Fuzzy Belief-Based
Supervision

by Alexandre Vorobiev

A thesis presented to the University of Waterloo
in fulfillment of the thesis requirement
for the degree of Master of Applied Science
in Electrical Engineering

Waterloo, Ontario, Canada, 1997

© 1997 Alexandre Vorobiev

i+l

National Library

of Canada
Acquisitions and
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliothéeque nationale
du Cana

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your e Votre ré¥drence

Our Sle Notre riddrence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis m microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copynght in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-30582-1

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

Abstract

This thesis presents a new approach to automatic failure detection (supervision) of session-ori-
ented, real-time software systems. The system being supervised is assumed to be specified in
a formalism based on communicating extended finite state machines such as ITU-T SDL. The
presented approach is a significant refinement of an existing belief-based supervision ap-
proach. Its novelty lies in the association of a feasibility factor with individual hypotheses
about the state of the target software system. The feasibility changes over time according to
the closeness of the hypothesis to the observed behaviour. The competition algorithms present-
ed in the thesis decide which hypotheses are left and which are discarded. The approach allows
for a continuous supervision, capable of resynchronization with the target system following

occurrences of failures.

After a description of the approach, an experimental evaluation of the research results is pre-
sented. The target system in the evaluation was the control program of a small telephone ex-

change. Both the simulated exchange and the supervisor executed on a UNIX workstation.

Acknowledgments

I would like to express my deep gratitude to my supervisor, Professor R. E. Seviora, whose
assertive. vet kind supervision and guidance inspired, encouraged and enhanced this research

effort.
[would like also to thank my family and friends for their patience, support and trust in me.

[also thank my readers, Professor J.A.Fields and Professor P. Dasiewicz for their suggestions

and comments.

This research has been funded by a joint research grant from Bell Canada and NCRC.

Contents

CHAPTER I

CHAPTER II

Introduction.
1.1 Software Supervisioncccvieuiuenn..
1.2 Belief-Based Software Supervision.
1.3 Scope of the Research.c.cocveuun.
1.4 Thesis Objective.........cvuiiiiiieiinannnns
1.5 Research Contributionscovueeeuunn.
1.6 Related Workccciiiiiiiiiinininnnnn.
1.7 ThesisOrganization...........c.c.coeveeueineeens

Belief-Based Software Supervision
2.1 Non-determinisms and Belief-Based Software

SUDErVISION . o v o v vttt ittt it iiaetieetaaannnns
2.1.1 Non-Determinisms of Signal Detection in

Software Supervision

2.1.1.1 Signal Detection...........ccoveveuannn

Fuzzy Belief-Based Supervision

2.1.1.2 Signal Permuztations During Abstraction ... 15

2.1.2 Specification Non-determinisms. 16
2.1.2.1 SDLhierarchyccovuieivnennn 17
2.1.2.2 Constructs of SDL Processes............. 18
2.1.2.3 Dynamic Semanticsof SDL.............. 19
2.1.2.4 SDL Non-determinisms 20

2.2 Belief-Based Supervision.............c.ouuuuun. 21

2.2.1 BSDL Abstract Machine..................... 23

2.2.2 Non-determinisms and beliefs creation 24
2.2.2.1 Signal detection nondeterminism. 24
2.2.2.2 Spontaneous transitions. 24
2.2.2.3 Arbitrarvdecisionsoauuens 25
2224 Concurrence.coeeeenacnnenanas 25
2.2.2.5 Non-deterministic channel delays 25

2.2.3 Termination of beliefs.cooevvnn.. 26

2.3 Critical Evaluation.cccieiiiiiaueneas 28

CHAPTER I Fuzzy Belief-Based Software Supervision, 29
3.1 Informal Introduction.cccoeeeueeaan. 30

3.1.1 Benefits of the Approach. 31

312 Limitations cvovveeineinneannanenenns 32

3.2 Generic Framework for Belief-based Supervision. ... 33
3.2.1 Original Belief-Based Supervision From the

Point of View of Generic Framework 34

3.2.2 Fuzzy Belief-Based Software Supervision 34

3.3 Feasibility Factor.c.oveieuineinunannns 36

3.3.1 Inheritance Rules for Feasibility Factor 36
3.3.2 Belief Set Combination and Resulting

Feasibilityovvniiniiineniinniannan. 37

3.3.3 Failure in Fuzzy Belief-Based Supervision 39

3.3.4 Matching and Change of Feasibility 39

34 Matchingovieiiiiii ittt 44

viil Fuzzy Belief-Based Supervision

341 OutputSignalsc.coiviiiinieaannan.
3.4.2 Behavior Representation and Capture: Output
HiStory . .oou ettt eniienanananns
3.4.3 Performance Time-Outs of Signals in BSDL
Model..........oveiiieiiiiiiiianiannnnnn
3.4.4 Timing Out of the Observed Qutput Signalis.
3.4.5 Maiching Individual Signals.
3.4.6 Timing Aspect of Individual Signal Matching
3.4.7 Decomposition of Outpur Historv Matching Into
ChannelMatchingccoiieneuiane.
3.4.8 Matching Same-Channel Outpur Histories.
3.4.9 Matching of Histories With Multiple Channels . . .
3.4.10 Matching Behaviors of Multiple Belief Sets
3.4.11 Combined Matching Algorithm for Fuzzy
SUpervisor.ottt i e
3.5 Competition Algorithm.cccveiieians
3.5.1 Cutoff Threshold Algorithm
3.5.2 On Necessity of a Variable Cutoff Threshold
3.5.3 Calculation of Cutoff Threshold Value.
3.6 Fuzzy Supervisor Reports.........cceviveviunnnn
3.6.1 Health of the Target Systemcccovuvenn..
3.6.2 Immediate Failure Report.
3.6.3 History Tree and Underlving Fault
Localizationccovvviiiiiiiiniininnnns
3.6.4 Average Feasibility..............coviian.n.
3.6.5 Feasibility Distribution.ccocevnen
3.7 Fuzzy Supervisor Operation.c.covuees

CHAPTER IV Experimental Evaluation of Fuzzy Belief Based

Supervision

4.1 Evaluation Environment.c.eceeeienanns
4.1.1 PBX Hardware Emulatorc.cveeeuu.

Fuzzy Belief-Based Supervision

4.1.2 PBX Control Softwarecccoouu... 89

4.1.3 Telephony Load Generator. 90
4.1.4 Kevboard Input Driver...................... 90
4.1.5 Abstracter Processcooeeeveaannnnn 90
4.1.6 DisplayDrivercooiveieinennannnenns 91
4.1.7 Fuzzy SUpervisoroeieeveenesnnns 91
4.2 Evaluation Methodologyccoovvveeina.. 95
4.2.1 Variable Parameters.c.ccoeeeeven.. 96
4.2.1.1 Telephony Traffic Simulation............. 96
4.2.1.2 Failure Seedingcocvveeon.. 97
4.2.2 Observed and Derived Characteristics 98
4.3 EvaluationResultscoiiiiiiiinanan. 98
4.3.] Results Summaryoveeeeeenaannenns 99
4.3.2 Supervisor Reports.covciuieveneenn. 101
4.3.3 Failure Detection Capability 103
4.3.4 Resynchronization and Continuous
SUPErVISION ..o ovviiieiiiniiaianiaanaann 103
4.3.5 Computational Complexity Observations 104
4.3.6 Other Supervisor Reports................... 105
CHAPTER V Further Research and Conclusions 107
5.1 Further Research Directionsc.cc... 107
5.2 Concluding Observations.c.o.... 108
APPENDIX A An SDL Specification of the Small PBX. 109
REFERENCESitiiuiieniuorasoennssnnonsnsnannnanassss 121

X Fuzzy Belief-Based Supervision

List of Figures

Figure 1: N-version programmingoouiiiniiiinanna.. 6
Figure 2: Audits . . e 6
Figure 3: Software Supervision 10
Figure 4: Example of Specification Layers in a Typical Telecom Specification .10
Figure 5: Carrier Specification 11
Figure 6: Detection of a Simple Signal 11
Figure 7: Stimuli Transfer in Software Supetvision 13
Figure 8: Signal Abstraction 14
Figure 9: Scenarios of Signal Detection 14
Figure 10: A Simple SDL SYSIEIM\t iiiee et iiiaeenns 19
Figure 1 1: SDL abstract machine 20
Figure 12: Internal Organization of Belief-Based Software Supervisor 21
Figure [3: Belief-Based Supervisor Abstract Machine 23
Figure 14: Evolution of Supervisor State Upon Observation of Three

External Signals 27
Figure 15: Dynamics of Feasibility Factor of a Belief Set After One

Mismatch and Three Matches 43
Figure 16: Potential Life Intervals ofof Signals and Time Matching 52

Fuzzy Belief-Based Supervision

Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Figure 32:

Figure 33:

First-In-First-Out Signal Transmission in SDL Channels 53

Abstraction of Same-Channel Signals in Supervisor 54
Decomposition of Behavior Matching Into Same-Channel Matching 54
Sequence of Attempted Matches 56
Discarding Unmatched Prefixes and Matched Signals 57
Expected and Observed Qutput Histories Before and After a

Matching Sweep 58
Matching Within a Belief-Based Supervisor 66
Cutoff Thresholds i 69
Belief Sets Generation and Global Matching History 76
History Tree Manipulation 78
Average Health During a Period of Time T at timest0and tl 80
Reporting Feasibility Distribution e 82
Interactions of Processes In Experimental Environment 89
High-Level OMT Diagram of the Fuzzy Supervisor 92
OMT Diagram of the Feasibility-Related Data Structures of

a Fuzzy Supervisor 94

An Example: EOQs. CBSs. CBS Statistics Supervisor Statistics
Objects in a Fuzzy Supervisor With Four Coexisting Belief Sets . .. 95

Fuzzy Supervisor Reports During Output Faiiures of the Target
Syl e 102

Fuzzy Belief-Based Supervision

List of Tables

TABLE I. SDL ConStUCES . ..ottt et it e e e 18
TABLE 2. Experimental Results for Failure Detection Capability 99
Fuzzy Belief-Based Supervision xiii

xiv

Fuzzy Belief-Based Supervision

Introduction

A dramatic increase of the size and complexity of software products
on one hand and the growth of reliability-critical applications of soft-
ware (such as navigation systems or telecommunications) have created
a number of paradoxes. A more complex activity requires a more so-
phisticated software system to carry it out. But the bigger the system
gets, the harder its testing becomes. For larger systems testing increas-
ingly expensive and complete testing is technically impossible.

Various approaches have been suggested for lowering the risk of a fail-
ure of engineered systems. Faults can be prevented from getting into
systems with the help of rigorous engineering and fault avoidance
techniques. Damage from operating a system that possibly contains
faults can also be minimized. Fault-tolerance techniques lower chanc-
es of system failure by isolating the potential failure to a limited area
within the complex system (failure isolation), implementing critical
fragments of the system with built-in redundancy of various degrees
(as in N-version programming), and by the early detection of failures
by software audits and oracles. These techniques are discussed in
more details in section 1.6.

Fuzzy Belief-Based Software Supervision 1

Introduction

This thesis is concerned with automatic detection of software failures
in real time. A software/hardware system that we are going to observe
for the purpose of detection of its failures will be called the targer svs-
tem. Events that the target system obtains from its environment will
be called inputs. and externally visible events that are directly caused
by operation of the target system will be called target system’s out-
puts.

1.1 Software Supervision

For a larger software system exhaustive testing is not possible due to
an infinite or extremely large number of possible states of the system.
If its failure-free operation is important. an approach supplemental to
exhaustive testing called sofrware supervision has been suggested in
[1], [4]. Software supervision consists of real-time observation of the
system'’s external inputs and outputs (i.e. its observable behavior), and
judging the correctness of its behavior based on a model of the target
systern’s expected behavior. The model of expected behavior used by
the supervisor is derived from the target system requirements specifi-
cations.

The goal of software supervision is to detect the instances when the
specification of the model can no longer explain the observed behav-
ior of the target system, i.e.when a failure occurs.

Some simple systems could be adequately specified with a determin-
istic model. In this model, if a given sequence of inputs is introduced
to the target system, there will be only one possible legal sequence of
outputs.

But sometimes correct behavior may be not just a single one due to in-
herent non-determinism of target system specification. Non-deter-
minism is an important feature of specification formalisms. It allows
the specification writer to avoid stating irrelevant aspects of the be-
havior of the system being specified. Specification non-determinism,
in turn, makes the task of software developer easier by permitting

Fuzzy Belief-Based Software Supervision

Belief-Based Software Supervision

choices of behavioral alternatives for the implementation which are
less costly or otherwise desirable.

Non-determinism must be considered by the software supervisor. The
supervisor should be able to accommodate the possibility that at any
moment of time the target system may be in one of several states, all
of which are permitted by the specified model. The Belief-based su-
pervision is an approach that is based on simultaneous existence of
multiple beliefs (or hypotheses) explaining the legal behavior of the
target system. That allows exhaustive coverage of all possible behav-
ior alternatives permitted by a non-deterministic specification.

1.2 Belief-Based Software Supervision

For a given set of inputs, each behavior permitted by specification
represents a hypothesis (or in other words belief) about the possible
current state of the target system.

Belief-based software supervision handles the supervision of non-de-
terministically specified systems through support of co-existence of
multiple beliefs about the state of the target system. As the system op-
eration goes on, new inputs and outputs are observed and the beliefs
evolve accordingly: from time to time new beliefs are created with re-
ception of new events, and older beliefs are terminated when the ob-
served behavior invalidates the hypothesis they represent.

In the belief-based software supervision, failure is detected when all
the hypotheses are invalidated and their corresponding beliefs are ter-
minated. At this point no legal explanation of the observed behaviour
remains

Fuzzy Belief-Based Software Supervision 3

Introduction

1.3 Scope of the Research
The boundaries of this research effort were as follows.

The research addresses belief-based. input-driven software supervi-
sion of software systems specified in formalisms based on communi-
cating extended finite state machines. For concreteness, the UTU-T
SDL specification formalism was used for application-level specifica-
tions [6]. Specifications of the external behaviour will be supplement-
ed by a maximum response time constraints. In this work all
maximum response times will be considered identical. The focus will
be on telecommunication software systems.

Certain limitations will be imposed on the supported subset of SDL,
as dictated by the current state of development of basic belief-based
supervision theory.

A testbed simulating a small PBX with corresponding target system
software will be used in the evaluation of research results. The simu-
lation will be carried out in UNIX environment.

1.4 Thesis Objective

The thesis has addressed two main shortcomings of the basic belief-
based supervision:

* termination of supervision at the moment of failure detection;

* no discrimination between the degree and specifics of the target
system failures.

The main objectives of the thesis research were:

e to devise an approach allowing to resynchronize the supervisor
model state with the state of the target system and continue
supervision beyond the moment of detection of the failure without
significant increase in computational complexity of software
supervision;

Fuzzy Belief-Based Software Supervision

Research Contributions

* 1o develop a method to obtain information for localization of the
fault causing the observed failure, mapped to the specification
model of the target system;

* to provide a mechanism capable of characterization of the overall
health of the target system;

* to evaluate the research results in a testbed with various types of
failures and under various operation profiles of the target system.

1.5 Research Contributions

The main research contributions of this work are:
= definition of fuzzy software supervision approach;

* development of the core algorithms for this approach: failure-
tolerant muiti-channel signal matching, fuzzy belief generation and
handling;

= evaluation of the proposed approach in an experimental fuzzy
supervision of a control program of a small PBX.

1.6 Related Work

This section overviews several of the techniques mentioned earlier in
this chapter.

N-version programming [7] is a collection of approaches that were
suggested to eliminate software and hardware failures by utilizing re-
dundant versions of the same system or components and providing a
decision-making mechanism that selected which of the system’s be-
havior is to be produced as a result. The redundant systems were built
with different degrees of implementation independence including dif-
ferent hardware base, different development teams or independently
produced and different components used in the systems. The idea be-
hind N-version programming is that independent production of redun-
dant systems will reduce the risk of similar faults and errors in
different systems and decision making algorithm will be able to select

Fuzzy Belief-Based Software Supervision 5

Introduction

the correct behavior among several possibilities by a voting mecha-
nism. This approach was proven to be practical for certain applica-
tions (e.g. numeric calculations such as ballistics), but redundancy
makes its use increasingly expensive for complex systems. where rep-
lication means massive spending. At the same time when different
software is used, this approach is difficult to use for systems involved
in complex data/hardware manipulation. Schematic architecture of a
system deploying N-version Programming technique is shown in

Figure 1 on page 6.
Environment
\‘\\\\‘\\\\\\‘\\\\\

\
: Tarpet Syneem | Outpat | :
\ H BN

opat Target Syveem | Output 2 Fnal Ougut
\ R
: Target Syvema | Oupnd } ~ :
\

N CCC R CCCC R CCCCX NN}

Figure 1: N-version programming

Software Audits [8] are usually a part of the target system dedicated to
monitoring of one simple aspect of the target system’s internal state.
When an inconsistency of data is detected, it is reported and corrective
action may be taken, e.g. when redundant data is available, an attempt
to restore the correct state can be undertaken or system restart may be
performed.

Target System
Resta

“ Ll
. ..'."lIllllllllll""'.'. .
Failure report Environment

Figure 2: Audits

Fuzzy Belief-Based Software Supervision

Related Work

Audits are a part of the target system, therefore they are not supposed
to be modified by the customer. Their scope of error detection and re-
covery is limited. If it expands. audits become complex and less reli-
able, which affects reliability of the target system as a whole.

Recovery blocks [9] have similar problems. The successful operation
of recovery block relies on the acceptance mechanism, that might be
faulty as well.

There are other approaches related to Software Supervision: observ-
ers[18] and muitiple observers [19]. The latter two approaches has
been are the closest to software supervision, with the major difference
being the capability for handling of non-determinisms by belief-based
software supervision approach. Observers approaches do not explicit-
ly deal with non-deterministic specifications.

Many interesting flavors of software supervision have been developed
by students and researchers in the Bell Software Reliability Lab.
Some of these are:

* look-ahead supervision: supervision is carried out with an observational delay,

that allows to select only these alternatives of non-deterministic behavior that
correspond to the following observed behavior. This significantly reduces com-

putational complexity of supervision ([26]);

* supervision with resynchronization: several approaches have been provided to
allow for resynchronization of the supervisor after an occurrence of the failure
based on a set of rules, and rollback mechanism ([22],[5]):

e supervision with failure retraction: the supervisor is equipped with a mecha-
nism of taking over the control of an aspect of the target system in which the

larter failed. The control is returned later when some pre-determined state is
reached by the supervisor and the target system is also pushed in that

state.([23]);

* grey-box supervision: the target system state is made partially visible to the
supervisor. This allows to reduce the number of behavior scenarios that are con-
sidered simultaneously, thus reducing the computational complexity of supervi-
sion([25]);

* reduced specification supervision: only a subset of the target system’s function-
ality is captured by the supervisor model. The model is smaller and that reduces
computational compiexity ([21]).

Fuzzy Belief-Based Software Supervision 7

Introduction

Please refer to corresponding research papers and BSR technical re-
ports for more details.

A similar in the spirit, but different in the core. an Autonomous Evo-
lutive Systems approach has been suggested in [20].

A good general reference to fuzzy applications in engineering can be
found in [16], [17].

1.7 Thesis Organization

The thesis is organized as follows:

Chapter 2 presents non-determinisms and their classification, general
theory of software supervision and discusses different flavors ot soft-
ware supervision.

Chapter 3 presents the concept of fuzzy software supervision and de-
scribes algorithms developed for it.

Chapter 4 overviews the experimental implementation of a fuzzy soft-
ware supervisor and the results and analysis of experimental evalua-
tion of the fuzzy software supervision.

Chapter 5 summarizes this thesis and outlines suggested directions for
the future research.

Fuzzy Belief-Based Software Supervision

Belief-Based Software
Supervision

Software supervision is complementary to software testing. Super-
visor observes the behavior of a software system (inputs from
and outputs to the environment) and produces a report when a
deviation from the expected behavior is noticed. It discovers soft-
ware failures before their cumulative effects result in major prob-
lems, reducing the harmful consequences of fully-developed
software failure. Software Supervisor is non-intrusive, therefore
its operation will not directly affect the operation of the target
system itself.

In the schema of software supervision proposed in [4] a super-
visor is separated from the target system. A generalized architec-
ture of software supervisor is shown in the Figure 3 on page 10.
Inputs from the environment, that are going into the target sys-
tem are observed and directed to the supervisor, as well as the
outputs of the target system.

Fuzzy Belief-Based Software Supervision 9

Belief-Based Software Supervision

Environment (User)
LSS S S S S S SN S S S S 8]

\
| Target system : \ Output

—— Observed
e Actual

Input

Supervisor 1
[Speaification: [¢—
. Model State |

|

P 2o Py ord

Supervision reports

Figure 3: Software Supervision

2.1 Non-determinisms and Belief-Based Software
Supervision

To supervise software we have to judge on the correctness of
behavior of the target system with respect to some specification.
Specification may consist of several layers.

Specification:

SDL Madel

Application Layer:
Specifies behavior of the target system @

Signalling Layer: M
Specifies detection of events in observation environment —

Physical Carrier Layer:
Specifies physical properties of observation environment

Figure 4: Example of Specification Layers in a Typical
Telecom Specification

10 Fuzzy Belief-Based Software Supervision

Non-determinisms and Belief-Based Software Supervision

Physical Carrier Layer will specify the boundaries of observ-
able changes for the target system and its environment. The car-
rier of the changes may be a variety of things, such as voltage
in the line, data structure in the shared memory, data bus, etc.
This specification may be thus defining the electrical character-
istics of the carrier, frequency bands, etc. Figure 5 is an example
of such a specification that defines the minimal voltage level of
the physical carrier that is considered a change of the carrier.
(In this case signals would be encoded by changing voitage of
the carrier.)

Change recognizable

Change unrecognizable

Figure 5: Carrier Specification

Signalling Layer of specification will be responsible for distin-
guishing events from non-events. As an example, Figure 6 illus-
trates a specification that sets timing constraints on detection of
a signal.

Must be detected

! Tmin Trr'xax

Figure 6: Detection of a Simple Signal

Figure 6 shows three scenarios. In the first change was observed
on the carrier for longer than T, and specification tells that
this signal would have been observed by the target system. In

Fuzzy Belief-Based Software Supervision 1

Belief-Based Software Supervision

the second scenario change was present on the carrier for a time
less than T,,,, and according to the specification this signal
would not be observed by the target system. In the third scenar-
o, change was present between T,;, and T, so the signal
was either observed by the target system or was not. This ex-
ample shows a non-deterministic signalling specification.

Application Layer of specification is used to specify the correct
behavior. Behavior is comprised of events independently occur-
ring in the environment of the target system (inputs), and events
that are produced by the target system (outputs), possibly as a
response to the input events.

As we discussed in the introduction chapter, specification for-
malisms support non-determinisms in order to enrich specifiable
behavior. An example of such a specification formalism is SDL,
a formalism based on communicating extended finite state ma-
chines, that will be described later in this chapter. A non-deter-
ministic specification may result in multiple legal yet different
behaviors. Software supervisor, therefore, should be able to ac-
commodate multiple alternative behaviors allowed by the non-de-
terministic specification.

2.1.1 Non-Determinisms of Signal Detection in Software
Supervision

In Figure 3 the structure of the Target-Supervisor couple is re-
fined. The black arrows represent signals as they are produced
and the grey arrows stand for signals as they are received. Tar-
get system receives signals from the environment as does the su-
pervisor. The supervisor also receives signals produced by the
target system, as does the environment. The mechanism of the
transfer of signals between the environment, the Target System
and the Supervisor is expanded in Figure 7, for cases when the

12

Fuzzy Belief-Based Software Supervision

Non-determinisms and Belief-Based Software Supervision

supervisor observes inputs and outputs of the target system at
the physical layer level.

2.1.1.1 Signal Detection

When a signal is sent from the environment to the target sys-
tem. it has to be detected by some scanning algorithm, that con-
verts the signal from its initial form (e.g. analog) into an
abstract (symbolic) form (see Figure 8).

AR R R R B B)

Presentation

- «~
o S soo
823 pE 22 path
28 T EE
£3 2 33 i
£2 32 3% -~ Reception
path

Figure 7: Stimuli Transfer in Software Supervision

A physical signal’s appearance on its carrier occurs in time and
space. It may be transformed into an abstract signal successfully,
can be lost, or can be misinterpreted by the scanner due to too
short a duration of occurrence, or noise, or specifics of the scan-
ning algorithm, or other factors. Non-determinisms of the signal

Fuzzy Belief-Based Software Supervision 13

Belief-Based Software Supervision

detection are captured in signalling and physical carrier layers of
specification.

.
g2
§x
bE]

A<

Yaidpee
Ao,

Figure 8: Signal Abstraction

In Figure 9 a sample signal is encoded as a series of three con-
secutive impulses. In the first scenario signal is lost due to an
insufficient duration of signal presentation, in the second signal
is properly detected.

The same figure can be used to illustrate another problem with
the signal detection, namely, the discrimination of different sig-
nals. Say, if we have a two-peak encoding representing signal A
and three peak encoding representing signal B, then the sample
observation in the diagram *“Signal Misinterpreted” could repre-
sent Signal A or signal B, that had been withdrawn before three
peaks were produced. The situation presented in Figure 9 could
be encountered in telephony, for example, when different ringing
patterns are used on the same line.

“Signal Misinterpreted.” “*Signal Detected”.

_J__ Signal Carrier S Scanning Interval
Figure 9: Scenarios of Signal Detection

14

Fuzzy Belief-Based Software Supervision

Non-determinisms and Belief-Based Software Supervision

For the pulse-encoded signals similar to ones shown in Figure 9
we have the following problem. Having the supervisor and the
target system as two entities with a single complex signal pre-
sented from the environment we are facing a number of possible
mutual interpretations of the same stimulus equal to (M + 1)%,
where M is the number of possible (all wrong, except for one
proper interpretation) interpretations of the signal. One is added
for the cases when no interpretation is given (signal is lost). We
assume that during its input signal abstraction the supervisor
misinterprets in the same way as the target system does.

Non-determinism of signal detection mentioned here is a sepa-
rate topic and will not be considered any deeper in this work.

2.1.1.2 Signal Permutations During Abstraction

Now, let us consider a situation when not one, but several sig-
nals are sent from the environment within a short period of
time. Traditionally arrivals of the signals would be sequenced
for analysis. Then in addition to the already described possible
distortions (namely, loss and misinterpretation of separate sig-
nals) we should also consider distortions of signals detection se-
quences in the supervisor: signals in the supervisor’s detection
sequence will be a permutation with respect to the detection se-
quence of the target system. (Such permutations. though, do not
necessarily concern us, e.g. when permuted signals belong to un-
related sources or travel over different signal media.) Permuta-
tion occurs due to independence of signal abstraction activities
of the supervisor and the target system. The number of such
permutations grows rapidly with an increase of the considered
signal detection sequence, making the task of keeping the super-
visor “in sync” with the target system unmanageable, if the or-
dering of the observed inputs is the only criterion for judgement
of correctness of the observed outputs.

Fuzzy Belief-Based Software Supervision 15

Belief-Based Software Supervision

We can clearly see here, that it is impossible to judge the target
system’s behavior only on the basis of the ordering of external
observations.

This illustrates the hard task standing before the software super-
visor - not only be able to verify the operation of the target sys-
tem. but also be flexible enough to compensate for possible
observation-time distortions of the real behavior of the target
system due to the factors named above and do so while main-
taining ability to recognize faulty behavior.

2.1.2 Specification Non-determinisms

Communicating Extended Finite State Machine (CEFSM) provide
an approach for specification of a target system. CEFSMs are
particularly suited for complex, distributed target systems such
as the ones found in the area of telecommunications.

The following is a formal definition of an CEFSM extended
with variables, conditions and communications ([14], [15]):

CEFSM is a tuple {I,0,S,s,D,C, T,R} in which:
e [I: Setofinputsignals
e O: Setof output signals

e S: Setofstates

[]
[%]
=4

Initial state, Sy S
Some n-dimensional state, D, x D, x ... x D,
Set of conditions C,-|D - {0, 1}

Set of tasks. T;|D - D

8o o

transition relation, S|SxCxI -+ SxTx0

16

Fuzzy Belief-Based Software Supervision

Non-determinisms and Belief-Based Software Supervision

As it was mentioned in the introduction, in addition to the CEF-
SM specification, we will specify the maximum time required
for the target system to produce a response on an external stim-
ulus. For the sake of conceptual simplicity in this work we will
consider only cases in which the maximum response time is the
same for all signals.

SDL is an example of a specification formalism based on CES-
FM. *“SDL” stands for Software Specification and Description
Language, a formalism introduced by International Telecommuni-
cation Union (ITU) (formerly CCITT) [l12]. SDL visualizes
CEFSM-based specification as it has two equivalent forms of
notation: graphical and textual. that makes the language both
computer- and human-friendly. The examples in the thesis will
use graphical SDL notation.

2.1.2.1 SDL hierarchy

SDL specification establishes a tree-like hierarchy of the follow-

ing entities:

¢ system - delimits the system that is being specified from the environment.
Receives signals from the environment and passes signals to the boundary via
signal channels

¢ subsystem - is statically defined within a system. does not intersect with other

subsystems. Signals are received and passed to subsystem's boundary via signal
channels.

* block - statically defined partition of a system or subsystem. Signals are
received from and passed to its boundary via signal routes.

¢ process - belongs to a block, has a certain type, may be created and destroyed
dynamically. Sends and receives signals via signal routes

e signal channel - links subsystems and blocks to the boundary of the system
(environment). Passes signals to the associated internal signal channels of sub-
systems and associated internal signal routes of blocks

* signal route - links the processes belonging to a block to each other and to the
signal channels outside of the block

Fuzzy Belief-Based Software Supervision 17

Belief-Based Software Supervision

2.1.2.2 Constructs of SDL Processes

SDL process is an extended communicating state machine placed
within an SDL block. The following table summarizes the ele-
ments composing the finite state machine.

TABLE 1. SDL Constructs

| Construct | Purpose

@ State construct
Transition trigger construct: selects the branch immediately fol-
lowing it. There are two variants of the transitions:

E{ Deterministic: fires when the specified signal is received.

Spontaneous transition: when “NONE" is used instead of the sig-
nal name within the construct. the following branch can be taken
without receiving any signals

T Send construct: the specified signal is sent via some signal route
(specified explicitly or implicitly) with specified parameters

T Decision construct: a branch is selected that corresponds to the
-~ value contained within the decision symbol
Bt
- v - . .
CLANY > If “"ANY" is used instead of the value. any cne of the choice
Chnce branches can be taken arbitranly.
Branchos
T Task construct: may contain assignments and limer operations.

Timers is an SDL concept that allows to produce a named signal
after a specified interval of time. Timers can be set and reset
within the task construct.

_ Start construct

=== Stop symboi: process is terminated when a stop symbol is
reached.

18 Fuzzy Belief-Based Software Supervision

Non-determinisms and Belief-Based Software Supervision

An example of a simple SDL system is given in Figure 10.

System Stmple_System
Chl
(A Block Block_1 Ch2 Block Block_2 h3

~Process_1 N ~Process_2
“& REIR
SR3
Wait_A

(D

SR
Wait_B

K8l

zsé
Waie_A

i !
Y Wait_B J

FG

N
&

L leiniall
/%
g

g

Figure 10: A Simple SDL system

2.1.2.3 Dynamic Semantics of SDL

SDL specifications are executable. Rules of execution, or dy-
namic semantics, of the SDL specifications are defined opera-
tionally by means of definition of SDL abstract machine.

SDL abstract machine is defined in META-VI as six synchro-
nously communicating processes:

system: a unique process that creates and removes SDL processes, performs
signal routing.

inpur-port: receives the signals sent to its SDL process and stores them in a
queue.

path: responsible for support of non-deterministic signal delivery delays in
channels.

view: handles allowed visibility of process variables to other processes
sdl-process: interpreter of SDL process.

timer: handles time-related aspects of SDL abstract machine: tracks time and
time-outs.

Fuzzy Belief-Based Software Supervision 19

Belief-Based Software Supervision

The following diagram represents the abstract machine and
shows interactions between its components.

Signal-Delivered
Create-Pid. . Q Sienal
. ucue-Signal, R
Release-Pid. Di i-Signals Signal-Delivered

Send-Signal

Signal-Delivered. Stop-Queue

system

Create- Instance-Answer Next-Signal,
Set-Timer,
Reset-Timer,
Actve-Request

Input-Signal,
AclUve-Answer

Die
Timer-Requesq | Timer-Answer

View-Request, P

Rcvca.l/ /
/

-~ View-Answer Time-Answer

Time-Request

Figure 11: SDL abstract machine

Refer to SDL literature ([6].[12]) for particular details of SDL
language description.

2.1.2.4 SDL Non-determinisms

The following are the non-determinisms supported in SDL [13].

** Signal channel delays: signals sent over signal a signal channel will be deliv-
ered after a non-deterministic delay. Sending order is preserved within the
channel.

** Concurrence: order of arrival of signals produced at the same time and sent to
the same destination point over different delaying paths cannot be predicted

20 Fuzzy Belief-Based Software Supervision

Belief-Based Supervision

¢ Spontaneous transitions: "NONE™-transition is chosen with no particular trig-
ger, in non-deterministic fashion.

* Arbitrary decisions: selection of a path as a resuit of “"ANY"" decision is non-
deterministic.

2.2 Belief-Based Supervision

The Belief-Based Supervision [l] (abbreviated as BBS in this
work), was suggested to handle non-determinisms encountered in
software supervision. The idea behind the theory of belief-based
supervision is to create an set of hypotheses that would repre-
sent effects of a non-determinism encountered. The created hy-
potheses (or beliefs as they are called in BBS theory) are then
compared with the observed behavior and discarded if they fail
to explain the observed behavior. If at least one hypothesis that
explains the observed behavior of the target system at any mo-
ment of operation of the target system exists, the behavior of
the target system is considered correct.

“\&KQ‘K"&(R‘Q

[np Ou
ness

\

Y — Actual

v SR

h\aw _aw

Supervision rege N / AN

e
s

SDL Model
/ S isor “emer=t
. up€rviso i %ﬁf
*‘Cot_m_stcm Expected -Observed i
'Belief Sets 1 _.N Quip Outputs!
== | Matche |

‘\‘ Observed!
Inputs

Figure 12: Internal Organization of Belief-Based Software
Supervisor

Fuzzy Belief-Based Software Supervision 21

Belief-Based Software Supervision

Belief-based software supervision is an iterative process, continu-
ing indefinitely along with operation of the target system. It may
be driven by signals observed on the boundary of the target sys-
tem (inputs, outputs, or both). Observed inputs are fed in the
executable specification and every time when a non-deterministic
construct of the specification is encountered. hypothesi are gen-
erated representing all behaviors that would become legitimate
after execution of the given non-deterministic construct by the
existing hypothesi.

Belief-Based Supervision theory, presented in [l], [4] has ad-
dressed non-determinisms that could be expressed in SDL spec-
ifications.

Within the supervisor the target system was modelled as an SDL
specification, composed of blocks and processes interconnected
with signal channels and signal routes.

Every belief was representing a hypothesis about the state of a
certain SDL process from the specification: state of the CEFSM
(values of timers, variables, state of FSM), and a set of signals
that are thought to be “in tramsition” - sent to the process, but
not received by it, and travelling somewhere in signal routes and
channels. Introduction of “in transit” sets was justified by possi-
bility of non-deterministic delays of signals on their way from a
sender to the receiver in permitted in SDL formalism. Algo-
rithms described below will clarify use of “in transit” sets.

Similarly to the composition of blocks and processes into an
SDL system, beliefs representing complimentary (non-contradic-
tory) hypotheses about different processes were grouped into be-
lief sets.

Similarly to SDL definition, rules of execution of the belief-
based supervisor model were defined by BSDL abstract machine.

22

Fuzzy Belief-Based Software Supervision

Belief-Based Supervision

-

Create-Pid. Create-New-Commonport,
ReleasePig, | Creaie fnstance-Requesy .
Send-Signal & Check-Signal-Ontop

Discard-Signals.
Create-Instance-Answer. _ Ontop.
Create-Commonport-Answer Signal-Delivered

system

Signal-Delivered. Stop-Queue

o Farl ScNe_l{t—Signnl.
cport-Fatlure Create-Instance-Answer t-Timer,
e-ins s Reset-Timer,
S(op. Active-Request
Send-Signal. Input-Signal.

Process-Iniated.
Create-Instance-Request

Active-Answer
Die

bsdl-
process

Timer-Request Timer-Answer

View-Request,

Time-R: St
Reveal {me-Reques

View-Answer Time-Aaswer

\
\ View |
\J El Currently Supported

Bl Future Development

Figure 13: Belief-Based Supervisor Abstract Machine

2.2.1 BSDL Abstract Machine

The model used in software supervisor is interpreted. The inter-
preter implements the belief-extended SDL abstract machine
(shown in Figure 13).

The responsibilities of the components depicted in Figure 13 are:

* System: a unique instance of a process that handles interactions with
environment, creates beliefs, maintains consistent belief sets,

e Common port: responsible for generation of all permissible signal
permutations of signals coming to a particular input port.

Fuzzy Belief-Based Sofrware Supervision 23

Belief-Based Software Supervision

= Input port: keeps track of signals sent to process and timers set in
process.

* BSDL process: represents the state of a target system as a state of an
SDL diagram. Keeps track of variables, timing. Sends and receives
signals.

e Timer: tracks time

e View: shown for completeness only. Present in SDL abstract
machine, but not implemented in Supervisor.

2.2.2 Non-determinisms and beliefs creation

2.2.2.1 Signal detection nondeterminism

This is a signalling layer specification non-determinism. As we
saw, depending on sending conditions and timing, signal can be
detected, missed, or misinterpreted by the target system. Belief-
based supervision deals successfully with the first two possibili-
ties, creating two beliefs for every input signal observed by the
supervisor. In one signal is successfully detected, and the second
is that it is not detected by the target system. We will not con-
sider the third option in this work, as it is valid for a certain
class of target systems and adds significantly to the complexity
of the belief-based supervision theory.

2.2.2.2 Spontaneous transitions

When possible “NONE"-transition in a SDL process, a belief
should be created in which the “NONE” transition has been
fired.

Fuzzy Belief-Based Software Supervision

Belief-Based Supervision

2.2.2.3 Arbitrary decisions

When an “ANY" decision is encountered while executing an
SDL process, new beliefs will be -created, one per every branch
of the “ANY™ decision. In every of the newly created beliefs its
corresponding branch of the “ANY” decision will be chosen as
a result of the “ANY™ decision.

2.2.2.4 Concurrence

Signals traveiling over signal routes do not experience delays.
This introduces possibility of concurrent arrival of signals. For
example, when signals are sent to the same destination over two
or more different signal routes at exactly the same moment of
time, they would arrive immediately, and if all of these are ex-
pected in the same state, the resulting branch would be selected
non-deterministically. Different beliefs have to be created to ac-
count for all possible permutations of signal consumption.

2.2.2.5 Non-deterministic channel delays

When a signal is sent over a signal channel during execution of
an SDL specification, time of its amival is non-deterministic.
When some other signals were sent over different channels dur-
ing execution of the specification, the order of arrival of these
signal and the signal travelling over the signal channel may be
different. This will cause multiple legitimate scenarios of signals
arrival. Beliefs will be created to cover all of the legitimate per-
mutations of signals arrival. Two beliefs are originally created:
“signal has been delivered”, and “signal is still in transit”. In
transit” state of signals is used to produce all possible permuta-
tions. Such state indicates that a signal has been sent to its des-
tination through a delaying path but did not arrive yet. When
other signals are sent to the same destination beliefs will be cre-
ated in which arrival of the “in-transit” signal will be permuted
with arrivals of other “in-transit” signals and the newly-sent sig-

Fuzzy Belief-Based Software Supervision 25

Belief-Based Software Supervision

nals in all possible ways, producing a new belief per every per-
mutation. The current “in-transit” signals for a given destination
are kept in an “in-transit” set that is unique for the given des-
tination belief. Once “in-transit” signals are “successfully deliv-
ered” in a child belief, they are removed from the “in-transit
set” of the given child belief. “In-transit” sets are handled by
common ports.

2.2.3 Termination of beliefs

Some of the beliefs produced by the supervisor prove to be in-
valid in the course of supervision. Real state of target system is
unique, and beliefs that cannot explain indications of the true
state have to be terminated.

Also, when an additional specification is provided imposing a
maximum response time of the target system, beliefs that have
signals in “in-transit” state longer than the maximum response
time limit would violate such a specification and should also be
terminated.

Beliefs are terminated under the following circumstances:

« If a belief has been terminated, all belief sets it belonged to are
terminated also.

¢ If all sets a belief belonged to has been terminated, a belief is
terminated also.

¢ If an output signal unexpected by a belief has been observed in the
target system, a belief is terminated.

¢ If a signal expected by a belief has not been observed in maximum
response time, a belief is terminated (performance time-out).

¢ If two beliefs have been found to be identical (so that the states,
variables values, timers, signals in transit, etc. are identical in both
beliefs), one of the two will be terminated and the surviving belief
will be included in the belief sets of the original two beliefs.

26

Fuzzy Belief-Based Software Supervision

Belief-Based Supervision

[O] [o—10f
(o Jer el

e

BT, H
ID;‘]VH
B n‘n).gm jnm:af
m.m.m@m.m.
O e e
Legend: omanh Absiracxe D
— o@

<
()

=<

Abngacin D |
D]

Figure 14: Evolution of Supervisor State Upon Observation of
Three External Signals

Fuzzy Belief-Based Software Supervision

27

Belief-Based Software Supervision

Example: Figure 14 represents evolution of software supervisor’s
beliefs occurring upon observation of three external signals. Re-
fer to Figure 10 for a simplified SDL specification of the target
system for this example. -

The sample system contains two SDL blocks, each containing
one process. Input signal “A” is observed on the target system,
that is followed by output signals “C” and “D”. All three sig-
nals are external with respect to the supervisor

2.3 Critical Evaluation

Having all the inputs of the target system and its outputs it has
a wide picture, unavailable for N-version programming-based
system or audits.

BBS is sound: supervision does not continue, if the target sys-
tem has any deviations from the specified behavior within the
precision of the matching algorithm. But soundness can be a
drawback, as the described supervisor cannot continue operation
beyond the discovery of a failure.

s Post-failure supervision is impossibie: Signal loss or misinterpretation most
will result in termination of all belief sets and a halt of supervision. And since
the information about the target system resides in the collection of belief sets,
no information will be left to carry on the supervision.

s No discrimination of degrees of failure severity: If we are supervising a tele-
phone exchange, failure will be reported and supervision will be halted in both
cases of a faulty line behavior and a massive shutdown. It would be of a great
benefit, if there were means of determining the measure of the failure and con-
tinuing supervision if the failure is not significant.

Fuzzy Belief-Based Software Supervision

Fuzzy Belief-Based
Software Supervision

The theory of belief-based supervision presented in the previous
chapter has a major drawback: it is coarse, purely qualitative, and
not quantitative to any degree. What this means is: we are able to
tell when the target system is behaving incorrectly, but cannot ex-
plain as to how much incorrect the behavior is or even why it is in-
correct.

When a target system is complex enough, a partial failure may not
affect most of the functionality of the system, while it will be clas-
sified as a failure by the belief-based software supervisor and super-
vision will be ceased without explanation of what exactly caused
the supervisor to halt or how bad was the failure.

If the target system is perceived to be producing an unspecified be-
havior, all the “correct” belief sets will be killed as a result of mis-
matches between correct expected behavior and incorrect observed
of the target system. The matching procedure labels every existing
belief set with one of the two values, as either dead or alive. What

Fuzzy Belief-Based Software Supervision 29

Fuzzy Belief-Based Software Supervision

will happen if matching could produce a real number instead of just
two values?

Further in this work we will suggest an extension to the Belief-
Based method in order to increase supervisor's flexibility that will
allow for signal detection non-determinisms in signal detection,
would allow for continuous supervision of software with behavior
not exactly compliant to the given specification and also allow for
a natural resynchronization of the supervisor with the target system
after a failure was detected. This approach will be introduced as an
extension to and improvement of the Belief-Based method.

3.1 Informal Introduction

Let us imagine a belief-based supervisor, in which every currently
existing belief set is supplied with some feasibility factor based on
the history of the observed behavior and history of behavior of the
given belief.

Every time when a deviation mismatch occurs between the ob-
served behavior of the target system and the behavior expected by
the given belief set, feasibility factor of the affected belief set
would be decreased. Vice versa, when a “match” is successful, fea-
sibility factor of the belief set would be increased.

Now we would have an opportunity to compare belief sets between
each other and to select those which match the behavior of the tar-
get system most closely. Termination of belief sets will be deter-
mined by competition instead of single-time mismatch.

With such a setting, the well-being of the target system is reflected
in the feasibility factors of all belief sets existing in the supervisor
at the given moment. If a failure occurs, feasibility factors will be
decreased, and if we keep the “correct” hypotheses around long
enough, they will have a chance of improving their feasibility fac-
tors in the case of continued correct operation of the target system.

Fuzzy Belief-Based Software Supervision

Informai Introduction

The described idea enhances the original BBS method: if some be-
lief set was following the target system very closely, and an obser-
vational distortion discussed in section 2.1.1 occurs, or even some
kind of a failure of the target system (such as an uncritical loss of a
signal), the formerly successful belief set will not be terminated
just because of that; instead, only its feasibility factor will be de-
creased, and if it is high enough after the decrease, and the conse-
quent behavior of the target system is matching the hypothesis of
the belief set. the set will have an opportunity to recover from the
damage and will survive.

What can we do if a massive observational distortion or multiple
faults or a failure of the target system occur during the supervision?
To avoid an immediate death of the supervisor, we could decrease
the termination threshold for the surviving belief sets, allowing a
greater number of beliefs to outlive the moment of the failure and
recover later, if the system manages to recover after the failure. We
still could issue warnings about the malfunction. but the supervi-
sion will continue. To prevent the supervisor from being flooded
with incorrect hypotheses we would allow only the fittest hypothe-
ses will survive, and it will be up to us to decide how high shouid
the “survival plank” be raised.

This opens up a possibility of continuous re-synchronization of a
supervisor and a target system, along with continuous supervision.

The novelty is in an application of a dynamic threshold competition
mechanism to the existing BBS supervision that can be used also in
any other belief-based approach, where the state of the target sys-
tem is estimated by a population of belief sets, or beliefs, or any set
of hypotheses.

3.1.1 Benefits of the Approach

Once again, what does this approach promises us so far?

Fuzzy Belief-Based Software Supervision 31

Fuzzy Belief-Based Software Supervision

Optimistic supervision: when system deviates from the specified
behavior, our supervisor will not cease the process of supervision
due to exhaustion of hypotheses population. Sufficient number of
beliefs will survive and supervisor will return to normal operation
if the target system does.

Distortion-tolerant supervision: this approach will accommodate su-
pervision of systems with “hard-to-discriminate” output signals
(such as in example on Figure 9, section 2.1.1). Failure to detect
such a signal, or a misinterpretation of a signal will only lower the
feasibility factor of the belief set, without an immediate termina-
tion.

Adjustable supervision: by adjusting thresholds values we could
control the precision of supervision. This way it is easy to control
the trade-off between precision and durability of supervisor, since
thresholds could be dynamically determined. Also, we could assign
different decrement values to different types of discrepancies, that
will differentiate the impact of discrepancies on the supervisor’s
judgement of the target system operation.

3.1.2 Limitations

The more tolerant the supervisor becomes, the less precise it opera-
tion becomes. This would happen due to the fact that tolerance is
achieved by imposing less stringent conditions on the survival of
hypotheses, therefore allowing “incorrect” hypotheses survive
along with “correct” ones. This feature can be used for an advan-
tage or a disadvantage, depending on the goal of supervision, and
should be tuned and used accordingly. Nevertheless, the supervi-
sion sensitivity can be made as close to sound supervision as need-
ed, as we will show later.

32

Fuzzy Belief-Based Software Supervision

Generic Framework for Belief-based Supervision

3.2 Generic Framework for Belief-based Supervision

Below are the suggested general elements definition of which
would establish a Competitive Hypothesis-Based Supervision for
reactive systems:

* Hypotheses representation: For the target we will select a
representation capturing hypotheses about the state of the target
system.

* Feasibility factor: on every hypothesis we shouid introduce a factor
reflecting the degree of correspondence of the hypothesis to the
actually observed behavior of the target system.

* Hypotheses generation: we should define how externally observed
stimuli of the target system will alter existing hypotheses and how
new hypotheses will be generated and how the feasibility factor will
be assigned to the new hypotheses.

* Matching algorithm: we should define how the observed behavior is
matched to the hypothetical behavior and how the matching
influences the values of the feasibility factors of hypotheses.

* Hypotheses termination rules (competition algorithm): we should
define how the population of hypotheses is maintained on the basis
of values of feasibility factors. Survival threshold function should
be specified, that will determine the threshold of the feasibility
factor sufficient for survival of a hypothesis. This threshold may be
dependent on the overall feasibility factor values and on the number
of surviving hypotheses.

e Evaluation rules: when does a supervisor classify the behavior of
the target system as a malfunction and how does it continues the
supervision after this.

No doubt, this is a very loose generalization, but this vagueness is
intentional. This view will be general enough to be used for analy-
sis of the BBS method and for building an extension to BBS meth-
od - a Fuzzy Belief-Based Supervisor.

Fuzzy Belief-Based Software Supervision 33

Fuzzy Belief-Based Software Supervision

3.2.1 Original Belief-Based Supervision From the Point of
View of Generic Framework

* Hypotheses representation: belief sets (as described in section 3.2)

« Feasibility factor: x,e {a 1}

The following is an interpretation of belief generation and termina-
tion rules of BBS according to the Generic Framework:

¢ Hypotheses Generation: belief generation rules as defined in section
3.2, page 33. The initial (empty) hypotheses has its feasibility factor
value set to 1. All derived hypotheses upon creation have their
feasibility factor values inherited from the parent hypotheses.

* Matching Algorithm: when a mismatch is detected in a belief set
(see section 3.2 for explanation of mismatch), its feasibility factor is
setto 0.

* Competition Algorithm: the threshold function is constant and
equals to 1. Every belief set, that experienced a mismatch is
terminated. Any deviation from specified behavior sets competition
criterion of a belief set to 0.

* Evaluation rules: system is operational if belief set population is not
empty. Once it becomes empty, supervisor classifies the target
system as malfunctioning and terminates its operation.

3.2.2 Fuzzy Belief-Based Software Supervision

We shall build a supervision schema suitable for implementation,
so that advantages described in section 3.1.1 will be realized.

The schema of software supervision suggested here is called
“fuzzy” for the reasons for the resemblance of the competition al-
gorithm to the fuzzy logic approach to decision making.

Fuzzy Belief-Based Supervision will be shown to be an extension
of the original Belief-based supervision.

Fuzzy Belief-Based Software Supervision

Generic Framewaork for Belief-based Supervision

Here we follow the steps on page 34:
* Hypotheses representation: belief sets as in the original BBM

* Feasibility factor: z,e [0,1]
(Note: it’s an interval, not a two-value set.)

» Hypotheses generation: see belief and belief sets generation in the
original BBM. in the beginning of supervision the initial “idle”
Belief set has its feasibility factor set to I, as in BBS. The derived
belief sets inherit values of feasibility factors from their respective
parents.

* Matching Algorithm: every mismatches is assigned some mismatch
value, are when a mismatch is detected in a belief set (see section
3.2 for explanation of mismatch), its feasibility factor is decreased
by a corresponding mismatch value. Similarly, all the occurrences
of successful matching are ciassified and mapped to some match
value, so that a feasibility factor of a belief set is increased
accordingly when the given matching succeeds.

* Competition algorithm: the threshold may be a function of different
arguments, such as a number of existing belief sets, or distribution
of feasibility factors, or even a constant. Its value should be less or
equal to . Different heuristics could be applied. When a feasibility
factor of a belief set fall below the current threshold, it is terminated
according to the rules of belief termination (see section 3.2, page
33).

* Evaluation rules: system is operational if belief set population is not
empty. Supervisor will issue a warning every time when the
maximal feasibility factor becomes close to the threshold, taking
some action to avoid extermination of all hypotheses. When
sufficiently many hypotheses have feasibility factors higher than the
threshold it will be increased. Then at any time the evaluation of
“soundness” of the target system will be reflected by the threshold
and the distribution of feasibility factors of the belief sets.

The proposed outline of contains many heuristic components that
require further theoretical support and empirical evaluation. In the

Fuzzy Belief-Based Software Supervision 35

Fuzzy Belief-Based Software Supervision

following sections we will expand the composite parts of the pro-
posed Fuzzy Supervision approach and develop algorithms for it.
Experimental fuzzy supervisor built for evaluation purposes will be
described in the next chapter and the results of the experimental
evaluation will be presented in the chapter following that.

The main objective will be to overcome termination of supervision
after occurrence of failure within the target system (the observation
of unspecified behavior). This represents a requirement formerly
not imposed on belief-based supervision approach and will have to
be addressed in the fuzzy supervision algorithms afresh.

3.3 Feasibility Factor

The key difference of the Fuzzy Belief-based supervision approach
from the earlier-suggested belief-based supervision approaches is
the presence of interval discriminator in every belief set, that repre-
sents correlation of behavior represented (or expected) by the given
belief, and the observed behavior of the target system. This dis-
criminator was called feasibility earlier in this work.

From now on, let us consider, that the greater the feasibility factor
is, the closer did the observed behavior matched the expected be-
havior in the given belief, so that when the two behaviors match
completely, feasibility factor will be equal to 1.

3.3.1 Inheritance Rules for Feasibility Factor

As new belief sets are generated by the fuzzy supervisor, their fea-
sibility factors should be assigned some values.

As the newly-generated belief does not produce output at the in-
stance of its creation, it will share expected and observed output
history with its parent belief set.

36

Fuzzy Belief-Based Software Supervision

Feasibility Factor

Therefore, by our definition the value of its feasibility factor should
be the same as in it’s parent’s belief set.

Xchild = xparent

This sets the inheritance rule for the feasibility factor.

3.3.2 Belief Set Combination and Resulting Feasibility

Sometimes two or more different hypotheses have identical expec-
tations of the observed behavior. This happens when difference be-
tween these hypotheses lies within the SDL model internal state
and does not manifest itself externally. Such hypotheses may co-
exist in the supervisor unmtil their evolution makes their expected
behavior different from each other and they become distinguishable
externally. But evolution may also change their internal state, so
that they will become identical internally and externally. In binary
belief-based software supervision such belief sets were merged into
one. Their expected behavior remained perfectly matched with the
observed behavior.

This mechanism was important, as it eliminated unnecessary redun-
dancy among the existing hypotheses while maintaining sufficient
coverage of all state and behavior alternatives possible in the for-
mal model of the target system.

Will such a mechanism be a necessary part of a fuzzy supervisor?
Yes, as we plan to allow survival of some of hypotheses that do
not describe the observed behavior particularly well. This increases
possibility that different hypotheses will evolve into ones with
identical internal state and expected behavior, therefore the original
problem still remains: we have to merge them, as their consequent
evolution will be identical.

To makes things more difficult, these may have different past histo-
ries and, as a result of that, different feasibility factors.

Fuzzy Belief-Based Software Supervision 37

Fuzzy Belief-Based Software Supervision

If we are to merge several into one, what should be different in the
merging algorithm for the fuzzy supervisor?

Not much. The major difference between belief sets in the binary
software supervisor and beliefs sets in fuzzy software supervisor is
the presence of the feasibility factor and a track of past history,
should we decide to keep the latter.

We suggest that the feasibility factor be used to decide attributes of
which belief set we are going to inherit in the result of a merger.
Feasibility reflects how well the associated belief could explain be-
havior of the target system in the past, by definition. and it is logi-
cal to chose this “better” past history as the attribute of the
resulting belief set. Informally, this means, that we will inherit the
best possible feasibility and history of explanation of the target sys-
tem that a belief set with given internal state and expected behavior
can have in the supervisor. The rest of attributes will be exactly the
same. so merging actually will consist of selection of one belief set
among several.

The new algorithm for the merger then looks like this:

algorithm select_merge_result(merged_belief_sets)
best_belief_set = head(merged_belief sets):
for (every belief_set in merged_beleif_sets) |

if (< (feasibility(best_belief set),
feasibilirv(belief_set)))

Bty

then {
best_belief_set = belief_set;

/

return best_belief_set

b A
N

10: end select_merge_result

38

Fuzzy Belief-Based Software Supervision

Feasibility Factor

3.3.3 Failure in Fuzzy Belief-Based Supervision

Failure in basic belief-based supervision theory manifests itself in
discarding of all existing beliefs in the supervisor. This couid have
been caused by explicit mismatch or performance time-out of sig-
nals in output queues or in-transit signal sets.

This simple algorithm of failure detection will not work in Fuzzy
Belief-Based supervision. as none of those belief death causes will
be valid in FBBS.

What would happen in the Fuzzy supervisor in the situation that
would have been recognized as a failure by a binary belief-based
supervisor? Should it be a mismatch or signal expiration, it would
result in reduction of a feasibility factor of the affected belief set.
And failure in terms of binary software supervision will be equiva-
lent to a simultaneous occurrence of feasibility factor reduction in
all belief sets present in the target system.

3.3.4 Matching and Change of Feasibility

Supervision is expected to be continuous and last beyond any de-
tected failure of the target system. Since feasibility factor may take
a continuous range of values and some beliefs will expect a differ-
ent behavior from the one produced by the target system (should it
be a result of a malfunction of the target system or the unrealized
behavioral permutation produced by the belief generation algo-
rithm), it would be necessary to define the rules that will be guid-
ing changes of the feasibility factors under various circumstances.
The matching algorithm itself will be defined elsewhere and will
not be of a concern for us at this moment.

We should devise an algorithm that will balance decreases and in-
creases of feasibility factors and will allow for recovery of feasibil-
ity factors to high levels in the post-failure operation should the
system recover.

Fuzzy Belief-Based Software Supervision 39

Fuzzy Belief-Based Software Supervision

When a mismatch is detected in some belief between its expected
behavior and the observed behavior of the target system. feasibility
should decrease., and when a match is detected feasibility should in-
crease.

xnrw = xn[d +Ax»mxch

Lnew = xrrld-Axmi:march

It will complicate the domain significantly if we discriminate be-
tween the influence of different types of matches and mismatches
on the value of feasibility factor. Although the idea is sound. we
will assume that any mismatch will influence feasibility in the
same way as any other mismatch, and so will a match.

For how long should we retain the information that feasibility fac-
tor was decreased at some point? This information may be useful
when the target system is highly reliable and it is expected that su-
pervision will not detect any failures. On the contrary, if failures
occur often, it is rather meaningless to remember that a failure has
occurred. It may be better to keep information about a failure for a
certain time and discard it afterwards.

We will consider failure an unlikely event, take the first option and
try to reflect information about past failures in the feasibility factor.

If a failure has been detecied by a fuzzy supervisor at any point
during the life of a given belief set, we can no longer say that the
behavior that has been expected by this belief set matches observed
behavior. Therefore feasibility factor of such a belief set should
never reach the upper limit of 1 again.

Let us try to construct an algorithm that will be suitable for feasi-
bility factor calculation for Fuzzy supervision.

40

Fuzzy Belief-Based Software Supervision

Feasibility Factor

The simplest way to increment or to decrement feasibility is to add
or subtract a constant:
Ax
ax

match = a = const

= b = const
mismaich

Let’s call this an absolute change algorithm. as it does not take in
consideration anything at all. Absolute change algorithm is simple,
and it is easy to predict what will be the value of the feasibility
factor for the given belief set:

Kewrrent = | +na-mb
where n is the number of detected matches and m is the number of
detected mismatches.

The problem with this algorithm is: resulting feasibility may over-
shoot the intended range and become either less than zero or great-
er than one. This points us to the idea, that we have to consider the
value of the feasibility factor of the given belief set when deciding
on how much to decrease or increase the feasibility:

Axman:h = al xoh.')

Axmx.\'ma:ch = B(xn{d)

An additional constraint is that the resulting value will still stay
within the allowed feasibility range:

0= xnew = xnlu’ * a{xnld) <l

0= Xpew = Xogq—Bo) 1

Also, as we agreed earlier, past mismatches should be reflected in
the feasibility value: it should not be equal to 1 ever again once a
mismatch was detected.

Fuzzy Belief-Based Software Supervision 41

Fuz2zy Belief-Based Software Supervision

[t is obvious that the class of algorithms delimited by these rather
loose constraints is very large. Without attempting to exhaust all of
these, we will investigate one particular type of formula in which
Ay = A, =atl-%,,) and Ay, o= B,y = Lt -6)

match

anw = Fmt:r(xnld) = xnld+a(l _xnlu‘)'o <ac<l

xﬂew = Fdecr(xvld) = xnld_xuld(l -b).0<b<!

What are the properties of these algorithms? For one. new feasibili-
ty will never leave the permitted feasibility range. In the case of a
match,ay, .., is always a fraction of the difference between 1 and
the ,,. therefore a sum of the delta and g ,, will not be greater
than 1. or will be strictly less if x,,,<1. More formally:

O<y,y<!.0<ax<l

O<(l-a)<l
O<(l—x"ld)<l

xnm(l -aY<l-a

0<Z,,M+“”‘Z,,u)<|

Similarly, x,,...cx IS always positive and is a fraction of y,,,,
therefore the result of subtracting the delta from x ,, will be always
positive and will never be greater than 1:

O<y, <tO<b<l

O<(1-b) <1

0<Xpig(1=0) <dpy

0<and“xnm“‘b) = Xpra(l = 1+b) = bxnld<[

Fuzzy Belief-Based Software Supervision

Feasibility Factor

Figure 15 illustrates changes of feasibility of a belief set after one
detected mismatch and three matches when a = 05,6 = 05 and start-
ing feasibility is equal to 1.

X 4
1
o
! 1
! 1
(1
! 1
R
1 J]
I ! Lo
' ! ! !
L. I ! I |-
0 Mismatch Match Match Match Time

Figure 15: Dynamics of Feasibility Factor of a Belief Set After
One Mismatch and Three Matches

As a general observation, increasing constant a will increase the
rate of recovery of feasibility as a result of a match, while increas-
ing constant b will slow down the decrease of feasibility as a result
of a mismatch.

As we see in these algorithms, a recovery of feasibility from a de-
tected failure would depend on the continuation of (possibly, part-
ly) successful operation of the target system. If the target system
continues to operate properly, that is, if signals that are produced
by the rest of the system are matched with the corresponding sig-
nals expected by the supervisor, the damage to the feasibility of the
surviving beliefs would be compensated by successful matching,

In general, with the algorithms selected above the important factor
determining the feasibility change in any given period of time
would be not even the number of mismatches (failures) that have
occurred in given time, but the ratio of successful matches to the
number of mismatches that have occurred. For more discussion on
this topic see section 3.5.3.

Fuzzy Belief-Based Software Supervision 43

Fuzzy Belief-Based Software Supervision

3.4 Matching

Matching in belief-based supervision is a process of comparison of
behavior expected by the supervisor and the observed behavior.

As it was set in our objective, matching has to continue after a mis-
match has been detected and has to handle signal distortions that
were discussed in section 2.1.1 of Chapter II.

3.4.1 Output Signals

What information will be meaningful in output signals? The fol-

lowing attributes characterize expected output signals produced by

BSDL model of supervisor:

* name: unique identifier of a signal

* parameters: types and values

¢ sending path: allows to discriminate signals sent via different channels and
identical otherwise

* sending time (time stamp): discriminates identicai signals sent at different
moments of time

* belief set that produced the signal: consistent belief sets may represent different
hypotheses about behavior of the target svstem and therefore identical expected
output signals may be generated by different belief sets and have to be distin-
guished.

Then, for the reference purposes we’ll denote an expected output
signal as:

signal:<name, params, path, time, cbs>

where the elements in the brackets denote attributes just listed
above.

Fuzzy Belief-Based Software Supervision

Matching

3.4.2 Behavior Representation and Capture: Output
History

As was mentioned before., any consistent beliefs set represent a
complete hypotheses about the state of the whole target system.

As there may be many consistent belief sets at any given time there
also will be more than one expected behavior existing in a software
supervisor during its operation.

Observed behavior as well as expected behavior of the target sys-
tem can be represented as sequences of signals.

Expected output queues consist of signals that were produced by
belief processes of a consistent belief set and were sent to the envi-
ronment.

In the case of observed behavior, signals come from an abstractor
process or processes, that scan the interface memory of the target
system and interpret physical characteristics of the interface memo-
ry as application of certain output signals.

Discussion on issues with signals abstraction conducted in section
2.1.1 of Chapter II illustrated that the abstracted behavior may suf-
fer from various distortions such as misobserved signals, missing
signals, and phantom signals.

Also, a concurrent execution of several abstractor processes may
cause permutations of the abstracted signals in the observed behav-
ior queue. The permutation problem also occurs when several pro-
cesses of the same belief set deliver output signals through the
same channel. This illustrates the importance of properly aligning
of the model to the target system (e.g., directing signals of different
nature into separate channels and properly selecting scanning algo-
rithms) in order to eliminate problems like that. For clarity we will
consider that the model we have has these properties.

Fuzzy Belief-Based Software Supervision 45

Fuzzy Belief-Based Software Supervision

If we represent behaviors as sequences of signals. and as it was
shown, there may be muitiple possible expected behaviors, we may
have several expected output queues. The observed behavior also
may result in multiple queues. if we consider building hypothesis
of what was observed in a way similar to hypothesizing on what
has happened in the target system. But simple observed behavior
will suffice if we eliminate non-determinisms of forming an obser-
vation through appropriate mechanisms of abstraction and well-
suited supervision model. We will consider that only one version of
observed behavior is sufficient and assume that observational non-
determinisms have been eliminated.

Output behavior captured as a sequence of signals ordered by their
timestamps will be called output history.

Here is the notation we’ll use to represent output history:

data output_history: <signal_I, signal_2, signal_3,..., signal_N>

3.4.3 Performance Time-Outs of Signals in BSDL Model

Signals sent via BSDL signal channels among others, would gener-
ate beliefs that the signal is still in transition, and these would live
indefinitely. Practical considerations tell us that if we send some-
thing via some transport route we would expect it to arrive in the
point of destination in some time, finite, if not pre-determined ex-
plicitly.

This prompted introduction of the time-out mechanism that discard-
ed all consistent belief sets which had signals that have been stay-
ing in “in-transit” state longer than a certain time after their
departure from the sender processes. This mechanism was termed
performance time-out.

Below is the *“old” performance time-out algorithm for expected
output signals and signals in “in-transit™ list:

46

Fuzzy Belief-Based Software Supervision

Matching

1: algorithm old_check_peformance_timeout(signal):

2 if (<(time(signal), -(current_time(), performance_timeout)))
3: then discard(cbs(signal))

4: end old_check_peformance_timeout

where time(...), cbs(...) are selectors of signal attributes, and dis-
card(arg) is a function that deletes passed data object arg.

In the Fuzzy belief-based software supervision timing out will car-
ry out functions that were non-existent in the original belief-based
supervision: as we expect supervisor to continue operation in pres-
ence of signal distortions and possibly faulty behavior of the target
system and beyond the moment of detection of behavioral devia-
tion, we should be prepared to match output histories in which
some signals do not have a matching counterpart due to a faulty
behavior or observational distortion. Such signals should also be re-
moved by the performance time-out algorithm.

What should be different in the performance time-out algorithm if
it is to be used in Fuzzy belief-based software supervision? In one
statement, performance time-out of a signals should not be allowed
to cause an unconditional termination of associated CBS as that
would prevent CBSes from freely competing with each other.

This change directly affects performance time-out algorithms for
“in-transit” signals and expected output signals:

1: algorithm check_peformance_timeout(signal):

2- if (<(time(signal). -(current_time(), performance_timeour))})
3: then process_perfformance_time_out{signal)

4: return

5: end check_peformance_timeout

where time(...), cbs(...) are selectors of signal attributes, and
process_performance_timeout(signal) modifies feasibility due to a
timed out signal in a certain way, that is discussed in section 3.3.4.

Fuzzy Belief-Based Software Supervision 47

Fuzzy Belief-Based Software Supervision

3.4.4 Timing Out of the Observed Output Signals

A mechanism similar to performance time-outs was used to clean
up observed output history from older output signals, and also to
destroy CBSes in which these timed out observed output signals
were never properly matched.

For signals in the observed output history the algorithm used in the
binary belief-based supervisor was:

algorithm old _check_peformance_timeout(signal):
if (<(time(signal), -(current_time(), performance_timeout)})

then discard(cbs(signal))

B~

return

ol

end old_check_peformance_timeout

where time(...), cbs(...) are selectors of signal attributes, and dis-
card(arg) was a function that deleted passed data object arg.

Again, this algorithm has to be modified for the purposes of Fuzzy
software supervision as it was explained in section 3.4.3, replacing
the unconditional destruction of the belief sets that haven’t matched
the timed out signals.

Instead of immediately deleting the cbs that has an observed output
signal that timed out, the fact will be merely registered in the cbs,
and an immediate destruction will not occur:

algorithm check_performance_timeouts(history):
for (every signal from history) [

!

2

3 check_peformance_timeout(signal)
4: }

b) return

6

end check_performance_timeouts

Fuzzy Belief-Based Software Supervision

Matching

I: algorithm check_peformance_timeout(signal):

2: if (<(time(signal), -(curreni_time(), performance_timeout)))
3: then process_perfformance_time_out(signal)

+: return

3: end check_peformance_timeout

where time(...), cbs(...) are selectors of signal attributes, and
discard(arg) is a function that deletes passed data object arg, and
process_performance_timeout(signal) modifies feasibility due to a
timed out signal in a certain way, that is discussed in section 3.3.4.

3.4.5 Matching Individual Signals

Behavior captured as output history consists of output signals. In
order to define matching of behaviors we have to define when do
we call two signals matching each other.

As defined in SDL, signals may carry parameters and when sent
travel a certain path determined by SDL specification. As matching
is a responsibility of the BSDL abstract machine, sending time, de-
livery path, and information on the signals parameters is available
when matching is performed.

Observed output signals must be produced during signal abstraction
that uses specific knowledge about the target system and the super-
visor model to interpret changes in the interface memory of the tar-
get system as signals.

The best possible meaningfulness of matching of individual signals
may be achieved when the observed output signal contains is asso-
ciated with exactly the same types of information as the expected
output signal. Then no information is wasted, and matching of two
signals may be decomposed into matching of individual signal at-
tributes such as signal channel, timestamps, parameters, etc.

Fuzzy Belief-Based Software Supervision 49

Fuzzy Belief-Based Software Supervision

We will consider the signal abstraction and supervisor model per-
fectly aligned: that is if the target system is operating properly, ab-
stracted signal would be attributed with the same identifier (name),
channel, parameters and timestamp close to that of the correspond-
ing expected output signal produced by the target system.

Matching algorithm for two output signals will look like this:

1: algorithm SignalMatch(signal_I, signal_2):

2 return{and(match_sig_time(time(signal_1l), timetsignal_2}),
3 match_path(path(signal_2), path(signal_2)),
4

match_name(name(signal_l), name(signal_2)),

AN

match_parm(parm(signal_!), parm(signal_2))))
end SignalMatch
[: algorithm maich_name(name!. name2):
2 return(=(namel, name?2))
3: end match_name
1: algorithm match_pathipathl, path2):
2: return{=(pathl, path2))
3: end match_path
1: algorithm match_parm(parml, parm2):
2: return(=(parml, parm2))

3: end march_parm

where name(...), path(...), time(...), params(...) are simple selectors
of signal attributes, and match_time(...) is an algorithm comparing
timestamps of the two signals and deciding if they can be matched
from the point of view of their timestamps. See section 3.4.6 for
discussion of timing aspect of signal matching.

This algorithm calls for an explanation. We assumed that signal ab-
straction is perfectly aligned with the target system. That means, as
we defined, that two signals will be identical in everything but
maybe their timestamps, and expected output signals will have an

50

Fuzzy Belief-Based Software Supervision

Matching

extra attribute - CBS ID that will be meaningless in the observed
output signal, as the observed output history will be unique as we
agreed. That is exactly what the algorithm does: it compares
names, parameters, paths, and compares observation and sending
timestamps of the two signals as discussed in section 3.4.6.

Although the CBS attribute is not significant in the matching of in-
dividual signals, it is important for formation of output history for
different consistent belief sets.

3.4.6 Timing Aspect of Individual Signal Matching

Speaking informally, when we are trying to match two signals with
each other, timing of their detection is important. It is impractical
to try to match two signals that have been received in distant mo-
ments of time. This is similar to time-out expiration of output sig-
nals discussed in section 3.4.6. Thus we may set some threshold
time distance between timestamps of two matched signals beyond
which matching of these signals will not be attempted. This thresh-
old may be different with respect to the performance time-out
thresholds. Although, if it is more than the performance time-out
threshold, it will be useless, as the signals separated by this thresh-
old distance will never be matched with each other, as the earliest
of these two will be discarded by the performance time-out mecha-
nism. This is illustrated in Figure 16: 7, stands for detection time
of signal i, 7, stands for performance expiration time of signal i.
As we see, it is impossible that matching of signal 1 and signal 3
will ever be attempted as signal 1 will be expired by the time sig-
nal 3 is detected.

Fuzzy Belief-Based Software Supervision 51

Fuzzy Belief-Based Software Supervision

Signal 1| i4———— ' | .
Signal 2| | —
Signal 3 | L e——p

l T“‘ T“: T‘l Td 3 ;‘ 2 T‘z Tim:e

Figure 16: Potential Life Intervals ofof Signals and Time
Matching

On the contrary, signals 1 and 2 may coexist in supervisor at the
same time as their potential life spans overlap. Attempt of matching
of these two signals may be prevented by sufficiently short critical
temporal distance threshold, namely, it should be shorter, than the
temporal distance between their respective detection timestamps.

Here is the algorithm that performs matching of timestamps re-
ferred to in section 3.4.5.

algorithm match_sig_time(timel, time2):
return (< (abs(-(timel, time2}),

)

1

2

3 timeout))
4

5: end match_sig_time

In this work we will consider performance and temporal distance
thresholds equal, so that temporal distance checking will become
redundant.

3.4.7 Decomposition of Output History Matching Into
Channel Matching

Representation of behaviors as sequences of signals makes the task
of matching relatively simple. The idea is to simultaneously
progress in two output history lists while matching eligible individ-

52

Fuzzy Belief-Based Software Supervision

Matching

ual signals contained within each of the sequences. We have to de-
fine which signals will be eligible for matching and how will a
match o a mismatch affect the output history lists. For now we will
only consider that there are only two sequences to match and will
address the problem of output matching for muitiple belief sets lat-
er.

A problem we have to solve in the matching algorithm is the possi-
ble absolute delivery order permutation of signals travelling via dif-
ferent channels: even though several signals could have been sent
in the right order, but through different channels, they will emerge
from the channels they travelled through in a different order, due to
the non-deterministic in-channel delay.

Channels may delay, but do not permute signals sent through them.
Therefore, the delivery ordering of two signals sent through the
same channel will be the same as the departure ordering (see
Figure 17).

B ’ Expected Output Chan J
() Expected Output Chan_IH¥ B

Figure 17: First-In-First-Out Signal Transmission in SDL
Channels

Signal abstraction and specification are aligned, as we postulated,
that means that abstraction does not permute observations of sig-
nals that would have been expected to emerge on the same channel
i the SDL model.

Fuzzy Belief-Based Saftware Supervision 53

Fuzzy Belief-Based Software Supervision

Abstraction

B Observed Output Chan_/)

Figure 18: Abstraction of Same-Channel Signals in
Supervisor

In Figure 18 two signals can travel along channel Chanl, although
they have different signal carriers in the target system. Neverthe-
less, the ordering of these two is the same as the ordering of their
appearance in the carriers. We will assume, that signals for which it
1s impossible to guarantee non-permuting detection will be sent to
separate channels within the SDL specification.

| Expected Output Historyp |Match Opserved Ourput History

——J\

¥

)Expected Output Chan_)Observed Output Chan_[

)Expected Output Chan_2)b [Matchj) Observed Output Chan_2

)Expected Output Chan_Nf [Match}{.)Observed Output Chan_~)

Figure 19: Decomposition of Behavior Matching Into Same-
Channel Matching

54

Fuzzy Belief-Based Software Supervision

Matching

Now, since inter-channel signal permutation is ruled out, we can
split signals in the output histories into per-channel sub-histories
and decompose matching of two output histories into matching of
their same-channel sub-histories. Later we will explain how to re-
combine the results of same-channel matching into a result of out-
put history matching.

3.4.8 Matching Same-Channel Output Histories

As before, when trying to match two sequences of signals we
should expect that some of the signals present in one sequence will
be missing in the other, or the order of signals in one will be differ-
ent from the order of signals in the other.

Permutation of output signals in one same-channel sequence with
respect to the order of signals in the other will indicate a faulty be-
havior according to our postulate presented in section 3.4.7 and
should be caught as a mismatch.

Matching will be an iterative process of matching of individual sig-
nals starting from the “earliest” ends of signal sequences and pro-
gressing as necessary further in the sequences. Since signals may
be missing in both sequences, the candidate signal for matching
will be selected from either sequence in turns, thus the two se-
quences play equal roles in matching algorithm except for the se-
lection of the very first candidate.

Once a candidate for matching is selected in one queue, an attempt
will be made to match it with the next untried signal in the other
queue. If the attempt fails, the matching turn is passed to the other
sequence. Once a candidate has been unsuccessfully matched with
all of the signals in the other sequence, a new candidate is selected,
that is the signal immediately following the ex-candidate in its se-
quence.

Fuzzy Belief-Based Software Supervision 55

Fuzzy Belief-Based Software Supervision

Note, that only portion of the opposite sequence starting from its
candidate and ending at the end of the sequence should be consid-
ered for matching with the current candidate of the given sequence,
as the signals from the beginning of the opposite sequence and up
to its current candidate have been tried already with all of the sig-
nals constituting the given sequence.

Thus, if matching is not successful, the sequence of attempted
matches is shown in Figure 20, where S; is the J-th signal in se-
quence i, n, is a number of signals in sequence i, SignaiMarch is the
individual signals matching algorithm presented in section 3.4.5.
The shown matching sequence will occur when n,<n,, and n,n, is
odd and absolutely no signals match in the two sequences.

Initial candidate for sequence | SignalMaichl S : Sf)
Initial candidate for sequence 2 SignalMaich .S)'2 . SI

3

SignalMaitch S
SignalMatch S’ S
StgnalMa:chES

A B D]

SignalMarch{ S, S

Last signal tried in sequence 2 SlgnalMalch(S Si)
SlgnalMatch(S3 S v)
Change candidate for sequence | S xgnalMalch(S;. Si)
Last signal tried in sequence | SzgnalMarch(Sf, S:ll)
S:gnalMalch(Sy Sn nied)
Change candidate for sequence 2 SlgnalMatch(S;)
Last pair tried SzgnalMazch[ny S "l)

Figure 20: Sequence of Attempted Matches

Fuzzy Belief-Based Software Supervision

Matching

What should happen once we did find matching signals somewhere
in the two sequences? The way our match search algorithm has
been designed guarantees that no matching pairs were found for
signals from the start of the sequences up to the matched signals;
these unmatched prefixes will have to be discarded to prevent
matching with them at a later time (this prevents a successful
match of two permuted sequences).

We should consider every discarded signal a mismatch and modify
feasibility accordingly. When unmatched prefixes (if any exist at
all) are removed from the sequences. the matched pair is registered
as a match followed by an appropriate increase of feasibility.

After that the matched signals are also discarded to prevent repeti-
tive matches with the same signals. Figure 21 illustrated conse-
quences of a detected match.

Expected Output Observed Output
Maitch is detected

1
S Signals _
5! contributing
3 as mismatches
S, S,
! 1
S S . .
i ek Remaining
\/ sequences
Sequences purged
Sr]n1+l ,l,,:,.. Ready for new

match search

Figure 21: Discarding Unmatched Prefixes and Matched
Signals

Fuzzy Belief-Based Software Supervision 57

Fuzzy Belief-Based Software Supervision

Expected Output Observed Output
During a Matching Sweep
A match A
B match B
-
C D A
C
A
B F
D
E
After a Matching Sweep
B F
D
E

marks a match. where:

. points to two matched signals

points to signals deemed

7<
~ “mismatched” by the match

Figure 22: Expected and Observed Qutput Histories Before
and After a Matching Sweep

58

Fuzzy Belief-Based Software Supervision

Matching

The idea of same-channel signal matching is clear now. Let us give
a more formal presentation of the same-channel matching algo-
rithms discussed in this section (some algorithms have been de-
scribed in other sections)

Algorithm match_channel_historv is the top-level algorithm that
checks for performance time-outs in both histories and finds all
matches in the two remaining history lists.

[: algorithm match_channel_history(historv_I, history_2):

2 check_performance_timeouts(historv_l };

3 check_performance_timeouts(history_2);

4: match_not_found = false;

b while (not(match_not_found)) {

5 match_not_found = find_channel_maich(history_I,
history_2);

7: /

8: return;

9: end match_channel_history

Algorithm purge_channel_history purges passed history form the be-
ginning and up to the matched signal. processing all mismatches
and the final match and cleaning up the history from processed sig-
nals.

1: algorithm purge_channel_historv(matched_signal, history):
2 history_head = head(history);

3 while (not(history_head = matched_signal)} {

4 process_mismatch(history_head);

5 historv_head = next(history_head);

6 remove(history_head, history);}

7 process_match(matched_signal);

8 remove(matched_sisgnal, history);

9: return;

10: end purge_channel_history

Fuzzy Belief-Based Software Supervision 59

Fuzzy Belief-Based Software Supervision

Algorithm find_channel_march successfully finds one match and pro-
cesses matches and caused mismatches, and cleans up the histories
from processed signals (description of variables used in the algo-
rithm can be found immediately below the algorithm itself):

l: algorithm find_channel_match(history_1, history_2):
2 candidate_I = head(historv_1):

3: candidate_2 = head(historv_2);
4

match_I = candidate_2;

b} match_2 = next(candidate_1);
6 match_found = false:
7: match_not_found = false:
8 turn = true;
9: until (or (match_found, match_not_found)) {
10: if (turn)
H: then {
12: if SignaiMarch(candidate_1, maich_1I)
13: then {
14: match_2 = candidare_1I.
15: match_found = true:
16: /
17: else [
18: if tor((candidate_2 = NIL), (match_2 = NIL)))
19: then {
20: match_nor_found = true;
21 /
22 else {
23: advance_match_candidates (candidate_l, candidate_2,
march_l, historv_2);
24:]
25: /
26:]
27: else {
28: if SignalMatch(candidate_2, march_2)

60 Fuzzy Belief-Based Software Supervision

Matching

29: then |

30: march_I| = candidate_2;

31 match_found = true;

32 /

33: else {

34: if tfor ((candidate_I = NIL), (match_I = NIL)})

35: then {

36: march_not_found = true:

37: /

J8: else {

39: advance_match_candidates (candidate_2. candidate_|I,
maich_2, historv_I);

40: /

41: J

42 /

43 turn = not(turnj;

4 if (match_found)

AT then {purge_channel_history(match_l, history_1);

+46. purge_channel_histors(match_2, history_2):}

47: /

+48: return(not(march_found));

49: end find_channei_match

The algorithm above is less obvious than the other ones and re-
quires explanation. Arguments history_I and history_2 point to
lists of signals constituting output histories. Variables candidate_1
and candidate_2 contain references to current candidates for match-
ing in history_I and history_2 correspondingly. Variables match_l
and match_2 point to current match prospect for candidate_I and
candidate_2 correspondingly and point to signals from history_2
and history_1 correspondingly; also these are used to store matched
signals once the match is found. Flags match_found, turn, and
match_not_found are used to indicate if the match was found, what
candidate will be matched in the iteration, and if the match was not

Fuzzy Belief-Based Software Supervision 61

Fuzzy Belief-Based Software Supervision

found. just as their names suggest. Here candidate_i is the next
candidate for the match in historyv_i, match_i is the matching pros-
pect for candidate_i. Two pairs of pointers (history_i, match_i) are
needed here in order to perform interleaving top-down matching of
historv_Iand history_2.

Algorithm advance_match_candidates performs advancing of
matching candidates through the history lists. If we tried all of the
elements in the other queue with this_candidate. advance
this_candidate and set the this_match prospect to the signal next to
the other_candidate, else simply advance the match prospect
this_match to the next element. If advancing is not possible, simply
return from execution.

"~

algorithm advance_match_candidates (this_candidate, other_candidate,
this_match, other_history):

2: if (this_match = last(other_history))
3: then
4 if for (nexi(this_candidate)=nil), (next(other_candidate)=nil))
b then
6: return;
7: else {
8: this_candidate = next(this_candidate);
9: this_match = next(other_candidate);
10: /
1: /
12: else (
13: this_match = next(this_match):
14: }
15: return;

16: end advance_maich_candidates

where next(signal_arg) finds signal standing next after signal_arg
in its history.

Fuzzy Belief-Based Software Supervision

Matching

The notation of the presented algorithms is rather awkward and im-
plementation-like. It had to be chosen due to the nature of the algo-
rithms and should be transparent enough to express fine details of
these algorithms.

3.4.9 Matching of Histories With Multiple Channels

What should be changed in the algorithm developed in section
3.4.8 if we were to match histories that have signals that travelled
through different channels? Not much, luckily. Before attempting
to match two signals we should check if they have same channels.
If so, we will proceed as before. if not, nothing should be done,
and matching of the next pair of signals should be attempted. The
old find_channel_match algorithm. actually, will work just fine
with multiple channel histories, as attempts to match two signals
from different channels will fail according to the algorithm sug-
gested in section 3.4.5. Only purging algorithm has to be changed,
as only signals with the same channel as the matched one should
be purged from the history, and presence of other-channel signals
will not conflict with the successful match.

Overall. matching algorithm with multiple channel histories will be
equivalent to simultaneous execution of several same-channel
matching algorithms.

We will not rewrite all the matching algorithms here. The only
change that will be necessary is to replace the involved same-chan-
nel algorithms by their multi-channel analogs.

Here is how the new algorithms look like (the longest
find_next_match has been omitted, as the old find_channel_match
is trivially derived from find_channel_match with minimal changes
that become obvious from the examples below):

Fuzzy Belief-Based Software Supervision 63

Fuzzy Belief-Based Software Supervision

1: algorithm march_historv(historv_1, history_2):
2: check_performance_timeouts(historv_/{);
3 check_performance_timeoutsthistorv_2):
4: match_not_found = false:
3: while (not (match_not_found)) [
6: march_not_found = find _next_match{historv_I. history_2);
7: /
8: return;
9: end match_history
1: algorithm purge_historv(match. history):
2 signal = head(historv);
3: while(not (signal = match)) |
4 if (channel(maich) = channel(signal))
5 then |
6: process_mismarch(signal);
7: remove(signal, history);
8- /
9: signal = next(signal);
10: /
11: process_match(maich);
12: remove(match, history);
[3: return:
14: end purge_history

3.4.10 Matching Behaviors of Multiple Belief Sets

Matching will work in cycles repeating after a match is detected
and sequences are purged, until there is no match possible between
the signals remaining in both sequences.

Figure 21 illustrates a complete matching sweep with two sequenc-
es, that detects matches and mismatches.

Fuzzy Belief-Based Sofrware Supervision

Matching

Let us address the problem of matching of expected output behav-
tor then there are multiple belief sets. In section 3.4.2 we stated
that observed behavior will be a unique entity. This poses a poten-
tial problem. since outcome of matching of two behaviors will be
unique for every belief set. Replication of the observed behavior is
a sufficient and simple solution for this problem. Then every belief
set will be able to keep and maintain its own version of remaining
output history and matching may be unique. When new output sig-
nals are observed we simply will append these to the end of the lo-
cal copy of observed output history list in every surviving belief
set.

I algorithm append_observed _ouputinew_observed_outputs,
all_belief_sets):

)

for every belief_set from all_belief_sets) (

3: append(new_observed_outputs,
local_observed_historv(belief_set))

4:]

5 new_observed _outputs = NIL;

6: return;

7: end append_observed_ouput

where append(...) takes two lists as arguments and appends first ar-
gument to the end of the second argument, and
local_observed_history(...) is a selector of local copy of observed
output history associated with the given belief set. We will refer to
this algorithm in the combined supervisor matching algorithm.

Figure 23 illustrates matching for several consistent belief sets. One
CBS is expanded and localized matching is illustrated with histo-
ries sorted by the channel of the signal. Observed output history
has been duplicated in every belief set.

Fuzzy Belief-Based Software Supervision 65

Fuzzy Belief-Based Software Supervision

Environment (User)
‘\\\\\“\\\

Input § T,
arpet sys
ogut N \ Qugy

/ ’ SDLModel
‘ Supervisor - =7 =c
P A2 Sy
Consistent
Bchef Sets 1. N Observed:

Observed
Inputs

ACnmummns« MHAW—M~ -— \
/ 3N /Chand Y N\

Svsicm Sumple_Syuem
%zﬁd_—_\ pected 1 Observed | N
5 +Bs%= “"—— sn-' Ou(puzs s Output.s] N\

Figure 23: Matching Within a Belief-Based Supervisor

66

Fuzzy Belief-Based Software Supervision

Competition Algorithm

3.4.11 Combined Matching Algorithm for Fuzzy
Supervisor

We may combine all the pieces together and construct an algorithm
that will suit our needs for a fuzzy belief-based supervisor, that
may have multiple beliefs with histories consisting of signals from
multiple channels:

l: algorithm perform_marching (new_observed_outputs, all _belief_sets):

2 append_observed_ouput(new_observed_outputs. all_belief_sets);

3 for tevery belief_ser from all_belief sets) [

4 match_historv(local _expected _output(belief_set),
local_observed_outputtbelief_set));

e

/

6: end perform_matching

This concludes the development of matching algorithm.

3.5 Competition Algorithm

Mismatches. in-transit and performance time-outs have lost their
purpose for immediate belief set termination in fuzzy supervision.
This leaves us with a problem: how to discard belief sets that have
failed to explain the observed behavior of the target system.

As defined, feasibility factor attributed to a given belief set ex-
presses how close were the output expectations of this belief to the
observed output of the target system, and the closer these were in
the past, the higher the feasibility should be.

Generation of new beliefs is a way of operation of a belief-based
supervisor. If we had unlimited computing resources we could al-
low a fuzzy supervisor to produce beliefs and not worry about their
numbers, as we still would be able to select these that still explain
the observed behavior the best. This is not the case, though, and we

Fuzzy Belief-Based Software Supervision 67

Fuzzy Belief-Based Software Supervision

have to set rules of restriction of population of belief sets to make
supervision practical.

[n order to limit the number of belief sets existing in a supervisor,
we can either restrict generation of new belief sets or will have to
remove some of the existing ones. The first option seems doubtful,
as belief generation is a key mechanism to provide exhaustive cov-
erage of alternative behaviors that are permitted by the non-deter-
ministic specification. Thus we will develop the second option.

3.5.1 Cutoff Threshold Algorithm

Supervisor’s goal is to explain the behavior of the target system. If
we were to choose candidates for termination among the belief sets,
it will be logical to select the ones that do not explain the state of
the target system very well. This in turn will be expressed in the
lower values of their feasibility sets.

This provides us with a simple but efficient way of separating
“bad” beliefs from the “‘good” ones: we will introduce a threshold
algorithm that will weed out all belief sets that have feasibility low-
er than a certain threshold value.

1: algorithm perform_cutoff (all_belief_sets, cutoff_threshold):
2 for (every belief_set from all_consistent_belief_sets) {
3. if (<tfeasibilirvbelief_set), cutoff _threshold))
4 then

remove(belief_set, all_belief sets)
discard(beleif_set);

/
end perform_cutoff

%NS
~

68

Fuzzy Belief-Based Software Supervision

Competition Algorithm

Figure 16 illustrates the competition algorithm. Belief sets are sort-
ed by their feasibility factor value and only sets with feasibility fac-
tor higher than X, will survive.

Survnving L " \
v A Clusters For XEur I_H
'(/, Different !
Thresholds : ;oeud
X e —
M QetewllTRTRRRRRRRRBR®T X‘!w
’Illllllljl’llli:'oél X;M
Xy | | l
) CN S
X, _]. §
i, <i) »(x sy) ;
o= 4y - I':)
Legend:
i belief set index in the sorted list
J belief set index in supervisor
X, sorted feasibility
X, feasibility cluster
Xxm possible cutoff thresholds

Figure 24: Cutoff Thresholds

3.5.2 On Necessity of a Variable Cutoff Threshold

It is easy to notice that value of cutoff threshold influences how
many belief sets are going to survive after a cutoff procedure.

Also, it is obvious that we cannot make thresholds fixed: the feasi-
bility change algorithm that we selected may bring feasibilities of

Fuzzy Belief-Based Software Supervision 69

Fuzzy Belief-Based Software Supervision

all existing belief sets below any preset level should an occurrence
of multiple failures in a short period of time happen. Should the
threshold exceed the maximum feasibility among the surviving be-
lief sets, all sets will be discarded after threshold cutoff procedure,
and supervision will stop.

If we have to vary cutoff threshold. what should we consider when
setting it?

3.5.3 Calculation of Cutoff Threshold Value

In this section we will discuss principles and constraints that we
should consider when selecting values for cutoff threshold.

First of all, in order to avoid destruction of all belief sets, we
should set the threshold lower than the maximum feasibility factor
existing in the supervisor. This constraint does not ensure anything
than there will be at least one surviving belief set after the cutoff
threshold algorithm is applied.

0<X,, < Xma

X

When a failure does occur, the observed behavior of a target sys-
tem may be better explained by some of the “incorrect” hypotheses
that are present in the supervisor, at least at first. Thus, the feasibil-
ity of belief sets expressing these incorrect hypotheses in the first
moments may be higher than that of the “correct” beliefs. (“Cor-
rect” and “incorrect” here, as everywhere else in this work relate to
intended behavior as opposed to performed behavior. This a belief
may be incorrect, when it does not describe behavior that the target
system intended to provide, but did not do so due to a malfunction.
These qualities are assigned hypothetically, as the target system is a
black box for the supervisor and it is impossible to say what did it
intend to do when observing it from the outside. “Correctness” of a

70

Fuzzy Belief-Based Software Supervision

Competition Algorithm

hypothesis may be confirmed later when the target system recovers
from the failure and continues to operate as expected by the *“‘cor-
rect” belief.)

This observation hints to us that the cutoff threshold should be set
in such a way, that an average failure will not cause an immediate
termination of “correct” beliefs, but will allow them to grow their
damaged feasibility factors to a higher level with new successful
matches and outlive “incorrect” beliefs with the continuing opera-
tion of the target system.

This introduces a dependency between the variable cutoff threshold
mechanism, feasibility change algorithm. matching algorithm and
even the specifics characteristics of the target system such as fail-
ure frequency, ratio of number of mismatches to the number of
matches as a result of a typical failure, and the model uses by the
supervisor. Dependency is not a trivial one. and has probabilistic
features. as it is impossible to predict exact failure profiles of the
target system with absolute certainty. That means that there will be
a possibility that in some relatively rare situation the calculated cut-
off threshoid value will happen to be too high, and the *‘correct”
belief set will be destroyed after all. (This prompts us to provide a
mechanism that would allow supervisor to eventually recover from
destruction of a “correct” belief set should the latter occur due to
some unfortunate circumstances. We will discuss such a mecha-
nism in later sections.)

We shall not attempt to a discover a complete cutoff threshold de-
pendency in this thesis, as it would be a very complex scientific en-
deavour on its own. Instead we will impose some constraints on the
involved variable parameters and try to come up with a simplified
algorithm that will produce an acceptable value for the variable
cutoff threshold.

Let us say that predominant failure type produces N mismatches as
a result of one match. If the original feasibility in the belief was

Fuzzy Belief-Based Software Supervision 71

Fuzzy Belief-Based Software Supervision

Xoid then according to our feasibility change algorithm the result-
ing feasibility immediately after discovery of a mismatch will be a
superposition of F. and N-recursive superposition of F decr
that are the functions we defined in section 3.3.4 for changes of

feasibility factors

= F

decr

oo (Fper L)

xnew mrr(Fchr(

N

Simplification after substitutions show that this comes down to the
following formula:

xnzw = (chr ((Fdﬂ‘r(and)))) = (chr ((x:rldb)))

xnew = Frncr(xntdb‘v) = xllldb‘v."a“—x"lde) = xnub.\'(1 —d) +a

This provides us with the following constraint:
0<X‘_u,<x",db"’(1—a) +da

This constraint will ensure that a belief with feasibility xold will

survive N mismatches followed by a match.

[n general case, when we fix a scenario in which some belief with
teasibility X,1d4 has to survive, the cutoff threshold should be low-
er than the feasibility resuiting from this scenario:

0 < X““ < Fsceaarto (xnld)

where Fscenario(y) is a superposition of the predicted feasibility
changes as a result of matching in the fixed scenario.

And if there are several such scenarios, we have to take an absolute
minimum of their predicted outcomes as the upper boundary for the
cutoff threshold.

72

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Reports

3.6 Fuzzy Supervisor Reports

An outcome of classic belief-based supervision was a failure report
produced when all beliefs died as a result of a failure of the target
system.

Fuzzy supervisor can retain much more information about the tar-
get system than the binary supervisor could. as fuzzy supervisor
maintains a population of beliefs which carry information about the
past behavior of target system.

In this section we will present various types of information that can
be obtained during operation of a fuzzy supervisor. and possible in-
terpretations of this information for the reporting purposes.

3.6.1 Health of the Target System

Feasibility of any belief reflects the “health” of the target system
from the point of view of the given belief. The belief with the
highest feasibility will represent the best explanation of the target
system behavior that supervisor managed to produce.

So, a maximum of the feasibilities of the whole population of be-
lief sets will reflect the estimation of the overall health of the target
system from the point of view of the supervisor at the given instant
of time.

1: algorithm report_system_health(all_belief_sets):

2 current_health = 0;

3 for (every belief_set in all_belief_sets) |

4 if (< (current_health, feasibility(belief set))
5: then current_health = feasibilirv(belief_set);
6: /

7: report(current_health);

8 return;

9: end report_system_health

Fuzzy Belief-Based Software Supervision 73

Fuzzy Belief-Based Software Supervision

where report(arg) is a function that uses passed argument arg to
produce a report of a fuzzy supervisor.

The algorithm above produces a value within the allowed range of
feasibility factor, that may be used as output of the supervisor. As
the feasibility factor itself, higher result will mean better operation
of the target system from the point of view of a fuzzy supervisor.

3.6.2 Immediate Failure Report

As we discussed in section 3.3.3 a deviation of behavior of the tar-
get system from the behavior expected by a given belief set imme-
diately manifests itseif in reduction of associated feasibility factor.

When a failure occurs in a target system, no belief set can explain
behavior of the target system as every existing belief set expects
behavior different from the behavior produced by the target system,
that will be equivalent to a simultaneous reduction of feasibilities
of all existing belief sets.

We may use this simple observation to produce another type of a
failure report every time when the maximum feasibility drops:

I: algorithm report_immediate_failure(all_belief_sets, curr_system_health):
2 if (< (system_health(all_belief sets).curr_system_health))

3 then

4. report(‘failure’);

5: /

6 curr_system_health = system_health(all_belief_sets).

7 return;

8: end report_immediate_failure

The algorithm produces a failure report when the new value of sys-
tem health is less than the old value curr_system_health, and up-
dates curr_system_health with the new health of the system.

74

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Reports

3.6.3 History Tree and Underlying Fault Localization

The maximum feasibility provides an answer for “what is the
health of the system™. It may be meaningful to also answer the
question like “why the system is not healthy™ or “why is the health
of the system what it is”.

Feasibility of a belief set is originally inherited from the parent of
the belief set and then is modified depending on the outcome of
matching of expected output of the belief set and the observed out-
put. If we trace all the outcomes of matching events in a genealog-
ical tree of a given belief down to the original belief set of the
fuzzy supervisor, we will obtain a compiete log of matching events
that resulted in the current feasibility of the given belief set.

[f we consider health of the system as defined in section 3.6.1, for
the best belief set (the set with the highest feasibility) the log we
just constructed will serve as an explanation of why the health has
the value it has. The log would be able to explain what differences
and similarities were detected between the expected output of the
best belief set and the observed output of the target system.

In any case, such a log provides information on what functionality
of the target system has deviated from the specification. And if a
mapping of functional specification (such as an SDL model) to the
implementation of the target system exists. matching history can be
used for fault localization.

As an example, consider an SDL specification of a small PBX,
with multiple phone handlers. Multiple signal mismatches on chan-
nels associated with the same phone handler would indicate a prob-
lems with service on a particular phone line due to software or
hardware problems. Type of mismatch (e.g. fast busy instead of
slow busy, or missing power ringing) will point to the underlying
fault (missing ringing, for example, will indicate a burnout in a ring

Fuzzy Belief-Based Software Supervision 75

Fuzzy Belief-Based Software Supervision

generator. Analysis of mismatch information captured in the log
thus will be helpful in failure troubleshooting.

Belief Sets Generation Match History
Tree Tree

@ @ ' h
’l1 -
h)

e 1"_]
(]
@D @ e

R parent-child relation gchannel

n
.) .
belief h; gevent
Oevent code

- h - history element Otime stamp
hy i - belief index Qbranching
n - fork index Oprevious
J - fork parent
k - fork child

Figure 25: Belief Sets Generation and Global Matching
History
Since the matching history of a parent up to the moment of birth of
its child belief set is inherited by the child belief set along with the
feasibility, there is relation between the genealogical tree of belief
sets and tree of inheritance of matching history. Figure 25 illus-

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Reports

trates mapping between the two. It also shows the information that
can be placed in every element of the matching history.

History tree will change along with the changes of population of
belief sets. Death of a belief set will wipe out the leaf branch corre-
sponding to the dead belief set. When a belief set is killed due to
combination of two belief sets into one, the belief with the highest
feasibility will survive, so will the branch of the history tree associ-
ated with it. Information is partially lost, but we kept the belief
with “better history™ so the better of the two histories will be kept.

A general rule for maintaining integrity of the matching history tree
is that elements constituting history of a living belief should stay,
while elements that are not used by any living belief should be re-
moved.

Figure 26 illustrates algorithms for reduction and expansion of a
history tree while maintaining its integrity. Every element of the
tree is assigned so called branching factor, that indicates how many
immediate descendant e¢lements the element has. If the branching
factor of an element is greater than one, it will not be destroyed
when one of its leaves dies. Branching factor is updated to reflect
the most current topology of the tree when new leaves are added or
removed.

History tree may present a heavy requirement for memory or stor-
age consumption for a supervisor, as the tree would grow deeper as
new outputs are detected but the depth of the history tree may be
limited in order to reduce the amount of memory required to store
It.

Fuzzy Belief-Based Software Supervision 77

Fuzzy Belief-Based Software Supervision

(candidates f’Branching\
k{or removal / (\changed _

reduction N [%I

history element

branching factor

pointer to
previous element

Figure 26: History Tree Manipulation
Algorithm add_new_element is used to add a new leaf to the tree:

! algorithm add_new_element(parent_element, child_element)
2 increment_branching(parent_element);
3: set_ancestor{child_element, pareni_element);
4 set_branching(child_element, 0);
return;

5
6: end add_new_element

Algorithm remove_dead_element allows to start from the leaf of a
dying branch and in one recursive sweep with a linear complexity
remove all elements in the branch down to the element that is still
being used by some living leaf, where the algorithm stops. Note:
we will never have a situation where all beliefs in the system
would die, therefore at least one surviving branch will be present in
the history tree always. Thus we may ignore checking for the exist-
ence of the existence of an ancestor of any element, as we will
never try to delete the root element of the tree.

78

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Reports

algorithm remove_dead_element(dead_element):

if (<tbranching_factoridead_element), 2)

then {

remove_dead_element{ancestoridead _element));

discard (dead_element),

!

2

3

4

3:

6. /
7 else {

8 decrement_branching(dead_element);
9 /

10: return;

11: end remove_dead_element

Algorithm decrement_branching(element) reduces branching factor
of element by one and algorithm increment_branching(element) in-
creases branching factor of element by one.

Algorithms set_ancestor(element, ancestor) and set_branching(ele-
ment, branching_factor), as names suggest, set the ancestor and the
branching factor of element correspondingly.

Algorithms branching_factor({element) and ancestor(element) return
branching factor and ancestor of the element. As before, algorithm
discard(arg) destroys arg.

And finally, algorithm report_matching_history(element) reports
complete matching history of element:

1: algorithm report_matching_history(element):

2 repory(maich_data(element));

3 if (not(= (ancestor(element), NIL)))

4 then {

3: report_maiching_history(ancestor{element));
6 /

7 return;

8: end report_matching_history

Fuzzy Belief-Based Software Supervision 79

Fuzzy Belicf-Based Software Supervision

Localization of the failure using mapping of functional specifica-
tion to the target system implementation will not be covered in this
work.

3.6.4 Average Feasibility

Instant reading of health of the system may not always reveal a
true picture of health of the target system, especially when the
range and rate of change of the maximum feasibility in the particu-
lar application of a fuzzy belief-based supervisor is significant.

In such cases it may be more informative to calculate an average of
the maximum feasibility readings over a recent period of time of
pre-determined length and have it reported by the supervisor. The
meaning of this report will be similar to the instant estimation of
system health, only it will be more inert to changes of the latter.
Algorithm for this type of report is trivial and will be omitted here.

I’
XD tracking . : tracking
period T period T
Xu Ve (II ===

Xuvz ({0)"':

. . .
A M -l
0 >

[Time t

Figure 27: Average Health During a Period of Time T at times
tpandt,;

80

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Reports

3.6.5 Feasibility Distribution

[f we had an ideal (or better - Utopian) all-seeing supervisor super-
vising a perfectly correct target system (no failures, that is), it
would have exactly one belief set that will be always able to ex-
plain the state of the target system. This is not possible, though
since our target system is not perfect and supervisor cannot see
what is happening inside the target system. Instead of one we will
have multiple belief sets, the number of which. nevertheless, we
want to keep to a necessary minimum.

What does the number of belief sets indicate? It indicated the de-
gree of confusion of the belief-based supervisor over the real state
of the target system. Fuzzy belief-based supervision does not sim-
plify this problem as with its feasibility factors and threshold cutoff
mechanism it allows survival of more *“confused” beliefs than the
binary belief-based supervisor.

Belief sets with highest feasibility serve as a focus point in the
fuzzy supervisor, representing the most successful explanations of
the target system. Beside them there will be some beliefs that are
slightly more confused but survived after the previous sweep of a
liberal fuzzy cutoff threshold algorithm. If the behavior of the tar-
get system deviates from the specification, the “‘correct few” sink to
the level of confused majority and the focal point of beliefs with
nearly maximal feasibility turns into a larger plateau. This leads to
survival of a larger number of beliefs in the cutoff threshold algo-
rithm. So, as degree of confusion of supervisor increases the preci-
sion of explanation of the target system’s behavior decreases.

We will use Figure 16 to illustrate the phenomenon. It represents a
histogram of feasibility factor of a belief set as a function of index
of the belief set in the list of belief sets sorted by their feasibility.
Nporm denotes the number of beliefs in the surviving group in a
case when the target system operates properly. N2 is the number

of beliefs in a case when the target system just suffered a failure.

Fuzzy Belief-Based Software Supervision 81

Fuzzy Belief-Based Software Supervision

The number of sets in the highest-feasibility (leading) group can be
reported by the supervisor: when statistical data is collected for the
number of beliefs in the leading group for a supervision of a target
system without failures, it may be used to judge the degree of pre-
cision of supervision of the same target system when it starts to
suffer failures. The more the number exceeds the ““failure-free sta-
tistics” the lesser is the precision.

- norm
x.r' 4 ‘Vleud

Xnorm
thresh

aul
X{f‘:;‘zih
oy Y ey) e
l|(ll<'3)—>(£/,l'x1.,J i
Legend: belief set index in the sorted list

!
J belief set index in supervisor
X sorted feasibility
- normal operation of the target system
— faulty operation of the target system
Xiiresh cutoff threshold
N number of belief sets in the leading
lead group

Figure 28: Reporting Feasibility Distribution

This type of reporting would be an interesting topic of research on
its own. It is presented here only as a suggestion. Feasibility distri-
butions depend on various parameters of a fuzzy supervisor and de-
pendencies are not obvious at this moment.

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Operation

3.7 Fuzzy Supervisor Operation

Operation of a fuzzy belief-based supervisor can be described a
loop that starts at the same time when the target system starts its
operation. Within the loop, signal abstraction derives signals from
the environment and sends new input and output signals to input
and output signal queues of their destination processes within the
supervisor model. Then all ready processes in belief sets are exe-
cuted iteratively, signals in input signal queues are consumed and
trigger transitions within the processes of belief sets, states of pro-
cesses within belief sets are changed. signals that are produced in
the course of execution are delivered to destinations. new belief
sets are generated, and execution repeats until no ready processes
are left. Until now, operation is identical to that of a binary belief-
based supervisor described in Chapter II. Then fuzzy matching is
performed, followed by a fuzzy threshold cutoff and garbage col-
lection (combination of belief sets).

Below is a simplified top-level algorithm for fuzzy software super-
vision that incorporates other algorithm we have developed in this
chapter:

1: algorithm fuzzy_supervision():
2 while(true)f
3 scan_observed_inpuistobserved_inputs):
4 send_observed_inputs(observed_inputs, all_belief _sets):
b} scan_cbserved_outputs{observed_outputs);
6: send_observed_outputs(observed_ouiputs.all_belief_sets);
7 execute_processes(all_belief_sets);
8: perform_matching (observed_outputs, all_belief sets);
9 perform_cutoff (ali_belief_sets, calculate_threshold());
10: produce_report();
11: Ji
12: return;

13: end fuzzy_supervision

Fuzzy Belief-Based Software Supervision 83

Fuzzy Belief-Based Software Supervision

All the algorithms used in fuzzy_supervision either have been de-
veloped in this chapter or are identical to the algorithms used in bi-
nary belief-based software supervisor.

Algorithm scan_observed_inputs (observed_inputs) obtains all ob-
served inputs that have been abstracted since the last iteration, and
stores the list in observed_inputs. Algorithm send_observed_inputs
(observed_inputs, all_belief_sets) sends signals in observed_inputs
to the common ports of belief sets contained in all_belief_sets. This
will trigger belief generation, as discussed in Chapter II.

Similarly, scan_observed_outpurs (observed_outputs) obtains all
observed outputs that have been abstracted since the last iteration.
and stores the list in observed_outputs. And send_observed_outputs
(observed_outputs, all_belief_sets) sends signals contained in
observed_outputs to the observed output queues of belief sets con-
tained in all_belief sets.

Algorithm execute_processes (all_belief sets} processes all signals
in the input queues of all processes in all_belief sets until none
left.

Algorithms perform_matching (observed_owtputs, all_belief_sets)
and perform_cutoff (all_belief_sets, threshold) were developed and
discussed earlier in this chapter in section 3.4 and section 3.5.

In perform_matching expected output signals are matched with ob-
served output signals in every belief set, and feasibility factor is
modified according to the result of the match.

Algorithm perform_cutoff{all_belief _sets, threshold_value) destroys.
all belief sets with feasibility less than threshold value calculated in
the algorithm calculate_threshold() as discussed in section 3.5
“Competition Algorithm”™ on page 67.

Algorithm produce_report() collects statistics and decides whether
to produce a report for this iteration, that may be one or several of

84

Fuzzy Belief-Based Software Supervision

Fuzzy Supervisor Operation

the types discussed in section 3.6 “Fuzzy Supervisor Reports™ on
page 73.

This concludes this chapter. We will evaluate the theory of fuzzy
belief-based software supervision in an experimental implementa-
tion of a fuzzy software supervisor described in the next chapter.

Fuzzy Belief-Based Software Supervision 85

Fuzzy Belief-Based Software Supervision

86

Fuzzy Belief-Based Software Supervision

Experimental Evaluation of
Fuzzy Belief Based

Supervision

This chapter presents an experimental evaluation of fuzzy belief-based
supervision approach.

The following objectives have been set for the experimental evaluation
of the fuzzy supervision approach:

e Evaluate the failure detection capability: the FBBS supervisor
should detect failures and provide information about the symptoms
of the failure.

e Evaluate capability for continuous supervision and
resynchronization with the target system: supervision should
continue past the moment of failure detection, no false failures
should be reported after the continued proper operation of the target
system, and new failures should be properly detected.

* Evaluate fuzzy supervisor reporting capabilities: system health, fault
localization, failure reports, number of CBSes as a measure of
missynchronization of the supervisor and the target system.

* Observe the increase in computational complexity of supervision as
a function of different types of failures.

Fuzzy Belief-Based Software Supervision 87

Experimental Evaluation of Fuzzy Belief Based Supervision

A small PBX with 60 lines capacity has been selected as a target sys-
tem for fuzzy software supervision.

Collected data is to be analyzed and interpreted. and conclusions are
to be drawn from the analysis on the usefulness of the approach. pos-
sible drawbacks and benefits.

4.1 Evaluation Environment

Evaluation environment developed in the Bell Canada Software Reli-
ability Laboratory provided a typical target system for software super-
vision - the control program of a small Public Branch Exchange
(PBX), and associated utilities.

The environment was implemented as a collection of communicating
processes executing in Sun-OS operating system and resided on a Sun
SPARC station. Figure 29 shows processes of the evaluation environ-
ment. Duties of these processes are described below.

4.1.1 PBX Hardware Emulator

An emulation of a hardware of a PBX capable of supporting basic
telephone service to up to 60 lines was developed as a support soft-
ware for a course in E&CE Department of University of Waterloo
[10], [11]. A shared memory served as an interface between the con-
trol program and PBX hardware, accepting stimuli and reflecting
changes of state of the simulated hardware. PBX hardware supported
three shelves with 30 slots each, with two shelves equipped with tele-
phone line interfaces and one shelf equipped with tone generators,
touch tone receivers, maintenance equipment and trunk access slots.
Recently the hardware emulation was made capable of supporting up
to 1000 telephone lines, but the older smaller version was used in ex-
perimental evaluation.

Fuzzy Belief-Based Software Supervision

Evaluation Environment

E tr:ﬁtxc log_J™ introduction

of failures

record
replay

y

Fuzzy I
Supervisor

inputs
PBX Conrrol
Program

scanning

PBX Hardware {»{ar;if\.vare
Emulator ﬁte ace
emory

Keyboard Load
Input Driver Generator

Figure 29: Interactions of Processes In Experimental
Environment

4.1.2 PBX Control Software

The PBX control program has been developed to provide control for
the small telephone exchange. It serves as a target system for software
supervision in the experimental environment.

The program has been developed according to an SDL specification
(see Appendix A).

The control software detects input telephony events such as line status
changes and recognized digits from touch tone receivers from the
shared interface memory of the hardware. It controls PBX connec-

Fuzzy Belief-Based Software Supervision 89

Experimental Evaluation of Fuzzy Belief Based Supervision

tions and allocation of hardware resources by direct modification of
appropriate locations within the hardware interface memory.

The control software used in the evaluation has been developed in
C++, and stands at an equivalent of over 4000 lines of un-commented
code. Particular details of the implementation of the control software
can be found in [10], [11].

4.1.3 Telephony Load Generator

The load generator is a utility process used to produce telephone traf-
fic with various distributions of events. It allows to vary number of
calls per telephone per hour, scenarios of telephone calls and distribu-
tion of telephone events in time.

The load generator communicates telephone events to the PBX hard-
ware emulator.

4.1.4 Keyboard Input Driver

An alternative way of presenting telephone events to the PBX was
provided by the command line interface of the keyboard input driver
process. This allowed to enter telephony inputs manually. Keyboard
input driver supported simultaneous operations on several lines (such
as simultaneous off-hook of a several lines or the whole shelf).

As in the load generator, commands passed to the keyboard process
resulted indirectly in modifications of the hardware interface memory.
4.1.5 Abstracter Process

The abstracter process interprets changes in the shared memory inter-
face as telephony events, both inputs and outputs, and delivers events
to the supervisor.

Fuzzy Belief-Based Software Supervision

Evaluation Environment

The abstracter process does not handle the non-determinisms of signal
abstraction we have discussed in first chapters. It simply detects input
and output events based on duration of changes in signal carriers in ac-
cordance with the specification of the signalling layer.

4.1.6 Display Driver

The display driver process is used solely by a human observer and rep-
resents human-friendly variant of abstracter. It monitors activities of
the target system by scanning hardware interface memory and extracts
information on line status, ringing, voice path connections and touch
tone receivers. Display is not communicating with any of other pro-
cesses.

4.1.7 ruzzy Supervisor

The fuzzy belief-based supervisor was implemented as a single-
threaded process that received abstracted input and output events from
the abstracter process and produced reports on the state of the target
system. The base portion of the implementation have been developed
in a collective effort ([2],[3]) with other graduate students of Bell
Canada Software Reliability Laboratory. The author has later modi-
fied and extended the base with algorithms of the fuzzy supervision.
The fuzzy supervisor consists of an equivalent of over 15000 lines of
un-commented lines of source code written in C++, and is constructed
of around 70 object classes.

The top-level object model of the implementation is shown in
Figure 30. The roles of the classes shown are as follows.

Fuzzy Belief-Based Software Supervision 91

Experimental Evaluation of Fuzzy Belief Based Supervision

starter

|

scheduler

G — |

bsdlm_system comport —-l

input_port

1 —

bsdl_process

central_timer _list
super_stat

Legend: Object Class
_& Relation “One-to-N"

Figure 30: High-Level OMT Diagram of the Fuzzy Supervisor

The starter class has a single instance in the supervisor. The object is
responsible for other objects creation and initialization, connection to
the hardware interface emulator via the shared memory. collaboration
with the Scheduler object that includes time counter management and
handling of semaphore operations used for synchronization of the Su-
pervisor operation with the target software system within the experi-
mental environment.

The Scheduler class is also represented by a single instance. The re-
sponsibilities of the object include: reception of input and output
events from the Abstractor, tracking the Central Timers List for timers

92

Fuzzy Belief-Based Software Supervision

Evaluation Environment

expiration, managing the belief execution (registering, de-registering
of beliefs for the execution, and performing the execution), invoking
the matching method on the Comparator object to compare expected
outputs of belief sets with the observed outputs, and invoking the gar-
bage collection method on the BSDLM system to reduce the number
of beliefs by removing redundant beliefs and belief sets.

The BSDLM System instance does the following: it maintains signal
delivery routes in a routing table, keeps beliefs database in a set of
consistent belief sets, performs dispatching of signals between pro-
cesses and implements garbage collection - clean up of redundant be-
lief sets.

The Comparator object is also a unique instance of the class. The main
purpose of the Comparator is to manage the observed and expected
behavior logging and match the logged observed behavior with the
expected behavior of the belief sets. See section 4.1.7 for some detaiis
on behavior data management. The matching algorithms described in
section 3.4 have been implemented in the check_matches() method of
Comparator class.

The Comport’s (that stands for common port) main responsibility is
to create all possible permutations of the signals passing to a block
when the signal path contains a delaying channel. Multiple instances
of the Comport class can exist in the system.

The Input Port manages queueing of signals and timers for a BSDL
process. Signals are being queued as they arrive and are consumed in
the order they have arrived. Timers can be set and reset; when they ex-
pire they are treated as a signal. The Central Timer List is used to de-
tect the expiration of signals

The BSDL Process keeps the state machine of a belief. It uses the
BSDL specification and contains values of all variables and an active
state for the belief. The BSDL Process is responsible for determining
the next state of the belief state machine upon arrival of a signal. The

Fuzzy Belief-Based Software Supervision 93

Experimenta! Evaluation of Fuzzy Belief Based Supervision

BSDL Process also produces signals during a state transition when a
send signal construct is encountered.

The Central Timer List is a database of active timers. When a BSDL
timer is being set, it is registered in the central timer list. Timers are
kept sorted by the expiration time. With every increment of time the
central timer list is checked for the expired timers. If any timers have
expired, a notification will be sent to the input ports of timers origina-
tion.

The principal differences with the basic binary belief-based supervi-
sor described in [2] were in the new competitive belief set mainte-
nance and destruction mechanism, and added classes and methods for
feasibility management, history tracking, statistics collection, and
fuzzy matching algorithm.The operation cycle of the supervisor was
modified to invoke competition algorithm at the end of each cycle.

Figure 31 presents a feasibility-related data structure deployed within
the fuzzy supervisor. In the diagram, the CBS_stat stands for a “CBS
statistics”; there is exactly one instance of CBS_stat for each consis-
tent belief set. This object manages historical data associated with the
given CBS, and contains its feasibility factor. CBS_stat objects are or-
ganized in a double-linked list sorted by the current values of feasibil-
ity factors.

EOQO_enry T___] LOO*enLryﬁ_"] OO_entry D
.zr hg! b !
I |
EO_queue comparator 00O_queue
' i
CBS_stat | history_el]
: [===] Object Class
super_stat Legend: ? Jec
= Relation “One-to-N"

Figure 31: OMT Diagram of the Feasibility-Related Data
Structures of a Fuzzy Supervisor

Fuzzy Belief-Based Software Supervision

Evaluation Methodology

The EO_queue manages storage of expected output (points to the first
and the last elements of a linked list of EO_entry objects) and the local
copy of the observed output (linked list of LOO_entry). OO_queue
stores output observed since the last matching, according to the new
matching algorithm.

The Super_stat handles overall supervisor statistic data, such as the
maximum feasibility, the average feasibility, etc., and points to the
CBS_stat with the highest feasibility. Figure 32 illustrates data struc-
tures for a supervisor with four CBSes existing.

SUPER_stat Feas_2> Feas_3 > Feas_I > Feas_4

CBS_stats

Figure 32: An Example: EOQs, CBSs, CBS Statistics
Supervisor Statistics Objects in a Fuzzy Supervisor With Four
Coexisting Belief Sets

Lastly, the history_el is an element of the captured past matching his-
tory, organized in a single-linked history tree discussed in the section
3.6.3. The latest element of the matched history for every given belief
set is pointed to from its CBS_stat.

4.2 Evaluation Methodology

The following was the procedure for obtaining the empirical results:

= cvent trace acquisition: parameters of the load generator have been
varied in order to produce the desired event distribution; the target
system has been run with the hardware emulator and the load
generator and all the input and output events have been logged;

= failure insertion: the desired number of failures of the chosen type
have been seeded randomly within the original event trace;

= supervisor run: the software supervisor has been run with the event
trace; supervisor reports have been collected, execution
charactenstics have been measured.

Fuzzy Belief-Based Software Supervision 95

Experimental Evaluation of Fuzzy Belief Based Supervision

For each failure set and telephony load configuration combination
tried during the evaluation. two to ten experiments have been conduct-
ed.

4.2.1 Variable Parameters

The following parameters were chosen to be variable:

e Telephony Traffic:
= event distribution in time
= number of originations per line per hour

= Failure types:
= failure scenario types
* number of failures injected

4.2.1.1 Telephony Traffic Simulation

Traffic has been simulated with the help of the software described in
[1] and significantly enhanced in [21].

The software works with the hardware emulator and supports several
modes of traffic simulation, allowing for varying these characteristics:

= number of origination attempts per hour

= maximum number of simultaneous calls in progress

Two traffic generation modes were used: Poisson and limited. Limit-
ed traffic limits the number of events that can take place in any given
period of time. In Poisson traffic event occurrences have Poisson dis-
tribution, thus providing a more random, life-like traffic. More infor-
mation on traffic simulation can be found in [3].

Different traffic levels were used to compare the degradation of the
Fuzzy Supervisor performance (increase of computational load re-
quired to conduct supervision) to the degradation of performance of
the standard supervisor with load increase. The increase of computa-

96

Fuzzy Belief-Based Software Supervision

Evaluation Methodology

tion load causes the degradation of performnance of the supervisor
when computational capacity os exhausted.

The telephone traffic intensity used in tests have been set from four to
six originations per line per hour that is comparable or higher than in-
dustry standards specify for PBX exchanges.

4.2.1.2 Failure Seeding

The following mechanism of failure seeding has been used for the
evaluation purposes. Fuzzy supervisor has been augmented with event
recording/replaying capabilities. that allowed to capture into a log file
the input and output signals coming from the abstractor. The observed
events have been time-stamped and retained. The captured log could
be replayed by the supervisor in stand-alone mode with the effect of
supervising a real target system at the time of event log capture. The
captured event log file could be modified to simulate various failures
of the target system.

Several representative types of failures has been simulated (derived
from industrial telecom acceptance tests):

* observation failures (phantom outputs detected by abstracter)

« control program failure scenarios:
* unprovoked ringing detected
* no dial tone when receiver goes off-hook
* idle tone not provided after the first digit is dialed
* audible ringing tone not provided. termination successful
* no power ringing on terminator line, termination incomplete
* no voice path on answer

Note, that unprovoked physical ringing manifests itself in the same
way as the observation failures but in real life is caused by a fault in
the control program. The failure rates that are found acceptable in the
telecommunication industry are less than 1 per 1000 calls. The failure
rates adopted in the supervisor evaluation runs have been set 10 to 100

Fuzzy Belief-Based Software Supervision 97

Experimental Evaluation of Fuzzy Belief Based Supervision

times higher to fully evaluate the capacity of the supervisor. A regular
test run consisted of a 1/2 to 1 hour telephone traffic run with several
failures of the same type seeded randomly in the replay event log.
Failure mixes were not used. Since the experience has shown that the
resynchronization has been achieved in most experiments, the previ-
ous history of supervision was of no relevance.

4.2.2 Observed and Derived Characteristics

The following data was collected in the conducted experiments:
* Number of belief sets.

e Maximum feasibility within the population of belief sets.

e Failure reports.

* Occurrence of computation overload. a condition when supervisor
was unable to evaluate the observed behaviour of the target system
in the real time mode.

» Resynchronization with the target system following a failure
occurrence: new failures must be reported correctly and no false
failures should be detected.

» Failure explanation via history traceback:
* inputs
e matches
e mismatches
* in-transit signal expirations.

4.3 Evaluation Results

Various types of supervisor reports have been collected and effective-
ness of failure detection by the fuzzy supervisor has been investigated.

The collected reports and the results of the evaluation are discussed
below.

98

Fuzzy Belief-Based Software Supervision

Evaluation Results

4.3.1 Results Summary

The following table summarizes results of experiments performed
with the Fuzzy Supervisor. It includes data on failure types and fre-
quency, load intensity, and data on demonstrated resynchronization
and failure detection capabilities. and coarse computational intensity
characterization.

TABLE 2. Experimental Results for Failure Detection Capability

"‘;‘ E Random Traffic Load (/2 hour trace)
= Limited Load Poisson Load
-] 2 = = = = 2 = = -]
3| = 2l 2 2 2| 3 21 = 2
2| = 2] = = 5| = 21 = =
Zz| & 5| 2 g 7| 2 5 2 Y
al = S~ = s | = =S| £ <
I = S| 2 = S| = =] 2 =
=| E = | Z 2| E 3 = 2
| = = 2| =| - =l 2 2
5 J- s
E o] -] &
= =
Z Z
zz| 10 2 10 Yy | N 10 2 10 Y N
s
25| 20 4 20 Yy | N 20 4 20 Y N
- "
£ 50 4 50 Yy | N 50 1] so Y N
100 | 6 100 Yy | N w0 {6 | 100 Y N
200 | 6 200 Yy | N 200 | 6| 200 Y N
< =| 10 2 10 Y | N 10 2 10 Y N
TE[20 [4] 20 [Y[N] 20 |+] 20| vy [N
E®1 50 4 50 Yy [N] s0o | 4] 50 Yy | N
= 100 | 6] 100 | Y| N]|] 100 |6]100]7Y][N
200 | 6 200 Y | N| 200 | 6 | 200 Y N
s o | 6 1 Y | N 1 6 i Y N
zZ 2
=~ 2 6 2 Y [N 2 6 2 Y N
3 6 3 Y | N 3 6 3 Y N
5 6 5 Yy | N 5 6 5 Y N

Fuzzy Belief-Based Software Supervision 99

pervision

Fuzzy Belief Based Su

Experimental Evaluation of

ty

TABLE 2. Experimental Results for Failure Detection Capabil

projIaAQ) uopmindwo))
Pl Pl B P) >~ >~

- uogezjusaaussoy S x| v =] > |7 >

8

3 Py aanqe g
m M el K] . — | r —_1— -—
£l &
el & ey uopeudg) olel. lele o | e ©
=]
£
Q Papaag saangrg Jo Jaguny
jd —ler] — |~ — e —
°
8
-l ; -
” proptaa() uopmndwo;) zlz s 1512 N >
;:
= nopezjuoagdulsoy Sl > > |> > |7 >
El =

]
.m S Padaa(saanpe,
& -m —tel|en —_ e | — —_—

m ey uopeudiag

.U (Do |0 o [OO ©

PAPANG saanqieg Jo Jaquiny
—lcr]en — | e — | -

ad{, Jugdupy o), auoy, auafp,
ey snogoN | dupgon | miaoN | aiproN

Fuzzy Belief-Based Software Supervision

100

Evaluation Results

4.3.2 Supervisor Reports

Figure 33 contains a visualization of some supervisor reports collect-
ed when the target system exhibited a number of simple failures: sev-
eral expected output signals were either not produced, replaced with
other signals, or unexpected signals were produced.

Figure 33 represents the following reports:

* Event history: all input signals and successfully matched outputs
have been reported. The mismatched outputs have been reported to
explain the nature of the occurred failure: not shown in the diagram
are the path properties of the mismatched signals that were collected
also to assist in failure troubleshooting.Note: Figure 33 does not
name signals, while providing only internal signal IDs. The
mapping between the names and IDs is one-to-one, though.

* Number of belief sets: report that shows the degree of non-
determinism of operation of the target system as a function of time.
Informally this showed the degree of confusion of the supervisor
over the state of the target system. It also expressed the level of
activity in the target system. At the end of the diagram, an injected
failure caused a rapid increase of number of belief sets as a result of
temporary missynchronization.

* Maximum feasibility as the estimated health of the target system has
been captured and is shown in a graph.

* Failure occurrence reports: every time the maximum feasibility drop
has been encountered, a failure report has been produced. Reports
occurrences are summarized in one graph.

Seeded failure occurrences are shown in a graph for reference purpos-
es. In the example all injected failures have been successfully detect-
ed.

Fuzzy Belief-Based Software Supervision 101

Experimental Evaiuation of Fuzzy Belief Based Supervision

Failure injection log

il “fail_f~1.log" -
fallurep - - - - - - - - 1
0 2000 4000 6000 8000 10000 12000
1600 Number of beliet bets
1200 cbs.dat —
800 1
100}
0 1 [
0 2000 1000 6000 8000 10000 12000
Signal ID Events history
J2B-s = = e sac cocenc taem = i e mann smes s m semsen . 4
10 ::' :’ :';:' :'.'.' Sl IIISoiin Il orle 4
8r - . “inputdat”
6} “match.dat™ -
Y Soubneat i, ST oL DT L
afs - 2D IZD DI/l o/t
oV . S - T T et T Tt T)
0 2000 4000 6000 8000 10000 12000
Signal ID Mismatch history
:7 f “mismatch.dat™ - 4
104 i -
8F
6p . A .
1t
0 2000 4000 6000 8000 10000 12000

Maximum Feasibility

T P T 1 1 TTF

04

0.2} 1

0'00 2000 4000 6000 8000 10000 12000

Failure report history
. “tail_det.log”)
failurep - - - - . L
14

reporty 2000 4000 6000 8000 10000 12000

Figure 33: Fuzzy Supervisor Reports During Output Failures
of the Target System

102 Fuzzy Belief-Based Software Supervision

Evaluation Resuits

4.3.3 Failure Detection Capability

Various failures of the target system have been seeded by modifying
the trace sequence of input and output signals observed by the super-
visor on a correctly executing target system. Measurements have been
taken with different types of loads, and different classes of failures.
Impact on the supervisor’s failure detection capability has been ob-
served.

As seen in the summary table. seeded phantom signals did not cause
a computational overload during supervision at any rate of injection.
but missing output signalis caused supervisor to slow down. For these,
the rate of failure injection was kept to the minimum.

It has been noticed that only when unexpected output signals were
seeded. a full resynchronization has been achieved with no or little
impact on the number of belief sets generated by the supervisor.

When output signals have not been produced. or incorrect signals
have been produced instead of expected ones, resynchronization ca-
pability was sometimes affected due to snowballing of belief sets
number. In 21 scenarios resynchronization has been achieved, only in
two the supervisor reported a constantly decreasing health along with
steadily growing number of belief sets.

All failures that have been experimented with have been detected and
reported correctly in single or sequential occurrences.

4.3.4 Resynchronization and Continuous Supervision

Along with failure detection, the resynchronization capability of the
supervisor has been observed.

Resynchronization was considered achieved when capability for cor-
rect detection of failures has been restored after a seeded failure has
been observed. All failures were seeded, thus known; no spurious fail-

Fuzzy Belief-Based Software Supervision 103

Experimental Evaluation of Fuzzy Belief Based Supervision

ures must be reported. and all seeded failures must be reported in or-
der to claim resynchronization.

None of the seeded failure types has shut the supervision down, thus
indicating the achievement of continuous supervision. Computational
overload situations have occurred when idle. dial or ring tones signals
were removed from the replay log of a irregularly spaced high load
traffic (Poisson traffic).

Resynchronization capabilities of a fuzzy supervision have been dem-
onstrated in the experiments. No false failures have been detected af-
ter real failures occurred. The number of belief sets did not always
reduce to the levels of a failure-free supervision. This phenomenon
has been expected. as no dedicated support for intelligent resynchro-
nization has been devised. Lack of such a dedicated mechanism was
a partial cause of supervision slowdown on certain types of failures.

It has been noticed that an even spacing of events in time (provided
with limited traffic), helps the fuzzy supervisor to recover from an ob-
served failure. Poisson traffic has been proven much harder to super-
vise.

4.3.5 Computational Complexity Observations

The growth of number of belief sets during failure-free supervision
with the increase of traffic has been comparable to that in the standard
belief-based supervision approach up to the moment of failure detec-
tion, as expected. Also, no erroneous failure reports have been pro-
duced during traffic runs of various intensity.

When input signals to the target system were missed (removed from
the replay log) or misinterpreted (replaced by other signals in the re-
play log) by the supervisor, the resynchronization was not always
complete and sometimes was resulting in drastic supervisor slow-
down due to a major increase of number of belief sets after an in-tran-
sit expiration of the misinterpreted input signal. This is an expected

104

Fuzzy Belief-Based Software Supervision

Experimental Evaluation of Fuzzy Belief Based Supervision

it was only based on the observable signals. and could not be propa-
gated to the internal elements of the specification. Methods that would
be able to provide deeper analysis of the failure are complex and were
not covered within this work.

106 Fuzzy Belief-Based Software Supervision

Further Research and
Conclusions

5.1 Further Research Directions

The fuzzy supervision approach is much wider than what has been
covered in this work. It can be linked to research in probability theory
and research in artificial intelligence. It would be interesting to estab-
lish such links in the future research.

The algorithms explored in this work are fairly simple. It would be
valuable to further investigate the intelligent cutoff threshold manage-
ment, mismatch penalty and match gain functions for different failure
scenarios and particularly to observed signal loss scenarios where per-
formance of the supervisor was less than ideal. Further development is
needed to improve supervision capabilities for the Poisson traffic.

The resynchronization properties of fuzzy supervision have not been
completely examined in this work. Some of the related issues should
be looked into in the future. It would be interesting to expand the def-
inition of feasibility to the domain of hierarchical target systems.

Fuzzy Belief-Based Software Supervision 107

Appendix A: AnSDL Specification
of the Small PBX

rw /amd_mnt/swen!0/u/avorobie/Supervisor/specs/sdl/pbx_spec.sdt

rw /amd_mnt/swenl0/u/avorobie/Supervisor/specs/sdl/

wn
E U
-

Diagram Structure

/bsr1/w/PUB/Supervisor/specs/sdl/ pbx_system.ssy
/swen10/u/avorobie/Supervisor/specs/sdl/ phone_handlers.sbk
/swen10/u/avorobie/Supervisor/specs/sdl/ phone_handler.spr
/swen10/u/avorobie/Supervisor/specs/sdl/ ttrx_manager.sbk
/swen10/u/avorobie/Supervisor/specs/sdl/ ttrx_manager.spr
/swen10/u/avorobie/Supervisor/specs/sdl/ channel_manager.sbk
/swen10/w/avorobie/Supervisor/specs/sdl/ channel_manager.spr

PBX_Spec
Phone_handlers

-
1

phone_handler
TTRX_manager

ttrx_manager
Network_manager

channel_manager

222222

Associated Documents

Fuzzy Belief-Based Software Supervision 109

An SDL Specification of a Small PBX

System PBX_Spec 1(1)

[ﬁﬁﬂ_ [:&ﬁ:%
TTRX_manager < > Network_manager
C6 Ccs
[re (54
Cc4 . L c3
i Phone_handlers
\r Ul A4 }
=
eQer

t_type;
St
%‘i&. Ao, 3 . 'nngtone;

110 Fuzzy Belief-Based Software Supervision

An SDL Specification of a Small PBX

Block Phcne_handlers

1)

rend cal, N
|no_channel, H
Javai, 4
jreaay to_tak, 1
s S :
[fmt_d’!.] [m]
release _cn o notgrant
r4
, Cc3
3
phone_handler
c4
3 [reqmsl‘nm.] re [qan]
reigase trx \\ / notgrant
Fuzzy Belief-Based Software Supervision 111

An SDL Specification of a Small PBX

Process phone_handler 1{4)

g -

112 Fuzzy Belief-Based Software Supervision

An SDL Specification of a Small PBX

Process phone_handler 2(4)
re————- ~
i ,
sposeE (wan.2en) (e)
W L
m§r.
num_ch mnteger:
S] |
hmer :xg;' 1
:nmen_] : notgrant < / Oﬂa?&ﬂ./ Igmm < grant < notgrant < [W/
L R — -

c =C
Co)

DO®
\E/
U

Fuzzy Belief-Based Software Supervision 113

An SDL Specification of a Smail PBX

Pracess phone_handler

-

resat(tt)

1]
_frx

3(4)

warnt_cafier
1 1 1 1
ONhOak < no_manne!< Javai(party) < busy <
reset(t1) e nngtone [stowtusy
sat(t_nng.200 s8t(t_stow 200
o il J S

=

=)

<

resat(t1)

114

Fuzzy Belief-Based Software Supervision

An SDL Specification of a Smail PBX

connecttic)

rel1 de

resett_stow)

resayt_ot}

Process phone_handler 4(4)
ro————- -
139 333 miegets
A
%E{?apni: 1 tatker
mmimm*';‘-neier
amer11.”
R |
:hlﬂ!fl_ : "
' ~ @
N Y
1_nng < ready_to_|a< lonhook
o reset(t_nng) resat(t_nng)
T sa1_dt, 1000 num en =1
B [B
request _ch(nuriy ch)

Fuzzy Belief-Based Sofrware Supervision

115

An SDL Specification of a Small PBX

c4

Block TTRX _manager

ttrx_manager

1)

116

Fuzzy Belief-Based Software Supervision

An SDL Specification of a Small PBX

wrx(1)

Process ttrx_manager

fm————— -
L N
:J:c tir mteger. |
.- — - - o

release frx

notgrant i o=
10 senger hir N1

117

Fuzzy Belief-Based Software Supervision

An SDL Specification of a Small PBX

Block Network_manager

/

channel_manager

5 [m@} N\

1N

118

Fuzzy Belief-Based Software Supervision

An SDL Specification of a Small PBX

Process Channel_manager chan(1

release ch
request_cn(num _req)

channels ‘=
channets « 1t

channets .=
- num_req

notgrant rant
to cer senoer

Fuzzy Belief-Based Software Supervision 119

An SDL Specification of a Small PBX

120 Fuzzy Belief-Based Software Supervision

References

(3]

(4]

(51

(6]

(71

(8]

D.B. Hay. A Belief Method for Detecting Operational Failures in Soft Real-
time Systems.” (University of Waterloo, E&CE Masters Thesis, 1991.)

M.Hlady, R.Kovacevic, J.J.Li, B.R.Pekilis. D.Prairie, T.Savor, R.E.Seviora,
D.Simser and A.Vorcbiev, “*An Approach to Automatic Detection of Software
Failures.”. (Technical Report. Bell Canada Software Reliability Laboratory.
1994.)

M.Hlady, R.Kovacevic. J.Li, D.Prairie, S.Reid. “An Implementation of a Be-
lief-Based Real-Time Supervisor.” (Bell Canada Software Reliability Labora-
tory Technical Report. Aug. [995.)

D.B.Hay, R.E.Seviora. “A Real-Time Validator.” (Proceedings of the Third
IEE International Conference on Software Enginecering for Real-Time Sys-
tems”, [EE. [991.)

R.Iorgulescu, R.E.Seviora, *“A Resynchronization Method for Real-Time Su-
pervision.” (Proceedings of the 6-th. Euromicro Workshop on Real-Time Sys-
tems, June 1994.)

Ferenc Belina, Dieter Hogrefe, Amardeo Sarma, “SDL With Applications
From Protocol Specification.” (Prentice Hall, 1991.)

A. Avizienis, “The N-Version Approach to Fault-Tolerant Software.” (IEEE
Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985.)

P.A. Lee, T. Anderson, “Fault Tolerance: Principles and Practice.” (2nd ed.,
Springer Verlag, 1990.)

Fuzzy Belief-Based Software Supervision 121

[9] J.J.Homning et al.. "*A Program Structure for Error Detection and Recovery.”
(Lecture Notes in Computer Science 16, p.171-187, Sprnger-Verlag, 1974.)

(10] Ali, R., Shipp. N.. Swaminathan, A., “PBX Software Requirements Specifica-
ton.” (Course Project. E&CE455. University of Waterloo. Spring Term,
1993.)

[11] Ali. R, Shipp, N., Swaminathan. A.,” PBX Software Design Description.”
(Course Project, E&CE455, University of Waterloo, Spring Term, 1993.)

(12] International Telegraph and Telephone Consultative Committee. “Functional
Specification and Description Language. Recommendations Z.100-Z.104
(Blue Book).”(ITU. 1989.)

[13] D. Hogrefe. A. Sarma. “*Nondeterminism and SDL.” (Proc. 2nd Int'l Confer-
ence on Formal Description Techniques. pp 157-167. 1989.)

[£4] S.Leue. “Specifying Real-Time Requirements for SDL Specifications - A
Temporal Logic-Based Approach.” (Proceedings of the 15th International
IFIP WG6.1 Symposium on Protocol Specification, Testing, and Verification,
Warsaw. June 1995.)

[15] K.-T. Cheng and A.S. Krishnakumar, “*Automatic Functional Test Generation
Using the Extended Finite State Machine Model.” (Proceedings of the 30th
Design Automation Conference DAC-93. pages 86-91, 1993.)

{16] R Kruze, “Foundations of Fuzzy Systems.” (Chichester, West Sussex, En-
gland. Toronto: Wiley & Sons, [994.)

[17] TJ.Ross. “Fuzzy Logic With Engineering Applications.” (International
ed..New York: McGraw-Hill, 1995.)

[18] M. Diaz, “Observer-A Concept for Formal On-Line Validation of Distributed-
Systems.”(IEEE Trans on Software Engineering, Vol 20. No 2. pp. 900-
912.Dec 1994.)

[19] C.Wang and M. Schwartz, “Fault Detection with Multiple Observers.”(IEEE/
ACM Trans on Networking, Vol [, No . pp. 48-55, Feb 1993.)

[20] D. Butnartu, “Autonomous Evolutive Systems With Ambiguous States.”
{Fuzzy Logic in Knowledge-Based Systems. ElsevierScience Publishers B.V.,
North Holland. page 229, 1988.)

[21] S.Reid, “Reduced Model Supervision: Quantifying Trade-Offs in Failure De-
tection and Computational Complexity.” (University of Waterloo, E&CE
Master’s thesis, 1996.)

(22] R.Kovacevic, “A Resynchronization Scheme for Belief-Based Real-Time
Software Supervision.” (University of Waterloo, E&ZCE Master’s thesis,
1996.)

[23] M.Hlady. A Real-Time Software Supervisor with Failure Retraction Capabil-

122

Fuzzy Belief-Based Software Supervision

ities.” (University of Waterloo. E&CE Master’s thesis. 1995.)

[24] B.R.Pekilis. “Automatic Monitoring of Response Time Performance in Soft
Real-Time Systems.” (University of Waterloo, E&CE Master’s thesis, 1995.)

[25] R.A.Ali. “A Gray-Box Approach to Software Supervision.” (University of
Waterloo, E&CE Master’s thesis. 1996.)

[26] A.Petryk, “Event Trace Driven Software Failure Detection.”, (University of
Waterloo. E&CE Master’s thesis. 1997.)

Fuzzy Belief-Based Software Supervision 123

124

Fuzzy Belief-Based Saftware Supervision

IMAGE EVALUATION

o
<
&
"
@)
X
<
o
=
B
3 D
> X ¢
ST
%q,vng, 3> \\\.//

3302z
daa

K E EF R

——
.
-—
—
—

|

I

—_—

I

L4

125

-~rauw

150mm
6

g

m

b
R,
ém
g

