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Abstract

Software maintenance reportedly accounts for much of the total cost associated
with developing software. These costs occur because modifying software is a highly
error-prone task. Changing software to correct faults or add new functionality
can cause existing functionality to regress, introducing new faults. To avoid such
defects, one can re-test software after modifications, a task commonly known as
regression testing.

Regression testing typically involves the re-execution of test cases developed for
previous versions. Re-running all existing test cases, however, is often costly and
sometimes even infeasible due to time and resource constraints. Re-running test
cases that do not exercise changed or change-impacted parts of the program carries
extra cost and gives no benefit. The research community has thus sought ways to
optimize regression testing by lowering the cost of test re-execution while preserving
its effectiveness. To this end, researchers have proposed selecting a subset of test
cases according to a variety of criteria (test case selection) and reordering test cases
for execution to maximize a score function (test case prioritization).

This dissertation presents a novel framework for optimizing regression testing
activities, based on a probabilistic view of regression testing. The proposed frame-
work is built around predicting the probability that each test case finds faults in the
regression testing phase, and optimizing the test suites accordingly. To predict such
probabilities, we model regression testing using a Bayesian Network (BN), a power-
ful probabilistic tool for modeling uncertainty in systems. We build this model using
information measured directly from the software system. Our proposed framework
builds upon the existing research in this area in many ways. First, our framework
incorporates different information extracted from software into one model, which
helps reduce uncertainty by using more of the available information, and enables
better modeling of the system. Moreover, our framework provides flexibility by
enabling a choice of which sources of information to use. Research in software
measurement has proven that dealing with different systems requires different tech-
niques and hence requires such flexibility. Using the proposed framework, engineers
can customize their regression testing techniques to fit the characteristics of their
systems using measurements most appropriate to their environment.

We evaluate the performance of our proposed BN-based framework empirically.
Although the framework can help both test case selection and prioritization, we
propose using it primarily as a prioritization technique. We therefore compare our
technique against other prioritization techniques from the literature. Our empirical
evaluation examines a variety of objects and fault types. The results show that the
proposed framework can outperform other techniques on some cases and performs
comparably on the others.

In sum, this thesis introduces a novel Bayesian framework for optimizing regres-
sion testing and shows that the proposed framework can help testers improve the
cost effectiveness of their regression testing tasks.
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Chapter 1

Introduction

Software systems are known to evolve with time and specially as a result of mainte-
nance tasks [82]. Software maintenance is defined by IEEE Standard 1219 as [67]:

The modification of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt the product to
a modified environment.

The presence of a long and costly maintenance phase in most software projects,
specially those manipulating large systems, has persuaded engineers that software
evolution is an inherent attribute of software development [82]. Moreover, main-
tenance activities are reported to account for high proportions of total software
costs, with estimates varying from 50% [88] in the 80s to 90% in recent years [47].
Reducing such costs has motivated many advancements in software engineering in
recent decades.

ISO/IEC 12207, a dominant standard in this area, identifies the objective of
maintenance as “to modify the existing software product while preserving its in-
tegrity” [50]. The later part of the stated objective, preserving integrity, refers to
an important issue raised as a result of software evolution. One need to ensure
that the modifications made to the product for maintenance have not damaged the
integrity of the product.

It is known both from theory and practice that changing a system in order to fix
bugs or make improvements can affect its functionality in ways not intended. These
potential side effects can cause the software system to regress from its previously
tested behavior, introducing defects called regression bugs [51]. Although rigor-
ous development practices can help isolate modifications, the inherent complexity
of modern software systems prevents us from accurately predict the effects of a
change. Practitioners have recognized such a phenomenon and hence are reluctant
to change their programs in fear of introducing new defects. Researchers have tried
to find ways of analyzing the impact of a change on different parts of a system [§]
and predicting the effects. In absence of formal presentations of software systems,



however, such attempts, although helpful, will not provide the required confidence
levels.

Software maintenance remains a risky task unless we are able to find regression
bugs, once they occur. Despite the introduction and adaptation of other verification
methods (such as model checking and peer reviews), testing remains the main
tool to find defects in software systems. Naturally, retesting the product after
modifying it is the most common way of finding regression bugs. Such a task is
very costly [84] [100] and requires great of organizational effort. This has motivated
a great deal of research to understand and improve this crucial aspect of software
development and quality assurance.

1.1 The Problem Statement

regression testing verifies that a software system has not regressed after modifi-
cations. It is the practice of retesting a program after changing it to assure that
its previously tested behavior is preserved (non-regression). The goal of regression
testing is to find regression bugs: defects introduced as a side effect of modify-
ing programs. Although new test cases might be required to fully achieve such a
goal, regression testing is mainly performed by re-running some subset of program’s
existing test cases. In this sense, Myers et al. describe regression testing as: “ sav-
ing test cases and running them again after changes to other components of the
program” [98].

Saving and re-running test cases from a previous version is reported to be a
costly task [84, [100]. Testers face many challenges during the regression testing
phase. To enable re-running, we must be able to either record or formally describe
test cases. Moreover, as a program evolves, its corresponding test suite needs to be
maintained to adapt to a potentially changed specification of the software system.
Test case maintenance can reveal some test cases to be irrelevant with respect to
the new version of the product, the so called obsolete test cases [84]. Even after
removing obsolete test cases, many of the test cases exercise areas of code irrelevant
to what has changed from the previous version. Re-running those test cases will only
take extra effort with little chance of finding new faults. This motivates selecting
a subset of test cases for re-execution in order to save some effort at no significant
risk. After limiting the test cases to those related to changes, the number of selected
test cases might still remain beyond what the organization affords to execute. In
such situations, testers needs to choose test cases with higher priority and execute
them.

A complete software regression testing process involves tasks pertaining to each
of the described challenges. Considering a program that has changed from P, to
P, .1, and having a test suite 7, created for and run on P,, a regression testing
process typically involves:



(i) Maintaining 7T, to get 7" identifying obsolete test cases and repairing or
discarding them

(ii) Optimizing T to get T2: selecting a subset of test cases and prioritizing the
selected test cases

Running 7Y on P, 1, checking the results, and identifying failures

)

(iv) Creating a new test suite 7} ,, if necessary, to test P, 1.
) Running 77, ; on P,, checking the results and identifying potential failures
)

Aggregating Ty and T}' ; to get T,,;; and saving it for future testingﬂ

Each of the aforementioned tasks involves interesting research problems. This
research work concerns merely the second step, as most other research efforts in this
area do. How to find obsolete test cases, how to repair test cases, how to efficiently
rerun test cases, how to create new effective test suites, are all interesting question
that are out of the scope of this thesis. The problem of regression test suite opti-
mization is a wide area which entails further fine-grained problems. The following
first introduces a general form of the problem and then presents an instance of the
general problem which is the focus of this research.

The regression test optimization problem can be defined in a general sense as:

Definition 1. General Regression Test Optimization Problem:

Given: a program P,, its “maintained” test suite 77", and a new version P,
Problem: to find a test suite 7} C 77" such that it can most effectively, according
to some criteria, find the regression bugs in P, 1.

A test suite, in Definition |1| and hereinafter, is a tuple of test cases, the order
of which indicates the execution sequence. If a test case t; appears before t, in the
tuple, t is not run unless ¢; runs. If A and B are two test suites, in our notation,
A C Bmeans Vx € A = x € B. Notice that this notation does not imply
anything as to the order of elements in A and B; hence, the order of test cases can
be completely different between A and B.

The term maintained in Definition [I} as described before, means that obsolete
test cases are dealt with before starting test optimization. More formally, it means
that according to the specifications of P,,;, which could be different from those
of P,, all the test cases in 7" are indeed expected to pass. Some obsolete test
cases are those which pertain to features of the software that do not exist anymore.
Such test cases should be removed as part of the test case maintenance. Others are
those still relevant but incorrect due to changes in the specification of the software.
Those test cases should be fixed to meet new requirements. Also, in Definition[I] a

IThe superscript m stands for maintained, o for optimized, and n for new.



regression bug refers to the situation when a software functionality works as desired
in P, but is faulty in P,,;.

The criterion of effectiveness, a main factor in Definition [I], specifies the goal
of the test case optimization. The generality of this definition is due to the fact
that no specific criterion is mentioned. Different products, testing processes, and
organization policies can emphasize different goals for regression test optimization.
In a safety critical project, for instance, any test case that has any chance of finding
bugs must be executed. In the competitive markets of less sensitive products, on
the other hand, organizations are usually willing to take the risk of discarding some
test cases in favor of releasing the software sooner. This encourages an effective-
ness criterion that intensively reduces the size of test suites. If an organization is
uncertain about when to stop regression testing, effectiveness criteria that provide
more flexibility can be helpful.

To address diverse expectations from regression test optimization, researchers
have defined different instances of the problem. There are two predominant prob-
lem specifications in the literature: test case selection and test case prioritization.
Test case selection problem, informally, is to optimize the regression test suite by
eliminating a subset of test cases according to some criteria. Since many of the
existing test cases can not, or according to some criteria, are not likely to, reveal
faults even if executed, eliminating them can optimize the regression test suite.
For example, those test cases unrelated to the changed or change-impacted parts
of the code are not likely to reveal faults. By eliminating such test cases, one can
reduce time required for the regression testing phase. Regression test selection does
not concern the execution order of the resulting test suite. Test case prioritization
problem, on the other hand, focuses on the order in which test cases appear in the
final test suite (77°).

The focus of this research work is on the test case prioritization problem. While
terms and definitions regarding test case selection are introduced in Section [2.1.1]
our problem statement focuses on test case prioritization.

1.1.1 Test Case Prioritization Problem

Speaking informally, the test case prioritization problem is to order test cases in a
test suite such that a certain property is optimized for that ordering. The formal
definition of this problem, widely accepted in the literature [I11], could be rephrased
as:

Definition 2. Test Case Prioritization Problem:

Given: a program P,, its maintained test suite 7", a new version P,;;, and a
function f(7') from a test suite 7" to a real number,

Problem: to find an ordered test suite 70 € Perm(T.") such that ¥V T' € Perm(T"),

f(T) < (1)



In Definition [2) Perm(T) denotes the set of all permutations (orderings) of
the test suite 7. A Test suite A is a permutation of test suite B if and only if
AC Band BC A. The f(T) function is a score function which reflects the goal
of prioritization.

The f(7T) function assigns to a test suite a relative score that indicates how
well it satisfies the goals of prioritization. Different goals can be pursued by testers
when prioritizing test cases. They may wish to find bugs faster, cover more parts
of code faster, find severe faults sooner, run easier-to-execute test cases earlier, and
so on. The score function f(7') assigns higher values to orderings which achieve an
specific goal faster.

The prioritization goal that has been most extensively researched is that of early
fault detection. Such a goal, informally, means a test suite is preferable if it finds
bugs faster than others. Rothermel et. al. have formalized this goal using a measure
called Average Percentage of Faults Detected (APFD) which could be thought of
as the f(7") function in the above definition [I10, IT1]. This metric averages the
percentage of faults detected during the execution of a test suite. As such, it gives
a number between 0 and 100 that indicates faster rate of fault detection if higher.
The mathematical definition of this measure can be found in [IT1].

Test case prioritization for early fault detection has two main advantages. First,
the cost associated with each bug is partially related to the time it is discovered. If a
bug is found early in the regression testing process, debugging can start earlier and
hence bugs could be fixed faster. In time-constrained situations (e.g., with tight
release schedules), this can have a huge impact because late detection of faults re-
stricts the time available for bug-fixing and therefore some bugs can remain unfixed.
Second, if the time constraints force testers to halt regression testing prematurely,
early fault detection ensures that fewer faults are missed due to incomplete testing.
This property is of special importance in situations where re-running all test cases
is not feasible and hence a cut-off is likely to occur. Naturally, in this sense, test
case prioritization and selection are similar to each other.

Early fault detection, as the goal of prioritization, can not be attacked directly
as an optimization problem. Obviously, when optimizing a test suite for regression
test execution, we are not aware of the existing faults and the test cases which
reveal them. To achieve this goal, therefore, one needs to rely on the heuristics
known to engineers regarding the behavior of faults and test cases. For example,
one can assume that providing coverage for more parts of the code and as fast as
possible is likely to improve the rate of fault detection, or that covering the fault-
prone areas of the code faster can accelerate fault detection. Different heuristics, in
addition to different algorithms of optimization, create different techniques of test
case prioritization.

Finally, it is interesting to point out that test case prioritization and selection
problems have much in common. If the goal of test case selection is merely to reduce
the test suite size, that could be achieved by applying a prioritization technique
and then cutting off the order-optimized test suite from a certain point. This



solution is more flexible in that it provides a means of adjusting testing effort and
available time. Test selection techniques typically do not control the number of
selected test cases. Hence, if the resulting number of test cases is more than what
testers can afford to execute, selection is not sufficient. On the other hand, test
selection techniques provide a clear justification (according to a specified criteria
of coverage, etc.) for eliminating test cases which prioritize-then-cut-off approach
can not provide. It is also noteworthy that it is common to address these two
families of problems in concert and/or feed the result of one to the other. For
example, many researchers propose starting with test case selection (with criteria
that prunes unrelated test case and retains relevant test cases) and then prioritize
the resulting pruned test suite.

1.2 Thesis Contributions

Due to the probabilistic nature of fault detection process, proposed solution to
the regression test optimization problem for enhanced fault detection all rely on
heuristics. Many heuristics have been suggested in the literature and implemented
using several optimization algorithms. However, the empirical studies indicate a gap
between the optimal solution to the problem and any heuristic-based approaches.
Each heuristic captures a different aspect of the fault detection phenomenon. One
can conjecture that putting heuristics together would enable the consideration of
more aspects and would hence result in better performance. This thesis introduces
a novel framework that combines different heuristics into a single model aiming to
increase fault detection power. The proposed framework not only uses many sources
of information but also provides flexibility in which heuristics and measurements
to use.

This dissertation makes the following contributions:

e It introduces a novel framework that uses Bayesian Networks (BN) to solve
the regression test optimization problem by predicting the probability of test
cases finding faults using multiple heuristics. This BN-based framework is
designed for a generic software system and hence needs to be realized to get
a specific implementation.

e [t provides a code-based realization of the general BN-based framework. Soft-
ware code is the only artifact this realization uses for heuristic measurements
and hence the realization is applicable for most software systems.

e [t reports on three sets of experiments that empirically evaluate the perfor-
mance of the framework. One experiment concerns the effects of the parame-
ters in the implementation of the framework on its performance; the two other
compare its performance against existing techniques from the literature.



The novel BN-based framework, proposed by this dissertation, takes a proba-
bilistic view of the problem. Such a framework is necessary, in the author’s view,
because the regression test optimization problem is inherently one in which a great
deal of uncertainty exists. Modeling such systems using probabilistic tools sounds
like a natural choice. The results from this line of research has proven this approach
to be fruitful.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

Chapter [2] provides a literature review of research related to this work. It first
surveys the existing regression testing literature. Then, techniques of software
measurement related to the topic of regression testing are examined. Finally the
chapter gives an overview of the probabilistic modeling tools utilized in this research
work is given.

Chapter 3| presents the general framework proposed by this thesis to the problem
of regression test optimization. This chapter starts with an overview which explains
the underlying ideas. Reading the overview should provide the readers with an
overall understanding of the framework. Then, a process model is presented to
detail how the general framework should be implemented to get a regression test
optimization tool.

Chapter [4introduces a code-based realization of the framework, where measure-
ments come from the software code. The chapter first describes the motivations
behind a code-based realization and why it is of particular importance. Using the
path for realization provided by the previous chapter, it then describes in three
different steps how the realization works.

Chapters [5] to [8 report on the results from a comprehensive empirical study on
the performance of the code-based realization of the framework. Initially, Chapter
discusses the evaluation procedure of the experiments. The next following chapters
present three different experiments, for each of which the design of the experiment,
the threats to its validity, the obtained results, and a discussion on the results is
given. The first experiment, Chapter [0, concerns the effects of parameters on the
framework; the second one, Chapter [7], compares the framework against existing
techniques and based on mutation faults; the third experiment, Chapter[§] conducts
same comparison but using hand-seeded faults.

Finally, Chapter [J| finishes the thesis by drawing conclusions from the presented
research work. It, first, gives a critical review of the presented framework, then
future directions of research are pointed out, and finally a conclusion section finishes
the thesis.



Chapter 2

Related Work

In this chapter, research areas related to the topic of this thesis are elaborated.

The subject to start with is that of the problem in question, “Software Regres-
sion Testing”. There exists an extensive body of research addressing this problem
using many different approaches. This chapter takes a critical look at this line
of research, trying to find strong points and ideas as well as the gaps. Through
this examination, many terms and concepts related to software testing area will be
introduced as well.

The second major area to discuss is “Software Measurement and Understand-
ing”. One of the main goals of this research work is to provide a means of using
different sources of information to assist regression testing tasks. The advances in
software measurement and comprehension in recent decades have introduced new
techniques of extracting useful information from many different types of software
artifacts such as the requirement documents, the source/byte code, and the exe-
cution traces. This family of techniques, to which this document refers with the
umbrella name of “Software Measurement and Understanding”, can assist regres-
sion testing tasks by providing useful information as to what needs to be tested
more extensively. The ideas from this area of research have been used in many of
the existing approaches to software regression testing problem.

Finally, as the title of this thesis suggests, a probabilistic modeling tool is used
in this research work to attack the regression testing problem. While Chapter
elaborates on how and why probabilistic modeling and reasoning is used to address
regression testing problem, here, an overall overview of probabilistic modeling con-
cepts is presented. Specially, the powerful modeling technique of Bayesian Network
(BN) is described in detail.

The rest of this chapter elaborates each of the three aforementioned areas.



2.1 Software Regression Testing

Research in regression testing spans a wide range of topics. Earlier work in this
area investigated different environments that can assist regression testing (e.g., [15,
40, 129]). Such environments particularly emphasize automation of test case ex-
ecution in the regression testing phase. For example, techniques such as capture-
playback (e.g., [86]) have been proposed to help achieve such an automation. Fur-
thermore, test suite management and maintenance have been addressed by much
research (e.g., [58, 61, 116]). Measurement of regression testing process has also
been researched extensively and many models and metrics have been proposed for
it [38, B4]. Most of the research work in this area, however, has focused on test
suite optimization.

Test suite optimization for regression testing, as described in Section [I.1] con-
sists of altering the existing test suite from a previous version to meet the needs of
regression testing. Such an optimization intends to satisfy an objective function,
which is typically concerned with reducing the cost of retesting and increasing the
chance of finding bugs (reliability). There exists a variety of techniques addressing
this problem. Most of these techniques can be categorized into two families of test
case selection and test case prioritization. Regression test selection techniques re-
duce testing costs by including a subset of test cases in the new test suite. These
techniques are typically not concerned with the order in which test cases appear in
the test suite. Prioritization techniques, on the other hand, include all test cases
in the new test suite but change their order in order to optimize a score function,
typically the rate of fault detection. These two approaches can be used together;
one can start with selecting a subset of test cases and then prioritize those selected
test cases for faster fault detection.

The rest of this section first looks into test case selection approaches from the
literature and then touches upton existing techniques for test case prioritization.

2.1.1 Test Case Selection

Test case selection, as the main mechanism of selective regression testing, have
been widely studied using a variety of approaches (e.g., [0, 9, 20, 49, 59, 60, 61
108, 117, 120}, 124]). In a survey of techniques proposed upto 1996, Rothermel and
Harrold propose an approach for comparison of selection techniques and discuss
twelve different family of techniques form the literature accordingly [109]. They
evaluate each technique based on four criteria: inclusiveness (the extent to which
it selects modification revealing tests), precision (the extent to which it omits tests
that are not modification revealing), efficiency (its time and space required), and
generality (its ability to function on different programs and situations). These four
criteria, in principle, capture what we expect form a good test case selection ap-
proach. These four criteria inherently impose a trade-off situation where proposed
techniques usually satisfy one of the criteria in expense of the others.



Main Approaches

An early trend in test selection research evolved around minimizing test cases se-
lected for regression (e.g., [49, [61]). This approach, often called test case mini-
mization, is based on a systems of linear equations to find test suites that cover
modified segments of code. Linear equations are used to formulate the relationship
between test cases and program segments (portions of code through which test ex-
ecution can be tracked, e.g., basic-blocks or routines). This system of equations is
formed based on matrices of test-segment coverage, segments-segment reachability,
and (optionally) definition-use information about the segments. A 0-1 integer pro-
gramming algorithm is used to solve the equations (an NP-hard problem) and find
a minimum set of test cases that satisfies the coverage conditions. This approach
is called minimization in the sense that it selects a minimum set of test cases to
achieve the desired coverage criteria. In doing so, test cases that do cover modified
parts of code can be omitted because other selected test cases cover same segments
of the code.

A different set of approaches have focused on developing safe selection tech-
niques. Safe techniques (e.g., [20, 59, 108, 117]) aim to select a subset of test cases
which could guarantee, given certain preconditions, that the left-out test cases are
irrelevant to the changes and hence will pass. Informally speaking, the aforemen-
tioned condition as described in [109] are: i) the expected result for test cases have
not changed from the last version to the current version; and i) test cases execute
deterministically (i.e., different executions results in identical execution path). Safe
techniques first perform change analysis to find what parts of the code can be possi-
bly affected by the modifications. Then, they select any test case that covers any of
the modification-affected areas of the code. Safe techniques are inherently different
from minimization techniques in that they select all test cases that have a chance
of revealing faults. In comparison, safe techniques usually result in a larger number
of selected test cases but also achieve a much better accuracy.

Many techniques are neither minimizing nor safe. These techniques typically
use a certain coverage requirement on modified or modification affected parts of
code to decide whether a test case should to be selected. For example, the so-called
dataflow-coverage-based techniques (e.g., [60]) select test cases that exercise data
interactions (such as definition-use pair) that have been affected by modifications.
These selections techniques are different in two aspect: the coverage requirement
they target and the mechanism the use to identify of modification-affected code.
For example, Kung et al. propose a technique which accounts for the constructs of
object-oriented languages [78]. In performing change analysis, their approach takes
into account object-oriented notions such as inheritance. The relative performance
of these selection techniques tend to vary from program to program, a phenomenon
that could be understood only through empirical studies.
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Cost Effectiveness

Many empirical studies have evaluated the performance of the test case selection
algorithms (e.g., [20 [54]). In general, these empirical studies show that there is an
efficiency-effectiveness (or inclusiveness-precision in [109]’s terminology) tradeoff
between different approaches to selection (e.g., [54]). Some (such as safe) techniques
reduce the size of test suite by a small factor but find most (or all) bugs detectable
with existing test cases. Others (such as minimization techniques), reduce the size
dramatically but can potentially leave out many test cases that can in fact reveal
faults. Other techniques are somewhere in between; they may miss some faults
but they reduce the test suite size significantly. The presence of such a tradeoff
situation renders the direct comparison of techniques hard.

A meaningful comparison between regression testing techniques requires answer-
ing one fundamental question: is the regression effort resulting from the use of a
technique justified by the gained benefit? To answer such a question one needs to
quantify the notions of costs and benefits associated with each technique. To that
goal, researchers have proposed models of cost-benefit analysis (e.g., [38] 85 90]).
These models try to capture the cost encountered as a result of missing faults,
running test cases, running the technique itself including all the necessary analysis,
etc. The most recent of all these models is that of Do et al [38]. Their approach
computes costs directly and in dollars and hence is heavily dependent on good es-
timations of real costs from the field. An important feature of their model is that
it can compare not only test case selection but also prioritization techniques. Most
interestingly, it can compare selection techniques against prioritization techniques.

The existence of the mentioned trade-off has also encouraged the researchers to
seek multi-objective solutions to the test selection problem. Yoo and Harman have
proposed pareto efficient multi-objective test case selection [124]. They use genetic
algorithms to find the set of pareto optimal solutions to two different representa-
tions of the problem: a 2-dimensional problem of minimizing execution time and
maximizing code coverage and the 3-dimensional problem of minimizing time and
maximizing both code coverage and history of fault coverage. The authors compare
their solutions to those of greedy algorithms and observe that greedy algorithms
surprisingly can outperform genetic algorithms in this domain.

Coverage information, a necessary input to most existing techniques, can be
measured only if the underlying code is available and its instrumentation is cost-
effectively possible. To be able to address more complex systems, where those
conditions do not hold, some recent techniques have shifted their focus to artifacts
other than code, such as software specification and component models (e.g., [9, 19,
99]). These techniques typically substitute code-based coverage information with
information gathered from formal (or semi-formal) presentations of the software.
Orso et al., for example, use component meta data to analyze the modifications
across large component-based systems [99]. The trend in current test case selection
research seems to be that of using new sources of information or formalizations of
a software system to understand the impacts of modifications.
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2.1.2 Test Case Prioritization

The regression Test Prioritization (RTP) problem seeks to re-order test cases such
that an objective function is optimized. Different objective functions render dif-
ferent instances of the problem, a handful of which have been investigated by re-
searchers. Besides targeted objective functions, the existing body of prioritization
techniques typically differ in the type of information they exploit. The algorithm
employed to optimize the targeted objective function, also, is another source of
difference between the techniques.

Conventional Coverage-based Techniques

Test case prioritization is introduced in [122] by Wong et al. as a flexible method of
selective regression testing. In their view, RTP is different from test case selection
and minimization in that it provides a means of controlling the number of test cases
to run. They propose a coverage-based prioritization technique and specify cost per
additional coverage as the objective function of prioritization. Given the coverage
information recorded from a previous execution of test cases, this coverage-based
technique orders test cases in terms of the coverage they achieve according an
specific criterion of coverage (such as the number of covered statements, branches,
or blocks). Because the purpose of RTP in their work is selective regression testing,
they compare its performance against minimization and selection techniques.

The coverage-based approach to prioritization is built upon by Rothermel et al.
in [T10, ITT]. They refer to early fault detection as the objective of test case prioriti-
zation. They argue that RTP can speed up fault detection, an advantage besides the
flexibility it provides for selective regression testing. Early detection makes faults
less costly and hence is beneficial to the testing process. They introduce Averaged
Percentage of Faults Detected (APFD) metric to measure how fast a particular test
suite finds bugs. They also introduce many variations of coverage-based techniques,
using different criteria for coverage such as branch coverage, statement coverage,
and fault-exposing-potential.

These coverage-based techniques differ not only on the coverage information
they use, but also on their optimization algorithm. When ordering test cases ac-
cording to their coverage, a feedback mechanism could be used. Here, feedback
means that each test case is placed in the prioritized order taking into account
the effect of test cases already added to the order. A coverage-based technique
with feedback prioritizes test cases in terms of the numbers of additional (not-yet-
covered) entities they cover, as opposed to total number of entities. This is done
using a greedy algorithm that iteratively selects the test case covering the most
not-yet-covered entities until all entities are covered, then repeats this process until
all test cases have been prioritized. For example, assume we have a system with six
elements: e ...eg and the coverage relations between test cases and elements are
as follows: t; — {es,e5},ta — {e1,e3},t3 — {eq, e5,66}. According to a coverage-
based technique, the first chosen test case is t3 because it covers three elements,
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while the others cover two elements each. After selecting t3, two test cases are left,
both of which cover two elements. In the absence of feedback, we would choose
randomly between the remaining two. However, we know that es is already covered
by t3; therefore t; has merely one additional coverage, whereas t, has two. After
adding t3, we can update the model of coverage data such that the already tested
elements do not effect subsequent selections. This allows choosing ¢, before ¢; based
on its additional coverage. The notion of using additional coverage is what feedback
mechanism provides; techniques employing feedback are often called additional.

Many empirical studies have been conducted to evaluate the performance of
coverage-based approach [39, [43], TT1], most of which use APFD measure for com-
parison. These studies show that coverage-based techniques can outperform control
techniques (including random and original ordering) in terms of APFD but have a
significant room for improvement comparing to optimal solutions. They also indi-
cate that in many cases, feedback employing techniques tend to outperform their
non-feedback counterparts, an observation which could not be generalized to all
cases. Indeed, an important finding of all these studies is that the relative perfor-
mance of different coverage-based techniques depends on the programs under test
and the characteristics of its test suite. Inspired by this observation, Elbaum et
al. have attempted to develop a decision support system (using decision trees) to
predict which technique works better for what product/process characteristics [44].

Many research works have enhanced the idea of coverage-based techniques by
utilizing new sources of information. Srivastava et al. propose the Echelon frame-
work for change-based prioritization. Echelon first computes the basic blocks mod-
ified from the previous version (using binary codes) and then prioritizes test cases
based on the number of additional modified basic blocks they cover [I15]. A similar
coverage criteria used in the context of aviation industry called Modified Condi-
tion/Decision Coverage (MCDC) is utilized in [71]. Elbaum et al. use metrics of
fault-proneness, called fault-index, in order to guide their coverage-based approach
to focus on the parts of code more prone to containing faults [43]. Recently, in [69],
Jeffery and Gupta propose incorporating to prioritization a concept extensively
used in test selection called relevant slices [77], modified sections of the code which
also impact the outcome of a test case. Their approach prioritizes test cases accord-
ing to the number of relevant slices they cover. Most recently, Zhang et al. propose
a technique which could incorporate varying test coverage requirements [127] and
prioritize accordingly. They work also takes into account different costs associated
with test cases.

Recent Approaches

Walcott [I18] et al. formulate a time-aware version of the prioritization problem in
which a limited time is available for regression testing and also the execution time of
test cases are known. Their optimization problem is to find a sequence of test cases
that could be executed in the time limit and also maximize speed of code coverage.
They use genetic algorithms to find solutions to this optimization problem. Their
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objective function of optimization is based on summations of coverage achieved,
weighted by execution times. Their approach could be thought of as a multi-
objective optimization problem where most coverage in minimum time is required.

In [87], authors investigate the use of metaheuristic and evolutionary algorithms
(such as hill climbing and genetic algorithm) for test case prioritization. Their ap-
proach focuses on maximizing rate of achieved coverage using the search algorithms.
Their objective is not to increase the rate of fault detection but rate of achieved
code coverage. As such they do not investigate the rate of fault detection in their
work.

All the code coverage-based techniques assume the availability of source/byte
code. They also assume that the available code can be instrumented (see Sec-
tion for more information) to gather coverage information. These conditions
do not always hold. The code could be unavailable or excessively expensive to in-
strument. Hence, researchers have explored using other source of information for
test case prioritization.

Srikanth et al. have proposed PORT framework [63] which uses four different
requirement-related factors for prioritization: customer-assigned priority, volatility,
implementation complexity, and fault-proneness. Although the use of these factors
is conceptually justifiable and based on solid assumptions, their subjective nature
(especially the first and third factors) make the outcome dependent on the per-
ceptions of customers and developers. While it is hard to evaluate or rely on such
approaches, it should be understood that it is the subjective nature of requirement
engineering that imposes such properties. Also, their framework is not concerned
with specifics of regression testing but prioritization in general.

Bryce et al. have proposed a prioritization technique for Event-Driven Software
(EDS) systems. In their approach, the criteria of t-way interaction coverage is used
to order test cases [16]. The concept of interactions is defined in terms of events
and the approach is tested on GUI-based systems and against traditional coverage
based systems. Based on a similar approach, Sampath et al. target prioritization
of test cases developed for web applications. Their technique prioritizes test cases
based on different criteria such as test lengths, frequency of appearance of request
sequences, and systematic coverage of parameter-values and their interactions [113].

Taking a different approach from coverage-based techniques, Kim and Porter
propose using history information to assign a probability of finding bugs to each
test case and prioritize accordingly [73]. Their approach, inspired by statistical
quality control techniques, can be adjusted to account for different history-based
criteria such as history of execution, history of fault detection, and history of cov-
ered entities. These criteria, respectively, give precedence to test cases that have
not been recently executed, have recently found bugs, and have not been recently
covered. From a process point of view, history-based approach makes the most
sense when regression testing is performed frequently, as opposed to a one-time
activity. Kim and Porter evaluate their approach in such a process model (i.e.,
considering a sequence of regression testing sessions) and maintain that comparing
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to selection techniques and in the presence of time/resource constraints, it finds
bugs faster.

Most recently, Qu et al. use the history of test execution for black-box testing
and build a relation matrix between test cases [105]. This matrix is used to move
the test cases up or down in the final order. Their approach also includes some
algorithms for building and updating such a matrix based on outcome of test cases
and types of revealed faults.

In addition to research works addressing the stated prioritization problem di-
rectly, there are research closely related to this area but from different perspectives.
Saff and Ernst use behavior modeling to infer developers’ beliefs and propose a test
reordering schema based on their models [I12]. They propose running test cases
continuously in background while software is being modified. They claim their ap-
proach leads to reducing the wasted time of development by approximately 90Leon
and Podgurski compare coverage-based techniques of regression testing with an-
other family called distribution-based [83]. Distribution-based approaches [33] look
at the execution profile of test cases and use clustering techniques to locate test
cases that can reveal faults better. The experiments indicate that distribution-
based approach can be as efficient or more efficient compared to coverage-based.
Leon and Podgurski, then, suggest combining these two approaches and report
achieved improvement using that strategy.

2.1.3 Critical Overview

Taking a critical look at the literature of regression test optimization problem helps
identify interesting research challenges.

The results from the aforementioned empirical studies indicate that no single
approach is able to provide a complete solution to regression test optimization
problem. The discussion regarding selection techniques in Section has re-
vealed that there exist important trade-offs between the approaches in terms of
cost-effectiveness. Such trade-offs should be ideally made by the engineers that
work on a particular project and based on the characteristics of their environ-
ment /product. A desired property for any regression test optimization is to pro-
vide flexibility on the required testing effort; test selection techniques lack in that
regard. Test case prioritization techniques take a step toward that flexibility by
providing a means of adjusting the costs and benefits of test execution. These
approaches, which are inherently heuristic-based, order test cases based on their
estimated importance. Testers can use such a prioritized order to spend their effort
on running the most important test cases.

To estimate the importance of test cases, the prioritization approaches rely on
information that could be gathered from the software system. As such, any pri-
oritization technique faces two major challenges. One is the availability of the
required data. Since not all measurement techniques are doable in all environ-
ments, a technique that relies strictly on one particular source of information can
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easily become unapplicable. That is the reason why recent research in this area
has focused on developing techniques that rely on different sources of information.
Even if a measurement is available, it is not necessarily effective for all software
systems. FEmpirical studies on existing approaches have all shown that various
techniques, differing mainly in the utilized sources of information, are suitable for
various programs. That has encouraged researcher to investigate the use of different
information for prioritization (e.g., |16 112} 63]). Some have even tried automatic
identification of a technique that works better on a specific program [44]. More
importantly people have tried mingling different heuristics together and reported
improved performances [43] 83, 87]. Nonetheless, the proposed techniques are far
from being stable across all investigated programs. There is also a gap between the
theoretical optimal solutions to the problem and those of the proposed techniques.
These two factors indicate that more regression test optimization approaches are
indeed needed. Such approaches would ideally be able to use multiple sources of
information for their prediction and also provide flexibility in used measurement
techniques.

2.2 Software Measurement and Understanding

Software measurement and understanding are two areas of software engineering
which have seen a great deal of emphasis and advancement recently. Many ideas
from both of these research areas are relevant to the subject of this research work.
This chapter provides necessary information about aspects of these areas which are
more related to this research work.

Fenton, in his influential book on software metrics [48], argues that the field
of software engineering lacks and can benefit from more rigorous engineering ap-
proaches, for which measurements and metrics are fundamental necessities. There,
he gives the following definition for measurement :

Measurement is the process by which numbers or symbols are assigned
to attributes of entities in the real word in such a way as to describe
them according to clearly defined rules.

In the same book, Fenton mentions that one of the main ways in which engineers
can benefit from measurement is to “measure attributes of existing product and
current processes to make predictions about future ones”. Such prediction models
can be of great help to address the problem of regression testing. One can use
prediction models to estimate attributes that are believed to relate to the outcome
of regression testing and use the estimations to plan regression testing (i.e., select
or prioritize test cases).

The choice of measurement techniques to use and metrics to compute is an im-
portant issue. It mainly depends on what information are related to the regression
problem and also what is (cost efficiently) available. Based on the definition of
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the regression testing problem presented in Section [I.1] some related measurement
techniques can be identified. Modification of software artifacts is the main event
triggering introduction of regression faults. Therefore, it is only natural to look at
the evolution history of the product and identify the modified parts which should
be the focus of regression testing. Software quality measurement is another research
area conceptually related to regression testing. Quality metrics can be utilized to
spot fault-prone areas of code. One can re-test those areas more extensively in the
regression testing phase. Most importantly, measuring test coverage information
provides crucial knowledge for regression testing. Such information help to plan re-
gression testing such that a desirable coverage of some artifacts is achieved. Using
techniques of runtime analysis such as byte code instrumentation, one can measure
test case code coverage. Code coverage information constitutes the basis of most
existing regression testing techniques.

The rest of this section will touch upon each of the above areas.

2.2.1 Change Analysis

The notion of change in software, sometimes called software evolution, has been
widely studied and much has been written about it (e.g., [27, 82]). The area of
software regression testing heavily depends on change analysis in software. Two
main questions asked in this context are: i) what parts of software have changed,
and i) what parts are impacted by those changes. Software evolution is a wide
area of research (for the ongoing research see [92]); here, the focus is merely on
aspects of it that help answering the two aforementioned questions.

Regarding the first question, researchers have developed software differencing
techniques and tools that detect changes between two versions of a program. Vari-
ous differencing techniques use different representations of software. Typically, they
use some heuristics to match as many elements (in their specific representation) as
possible and mark the rest of elements as changed.

On the simplest form, one can look at source code as a text file and use lexical
differencing tools, such as GNU diff tool [34], to compare two text files line-by-line.
The wide availability of lexical differencing tools has rendered this approach as one
of the prominent ways of code differencing in practice. The drawback is that this
method ignores the structure of the code (from a software perspective) and hence
the results are not accurate by no measure. More sophisticated representations of
software, reflecting its structure, have been hence targeted by other approaches.
Researchers have proposed differencing algorithms based on software representa-
tions such as the Abstract Syntax Tree (AST) (e.g., [123]), Control Flow Graph
(CFG) (e.g., [2,66]), and program dependency graph (e.g., [68]).

The binary code have also been proposed as a suitable representation of software
for differencing purposes. BMAT (Binary Matching Tool), for example, performs
matching on data blocks and uses some heuristics to find most matched blocks [119].
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Sandmark [I14], a watermarking tool, has also implemented several byte-code dif-
ferencing algorithms that can compare methods or entire classes [26]. Sandmark
implements many diff algorithms based on a variety of criteria such as longest com-
mon subsequence (LCS) of instructions, positional relationship between variable
uses, number of matching basic blocks, maximum common subtree of two method
CFG’s, and LCS between the Constant Pools of classes.

Regarding the second question, that of finding change impacts, a huge body of
research exist that directly or indirectly addresses this question. Change impact
analysis, according to [7], is the task of identifying the potential consequences of a
change, or estimating what needs to be modified to accomplish a change. There, au-
thors classify change impact analysis techniques into two categories of source-based
(dependency) analysis and traceability-based analysis. The existing techniques of
regression testing are mostly code-based and as such use the first category of change
impact analysis techniques. Here, a brief description of change impact analysis tech-
niques most related to regression testing is presented; a comprehensive perspective
on the research in this area is presented in [§].

Research on regression testing techniques has involved change impact analysis
from early years. Harrold and Soffa have introduced a technique for analyzing the
change effects within a module [60]. They use an intermediate representation of the
code to detect structural and nonstructural changes. Their approach uses data-flow
graphs to identify the affected definition-use pairs and/or sub paths. In addition to
data-flow graph, control flow graph has been used by many approaches to identify
the affected control paths inside a module (e.g., [80, [104]). Abstracting this notion
to module interactions, White and Leung propose traversing the call graphs in
order to find a set of modules possibly affected by a change, the so-called firewall
of that change. Their work also encompasses a data-based definition of firewall
concept which uses the data flow graph to find affected modules due to coupling
through global data. The notion of firewall is also extended to the object-oriented
languages in [7§] to account for OO language structures such as inheritance and
polymorphism.

In a different trend, researchers have explored using the history of co-changes to
draw conclusions regarding change propagation (e.g., [I30]). The idea behind these
techniques is that if two entities change together frequently in the past, they are
likely to change together in the future as well. Mirarab et al. have extended these
approaches to account for both dependency analysis and history of change [95].

Finally, it should be noted that the research in this area is not by no means
limited to the aforementioned topics. Change analysis is an ongoing area of research
that gains more importance as software systems become more and more complex
and interconnected.
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2.2.2 Quality Measurement

Measuring the quality of software artifacts has been a major push in the software
engineering area. Software quality can be defined from different view points, some
of which are presented in [72]. One prominent view is that of Crosby [30], where
quality is viewed as conformance to requirements. This definition inherently puts
the emphasis on the notion of defect (non-conformance with requirements) as the
primary indicator of the lack of quality. Quality measurement, in this paradigm,
needs to focus on defects-related attributes. Measuring the presence of actual de-
fects in the current software system is a natural way of seeking that objective.
Many of the most-practiced quality assurance activities such as testing, code re-
view, and dynamic analysis, take this approach and essentially try to find and/or
measure bugs. A different but equally important aspect of defect-related measure-
ments is defect prediction. Engineers are interested to know how much, where,
and why defects can potentially occur in the system. Such measurements provide
a foundation of information upon which decisions about software engineering tasks
can be both planned and performed better [I02]. In this paradigm, many different
attributes of the software system are of interest because they can potentially be re-
lated to defects. For example, if a software system lacks “maintainability”, during
its evolution, the introduction of defects are likely.

The quality attributes of software systems are often divided to internal and
external. Internal attributes are those which can be measured purely in terms of
the product, process, or resource itself. FEzxternal attributes are those which can
only be measured with respect to the relations with environment [48]. External
quality attributes, such as reliability and maintainability, are what usually interests
costumers and managers. However, they are inherently hard to define and measure.
Internal attributes, on the other hand, are easier to define precisely and measure
accurately, but hard to interpret. This dilemma has encouraged the researchers to
investigate the correlation between these two sets of attributes, in hope of building
prediction/estimations models that use internal attributes to predict or estimate
external quality attributes.

Reliability is one of the external quality attributes which is of particular interest
to many stakeholder of any product. From testers’ perspective, it is helpful to
know which parts of the code are less reliable (or more fault-prone) so that the
testing effort can be focused on those areas. In the regression testing, specifically,
knowing fault-prone areas of code can be of great help because the test cases that
cover those areas can be given higher priority. Fault-proneness predictions have
been attempted using models that correlate the internal attributes (i.e., structural
design properties) of the available software system to fault-proneness. The following
section describes such models.
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Fault-proneness Models

Fault-proneness of a module (e.g., a class in an object-oriented system) is the num-
ber of defects detected in that module. Fault-proneness models are systematic
ways of predicting this attribute. Conceptually, they estimate the probability that
a software module has defects. In fact, measurement of fault-proneness is an indi-
rect way of looking at reliability. Many techniques has been proposed for building
such models , most of which use regression analysis E] or Al-inspired techniques to
exploit the software structural measures as potential indicators of fault-proneness.

Structural measures of code or design are ways of analyzing the structure of
the software artifacts in terms of the interaction between elements (i.e., modules,
classes, methods) or their hierarchy. There have been a great deal of effort to in-
troduce structural measures that correspond to external qualities of the system,
mainly reliability and maintainability. Starting with traditional functional pro-
gramming, many metrics has been introduced to measure different aspects such
as: lexical tokens [56], control graph [91], and inter-connection among statements
or functions [65]. With the advent of object-oriented paradigm, new metrics were
introduced to capture the special characteristic of OO languages [14], 21, 89, [121].
These metrics measure properties related to concepts such as complexity [64], cou-
pling [12], cohesion [I1], inheritance [23], and polymorphism [4]. Also, many em-
pirical studies have been conducted to examine if the proposed metrics (or metric
suites) are related to the faultiness of the code [3, [18§].

Many of these empirical study have focused on Chidamber and Kemerer (CK)
suite of metrics [21]. This suite consists of six different metrics: WMC (Weighted
Methods per Class), the number of all methods (member functions) defined in each
class; DIT (Depth of Inheritance Tree), the number of ancestors of a class; RFC
(Response For a Class), the number of functions directly invoked by methods of
a class; NOC (Number Of Children), the number of direct descendants for each
class; CBO (Coupling Between Object classes), the number of classes to which
a given class is coupled (i.e., it uses their methods and/or fields); LCOM (Lack
of Cohesion on Methods), the number of pairs of methods without shared fields,
minus the number of pairs of methods with shared fields. Basili et al. modified
these definitions slightly to fit C++ language and then formalized six hypotheses
(one for each metric) that captures the potential relation between the metrics and
the fault-proneness of the code [3]. The results they obtained validated some of
those hypotheses, did not prove some, and contradicted with the hypotheses in one
case (NOC).

Based on the aforementioned studies, many other empirical studies have been
conducted to evaluate the power of fault-proneness prediction models, using differ-
ent metrics specially those of CK suite [13, [32] 45 55, 97]. A comprehensive account
of those studies is given in [10]. Most of the empirically evaluated models use regres-
sion analysis techniques (such as logistic or linear regression) for prediction. These

1 a widely used mathematical method to predict an unknown variable based on one or more

known variables (no relation to regression testing).
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techniques are, in principal, statistical methods of relating Independent Variables
(IV), quality metrics in our case, to Dependent Variables (DV), i.e., fault-proneness.
There are two types of regression analysis: univariate - those which evaluate the
relation of merely one IV to the DV-, and multivariate - those which combine mul-
tiple I'Vs to predict a DV. To use multivariate models, one should “train” the model
on a second program (hopefully built by the same development team and process)
and apply the potentially biased model to the system in question. This costly step
is needed because building a multivariate regression model is essentially a learning
task which calls for a learning data set. Briand et al. have empirically evaluated the
application of multivariate models, when used across software projects [13]. Their
experiments show that using models from one system for another significantly drops
its performance. However, they argue that they are still good prediction model of
fault-proneness, the output of which should be treated with caution.

Another option for fault-prediction is to build models merely based on one met-
ric. Although most of the works in the literature perform univariate analysis, the
author is not aware of studies which build univariate prediction models and evalu-
ate their performance. A univariate model can be a pre-determined function of one
metric and hence does not need to be trained on a second data set (program). The
univariate analysis from literature (e.g., from [13] and [55]) indicate that measures
of complexity and coupling are better indicators of fault-proneness. Moreover, an
empirical study on the relation between APFD measure and software metrics pre-
sented in [42] suggests same metrics can be of great help for early fault-detection.

To wrap up this discussion, it is important to mention how one can use the
results of predictive models. Once a prediction model is built, and after validating
that it is a fairly accurate model, the next step is to make decisions based on the
output of that model. The main promise of predicting fault-proneness is that the
results can help quality assurance activities (e.g., testing) to focus on fault-prone
parts of the code. It will be helpful for testers to have techniques that use the
results of fault-proneness predictions to assist their tasks.

2.2.3 Test Coverage Measurement

The notion of test coverage is an indispensable part of testing practices and more
so of the academic research on the subject. A major part of research in testing area
concerns ways of generating test suites that achieve specific criteria of coverage
(e.g., [53, 103]). From test generation perspective, one needs to build a test suite
that is adequate according to a coverage criterion [128]. The notion of coverage,
however, is not restricted to test case generation. Regression testing techniques
typically engage coverage information extensively as well. In this context, we are
interested to measure the coverage of test cases that already exist. Although cover-
age can be defined regarding various artifacts involved in software life cycle (most
notably requirements), it is most commonly defined in terms of code constructs.

Code coverage measurement is the task of identifying code constructs that are
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exercised through the execution of a test case. The promise behind using any
measure of code coverage is that the more code coverage a test suite achieves, the
more confidence it provides regarding the reliability of the system under test. If we
assume a deterministic model of software behavior, where an specific input always
results in the same execution path, the coverage of a test case remains unchanged
from a run to another. Such data provide a dependable characteristic of the test
case and can be used in different testing activities to understand test cases better.

Targeting specific code constructs yields different coverage metrics. Researchers
have defined many criteria of coverage such as branch coverage, basic block cov-
erage, and definition-use coverage. Statement coverage, for example, indicates
whether a particular statement of the code (or an encoding of it such as byte
code) is executed by a test case.

To measure coverage of a test case, one can trace the execution path of the
program while running the test case, a task known as program profiling [79]. That
could be done through modifying the code by inserting some additional code that
records events occurring during the execution. The additional code is called in-
strumentation code and the process is referred to as code instrumentation. Code
instrumentation is an automatic task that could be performed at different stages
of programs’ compilation. Instrumenting executable files directly has the merit of
not affecting system tools such as compilers or linkers. It also facilitates a detailed
measurements and simplifies the whole process because programs need not recompi-
lation. Instrumenting executable files, in general, has three steps. First, the original
program needs to be analyzed in order to capture the structure of the code. The
result of this analysis is then used to create the instrumentation code and find the
places where it should be inserted. Finally, the byte code is modified by inserting
the instrumentation code such that the program’s behavior is preserved. Once the
byte code is instrumented, test cases could be executed on it; the recorded traces
of the events can be then used to infer the coverage of each test case.

In the context of regression testing, coverage information from the previous
version of software is usually used. To measure coverage of a test case one needs
to instrument and then execute it. That defeats the purpose of regression testing
optimization which is to avoid re-running unnecessary test cases. To deal with this
problem, researchers have conjectured [I07] and evaluated [4I] that the coverage
data gathered from the previous version, if available, can be a reasonable estimate
of current coverage data. Therefore, coverage-based regression techniques assume
when running test cases on a previous version, the byte code had been instrumented
and the coverage information had been gathered. The available coverage data can
guide the regression test optimization of the current version.

2.3 Probabilistic Modeling and Reasoning

The probability theory provides a powerful way of modeling systems. It is specially
useful for situations where the effect of events in a system are not fully predictable
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and a level of uncertainty is involved. The behavior of large complex software
systems are sometimes hard to precisely model and hence probabilistic approaches
to software measurement have gained attention.

In the center of modeling a system with probability theory is to identify events
that can happen in the system and model them as random variables. Moreover, the
distribution of these random variables also need to be estimated. The events in the
real systems and hence the corresponding random variables can be dependent on
each other. Bayes theorem provides a basis for modeling the dependency between
the variables through the concept of conditional probability. The probability distri-
bution of random variables could be conditioned on others. This makes modeling
systems more elaborate but also more complex. Different modeling techniques have
been developed to facilitate such a complex task.

Probabilistic graphical model are one family of such modeling techniques. A
probabilistic graphical models aims to make modeling system events more compre-
hensible by representing independencies among random variables. A probabilistic
graphical model is a graph in which each node is a random variable, and the missing
edges between the nodes represent conditional independencies. Different families
of graphical models have different graph structures. One well-known family of
graphical networks, used in this research work, is Bayesian Networks.

2.3.1 Bayesian Networks

Bayesian Networks (BN) (a.k.a “Belief Networks” and “Bayesian Belief Networks” )
are a special type of probabilistic graphical models [T01]. In a BN, like all graphical
models, nodes represent random variables and arcs represent probabilistic depen-
dency among those variables. The missing edges from the graph, hence, indicate
that two variables are conditionally independent. Intuitively, two events (e.g., vari-
ables) are conditionally independent if knowing the value of some other variables
makes the outcomes of those events independent. The conditional independence
is a fundamental notion here because the idea behind the graphical models is to
capture these independencies.

What differentiates a BN from other types of graphical models (such as Markov
Nets [74]) is that it is a Directed Acyclic Graph (DAG). That is, each edge has a
direction and there should be no cycles in the graph. In a BN, in addition to the the
graph structure, the Conditional Probability Distribution (CPD) of each variable
given its parent nodes should be specified. These probability distributions are often
called the “parameters” of the model. The most common way of representing CPDs
is using a table called Conditional Probability Distribution Table (CPT) for each
variable (node). Each possible outcome of the variable forms a row, where each cell
gives the conditional probability of observing that outcome, given a combination
of the outcomes of the parents of the node. That is, these tables include the
probabilities of outcomes of a variable given the values of its parents.
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Figure 2.1: Wet Grass example for Bayesian Networks. (A) The Network, (B)
Inference.

As an example consider the Figure 2.1 Part (A) illustrates a simple BN with
four nodes. The variable (node) “Cloudy”, meaning whether it is cloudy today,
can cause rain, represented by “Rain” variable. The edge from “Cloudy” to “Rain”
represents this causal relation. Also there is a “Sprinkler” variables which indicates
whether a sprinkler is off or on. If the the weather is cloudy, the sprinkler is
supposed to be off but it is not always the case. This relation is captured in the
edge from “Cloudy” to “Sprinkler”. Finally, we have a “Wet Grass” variable which
indicates whether the grass is wet. Either a rain or the sprinkler can cause the grass
to become wet, a causal relation captured in the edges to the “Wet Grass” variable.
In the figure, we also see the CPT tables for each variable. For example, the CPT
for “Wet Grass” node indicates that if the ”Sprinkler” is off and it is “Rain”ing,
there is a 90% chance that the grass is wet.

The nodes of a BN can be either evidence or latent variables. An evidence
variable is a variable of which we know its values (i.e., it is measured). Bayesian
Networks can be used to answer probabilistic queries. Most importantly, based on
the evidence (observed) variables, the posterior probability distributions of some
other variables can be computed. This process is called probabilistic inference and
is the main way of using a BN once it is built. Part (B) of the Figure [2.1]illustrates
an example of inference in the wet grass example. If we observe that it is cloudy
today, we can use the BN to infer that there is 80% chance of a rain and only 10%
chance of the sprinkler to be on. Following the Bayes theorem, and considering that
Rain and Sprinkler variables are conditionally independent, gives us the following:
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P(WetGrass) = P(WetGrass|Rain, Sprinkler) x P(Rain, Sprinkler)
+P(WetGrass|—Rain, Sprinkler) x P(—Rain, Sprinkler)
+P(WetGrass|Rain, =~ Sprinkler) x P(Rain, —~Sprinkler)
+P(WetGrass|—Rain, ~Sprinkler) « P(—~Rain, ~Sprinkler)

= 099%0.8+%0.14+09*%x02%x0.1409%x08%x0.9+0x0.2x0.9
= 0.75

The above simple computation shows the basic idea of inference in a BN; how-
ever, the inference problem can get very hard in complex networks. The compu-
tation we just saw is an example of the so-called forward (causal) inference, an
inference in which the observed variables are parent of the query nodes.The infer-
ence could be done backwards (diagnostic), from symptoms to causes. The inference
algorithms typically perform both type of inference to propagate the probabilities
from observed variables to the query variables. Researchers have studied the in-
ference problem in depth [29]. It is known that in general case the problem is
NP-hard [28]. Therefore, researchers have sought different algorithms that per-
form better for special cases. For example, if the network is a polytreeﬂ7 inference
algorithms exist that run in linear time with the size of the network. Also approx-
imate algorithms have been proposed which use iterative sampling to estimate the
probabilities. The sampling algorithms sometimes run faster but do not give the
exact right answer [31]. Their accuracy is dependent on the number of samples and
iterations, a factor which in turn increases the running-time.

Designing a BN model is not a trivial task. There are two facets to modeling
a BN, designing the structure and computing the parameters. Regarding the first
issue, the first step is to identify the variables involved in the system. Then, the
included and excluded edges should be determined. Here, the notions of conditional
independence and casual relation [70] can be of great help. It is important to make
sure that conditionally independent variables are not connected to each other. One
way to achieve that is to design based on causal relation: an edge from a node to
another is added if and only if the former is a cause for the latter. For computing
the parameters, expert knowledge, probabilistic estimations, and statistical learning
can be used. The learning approach has gained much attention in the literature due
to its automatic nature. Here, learning means using an observed history of variable
values to automatically build the model (either parameters or the structure). There
are numerous algorithms proposed to learn a BN based on history data, some of
which are presented in [62].

One situation faced frequently when designing a BN is that one knows the
conditional distribution of a variable given each of its parents separately, but does
not have its distribution conditioned on all parents. In these situations, Noisy-
OR assumption can be helpful. The Noisy-OR assumption gives the interaction

2a graph with at most one undirected path between any two vertices.
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between the parents and the child a causal interpretation and assumes that all
causes (parents) are independent of each other in terms of their influence on the
child [126].

2.4 Summary

This chapter has presented three different lines of research that relate to the sub-
ject of this thesis. First, the literature of regression testing, as the problem subject,
has been surveyed. The survey have revealed that techniques of regression testing
are heavily dependent on software measurement. Specially, three areas of software
measurements have been identified to be of particular relevance to the regression
testing problem: change analysis, quality measurement, and test coverage measure-
ment. The second section of the chapter has looked into each of these three areas
in further details, always keeping regression testing problem in sight. As the name
of the thesis suggests, the proposed framework is based on a probabilistic model.
As background information, an overview of the probabilistic models used in this
research, specially Bayesian Networks has been given.

The later parts of this dissertation use the provided background information
in this chapter in different ways. The arguments made to justify the framework
relies on the presented literature survey. The framework that is presented in the
next chapter is heavily based on the measurement techniques and also the Bayesian
Networks described here.
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Chapter 3

The BN-based Framework

Regression test optimization, as described in Section often concerns the fault
detection power of the resulting test suites. Test case prioritization, for instance,
usually is performed to speed up the fault detection. Since regression test optimiza-
tion precedes regression test execution, fault-revealing capabilities of test cases are
not yet known at this phase. Therefore, one can not optimize the test cases based
on whether they would find bugs. However, other characteristics of a test suite
heuristically correspond to its fault-revealing power. One could devise heuristics
exploiting those characteristics to optimize test suites for better fault detection.

Any heuristic regarding fault detection estimates how likely test cases are to find
faults. In other words, a heuristic typically uses some sort of available information
to estimate the probability of a test case finding faults. For example, coverage-
based approaches to test case prioritization (e.g., [110] [[) use the achieved coverage
of a test case (available from a previous test execution) to estimate its probability
of revealing a fault. They hypothesize (form the heuristic) that the more coverage
a test case provides, the more likely it is to reveal faults; therefore, the probability
of a test case finding bugs is correlated to its achieved coverage. Based on this
heuristic, they prioritize test cases according to their code coverage. Estimating
the probability of test cases finding faults is implicit in most existing approaches.
How to estimate such probabilities (what heuristic, using what information) is
indeed what differentiates the proposed techniques.

This research work aims to address the regression test optimization problem
from an explicitly probabilistic point of view. The proposed framework explicitly
captures fault-related heuristics into a probabilistic model and makes predictionsﬂ
accordingly. Many software measurements provide heuristic data regarding the
fault-revealing probability of test cases. The proposed framework in this chapter
uses a probabilistic modelling tool, namely a Bayesian Network (BN), to relate

'More information provided in Section
2Despite some technical differences, in this context, terms prediction and estimation are used
interchangeably. Fault-revealing probabilities of test case are estimated; their outcome predicted.
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such data and draw probabilistic conclusions as to how likely a test case is to reveal
faults. As such, the proposed approach is named a BN-based framework.

The problem of test case optimization is broad. Finding the probability that
each test case reveals faults can be used to solve many, though not all, instances
of this problem. Most naturally, such probabilities can prioritize test cases for
faster fault detection: test cases can be simply ordered based on their estimated
probabilities of fault detection. Or, probabilities could be used to select a subset
of test cases of a predetermined size (i.e., size-constrained test case selection).
Alternatively, one can consider a threshold on the probability figures and select all
test cases above that threshold. However, note that not all instances of regression
test optimization problem are solvable using this framework. Most notably, safe
test case selection (or any selection that guarantees some coverage Criteria)ﬂ could
not be implemented using probabilities. Relying on the probabilities, the proposed
approach (at least at its current stage) does not provide any means of guaranteeing
properties related to the resulting test suites.

Proposed BN-based framework seeks the following research and practical goals:

e Increasing the precision of the optimization through the use of multiple heuris-
tics and measurements. Since introduction of faults to the system is a prob-
abilistic process (i.e., it could not be fully modelled and predicted) any re-
gression technique is based on heuristic measures. Each heuristic uses some
available data as indicators of where faults might reside to predict the fault
revealing abilities of test cases. As such, aggregating many heuristics should
be fruitful. A multi-heuristic solution is likely to perform better and more
consistency because in predicting a probabilistic phenomena, combining dif-
ferent correlated data can help mitigate the shortcomings of any single indi-
cators. The proposed framework aims to facilitate the logical incorporation
of different heuristics into one model and hence provides a more sophisticated
estimation regarding fault revealing capabilities of test cases.

e Providing flexibility in terms of which heuristics and measurements to use.
Existing studies in software measurement have established that the fault re-
vealing power of different measures vary across software projects. Moreover,
not all measurements are available for reasonable cost in all environments.
An approach that provides flexibility in terms of input measurements can
help test engineers adapt their regression test optimization techniques to the
realities of their environment based on their intuition or empirical experience.
This framework aims to provide flexibility in measurement techniques.

The following section provides an overview of the proposed BN-based framework
in a general sense. A later section elaborates on a process to realize and implement
the general framework.

3More information presented in Section m
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3.1 Overview

The proposed framework could be thought of as a general approach to the opti-
mization problem that needs to be realized before being applied to a particular
environment. This section presents an overview of the underlying ideas behind
the framework and how it generally works. How to implement these ideas to get
realizations for specific environments follow in later sections.

Recall that proposed framework addresses the problem of regression test opti-
mization for better fault detection from a directly probabilistic point of view. It
seeks to estimate the probability that each test case reveals a fault if executed in
the regression testing phase. When the goal of optimization is to increase fault
detection power (i.e., rate), such estimations could be directly used to prioritize or
select test cases. To predict the outcome of test cases, like any other prediction,
one needs to first model the events that lead to the event in question and then use
available measurements from the system to come up with numerical estimationsﬂ

3.1.1 Events and Variables
The regression test system can be characterized in three sets of events:

(i) Artifact Change: everything starts with a change in a software artifact that
has been previously verified and/or validated.

(ii) Fault Introduction: those changes may lead to the introduction of regres-
sion faults in the changed or change-impacted artifacts.

(iii) Regression Test Execution: testers re-execute existing test cases that
attempt to reveal introduced faults.

These three categorizes of events capture, essentially, the entire scenario that
affects the outcome of a regression test execution. Clearly, this characterization is
a general one and, in specific environments, finer-grained events could be identified.
Nonetheless, having these categories enables us to model the system. The uncertain
nature of these events (as reflected in the use of may) encourages their modelling
using probabilistic tools. In probabilistic modelling, events are captured using
random variables.

Given a set of software artifacts of interest {a; ... a; ... an}E] and also a test suite
< ty...t;...t, >, the above events are modelled through three sets of random
variables:

4For a discussion on measurements in software prediction the interested reader may refer to [48]

5A software artifact, here, can refer to any entity in software development life-cycle and in
any level of abstraction. It can refer to a use case in requirements documents, a component in a
design documents, or a structure in source code (such as a class, method, or statement), or even
an element of byte code (such as a basic block). Any realization of this general framework needs
to specify the exact meaning of an artifact
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(i) C' Variables: change in any artifact a; is a random variable C; with two
possible values: changed and unchanged.

(ii) F Variables: the existence of a regression fault in an artifact of interest a;
is a random variable F; with two possible values: faulty and sound.

(iii) 7" Variables: the result of executing a test case ¢; is a random variable Tj
with two possible value: failed and passed. [

Associated with each random variables is a probability distribution P(X) that
indicates our estimate of the likelihood of each of the two possible outcomes. Of
these three sets of variables, the distribution of some can be observed (i.e., can
be measured from the software system). Change variables, for example, could be
measured by looking at consecutive versions of software and identifying changes.
Distribution of others, however, such as F' variables could not be directly measured.
What we are trying to find is the distributions of the last set of variables P(7})s. G
variables are also not observed variables because before running test cases we can
not be assure of their value.

3.1.2 Variable Interactions

Looking at the probability distribution of variables in isolation ignores the inter-
actions between them. Looking back at the description of the three sets of events,
it is evident that there is an interaction between variables: a change plausibly
leads to introduction of faults and faults plausibly lead to the failure of test cases.
Therefore, from a probability theory point of view, these events are not all indepen-
dent from each other. Provided a full system of conditional distribution functions,
where each variable is conditioned on the combination of all other variables, one
can theoretically infer a posterior distribution for unknown (query) variables based
on observed variables using Bayes’ theorem (as described in Section [2.3). Such a
task of probabilistic inference is computationally complex and infeasible in systems
of large size. Modelling such a system, moreover, requires distribution functions
conditioned on all the combinations of all other variables. This makes the task of
modelling intractable.

In real systems, however,although most variables are dependent, many are con-
ditionally independent, meaning that knowing the distribution of a third variable
makes their outcome independent. The notion of conditional independence, al-
though different, is related to causal relations: if A is not caused by B, and if

6All the events are modelled as binary variables with two possible outcomes. This does not
necessarily need to be the case in modelling the described system of events. Change variables, for
example, could have three values of changed, unchanged, and change-impacted. Binary variables
are used here because they are easier to present and also simpler to model. The use of binary
variables allows us to think of them as true/false variables with the first mentioned value as true
and the other as false. For example, P(C; = changed) could be simply denoted by P(c¢;) and
P(C; = unchanged) by P(—¢;). Such a notation is used throughout this work.
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its real cause (C') in known, A could be designed to be conditionally independent
of B because knowing the distribution of C' makes the outcome of A independent
of B. Knowing causal relations, one can assume variables that do not cause each
other directly are conditionally independent to simplify the system both in terms of
modelling and inference. Essentially, one needs to state the distributions of a vari-
able conditioned merely on those on which it is conditionally dependent. In other
words, conditioning a variable on those from which it is conditionally independent
is not necessary. By modelling lack of causal relation as conditional independency,
a variable needs to be conditioned only on its causes. This property is what makes
the notions of causal relations of interest.

In the system described above, we assume that the following are the only causal
relations.

(i) Faults (F variables) may be caused by changes (C' variables).

(ii) The failure of test cases (T variables) may be caused by the existence of faults
(F variables).

Therefore, in the model proposed by this framework an F' variable is conditioned
only on C variables and 7" variables are conditioned merely on F' variables. That is
the model assumes that T variables are conditionally independent of C' variables;
a property that makes sense because knowing the outcome of F variables (whether
software is faulty) makes the outcome of C' variables (whether software has changed)
unimportant. Based on these assertions, three sets of distribution functions are
required in order to complete the modelling of the system: P(C), P(F|C) and
P(T|F).

3.1.3 Distribution Functions

Distribution functions should be based on numerical values that reflect the system
in question. In practice, one needs to look at the history or properties of a system
in order to estimate probability distributions. Software measurement techniques
provide us with numerous ways of extracting information regarding the character-
istics and the history of software. Such information could be used to estimate the
required probability distributions. For the three required set of distributions (P(C),
P(F|C) and P(T|F)), the following measurements are required respectively:

e identifying whether a software artifact has changed since the previous version.

e estimating the probability that an artifact becomes erroneous as a result of a
change in the system.

e assessing the probability of a test case finding a fault residing in an artifact
it exercises.
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These items each correspond to a well-studied topic in software measurement
area. ldentifying changes is the subject of change analysis. The probability of
fault introduction to an artifact depends on its quality. Mathematical models exist
that utilize metrics of quality to estimate the fault-proneness of software artifacts.
The probability of a test case finding a fault contained in an artifact could be es-
timated by the coverage that it provides on that artifact. These three areas of
software measurements are explained in Section [2.2] As described there, a variety
of measurement techniques and metrics have been developed for each of these three
categories. Experiments have revealed that the prediction power of these techniques
vary across different projects [I0]. To get more accurate estimates, therefore, one
needs to choose metrics based on the specific environment where the framework is
used. Engineers can choose specific metrics based on their experience and knowl-
edge of the system in question. Empirical studies on the history of the project (or
similar projects) can also help selecting suitable metrics.

Once the specific measurements to be used are chosen, the corresponding metrics
need to be calculated from the software system. Based on calculated numbers,
then, the required probability distributions can be calculated. That could be done
by assuming a functional form and estimating the parameters using available data.
Alternatively, one can simply manipulate (e.g., normalize) the gathered numbers
to estimate probability values that form the distributions.

To sum up, we saw how the proposed framework first models the system using
tree sets of random variables. Then, we saw how some of these variables can cause
the others and how assumptions of conditional dependency can be use to model
them. Next, we saw that the distribution of the variables conditioned on the other
variables can be estimated using software measurement techniques. Now, for the
proposed framework to achieve its goal, a modelling tool is needed that can put all
these data together. Such a tool should also provide a means of probabilistically
inferring the distribution of 7" variables using all the gathered information.

3.1.4 General BN Design

As described in Section a Bayesian Network is a tool to capture conditional
independence among variables and to facilitate probabilistic inference. These char-
acteristics make BNs the exact tool needed here. It is the natural choice to model
the described system given the aforementioned summary of what this framework
intends to accomplish. Bayesian Networks are suitable modelling tools here be-
cause:

e They provide a means of probabilistic modelling of a system. Particularly,
they allow modelling causal relations in a system as conditional dependencies
and explicating conditional independencies. This, in turn, facilitates incor-
porating many sources of information into a single model based on logical
relations between them (causal relations) rather than ad-hoc gluing.
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e They enable inferring the posterior probability distributions of random vari-
ables of interest, given any information about other variables of the system.
The literature of BN is rich with algorithms of probabilistic inference devel-
oped for networks with different properties.

e They are graphical models that could be easily understood and manipulated
by engineers if necessary. Moreover, a handful of tools exist to help build,
understand, and modify BN models.

This BN-based framework, as the name suggests, uses Bayesian Networks to put
all the pieces of the puzzle together. A BN, a DAG of random variables, is comprised
of nodes, arcs, and Conditional Probability Tables (CPT). Nodes represent random
variables, arcs indicate conditional dependencies among those variables, and CPTs
are tabular representations of distribution functions. These three elements are
designed as follows.

Nodes: All identified random variable (C;s, F;s, and Tjs) are represented each as
a node. Corresponding to each artifact a; in the system are two nodes (a C;
and a F;) and to each test case t; is one node (7).

Edges: Based on identified causal relations, two sets of edges should be present in
the model: C; — Fj, (C'F edges) and F; — T (FT edges).

CF : A change in artifact a; can cause faults in a; or those artifacts impacted
by it. Therefore, C'F' edges are for sure needed from a C; node to the cor-
responding F;. In addition, if another artifact ay, is likely to be impacted
by changes in a;, a C'F edge could be made from C; to F}. This consid-
eration of change impacts complicates the model significantly both from
modelling and computation perspectives. A particular implementation
of the framework can choose to account for such effects or not.

FT : A test case t; can reveal a fault in an artifact a; only if it exercises that
artifact. Therefore, F'T" edges are required from an F; node to a 7T only
if t; covers a,.

CPTs Associated with each set of random variables is a CPT.

CPT(C) : Having no parent nodeq| these CPTs include only one cell holding
the P(c;) value. The probability of change in an artifact is observable
by differencing consecutive versions. This value is typically either 0 or 1
(either changed or not). As a trick, one could use the extent of change
to come up with a probability number in [0,1] interval. In that case, this
figure should be interpreted as the probability of effective change.

"A node A is said to be the parent of B if there is an edge from A4 to B
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CPT(F|C) : The values in this table indicate the probability of fault intro-
duction to an artifact. As mentioned before, models of fault-proneness
should be used to estimate these probabilities. Those models use mea-
sures of quality to associate with each artifact a relative number in-
dicating its fault-proneness. Those numbers can be normalized to get
probability values for cells of this CPT. In case of including change im-
pact edges, effects of other artifacts should be also measured (through
change impact analysis) and incorporated into this table.

CPT(T|F) : Since a T variable can be conditioned on many F' variables, these
CPTs can potentially have numerous cells. The CPT of a T variable
should, in the general form, have probability values for all the combina-
tions of the outcomes of parent F' variables. For example, if a test case
is covering five artifacts, its distribution is conditioned on five binary
variables and as such 32 different probability values should be specified.
Estimating all these values directly is a daunting task. Using the Noisy-
OR assumption (described in Section [2.3.1)), one can reduce the table to
five numbers, each for estimating the effect of one F' variable on the T
variable. Generally, Noisy-OR allows specifying the effect of each cause
on a variable separately. The assumption, informally, is that the event of
(not) revealing faults by a test case in one artifact is independent from
those of other artifacts. Based on the characteristics of the test suite this
might be a reasonable assumption. Nonetheless, here this assumption is
made because of the simplicity it provides. With this assumption, we
only need the probability values for each test case finding faults in each
artifact regardless of the state of the others. Such a probability could
be easily estimated by the coverage that a test case provides on that
artifact. The Noisy-OR assumption, then, combines all these separate
estimates to get one CPT.

Once a BN is built to model the software system, it could be used to infer the
probability distribution of T" variables.

3.1.5 Probabilistic Inference

Algorithms of probabilistic inference can be used to automatically compute the pos-
terior distribution of variables given a BN model and any observed variable. These
algorithms, in essence, propagate the probability distributions from known variables
to unknowns. Bayes’ Theorem is used to derive such a propagation. In the case
of the proposed BN, distributions are propagated from C' to F' variables and then
from F to T'nodes. A resulting P(¢;) number indicates the probability of a test case
t; finding faults. Such a number, in short, is based on the coverage that t; provides
on the artifacts that are fault-prone and also changed or change-impacted. These
numbers are useful for regression test optimization. An optimization algorithm is
needed to use these numbers for building the final optimized test suite.
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In case of size-constrained test case selection, where a predetermined number of
test cases need to be selected, one optimization algorithm is to simply choose test
cases that have higher probabilities. Another algorithm, as Kim et al. suggests [73],
is to select test cases randomly based on their probability distributions. This can
help finding the residual faults. For prioritization, sorting test cases based on their
probability of finding faults is the simplest algorithm of optimization.

Just as feedback is used in code-coverage-based prioritization techniques (as
described in Section 2.1.2), it can also be used here. A greedy optimization al-
gorithm can incorporate feedback by adding test cases to the prioritized order in
iterations. In each iteration, first, the probabilistic inference is performed; then,
one or more test cases that have higher probabilities of revealing faults are added
to the prioritized order; finally, those test cases are marked as observed variables
with P(t;) = 0. The iterations are halted when all the test cases have been added
to the final order. This greedy framework has the advantage that the effects of
adding each test case to the prioritized order are taken into account for the next
selection. This algorithm is used here for optimizing test cases}

The provided overview have clarified the ideas behind the proposed framework.
It has been described in high levels of abstraction and for a general regression test
environment. Mathematical basis of the approach and the reasons behind using
different tools and measures have also been presented. To apply this framework,
one needs to develop a implementation of it. Such an implementation would be
based on specific choices of software artifacts, specific levels of granularity, spe-
cific measurement techniques, etc. The next chapter of this dissertation presents
one implementation of the framework which is applicable in a wide range of sys-
tems. Before that, the rest of this chapter presents a general process model for
implementing the framework.

3.2 The Process Model

The presented BN-based framework is a general one which needs realization (or im-
plementation) before it could be used. A realization needs to give many details that
have been intentionally left unspecified. To enable an implementation, one needs
to decide on factors such as: the exact definition of an artifact, exact measurements
for probability estimations, and the exact topology of the BN.

Figure depicts the process of implementing a realization. The diagram de-
picts two different processes. The first process is that of BN-based Framework Real-
1zation. The result of this process is an implementation of the BN-based framework
in the form of a regression optimization tool. This tool is used in the second part of
the figure, regression testing process, by software test engineers in order to plan the
regression test phase. After planning, testers execute the created regression test
suite and evaluate the results. The knowledge gained from test execution, in turn,

8The details of the algorithm are presented in Section
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could be potentially used to recalibrate the implementation. Calibration of the tool
basically means repeating the process of realization with the new knowledge about
the prediction power of metrics in hand. As a result of the new knowledge, different
metrics and design decisions could be made and the final tool can change.

[ BN-based Framework Realization

I |
| Selected BN |
| [ Measurements | Metrics BN Detailed | P&5'9" Tool Support :
I Investigation Design Implementation |
|

I |

P <

= A Calibration
Regression
Optimization Tool

Regression
Test Suite

Required Flow Optional Flow Testing Activity Approach Realization Activity
—

Figure 3.1: The Process of Realizing the BN-based Framework

The process of realization, the focus of this section, is contains three main
tasks. First, a phase of measurement investigation is required in order to decide
what artifacts and metrics should be included in the model. Then, based on the
results of the investigation, one needs to settle on a BN detailed design which shows
how exactly a BN should be built based on available data (i.e., metrics). Based on
that design, tool support implementation is done to get the regression optimization
tool that realizes the framework. Each of these steps is further explained in the
following sections.

3.2.1 Measurement Investigation

As explained, a realization needs to specify what an artifact is and what metrics
are being used. These two questions are related and must be answered together.

The term artifact here can refer to any entity in software development life-cycle
and in any level of abstraction. A use case in requirements documents, a component
in design documents, a structure in source code (such as a class, method, or state-
ment) or byte code (such as a basic block) are all example of what can be defined
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to be an artifact. This flexibility is provided because in different environments,
different information are available to testers. Even when all information available,
dealing with some artifacts can be simply less costly than others. For example, in
the processes deploying Requirement-based Testing (RBT), information regarding
requirements are easier to gather. Or, in large distributed heterogenous systems,
dealing with source/byte code directly can be very costly.

In choosing what an artifact is, one needs to make sure that the three sets of
required measurements can be cost-effectively gathered. Measuring change in the
artifact should be possible, its quality should be quantifiable, and the coverage of
test cases on it should be traceable. When information available about different
artifacts, then those that could be more accurately measured are a better choice.
Lower level artifacts (such as code related structures) are naturally easier to measure
precisely than higher level ones (such as requirements). As a rule of thumb, the
most low level artifacts for which required measurements are meaningful and also
cost-effectively available are a good choice.

Even with an exact definition of artifacts, many different metrics could be still
available for each of the three sets of required measurements. Changes in byte code,
for example, could be measured through a handful of algorithms (some described
in Section . In fault-proneness measurement even more options are available.
The notion of quality is inherently vague and hence measuring it is a daunting task;
an abundance of different techniques and metrics are proposed for this purpose. In
this step, we need to also choose among these alternatives.

Considering that measurement in this framework is a means of probability es-
timations, in an ideal situation, the choice of metrics would be based on empirical
data regarding the prediction power of a metric. If data are available from previous
projects or releases regarding where faults resided, what test cases detected them,
and so on, one can use mathematical tools to compare the prediction power of
measures. Statistical methods of computing correlation and regression analysis [25]
are examples of such mathematical tools. In reality, however, these data are not
available most of the time (engineers do not have enough motivation to gather and
analyze such data). Therefore, the choice of metrics need to be made based on the
intuition of testers and the results of existing research regarding prediction power
of the metrics. An overview of measurement techniques is presented in Section [2.2]

3.2.2 BN Detailed Design

A generic BN design has been introduced in Section There are, however,
details regarding the network topology that need to be decided separately for each
implementation. Based on the definition of the artifacts and the metrics to utilize
(available from the last step), the shape of the BN is clear for the most part. Still,
there are flexibilities in the design of BN that should be addressed.

One issue, here, is whether C'F’ edges are required from a C' node to F' nodes
of other artifacts. That is, whether change impact should be considered. The
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investigation of available measurements from the previous step answers this question
partially; for change impact edges to be included, one needs to have measures of
change impact. If such measures are available, one may still decide to discount
them because of the computational complexity that they impose on the inference.

Another issue is how the gathered measures should be represented in the CPT
(tables) of the BN. Collected metrics are typically not probability values but rather
relative numbers that show the strength of relations. One needs to derive prob-
ability distributions from such numbers. One way of achieving that is through
normalizing the value. Finally, note that if the goal of optimization is merely prior-
itization, the method of deriving probabilities is less important because the relative
position of test cases is not significantly impacted. The absolute probabilities, on
the other hand, are affected and hence if those numbers matter for the goal of opti-
mization, probability derivation should be performed carefully, by using historical
data for example.

3.2.3 Tool Support Implementation

Implementing a designed BN to get the optimization tool is a relatively straight
forward task. To assist such implementations, a general implementation model is
presented here. This model lays out different components that comprise the frame-
work. Specific realizations differ in how they exactly implement these components.

A schema of a generic implementation is illustrated in Figure |[3.2l There are
three main steps involved as follows.

Collecting Measures applies measurement techniques to gather the data that
is to be included in the model. Three main sets of data need to be collected
and correspondingly three sub-steps are required: change analysis, fault-proneness
modelling, test coverage calculation. Typically, existing tools are used in order to
make these measurements. Also, note that theses measurements are not necessarily
automatically generated. In some cases (for example when informal requirements
are the underlying artifacts) required metrics could be estimated by involved people
and based on their intuition.

Building the BN creates an actual BN for modelling the system based on
the gathered measurement data. Building a BN involves two tasks of Creating
the Graph Structure and Computing the CPTs. From framework realization, a
particular design for the BN is available. That design details the topology of the
graph to be built and also the method of deriving of CPTs. Based on that detailed
design, this step automatically builds a BN modelling the whole system. Creating,
manipulating, and using BNs are by nature hard tasks that need to account for
many mathematical details. Fortunately, there exist a handful of off-the-shelf tools
that facilitate these tasks (a comprehensive list is provided in Appendix B of [76]).
Some tools provide APIs to work with; using those tools enables automatic creation
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Figure 3.2: A Generic Implementation for the BN-based Framework

of the model. These tools also provide means of persisting a BN using special XML-
based formatsﬂ Such tools could be used, here, to manipulate the BN.

Optimizing the Test suite is the last step, where the output is built. In this
step, an optimized (i.e., prioritized) test suite is generated based on the goals of re-
gression task. A feedback-employing greedy algorithm of optimization is used here
in three sub-steps. First, Probabilistic Inference computes P(t;) values using the
constructed BN. Next, Outputting Test Cases adds some test cases to the output
test suite based on computed P(t;)s. Finally, Updating the BN uses outputted test
cases to modify the model to account for the effects of added test cases. This mod-
ified BN is then fed back to the Probabilistic Inference step and the loop continues
until the output optimized test suite is constructed. Each of these steps involves
interesting issues:

e Probabilistic Inference: An algorithm of probabilistic inference should be used
here to get P(t;) values. Algorithms of probabilistic inference are well studied
in the literature of BNs [10I]. Since the problem is NP-Hard in general,
numerous algorithms have been proposed, each suitable for certain situations.
Simple experiments can be performed to find the algorithm most suitable for

9Genie/Smile is an example of tools that provide all these features [52].
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an specific design of the BN. Because the graphs of the BNs are not poly-
treed'| here, any algorithm would have an exponential worst case performance.

o QOutputting Test Cases: Based on the probabilities from the previous step, a
number of test cases are selected and added to the output test suite. A pa-
rameter called stp controls the number of added test cases. In one extreme,
this parameter could be set to the size of the entire test suite. In this case,
all test cases would be added at once and hence there would be no feedback
mechanism. In the other extreme, we can set this parameter to be equal to 1;
in this case, feedback is used in its full capacity. Any number in this range can
be used to have a feedback mechanism in place, while performing the com-
putation intensive task of probabilistic inference less often. This parameter
provides the flexibility to adjust the running time.

e Updating BN: In this step, the variables corresponding to the test cases just
added to the output are marked as passed evidence nodes (i.e., P(t;) = 0).
As a result, the probability of being faulty for the artifacts covered by those
test cases are reduced. Consequently, the other test cases that test the same
artifacts will have a decrease in their probability of failure. Note that regard-
less of whether a test case fails or not, we mark its variable as a passed. There
are two reasons for this. First, during optimization it is not know yet whether
the test case is going to fail. Second, if we mark a node as failed, then the
other test cases that cover the same elements will have an increase in their
probability of success. This is not desirable because we have already covered
those elements at least partially. Therefore, we simply mark outputted test
cases as passed.

In case of prioritization, optimizing test cases finishes when all test cases are added
to the test suite; in case of selection, when enough test cases are selected.

3.3 Summary

To summarize, a general BN-based framework to solve the test case optimization
has been presented in this chapter. An overview of the framework, ideas behind it,
and its mathematical basis have started the chapter. Then, a process model has
followed showing how it should be implemented based on specifics of an environment
to get an regression optimization tool. In doing so, a general implementation of the
framework has been presented.

This general framework needs to be realized first in order to get a working sys-
tem. Most research in the area of regression testing is performed on software for
which code is available. The next chapter presents a specific code-based implemen-
tation of this framework.

104 graph with at most one undirected path between any two vertices.
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Chapter 4

A Code-based Realization

The BN-based framework, presented in the previous chapter, is general by design.
The claim is that different systems must be treated differently, mainly due to the
dissimilarities in suitable sources of information (i.e., measurement techniques).
The proposed framework needs to be realized for a specific software system (or
families of systems) before it could be implemented. A realization is applicable
whenever the required sets of measurements are available.

This chapter presents a code-based realization of the proposed BN-based frame-
work. In the rest of the chapter, first the motivation behind selecting such a real-
ization is described. Then, based on the process model of Section the details
of this particular realization are elaborated. Each subsequent section discusses one
step from the aforementioned process.

4.1 Motivation

There are many existing approaches in the regression testing area that, like ours,
utilize a set of measurements to heuristically predict the fault-detection power of
test suites. These existing approaches mostly depend on particular sets of metrics
for their tasks. Therefore, it could be said that they implicitly assume the avail-
ability of those metrics. Availability, here, refers to the existence of artifacts upon
which a specific metric is defined and also the ability to collect the correspond-
ing measures from a system. Requirements-related measures, for example, are not
always available because they can not be collected on many software projects in
which requirements are not fully managed. An approach is applicable only when
the underlying artifacts are available. As expected, researchers have sought to build
up their approaches on the most available set of artifacts.

Most of the existing approaches are code-based in the sense that the metrics they
use are defined based on code-related artifacts. This renders developed approaches
applicable to most software systems because any working software (that is to be
tested) certainly has its code. Relying on the code, in other words, is the safest
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assumption. Although code-related measurement could be overwhelmingly costly
or imperfect in modeling particular systems, it is nevertheless the most applicable
approach. Furthermore, software measurement techniques are unsurprisingly much
richer on software code compared to less formal artifacts such as requirements or de-
sign] This provides the code-based techniques with a variety of relatively precise
measurement techniques to exploit. Code-related metrics such as code coverage,
code fault-proneness, and code change have all been used in existing regression
testing techniques (details provided in Section . In addition, there are difficul-
ties in the technicalities of research on artifacts other than code that has further
inclined researchers towards code-based approaches. Researchers need to rely for
their experiments mostly on open source and publicly available software, for which
many of the life cycle artifacts do not even exist. Other artifacts are mostly built
and maintained in industry-scale projects but access to such data is limited due to
confidentiality measures taken by most organizations.

A code-based realization of the proposed framework facilitates the comparison
with other research work in this area. Moreover, it can take advantage of the
aforementioned properties of a code-based technique such as access to a handful of
well-studied measurement techniques. It also is the most practical approach from
a research point of view [}

The process for the realization of the BN-based framework has been presented
in Section [3.2] According to that process, three main steps of measurement in-
vestigation, BN detailed design, and tool support implementation need to be taken
for realizing the framework. To describe this particular code-based realization, this
chapter takes the same route and follow the prescribed process. The followings
sections each correspond to one of the steps in the realization process.

4.2 Measurements Investigation

The first step towards the realization is investigating available measurement tech-
niques that can provide the three sets of required data. In this step, the artifacts
to be modelled and the exact metrics of prediction on those artifacts need to be
selected.

The availability of the code-related artifacts has been discussed as a motivation
for this code-based realization. Code not only is a relatively available artifact, but
also is the richest source of information about software. Three set of measurements
are required in the BN-based framework, all of which could be well measured on
code as the underlying artifact.

!The emergence of new software technologies, such as model-based development, creates new
artifacts that are formal enough to allow precise measurements. Research in regression testing
has already started to take advantage of such artifacts (e.g., [99]).

2Tt should be noted here that other realizations that rely on other artifacts have been developed
for industrial environments. This dissertation does not report on that line of research mainly due
to confidentiality issues.
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e Change: The most reliable source of change information is from the code it-
self. Even if different artifacts are created for a software project, they are not
guaranteed to be maintained with the program. Software changes are likely
to be made to the code without being reflected in any other artifacts. Fur-
thermore, analyzing change in code is fairly easy (through methods described
in Section , mostly because of its formality.

e Fault-proneness: Although fault-proneness is hard to predict in any artifact
of software, there exist models that use structural properties of the code
(such as complexity, coupling, and cohesion) to predict its fault-proneness.
Although far from perfect indicators, the results from these model do correlate
with fault locations (as discussed in Section [2.2.2)).

e Coverage: Coverage is typically traceable on the code. As described in
Section [2.2.3] source/byte code of programs can be instrumented with probes
that report execution paths. When running test cases initially (i.e., for the
previous version), such reports could be generated; from those reports, code
coverage data can be computed.

The availability of the required measurements for the code-related artifacts sup-
ports the idea of using them as the artifact. The notion of software code, itself, is a
broad one. Code can refer to source code or any of its machine readable variations
commonly called execution or byte code. Each of the two, in turn, could be looked
at in different levels of granularity. On the source code, structures such as state-
ments, methods, modules, classes, packages, and components are available. On the
byte code, in addition to all the source code level artifacts that are also tractable
in byte code, there exist other structures such as basic blocks. The choice between
these levels of granularity should consider both the availability of required data and
performance issues.

There is a performance accuracy trade-off in the choice of the level of granularity.
Moving to more fine-grained structures such as statements potentially provides
more accurate information. On the other hand, it can make the pool of artifacts
large and hence increase the complexity of involved computations. A typical project
these days can easily contain millions of lines of code. Choosing statements as
artifacts needs a modeling tool and algorithm that can handle a million entities.
Inference algorithms in Bayesian Netwoks are exponential in the worst case and
hence do not allow such computations. Also note that the empirical studies on the
existing techniques of regression indicates that moving to higher-level structures
does not necessarily decrease their performance significantly (e.g., [43]).

Working on code-based artifacts makes a particular realization depend on a
specific language (or a family of languages in which similar structures exist). This
proposed realization of the framework focuses on the Object Oriented (OO) lan-
guages, mainly because of their prevalence in industry. Most concepts and language
structures are shared among OO languages such as Java and C++ and hence it is
not necessary to further narrow down the language boundaries.
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In OO systems, the concept of a class has properties that makes it a suitable
choice for the definition of artifacts. First, a class is on the right level of granularity
for the type of analysis we perform. On one hand, it is high-level enough to enable
computation for large systems. The number of classes in a typical system, a number
in order of hundreds to thousands, is in the boundaries of available computational
resources as needed by BN algorithms. On the other hand, the notion of classes are
not overly high level to make the gathered information imprecise. The principles
of OO design put a great emphasis on the notion of cohesion in a class. Designers
are encouraged to create a class such that all of its parts are closely related and
perform a single functionality. A class, therefore, could be easily thought of as one
entity, as opposed to higher level constructs such as a package. These reasons have
also encouraged the research on measurement techniques to define many metrics to
a class-level. That adds to the value of choosing classes as the artifacts.

This realization of the framework, based on the aforementioned reasons, chooses
to have classes in a OO system as the artifacts. Note that a class is represented
both in the source and byte code and hence there is no need to restrict the definition
to either one. The required sets of measurements are indeed defined for this level
of granularity, as described in the following.

4.2.1 Change

The change data required for the purpose of this realization need to estimate “the
probability of each class having changed from a previous version”. The changes
between two versions of a code is something that could be observed (i.e., there is
no uncertainty involved). One can look at the code in either source or byte code
representations and use a simple string matching algorithm to decide whether each
class has changed or not. In that case, each probability would be a zero or one
number. The problem with such an approach is that the amount of change in a
class would not be taken into account in the model.

The nature of changes in software systems vary. One may simply rename a
variable using refactoring tools, a relatively safe modification, or change an imple-
mented algorithm, a very error-prone edit. Moreover, a class may be changed alto-
gether to introduce new features, or changed slightly to fix a simple well-understood
bug. These changes are different for our purpose in that their error-proneness is dif-
ferent. The fault-proneness variables in our model capture how error-prone artifacts
are inherently, regardless of the amount of change they have gone through. The
notion of error-proneness for modification itself is different from fault-proneness of
artifacts. This concept also can be incorporated to the model.

As pointed out in Section 3.1.4] P(C;) values could be used to indicate the
amount of change. In this case the interpretation of the P(C};) values as the proba-
bility of change is not possible; instead, they could be interpreted as the probability
of an error-prone change. Because we do not have a precise definition of an error-
prone change, such an interpretation can not be formalized but still this trick helps
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incorporate useful information into the model. To estimate the error-proneness of
a change, a measure of the amount of change is a possible option. The heuristic
behind such a metric is that the more a class has changed, the more error-prone
the changes are. This framework requires a quantification of change in each class.

To quantify the amount of change, different methods could be used. Sec-
tion introduced some existing works in this area. Algorithms as simple as
GNU diff could be used here. More complex byte code-based measures such as
Sandmark’s Constant Pool LCS are also available [22]. Although one can conjec-
ture that more complex algorithms provide better results, such a claim can be
evaluated only through empirical means. Later chapters of this thesis will present
an empirical study that among other things investigates this question.

4.2.2 Fault-proneness

Code-based models of fault-proneness have been discussed in detail in Section [2.2.2]
These models are based on the metrics of software quality. Software quality metrics
typically measure a structural property of the code which is claimed to correlate
with its quality. For example, it is claimed that the more coupling a class has to
other classes, the more it is prone to faults. If this claim holds, which empirical
studies show in many cases does, measures of coupling could be used to spot fault-
prone parts of the code. One can define a measure of class coupling based on the
number of other class to which a class interacts.

There are numerous quality metrics defined and claimed to be correlated with
quality (esp. fault-proneness) of OO code. To establish models of fault-proneness
these metrics could be also mingled together in a mathematical model, to get more
elaborate predictors named multivariate models. These multi-variate models need
to be first trained on other systems (for which fault locations are known) and
then used on the software in question. This renders those models costly to build.
Univariate models (those based merely on one metric) are easier to construct but
the question still remains as to what metrics should be used. Again, empirical
investigation is the best way to answer that question. Metrics from the Chidamber
and Kemerer (CK) suite [21], as probably the most widely used set of metrics, are
investigated in a later chapter of this thesis.

4.2.3 Coverage

Coverage is an easy to gather metric when code is the underlying artifact. Mea-
suring the coverage on statement or basic-block levels is only a matter of code
instrumentation and tracing what has been executed. To abstract such data to
class level, one can simply count the number of blocks (or statements) covered in
a class. Dividing those figures by the total number of blocks also gives normalized
measures that indicate the percentage of coverage in each class.
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The important point about code coverage information is that it needs to be
gathered on a previous version of the programs. When planning the regression
testing of version v, the test cases have not been yet executed on P,. Therefore,
their exact coverage is not known. Running test cases in order to gather coverage
data would only defeat the purpose. The regression test suite, however, have been
previously executed on the P, ;. If traces from that execution are available, the
coverage for P, can be estimated. In simplest form, one can assume that the
class coverage of classes remains unchanged from the last version. Clearly this
assumption does not always hold. However, research has shown that the coverage
of a previous version provides close estimations of that of the current version [107].
Although approaches of estimating the current coverage from the previous coverage
exist [41],[T15], in this realization, we choose simplicity; we approximate the coverage
of a test case t on P, by that of P,_;. This approach is in line with other research
in this area.

The step of measurement investigation provides for us with a basis for designing
the BN. Knowing that what exactly the artifacts are and what information needs
to go to the model, one can detail how the BN model should be built.

4.3 BN Detailed Design

A Bayesian Network consists of three elements: nodes, edges and CPTs. A detailed
design of the BN needs to specify how each of these three elements should be
exactly built. Such a design would be based on the general design presented in
Section For this code-based realization, and based on the observations from
the measurement investigation step, the following details the specifics regarding
each element of the BN. At the end, a summary of the design is given through a
simple diagram.

4.3.1 Nodes

Three set of nodes exist in the proposed BN model, each corresponding to a set of
random variables described in Section B.1.1l

C Nodes:

Each class in version v of the program under analysis has a corresponding node of
the type C. A C; node, corresponding to the event of change in the class a;, has
two possible values of changed (denoted as ¢;) and unchanged (denoted as —¢;). A
class is changed, if either it did not exist in v — 1 or its source/byte code is different
in versions v — 1 and v.
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F Nodes:

For each class a;, there is also a node of type F' in the model. A F; node, corre-
sponding to the event of fault introduction to the class a;, has two possible values of
faulty (denoted as f;) and sound (denoted as —f;). A class is said to be defective (or
faulty) if to fix a bug in the system one needs to change that class. From another
perspective, a class is faulty if in exhaustively testing its input state, there exists
at least one test case that fails.

T Nodes:

For any test case ¢; in the the input test suite, a node of type T exists. A T; node,
corresponding to the event of executing the test case t;, has two possible values of
failed (denoted as t;) and passed (denoted as —t;).

4.3.2 Edges

The exact design of arcs in the BN model should be based on design decisions re-
garding the relations that need to be modelled. Each arc in a BN indicates a causal
relation between variables of two connected nodes. The framework overview (pre-
sented in Section outlines two different sets of edges that need to be included
in the model, based on identified causal relations and conditional independencies.
There are also flexibilities regarding the inclusion of some edges. In each realization,
the exact set of included edges should be decided.

CF Edges:

For each class a;, there is an edge C'F; from the node C; to the node F;. These
edges indicate that a change in class a; can potentially cause the introduction of
faults to the same class.

Changing a class a; is likely to impact other classes as well. Therefore, changing
a; can potentially cause another class ay to become defective. Such a causal relation
could be modelled as a C;F}, edge from C; to F}, (referred to as an impact edge).
However, in this realization, this set of edges are decided to be excluded from the
model. This design decision is justified mainly by considering complexity issues.

Including impact edges in the model adds to the complexity in two ways. First,
the complexity of the probabilistic inference algorithms is affected. The running
time of inference algorithms in a BN is heavily impacted by the topology of the
network. Specially, the number of parents for each node has a significant impact
on the running-time. Also, considering that the size of a CPT associated with each
node grows exponentially with the number of parents, there are also memory issues
with nodes with more than one parent. Second, should these edges be included,
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estimating the many numbers required in the huge CPTs of F' variables would be
a complex process. Having impact edges, the F' nodes would be conditioned on
potentially many variables and hence would have huge CPTs. Each cell in such
CPTs indicates the probability of a class a; becoming faulty given that a combina-
tion of the classes affecting it have changed. Although assumption of independence
(e.g., Noisy-OR assumption) can help reduce the table sizes, such assumptions here
would be hard to justify. The impact of different classes on one class are not by no
means independent from each other. Making estimations needed for change impact
is a hard task that adds to the overall complexity of the implementation.

These additional complexities are justified only if inclusion of the impact edges
is likely to lead to a significant improvement in the performance of the technique.
If changing a; introduces a bug that makes a; faulty, chances are slim that a; itself
is not faulty. In case a; is indeed faulty, the impact edge is helpful only if none
of the test cases covering it reveal the fault but a test case covering the a; does.
Such a situation, although possible, is not prevalent. The additional complexity,
hence, is not necessarily justified. Moreover, other less sophisticated mechanisms
of considering change impact can be included in the model (as later descriptions
reveal). Hence, the change impact edges are are decided to be excluded from the
model. This decision is based on intuition (rather than empirical evidence) but
such decisions are commonplace in software systems.

FT Edges:

For each test case t; in the input test suite and for each class a; covered by ¢;, there
exists an edge F;T; from the F; node to the 7; node. These edges indicate that if
a test case exercises a particular class, it can potentially reveal faults in that class,
should there be any.

There is no edge from an F; variable to a T if ¢; does not exercises a;. This
is based on the assumption that a test case can not find whether a class is faulty
unless it exercises it. This assumption follows directly from the given definition of
a faulty class. A class is said to be faulty only when there could exist a test case
covering that class that fails. This assumption seems reasonable from a practical
point of view as well.

4.3.3 CPTs

Each node in the BN has a CPT associated with it. A CPT is a tabular representa-
tion of the conditional probability distributions for the random variables of a BN.
For specifying a CPT, one needs to indicate the probability of each outcome of the
variable, given each combination of the values of all its parent variables. Consider-
ing that all variables are binary in the proposed framework, a node with n parents
has a CPT table of size 2 * 2". Because in a binary variable P(x) = 1 — P(—z),
finding the values for 2" of those cells suffices.
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CPT of C Nodes:

A C}; node in this design is not conditioned on any other variables. Its CPT table,
therefore, has only 2° = 1 cell to fill. That cell is the P(c;). As described before,
this value is used in this realization to indicate the probability of an error-prone
change (rather than the plain probability of the change which would be simply zero
or one). To estimate such probabilities, the amount of change can be heuristically
used.

Given a metric change(a;) which for each class a; gives a number between 0 and
1, indicating the percentage of the class modified from version v — 1 to v, this CPT
is specified by:
P(c;) = change(a;)

The metric function change(a;) is based on one of the potential measurement
techniques described in Section £.2.1] GNU diff algorithms can be used to find
changed lines of code; the ratio of the changed lines of code to the total number of
lines provides a number between zero and one that can be used here. Sandmark’s
Constant Pool differencing algorithm, also, gives a normalized number for each class
indicating its change; those measures can be directly utilized as the change metric.

CPT of F Nodes:

An F; node in this design is conditioned on only one other variable, namely Cj.
As such, there are 2! = 2 values to estimate: P(f;|c;) and P(f;|-¢;). These two
values indicate the probability of the class a; being faulty respectively when it is
changed and when it is not. Naturally, the first number needs to be much higher
than the second for all the classes. As such, the impact of the first number on the
results is much higher than the second one. Both these probabilities are influenced
by the quality of the class a;. The fault-proneness of classes is estimated using
metrics of software quality. As mentioned in Section [4.2.2] univariate models of
fault-proneness (those relying only on one metric) are decent predictors of quality
which are significantly less complex to create compared to multi-variate models.
The univariate models are used in this implementation.

Given a metric of software quality gm(a;) which for each class a; in the system
gives a relative number indicating its quality from a certain perspective, this model

estimates:
a qm(a;)

P(fz|cz) = + 01, (Oé+51 < 1)

max(gm(a,))
where the function max(gm(a,)) denotes the maximum value of the metric gm
across all the classes in the program. The a and d; are two given constants the
sum of which is less than or equal one so that the right hand side of the formula
is in the shape of a probability number. The dominator in this formula is a simple
normalization factor. Constants o and 9, are there to bound the probability of fault
introduction. The constant 9; sets a minimum for the fault-introduction probability
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given that a class has changed, regardless of its quality. « sets an upper-bound for
fault-introduction probability in the system of question.

Estimating the P(f;|—¢;) values is also required. The important invariant here
is that these values should be much less than those of P(fi|c;). A class can be
faulty without being changed due to one of the lesser likely situations of i) being
impacted by other changes, ii) change in its specification, or iii) containing residual
faults. The third situation is not of interest in our problem. The residual faults
would not be identified through re-execution of test cases that have been previously
executed. The second item is hard to account for through measurement techniques;
for most software projects such measurements are not available. The first situation,
however, could be estimated more practically. A class is likely to be impacted by
the change in other classes if it is highly coupled to others.

Given a metric of coupling c¢m(a;) which for each class a; in the system gives
a relative number indicating its degree of coupling with other classes, this model
estimates:
B em(a;)

P(fi’_‘ci> = m + 09, (5—1-52 La+6 < 1)

where, the function max(cm(a,)) denotes the maximum value of the metric em
across all the classes in the program and ( and d, are two given constants. Again,
( and d, are there to bound the probability of fault introduction given a class has
not changed. The constant d5 (which could be simply set to zero) sets a minimum
for the fault-introduction probability given a class has changed; 3 sets an upper-
bound for it.

The important invariant here is that § + do < a + ;. This is what embeds in
the model the fact that a changed class has more potential to contain faults than
one without changes. Let v = gig;, such a parameter captures the extent to which
the presence of change increases our belief in the presence of faults. By adjusting
~v we can control the degree to which the presence of change in an element raises

our belief in its fault-proneness.

CPT of T Nodes

A T; node in the models of this framework can have more than one parent. If test
case t; is covering classes aq, ..., a,, the normal representation of the CPT has 2"
cells, each containing a P(t;|Fy, ..., F,,) value. As mentioned in Section [3.1.4] the
Noisy-OR assumption is used to reduce the sizes of the CPT tables for 7" variables.
The assumption is that the relation of a test case to a particular class is independent
from its relation to any other classes. It can be argued that the ability of a test
case to reveal faults in one class is not related to its fault revealing ability on the
other classes, hence the assumption.
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The Noisy-OR assumption reformulated to this problem indicates that

(1 — P(lf5))

— (4.1)

Ptilfis s fa) = 1= (1= R) |1

1<j<n

The Py = P(t;|=fi1,...,—fn). The Py (called the leak value in the terminology
of Noisy-OR assumption) is the probability of a test case revealing faults even
though all of its covered classes are sound. Theoretically, such an possibility can
not be completely ruled out. The information of coverage might be incomplete,
for instance, causing a test case to fail even though no coverage is known. For the
consideration of such unlikely situations, a very small constant value can be assigned
to this parameter (leak). The Formula is a straight-forward application of the
Noisy-OR assumptionf

Formula simplifies the CPTs of T" variables. To build those CPTs, one only
needs to estimate the individual P(t;|f;) values in that formula. Given a function
cov(t;, a;) which for each test case t; and class a; gives the percentage of a; covered
by t;, one can estimate:

P(tl‘fj) = COU(ti, aj)

Most of the tools implementing Bayesian Networks allow specifying the CPT
tables in the Noisy-OR form. That is, through specifying the effect of each parent
on a node separately. Even so, they usually use Formula to get the normal
representation of the CPT before performing the inference. Therefore, the memory
problem is not fully solved. There is only a limited number of parents a node can
have. Having 20 parents for a node, for example, leads to 22 numeric memory cells
for each node which is on the edge with the current technology. A test case, how-
ever, can potentially cover much more classes. Modeling all the coverage relations
imposes a great computational and space complexity. To cope with this problem,
one can prune the parents of a node. If a test case covers more than a certain
number of classes, those classes that have less coverage can be removed from the
parents of the corresponding 1" variable. This strategy keeps the effects of pruning
minimal because a test case with low coverage on a class is not that likely to find
bugs in the first place.

4.3.4 Design Summary

Figure depicts an overall design of the proposed BN model for this realization
of the framework.

In sum, the design of the proposed BN is as follows. Each class a; has a C;
and a F; node, respectively representing the change and fault introduction in a;.
The F; node is the child of C; node and only that node. Then, for each test case
tj, there exists a T; node which represents the potential results of its execution in

3interested reader is referred to any book on BNs [70} 101]
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Figure 4.1: An Overview of the Proposed BN Design

regression testing phase. A T node is a child of a F; variable only if class a; is
covered by t;. To estimate the distribution of C' nodes, change data is used; for
F nodes, univariate models of fault-proneness are employed; and for T" nodes, the
coverage data in conjunction with the Noisy-OR assumption are utilized.

4.4 Tool Support Implementation

The last step in the realization process is to build a tool that implements the frame-
work. Here, an implementation of the code-based realization for Java programs is
briefly discussed. To implement the proposed code-based design, the approach pre-
sented in Section is used as a basis. The following details the implementation
specifics of each involved component, as shown in Figure |3.2]

4.4.1 Collecting Measures

Collecting the required metrics from software systems is a well-studied subject.
The implementation of data gathering mechanisms, however, entail many technical
details. Fortunately, many tools have been developed to perform different measure-
ments on software systems. Many of these tools are open source software that can
be used for research purposes.

For change analysis, two different tools have been used in this implementation:
UNIX diff and Sandmark [I14]. The first tool, easily accessible in all UNIX op-
erating systems, computes the textual differences between two files. For a Java
program, each file represents a class. The amount of change in a class, therefore,
is easily measured by feeding the two consecutive versions of the class to the UNIX
diff application. The results are analyzed to find the number of lines changed;
a number which is then divided by the total number of lines to get a single value
between 0 and 1. Sandmark, mainly developed as a watermarking tool, implements
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more sophisticated algorithms of code differencing. This tool which works on the
byte code of Java files, compares .class files against each other and gives a score
of similarity between 0 and 1. The resulting numbers are subtracted from 1 to get
the difference score. That score is used as an indication of the amount of change.

To gather quality metrics, a tool called ckjm [24] is used. This tool computes
the metrics from the Chidamber-Kemerer (CK) metrics suite [21]. The CK suite,
as explained in Section is the most widely-used set of software quality metrics
for OO systems. ckjm provides an easy to use command-line that gets a Java byte
code (.class files) and outputs a report listing the measures for different classes.

For gathering coverage data, a tool called Emma [46] is employed. This tool
instruments the code, either off-line or on-the-fly, to gather coverage of test cases.
It provides XML reports that can be configured to show coverage data in different
levels of granularity, including that of a class. Such XML reports, are then parsed
to get the required coverage data. In addition to Emma, the implemented tool can
also read the coverage reports from an instrumentation tool called Sofya [75]. This
tool instruments a Java program such that during its execution, the exercised basic-
blocks are reported in trace files. These trace files are then read to compute the
coverage in basic-block level. Those data are finally abstracted to the class level to
determine the percentage of blocks covered in a particular class.

This implementation relies on a report-based architecture. Each of the afore-
mentioned tools are first executed separately to generate reports that contain the
results in different formats. The reports are then read by programs developed to
understand an specific report format. Those programs create abstract data struc-
tures representing the gathered data in logical levels. Reports from different tools
can be used to build these common data structure. The data structures are used
later on to build the BN. This enables us to get the required data from different
tools, as long as they can be presented in the same data structures.

4.4.2 Building the BN

To work with Bayesian Networks, a tool called Genie/Smile [52] is used in this
implementation. This tool has two main parts. Smile is a library that provides
an API that can be called from other programs to use the tool. This API has
many useful features: it provides support for C++, Java, and C#; it implements
a handful of inference algorithms; it supports Noisy-OR nodes; and it exports and
imports BNs to XML files. Genie provides a GUI that can be used to manipulate
BNs visually. This tool can help testers browse the built BNs to understand the
interworking of the approach. The GUI also helps debugging the implementation.

Having the detailed design on hand, and using the Smile library, building the
BN is a straightforward task. First, the structure of the network (a graph) is built
based on the gathered data and then based on the collected measures from the
previous step, the CPTs are filled. The resulting BN is kept in a data structure in
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memory and also persisted in an XML file. The network is used by that later steps
to perform the probabilistic inference.

4.4.3 Optimizing the Test Suite

Optimizing the test suite and outputting the final order is the last component of
the system. For probabilistic inference component, the Genie tool is used. Genie
implements many inference algorithms, from both exact and sampling algorithms.
The implementation of inference algorithms in Genie is in C4++ which makes it
relatively efficient. The choice between the algorithms depends on the structure of
the BN which in turn depends on the program under analysis. Simple experiments
could be performed for a particular object to choose the inference algorithm. The
next chapter of this thesis investigates that question empirically.

The results of the inference, provided as data structures in memory by Genie,
are then used by developed tools to select and output a subset of test cases in
iterations. The algorithm of this step is described in Section [3.2.3] In each iteration
stp number of test cases are outputted based on their fault-revealing probabilities;
then, the model is updated and the next iteration starts. Iterations halt when all
needed test cases are outputted.

4.5 Summary

This chapter has described in detail how the general proposed BN-based frame-
work of Chapter [3| can be realized for a typical system for which code is available.
This realization is build around the software code. All required measurements are
computed from the source/byte code. This realization is applicable to any system
for which code is available and hence is applicable in most cases. This particular
realization is of interest also because it is comparable to the other approaches to
regression test optimization problem from the literature which are also code-based.

The next four chapters in this dissertation empirically evaluate the presented
code-based realization against other existing techniques. They also investigates
the effects of different parameters present in the design and implementation of the
code-based realization.
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Chapter 5

Experimental Setup

The BN-based framework, as introduced in Chapter [3, aims to increase precision
and provide flexibility. While the two previous chapters elaborated on the flexi-
bility features built into the framework, enhanced precision can be demonstrated
only through empirical experimentation. To evaluate whether incorporating many
sources of information into one BN model improves on existing techniques, this
thesis uses empirical studies. This chapter presents the setup for such experimen-
tation.

The proposed framework is a basis to develop specific framework realizations,
suitable for different environments. Chapter 4] provided one such realization for a
typical system where code is available and measurements of the code can be taken.
Many other techniques from the literature also focus on code-based systems. This
facilitates the comparison of the approaches on the similar settings. For these
reasons, the code-based realization is the subject of the experiments presented in
this thesis.

Specific realizations can also address several instances of the general regression
test optimization problem. Different instances of the problem can pursue different
goals such as better fault detection, and better coverage. Of these, enhanced fault
detection is the focus of most existing techniques. Instances of the general problem
such as size-constrained test case selection and test case prioritization have much
in common; knowing the probability of test cases finding bugs can lead to solutions
to many instances. The approaches from the literature, with a few exception such
as [73], mostly focus on one instance of the problem. Comparing against those
techniques, hence, requires focusing on one instance of the problem.

The target realization can be best evaluated as a test case prioritization tech-
nique. There are some advantages in doing so. In test case prioritization, the
resulting test suite contains all the test cases and hence all the estimated proba-
bilities are taken into account. Evaluating the proposed approach as a selection
technique requires thresholds, the choice of which would impact the final results.
Using any particular threshold, some probabilities are not involved in the evaluation
at all, rendering the results less expressive. Also, many of the estimations made in
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the realization described in the previous chapter are relative numbers, rather than
absolute figures. The results from such estimations are more suitable for prioritiza-
tion which concerns the relative positions of test cases. In view of these, code-based
realization is evaluated as a test case prioritization technique.

This chapter discusses the experimental setup of evaluating the code-based re-
alization as a prioritization technique. It starts with laying out the evaluation
procedure in detail. Then target objects, used faults, involved techniques, and
evaluation criteria are discussed each separately in a different section. The ex-
perimentatal setup introduced here is used in the three separate experiments that
follow in the next three chapters. Those three experiments seek answering differ-
ent questions; Experiment 1 investigates the effects of different parameters present
in the technique, Fxperiment 2 and Experiment 3 compare the proposed technique
against others from the literature, respectively on mutation and hand-seeded faults.

5.1 Evaluation Procedure

The evaluation procedures undertaken in all the three experiments of the subsequent
chapters are similar. The procedure enables performing controlled experiments. In
each experiment, the performance from the target technique is compared against
other techniques (as control samples). Independent variables of each experiments
are identified and the corresponding results for dependent variables are observed.
Statistical tools are used to evaluate the results. The common evaluation procedure
is as follows:

(i) The target programs should be selected. For each program, a series of consec-
utive versions should be acquired. For each version, in addition to its source
and byte code, its test suites are required.

(ii) The test suite of version v should be maintained to get a potential regres-
sion test suite for version v + 1. Maintaining, here, refers to pre-optimization
regression tasks such as obsolete test case elimination, as described in Sec-

tion [L.11

(iii) For evaluating the fault-detection power of techniques, faulty variations of
the programs are required. Either faults are naturally present in the target
programs, or they should be inserted artificially. Automatic code mutation
and manual fault-seeding could be used for fault insertion.

(iv) On the faulty programs and for each version, the complete potential regression
test suites should be executed. Based on the test results, fault-matrices should
be generated. These matrices detail for each faulty variation, what test cases
have revealed the fault.

(v) The prioritization techniques involved in the experiment should be run. Each
technique creates a different optimized regression test suite.
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(vi) Based on a chosen criteria of evaluation and having fault-matrices, the re-
sulting test suite of each technique should be evaluated. Statistical analysis
can be also performed to further understand the implications of the obtained
numerical results.

Each step of the procedure involves the use of some set of data to produce
other data. The first two steps concern the required programs and their test suites,
referred to as the target objects. The third step deals with faults necessary for
the evaluation. In the fifth step, involved techniques are the focus. The last step
involves the use of Evaluation Criteria for getting numerical results. The specifics
regarding each of these notions is further elaborated in the following sections.

5.2 Target Objects

The target objects of the experiments need to be Java programs with at least a
few versions available. For each version, source code and the complied byte code is
required. Each version needs to have its test suite. The test suite of each version also
needs to be maintained for the next version to get a potential regression test suite.
Gathering all these data is a cumbersome time-consuming task. Researchers in this
area have thus sought to ease the process by building ready-to-use repositories of
experiment objects.

One such set of available data is Software-artifact Infrastructure Repository
(SIR) [36]. SIR is, as its website described!] a repository of software-related artifacts
built to support controlled experimentation with software testing techniques. This
repository has been extensively used by other researchers for controlled experiments
on test case prioritization techniques (e.g., [38, 7, 111]). Using SIR, the time-
consuming task of object preparation can be avoided. The SIR repository is used
for the experimentation in this thesis. This choice facilitates the comparison of the
obtained results with other techniques from the literature.

Five open source Java programs are provided in the SIR repository: ant, xml-
security, jmeter, nanoxml, and galileo. The ant program is a Java-based build
tool, extensively used in industry for building and deploying Java (especially web-
based) applications. Jmeter is a Java application for load-testing and performance
measurement. Xml-security implements some XML security standards. Nanozml
is a small parser for XML files in Java language. Galileo is a byte code analyzer
application which can instrument Java code and gather trace files.

Table lists for each target object the following attributes: the number of
available consecutive versions of the program (Versions), the number of class files
in the most recent version of the program (Classes), the total lines of code in the
most recent version of the program in thousands lines (LOC (K)), the number of

Thttp://sir.unl.edu/portal /index.html
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test cases available for the most recent version of the program (Tests), the total
numbers of mutation faults considered for our object programs, summed across all
versions of each program (Mutants), and finally the type of the test suite (Type).

Table 5.1: Target Objects and Their Attributes.

’ Objects H Versions \ Classes \ LOC (K) \ Tests \ Mutants \ Type ‘
ant 8 627 80.4 877 412 JUnit
jmeter 6 389 43.4 78 386 JUnit
Xml-security 4 143 16.3 83 246 JUnit
nanoxml 6 26 7.6 216 204 TSL
galileo 16 87 15.2 912 2494 TSL

The first three objects have JUnit test suites, and the last two have TSL (Test
Specification Language) suites [100]. JUnit is a unit testing framework for the Java
programming language. A JUnit test suite is itself a Java program. A typical test
in JUnit is a function that first sets up a class to a particular state and then invokes
one of its operations and asserts that the results are what is expected. JUnit test
developers are encouraged to target one and only one functionality of the system in
each test case. TSL is based on the category-partition method introduced in [100].
A TSL test case consists of an operation, its parameter values, and the environment
variables. A TSL test script first runs the operations required for creating the
environmental conditions; then, test case operations themselves are run; next, the
results are validated; and finally, a clean-up is performed. Having test specifications
written in TSL, tools exist to automatically generate test scripts.

This set of objects provides variety in many aspects. This set spans from small
software such as nano to larger systems such as ant and galileo. The number of
available test cases ranges from tens to hundreds, providing diversity in the test
suite size. Most importantly, objects with two different test suite types are present
in the repository.

5.3 Faults

To evaluate the performance of the proposed techniques for better fault detection,
we require object programs containing faults. Note that only faults that can be
found by available test cases are of interest. If faults can not be revealed by any of
the test cases, they does not help our evaluation process. The available versions of
the object programs, as released by their developers, do not have faults that could
be found by their test suites. To get faulty variations of the objects, therefore, one
needs to artificially insert faults into the programs.
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The process of introducing faults to the programs can be performed in different
ways. The objects in SIR come with two different types of faults: mutation and
hand-seeded faults.

Mutation Faults:

Mutation faults are syntactic changes made to program source code to cause the
behavior of the program to change. This notion has been introduced originally
for mutation testing techniques of evaluating adequacy [I7, 57]. These techniques
insert simple syntactic code changes into the program, and then check whether the
test suite can detect these changes (kill mutants). Any mutant that can be killed is
a fault. Code mutation is inherently compiler-specific. Researchers have introduced
mutation testing for different languages, including Java (e.g., [5]). The represen-
tativeness of mutation faults have also been investigated (e.g., [I]), revealing that
mutation faults can in fact be representative of real faults.

In [35], Do et al. investigated the performance of prioritization techniques,
measured based on mutation faults. Their study is also on the SIR Java objects.
They have inserted mutation faults to those five Java programs and found mutants
that can be killed. As the focus of their work also is regression testing, all the
mutations in each specific version fall within the neighborhood of modified code.
For the evaluations presented in the next three chapters, the same pool of mutation
faults have been obtained from the authors of [35] and used. Using the same set of
faults makes the results presented in this work further comparable to those of the
mentioned study. The number of mutation faults available for each of our object
programs is shown in Table [5.1]

Hand-seeded Faults:

The SIR repository has hand-seeded faults. A hand-seeded fault, as the name sug-
gests, is one which has been manually inserted in the code. In [36], the authors
describe their process of adding hand-seeded faults. They mention that to increase
the potential validity of obtained faults, they insert faults by following fault local-
ization guidelines (available in the SIR infrastructure documentation).

The number of available faults for most of the objects from SIR is not sufficient
to enable any real experimentation (one or two in most cases). Only ant has several
hand-seeded faults in different versions. When dealing with hand-seeded faults,
therefore, the experiment investigates only ant.

Both families of mutation and hand-seeded faults have been used for the evalu-
ation purposes. One of our experiments uses the automatically generated mutation
faults while the other uses the hand-seeded faults.
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5.4 Investigated Techniques

In the experimentation to follow, the code-based realization of the framework is
compared against test case prioritization techniques from the literature. The follow-
ing is a description of all investigated techniques and their implementation specifics.

Control Techniques:

The control techniques in a controlled experiment are those that represent the
common practice or trivial solutions to the problem. There is one control technique
utilized in the experiments: original ordering. Original ordering represents the
common practice of running test cases in the original order that they appear in.
Based on the technology used to develop a test suite, the test cases come with
an original ordering which is used here as a control technique. The technique is
referred to as orig in the diagrams.

Coverage-based Conventional Techniques:

Among the existing test case prioritization approaches, reviewed in Section [2.1.2]
the conventional coverage-based techniques (e.g., [I11} 122]) are predominant. This
family of techniques represents the earliest line of research in test case prioritiza-
tion. The performance of these techniques has been extensively studied empirically
(e.g., [39, 43| 1111, [122]); also, most other proposed approaches compare their results
against these techniques as a benchmark. There exist a variety of coverage-based
prioritization techniques which use different metrics of coverage and algorithms of
ordering. This experimentation includes two common coverage-based techniques.

One factor that differentiates coverage-based techniques is the level of granu-
larity on which coverage data is gathered. Empirical studies, however, show that
the effect of this factor is not significant in many cases (e.g., [43]). Therefore, the
performed experiments focus on one level of granularity, that of methods. Note that
method level data are more fine-grained that the information used in code-based
BN realization. Nevertheless, method-level data are employed here because using
class level coverage data for prioritization has not been reported in the literature.

The use of feedback mechanisms is another factor differentiating prioritization
techniques. This factor, contrary to the level of granularity, is found to significantly
affect the results in many cases (e.g., [39, 43]). Therefore, in the evaluation, two
versions of coverage-based techniques are included: one without the feedback mech-
anism and one with feedback. The first variation is called Method Coverage (MC)
technique and the latter is called Method Coverage Additional (MCA) technique.

BN Techniques:

The BN techniques are, here, the subject of the controlled experiments. Different
variations of the BN technique are used in the three experiments that follow in
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later sections. These variations mostly differ in the value of the parameters that are
present in the implementation presented in Chapter dl Much like the conventional
coverage-based techniques, investigated variations of the BN-based framework can
be categorized into two techniques: one with feedback and one without feedback.

The feedback mechanism is part of the BN-based framework (as described previ-
ously in Section which can be controlled through the stp parameter. Setting
this parameter to one causes the algorithm to add test cases one by one and evalu-
ate the effect each time. This corresponds to the feedback mechanism. Setting the
parameter to the size of the test suite creates a non-feedback implementation. Any
other number would result in partial feedback. The performed experiments include
a feedback and a non-feedback implementation, respectively called BN and BN Ad-
ditional (BNA), are always present. For BNA, different experiments use different
values of stp parameter; the exact values are mentioned in each experiment.

Table 5.2: Techniques Involved in the Experiments.

[ Label [ Description [ Feedback [ Coverage [ Family ]
orig the original ordering of test cases - - Control
MC ordering based on Method-level Coverage No Method Coverage-based
MCA ordering based on Method-level Coverage Additional | Yes Method Coverage-based
BN code-based realization of the BN-based framework No Class BN-based
BNA code-based realization of the BN-based framework Yes Class BN-based
with feedback

Table summarizes the involved techniques. The first column is the label by
which the techniques is referred to in the rest of the chapter. The second column
gives a brief description of the techniques. The third column indicates whether
feedback mechanism is used in the technique and the fourth column shows the
granularity level of the coverage data. Finally, the last column specifies the family
to which a technique belongs. The first experiment involves merely the BN-based
family of techniques but the two later experiments involve all the three families.

5.5 Evaluation Criteria

Evaluating the performance of different techniques requires criteria on which to
compare the techniques. The performance of prioritization techniques (or regression
techniques in general) has many different facets. First and foremost, the goal of
prioritization is to enhance the rate of fault detection and hence an important
evaluation criteria concerns the fault detection speed. Moreover, like any other
computer algorithm, the running-time required by the technique is of interest. In
addition, other factors such as the required manual effort to set up the technique
could be all considered. Many of these criteria conflict with each other, so that
enhancing one leads to the deterioration of the others. One way to account for
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these different criteria is by using cost-benefit models that translate the benefits
and costs of each techniques to quantifiable metrics, e.g., time or money.

There are comprehensive models of cost-benefit analysis in the literature of test
case prioritization (e.g., [38, [107]). Nevertheless, they are not used in this research
work for the following reasonﬂ First, the resulting numbers from those models
are hard to analyze. Because those models take many factors into consideration,
one can not easily understand why a technique is performing well or poorly. Those
models, although helpful for industrial comparison, are not descriptive enough for
the goals of experiments performed in this research work. Moreover, to be able
to use such models, many figures related to the processes of the target software
project are required. For the target objects of this experiment, and for many other
software projects, such figures are not available. To use those models, therefore,
one needs to rely on guesstimates that are not necessarily accurate. Bearing in
mind the fact that such figures have huge impact on the models, the results should
always be interpreted with great care.

Instead of using cost-benefit models, one can use evaluation metrics that have
been widely used in prioritization literature. Two evaluation metrics are used here:
APFD (Average Percentage Faults Detected) [I11] and running time of the algo-
rithms. While the APFD metric provides insight to the benefit of each technique,
the running time helps compare the costs.

APFD: This metric calculates fault detection rate by measuring the weighted
average of the percentage of faults detected over the test suite execution period.
APFD values range from 0 to 100 where higher values indicate faster fault detec-
tion rates. Consider that we plot the the percentage of faults detected versus the
percentage of the test suite executed (using the data from fault-matrices). The area
under the resulting curve provides a measure of how fast bugs have been found.
Informally speaking, APFD metric is the area below such a curve. More formally,
let T'=<1T7...T, > be a test suite with n test cases, and let F} ... F,, be m faults
revealed by those test cases. Let TF; be the index of the first test case in T" that
reveals F;. The APFD for test suite T is given by:

"TF, 1
APFD(T) =1-— Zl— 4+ —
nm 2n

The precise definition of APFD and its justification can be found in [IT1].

Running-time: The running time of each implementation is computed on a

Windows system with a Pentium(R) 4 CPU and 2GB of RAM.

Finally, note that different parts of this chapter pursue different goals in ex-
perimentations. Not all of the above evaluation criteria are of interest in all the
cases. Each experiment reports the metrics of interest in its particular case. These
metrics of evaluation are in fact dependent variables of the controlled experiments.

2Note that such models are indeed used for evaluation of this framework in published pa-
pers [37]. This thesis, however, does not report those data.

62



5.6 Summary

This chapter has presented the experimental setup for three sets of experiments that
will follow in the next three chapters. Those experiments are designed to evaluate
the performance of the code-based realizations of the BN-based framework as a
prioritization technique. The chapter has started with the evaluation procedure. It
then discussed the involved techniques. Method level coverage-based techniques (an
existing approach from the literature) are included as a baseline in addition to two
variations of the BN-based framework for which the implementation is detailed.
Mutation and hand-seed faults have been also introduced as alternative ways of
artificially adding faults to systems. Finally, the chapter introduced APFD and
running time as the metrics of comparison.

The next three chapters investigate three sets of research questions through em-
pirical experiments. All those experiments are conducted based on the experimental
setup outlined in this chapter.
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Chapter 6

Experiment 1: The Effect of the
Parameters

The code-based realization, as presented in Chapter [4], has a few parameters that
could be utilized to adapt the behavior of the approach to the specifics of a special
environment. The effects of these parameters could best be understood through
empirical studies. A controlled experiment is performed to evaluate such effects; the
results from that experiment are reported in this chapter. The goal of the controlled
experiment is to compare different implementations of the proposed framework and
to understand the effects of its underlying parameters. The followings are research
questions pursued through this experiment:

e RQ1: What is the effect of the feedback mechanism on the performance of
the framework?

e RQ2: What is the effect of using different measurement techniques (i.e.,
change analysis and fault-proneness models) on the performance?

e RQ3: What is the effect of adjusting parameters of the framework realization
(i.e., inference algorithm and stp parameter)?

This chapter reports on a controlled experiment designed to answer these ques-
tions. The rest of this chapter first describes the experiment design, including
variables and measures and then explicates threats to the validity. Obtained re-
sults follow next and at the end, a discussion on the obtained results is presented.

6.1 Experiment Design

In a control experiment, one first needs to identify the independent variables that
affect the system. The effects of the independent variables are then evaluated based
on the dependent variables. The following first details the involved variables and
measures, then explains the particular staged design of this experiment.
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6.1.1 Variables and Measures
Independent Variables

To investigate the aforementioned research questions, the following independent
variables are needed.

V1: Feedback Mechanism- The decision on whether to use feedback mech-
anism produces two variations of the techniques: BN referring to the case where
feedback is not used, and BNA, the additional version, where feedback is included]

V2: Change Analysis Technique- Two alternative techniques for gathering
change information is evaluated here: Unix diff and Constant Pool diff. These two
techniques have been discussed in Section [4.2.1] The V2 variable captures these
two techniques with the possible values of D (DIFF) and CP (Constant Pool).

V3: Fault-proneness Model- The fault-proneness models from literature
(e.g., those surveyed in [10, 55]) estimate fault-proneness using metrics of qual-
ity (one metric in the case of univariate models). This experiment evaluates five
common metrics from Chidamber and Kemerer suite [21]: CBO (Coupling between
Objects), DIT (Depth in Tree), LCOM (Lack of Cohesion), RFC (Response for
Class), and WMC (Weighted Method Complexity). Therefore, V3 variable, char-

acterized by the selected metric suite, can have five different values.

V4: Inference Algorithm- BN Inference algorithms fall into two categories:
exact (EXC) and sampling (SMP) algorithms. One sampling algorithm (Epis [125])
and one exact algorithm (Lauritzen [81]) are included in this experiment.

V5: stp Parameter- The stp parameter is also a subject of this experiment.
The following five values are chosen as the domain of this variable: 1, 5, 10, adjustive
10, and adjustive 20. The last two values are adjustive, meaning that the parameter
is set to 1 initially and increased gradually (and uniformly) as the test cases are
added to the ordered list. The value reaches the specified number at the end of the
ordering process. For example, if we have 500 test cases with adjustive 10 value,
stp is set to 1 initially. After 500/10 = 50 iterations (when 50 test cases are added),
stp is increased to 2. Then, after 25 more iterations (when another 50 test cases
are added), the parameter is increased to 3 and so on until the last 50 test cases
where stp is set to 10. Using this schema, the earlier test cases in the ordered list
are chosen using small stps and hence more carefully. As we go down the order list,
the importance of the test cases is reduced and hence larger stps are chosen.

Dependent Variables

The two evaluation metrics of APFD and running-time, as described in Section[5.5]
are chosen as the dependent variables of this study.

Note that the use of feedback can be controlled through stp parameter.
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6.1.2 Staged Design

In performing an experiment with five different variables, one problem is the in-
teraction between the variables. One can investigate all the possible combinations
of the variable values. This makes the space of the experiment large and hard to
analyze. Another path, taken in this experiment, is to divide the experiment into
different stages that each target different variables. In each stage, variables that are
less likely to interact with the target variable should be fixed to a value of choice.

This controlled experiment has been performed in four different stages, each
of which targets one of the variables V2 to V5. We expect that the feedback
mechanism (V1) has a major impact, and hence, it has been treated differently.
Both of V1 values (BN and BNA) are included in the first two stages. Besides V1,
in each stage the value of all the variables except the one targeted in that specific
stage are fixed. For all the values of the variable under experiment, the dependent
variables are measured and compared statistically. In some stages, running-time
dependent variable is almost identical among all alternatives and is not reported.

Table lists for each variable, the fixed values in all the stages. The stage
which concerns a specific variable is marked as “Target”. The choice of the actual
value for a fixed variable in each stage is based on either our expectation of the
optimal value, or the results from a previous stage. For example, CBO has been
initially chosen for V3 because it is widely reported to be a better indicator of
fault-proneness (e.g., [55]). However, after finding the optimal values in Stage 2 for
each specific object, the value of the variable has been changed for Stages 3 and 4.

Table 6.1: Assigned Values to Each Variable for the Four Stages.

Variable || Stage 1 | Stage 2 | Stage 3 Stage 4

V1 Target Target BNA BNA
V2 Target Constant Pool
V3 CBO Target ant, galileo: DIT

xml-security: RFC
jmeter, nanorxml: WMC

V4 ant: Sampling Target | ant: Sampling
the rest: Exact the rest: Exact
V5 1 Target

The first research question (RQ1) is pursued through Stages 1 and 2 of the
experiment where the feedback variable is included. The second research question
is divided into two parts of change analysis and fault-proneness model, addressed
in Stages 1 and 2, respectively. The third research question is also divided into
two parts of inference algorithm and stp parameter, addressed in Stages 3 and 4,
respectively. These two parameters are of interest only for BNA; stp is meaningful
only for BNA and the inference algorithm mostly affects running-time which is not
an important issue for BN. Therefore, V1 is set to BNA for the last two stages.
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6.1.3 Threats to Validity

This section describes the construct, internal, and external threats to the validity
of this study as well as the cautions taken to limit the effects of these threats.

Construct Validity. The dependent measures used in this experiment are not
complete in terms of capturing all the costs and benefits associated with the different
alternatives. Performing accurate cost-benefit analysis is dependent on the specific
context where a given technique is used. However, both cost and benefit are to
some degree captured in the two dependent variables described earlier.

Internal Validity. There could be several other factors that influence the results
and affect the inferences made from the results. The tools developed/used to collect
data can potentially have defects. By validating the tools on several simple Java
programs, this threat is restricted. More importantly, the staged procedure of the
experiment can influence the result. Changing the chosen fix values can (although
unlikely) affect the results for the other variables. To restrict this problem, the
variables are chosen such that they have little logical dependency on each other.
Also, small experiments have been conducted to validate the effect of variables on
each other; the experiments indicate relative independence of the variables.

External Validity. There are also threats to the external validity of the exper-
iment. The programs studied here are not large by today’s industry standards
and they are all open source software. Complex industrial programs with different
characteristics may be subject to different concerns. Also, the testing process used
for the open source software is not representative of all possible processes used
in industry. The other threat to generalizing the findings is the use of mutation
faults for evaluation. Although using real faults is preferable, they are typically
not available in large numbers; thus, researchers use faults created by mutation
tools instead. It has been shown that mutation faults can be representative of real
faults [35], although the result from such studies should be interpreted with care.
Finally, the tools used in this study are prototypes and thus may not reflect tools
used in a typical industrial environment.

6.2 Obtained Results

This section presents the obtained results from the outlined experiment along with
the statistical analysis of the data. Figure[6.1] plots an overview of the results for all
the five stages. Each column represents one stage and includes 5 boxplot diagrams,
each corresponding to one experiment object. In each diagram, the independent
variables corresponding to that stage are enumerated in the horizontal axis. The
vertical axis shows the APDF metric. For each version of an object, 15 sets of
mutants are randomly chosen each having a random size of 1 to 10. The boxplots
illustrate the distribution of these 15 sets for all the versions of each object. The
reminder of this section looks into the specifics of the results for each stage.
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6.2.1 Stage 1

In this stage, the effects of using different change analysis techniques (V2) and also
feedback mechanism (V1) are examined. The first column of the Figure [6.1] shows
the results related to this stage. The letters in bracket indicate the values of V2
where D stands for Unix diff technique and CP refers to the Constant Pool.

Looking at the boxplots, the change analysis technique (V2) does not seem to
affect the results significantly. The use of feedback mechanism (V1), however, seem
to have an important effect in some cases. To validate these informal observations,
Kruskal-Wallis statistical test [L06] is utilized here. Kruskal-Wallis is an statistical
tool for one-way analysis of variance by ranks. It is a non-parametric method for
testing equality of medians in different data sets. Intuitively, it is identical to a
one-way analysis of variance (ANOVA) with the data replaced by their ranks. This
test is a non-parametric method and hence does not assume any distribution for
the population, unlike ANOVA. This test is used here because the assumptions
of ANOVA does not hold for the data in this experiment; the data has too much
variance to assume a normal distribution.

Table illustrates the results of the statistical test in two parts, investigating
the effect of V1 and V2. In the first part, the realizations of the technique with
different values of V1 are compared against each other. In the second part, those
with different V2 are examined.

Table 6.2: Kruskal-Wallis Test Results for Stage 1.

Vi1
Program | BN(D) vs BNA(D) | BN(CP) vs BNA(CP)
chi. p-val. chi. p-val.
ant 0.9 0.323 | 0.08 0.762
jmeter 2.5 0.114 3.8 0.049
xml-security | 0.03 0.8 0.14 0.701
nanoxml o6 < 0.0001 66 < 0.0001
galileo 130 < 0.0001 132 < 0.0001
V2
Program | BN(D) vs BN(CP) | BNA(D) vs BNA(CP)
chi. p-val. chi. p-val.
ant 0.04 0.79 1.1 0.287
jmeter 0.7 0.395 | 0.05 0.827
xml-security | 0.82 0.363 0.17 0.680
nanoxml 3.3 0.069 0.01 0.942
galileo 1.34 0.247 0.20 0.653

The results of the statistical test reveal that not a single case of significant
difference for V2. Clearly, this variable is not an important factor, meaning that
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different change analysis techniques do not significantly differ from each other.
Evaluating V1, on the other hand, reveals significant differences. BNA results in
significantly better APFD measures for nanorml and galileo, the two objects with
the T'SL test suite. However, for other objects (the ones with Junit test cases), the
differences are not statistically significant. This implies that use of the feedback
mechanism does indeed improve the performance but not in all cases.

Table 6.3: Average Running-time (in sec), Stage 1.

Program | BN(D) | BNA(D) | BN(CP) | BNA(CP)
ant 5 462 5 497
jmeter 6 71 4 66
xml-security 0.7 2.2 0.7 2.2
nanoxml 2 6 2 6
galileo 6 71 5 66

Table reports the running-time of the four techniques. It is evident (as
expected) that V2 does not have meaningful effect on this dependent variable. V1,
on the other hand, has a significant impact on the running-time. The running-
time of BNA technique is between 3 to 100 times larger than that of BN. Using
feedback can assist early fault detection in some cases, but it does require longer
running-time.

6.2.2 Stage 2

The main concern in Stage 2 is the fault-proneness metrics (V3). The second column
of Figure illustrates the results related to this stage for both BN and BNA
techniques. The boxplot diagrams suggest that the V3 variable only occasionally
has a significant impact. A five way Kruskal-Wallis statistical test (dt=4) is used
to find out if the differences between the techniques are statistically significant.

Table 6.4: Kruskal-Wallis Test Results for Stage 2.

Program BN BNA
chi. p-val. | chi. p-val.
ant 7.6 0.109 | 30.44 | < 0.0001
jmeter 4.3 0.36 24 0.65
xml-security | 0.06 0.963 13 0.011
nanoxrml 12.4 0.015 2.6 0.623
galileo 30.7 | < 0.0001 1.3 0.861

The results are shown in Table [6.4 Unlike Table here V1 variable is not
separately investigated because the same pattern as that of Stage 1 is observed.
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To control merely for V3, the test is performed among the five BN and BNA
alternatives separately. That is the variations of the BN technique are compared
together, BNAs to each other. The results indicate that V3 dose not change the
performance significantly in most of the cases but occasionally does.

There are two cases where significant differences are observed: BNA technique
for ant and BN for galileo. The reported statistical test is among five populations.
The interpretation of such a test is that there is at least one technique which is
statistically different from at least one other technique. To gain a better under-
standing of the results, we performed Bonferroni adjustment [106] for the two cases
of BNA in ant and BN in galileo. This test adjusts the results of the statistical test
to compare the results pair-wise. According to this test and in the significance level
of 1%, for ant, using WMC is significantly better than all the others but the rest
of the metrics are not different from each other. For galileo, DIT is significantly
better than all the other alternatives but the rest are statistically similar.

6.2.3 Stage 3

In this stage, the inference algorithm (V4) is concerned. The third column in
Figure [6.1] shows the APFD metric for this stage. The technique labelled as EXC
uses the exact algorithm and the one labelled SMP uses a sampling algorithm. In
principal, the APFD metric for different algorithms should not be much different.
The boxplot diagram suggests that the actual results support this point except for
nanoxmlobject. Performing Kruskal-Wallis test for this specific object, we observed
that the p —value is 0.007 which means the result is significant in 1% level but not
in 0.1% level. Interestingly, here, the sampling algorithm has a better APFD value;
an observation for which no solid justification is available.

Table 6.5: Average Running-time (in sec), Stage 3.

Program | ant | ymeter | xml-security | nanoxml | galileo
BNA(EXC) | 871 2 1 8 66
BNA(SMP) | 496 11 12 105 1434

The choice of inference algorithm influences the running-time to a large extent.
Table lists the average running-time of the two BNA techniques. There is a
mixed pattern observed in the results. While the exact algorithm (EXC) performs
quite slower for ant, it is much faster for the other objects. This result, although
surprising at the first glance, is easily justifiable. As the size of the network grows,
the sampling algorithm’s complexity does not increase dramatically whereas in the
exact algorithm, it can grow exponentially. Therefore, for small systems, the sam-
pling algorithm is relatively slow. That is because the time necessary for generating
samples, etc. is more than traversing the network. For large systems, on the other
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hand, it performs faster because the complexity does not grow exponentially. Be-
cause ant is a notably larger system than the other objects, SMP performs faster
on it. It is noteworthy that the specific exact algorithm used in this experiment
traverses the network in a forward search fashion, and hence, the number of nodes
in the first layer (i.e., number of classes) have a larger impact on the running-time
than the nodes in the last layer (i.e., number of test cases).

6.2.4 Stage 4

In this stage, the stp parameter is the subject of the analysis. The last column
of Figure depicts the boxplot diagrams related to this stage. The effect of stp
parameter is expected to be two-fold. It can potentially affect APFD values and it
certainly changes the running-time.

Table 6.6: Kruskal-Wallis Test Results for Stage 4.

ant | gmeter | xml-security | nanoxml | galileo
chi. 21.6 3.3 4.1 4.2 1.3
p-val. | 0.0002 0.5 0.395 0.372 0.866

Table[6.6|shows the result of the statistical test on APFD for all the five objects.
The differences in APFD are not statistically significant except for ant for which
the value of 10 for stp results in significantly lower APFD. It could be concluded
that the specified values for stp parameter do not have a significant impact on the
APFD metric in most cases. Therefore, it is safe to use a higher value of stp in
hope of getting a better running time.

Table 6.7: Average Running-time (in sec), Stage 4.

ant | ymeter | xml-security | nanoxml | galileo
1 496 3.3 1.2 6 66
5 98 0.5 0.8 3 16
10-a | 138 0.5 0.9 3 26
10 54 0.5 0.7 2 10
20-a | 95 0.5 0.8 3 16

The primary impact of the chosen stp values is on the running-times, as shown
is Table[6.7] As the stp parameter increases, the running-times decrease linearly. In
the case of adjustive parameters, note that, they should be counted on the average
about one half of their specified values. Considering that APFD values are similar
for different stp values, using larger numbers for this parameter can improve the
cost effectiveness. That said, note that the involved stp values in this study are
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relatively low. If we choose very large values, the BNA technique will lose its
feedback characteristic. Even with the current stp parameters, it can be observed
in Figure that lower values result in better APFD (although not statistically
significant). Naturally, if we keep increasing the stp, at some point the APFD
will become significantly lower, as it does for ant object. This suggest that this
parameter should be selected carefully and using similar experiments.

6.3 Discussion

The reported results indicate that the parameters can, in some cases, impact the
performance of the proposed framework. In other cases, however, the choice of
the parameters is not important and hence those parameters can be chosen with
less cautious. Experiments such as this can help the selection of the parameters.
Regarding the research questions, lessens could be learnt from the obtained results.

Regarding the first research question, impacts of using feedback mechanism,
the obtained results present an interesting pattern. While using feedback results in
faster detection of faults for TSL-based test suits, for Junit test suites, it does not
affect the performance significantly. This could be attributed to different natures
of test cases among these two families of test suites. Junit test developers are
encouraged to target one and only one functionality of the system in each test case,
and hence, different test cases are less likely to cover similar parts of the code.
In TSL, for one specific operation, multiple test cases with different parameters
could be generated, and hence, a larger amount of redundancy can be potentially
present. This is reflected in the large number of available test cases for the TSL
objects, compared to JUnit suites. The feedback mechanism, obviously, is of use
only when there are test cases which cover same parts of code. If the test cases did
not intersect in any of the covered code, they use of feedback would not change the
algorithm. Since in JUnit test cases are less likely to cover common parts, the use of
feedback for JUnit test suits does not improve the performance as much as it does
for TSL. The feedback mechanism, however, increases the (machine) running-time
always, and consequently, if this factor matters, testers need to be more careful
about the feedback mechanism.

Regarding the second research question, effects of different measurement tech-
niques, it appears that the alternative approaches are quite similar. Specifically,
in the case of change information, the differences are never significant. This could
be due to the fact that all those techniques extract similar information from the
system. The fact that each of those sources of information builds only one part
of the whole model also contributes to their low impact. Nevertheless, the fault-
proneness models were occasionally influential, and hence, it can be beneficial to
investigate which model fits a specific program in the early phases of a project.
Furthermore, there is a handful of other fault-proneness models and metrics that
were not investigated in this work. Most importantly, the faults used in this exper-
iment are all mutation faults. The process by which mutants are created does not
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take into the account the quality of the code. Hence, the distribution of faults may
be different from that of a real system, and as a result the quality metrics may lose
their prediction capability for faulty code. This suggest future experiments should
focus on real faults as opposed to mutation faults.

Regarding the third research question, the effects of different parameters, the
running time can be considerably affected. In practice, it is crucial to find the
inference algorithm that suits a particular system. Based on the observed data
and mentioned justifications, when dealing with large systems which have a large
number of classes, exact algorithms are not recommended. The results also indi-
cate that performing inference for each single test case when using feedback is not
needed. Adding several test cases after each inference can accelerate the technique
while affecting the fault detection rate only slightly.

Finally, the obtained results suggest that the impact of one particular variable
can differ from one system to another; therefore, in practice, one can use a sim-
ilar methodology to investigate the impact of different variables in their specific
domains. The fact that the influential and non-influential variables are spotted in
this experiment can help such investigations to focus on the important factors. The
existence of many non-influential variables is a valuable finding of this study.
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Chapter 7

Experiment 2: Evaluation Using
Mutation Faults

The performance of the BN-based framework needs to be compared against existing
approaches from the literature. As mentioned before, the code-based realization is
a good candidate for such comparison. This experiment is designed to compare the
code-based realization to conventional coverage-based techniques from the literature
through an empirical study.

As explained in Section [5.3], artificially generated faults need to be utilized for
the purpose of such studies. Two types of mutation and hand-seeded faults are
available for SIR objects. This experiment reports on an experiment that utilizes
mutation faults to empirically evaluate the performance of the proposed framework.
The following research questions are investigated in this experiment.

e RQ1: Does the proposed code-based realization of the BN-based framework
result in faster fault detection?

e RQ2: Does the use of feedback mechanism enhance the rate of fault detec-
tion?

The first question is the main focus of this experiment. The second question
has been asked in the previous experiment as well but because of the importance
of this factor, it is included here again. This chapter reports on a controlled exper-
iment designed and performed to answer these questions. The rest of this chapter
first describes the experiment design, including variables and measures and then
explicates threats to the validity of the experiment. Obtained results follow next
and at the end, a discussion on the obtained results is presented.

7.1 Experiment Design

In a control experiment, one needs to identify the independent variables that affect
the system. The effects of the independent variables are evaluated based on the
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dependent variables of interest. The following details the involved independent and
dependent variables.

7.1.1 Variables and Measures
Independent Variable: Involved Techniques

The aforementioned research questions concern the performance of the proposed
framework versus that of existing techniques. Therefore, the independent variable
of our study is the involved techniques. Five different techniques are included in
this experiment: BN, BNA, MC, MCA, orig. These techniques are each described
in more detail in Section [5.4l

As mentioned in Section [5.4], conventional coverage-based techniques are chosen
for this experiment mainly because of their predominance in the literature. More-
over, they are the most precisely presented approach and hence replicating them is
a doable task. Most other techniques from the literature, too, compare their results
against this family of techniques. The assumptions of the coverage-based methods
regarding the process of regression testing, etc. is similar to those of the proposed
framework and hence a direct comparison is possible.

As for the BN family of techniques, it has been mentioned in the first experiment
Section [0] that there exist parameters that can be used to adjust the performance
of the system. In this experiment, the value of those parameters is not part of
the research questions. Nonetheless, a particular configuration is required for an
implementation of the technique to work. Experiment 1 has investigated the effects
of those parameters. The results from that experiment has been used to come up
with a good configuration for each object of study. Table details the used
configuration for all objects and parameters.

Table 7.1: Parameter Configuration for the BN-based Techniques.

Parameter ant \ jmeter ‘ xml-security ‘ nanoxml ‘ galileo
Change Analysis DIFF
Quality Metric DIT WMC | RFC | WMC | DIT
Inference Alg. Sampling Exact
stp adjustive 10

The impact of change analysis techniques has been found to be insignificant in
the previous experiment. Hence, the simpler of the two approaches, namely DIFF,
is chosen here for all the objects. In the case of quality metrics, since some instances
of significant difference were indeed observed, here, for each object, the metric that
produced the best results in Experiment 1 (according to the median values) is
used. For the inference algorithm, based on the results obtained in Experiment 1,
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sampling has been chosen only for ant and exact for the rest. This is due to the
fact that, except for the ant object, the exact algorithms are found to be faster.
For the stp parameter, the adjustive 10 value is never significantly outperformed
by any other value. At the same time, it provides a relatively good running time.
This value has been hence used throughout this experiment for all objects. Note
that values of most these parameters have been found to be insignificant as far as
early fault detection is concerned and hence this particular choice of configuration
is unlikely to impact the results.

Dependent Variables

APFD metric is an indicator of the rate of fault detection, the subject of the
research questions in this experiment. This metric is hence used throughout this
experiment as the dependent variable. For each independent variable (technique),
on each object of study, the value of APFD metric is computed through the process
described in Section and using mutation faults. Boxplot diagrams of APFD
metric for each single version is depicted and an overall (over all releases) statistical
analysis is performed to find the significance of observed results. The boxplots and
statistical analysis is based on a distribution of 30 different runs. For each version
of each object, from the pool of available mutants, 30 set of mutants are randomly
chosen, each of which has a random size between 1 and 10. For each mutant set,
a different APFD value is obtained. Therefore, for each version of each object 30
different runs are available.

7.1.2 Threats to Validity

This section describes the construct, internal, and external threats to the validity
of this experiment as well as the cautions taken to limit the effects of the threats.
Because the set of experiment objects and faults is similar between this experiment
and those of Experiment 1, many of the threats to the validity are common.

Construct Validity. The dependent measures used in this experiment are not
complete in terms of capturing all the facets of early fault detection. Other metrics
could be defined for measuring the rate of fault detection accounting for other
factors such as time required by each test case. The APFD metric threats all test
cases identically but this is not always the case in real systems. However, the test
cases of the objects under study do not vary drastically in the execution time and
hence the assumptions of APFD does hold for the most part.

Internal Validity. Several other factors could influence the results and affect the
inferences made from the results. Like Experiment 1, the tools developed/used to
collect data can potentially have defects. Moreover, the choice of the configuration
values for the involved parameters can potentially influence the results. Small
investigation have been made prior to the study as to the effects of the parameters;
those informal studies indicate that the results are not affected significantly. The
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formal results presented in Experiment 1 also has revealed that the code-based
realization is not much sensitive to the particular values of the involved parameters
as far as the rate of fault detection is concerned.

External Validity. There are also threats to the external validity of the experi-
ment, similar to Experiment 1. The programs studied here are relatively small to
medium size open source software. Complex industrial programs may be subject to
different concerns. Same applies to the underlying testing process. The use of mu-
tation faults is again an important threat to generalization of the results. Mutation
faults do not follow the distributions assumed by the fault-proneness models and
hence the power of BN-based techniques is partially reduced. Although for these
reasons using real faults is preferable, those are typically not easily available for
research purposes. It has been shown that mutation faults can be representative of
real faults [35], although the result from such studies should be interpreted in the
light of the fact that not all measures of representativeness are studied. Finally,
this experiment compares only two variations of the existing coverage-based tech-
niques; other variations can be compared differently. Nevertheless, previous studies
(e.g., [39]) have not revealed a major and consistent difference in the performance
of the alternatives.

7.2 Obtained Results

For each object of the study, the obtained results is separately given in the following
sections to enhance a better presentation. The reported results, for each object,
consist of a boxplot diagram depicting the APFD metric for each version of the
object and also for all the releases put together. In addition, a table lists the
results from Kruskal-wallis statistical test in the form of pair-wise comparisons.
The pairs of techniques are compared against each other using the statistical test.

7.2.1 ant

Figure depicts the APFD metric as the dependent variable of this experiment
for each version of the ant object. A result tagged as release v, represents the the
regression testing of version v of the program. For the first version, release 0, no
results are available because the the evaluation procedure relies on the coverage
data from a previous version which does not exist for the very first version. The
last boxplot diagram shows the overall result for all the releases.
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It is evident from the boxplot diagram that all four heuristic techniques result in
faster fault detection compared to the original ordering in most cases. Comparing
the four heuristic techniques, however, the results vary from a release to another.
Overall, BN technique seems to slightly outperform BNA and MC. Also, MCA
seems to outperform BNA and MC. These two (BN and MCA), however, seem to
give results close to each other.

Kruskal-Wallis test can help further analyze the data and understand the rel-
ative performance of the techniques. Table shows the result of the statistical
test for the ant object. The same format will be used for the following objects
as well. Each row in these tables shows the results of comparing a pair of tech-
niques. There are four lines in the tables. The first line compares APFD values of
BN versus that of BNA. Such comparison helps address RQ2, whether the use of
feedback improves the performance of the technique. The second and third rows
correspond to RQ1, whether the BN-based framework is performing better than
conventional coverage-based approaches. Notice that non-feedback variations of
the two techniques are only compared against each other (BN vs MC) and so are
feedback-employing versions (BNA vs MCA). This way, the effect of feedback is
studied separately. The last row in the table is the combination of comparing the
control orig technique versus each of the other four techniques, all put together to
save on space. The details of the four comparisons are not that interesting because
they all indicate only one thing: all the heuristic techniques are outperforming the
control technique.

Table 7.2: Kruskal-Wallis Test Results for ant Object.

’ Compared Techniques ‘ p-value ‘ chi-squared ‘

BN vs BNA 0.00287 8.889
BN vs MC 0.18420 1.763
BNA vs MCA 0.00212 9.437
orig vs others < 0.0001 > 60

Interpreting the results of the statistical tests presented in for a 0.1% level of
confidence, there would be no significant difference between the the coverage-based
and BN-based techniques. Nor would the use of feedback make any difference for
that level of significance. If aimed at 1% level, the results from first and third
rows are statistically significant. Whether statistically significant or not, the fact
remains that BN is outperforming BNA overall, suggesting that the use of feedback
is not helpful here. Also, the performance of BN-based and coverage-based families
of techniques is too close to draw a meaningful distinction. It could be said that
the two seem to perform comparably for ant object.
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7.2.2 jmeter

Figure [7.2] depicts the APFD metric for each version of the ant object. The last
boxplot diagram shows the overall result for all the releases.
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Figure 7.2: The APFD Metric for jmeter using Mutation Faults

On this object, also, all four heuristic techniques result in a rate of fault detection
better than that of the original ordering in most cases (all releases except version 5).
Again, among the four heuristic-based techniques, the results vary from a release
to another. In some releases such as 1 and 2, the APFD values are comparable. In
others such as 5 the BN family works better, in others such as version 4, coverage-
based family does better. Overall, the BNA technique seems to slightly outperform
BN; the BN appears to be better than the MC; and the BNA and MCA seem to
be very close. The further analyze of these observations is possible through the
Kruskal-Wallis test.

Table shows the result of the statistical test for the jmeter object. A same
format as that of the previous table is used here. Again, the details of the four
comparison for orig are not mentioned to save space. Those tests again indicate
that all the the heuristic techniques are outperforming the control orig.

For this object, similar to ant, the interpretation of the results depends on the
selected level of significance. For a 0.1% level of confidence, there is no significant
difference between the the coverage-based and BN-based techniques; nor is there
between BN and BNA. If aimed at 1% level, the results from first and second rows
are statistically significant. In that case, BNA is outperforming the BN which in
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Table 7.3: Kruskal-Wallis Test Results for jmeter Object.

’ Compared Techniques ‘ p-value ‘ chi-squared ‘

BN vs BNA 0.04415 4.050
BN vs MC 0.00598 7.555
BNA vs MCA 0.22577 1.467
orig vs others < 0.0001 > 35

turn is better than MC. The use of feedback seems to be quite effective here but not
as much as one would expect. The non-feedback version of the BN-based framework
seems to find faults faster than non-feedback version of coverage-based approach
but there is no real distinction between the feedback-employing counterparts.

7.2.3 xml-security
Figure illustrates the obtained APFD metric as the dependent variable of this

experiment for each version of the zml-security object. The last boxplot diagram
shows the overall result for all the releases all put together.
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Figure 7.3: The APFD Metric for xml-security using Mutation Faults

All the four heuristic-based techniques are much faster than the original order-
ing in finding bugs and in all the three versions. As with the previous two objects,
the four heuristic-based techniques vary in relative performance from a release to
another. In version 1, both feedback techniques BNA and MCA seem to perform
better. In version 2, there is no real difference. In version 3, non-feedback tech-
niques, specially BN is performing better. Overall, the APFD values of the four
techniques are close and no real distinction can be claimed.

To further evaluate the observations, Kruskal-Wallis test is performed. Table[7.4
shows the result of the test for the overall result on zml-security object. The table
follows the same format as the previous two. Again, the details of comparing orig
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Table 7.4: Kruskal-Wallis Test Results for xml-security Object.

’ Compared Techniques ‘ p-value ‘ chi-squared ‘

BN vs BNA 0.23397 1.417
BN vs MC 0.82786 0.0473
BNA vs MCA 0.10911 2.6567
orig vs others < 0.0001 > 120

against other four techniqes are not mentioned. Those tests, again, indicate that
all the heuristic techniques are outperforming the control orig.

The results from Table indicate there exist no statistically significant differ-
ence between the compared pairs of techniques. This finding is true for both 0.1%
and 1% levels of confidence. This confirms that on this particular object, first the
use of feedback does not make any improvement; second, the two families of tech-
niques achieve similar performances. Note that on this relatively small object, the
performance of all four techniques is remarkably good. The achieved APFD values
are around 90% in average and the boxplots show that there is comparatively little
variance in the data. To increase the performance on an object like this requires
very comprehensive models.

7.2.4 mnanoxml

Figure depicts the APFD as the dependent variable of this experiment for each
version of the nano-zml object. The last boxplot diagram shows the overall result
for all the releases all put together. It should be mentioned that the version 4 of
this object has only one mutated version. Therefore, it is not possible to generate
30 sequences of mutant groups for it. The depicted results represents only one
instance (with that one mutant) and hence does not provide a reliable source of
comparison. Version 4 is taken out of discussion for this object.

Resembling the pattern observed on the previous three objects, all four heuristic
techniques have much better APFD distribution than that of the original ordering.
For this object however, compared to the previous three, the relative performance
of the heuristics follows a much more regular pattern. The two feedback-employing
techniques seem to outperform their counterparts most of the times (except for the
MCA on version 1). The MC technique seems to be better than BN most of the
times. The performance of the BNA and the MCA are similar for the most part.
Overall, BNA seems to achieve the best performance among the four.

To further analyze the data, Kruskal-Wallis statistical test is conducted. Ta-
ble [7.5] shows the result of the test for the jmeter object. A same format as that
of the previous tables is used here. Once more, the details of the four comparisons
for orig are all summarized in the last row.
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Figure 7.4: The APFD Metric for nanozml using Mutation Faults

Table [7.5] confirms that for nanoxrml object more rigorous observations can be
made, compared to the previous cases. Here, for both significance levels of 0.1%
and 1%, significant results are obtained. The BNA technique is significantly better
than BN, revealing that the use of feedback has been effective here. Comparing the
BN and the MC, the coverage-based method is significantly outperforming the BN-
based techniques on this object. On the feedback-employing versions, on the other
hand, the BN-based techniques are performing better, although not significantly
according to the test.

7.2.5 galileo

Figure portrays the APFD measure as the dependent variable for each version
of the galileo object. The last boxplot diagram shows the overall result for all the
15 available releases. As the Table indicates, this object is the richest among
the five in terms of the number of available versions, test cases, and mutants.

Table 7.5: Kruskal-Wallis Test Results for nanoxml Object.

’ Compared Techniques ‘ p-value ‘ chi-squared ‘

BN vs BNA < 0.0001 111.02
BN vs MC < 0.0001 25.08
BNA vs MCA 0.16112 1.96
orig vs others < 0.0001 > 140
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Figure 7.5: The APFD Metric for galileo using Mutation Faults
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The control original technique is again surpassed by the heuristic techniques in
most cases (MC on version 9, and MC and MCA on 14 are the only exceptions).
Specially, no BN-based technique is ever been outperformed by the orig technique.
In comparing the heuristics against each other, a very clear pattern exists for this
object. The two BN-based techniques are doing better than their coverage-based
corresponding techniques on most of the versions. The BN specially seems to
be often on large distances from MCA. Between the two BN-based techniques,
the feedback-employing version has the upper hand in most cases (only in three
instances this is not true). Overall, BNA is producing better results than both
BN and MCA, with BN outperforming MC. The initial observations on this object
suggests the advantage of BN-based techniques over coverage-based and also the
benefit of employing feedback.

To further analyze the data, Kruskal-Wallis statistical test is conducted. Ta-
ble [7.6| shows the result of the test for the galileo object. The format of this table
is same as that of the previous tables. The details of the four comparison for orig
are again omitted for the same reasons.

Table 7.6: Kruskal-Wallis Test Results for galileo Object.

’ Compared Techniques ‘ p-value ‘ chi-squared ‘

BN vs BNA < 0.0001 182
BN vs MC < 0.0001 216
BNA vs MCA < 0.0001 123
orig vs others < 0.0001 > 188

The results of the statistical test confirm the informal observations. For this
object, it could be rigourously asserted that BN-based techniques achieve a faster
fault detection rate compared to coverage-based techniques. It could be also as-
serted that the feedback mechanism increases the performance significantly. All
the differences are statistically significant. The average performance of the BNA
technique is above 90%, a more than 10% increase from the existing MCA.

7.3 Discussion

The obtained results help answering the two research questions asked at the be-
ginning of this experiment. RQ2 has been also discussed in the Experiment 1.
The results from this experiment confirm the findings from the first experiment:
feedback seems to be of value for TSL test suites but does not add much to JUnit
objects.

Regarding RQ1, the results indicate the proposed code-based realization of the
BN-based framework in some cases outperforms the existing coverage-based tech-
niques and performs comparably in other cases. This conclusion is in line with the
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previous research in this area that assert various techniques are suitable for differ-
ent environments. The fact that the BN-based framework can incorporate many
heuristics into one model, the author claims, makes it a more reliable technique
when considered across a variety of environments. As evidence for this claim, con-
sider that the BNA technique is never significantly dominated by other techniques
(over all versions) for the studied objects whereas MCA is.

The claim of more stability for the BN-based framework is supported by the
obtained results when seen as a whole. Table reports the average and variance
of all the obtained APFD values across all the objects. These numbers demon-
strate how the BN-based framework is more stable across different objects. The
two BN-based techniques result in both higher averages and lower variances com-
pared to their similar coverage-based counterpart. BNA, in particular, achieves
highest average and lowest variance among all the techniques. This relative sta-
bility of the proposed framework is due to the fact that it utilizes many heuristics
simultaneously. Although, having a detailed knowledge of a particular system, one
might be able to find heuristics that suit the system, in the typical absence of such
knowledge, using many heuristics is a safer approach. This way, for any object,
some heuristics ensure that decent results are obtained.

Table 7.7: Average APFD Results Across All Objects.

BN | BNA | MC | MCA | orig
Average | 77.6 84.4 | 68.5 80.9 | 48.0
Variance | 16.8 15.6 | 20.3 16.0 | 16.9

Another interesting pattern can be observed in this experiment. In objects with
TSL test suites, the differences between the performance of various techniques are
frequently significant; in objects with JUnit suites it is not so. This is most probably
because of the different natures these two testing technologies have. Looking back
at Table TSL objects have much more number of test cases compared to JUnit
objects considering the size of the programs. This is due to the more fine-grained
nature of the TSL test cases. As such, the coverage data for these objects are more
fine-grained and hence more descriptive. On such fine-grained data, the distinctions
between the approaches is further highlighted. In JUnit test suites, in the absence
of precise low-level data, all the techniques perform comparatively.

Finally, there are important issues that need to be considered when interpreting
the results. First, the coverage data used here, for the reasons mentioned in Sec-
tion [5.4] are in different levels of granularity between the two family of approaches.
The fact that coverage-based techniques use method level coverage data gives them
an edge which is not inherent in those approach itself. Similar experiments have
been performed with coverage-based techniques abstracted to class-level; the dif-
ference between BN-based and Coverage-based approaches are greater in that case.
Second, note that the fault-proneness models used in the BN-based techniques
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have lost their prediction power to some degree in this study because of the use
of mutation faults. In systems with real faults, the BN-based techniques are likely
to perform better. Evaluating the system using hand-seeded faults which are in
general believed to be more representative of the real faults can help answer such
concerns.
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Chapter 8

Experiment 3: Evaluation Using
Hand-seeded Faults

The reported experiments on the mutation faults has revealed the relative advan-

tages of the BN-based techniques. There are, however, notable concerns with the
representativeness of mutation faults. For instance, mutation faults are distributed
randomly across software but real faults tend to reside more often in low quality
sections of the code. The deficiencies of mutation faults reduce the heuristic power
of the BN techniques. It is conjectured that with real faults BN would perform
better than with mutation faults. To evaluate that claim, a third experiment is
performed that uses hand-seeded faults instead of mutants. As discussed in Sec-
tion [5.3] hand-seeded faults are believed to be more characteristic of real faults;
here, they have been chosen in the absence of real faults for the objects under
study.

This chapter reports on the experiment performed with hand-seeded faults pro-
vided for the SIR objects. The research questions pursued through this experiment
are similar to those of Experiment 2, only investigated on a different type of faults:

e RQ1: Does the proposed code-based realization of the BN-based framework
result in faster fault detection?

e RQ2: Does the use of feedback mechanism enhance the rate of fault detec-
tion?

The rest of this chapter, first describes the design of this experiment; then, it
explicates threats to the validity of the experiment; obtained results follow next
and at the end, a discussion on the results is presented.

8.1 Experiment Design

This experiment uses hand-seeded fault available for SIR objects for the evaluation
purposes. It should be noted that hand-seeded faults do not exist for the galileo
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object. On three other objects, namely jmeter, nanorml, and zml-security, the
number of seeded faults are minimal, one or two for each version. Considering
that those objects have only a few versions available, there is little ground for
experimentation on those objects. This experiment, hence, considers only the ant
object which has more versions and also occasionally more faults. The volume of
available data in this experiment is not sufficient for statistical tests and therefore
informal analysis need to be relied upon. As such, this experiment serves as a proof
of concept rather than a control experiment.

Table details for each version of the ant object the number of available
faults, test cases, and also the size of the program in terms of the number of
classes. Comparing this table and that of 5.1 one notices the difference between
the number of available test cases. This is due to the fact that here the meaning of a
test case is different than that of the previous two studies. For the JUnit test suites,
the fault matrices available in SIR are constructed differently for hand-seeded and
mutation faults. For the hand-seeded faults, a test case is defined as one test class;
for mutation faults, each method of each test class is treated as one test casd'} This
results in less number of available test cases for hand-seeded faults.

Table 8.1: The Properties of Eight Consecutive Versions of Apache Ant.

Metric Name ver. | ver. | ver. | ver. | ver. | ver. | ver. | ver.
0 1 2 3 4 5 6 7
Faults Count 0 1 1 2 4 4 1 6
Test Case Count 0 28 34 52 52 101 | 104 | 105
Number of Classes 143 | 229 | 343 | 343 | 533 | 537 | 537 | 627

Because of the limited number of available faults, for each version only one eval-
uation is performed in which all available faults are included. This is different from
the previous experiments in which several sequences of fault sets were randomly
chosen from the pool of available mutants. The setup of this case study, otherwise,
is similar to that of Experiment 2. The techniques are the same, with the same
configuration and implementation. The metric of evaluation is again APFD, which
measures the rate of fault detection.

8.1.1 Threats to Validity

This section describes the construct, internal, and external threats to the validity
of this experiment as well as the cautions taken to limit the effects of the threats.
Some of these threats are those that were present in previous experiments as well.

Construct Validity. The dependent measures used in this experiment are not
complete in terms of capturing all the facets of early fault detection. Other metrics

!The latter makes more sense according the definition of a test case in JUnit.
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could be defined for measuring the rate of fault detection accounting for other
factors such as time required by each test case. Moreover, a metric such as APFD
is most revealing when a noticeable number of faults exists. In some versions of
this study that is not the case.

Internal Validity. Several other factors could influence the results and affect the
inferences made from the results. Similar to the previous experiments, the tools
developed/used to collect data and their configuration can potentially have defects.
Furthermore, the number of available faults were not enough to conduct statistical
tests and hence the observations are only informally analyzed. This reduces the
confidence in the inferences made according to the results.

External Validity. There are also threats to the external validity of this experi-
ment. The program studied here is of medium size. Complex industrial programs
and other processes may be subject to different concerns. The use of hand-seeded
faults, by itself, is a threat to generalization of the results. These faults, although
believed to be more representative than mutation faults, do not necessarily fol-
low the distributions assumed by the fault-proneness models. Although for these
reasons using real faults is preferable, those are typically not easily available for
research purposes. Even more importantly, the number of available faults is limited
here. Real software systems vary in the fault content. Those which contain more
faults could be subject to other concerns.

8.2 Obtained Results

The obtained results for different techniques on the ant object is depicted in Fig-
ure [8.1] part A. Each box represent only 7 figures, each figure corresponding to the
APFD metric achieved on one of the 7 releases. Also, Table reports the average
and the standard deviation of the APFD values achieved by each techniques.

Table 8.2: APFD Statistics of Different Techniques on Hand-seed Faults for ant

Technique All Versions More Than One Fault
Versions (3,4,5,7)
Average ‘ SD Average ‘ SD
BN 66.68045 | 29.39683 || 83.64397 19.143807
BNA 85.70182 | 10.04899 || 84.68548 13.229761
MC 63.94817 | 27.70506 | 73.09324 14.880748
MCA 81.44635 | 10.32285 || 75.01233 7.094856
orig 52.62632 | 24.43825 || 66.03252 24.576512

According to the boxplot diagram and the table, all the four heuristic techniques
perform better than orig, the control technique, by far. The average APFD of orig
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Figure 8.1: Boxplot Diagrams of the APFD Results for Hand-seeded Faults on ant.

is 11% lower than second worst technique, the MC, and 33% lower than the best
technique, the BNA. This demonstrates the advantage of all heuristics in this case.

Regarding RQ2, the two feedback-employing techniques seem to top the non-
feedback techniques both according to the median of the data and the variance. The
BNA and MCA techniques are in average around 20% faster than their non-feedback
variations in finding hand-seeded faults. They also have around 20% less deviation
which means they are more stable in performance. Note that this results is in
contrast with those observed on mutation faults. In second experiment presented
in Chapter [7] on ant object, the use of feedback has not caused any significant
improvement. This could be attributed to many factors. First, the definition of
what a test case is differs in these two experiment; that could have affected the
results. Second, the difference in the nature of faults could have resulted in this
dissimilarity. Finally, it is possible that the observation in this experiment, which
is not confirmed by any statistical test, is arbitrary. Finding the real cause calls for
further experiments with a larger number of hand-seeded or real faults.

As for the two families of techniques, BN-based techniques seem to result in
slightly better APFD values compared to coverage-based techniques. The BN and
BNA techniques are in average respectively 3% and 4% better than the MC and
MCA. The deviations are comparable between the two families. Overall, the dif-
ferences between the two families are hardly significant. Taking a closer look at
the data, in many versions, BN-based techniques are achieving significantly bet-
ter results. To analyze the data further, the fault content of the subject program
should be considered. There are three versions of the ant that are seeded only
with one fault. The results indicate that on these three versions, BN-based tech-
niques achieve lower fault detection rates. One can argue that one single fault does
not provide a reliable basis for comparison of techniques. Thus, we took out the
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versions with one fault (versions 1, 2, and 6) and compared the results again.

Figure part B illustrates that APFD values achieved only on versions 3,4,5,
and 7 (versions that are seeded with more than one fault). Also the second column
of Table[8.1|show the average and standard deviation for those versions. The results
show that the difference between the performance of the BN-based and coverage-
based techniques is much more significant, in this scenario. The BN and BNA
techniques are in average 11% and 10% better than the MC and MCA, respectively.
Note that the performance of BN and BNA techniques are very close in this case,
suggesting that the pattern observed in the Experiments 1 and 2 is more reliable
than those seen in the first part of this experiment when all versions are considered.

8.3 Discussion

Observations could be made from the obtained results regarding both research
questions.

Regarding the comparison of feedback-employing and non-feedback techniques,
mixed results are obtained when considering all versions or only those with more
than one fault. To further inspect this phenomenon, we depicted APFD of the
techniques versus the number of faults. Figure shows the regression lines of
such data.
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Figure 8.2: The Regression Line of the APFD vs. Fault Content

This figure indicates that as the fault count grows, the APFD values of feedback
techniques decrease, whereas those of non-feedback techniques increase (both feed-
back techniques have a negative slope but non-feedback techniques have positive
slopes). The original technique, too, has a positive slope suggesting that with more
faults, better APFD values are indeed expected. The decreasing slope of feedback
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techniques suggests either the cases with one fault are not reliable enough for the
comparison or that the power of feedback mechanism degrades when more faults
are present. To find the real effect of fault content, empirical studies and controlled
experiments are needed. If the observation of this experiment is generalized, it
has a very important practical implication: when the software is believed to con-
tain many faults, the use of feedback is not useful but in more reliable systems,
when testers struggle to find the last faults, feedback can improve the rate of fault
detection.

The results from this experiment have shown the BN-based techniques to achieve
better rate of fault detection compared to coverage-based techniques. This suggests
that where experiments using mutation faults did not show any significant differ-
ence between BN-based and coverage-based techniques, there could be differences
that can be revealed by using other types of faults. On the ant object, in this ex-
periment, the BN-based techniques outperformed coverage-based and if considering
only versions with more than one fault, significantly so. This is in contrast to the
results obtained in the previous experiments. Nevertheless, the data available for
this experiment are relatively sparse and hence the results should be interpreted
with care.
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Chapter 9

Conclusions and Future Directions

This thesis has proposed a new BN-based framework for the regression test case
optimization problem and evaluated its performance. The following contributions
have been made.

e The thesis has proposed a novel framework for solving the regression test
optimization problem. The framework predicts the probability of test cases
finding faults using multiple heuristics.

— Proposed BN-based framework i) provides flexibility in the utilized mea-
surements, and ¢i) enables combining different heuristics together based
on their rational relations rather than ad-hoc methods.

— The BN-based framework is presented in a general sense with minimum
assumptions about available measurements.

— A path to the realization of the general framework for specific environ-
ments is provided.

e The thesis has presented a special code-based realization of the general BN-
based framework. Software code is the only artifact this realization uses
for measurements. This makes the realization applicable for most software
systems.

— The code-based realization heuristically utilizes three measurement tech-
niques to model the regression fault detection event: code change anal-
ysis, fault-proneness modeling based on code structural quality metrics,
and test code coverage gathering.

— The realization is implemented to get a working regression test optimiza-
tion tool, focusing on test case prioritization.

— The realization is in line with most of existing research in this area in
terms of assumptions and used sources of information. This facilitates
experimental comparison.
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e Three sets of experiments have been conducted to empirically evaluate the
approach and the results are reported.

— The first experiment investigates the effects of parameters present in the
implementation of the framework on its performance. The results indi-
cate little sensitivity in terms of fault detection but significant differences
in running-time. Also, feedback improves the performance significantly
at least for some objects.

— The second and third experiments compare the performance of BN-based
framework against existing techniques from the literature on mutation
and hand-seeded faults respectively. The second experiment reveals that
on some objects BN-based techniques find bugs faster but on the others
perform comparably. The third experiment, however, suggests that even
on those objects the performance of the BN-based techniques can be
much higher if real (or more representative) faults exist in the objects.

— Each experiment involves statistical analysis and critical discussion on
the obtained results.

To wrap up the discussion, in this chapter, first a critical review of the presented
research work is given. Based on the identified rooms for improvement, then, some
directions for future work is described. Finally, a conclusion section sums up the
arguments made in this dissertation.

9.1 Critical Review

The proposed BN-based framework introduces a new line of research in this area.
As such, there are potential shortcomings in the presented work that need to be
pointed out here.

The general BN-based framework- There are facets of the framework that the
users, specially practitioners, might find inconvenient. Understanding the proposed
framework requires some knowledge of probabilistic modeling and also software
measurements. Since the framework is meant to be general and flexible, the users
need to create realizations and hence do need to understand some details regarding
how the framework works. This is the price to be paid for the provided flexibility.
Moreover, the presented framework, like other approaches to the problem, does not
provide a complete modeling of the system. It is, for example, merely based on
estimating the current status of the system and history information is not taken
into account. Because this framework is based on Bayesian concepts, it could be
easily modified to account for such data.

Realization Diversity- Although other realizations of this framework have been
developed, here, only one code-based realization is reported. Realizations that rely
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on artifacts other than code need to rely on information that are not easily available
to researchers. This framework has been realized for requirement-based systems in
an industrial setting [94] but the details of that line of research are not included
here to avoid conflicts with the policies of the involved industrial partner.

Code-based Realization- The code-based realization, itself, has made simpli-
fying assumptions that could affect the performance. Factors such as change im-
pact could be easily incorporated. Nonetheless, more comprehensive models of the
software system entail more costs and the cost-effectiveness of such models, when
developed, need to be rigourously studied.

Empirical Experiments- Similar to any other research work, there are also
threats to the validity of the empirical studies presented here. Each experiment
has explicitly stated such threats and the inferences have been made with cautious.
The representativeness of the involved techniques, faults, programs, measurements
all could be argued. Although many precautions have been taken to reduce threats,
more experiments are always needed to gain better confidence on the observations.
Future research is needed to address issues like this.

9.2 Future Work

There are numerous ways to extend this research work. The general BN-based
framework, its potential realizations, the code-based realization, and the empirical
studies on the performance of the framework, can all be the subject of future
research.

The General Framework: It can be enhanced by considering events that are
not currently modelled. As an example, changes in software can be caused by
other events such as debugging activities. Including those events can enhance the
performance by providing a more comprehensive model of the system. As another
example, in a continuous testing process, where regression testing is performed of-
ten, one can model the results from the previous test execution sessions as events
that cause future changes (for bug fixes). That way, history information can be
incorporated to the model. Such events are only indirectly modelled in the cur-
rent framework; explicating them enables taking advantage of related measurement
techniques.

More Realizations: Other realizations of the framework can be studied in the
future. This thesis has presented one code-based realization, applicable in many
cases, but to demonstrate its full capabilities further realizations for other settings
are required. Those realizations can focus on other artifacts as the basis for mod-
eling and measurement of software. Requirements, for instance, are the first class
citizens in many software development and testing processes. Incorporating the
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potentially available information regarding requirements can improve the perfor-
mance of the framework. Furthermore, if the traceability data between different
artifacts is available in a project, multiple artifact types can be linked together to
get a comprehensive model of the system. A realization can simultaneously exploit
more than one type of artifact. In sum, the more realizations of the framework are
developed in the future, the more its flexibility is demonstratedE].

The Code-based Realization: The presented realization can be the subject of
further enhancements. Most importantly, different techniques of change impact
analysis could be incorporated easily. Such techniques are likely to increase the
performance but are certain to impose more costs as well. The cost-effectiveness
of incorporating change impact data, hence, needs further investigation. Moreover,
this work has only explored class-level data. Other levels of granularity such as that
of methods could be investigated. Again, important cost-benefit trade-offs exist and
hence careful experimentation is needed. The most obvious way of enhancing the
code-based systems is by enriching its set of measurement techniques. Demonstrat-
ing the potential advantages of other measurement techniques, however, calls for
further empirical studies.

Elaborate Studies: Initial empirical studies have evaluated the performance of
the proposed framework. More studies would help us better understand its pros
and cons. Future studies can be conducted on a larger set of software systems, ide-
ally with different natures. Large software systems from industry, the likely users
of approaches such as this, are good candidates for such experimentation. Future
studies can also investigate more variations of the proposed framework. For exam-
ple, a limited number of fault-proneness models are investigated in this research
work; more studies can follow to investigate other models. The most important
aspect in future empirical studies is the nature of involved faults. This thesis, like
most other academic research in this area, has used the artificially created faults.
Since this framework makes assumptions about the distribution of faults, however,
the artificiality of faults could potentially be important. Experiments with real
faults are needed to understand the full power of the framework.

This research has produced promising results on an important line of research.
In future, researchers can extend the work, as suggested, and evaluate its perfor-
mance in more depth.

9.3 Conclusion

This dissertation has presented a novel framework for regression testing of software
using Bayesian Networks (BN). The problem of software regression test optimiza-
tion is targeted using a probabilistic approach. The framework models regression

'Note that there is ongoing research with industrial partners on the use of alternative realiza-
tions of the framework.
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fault detection and as a set of random variables that interact through conditional
dependencies. Software measurement techniques are used to quantify those inter-
actions and Bayesian Networks are used to perform probabilistic inference on the
distributions of those random variables. The inference gives the probability of each
test case finding faults; this data can be then used to optimize the test suite for
regression. Test case prioritization, for example, can be easily done by ordering
test cases according to estimated probabilities of finding faults.

The proposed framework has two main goals: ) incorporating many sources of
information in order to enhance performance, ii) providing flexibility in the used
sources of information. The complexity of software renders comprehensive model-
ing infeasible, introducing a level of uncertainty. This is mitigated by measuring
selected attributes of the system. We believe that using more sources of information
enhances this process. Moreover, research in software regression testing has shown
that dealing with different systems requires different strategies and hence flexibility
is a desirable characteristic of any approach to the problem.

To provide flexibility, the proposed framework makes few assumptions about
the software under analysis. Different realizations could be made to account for
particular attributes of different environments. This thesis presents a realization
for software systems of which only code is available. This code-based realization uses
three measurement techniques for making necessary estimations: change analysis,
fault-proneness models of software structural quality, and test coverage analysis.

The performance of the code-based realization is empirically evaluated as a
prioritization technique through three sets of experiments. The first experiment,
concerning the effects of involved parameters, indicates that the fault detection
abilities is seldom affected by the involved parameters but is often improved by the
use of feedback, specially on objects with TSL test suites. The execution time of the
implemented techniques has been found to be impacted by the involved parameters
intensively. The second experiment, comparing the code-based realization against
those of the literature, reveals that on some objects BN-based techniques achieve
a better rater of fault detection and on others perform comparatively. The third
experiment, addressing same questions only with a different fault type, suggests that
even when mutation faults do not reveal any significant difference, the performances
of BN-based techniques can be higher if real (or more representative) faults exist
in the objects. The presented experiments clearly demonstrate the advantages of
the proposed framework.

To conclude, this dissertation has presented a new line of research in software
regression testing. The published results from this research work (e.g., [37, 93] 04,
96]) has been promising. Future research can be conducted to expand this work.
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