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Abstract

The closed-set speaker identification problem is defined as the search within a set

of persons for the speaker of a certain utterance. It is reported that the Gaussian

mixture model (GMM) classifier achieves very high classification accuracies (in the

range 95% - 100%) when both the training and testing utterances are recorded in

sound proof studio, i.e., there is neither additive noise nor spectral distortion to the

speech signals.

However, in real life applications, speech is usually corrupted by noise and band-

limitation. Moreover, there is a mismatch between the recording conditions of

the training and testing environments. As a result, the classification accuracy of

GMM-based systems deteriorates significantly. In this thesis, we propose a two-

step procedure for improving the speaker identification performance under noisy

environment. In the first step, we introduce a new classifier: vector autoregressive

Gaussian mixture (VARGM) model. Unlike the GMM, the new classifier mod-

els correlations between successive feature vectors. We also integrate the proposed

method into the framework of the universal background model (UBM). In addition,

we develop the learning procedure according to the maximum likelihood (ML) crite-

rion. Based on a thorough experimental evaluation, the proposed method achieves

an improvement of 3 to 5% in the identification accuracy.

In the second step, we propose a new compensation technique based on the

generalized maximum likelihood (GML) decision rule. In particular, we assume a

general form for the distribution of the noise-corrupted utterances, which contains

two types of parameters: clean speech-related parameters and noise-related param-

eters. While the clean speech related parameters are estimated during the training

phase, the noise related parameters are estimated from the corrupted speech in the

testing phase. We applied the proposed method to utterances of 50 speakers se-

lected from the TIMIT database, artificially corrupted by convolutive and additive

noise. The signal to noise ratio (SNR) varies from 0 to 20 dB. Simulation results

reveal that the proposed method achieves good robustness against variation in the
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SNR. For utterances corrupted by covolutive noise, the improvement in the classi-

fication accuracy ranges from 70% for SNR = 0 dB to around 4% for SNR = 10dB,

compared to the standard ML decision rule. For utterances corrupted by additive

noise, the improvement in the classification accuracy ranges from 1% to 10% for

SNRs ranging from 0 to 20 dB.

The proposed VARGM classifier is also applied to the speech emotion clas-

sification problem. In particular, we use the Berlin emotional speech database to

validate the classification performance of the proposed VARGM classifier. The pro-

posed technique provides a classification accuracy of 76% versus 71% for the hidden

Markov model, 67% for the k-nearest neighbors, 55% for feed-forward neural net-

works. The model gives also better discrimination between high-arousal emotions

(joy, anger, fear), low arousal emotions (sadness, boredom), and neutral emotions

than the HMM.

Another interesting application of the VARGM model is the blind equalization of

multi input multiple output (MIMO) communication channels. Based on VARGM

modeling of MIMO channels, we propose a four-step equalization procedure. First,

the received data vectors are fitted into a VARGM model using the expectation

maximization (EM) algorithm. The constructed VARGM model is then used to

filter the received data. A Baysian decision rule is then applied to identify the

transmitted symbols up to a permutation and phase ambiguities, which are finally

resolved using a small training sequence. Moreover, we propose a fast and easily

implementable model order selection technique. The new equalization algorithm is

compared to the whitening method and found to provide less symbol error proba-

bility. The proposed technique is also applied to frequency-flat slow fading channels

and found to provide a more accurate estimate of the channel response than that

provided by the blind de-convolution exploiting channel encoding (BDCC) method

and at a higher information rate.
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Chapter 1

Introduction

The speech signal is the fastest and the most natural way of communication be-

tween humans. Moreover, it carries several types of information. From the speech

point of view, it carries the following types of information: linguistic information

(the spoken word sequence), speaker information (e.g. identity, emotional state,

accent), and environmental information (e.g. the signal to noise ratio and the

transmission bandwidth). Such nice properties of the speech signal have motivated

researchers to think of speech as a fast and efficient way of interaction between

human and machine. However, this requires that the machine should have the suf-

ficient intelligence to recognize human voices. This faculty is referred to as Voice

Recognition to which we generally attribute the faculties of Speech Recognition and

Speaker Recognition.

Speech recognition is defined as the process of extracting the spoken words and

phrases from a given speech utterances. It has many applications such as voice

dialing, call routing, content-based spoken audio search, simple data entry, prepa-

ration of structured documents, and speech-to-text processing. On the other hand,

the research on speaker recognition is concerned with extracting the identity of the

person speaking the utterance. Some of the important applications of speaker recog-

nition include customer verification for bank transactions, access to bank accounts

through telephones, control on the use of credit cards, machine-voice commands
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and security check in military environments [17].

The first speaker recognition system was implemented at Bell labs in the late

60’s by Lawrence Kersta [67]. The basic idea of that system is based on the visual

comparison between the spectrogram of the testing system and those of the training

candidates. Over the past four decades, a significant progress has been achieved

in speaker recognition. However, natural speaker recognition is still a difficult task

due to many factors such as mismatch between the training and testing recording

conditions (e.g. different microphones for enrollment and verification), different lev-

els of surrounding noise, spectral distortion of speech caused by the band-limitation

of the communication medium (e.g. the telephone channel), and multi-path fading

effects [79, 17]. In this thesis, we mainly address the speaker recognition problem

in noisy envirnments.

1.1 Speaker recognition: principles and applica-

tions

The research on speaker recognition is divided into three main categories: identifi-

cation, verification, and segmentation [42, 18, 98].

The speaker identification problem is defined as the determination of a speaker

identity from his/her voice. A speaker identification system is said to be open-set if

it can determine whether the given testing utterance belongs to the set of enrolled

speakers or not. Otherwise, it is called a closed-set speaker identification system

[17]. Another distinguishing feature of speaker recognition system is whether it

is text-dependent or text-independent. In text-dependent systems, the underlying

texts of training and testing utterances are the same. On the other hand, the task

is more difficult in text-independent systems where there is no restriction on the

sentences spoken by the user of the system [94].

In speaker verification, the goal is to decide whether a certain speech utterance

belongs to a certain speaker or not [36]. Therefore, it is a binary decision problem.
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This problem is also called speaker detection, speaker authentication, talker verifi-

cation or authentication, and voice verification [62]. Usually, two kinds of speakers

are defined for the speaker verification problem: target speakers, which refer to

the normal users of the system, and imposter speakers, which refer to unwanted

people who fake the voices of the target speakers. Therefore, the speaker verifi-

cation problem is an open-set problem. Clearly, voice-stamp security applications

are based on speaker verification. Furthermore, speaker verification is the basis of

many practical applications.

In most speech recognition and speaker recognition systems, it is often assumed

that the spoken utterance contains speech from one speaker only. However, in

some applications, the voice of the intended speaker may be mixed with other

speakers, e.g. a telephone conversation. In this case, it is necessary to divide the

speech utterance into segments of each speaker in the conversation before applying

the speaker recognition techniques. This task is called speaker segmentation and

clustering. It is important in applications involving multi-speakers conversations

such as meetings and TV shows.

1.2 Thesis motivation and contributions

In this thesis, we mainly consider the text-independent closed-set speaker iden-

tification problem in real-life environment. When both the training and testing

utterances are recorded in clean environment, e.g. sound-proof studio, very high

recognition accuracies (in the range %95 - %100) can be achieved using the Gaus-

sian mixture model (GMM) classifier [96, 103]. However, in real life applications,

there are many factors that significantly degrades the classification performance

[60, 48] such as:

• the use of different microphones for enrolment and verification.

• the surrounding noise. When the signal to noise ratio differs from one utter-

ance to another, the degradation in performance is more severe.
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• the spectral distortion of the testing utterances caused by transmitting the

speech signal through a band-limited channel.

• multi-path fading effects [79, 17].

• extreme emotional states of the speaker, e.g. stress or happiness.

• sickness and aging [17].

Therefore, it is still difficult to implement an accurate speaker recognition sys-

tem in practice [79]. These factors motivated research on how to reduce the effect

of handset/channel mismatch. Channel compensation techniques can be catego-

rized into three groups: feature-based methods, e.g. spectral subtraction (SS) [14],

cepstral mean subtraction or RASTA, model-based methods, e.g. speaker model

synthesis [110] and parallel model combination (PMC) [43], and score-based meth-

ods, e.g. H-Norm [100], Z-Norm [9], and T-Norm [5]. A brief review on these

compensation methods is given in Chapter 2.

The main contribution in this thesis is the development of a two-step proce-

dure for improving the classification performance of GMM-based text-independent

speaker identification systems. In the first step of our procedure, we relax the as-

sumption of statistical independence between successive feature vectors, employed

in the ordinary GMM-based classification framework [96]. Although this assump-

tion is incorrect, the GMM classifier provides high classification accuracies in clean

environments [103]. However, we believe that modeling correlations between feature

vectors is useful for utterances recorded in telephone channels. The main reason is

that the telephone channel can be modeled by a bandpass filter, which naturally

introduces correlation between successive speech time samples. It is also believed

that modeling speaker-dependent temporal information present in the prompted

phrases is useful in speaker identification [17, 130].

The correlation between successive feature vectors is modeled through an au-

toregressive relation. Therefore, the proposed model is a generalization to the
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standard vector autoregressive (VAR) model in which the distribution of the in-

novation sequence is a mixture of Gaussian densities. The new introduced model

is called vector autoregressive Gaussian mixture (VARGM) model. It can be also

considered as a combination of the standard VAR (modeling correlation between

feature vectors) and the standard GMM since it models the multi-modality in the

distribution of the training data. When applied to the 2000 NIST speaker recogni-

tion evaluation, the proposed VARGM model is shown to provide a 3-5% increase

in the classification accuracy over the standard GMM-based systems.

In the second phase in our improvement procedure, we attempt to overcome

the problem of the mismatch between the recording environments of the training

and the testing utterances. Inspired by the successful application of the gener-

alized likelihood ratio test (GLRT) in radar and sonar signal detection [12] and

in voice/unvoiced detection [40], we modified the GLRT to fit into the multi-

hypotheses classification problems. The new introduced rule is called the gener-

alized maximum likelihood (GML) decision rule. We applied the proposed method

to utterances in the TIMIT database, artificially corrupted by convolutive and ad-

ditive noise. The signal to noise ratio (SNR) varies from 0 to 20 dB. Experiments

were applied for 50 speakers. Simulation results reveal that the proposed method

achieves good robustness against variation in the signal to noise ratio.

As a side application, we successfully applied our proposed VARGM model to

the speech emotion classification problem [6]. When applied to the Berlin emotional

speech database [15], the proposed technique improves the classification accuracy

by 5% over the hidden Markov model (HMM), 9% over the k-nearest neighbors (k-

NN), and 21% over the feed-forward artificial neural networks (ANN). The model

gives also better discrimination between high-arousal emotions (joy, anger, fear),

low arousal emotions (sadness, boredom), and neutral emotions than the HMM.

Finally, the proposed GML adaptation framework is modified to fit into the

problem of blind equalization of multi input multiple output (MIMO) communica-

tion channels. The main motivations behind considering this application are the
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great similarities between the two problems and the recent interest in the latter

problem [117, 116, 11, 81, 65, 24]. It should be mentioned that the scalar autore-

gressive Gaussian mixture model was introduced and proposed to blindly equalize

single input single output (SISO) channels in [120]. However, besides considering

the MIMO case, we generalize their approach in two other ways. First, complex

time series are considered instead of real ones. This enables us to deal with the

complex baseband representation of modulated signals. Furthermore, and unlike

[120], we consider the problem of estimating the channel state information (CSI).

The new equalization algorithm is compared to the whitening method [114] and

found to provide less symbol error probability. It is also applied to frequency-flat

slow fading channels and found to provide a more accurate estimate of the channel

response than that provided by the blind de-convolution exploiting channel coding

(BDCC) method and at a higher information rate.

1.3 Thesis organization

The thesis consists of seven chapters, the first of which is the introduction. We con-

clude this chapter with a description of the mathematical notations used throughout

the thesis.

In chapter 2, a brief review of the text-independent speaker identification sys-

tems is given. Basically, we give a qualitative formulation for the problem, describe

a generic structure of a speaker identification system, and review the most common

and prominent feature extraction and classification techniques. We conclude the

chapter by a brief survey of mismatch reduction techniques.

Chapter 3 covers the basic theory of GMMs: definition and parameter es-

timation using the expectation maximization (EM) algorithm [29]. It also de-

scribes in details two prominent classification frameworks employing GMMs as the

core statistical classifiers: the standard ML framework and the Gaussian mixture

model/universal background model (GMM/UBM) framework.
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In Chapter 4, we present the theory of the proposed VARGM classifier. We start

by briefly reviewing the simple VAR model and how to extend it to our proposed

VARGM model. We then consider the parameter estimation problem and the model

order selection problem for the VARGM model. In the last section of this chapter,

the two classification frameworks addressed in chapter 2 are reconsidered again but

with the VARGM model as the core statistical classifier.

In chapter 5, the GML-based adaptation framework is described. Basically, we

illustrate the adaptation architecture and discuss the parameter estimation and

the model order selection problems. We also address the proposed application of

blind equalization of MIMO channels in this chapter. In particular, we mathe-

matically formulate the equalization problem and describe in details our proposed

equalization procedure.

The simulation results of all the above-mentioned techniques and suggested

applications are combined in chapter 6. We also include our experiments with the

speech emotion classification problem in this chapter.

Finally, important conclusions and possible extensions to this work are stated

in Chapter 7.

1.4 Notations

In this thesis, italic letters are used to represent scalars or sets while lower case bold

letters represent vectors. For matrices, upper case bold letters are used. There is

no distinction in notation between deterministic and random variables as this will

be understood from the context.

For iterative algorithms, a superscript with parenthesis indicates the iteration

number. For example, A(s) denotes the sth-iterated value of A.

Sequences may be represented in one of three ways: using braces with . . . inside,

e.g. {x[1], . . . ,x[N ]}, using braces with a lower limit and an upper limits on the
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closing braces, e.g. {x[n]}Nn=1, or using a colon between the starting index and the

ending index, x[1 : N ].

The probability of a certain event will be denoted by P (.) while the symbol p()

is used with probability density functions. That is, if x is a random variable, then

p(x) denotes its probability function. If y is another random variable, then p(x|y)

denotes the conditional probability density function of x given y. The notation

p(x|λ), where λ is a deterministic variable, means that the probability density

function of x depends on parameter λ. The symbol E {} means expectation. The

multivariate normal probability density function with mean vector µ and covariance

matrix Σ is denoted by N(; µ,Σ), i.e.,

N(x; µ,Σ) =
1

(2π)D/2 |Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where D is the dimensionality of the vector x.

It is always assumed that all time series are causal, i.e., their values are equal

to zero at non-positive time instants. Therefore, summations like
∑N

n=1 x[n − i],

i > 0 should cause no ambiguity because the first i terms of this series are zeros.

Finally, all over the thesis, the following variables are used with fixed interpre-

tation

1. n denotes an index of a time sample of feature vectors,

2. d denotes a specific dimension,

3. m denotes an index of Gaussian components,

4. p denotes an index of autoregression matrices.
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Chapter 2

Text-independent speaker

identification: a brief review

Speaker recognition refers to the process of extracting information about the speaker

from his/her voice. Figure 2.1 illustrates a typical architecture of a speaker iden-

tification system. The analog speech signal is filtered and then converted into a

digital signal. Since the task is to identify the person talking rather than what

the person is saying, the speech signal must be processed to extract measures of

speaker variability instead of segmental features. Although there are no exclu-

sively speaker distinguishing features, features based on the spectral analysis of the

speech signal are known to be powerful in speaker recognition [96]. In particular,

the mel-frequency cpestrum coefficients (MFCC) have been a typical choice for

speaker recognition tasks because of their inherent robustness to noise and their

ability to reflect the human perception of sounds [92]. Therefore, we primarily

consider MFCC in this review. The last step in the speaker identification system

is to match the extracted feature vectors with the stored speaker models, obtained

in the training phase. The identified speaker is the one whose model gives the best

match with the extracted testing feature vectors.

As mentioned in the introduction, in real life applications, there are some fac-

tors that cause a significant deterioration to the classification performance such
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Figure 2.1: Functional block diagram of a speaker identification system.

as the surrounding noise and the spectral distortion caused by the communication

channels. In this chapter, we present a brief survey on the classification methods as

well as the compensation techniques used for closed-set text-independent speaker

identification.

This chapter contains four sections. In section 2.1, we present a qualitative

description of the closed-set text-independent speaker identification problem. In

section 2.2, we discuss in some details the process of extracting the MFCC features

from the speech signal. A quick review on popular classification techniques used in

the context of speaker identification is given in section 2.3. Common compensation

techniques are covered in section 2.4.

2.1 Problem formulation

Based on the above definition of the speaker identification problem, the closed-set

speaker identification is merely a multi-class pattern recognition problem: the class

labels correspond to the speakers’ identities and the training and testing examples

are the feature vectors extracted from the training and the testing utterances,

respectively. Similar to all pattern classification problems, the speaker identification

problem consists of two phases: learning (training) and classification (testing). In

the learning phase, we have one or more speech utterances for each speaker to be

enrolled in the system. The main objective in this phase is the construction of
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a classifier that models the relevant characteristics of all speakers in the system.

The available training speech together with their labels are used to estimate the

classifier parameters.

In the classification phase, we have a sequence of feature vectors {x[1], . . . ,x[N ]},

extracted from a testing speech utterance with unknown speaker identity. The main

objective in this phase is the determination of the speaker that most likely uttered

the given testing speech. The closed-set speaker identification problem is thus for-

mulated as the following multi-hypotheses problem:

Hi : The sequence {x[1], . . . ,x[N ]} is produced by speaker i. i = 1, . . . , S,

where S is the number of speakers. If Ωi is the decision region for the ith speaker, the

sets Ω1, . . . ,ΩS are disjoint and exhaustive for the closed-set speaker identification

problem, i.e., the union of the decision regions comprise the entire feature space.

Thus, the classification system is forced to make one and only one decision for each

incoming test utterances. It should be mentioned that there are other decision

systems that allow the speaker identification system to reject the incoming testing

signal or output more than one hypothesis such as the erasure decoding and the

list decoding [50]. For more details about such decision strategies, the reader is

referred to [102].

2.2 Feature extraction

The underlying assumption in most speech processing schemes is that the properties

of a speech signal vary relatively slowly with time [93]. This leads us to the basic

principle of speech analysis in which the speech signal is divided into short segments

called frames. The time samples of each frame may be filtered and multiplied by

a shaping window in order to enhance the spectral properties of the speech signal.

Nonetheless, the speech time samples are rarely used as a representation in speaker

recognition applications because they carry little information about the conveyed

speaker [96]. Usually, spectral features are calculated from the speech samples of
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each frame and combined into one vector. This vector is called the feature vector

and is used to represent the corresponding speech frame. The feature extraction

process is illustrated in figure 2.2.

The samples of each frame can be considered as the output of a linear time

invariant system excited properly. The problem of speech analysis is to estimate the

parameters of the linear time system producing each frame. Since the excitation and

the impulse response of a linear time invariant system are related in a convolutional

manner, the problem of speech analysis can be viewed as a problem in separating

the component of a convolution. For that purpose, a complex cepstrum of a signal

is defined as the inverse Fourier Transform of the logarithm of the signal spectrum.

Formally, the cepstrum of a signal ,st, is given by

ct =
1

2π

∫ π

−π
log |S

(
ejω
)
|ejωtdω, (2.1)

where |S (ejω) | is the Fourier transform of the speech signal, i.e.,

S
(
ejω
)

=
∞∑

t=−∞

ste
−jωt, (2.2)

An interesting property for the cepstrum is that the cepstrum of the discrete time

convolution of two signals equals to the summation of the cepstra of the individual

signals. Thus, the cepstrum of each speech frame can be viewed as a superposition

of the cepstra of the excitation and the impulse response of the speech model.

However, the ordinary cepstrum has two disadvantages. The first one is that the

cepstrum is of infinite extent even when the original signal is of a finite duration.

Although the cepstrum is a rapidly decaying function, a relatively large number of

cepstral samples has to be extracted from each frame for an accurate representation

of the cepstrum. This increases the computational requirements of the training and

the testing algorithms. Another disadvantage is that the ordinary cepstrum does

not adequately model the human perception to the frequency content of sounds.

Psychological studies show that the human perception to either pure tones or

speech signals does not follow a linear scale [92]. This research has led to the idea
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Figure 2.2: The speech feature extraction process.

of defining a subjective pitch of pure tones. Thus for each tone with an actual

frequency, f , measured in Hz, a subjective pitch is measured on a scale called the
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mel scale. As a reference point, the pitch of a 1 KHz tone, 40 dB above perceptual

hearing threshold, is defined as 1000 mels. An empirical relation between the linear

frequency (measured in Hz) and the mel frequency (measured in mels) is given by

[28]

mel(f) = 1000
log(1 + f/700)

log(1 + 1000/700)
. (2.3)

It can be noticed from the above formula that the relation between the mel fre-

quency and the linear frequency is almost linear for low frequencies (below 700 Hz)

and logarithmic for high linear frequencies (beyond 1KHz).

Another important subjective criterion of the frequency contents of a signal is

the critical band that refers to the bandwidth at which subjective responses, such

as loudness, become significantly different. The loudness of a band of noise at a

constant sound pressure remains constant as the noise bandwidth increases up to

the bandwidth of the critical band. After that, an increased loudness is perceived.

Similarly, a subcritical bandwidth complex sound (multi-tone) of constant intensity

is about as loud as equally intense pure tone of a frequency lying at the center of the

band, regardless of the overall frequency separation of the multiple tones. When

the separation exceeds the critical bandwidth, the complex sound is perceived as

becoming louder.

One approach to simulating the above two subjective criteria is through the use

of a bank of filters spaced uniformly on the warped mel frequency scale [25]. The

modified cepstrum of S(ejω) thus consists of the output power of these filters when

S(ejω) is input. Denoting these power coefficient by , S̃k, k = 1, . . . , K, we can

calculate what is called the mel-frequency cepstrum, xd, as

xd =
K∑
k=1

log(S̃k) cos

(
d(k − 1

2
)
π

K

)
d = 1, . . . , D, (2.4)

where D is the desired length of the cepstrum. Fig. 2.3 shows the frequency

response magnitude of the filter bank used in our experimental study. Cepstral

analysis is performed only over the telephone passband (300-3300 Hz). Each fil-

ter has a triangular bandpass frequency response, and the spacing as well as the
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Figure 2.3: The filter bank design used in our experimental study. Each filter has a

triangular bandpass frequency response, and the spacing as well as the bandwidth is

determined by a constant mel frequency interval. (The spacing is approximately 62.5

mels and the width of the triangle is about 125 mels).

Figure 2.4: Functional block diagram of MFCC feature extraction.

bandwidth is determined by a constant mel frequency interval. (The spacing is

approximately 55 mels and the width of the triangle is about 110 mels). A block

diagram illustrating the complete procedure for extracting MFCCs from a speech

signal is depicted in Fig. 2.4.
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2.3 Classification techniques

Classification refers to deciding the class label (the unknown identity) of the testing

signal. In closed-set speaker identification systems, classification is performed by

assigning a score for each class that attempts to measure how likely the correspond-

ing speaker produced the given testing utterance. A decision is made in favor of

the speaker whose model provides the highest matching score. The classifier per-

formance is measured by its ability to predict the true labels of unknown testing

utterances as well as the time need for making a decision. In order to have a good

classification performance, training examples (utterances) with known labels are

used to estimate the classifier parameters.

Basically, there are two main approaches for learning. In the first approach, a

model is constructed for each speaker. The training examples (feature vectors) of

each speaker are used to train his corresponding model only. Thus, at the end of

the training phase, we have S trained models; each is trained to exactly one of the

speakers in the systems. In the testing phase, each model calculates a likelihood

score with respect to the given testing utterances. This approach is sometimes

called unsupervised learning [94] because, when each speaker model is trained,

the corresponding class label information is not used. Examples of unsupervised

modeling approaches include k-NN, vector quantization (VQ), GMM and HMM.

On the other hand, the supervised training approach refers to classification

schemes that use all the training data of all speakers together with their correspond-

ing labels to train the classifier. In the training phase, the classifier learns how to

distinguish between different classes rather than learning each class alone. Exam-

ples of supervised classifiers include multi-layer perceptron (MLP) neural networks,

radial basis functions (RBF) neural networks, support vector machines (SVM). In

these classification techniques, a single classifier model is assigned to all classes and

used for both training and classification. Another alternate configuration is to as-

sign a model to each class like the unsupervised learning approach. However, each

model is trained to favor its corresponding training data and unfavor the training
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data of other speakers. The parameter estimation criterion in the latter configu-

ration are said to be discriminative. In the context of speech recognition, popular

discriminative estimation criteria include the minimum classification error (MCE)

criterion [64] and the maximum mutual information (MMI) criterion [8]. Supervised

algorithms often perform better than unsupervised algorithm but at the expense

of additional computational, memory, and time requirements. Nonetheless, some

unsupervised training algorithms such as the GMM and the HMM are considered

the state of the art classification techniques in the context of speaker recognition.

In addition, unsupervised learning algorithms have an extra advantage over super-

vised ones in that new speakers can be added easily to the identification system

without the need to retrain other speaker models.

In this section, different supervised and unsupervised classification techniques

are reviewed. For unsupervised techniques, k-NN, the VQ, the HMM classifiers are

briefly reviewed. The GMM is studied in details in the next chapter. For supervised

techniques, the MLP, the RBF, and the SVM are studied as representatives for

supervised learning algorithms that employ a single model for all classes.

2.3.1 Unsupervised learning techniques

As mentioned earlier, a basic advantage of unsupervised learning algorithms is in

the flexibility of adding and removing speakers from the system. Unsupervised

learning algorithms are often characterized by the decision function that is used to

measure the match between a given testing utterance and a certain speaker model.

While distance metrics are utilized with the NN, the dynamic time warping (DTW),

and the VO classification methods, a probabilistic likelihood is used with statistical

classifiers such as the GMM and the HMM.

Nearest Neighbor

The NN classification method is a conceptually simple classification technique that

is found to be efficient in many pattern classification problems [33]. The training
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phase just consists of storing all the training data vectors with their corresponding

labels. To classify a testing example, the closest k training examples are found and

a decision is made to the class that is most common in those k neighbors. Since

a speech utterance is represented by a set of feature vectors, a distance metric

between two sets of feature vectors should be defined. Given two sequences of

feature vectors U = {u[1], . . . ,u[Nu]} and R = {r[1], . . . , r[Nr]}, Higgins defined

the following metric for the task of speaker identification [58].

d(U,R) =
1

Nu

∑
u[i]∈U

min
r[j]∈R

||u[i]− r[j]||2 +
1

Nr

∑
r[j]∈R

min
u[i]∈U

||u[i]− r[j]||2

− 1

Nu

∑
u[i]∈R

min
u[j]∈U,j 6=i

||u[i]− u[j]||2 − 1

Nr

∑
r[i]∈R

min
r[j]∈U,j 6=i

||r[i]− r[j]||2 (2.5)

The NN classification technique was applied to the KING and the Switchboard

databases in [58]. The number of speakers in the KING database was 51 while 24

speakers (12 male and 12 female) were selected from the Switchboard database.

For the KING database, the classification accuracy was 79.9% when the recoding

equipments used with the training and testing utterances are the same and 68.1%

when they are different. For the Switchboard, the recognition accuracy was 95.9%.

Since the k-NN classifier requires the storage of all the training data vectors, it

is considered very costly in terms of the computational and memory requirements.

Therefore, its implementation may be infeasible practical applications.

Vector quantization

In order to reduce the huge storage requirements inherent in the k-NN classification

techniques, the training data may be divided into homogenous groups of each which

is called a cluster. The center of each cluster, also called centroid, is then used to

represent all the data vectors in this cluster. This way of compression is usually

called vector quantization (VQ) in the context of speech recognition. This collection

of centroids is called the codebook, which is a compact representation of the training

data. The model of each speaker model just contains the codebook constructed
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from its corresponding training data. There are many algorithms proposed for

the codebook design such as the Linde-Buzo-Gray (LBG-VQ) method [72], the

learning vector quantization (LVQ) method [69], and the group vector quantization

(GVQ) [53]. The LBG-VQ method was applied in [130] to utterances of 35 speakers

in the CSLU (center for spoken language understanding) database. There were

mismatches between the speech utterances taken from different speakers and also

between different recording sessions of the same speaker. A codebook of size 64

MFCC vectors was designed for each speaker. The obtained classification accuracy

was 62.9%.

The VQ-methods do not consider the temporal profile of neither the training

nor the testing utterances. Though this greatly simplifies the implementation of

the identification, the temporal information is useful in speaker identification tasks

[17]. This may be the reason for the relatively low accuracies obtained by the VQ

methods.

Hidden markov model (HMM)

The HMM classifier has been extensively used in speech applications such as isolated

word recognition and speech segmentation because it is physically related to the

production mechanism of the speech signal [91]. Moreover, the temporal dynamics

of the data are captured though state transitions.

The HMM is a doubly stochastic process which is compromised of a proba-

bilistic finite state machine (Markov chain) in which each state is associated with

another random variables producing the observations. Therefore, the main differ-

ence between the Markov chain and the HMM is in that the states are not directly

observable and the observations are probabilistic functions in the state sequence.

Usually, the observation random variable is either discrete or follow the GMM dis-

tribution [91, 88]. In discrete HMMs, the VQ codebook is first obtained from the

training data. Each vector in the codebook is assigned a unique label. The set of

the codebook labels forms the sample space of the observation random variables.
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The set of parameters for discrete HMMs contains the initial state probabilities,

the state transition probabilities, and the observation probabilities. For the contin-

uous HMMs, the observation probabilities are replaced by the prior probabilities,

the means vectors, and the covariance matrices of the observation GMM density.

Training a speaker HMM is equivalent to finding the HMM parameters that max-

imizes the probability of the observations. The Baum-Welch estimation technique

is the most widely used method for this task [91, 29]. In the recognition phase,

the match function between a sequence of a testing feature vectors and a certain

speaker is defined as the probability this sequence is generated by the corresponding

speaker model. It should be mentioned that many variants of the HMM have been

proposed and applied in voice recognition and other applications. In addition, very

efficient algorithms have been developed for training HMMs and for calculating the

likelihoods for sequence of data vectors (For a survey on HMMs, see [34] and the

references therein).

The use of HMM in speaker recognition dates back to the eighties. In [89], an

ergodic 5-state HMM (i.e., all possible transitions between states are allowed) was

proposed by Poritz for this task. Tishby [111] expanded Poritzs idea by using an

8-state ergodic autoregressive HMM represented by continuous probability density

functions with 2 to 8 mixture components per state. Matsui and Furui conducted

a conducted a comparison between the VQ method, the discrete HMM, and the

continuous HMM in terms of the classification accuracy and the robustness against

noise. They found that the continuous HMM is far superior to the discrete HMM

and as robust as the VQ-method. They also studied the effect of the number of

mixtures and the number of Gaussian components per state on the identification

accuracy. Upon their investigation, they concluded that the recognition accuracy is

highly dependent on the number of Gaussian components but almost uncorrelated

with the number of states. Therefore, they ended up with a conclusion that there

is no significant difference in performance between the HMM and the GMM, which

is an HMM with only one state. The robust classification performance of the GMM

classifier was also reported by Rose et al. [96].
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2.3.2 Supervised learning techniques

The main idea of supervised learning approaches is to learn the decision bound-

aries rather than the distribution of individual classes. Many supervised training

algorithms are capable of generating a model that can distinguish one of M classes.

Alternatively, a model can be generated for each speaker in the population so that it

can distinguish between vectors in that class and vectors in all other classes. It has

been found experimentally that the latter approach provides a higher classification

performance [94]. Several supervised training algorithms have been investigated for

speaker identification such as the MLP [108, 36], RBF [75, 127], and SVM [121, 128].

For the closed-set speaker identification problem, the performance obtained with

the supervised training algorithms was typically comparable to the unsupervised

techniques. However, the extensive training time necessary for most supervised al-

gorithms is an undesirable feature. For tasks that require rejection capabilities, such

as speaker verification and open set speaker identification, it was found that super-

vised methods consistently outperform the more traditional unsupervised methods

[37, 36].

Multi-layer perceptron (MLP)

The MLP is a popular form of neural network that has been considered for various

speech processing tasks [80, 73]. The structure of a MLP is illustrated in Fig. 2.5.

The weights for MLPs are trained with the backpropagation algorithm [13] such

that they can associate a high output response with particular input patterns.

For speaker recognition, the configuration of one-model-pre-class, described in

the introductory paragraph in subsection 2.3.2, is usually employed with the MLP

classifier. Ideally, the MLP for each speaker should output a one-response for the

test feature vectors of that speaker and a zero-response for test vectors of other

speakers. In the recognition phase, all test vectors are applied to each MLP and

the outputs of each are accumulated. The speaker is selected as corresponding to

the MLP with the maximum accumulated output. The use of the MLP classifier
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Figure 2.5: Multi-layer perceptron neural network.

for speaker identification problems was suggested in [84]. The speech for their

simulations is drawn from a 10 speaker database and consists of 500 utterances from

the digit set, 100 of which were used for training and 400 for recognition. A MLP

with one hidden layer and 128 hidden nodes achieved a 92% identification rate for

this experiment, which was just slightly worse than the performance obtained with

a VQ classifier with 64 codebook entries per speaker. The performance improved

as the number of hidden nodes increased. However, it was observed that increasing

the number of hidden layers did not improve generalization. It was also noted that

the performance of MLPs degrades rapidly as the speaker population increases.

Radial basis function (RBF)

Another major category of neural networks is the RBF networks. Basically, the

RBF consists of three layers. The first layer is responsible for coupling the input

vector to the network and has a linear neuron function. The last layer has a number

of neurons equivalent to the number of speakers and uses an adjustable sigmoid as

neuron function. In the hidden layer, a special function, called the RBF, is used
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as an activation function. The RBF monotonically decreases with the increase of

the distance to some specified centers, which are usually obtained by the k-means

algorithm. For the proper choice of kernel function and perceptron weights, the

RBF network becomes equivalent to the GMM with the exception that supervision

is available here [13].

The RBF classifier was implemented in [96] and applied to subset of 16 speakers

in the KING database. Using an RBF with 800 Gaussian basis functions, the

average classification accuracy was 87.2%.

Support vector machines

The SVM is a statistical binary classifier that is based on the structural risk mini-

mization (SRM) induction principle [119], which aims at minimizing a bound on the

generalization error, rather than minimizing the training error. The SMV makes its

decisions by constructing an optimal hyperplane that separates the two classes with

the largest margin. In most classification problems, it is very difficult to find a sep-

arating hyper-plane in the original feature space. Therefore, a nonlinear mapping

for the features to a higher dimensional space is usually performed before looking

for the separating hyper-planes.

Recently, the SVM classifier has drawn much interest in many classification

problems [33]. In text-independent speaker identification, the GMM has been a

popular choice for the nonlinear kernel mapping function [128, 39]. However, other

functions such as the linear kernel, polynomial and radial basis kernel are also used

[121].

Another important issue is that the theory of the SVM classifier was mainly

developed for the binary classification problem [119, 33]. Basically, there are two

main approaches for generalization to the multi-class SVM classification system.

In the first approach, each possible pair of the classes is used to train a SVM

classifier. That is, if the total number of speakers is S, the total number of the

binary SVM models is S(S−1)/2. For a test utterance, the pairwise comparison [70]
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strategy is adopted to identify its speaker. Clearly, when the number of speakers is

relatively large, the computational requirements of both the training and the testing

algorithms of this approach become excessive. Unfortunately, this is typically the

case in most speaker identification problems.

Alternatively, one can employ the method described in the first paragraph in

2.3.2. In this case, a bit inferior classification performance should be expected. The

SVM was applied in [121] to utterances of twenty speakers (10 males and 10 females)

selected from the AURORA-2 database. The radial basis kernel functions were

adopted in the experiment. The classification accuracy was 90.1% for clean speech

and 48.6% for artificially corrupted speech (after enhancing the speech quality).

2.4 Mismatch reduction techniques

During the last two decades, there has been extensive research on reducing the

effect of handset channel mismatch, which significantly hamper the performance of

speaker recognition systems. In general, compensation techniques can be grouped

into three categories: feature-based, model-based, and score-based compensation

techniques. In this section, we give a brief review about methods in each category.

It should be mentioned that compensation techniques are not exclusive in general.

That is, it is possible to combine techniques that belong to two or more different

domains, e.g. feature-based and model-based, so as to achieve an even better

compensation [100].

2.4.1 Feature-based compensation techniques

In feature-based compensation, the goal is to derive features that are insensitive as

possible to non-speaker related factors such as the handset type, sentence content,

and channel effects. At the same time, they should provide good discrimination

between different speakers.
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In this brief review, we shall cover only three of the most standard (and clas-

sical) feature-based compensation techniques: the SS method [14], the cpestral

mean normalization (CMS) method [41] and the RASTA-PLP method [57]. Other

feature-based compensation methods include discriminative feature design [54], fea-

ture warping [86], and short-time Gaussianization [123].

The SS technique assumes that the noise is stationary and it affects the energy

contour of the noisy signal in an additive way. Hence the additive noise component

could be subtracted from the noisy speech energy to estimate the clean speech en-

ergy. The additive noise component is generally computed from the silence portion

of the speech. In reality, the stationary assumption does not hold. Hence, it is

possible that the noise energy in some frequency bins can exceed that of the noisy

speech resulting in a negative estimate of the clean speech energy. This necessitates

the use of a floor value. The floor value is expressed as a portion of the noise energy.

Let |S(ejω)|2, |N(ejω)|2, and |X(ejω)|2 be the energies of the clean speech, the noise,

and the noisy speech, respectively. According to the SS method, an estimate for

the energy of the clean signal is given by

|Ŝ(ejω)|2 = max
{
|X(ejω)|2 − |N(ejω)|2, k|N(ejω)|2

}
, (2.6)

where k is an empirical constant, which is usually less than one [85]. It has been

found that performance of the SS method heavily depends on the floor value,

k|N(ejω)|2 [31]. Therefore, statistical methods have been proposed for the esti-

mation of the noise floor [32, 125].

The CMN method depends on the fact that the filtering effect of the commu-

nication channel is equivalent to an additive vector in the mel-cepstral domain

[103]. Thus, the channel effect can be removed by subtracting the mean cepstral

vector from all the cepstral feature vectors extracted from each utterance. As a

consequence, all feature vectors have the same mean vector and performance is not

affected by the channel biases. When additive noise exists, a natural extension to

the CMN is the cepstral mean and variance normalization (CMVN) [107], which

normalizes the distribution of cepstral features over some specific window length
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by subtracting the mean and dividing by the standard deviation.

RASTA is a modulation spectrum analysis that aims to reduce the effects of

convolutional noise in the communication channel. This achieved by 1) attenuating

low modulation frequency components and 2) enhancing the dynamic parts of the

spectrogram [56]. Similar to the CMN, the low frequency components are filtered

out in order to remove the additive channel-dependent vector. It has been claimed

that the second property is also beneficial for good recognition performance [56].

The classical RASTA filter has the following transfer function [56].

H(z) = 0.1z4 2 + z − z−3 − 2z−4

1− 0.98z−1
(2.7)

This transfer function introduces phase distortion, which causes time masking for

the auditory human perception. Therefore, a phase-correction step was suggested

in [26] after the RASTA calculation. The use of both the CMN and the RASTA pro-

cessing methods has been much recommended in many speaker recognition systems

[96, 100].

2.4.2 Model-based compensation techniques

Model-based compensation techniques attempt to reduce the effect of channel vari-

ations by learning channel characteristics or enhancing the speaker probability dis-

tribution models. The most two well known examples in this category are speaker

model synthesis (SMS) [110] and PMC [43].

The SMS technique learns how the speaker model parameters change among

different channels, and uses this information to synthesize speaker models for chan-

nels where no enrollment data is available. It utilizes channel-dependent UBMs as

a priori knowledge of channels for speaker model synthesis. This algorithm assumes

that all the speakers are subject to the same model transformation between two

different channels; however in reality different speakers may be subject to different

model transformations.
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The PMC approach attempts to estimate the corrupted speech model by com-

bining the clean speech model with a background noise model. The PMC is much

related to the extraction process of the MFCC features. Therefore, the following

domains are defined: the linear-spectral domain, the log-spectral domain, and the

cepstral domain (see figure 2.4). A diagram showing the basic process of the PMC

is shown in figure 2.6. The inputs to the scheme are the clean speech models and the

noise model. Usually, the combination of speech and noise is expressed in either

the linear-spectral domain or the log-spectral domain. Hence, the combination

of the noise and clean parameters are made in one of these two domains. After

combination of parameters, the estimates of the corrupted speech parameters are

transformed back to the cepstral domain if required. The PMC has been shown to

achieve good performance in speech recognition and speaker recognition applica-

tions [83, 44]. However, a drawback of the PMC is that it assumes the availability

of an accurate statistical model for the noise in the training phase. This assump-

tion is not valid for many practical applications since the training and the testing

utterances of the same speaker may well be recorded in different environments.

2.4.3 Score-based compensation techniques

While feature-based compensation techniques address linear channel effects, the

handset transducer effects are nonlinear in nature and are thus difficult to remove

from features before training and recognition [90]. As a result, the speaker’s model

represents the speaker’s acoustic characteristics coupled with the distortions caused

by the handset from which the training speech was collected. This coupling intro-

duces handset-dependent biases and scales to the likelihood scores of the speaker

acoustics models. Therefore, score-domain compensation aims to remove handset-

dependent biases from the likelihood scores. The most prevalent methods in this

category include the H-norm method [100], the Z-norm method [9], and the T-norm

method [5].

The H-norm score normalization technique works as follows. All the speakers are
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Figure 2.6: The basic parallel model combination process.

grouped according to the handset they used for producing the training utterances.

For each handset type, the scores of all speakers in the corresponding group are

calculated and then normalized according to the following relation

sH-Norm(X) =
logP (X|λ)− µh

σh
, (2.8)

where µh and σh are the average and the standard deviation of the scores in this

group. The Z-norm and T-norm are given by relations similar to (2.8). The only

difference is in the definition of the normalizing factors. Both the Z-norm and the

T-norm techniques use a set of cohort speakers who are close to the target speaker.

The selection of the cohort can be done during training when the speaker model is

compared to cohort models using a similarity measure [5]. In the Z-norm technique,

the scores are defined as the log-likelihood of the target speaker model with respect

to the utterances of the cohort speakers. Meanwhile, in the T-norm technique, the

28



scores are defined as the log-likelihood of the cohort speakers’ models with respect

to the testing utterance.

2.5 Summary and conclusions

In this chapter, we presented a brief review about closed-set text-independent

speaker identification. We explained the MFCC feature extraction process because

it is one of the most popular features used for speaker recognition. In addition,

we surveyed the common classification techniques used in the context of speaker

identification as well as the different types of mismatch reduction techniques. From

this survey, we conclude that the classification performance of real world speaker

identification systems still needs much improvement. Moreover, despite the relative

improvement in mismatch reduction achieved by feature-based and channel-based

methods, it seems that they do not provide much space for further progress. There-

fore, we main attention in this thesis was toward model-based compensation.
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Chapter 3

Gaussian Mixture models

Gaussian Mixture Model (GMM) has become a dominant approach for speaker

recognition problems [103]. Several reasons are attributed to this dominance.

Among them are the achieved robustness and the possibility to model the under-

lying acoustic classes. Moreover, a well-established mathematical basis has been

developed for GMMs. In general, two main frameworks have been proposed for

GMM-based speaker identification: the standard ML decision framework and the

Gaussian mixture model/universal background model (GMM/UBM) framework.

This chapter gives an overview of both classification frameworks. Section 3.1

defines analytically the GMM. The standard ML and the GMM/UBM frameworks

are described in details in section 3.2 and section 3.3, respectively.

3.1 Mathematical definition of the GMM

A mixture model of order M is a convex combination of M probability density

functions in the form:

p(x|λ) =
M∑
m=1

wmp(x|m,λ) (3.1)

where x is a D-dimensional vector, λ is a string representing the model parameters,

p(x|λ) is the model density function, p(x|m,λ) is the density function of the mth
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component, and wm is the a priori probability of the mth Gaussian component

density, or simply, the weight of the ith component. The prior probabilities must

be nonnegative and sum to one so that (3.1) is a valid probability density function.

For the case of GMM, p(x|m,λ) is the multivariate Gaussian distribution with

mean vector µm and covariance matrix Σm,

p(x|m,λ) ≡ N(x; µm,Σm)

=
1

(2π)D/2|Σm|1/2
exp

(
(x− µm)TΣ−1

m (x− µm)
)
. (3.2)

Thus, a GMM with M mixtures is parameterized by a set of M positive weights

that sum to unity, M mean vectors, and M covariance matrices. These parameters

are collectively represented by the string

λ = {w1, . . . , wM ,µ1, . . . ,µM ,Σ1, . . . ,ΣM}. (3.3)

There are three types of GMMs depending on the choice of covariance matrices.

The model can have one covariance matrix per Gaussian component (nodal co-

variance), one covariance matrix for all Gaussian components in a speaker model

(grand covariance), or one covariance matrix shared by all speaker models (global

covariance). The covariance matrix can also be full or diagonal. GMMs with nodal

covariance matrices are primarily used in our study.

3.2 Standard maximum likelihood framework

As mentioned in the introduction, the speaker identification problem can be formu-

lated as a multi-hypothesis classification problem. In the standard ML framework,

each speaker (hypothesis) is modeled by a GMM. In the training phase, the feature

vectors of each speaker are used to estimate his/her model parameters based on

the ML estimation principle. In the testing phase, the ML decision rule is used

to identify the speaker of the testing utterance. In this section, we address the

parameter estimation problem and classification using the ML-decision rule.
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3.2.1 Parameter estimation

Let X = {x[1 : N ]} denote the set of the training feature vectors of a certain

speaker1. In GMM-based speaker identification systems, it is assumed that all the

feature vectors are statistically independent, i.e.,

p(x[1 : N ]|λ) =
N∏
n=1

p(x[n]|λ)

=
N∏
n=1

(
M∑
m=1

wmN (x[n]; µm,Σm)

)
. (3.4)

Obviously, the above likelihood function is a highly nonlinear function in the model

parameters. Hence, maximization of the likelihood function is only possible through

iterative procedures such as gradient-based methods and the EM algorithm.

The EM algorithm, proposed by Dempster et al. [29], basically depends on the

existence of ’complete’ data set Z from which the given data X can be derived.

For the problem in hand, the complete data specification is Z = {Φ, X}, where

Φ = {φ[1 : N ]}, and φ[n] is the index of the Gaussian component selected at time

n. The basic idea of the EM algorithm is to start with some initial model λ(0) and

look for another model λ(1) with a higher likelihood value. Dempster et al. proved

that for any model λ(s), the model λ(s+1) obtained by maximizing the following

auxiliary function must have an equal or larger likelihood function.

Q(λ;X,λ(s)) = E
{

logP (X,Φ|λ) |X,λ(s)
}
. (3.5)

This is one iteration of the algorithm. Starting from an initial model λ(0), the

auxiliary function Q(λ;X,λ(0)) is constructed and then optimized with respect to

λ. The obtained model λ(1) will be the initial model for the next iteration in

which another auxiliary function Q(λ;X,λ(1)) is constructed and optimized again

with respect to λ and so on. Since this iterative procedure always guarantees an

increase in the incomplete likelihood function thanks to Dempster theory, the EM

should stop when a maximum number of iterations is exceeded or the increase in

the likelihood function is less than a small threshold.
1For convenience, we dropped the speaker index in this section.
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The EM update equations are derived as follows. The complete likelihood func-

tion is given by

P (X,Φ|λ) =
N∏
n=1

P (x[n], φ[n]|λ)

=
N∏
n=1

P (φ[n]|λ)P (x[n]|φ[n], λ)

=
N∏
n=1

wφ[n]N(x[n]; µφ[n],Σφ[n]). (3.6)

Substituting (3.6) into (3.5), and simplifying, the auxiliary function is given by

Q(λ;X,λ(s)) =

c+
∑
m,n

Pm,n(λ(s))

(
logwm −

1

2
log |Σm| −

1

2
(x[n]− µm)TΣ−1

m (x[n]− µm)

)
, (3.7)

where
∑

m,n is a shorthand for
∑M

m=1

∑N
n=1, c is an irrelevant constant, Pm,n(λ(s))

is the a posteriori probability of the mth Gaussian component given the observation

x[n], i.e.,

Pn,m(λ) ≡ P (φ[n] = m |X;λ)

=
wmN(x[n]; µm,Σm)∑M

m′=1wm′N(x[n]; µm′ ,Σm′)
. (3.8)

The EM update equations are obtained by maximizing the auxiliary function in

(3.7) with respect to λ. Fortunately, the auxiliary function is uni-modal in λ, and

hence λ(s+1) is obtained simply by differentiating Q(λ;X,λ(s)) with respect to λ

and equating to zero. Regarding the model priors, however, there is an additional

constraint, which is,
M∑
m=1

w(s+1)
m = 1.

Hence, the update equations for the priors are obtained by maximizing the following

Lagrangian function

Q′(λ;X,λ(s)) = Q(λ;X,λ(s)) + β

(
M∑
m=1

wm − 1

)
.
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It is straightforward to show that, upon differentiating Q′(λ;X,λ(s)) with respect

to wm,m = 1, . . . ,M , the update equations for the model priors are given by

w(s+1)
m =

1

N

∑
m,n

Pn,m(λ(s)), m = 1, 2, ...,M. (3.9)

Similarly, the update equations for the model centers and covariance matrices are

given by

µ(s+1)
m =

∑N
n=1 Pn,m(λ(s))x[n]∑N
n=1 Pn,m(λ(s))

(3.10)

Σ(s+1)
m =

∑N
n=1 Pn,m(λ(s))(x[n]− µ

(s+1)
m )(x[n]− µ

(s+1)
m )T∑N

n=1 Pn,m(λ(s))
. (3.11)

In (3.11), no assumption is made regarding the structure of the covariance matrices,

Σm,m = 1, . . . ,M . However, in order to reduce the computational requirement for

both the training and the testing algorithms, the covariance matrices are usually

assumed to be diagonal [96, 103]. It is also argued that the classification perfor-

mance of GMM-based system with diagonal covariance matrices is superior to those

with full covariance matrices [100]. Note that the diagonal assumption does not

imply the statistical independence between the feature components (dimensions)

since, at any time instant n, the index of the selected Gaussian component is the

same for all dimensions. However, in order to represent the same distribution, the

number of Gaussian components with diagonal covariance is much more than the

number of Gaussian components with full covariance. Let the diagonal covariance

matrix of the mth Gaussian component be

Σm = diag(σ2
m,1, . . . , σ

2
m,D).

In this case, the normal distribution N(x; µm,Σm) simplifies to

N(x; µm,Σm) =
D∏
d=1

N(xd;µm,d;σ
2
m,d) =

D∏
d=1

1√
2πσ2

m,d

exp

(
−(xd − µm,d)2

σ2
m,d

)
.

(3.12)

Following the same steps used to derive (3.11), the update equations for σ2
m,d is

given by

(σ2
m,d)

(s+1) =

∑N
n=1 Pn,m(λ(s))(xd[n]− µ(s+1)

m,d )2∑N
n=1 Pn,m(λ(s))

. (3.13)
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It should be mentioned that the EM algorithm is a local optimization algo-

rithm. That is, the ML estimate of the model parameters is sensitive to the initial

model estimate λ(0). One method to alleviate this problem is to use the k-means

algorithm [72] to divide the training data into M clusters. The initial estimates of

the parameters of each Gaussian component are estimated from the corresponding

cluster as follows [13]

w(0)
m = Nm/N. (3.14)

µ(0)
m =

1

Nm

∑
n∈Cm

x[n], (3.15)

Σ(0)
m =

1

Nm

∑
n∈Cm

x[n]xT[n]− µ(0)
m (µ(0)

m )T, (3.16)

where Cm is the set of the indices of the data points in the mth cluster and Nm

is the number of data points in this cluster. For diagonal covariance matrices, the

initial estimate of the diagonal entries is given by

(σ
(0)
m,d)

2 =
1

Nm

∑
n∈Cm

x2
d[n]−

(
µ

(0)
m,d

)2

. (3.17)

3.2.2 Classification framework

In the standard ML classification framework, the index of the decided speaker is

determined according to the ML decision rule. Given a sequence of testing vectors,

X = {x[1 : N ]}, extracted from an unknown speech utterance the required speaker

model should attain the largest a posteriori probability. Using Bayes’ theorem, the

index of the selected speaker is:

ŝ = arg max
s=1,...,S

P (Hs|X) = arg max
s=1,...,S

p(X|Hs)P (Hs)

p(X)
. (3.18)

The denominator in the above equation is irrelevant to the maximization argument,

s, and hence it can be dropped. In addition, in most applications there is no reason

to favor a speaker over another a priori, and hence, the prior probability of all

hypotheses should be the same. Thus, equation (3.18) reduces to

ŝ = arg max
s=1,...,S

p(X|Hs) = arg max
s=1,...,S

N∏
n=1

p(x[n]|Hs) . (3.19)
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In the above equation, a product of a large number of small values should be

evaluated for each speaker. Therefore, direct implementation of the above decision

rule on a digital computer results in an underflow. Alternatively, maximization

may be made with respect to log p(X|Hs) yielding

ŝ = arg max
s=1,...,S

N∑
n=1

log p(x[n]|Hs)

= arg max
s=1,...,S

N∑
n=1

log

(
M∑
m=1

P (φ[n] = m|Hs)p(x[n]|φ[n] = m,Hs)

)
,

where P (φ[n] = m|Hs) is the prior probability (weight) of the mth Gaussian com-

ponent in λs and p(x[n]|φ[n] = m,Hs) is given by (3.2) for full covariance matrices

and (3.12) for diagonal covariance matrices. Hence, we need to evaluate a summa-

tion in the form
∑M

m=1 e
−am for large am. This can be done without encountering

computer underflows by using the Jacobian log [35]. The basic idea is to add logs

one at a time, as follows

a12 = log(ea1 + ea2)

= max(a1, a2) + log(1 + e−|a1−a2|)

Then, the new exponential a3 is added to a12 the same way and so on. A diagram

of the ML classification framework is illustrated in figure 3.1.

3.3 The Gaussian mixture model/universal back-

ground model framework

In the standard ML framework, it is implicitly assumed that no prior information

about the model parameters is available. In some applications such as the con-

sidered speaker identification problem, incorporating prior information about the

model parameters improves the classification performance. The maximum a pos-

teriori (MAP) estimation principle is a direct generalization to the ML estimation
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Figure 3.1: The standard ML framework for speaker identification. (a) Training sub-

system. (b) Testing sub-system.

principle in which the model parameters are considered as random quantities with

some given prior distribution.

In the context of speaker identification (and verification), the prior distribution

of the parameters of all speaker models are assumed the same and derived from

a speaker-independent distribution called the universal background model (UBM)

[103]. There are many ways to construct the UBM. The simplest method is to

pool the training data of all speakers together and use them to train a single
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GMM. However, we should be careful of the distribution of the sub-populations

in the training database. For example, if number of utterances of female speakers

is much more than that of male speakers, the UBM constructed by the above

method will be biased towards the female distribution. A similar issue applies

to utterances with different microphones and different recording environments (if

known). Some other approaches model each subpopulation separately. The UBM

parameters are estimates as a convex combination of the parameters of the sub-

populations models. The mixing weights should be carefully selected to reflect the

proportion of each sub-population. In this thesis, we considered only utterances

recorded using electret microphones. In addition, we performed our experiments

using male-only database, female-only database, or mixed-gender database with

almost equal proportions of males and females. Therefore, UBM is trained using

the training data of all speakers.

Thus, the training phase in the GMM/UBM framework consists of two steps.

In the first step, all the training data are combined together and used to train a

GMM/UBM model,

λUBM = {w̃1, . . . , w̃M , µ̃1, . . . , w̃M , Σ̃1, . . . , Σ̃M} (3.20)

using the ordinary EM algorithm, where the tilde in (3.20) refers to the parameters

of the UBM. It should be mentioned that, for large databases such as the 2000

NIST speaker evaluation used in our first experiment, direct implementation of the

update equations in section 3.1 may require excessive space requirements. Hence,

special memory conservative algorithms should be developed. This is internally

implemented in our simulations but we prefer to omit these details for convenience.

Based on the obtained GMM/UBM, prior distributions of the model parameters

are derived as follows. The distribution of the model priors is usually assumed in

the Dirichlet form [63].

P (w1, . . . , wM |ν1, . . . , νM) ∝
M∏
m=1

wνm−1
m , (3.21)

38



where νm > 0 are the parameters of the Dirichlet density. Meanwhile, the prior

distribution of the centers and the covariance matrices of the speaker model is

assumed to follow a Wishart distribution [27, 47].

P (µm,Σm|τm, αm, µ̃m, Σ̃m) ∝

|Σm|(αm−d−1)/2 exp
(
−τm

2
(µm − µ̃m)T(Σ̃m)−1(µm − µ̃m)

)
exp

(
−1

2
trace(Σ−1

m Σ̃m)

)
. (3.22)

Assuming statistical independence between the model priors and the model centers

and covariance matrices, the joint density of all the GMM parameters is the product

of (3.21) and (3.22), i.e.,

P (λ|θ) = P (w1, . . . , wM |ν1, . . . , νM)
M∏
m=1

P (µm,Σm|τm, αm, µ̃m, αm, Σ̃m), (3.23)

where θ = {ν1, . . . , νM , α1, . . . , αM , τ1, . . . , τM}.

In the second step of the training phase, the parameters of each speaker model

are obtained by adapting the UBM using the speaker training data. Given a se-

quence of training feature vectors of a certain speaker, X = {x[1 : N ]}, a gener-

alized version of the EM algorithm is used to adapt the UBM. In particular, the

distribution of the model parameters is included in the EM auxiliary function. The

generalized auxiliary function in this case is given by [47]

Q(λ;X,λ(s), θ) = E
{

logP (X,Φ|λ, θ) + logP (λ|θ)
∣∣X,λ(s), θ

}
. (3.24)

Substituting (3.23) into (3.24), it is not hard to show that

Q(λ;X,λ(s), θ) =

c+
∑
m,n

Pm,n(λ(s))

(
logwm −

1

2
log |Σm| −

1

2
(x[n]− µm)TΣ−1

m (x[n]− µm)

)

+
M∑
m=1

[
(νm − 1) logwm +

αm − d− 1

2
log |Σm| −

τm
2

(µm − µ̃m)TΣ−1
m (µm − µ̃m)

− 1

2
trace

(
Σ−1
m Σ̃m

)]
(3.25)
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Similar to the standard ML estimation, the GMM parameters are obtained by

simply differentiating the above auxiliary function with respect to the different

parameters and equating to zero. The constraint that the all the priors are positive

and sum to unity still applies. The following update equations are easily obtained.

w(s+1)
m =

∑N
n=1 Pm,n(λ(s)) + νm − 1

N −M +
∑M

m=1 νm
(3.26)

µ(s+1)
m =

∑N
n=1 Pm,n(λ(s))x[n] + τmµ̃m∑N

n=1 Pm,n(λ(s)) + τm
(3.27)

Σ(s+1)
m =

∑N
n=1 Pm,n(λ(s))x[n]xT[n] + τm(µ̃mµ̃T

m + Σ̃m)∑N
n=1 Pm,n(λ(s)) + αm − d− 1

−

(∑N
n=1 Pm,n(λ(s)) + τm

)
µ

(s+1)
m (µ

(s+1)
m )T∑N

n=1 Pm,n(λ(s)) + αm − d− 1
. (3.28)

In the last equation, full covariance matrices are considered. For diagonal covariance

matrices, the update equation is

σ
2(s+1)
d =

∑N
n=1 Pm,n(λ(s))x2

d[n] + τm(µ2
m,d + σ̃2

m,d)−
(∑N

n=1 Pm,n(λ(s)) + τm

)
(µ

(s+1)
m,d )2∑N

n=1 Pm,n(λ(s)) + αm − d− 1
.

(3.29)

The classification phase in the GMM/UBM framework is identical to that of the

ML framework. A diagram showing the architecture of the GMM/UBM framework

is shown in figure 3.2.

40



Figure 3.2: The GMM/UBM framework for speaker identification. (a) Training sub-

system. (b) Testing sub-system.
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Chapter 4

Vector autoregressive Gaussian

Mixture model

In this chapter, we give a thorough analysis of the proposed vector autoregressive

Gaussian mixture (VARGM) model and generalize the classification frameworks

described in chapter 2 to handle VARGM models instead of GMM. The proposed

VARGM model is a generalization to the VAR model in that the distribution of

the innovation sequence, also called residual vectors, is a GMM instead of the

multivariate normal distribution.

VAR model is a classical and simple tool, successfully used in characterizing

and analyzing stationary multivariate time series data. It has been utilized in

many applications such as signal processing [106], digital communication [114], and

time series prediction [30]. The main reasons for their popularity are their simple

structure and the availability of well established parameter estimation algorithms

such as the maximum likelihood estimation (MLE) procedure and the Yule-Walker

algorithm. The basic idea of the VAR model is to model the time series as the

output of an all-pole linear time invariant filter whose input is a white Gaussian

noise. This input is usually called the innovation sequence. That is, it is assumed

that the individual samples of the innovation sequence are statistically independent

and follow the multivariate Gaussian distribution.
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In many speech applications, VAR models have been extensively employed to

characterize the correlation between successive speech feature vectors. In fact,

autoregressive Markov modeling of speech was originally proposed by Poritz [89].

His model consists of a sequence of states of each which is modelled by a VAR

model rather than a GMM. Various modifications have been proposed to this model

such as non-stationary autoregressive hidden Markov model (NAR-HMM) [71] and

autoregressive hidden Markov model with duration [35].

However, the assumption of a white-Gaussian innovation sequence seems to

be restrictive for speaker identification. Therefore, in this chapter, we relax this

assumption by allowing the distribution of the innovation sequence to be in the

form of a mixture of multivariate Gaussian densities. In fact, this model is also a

vector generalization for the model proposed in [120]. Another advantage of the

VARGM model is its ability to resemble a wide range of non-Gaussian VAR models.

This is based on the fact that many distributions can be well approximated by a

convex combination of Gaussian densities under some mild conditions [96].

The chapter is organized as follows. Section 4.1 briefly reviews VAR models and

the estimation of model parameters based on the MSE criterion. In section 4.2,

parameter estimation of the VARGM model parameters using the EM algorithm is

explained. In section 4.3, we present a novel procedure for model order selection.

Classification using the proposed VARGM classifier is discussed in section 4.4.

4.1 Vector autoregressive models

A vector time series x[1 : N ], x[n] ∈ RD, i.e. D is the dimensionality of the vector

x[n], can be modelled by a VAR model of order P of the following form [95].

x[n] =
P∑
p=1

Apx[n− p] + e[n] + δ, n = 1, . . . , N, (4.1)

where the vector δ is called the intercept vector and P is the regression order. The

vectors e[1 : N ] are called the residual vectors. Usually, the residual vectors are
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assumed to be drawn from a white Gaussian process, i.e., they satisfy the following

relations

E {e[n]} = 0, ∀ n (4.2)

E
{
e[n1]eT[n2]

}
= 0, ∀ n1 6= n2. (4.3)

E
{
e[n]eT[n]

}
= Σ, ∀ n (4.4)

where Σ is a strictly positive definite matrix. Defining

Ã ≡
[
δ A1 A2 ... AP

]
,

y[n] ≡
[
1 xT[n− 1] xT[n− 2] ... xT[n− P ]

]T
,

where x[n] = 0 whenever n < 0, equation (4.1) reduces to

x[n] = Ãy[n] + e[n], n = 1, 2, ..., N. (4.5)

Thus, a VAR model is parameterized by the regression coefficient matrix Ã and

the innovation covariance matrix Σ. The sum of squared error is given by

E =
N∑
n=1

eT[n]e[n]

=
N∑
n=1

(x[n]− Ãy[n])T(x[n]− Ãy[n]), (4.6)

The ordinary least squares (OLS) estimate of Ã is obtained by differentiating the

above equation with respect to Ã and equating the result to zero, yielding

ÃOLS =

(
N∑
n=1

x[n]yT[n]

)(
N∑
n=1

y[n]yT[n]

)−1

, (4.7)

The OLS estimate of the covariance matrix of the residual vectors, Σ̂OLS, is given

by [51]

Σ̂OLS =
1

N −DP − 1

N∑
n=1

ê[n]êT[n]

=
1

N −DP − 1

N∑
n=1

(x[n]− ÃOLSy[n])(x[n]− ÃOLSy[n])T. (4.8)
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The OLS and the ML parameter estimates of Ã are equal when the distribution

of the innovation sequence is Gaussian [51]. This is proven by noting that the

likelihood function is given by

p
(
{x[n]}Nn=1|λ

)
=

1

(2π)ND/2|Σ|N/2
exp

(
−1

2

N∑
n=1

(x[n]− Ãy[n])TΣ−1(x[n]− Ãy[n])

)
.

(4.9)

Differentiating the above equation with respect to Ã and equating the result to

zero, expression (4.7) will follow. However, the ML estimate of Σ is a bit different

from its OLS estimate viz

Σ̂ML =
1

N

N∑
n=1

ê[n]êT[n] =
1

N

N∑
n=1

(x[n]− ˆ̃AOLSy[n])(x[n]− ˆ̃AOLSy[n])T. (4.10)

4.2 Parameter estimation of the VARGM model

As noted from the above subsection, the ML and the OLS parameter estimates of

the autoregression matrix are equivalent only when the distribution of the innova-

tion is Gaussian. However, this assumption may be restrictive in many applications.

Alternatively, we may assume that the residual vectors follow the GMM distribu-

tion, i.e.,

p(e[n]) =
M∑
m=1

wmN(e[n]; µm,Σm). (4.11)

In this case, the intercept vector δ can be dropped since the mean of the GMM

distribution may well be different from zero.

In this case, the ML-estimate of the autoregression matrices, Ã, will be different

from the corresponding OLS-estimate. While the latter is still given by (4.7), the

former is obtained through iterative procedures such as the gradient-based methods

or the EM algorithm.

The problem of estimating the model parameters of a scalar autoregressive Gaus-

sian mixture model via the EM algorithm was first investigated by Verbout et. al

[120]. Basically, they proposed the EMAX algorithm as an iterative procedure for
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estimating the model parameters. In this chapter, we generalize their procedure to

deal with multivariate time series. In addition, more than one time series sequence

may be used for parameter estimation. Having established such a generalization,

the VARGM model will be more suitable for classification. In this section, we

first consider the general case without any assumptions about the structures of the

autoregression matrices or the covariance matrices. The special case of diagonal

autoregression matrices and diagonal noise covariance matrices is addressed later.

4.2.1 The general case

Formally, there are K time series realizations, {xk[n]}Nk
n=1, k = 1, 2, ..., K, the kth

of which contains Nk samples. All realizations are to be modeled by the following

relation

xk[n] = Ãyk[n− i] + ek[n], n = 1, 2, ..., Nk, k = 1, 2, ..., K (4.12)

where ek[n] follows the GMM distribution defined in (4.11) and

Ã ≡
[
A1 A2 ... AP

]
,

yk[n] ≡
[
xT
k[n− 1] xT

k[n− 2] ... xT
k[n− P ]

]T
.

For convenience, the set of all time series sequences will be denoted by X. Assuming

that each sequence is generated independently from other series, the likelihood of

all sequences is equal to the product of the likelihood of the individual realizations,

i.e.,

p(X|λ) =
K∏
k=1

Nk∏
n=1

p
(
xk[n]

∣∣∣xk[1 : n− 1], λ
)

=
K∏
k=1

Nk∏
n=1

p
(
xk[n]

∣∣∣xk[n− P : n− 1], λ
)

=
K∏
k=1

Nk∏
n=1

(
M∑
m=1

wmN(xk[n]; Ãyk[n] + µm,Σm)

)
. (4.13)
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Similar to the case of GMM, the new expression of the likelihood function in this

case is so complex that direct differentiation leads to a set of highly nonlinear

equations in the model parameters, which is extremely difficult to solve. Therefore,

the EM algorithm is used again to estimate the model parameters. The complete

data specification is Z = {X,Φ}, where Φ = {{φk[n]}Nk
n=1}Kk=1 and φk[n] is the index

of the Gaussian component selected at instant n for time series realization k. The

complete likelihood function is given by

p(X,Φ|λ) =
K∏
k=1

Nk∏
n=1

p(xk[n], φk[n]|xk[1 : n− 1], φk[1 : n− 1], λ)

=
K∏
k=1

Nk∏
n=1

P (φk[n]|λ)p(xk[n]|xk[n− P : n− 1], φk[n], λ)

=
K∏
k=1

Nk∏
n=1

wφk[n]N(xk[n]; Ãyk[n] + µφ[n],Σφ[n]). (4.14)

Similar to the GMM case, the VARGM model parameters are iteratively updated

by maximizing the following auxiliary function.

Q(λ;X,λ(s)) = E
{

logP (X,Φ|λ) |X,λ(s)
}
, (4.15)

where λ(s) is the set of model parameters obtained after the sth iteration. Substi-

tuting (4.14) into (4.15), and simplifying, the auxiliary function is given by

Q(λ;X,λ(s)) = c+
∑
k,n,m

Pk,n,m(λ(s))

(
logwm −

1

2
log |Σm|

−1

2
(xk[n]− Ãyk[n]− µm)TΣ−1

m (xk[n]− Ãyk[n]− µm)

)
, (4.16)

where c does not depend on the model parameters,
∑

k,n,m is a shorthand for∑K
k=1

∑Nk

n=1

∑M
m=1, Pk,n,m(λ(s)) is the a posteriori probability of the mth Gaussian

component given the observation xk[n], i.e.,

Pk,n,m(λ(s)) ≡ P (φk[n] = m
∣∣X;λ(s)

)
=

w
(s)
m N(xk[n]− Ã(s)yk[n]; µ

(s)
m ,Σ(s)

m )∑M
m′=1w

(s)
m′N(x[n]− Ã(s)yk[n]; µ

(s)
m′ ,Σ

(s)
m′)

. (4.17)
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The following update equation for the prior probabilities can be obtained in a

similar way to that followed in Chapter 3.

w(s+1)
m =

1∑K
k=1 Nk

K∑
k=1

Nk∑
n=1

Pk,n,m(λ(s)) (4.18)

The update equations of µ
(s+1)
m , Σ(s+1)

m , and Ã(s+1) are obtained by equating the

derivative of (4.16) with respect to µm, Σm, and Ã to zero. Similar to the scalar

case in [120], this results in a set of nonlinear equations that are difficult to solve

simultaneously. Instead, at each iteration, only one variable is maximized while

others are kept fixed. This approach guarantees coordinate ascent convergence to

a local maximum [74]. Therefore, we start by finding optimum µm while keeping

other variables constant, then finding optimum Σm then optimum Ã. After some

simple manipulation, the following update equations are obtained.

µ(s+1)
m =

∑K
k=1

∑Nk

n=1 Pk,n,m(λ(s))(xk[n]− Ã(s)yk[n])∑K
k=1

∑Nk

n=1 Pk,n,m(λ(s))
(4.19)

Σ(s+1)
m =

∑K
k=1

∑Nk

n=1 Pk,n,m(λ(s))(xk[n]− Ã(s)yk[n])(xk[n]− Ã(s)yk[n])T∑K
k=1

∑Nk

n=1 Pk,n,m(λ(s))

− µ(s+1)
m (µ(s+1)

m )T (4.20)

The update equation of Ã deserves some investigation. Equating the derivative

of Q(λ;X,λ(s))) to zero, the following equation in Ã is obtained∑
k,n,m

Pk,n,m(λ(s))(Σ−1
m )(s+1)Ã(s+1)yk[n]yT

k[n]

=
∑
k,n,m

Pk,n,m(λ(s))(Σ−1
m )(s+1)(xk[n]− µ(s+1)

m )yT
k[n], (4.21)

Applying the vec () operator to both sides of the above equation, the following

expression for vec
(
Ã(s+1)

)
could be obtained after some simple manipulations.

vec
(
Ã(s+1)

)
=

[∑
k,n,m

Pk,n,m(λ(s))
(
(yk[n]yT

k[n])⊗ (Σ−1
m )(s+1)

)]−1

×

vec

(∑
k,n,m

Pk,n,m(λ(s))(Σ−1
m )(s+1)(xk[n]− µ(s+1)

m )yT
k[n]

)
, (4.22)

48



where ⊗ denotes the Kronecker product of two matrices.

However, the space required to store the matrix to be inverted in (4.22) is of

order O(D4P 2). For some applications, this may require excessive storage. An

alternative way for obtaining Ã(s+1) is through iterative methods. Fortunately, the

auxiliary function in (4.16) is quadratic in Ã. Hence, it has a unique maximizer,

which is also the unique solution of (4.21). Thus, fast and efficient techniques such

as the steepest ascent method and the conjugate gradient method may be used to

estimate this unique maximizer. In this thesis, general VARGM were applied only

to the speech emotion classification problem and the memory requirement of the

EM algorithm was reasonable. Therefore, we did not apply any approximation to

(4.22). For the speaker identification problem, we prefer to use VARGM models

with diagonal autoregression matrices and diagonal covariance matrices.

4.2.2 Diagonal autoregression matrices

Another method to reduce the computational complexity of the training and the

testing algorithms is to assume that the autoregression matrices, A1, . . . ,AP as

well as the covariance matrices, Σ1, . . . ,ΣM , are diagonal. Though it is also math-

ematically tractable to consider other cases, e.g. general covariance matrices and

diagonal autoregression matrices, no significant advantage was experimentally ob-

served with this assumption. Therefore, only the case of diagonal autoregression

matrices and diagonal covariance matrices will be covered in this thesis.

In order to simplify our derivations, it is convenient to define the following two

vectors:

• ãd =
[
ãd1 . . . ãdP

]T
, where ãdp is the dth on the diagonal of Ap.

• ỹk,d[n] =
[
yd[n− 1] . . . yd[n− P ]

]T
For the case of diagonal covariance matrices and diagonal autoregression matrices,
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it is straightforward to show that the auxiliary function in (4.16) simplifies to

Q(λ;X,λ(s)) =

c+
∑
k,n,m

Pk,n,m(λ(s))

(
logwm −

1

2

D∑
d=1

(
log σ2

m,d +
(xk,d[n]− ãT

dỹk,d[n]− µm,d)2

σ2
m,d

))
,

(4.23)

where d in the subscript refers to the dth components of the vector. Similar to the

general case, we have the same constraint on the prior probabilities. Thus, the

parameter update equations are obtained by following the same steps used in the

general case. The only difference is that (4.16) is replaced by (4.23). It is not hard

to show that the update equations for the prior probabilities and the mean vectors

are still given by (4.18) and (4.19), respectively. The update equations for σ2
m,d and

ãd are given by

(σ
(s+1)
m,d )2 =

∑
k,n Pk,n,m(λ(s))(xk,d[n]− (ã

(s)
d )Tỹk,d[n]− µ(s)

m,d)
2∑

k,n Pk,n,m(λ(s))
(4.24)

ã
(s+1)
d =

(∑
k,n,m

Pk,n,m(λ(s))
ỹk,d[n]ỹT

k,d[n]

(σ
(s+1)
m,d )2

)−1(∑
k,n,m

Pk,n,m(λ(s))
xk,d[n]− (µ

(s)
m,d)

2

(σ
(s+1)
m,d )2

)
(4.25)

The above update equations require a space of order O(P 2) for each vector ãd,

which is significantly less than that required for the general case.

4.3 Model order selection

Similar to other classifiers, the VARGM model contains two types of parameters:

numeric parameters that are estimated using the ML or the MAP estimation crite-

ria and structural design parameters that control the classifier complexity. In our

proposed VARGM classifier, the structural design parameters are the regression

order, P , and the number of Gaussian components, M , in the distribution of the

residual vectors. In this context, a model order refers to a specific combination

(M,P ). Unfortunately, there is no straightforward way to determine the optimum
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model order that provide a VARGM classifier with the optimal generalization abil-

ity. In general, structural design parameters are estimated either by trial and error

methods or according to a certain model order selection criterion. In the latter

approach, the model order selection criterion is calculated for different orders. The

selected order is the one corresponding to the minimum value. There are two ba-

sic types of model order selection criteria: the cross validation error [13] and the

information-theoretic criteria.

In the cross validation method, the training data is divided into two sets: one for

estimating the classifier parameters and the other for validating its performance.

The model selection criterion is taken as the classification error with respect to

the validation set. The k-fold cross validation can be incorporated easily into this

method in order to get more reliable estimates of the validation error. This method

is useful when the amount of the training and the testing data is not sufficient for

a reliable estimate of the model parameters.

Information-theoretic criteria, on the other hand, attempt to find the best pos-

sible compromise between the classifier ability to adequately model the distribution

of the training data and the complexity of the classifier. Usually, information the-

oretic criteria are given in the following form

IC(M,P ) = −α log p(X|λ(M,P )) + β|λ(M,P )|, (4.26)

where α and β are some positive constants and λ(M,P ) denotes a VARGM model

with M Gaussian components and regression order P . |λ(M,P )| is the number of

parameters in λ(M,P ). The first term in (4.26) measures the fitness of the data

to the distribution specified by the classifier model and the second term measures

the complexity of the classifier. In this thesis, the following information-theoretic

criteria are considered

1. Akaike information criterion (AIC) [1]

AIC(M,P ) = −2 log p(X|λ(M,P )) + 2|λ(M,P )| (4.27)
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2. Kullback information criterion (KIC)[19]

KIC(P ) = −2 log p(X|λ(M,P )) + 3|λ(M,P )| (4.28)

3. Bayesian information criterion (BIC)[101]

BIC(P ) = −2 log p(X|λ(M,P )) + |λ(M,P )| log(N) (4.29)

For our VARGM model, the likelihood function is given by (4.13) and the num-

ber of model parameters is given by

|λ(M,P )| = PD2 +M(1 +D +D(D + 1)/2) (4.30)

for VARGM models with full covariance matrices and full auto-regression matrices,

and

|λ(M,P )| = PD +M(1 + 2D) (4.31)

for VARGM models with diagonal covariance matrices and diagonal auto-regression

matrices.

The standard information theoretic model order selection technique may be

time consuming since the first term in (4.26) requires training models with different

orders. Moreover, for each model order, initialization should be done properly in

order to ensure that the likelihood function increases with the increase of the M or

P .

First, let us consider the search of the optimal regression order assuming that

M is known. The set of all VARGM models with regression order P − 1 is a subset

of all VARGM models with regression order P . This statement is established easily

by setting AP = 0D×D in any model with regression order P . Thus, for a given

M , Algorithm 4.1 can be used to calculate the likelihood function for different

regression orders.

It should be mentioned that only few iterations are required for the EM al-

gorithm in the above algorithm since the increase in the likelihood function is
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Algorithm 4.1 Selection of the regression order.

1: Inputs: X, M , Pmax, and λ(M, 0).

2: Output: λ(M,P ), P = 1, . . . , Pmax.

3: Fit the data into a GMM with M Gaussian components.

4: Calculate p(X|λ(M, 0)).

5: Calculate IC(M, 0) using (4.26).

6: for P = 1 to Pmax do

7: Set λ0 = λ(M,P − 1) (Copy all the parameters of λ(M,P − 1) to λ0).

8: Increment the regression order of λ0 by 1.

9: In λ0, put AP = 0D×D.

10: Train λ(M,P ) using the EM algorithm. Take λ0 as the initial model for the

EM algorithm.

11: Calculate p(X|λ(M,P )) using (4.13).

12: Calculate IC(M,P ) using (4.26).

13: end for

guaranteed. In addition, it is unlikely that having a small number of iterations will

affect the choice of the optimum model order.

The question now is how to determine the optimum number of Gaussian compo-

nents. For speaker identification and verification problems, it is a common practice

to select M as a power of 2 [103]. In this work, we prefer to follow this practice for

two reasons. First, it is useful to apply mixture splitting to speed up model order

selection, as we shall see shortly. Second, significant difference in the classification

accuracy is only observed when the change in the number of Gaussian components

is relatively large. A possible binary split procedure is shown in Algorithm 4.2.

Thus, our two dimensional search for the optimal combination (M,P ) proceeds

as follows. First, we consider GMMs (P = 0). We calculate the model selection

criterion for different values of M . The binary split algorithm, shown in Algorithm

4.2, is used to speed up the estimation process of the incomplete likelihood func-

tion. For each value of M , we calculate the model selection criterion for different
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Algorithm 4.2 The binary split algorithm.

1: Inputs: X, M , and λ(M, 0).

2: Output: λ(2M, 0).

3: Generate M uniformly distributed random numbers in the range from 0 to 1.

4: Normalize the generated numbers so that they sum to one. These numbers are

the initial priors of new M components, ŵ1, . . . , ŵM .

5: Generate random vectors µ̂1, . . . , µ̂M . These are the initial centers of the new

M components.

6: Initialize λ(2M, 0) with the following parameters.

1.

w̃m =

(1− ε)wm m = 1, . . . ,M.

εŵm m = M + 1, . . . , 2M,

where ε is a small quantity.

2.

µ̃m =

µm m = 1, . . . ,M.

µ̃m m = M + 1, . . . , 2M.

3.

Γ̃m =

Γm m = 1, . . . ,M.

ID m = M + 1, . . . , 2M.

7: Update the model parameters using the k-means algorithm then the EM algo-

rithm.
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regression orders as shown in Algorithm 4.1. The overall model order selection

procedure is shown in Algorithm 4.3.

Algorithm 4.3 The proposed model order selection algorithm
1: Inputs: X.

2: Output: Optimal M and P .

3: Fit the data to λ(M0, 0), where M0 = 2m0 is an initial estimate for the model

order and m0 is an integer.

4: Calculate p(X|λ(M0, 0)) using (4.13).

5: Calculate IC(M0, 0) using (4.26).

6: for m = m0 + 1 to mmax do

7: M = 2m.

8: Use Algorithm 4.2 to split the components in λ(M/2, 0). The resultant model

is λ(M, 0).

9: Calculate p(X|λ(M, 0)) using (4.13).

10: Calculate IC(M, 0) using (4.26).

11: end for

12: for m = m0 to mmax do

13: M = 2m.

14: for P = 1 to Pmax do

15: Use Algorithm 4.1 to derive λ(M,P ) from λ(M,P − 1).

16: Calculate p(X|λ(M,P )) using (4.13).

17: Calculate IC(M,P ) using (4.26).

18: end for

19: end for

20: The selected order (M,P ) is given by

{M∗, P ∗} = arg min
M,P

IC(M,P ).
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4.4 Classification using the VARGM model

In principle, the classification methodology using the VARGM model is very similar

to that of the GMM. Therefore, in this section, we just point out the main differ-

ences between the GMM-based and the corresponding VARGM-based frameworks.

4.4.1 Standard VARGM/ML framework

The training procedure in the standard VARGM/ML-based framework is similar

to that illustrated in figure 3.1. In the training phase, the only difference is that

both the model order selection procedure and the parameter estimation procedure

can be integrated together as described in Algorithm 4.3 in section 4.3. Hence, this

algorithm should replace the parameter estimation module in figure 3.1. In the

classification phase, speakers’ scores are calculated using equation (4.13) instead of

(3.1).

4.4.2 VARGM/UBM

In the VARGM/UBM framework, all the training data vectors are used to esti-

mate the UBM parameters as done with the GMM case. For adapting individual

speaker model parameters, we follow the same methodology employed in section

3.3. For simplicity, we shall consider only the case of a single sequence for adap-

tation, i.e. K = 1. Nonetheless, the general case is rather straightforward. For

general autoregression matrices, the prior density of Ã is assumed in the following

form.

p
(
Ã|β, ÃUBM

)
∝ exp

(
−β

2
trace

(
(Ã− ÃUBM)T(Ã− ÃUBM)

))
, (4.32)

where β is an update factor for the autoregression matrix and ÃUBM is the au-

toregression matrix of the UBM. For diagonal autoregression matrices, the prior

density of the autoregression matrices are assumed to be in the form

p(ãd|ãd,UBM) ∝ exp

(
−β

2
(ãd − ãd,UBM)T(ãd − ãd,UBM)

)
, (4.33)
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where ãd is as defined in subsection 4.2.2.

The update equations are derived in a very similar way to that followed in

section 3.3. Hence, we state them without derivations. For general covariance and

autoregression matrices, we have the following update equations.

w(s+1)
m =

∑N
n=1 Pm,n(λ(s)) + νm − 1

N −M +
∑M

m=1 νm
(4.34)

µ(s+1)
m =

∑N
n=1 Pm,n(λ(s))e(s)[n] + τmµ̃m∑N

n=1 Pm,n(λ(s)) + τm
(4.35)

Σ(s+1)
m =

∑N
n=1 Pm,n(λ(s))e(s)[n](e(s)[n])T + τm(µ̃mµ̃T

m + Σ̃m)∑N
n=1 Pm,n(λ(s)) + αm − d− 1

−

(∑N
n=1 Pm,n(λ(s)) + τm

)
µ

(s+1)
m (µ

(s+1)
m )T∑N

n=1 Pm,n(λ(s)) + αm − d− 1
(4.36)

vec
(
Ã(s+1)

)
=

[
βI +

∑
k,n,m

Pk,n,m(λ(s))
(
(yk[n]yT

k[n])(Σ−1
m )(s+1)

)]−1

×

vec

(
βÃUBM +

∑
k,n,m

Pk,n,m(λ(s))(Σ−1
m )(s+1)(xk[n]− µ(s+1)

m )yT
k[n]

)
,

(4.37)

where

e(s)[n] = x[n]− Ã(s)y[n].

For the case of diagonal covariance matrices and diagonal autoregression matrices,

equations (4.36) and (4.37) simplify to

(σ2
d)

(s+1) =

∑N
n=1 Pm,n(λ(s))(e

(s)
d )2[n] + τm(µ̃2

m,d + σ̃2
m,d)∑N

n=1 Pm,n(λ(s)) + αm − d− 1

−

(∑N
n=1 Pm,n(λ(s)) + τm

)
(µ

(s+1)
m,d )2

λ(s)) + αm − d− 1
. (4.38)

and

ã
(s+1)
d =

(
βI +

∑
k,n,m

Pk,n,m(λ(s))
ỹk,d[n]ỹT

k,d[n]

(σ
(s+1)
m,d )2

)−1

×(
βad,UBM +

∑
k,n,m

Pk,n,m(λ(s))
xk,d[n]− (µ

(s)
m,d)

2

(σ
(s+1)
m,d )2

)
(4.39)
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Rather than the differences in the update equations, the training and the clas-

sification methodologies are the same.
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Chapter 5

Generalized maximum likelihood

adaptation

In this chapter, we basically describe our proposed GML adaptation technique. We

consider a particular scenario where the training environment is distortion free but

the testing environment is corrupted by band limitation and additive noise with a

partially unknown distribution. Similar to the PCM method, we assume a general

model for the testing feature vectors, which contains both clean speech parameters

and noise parameters. While the clean speech parameters are estimated in the

training phase, the distortion parameters are estimated from the feature vectors

extracted from corrupted speech in the testing phase. After estimation of the

distortion parameters, the ML decision rule is applied in order to determine the

most likely speaker of the testing utterance. In Chapter 6, we shall show that

such a compensation technique results in an increased robustness of the speaker

identification systems against additive and convolutive noise.

This chapter is divided into four sections. The main statistical model for dis-

torted speech is described in section 5.1. In section 5.2, we explain how to estimate

the distortion related parameters from the given speech. In section 5.3, we modify

the model order selection technique, proposed in section 4.3, so that it fits into

our GML adaptation framework. Moreover, we propose another approximate but
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faster version of this model order selection algorithm. A global picture of the GML

adaptation technique is illustrated in section 5.4. Finally, in section 5.5, we present

a potential application to this GML compensation technique, namely blind equal-

ization of MIMO channels [7].

5.1 Main statistical model

Generally a variety of distortion models may be assumed. Typically, the most

two important factors that hamper the classification performance are the spectral

distortion caused by the communication channel and the additive noise contaminat-

ing the speech signal. The former factor is equivalent to bandpass filtering effect.

Modeling the band-limitation as infinite impulse response (IIR) filter, we have the

following distortion model for the extracted testing feature vectors, x[1 : N ].

x[n] =
P∑
p=1

Ap,sx[n− p] + s[n] + e[n], (5.1)

where s[n] refers to a hypothetical feature vector extracted from the clean part of

the speech signal and e[n] corresponds to the noisy part of the speech. The second

subscript s in Ap,s refers to the speaker index. The distribution of s[n] is assumed

to be a GMM whose parameters are estimated clean training speech; i.e.,

p(s[n]|Hs) =
M∑
m=1

wm,sN(s[n]; µm,s,Σm,s). (5.2)

The noise vector e[n] follows a speaker-independent Gaussian distribution, N(e[n]; 0,Γ),

where Γ is assumed to be unknown. Hence, in the testing phase, the speaker-

dependent parameters λs = {wm,s, µm,s,Σm,s}Mm=1, s = 1, . . . , S are considered

known while the auto-regression matrices and the noise covariance matrices in (5.1)

are estimated from the testing feature vectors. In the following sections, we shall

denote the distortion parameters by θ.

60



5.2 Model parameter estimation

In this section, we first consider the parameter estimation problem for general

autoregressive and covariance matrices given that one of the hypotheses H1, . . . ,HS

is true. In order to simplify the notation, we shall drop the speaker index s. It

should be stated that the following parameter estimation procedure is repeated for

each speaker model as will be illustrated in section 5.2. Other special structures

of the autoregressive and the noise covariance matrices are addressed shortly. The

likelihood function of the observed data sequence, x[1 : N ], is given by

p
(
x[1 : N ]

∣∣∣θ) =
N∏
n=1

p
(
x[n]

∣∣∣x[1 : n− 1], θ
)

=
N∏
n=1

p
(
x[n]

∣∣∣x[n− P : n− 1], θ
)

=
N∏
n=1

M∑
m=1

wmN(x[n]; Ãy[n] + µm,Σm + Γ), (5.3)

where Ã =
[
A1 . . . AP

]
and y[n] =

[
x[n− 1]T . . . x[n− P ]T

]T
. It is clear that

the likelihood function is highly nonlinear in Ã and Σ. Similar to the estimation

approaches in chapters 3 and 4, the iterative EM procedure is used to maximize

the likelihood function with respect to Ã and Σ.

Initial guess for the model parameters can be found by fitting the data to the

following autoregressive model

x[n] = Ãy[n] + e[n], (5.4)

where p(e[n]) = N(e[n]; z,Σ). The ML estimates for Ã and Σ given the above

model are the initial values for the EM algorithm and are denoted by Ã(0) and

Σ(0), respectively. It is straightforward to show that

Ã(0) =

(
N∑
n=1

x[n]y[n]T

)(
N∑
n=1

y[n]y[n]T

)−1

(5.5)

Σ(0) =
1

T

N∑
n=1

(x[n]− Ã(0)y[n])(x[n]− Ã(0)y[n])T (5.6)

For deriving the update equations, the complete data specification in this prob-

lem will include the clean data vectors s[n] as well as the index function φ[n],
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defined before in subsection 3.2.1 will significantly simplify our derivations. Define

X = {x[1 : N ]}, Φ = {φ[1 : N ]}, and S = {s[1 : N ]}. The complete log-likelihood

function is given by

log p
(
X,Φ, S

∣∣∣θ)
=

N∑
n=1

log p
(
x[n], φ[n], s[n]

∣∣∣x[1 : n− 1], φ[1 : n− 1], s[1 : n− 1], θ
)

=
N∑
n=1

(
log p

(
φ[n]

∣∣∣θ)+ log p
(
s[n]
∣∣∣φ[n], θ

)
+ log p

(
x[n]

∣∣∣s[n],x[n− P : n− 1], φ[n], θ
))

=
N∑
n=1

(
logwφ[n] + log N(s[n]; µφ[n],Σφ[n]) + log N(x[n]; Ãy[n] + s[n],Γ)

)
(5.7)

Obviously, the first two terms in the above expression do not contain the parameters

to be estimated: Ã and Γ. Therefore, they can be ignored. Substituting (5.7) into

(3.5), the following expression for the auxiliary function is obtained

Q(θ;X, θ(s))

= c− 1

2

N∑
n=1

(
log |Γ|+ E

{
(x[n]− Ãy[n]− s[n])TΓ−1(x[n]− Ãy[n]− s[n])

∣∣∣x[1 : N ], θ(s)
})

,

(5.8)

where c does not depend on the estimated parameters. Hence, in order to evaluate

and optimize the auxiliary function Q(θ;X, θ(s)), it is necessary to derive smoothed

estimates of the first and the second order statistics of s[n] given all the noisy data

x[1 : N ]. In order to simplify the notations, define the following smoothed statistics

ŝ[n] ≡ E
{

s[n]
∣∣∣x[1 : N ], θ(s)

}
. (5.9)

R[n] ≡ E
{

s[n]sT[n]
∣∣∣x[1 : N ], θ(s)

}
. (5.10)

ŝ[n|m] ≡ E
{

s[n]
∣∣∣φ[n] = m,x[1 : N ], θ(s)

}
(5.11)

R[n|m] ≡ E
{

s[n]sT[n]
∣∣∣φ[n] = m,x[1 : N ], θ(s)

}
. (5.12)
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In appendix A, we prove the following expressions for ŝ[n] and R[n].

ŝ[n] =
M∑
m=1

Pm,n(θ(s))ŝ[n|m] (5.13)

R[n] =
M∑
m=1

Pm,n(θ(s))
(
R[n|m] + ŝ[n|m]ŝT[n|m]

)
− ŝ[n]ŝT[n], (5.14)

where

ŝ[n|m] = µ(s)
m + Km(x[n]− Ã(s)y[n]− µ(s)

m ) (5.15)

R[n|m] = (I−Km)Σ(s)
m (5.16)

Km = Σ(s)
m (Γ + Σ(s)

m )−1.

Pm,n(θ(s)) =
w

(s)
m N(x[n]; Ã(s)y[n] + µ

(s)
m ,Σ(s)

m + Γ(s))∑M
m′=1 w

(s)
m′N(x[n]; Ã(s)y[n] + µ

(s)
m′ ,Σ

(s)
m′ + Γ(s))

The update equations for Ã and Γ are obtained by differentiating the auxiliary

function with respect to Ã and Γ, performing the expectation in (5.8), and equating

the results to zero. These steps are made in appendix A and the following update

equations are derived.

Ã(s+1) =

(
N∑
n=1

(x[n]− ŝ[n])yT[n]

)(
N∑
n=1

y[n]yT[n]

)−1

(5.17)

Σ(s+1) =
1

N

T∑
t=1

(
(x[n]− ŝ[n]− Ã(s+1))(x[n]− ŝ[n])T + R[n]

)
. (5.18)

Thus, the model parameters can be initialized using (5.5) and (5.6) and then

updated using (5.17) and (5.18). The new model parameters will be the old ones

for the next iteration. The iterations stop when the increase in the incomplete log-

likelihood function is less than some threshold or a maximum number of iterations

is exceeded.

Practically, it is desirable to assume special structures for the distortion pa-

rameters in order to avoid the curse of dimensionality problem. In addition, the

estimation in the testing phase should be done as fast as possible. Therefore, two

special structures of the autoregressive and noise covariance matrices are considered:
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the diagonal structure and the spherical structure, i.e., diagonal and all elements

on the diagonal are the same. One more advantage of these assumptions is its

consistency with the practical observation that the noise components are statisti-

cally uncorrelated. The update equations for both the diagonal and the spherical

structures are obtained in a similar way to that followed in the general case.

For diagonal autoregression matrices and diagonal noise covariance matrices,

the update equations are given by

a
(s+1)
d =

(
N∑
n=1

yd[n]yd[n]T

)−1( N∑
n=1

(xd[n]− ŝd[n])yd[n]T

)
(5.19)

σ
2(s+1)
d =

1

N

N∑
n=1

(
Rd[n] + (xd[n]− ŝd[n])(xd[n]− ŝd[n]−(a

(s+1)
d )Tyd[n])

)
, (5.20)

where xd[n], sd[n] are the dth component of x[n] and s[n], respectively, ad is a

vector containing the dth elements on the diagonal of A1, . . . AP , and yd[n] is

vector containing the dth elements of x[n−1], . . . ,x[n−P ], in order. The smoothed

estimates ŝd[n] and Rd[n] are defined as ŝd[n] ≡ E
{
sd[n]|x[1 : N ], θ(s)

}
and Rd[n] =

E
{
s2
d[n]|x[1 : N ], θ(s)

}
− ŝ2

d[n] and calculated using (5.15) and (5.16).

For spherical autoregression matrices and spherical noise covariance matrices,

define a =
[
a1 . . . aP

]
, where Ap = apI. The update equations are

a(s+1) =

(
N∑
n=1

Y[n]TY[n]

)−1( N∑
n=1

Y[n]T(x[n]− ŝ[n])

)
(5.21)

σ2(s+1) =
1

ND

N∑
n=1

(
tr(R[n] + (x[n]− ŝ[n])T(x[n]− ŝ[n]−Y[n]a(s+1))

)
(5.22)

where Y[n] =
[
x[n− 1] . . . x[n− P ]

]
.

When additive white noise is present, it is evident that the distortion alters the

centers of the distribution of the clean signal as well. In this case, the centers µm,

m = 1, . . . ,M , have to be updated. For deriving the update equation of µm, the

expectation of the second term in (5.7) should be evaluated since it is a function
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in µm. Regardless of the type of the noise covariance matrix, it is straightforward

to show that the update equation for the centers µm takes the form.

µ(s+1)
m =

∑N
n=1 Pm,n(θ(s))ŝm[n]∑N

n=1 Pm,n(θ(s))
, (5.23)

5.3 Selection of the optimum regression order

In the above section, we outlined a procedure for estimating the proposed adapta-

tion model parameters given that the regression order, P , is known. However, this

is not the case in practical applications. Therefore, a fast and an accurate model

order selection criterion is necessary.

Basically, the model order selection algorithm, proposed in section 4.3, is applied

to our GML adaptation as shown in Algorithm 5.1 (the number of the Gaussian

components is not estimated). In this context, the information criteria are functions

in the regression order only. The AIC, the KIC, and the BIC are given by

AIC(P ) = −2 log p(X|θ(P )) + 2|θ(P )| (5.24)

KIC(P ) = −2 log p(X|θ(P )) + 3|θ(P )| (5.25)

BIC(P ) = −2 log p(X|θ(P )) + |θ(P )| logN (5.26)

For convolutive noise, the number of parameters is given by

|θ(P )| =


D2(P + 1) general structure

D(P + 1) diagonal structure

P + 1 spherical structure

. (5.27)

For additive noise, a constant term MD should be added to |θ(P )|. Of course,

this method results in a great saving in time but it heavily depends on the proper

estimation of the VARGM model with the least order.

Alternatively, we may replace the incomplete likelihood function with that ob-

tained by ordinary VAR modeling, i.e., assuming there is only one component when
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Algorithm 5.1 Selection of the optimal regression order of the GML adaptation

algorithm.

1: Inputs: X, M , p(s[n]).

2: Output: Optimal P and θ(P ).

3: Estimate the distortion model parameters, θ(0), from the data using the EM

algorithm.

4: Calculate P (X|θ(0)) using (5.7).

5: Calculate IC(0) using (5.24), (5.25), or (5.26).

6: for P = 1 to Pmax do

7: Set θ0 = θ(P − 1) (Copy all the parameters of θ(P − 1) to θ0).

8: Increment the regression order of θ0 by 1.

9: In θ0, put AP = 0D×D.

10: Train θ(P ) using the EM algorithm. Take θ0 as the initial model for the EM

algorithm.

11: Calculate p(X|θ(P )) using (5.7).

12: Calculate IC(P ) using (5.24), (5.25), or (5.26).

13: end for

14: The selected regression order P is given by

P ∗ = arg min
P=1,...,Pmax

IC(P ).

15: Return θ(P ). This model will be used for adaptation and decision.
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calculating the likelihood function. Thus, the model selection criteria can be cal-

culated for different orders in a reasonably small time. Let L0(λ) be the likelihood

function corresponding to ordinary VAR modeling. It can be easily proved that

log p(X|θ0) = −ND
2

(log(2π) + 1)− N

2
log |Σ̂|, (5.28)

where

Σ̂ =
1

N

N∑
n=1

(x[n]− Ã0y[n]− µ̂)(x[n]− Ã0y[n]− µ̂)T, (5.29)

Ã =

(
N∑
n=1

x[n]yT[n]

)(
N∑
n=1

y[n]yT[n]

)−1

µ̂ =
1

N

N∑
n=1

(x[n]− Ã0y[n])

The first term in (5.28) is irrelevant to our model selection and hence it can be

dropped. Similarly, only the first term in (5.27) is a function in P . Hence, we have

the following approximate expressions for the AIC, KIC, and BIC, respectively.

AIC(P ) ≈ N log |Σ̂|+ 2PD2 (5.30)

KIC ≈ N log |Σ̂|+ 3PD2 (5.31)

BIC ≈ N log |Σ̂|+ PD2 log(N). (5.32)

The method is summarized in algorithm 5.2.

5.4 Adaptation using the GML rule

In sections 5.2 and (5.3), we proposed algorithms for estimating the distortion

parameters and selecting the optimal regression order assuming that the speaker

of the testing utterance is known. In this section, we integrate these algorithms

with speaker classification. The GML rule is a multi-class generalization of the

binary-class GLRT, successfully applied in adaptive signal detection [12, 3] and
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Algorithm 5.2 Approximate model order selection for the GML adaptation algo-

rithm.
1: Inputs: X, M , p(s[n]).

2: Output: Optimal P and θ(P ).

3: for P = 1 to Pmax do

4: Calculate Σ̂ using (5.29).

5: Use (5.30), (5.31), or (5.32) to calculate the approximate model order selec-

tion criterion for order P .

6: end for

7: The selected regression order P is given by

P ∗ = arg min
P=1,...,Pmax

IC(P ).

8: Return θ(P ). This model will be used for adaptation and decision.

voiced-unvoiced speech classification [40]. For binary decision problems, the GLRT

decision rule takes the form [66],

GLRT =
maxθ p

(
x[1 : N ]

∣∣∣H0, θ
)

maxθ p
(
x[1 : N ]

∣∣∣H1, θ
) ≷H0

H1
η, (5.33)

where θ refers to the unknown distortion parameters and Hi refers to one of the two

hypotheses. For multiple-hypotheses classification such as the problems in hand,

we replace the GLRT by the GML decision, which takes the form

î = arg max
i=1,2,...,S

max
θ

p
(
x[1 : N ]

∣∣∣Hi, θ
)
. (5.34)

While the maximization with respect to θ reflects the compensation of the distor-

tion effects, the outer maximization corresponds to the ordinary ML decision rule.

Thus, our GML-based speaker identification works as follows. Ordinary processing

and feature extraction are applied to the testing utterance and a sequence of the

feature vectors is obtained. For each candidate speaker, the clean speech model is

substituted by his/her model. The distortion parameters are estimated from the

testing feature vectors, as discussed in sections 5.2 and 5.3, and the correspond-

68



Figure 5.1: The architecture of a GML-based classification system.

ing likelihood value is reported. The decided speaker is the one with the highest

likelihood value. An equivalent but more intuitive form of the above rule is

θi = arg max
θ

p
(
x[1 : N ]

∣∣∣Hi, θ
)
, i = 1, ..., S. (5.35)

î = arg max
i=1,2,...,S

p
(
x[1 : N ]

∣∣∣Hi, θi

)
(5.36)

An architecture for the proposed compensation technique is depicted in figure 5.1.

5.5 Blind equalization of MIMO channels

In this section, we consider another potential application for the proposed GML

decision rule: blind equalization of multiple input multiple output MIMO com-

munication systems. Equalization is defined as the process of restoring a set of

source signals distorted by an unknown linear (or nonlinear) filter and possibly an

additive noise. Since the 1970’s, this problem has been an intensive research topic

because it arises in a variety of applications such as speech processing, underwater

acoustic, image processing, seismic exploration, and biomedical signal processing.

This problem also arises in many digital communication systems such as mobile,

wireless communication, sonar, and radar systems.

Depending on the available amount of training data used to estimate the channel

impulse response, equalization algorithms can be classified into: non-blind, blind,
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and semi-blind equalization algorithms. While non-blind equalization algorithms

fully exploit the channel prior information and the available training data to esti-

mate the channel response, blind equalization algorithms attempt to perform the

same task without using any training data in order to increase the bandwidth ef-

ficiency [112, 109, 46], i.e., to increase the data throughput while preserving low

bandwidth consumption. The need for blind equalization is even more critical for

channels with frequency selective fading [52]. Blind equalization techniques can be

classified into deterministic [118] and statistical. The deterministic techniques are

solely based on the subspace decomposition of the received data matrices and, in

the absence of noise, they are able to obtain exact estimates within a finite number

of observations. Therefore, it is believed that deterministic techniques perform bet-

ter than statistically-based method when only few observations are available at the

receiver. However, when there is a sufficient number of observations, statistically-

based methods are superior since they account for the existing noise to some extent

by exploiting the statistical properties of the given observations.

Statistically-based blind equalization algorithms are generally divided into two

main categories: those based on second-order statistics (SOS) and those based

on higher-order (≥ 3) (HOS) statistics. The main motivation behind using HOS

has been that, unlike SOS-based methods, HOS are not blind to the phase of

the unknown system [23]. HOS-based methods include the inverse filter criteria

(IFC) [16, 10, 21, 22], the super exponential (SE) algorithm [77, 124, 61, 68], the

polyspectra-based algorithms [78, 20], and the constant modulus algorithm [117,

116, 11], and many others. On the other hand, many researchers were motivated

to use SOS in order to reduce the system complexity. Tong, Xu, and Kailath

proposed blind equalization of single input multiple output (SIMO) channels using

only SOS of systems output [113]. However, the extension to the MIMO channels

is not straightforward as long as the system inputs are temporally white. Hua and

Tungait proved the identifiability of an MIMO FIR system using SOS when the

system inputs are temporally colored. Meanwhile, SOS-based blind equalization

algorithms have been reported for the case of temporally white inputs [2].
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In [120], the scalar autoregressive model was proposed to equalize ASK mod-

ulated signals when transmitted through a SISO channels. In this section, we

generalize their approach to deal with MIMO channels. We extend their method

in two ways. First, complex time series are considered instead of real ones. This

enables us to deal the baseband representation of modulated signals. In addition,

and unlike [120], we consider the estimation of the CSI matrix. Moreover, it will be

shown that the proposed method can be used in both equalizing the channel effects

and estimating the frequency response of the communication channel.

In particular, we prove that under some reasonable conditions, the MIMO chan-

nel can be modeled by our proposed VARGM model. The parameters of the

VARGM model are estimated from the received symbols using the EM algorithm

[29]. The estimated VARGM filter is then used to equalize the communication

channel. A Bayesian decision rule is applied to the filter output in order to decide

about the transmitted symbols. The proposed technique depends only on SOS and

hence, it is easy to implement. Moreover, the proposed algorithm requires no prior

knowledge of neither the channel response nor the SNR at the receiver. It should

be mentioned that the EM algorithm was used before with nonlinearly modulated

signals [81, 65, 24] and recently for linearly modulated SISO channels [82]. In all

these papers, the received symbols were modeled by an HMM. Typically, the ex-

pectation step is performed using either the forward-backward algorithm [65, 24]

or the Viterbi-decoding algorithm [81, 82]. That is, in each iteration of the EM al-

gorithm, the expectation step requires a search among many state sequences. This

may be time consuming for many practical applications. On the other hand, the

parameter estimation of the VARGM model is much faster since, in each iteration,

the parameters are just some statistics of the observed symbols. Moreover, the like-

lihood function calculation is much simpler and hence fast model selection criteria

are implemented in our proposed system.

This section is organized as follows. In subsection 5.5.1, the blind equalization

problem is formulated. Sufficient conditions for the validity of modeling channels

71



by a VARGM model are also given in this subsection. In addition, we clarify the

similarity between the MIMO equalization problem and the proposed GML adap-

tation technique. In subsection 5.5.2, we shall show how to estimate the VARGM

model parameters using the EM. The model order selection algorithm is very simi-

lar in principle to that explained in section 5.3, and hence, we omit it. Finally, the

proposed equalization algorithm is explained in details in subsection 5.5.3.

5.5.1 Problem formulation

Consider a MIMO communication channel with NT transmitters and NR receivers.

In this thesis, we consider only channels that suffer from slow fading. Therefore, it is

reasonable to assume that the channel response does not change significantly during

the transmission of a single block of symbols. The complex baseband representation

of a MIMO channel is usually modeled by the following relation [114].

x[n] =

Q∑
i=0

His[n− i] + ε[n], (5.37)

where s[n] is an NT × 1 complex baseband vector representation of the transmit-

ted signals at time n, x[n] is an NR × 1 complex baseband vector representation

of the received signals at time n, and ε[n] is an NR × 1 baseband vector repre-

sentation of the additive white Gaussian noise (AWGN) at time n. The matrices

Hi, i = 1, 2, .., Q represent the CSI. Each noise vector follows the complex Gaussian

distribution with a zero mean vector and an arbitrary covariance matrix Σ̃, which

is sometimes assumed to be diagonal. The noise random vectors are assumed to

be independent and identically distributed. The equalization of the above MIMO

channel is defined as estimating the transmitted sequence s[n], n = 1, 2, ..., N given

some noisy sequence x[n], n = 1, 2, ..., N observed at the receivers.

The image of (5.37) in the z−domain is

X(z) =

(
Q∑
i=0

Hiz
−i

)
S(z) + ε(z)

= H(z)S(z) + ε(z), (5.38)
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where X(z), S(z), and ε(z) are the z−transforms of x[n], s[n] and ε[n], respectively.

The matrix H(z) can be interpreted as the transfer function of the MIMO channel

filter. Equation (5.37) takes the form of a vector moving average (VMA) model. In

this thesis, we propose inverting this model to an appropriate VAR model because

it is easier to identify and equalize a MIMO channel when it is characterized by a

VAR model.

In the following theorem we shall show sufficient conditions under which this

inversion is possible.

Theorem 1 If the channel transfer matrix H(z) can be expressed as the product

of a full rank square matrix C−1(z), where C(z) =
∑nc

i=1 Ciz
−i is of size NR ×NR

with |C(z)| 6= 0∀|z| > 1and an irreducible full column rank rectangular matrix

B(z) =
∑nb

i=1 Biz
−i of size NR×NT and if NR > NT , then there exists at least one

finite-degree transfer matrix A(z) = INR
−
∑P

i=1 Aiz
−i, where INR

is the identity

matrix of size NR ×NR such that

A(z)H(z) = H0 = H(∞),∀z (5.39)

and

2nc + (NT + 1)nb ≤ P <∞ (5.40)

The proof of this theorem is given in appendix B. The matrix A(z) can be re-

graded as the MIMO channel equalizer. The above conditions are satisfied for most

practical systems [122, 46].

Thus, if the channel transfer matrix, H(z), satisfies the conditions in Theorem

1, the given system in (5.37) can be inverted by simply multiplying A(z) from the

left for both sides of (5.38), yielding

A(z)X(z) = A(z)H(z)A(z) + A(z)ε(z),

or

x[n] =
P∑
i=1

Aix[n− 1] + H0s[n] + e[n], (5.41)
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where

e[n] = ε[n]−
P∑
i=1

Aiε[n− 1].

Note that the vectors e[n], n = 1, 2, ..., N are identically distributed (but possibly

dependent); each follows the complex Gaussian distribution with zero mean vector

and arbitrary covariance matrix Σ, which is a function of Σ̃ and Ai, i = 1, 2, ..., P .

Denoting the possible transmitted symbols by s1, s2, ..., sM , the distribution of

the sequence H0s[n] + e[n] is a complex Gaussian mixture model. The number of

Gaussian components is the size of the symbol set, M and the covariance matrices

of all components are the same. Moreover, the centers of the Gaussian compo-

nents are µm = H0sm, m = 1, 2, ...,M .1 The transmitted symbols depend on the

modulation scheme used but always known to the receiver in advance, and hence,

they are treated as constants. The VARGM model parameters can be collectively

represented by the string

λ = {w1, . . . , wM ,Σ,A1, . . . ,AP ,H0}.

Thus, upon the conditions mentioned above, the equalization problem can be refor-

mulated as follows. Given some received symbols that are modeled by the relation

x[n] =
P∑
i=1

Aix[n− i] + H0s[n] + e[n], (5.42)

where e[n] is a zero-mean complex Gaussian random vector, find the ML-estimate

of the transmitted symbols s[n].

Comparing the equalization model (5.42) to the adaptation model (5.1) in sec-

tion 5.1, we notice the analogy between the two models. The transmitted symbol

vector, s[n], corresponds to the feature vector of the clean speech while the received

symbol vector, x[n], corresponds to the feature vector of the corrupted speech. To

equalize the MIMO channel, we need to determine the best regression order, P ,

and estimate the equalizer filter, A(z), and the noise covariance matrix, Σ as we

1Actually, in most practical applications all symbols are equally likely to be transmitted.

However, in this thesis, we prefer to consider a more general framework.
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did before in the GML adaptation problem. Furthermore, the distribution of s[n] is

completely known prior to adaptation in (5.1) or equalization in (5.42). However,

there are some differences between the estimation problems. First, the equalization

system is not square, i.e., the number of outputs (receivers) in (5.42) is not equal to

the number of inputs (transmitters). Second, there is a channel matrix, H0, which

has to be estimated for equalization. Furthermore, the transmitted vector, s[n], fol-

lows a discrete distribution rather the GMM distribution in the GML adaptation

case2. In addition, we have to consider complex random variables rather than real

ones. Nonetheless, and despite these differences, the estimation algorithm of the

equalizer filter parameters is conceptually analogous to that followed in section 5.2

as we shall see shortly.

In this thesis, we propose a four-step procedure for solving this problem. First,

the received signal, x[n], is fitted into (5.42) using the EM algorithm. Second, the

channel equalizer A(z) is constructed and used to filter the received signal, x[n].

The Bayesian decision rule is then applied to the filter output in order to determine

the most-likely transmitted symbols. Finally, a simple algorithm is proposed and

applied to resolve possible permutation and phase ambiguities in the final equalizer

output.

5.5.2 Parameter estimation of the equalizer filter

Given some observed sequence x[1 : N ], it is required to find the maximum likeli-

hood estimates of the model parameters. The likelihood function of the observed

sequence is given by

p(x[1 : N ]|λ) =
N∏
n=1

p(x[n]|x[1 : n− 1], λ)

=
N∏
n=1

(
M∑
m=1

wmCN (x[n]−Ãy[n]; H0sm,Σ)

)
, (5.43)

2In fact, the distribution of s[n] can be also considered as a GMM with zero covariance matrices.
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where

Ã ≡
[
A1 A2 ... AP

]
,

y[n] ≡
[
xT[n− 1] xT[n− 2] ... xT[n− P ]

]T
,

and CN (x; µ,Σ) refers to the complex Gaussian distribution with (complex) mean

vector µ and covariance matrix Σ, given by

CN (x; µ,Σ) =
1

πD|Σ|
exp

(
−(x− µ)†Σ−1(x− µ)

)
, (5.44)

where † denotes conjugate transpose. In (5.43), it is assumed that x[n] = 0 when-

ever n < 0. Since the likelihood is nonlinear in the model parameters, the EM

algorithm is used for estimating the VARGM model parameters in the ML sense.

For the problem in hand, the complete data specification is similar to that

used with the VARGM model, i.e., Z = {Φ, X}, where X is the set of received

vectors, Φ = {φ[1 : N ]} and φ[n] is the index of the symbol selected at time n. It

is straightforward to show that the auxiliary function for our proposed VARGM

model is given by

Q(λ;λ(s), X) = −NRN log(π)−N log |Σ|+
∑
m,n

Pn,m(λ(s))
(
logwm − em[n]†Σ−1em[n]

)
,

(5.45)

where
∑

m,n is a short hand for
∑M

m=1

∑N
n=1,

em[n] = x[n]−
P∑
i=1

Aix[n− i]−H0sm,

Pn,m(λ(s)) =
w

(s)
m CN (x[n]−Ã(s)y[n]; H

(s)
0 sm,Σ)∑M

m′=1w
(s)
m′CN (x[n]−Ã(s)y[n]; H

(s)
0 sm′)

. (5.46)

Since Q(λ;λ(s), X) is a real function in complex variables H0 and Ã, it is more

convenient to employ the Wirtinger calculus [81, 55] for optimizing Q(λ;λ(s), X).

For a complex vector z, the differential operators ∂
∂z

(where z∗ are treated as con-

stant) and ∂
∂z∗

(where z are treated as constant) yield the same result obtained

by separate differentiation with respect to the real and the imaginary part of the

function. Wirtinger proved that the complex differential operators are given by

∂

∂z
≡ 1

2

(
∂

∂<z
−  ∂

∂=z

)
,

76



∂

∂z∗
≡ 1

2

(
∂

∂<z
+ 

∂

∂=z

)
,

where the <(.) and =(.) operators extract the real and the imaginary parts of a

quantity, respectively. Differentiating Q(λ;λ(s), X) with respect to Ã∗ and H∗0 and

equating the results to zeros, the updated values of Ã and H0 are given by solving

the following two linear equations.∑
m,n

Pn,m(λ(s))
(
x[n]−Ã(s+1)y[n]−H

(s+1)
0 sm

)
y†[n] = 0, (5.47)

∑
m,n

Pn,m(λ(s))
(
x[n]−Ã(s+1)y[n]−H

(s+1)
0 sm

)
s†m = 0, (5.48)

Differentiating Q(λ;λ(s), X) with respect to Σ and equating the result to zero, the

update equations are given by

Σ(s+1) =

∑
m,n Pn,m(λ(s))<

{
e

(s)
m [n](e

(s)
m [n])†

}
∑

m,n Pn,m(λ(s))
, (5.49)

In order to optimize Q(λ;λ(s), X) with respect to the model priors wm, m = 1, ...,M ,

we should consider the constraint that

M∑
m=1

wm = 1.

Hence, we should differentiate Q(λ;λ(s), X) + β
(∑M

m=1wm − 1
)

with respect to

wm and equate the result to zero.

w(s+1)
m =

1

N

N∑
n=1

Pn,m(λ(s)), m = 1, 2, ...,M (5.50)

One final issue is the choice of a proper initial estimate for the model parameters,

λ(0). Regarding the model priors and the covariance matrix, it was convenient to

assign a constant value, 1/M , for all priors and an identity matrix for the covariance

matrix. A good initial value for the auto-regression matrices, Ai, i = 1, 2, ..., P

can be simply obtained using the Yule-Walker equations or the Nuttall Strand

estimators [76]. Finally, the matrix H0 is initialized randomly. The estimation

procedure is outlined in Algorithm 5.3.

In appendix C, a brief analysis on the convergence of the EM algorithm is given.
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Algorithm 5.3 Estimation of the channel equalizer filter using the EM algorithm.

1: Inputs: X = x[1 : N ], P .

2: Output: H0, Σ, and equalizer filter A(z).

3: Set w
(0)
m = 1/M for all m = 1, 2, ...,M .

4: Set Σ(0) = INR
.

5: Estimate an initial value for Ã using the Yule-Walker method.

6: Assign random values for H.

7: log p
(
X|λ(0)

)
= −∞.

8: for s = 1 to smax (max. number of iterations) do

9: Calculate the log-likelihood value log p
(
X|λ(s)

)
using (5.43).

10: If log p
(
X|λ(s)

)
− log p

(
X|λ(s−1)

)
< some tolerance, return λ(s), otherwise

remain in the loop.

11: Calculate Pn,m(λ(s)) for n = 1, ..., N and m = 1, ...,M using (5.46).

12: Calculate Σ(s+1) using (5.49).

13: Calculate w
(s+1)
m for m = 1, ...,M using (5.50).

14: Solve (5.47) and (5.48) in order to obtain Ã(s+1) and H(s+1).

15: end for
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5.5.3 The proposed equalization algorithm

The VARGM model can be used to equalize the MIMO channel as follows. Given

a set of observed symbols {x[1], ...,x[n]}, the EM algorithm is used to estimate the

VARGM model parameters λ. Define the residual vectors, w[n], as

ŵ[n] ≡ x[n]−
P∑
i=1

Âix[n− i]

= Ĥ0s[n] + e[n], (5.51)

whereˆdenotes estimated values and the second line in the above equation is de-

rived from (5.41). Since an estimate of the H0 is available, one can estimate the

transmitted sequence as H∼−1
0 s[n], where H∼−1

0 is the left pseudo-inverse of H0.

However, in order to exploit the noise statistical properties, a Bayesian decision

rule may be preferable. At each time instant n, the equalization problem can be

formulated as the following M-ary hypothesis testing problem:

Hm: Symbol sm was transmitted at instant n.

Given that the true transmitted symbol at time n is sm, the conditional distri-

bution of ŵ[n] is a complex Gaussian distribution with mean H0sm and covariance

matrix Σ. Hence, the index of the decoded symbol at time n, φ̂[n], can be given

by the following Bayesian decision rule.

φ̂[n] = arg max
m=1,...,M

P (Hm|ŵ[n])

= arg max
m=1,...,M

P (s[n] = sm)P (ŵ[n]|s[n] = sm)

= arg min
m=1,...,M

(
− log(ŵm) + (ŵ[n]−Ĥ0sm)†Σ−1(ŵ[n]−Ĥ0sm)

)
. (5.52)

Similar to most blind equalization algorithms of MIMO channels, the recovered

sequence is identifiable up to phase and permutation ambiguities [114]. Several

techniques have been proposed for ambiguity resolution (See [46] and the refer-

ences therein). In this context, the following short training sequence is sent before
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transmitting the actual data
s1 s2 s1 . . . s1

s1 s1 s2 . . . s1

...
...

...

s1 s1 s1 . . . s2


NT×(NT +1)

,

where s1 and s2 are any two possible symbols the transmitter can send. Assuming

error free transmission, the permutation ambiguity is resolved by rearranging the

rows of the received sequence so that the recovered symbols corresponding to the

training sequence will have the following form
r1 r2 r1 . . . r1

r1 r1 r2 . . . r1

...
...

...

r1 r1 r1 . . . r2


NT×(NT +1)

.

The phase ambiguity is resolved simply by the comparing r1 to s1 and r2 to s2. Since

the transmission is not noise free, the above training sequence should be sent several

(odd number of) times and a majority vote is taken among the received symbols

corresponding to each of s1 and s2 so as to decide the most-likely transmitted

symbol. A functional block diagram of the proposed equalization algorithm (with

ambiguity resolving) is depicted in figure 5.2.
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Figure 5.2: Functional block diagram of the proposed equalization algorithm.

81



Chapter 6

Experimental Evaluation

In this thesis, we performed the following four groups of simulation.

1. We investigated the classification performance of the proposed VARGM classi-

fier for closed-set text-independent speaker identification. We also established

a comparison between the VARGM and the GMM classifiers. We used the

2000 NIST speaker recognition evaluation [99] for evaluating the performance.

2. The proposed VARGM was also applied to the speech emotion classification

problem. The Berlin emotional database was used in this simulation.

3. We applied the proposed GML adaptation technique to artificially corrupted

utterances in the TIMIT database. We examined the performance of our

adaptation technique against additive and convolutive noise.

4. The proposed equalization technique, discussed in section 5.5, is applied to

three examples and compared against the whitening approach and the BDCC

method.

For the first three experiments, the speech processing and feature extraction were

almost the same. In order to equalize the effect of the propagation of speech through

air, a pre-emphasis radiation filter is used to process speech signal before extraction
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of features. In our simulations, we used the following radiation filter

H(z) = 1− 0.97z−1.

Hamming windows of duration 25 msec were multiplied by the times samples of

each frame. Feature vectors were extracted at a rate of one feature every 10 msec.

The MFCC features were extracted from each frame as explained in section 2.2.

6.1 Group I: Closed-set text-independent speaker

identification using the VARGM model

We conducted two main simulations to validate the effectiveness of the proposed

VARGM classification technique in the closed-set speaker identification problem.

In the first experiment, the VARGM was compared to the GMM with fixed model

orders for each speaker model. In the second experiment, we studied the effect

of our proposed model order selection technique on the classification performance

of the system. In all simulations, the maximum number of iterations in the EM

estimation algorithm was 100 and the termination tolerance was 5× 10−7.

6.1.1 The 2000 NIST speaker recognition evaluation

We used the 2000 NIST speaker recognition evaluation [99] for validating the per-

formance of our system. The 2000 NIST evaluation was mainly developed for

four speaker recognition problems: one-speaker detection, two-speaker detection,

speaker tracking, and speaker segmentation. Since we are mainly interested on the

speaker identification problem, we considered only utterances prepared for the task

of the one speaker detection.

The 2000 NIST speaker recognition evaluation consists of 10,328 utterances

containing a total of approximately 4.31 Gbytes of data and covering 148.9 hours

of audio. All utterances were recorded in a single channel environment with 8-

bit/sample mu-law encoding. The sampling rate is 8 kHz. The audio files were
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stored in SPHERE format. Utterances were collected from 936 speakers (428 males

and 508 females). Most of the speakers uttered one training utterance with an

average duration of 2 minutes and from 5 to 28 testing utterances with a duration

ranging from 15 to 45 seconds.

All testing utterances were collected from telephone conversations with different

dialed numbers and different handset than that used in the speaker’s training data.

In our simulations, we basically considered utterances recorded from electret hand-

set devices since they constituted the majority of the utterances. The classification

accuracy is calculated by simply dividing the number of correctly classified testing

utterances over the total number of testing utterances.

6.1.2 A comparison between GMM and VARGM

We compared the performance of our proposed system to that of the standard GMM

system. In order to establish reliable conclusions, different numbers of speakers were

tried. Moreover, for each number of speakers, we tried three types of populations:

all speakers are male, all speakers are female, and half the speakers are male and

the other half is female. The mean and the standard deviation of the classification

accuracies are shown in Table 6.1. Each entry in Table 6.1 is based on 5 trials.

In this experiment, we tried a fixed number of Gaussian components, M = 128,

for all speaker models and a fixed regression order P = 3 for all VARGM speaker

models. In this simulation, the combination of M and P is chosen by trial and

error. In the simulation in subsection 6.1.3, the performance of the proposed model

order selection technique is investigated. Both the autoregression and the noise

covariance matrices were assumed diagonal in this simulation.

As expected, with the increase of the number of speakers (classes), the classifi-

cation task becomes more difficult, and hence, the classification accuracy decreases.

Nonetheless, the proposed VARGM model consistently outperforms the standard

GMM method for all the configurations. The amount of improvement is between

2% to 5% for most cases. The same experiment was repeated with the incorpora-
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Table 6.1: Classification performances of the GMM and the VARGM systems when

applied to utterances from the 2000 NIST speaker recognition evaluation.

No. of speakers Gender GMM VARGM

20

Male (83.21± 1.40)% (87.92± 0.79)%

Female (85.14± 1.76)% (91.35± 2.00)%

Mixed (85.96± 1.00)% (87.98± 2.04)%

50

Male (72.91± 1.19)% (75.43± 1.92)%

Female (74.41± 0.79)% (75.90± 1.23)%

Mixed (74.30± 1.30)% (75.84± 1.14)%

100

Male (69.84± 0.69)% (71.75± 1.18)%

Female (67.92± 0.74)% (70.87± 1.11)%

Mixed (67.94± 0.95)% (70.29± 0.82)%

tion of the UBM framework and the classification results are shown in Table 6.2.

For the GMM parameters, the update parameters were selected as recommended

in [100], i.e., νm = τm = αm−d−1 = 16 for m = 1, . . . ,M . For the auto-regression

matrices, the update parameter was selected as

β = 0.1
N∑
n=1

||y[n]||2.

In fact, we found experimentally that the classification accuracy was almost insen-

sitive for small values of β. Comparing the classification accuracies of Table 6.1

and 6.2, we observe the improvement achieved by incorporating the UBM model.

At the same time, the proposed method still provides improvement in the classifi-

cation accuracy over the standard GMM system. We should emphasize, however,

that both M and P were empirically determined. In fact, for high regression orders,

the VARGM classifier may suffer from over-fitting like other classifiers. Therefore,

it is important to apply model order selection techniques to adequately determine

good values for both M and P .
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Table 6.2: Classification performances of the GMM-UBM and the VARGM-UBM

systems when applied to utterances from the 2000 NIST speaker recognition eval-

uation.

No. of speakers Gender GMM VARGM

20

Male (88.68± 1.16)% (89.81± 1.81)%

Female (82.86± 1.48)% (84.03± 2.75)%

Mixed (79.57± 1.17)% (83.83± 0.89)%

50

Male (75.83± 1.26)% (76.93± 2.08)%

Female (78.83± 0.53)% (79.9± 3.76)%

Mixed (77.29± 1.11)% (79.91± 1.11)%

100

Male (70.95± 0.84)% (73.72± 1.67)%

Female (69.60± 0.64)% (71.66± 4.02)%

Mixed (70.99± 1.04)% (74.12± 2.90)%

6.1.3 VARGM model order selection

In this simulation, we investigated the effect of model order selection on the clas-

sification performance of our proposed method as well the standard GMM system.

Algorithms 4.2 and 4.3 (P = 0) were used to select the order of the GMM and the

VARGM speaker models, respectively. We basically considered a population of 50

speakers with mixed genders in this simulation.

Table 6.3 shows a comparison between the three model order selection techniques

with respect to:

1. the classification accuracy of the VARGM model, accVARGM,

2. the average number of Gaussian components in the VARGM models, M̂VARGM,

3. the average regression order of the VARGM models, P̂VARGM,

4. the classification accuracy of the GMM models, accGMM,

5. the average number of Gaussian components in the GMM models, M̂GMM,
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Table 6.3: Classification performance of the AIC, the BIC, and the KIC model

order selection techniques for the 2000 NIST database.

Selection criterion accVARGM M̂VARGM P̂VARGM accGMM M̂GMM

AIC 79.25% 98.56 4.08 78.09% 256.00

KIC 75.39% 66.56 3.00 73.71% 225.28

BIC 82.60% 64.00 1.92 78.48% 65.28

It is obvious from Table 6.3 that the VARGM model still outperforms the GMM

model by 1% - 4% in the classification accuracy. Comparing the classification ac-

curacies in Table 6.3 to the corresponding accuracies in Table 6.1, a significant

improvement in the accuracy is observed specially with the BIC. This indicates the

importance of applying model order selection technique for increasing the classi-

fication accuracy. Comparing the three model selection criteria, we find that the

BIC provides the highest classification accuracy and the simplest classifiers. This

advantage in performance may be attributed to the fact that the BIC accounts for

the number of data points, unlike the other two criteria. According to the literature

of pattern classification, it is argued that, to some extent, simpler classifiers have

better generalization capabilities [33].

6.2 Group II: Speech emotion recognition using

the VARGM model

Another recent application to the proposed VARGM-based classification framework

is speech emotion classification [6], which refers to the process of determining the

emotional state of a speaker from his voice. Recently, there has been an increasing

research interest in speech emotion classification for it has found a variety of ap-

plications such as web interactive movies, information retrieval, medical analysis,

in-car board systems and text-to-speech synthesis [105].
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Many classification techniques have been applied for speech emotion classifica-

tion such as ANN [59], the HMM [91] and the SVM [105]. However, an important

remark in the majority of these techniques is that they do not model the tempo-

ral structure of the training data. The only exception is the HMM in which the

temporal structure of the data is modeled through its states. However, all the

Baum-Welch re-estimation formulae are based on the assumption that, within the

same state, all the feature vectors are statistically independent [91]. Though this

assumption is not valid in practice, the HMM has shown to be a powerful classifier

in a variety of applications.

In this section, we compare the classification performance of the proposed

VARGM modeling technique with that of the HMM, the k-NN, and the ANN clas-

sification methods. While the k-NN and the ANN classifiers do not model timing

dependency altogether, the HMM models timing dependency through state transi-

tion. In addition, the HMM is very popular in speech applications and has been

applied to the problem of speech emotion recognition [91].

Unlike the speaker identification problem, we used VARGM models with full

covariance and full autoregression matrices for classification. The main reason is

that the duration of all the utterances was small. As a result, the number of

extracted feature vectors was so small that the parameter estimation procedure

outlined in section 4.2.1 can be easily implemented.

6.2.1 The Berlin emotional database

The VARGM-based classification technique was applied to the Berlin emotional

speech database [15], which contains 800 utterances recorded in German with the

following adult-directed emotions: anger, boredom, fear, happiness, sadness, and

neutral. Ten professional native German actors (5 female and 5 male) simulated

these emotions, producing 10 utterances for each emotion (5 short and 5 longer

sentences). The script of the utterances could be used in every-day communication

and are interpretable in all applied emotions. All utterances were recorded using 16
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bit/sample PCM encoding and a sampling frequency of 16 kHz. The recordings were

made using a Sennheiser MKH 40 P 48 microphone and a Tascam DA P1 portable

DAT-recorder in an anechoic chamber. The recognizability and the naturalness of

the utterances were tested by 20-30 judges. The human recognition rate was more

than 80%.

In order not to favor one of the emotions over the others, the number of training

and testing utterances should be the same for all emotions. Since the total number

of utterances for each emotion is variable, only fifty utterances are randomly selected

without replacement from each emotion. At the time of this simulation, the number

of utterances for the disgust emotion was fairly low and hence this emotion was

discarded from the experiments1. All the recognition accuracies are estimated based

on five-fold cross validation. Therefore, the utterances of each emotion is divided

into 5-folds with 10 utterances in each. Each recognition accuracy is the average

of 5 recognition accuracies obtained by 5 different runs. In each run, we have 40

training utterances (4 folds) and 10 testing utterances (1 fold) for each emotion.

The role of folds used for training and testing is switched in each run.

6.2.2 Results and discussion

In the following simulations, learning and classification of the HMM were imple-

mented using the hidden Markov toolkit (HTK) [126] thanks to its reliable perfor-

mance. The number of hidden layers in the ANN was fixed to two layers and the

back-propagation algorithm is used to train the network.

For all the classification techniques, it was necessary to apply a model selection

technique to determine the following structural parameters: the number of neigh-

bors in the kNN classifiers, the number of nodes in each hidden layer of the ANN

classifiers, the number of states and the number of Gaussian components per states

in the HMM, and the regression order and the number of Gaussian components in

1At the time of this simulation, not all the utterance were available. That is the main reason

behind using a relatively small number of utterances.
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the VARGM model. Since the number of extracted feature vectors per utterance

was limited, it was unreliable to use information-theoretic model selection crite-

ria such as the AIC and the BIC. Therefore, the model order selection techniques

presented in section 4.3 were not applied in this simulation. Instead, we applied

another model selection technique that is based on cross-validation [[13], ch.9]. In

particular, for each possible setting of the structural design parameters of the clas-

sifier, five-fold cross validation technique was applied to the training data only.

The model selection criterion is the average cross validation error. Once the opti-

mal model order is determined, all the training data is used to retrain the selected

model and the accuracy with respect to the test set is reported.

In order to demonstrate the importance of modeling the dependency between

successive feature vectors, the cross validation accuracy was calculated for different

combinations of M and P . The obtained accuracies are then averaged with respect

to M and plotted versus P . A plot of the average validation accuracy versus P is

shown in figure 6.1. Obviously, the case of P = 0 corresponds to a pure Gaussian

mixture model, i.e., there is no modeling of correlations between feature vectors. It

is noted that the accuracy asymptotically increases in general with the increase of

P up to a certain regression order. This corresponds to modeling the correlation

between a larger number of successive vectors. Thus, taking such a dependency into

account results in an increase in the classification accuracy. However, and similar

to many other classifiers, the accuracy asymptotically decreases when P is too large

since the model may be over-fitted to the distribution of the training data.

Table 6.4 shows the recognition accuracy, the classification time and the selected

structural parameters of all the classification techniques. It is noted from the table

that the classification accuracy corresponding to the VARGM classifier is higher

than the peak accuracy in Figure 6.1. This is expected since more training data

is used to estimate the VARGM parameters. It can also be deduced from the ta-

ble that techniques that model timing dependency (proposed and HMM) generally

outperform other techniques, which completely ignore the temporal profile of the
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Figure 6.1: Average recognition accuracy of the VARGM recognizer when applied to the

Berlin emotional speech database.

sequence of feature vectors. Comparing the identification times of different tech-

niques, it is clear that the average time required by the k-NN is from one to two

order of magnitudes higher than other methods. This may be undesirable for many

practical applications. On the other hand, the average identification times of other

techniques are almost comparable. In addition, the recognition performance of the

ANN is inferior to other techniques. According to literature, it seems that ANNs

are not well suited for speech emotion recognition [59]. Based on Table 6.4, it may

be deduced that the proposed recognition technique achieves the best compromise

between the recognition accuracy and the recognition time.

The normalized confusion matrices for both the proposed technique and the

HMM technique (the second best recognition method) are shown in Tables 6.5 and

6.6, respectively. Grouping the emotions into three sets: high-arousal emotions

(anger, fear, and happiness), low-arousal emotions (boredom and sadness), and the

neutral emotion, it is noted that the confusion between two emotions in the same
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Table 6.4: Recognition accuracies, average identification times, and selected structural

parameters of different recognition techniques when applied to the Berlin emotional speech

database.

Classification Average Classification Selected structural

method Accuracy time (seconds) parameters

VARGM 76.0% 0.3253 M = 2 & P = 9

HMM 71.0% 0.3505 M = 6 & # states = 5

k-NN 67.3% 16.2132 # neighbors = 6

ANN 55.0% 0.2573 # neurons = 5

Table 6.5: Normalized confusion matrix of the VARGM recognition technique when

applied to the Berlin database.

Recognized emotion

True emotion anger fear happiness boredom sadness neutral

anger 0.74 0.08 0.16 0 0 0.02

fear 0.08 0.66 0.12 0 0.04 0.10

happiness 0.18 0.18 0.62 0 0 0.02

boredom 0 0.02 0.02 0.76 0.04 0.16

sadness 0 0 0 0.02 0.96 0.02

neutral 0 0.02 0.04 0.12 0 0.82

set is higher than the confusion between two emotions in different sets. This is

consistent with what is reported in the literature [91]. From Table 6.5 and 6.6, it

can be easily deduced the accuracy of recognition between high-arousal emotions,

low-arousal emotions, and the neutral emotion is 90.33% for the proposed method

versus 86.00% for the HMM technique. This is intuitive since the speech rate for

low-arousal emotions is significantly less than that of high-arousal ones. Hence,

there should be a difference in the temporal profile of features extracted from the

two emotion categories.
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Table 6.6: Normalized confusion matrix of the HMM classifier when applied to the Berlin

database.

Recognized emotion

True emotion anger fear happiness boredom sadness neutral

anger 0.78 0.06 0.16 0 0 0

fear 0.04 0.7 0.16 0.04 0.02 0.04

happiness 0.24 0.04 0.68 0 0 0.04

boredom 0 0.04 0 0.42 0.16 0.38

sadness 0 0 0 0.04 0.94 0.02

neutral 0 0.08 0 0.16 0.02 0.74

6.3 Group III: Adaptive speaker identification us-

ing the GML rule

The robustness of our proposed GML adaptation method was tested by modeling

the mismatch between the training and the testing environments by either addi-

tive(white) noise or convolutive noise. Basically, clean utterances from the TIMIT

database were used to train the speakers’ GMMs, while our proposed adaptation

technique was applied to artificially corrupted utterances from the same database.

6.3.1 The TIMIT database

The TIMIT database is designed to provide speech data for the acquisition of

acoustic-phonetic knowledge and for the development and evaluation of automatic

speech recognition systems. TIMIT contains broadband recordings of 630 speakers

(438 male, 192 female) of eight major dialects of American English, each reading ten

phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic,

phonetic and word transcriptions. All utterances are recorded in a single channel

environment with 16-bit/sample PCM encoding. The sampling rate is 16 kHz. All

utterances are recorded in noise-free environment.
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Though the TIMIT database was mainly designed for evaluating continuous

speech recognition systems, it has been used extensively in speaker recognition

applications [49, 4, 97]. In our simulations, 8 utterances for each speaker were used

for training while the remaining two were used for testing.

6.3.2 Modeling the mismatch by convolutive noise

The effect of the convolutive noise can be modeled as an additive noise in the Mel

domain [96]. In the testing phase, the extracted feature vectors are artificially

corrupted according to the following model

x[n] = A1x[n− 1] + s[n] + e[n], (6.1)

where s[n], e[n], and s[n] refer to feature vectors extracted from the clean speech

(of the TIMIT database), the noise, and the corrupted speech, respectively (see

equation (5.1)). The noise vectors are randomly generated according to the multi-

variate normal distribution with zero mean and diagonal covariance matrix. A1 is

a diagonal matrix with random entries on the diagonal ranging from 0 to 0.5. The

matrix A1 is then scaled to ensure the stability of the system given by (6.1). The

noise power is adjusted to fit each desired value of the SNR, given by

SNR =

∑N
n=1 ||s[n]||2∑N
n=1 ||e[n]||2

, (6.2)

where N is the number of speech frames in the testing utterance. Note that the

reciprocal of (6.2) can be regarded as a measure of the mismatch between the

training and the testing environments. Thus, the sequence of the noise feature

vectors, e[1 : N ], is generated according to the following relation

e[n] = 10−SNR/20

√ ∑N
n=1 ||s[n]||2∑N
n=1 ||e1[n]||2

e1[n], (6.3)

where the SNR is measured in dB and e1[1 : N ] is a sequence of iid vectors

generated according to the standard multivariate distribution N(0, I).

94



In the training phase, the feature vectors of each speaker are fitted into a 3-

component GMM (full covariance) using the EM algorithm. The algorithm stops

when the increase in the log-likelihood function is less than 5× 10−7 or the number

of iterations exceeds 250. In the testing phase, both the ML and the GML decision

rules are used to classify the testing utterances. For the GML rule, the centers µm,

m = 1, 2, ...,M are assumed unaffected by convolutive noise and thus kept fixed.

Table 6.7 shows a comparison between the classification accuracies of two GMM-

based classifiers: system 1 applies ML classification rule and system 2 applies GML

classification rule. Only the 50 speakers with the longest recordings are considered

in this simulation. The SNR was varied from 0 (strong mismatch between training

and testing environments) to 20 dB (negligible mismatch between training and

testing environments) with a step of 5 dB. All the classification accuracies are

assessed based on 5-fold cross validation, which is repeated 10 times, i.e., each

entry in Table 6.7 is based on 50 estimates of the accuracy. Generally, classifier 2

outperforms the standard system for small values of the SNR. For SNRs in the range

0 to 20 dB, the improvement in the classification accuracy is 3%-4% for systems

with general covariance matrices, 17%-24% for systems with diagonal covariance

matrices, and 44%-70% for systems with spherical covariance matrices. With the

increase of the SNR, the difference between the classification accuracies of the

two classifiers decreases as expected. For high values of the SNR (15 dB and 20

dB), classifier 1 outperforms the GML system. However, the difference between

the recognition accuracies of the standard system and the proposed system with

spherical covariance matrices is relatively small because of negligible mismatch

between training and testing environments.

It is also noticed that the distortion model with spherical covariance matrices

provide the best classification performance because it represents the closest match

to the true distortion model.

We also investigated the adaptation performance when the SNR is known. In
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Table 6.7: Classification accuracies of classifiers 1 and 2 when mismatch is modeled

by convolutive noise. Number of speakers = 50; GM model order = 3.

System Classifier 1 Classifier 2

Underlying model GMM VARGM

Classification rule ML GML

Covariance type - spherical diagonal general

SNR

0 (5.18± 2.64)% (74.50± 6.54)% (22.75± 2.36)% (9.55± 2.74)%

5 (35.86± 5.64)% (79.05± 4.70)% (59.50± 5.43)% (38.60± 5.43)%

10 (78.30± 3.94)% (82.60± 4.27)% (67.50± 8.54)% (59.50± 3.04)%

15 (85.56± 3.24)% (85.30± 3.85)% (68.10± 6.62)% (78.80± 3.89)%

20 (86.20± 5.31)% (85.65± 3.07)% (68.25± 7.14)% (78.40± 3.41)%

this case, the covariance matrices are initialized as

Γ(0) = 10−SNR/10

(
N∑
n=1

||x[n]||2
)

I

and the same experiment is repeated. We used the same seed for the random

number generator in order to have a consistent comparison. The classification

accuracies are shown in Table 6.8 from which we notice an improvement in the

classification accuracy for small SNRs over the corresponding accuracies in Table

6.7 as expected. This indicates the importance of properly initializing the model

parameters. However, the amount of improvement is within an acceptable range

for most of the cases specially for systems with spherical covariance matrices.

6.3.3 Modeling mismatch by additive white Gaussian noise

In the simulation of this subsection, noise is added to the clean speech signal before

feature extraction. That is, the speech time samples of the corrupted speech, xt, is

given by.

xt = st + nt, t = 1, . . . , T, (6.4)
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Table 6.8: Classification accuracies of classifiers 1 and 2 when mismatch is modeled

by convolutive noise. The SNR is known in advance. Number of speakers = 50;

GM model order = 3.

System Standard Proposed

Underlying model GMM VARGM

Classification rule ML GML

Covariance type - spherical diagonal general

SNR

0 (5.18± 2.64)% (76.98± 5.56)% (48.36± 6.40)% (60.80± 7.48)%

5 (35.86± 5.64)% (83.72± 4.88)% (68.34± 6.20)% (75.56± 5.83)%

10 (78.30± 3.94)% (85.84± 4.26)% (74.80± 4.74)% (83.36± 5.57)%

15 (85.56± 3.24)% (85.30± 4.10)% (77.72± 4.32)% (86.00± 4.12)%

20 (86.24± 3.60)% (86.82± 4.19)% (78.44± 3.54)% (86.60± 3.34)%

where st is the corresponding clean speech sample and nt is the corresponding

noise sample. The noise samples are generated according to the standard normal

distribution. Similar to the previous simulation, the noise power is adjusted to fit

each desired of the SNR, given by

SNR =

∑T
t=1 |st|2∑T
t=1 |et|2

, (6.5)

Note that the reciprocal of the SNR in (6.5) can also be regarded as a measure

of the mismatch between the training and the testing environments. In this case,

the centers µm, m = 1, 2, ...,M will be altered and have to be estimated from the

testing utterance together with the noise covariance matrix.

Training is done in a similar way to the previous section. Table 6.9 shows

the recognition performance of classifiers 1 and 2. The SNR was varied from 0 dB

(strong mismatch) to 30 dB (negligible mismatch) with a step of 5 dB. Classification

accuracies are also based on 5-fold cross validation technique. As noticed from the

table, classifier 2 provides higher classification accuracies than classifier 1. In some

cases, the increase in the classification accuracy is more than 10%. However, for

small values of the SNR ratio, the improvement is notably less than that obtained
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Table 6.9: Classification accuracies of classifiers 1 and 2 when mismatch is modeled

by additive Gaussian white noise. Number of speakers = 50. GM model order = 3.

System Standard Proposed

Underlying model GMM VARGM

Classification rule ML GML

Covariance type - spherical diagonal general

SNR

0 (2.20± 0.27)% (3.2± 1.89)% (3.2± 1.68)% (7.2± 0.84)%

5 (4.80± 0.76)% (6.20± 1.72)% (6.3± 1.44)% (12.2± 4.51)%

10 (11.70± 3.56)% (12.40± 3.56)% (13.2± 3.60)% (24.1± 5.35)%

15 (34.70± 2.28)% (35.20± 2.77)% (32.10± 1.85)% (43.80± 6.75)%

20 (60.60± 4.31)% (61.10± 3.91)% (59.00± 4.51)% (62.50± 8.27)%

25 (76.10± 3.78)% (76.00± 3.64)% (75.60± 4.83)% (77.60± 4.45)%

30 (79.70± 3.09)% (79.70± 3.09)% (79.90± 3.17)% (86.60± 4.42)%

with convolutive noise. This is expected since the assumed model for distortion

does not exactly match with the actual noise corruption process. Note that both

the clean speech signal and the noise signal are bandlimited from 300 to 3300 HZ.

This leads to even more deviation of the assumed distortion model from the actual

distortion process.

6.4 Group IV: Blind equalization of MIMO chan-

nels

In order to demonstrate the efficacy of our proposed blind equalization method,

three examples are considered in our experimental evaluation. In the first two

examples, the proposed method is compared to the whitening method [114] and the

BDCC [104], respectively. In the third example, we considered a separable MIMO

communication system, i.e., the MIMO communication system can be separated

into two or more smaller MIMO systems. Basically, the comparison criteria are

the symbol error probability, the bit error probability (BER), and the normalized
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mean square error (NMSE) defined by

NMSE =

∣∣∣∣∣∣H0 − Ĥ0

∣∣∣∣∣∣2
||H0||2

,

where ||.|| denotes the l− 2 norm of a matrix and H0 and Ĥ0 refer to the true and

the estimated value of H0, respectively. The SNR is measured as

SNR = 10 log

∑N
n=1

∣∣∣∣∣∣∑Q
i=0 His[n− i]

∣∣∣∣∣∣2∑N
n=1 ||e[n]||2

6.4.1 Comparison with the whitening approach

The proposed technique is applied to Example 1 in [114]. In this example, there

are two transmitting antennas and three receiving antennas. The communication

channel is modeled by

x[n] = H0s[n] + H1s[n− 1] + e[n], (6.6)

where

H0 =


1 1

0 1

1 1

 H1 =


−0.6 −0.5

0 0

−1.2 −1

 .
According to Theorem 1 in Chapter 5, there exist a channel equalizer filter with de-

gree P = 3. Details of the derivation of A(z) if H(z) is known are given in Appendix

B. For comparison purposes, we repeated the same setup applied in Example 1 in

[114]. The QPSK modulation scheme is used to modulate the transmitted signals.

Data blocks of size 500 symbols are used to estimate the channel model param-

eters. The designed equalizer is then applied to an independent message of size

3000 symbols. Symbol error probabilities are averaged over only 100 Monte-Carlo

simulation runs. The order of the VARGM model is set to 3. Figure 6.2 shows a

comparison between the proposed method and the whitening method with respect

to the symbol error rate for each user. Estimates of symbol error probabilities
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Figure 6.2: Symbol error probability for both the proposed method and the whitening

method.

below 10−4 are not reliable because of the small number of the Monte-Carlo runs

and hence, they are not shown in the figure. From figure 6.2, it is clear that the

proposed method consistently outperforms the whitening approach by one order of

magnitude over the range of SNRs from 15 to 25 dB.

In order to investigate the performance of different model order selection criteria,

data were generated according to (6.6) with SNR = 15 dB. In this experiment, we

increased the number of Monte-Carlo runs to 1000 to have more reliable estimates of

the equalizer parameters. Channel parameters are estimated from the first Monte-

Carlo run only and used for the remaining runs. For each run, both the exact

and the approximate version of the AIC, the KIC, and the BIC as discussed in

section 5.3 are calculated. The selected order according to each criterion is reported.

Table 6.10 shows the mean and the standard deviation of the selected orders as

well as the overall symbol error probability, and the average equalization time

(including time required for parameter estimation and data gathering) for each

criterion. Comparing the exact and the approximate versions of model selection
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Table 6.10: A comparison between the exact and the approximate versions of the

AIC, the KIC, and the BIC.

Model selection
Exact version Approximate version

criterion Pav Pstd Pe teq (msec) Pav Pstd Pe teq (msec)

AIC 8.8540 1.3306 0.0036 6.2489 4.0290 0.6516 0.0038 3.5462

KIC 6.5920 1.3687 0.0035 6.2384 3.2050 0.4349 0.0043 3.3471

BIC 3.9410 0.3971 0.0037 6.2086 1.9990 0.0316 0.0079 3.0792

criteria in terms of the symbol error probability and the equalization time, we

conclude Using the AIC and the KIC model order selection techniques the proposed

approximation guarantees a relative penalty in the symbol error probability not

more than 22.8%. This means that the proposed approximation allows equalization

of fluctuations which are 1.76 times faster than using the exact versions of the AIC

and KIC model order selection techniques.

6.4.2 Equalization over frequency-flat slow fading channels

The proposed equalization technique is applied to a frequency-flat slow fading chan-

nel characterized by

x[n] =

√
SNR

NTE {|s1|2}
H0s[n] + e[n], (6.7)

where H0 is a random matrix whose entries are i.i.d. and follow the standard

complex Gaussian distribution. For frequency-flat slow fading channels, H0 can

be considered constant during the transmission of a single data block. The factor

E {|s1|2} represents the average energy of one component of any symbol sm.

Our proposed technique is compared to the BDCC method [104], which employs

low-density parity check (LDPC) encoding for resolving phase and permutation

ambiguities. In that paper, a 4×4 block fading channel was simulated. The signals
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are modulated using binary PSK modulation scheme. Data blocks of size 100, 400,

and 1600 symbols were used to design the equalizers.

In both methods, the NMSE, defined as the relative error in estimating H0 in

decibels, is used as a quality index of the equalization algorithm. Figure 6.3 shows

the NMSE of both the proposed and the (2,3)-LDPC-encoded methods. Each

point in the curves belonging to the proposed technique is estimated based on 500

Monte-Carlo simulations runs. Except for very small SNR, the proposed technique

in general provides less NMSE. Further, the difference between the NMSE of the

proposed technique and that of the BDCC technique increases with the increase of

the SNR; it reaches about 9 dB when the SNR is 20 dB and 100 symbols are used to

estimate the channel equalization filter. A comparison between the BER of the two

methods is shown in figure 6.4. The BDCC method generally provides less BER

than the proposed method but the difference is not more than 3% for SNR ≥ 4dB.

For higher SNR, the difference is even much less. It should be mentioned, however,

that no error correcting coding scheme was applied. That is, upon the application of

our proposed technique, we achieved a great saving in the information rate with the

price of a slight increase in the error probability. It is sought that a better detection

performance can be obtained if an error correcting coding scheme is incorporated

with our proposed equalization technique.

6.4.3 Separable MIMO channels

In some practical situations, the MIMO communication systems can be divided

into two (or more) separate MIMO systems. This happens when there is no path

between some transmitters and some receivers. It is of interest to us to test the

behaviour of our proposed equalization algorithm to detect such situations. In this
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Figure 6.3: NMSE of the proposed method and the BDCC method with block length of

100, 400, 1600 symbols.
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Figure 6.4: BER of the proposed method and the BDCC method with block length of

100 symbols.

example, we simulated the following communication system

x[n] =


0.4 0 0

0 0.6 0

0 0 0.5

0 0 0.5

 s[n] + e[n],
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Obviously, the zeros in H0 refer to the nonexistence of a path from a certain trans-

mitter to a certain receiver. Note that the channel matrix H(z) is still irreducible.

Data blocks of size 520 symbols are used to estimate the channel model param-

eters. The designed equalizer is then applied to an independent message of size

10000 symbols. The quadrature phase shift keying (QPSK) modulation scheme is

used in this simulation. Based on 5000 Mote-Carlo simulation runs, the symbol

error probability is calculated for different values of the SNR ranging from 6 to

16dB and compared to the ultimate case in which the channel transfer matrix H0

is exactly known to the receiver. The comparison is shown in Figure 6.5. The

symbol error probability of all the model selection criteria, considered in chapter

5, were almost identical, and hence, only the symbol error probability according

to the approximate BIC is plotted. As shown in the figure, the difference between

the two error probabilities is less than one order of magnitude for SNRs ranging

from 6 to 14 dB. This indicates the accurate estimation of H0 for a wide range of

SNR. This is also evidenced by the small relative error in estimating H0 shown in

figure 6.6. For higher SNRs, the difference increases because the noise covariance

becomes smaller and more difficult to estimate.

For each value of the SNR, we measured also the average equalization time per

block, teq. A plot for teq versus the SNR is depicted in figure 6.7. As shown in the

figure, teq generally decreases with the increase of the SNR. This is consistent with

the fact that the lower the SNR the more difficult is to estimate the noise distortion

and restore the original transmitted signal. In addition, resolving ambiguities in

phase and permutations becomes a harder task for low SNRs.
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Figure 6.5: A comparison between the symbol error probability of the proposed method

and the ultimate equalizer in example 3.
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Figure 6.6: Relative error in H0 in example 3.
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Figure 6.7: Equalization time versus SNR in example 3.

106



Chapter 7

Conclusions and future work

7.1 Summary of results and thesis contribution

In this thesis, we have primarily investigated the closed-set text-independent speaker

identification problem under noisy environment. In particular, we have proposed

a two-step procedure for improving the classification performance of the speaker

identification system. First, we have proposed a new classifier, the VARGM model,

as a combination of the GMM and the VAR models. Thus, the VARGM model has

the advantages of modeling the dependency between successive feature vectors and

the multi-modality in their distribution. Intuitively, the correlation between feature

vectors is caused by extracting features from overlapped frames and the filtering

effect of the communication channel through which the speech signal is transmitted.

When applied to the 2000 NIST speaker recognition evaluation, the new VARGM

classifier has provided 3%-5% improvement in the classification accuracy over the

standard GMM classifier.

In the second step in our improvement procedure, we have introduced the GML

decision rule as a novel method for compensating the degradation in performance

resulting from noise and spectral distortion. The basic idea of the GML adaptation

is to assume some parametric form of mismatch between the training and the test-

ing feature vectors. In the testing phase, the testing feature vectors are then used
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to estimate these mismatch parameters. To evaluate the efficacy of GML adap-

tation technique we have modeled the mismatch between the training and testing

environments by convolutive noise or additive white Gaussian noise; thus we have

applied the GML adaptation technique to utterances from the TIMIT database, ar-

tificially corrupted by convolutive and additive white Gaussian noise. The proposed

method has shown significant robustness against convolutive noise and notable im-

provement in accuracy over the standard ML decision rule for utterances corrupted

by white noise.

We have also applied the proposed VARGM model to the speech emotion classi-

fication problem. The proposed classification technique has been found to provide

a better classification performance than other techniques such as the HMM and the

kNN in terms of the classification accuracy and the discrimination between high-

arousal and low-arousal emotions. This is consistent with the fact that the syllabic

rate for low-arousal emotions is significantly less than that of high-arousal ones.

Hence, there should be a difference in the temporal profile of features extracted

from the two emotion types.

Motivated by the analogy between the GML adaptation technique and the blind

equalization problem of MIMO channels, we have proposed a novel technique for

the latter problem based on the VARGM modeling. In particular, the received

data vectors are fitted into a VARGM model, which is then used to equalize the

received data vectors themselves. The most likely transmitted symbols are then

determined by applying a fast Bayesian decision rule on the filter output. Finally,

permutation and phase ambiguities are resolved using a short training sequence.

We have also developed fast procedures for selecting the best regression order of the

equalizer filter and estimating its parameters. Compared to other techniques such

as the whitening approach and the BDCC method, the proposed method is found

to be more accurate in estimating the channel response. In addition, its symbol

error probability is less than that of the whitening approach and comparable to

that of the LDPC. However, the difference in performance is insignificant with the
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advantage that no error correcting code is applied.

7.2 Future research directions

We believe there are many possible extensions to each of the four problems ad-

dressed in this thesis. Regarding the speaker identification problem in noisy envi-

ronments, we have the following suggestions to further improve the classification

performance.

• In this work, the VARGM model parameters are estimated using either the

ML estimation criterion or the MAP estimation criterion. In the context of

speech recognition, discriminative estimation criteria such as the minimum

classification error (MCE) [64] and the maximum mutual information (MMI)

[8] are found to improve the classification performance of the HMM classi-

fier. Therefore, it is expected that they provide some improvement in the

classification performance of our proposed VARGM classifier.

• Based on our study of the speech emotion recognition problem, it seems that

the autoregressive part in the VARGM classifier reflects the syllabic rate. In

practical applications, it is very likely that the syllabic rate of the training

utterance is different from that of the testing utterance for the same speaker.

Therefore, we expect more improvement if the autoregression matrices are

re-estimated for the testing signal before calculating the likelihood scores.

However, the EM algorithm may not be suitable since the estimation of the

autoregression should be done as fast as possible in the testing phase.

• We basically assumed the dependency to be in the form of linear regression

for mathematical tractability. However, modeling nonlinear correlations may

provide us with better characterization of the random process generating the

training and testing utterances.
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• In the testing phase, the classification is performed after receiving all the

feature vectors. For real time applications, it is more practical to redesign

our classification algorithm so that the likelihood scores are calculated while

accepting feature vectors one by one. Moreover, pruning algorithms such as

the nearest neighbor approximation algorithm [87] may be used to speed up

the classification process even more.

• Correlation between feature vectors can be modeled in some other ways, which

are still mathematically tractable. For example, we may assume the training

data modeled as follows.

x[n] = y[n] + A1y[n− 1] + . . .+ Apy[n− P ] + e[n],

where y[n] follows the GMM distribution and the vectors y[1], . . . ,y[N ] are

iid.

For the proposed GML adaptation technique, the following issues may be con-

sidered for future work.

• In the GML adaptation framework, we assumed a particular from for the

distribution of the noisy feature vectors. In practical application, it is very

difficult to have a general and mathematically tractable form for this distri-

bution. Aggregation of different compensation models can be considered.

• We mainly considered a model-based compensation method. It will be inter-

esting to investigate integrating the proposed method with feature-based and

score-based compensation methods.

• In the testing phase, the proposed adaptation technique uses the EM algo-

rithm for estimating the noise parameters. For online or real time appli-

cations, the use of iterative algorithms for parameter estimation should be

avoided or, at least, minimized.

• In some applications, the number of available testing feature vectors may

be so small that the quality of the estimates of the distortion parameters is
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affected. This statement was evidenced in section 6.3 by the fact that the best

recognition performance occurs when spherical covariance matrices are used.

In order to overcome this problem, multiple artificially corrupted versions of

the training data can be generated and then used to estimate the distortion

parameters.

For speech emotion classification, we observed that the proposed VARGM model

classifies well between high-arousal and low-arousal emotions. However, the classi-

fication ability between emotions within the same group needs more improvement.

Therefore, a possible extension is to study the implementation of a two-stage clas-

sifier. In the first stage, emotions are classified into high arousal, low arousal, and

neutral emotions using our proposed method. In the second stage, another classifier

is used to distinguish between emotions in the same category.

Finally, it will be desirable to investigate the performance of the proposed blind

equalization system for MIMO systems with large constellations. In this case,

the number of candidate symbols may be so large that equalization cannot be

achieved within reasonable time. Recently, Zhao and Davies [129] pointed out this

problem and proposed approximating the EM algorithm using the sphere decoding

[38] search algorithm. Therefore, a future extension to our equalization method

is to incorporate the spherical decoding search algorithm for approximating the

summations in the EM algorithms and the maximization in the Bayesian decision

rule.
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Appendix A

Derivation of relations for the

smoothed statistics in the GML

framework

Fortunately, similar derivations are already established in the context of Kalman

filtering [45] where s[n] corresponds to the hidden states of the Kalman filter and

x[n] corresponds to the observations. The main difference, however, is that the

distribution of p
(
s[n]
∣∣∣x[1 : N ], θ(s)

)
is not Gaussian but rather it is a mixture of

Gaussian, viz,

p
(
s[n]
∣∣∣x[1 : N ], θ(s)

)
= p
(
s[n]
∣∣∣x[1 : n], θ(s)

)
=

M∑
m=1

p
(
φ[n] = m

∣∣∣x[1 : n], θ(s)
)

p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
.

(A.1)

The first line in the above equation is easily derived from the fact that the vectors

x[n + 1 : N ] are conditionally independent of s[n] given x[1 : n]. The a posteriori
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probability Pm,n(θ(s)) ≡ p
(
φ[n] = m

∣∣∣x[1 : n], θ(s)
)

is derived below

Pm,n(θ(s) ≡ p
(
φ[n] = m

∣∣∣x[1 : n], θ(s)
)

(A.2)

=
p
(
φ[n] = m

∣∣∣x[1 : n− 1], θ(s)
)

p
(
x[n]

∣∣∣φ[n] = m,x[1 : n− 1], θ(s)
)

p
(
x[n]

∣∣∣x[1 : n− 1], θ(s)
)

=
p(φ[n] = m) p

(
x[n]

∣∣∣φ[n] = m,x[1 : n− 1], θ(s)
)

∑M
m′=1 p

(
φ[n] = m′

∣∣∣θ(s)
)

p
(
x[n]

∣∣∣φ[n] = m′,x[n− P : n− 1], θ(s)
)

=
wmN(x[n]; Ãw[n] + µm,Σm + Γ)∑M

m′=1wm′N(x[n]; Ãw[n] + µm′ ,Σm′ + Γ)
. (A.3)

The conditional probability p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
is rewritten as

p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
=

p
(
s[n]
∣∣∣φ[n] = m,x[1 : n− 1], θ(s)

)
p
(
x[n]

∣∣∣s[n],x[1 : n− 1], φ[n] = m, θ(s)
)

p
(
x[n]

∣∣∣x[1 : n− 1], φ[n] = m, θ(s)
)

∝ p
(
s[n]
∣∣∣φ[n] = m, θ(s)

)
p
(
x[n]

∣∣∣s[n],x[1 : n− 1], φ[n] = m, θ(s)
)
,

∝ p
(
s[n]
∣∣∣φ[n] = m, θ(s)

)
p
(
x[n]

∣∣∣s[n],x[1 : n− 1], θ(s)
)
,

∝ N(s[n]; µm,Σm)N(x[n]; Ãy[n] + s[n],Γ), (A.4)

where the proportionality constant should be chosen so that

p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
is a valid density in s[n]. From (A.4), we can easily

deduce that p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
is a normal density in s[n]. Hence, it

can be expressed in the form

p
(
s[n]
∣∣∣x[1 : n], φ[n] = m, θ(s)

)
= N(s[n]; ŝ[n|m],R[n|m]). (A.5)

Comparing (A.5) with (A.4), we can deduce that

(s[n]− ŝ[n|m])TR−1[n|m](s[n]− ŝ[n|m])

= (s[n]− µ(s)
m )T(Σ(s)

m )−1(s[n]− µ(s)
m )

+ (x[n]− Ã(s)y[n]− s[n])T(Γ(s))−1(x[n]− Ã(s)y[n]− s[n]) + f, (A.6)
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where f does not depend on s[n]. Equating the quadratic coefficients in s[n], we

get

R−1[n|m] = (Σ(s)
m )−1 +T (Γ(s))−1,

V R[n|m] = Σm −Σm(Γ + Σm)−1Σm,

= (I−Km)Σm, (A.7)

where Km = Σm(Γ + Σm)−1. Equating the linear coefficient in s[n], we have

R−1[n|m]s[n|m] = (Σ(s)
m )−1µ(s)

m +T (Γ(s))−1(x[n]− Ã(s)y[n]) (A.8)

Multiplying (A.8) by R−1[n|m], and substituting (A.7) into into the resultant equa-

tions, we get

s[n|m] = µm + Km(x[n]− Ãy[n]− µm). (A.9)

Substituting (A.2) and (A.5) into (A.1), the GMM distribution of p
(
s[n]
∣∣∣x[1 : N ], θ(s)

)
is in the form

p
(
s[n]
∣∣∣x[1 : N ], θ(s)

)
=

M∑
m=1

Pm,n(θ(s))N(s[n]; ŝ[n|m],R[n|m]), (A.10)

where Pm,n(θ(s)), ŝ[n|m], and R[n|m]) are given by (A.3), (A.9), and (A.7), respec-

tively. Finally, expressions for ŝ[n] and R[n] are derived as the mean vector and

the covariance matrix of the distribution p
(
s[n]
∣∣∣x[1 : N ], θ(s)

)
, given by (A.10),

respectively, i.e.,

ŝ[n] = E
{
E
{

s[n]
∣∣∣φ[n] = m,x[1 : N ], θ(s)

}}
=

M∑
m=1

Pm,n(θ(s))ŝ[n|m], (A.11)

and

R[n] = E
{
Cov

{
s[n]
∣∣∣φ[n] = m,x[1 : N ], θ(s)

}}
+ Cov

{
E
{

s[n]
∣∣∣φ[n] = m,x[1 : N ], θ(s)

}}
=

M∑
m=1

Pm,n(θ(s))R[n|m] + Cov{ŝ[n|m]},

=
M∑
m=1

Pm,n(θ(s))(R[n|m] + ŝ[n|m]ŝT[n|m])− ŝ[n]ŝT[n] (A.12)
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Appendix B

Proof of Theorem 1 in Chapter 5

It was shown in [115] that if and only if B(z) is irreducible, then there exists a

another finite degree matrix R(z) of size NT ×NR such that

R(z)B(z) = INT
.

Moreover, it is shown in [114] that if all the conditions in the above theorem are

satisfied then there exist a finite-degree matrix G(z) = R(z)A(z) =
∑ng

i=1 Giz
−i

such that

G(z)H(z) = INT
,

G0 = (HT
0H0)−1HT

0,

and

nG ≥ nc +NTnb.

The main line of the proof is to find a NR ×NR matrix A(z) that is a function of

G(z) and satisfies (5.39). Further, the absolute term in A(z) is equal to the identity

matrix of size NR ×NR. Assume that A(z) is in the following form

A(z) = D1(z)G(z) + D2D
T
2, (B.1)

where the matrices D1(z) and D2 are of sizes NR × NT and NR × (NR − NT ),

respectively and they are to be determined. Then, the right hand side of (5.39)
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will be equal to (
D1(z)G(z) + D2D

T
2

)
H(z) = D1(z) + D2D

T
2H(z).

Hence, from (5.39),

D1(z) = H0 −D2D
T
2H(z).

and

A(z) =
(
H0 −D2D

T
2H(z)

)
G(z) + D2D

T
2. (B.2)

Note that A(z) is of finite degree since both H(z) and G(z) are of finite degree.

Moreover, it is not hard to show that

P ≤ Q+ ng ≤ Q+ nc +NTnb. (B.3)

Therefore, what remains to complete the proof is to find D2(z) that makes the

absolute coefficient in A(z) is the identity matrix. Putting z = ∞ in (B.2) and

equating to INR
, we obtain(

H0 −D2D
T
2H0

)
G0 + D2D

T
2 = INR

. (B.4)

Since G0 = (HT
0H0)−1HT

0, the matrix H0G0 is symmetric, all its eigenvalues are

equal to one, and its rank is equal to NT . Thus, we can express it in the form

H0G0 =

NT∑
k=1

uku
T
k

where the vectors uk, k = 1, ..., NT are the eigenvectors of H0G0. Furthermore,

since H0G0 is symmetric and positive definite, the eigenvectors can be selected to

form an orthonormal basis. Thus, equation (B.4) can be satisfied by setting

D2 =
[
uNT +1 uNT +2 . . . uNR

]
, (B.5)

where the vectors uk, k = NT +1, ..., NR form an orthonormal basis for the subspace

orthogonal to the subspace spanned by uk, k = 1, ..., NT . Thus, for any transfer

matrix H(z), we can use (B.2) and (B.5) to find a finite degree matrix A(z) that

satisfies (5.39) and the absolute term in A(z) is the identity matrix. This completes

the proof of the theorem.
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It is interesting to verify Theorem 1 for example 1. We can set C(z) = INR
and

B(z) = H(z) since H(z) is irreducible Hence, nc = 0 and nb = 1. According to

Theorem 1, ng = 2 and there exists a channel equalizer A(z) with degree P = 3. 1

The following matrix G(z) is a finite degree left inverse of H(z).

G(z) =

0.5 −1 0.5

0 1 0

+

1.0913 −0.15 −0.1913

0 0 0

 z−1

+

0.8504 −0.0709 −0.4252

0 0 0

 z−2.

It is straightforward to show that D2 =
[
1 0 −1

]T
/
√

2. Substituting in (B.2),

the channel equalizer filter is given by

A(z) = I +


0.9413 −0.1 −0.3413

0 0 0

1.2413 −0.2 0.0413

 z−1 +


0.5230 −0.0259 −0.3678

0 0 0

1.1778 −0.1159 −0.4826

 z−2

+


−0.2551 0.0213 0.1276

0 0 0

0.2551 −0.0213 −0.1276

 z−3.

1Note that the Theorem 1 guarantees the existence of A(z) if its degree satisfies (5.40). How-

ever, for some special problems such as Example 1, we can find some matrices A(z) satisfying

(5.39) and their degrees violates the inequality in (5.40).
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Appendix C

Convergence Analysis of the EM

algorithm used to estimate the

equalizer filter

In this appendix, we analyze the convergence behavior of the EM algorithm. The

main objective in our analysis is to show that the EM algorithm admits a capture

set [81]. That is, if the EM algorithm is initialized with some model parameters λ(0)

in the domain of attraction of a local (or global) maximizer λ∗ of the incomplete

log-likelihood function, it is guaranteed that the EM algorithm will converge with a

high probability to λ∗. In order to prove this statement, we need to prove that the

EM algorithm can be considered as a special case of the quasi-Newton optimization

techniques.

Our derivations will be greatly simplified if we combine Ã and H0 into a bigger

matrix Ψ =
[
Ã H0

]
and define

ζm[n] ≡
[
yT[n] sTm

]T
.

It is also convenient to associate with the model parameter string λ a model pa-

rameter vector Θ, in the form

Θ =
[
w1 . . . wM vec (Σ)T vec (<(Ψ))T vec (=(Ψ))T

]T
,
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where the vec (.) operator squeezes its matrix argument into one long column vector

by concatenating all the columns vertically and in order. In this section, both λ

and Θ may be used interchangeably. In addition, we shall express the likelihood

function as L(Θ) ≡ log p(X|Θ) to simplify the notation.

Given some model parameters Θ(s), it is required to find a relationship between

the new iterate Θ(s+1) obtained by the EM algorithm and ∂ logL(Θ)
∂Θ

∣∣∣
Θ=Θ(s)

. The main

theme of our derivations is to derive expressions for the derivative of the incomplete

log-likelihood function with respect to each parameter alone and then employ the

EM update equation to find the desired relations. It should be noted that the

following constraint was imposed in our derivations of the update equations of the

model priors, w1, ..., wM ,
M∑
m=1

wm = 1.

Hence, for the model priors, we should consider

logL′(λ) = logL(λ) + β

(
M∑
m=1

wm − 1

)

instead of logL(λ). The derivative of logL′(λ) with respect to wm is given by

∂ logL′(λ)

∂wm
=

N∑
n=1

CN
(
x[n]− Ãy[n]; H0sm; Σ

)
Zn(λ)

+ β,

where

Zn(λ) =
M∑
m=1

wmCN
(
x[n]− Ãy[n]; H0sm; Σ

)
.

Using (5.50) and performing simple manipulations, we get

w(s+1)
m =

w
(s)
m

N

(
∂ logL′(λ)

∂wm

∣∣∣∣
wm=w

(s)
m

− β

)
.

It is not hard to show that β = −N in our derivation for the update equation of

w
(s+1)
m . Hence, the above equation simplifies to

w(s+1)
m = w(s)

m +
w

(s)
m

N

∂ logL′(λ)

∂wm

∣∣∣∣
wm=w

(s)
m

. (C.1)
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Regarding other parameters, it makes no difference to consider logL(λ) rather than

logL′(λ). From (5.43), the derivative of logL(λ) with respect to Σ is given by

∂ logL′(λ)

∂Σ
=
∑
m,n

Pn,m(λ)
(
−Σ−1 + Σ−1<(em[n]e†m[n])Σ−1

)
.

Substituting (5.49) in the above equation yields the following result

∂ logL′(λ)

∂Σ

∣∣∣∣
Σ=Σ(s)

=

(∑
m,n

Pn,m(λ)

)(
−Σ(s)−1 + Σ(s)−1Σ(s+1)Σ(s)−1

)
or

Σ(s+1) = Σ(s) +
1∑

m,n Pn,m(λ)
Σ(s) ∂ logL′(λ)

∂Σ

∣∣∣∣
Σ=Σ(s)

Σ(s)

Applying the vec (.) operator to both sides of the above equation, we obtain

vec
(
Σ(s+1)

)
= vec

(
Σ(s)

)
+

1∑
m,n Pn,m(λ(s)

(
Σ(s) ⊗Σ(s)

)
vec

(
∂ logL′(λ(s))

∂Σ(s)

)
,

(C.2)

where ⊗ denotes the Kronecker product between two matrices. For the derivation

of a similar relation for Ψ, it is useful to combine equations (5.47) and (5.48) into

the following equation∑
m,n

Pn,m(λ(s))
(
x[n]−Ψ(s+1)ζm[n]

)
ζ†m[n] = 0. (C.3)

In addition, it is useful to utilize Wirtinger definition for complex derivatives in our

derivations. It is straightforward to prove that

∂ logL′(λ(s))

∂Ψ(s)∗ =
∑
m,n

Pn,m(λ(s))Σ(s)−1
(
x[n]−Ψ(s)ζm[n]

)
ζ†m[n].

Again, substituting (C.3) in the above equation and doing simple re-arrangement,

we obtain the following relation

Ψ(s+1) = Ψ(s) + Σ(s)∂ logL(λ(s))

∂Ψ(s)∗

(∑
m,n

Pn,m(λ(s))ζm[n]ζ†m[n]

)−1

or

vec
(
Ψ(s+1)

)
= vec

(
Ψ(s)

)
+

(∑
m,n

Pn,m(λ(s))ζm[n]ζ†m[n]

)−1

⊗Σ(s)

 vec

(
∂ logL(λ(s))

∂Ψ(s)∗

)
(C.4)
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From (C.1), (C.2), and (C.4), it is obvious that the new model parameter iterate

Θ(s+1) can be expressed in the form

Θ(s+1) = Θ(s) + W(s) ∂ logL(Θ)

∂Θ

∣∣∣∣
Θ=Θ(s)

, (C.5)

where

W(s) =


U

(s)
w 0 0 0

0 U
(s)
Σ 0 0

0 0 <
(
U

(s)
Ψ

)
−=

(
U

(s)
Ψ

)
0 0 =

(
U

(s)
Ψ

)
<
(
U

(s)
Ψ

)


,

U(s)
w =

1

N
diag(w

(s)
1 , . . . ,w

(s)
M ),

U
(s)
Σ =

1∑
m,n Pn,m(λ(s)

(
Σ(s) ⊗Σ(s)

)
,

U
(s)
Ψ =

(∑
m,n

Pn,m(λ(s))ζm[n]ζ†m[n]

)−1

⊗Σ(s)


Note that the matrix W(s) is positive definite. Hence, the EM algorithm belongs

to the quasi-Newton optimization methods. According to [81], if Θ∗ is the only

stationary point of the incomplete log-likelihood function in the some open set

and if there exists a constant C such that the maximum singular value of W(s) is

less than C for all s, then there exists an open set S containing Θ∗ such that if

Θ(s0) ∈ S for some s0 then Θ(s) ∈ S for all s ≥ s0. Moreover, the sequence {Θ(s)}

converges uniformly to Θ∗. That is, the EM update equations admit a capture set

for the incomplete log-likelihood function. In addition, equation (C.5) can be used

to monitor the convergence of the Em algorithm.
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