
Fuzzv Belief-B ased
Supervision

by Alexandre Vorobiev

A thesis presented to the University of Waterloo

in fulfiilment of the thesis requirement

for the degree of Master of Applied Science

in Electricd Engineering

Waterloo, Ontario, Canada, 1997

@ 1997 Alexandre Vorobiev

Acquisitions and Acquisitions et
Biiliographic Senrices senrices biiographiques

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distritbuer ou
copies of tbis thesis in microfonn, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/fh, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thése ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

The University of Waterloo requires the signatures of dl persons using or photocopying this

thesis. Please sign below, and give address and date.

Abstract
This thesis presents a new approach to automatic failure detecrion (supervision) of session-ori-

ented. real-time software systerns. The system being supervised is assumed to be specified in

a forrnalism based on cornrnunicating extended finite state machines such as ITU-T SDL. The

presented approach is a significant refinement of an existing belief-based supervision ap-

proach. Its novelty lies in the association of a feasibility factor with individuai hypotheses

about the state of the target software system. The feasibility changes over time according to

the closeness of the hypothesis to the observed behaviour. The competition aigorithm present-

ed in the thesis decide which hypotheses are left and which are discarded. The approach aiiows

for a continuous supervision. capable of resynchronization with the target system following

occurrences of failures.

After a description of the approach. an experimental evaluation of the research results is pre-

sented. The target system in the evaluation was the conuol prograrn of a smdl telephone ex-

change. Both the simulated exchange and the supervisor executed on a U N E workstation.

Acknowledgments

1 would like to express my deep gratitude to my supervisor. Professor R. E. Seviora. whose

assertive. yet kind supervision and guidance inspired. encouraged and enhanced this research

effort.

1 would like also to thank my family and friends for their patience, suppon and trust in me.

I also thank my readers. Professor J.A.Fields and Professor P. Dasiewicz for their suggestions

and comrnents.

This research has been funded by a joint research gram from Bell Canada and NCRC.

Contents

CHAPTER 1

CHAPTER II

Introduction . I
1.1 SofnvnreSupervision 2
1.2 Belief-Based Sofnvare Supernision 3
1.3 Scope of the Research 4
1.4 Thesis Objective 4
1.5 Research Contributions 5
1.6 Related Work 5
1.7 ThesisOrganizarion 8

Belief-Based Sofnvare Supervision 9

2.1 Non -deteminisms and Belief- Based Sofrware
Supervision 10

2.1.1 Non-Deteminisrns of Signal Detection in
Sofhvare Supervision 12

2.1.1. I Signal Deteciion 13

...... - -

Fwzy Belief- Based Supervision V i i

... 2.1.1.2 Signal Permutations During Abstraction 15
2.1.2 Specifcation Non.detemtinism 16

2.1.2.1 SDL hierarchy 17
............. 2.1.2.2 Constructs of SDL Processes 18

.............. 2.1.2.3 Dvnamic Semantics of SDL 19
................. 2.1.2.4 SDL Non-detenninisms 20

2.2 Belief-Based Supernision 21
..................... 2.2.1 BSDL Abstract Machine 23

......... 2.2.2 Non-deteminisms and beliefs crearion 24
.......... 2.2.2.1 Signal detecrion nondeteminism 24

................. 2.2.2.2 Spontaneous mansirions 24
.................... 2.2.2.3 Arbitra? decisions 25

.......................... 2.2.2.4 Concurrence 25
......... 2.2.2.5 Non-deteministic channel delays 25

....................... 2.2.3 Temination of beliefs 26
2.3 Critical Evaluation 28

C H A P T E R I I I F U Z ~ Belief-Bused Sofnvare Supervision 29

3.1 Informa1 Introduction 30
3.1.1 Benefits of the Approach 31
3.1.2 Limitations 32

.... 3.2 Generic Framework for Belief-based Supervision 33
3.2.1 Original Belie f- Based Supervision Front the

Point of Vierv of Generic Framework 34
3.2.2 Fuzy Belief-Based Sofrware Supervision 34

3.3 Feasibility Factor 36
3.3.1 Inheritance Rules for Feasibility Factor 36
3.3.2 Belief Set Combination and Resulting

Feasibility 37
3.3.3 Failure in Fuuy Belief-Based Supervision 39
3.3.4 Motching and Change of Feasibility 39

3.4 Matching 44

viii F m Belief-ked Supervision

3.4. I Output Signais 44
3.4.2 Behnvior Representation and Capture: Output

Histo 45
3.4.3 Performance Erne-Ours of Signais in BSDL

Model 46
...... 3.4.4 ïïming Out of the Observed Output Signals 48

3.4.5 Matching Individual Signals 49
.... 3.4.6 ïïming Aspect of Individual Signal Matching 51

3.4.7 Decomposition of Output Histoy Matching I ~ t o
Channel Matching 52

3.4.8 Mutching Same-Channel O~itpiit Histones 55
3.4.9 Matching of Histories With Multiple Channels ... 63
3.4.10 Matching Behuviors of Multiple Belief Sets 64
3.4.11 Cornbined Matching Algorithm for F u z y

Supervisor 67
......................... 3.5 Cornpetition Algorithm 67

.................. 3.5. 1 Cutoff nireshold Algorithm 68
..... 3.5.2 On Necessiiy of a Variable Cutoff Threrhold 69

3.5.3 Calculation of Cutoff Threshold Value 70
3.6 Fuzy Supervisor Reports 73

3.6.1 Health of the Target System 73
3.6.2 Immediate Failure Report 74
3.6.3 History Tree and Urtderlying Fadt

bcalization 75
......................... 3.6.4 Average Feasibility 80

...................... 3.6.5 Feasibili~ Distribution 81
3.7 Fuzry Supervisor Operation 83

CHAPTER IV Experimental Evaluation of Fuuy Belief Based
Supentision 87

4.1 Evaluation Environment 88
4.1.1 PBX Hardware Emulator 88

.

Fuuy Belief-Based Supervision ix

CHAPTER V

APPENDIX A

REFERENCES

...................... 4-12 PBX Control Sofnvare 89
................... 4.1.3 Telephony Load Generntor 90

...................... 41 .4 Keyboard Input Driver 90
......................... 4.1.5 Abstracter Process 90

............................ 4.1.6 Display Driver 91
.......................... 4.1.7 Fuzry Supervisor 91

....................... 4.2 Evaluation Methodology 95
........................ 3.2.1 Variable Parameters 96

............. 4.2.1.1 Telephony Trafic Simulation 96
....................... 4.2.1.2 Failure Seeding 97

......... 4.2.2 Obsenled and Derived CIlaracreristics 98
............................ 4.3 Evalrration Results 98

.......................... 43.1 Resulrs Surnmay 99
........................ 4.3.2 Supervisor Reports IOI

................ 4.3.3 Failure Detection Capability 103
4.3.4 Resynchron ization and Continuous

............................. Supervision 103
...... 4.3.5 Cornputarional Cornplexity Observations 104

................... 4.3.6 Other Supervisor Reports 105

. Further Research and Conclusions IO7

................... 5.1 Further Research Directions 107
...................... 5.2 Conciuding Observations 108

An SDL Specification of the Srnall PBX 109

X Fuzzy Belief- Based Supervision

List of Figures

Figure 1:

Figure 3:
Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure IO:
Figure 1 I :
Figure 12:
Figure 13:
Figure 14:

Figure 15:

Figure 16:

N-version programrning . -6
Audits . 6
Software Supervision . -10
ExampIe of Specification Layers in a Typicai Telecom Specification . 10
CamerSpecification . 11
Detection of a Simple Signal . 11
Stimuli Transfer in Software Supervision . -13
Signal Abstraction . 14

Scenarios of Signal Detection . 14
A Simple SDL systern . -19
SDL absact machine . -20
Intemal Organization of Belief-Based Software Supervisor -21
Belief-Based Supervisor Absmct Machine - 2 3
Evolution of Supervisor Stace Upon Observation of Three
Extemal Signais 27
Dynamics of Feasibility Factor of a Belief Set Mer One
Mismatch and Three Matches . -43
Potentid Life Intervals ofof Signais and Time Matching -52

Fuzs) Belief- Bawd Supervision fi

Figure 17:

Figure 18:
Figure 19:

Figure 20:
Figure 2 1 :
Figure 22:

Figure 23:

Figure 24:

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Fisure 29:
Figure 30:
Figure 3 1 :

Figure 32:

Figure 3 3:

First-Ln-First-Out Signal Transmission in SDL Channels 53
Abstraction of Same-Channel S ignals in Supervisor 54
Decornposition of Behavior Matching Into Same-Channel Matching 54
Sequence of Atternpted Matches . 56
Discarding Unmatched Prefixes and Matched Signais 57
Expected and Observed Output Histones Before ruid After a
Matching Sweep 5 8
Matching Witiiin a Belief-Based Supervisor 66

Cutoff Thresholds . - 6 9
BeIief Sets Generation and GIobaI Matching History 76
History Tree Manipu iation . 78
Average Hedth During a Period of Time T at times tO and t 1 80
Reporting Feasibility Distribution . 82
interactions of Processes In Experimentd Environment 89

High-Level OMT Diagram of the Fuzzy Supervisor 92
OMT Diagram of the Feasibility-Related Data Structures of
a Fuzzy Supervisor 94
An Example: EOQs . CBSs . CBS Statistics Supervisor Staustics
Objects in a Fuzzy Supervisor With Four Coexisting Belief Sets . . . 95
Fuzzy Supervisor Reports During Output Faiiures of the Target
System . 102

xii F w Belief-Bmd Supervision

List of Tables

TABLE 1 .
TABLE 2 .

SDL Consuucts . 18
. Experimental Resuits for FaiIure Detection Capability 99

F u u y Beliej- Based Supervision a

X ~ V F w Belief-Based Supervision

Introduction

A dramatic increase of the size and complexity of software products
on one hand and the growth of reiiability-cntical applications of soft-
ware (such as navigation systems or telecommunications) have created
a number of paradoxes. A more complex activity requires a more so-
phisticated software system to carry it out. But the bigger the system
gets. the harder its testing becomes. For larger sysiems testing increas-
ingly expensive and complete testing is technically impossible.

Vanous approaches have been suggested for lowenng the risk of a fail-
ure of engineered systems. Faults can be prevented from getting into
systems with the heip of rigorous engineering and fault avoidance
techniques. Damage from operating a system that possibly contains
faults can also be rninimized. Fault-rolerance techniques lower chant-
es of system failure by isolating the potential failure to a limited area
within the complex system Vgilure isolation), implementing critical
fragments of the system with built-in redwidancy of various degrees
(as in N-version programming), and by the early detection of failures
by software audits and oracles. These techniques are discussed in
more details in section 1.6.

- -

Fuuy Belief-Bared S o N a r e Supervision 1

This thesis is coricerned with automatic detection of software failures
in real time. A software/hudware system that we are going to observe
for the purpose of detection of its failures will be called the target sys-
rem. Events that the target system obtains from its environment will
be called inputs. and extemally visible events that are directly caused
by operation of the target system will be called target system's out-
purs.

1.1 Software Supervision

For a larger software system exhaustive testing is not possible due to
an infinite or extremely large number of possible States of the system.
If its failure-free operation is important. an approach supplemental to
exhaustive testing called sofnvare supervision has been suggested in
[l] , [4]. Software supervision consists of real-time observation of the
system' s external inputs and outputs (Le. its observable behavior), and
judging the correctness of its behavior based on a model of the target
system's expected behavior. The model of expected behavior used by
the supervisor is derived from the target system requirements specifi-
cations.

The goal of software supervision is to detect the instances when the
specification of the model c m no longer explain the observed behav-
ior of the target system. i.e.when a failure occurs.

Some simple systems could be adequately specified with a determin-
istic model. In this model, if a given sequence of inputs is introduced
to the target system, there will be only one possible legal sequence of
outputs.

But sometimes correct behavior may be not just a single one due to in-
herent non-determinisrn of target system specification. Nondeter-
rninisrn is an important feature of specification formalisms. It allows
the specification wnter to avoid stating irrelevant aspects of the be-
havior of the system being specified. Specification non-deterrninism,
in tum. makes the task of software developer easier by permitting

2 Futs , Beiief-Eased Sofnvare Supervision

Belief-Based Software Supervision

c hoices of behavioral alternatives for the iinplementation which are
less cosdy or othenvise desirable.

Non-determinism must be considered by the software supervisor. The
supervisor should be able to accommodate the possibility that at any
moment of time the target system may be in one of severai States. al1
of which are permitted by the specified model. The Belief-based su-
pervision is an approach that is based on simultaneous existence of
multiple beliefs (or hypotheses) explaining the legal behavior of the
target system. That allows exhaustive coverage of al1 possible behav-
ior alternatives permitted by a non-deterministic specification.

1.2 Belief-Based Software Supervision

For a given set of inputs. each behavior permitted by specification
represents a hypothesis (or in other words beliefi about the possible
current state of the target system.

Belief-based sofrware supervision handles the supervision of non-de-
terministically specified systems through support of co-existence of
multiple beliefs about the state of the target system. As the system op-
eration goes on. new inputs and outputs are observed and the beliefs
evolve accordingly: from time to time new beliefs are created with re-
ception of new events. and older beliefs are terminated when the ob-
served behavior invalidates the hypothesis the y represent.

In the belief-based software supervision, failure is detected when dl
the hypotheses are invalidated and their corresponding beliefs are ter-
minated. At this point no legal explanation of the observed behaviour

Fuay Belief-Based Sofhvare Supervision 3

Introduction

1.3 Scope of the Research

The boundaries of this research effort were as follows.

The research addresses belief-based. input-driven software supervi-
sion of software systerns specified in fonnalisrns based on cornmuni-
cating extended finite state machines. For concreteness. the UTU-T
SDL specification formdism was used for application-level specifica-
tions [6] . Specifications of the external behaviour will be suppiernent-
ed by a maximum response time constraints. in this work aii
maximum response times will be considered identical. The focus will
be on teiecommunication software systems.

Certain limitations wili be imposed on the supported subset of SDL,
as dictated by the current state of development of basic belief-based
supervision theory.

A testbed simulating a smail PBX with corresponding target system
software will be used in the evaiuation of research results. The simu-
lation will be cmied out in UNIX environment.

1.4 Thesis Objective

The thesis has addressed two main shortcomings of the basic belief-
based supervision:

termination of supervision at the moment of failure detection;

no discrimination between the degree and specifics of the target
system failures.

The main objectives of the thesis research were:

to devise an approach allowing to resynchronize the supervisor
mode1 state with the state of the target systern and continue
supervision beyond the moment of detection of the fadure without
significant increase in computational complexity of software
supervision;

-- . .

4 Futt), Belief-Based SoNare Supervision

Research Contributions

to develop a method to obtain information for localization of the
fault causing the observed failure. mapped to the specification
mode1 of the target system;

to provide a mechanism capable of characterizaion of the overail
heaith of the target system;

to evaluate the research results in ri testbed with various types of
failures and under various operation profiles of the target system.

1.5 Research Contributions

The main research contributions of this work are:

definition of f u u y software supervision approach:

development of the core algorithms for this approach: failure-
tolerant muiti-channet signal matching, fuzzy belief generation and
handling;

evaluation of the proposed approach in an experimental fuzzy
supervision of a controI program of a small PBX.

1.6 Related Work

This section overviews several of the techniques rnentioned earlier in
this chapter.

N-version programming [7] is a collection of approaches that were
suggested to elirninate software and hardware failures by utilizing re-
dundant versions of the sarne system or components and providing a
decision-making mechanism that selected which of the system's be-
havior is to be produced as a result. The redundant systerns were built
with different degrees of implementation independence including dif-
ferent hardware base. different development teams or independently
produced and different components used in the systems. The idea be-
hind N-version programming is that independent production of redun-
dant systems will reduce the risk of sirnilar faults and erron in
different systems and decision making algorithm witl be able to select

the correct behavior among severai possibilities by a voting mecha-
nism. This approach was proven to be practical for certain applica-
tions (e g numeric calculations such as ballistics). but redundancy
makes its use increasingly expensive for complex systems. where rep-
lication means massive spending. At the same time when different
software is used. this approach is difficult to use for systems involved
in complex datalhardware manipulation. Schematic architecture of a
system deploying N-version Programming technique is shown in
Figure i on page 6.

Environment
,,,\\\\\\\\\\\\\\\\\

Figure 1: N-version programming

Sofrware Audirs [8] are usuaily a part of the target system dedicated to
monitoring of one simple aspect of the target system's interna1 state.
When an inconsistency of data is detected, it is reponed and corrective
action may be taken, e.g. when redundant data is available. an anempt
to restore the correct state c m be undertaken or system restart may be
perfonned.

Figure 2: Audits

6 Fuuy Belief-Baed Sofrware Supervision

Related Work

Audits are a part of the target system. rherefore they are not supposed
to be modified by the customer. Their scope of error detection and re-
covery is limited. If it expands. audits becorne complex and less reli-
able. which affects reliability of the target system as a whole.

Recovery bloch [9] have sirnilar problems. The successful operation
of recovery block relies on the acceptance mechanism, that might be
faulty as well.

There are other approaches related to Sofnvare Supervision: observ-
en[18] and multiple observers [19]. The latter two approaches has
been are the closest to software supervision. with the major difference
being the capability for handling of non-detemiinisms by belief-based
software supervision approach. Observers approaches do not explicit-
ly deal with non-deterministic specifications.

Many interesting flavors of software supervision have been developed
by students and researchers in the Bell Software Reliability Lab.
Some of these are:

look-ahead supervision: supervision is carried out with an observationai delay,
that allows to select only these alternatives of non-deterministic behavior that
correspond to the following observed behavior. This significantly reduces corn-
putationai cornpiexity of supervision (1261);
supervision with resynchronization: sevenl approaches have been provided to
allow for resynchronization of the supervisor after an occurrence of the failure
based on a set of niles. and rollback mechanism ([22],[5]);

supervision with failwe retnction: the supervisor is equipped with a mecha-
nisrn of taking over the control of an aspect of the target system in which the
latter failed. The control is returned later when some predetermined state is
reached by the supervisor and the target system is also pushed in that
state.([23]);

grey-box supervision: the target system state is made partialIy visible to the
supervisor. This alIows to reduce the number of behavior scenarios that are con-
sidered simultaneously, thus reducing the computational complexity of supervi-
sion([25]);

reduced specification supervision: only a subset of the target system's function-
dity is capturai by the supervisor model. The model is smaiter and that reduces
computational compiexity ([2 1 1).

Fuzry Belief-Based Sofiware Supervision 7

Introduction

Please refer to corresponding research papers and BSR technicd re-
ports for more detaiis.

A similar in the spirit. but different in the core. an Autonomous Evo-
lutive Systems approach has been suggested in (201.

A good general reference to f u u y applications in engineering c m be
found in [16], [I7].

1.7 Thesis Organization

The thesis is organized as follows:

Chapter 2 presents non-deteminisrns and their classification, general
theory of software supervision and discusses different flavors of soft-
ware supervision.

Chapter 3 presents the concept of fuuy software supervision and de-
scribes dgorithms developed for it.

Chapter 4 overviews the experimental implementation of a fuzzy soft-
ware supervisor and the results and analysis of experimental evaiua-
tion of the fuuy software supervision.

Chapter 5 surnmarizes this thesis and outlines suggested directions for
the future research.

8 F ~ s . Belief- Bmed Software Supervision

Belief- Based Sofhyare
Supe w ision

Sojhvare supervision is complementary to software testing. Super-
visor observes the behavior of a software system (inputs from
and outputs to the environment) and produces a report when a
deviation from the expected behavior is noticed. It discovers soft-
ware failures before their cumulative effects result in major prob-
lems. reducing the haxmful consequences of fully-developed
software failure. Software Supervisor is non-intrusive. therefore
its operation will not directly affect the operation of the target
system itself,

In the schema of sofiware supervision proposed in [4] a super-
visor is separated from the target system. A generalized architec-
ture of software supervisor is shown in the Figure 3 on page 10.
Inputs from the environment, that are going into the target sys-
tem are observed and directed to the supervisor. as well as the
outputs of the target systern.

Fuu)' Belief-Based Sofnvare Supervision 9

Belief-Based Software Supervision

Environment I User)
-\\\\\\\\\\\\\\A

Figure 3: Software Supervision

2.1 Non-determinisrns and Belief-Based Software
Supervision

To supervise software we have to j u d g on the correctness of
behavior of the target system with respect to some specification.
Specification may consist of several layers.

- -

Specification:

Application Layer:
Specifies behavior of the target system

SDL MRkl

Signalling Layer:
Specifies detection of events in observation environment

Physical Carrier Layer:
Specifies physical properties of observation environment

Figure 4: Example of Specification Layers in a Typical
Telecom S pecilïcation

10 F u z y Belief-Based Software Supervision

- -

Nondeterminimis and Belief-Bad Software Superrision

Physical Carrier Layer will specify the boundaries of observ-
able changes for the target system and its environment. The car-
rier of the changes may be a variety of things, such as voltage
in the line, data structure in the shared memory. data bus. etc.
This specification may be thus defming the electrical character-
istics of the carrier, frequency bands. etc. Figure 5 is an exarnple
of such a specification that
the physical carrier that is
(In this case signals would
the cmier.)

A

defines the minimal voltage level of
considered a change of the carrier.
be encoded by changing voltage of

Change recognizable

I
Figure 5: Carrier Specification

Signalling Layer of specification will be responsible for distin-
guishing events from non-events. As an exarnple, Figure 6 illus-
trates a specification that sets timing constraints on detection of
a signal.

4

ould have

Figure 6: Detection of a Simple Signal

Figure 6 shows three scenarios. In the fmt change was observed
on the carrier for longer than T,, and specification tells that
this signal would have been observed by the target system. In

Fuzzy Belid- Based Sofhvare Supervision I I

--

Belief-Bas4 Software Supervision

the second scenario change was present on the carrier for a time
less than Tm,, and according to the specification this signal
would not be observed by the target system. In the third scenar-
io, change was present between Tmin and Tm so the signal
was either observed by the target system or was not. This ex-
ample shows a non-deterministic signalhg specification.

Application Layer of specification is used to speciQ the correct
behavior. Behavior is compnsed of events independentiy occur-
ring in the environment of the target system (inputs), and events
that are produced by the target system (outputs), possibly as a
response to the input events.

As we discussed in the introduction chapter, specification for-
malisms suppon non-determinisms in order to enrich specifiable
behavior. An example of such a specification formdism is SDL,
a formalism based on comrnunicating extended fmite state ma-
chines, that will be described later in this chapter. A non-deter-
rninistic specification may result in multiple legal yet different
behavion. Software supervisor. therefore, should be able to ac-
cornmodate multiple alternative behaviors allowed by the nonde-
terministic specification.

2.1.1 Non-Determinisms of Signal Detection in Software
Supervision

In Figure 3 the structure of the Target-Supervisor couple is re-
fined. The black mows represent signals as they are produced
and the grey arrows stand for signals as they are received. Tar-
get system receives signals from the environment as does the su-
pervisor. The supervisor also receives signais produced by the
target system, as does the environment. The mechanism of the
transfer of signals between the environment, the Target System
and the Supemisor is expanded in Figure 7, for cases when the

12 F u z q Belief-Bused Sofnvare Supervision

Nondeterminisms and Belief-Based Softwarr Supervision

supervisor observes inputs and outputs of the target system at
the physical layer level.

2.1.1.1 Signal Detection

When a signal is sent from the environment to the target sys-
tem. it has to be detected by sorne scanning algorithm. that con-
verts the signal from its initiai fom (e.g. analog) into an
abstract (symbolic) form (see Figure 8).

-) Reception 7'
Figure 7: Stimuli Transfer in Software Supervision

A physical signal's appeûrance on its carrier occun in time and
space. It may be transfomed into an abstract signal successfully,
c m be Iost, or can be misinterpreted by the scanner due to too
short a duration of occurrence. or noise. or specifics of the scan-
ning algorithm. or other factors. Non-determinisms of the signal

Fuzzy Belief-Based Sofiware Supervision 13

detection are captured in signailing and physical carrier lqers of
specification.

Figure 8: Signal Abstraction

In Figure 9 a sarnple signal is encoded as a series of three con-
secutive impulses. In the first scenario signal is lost due to an
insufficient duration of signal presentation, in the second signal
is properly detected.

The sarne figure cm be used to illustrate another problem with
the signal detection. namely, the discrimination of different sig-
nais. Say, if we have a two-peak encoding representing signal A
and three peak encoding representing signal B, then the sample
observation in the diagrarn "Signal Misinterpreted" could repre-
sent Signal A or signal B. that had been withdrawn before three
peaks were produced. The situation presented in Figure 9 could
be encountered in telephony, for example, when different ringing
patterns are used on the same line.

"Signal Misinterpreted." "Signal Detected.

fi Signai Cimier m Scming Intcrvd

Figure 9: Scenarios of Signal Detection

14 Fuu). Belief-Baseci Sofhvare Supervision

Noo-deîerminimrî and Belief-Based Software Supervision

For the pulse-encoded signals sirnilar to ones shown in Figure 9
we have the following problem. Having the supervisor and the
target system as two entities with a single complex signal pre-
sented frorn the environment we are facing a number of possible
mutual interpretations of the same stimulus equd to (M +
where M is the number of possible (all wrong, except for one
proper interpretation) interpretations of the signai. One i; added
for the cases when no interpretation is given (signal is lost). We
assume that during its input signal abstraction the supervisor
misinterprets in the same way as the target system does.

Non-determinisrn of signai detection mentioned here is a sepa-
rate topic and will not be considered any deeper in this work.

2.1.1.2 Signal Permutations During Abstraction

Now. let us consider a situation when not one. but several sig-
nais are sent from the environment within a shon period of
time. Traditionally amvals of the signals would be sequenced
for analysis. Then in addition to the already described possible
distortions (namely, Ioss and misinterpretation of separate sig-
nais) we should also consider distortions of signals detection se-
quences in the supervisor: signals in the supervisor's detection
sequence will be a permutation with respect to the detection se-
quence of the target system. (Such permutations. though. do not
necessûnly concern us, e.g. when permuted signds belong to un-
related sources or travel over different signal media.) Permuta-
tion occurs due to independence of signai abstraction activities
of the supervisor and the target system. The number of such
permutations grows rapidly with an increase of the considered
signal detection sequence, making the task of keeping the super-
visor "in sync" with the target system unmanageable, if the or-
denng of the observed inputs is the only criterion for judgement
of correctness of the observed outputs.

Fuuy Belief-Based Sofiware Supervision 15

Selief-Based Softwam Supervision

We can clearly see here. that it is impossible to judge the target
system's behavior only on the ba i s of the ordenng of extemal
observations.

This illusuates the hard task standing before the software super-
visor - not only be able to ver@ the operation of the target sys-
tem. but also be flexible enough to compensate for possible
observation-time distortions of the reai behavior of the target
system due to the factors named above and do so while main-
taining ability to recognize faulty behavior.

2.1.2 Specification Non-determinisms

Communicating Extended Finite State Machine (CEFSM) provide
an approach for specification of a target system. CEFSMs are
particularly suited for cornplex, distributed target systems such
as the ones found in the area of teiecommunications.

The following is a formal definition of sn CEFSM extended
with variables, conditions and communications ([14], [15]):

CEFSM is a tuple {1, O, S, s,, D, C, T, R) in which:

1:

O :

S :

S* :

D :

C:

T:

R :

Set of input signais

Set of output signals

Set of States

Initial state. so E S

Some n-dimensional swte. D , x D, x . . . x D,

Set of conditions CiID + (0. 1)

Set of tasks. TilD + D

transition relation. S 1 S x C x I + S x T x O

16 Fuuy Belief-Based Sofiwnte Supervision

-

Non-determUiisms and Belief-Based Software Supervision

As it was mentioned in the introduction, in addition to the CEF-
SM specification. we will speciS the maximum time required
for the target system to produce a response on an extemal stim-
ulus. For the sake of conceptual simpiicity in this work we will
consider only cases in which the maximum response time is the
same for al1 signals.

SDL is an example of a specification formalism based on CES-
FM. "SDL" stands for Software Specification and Description
Laquage, a formalism introduced by International Telecornmuni-
cation Union (m) (formerly CCITT) 1121. SDL visuaiizes
CEFSM-based specification as it has two equivalent forms of
notation: graphical and textual. that makes the language both
computer- and human-friendly. The examples in the thesis will
use graphical SDL notation.

2.1.2.1 SDL hierarchy

SDL speci fication estabtishes a tree-Iike hierarchy of the follow-
ing entities:

system - delimits the system that is being specified from the environment.
Receives signals from the environrnent and passes signals to the boundary via
signal channe1s

subsystem - is statically defined within a system. does not intersect with other
subsystems. Signals are received and passed to subsystern's boundary via signal
channels.

block - statically defined partition of ri system or subsystem. Signals are
received from and passed to its boundary via signal routes.

process - belongs to a block. has a certain type. may be created and destroyed
dynamicaily. Sends and receives signals via signal routes

signal channel - links subsystems and blocks to the boundary of the system
(environrnent). Passes signais to the associated internai signal channeis of sub-
systems and associated internai signal routes of blocks

signal route - links the processes belonging to a block to each other and to the
signai channeIs outside of the block

Fuuy Bel id- Based Sofnuare Supervision 17

- - . - - -- - - - - - - -p.

Belief-Bad S o h a r t Supervision

2.1.2.2 Constmcts of SDL Processes

SDL process is an extended communicating state machine placed
within an SDL block. The following table surnmarizes the
ments composing the finite state machine.

TABLE 1. SDL Constmcts

Purpose

State construct

- -

Transition uig_eer consmct: selects the bmch immediritely fol-
lowiq it. There are two variants of the transitions:

Deterministic: tires when the specified sipal is received.

Spontruieous transition: when "'IONE is used instead of the sig-
nal n m e within the constmct. the following bmch cm be taken
without receiving any signais

Send conswct: the specified signal is sent via some signal route
(specified expticitly or implicitly) with specified panmeters

Decision consuuct: a bmch is selectcd thac corresponds to the
value contained within the decision symbol

If "ANY" is used instead of the value. any one of the choice
bnnches c m be taken arbitnrily.

Task consuuct: rnay contain rissignments and timer opentions.

Timers is an SDL concept that allows to produce ri named signal
rifter a specified interval of cime. Timen c m be set and m e t
wirhin the task construct.

Stop symboi: process is terminated when a stop symbol is
reac hed.

18 Ful~) ' Belief- Based Sojïware Supervision

Non-determinisms and Belief-Baseci Software Supervision

An example of a simple SDL system is given in Figure 10.
[System Stmple-Systcm

Figure 10: A Simple SDL system

2.1.2.3 Dynamic Semantics of SDL

SDL specifications are executable. Rules of execution. or dy-
namic semantics, of the SDL specifications are defined opera-
tionally by means of definition of SDL abstract machine.

SDL abstract machine is defined in META-VI as six synchro-
nously communiciiting processes:

sjsrern: a unique process that creates and rernoves SDL processes, performs
signal routing.

input-port: receives the signais sent to its SDL process and stores hem in a
queue.

pazh: responsible for support of non-deterministic signal deiivery delays in
channels.

view: handles allowed visibility of process variables to other processes

sdl-process: interpreter of SDL process.

rimer: handles tirne-related aspects of SDL abstract machine: tracks time and
time-outs.

Fuzzy Belief-Bmed Sofbvate Supervision 19

Belid-Bad Sofhvaro Superrision

The following diagram represents the absuact machine and
shows interactions between its components.

View Ci
Figure 11: SDL abstract machine

Refer to SDL litenture ([6].[12]) for panicular details of SDL
language description.

2.1.2.4 SDL Non-determinisms

The following are the non-determinisms supported in SDL [13].
Signai channel delays: signafs sent over signal a signd chuinel will be deliv-
ered after a non-deterministic delay. Sending order is presewed within the
channel.

Concurrence: order of yrival of signals produced at the sarne time and sent to
the sarne destination point over different delaying paths cannot be predicted

20 Fuzy B e l i e f - h e d Software Supervision

Belief-Based SuplNision

Spontaneous transitions: "NONE-transition is chosen with no particular h g -
ger. in non-deterministic fashion.

Ahitrary decisions: seiection of a path as a result of ".W' decision is non-
determinisuc.

2.2 Belief-Based Supervision

The Belief-Based Supervision [1] (abbreviated as BBS in this
work), was suggested to handle non-determinisms encountered in
software supervision. The idea behind the theory of belief-based
supervision is to create m set of hypotheses that would repre-
sent effects of a non-determinism encountered. The created hy-
potheses (or beliefs as they are cdled in BBS theory) are then
compared with the observed behavior and discarded if they fail
to explain the observed behavior. If at least one hypothesis that
explains the observed behavior of the target system at any mo-
ment of operation of the target system exists. the behavior of
the target system is considered correct.

7' SDL Mode1 ',
/ Supervisor =$

Figure 12: Internai Organization of Belief-Based Software
Supervisor

- --- -- -

F u y Belief-Based Sofhvare Supervision 21

Beiief-Based Sofhrarc Supervision

Belief-based software supervision is an iterative process, continu-
ing indefinitely dong with operation of the target system. It may
be dnven by signals observed on the boundary of the target sys-
tern (inputs. outputs. or both). Observed inputs are fed in the
executable specification and every tirne when a non-deterministic
construct of the specification is encountered, hypothesi are gen-
erated representing al1 behaviors that would become legitimate
afier execution of the given non-deterministic construct by the
existing hypothesi.

Belief-Based Supervision theory, presented in [I l . (41 has ad-
dressed non-detemiinisrns that could be expressed in SDL spec-
ifications.

Within the supervisor the target systern was modelled as an SDL
specification, composed of blocks and processes interconnected
with signal channels and signal routes.

Every belief was representing a hypothesis about the state of a
certain SDL process from the specification: state of the CEFSM
(values of timers, variables, state of FSM), and a set of signals
that are thought to be "in transition" - sent to the process. but
not received by it, and travelling somewhere in signal routes and
channels. Introduction of "in transit" sets was justified by possi-
bility of non-deteministic delays of signals on their way from a
sender to the receiver in permitted in SDL formalism. Algo-
rithms descnbed below will c1ariS use of "in transit" sets.

Similarly to the composition of blocks and processes into an
SDL system, beliefs representing cornplimentary (non-contradic-
tory) hypotheses about different processes were grouped into be-
lief sets.

Simiiarly to SDL defmition, mies of execution of the belief-
based supervisor model were defined by BSDL abstnct machine.

22 F w Belief-Bared Sofnvare Supervision

Belid-Bascd Supervision

(3' I c u m m i y supporteci
timer

Future Development

Figure 13: Belief-Based Supervisor Abstract Machine

2.2.1 BSDL Abstract Machine

The mode1 used in software supervisor is interpreted. The inter-
preter implements the belief-extended SDL abstract machine
(shown in Figure 13).

The responsibilities of the components depicted in Figure 13 are:

System: a unique instance of a process that handles interactions with
environment, creates beliefs, maintains consistent belief sets,

Common pon: responsible for generation of al1 permissible signal
permutations of signals coming to a particular input port.

Beiief-B& Software Supervision

Input port: keeps tnck of signals sent to process and timers set in
process.

BSDL process: represents the state of a target system as a state of an
SDL diagram. Keeps tnck of variables. timing. Sends and receives
signais.

Timer: tracks time

View: shown for completeness only. Present in SDL abstnct
machine, but not implemented in Supervisor.

2.2.2 Non-determinisms and beliefs creation

2.2.2.1 Signal detection nondeterminism

This is a signailing layer specificauon non-determinism. As we
saw. depending on sending conditions and timing. signal can be
detected, missed. or rnisinterpreted by the target system. Belief-
based supervision de& successfully with the first two possibili-
ties. creating two beliefs for every input signal observed by the
supervisor. In one signal is successfully detected. and the second
is that it is not detected by the target system. We will not con-
sider the third option in this work, as it is vdid for a certain
class of target systems and adds significantly to the complexity
of the belief-based supervision theory.

2.2.2.2 S pontaneous transitions

When possible "NONE-transition in a SDL process, a beiief
should be created in which the ''NONE" transition has been
fmd.

24 F u a y Belief-Based Sojbuare Supervision

Belief-Based Supervision

2.2.2.3 Arbitrary decisions

When an "ANY" decision is encountered while executing an
SDL process, new beliefs wifl be-created. one per every branch
of the "MY' decision. In every of the newly created beliefs its
corresponding branch of the "ANY decision will be chosen as
a resuIt of the "ANY' decision.

2.2.2.4 Concurrence

Signals travelling over signal routes do not experience delays.
This introduces possibility of concurrent anival of signals. For
example, when signals are sent to the same destination over two
or more different signal routes at exactly the sarne moment of
tirne. they wou!d arrive immediately, and if al1 of these are ex-
pected in the same state. the resulting branch would be selected
non-detemiinistically. Different beliefs have to be created to ac-
count for al1 possible permutations of signal consumption.

2.2.2.5 Non-deterministic channel delays

When a signal is sent over a signal channel dunng execution of
an SDL specification, time of its arrivai is non-deterministic.
When some other signals were sent over different channels dur-
ing execution of the specification, the order of mival of these
signal and the signai travelling over the signal channel may be
different. This wiii cause multiple legitimate scenarios of signals
arrival. BeIiefs will be created to cover al1 of the legitimate per-
mutations of signals amival. Two beiiefs are ongindiy created:
"signal has been delivered, and "signal is still in transit". In
transit" state of signals is used to produce al1 possible permuta-
tions. Such state indicates that a signal has been sent to its des-
tination through a delaying path but did not arrive yet. When
other signals are sent to the same destination beiiefs will be cre-
ated in which amval of the "in-transit" signal wiU be pemuted
with arrivais of other "in-transit" signals and the newly-sent sig-

Futty Belief-Bared Sofiware Supervision 25

Belief-Bad Software Suprrvision

nais in al1 possible ways, producing a new belief per every per-
mutation. The current "in-transit" signals for a given destination
are kept in an "in-transit" set that is unique for the given des-
tination belief. Once "in-transit" signals are "successhlly deliv-
ered" in a child belief, they are rernoved from the "in-transit
set" of the given child belief. "In-transit" sets are handled by
common ports.

2.2.3 Termination of beliefs

Sorne of the beliefs produced by the supervisor prove to be in-
valid in the course of supervision. Real state of target system is
unique, and beliefs that cannot explain indications of the true
state have to be terminated.

Also, when an additional specification is provided imposing a
maximum response time of the target system. beliefs that have
signals in "in-transit" state longer than the maximum response
time lirnit would violate such a specification and should also be
terminated.

Beliefs are terminated under the following circumstances:

If a belief has been terminated. al1 belief sets it belonged to are
terminated also.

If al1 sets a belief belonged to has been terminated. a belief is
terminated alscs.

If an output signal unexpected by a belief has been observed in the
target system, a belief is terminated.

If a signal expected by a belief has not been observed in maximum
response time, a bdief is terminated (performance time-out).

If two beliefs have been found to be identical (so that the states,
variables values, tirners. signais in transit, etc. are identicai in both
beliefs), one of the two will be terminated and the surviving belief
will be included in the belief sets of the originai two beliefs.

26 F ï a y Belief-Eused Sofrware Supervision

Belief-Based Supervision

Figure 14: Evolution of Supervisor State Upon Observation of
Three Externai Signals

F u u y Belief-Based Sofiware Supervision 27

Belief-Based Software Supervision

Exarnple: Figure 14 represents evoiution of software supervisor's
beliefs occurring upon observation of three extemal signais. Re-
fer to Figure 10 for a simplified SDL specification of the target
system for this example.

The sample system contains two SDL blocks. each containhg
one process. input signal "A" is observed on the target system.
that is followed by output signals "C" and "D". Al1 three sig-
nals are extemal with respect to the supervisor

2.3 Critical Evahation

Having al1 the inputs of the target system and its outputs it has
a wide picture, unavailable for N-version prograrnming-based
system or audits.

BBS is sound: supervision does not continue. if the target sys-
tern has any deviations frorn the specified behavior within the
precision of the matching algorithm. But soundness c m be a
drawback, as the described supervisor cannot continue operation
beyond the discovery of a failure.

Post-failure supervision is impossible: Signal loss or misinterpretation most
will result in termination of al1 belief sets and a hait of supervision. And since
the information about the target system resides in the coIlection of belief sets,
no information will be left to cany on the supe~ision.

No discrimination of degrees of failure severit.: If we are supervising a tefe-
phone exchange, failure wiIl be reported and supervision will be haited in both
cases of a fau1ty line behavior and a massive shutdown. It would be of a great
benefit. if there were means of determining the mesure of the failure and con-
tinuing supervision if the f;iilure is not significmt.

28 F m Belid-Based Sofrware Supervision

SofnYare Supe wision

The theory of belief-based supervision presented in the previous
chapter has a major drawback: it is corne. purely qualitative, and
not quantitative to any degree. What this means is: we are able to
tell when the target system is behaving incorrectly. but cannot ex-
plain as to how much incorrect the behavior is or even why it is in-
correct.

When a target system is complex enough. a partial failure may not
affect most of the functionality of the system, while it will be clas-
sified as a failure by the belief-based software supervisor and super-
vision will be ceased without explmation of what exactly caused
the supervisor to halt or how bad was the failure.

If the target system is perceived to be producing an unspecified be-
havior, d l the "correct" belief sets will be kiIied as a result of mis-
matches between correct expected behavior and incorrect observed
of the target system. The matching procedure labels every existing
belief set with one of the two values, as either dead or dive. What

Futz). Belief-Bused Software Supervision 29

will happen if matching could produce a real number instead of just
two values?

Further in this work we will suggest an extension to the Belief-
Based method in order to increase supervisor's flexibility that will
allow for signal detection non-determinisrns in signai detection,
would allow for continuous supervision of software with behavior
not exactly compliant to the given specification and also allow for
a natural resynchronization of the supervisor with the target system
after a failure was detected. Xiis approach will be introduced as an
extension to and improvement of the Belief-Based method.

3.1 Informal Introduction

Let us imagine a belief-based supervisor, in which every currently
existing belief set is supplied with some feasibil* factor based on
the history of the observed behavior and history of behavior of the
given belief.

Every time when a deviation mismatch occurs between the ob-
served behavior of the target system and the behavior expected by
the given belief set, feasibility factor of the affected belief set
would be decreased. Vice versa, when a "match" is successful, fea-
sibility factor of the belief set wouid be increased.

Now we would have an opponunity to compare belief sets between
each other and to select those which match the behavior of the tar-
get system most closely. Termination of belief sets will be deter-
mined by cornpetition instead of single-time mismatch.

With such a setting, the well-king of the target system is reflected
in the feasibility factors of al1 belief sets existing in the supervisor
at the given moment. If a failure occurs. feasibility factors wiil be
decreased. and if we keep the "correct" hypotheses around long
enough. they will have a chance of improving their feasibility fac-
tors in the case of continued correct operation of the target system.

30 Fuuy Belief-Based Sofrware Supervision

Informal Introduction

The described idea enhances the original BBS rnethod: if some be-
lief set was following the target system very closely, and an obser-
vational distortion discussed in section 2.1.1 occurs. or even some
kind of a failure of the target system (such as an uncriticai loss of a
signal), the fomerly successful belief set will not be terminated
just because of that; instead, only its feasibility factor wiii be de-
creased. and if it is high enough after the decrease, and the conse-
quent behavior of the target system is matching the hypothesis of
the belief set. the set will have an opportunity to recover from the
damage and will survive.

What cm we do if a massive observational distortion or multiple
faults or a failure of the target system occur dunng the supervision?
To avoid an immediate death of the supervisor, we could decrease
the termination threshold for the surviving belief sets, dowing a
greater number of beliefs to outlive the moment of the failure and
recover later, if the system manages to recover after the failure. We
still could issue wamings about the rnalfunction. but the supervi-
sion will continue. To prevent the supervisor from being flooded
with incorrect hypotheses we would allow only the fittest hypothe-
ses will survive, and it will be up to us to decide how high should
the "survival plank" be raised.

This opens up a possibility of continuous re-synchronization of a
supervisor and a target system. dong with continuous supervision.

The novelty is in an application of a dynamic threshold cornpetition
mechanism to the existing BBS supervision that can be used also in
any other belief-based approach. where the state of the target sys-
tem is estimated by a population of belief sets, or beliefs, or any set
of hypotheses.

3.1.1 Benefits of the Approach

Once again, what does this approach promises us so far?

-

F u u y Belief- Based Software Supervision 31

Fuzzy Betief-Bared Software Supvvision

Optimistic supervision: when system deviates from the specified
behavior. Our supervisor will not cease the process of supervision
due to exhaustion of hypotheses population. Sufficient number of
beliefs will survive and supervisor will retum to normal operation
if the target system does.

Distortion-tolerant supervision: this approach will accommodate su-
pervision of systerns with "hard-to-discriminate" output signals
(such as in example on Figure 9. section 2.1.1). Failure to detect
such a signal. or a misinterpretation of a signai will only lower the
feasibility factor of the belief set, without an immediate termina-
tion.

Adjustable supervision: by adjusting thresholds values we could
control the precision of supervision. This way it is easy to control
the trade-off between precision and durability of supervisor. since
thresholds could be dynarnically determined. Also, we could assign
different decrement values to different types of discrepancies, that
will differentiate the impact of discrepancies on the supervisor's
judgement of the target system operation.

3.1.2 Limitations

The more tolerant the supervisor becomes, the less precise it opera-
tion becomes. This would happen due to the fact that tolerance is
achieved by imposing less stringent conditions on the survival of
hypotheses. therefore allowing "incorrect" hypotheses survive
dong with "correct" ones. This feature can be used for an advan-
tage or a disadvantage, depending on the goal of supervision. and
should be tuned and used accordingly. Nevenheless, the supervi-
sion sensitivity can be made as close to sound supervision as need-
ed, as we will show later.

32 F c y Belief-Based Sofrware Supervision

-

Ceaeric Framework for Belief-based Supervision

3.2 Generic Framework for Belief-based Supervision

Below are the suggested general elements definition of which
would establish a Competitive Hypothesis-Based Supervision for
reactive systems:

Hypotheses representation: For the target we will select a
representation capniring hypotheses about the state of the target
system.

Feasibility factor: on every hypothesis we should introduce a factor
reflecting the degree of correspondence of the hypothesis to the
rictually observed behavior of the target systern.

Hypotheses generation: we should define how externally observed
stimuli of the target system will alter existing hypotheses and how
new hypotheses will be genented and how the feasibility factor will
be assigned to the new hypotheses.

Matching algorithm: we should define how the observed behavior is
matched to the hypothetical behavior and how the rnatching
influences the values of the feasibility factors of hypotheses.

Hypotheses termination rules (cornpetition algonthm): we should
define how the population of hypotheses is maintained on the ba is
of values of feasibility factors. Survival threshold function should
be specified. that will detemine the threshoid of the feasibility
factor sufficient for survival of a hypothesis. This threshold may be
dependent on the overall feasibility factor values and on the number
of surviving hypotheses.

Evaluation rules: when does a supervisor classify the behavior of
the target system as a maifunction and how does it continues the
supervision after this.

No doubt, this is a very loose generalization, but this vagueness is
intentional. This view will be general enough to be used for analy-
sis of the BBS method and for building an extension to BBS meth-
od - a Fuzzy Belief-Based Supervisor.

-

F m Bel ief- Based Sofnuare Supervision 33

3.2.1 Original Belief-Based Supervision From the Point of
View of Generic Framework

Hypotheses representation: belief sets (as described in section 3.2)

Feasibility factor: x t E (cl 11

The following is an interpretation of belief generation and termina-
tion mies of BBS according to the Generic Frarnework:

Hypotheses Generation: belief generation rules as defined in section
3.2. page 33. The initial (empty) hypotheses has its feasibility factor
value set to 1 . A11 derived hypotheses upon creation have their
feasibiIity factor values inherited frorn the parent hypotheses.

Matching Algorithm: when a mismatch is detected in a belief set
(see section 3.2 for explmation of mismatch), its feasibility factor is
set to O.

Cornpetition Algorithm: the threshold function is constant and
equals to 1. Every belief set, that expenenced ri mismatch is
tenninated. Any deviation frorn specified behavior sets competition
critenon of a belief set to O.

Evaluation mies: system is operational if belief set population is not
empty. Once it becomes empty. supervisor classifies the target
system as malfunctioning and terminates its operation.

3.2.2 Fuzzy Belief-Based Software Supervision

We shall build a supervision schema suitable for implementation.
so that advantages descnbed in section 3.1.1 will be realized.

The schema of software supervision suggested here is calied
"hizzy" for the reasons for the resemblance of the competition al-
gorithm to the fuzzy logic approach to decision making.

F u v y Belief-Based Supervision will be shown to be an extension
of the original Belief-based supervision.

34 Fuzty Belief- Based Sofnoare Supentision

- -- --

Generic Framework for Belief-based Supervision

Here we follow the steps on page 34:

Hypotheses representation: belief sets as in the original BBM

Feasibility factor: zt E [o. I J

(Note: it's an interval, not a two-value set.)

Hypotheses genemtion: see belief and belief sets generation in the
original BBM. in the beginning of supervision the initial "idle"
Belief set has its ferisibility factor set to 1, as in BBS. The derived
belief sets inherit values of feasibility factors from their respective
parents.

~Matching Algorithrn: every rnismatches is assigned some mismatch
value. are when a mismatch is detected in a belief set (see section
3.2 for explanation of mismatch), its feasibility factor is decreased
by a corresponding mismatch value. Similarly, al1 the occumnces
of successful matching are ciassified and mapped to some match
value, so that a feasibility factor of a belief set is increased
riccordingly when the given matching succeeds.

Competition algorithm: the threshold may be a function of different
arguments, such as a number of existing belief sets, or distribution
of feasibility factors, or even a constant. Its value should be less or
equal to 1. Different heuristics could be applied. When a feasibdity
factor of a belief set fa11 below the current threshold, it is terminated
according to the rules of belief termination (see section 3.2, page
33).

Evaluation rules: system is operational if belief set population is not
empty. Supervisor will issue a warning every time when the
maximal feasibility factor becomes close to the threshold, taking
some action to avoid extermination of dl hypot heses. When
sufficiently many hypotheses have feasibiIity factors higher than the
threshold it will be increased. Then at any time the evaluation of
"soundness" of the target system will be reflected by the threshold
and the distribution of feasibility factors of the belief sets.

The proposed outiine of contains many heuristic components that
require further theoretical support and empiricai evaluation. In the

Fuuy Belief-Bmed Sofiare Supervision 35

Fu- Beiief-Bad Software Supervision

following sections we will expand the composite parts of the pro-
posed Fuuy Supervision approach and develop algonthms for it.
Experimental fuzzy supervisor built for evduation purposes will be
descnbed in the next chapter and the results of the experimental
evduation will be presented in the chapter following that.

The main objective will be to overcorne termination of supervision
after occurrence of failure within the target system (the observation
of unspecified behavior). This represents a requirement formerly
not imposed on belief-based supervision approach and will have to
be addressed in the fuzzy supervision algorithms afresh.

3.3 Feasibility Factor

The key difference of the Fuuy Belief-based supervision approach
from the earlier-suggested belief-based supervision approaches is
the presence of interval discriminator in every belief set, that repre-
sents correlation of behavior represented (or expected) by the given
belief, and the observed behavior of the target system. This dis-
criminator was called feasibility earlier in this work.

From now on, let us consider, that the greater the feasibility factor
is, the closer did the observed behavior matched the expected be-
havior in the given belief, so that when the two behaviors match
completely. feasibility factor will be equai to 1.

3.3.1 Inheritance Rules for Feasibility Factor

As new belief sets are generated by the fuuy supervisor, their fea-
sibility factors should be assigned some values.

As the newly-generated belief does not produce output at the in-
stance of its creation. it will share expected and observed output
history with its parent belief set.

36 F u z z Belief-Bmed Sofhvare Supervision

Feasibility Factor

Therefore. by our definition the value of its feasibility factor should
be the sarne as in it's parent's belief set.

This sets the inheritance rule for the feasibility factor.

3.3.2 Belief Set Combination and Resulting Feasibility

Sometimes two or more different hypotheses have identical expec-
tations of the observed behavior. This happens when difference be-
tween these hypotheses lies within the SDL model internal state
and does not manifest itself externally. Such hypotheses may CO-

exist in the supervisor until their evolution makes their expected
behavior different from each other and they become distinguishable
extemally. But evolution may also change their intemal state, so
that they will become identical internally and externally. In binary
belief-based sofrware supervision such belief sets were merged into
one. Their expected behavior rernained perfectly matched with the
observed behavior.

This mec hanism was important, as it eliminated unnecessary redun-
dancy arnong the existing hypotheses while maintainhg suficient
coverage of all state and behavior alternatives possible in the for-
mal model of the target system.

Will such a mechanism be a necessary part of a fuuy supervisor?
Yes, as we plan to allow survival of some of hypotheses that do
not describe the observed behavior particularly well. This increases
possibility that different hypotheses will evoive into ones with
identical intemal state and expected behavior, therefore the onginal
problem still remains: we have to merge them, as their consequent
evolution wiii be identical.

To makes things more difficult, these may have different past histo-
ries and, as a result of that, different feasibility factors.

Futr). Belief-Bawd Sofhvare Supervision 37

F v Betief-Baseci Software Supervision

If we are to merge several into one, what should be different in the
merging algorithm for the f u u y supervisor?

Nor much. The major difference between belief sets in the binary
software supervisor and beliefs sets in fuzzy software supervisor is
the presence of the feasibility factor and a tnck of pasr history.
should we decide to keep the latter.

We suggest that the feasibility factor be used to decide attributes of
which belief set we are going to inherit in the result of a rnerger.
Feasibiiity reflects how well the associated belief could explain be-
havior of the target system in the pst . by definition. and it is logi-
c d to chose this "better" past history as the attnbute of the
resulting belief set. Informally, this means. that we will inherit the
best possible feasibility and history of explmation of the target sys-
tem that a belief set with given intemal state and expected behavior
can have in the supervisor. The rest of attributes will be exactly the
sarne. so merging actually will consist of selection of one belief set
arnong several.

The new algorithm for the merger then looks like this:

for (e v e v belief-set in merged,beleif_sets) /
if(< (feasibility(besr-belief-set).

feasibilityf belief-set)))

rhen {

bestbelief-set = belief-set;

I
1
retum best-belief_ser

end select-merge-result

38 Fuzzy Belief-Based Sofiare Supervision

- -

Feasibility Factor

3.3.3 Failure in Fuzzy Belief-Based Supervision

Failure in basic belief-based supervision theoq manifests itself in
discarding of al1 existing beliefs in the supervisor. This could have
k e n caused by explicit mismatch or performance time-out of sig-
nais in output queues or in-transit signal sets.

This simple algorithm of failure deiection will not work in Fuzzy
Belief-Based supervision. as none of those belief death causes will
be valid in FBBS.

What would happen in the F u v y supervisor in the situation that
would have been recognized as a failure by a binary belief-based
supervisor? Should it be a rnismatch or signal expiration. it would
result in reduction of a feasibility factor of the affected belief set.
And failure in t e m of binary software supervision will be equiva-
lent to a simultaneous occurrence of feasibility factor reduction in
al1 belief sets present in the target system.

3.3.4 Matching and Change of Feasibility

Supervision is expected to be continuous and last beyond any de-
tected failure of the target system. Since feasibility factor may take
a continuous rmge of values and some beliefs will expect a differ-
ent behavior from the one produced by the target system (should it
be a result of a malîünction of the target system or the unrealized
behavioral permutation produced by the belief generation aigo-
rithrn), it would be necessary to define the rules that will be guid-
ing changes of the feasibility factors under various circumstances.
The matching algorithm itself wili be defied elsewhere and WU
not be of a concern for us at this moment.

We should devise an algorithm that will balance decreases and in-
creases of feasibility factors and will ailow for recovery of feasibil-
ity factors to high levels in the post-failure operation should the
system recover.

F m Belief-Based Sofnvare Supervision 39

F u z q Beiief-BPsed Sobvan Supervision

When a mismatch is detected in some belief between its expected
behavior and the observed behavior of the t q e t system. feasibility
should decrease. and when a match is detected feasibility should in-
crease.

It will complicate the domain significantly if we discriminate be-
tween the influence of different types of matches and mismatches
on the value of feasibility factor. Althouph the idea is sound. we
will assume that any rnismatch will influence feasibility in the
same way as any other mismatch. and so will a match.

For how long should we retain the information that feasibility fac-
tor was decreased at some point? This information rnay be usehl
when the target system is highly reliable and it is expected that su-
pervision will not detect any failures. On the contrary, if failures
occur often, it is rather meaningless to remember that a failure has
occurred. It may be better to keep information about a failure for a
certain time and discard it afterwards.

We will consider failure an unlikely event. take the first option and
try to reflect information about past failures in the feasibility factor.

If a failure has been detected by a fuzzy supervisor at any point
during the life of a given belief set, we can no longer say that the
behavior that has been expected by this belief set matches observed
behavior. Therefore feasibility factor of such a belief set should
never reach the upper limit of 1 again.

Let us try to construct an algorithm that will be suitable for feasi-
bility factor calculation for Fuuy supervision.

- - - - - - -

40 Fuu). Belief-Bmed Sojhvure Supervision

Feasibility Factor

The simplest way to increment or ro decrement feasibility is to add
or subtract a constant:

Lxmrirch = u = const

A x ~ , ~ ~ ~ ~ ~ ~ = b = const

Let's cal1 this an absolute change algorithm. as it does not take in
consideration anything at all. Absolute change algorithm is simple,
and it is e s y to predict what will be the value of the feasibitity
factor for the given belief set:

where n is the number of detected matches and rn is the number of
de tected mismatches.

The problem with this algorithm is: resulting feasibility rnay over-
shoot the intended range and become either less than zero or great-
er thm one. This points us to the idea, that we have to consider the
value of the feasibility factor of the given belief set when deciding
on how much to decrease or increase the feasibility:

An additional consuaint is that the resulting value will still
within the allowed feasibility range:

Also, as we agreed earlier, past mismatches should be reflected in
the feasibility value: it should not be equd to 1 ever again once a
rnismatch was detected.

F u z q B e l i e ? Bared Sofnvare Supervision 41

F,ttzv Belid-Based SonPrare Supervision

It is obvious that the class of algonthrns delimited by these rather
Ioose constraints is very large. Without attempting to exhaust al1 of
these. we will investigate one particular type of formula in which
'XmUrrh = a (X n l d) = a(- At,[,) and = bcxtPu~ = x,,,, - b, :

What are the propenies of these algorithms'? For one. new feasibili-
ty will never leave the permitted feasibility range. In the case of a
rnatch.~~,,,~, is always a fraction of the difference between 1 and
the A,,,,, therefore a sum of the delta and x,,,, will not be greater
than 1. or will be strictly less if xfl,, c i . More formally:

S i , m m r c , , is always positive and is a fraction of xf ,,,,
therefore the result of subtracting the delta from xli,, will be dways
positive and will never be greater than 1 :

42 F z x y Belief-Based Sojlware Supervision

-- - --

Feasibility Factor

Figure 15 illustrates changes of feasibility of a belief set afier one
detected mismatch and three matches when a = 0.5, b = 0.5 and start-
ing feasibility is equal to 1.

Figure 15: Dynamics of Feasibility Factor of a Belief Set After
One Mismatch and Three Matches

As a general observation, increasing constant a will increase the
rate of recovery of feasibility as a result of a match. while increas-
ing constant b will slow down the decrease of feasibility as a result
of a mismatch.

As we see in these algorithms, a recovery of feasibility from a de-
tected failure would depend on the continuation of (possibly, part-
ly) successful operation of the target system. If the target system
continues to opente properly, that is, if signals that are produced
by the rest of the system are matched with the corresponding sig-
nais expected by the supervisor. the damage to the feasibiiity of the
surviving beliefs would be compensated by successful matching,

In general, with the algorithms selected above the important factor
deteniiining the feasibility change in any given period of time
would be not even the number of mismatches (failures) that have
occurred in given time, but the ratio of successful matches to the
number of mismatches that have occurred. For more discussion on
this topic see section 3.5.3.

F q Belief-Based Softwate Supervision 43

- -

F u n ~ Beiief-Based Sothirare Supervision

3.4 Matching

Matching in belief-based supervision is a process of cornparison of
behavior expected by the supervisor and the observed behavior.

As it was set in Our objective, matching has to continue after a mis-
match has been detected and has to handle signal distortions that
were discussed in section 2.1.1 of Chapter II.

3.4.1 Output Signais

What information will be meaninpful in output signals? The fol-
lowing attributes characterize expected output signals produced by
BSDL modei of supervisor:

name: unique identifier of a signai

parameters: types and values

sending path: allows to discriminate signals sent via difierent channels and
identicai otherwise

sending time (time stamp): discriminates identical signds sent at different
moments of time

beIief set that produced the signal: consistent belief sets may represent different
hypotheses about behavior of the trirget systern and therefore identical expected
output signals may be generated by different belief sets and have to be distin-
guished.

Then. for the reference purposes we'll denote an expected output
signal as:

signal:<name, panms, path. tirne, cbs>

where the elements in the brackets denote attributes just listed
above.

44 Fuzzy Belief-Bused Sojtwure Supervision

3.43 Behavior Representation and Capture: Output
H i s t o ~

As was mentioned before. any consistent beliefs set represent a
complete hypotheses about the state of the whole target system.

As there may be many consistent belief sets at any given time there
also will be more than one expected behavior existing in a software
supervisor dunng its operation.

Observed behavior as well as expected behavior of the target sys-
tem c m be represented as sequences of signals.

Expected output queues consist of signais that were produced by
belief processes of a consistent belief set and were sent to the envi-
ronment.

In the case of observed behavior. signals corne from an abstractor
process or processes. that scan the interface memory of the target
system and interpret physical characteristics of the interface memo-
ry as app!ication of certain output signals.

Discussion on issues with signals abstraction conducted in section
21.1 of Chapter II illusvated that the abstracted behavior may suf-
fer from various distortions such as misobserved signals. missing
signals. and phantom signals.

Also, a concurrent execution of several abstractor processes may
cause permutations of the abstracted signals in the observed behav-
ior queue. The permutation problem also occurs when several pro-
cesses of the same belief set deliver output signals through the
same channel. This illustrates the importance of properly aligning
of the mode1 to the target system (e.g., directing signals of different
nature into separate channels and properly selecting scanning algo-
rithrns) in order to eliminate problems like that. For clarity we WU
consider that the mode1 we have has these properties.

-- .- - .- - - - .

Fuu)l Belief- Based S o m r e Supervision 45

Fuzzy Belief-Bad Softwm Supervision

If we represent behaviors as sequences of signals. and as it was
shown. there may be multiple possible expected behaviors. we may
have severd expected output queues. The observed behavior also
may result in multiple queues. if we consider building hypothesis
of what was observed in a way similar to hypothesizing on what
has happened in the target system. But simple observed behavior
will suffice if we eliminate non-determinisms of forming an obser-
vation through appropriate mechanisms of abstraction and well-
suited supervision model. We will consider that only one version of
observed behavior is sufficient and assume that observationai non-
deterrninisrns have been eliminated.

Output behavior captured as a sequence of signals ordered by their
timestamps wiil be cailed output histoq.

Here is the notation we'll use to represent output history:

data output-histoq: <signal- 1, signal-2, signai-3. signal-N>

3.4.3 Performance Tirne-Outs of Signals in BSDL ~Model

Signals sent via BSDL signal channeIs among others, would gener-
ate beliefs that the signal is still in transition. and these would live
indefinitely. Practicd considerations tell us that if we send some-
thing via some transport route we would expect it to arrive in the
point of destination in some time, finite, if not pre-determined ex-
plicitly.

This prompted introduction of the time-out mechanism that discard-
ed al1 consistent beiief sets which had signals that have been stay-
ing in "in-transit" state longer than a certain time after their
depamire from the sender processes. This mechanism was terrned
pe$bmance tirne-out.

Below is the "old" performance tirne-out algorithm for expected
output signals and signals in "in-transit" list:

46 F u u y Beliej-Based Sofnvare Supervision

1: algorirhrn ald-checkgeformance-rimeour(signa1):
1.
L. if(c(time(signa1). -(current-rime(), petformance-rimeout)))

3: then discard(cbs(signal))

4: end o ld~checkge fomce~r imeou t

where t h e (. . .) , cbs(...) are selectors of signal attributes. and dis-
card(arg) is a function that deletes passed data object arg.

In the Fuuy belief-based software supervision timing out will car-
ry out functions that were non-existent in the original belief-based
supervision: as we expect supervisor to continue operation in pres-
ence of signal distortions and possibly faulty behavior of the target
system and beyond the moment of detection of behavioral devia-
tion. we should be prepared to match output histories in which
some signals do not have a matching counterpart due to a faulty
behavior or observationai distortion. Such signals should also be re-
rnoved by the performance time-out aigorithm.

What should be different in the performance time-out algorithm if
it is to be used in Fuzzy belief-based software supervision? In one
statement. performance tirne-out of a signals should not be dowed
to cause an unconditional termination of associated CBS as that
would prevent CBSes from freely competing with each other.

This change directly affects performance time-out algonthms for
"in-transit" signais and expected output signals:

I : algorithm checkgeformance-rimeout(signal):
7 -. if(<(rirne(sigml). -(currenr-tirne(). perfomnce-rimeour)))

3: rhen pmcess_pe~omnce~time~our(signal)

4: retum

5: end checkgefonnance-rimeaut

where tirne(...), c h (...) are selectors of signai attributes, and
processger$ormance~timeout(signal) modifies feasibility due to a
timed out signal in a certain way, that is discussed in section 3.3.4.

Fuuy Belief-Based Software Supenision 47

Fuay Beiief-Basd So- Supervision

3.4.4 Timing Out of the Observed Output Signals

A mechanism similar to performance time-outs was used to clean
up observed output history from older output signals, and also to
destroy CBSes in which these timed out observed output signals
were never properly matched.

For signals in the observed output history the algorithm used in the
binary belief-based supervisor was:

1: algorirhm old~checkgeformar~ce~rimeoitr(signal):
7. -. if(c(time(signa1). -{currenr-rime,), performance-rimeoctr)))

3: rhen discard(cbs(signal))

4: retum

5: end old-checkg efomnce-timeour

where the(. . .) . cbs(...) are selectors of signal attnbutes, and dis-
cardtarg) was a function that deleted passed data object arg.

Again. this algorithm has to be modified for the purposes of Fuuy
software supervision as it was explained in section 3.4.3. replacing
the unconditional destruction of the belief sets that haven't matched
the timed out signals.

Instead of irnmediately deleting the cbs that has an observed output
signal that timed out, the fact will be merely registered in the cbs.
and an immediate destruction will not occur:

1 : algo rirhrn checkge$ormance-rimeours(hkro~):

2: for (every signal fmm hisroc) /
3: checkjeformance-timeout(signal)

4: I
5: retum

6: end checkse@onnance-rime-

48 F m Belief-Based Sofiware Supervision

1: algorithm checkgeformarice-rimeourf sigrlu1):
-. 7 - if (<(rime(signal). -(current-rime(). pe$onnance-tirneout)))
3: then processge flonnance-tirne-out(signa1)

4: t-emm

5: end checkjefonnance-timeout

where rime(...). cbs(...) are selectors of signal attributes, and
discard(arg) is a hinction that deletes passed data object arg, and
processgerfomance-timeoudsignal) modifies feasibility due to a
timed out signal in a certain way. that is discussed in section 3.3.4.

3.4.5 Matching Individual Signals

Behavior captured as output history consists of output signals. In
order to define matching of behavion we have to define when do
we cal1 two signals matching each other.

As defined in SDL, signals rnay carry parameters and when sent
travel a certain path determined by SDL specification. As rnatching
is a responsibility of the BSDL abstract machine, sending time, de-
livery path, and information on the signals parameters is available
when matching is performed.

Observed output signals must be produced during signal abstraction
that uses specific knowledge about the target systern and the super-
visor model to interpret changes in the interface memory of the tar-
get system as signals.

The best possible meaningfulness of matching of individuai signals
may be achieved when the observed output signai contains is asso-
ciated with exactly the same types of information as the expected
output signal. Then no information is wîsted, and rnatching of two
signals rnay be decomposed into matching of individual signal at-
tributes such as signal channel. timestamps, parameters, etc.

Fuay Belief- Based Sofhvare Supervision 49

Fuzzy Belief-Based Software Supervision

We will consider the signal abstraction and supervisor mode1 per-
fectly aligned: that is if the target system is operating properly. ab-
stracted signal would be attrïbuted with the same identifier (name),
channel. parameten and timestarnp close to that of the correspond-
ing expected output signal produced by the target system.

Matching algorithm for two output signals will look like ths:

algorithm SignalMatch(signa1-1. signal-2):

return(md(match-sig-rimet tirnef signalII), timer signal-2)).
matchgathfparh(signal-2). paih(signa1-2)).

malch-nameinamefsignal-1). riametsignal-2)).

ma~chgarm(pann(signaI_!). pann(signa1-2))))

end SignalMatch

algorirhm match-narnetnamel, narne2):

return(=(namel. name2))
end match-name

algorithm matchga~hipath 1. path2):

rerum(= (path 1. path2))

end matchgath

algorithm ntaichgann fparm 1, pann2):
rerurn (=(parmi, pann2))

end marchgann

where name(...), pathf.. .), rime(...). params(...) are simple selectors
of signal attributes, and matchrime(...) is an algorithm comparing
timestamps of the two signals and deciding if they c m be matched
from the point of view of their timestamps. See section 3.4.6 for
discussion of timing aspect of signal matching.

This algorithm calls for an explanation. We assumed that signal ab-
straction is perfectly aiigned with the target system. That means. as
we defined. that two signds will be identical in everythmg but
maybe their timestarnps, and expected output signais will have an

50 Fuuy Belief-Based Sofhvare Supervision

extra attribute - CBS ID that will be rneaningless in the observed
output signal. as the observed output history will be unique as we
agreed. That is exactly what the algonthrn does: it compares
narnes, parametes. paths. and compares observation md sending
timestamps of the two signais as discussed in section 3.4.6.

Although the CBS attribute is not significant in the matching of in-
dividual signals, it is important for formation of output history for
different consistent beiief sets.

3.4.6 Timing Aspect of Individual Signal Matching

Speaking informally, when we are trying to match two signds with
each other, timing of their detection is important. It is impracticai
to ùy to match two signals that have been received in distant mo-
ments of tirne. This is similar to time-out expiration of output sig-
nals discussed in section 3.4.6. Thus we may set some threshold
time distance between timestamps of two matched signals beyond
which matching of these signals will not be attempted. This thresh-
old may be different with respect to the performance time-out
thresholds. Although, if it is more than the performance time-out
threshold, it will be useless. as the signals separated by this thresh-
old distance will never be matched with each other, as the earfiest
of these two will be discarded by the performance time-out mecha-
nism. This is illustrated in Figure 16: rd, stands for detection time
of signal i, T, stands for performance expiration time of signal i.
As we see. it'is impossible that matching of signal 1 and signal 3
will ever be attempted as signal 1 will be expired by the time sig-
nal 3 is detected.

Fuuy Belief-Based Sofnvare Supervision 51

Fuzzy Belief-Based Software Supervision

Figure 16: Potentiai Life Intervais ofof Signais and Time
Matching

On the contrary, signais 1 and 2 may coexist in supervisor at the
sarne tirne as their potential life spans overlap. Attempt of matching
of these two signals may be prevented by sufficiently short critical
temporai distance threshold, namely. it should be shorter, than the
temporal distance between their respective detection timestamps.

Here is the algorithm that performs matching of timestamps re-
ferred to in section 3.4.5.

1 : aigorirhm match-sig-rime frime 1, rime2):

2: rerurn (c (abs(-(timel. time2)).

3: tirneout))

4: 1
5: end march-sig-rime

In this work we will consider performance and temporal distance
thresholds equal. so that temporal distance checking will become
redundant.

3.4.7 Decornposition of Output Ristory Matching Into
Channel Matching

Representation of behaviors as sequences of signals makes the task
of matching relatively simple. The idea is to simultaneously
progress in two output history lists while matching eligible individ-

52 F u z y Belief-Based Sofiware Supervision

uai signais contained within each of the sequences. We have to de-
fme which signals wiil be eligible for rnatching and how will a
match O a mismatch affect the output history lists. For now we will
oniy consider that there are only two sequences to match and wiil
address the problem of output matching for multiple beiief sets lat-
er.

A problem we have to solve in the matching aigorithm is the possi-
ble absolute delivery order permutation of signals travelling via dif-
ferent channels: even though several signals could have been sent
in the right order, but through different channels, they will emerge
from the channels they travelled through in a different order. due to
the non-detenninistic in-channel delay.

Channels may delay, but do not permute signais sent through them.
Therefore, the delivery ordering of two signals sent through the
same channel will be the same as the departure ordering (see
Figure 17).

Expected Output Chan-

() Expected Output ~ h n n - l w

Figure 17: First-In-First-Out Signal ansm mission in SDL
Channeis

Signal abstraction and specification are aligned, as we postulated,
that means that abstraction does not permute observations of sig-
nais that would have been expected to emerge on the same channel
i the SDL rnodel.

Fuzzy Belief-Based S o m = Supervision 53

--

Fuzzy Beüef-Based Software Supervision

d Output Chan-

Figure 18: Abstraction of Same-Channel Signals in
Supervisor

In Figure 18 two signals can travel dong channel Chanl, although
they have different signal carriers in the target system. Neverthe-
iess, the ordenng of these two is the same as the ordering of their
appearance in the carriers.We wiU assume, that signals for which it
is impossible to guanntee non-permuting detection will be sent to
separate channels within the SDL specification.

Figure 19: Decomposition of Behavior Matching Into Same-
Channel Matching

54 F y ~ t Belitf- Based Sofrware Supervision

Now, since inter-channel signal permutation is mled out, we can
split signals in the output histories into per-channel sub-histories
and decompose matching of two output histories into matching of
their same-channel sub-histories. Later we will explain how to re-
combine the results of same-channel matching into a result of out-
put history matching.

3.4.8 Matching Same-Channel Output Histories

As before, when trying to match two sequences of signals we
should expect that some of the signais present in one sequence will
be missing in the other, or the order of signals in one wiii be differ-
ent from the order of signais in the other.

Permutation of output signals in one same-charnel sequence with
respect to the order of signais in the other will indicate a faulty be-
havior according to our postdate presented in section 3.4.7 and
should be caught as a mismatch.

Matching will be an iterative process of matching of individual sig-
nais starting from the "earliest" ends of signal sequences and pro-
gressing as necessary further in the sequences. Since signais may
be missing in both sequences, the candidate signal for matching
will be selected from either sequence in tums, thus the two se-
quences play equal roles in matching algonthm except for the se-
lection of the very fmt candidate.

Once a candidate for matching is selected in one queue, an attempt
wili be made to match it with the next untried signai in the other
queue. If the attempt fails, the matching tuni is passed to the other
sequence. Once a candidate has been unsuccessfully matched with
all of the signals in the other sequence. a new candidate is selected,
that is the signai immediately following the ex-candidate in its se-
quence.

Fuzz), Belief-Bused Sofnvare Supervision 55

Fuzzy Beiief-Based Software Supvvision

Note. that only portion of the opposite sequence starting from its
candidate and ending at the end of the sequence should be consid-
ered for matching with the current candidate of the given sequence,
as the signais from the beginning of the opposite sequence and up
to its current candidate have been tried already with al1 of the sig-
nais constituting the given sequence.

Thus. if matching is not successfbl, the sequence of attempted
matches is shown in Figure 20. where $ is the j-th signal in se-
quence i, ni is a number of signais in sequence i, Si~nalMcuch is the
individual signals matching algorithm presented in section 3.4.5.
The shown matching sequence will occur when n, < n , , and nzn, is
odd and absolutely no signals match in the two sequences.

Initiai candidate for sequence 1

Initial candidate for sequence 2

Last signal tried in sequence 2

Change candidate for sequence 1

Last signal tried in sequence 1

Change candidate for sequence 2

Last pair tried

Figure 20: Sequence of Attempted Matches

56 Fut ty Belief- Bared Sofhvare Supervision

What should happen once we did find matching signals sornewhere
in the two sequences? The way Our match search algorithm has
been designed guarantees that no matching pairs were found for
signals from the start of the sequences up to the matched signals;
these unmatched prefixes will have to be discarded to prevent
matching with them at a later time (t h i s prevents a successful
match of two permuted sequences).

We should consider every discarded signal a mismatch and modiQ
feasibility accordingly. When unmatched prefixes (if any exist at
d l) are removed from the sequences. the matched pair is registered
as a match followed by an appropriate increase of feasibility.

After that the matched signals are also discarded to prevent repeti-
tive matches with the same signals. Figure 21 illustrated conse-
quences of a detected match.

Expected Output Observed Output

~ ~ } ~ ~ ~ ~ ~ / sequences

Sequences purged

Figure 21: Discarding Unmatched Prefixes and Matched
Si pals

- - - --

Fuuy Belief- Based Sofrware Supervision 57

F w q Bekf-Baseci Software Supenisioa

Expected Output Observed Output

During a Matching Sweep

match i B l

After ri Matching Sweep

~ ~ ~ r n a r k s a match. where:

1 points to two rnatched signals

f i points to signals deemed
"rnisrnatchcd" by the match

Figure 22: Expected and Observed Output Histories Before
and After a Matching Sweep

The idea of same-channel signal matching is clear now. Let us give
a more forma1 presentation of the same-channel matching algo-
rithrns discussed in this section (some algonthms have been de-
scribed in other sections)

Aigorithm march-channei-hisron. is the top-level aigorithm that
checks for performance time-outs in both histories and finds al1
matches in the two remaining history lists.

end match-channel-izistoq

Algorithm purge-channef-hisror purges passed history f o m the be-
ginning and up to the matched signal. processing al1 mismatches
and the final match and cleaning up the history from processed sig-
nals.

IO:

algorirhm purge-channef-hisron.(marched-signal. histury):

hisrory-head = head(history);

while (nor(hisrory-head = rnarched-signal J) {

pmcess-mismarch(hi~o~-head);

hisrop-head = nexr(hisrosl_head);

rernove(history-head. history);j

pmcess,match(marched-signal);

remove(matched-sisgnal, h isrory);

return;

end purge-channel-hisroc

Futt)l Belief-Based Sofrware Supervision 59

F u z q Belief-Based Software Supervision

Algorithm /nd-channe[murch successfuliy finds one match and pro-
cesses matches and caused mismatches. and cleans up the histories
from processed signals (description of variables used in the aigo-
rithm can be found immediately below the algorithm itself):

1:
1 - -
3:

4:

5:

6:

7:

5:

9:

IO:

I f :

12:

f3:

1 4:

15:

1 6:

1 7:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

algo nthrn 3rd-channel-murch(h i s t o ~ - I , history-2):

candidate-! = headthistor-y-1);

candidore-2 = headf hisroc-2);

march-1 = candidate-?;

match-? = nem(candidare-1);

nrarchJorrnd = fuise:

matchnor found = false;

tunt = true;

rtnrii (or (matchfound. match-notfound)) (

if(turn)

rhen /
if SignalMarch f candidate- / , match-1)

rhen /
match-2 = candidare-1;

matchfourid = true;

/
else (

if (or(f candidure-2 = NIL). (match-2 = 1VU.I) I

then /
match-narfound = rrue;

1
else /

advance-malch-candiriares (candidate- 1, candidare-2,
match-1, h i s t o d) ;

/
1

/
else /

ifSignalMa~ch(candidafe~2, match-2)

60 Fa? Belief- Based Sofnvare Supervision

29: rhen

30: march-l = candidate-2;

39: advance-match-candidates t carididare-2. candidale- 1.
mrch-2. hisroc- 1) ;

40: 1
4I: /
42: 1
43: rrtm = nortrurnj;

-CI: if (march found)

45: rhen /purge-channel-i~isrop(mtchh 1 , hisrop- I);

49: end Jind-channel-match

The algorithm above is less obvious than the other ones and re-
quires expianation. Arguments hisrory-l and history-2 point to
lists of signals constituting output histories. Variables candidate-l
and candidate-? contain references to current candidates for match-
ing in histor-y-l and hist0r-y-2 correspondingly. Variables match-1
and matchZ point to current match prospect for candidateel and
candidate2 co~espondingl y and point to signals from histom2
and history-1 correspondingly; also these are used to store matched
signals once the match is found. Flags rnntchfound, tum, and
match-nolfound are used to indicate if the match was found, what
candidate will be matched in the iteration, and if the match was not

-

Fuzz Belief- Based Sofnvare Supervision 61

Fuzzy Belief-Bad Software Supervision

found. just as their names sugpst. Here candidatei is the next
candidate for the match in histor-y-i, rnarch-i is the matching pros-
pect for candidate-i. Two pairs of pointers (hisrory-i, match-23 are
needed here in order to perform interleaving top-down matching of
histop-land h i s r o u .

Algoridm advonce-match-candidates perf'orms advancing of
matching candidates through the history lists. If we tried al1 of the
eiements in the other queue with this-candidate. advance
this-candidate and set the this-match prospect to the signal next to
the uthrr-candidate, else simply advance the match prospect
rhis-niatch to the next element. If advancing is not possible. simply
retum from execution.

f : algorithm advance-match-candidates (this-candidate. orher-candidate,
this-niarch, other-hisroc):

7 . -. if (this-match = last(orher-hisron))

3: rhen /
4: if(or (nexf(tl~is-cmdidate~~iil) . (nextfother-candidate)=nil))

5: rhen

6: rem m ;
7: else (

8: this-candidate = nextt th is-candidate);

9: rhis-match = ne^ ~ther~candidûte j;

10: 1
II: 1
12: else /
13: this-nratch = n e.rr(this-match 1:
Id: f
15: retum;

16: end advance-match-candidates

w here next(signo1-arg) fin& signal standing next after signai-arg
in its history.

62 F u z q Belief-Based So fnva~ Supervision

The notation of the presented algorithms is rather awkward and im-
plementation-like. It had to be chosen due to the nature of the algo-
rithms and should be transparent enough to express fine details of
these algorithms.

3.4.9 Matching of Histones With Multiple Channels

What should be changed in the algorithm developed in section
3.4.8 if we were to match histones that have signals that travelled
through different channels? Not much. luckily. Before attempting
to match two signals we should check if they have sarne channels.
If so, we will proceed as before. if not. nothing should be done.
and matching of the next pair of signals should be attempted. The
old fid-channeï-matclz algorithm. actually, will work just fine
with multiple channel histones. as artempts to match two signals
from different channels will fail according to the algorithm sug-
gested in section 3.4.5. Only purging algorithm has to be changed.
as only signals with the sarne channel ris the rnatched one should
be purged from the history, and presence of other-channel signals
will not conflict with the successful match.

Overall. matching algorithm with multiple channel histories will be
equivalent to sirnultaneous execution of several sarne-channel
matc hing aigonthrns.

We will not rewrite al1 the matching aigorithm here. The only
change that will be necessary is to replace the involved same-chan-
ne1 algonthms by their multi-channe1 analogs.

Here is how the new algorithms look Iike (the longest
find-next-match has been omitted, as the old jïnd-channet-match
is trivially denved from find-channet-match with minimal changes
that become obvious from the examples below):

Futt). Belief-Based Sofnvare Supervision 63

-- --

F w BelieGBased Software Supervision

I:
7 - -.
3:

4:

5:

6:

7:
5:

9:

I:
7 . - -
3:

4:

5:

6:

7:
8:

9:

I O:

II:

I2:

13:

14:

algorithm marchrisrory hisro y-l. hismn.-2):

check_pe~onnance~rimeorrrs(hisro~~I);

checkge~bnnonce-rimeoiits(hisron-2);

match-notfound = false;

while (nor (match-notfound)) /
march-notf0und = find-ne-rt-march(hisrov-i,

1
return;

end match-hisro-

nigorithm purge-hisron(rnatch. hisrop):

signal = head hisron J;

rvhile(not (signal = march~) /
if (charinel(rnarch) = channel(signal))

rhen /
process~mismatch(signal);

remove(signal. h is top);

1
signal = next(signal);

/
process-rnatch(match j;

remove(march. hisrop);

rerurn:

end purge-hisron.

3.4.10 Matching Behaviors of Multiple Belief Sets

Matching will work in cycles repeating after a match is detected
and sequences are purged, until there is no match possible between
the signals remaining in both sequences.

Figure 21 illustrates a complete matching sweep with two sequenc-
es, that detects matches and mismatches.

- -

F u m Belief-Based Samare Supervision

Let us address the problem of matching of expected output behav-
ior then there are multiple belief sets. In section 3.4.2 we stated
that obsemed behavior will be a unique entity. This poses a poten-
tial problem. since outcome of matchng of two behavion will be
unique for every belief set. Replication of the observed behavior is
a sufficient and simple solution for this problem. Then every belief
set will be able to keep and maintain its own version of remaining
output history and matching may be unique. When new output sig-
nais are observed we simply will append these to the end of the 10-
cal copy of observed output history list in every surviving belief
set.

2: for f eveq belief-ser fmm ail-belief-sers) (

6: retum;

7: end append-obsenedoupttr

where append(...) takes two lists as arguments and appends first ar-
gument to the end of the second argument. and
local-observed-/zisto~. . .) is a selector of local copy of observed
output history associakd with the given belief set. We will refer to
this algorithm in the combined supervisor matching algorithm.

Figure 23 illustrates matching for several consistent belief sets. One
CBS is expanded and localized matchmg is illustrated with histo-
nes sorted by the charnel of the signal. Observed output history
has been duplicated in every belief set.

Fuzzy Belief- Based Sofrware Supervision 65

Supervisor
SDL hfodrl

Figure 23: Matching Within a Belief-Based Supervisor

66 F a y Belief-Based Sofrware Supervision

Competition Algorithm

3.4.11 Combined Matching Algorithm for Fuzzy
Supervisor

We may combine al1 the pieces together and construct an algorithm
that will suit Our needs for a fuzzy belief-based supervisor, that
rnay have multiple beliefs with histones consisting of signals from
mu1 tiple c hannels:

Ir u fgorirhm perjionn-nuzrching (ne\$)-ubserved-ourptirs. al/-befief-sets):

3: fur t eren befief-ser from al/-belief-sers) 1
4: murch-histuc(focal-r.rpecred-orc~p~~r(belief-set),

focal-obsented-ourpurtbelief-set));

5: J
6: end perfionn-marching

This concludes the development of matching algorithm.

3.5 Competition Algorithm

Mismatches. in-transit and performance tirne-outs have lost their
purpose for irnrnediate belief set termination in fuuy supervision.
This leaves us with a problem: how CO discard belief sets that have
failed to explain the observed behavior of the target system.

As defined. feasibility factor artnbuted to a given belief set ex-
presses how close were the output expectations of this belief to the
observed output of the target system, and the closer these were in
the past. the higher the feasibility should be.

Generation of new beliefs is a way of operation of a belief-based
supervisor. If we had unlimited computing resources we could al-
low a hzzy supervisor to produce beliefs and not wony about theu
numbers, as we still would be able to select these that still explain
the observed behavior the best. This is not the case. though, and we

Futz)' Belief-Based Sofrware Supervision 67

Fuzzy Belief-Based Software Supervision

have to set rules of restriction of population of belief sets to make
supervision practical.

in order to limit the number of belief sets existing in a supervisor.
we c m either restnct generation of new belief sets or will have to
remove some of the existing ones. The first option seems doubtful.
as belief generation is a key mechanism to provide exhaustive cov-
erage of alternative behaviors that are pennitted by the non-deter-
ministic specification. Thus we will develop the second option.

3.5.1 Cutoff Threshold Algorithm

Supervisor's goal is to explain the behavior of the target system. If
ive were to choose candidates for termination among the belief sets,
it will be logical to select the ones that do not explain the state of
the target system very well. This in turn will be expressed in the
lower values of their feasibility sets.

This provides us with a simple but efficient way of separating
"bad" beliefs from the "good" ones: we will introduce a threshold
algorithm that will weed out all belief sets that have feasibility low-
er than a certain threshold value.

algorirhm peflonn-crcroff (ail-belief-sers, curoff-rhreshold 1:

for (evep belief-set from ail-consistent-belief-sets) {

if (q feasibilin(belief-set). crcro ff-fh reshold 1)

rhen [

remot.e(belief-set. allbelief-sers)

discard(6eleV-se~k

/
/

end perform-cutoff

68 Futcy Belief-Baed Sofrware Supervision

Cornpetition Algorithm

Figure 16 illusuates the cornpetition algorithm. Belief sets are sort-
ed by their feasibility factor value and only sets with feasibility fac-
tor higher than x,,, will survive.

i
Leeend:

belief set index in the soned list

j beiief set index in supervisor

xi, sorted feasibility

%. feasibility cluster

xiU I possible cutoff thresholds

Figure 24: Cutoff Thresholds

3.5.2 On Necessity of a Variable Cutoff Threshold

It is easy to notice that value of cutoff threshold influences how
many belief sets are going to survive after a cutoff procedure.

Also, it is obvious that we cannot make thresholds fixed: the feasi-
bility change algorithm that we selected may bring feasibilities of

-- -

Fuu), Belief- Based Sofnvare Supervision 69

F u m Belid-Based Soîhvare Supenision

dl existing belief sets below any preset level should an occurrence
of multiple failures in a shon period of time happen. Should the
threshold exceed the maximum feasibility among the surviving be-
lief sets, al1 sets will be discarded after threshold cutoff procedure,
iind supervision will stop.

If we have to vary cutoff threshold. what should we consider when
setting it?

3.5.3 Calculation of Cutoff Threshold Value

In this section we will discuss pnnciples and constraints that we
should consider when selecting values for cutoff threshold.

First of all, in order to avoid destruction of d l belief sets, we
should set the threshold lower than the maximum feasibility factor
existing in the supervisor. This constraint does not ensure anything
than there will be at least one surviving belief set after the cutoff
threshold aigorithm is applied.

When a faiiure does occur, the observed behavior of a target sys-
tem may be better explained by some of the "incorrect" hypotheses
that are present in the supervisor, at least at first. Thus, the feasibil-
ity of belief sets expressing these incorrect hypotheses in the fmt
moments rnay be higher than that of the "correct" beliefs. ("Cor-
rect" and "incorrect" here, as everywhere else in this work relate to
intended behavior as opposed to performed behavior. This a belief
may be incorrect, when it does not describe behavior that the target
system intended to provide, but did not do so due to a malfunction.
These qualities are assigned hypothetically, as the target system is a
black box for the supervisor and it is impossible to say what did it
intend to do when observing it from the outside. "Correctness" of a

--

Competi tion Algo rithm

hypothesis may be con fmed later when the target system recovers
from the failure and continues to operate as expected by the "cor-
rect" belief.)

This observation hints to us that the cutoff theshold should be set
in such a way, that an average Mure will not cause an imrnediate
termination of "correct" beliefs, but will allow them to grow their
damaged feasibility factors to a higher ievel with new successful
matches and outlive "incorrect" beliefs with the continuing opera-
tion of the target system.

This introduces a dependency between the variable cutoff threshold
mechanism. feasibility change algorithm. matching algorithm and
even the specifics characteristics of the target system such as fail-
ure frequency, ratio of number of mismatches to the number of
matches as a result of a typical failure, and the mode1 uses by the
supervisor. Dependency is not a trivial one. and has probabilistic
features. as it is impossible to predict exact failure profiles of the
target system with absolute cenainty. That means that there will be
a possibility that in some relatively rare situation the calculated cut-
off threshoid value will happen to be too high. and the "correct"
belief set will be desuoyed after dl. (This prompts us to provide a
mechanism that woutd allow supervisor to eventually recover from
destruction of a "correct" belief sel should the latter occur due to
some unfortunate circurnstances. We will discuss such a mecha-
nism in later sections.)

We shall not attempt to a discover a complete cutoff threshold de-
pendency in this thesis. as it would be a very complex scientific en-
deavour on its own. Instead we will impose some constnints on the
involved variable parameters and try to corne up with a simplified
algorithm that will produce an acceptable value for the variable
cutoff thres hold.

Let us Say that predominant failure type produces N mismatches as
a result of one match. If the original feasibility in the belief was

F u z q Belief- Based Sofrware Supervision 71

Fuzq Belief-Based Sofhoare Supervision

Xozd then according to our feasibility change algorithm the result-
ing feasibility irnmediately after discovery of a mismatch will be a
superposition of Fin and N-recursive superposition of Fdecr
that are the functions we defined in section 3.3.4 for changes of
feasibility factors

Simplification after substitutions show that this cornes down to the
following formula:

This provides us with the foilowing constraint:

This constraint will ensure that a beiief with feasibility Xold will
survive N mismatches followed by a match.

In general case, when we fix a scenario in which sorne belizf with
feasibility X o l d has to survive, the cutoff threshold should be low-
er than the feasibility resulting from this scenxio:

where Fsccnarto (x) is a superposition of the predicted feasibility
changes as a result of matching in the fixed scenario.

And if there are several such scenarios, we have to take an absolute
minimum of their predicted outcomes as the upper boundary for the
cutoff threshold.

Frczz). Belief- Based Sofnunre Supervision

Fuzzy SupcrviSOr Reports

3.6 Fuzzy Supervisor Reports

An outcome of classic belief-based supervision was a failure report
produced when al1 beliefs died as a result of a failure of the target
system.

F u u y supervisor c m retain much more information about the tar-
get system than the binary supervisor could. as fuzzy supervisor
maintains a population of beliefs which carry information abou: the
past behavior of target system.

In this section we will present various types of information that c m
be obtained during operation of a fuuy supervisor. and possible in-
terpretations of this information for the reporting purposes.

3.6.1 Health of the Target System

Feasibility of any belief refiects the "hedth" of the target system
from the point of view of the given belief. The belief with the
highest feasibility will represent the best explanation of the target
system behavior that supervisor managed to produce.

So. a maximum of the feasibilities of the whole population of be-
lief sets will retlect the estimation of the overall health of the target
system from the point of view of the supervisor at the given instant
of time.

algorirhrn reporr_lsrem-health(al1-bdief-sets):

current-health = 0;
for (e v e v belief-ser in ail-belief-sers) /

v(< (current-healtk feasibility(be1ief-set))

then currenr-health = feasibility(be1ief-set);

I
repott(current-health);

retum;

end repu ri-sysrem-h ealrh

Futr). Belief- Based SoNare Supervision 73

Fwzy Belief-Bad Software Supervision

where report(nrg) is a function that uses passed argument arg to
produce a report of a fuzzy supervisor.

The algorithm above produces a value within the dlowed range of
feasibility factor. that may be used as output of the supervisor. As
the feasibility factor itself. higher result will rnean better operation
of the target system from the point of view of a f u u y supervisor.

3.6.2 Immediate Faiiure Report

As we discussed in section 3.3.3 a dcviation of behavior of the tar-
get system from the behavior expecred by a given belief set imme-
diately manifests itself in reduction of associated feasibility factor.

When a failure occurs in a target system, no belief set c m explain
behavior of the target system as every existing belief set expects
behavior different from the behavior produced by the target system,
that will be equivalent to a simultaneous reduction of feasibilities
of al1 existing belief sets.

We may use this simple observation to produce another type of a
M u r e report every time when the maximum feasibility drops:

ulgorirhm repon-immediarefailuret all-belief-sets, curr-sysrem-health):

if (< f sysrem-healrh(all_belief-sers). curr-sy~rern~heafth j)

rhen /
repon('failure ');

1
curr-rysrern-healrh = sysrem-frealrh(a1l-belief_sers);

rerurn ;

end repo rt-imediare failu re

The algorithm produces a failure report when the new value of sys-
rem health is less than the old value curr-system-health, and up-
dates crtrr-system-health with the new health of the system.

- ----

74 Fuzzy Belief-Based S o N a r e Supervision

F e Supervisor Reports

3.6.3 History Tree and Underlying Fault Localization

The maximum feasibility provides an answer for "what is the
health of the system". It m q be meaningful to also answer the
question like "why the system is not healthy" or "why is the health
of the system what it is".

Feasibility of a belief set is originally inhented from the parent of
the belief set and then is modified depending on the outcome of
matching of expected output of the belief set and the observed out-
put. If we trace al1 the outcornes of matching events in a genealog-
ical tree of a given belief down to the original belief set of the
fuzzy supervisor, we will obtain a complete log of matching events
that resulted in the current feasibility of the given belief set.

If we consider heaith of the system as defined in section 3.6.1, for
the best belief set (the set with the highest feasibility) the log we
just constmcted will serve as an expianation of why the health has
the value it has. The log would be able to explain what differences
and similarities were detected between the expected output of the
best belief set and the observed output of the target system.

In any case. such a log pmvides information on what functionality
of the target system has deviated from the specification. And if a
mapping of functional specification (such as an SDL model) to the
implementation of the target system exists. matching history c m be
used for fault localization.

As an example, consider an SDL specification of a small PBX.
with multiple phone handlers. Multiple signal mismatches on chan-
nels associated with the sarne phone handler would indicate a prob-
lems with service on a particular phone line due to software or
hardware problems. Type of mismatch (e.g. fast busy instead of
slow busy, or rnissing power ringing) will point to the underlying
fault (missing ringing, for example. will indicate a bumout in a ring

F p Beiief-Based SoNare Supervision 75

Fuzzy Beiief-Based Software Supervision

generator. Analysis of mismatch information captured in the log
thus will be helpful in failure troubleshooting.

Belief Sets Generation
Tree -

. - - ...

+ parent-child relation

belief

it - history element
i - belief index
n - fork index
1 - fork parent

.Match Historv
Tree -

LI- ,q
. . .

Ir - fork child

, /
n

11, '

Figure 25: Belief Sets Generation and Global Matching
Histoly

gchannel
0 event

event code
time s t m p
bnnching
previous

Since the rnatching history of a parent up to the moment of birth of
its child belief set is inherited by the child belief set dong with the
feasibility, there is relation between the genealogical tree of belief
sets and tree of inheritance of matching history. Figure 25 illus-

76 Fuu). B e l i e f - k e d Sofnvare Supervision

F m Supervisor Reports

tntes mapping between the tivo. It also shows the information that
c m be placed in every element of the matching history.

History tree will change dong with the changes of population of
belief sers. Death of a belief set will wipe out the leaf branch corre-
sponding to the dead belief set. When a belief set is killed due to
cornbination of two belief sets into one. the belief with the highest
feasibility will survive. so will the branch of the history tree associ-
ated with it. Information is panially lost. but we kept the belief
with "better history" so the better of the two histories will be kept.

A general rule for maintaining integrity of the matching history tree
is that elements constituting history of a living belief should stay.
while elements that are not used by any living belief shoutd be re-
moved.

Figure 26 illustrates algonthms for reduciion and expansion of a
history tree while maintaining its integrity. Every element of the
tree is assigned so called branching factor, that indicates how many
irnmediate descendant elements the element h a . If the branching
factor of an element is greater than one. it will not be desuoyed
when one of iü leaves dies. Branching factor is updated to reflect
the most current topology of the tree when new leaves are added or
removed.

History tree may present a heavy requirement for memory or stor-
age consumption for a supervisor, as the tree would grow deeper as
new outputs are detected but the depth of the history tree may be
limited in order to reduce the amount of memory required to store
it.

- - - -

Fuzr). Be fief- Bared Software Supervision 77

Fuzzy Belid-Based Sofhvare Supervision

reduc tion

expansion

IX(history element

F 7
/ branching iT
d changed ,
Y- 1

Legend: X branching factor

pointer to - previous elernent

Figure 26: History Tree Manipulation

Algorithm add-new-dement is used to add a new leaf to the tree:

2: a [go nt hm add_nebv-element(parenr- element. child-elemenr)
7 - - . incrernenr-branching (pare-elemenr 1;

3: ser-ancesto qchild-elemen t, parent-elemenr);

4: setbranching(chi1d-elemenr. 0);

5: relu rn :

6: end adà-ne-elemenr

Algorithm remove_dead-elemeni allows to start from the leaf of a
dying branch and in one recursive sweep with a linear complexity
rernove d l elements in the branch down to the element that is still
k i n g used by some living leaf, where the algorithm stops. Note:
we will never have a situation where al1 beliefs in the system
would die, therefore at least one surviving branch will be present in
the history tree aiways. Thus we may ignore checking for the exist-
ence of the existence of an ancestor of any element. as we wiil
never try to delete the root element of the tree.

78 Fuzz). Belief-Based Sofnvare Supervision

Funy Supenisor Reports

1 : uigorirhm remove-dedelement f dendelement):
7 - -. if (<t branching factor^ demi-eiement). 2)
? - - - rhen /

1- d . discard t deaddernent l ;

6: I
7: else (

8: decremenr-branchirrg(dead_elernen t) ;

9: 1
1 O: rerrlrn;

I I : end remore-dead-eiement

Algorithm decretnent-brnnching(e1rment) reduces branching factor
of element by one and algonthm increment-brnnching(elernent) in-
creases branching factor of element by one.

Algorithms set-ancestor(e1ernent. nncestor) and set-branching(e1e-
ment. branchingfacror), as narnes suggest. set the ancestor and the
branching factor of element correspondingly.

Algorithms branchingfacrodelement) and ancestor(e1ement) return
branching factor and ancestor of the element. As before. algorithm
discardlarg) destroy s arg.

And finaily. algorithm report~natching-/iistoq(eletnenf) reports
complete matching history of element:

algorifhm report-mrching-histop(e1ement):

reporr(march-dara(e1emenr));

$(nor(= (ancesroflelement). NIL)))

then /
repon~matchzng~hisroq(ances~or(e1emenr));

1
return:

end tepon-matchinghisrory

F u z q Belief- Based Sofhvare Supervision 79

Fuzq B e i i c f - B d Software Supervision

Localization of the failure using mapping of functional specifica-
tion to the target system implementation will not be covered in this
work,

3.6.4 Average Feasibility

Instant reading of health of the system rnay not always reveal a
true picture of hedth of the target system. rspecially when the
range and rate of change of the maximum feasibility in the particu-
lar application of a fuzzy belie f-based supervisor is signi ficant .

In such cases it may be more informative to calculate an average of
the maximum feasibility readings over a recent period of time of
pre-determined length and have it reported by the supervisor. The
meaning of ihis report will be sirnilar to the instant estimation of
system health, ody it will be more inert to changes of the latter.
Algorithm for this type of report is trivial and will be ornitted here.

. rracking
: period T :

b

O f , Time l

Figure 27: Average Health During a Period of Time T at times
to and tl

--- -- --

80 F u t ~ Belief-Based Sofnvare Supervision

Fuzzy Supervisor Reports

3.6.5 Feasibility Distribution

If we had an ideal (or beaer - Utopian) dl-seeing supervisor super-
vising a perfectly correct target systern (no failures. that is), it
would have exactiy one belief set that will be always able to ex-
plain the state of the target system. This is not possible, though
since our target system is not perfect and supervisor cannot see
what is happening inside the target system. Instead of one we will
have multiple belief sets. the nurnber of which. nevertheless. we
want to keep to a necessary minimum.

What does the number of belief sets indicate'? It indicated the de-
gree of confusion of the belief-based supervisor over the reai state
of the target system. Fuuy belief-based supervision does not sim-
pli@ this problem as with its feasibility factors and threshold cutoff
mechanism it allows survival of more "confused" beliefs than the
b i n q belief-based supervisor.

Belief sets with highest feasibility serve as a focus point in the
fuzzy supervisor, representing the most successful expianations of
the target system. Beside them there will be some beliefs that are
slightly more confused but survived d e r the previous sweep of a
liberal fuuy cutoff threshold algorithm. If the behavior of the tar-
get system deviates from the specificaüon, the "correct few" sink to
the level of confused majority and the focal point of beliefs with
nearly maximal feasibility tums into a larger plateau. This Ieads to
survival of a Iarger number of beliefs in the cutoff threshold algo-
nthm. So. as degree of confusion of supervisor increases the preci-
sion of explanation of the target system's behavior decreases.

We will use Figure 16 to illustrate the phenornenon. It represents a
histogram of feasibility factor of a belief set as a function of index
of the belief set in the list of belief sets sorted by their feasibility.
NE denotes the number of beliefs in the surviving group in a
case when the target system operates properly. NQ;td is the aumber
of beliefs in a case when the target system just suffered a failure.

Fuzzy Belief-Bused S o f i a r e Supervision 81

Fuzq Belief-Based Software Supervision

The nurnber of sets in the highest-feasibility (leading) group c m be
reported by the supervisor: when statistical data is cotlected for the
number of beliefs in the leading group for a supervision of a target
system without failures. it may be used to judge the degree of pre-
cision of supervision of the sarne target system when it starts to
suffer failures. The more the number exceeds the "failure-free sta-
tistics" the lesser is the precision.

Lepend: i belief set index in the sorted list
J belief set index in supervisor

ZA sorted ferisibility
normal operation of the target systern

K faulty operation of the target systern x...
rhrrsh cutoff threshoid

4 ; ; d
number of beIief sets in the leading
group

Figure 28: Reporting Feasibility Distribution

This type of reporting would be an interesting topic of research on
its own. It is presented here only as a suggestion. Feasibility distri-
butions depend on various parameters of a fuzzy supervisor and de-
pendencies are not obvious at this moment.

82 Fufcz Belief-Based Sofnvare Supervision

-- .

Funy Supervisor Operation

3.7 Fuzzy Supervisor Operation

Operation of a fuvy belief-based supervisor c m be described a
loop that stms at the same time when the target system starts its
operation. Within die loop, signal abstraction derives signals from
the environment and sends new input and output signals to input
and output signal queues of their destination processes within the
supervisor model. Then al1 ready processes in belief sets are exe-
cuted iteratively, signals in input signal queues are consurned and
trigger transitions within tne processes of belief sets, States of pro-
cesses within belief sets are changed. signals that are produced in
the course of execution are delivered to destinations. new belief
sets are genented, and execution repeats until no ready processes
are left. UntiI now, operation is identical to that of a binary belief-
based supervisor described in Chapter II. Then fuzzy matching is
performed, followed by a f u q threshold cutoff and garbage col-
Iection (combination of belief sets).

Below is a simplified top-level algorithm for fuuy software super-
vision that incorporates other algorithm we have developed in this
chapter:

10:

II:
12:

13:

algorirhm fi~7-supervision():

while(rrue)/

scan-obsemed-inpursf obsewed-~IIPUZSJ:

send-obsen~ed-inputs(observed-inpurs. dl-belief-sers);

scm~observed~ourpu~s~observed~outpurs);

send~observed~ourpurs(obse~ed~ourpurs.alf~befief~sets);

execüte~mcesses(all~belief_sers);

perfonn-matching (observeci-ourpucs, all-belief-sets);

pe@onn-cutofl(al1-befief-sers, calculate-rhreshold());

produce-repo fi();

f
return;

end fii~~-supervision

- - -

Fuzzy Beiief-Based Software Superirision

Al1 the algorithrns used in /cd--supenision either have been de-
veloped in this chapter or are identical to the algorithms used in bi-
nary belief-based software supervisor.

AIg onthm scan-observed-inputs (observe-inputs) obtains al1 ob-
served inputs that have been abstracted since the last iteration, and
stores the list in observed-inputs. Algorithm send-obsenwed-inputs
(observed-inputs, uli-belief-sets) sends signais in obsemed-inputs
to the comrnon ports of belief sets contained in ail-belief-sets. This
will trigger belief generation. as discussed in Chapter II.

Similarly. scan-obsen~ed-oiitpnrs (observed-outpi<ts) obtains ai1
observed outputs that have been abstracted since the Iast itention.
and stores the list in observed-oictputs. And send-obsenud-outputs
(observed-outputs, ail-belief-sets) sends signals contained in
observed-outpurs to the observed output queues of belief sets con-
tained in all-belief-sets.

Algorithm exectrtegrocesses (dl-belief-sets) processes al1 signals
in the input queues of d l processes in all-belief-sets until none
left.

Algorithms perJorm-rnatching (observed_outputs, dl-belief-sets)
and pevorm-nttoff (all-belief-sets, threshold) were develo ped and
discussed earlier in this chapter in section 3.4 and section 3.5.

In perfonnmatching expected output signals are matched with ob-
served output signals in every belief set, and feasibility factor is
modified according to the result of the match.

Algorithm pedorm-cutoflall_belief-sets, threshold-valice) destroys.
al1 belief sets with feasibiiity less than threshold value calculated in
the algorithm calculate-threshold() as discussed in section 3.5
"Cornpetition Algorithm" on page 67.

Algorithm produce-report() collects statistics and decides whether
to produce a report for this iteration, that may be one or severai of

84 Fuu)' Belief-Based So,%vare Supervision

the types discussed in section 3.6 "Fuuy Supervisor Reports" on
page 73.

This concludes this chapter. We will evaluate the theory of fuzzy
belief-based software supervision in an experimental irnplementa-
tion of a fuzzy software supervisor described in the next chapter.

-- - - --- -

F u z Belief-Based Software Supervision 85

Fuzzy Belief-Baseci Software Supervition

Fuzy Belief-hsed Sofnvare Supervision

Fuuy Belief Based

This chapter presents an experimental evaluation of fuzzy belief-based
supervision approach.

The following objectives have been set for the experimental evaluation
of the fuvy supervision approach:

Evaluate the failure detection cripability: the FBBS supervisor
should detect failures and provide information about the symptoms
of the faiiure.

Evaluate capability for continuous supervision and
resynchronization with the target systern: supervision should
continue past the moment of failure detection, no false failures
should be reported after the continued proper opention of the target
system, and new failures should be properly detected.

Evaluate fuzzy supervisor reporting capabilities: systern health, fault
localization, failure reports, number of CBSes ris a measure of
missynchronization of the supervisor and the target system.

Observe the increase in computational complexity of supervision as
a function of different types of failures.

Fut,y Belief-Bmed So*are Supervision 87

Experimentai Evaiuation of Fuzzy Belief Based Supervision

A srnail PBX with 60 lines capacity has been selected as a target sys-
tem for fuzzy software supervision.

Collected data is to be analyzed and interpreted. and conclusions are
to be drawn from the analysis on the usefulness of the approach. pos-
sible drawbacks and benefits.

4.1 Evduation Environment

Evaluarion environment developed in the Bell Canada Software Reli-
ability Laboratory provided a typical target system for software super-
vision - the control prograrn of a small Public Branch Exchange
(PBX), and associated utilities.

The environment was impiemented as a collection of cornmunicating
processes executing in Sun-OS operating system and resided on a Sun
SPARC station. Figure 29 shows processes of the evaluation environ-
ment. Duties of these processes are described below.

4.1.1 PBX Hardware Emulator

An emulation of a hardware of a PBX capable of supponing basic
telephone service to up to 60 lines was developed as a support soft-
ware for a coune in E&CE Department of University of Waterloo
[101, [1 1 j. A shared memory served as an interface between the con-
trol program and PBX hardware, acceptine stimuli and reflecting
changes of state of the simulated hardware. PBX hardware supponed
three shelves with 30 dots each, with two shelves equipped with tele-
phone line interfaces and one shelf equipped with tone generators,
touch tone receivers, maintenance equipment and trunk access siots.
Recently the hardware emulation was made capable of supporting up
to 1OOû telephone lines, but the older smdler version was used in ex-
perimentd evaluation.

Evaluation Environment

Hardware

Generator

Figure 29: Interactions of Processes In Experirnental
Environmen t

3.1.2 PBX Control Software

The PBX controol program has k e n developed to provide conuol for
the small telephone exchange. It serves as a target system for software
supervision in the expenmental environment.

The progrm has been developed according to an SDL specification
(see Appendix A).

The control software detects input telephony events such as Iine status
changes and recognized digits from touch tone receivea from the
shared interface memory of the hardware. It controls PBX connec-

F m Belief-Based Sofnvare Supervision 89

- -

Experimental Evaluation of Fuzy Belid Baseci Supervision

tions and allocation of hardware resources by direct modification of
appropriate locations within the hardware interface memory.

The control software used in the ewluation has been developed in
C++. and stands at an equivaient of over 4000 lines of un-cornrnented
cûde. Particular details of the implementation of the control software
can be found in [10], [111.

4.13 Telephony Load Generator

The load generator is a utility process used to produce telephone traf-
fic with v ~ o u s distributions of events. It allows to vary number of
calls per telephone per hour, scenarios of telephone calls and distribu-
tion of telephone events in tirne.

The load generator comrnunicates telephone events to the PBX hard-
ware emulator.

4.1.4 Keyboard Input Driver

An aiternative way of presenting telephone events to the PBX was
provided by the command Iine interface of the keyboard input driver
process. This allowed to enter telephony inputs manually. Keyboard
input driver supported simultaneous operations on severai Iines (such
as simultaneous off-hook of a several lines or the whole shelf).

As in the load generator. cornrnands passed to the keyboard process
resulted indirectly in modifications of the hardware interface memory.

4.1.5 A bstracter Process

The abstracter process interprets changes in the shared memory inter-
face as telephony events, both inputs and outputs, and delivers events
to the supervisor.

90 FKZ Belief-Based Sofrware Supervision

Evaiuaîion Environment

The abstracter process does not handle the non-determinisms of signal
abstraction we have discussed in first chapters. It simply detects input
and output events based on duration of changes in signal carriers in ac-
cordance with the specification of the signalling layer.

4.1.6 Display Driver

The display driver process is used solely by a human observer and rep-
resents human-friendly variant of abstracter. It rnonitors activities of
the target system by scanning hardware interface mernory and extracts
information on line status. ringing, voice path connections and touch
tone receivers. Display is not communicating with any of other pro-
cesses.

4.1.7 Kuzzy Supervisor

The fuzzy belief-based supervisor was implemented as a single-
threaded process that received abstracted input and output events from
the abstracter process and produced reports on the state of the target
system. The base portion of the implementation have been developed
in a collective effort ([2],[3]) with other graduate students of Bell
Canada Software Reliability Laboratory. The author has later modi-
fied and extended the base with algonthms of the fuzzy supervision.
The f u u y supervisor consists of an equivalent of over 15000 lines of
un-comrnented lines of source code written in C++, and is constructed
of around 70 object classes.

The top-levei object mode1 of the implementation is shown in
Figure 30. The roles of the classes shown are as follows.

Fuu). Belief-Based Sojhvare Supervision 91

-- -- -- - - -

Experimenial Evaluation of F u q Belief Based Supervision

super-sut €Zl
Leeend: Object Clriss

N Relation "One-to-N"

Figure 30: High-Levei OMT Diagram of the Fuzzy Supervisor

The starter class has a single instance in the supervisor. The object is
responsible for other objects creation and initialization. connection to
the hardware interface emulator via the shared memory. collaboration
with the Scheduler object that includes time counter management and
handling of semaphore operations used for synchronization of the Su-
pervisor operation with the target software system within the experi-
mentzl environment.

The Scheduler class is also represented by a single instance. The re-
sponsibilities of the object inciude: reception of input and output
events from the Abstractor, tracking the Central Timers List for timers

92 FGZ Belief-Based Sofiwam Supervision

expiration. manazing the belief execution (registenng. de-registenng
of beliefs for the execution. and performing the execution). invoking
the matching method on the Cornpantor object to compare expected
outputs of belief sets with the observed outputs, and invoking the gar-
bage collection method on the BSDLM system to reduce the number
of beliefs by removing redundant beliefs and belief sets.

The BSDLM System instance does the following: it maintains signal
delivery routes in a routine table. keeps beiiefs database in a set of
consistent belief sets, performs dispatching of signals between pro-
cesses and implements garbage collection - clean up of redundant be-
lief sets.

The Comparator object is also a unique instance of the class. The main
purpose of the Comparator is to manage the observed and expected
behavior logging and match the Iogged observed behavior with the
expected behavior of the belief sets. See section 41.7 for some detaiis
on behavior data management. The matching algorithrns described in
section 3.4 have been implemented in the check-matches() method of
Comparator class.

The Comport's (that stands for comrnon port) main responsibility is
to create al1 possible permutations of the sigcals passing to a block
when the signal path contains a delaying channel. Multiple instances
of the Comport class cm exist in the system.

The Input Port manages queueing of signals and timers for a BSDL
process. Signals are being queued as they arrive and are consumed in
the order they have arrived. Timers c m be set and reset; when they ex-
pire they are treated as a signal. The Central Timer List is used to de-
tect the expiration of signals

The BSDL Process keeps the state machine of a belief. It uses the
BSDL specification and contains values of dl variables and an active
state for the belief. The BSDL Process is responsible for determinhg
the next state of the belief state machine upon arrivai of a signal. The

. .. .

FKZ Belief- Based Sofiare Supervision 93

Experimental Evaluation of Fuzy Belief Based Supervision

BSDL Process dso produces signals during a state transition when a
send signal constmct is encountered.

The Centrai Timer List is a database of active tirners. When a BSDL
timer is being set. it is registered in the central timer list. Tirners are
kept sorted by the expiration time. With every increment of time the
centrai timer list is checked for the expired timers. If any timers have
expired. a notification will be sent to the input ports of tirners origina-
tion.

The principal differences with the basic binary belief-based supervi-
sor described in (21 were in the new cornpetitive belief set mainte-
nance and destruction mechanism, and added classes and methods for
feasibility management. history tracking, statistics collection. and
f u v y matching algorithm.The operation cycle of the supervisor was
modified to invoke cornpetition algorithm at the end of each cycle.

Figure 3 1 presents a feasibiiity-reiated d m structure deployed withïn
the fuzzy supervisor. In the diagrm, the CBSstat stands for a "CBS
statistics"; there is exactly one instance of CBS-stat for each consis-
tent belief set. This object manages historical data associated with the
given CBS. and contains its feasibility factor. CBSstat objects are or-
ganized in a double-linked Iist sorted by the current values of feasibil-
ity factors.

EO-enuy LOOentry

comparator

Figure 31: OMT Diagram of the Feasibility-Related Data
Structures of a Fuzzy Supervisor

super-stat

94 Futcy Belief-Bused Sofnvare Supervision

Lepend: I G l Object Class

4 $ Relation Yhe-to-N'* 1

Evaluation Methodology

The EOqueue manages storage of expected output (points to the fint
and the last elements of a linked list of EOentry objects) and the local
copy of the observed output (linked list of LOOentry). 00-queue
stores output observed since the last matching. according to the new
matching aigorithm.

The Super-stat handles overall supervisor statistic data, such as the
maximum feasibility, the average feasibility, etc., and points to the
CBS-stat with the highest feasibili ty . Figure 31 illustrates data smc-
tures for a supervisor with four CBSes existing.

CBS-smts

EOQs

CBSs

Figure 32: An Example: EOQs, CBSs, CBS Statistics
Supervisor Statistics Objects in a Fuzzy Supervisor With Four

Coexisting Belief Sets

Lastly, the historyel is an element of the captured pst matching his-
tory, organized in a single-linked history tree discussed in the section
3.6.3. The latest element of the matched history for every given belief
set is pointed to from its CBS-stat.

4.2 Evaluation Methodology

The following was the procedure for obtaining the empincal results:

event trace acquisition: parameters of the load generator have been
varied in order to produce the desired event distribution; the target
system has been run with the hardware emulator and the load
generator and ai1 the input and output events have been logged;

failure insertion: the desired number of failures of the chosen type
have been seeded randomly within the original event trace;

supervisor mn: the software supervisor has k e n run with the event
trace; supervisor reports have been collected, execution
characteristics have been measured.

FULZ Belief-Based Sojbvare Supervision 95

Experimentai Evaluation of Fuzq Belief Basai Supervision

For each failure set and telephony load configuration combination
vied dunng the evaluation. two to ten expenments have been conduct-
ed.

4.2.1 Variable Parameters

The following parameters were chosen to be variable:

Telephony Trriffic:
event distribution in time
number of originations per line per hour

Failure types:
failure scenririo types
number of failures injected

4.2.1.1 Telephony Traffic Simulation

Traffic has been simulated with the help of the software described in
[I l and significantly enhanced in [2 1).

The software works with the hardware emulator and supports several
modes of trafic simulation, allowing for varying these characteristics:

nurnber of origination attempts per hour

maximum nurnber of simultaneous calls in progess

Two traffic generation modes were used: Poisson and limited. Limit-
ed traffic lirnits the number of events that can cake place in any given
period of tirne. In Poisson traffic event occurrences have Poisson dis-
tribution, thus providing a more random, life-like traffic. More infor-
mation on traffic simulation can be found in f3].

Different trafic levels were used to compare the degradation of the
Fuzzy Supervisor performance (increase of computational load re-
quired to conduct supervision) to the degradation of performance of
the standard supervisor with load increase. The increase of cornputa-

-

96 Fütc~ Belîef-Based Sofrware Supervision

tion load causes the degradation of performance of the supervisor
when computationai capacity os exhausted.

The telephone trdfïc intensity used in tests have been set from four to
six originations per line per hour that is comparable or hgher than in-
dustry standards specib for PBX exchanges.

The following mechanism of failure seeding has been used for the
evaluation purposes. Fuzzy supervisor has been augrnented with event
recording/repiaying capabilities. that allowed to capture into a log file
the input and output signals coming from the abstractor. The observed
events have been time-stamped and retained. The captured log could
be replayed by the supewisor in stand-alone mode with the effect of
supervising a reai target system at the time of event log capture. The
captured event log file could be modified to simulate various failures
of the target system.

Several representative types of failures has been simulated (derived
from industrial telecom acceptance tests):

observation failures (phantom outputs detected by abstmcter)

controt program failure scenarios:
unprovoked ringing detected
no dia1 tone when receiver goes off-hook
idle tone not provided after the first digit is dialed
audibIe ringing tone not pïovided. termination successful
no power ringing on terminator line, termination incomptete
no voice path on answer

Note, that unprovoked physical nnging manifests itself in the same
way as the observation failures but in real life is caused by a fadt in
the control program. The failure rates that are found acceptable in the
telecommunication industry are less than 1 per 1000 c a s . The failure
rates adopted in the supervisor evaluation runs have been set 10 to 100

Fuuy Belief- Based Sofnvare Supervision 9'7

- .. - - --

Experimental Evaluatioa of Fmzy BeIief Based Supervision

times higher to fully evaluate the capacip of the supervisor. A regular
test run consisted of a 1/2 to 1 hour telephone traffic run with several
failures of the same type seeded randornly in the replay event log.
Failure mixes were not used. Since the experience has shown that the
resynchronization has been achieved in most experiments. the previ-
ous history of supervision was of no relevance.

42.2 Obsewed and Derived Characteristics

The following data was collected in the conducted expenments:

Number of belief sets.

Maximum feasibility wîthin the population of belief sets.

Failure reports.

Occurrence of computation overload. ri condition when supervisor
was unable to evaluate the observed behaviour of the target systern
in the real tirne mode.

Resynchronization with the target system following ri failure
occurrence: new failures must be reported correctly and no false
failures should be detected.

Failure explmation via history trriceback:
inputs
matches
mismatches
in-transit signal expirations.

4.3 Evaluation ResuIts

Various types of supervisor reports have been collected and effective-
ness of failure detection by the f u u y supervisor has been investigated.

The collected reports and the results of the evduation are discussed
below.

98 F w Belief-Based Sofhïare Supervision

Evalution Results

43.1 Results Summary

The following table surnmarizes results of experiments performed
with the Fuuy Supervisor. It includes data on failure types and fre-
quency. load intensity, and data on demonstrated resynchronization
and failure detection capabilities. and coarse computational intensity
c haracterization.

TABLE 1. Experimental Results for Failure Detection Capability
h

1 1 =
s *, Random Traffic Load (U2 hour trace)
-= - .. I

Limited Load 1 Poisson Load

FULZ Belief- Based Sofiware Supervision 99

Experimeotai Evduation of Ftmy Belief Based Supervision

TABLE 2. Experimentat Results for Failure Detection Capability

Random Traffic Load (1/2 hour trace)

Poisson Load Limited Load

100 Fut,? Belief- Based Sofnvare Supervision

43.2 Supenisor Reports

Figure 33 contains a visualization of some supervisor reports collect-
ed when the target system exhibited a number of simple failures: sev-
eral expected output signais were either not produced. replaced with
other signals, or unexpected signals were produced.

Figure 33 represents the following reports:

Event history: d l input signals and successfully matched outputs
have been reported. The misrnatched outputs have been reported to
explain the nature of the occurred fidure: not shown in the diagram
are the path properties of the mismatched signals that were collected
also to assist in failure troub1eshooting.Note: Figure 33 does not
name signals, while providing only interna1 signal IDs. The
mapping between the narnes and IDs is one-to-one, though.

Nurnber of belief sets: report that shows the degree of non-
determinism of operation of the target system as a function of tirne.
Informaily this showed the degree of confusion of the supervisor
over the state of the target system. It also expressed the level of
activity in the target system. At the end of the diagram. an injected
failure caused a rapid increase of number of belief sets as a result of
ternporary rnissynchronization.

Maximum feasibility as the estimated health of the target system has
been captured and is shown in a gr@.

Failure occurrence reports: every time the maximum feasibility drop
has been encountered. a failure report has been produced. Reports
occurrences are summarized in one gnph.

Seeded failure occumnces are shown in a graph for reference purpos-
es. In the example al1 injected failures have been successfully detect-
ed.

Fuu). Belid-Bared Sofnvore Supervision 101

Experimeotal Evduation of Fuzzy Bdief Based Supervision

Failure injecüon log
r J

O 3000 jOOO 6000 8000 1ûûûO 12000
1600 - Number of belief becs

"Cbsdat -
1200
800

.Mismatch historv
"rnismatch.dat" - '

O 2000 JO00 6000 8000 lm 12000

1 .O Maximum Feasibility
1

0.8 . 1 '"fth.drit" - .
0.6 . Y

0.4

Failure report history
"tai!-det.log" - -

Figure 33: Fuzzy Supervisor Reports During Output Faüures
of the Target System

102 F m Belief-Based Sujiware Supervision

43.3 Failure Detection Capabiiity

Various failures of the target system have been seeded by modiQing
the trace sequence of input and output signais observed by the super-
visor on a correctly executing target system. Measurements have been
taken with different types of loads. and different classes of fadures.
Impact on the supervisor's failure detection capability h a been ob-
served.

As seen in the summary table. seeded phantom signals did not cause
a computational overload during supervision at any rate of injection.
but missing output signals caused supervisor to slow down. For these.
the rate of failure injection was kept to the minimum.

It has been noticed that only when unexpected output signals were
seeded. a full resynchronization has been achieved with no or Iittle
impact on the number of belief sets generated by the supervisor.

When output signals have not been produced. or incorrect signals
have been produced instead of expected ones, resynchronization ca-
pability was sometimes affected due to snowballing of belief sets
number. In 3 1 scenarios resynchronization has been achieved. only in
two the supervisor reponed a constantly decreasing health dong with
steadily growing number of belief sets.

A11 failures that have been experimented wirh have been detected and
reported correctly in single or sequentiai occurrences.

4.3.4 Resynchronization and Continuous Supervision

Along with failure detection, the resync hronization capability of the
supervisor has been observed.

Resynchronization was considered achieved when capability for cor-
rect detection of failures has been restored after a seeded failure has
been observed. Al1 failures were seeded, thus known; no spurious fail-

Fuz,? Be fief-Bared Sofhuure Supervision 103

Experimenral Evaluation of F m Beiief Based Supervision

ures must be reported. and ail seeded failures must be reported in or-
der to claim resynchronization.

None of the seeded failure types has shut the supervision down, thus
indicating the achievernent of continuous supervision. Computational
overload situations have occurred when idle. dia1 or ring tones signais
were removed from the replay log of a irregularly spaced high load
traffic (Poisson trafic).

Resynchronization capabilities of a fuzzy supervision have been dem-
onstrated in the experiments. No false failures have been detected af-
ter real failures occurred. The number of belief sets did not always
reduce to the ievels of a failure-free supervision. This phenornenon
has been expected. as no dedicated support for intelligent resynchro-
nization has been devised. Lack of such a dedicated rnechanism was
a partial cause of supervision slowdown on certain types of failures.

It has been noticed that an even spacing of events in time (provided
with limited traffic), heips the fuzzy supervisor to recover from an ob-
served failure. Poisson traffic h a been proven much harder to super-
vise.

4.3.5 Cornputational Complexity Observations

The growth of number of belief sets during failure-free supervision
with the increase of trafic has been comparable to that in the standard
belief-based supervision approach up to the moment of failure detec-
tion, as expected. Nso, no erroneous failure reports have been pro-
duced during uaffic runs of various intensity.

When input signals to the target system were missed (removed from
the replay log) or rnisinterpreted (replaced by other signals in the re-
play log) by the supervisor, the resynchronization was not always
cornpiete and sometimes was resulting in drastic supervisor slow-
down due to a major increase of number of belief sets after an in-tran-
sit expiration of the rnisinterpreted input signal. This is an expected

104 F q Belief-Based Sofnvare Supervision

Experimental Evaluation of Fuzq Belief B a d Supervision

it was only based on the observable signals. and could not be propa-
oated to the internai elements of the specification. Methods that would D

be able to provide deeper andysis of the failure are complex and were
not covered within this work.

106 Fryzy Belief-Based Sofhvure Supervision

Fuvther Research and
Conclusions

5.1 Further Research Directions

The fuzzy supervision approach is much wider than what has been
covered in this work. It can be linked to research in probability theory
and research in artificial intelligence. It would be interesting to estab-
lish such links in the future research.

The algorithrns explored in this work are fairly simple. It would be
valuable to further investigate the intelligent cutoff threshold manage-
ment, mismatch penalty and match gain functions for different failure
scenarios and particularly to observed signal loss scenarios where Fer-
formance of the supervisor was less than ideal. Further development is
needed to improve supervision capabilities for the Poisson trafEc.

The resynchronization properties of fuzzy supervision have not been
completely examined in this work. Some of the related issues should
be looked into in the fbture. It would be interesting to expand the def-
inition of feasibility to the domain of hierarchical target systems.

F q Beliefi Based Software Supervision 107

4pendix A: An SDL Specijîcation
of the S'al1 PBX

Diagram Structure

y PBX-Spec r- /bsr l/u/PUB/Supervisor/specS/sdY pbx-systern-ssy - Phone-handlers w iswen 1O/u/avorobie/Supe~sor/specs/sd~ phone-handlerssbk

Lf3 phonehandler nv lswenl0/u/avorobi&upervisor/specs/sd~ phone-handlerspr
1 'ITRX-manager rw Iswen 1 O/u(avorobie/Supervisor/s pecslsdil ttrx-managersbk

ttrx-manager rw /swen l0/u(avorobidSupervisorIspecs/sdV ttrx-manager.spr
] Network-manager nv Iswen lO/u/avorobie/Supe~sor/specs/sd~ channel-manager.sbk

channel-manager rw Iswen 1 O/u/avorobidSupe~sor/specs/sd~/ channel-manager.spr

Associated Documents

Fuzry Belief- Based Somare Supervision 109

An SDL Specification of a Small PBX

110 Fuzt). Belief-Bmed Sofnvare Supervision

An SDL Spdcation of a Sm& PBX

Fuuy Belief-Based Sofnvare Supervision

An SDL Specincation of a S d PBX

Process phone-handler

112 Futry Beliej-ked Sofhoare Supervision

Pmcesç phone-handler a 4

wot -m* +

- -- -

Fu= Belief-Bmed Software Supervision 113

.An SDL SpeciGcation of a Smdi PBX

Pmcess phone-handler

114 Fuu). Belief-Based Sofhvare Supervision

An SDL Specification of a Small PBX

watt-on-ma (3

Fuuy Belief- Based Sofrware Supervision 115

.An SDL Specification of a Smaii PBX

116 Fuu). Belief- Based Sofhvare Supervision

.-in SDL Specificalion of a Small PBX

FUZLZ Belief-Bmed Sofiare Supervision 117

- --

An SDL Specification of a Small PBX

.an SDL Speciûcation of a Small PBX

Fuu). Belief- Based Software Supervision

- - -

An SDL Specification of a SmalJ PBX

 fut,^ Belief-Based Safrwane Supervision

References

D.B. Hay. "A BeIief Method for Detecting Operational Failures in Soft Real-
time S y stems." (University of Waterloo. E&CE Masters Thesis, 199 1.)

IM.Hlady. RKovacevic. JJ.Li. B.R.Pekilis. D.Prriirie, T-Savor. R.E.Sevion.
D.Sirnser and A.Vorobiev, "An Approach to Automatic Detection of Software
Failures.". (Technicd Report, Bell Canada Software Reliability Laboratory.
1994.)

M.Hlady. R.Kovacevic. J.Li, O.Prairie. S-Reid. "An lmplementation of a Be-
lief-Based Real-Tirne Supervisor." (Bell Canada Software Reliability hbora-
tory Technicd Repon. Aug. 1995.)

D.B.Hay, R.E.Seviora, "A Real-Time Vdidator." (Proceedings of the Third
IEE International Conference on Software Engineering for Red-Time Sys-
tems". IEE. 199 1.)

R.Iorgulescu. R.E.Sevion. "A Resynchronization Method for Red-Time Su-
pervision." (Proceedings of the 6-th. Euromicro Workshop on Real-Time Sys-
tems, June 1994.)

Ferenc Belina. Dieter Hogrefe, Amardeo Sarma, "SDL With Applications
From Protocol Specification." (Prentice Hall, 199 1 .)

A. Avizienis, "The N-Version Approach to Fault-Tolerant Software." @l%
Transactions on Software Engineering, Vol. SE- 1 1, No. 12. December 1985.)

P.A. Lee, T. Anderson. "Fault Tolerance: Principles and Pnctice." (2nd ed..
Springer Verlag, IWO.)

F w Bel ief Based SoMare Supetvision 121

[9] J.J.Horning et d.. *'A Program Structure for Error Detection and Recovery."
(Lecture Notes in Computer Science 16. p. 17 1 - 187. Springer-Verlag. 1974.)

[101 Ali. R.. Shipp. N.. Swaminathan. A.. "PBX Software Requirements Specifica-
tion." (~ o u k e Project. E&CE455. 'Jniversity of ~ a t e r l o o . ~prin-g Tem.
1993,)

[I 1 J Ali. R. Shipp. N.. Swaminathan. A.." PBX Software Design Description."
(Course Project, E&CE455. University of Waterloo. Spring Term. 1993.)

[121 International Te lepph and Telephone Consultative Cornmittee. "Functional
Specification and Description Language. Recorrtrnendations 2.100-2.104
(Blue Book) ."m. 1989.)

[13] D. Hogrefe. A. Sarma. "Nondeterminism and SDL." (Proc. 2nd Int'l Confer-
ence o n Formai Descnption Techniques. pp 157- 167. 1989.)

[13] S-Leuc. "Speci@ing Real-Time Requirements for SDL Specifications - A
Temporal Logic-Based Approach." (Proceedings of the 1 5th International
iFiP WG6.1 Symposium on Protocol Specification. Testing. ruid Verification.
Warsaw. June 1995.)

[15] K.-T. Cheng and AS. Krishnakumar, "Automriuc Functional Test Generation
Using the Extended Finite State Machine Model." (Proceedings of the 30th
Design Automation Conference DAC-93. pages 86-9 1. 1993.)

[16] R h z e . "Foundations of Fuzzy Systems." (Chichester. West Sussex, En-
gland. Toronto: Wiley & Sons, 1994.)

[17) TJ-Ross, " F u q Logic With Engineering Applications." (International
ed.,New York: McGraw-Hill, 1995.)

[18] M. Diaz. "Observer-A Concept for Fomal On-Line Validation of Distributed-
Systems."(EEE Trans on Software Encgineering. Vol 20. No 12. pp. 900-
9 I2,Dec 1994.)

[19] C-Wang and LM. Schwartz. "Fault Detection with Multiple Observers."(IEEE/
ACM Trans on NetworTcin_g, Vol 1. No 1. pp. 48-55. Feb 1993.)

[20] D. Butnartu. "Autonomous Evoiutive Systems With .Arnbiguous States."
(Fuzzy Logic in Knowledge-Based Systems. ElsevierScience Publishers B.V.,
North Holland, page 229, 1988.)

[2 11 S.Reid, "Reduced Model Supervision: QuantiQing Trade-Offs in Failure De-
tection and Computational Complexity." (University of Waterloo, E&CE
Master's thesis, 1996.)

[22] R.Kovacevic. "A Resynchronization Scheme for Belief-Based Real-Time
Software Supervision." (University of Waterloo. E&CE Master's thesis,
1996.)

[23] M-Hlady. "A Rd-Time Software Supervisor with Failure Retraction Capabil-

122 Fuu). Belief-Based Sofnvare Supervision

ities." (University of Waterloo. E&CE Master's thesis. 1995.)

[21J B-R-Pekilis. "Automritic Monitoring of Response Time Performance in Soft
Red-Tirne Systerns." (University of Waterloo, E&CE Master's thesis, 1995.)

[25] R.A.Ali. "A Gray-Box Approach to Software Supervision." (University of
Waterloo. E&CE Master's thesis. 1996.)

[26] A.Petryk, "Event Trace Driven Software Failure Detection.". (University of
Waterloo. E&CE Master's thesis. 1997.)

F w y Belief-Based Software Superrision 123

124 Fa? Be&$ Based Sofhvare Supervision

IMAGE NALUATION
TEST TARGET (QA-3)

APPLIED - I W G E . lnc - - 1653 East Main Street - -. - Rochester. NY 14609 USA -- -- - - Phone: 716/482-0300 -- -- - - Fax: 71 6/28û-5989

O 1993. Applied image, inc.. AI R e t s ReseNed

