

. . .

0 0 . . . 0
1 0 . . . 0




0 1
. . .

0 0 . . . 1

−β0 − r0
rm
λ∗

m −β1 − r1
rm
λ∗

m−1
. . . −βm−1 − rm−1

rm
λ∗




Now we consider that

−βj −
rj
rm
λ∗

m−j ≈ − rj
rm
λ∗

m−j

, j ∈ {0, · · · ,m− 1},

and define κi := αi + ζ0,i, i ∈ {0, · · · , n−m− 1}, so

A−B
[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

=:

[
A11 A12

A21 A22

]



0 1

. . .

0 0 . . . 1
−b0 −b1 . . . −bn−m−1




0 0
. . .

0 0 . . . 0
1 0 . . . 0




0 0
. . .

0 0 . . . 0
κ0 κ1 . . . κn−m−1




0 1
. . .

0 0 . . . 1

− r0
rm
λ∗

m − r1
rm
λ∗

m−1
. . . − rm−1

rm
λ∗




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with

A11 :=


0 1

. . .

0 0 . . . 1
−b0 −b1 . . . −bn−m−1

 , A12 :=


0 0

. . .

0 0 . . . 0
1 0 . . . 0

 ,

A21 :=


0 0

. . .

0 0 . . . 0
κ0 κ1 . . . κn−m−1

 , A22 :=


0 1

. . .

0 0 . . . 1

− r0
rm
λ∗

m − r1
rm
λ∗

m−1
. . . − rm−1

rm
λ∗

 .
(96)

To achieve the desired result, first we need to transform

A−B
[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

into an upper triangular matrix using a similarity transformation:

Claim C.1: There exists a λ̄∗ >> 1 large enough so that for λ∗ ≥ λ̄∗, there

exists a nonsingular transformation T̃ :=

[
I 0
L I

]
, where ||L|| = O( 1

λ∗
) and we

have

T̃

[
A−B

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
T̃−1 = T̃

[
A11 A12

A21 A22

]
T̃−1

=

[
A11 − A12L A12

0 A22 + LA12

]
.

Proof: The proof of Claim C.1 is given below.
Now we have the diagonal transformed matrix[

A11 − A12L A12

0 A22 + LA12

]
,

and we analyze the matrices on the diagonal. First we work on A11−A12L. Recall
that because the plant is minimum phase, A11 is Hurwitz. From Claim C.1 for
λ∗ >> 1 large enough, ||A12L|| = O(1/λ∗) is small, so there exist constants γ1 > 0
and λ1 > 0 so that

||e(A11−A12L)t|| ≤ γ1e
−λ1t. (97)



193

Now we look at A22 +LA12. First we have to prove that A22 is Hurwitz. From the
structure of A22 in (96), it is easy to show that the characteristic polynomial of this
matrix is as

sm +
rm−1

rm
λ∗sm−1 + · · ·+ r1

rm
λ∗

m−1

s+
r0

rm
λ∗

m

.

Regarding the fact that r0, r1, . . . , rm are defined so that the above polynomial
is Hurwitz, so A22 is Hurwitz. Similar to the stability proof of A11 − A12L, for
λ∗ >> 1 large enough, ||LA12|| = O(1/λ∗) is small, so there exist constants γ2 > 0
and λ2 > 0 so that

||e(A22+LA12)t|| ≤ γ2e
−λ2t.

If we combine this inequality with (97), and we set λ∗∗ = max{λ̄∗, ¯̄λ∗}, then for
λ∗ ≥ λ∗∗, for all θ̄ ∈ P̄ , there exists a compact set Υ ⊂ C− so that

sp

[
A−B

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈ P̄ ;

recall that in the diagonal matrix (95) Am is Hurwitz and σ > 0. Thus

sp

[
Ā− B̄

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
⊂ Υ, θ̄ ∈ P̄ ,

as desired in part (ii) of Lemma 6.2.

�

Proof of Claim C.1:

To transform [
A−B

[
f̄2 −1

]
Ol[

f̄2 −1
]
pl

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

=:Aclosed

into an upper triangular matrix, first we show that A22 = O(λ) and then use Lemma
C.1. Let us define the transformation matrix

T1 =


1

1
λ∗

. . .
1

λ∗m−1

 ,
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then we have

T1A22T
−1
1 = λ∗


0 1

. . .

0 0 . . . 1
−g r0

rm
−g r1

rm
. . . −g rm−1

rm


= O(λ∗).

Now we apply Lemma C.1 [14] to transform Aclosed into an upper triangular matrix.
Since A22 = O(λ), on defining L0(t) := A−1

22 A21(t) and A0(t) := A11(t)− A12L0(t),
since λ∗ >> 1 is large enough, ||L0|| = ||A−1

22 A21|| = O(1/λ∗), and ||A0|| = ||A11 −
A12L0|| = O(1), we have

||A−1
22 || ≤

1

3
(||A0||+ ||A12|| ||L0||)−1.

So there exists a matrix M(t) with the property that

||M || ≤ 2||A0|| ||L0||
||A0||+ ||A12|| ||L0||

= O(1/λ∗),

such that if L(t) := L0(t) +M(t) = O(1/λ∗), then[
I 0
L I

] [
A11 A12

A21 A22

] [
I 0
−L I

]
=

[
A11 − A12L A12

0 A22 + LA22

]
,

as desired.

�
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