
Hardness results and
approximation algorithms for

some problems on graphs

by

Ashkan Aazami

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2008

c© Ashkan Aazami 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis has two parts. In the first part, we study some graph covering
problems with a non-local covering rule that allows a “remote” node to be covered
by repeatedly applying the covering rule. In the second part, we provide some
results on the packing of Steiner trees.

In the Propagation problem we are given a graph G and the goal is to find a
minimum-sized set of nodes S that covers all of the nodes, where a node v is covered
if (1) v is in S, or (2) v has a neighbor u such that u and all of its neighbors except
v are covered. Rule (2) is called the propagation rule, and it is applied iteratively.
Throughout, we use n to denote the number of nodes in the input graph. We prove
that the path-width parameter is a lower bound for the optimal value. We show
that the Propagation problem is NP-hard in planar weighted graphs. We prove
that it is NP-hard to approximate the optimal value to within a factor of 2log1−ε n

in weighted (general) graphs.

The second problem that we study is the Power Dominating Set problem.
This problem has two covering rules. The first rule is the same as the domination
rule as in the Dominating Set problem, and the second rule is the same propaga-
tion rule as in the Propagation problem. We show that it is hard to approximate
the optimal value to within a factor of 2log1−ε n in general graphs. We design and
analyze an approximation algorithm with a performance guarantee of O(

√
n) on

planar graphs.

We formulate a common generalization of the above two problems called the
General Propagation problem. We reformulate this general problem as an ori-
entation problem, and based on this reformulation we design a dynamic program-
ming algorithm. The algorithm runs in linear time when the graph has tree-width
O(1). Motivated by applications, we introduce a restricted version of the problem
that we call the `-round General Propagation problem. We give a PTAS for
the `-round General Propagation problem on planar graphs, for small values of
`. Our dynamic programming algorithms and the PTAS can be extended to other
problems in networks with similar propagation rules. As an example we discuss the
extension of our results to the Target Set Selection problem in the threshold
model of the diffusion processes.

In the second part of the thesis, we focus on the Steiner Tree Packing
problem. In this problem, we are given a graph G and a subset of terminal nodes
R ⊆ V (G). The goal in this problem is to find a maximum cardinality set of disjoint
trees that each spans R, that is, each of the trees should contain all terminal nodes.
In the edge-disjoint version of this problem, the trees have to be edge disjoint. In the
element-disjoint version, the trees have to be node disjoint on non-terminal nodes
and edge-disjoint on edges adjacent to terminals. We show that both problems are
NP-hard when there are only 3 terminals. Our main focus is on planar instances
of these problems. We show that the edge-disjoint version of the problem is NP-
hard even in planar graphs with 3 terminals on the same face of the embedding.

iii

Next, we design an algorithm that achieves an approximation guarantee of 1
2
− 1

k
,

given a planar graph that is k element-connected on the terminals; in fact, given
such a graph the algorithm returns k/2 − 1 element-disjoint Steiner trees. Using
this algorithm we get an approximation algorithm with guarantee of (almost) 4 for
the edge-disjoint version of the problem in planar graphs. We also show that the
natural LP relaxation of the edge-disjoint Steiner Tree Packing problem has
an integrality ratio of 2− ε in planar graphs.

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my super-
visor, Professor Joseph Cheriyan, who has supported me with his encouragement,
guidance and patience. I thank Joseph for his insightful suggestions and comments
on my research, talks and especially this thesis. Also, I would like to thank the fac-
ulty and the staff of the Combinatorics and Optimization Department for providing
such an excellent academic environment.

Special thanks to my collaborators, Krishnam Raju Jampani, and Michael
Stilp. Also, I would like to thank my thesis committee, Shai Ben-David, Jochen
Könemann, David Shmoys, and Nick Wormald, for taking the time and effort to
carefully read my thesis and attend my defense.

I am indebted to my parents, Farhad Aazami and Maliheh Sobhi, for their love
and their support during these years. Last but not least, I am very grateful to
my wife, Sara; without her love, support and sacrifices this thesis would have been
impossible. This thesis is dedicated to her.

v

Contents

List of Figures ix

1 Introduction 1

1.1 Overview of results . 1

1.1.1 Propagation problems . 1

1.1.2 Steiner tree packing problems 3

1.2 Presentation overview . 3

1.3 Preliminary definitions and notations 4

I Propagation problems 5

2 The propagation problem 6

2.1 Preliminaries on Propagation . 8

2.2 Path-width: A lower bound . 12

2.3 Hardness of the propagation problem 14

2.3.1 NP-hardness in planar weighted graphs 14

2.3.2 Hardness of approximation in weighted graphs 19

2.4 Further discussion . 25

2.4.1 Parallel propagation and the diameter 25

2.4.2 A conjecture on graph product 27

3 The power dominating set problem 29

3.1 Hardness of approximation . 32

3.1.1 The reduction from MinRep to PDS 32

3.2 Approximation algorithms for planar graphs 35

vi

3.2.1 Analysis of the algorithm . 36

3.2.2 Lower bounds via disjoint strong regions 38

3.3 Extensions of PDS . 39

3.3.1 PDS in directed graphs . 40

3.3.2 `-round PDS problem . 42

3.4 Improved hardness results . 44

3.5 Conclusion . 46

4 Algorithms for the general propagation problem 48

4.1 Dynamic programming for bounded tree-width graphs 49

4.1.1 Reformulation of the General Propagation problem . . 49

4.1.2 Reformulation of the `-round General Propagation prob-
lem . 55

4.2 PTAS for `-round General Propagation problem on planar graphs
. 58

4.3 Directed PDS . 62

4.4 Target set selection . 63

4.4.1 PTAS for the `-round Target Set Selection problem . . 65

II Packing Steiner trees 68

5 Packing Steiner trees 69

5.1 Introduction . 69

5.2 Approximation algorithms for planar graphs 71

5.2.1 Element-disjoint Steiner trees 71

5.2.2 Edge-disjoint Steiner trees 75

5.3 Hardness results . 77

5.3.1 General graphs . 77

5.3.2 Planar graphs . 81

5.4 Integrality ratio for packing Steiner trees in planar graphs 82

Appendices 87

A Tree-width 88

vii

B Dynamic programming algorithms 90

B.1 The general propagation problem 90

B.2 The `-round general propagation problem 96

B.3 The directed PDS problem . 99

B.4 The target set selection problem . 100

B.5 The `-round target set selection problem 101

Bibliography 102

viii

List of Figures

2.1 Example for the Propagation problem; the nodes enclosed in boxes
are the picked nodes. 6

2.2 Caterpillar graph . 10

2.3 Modified 3× 3m grid . 11

2.4 Two different types of nodes . 15

2.5 Gadget for type-β node; the nodes of weight zero (or, one) are indi-
cated by white (or, black) circles. 15

2.6 Gadget for type-α node; the nodes of weight zero (or, one) are indi-
cated by white (or, black) circles. 17

2.7 Modifying the edge (t, s) in G . 17

2.8 MinRep instance G . 20

2.9 Hardness construction; the nodes of weight 0, 1, and 2 are indicated
by white, black, and gray circles, respectively. 21

2.10 Hardness construction . 24

2.11 The modified 7× 7 grid . 27

3.1 The cover testing gadget. 33

3.2 The hardness construction . 33

3.3 The Dij graph and its connection to the super nodes 41

3.4 The cover testing gadget Dij . 43

3.5 First copy of the cover testing gadget corresponding to constraint ψ
and satisfying assignment (a1, . . . , aD) ∈ Rψ. 45

3.6 Optimal value of PDS increases when edges are contracted. 47

4.1 An instance of the General Propagation problem 50

4.2 Applications of covering rules; picked nodes are enclosed in a square,
and covered nodes are enclosed in a circle. 51

4.3 Orientations of the 4× 4 grid given in Figure 4.1. 51

ix

4.4 A dependency cycle . 54

4.5 A valid timed-orientation of a 4× 4 grid 57

4.6 A 2-outerplanar graph . 58

4.7 Illustration for the induction step 61

4.8 Example for the Target Set Selection problem. 64

5.1 A Hypergraph and its bipartite representation 73

5.2 Gadget for high degree Steiner nodes 76

5.3 Routing the paths via the gadget 76

5.4 Gadget corresponding to a directed edge e = (u, v) ∈ E(G) 78

5.5 The constructed graph G′ with 3 terminals 78

5.6 Planar graph with 3 terminals on the outer-face 82

5.7 Gadget for degree 4 nodes . 83

5.8 Integrality ratio example for the edge-disjoint problem 84

5.9 Integrality ratio example for the element-disjoint problem 86

x

Chapter 1

Introduction

This thesis is divided into two parts. In the first part, we study some graph covering
problems with a non-local covering rule that allows a “remote” node to be covered
by repeatedly applying the covering rule. The Propagation and Power Domi-
nating Set problems are key problems in this setting. We provide approximation
algorithms and hardness results for both problems. In the second part, we study
the Steiner Tree Packing problem. Our main focus is on planar graphs, and
we provide approximation algorithms and hardness results for this problem.

Some of the results in Chapter 2 are based on discussions with Simone Severini,
Sang-il Oum, and Jim Geelen. The results in Chapter 3 and some of the results in
Chapter 4 are based on joint work with Michael Stilp that appeared in [3, 4]. Some
of the results in Chapter 4 have appeared in [1]. The results in Chapter 5 are based
on joint work with K. Raju Jampani and my supervisor [2].

1.1 Overview of results

In this section, an overview of the results presented in this thesis is discussed. The
previous literature and applications are discussed in detail in the relevant chapters.

1.1.1 Propagation problems

In the Propagation problem, we are given a graph G and the goal is to find a
minimum-sized set of nodes S that covers all of the nodes, where a node v is covered
if (1) v is in S, or (2) v has a neighbor u such that u and all of its neighbors except
v are covered. Rule (2) is called the propagation rule, and it is applied iteratively.
Throughout, we use n to denote the number of nodes in the input graph. We
provide two lower bounding techniques for this problem. The first one is based on
the notion of strong regions. The number of disjoint strong regions provides a lower
bound for the optimal value. The second lower bound that we provide is based on

1

the path-width parameter from graph minor theory. We show that the path-width
is a also a lower bound for the optimal value. We show that the Propagation
problem is NP-hard in planar weighted graphs. In general graphs, we prove a strong
hardness of approximation result, which shows that the weighted problem cannot
have a polynomial-time approximation algorithm with poly-logarithmic guarantee.

The second problem that we study is the Power Dominating Set (abbrevi-
ated as PDS) problem. This problem has two covering rules. The first rule is the
same as the domination rule as in the Dominating Set problem; the domination
rule says that a node v is covered if it is picked or one of its neighbors is picked.
The second rule is the same propagation rule as in the Propagation problem.
Guo, Niedermeier, and Raible [30] initiated comparisons between the complexity of
the Dominating Set problem and the PDS problem on special classes of graphs.
We show that it is NP-hard to approximate the optimal value of the PDS problem
to within a poly-logarithmic factor in unweighted graphs. This seems to be the
first known “separation” result between the two problems. We introduce the no-
tion of strong regions as a means of obtaining lower bounds on the optimal value.
Based on this, we develop an approximation algorithm with guarantee of (k + 1)
for graphs that have tree-width k. This gives an approximation algorithm with
guarantee of O(

√
n) on planar graphs. Moreover, we show that this is the best

guarantee that we can get using our lower bound. We extend the PDS problem to
directed graphs, and we show that even in directed acyclic graphs, PDS is hard to
approximate within the same threshold as for undirected graphs. We also introduce
another extension of the PDS problem by introducing a parameter that restricts
the number of “parallel” applications of the propagation rule. We show that even
allowing four rounds of parallel propagation makes the problem as hard as PDS.

We formulate a common generalization of the above two problems called the
General Propagation problem. We reformulate this general problem as an
orientation problem, and based on this reformulation we design a dynamic pro-
gramming algorithm to optimally solve the general problem. The algorithm runs
in linear time when the graph has tree-width O(1). Motivated by applications, we
introduce a restricted version of the problem called the `-round General Propa-
gation problem. We also reformulate this problem as an orientation problem, and
based on this reformulation we design a dynamic programming algorithm for the
restricted problem. We extend Baker’s [7] polynomial time approximation scheme
(PTAS) to obtain a PTAS for the `-round General Propagation problem on
planar graphs, for small values of `. This algorithm needs to solve instances of
the `-round General Propagation problem on graphs that have bounded tree-
width. Our dynamic programming algorithms and the PTAS for the General
Propagation problem can be extended to other problems in networks with simi-
lar propagation rules. As an example we discuss the extension of our results to the
Target Set Selection problem in the threshold model of the diffusion process.

2

1.1.2 Steiner tree packing problems

In the second part of the thesis, we focus on the Steiner Tree Packing problem
and study approximation algorithms and hardness results for planar instances of
the problem. In this problem, we are given a graph G and a subset of terminal
nodes R ⊆ V (G). The goal in this problem is to find a maximum cardinality
set of disjoint trees that each spans R; that is, each of the trees should contain
all terminal nodes. We study two versions of the problem. In the edge-disjoint
version, the Steiner trees are required to be edge-disjoint; that is, each edge of the
graph should be in at most one Steiner tree. In the element-disjoint version, the
Steiner trees are required to be element-disjoint; that is, each element (i.e., edge
or non-terminal node) should be in at most one tree. We show that the element-
disjoint version of the problem in general graphs is NP-hard when there are only
3 terminals. We show that the edge-disjoint version of the problem is NP-hard
even in planar graphs with 3 terminals on the same face of the embedding. We
prove that if we have a planar graph such that the terminal nodes are k element-
connected, then there are at least k/2 − 1 element-disjoint Steiner trees. This
provides an approximation algorithm with guarantee of (almost) 2 for the element-
disjoint version of the problem on planar graphs. Based on this algorithm, we get an
approximation algorithm with guarantee of (almost) 4 for the edge-disjoint version
of the problem on planar graphs. We show that the standard linear programming
relaxation of the edge-disjoint Steiner Tree Packing problem has an integrality
ratio of at least 2 − o(1) in planar graphs. Moreover, we modify our construction
to get a similar result for the element-disjoint version of the problem.

1.2 Presentation overview

In Chapter 2 we present our lower bounds and hardness results on the Propaga-
tion problem.

In Chapter 3 we present our approximation algorithm and hardness result on
the PDS problem. We also introduce two extensions of the PDS problem and prove
hardness results for them.

In Chapter 4 we introduce a generalization of the Propagation and PDS
problems and present a reformulation for this generalized problem in terms of an
orientation problem. We present a PTAS for the `-round version of this problem
on planar graphs for small values of the parameter `.

In Chapter 5, we study the Steiner Tree Packing problem. Our focus is on
planar graphs, and we present approximation algorithms and hardness results for
the edge-disjoint and element-disjoint versions of the problem.

3

1.3 Preliminary definitions and notations

Let G = (V,E) be an undirected graphs. A node u is called a neighbor of v if there
is an edge between u and v in G, i.e., {u, v} ∈ E. The open neighborhood of a node
v, denoted by N(v), is the set of all neighbors of a node v. The closed neighborhood
of a node v, denoted by N [v], is defined as {v} ∪N(v). The degree of a node v is
denoted by dG(v). An x-y path in G is a sequence u0 = x, u1, . . . , uk−1, uk = y of
nodes such that there is an edge in G between ui and ui+1, for i = 0, . . . , k − 1.

Let G = (V,E) be a directed graph. A node w is called an out-neighbor of
a node v if there is a directed edge from v to w in G. Similarly, w is called an
in-neighbor of v if the directed edge (w, v) is present. The number of out-neighbors
of v is called the out-degree of v and is denoted by d+

G(v), the in-degree d−G(v) is
defined similarly. The directed graphs that we consider have no loops nor parallel
edges, but may have two edges with different directions on the same two end nodes
(we call such edges antiparallel). Given a directed graph G, by the underlying
undirected graph we mean the undirected graph obtained from G by removing the
direction of edges and also removing any parallel edges that are introduced.

The graphs that we consider may have weights assigned to their nodes. We
denote the weight function by WG : V → R. The weight function W should not be
confused with the symbol w which may be used to denote a node. Given a subset
S of nodes we use the notation WG(S) to denote the sum of the weights of the nodes
in S; i.e., WG(S) =

∑
v∈S WG(v).

We may drop the subscript G in our notation when the graph G is clear from
the context.

For notation and terminology in graph theory, approximation algorithms, and
computational complexity we follow Diestel’s book on graph theory [23], Vazirani’s
book on approximation algorithms [72], and Garey and Johnson’s book [28].

4

Part I

Propagation problems

5

Chapter 2

The propagation problem

In the Propagation problem, we are given an undirected graph G = (V,E) and
the goal is to pick a minimum-size set S of nodes which can “cover” all nodes of
G. The set of nodes that can be covered by S, denoted by P∗(S), is defined in the
following way.

(R1) Start with P(S) = S and sequentially apply rule (R2),

(R2) (propagation) If a node u is in P(S), one of its neighbors v is not in P(S),
and all other neighbors of u are in P(S), then we add v to P(S).

Rule (R2) is called the propagation rule. The set P(S) changes as we repeatedly
apply the propagation rule, until every node in P(S) either has zero neighbors in
V \ P(S) or has at least two neighbors in V \ P(S). Let P∗(S) denote the final set
P(S); see Proposition 2.1.1.

v1

v2 v3

q1

q2 q3

Figure 2.1: Example for the Propagation problem; the nodes enclosed in boxes
are the picked nodes.

Consider the graph in Figure 2.1; the graph has t disjoint triangles, and three
disjoint paths such that each has exactly one node from each triangle. We claim
that the set S = {v1, v2, v3} consisting of the three nodes in the innermost triangle
covers the whole graph. To see this, first note that the propagation rule applies
to node v1 since P(S) = S contains all neighbors of v1 except the neighbor in the

6

second triangle, q1, so we add q1 to P(S). Similarly, we apply the propagation rule
to v2 to add q2 to P(S), and then we apply the propagation rule to v3 to add q3 to
P(S). Thus, we added the nodes of the second triangle to P(S) by applying the
propagation rule sequentially to the nodes of the first triangle. Next, we add the
nodes of the third triangle to P(S) by applying the propagation rule sequentially to
the nodes of the second triangle. By repeating this for each triangle, we eventually
add all the nodes of G to P(S); thus, P∗(S) = V .

Throughout this chapter, we focus on undirected graphs and we use G to denote
the input graph for the Propagation problem. We denote the size of an optimal
solution for the Propagation problem by ρ(G). We say that a node v is picked
if v is in the solution that we are considering. When a node v is inserted into
P(S) by applying rule (R2) to node u, we say that v is covered by applying the
propagation rule to u and we denote this by u → v; note that all neighbors of u
except v must be in P(S) before the propagation rule can apply. Given a weight
function, W : V (G) → R, defined on the nodes of G, we can also ask to find a set
S with minimum weight that covers all nodes of G. We denote the weight of an
optimal solution by ρ(G, W), or simply by ρ(G) when the weight function W is clear
from the context. Thus, ρ(G, W) = minS⊆V {W(S)|P∗(S) = V }.

The Propagation problem is a fundamental problem that is closely related
to a number of topics of current interest. We discuss connections to several areas:
power dominating sets, zero forcing sets, quantum networks, and influence in social
networks.

• The Power Dominating Set (PDS) problem arose in the context of elec-
tric power networks, where the aim is to monitor all of the network by placing
a minimum-size set of very expensive devices called phase measurement units;
these units have the capability of monitoring remote elements via propagation
(as in rule (R2)); see Brueni [13], Baldwin et al. [8], and Mili et al. [54]. In
the engineering literature, the problem is called the PMU placement prob-
lem. The PDS problem has two covering rules. The first rule of PDS is the
domination rule of the Dominating Set problem, and this rule is applied
only once. In more detail, if v ∈ S then we add v and all of its neighbors to
P(S). The second rule of PDS is exactly the same as rule (R2) in the Prop-
agation problem, and this rule is applied sequentially. For more discussion
on the PDS problem refer to Chapter 3.

• The authors of [29] formulated a problem called Zero Forcing Set which
is the same as the Propagation problem. They formulated this problem in
order to provide a lower bound for the minimum rank of a graph G, where
the minimum rank of G is defined to be the smallest possible rank over all
symmetric real matrices whose ijth entry is non-zero if and only if {i, j} is an
edge in G. Let m(G) denote this minimum rank. The authors showed that
|V (G)| − ρ(G) ≤ m(G). Using this inequality, they proved tight bounds on
ρ(G) for some classes of graphs such as the d-dimensional cube, the Cartesian

7

product of two paths, etc. Independently of [29], Alon [6] proved tight bounds
on ρ(G) for d-dimensional cubes and some classes of Cayley graphs using
similar ideas as in [29].

• Researchers in Quantum Information Processing have recently focused on
theoretical issues in the control of quantum networks, for example, a network
of quantum particles of spin one half. See [15], where the context is described
from the perspective of Quantum Physics. The graph theoretical model for
the propagation problem was introduced in [68], where some results on special
classes of graphs have been presented.

• Social networks are a topic of intense study since they are useful in modeling
many phenomena in sociology, economics, epidemiology and engineering. In
particular, current applied and theoretical research has focused on diffusion
processes (spread of influence) and their characteristics [40, 41, 56, 61, 16, 55,
62, 10, 64, 65, 52]. Research in theory has led to the introduction of models
such as the threshold model [40, 41]. These models are closely related to our
propagation model; although neither model is a special case of the other one,
some of the fundamental issues underlying hardness of approximation are the
same for both settings (see [4, 16]).

The main results in this chapter are as follows:

• In section 2.2, we present a lower bound on ρ(G) via the path-width param-
eter.

• In Section 2.3, we focus on the complexity of computing ρ(G) in different
classes of graphs. We prove that the Propagation problem is NP-hard in
planar graphs with nodes of weight zero or one. Next, we prove that it is NP-
hard to approximate ρ(G) within a factor of 2log1−ε n in weighted undirected
graphs. This hardness result rules out algorithms with poly-logarithmic ap-
proximation guarantees.

Moreover, in Chapter 4, we present a linear time dynamic programming algorithm
to compute ρ(G) for weighted graphs of bounded tree-width.

2.1 Preliminaries on Propagation

This section presents some simple and useful observations on the Propagation
problem.

Proposition 2.1.1 For any graph G = (V,E) and a set S ⊆ V , any sequence of
applications of the propagation rule results in the same set P∗(S).

8

Proof: Starting from P(S) = S, consider two different sequences of application of
the propagation rule, and let P ′(S) and P ′′(S) denote the final set P(S) for the
first and the second sequence, respectively. Suppose that P ′(S) 6= P ′′(S). Focus
on an “earliest node” v that is in exactly one of P ′(S) or P ′′(S); in other words, we
order the nodes in P ′(S) and P ′′(S) according to the order of covering, and take
v to be the first node of either P ′(S) or P ′′(S) that is in exactly one of P ′(S) or
P ′′(S). We get a contradiction since the nodes which come before v in one sequence
are also in the other sequence; hence, if v can be covered by an application of the
propagation rule for one sequence, then v can be covered in the other sequence too.
�

Now, we reformulate the Propagation problem as an orientation problem; for
more discussion on this reformulation refer to Section 4.1. An orientation of an
undirected graph G = (V,E) is obtained by assigning an orientation to some (but

possibly not all) edges of G. We denote an orientation of G by Ô = (V,Ed, Eu),
where Ed is the set of oriented edges and Eu is the set of unoriented edges. In-
formally speaking, in our reformulation, the oriented edges denote the way the
propagation rule applies.

Definition 2.1.2 A valid orientation Ô = (V,Ed, Eu) of an undirected graph G =
(V,E) is an orientation of G with the following properties:

1. Each vertex of the graph Gd = (V,Ed) has in-degree and out-degree of at most
1; ∀v ∈ G : d−Gd(v), d+

Gd
(v) ≤ 1.

2. G has no dependency cycle. A dependency cycle C is a cycle in G such that
all oriented edges in C are in the same direction and it has no two consecutive
unoriented edges.

A node with in-degree 0 in Gd = (V,Ed) is called a source of Ô.

The following theorem is a special case of Theorem 4.1.4 that is proved in Section
4.1.

Theorem 2.1.3 Any graph G = (V,E) has a valid orientation with S as the set
of sources if and only if P∗(S) = V .

Consider a valid orientation Ô = (V,Ed, Eu) of a graph G = (V,E). Observe that
the oriented subgraph Gd = (V,Ed) is a disjoint union of directed paths; note that

there is a directed path corresponding to each source node in Ô. Thus, by applying
the above theorem to trees, we get the following corollary.

Corollary 2.1.4 For any tree T ,

ρ(T) = minimum number of node-disjoint paths that covers V (T)

9

Figure 2.2: Caterpillar graph

We show that ρ(G) is not a monotone function under edge deletion and edge
contraction.

Proposition 2.1.5 Removing edges in a graph G may increase or decrease ρ(G).

Proof: Consider the wheel graph, Wm, on m+ 1 nodes; Wm is obtained by adding
a node (called the center node) to a cycle on m nodes and connecting the center
node to all nodes on the cycle. If we pick the center node and two consecutive nodes
from the cycle, then we can cover all nodes, so ρ(Wm) ≤ 3. Now, delete all edges of
the cycle to get a star, Sm, on m+ 1 nodes. It can be seen that ρ(Sm) ≥ m− 1. To
see this, observe that if at least two leaf nodes are not picked, then the propagation
rule fails to apply to the center node, so the leaf nodes that are not picked will not
be covered. This shows that deleting edges may increase ρ(G).

The complete graph, Km, has ρ(Km) = m − 1. By removing some edges from
Km we can get the path, Pm, on m nodes which has ρ(Pm) = 1. Hence, deleting
edges may decrease ρ(G). �

Proposition 2.1.6 Contracting edges in a graph G may increase or decrease ρ(G).

Proof: Consider a caterpillar graph, Lm, on 3m nodes; Lm is obtained from a path
P on m nodes by attaching two isolated nodes to each node on P (see Figure 2.2).
Observe that ρ(Lm) ≤ m because we get a solution of size m by picking one of the
two leaf neighbors of each node of P (the boxed nodes in Figure 2.2 form one such
solution). By contracting all edges of the path P , we get a star S2m, which has
ρ(S2m) ≥ 2m− 1. Thus, contracting edges may increase ρ(G).

Now contract all leaf edges of Lm to get a path Pm on m nodes, which has
ρ(Pm) = 1. Hence, contracting edges may decrease ρ(G). �

Let G′ be the graph that is obtained by subdividing all edges of a caterpillar
graph Lm. We claim that G′ has ρ(G′) = 2m − 1. Thus, subdividing edges may
increase ρ(G). Now, we show that subdividing an edge never decreases ρ(G).

Proposition 2.1.7 Let G′ be the graph that is obtained by subdividing an edge of
a graph G. Then we have ρ(G) ≤ ρ(G′).

Proof: Let G′ be obtained from G by subdividing an edge e = {u, v}, and let x
be the subdividing node in G′. Assume that S ′ is an optimal solution for G′; that

10

Figure 2.3: Modified 3× 3m grid

is, ρ(G′) = |S ′| and P∗(S ′) = V (G′). We claim that if x 6∈ S ′, then S = S ′ is a
solution for G. Otherwise, removing x from S ′ and adding either u or v (picking
the one which is covered later) to S ′ we get a solution for G. Proving this claim
shows that ρ(G) ≤ |S| ≤ |S ′| = ρ(G′). Consider the following two cases:

1. Suppose that x 6∈ S ′. Assume that x is covered in G′ by applying the propaga-
tion rule to u (i.e., u→ x). By picking S ′ all applications of the propagation
rule occurring before u → x in G′ can also occur in G. If v is currently not
covered in G, then the propagation u→ v occurs and v is covered. Next, all
other propagations as in G′ can occur in G. Thus, S ′ is a solution to G.

2. Assume that x ∈ S ′, and u is covered before v in G′. Then S = (S ′\{x})∪{v}
is a solution to G. To see this, consider the sequence of propagations xi → yi
that occur in G′ before and including the step when u is covered; clearly,
the same sequence of propagations can occur in G. Also, assuming that v is
picked in G, we can “replicate” in G the sequence of propagations that occur
in G′ after u is covered.

This completes the proof, and shows that subdividing an edge can never decrease
ρ(G). �

Let G = (V,E) be an unweighted graph. A set of nodes R ⊆ V is called a
strong region if any node not in R has either no neighbor in R or has at least two
neighbors in R; that is, ∀v 6∈ R : |R ∩N(v)| 6= 1. (A similar notion is defined in
Chapter 3 for the PDS problem.) Any solution needs to pick at least one node from
any strong region R. To see this, observe that P∗(V \ R) = V \ R; that is, even
if we pick all nodes in V \ R we cannot cover any other nodes. A straightforward
application of the pigeonhole principle proves the following result.

Proposition 2.1.8 The optimal value ρ(G) is at least the maximum number of
node-disjoint strong regions of G.

Now we show an application of the above proposition. Let G be a 3×3m grid. The
three nodes in the first column of G covers all nodes, so we have ρ(G) ≤ 3. We will
show in Section 2.2 that this is an optimal solution (i.e., ρ(G) = 3). Consider the
graph G′ that is obtained from G by subdividing all the column edges (see Figure

11

2.3). The gray regions shown in the figure indicate a set of m node-disjoint strong
regions; thus, by Proposition 2.1.8 we have ρ(G′) ≥ m.

Let G and H be two undirected graphs. It is shown in [29] that the Cartesian
product of G and H has optimal value of at most min(ρ(G) · |V (H)| , ρ(H) · |V (G)|).

2.2 Path-width: A lower bound

In this section we prove that the path-width parameter is a lower bound for the
optimal value of the Propagation problem on unweighted graphs. A straightfor-
ward application provides us with a tight bound for ρ(G) on grids, and also shows
that ρ(G) is linear in |V (G)| for node-expander graphs. We use standard terms and
definitions pertaining to tree-width and path-width, see Appendix A or Diestel’s
book (Chapter 12 in [23]).

Theorem 2.2.1 Let G be a graph. Then we have pw(G) ≤ ρ(G).

Proof: Let S be a solution to the Propagation problem on G; that is, P∗(S) =
V (G). By applying rule (R1) the set S is inserted into P(S). Assume that the
remaining nodes are inserted in P(S) in the order v1, v2, · · · , vm by applying the
propagation rule sequentially on the nodes u1, u2, · · · , um; that is, the propagation
rule is applied in the sequence u1 → v1, u2 → v2, · · · , ui → vi, · · · , um → vm.
Based on this sequence, we construct a path decomposition X1, X2, . . . of G of
width |S| by defining the bags (or node sets) as follows: X1 = S ∪ {v1}, X2 =
(X1 \ {u1}) ∪ {v2} , · · · , Xi+1 = (Xi \ {ui}) ∪ {vi+1} , · · · . We orient the edges in
the same way that the propagation rule applies. If v is covered by applying the
propagation rule to u (i.e., u → v), then we orient the edge {u, v} from u to v.
Otherwise, we leave the edge unoriented. Note that whenever we remove a node
ui, say u = ui, from a bag Xi to get the next bag Xi+1, then (in the setting of
the propagation problem) u and all its neighbors have been already covered; that
is, the closed neighborhood of u is contained in P(S). We claim that the sequence
X1, X2, · · · is a path decomposition for G.

First we show that condition (T1) of the path decomposition is satisfied. We
need to show that both end nodes of each edge are contained in some bag Xi.
Consider an edge e = {u, v} ∈ E(G). The edge e is either oriented ((u, v)) or
unoriented ({u, v}). There are three cases to consider.

1. If e is oriented then this edge is contained in the bag Xi corresponding to the
step where v is covered (added to Xi); note that u and v are both in Xi.

2. If u and v are both sources of the valid orientation, then both are in X1.

3. Otherwise, assume that e is unoriented and u is covered at step i and v is
covered at a later step j, j > i. This implies that v is added toXj at step j and

12

u is added to Xi at step i. Also note that u is not removed before step (j+1),
since u can be removed after it propagates and covers a neighbor and this
propagation cannot happen before v is covered (by rule (R2)); as mentioned
above we only remove u when all neighbors of u are covered. Therefore, u
and v are both present in the same set Xj.

Hence, the given decomposition X1, X2, · · · , Xm satisfies property (T1) of the path
decomposition.

Let 1 ≤ i < j < k ≤ m. It can be checked that Xi = (S ∪ {v1, · · · , vi}) \
{u1, · · · , ui−1} and Xi∩Xk = (S ∪{v1, · · · , vi})\{u1, · · · , uk−1}. This implies that
Xi ∩Xk ⊆ Xj and shows that property (T2) also holds. Hence, X = (X1, · · · , Xm)
is a path decomposition with width equal to |X1| − 1 = |S ∪ {v}| − 1 = |S|, so the
path-width of G is at most ρ(G). �

Unfortunately, the lower bound is weak, in general. Consider a caterpillar graph
Lm shown in Figure 2.2. The path-width of Lm is O(1). We claim that ρ(Lm) = m.
Note that the two leaf nodes in each column form a strong region, so there are m
node-disjoint strong regions; the strong regions are indicated by the gray regions
in Figure 2.2. Hence, by Proposition 2.1.8 we have ρ(Lm) ≥ m. A solution of size
m is indicated by the boxed nodes in the figure; thus, ρ(G) = m. This shows that
the path-width parameter may be a factor of Θ(|V |) smaller than ρ(G). Figure
2.3 gives another graph to show this fact. The graph G is obtained from a 3× 3m
grid by subdividing all column edges. In Section 2.1 after Proposition 2.1.8 we
showed that ρ(G) ≥ m. We claim that the path-width of G is O(1), in fact, we
have pw(G) ≤ 9. Let X = (X1, X2, . . .) be a sequence of node subsets, where Xi

contains all nodes from the ith and the (i + 1)th columns of G; thus, |Xi| = 10.
The sequence X is a path decomposition of width |Xi| − 1 = 9; thus, pw(G) ≤ 9.

Nevertheless, Theorem 2.2.1 allows us to get good bounds on ρ(G) in some
classes of graphs.

Corollary 2.2.2 Let G be an n1 × n2 grid. Then we have ρ(G) = min {n1, n2}.

Proof: Assume that n1 ≤ n2. It is easy to check that all nodes in the first column
propagate and cover all nodes in G, so ρ(G) ≤ n1. It is known that the tree-
width of an n1 × n2 grid is equal to min {n1, n2} [66], and the path-width of any
graph is ≥ its tree-width (this follows directly from the definitions, since every
path decomposition is a special tree decomposition). Therefore, Theorem 2.2.1
shows that ρ(G) ≥ n1. �

Using the path-width parameter we can show that for expander graphs, ρ(G) is
linear in the number of nodes. The node-expansion of a graph G, denoted by αG,
is defined as

αG = min
1≤|S|≤n/2

|N(S) \ S|
|S|

13

Proposition 2.2.3 Let G = (V,E) be a graph with node-expansion α = αG then
we have:

ρ(G) ≥ pw(G) ≥ αn− 2

2(α + 1)
.

Proof: Consider any path decomposition X = (X1, X2, · · · , X`) of width pw(G).
There is a bag Xi such that U = (

⋃i−1
j=1Xj) \ Xi has size at least n

2
− pw(G).

Removing the bag Xi separates the nodes in the first i−1 bags from the remaining
nodes in G. Therefore, all neighbors of U (not in set U) are in Xi, so the node

expansion of U is at most pw(G)+1
n/2−pw(G)

. Therefore, we get ρ(G) ≥ pw(G) ≥ αn−2
2(α+1)

. �

2.3 Hardness of the propagation problem

In this section we provide our hardness results for the weighted Propagation
problem. First, in Subsection 2.3.1 we prove that the problem is NP-hard on planar
graphs. Next, in Subsection 2.3.2 we prove that the Propagation problem is NP-
hard to approximate within ratio of 2log1−ε n.

2.3.1 NP-hardness in planar weighted graphs

In this subsection we show that the Propagation problem is NP-hard in planar
graphs by a reduction from the Directed Hamiltonian Cycle problem in pla-
nar graphs. It has been proved [63] that the Directed Hamiltonian Cycle
problem is NP-hard on planar digraphs of degree 3, that is the sum of the in-degree
and out-degree for each node is 3.

Theorem 2.3.1 The Propagation problem is NP-hard in planar weighted graphs
even when the weights of nodes are either zero or one.

Theorem 2.3.2 ([63]) The Directed Hamiltonian Cycle problem is NP-
complete even in planar directed graphs where each node has either in-degree 1
and out-degree 2 or in-degree 2 and out-degree 1.

Let G be an instance of the Directed Hamiltonian Cycle problem with the
degree conditions as in Theorem 2.3.2. A node with in-degree 1 and out-degree 2
is called a type-α node, and a node with in-degree 2 and out-degree 1 is called a
type-β node (see Figure 2.4). Let nα denote the number of nodes of type-α in G.
Starting from G, we will construct an instance of the Propagation problem on
a graph H such that G has a Hamiltonian cycle if and only if ρ(H) = nα + 1; in
more detail, if G has no Hamiltonian cycle, then we will show that ρ(H) > nα + 1,
otherwise, we will construct a solution S for the Propagation problem on H with
W(S) = nα + 1 (see Lemma 2.3.4).

14

v

u

w

e

f

(a) Type-α node

v u

e

(b) Type-β node

Figure 2.4: Two different types of nodes

Gadgets: We have two different gadgets corresponding to the two types of nodes;
see Figures 2.5 and 2.6(a). The nodes of each gadget are partitioned into internal
nodes and external nodes. The external nodes of the gadgets are identified with the
nodes of G. The internal nodes are local to the gadget, and they are only connected
to the external nodes or to other internal nodes of the gadget. In our construction,
we replace the out-going edges of each node v by the gadget corresponding to the
type of v.

First, consider the type-β gadget. Let (v, u) be the unique out-going edge of a
type-β node v in the graph G. The gadget has a path of length 3 from v to u, and
also an edge from v to u (see Figure 2.5). The neighbor of v in the path, v0, has a
weight 0 and all other nodes have weight 1. The node v0 has weight 0, so we may
assume w.l.o.g. that v0 is in our solution. Suppose that node v is covered; then we
can apply the propagation rule to v0 to cover v1 and then to node v1 to cover u.
Now assume u is covered, but v is not covered yet. Then u and the internal node
v0 both have two non-covered neighbors v1 and v. Hence, no propagation rule can
be applied to either of them to cover v. This gadget models directed propagation
in undirected graphs; u can be covered after v is covered. This gadget is also used
in the construction of the type-α gadget.

uv v0 v1

Figure 2.5: Gadget for type-β node; the nodes of weight zero (or, one) are indicated
by white (or, black) circles.

Let v be a type-α node in G, and let e = (v, u) and f = (v, w) be the two out-
going edges from v (see Figure 2.4(a)). The gadget for the type-α node is given in
Figure 2.6(a). There are four directed edges (xe, ye), (xf , yf), (ze, u), (zf , w) in this
gadget; we replace each of them by a type-β gadget. The complete gadget for the
type-α node is shown in Figure 2.6(b). All nodes in this gadget have weight 1 expect
v0 and the other four copies of v0 (inside the four type-β gadgets corresponding to
the four directed edges) which have weight 0. In the following discussion, we assume
that all of the five nodes of weight 0 are picked and will not mention this explicitly.
This gadget has some useful properties:

15

1. At least one of xe, xf or a copy of v1 from the gadgets (xe, ye), (xf , yf) should
be picked. Suppose all nodes are picked except xe, xf and the copies of v1 in
gadgets (xe, ye) and (xf , yf). Then the propagation rule fails to apply to node
v0 since it has two non-covered nodes (namely, xe, xf). Similarly, it can be
seen that the propagation rule fails to apply to the other nodes of the gadget
to cover xe, xf . Note that picking xe covers the same nodes as picking the
copy of v1 in the gadget (xe, ye), similarly xf covers the same nodes as the
copy of v1 in the gadget (xf , yf). Hence, we may assume that we always pick
a node from xe or xf , and never pick a copy of v1.

2. Suppose that v is picked, and one of xe or xf , say xe, is picked. Then by
successive applications of the propagation rule we can cover u. (In detail:
First ye is covered through the β-gadget. Next, the propagation rule can be
applied to ye to cover ze. Finally, u will be covered through the β-gadget.)
On the other hand, if neither xe nor xf is picked and v is covered, then the
propagation rule fails to apply to any node of this gadget to cover u.

3. Suppose v is covered, and u,w are not covered. We claim that to cover both
u and w through this gadget we need to pick at least 2 nodes of weight 1.
From the previous property we know that at least one of xe or xf , say xe, is
picked. By picking xe all nodes in the upper part of the type-α gadget are
covered. The only propagation rule that may apply is to the node v to cover
yf , and this can occur only if all other neighbors of v outside of this gadget
are covered. Now, we can check that all covered nodes have at least two non-
covered neighbors; for example, yf has 2 non-covered neighbors in the gadget
(xf , yf) (see Figure 2.6(b)). Hence, no other propagation can occur. This
shows that we need to pick at least one more node of weight 1 to be able to
cover w.

4. Suppose u and w are covered, and only one of xe, xf is picked, say xe. Then
we claim that the only propagation that can occur is through the β-gadget
(xe, ye), and this propagation covers ye. It can be seen that no other propa-
gation rule can be applied to any internal node to cover v.

5. Suppose all three nodes v, u, w are covered, and at least one of xe, xf is picked,
say xe. Then all of the remaining nodes in this gadget will be covered. The
propagation occurs in the following order. First, by applying the propagation
rule to v0 we cover xf (the only non-covered neighbor of x0). Next, the
node yf is covered through the β-gadget at (xf , yf). Next, by applying the
propagation rule to yf we cover zf . Finally, w is covered through the β-gadget
at (zf , w).

The reduction: Now we construct a planar instance, H, of the Propagation
problem as follows.

1. Start from a copy of G.

16

w

u

xf

xe

ye ze

vo

yf zf

v

(a)

w

u

xf

xe

ye ze

v0

yf zf

v

v2
0

v4
0

v1
0

v3
0

(b) Complete gadget

Figure 2.6: Gadget for type-α node; the nodes of weight zero (or, one) are indicated
by white (or, black) circles.

2. Let s be an arbitrary node of type-α, and let (t, s) be the incoming edge to
s; note that this step applies to only one directed edge.

(a) Make two new nodes s′, t′. Remove the edge (t, s) and add (t, t′), (s′, s).
Let G′ be the obtained graph. (See Figure 2.7 for an illustration.) Note
that G′ has a Hamiltonian path from s′ to t′ if and only if G has a
Hamiltonian cycle.

st ss′t t′⇒

G G′

Figure 2.7: Modifying the edge (t, s) in G

(b) Replace (s′, s) by a type-β gadget.

3. For each type-β node v do the following:

(a) Let e = (v, u) be the unique out-going edge at v. Remove e = (v, u)
from G′.

(b) Add a gadget as shown in Figure 2.5 between u and v. The neighbor of
v labeled by v0 has weight 0 and the other nodes have weight 1.

4. For each type-α node v (including the node s from step 2 above) do the
following:

(a) Remove the out-going edges e = (v, u), f = (v, w) from v.

17

(b) Add a gadget on seven new nodes xe, ye, ze, v0, xf , yf , zf and connect
them as shown in Figure 2.6(b) to the nodes v, u, w. The nodes in the
gadget are disjoint from the remaining nodes in the graph.

5. Let H be the obtained graph.

The first property of the type-α gadgets proves the following result.

Lemma 2.3.3 In each solution to the Propagation problem on H, we need to
have at least one internal node of weight 1 from each type-α gadget.

Hence, every solution needs to have at least nα nodes (of weight 1); by the first
property of the type-α gadgets this node is either xe or xf . It can be checked that
after picking these nodes no propagation can start, so ρ(H) ≥ nα+1. The following
lemma completes the proof of Theorem 2.3.1.

Lemma 2.3.4 The graph G has a Hamiltonian cycle if and only if ρ(H) = nα + 1.

Proof: Note that the graph G′ has a Hamiltonian path from s′ to t′ if and only
if G has a Hamiltonian cycle, so it is enough to prove that G′ has a Hamiltonian
path from s′ to t′ if and only if ρ(H) = nα + 1.

Assume G′ has a Hamiltonian path P from s′ to t′. We define a solution S as
follows. The set S contains the node s′ and all nodes of weight 0 (from all gadgets).
From each gadget corresponding to a type-α node v the set S contains the node xe,
where e is the out-going edge from v in the Hamiltonian path P . We show that by
picking the nodes of S, all nodes of H can be covered.

Let v1 = s′, v2 = s, . . . , vj, . . . , vn = t′ be the order of nodes in the Hamiltonian
path P . First, we show that the nodes of G′ are covered in H in the order that
they appear in P ; the proof is by an induction on the index of a node in P . The
base case j = 1 is trivial, since v1 = s′ is in S. Assume the claim is correct for
j ≥ 1, i.e., nodes v1, . . . , vj are covered. Consider the node vj+1 and assume that vj
is a node of type-α; note that e = (vj, vj+1) is a directed edge in P . By the second
property of the type-α gadgets, the propagation in the gadget corresponding to the
node vj starts from the node xe and finally covers vj+1; note that xe ∈ S. The
case when vj is a node of type-β is similar. This completes the induction step, and
shows that all nodes of G′ are covered in H. After all the original nodes from G′

are covered, the remaining internal nodes in all gadgets will be covered; this follows
from the last property of the type-α gadgets. This shows that S is a solution;
hence, ρ(H) ≤ W(S) ≤ nα + 1.

Assume H has a solution S of weight nα + 1. Note that S contains all nodes
of weight 0 (i.e., all v0’s). Also S has one of the nodes xe, xf from each type-α
gadget. We claim that the extra node of S should be from the type-β gadget at
(s′, s). Consider the gadget at (s′, s), and note that there is no other gadget that
has s′ as an external node. By property of type-β gadget the node s′ cannot be

18

covered unless s′ or v1 is picked. Hence, we may assume that s′ is picked; that is,
s′ ∈ S. Note that since S has weight nα+1, we cannot have more than one internal
node of weight 1 from each type-α gadget. Thus, s′ is the only node from G′ in the
set S. Therefore, the node s′ is the first node from G′ that is covered in H. Next,
the node s is covered through the type-β gadget installed between s′ and s. In the
following discussion we only focus on the original nodes from G′ in the graph H.
We consider the order in which nodes of G′ are covered in H, and we claim that this
order defines a Hamiltonian path P in G′. Let v1 = s′, v2 = s, v3, · · · be the order in
which nodes of G′ are covered. We prove by induction that the order v1, v2, · · · , vj
(for each j ≥ 1) defines a directed path in G′, and also vj+1 is covered after vj
(either through a type-α gadget or a type-β gadget). The base case j = 1 is trivial.
Assume the claim is correct for j ≥ 1. Consider the node vj+1. We prove that vj+1

is covered through a gadget that we used to replace the out-going edges at vj in
the construction of H. Assume that vj+1 is covered through a gadget with external
nodes vi and vj+1, for some i less than j. We claim that (vi, vj+1) is a directed edge
in G; this follows from the properties of the type-β gadget and the 4th property
of the type-α gadget. By the induction hypothesis, we know that (vi, vi+1) is a
directed edge in G. Hence, vi is a type-α node, and vi+1, vj+1 are covered through
the gadget with the external nodes vi, vi+1, vj+1. This is not possible, since, by the
3rd property of type-α gadgets, it requires to pick at least two nodes of weight
1. Therefore, vj+1 can only be covered through the gadget containing the external
nodes vj, vj+1. This gadget is either a type-β gadget or a type-α gadget; both cases
imply that (vj, vj+1) is a directed edge in G. This completes the induction step and
shows that v1 = s′, v2, . . . , vj, vj+1, . . . , vn = t′ is a directed Hamiltonian path in G′.
�

2.3.2 Hardness of approximation in weighted graphs

In this subsection we prove that it is NP-hard to approximate the weighted Prop-
agation problem within a factor of 2log1−ε n. For expository reasons, we first prove
Theorem 2.3.5 that gives a hardness result with a weaker complexity assumption
of NP 6⊆ DTIME(npolylog(n)). Our main result in this section, Theorem 2.3.8, does
not depend on Theorem 2.3.5, but the proof of the main result is an easy extension
of the proof of the weaker result. Experts in the area may prefer to skip Theorem
2.3.5 and its proof.

Theorem 2.3.5 The weighted Propagation problem cannot be approximated within
ratio 2log1−ε n, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

In the MinRep [44] problem we are given a bipartite graph G = (A,B,E) with
a partition of A and B into subsets. Let qA and qB denote the number of sets in
the partition of A and B, respectively. Let A = A1 ∪ A2 ∪ · · · ∪ AqA denote the
partition of A, and let B = B1 ∪ B2 ∪ · · · ∪ BqB denote the partition of B. This
partition naturally defines a super bipartite graph H = (A,B, E). The super nodes

19

of H are A1, A2, . . . , AqA and B1, B2, . . . , BqB . There is a super edge between super
nodes Ai and Bj if there exists some a ∈ Ai and b ∈ Bj such that ab is an edge in
G. We say that a super edge AiBj is covered by nodes a, b if a ∈ Ai, b ∈ Bj, and
there is an edge between a and b in G. Given S ⊆ A ∪ B we say that the super
edge AiBj is covered by S if there exists a, b ∈ S that covers AiBj. The goal in
the MinRep problem is to pick a minimum-size set of nodes, A′ ∪ B′ ⊆ V (G), to
cover all super edges in H. Note that we need a pair of nodes to cover a super edge,
and the pair should induce an edge between the two super nodes of the super edge;
moreover, a node in A′ ∪ B′ may be useful for covering more than one super edge.
The following Theorem is from [44].

ai3ai2ai1

bj1

e1

e4

e2

e3

bj2

A1 A2

B1 B2

Figure 2.8: MinRep instance G

Theorem 2.3.6 (Theorem 5.4 in [44]) The MinRep problem cannot be approx-
imated within ratio 2log1−εn, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

The reduction:

1. Start from a complete bipartite graph with parts Z and Y , where |Z| =
|A ∪B|+1 and |Y | = 2 |E|. Corresponding to each node a ∈ A∪B we have a
node â of weight 1 in Z-part, and corresponding to each super edge AiBj ∈ E
we have two nodes in the Y -part labeled by d′(Ai, Bj) and d′′(Ai, Bj) each of
weight 2. Also there is an extra node v0 of weight 0 in the Z-part.

2. In the next step we “install” several copies of the gadget shown in Figure
2.9(a). The nodes labeled by x and y are called the internal nodes, and the
rest of nodes are called the external nodes. In all the copies of the gadget,
the node x has weight 0, the nodes â and b̂ have weight 1, and the rest of
nodes have weight 2.

3. For each edge {a, b} of E(G) do the following:

20

b̂

d′(Ai, Bj)

â

x

y

(a) cover testing gadget

d′(Ai, Bj)

â b̂v0
Z:

Y :

(b) Structure of the graph H

Figure 2.9: Hardness construction; the nodes of weight 0, 1, and 2 are indicated by
white, black, and gray circles, respectively.

(a) Suppose that a ∈ Ai and b ∈ Bj; note that AiBj is a super edge in H.

(b) Make a new copy of the gadget in Figure 2.9(a) on nodes â, b̂, and
d′(Ai, Bj), and make another copy of the gadget on nodes â, b̂, and
d′′(Ai, Bj).

4. Add edges between the nodes in the Z-part such that the graph induced on
the Z-part is a path starting from the node v0; the order of other nodes in
this path is arbitrary and not important.

5. Let H be the obtained graph (see Figure 2.9(b) for an illustration).

Analysis: We may assume that all nodes of weight 0 are picked in any solution.
We may not mention this explicitly in the rest of the proof. Consider the gadget
shown in Figure 2.9(a) and discussed in step (2) above. By picking the nodes â, b̂
all nodes in this gadget can be covered; in detail, the propagation rule is applied in
the sequence x→ y, y → d′(Ai, Bj). We may assume no node of weight 2 is picked
from this gadget in any optimal solution, since we can replace it by the nodes â,
b̂ and get a solution of no heavier weight. This is an important property, and it
implies that there is an optimal solution with nodes from the Z-part. The following
lemma completes the proof of Theorem 2.3.5.

Lemma 2.3.7 Assume that the MinRep instance H has an optimal solution of
size W ∗. Then W ∗ − 1 ≤ ρ(H) ≤ W ∗.

Proof: First, we prove that ρ(H) ≤ W ∗. Assume that A∗ ∪ B∗ is a solution for
the MinRep instance G. We claim that by picking the nodes of {â|a ∈ A∗ ∪B∗}
and all nodes of weight 0 we get a solution to H. To see this consider a super edge
AiBj of H. The set A∗ ∪B∗ covers all super edges in H. Hence, there exists a pair
of nodes a ∈ A∗ ∩ Ai, b ∈ B∗ ∩ Bj that induces an edge in G. Consider the cover

testing gadget corresponding to the edge {a, b} which has external nodes â, b̂, and
d′(Ai, Bj); this is the first copy of the cover testing gadget corresponding to the

21

edge {a, b}. All nodes in this gadget are covered; in detail, the propagation rule
is applied in the sequence x → y, y → d′(Ai, Bj). Similarly the node d′′(Ai, Bj) is
covered through the second gadget corresponding to the edge {a, b}. Hence, both
nodes corresponding to the super edge AiBj are covered. This is true for all super
edges, so all nodes in Y are covered. Now, starting from v0 we can cover all nodes
in Z. Note that the graph induced on the Z-part is a path and all neighbors of
nodes in Z are either picked (weight 0 nodes) or covered (nodes in Y). Finally all of
the remaining non-covered nodes (of weight 2) inside the gadgets are covered; note
that at this point all nodes in the Z-part are covered. This shows that we have
a solution of weight |A∗ ∪B∗| to the instance H of the Propagation problem.
Therefore, we have ρ(H) ≤ W ∗.

Now, we prove that W ∗ − 1 ≤ ρ(H). Let S∗ be an optimal solution to the
Propagation problem on H of weight ρ(H), and assume for the sake of the
contradiction that ρ(H) ≤ W ∗− 2. We may assume that S∗ has no node of weight
greater than 1. To see this note that if a node of weight 2 from any copy of the cover
testing gadget is picked, then we may replace it by the two external nodes of the
gadget in the Z-part. Note that taking these two external nodes covers all nodes
in this gadget independently of the other picked nodes in S∗. This replacement
gives a solution of no heavier weight than S∗. We may also assume that all nodes
of weight 0, including v0, are in S∗. A cover testing gadget corresponding to the
edge {a, b} is called a good gadget if both â, b̂ are in S∗, otherwise it is called a
bad gadget. We claim that by taking S∗ only the nodes of the good gadgets are
covered, and no propagation can occur in any bad gadgets. This is a contradiction,
since S∗ is a solution. Therefore, proving this claim shows that W ∗ − 1 ≤ ρ(H).

Let S denotes the set of nodes of weight 1 in S∗; that is, S = {a ∈ A ∪B|â ∈ S∗}.
Note that

∣∣S∣∣ = W(S∗) ≤ W ∗ − 2, so S is not a solution to the MinRep instance
H. By taking S∗, it is obvious that all nodes of the good gadgets are covered, so
we only need to show that no more propagation can be applied. Note that internal
nodes in the good gadgets have no non-covered neighbors, and the nodes labeled
by y in the bad gadgets are not covered. Hence, the propagation rule may apply
only to the following three type of nodes: 1) nodes in the Z-part, 2) nodes in the
Y -part, 3) internal nodes of weight 0 in the bad gadgets.

• Let v be a node in the Z-part. Note that S is not a solution to the MinRep
instance, so there is at least one super edge AiBj that is not covered by S.
Hence, the two nodes d′(Ai, Bj), d

′′(Ai, Bj) corresponding to this super edge
are not covered yet. Therefore, the propagation rule cannot be applied to v,
since it has two non-covered neighbors in the Y -part; recall that in H there
is a complete bipartite graph between the Y -part and the Z-part.

• Let v be a node in the Y -part. Note that
∣∣S∣∣ = ρ(H) ≤ W ∗−2 ≤ |A ∪B|−2,

so there are at least two nodes of weight 1 in the Z-part that are not in S∗.
Hence, v has at least two non-covered neighbors, and the propagation rule
cannot be applied to it.

22

• Let x be a node of weight 0 in a bad gadget with external nodes â, b̂. Assume
that b̂ is the non-picked node. The node x has at least two non-covered
neighbors y, b̂, so the propagation rule cannot be applied to x.

Hence, after all nodes in the good gadgets are covered, no other propagation can
occur to cover any one of the remaining non-covered nodes. This proves the above
claim. Therefore, we have W ∗ − 1 ≤ ρ(H). �

Improved hardness result

In this subsection, we give a reduction from the Extended Label Cover problem
to the Propagation problem that improves on the hardness result of Theorem
2.3.5. The improvement is obtained by starting from a stronger result (compare
Theorem 2.3.9 with Theorem 2.3.6) and by using an extension of the gadget used
in the previous proof.

Theorem 2.3.8 For any fixed ε > 0, it is NP-hard to approximate the weighted
Propagation problem within ratio 2log1−εn.

In the constraint satisfaction problem we are given C = (Ψ, X, F,D,R) where
X is a set of n variables defined on a field F , and Ψ is a set of m constraints
defined on X. Each constraint ψ ∈ Ψ depends on D variables, and for each ψ
we are also given a set Rψ ⊆ FD of the satisfying assignments. For each variable
x ∈ X, we are also given an integer weight W(x). Let W = W(X). A solution to C
is a function f : X → 2F that assigns a set f(x) ⊆ F to each variable x ∈ X. The
weight of a solution f is defined by

∑
x∈X W(x) |f(x)|. We say that a constraint ψ

defined on variables x1, . . . , xD is satisfied in f if there exists a satisfying assignment
(a1, . . . , aD) ∈ Rψ such that ai ∈ f(xi), for all i = 1, . . . , D. The goal in the
Extended Label Cover [19] problem is to find a minimum-weight solution that
satisfies all the constraints. For example, consider the version of the SAT problem
with exactly 3 literals per clause. Then D = 3, and the field is given by F = {0, 1}.
For each clause ψ, Rψ consists of the 7 truth assignments to the 3 variables of ψ
that satisfy ψ; for example, for ψ = x1 ∨ x2 ∨ x3, Rψ consists of the 7 triples in
F 3 \ {(0, 0, 0)}. In the following, we assume that, in the given instance C of the
Extended Label Cover problem, W and |F |D are polynomial in m.

Theorem 2.3.9 ([19]) For any fixed ε > 0, it is NP-hard to approximate the Ex-
tended Label Cover problem within the ratio of 2log1−εm, even when W, |F |D , n ≤
poly(m).

The reduction:

1. Start from a complete bipartite graph with parts Z and Y , where |Z| =
n |F | + 1 and |Y | = 2m. Corresponding to each constraint ψ ∈ Ψ we have

23

v(x2, a2)

d′(ψ)

x

v(x1, a1) v(xD, aD)

y

(a) cover testing gadget

v(x2, a2)

d′(ψ)

v(x1, a1) v(x3, a3)vo
Z:

Y :

(b) Structure of the graph H

Figure 2.10: Hardness construction

two nodes in the Y -part labeled by d′(ψ) and d′′(ψ) of weight W = W(X).
We have a node v(x, a) of weight W(x) in the Z-part corresponding to each
variable x ∈ X and each a ∈ F ; the node v(x, a) represents the assignment
of a to the variable x in the constraint satisfaction problem. Also there is an
extra node v0 in the Z-part of weight 0.

2. In the next step we “install” several copies of the gadget shown in Figure
2.10(a). The nodes labeled by x and y are called the internal nodes, and the
rest of the nodes are called the external nodes. In all the copies of the gadget,
the node x has weight 0, the node v(xi, ai) (for i = 1, . . . , D) has weight W(xi),
and the rest of the nodes have weight W .

3. For each constraint ψ ∈ Ψ of C and for each satisfying assignment (a1, . . . , aD)
of ψ do the following:

Make a new copy of the gadget in Figure 2.9(a) on nodes v(xi, ai) (for
i = 1, . . . , D) and d′(ψ), and make another copy of this gadget on nodes
v(xi, ai) (for i = 1, . . . , D) and d′′(ψ).

4. Add edges between the nodes in the Z-part such that the graph induced on
the Z-part is a path starting from the node v0.

5. Let H be the obtained graph (see Figure 2.9(b) for an illustration).

Analysis: Note that the size of H is polynomial in m. To prove the claimed
hardness threshold for the Propagation problem, we need to prove the following
lemma. Let Wmax = maxx∈X W(x).

Lemma 2.3.10 Assume that the extended label cover instance C has an optimal
solution of weight W ∗. Then W ∗ − Wmax ≤ ρ(H) ≤ W ∗.

Proof: The proof is similar to Lemma 2.3.7. Here we only provide a sketch. Let
f : X → 2F be an optimal solution to the instance C of weight W ∗ =

∑
W(x) |f(x)|.

24

We claim that by picking the set of nodes {v(x, a)|x ∈ X, a ∈ f(x)}, and all nodes
of weight zero we get a solution to H. This proves that ρ(H) ≤ W ∗.

Let S∗ be an optimal solution to the Propagation problem on H, and assume
for the sake of contradiction that ρ(H) = W(S∗) ≤ W ∗− Wmax− 1. We may assume
that all nodes of weight 0 are picked, and no node of weight W is in S∗; this is
proved by replacing a node of weight W with nodes from the Z-part as in the proof
of Lemma 2.3.7. A gadget is called a good gadget if all of its nodes in the Z-part
are picked; that is, they are in S∗. We claim that S∗ can only cover nodes of the
good gadgets. The proof is similar to the same claim in Lemma 2.3.7; this is proved
by considering three different types of nodes in H and showing that no propagation
rule applies. Define a function f by f(x) = {a ∈ F |v(x, a) ∈ S∗}, ∀x ∈ X. Note
that f is not a solution to C, since the weight of f is less than W ∗. Hence, there
are some bad gadgets in H. Therefore, some nodes in H cannot be covered by
picking S∗. This is a contradiction, since S∗ is a solution to H. Thus, we have
W ∗ − Wmax ≤ ρ(H). �

Bellare et al. [9] made the following conjecture pertaining to PCPs’: NP has
PCPs with a constant number of queries, logarithmic number of random bits, proof
table entries defined over a field F of polynomial size, perfect completeness and
polynomially small soundness. Chuzhoy and Khanna [19] noticed that if this con-
jecture is correct, then it is NP-hard to approximate the Extended Label Cover
problem within the ratio of mΩ(1), where m = |Ψ|. Thus, modulo this conjecture,
the same reduction and analysis as above imply that it is NP-hard to approximate
the weighted Propagation problem within ratio of nΩ(1).

2.4 Further discussion

2.4.1 Parallel propagation and the diameter

In this subsection, we first introduce the parallel propagation rule. In some appli-
cations it is important to guarantee that the propagation can be done in at most `
“parallel” rounds by picking k initial nodes. Informally speaking, in each “parallel”
round we apply the propagation rule to all covered nodes where the propagation
rule can be applied. Given the parameters k and `, we show that the maximum
number of nodes of such a graph is at most k×`. Finally, we show that the diameter
of a graph and the number of parallel rounds needed to cover the graph are not
closely related.

Given a graph G = (V,E) and a subset of nodes S ⊆ V , the set of nodes that
can be covered by applying ` rounds of parallel propagation, denoted by P`(S), is
defined recursively as follows:

P`(S) =


S ` = 0

P`−1(S)
⋃{

v : {u, v} ∈ E,N [u] \ {v} ⊆ P`−1(S)
}

` ≥ 1

25

Given a solution S to the Propagation problem, we say that S covers V in `
parallel rounds of propagation if P`(S) = V (G). Given a parameter `, we can ask
to find a minimum-size set of nodes that covers all nodes in ` parallel rounds of
propagation; this problem is called the `-round Propagation problem, and it is
studied in Chapter 4.

Proposition 2.4.1 Assume that G = (V,E) has a solution of size k that can cover
V in ` parallel rounds of propagation. Then we have |V | ≤ k`. Moreover, a k × `
grid achieves this maximum.

Proof: Consider a solution S of size k. Each node from S initiate a “chain” of
propagation of length at most `; the order in which nodes are covered (in each
chain) defines a path of length ` in G. Therefore, we have |V (G)| ≤ k · `.

Let G be a k×` grid. The k nodes in the first column can cover all nodes of G in
` parallel rounds of propagation. In the first round, the first column is covered. In
the second round, by applying the propagation rule to all nodes in the first column
all nodes in the second column will be covered. This can continue, and all nodes
of G can be covered in ` parallel rounds. This shows that a k× ` grid achieves the
maximum number of nodes given in the proposition. �

Proposition 2.4.2 There exist a planar graph on n nodes with diameter Θ(
√
n)

that has an optimal solution (for the Propagation problem) that needs Θ(n) par-
allel rounds to be propagated.

Proof: Start from a
√
n × √n grid and modify it as shown in Figure 2.11 to get

a planar graph G on n nodes (the figure shows the modified 7 × 7 grid). The
graph G has diameter Θ(

√
n). It is easy to see that G has the

√
n × √n grid as

a subgraph (so as a minor). Therefore, the path-width of G is at least
√
n, and

we have: ρ(G) ≥ √n. It is easy to check that the first column can cover G. In
the first round all nodes in the first column are covered. The only node in the first
column that has a unique non-covered neighbor is the node in the first row and all
other nodes in the first column have 2 non-covered neighbors. Hence, by applying
the propagation rule, we can cover the first node in the second column. Now the
second node in the first column has a unique non-covered neighbor, so we can apply
the propagation rule to it. We can check that we can continue and cover the nodes
in the second column, covering one node per round. Therefore, the nodes in the
second column can be covered in

√
n rounds. The same steps apply for the other

columns. Hence, we need
√
n parallel rounds to cover each column. Hence, we need

Θ(n) parallel rounds to cover the whole graph G. �

In the above Proposition, we show that for one particular optimal solution of
the Propagation problem we need Θ(n) number of parallel rounds to cover the
whole graph. It seems that the same statement is valid for all optimal solutions.
Computational experiments on (the modified) k × k grids for k ≤ 6 shows that
any optimal solution contains only nodes from either the first two columns or the

26

Figure 2.11: The modified 7× 7 grid

last two columns; that is, there is no optimal solution picking a node from columns
3, . . . , k − 3. Moreover, all optimal solutions need exactly k(k − 1) parallel rounds
to cover the whole graph; note that this is equal to the number of nodes not picked
in any optimal solution. On the other hand, if we pick more nodes than optimal
solution, then it is possible to reduce the number of parallel rounds needed to cover
the whole graph; for example, by picking the nodes in the first row and the last
row of the k × k grid we can cover the whole graph in Θ(k) parallel rounds.

Now, we show another graph with Θ(n) diameter which has an optimal solution
that can be propagated in O(1) parallel rounds. Consider the Caterpillar graph Lm
shown in Figure 2.2. This graph has 3m nodes, and it has diameter m + 1. Note
that the gray regions shown in Figure 2.2 indicate a set of m node-disjoint strong
regions, so by Proposition 2.1.8 we have ρ(Lm) ≥ m. The boxed nodes in the figure
shows an optimal solution of size m that can be propagated in 2 parallel rounds to
cover the whole graph.

Proposition 2.4.3 There exist a planar graph on n nodes with diameter Θ(n) that
has an optimal solution that can be propagated in O(1) parallel rounds.

2.4.2 A conjecture on graph product

Let Pm denote a path on m nodes, and let G = Pn1 × Pn2 × · · · × Pnd (where
n1 ≤ n2 ≤ · · · ≤ nd). The graph G is obtained from nd disjoint copies of Pn1 ×
Pn2 × · · · × Pnd−1

by connecting nodes in the ith copy to the corresponding nodes
in the (i + 1)th copy for each i ∈ {1, 2, . . . , d− 1}; there is a copy corresponding
to each node of Pnd . One can check that there is a solution of size n1 × n2 ×
· · · × nd−1 to the Propagation problem on G, by picking all nodes in the copy of
Pn1 × Pn2 × · · · × Pnd−1

in G corresponding to an end node of the path Pnd . We
conjecture that we cannot do better than this; note that Corollary 2.2.2 proves this

27

for the special case of d = 2. We have confirmed this conjecture on small instances
((n1, n2, n3) = (2, 3, 3), (2, 3, 4), (3, 3, 3), (3, 3, 4)) via computational experiments.
The authors in [29] have shown that the size of the optimal solution for the d-
dimensional hypercube is 2d−1. This result is a special case of our conjecture on
the Cartesian product of paths.

Conjecture 2.4.4 Suppose that G is the Cartesian product of paths of lengths
n1, n2, . . . , nd, where n1 ≤ n2 ≤ · · · ≤ nd, then we have ρ(G) = n1×n2×· · ·×nd−1.

28

Chapter 3

The power dominating set
problem

Our focus in this chapter is on the Power Dominating Set (abbreviated as
PDS) problem. Power domination is defined by two rules; the first rule is the same
covering rule as in the Dominating Set problem, and the second rule is the same
propagation rule as in the Propagation problem. More precisely, given a graph
G = (V,E) and a set of nodes S, the set of nodes that are power dominated by S,
denoted P∗(S), is obtained as follows.

(R1) if node u is in S, then u and all of its neighbors are added to P(S);

(R2) (propagation) if node u is in P(S), one of its neighbors v is not in P(S), and
all other neighbors of u are in P(S), then v is added to P(S).

The set P(S) changes as we apply (R1) and (R2); the final set P(S) is denoted
by P∗(S). The PDS problem is to find a node-set S of minimum size that power
dominates all nodes (i.e., find S ⊆ V with |S| minimum such that P∗(S) = V).
We denote the size of an optimal solution for the PDS problem on the graph G
by γ(G). Given a weight function, W : V → Q, defined on nodes of a graph G, we
can also ask to find a set S with minimum weight that covers all nodes of G. We
denote the weight of an optimal solution by γ(G, W). When the weight function W

is clear from the context, we simply denote the weight of an optimal solution by
γ(G). Given a set of nodes S, we say that a node v is picked if v is in the set S.
When a node v is added to P(S) by applying rule (R1) (rule (R2)) to node u (6= v),
we say that v is power dominated by applying rule (R1) (rule (R2)) to u and we
denote this by u→ v. Rule (R2) is also called the propagation rule.

Consider the graph in Figure 2.1. The minimum power dominating set has size
one – if S has any one node of the innermost triangle (like v), then P∗(S) = V .
In more detail, we apply rule (R1) to v to power dominate all the nodes of the
innermost triangle and one node of the second triangle; then by two applications of
rule (R2) (to each of the nodes in the first triangle not in S), we power dominate

29

the other two nodes of the second triangle; then by three applications of (R2) (to
each of the nodes in the second triangle) we power dominate all three nodes of the
third triangle; etc.

The PDS problem arose in the context of electric power networks, where the
aim is to monitor all of the network by placing a minimum-size set of very expensive
devices called phase measurement units; these units have the capability of moni-
toring remote elements via propagation (as in rule (R2)); see Brueni [13], Baldwin
et al. [8], and Mili et al. [54]. In the engineering literature, the problem is called
the PMU placement problem.

Our motivation comes from the area of approximation algorithms and hardness
results. The Dominating Set problem is a so-called covering problem; we wish
to cover all nodes of the graph by choosing as few node neighborhoods as possible.
In fact, the Dominating Set problem is a special case of the well-known Set
Covering problem. In the latter problem, we are given a family of sets on a
groundset, and the goal is to find the minimum number of sets whose union equals
the groundset.

Such covering problems have been extensively investigated. One of the key
positive results dates from the 1970’s, when Johnson [37], Lovász [49] and later
Chvátal [20] showed that the greedy method achieves an approximation guarantee
of O(log |V |) where |V | denotes the size of the ground set, see also [70]. These
algorithms provide the same approximation guarantee for the Dominating Set
problem, as the Dominating Set problem is a special case of the Set Covering
problem. Several negative results (on the hardness of approximation) have been
discovered over the last few years: Lund and Yannakakis [50] showed that the Set
Covering problem is hard to approximate within a ratio of Ω(log n) and later,
Feige [25] showed that it is hard to approximate within a ratio of (1−ε) lnn, modulo
some variants of the P 6= NP assumption. The Dominating Set problem has the
same hardness of approximation as the Set Covering problem (see [25]).

A natural question is what happens to covering problems (in the setting of
approximation algorithms and hardness results) when we augment the covering
rule with a propagation rule. PDS seems to be a key problem of this type, since it
is obtained from the Dominating Set problem by adding a simple propagation
rule.

Apparently, the earliest publications on PDS are Brueni [13], Baldwin et al.
[8], and Mili et al. [54]. Later, Haynes et al. [31] showed that the problem is
NP-complete even when the input graph is bipartite; they presented a linear time
algorithm to solve PDS optimally on trees. Kneis et al. [43] generalized this result
to a linear time algorithm that finds an optimal solution for graphs that have
bounded tree-width, relying on earlier results of Courcelle et al. [21]. Kneis et al.
[43] also showed that PDS is a generalization of the Dominating Set problem as
follows. Given a graph G we can construct an augmented graph G′ such that S is
an optimal solution for the Dominating Set problem on G if and only if it is an
optimal solution for PDS on G′; the graph G′ is obtained from G by adding a new

30

node v′ for each node v in G and adding the edge vv′. Guo et al. [30] developed a
combinatorial algorithm based on dynamic programming for optimally solving PDS
on graphs of tree-width k. The running time of their algorithm is O(ck

2 ·n) where c
is a constant. Dorfling and Henning computed the power domination number, i.e.
the size of an optimal power dominating set, for n×m grids [24].

Guo et al. also compared the tractability of the Dominating Set problem ver-
sus PDS on several classes of graphs; that is, they study whether there are classes
of graphs where the former problem is in P but the latter one is NP-hard; but they
have no result that “separates” the two problems. Even for planar graphs, the
Dominating Set problem is NP-hard [28], and the same holds for PDS [30]. Liao
and Lee [48] proved that PDS on split graphs is NP-complete, and also they pre-
sented a polynomial-time algorithm for solving PDS optimally on interval graphs.
Brueni and Heath [14] have more results on PDS, especially the NP-completeness
of PDS on planar bipartite graphs. To the best of our knowledge, no further results
are known on solving the PDS problem, either optimally or approximately.

The main results in this chapter are as follows:

• In Section 3.1, we prove that it is NP-hard to approximate γ(G) within a
factor of 2log1−ε n.

• In Section 3.2, we introduce the notion of strong regions and weak regions
as a mean of obtaining lower bounds on γ(G). Based on this, we develop an
approximation algorithm for PDS that gives an approximation guarantee of
(k + 1) for graphs that have tree-width k. The algorithm requires the tree
decomposition as part of the input, and runs in time O(n3), independent of
k. Our algorithm provides an approximation algorithm with a guarantee of
O(
√
n) for PDS on planar graphs because a tree decomposition of a planar

graph with width O(
√
n) can be computed efficiently [5]. Moreover, we show

that our methods (specifically, the lower bounds used in our analysis) cannot
improve on our approximation guarantee of O(

√
n).

• In Section 3.3, we introduce two extensions of the PDS problem, the Di-
rected PDS problem and the `-round PDS problem. We show that our
hardness of approximation result for the PDS problem can be carried over to
these two problems.

Moreover, in Chapter 4, we present a linear time dynamic programming algorithm
for Directed PDS when the underlying undirected graph has bounded tree-width.
We also present a polynomial-time dynamic programming algorithm to compute the
optimal solution to the `-round PDS problem for weighted graphs with bounded
tree-width.

31

3.1 Hardness of approximation

In this section, we prove that the PDS problem cannot be approximated within
ratio 2log1−εn, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)). In Section 3.4, we
improve the complexity assumption, and prove that it is NP-hard to approximate
the PDS problem within ratio 2log1−εn, for any fixed ε > 0; this result is an easy
extension of the weaker result. We prove our weaker result by providing a gap
preserving reduction from MinRep to PDS.

3.1.1 The reduction from MinRep to PDS

In the MinRep [44] problem we are given a bipartite graph G = (A,B,E) with a
partition of A and B into equal-sized subsets. Let A = A1∪A2∪· · ·∪AqA denote the
partition of A, and let B = B1∪B2∪ · · · ∪BqB denote the partition of B. The goal
in the MinRep problem is to pick a minimum-size set of nodes, A′ ∪ B′ ⊆ V (G),
to cover all super edges in H. (Refer to Section 2.3.2 for more discussion on the
MinRep problem.)

Theorem 3.1.1 The PDS problem cannot be approximated within ratio 2log1−εn,
for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

The reduction: Theorem 3.1.1 is proved by a reduction from the MinRep prob-
lem. We create an instance G = (V ,E) of the PDS problem from a given instance
G = (A,B,E)(H = (A,B, E)) of the MinRep problem. The idea is to replace each
super edge with a “cover testing gadget”.

1. Start with a copy of each node in A ∪ B in G. For convenience, we use the
same notation for nodes (and set of nodes) in G and their copies in G.

2. Add a new node w∗ to the graph G, and connect w∗ to all nodes in A ∪ B.
Also add three new nodes w∗1, w

∗
2, w

∗
3 and connect them to w∗; these three

nodes force any optimal solution to contain w∗.

3. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} if AiBj is a super edge, then do the following:

(a) Let Eij denote the set of edges between Ai and Bj in G and let `ij denote
|Eij| (see Figure 3.2(a); for an example E11 has 3 edges, and E12 has 4
edges). We denote the edges in Eij by e1, e2, · · · , ek, · · · , e`ij .

(b) Let Cij be a cycle of 3`ij nodes. We sequentially label the nodes of
Cij as u1, v1, w1, u2, v2, w2, · · · , uk, vk, wk, · · · (informally speaking, we
associate each triple uk, vk, wk with an edge ek of Eij). Make λ = 4 new
copies of the graph Cij (λ can be any constant greater than 3; refer to the
proof of Lemma 3.1.2 for more details). For each edge ek = akbk ∈ Eij
and for each of the 4 copies of Cij, we add an edge from ak to uk and an
edge from bk to vk. See Figures 3.1(a), 3.1(b) for an illustration.

32

Cij
v2

u2

u1 v1

v`ij

u`ij

vk uk

w1

w2wk

w`ij

(a) The Cij graph

Cij

a1 b1

a2

b2

e2

e1

v2

u2

u1 v1

vk uk

ek akbk

v`ij

u`ij

b`ij

a`ij

e`ij

(b) Edges between Cij and Ai ∪Bj .

Figure 3.1: The cover testing gadget.

4. Let G = (V ,E) be the obtained graph (see Figure 3.2 for an illustration).

ai3ai2ai1

bj1

e1

e4

e2

e3

bj2

A1 A2

B1 B2

(a) MinRep Instance G

w∗3

w∗1
w∗2

w∗

ai3ai2ai1

bj1 bj2

A2

B2B1

A1

C1,1 C1,2 C2,2

(b) PDS instance G: For each super edge AiBj we
show only 1 copy of Cij ; in fact G has λ = 4 copies
of Cij .

Figure 3.2: The hardness construction

Let S be a solution for the resulting PDS instance G, and suppose w∗ ∈ S. Then
all of the nodes in A∪B are power dominated (by rule (R1) of PDS). Now consider
a gadget Cij, and assume a node v of Cij is in S. By applying rule (R1) once and
then repeatedly applying rule (R2) of PDS, the gadget Cij will be completely power
dominated; that is, all nodes of the gadget will be in P∗(S).

The next lemma shows that the size of an optimal solution in PDS is exactly
one more than the size of an optimal solution in MinRep. The number of nodes
in the constructed graph is equal to

∣∣V (G)
∣∣ = 4 + |V (G)| + 3λ |E(G)|. This will

complete the proof of Theorem 3.1.1 by showing that the above reduction is a gap

33

preserving reduction from MinRep to PDS with the same gap (hardness ratio) as
the MinRep problem; refer to the Hardness of Approximation chapter in Vazirani’s
book [72] for the definition of a gap preserving reduction.

Lemma 3.1.2 A∗∪B∗ is an optimal solution to the instance G = (A,B,E) of the
MinRep problem if and only if S∗ = A∗∪B∗∪{w∗} ⊆ V (G) is an optimal solution
to the instance G of the PDS problem.

Proof: First, we claim that w∗ should be in any optimal solution, S∗, of the PDS
instance G. Suppose that w∗ is not in some optimal solutions. Then, in order to
power dominate the nodes w∗, w∗1, w

∗
2, w

∗
3 in G, the set S∗ must contain at least

two of the nodes (leaves) w∗1, w
∗
2, w

∗
3; since otherwise the two non-picked leaf nodes

cannot be covered by applying the propagation rule to w∗. This is a contradiction,
since we can replace these 2 nodes by w∗ and obtain a smaller solution.

Assume that A∗ ∪ B∗ is a solution for the MinRep instance G. We will show
that S∗ = A∗∪B∗∪{w∗} is a solution to the PDS instance G. Note that all nodes in
A∪B∪{w∗, w∗1, w∗2, w∗3} are power dominated by applying rule (R1) on w∗. Now, we
only need to show that all nodes in the gadgets Cij are power dominated. Consider
any super edge AiBj of H. The set A∗ ∪ B∗ covers all super edges in H. Hence,
there exists a pair of nodes ak ∈ A∗ ∩ Ai, bk ∈ B∗ ∩ Bj that induces an edge of G.
Since ak and bk are in S∗, their neighbors, uk and vk, in each of the λ = 4 copies of
Cij in G, will be power dominated by applying rule (R1). Then the nodes uk and
vk in each copy of Cij will power dominate the entire cycle by repeatedly applying
rule (R2). To see this, note that any node in Cij has exactly 2 neighbors in Cij and
at most 1 neighbor not in Cij. The neighbors not in Cij are from Ai∪Bj, and they
are power dominated by w∗. Hence, if a node in Cij and one of its neighbors in Cij
are power dominated, then by applying rule (R2) the other neighbor in Cij will be
power dominated. Hence, by starting from vk and repeatedly applying rule (R2),
we can sequentially power dominate the nodes in Cij. This shows that S∗ power
dominates all nodes in G. Therefore, γ(G) is at most |A∗ ∪B∗|+ 1.

Let S∗ ⊆ V (G) be an optimal solution for PDS. By the above claim, w∗ is in
S∗. Now define A′ = A ∩ S∗ and B′ = B ∩ S∗. First we prove that any optimal
solution of PDS is contained in A ∪ B ∪ {w∗}, and then we show that A′ ∪ B′
covers all super edges of the MinRep instance G. Suppose that S∗ contains some
nodes not in A∪B ∪ {w∗}. Hence, there are some gadgets that are not completely
power dominated by S∗ ∩ (A∪B ∪ {w∗}). Let Cij be such a gadget. By symmetry
each of the λ = 4 copies of Cij is not completely power dominated. Therefore, the
optimal solution S∗ needs to have at least 3 nodes from the λ = 4 copies of Cij. By
removing these 3 nodes from S∗ and adding ak ∈ Ai and bk ∈ Bj to S∗ for some
arbitrary edge akbk ∈ Eij, we can power dominate all of the 4 copies of Cij. This
contradicts the minimality of S∗, and proves that S∗ ⊆ A ∪B ∪ {w∗}. To see that
A′ ∪ B′ covers all super edges, note the following: suppose no node from any copy
of Cij is in the optimal solution; then any Cij can be power dominated only by
taking a pair of nodes a ∈ Ai, b ∈ Bj that induces an edge of G. This completes
the proof of the lemma. �

34

3.2 Approximation algorithms for planar graphs

In this section, we describe an approximation algorithm with a guarantee of (k+1)
for PDS in graphs with tree-width k; the running time is O(n3), independent of k.
This algorithm gives an approximation algorithm with a guarantee of O(

√
n) for

PDS in planar graphs. Finally, we show that the analysis of our algorithm is tight
on planar graphs. We use Planar PDS to denote the special case of the PDS
problem where the graph is planar.

We introduce the notion of a strong region before presenting our algorithm.
Informally speaking, a set of nodes R ⊆ V is called strong if every solution to the
PDS problem has a node of R. Let G = (V,E) denote the graph. The neighborhood
of R ⊆ V is defined as nbr(R) = {v ∈ V |∃uv ∈ E, u ∈ R, v /∈ R}, and the exterior
of R is defined as ext(R) = nbr(V \R), i.e., ext(R) consists of the nodes in R that
are adjacent to a node in V \R.

Definition 3.2.1 Given a graph G = (V,E) and a set S ⊆ V , the subset R ⊆ V is
called an S-strong region if R 6⊆ P∗(S ∪ nbr(R)), otherwise, the set R is called an
S-weak region. The region R is called minimal S-strong if it is an S-strong region
and ∀r ∈ R, R− r is an S-weak region.

It is easy to check from the definition that an S-strong region is also an ∅-strong
(or shortly strong) region. Any solution to the PDS problem needs to have at least
one node from every strong region.

Lemma 3.2.2 Let G = (V,E) be a given graph, and let S ⊆ V . A subset R ⊆ V is
an S-strong region if and only if for every set S ′ ⊆ V such that S ∪S ′ is a solution
to G, we have R ∩ (S ′ \ S) 6= ∅.

Proof: It can be seen that the set S ∪ (V \ R) will power dominate the same set
of nodes from R that can be power dominated by S ∪ nbr(R); this is valid for any
subset R ⊆ V . Let R be an S-strong region. By the definition of a strong region
we have R 6⊆ P∗(S ∪ nbr(R)). Hence, by the above claim R 6⊆ P∗(S ∪ (V \ R)).
This shows that every solution S ∪ S ′ needs to have at least one node from R that
is not in S.

Now assume that for every solution S∪S ′ of G we have R∩(S ′\S) 6= ∅. Suppose
that R is an S-weak region, so we have R ⊆ P∗(S ∪ nbr(R)). Let S ′ = V \ R. It
follows that S ∪ S ′ is a solution, but R has no intersection with S ′ \ S. This is a
contradiction, so R is an S-strong region. �

Our algorithm makes one level-by-level and bottom-to-top pass over the tree
T of the tree decomposition of G and constructs a solution S for PDS (initially,
S = ∅). At each node rj of T we check whether the union of the bags in the subtree
rooted at rj forms an S-strong region; if yes, then the bag Xrj of rj is added to S,
otherwise S is not updated. The key point in the analysis is to show that γ(G) is

35

lower bounded by the number of nodes of T where we updated S. This is done by
constructing disjoint strong regions corresponding to the nodes where we updated
S.

Algorithm 1 O(k)-approximation Algorithm

1: A tree decomposition 〈{Xi|i ∈ I} , T 〉 of G is given, where T is rooted at r.
2: Let I` be the set of T -nodes at distance ` from the root, and let d be the

maximum distance from r in T .
3: S ← ∅
4: for i = d to 0 do
5: Let Ii = {r1, . . . , rki} and denote by Trj the subtree in T rooted at rj.
6: Let Yrj be the union of bags corresponding to the T -nodes in Trj .
7: for j = 1 to ki do
8: if Yrj is an S-strong region then
9: S ← S ∪Xrj , where Xrj is the bag corresponding to rj.

10: end if
11: end for
12: end for
13: Output So = S

3.2.1 Analysis of the algorithm

In this subsection, we show that our algorithm has an approximation guarantee of
O(k). Let G = (V,E) denote the input graph, and let S ⊆ V be any set of nodes.

Lemma 3.2.3 Suppose Z is an S-weak region such that ext(Z) ⊆ S. Then we
have Z ⊆ P∗(S).

Proof: Let Y = ext(Z), it follows from the definitions that nbr(Z \ Y) ⊆ ext(Z).
We claim that Z \ Y is an S-weak region. Let S∗ = V \ (Z ∪ S), it is easy to
check that S ∪ S∗ is a solution for the graph G, but S∗ ∩ (Z \ Y) = ∅. Hence,
by Lemma 3.2.2, Z \ Y is not an S-strong region, and so it is an S-weak region.
Thus, Z \Y ⊆ P∗(S ∪nbr(Z \Y)) ⊆ P∗(S ∪ ext(Z)) = P∗(S) and this implies that
Z ⊆ P∗(S) as Y = ext(Z) ⊆ S. �

Lemma 3.2.4 Let Z ⊆ V be an S-strong region. Suppose that Y is a subset of V
such that Y ⊆ P∗(S) and ext(Y) ⊆ S. Then Z \ Y is an S-strong region.

Proof: Assume for the sake of contradiction that Z \ Y is an S-weak region.
Then by the definition of strong regions we have Z \ Y ⊆ P∗(S ∪ nbr(Z \ Y)).
It is easy to see that nbr(Z \ Y) ⊆ nbr(Z) ∪ ext(Y). This implies that Z \ Y ⊆
P∗(S ∪ nbr(Z \ Y)) ⊆ P∗(S ∪ nbr(Z) ∪ ext(Y)) = P∗(S ∪ nbr(Z)). The condition

36

in the lemma states that Y ⊆ P∗(S) ⊆ P∗(S ∪ nbr(Z)). Hence, we get Z =
(Z \Y)∪ (Z∩Y) ⊆ P∗(S∪nbr(Z)), which means that Z is an S-weak region. This
is a contradiction, so the lemma is proved. �

Theorem 3.2.5 Given a graph G = (V,E) and a tree decomposition of G of width
k as input, Algorithm 1 runs in time O(n · |E|), and achieves an approximation
guarantee of (k + 1).

Proof: First, we show that the solution So found by the algorithm is feasible. Then
we prove the approximation guarantee, and establish the running time.

For any node q of T , recall that Yq denotes the union of the bags corresponding to
the T -nodes in the subtree rooted at q in T . We claim that ext(Yq) ⊆ Xq. Suppose
that q has m children in T , call them c1, . . . , cm. For each edge qcj (j = 1, · · · ,m),
the set Xq∩Xcj separates Ycj from the rest of the graph; that is, every path between
a node in Ycj and a node in V \ Ycj contains a node of Xq ∩Xcj (see Lemma 12.3.1
in [23]). Thus, ext(Ycj) ⊆ Xq ∩Xcj ⊆ Xq, and hence, for Yq = Xq ∪ Yc1 ∪ · · · ∪ Ycm ,
we have ext(Yq) ⊆ Xq.

We use induction on the height of the subtree of T rooted at q to prove the
following: if Yq is S∗-strong, then Yq ⊆ P∗(S∗ ∪Xq), where S∗ denotes the solution
just before the algorithm examines Yq. The statement clearly holds when q is a leaf
of T (since Yq = Xq). Otherwise, let c1, . . . , cm be the children of q in T . For each
j = 1, . . . ,m, when the algorithm examined Ycj , either Ycj was S-weak, in which case
(by Lemma 3.2.3) we have Ycj ⊆ P∗(S∪ext(Ycj)) ⊆ P∗(S∪(Xcj∩Xq)) ⊆ P∗(S∗∪Xq)
or Ycj was S-strong in which case Ycj ⊆ P∗(S ∪ Xcj) by induction (note that
S ∪Xcj ⊆ S∗); we use S to denote the solution just before the algorithm examines
Ycj . Hence, Yq = Yc1 ∪ · · · ∪ Ycm ∪Xq ⊆ P∗(S∗ ∪Xq).

The above statement implies that V ⊆ P∗(So) because at the step when the
algorithm examines the root r of T either

(i) Yr is S-strong, so So = S ∪Xr, and Yr ⊆ P∗(S ∪Xr) = P∗(So); or

(ii) Yr is S-weak, and Yr ⊆ P∗(S ∪ ext(Yr)) = P∗(So); note that Yr = V (G) and
ext(Yr) = ∅.

To show that the approximation guarantee is (k + 1) we will construct a set
∆ of pairwise disjoint strong regions R1, R2, . . . , such that there is a strong region
Rj corresponding to each step of the algorithm that adds a non empty bag Xqj to
S. Thus, |So| ≤ (k + 1) |∆| since each bag has ≤ k + 1 nodes, and γ(G) ≥ |∆|
because every solution has size ≥ |∆|, by Lemma 3.2.2. Hence, |So| ≤ (k+ 1)γ(G).
We construct the sets R1, R2, . . . , during the execution of the algorithm as follows.
Suppose the algorithm finds Yq to be S-strong while examining a node q of T . Let
q1, . . . , q`−1 be the nodes of T where the algorithm updated the solution before
examining q, and let S be the solution just before the algorithm examines q. Then

37

define R` = Yq` \ (Yq1 ∪ · · · ∪ Yq`−1
), where q` = q. We claim that R` is an S-

strong region. For each strong region Yqj (j = 1, . . . , ` − 1) we have seen that
ext(Yqj) ⊆ Xqj ⊆ S and Yqj ⊆ P∗(S); note that the algorithm added Xqj to the
solution since Yqj was a strong region. It follows that ext(Yq1 ∪· · ·∪Yq`−1

) ⊆ S, and
Yq1 ∪ · · · ∪Yq`−1

⊆ P∗(S). Hence, by Lemma 3.2.4, the set R` is an S-strong region.
Clearly, the sets R1, R2, . . . , are pairwise disjoint. This completes the construction
of ∆.

Consider the running time. Without loss of generality we can assume that the
given tree decomposition of width k has at most 4n bags (see Lemma 13.1.2 in
[42]). Using standard algorithmic techniques we can test in O(|E|) time whether a
given set R ⊆ V is an S-strong region (we compute P∗(S ∪ nbr(R)) and check if it
contains R). Therefore, our algorithm has a running time of O(n · |E|). �

It is known that planar graphs have tree-width O(
√
n) [67], and such a tree

decomposition can be found in O(n
3
2) time [5]. This fact together with the above

theorem proves the following theorem.

Theorem 3.2.6 Algorithm 1 achieves an approximation guarantee of O(
√
n) for

the Planar PDS problem.

The dynamic programming algorithm of Guo et al. [30] for the PDS problem
finds an optimal solution in linear time on bounded tree-width graphs; the running
time of their algorithm is supper polynomial for graphs with Ω(

√
log n) tree-width.

Our algorithm is based on the notion of strong regions and weak regions, and it
finds an approximation solution with approximation guarantee of tw(G)+1 in cubic
time; the running time is independent of the tree-width.

3.2.2 Lower bounds via disjoint strong regions

In this subsection, we show that any approximation algorithm for PDS that uses the
number of disjoint strong regions as a lower bound has an approximation guarantee
of Ω(

√
n).

Lemma 3.2.7 Any minimal S-strong region is connected.

Proof: Let G be a given graph and S be a subset of nodes of G. Suppose the
lemma is not correct. Let R be a minimal S-strong region which is not connected.
Let C ⊂ R be a connected component of R. The component C is an S-weak
region since R is a minimal S-strong region, so by the definition of weak region
we have C ⊆ P∗(S ∪ nbr(C)). The set C is a maximal connected component of
R, so the neighborhood of C has no intersection with R \ C. This means that
nbr(C) ⊆ nbr(R), which implies that C ⊆ P∗(S ∪ nbr(C)) ⊆ P∗(S ∪ nbr(R)). The
same argument as above shows that R\C ⊆ P∗(S∪nbr(R\C)) ⊆ P∗(S∪nbr(R)).
Therefore, R ⊆ P∗(S ∪ nbr(R)), which is a contradiction. Hence, the lemma is
proved. �

38

Lemma 3.2.8 The number of disjoint strong regions in an ` × m grid is exactly
one.

Proof: For the sake of contradiction, assume that the given grid has two disjoint
strong regions. Take as few nodes as possible from these strong regions until we
get minimal strong regions, say R1 and R2. It is easy to check that the set of nodes
of any row or any column of the grid power dominates all nodes in the grid. By
Lemma 3.2.2, R1 and R2 should have at least one node from every solution. In
the other words, R1 and R2 must have at least one node from each row and also
from each column. By Lemma 3.2.7 any minimal strong region induces a connected
subgraph. Hence, in R1 there is a path from a node in the top row to a node in the
bottom row, and also in R2 there is a path from a node in the rightmost column to
a node in the leftmost column. Obviously these two paths share a common node.
This is a contradiction, since R1 and R2 are assumed to be disjoint. �

Proposition 3.2.9 (Theorem 1 in [24]) Let G be an ` × m grid with ` ≤ m,
then γ(G) = Θ(`).

Proof: Let S∗ be an optimal solution. From the definition of the PDS problem,
it is clear that X = S∗ ∪ nbr(S∗) is a solution for the Propagation problem. By
Corollary 2.2.2, we have |X| ≥ `. The maximum degree in the grid is 4, so we have
` ≤ |X| ≤ 5 · |S∗|. Therefore, we have γ(G) ≥ `

5
. �

Consider any approximation algorithm for PDS that uses only the number of
disjoint strong regions as a lower bound on the size of an optimal solution. By
Lemma 3.2.8, this algorithm finds a lower bound of 1 on the size of an optimal
solution on a grid. The

√
n × √n grid has an optimal solution of size Θ(

√
n) by

Proposition 3.2.9. This shows that the approximation guarantee of the algorithm
is Ω(

√
n), even on planar graphs.

Proposition 3.2.10 Consider any approximation algorithm for PDS that uses
only the number of disjoint strong regions as a lower bound on the optimal value.
Then the approximation guarantee is Ω(

√
n).

3.3 Extensions of PDS

In this section, we introduce two extensions of the PDS problem, and show that
our hardness of approximation result for the PDS problem carry over to these two
extensions.

39

3.3.1 PDS in directed graphs

In this subsection, we extend the PDS problem to directed graphs to obtain the
Directed Power Dominating Set (Directed PDS) problem. Our motiva-
tion for studying the directed problem comes from theoretical considerations. The
Dominating Set problem is studied on both undirected and directed graphs, and
there is extensive literature on the latter (see [32, 33]). The similarities between
the Dominating Set problem and the PDS problem led us to define and study
the Directed PDS problem. We give a result on the hardness of approximation
of Directed PDS.

Definition 3.3.1 (the Directed PDS problem) Let G be a directed graph. Given
a set of nodes S ⊆ V (G), the set of nodes that are power dominated by S, denoted
by P∗(S), is obtained as follows:

(D1) if node v is in S, then v and all of its out-neighbors are in P(S);

(D2) (propagation) if node v is in P(S), one of its out-neighbors w is not in P(S),
and all other out-neighbors of v are in P(S), then w is inserted into P(S).

The set P(S) changes as we apply (R1) and (R2); the final set P(S) is denoted
by P∗(S). We say that S power dominates G if P∗(S) = V (G). The Directed
PDS problem is to find a minimum-sized set of nodes S that power dominates all
the nodes in G.

In this section, we prove that the Directed PDS problem cannot be approxi-
mated within ratio 2log1−εn, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)). In
Section 3.4, we improve the complexity assumption to P 6= NP, and we prove that
it is NP-hard to approximate the Directed PDS problem within ratio 2log1−εn,
for any fixed ε > 0. The proof of weaker result uses a reduction from the MinRep
problem to the Directed PDS problem in directed acyclic graphs. This reduction
is similar to the reduction in Theorem 3.1.1; the main difference comes from the
gadget for modeling the super edges.

Theorem 3.3.2 The Directed PDS problem even when restricted to directed
acyclic graphs cannot be approximated within ratio 2log1−ε n, for any fixed ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

The reduction: The reduction is the same as the reduction for the undirected
version with minor changes. We are using a different gadget for modeling the super
edges. This gadget makes the constructed graph, directed acyclic. In the following
we create an instance of Directed PDS, G = (V ,E), from a given instance
G = (A,B,E)(H = (A,B, E)) of the MinRep problem.

40

1. Add a new node w∗ (master node) to the graph G, and add a directed edge
from w∗ to all nodes in G.

2. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} do the following:

(a) Let Eij =
{
e1, e2, . . . , e`ij

}
be the set of edges between partition Ai and

Bj in G. Remove Eij from G.

(b) Let Dij be the graph in Figure 3.3 (The incoming dashed line shows
an edge from the master node w∗ to that node). The Dij gadget has a
pair of nodes (uk, vk) corresponding to each edge ek ∈ Eij. Make λ = 4
new copies of the graph Dij and connect them in the same way to the
corresponding super nodes as shown in Figure 3.3. For each k, connect
the end nodes of an edge ek to the corresponding pair of nodes (uk, vk)
in each copy of Dij; i.e., add directed edges (ak, uk) and (bk, vk).

v`

e`

a`

b1e1

a2

e2

b2

axbx ex

a1

v1

ux

u2

u`

vx

u1

v2

w∗

α
b` β

d2

dx

d1

d`
γ

Figure 3.3: The Dij graph and its connection to the super nodes

3. Let G = (V ,E) be the obtained graph.

The analysis: The next lemma shows that the size of an optimal solution in Di-
rected PDS is exactly one more than the size of an optimal solution in the
MinRep instance. The number of nodes in the constructed graph is at most∣∣V (G)

∣∣ ≤ 1 + |V (G)| + 7k |E(G)|. This shows that the above reduction is a gap
preserving reduction from MinRep to Directed PDS with the same gap (hard-
ness ratio) as the MinRep problem. Therefore, the following lemma will complete
the proof of the above theorem. The proof of the following lemma is similar to the
proof of Lemma 3.1.2, and we skip it here.

Lemma 3.3.3 (A∗, B∗) is an optimal solution to the instance G = (A,B,E) of
the MinRep problem if and only if S∗ = A∗ ∪ B∗ ∪ {w∗} ⊆ V (G) is an optimal
solution to the instance G of the Directed PDS problem.

41

3.3.2 `-round PDS problem

In this subsection, we first introduce a hierarchy of problems between Dominating
Set and PDS, by adding a parameter ` to PDS which restricts the number of
“parallel” rounds of propagation that can be applied (refer to Section 2.4.1 where a
similar notion is defined for the Propagation problem). Next, we show that the
`-round PDS problem even for ` = 4 is hard to approximate within 2log1−ε n. The
reduction given here is similar to the reduction used to prove the same hardness of
approximation for the Directed PDS problem.

The rules of the `-round PDS problem are the same as PDS, except we try to
apply the propagation rule in parallel as much as possible. In the first round we
apply the rule (R1) to all the nodes in S, and for the rest of the rounds we only
consider “parallel” application of the propagation rule (R2). In every “parallel”
round we power dominate all the new nodes that can be power dominated by
applying the propagation rule to all of the nodes that are power dominated in
the previous “parallel” rounds. Given a parameter `, the `-round PDS problem
is the problem in which we want to power dominate all of the nodes in at most `
parallel rounds. Now we define the “parallel” propagation rule formally. Given a
graph G = (V,E) and a subset of nodes S ⊆ V , the set of nodes that can be power
dominated by applying at most ` rounds of parallel propagation, denoted by P`(S),
is defined recursively as follows:

P`(S) =


⋃
v∈S N [v] ` = 1

P`−1(S)
⋃{

v : {u, v} ∈ E,N [u] \ {v} ⊆ P`−1(S)
}

` ≥ 2

Given a graph G = (V,E) and a parameter `, the goal in the `-round PDS problem
is to find a minimum size subset of nodes S ⊆ V , such that P`(S) = V . Clearly,
the `-round PDS problem for ` = 1 is exactly the Dominating Set problem, and
for a graph G with n nodes the `-round PDS problem for ` ≥ n− 1 is exactly the
PDS problem.

A solution for the PDS problem provides a plan for installing monitoring devices
to monitor the whole power network, but it does not provide any guarantees on the
time-lag between a fault in the network and its detection. Deducing information
through a parallel round of propagation takes one unit of time and in some appli-
cations we want to detect a failure in the network after at most ` units of time.
The addition of the parameter ` achieves this time constraint.

We first prove the following theorem that gives a result with a weaker complexity
assumption of NP 6⊆ DTIME(npolylog(n)). In Section 3.4, we improve the complexity
assumption to P 6= NP, and we prove that it is NP-hard to approximate the `-round
PDS problem within ratio 2log1−εn, for any fixed ε > 0.

Theorem 3.3.4 The `-round PDS problem for any ` ≥ 4 cannot be approximated
within 2log1−ε n ratio, for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

42

vκ

aiκ

u1u2 uκ

eκ

e1

e2

eq

uκ

vq

u1

α

β

d2

d1

dκ
γ

v1

bj1

u2

v2 bj2

aiqbjq

uq
dq

w∗ ai1

bjκ ai2

v1v2 vκ

Figure 3.4: The cover testing gadget Dij

The reduction: Theorem 3.3.4 is proved by a reduction from the MinRep prob-
lem. In the following we create an instance G = (V ,E) of the `-round PDS problem
from a given instance G = (A,B,E)(H = (A,B, E)) of the MinRep problem.

1. Add a new node w∗ (master node) to the graph G, and add an edge between
w∗ and all the other nodes in G. Also add three new nodes w∗1, w

∗
2, w

∗
3 and

connect them to w∗.

2. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} do the following:

(a) Let Eij = {e1, e2, . . . , eκ} be the set of edges betweenAi = {ai1 , . . . , aimA}
and Bj = {bj1 , . . . , bjmB} in G, where κ is the number of edges between
Ai and Bj.

(b) Remove Eij from G.

(c) Let the edge eq ∈ Ei,j be incident to aiq and bjq (in G). In this labeling
for simplicity the same node might get different labels. Let Dij be the
graph in Figure 3.4 (a dashed line shows an edge between a node and
the master node w∗). Make λ = 4 new copies of the graph Dij and then
identify nodes aiq ’s, bjq ’s with the corresponding nodes in Ai and Bj (in
G). Note that the λ copies are sharing the same set of nodes, Ai and
Bj, but other nodes are disjoint.

3. Let G = (V ,E) be the obtained graph.

The analysis: The next lemma shows that the size of an optimal solution in `-
round PDS is exactly one more than the size of an optimal solution in the MinRep
instance. The number of nodes in the constructed graph is at most

∣∣V (G)
∣∣ ≤

4 + |V (G)| + 10λ |E(G)|. This shows that the above reduction is a gap preserving
reduction from MinRep to `-round PDS with the same gap (hardness ratio) as the

43

MinRep problem. Therefore, the following lemma will complete the proof of the
above theorem. As we mentioned above, the reduction given here is similar to the
one used for proving the hardness of the directed PDS problem. One important
part of the above construction (see Figure 3.4) is the gadget on the set of nodes
{α, β, γ}. Note that there should be such a gadget between the center node in Di,j

and each uq and vq; in Figure 3.4 not all of the gadgets are shown (for example
between u2 and the center node). This gadget introduces direction into undirected
construction, it allows the propagation in only one direction. After the center node
of Di,j is power dominated, all of the other nodes in Di,j are power dominated (by
the propagation rule). On the other hand, the power domination cannot propagate
through the gadget in the other direction (toward the center node).

Lemma 3.3.5 The pair (A∗, B∗) is an optimal solution to the instance G = (A,B,E)
of the MinRep problem if and only if Π∗ = A∗ ∪B∗ ∪ {w∗} ⊆ V (G) is an optimal
solution to the instance G of `-round PDS (for all ` ≥ 4).

Proof: The proof is similar to Lemma 3.1.2. The key property of the gadget is as
follows. Let eq =

{
aiq , bjq

}
be an edge between Ai and Bj. By picking aiq and bjq ,

it is easy to check that all λ = 4 copies of Dij can be power dominated in 4 parallel
rounds. �

3.4 Improved hardness results

In this section, we present our improved hardness result for the PDS, `-round PDS,
and Directed PDS problems. We prove our improved hardness results by giving
reductions from the Extended Label Cover problem.

Theorem 3.4.1 For any fixed ε > 0, it is NP-hard to approximate the `-round
PDS problem, for any ` ≥ 4, within ratio 2log1−ε n.

Let C = (Ψ, X, F,D,R) be an instance of the Extended Label Cover problem;
refer to Section 2.3.2 for the definition. Recall that each variable x ∈ X is assigned
an integer weight of W(x); let W = W(X).

Reduction: The reduction is an extension of the reduction used in the proof of
Theorem 3.3.4.

1. Start from an empty graph H. Corresponding to each variable x and each
a ∈ F add W(x) variable nodes, v1(x, a), . . . vW(x)(x, 1), to H. Corresponding
to each constraint ψ ∈ Ψ add λ = W + 2 constraint nodes, d1(ψ), . . . , dλ(ψ),
to H.

2. Add a new node w∗ to H, and connect w∗ to all of the variable nodes. Also
add new nodes w∗1, w

∗
2, w

∗
3 and connect them to w∗.

44

d1(ψ)

v1(x1, a1) vW(x)(x1, a1)

v1(xD, aD)

vj(xD, aD)

vW(xD)(xD, aD)

α

β

γ c

W(xD) nodes corresponding to (xD, aD)

W(x1) nodes corresponding to (x1, a1)

center node

Figure 3.5: First copy of the cover testing gadget corresponding to constraint ψ
and satisfying assignment (a1, . . . , aD) ∈ Rψ.

3. In the next step we “install” copies of the gadget shown in Figure 3.5. The
nodes inside the dashed box are called internal nodes, and the other nodes are
called external nodes of the gadget. A dashed edge shows an edge between
a node and the master node w∗. An important part of this gadget is the
subgraph on the set of nodes {α, β, γ}. Note that there should be such a
subgraph between the center node and the neighbor of each external node in
this gadget; in Figure 3.5 only one of these subgraphs is shown.

4. For each constraint ψ ∈ Ψ of C and for each satisfying assignment (a1, . . . , aD)
of ψ do the following:

(a) Assume constraint ψ depends on variables x1, . . . , xD.

(b) Add a copy of the gadget shown in Figure 3.5 between all the copies
of the variable nodes corresponding to (x1, a1), . . . , (xD, aD) and the ith
copy of the center node, di(ψ), for each i = 1, . . . , λ.

5. Let H be the obtained graph.

The following lemma completes the proof of Theorem 3.4.1. The proof is similar
to Lemma 3.1.2, and we skip it here.

Lemma 3.4.2 If the extended label cover instance C has an optimal solution of
weight W ∗, then γ(H) = W ∗. Moreover, f is an optimal solution to C if and only
if {w∗} ∪ {vi(x, a)|i = 1, . . . , W(x), a ∈ f(x)

}
is an optimal solution to H.

By ignoring the parameter ` in the analysis of the above construction, we get
the improved hardness result for the PDS problem.

45

Theorem 3.4.3 For any fixed ε > 0, it is NP-hard to approximate the unweighted
PDS problem within ratio 2log1−ε n.

Using a directed version of the gadget in Figure 3.5, we can prove the following
improved result for the Directed PDS problem.

Theorem 3.4.4 For any fixed ε > 0, it is NP-hard to approximate the Directed
PDS problem within ratio 2log1−ε n even when restricted to directed acyclic graphs.

3.5 Conclusion

We studied the PDS problem from the perspective of approximation algorithms.
We introduced a natural extension of the problem to directed graphs, and we also
introduced the `-round PDS problem. We showed that these problems have a
threshold of O(2log1−ε n) for the hardness of approximation. We presented an ap-
proximation algorithm with a guarantee of O(

√
n) for Planar PDS.

Here, we describe an algorithm with an approximation guarantee of O(n
logn

) for
the PDS problem. The algorithm works as follows. Partition the nodes of the graph
G into log n equal-sized sets V1, V2, · · · . Next, consider all possible subfamilies of
these sets, and consider the union of sets in each subfamily as a candidate solution
for the PDS problem on G. Among all these different candidates, output the one
that power dominates G and has the minimum number of nodes. Note that in the
algorithm we only consider 2logn = n different candidates. Clearly, the algorithm
runs in polynomial time, since the feasibility of each candidate can be tested in
polynomial time. Let S∗ be an optimal solution. It is easy to see that the set of
Vi’s that intersect S∗ forms a solution for the PDS problem in G; this solution has
size at most n

logn
· |S∗|. This establishes the approximation guarantee. The same

algorithm and analysis applies to the Directed PDS and `-round PDS problems.

Proposition 3.5.1 There is a polynomial-time approximation algorithm with a
guarantee of n

logn
for the PDS, Directed PDS, and `-round PDS problems.

There is a gap between our hardness threshold of O(2logn1−ε
) and our approximation

guarantee of O(n
logn

), and narrowing this gap is an open question.

A major open question in the area is whether there exists a PTAS (polynomial
time approximation scheme) for Planar PDS. A first step may be to obtain an
improvement on our approximation guarantee of O(

√
n). There has been a lot of

research on designing PTASs for NP-hard problems on planar graphs. Some of the
most important developments are the outerplanar layering technique by Baker [7],
and the bidimensionality theory by Demaine and Hajiaghayi [22]. Unfortunately,
these methods do not apply to Planar PDS; this is explained in the following
two paragraphs.

46

Baker [7] showed that the Dominating Set problem in planar graphs has a
PTAS. In the Baker method we first partition the graph into smaller graphs. Then
we solve the problem optimally on each subgraph, and finally we return the union
of the solutions as a solution for the original graph. The example in Figure 2.1
shows that this method does not apply to Planar PDS. The size of an optimal
solution is 1, but if we apply the Baker method, then the size of the output solution
will be at least as large as the number of subgraphs in the partition which can be
Θ(n).

=⇒

v v

G G′

e1 en

u1 un

Figure 3.6: Optimal value of PDS increases when edges are contracted.

Demaine and Hajiaghayi [22] introduced the bidimensionality theory and used
it to obtain PTASs for several variants of the Dominating Set problem on planar
graphs. An important property of bidimensionality is that when an edge is con-
tracted the size of an optimal solution should not increase. Consider the example in
Figure 3.6. If we contract edges e1, e2, . . . , en in G, then we get the graph G′. It can
be checked that γ(G) = 1, but γ(G′) = Θ(n). Thus, the bidimensionality theory
does not apply to Planar PDS since the optimum value may increase when an
edge is contracted.

47

Chapter 4

Algorithms for the general
propagation problem

In this chapter, we present dynamic programming algorithms for the PDS prob-
lem (defined in Chapter 2) and the Propagation problem (defined in Chapter
3). We introduce a common generalization of both problems called the General
Propagation problem. We reformulate it as an orientation problem. Our dy-
namic programming algorithm is based on this reformulation, and it can optimally
solve the generalized problem on graphs with bounded tree-width. We introduce
a restricted version of the problem called the `-round General Propagation
problem. We present a PTAS for this problem on planar graphs for small values of
the parameter `.

Courcelle et al. [21] proved that, on graphs of bounded tree-width, any problem
that can be formulated in monadic second-order logic is solvable in linear time.
Kneis et al. [43] formulated the PDS problem in the monadic second-order logic;
this gives a linear time algorithm for PDS on graphs of bounded tree-width. Guo
et al. [30] developed a combinatorial algorithm based on dynamic programming
for optimally solving PDS on graphs with bounded tree-width in linear time. The
key idea in their combinatorial algorithm is a new formulation of PDS in terms of
“valid orientation” of edges. Our dynamic programming algorithms are built on
this orientation formulation.

The outerplanar layering technique by Baker [7], and the bidimensionality the-
ory by Demaine and Hajiaghayi [22] are two important developments on planar
graphs (refer to Section 3.5 for more discussion). Baker [7] showed that the Dom-
inating Set problem in planar graphs has a PTAS. Demaine and Hajiaghayi [22]
introduced the bidimensionality theory and used it to obtain PTASs for several
variants of the Dominating Set problem on planar graphs.

The main results in this chapter are as follows:

• In Section 4.1, we design a linear time dynamic programming algorithm to
optimally solve the General Propagation problem in weighted graphs

48

of bounded tree-width. Next, we present a polynomial-time dynamic pro-
gramming algorithm to optimally solve the `-round General Propagation
problem in bounded tree-width graphs. Our methods are based on extend-
ing the orientation formulation for the PDS problem, given by Guo et al.
[30], to the General Propagation and `-round General Propagation
problems.

• In Section 4.2, we present a PTAS for the `-round General Propagation
problem on planar graphs for small values of `. Our methods are based on
Baker’s methods [7], and it turns out that Baker’s PTAS for the Dominating
Set problem is a special case of our result.

• In Section 4.3, we focus on directed graphs, and we give a linear time algo-
rithm based on dynamic programming for directed PDS when the underlying
undirected graph has bounded tree-width.

• In Section 4.4, we focus on the Target Set Selection problem from social
network theory. We show that our algorithmic results from Sections 4.1 and
4.2 can be adapted to provide similar results for this problem.

4.1 Dynamic programming for bounded tree-width

graphs

4.1.1 Reformulation of the General Propagation problem

In this subsection we introduce the General Propagation problem, a problem
that contains both the PDS and Propagation problems as special cases. The
General Propagation problem is reformulated as an orientation problem; this
reformulation is an extension of the orientation formulation for the PDS prob-
lem given by Guo et al. [30]. Based on this reformulation a linear time dynamic
programming algorithm is provided for bounded tree-width graphs.

Let G = (V,E) be an undirected graph. In the General Propagation
problem, there are two types of nodes: domination and simple nodes. The set of
domination nodes are denoted by VD, and the rest of the nodes (i.e., V \ VD) are
simple nodes. The set VD is part of the input, so in each instance of the General
Propagation problem the type of each node is fixed. There are two covering rules.
Informally speaking, in the first rule a domination node covers all of its neighbors
in addition to itself, but a simple node covers only itself. The second rule is the
same as the propagation rule stated in the PDS and Propagation problems. The
formal definitions are given below. Given a set of nodes S the set of nodes covered
by S, denoted P∗(S), is obtained as follows.

(R1) (a) if v ∈ S is a domination node, then v and all of its neighbors are added
to P (S);

49

Figure 4.1: An instance of the General Propagation problem

(b) if v ∈ S is a simple node, then v is added to P (S)

(R2) (propagation) if node u is in P (S), one of its neighbors, v, is not in P (S),
and all other neighbors of u are in P (S), then v is inserted into P (S).

The set P (S) changes as we apply (R1) and (R2); the final set P (S) is denoted
by P∗(S). We say that node v is picked if v is in the set S, and we say that v is
covered if it is inserted into P (S) by either rule (R1) or (R2). We denote the size of
the optimal solution that covers all nodes of G by δ(G, VD) (or, for short, by δ(G)).
When we apply rule (R1) to domination node u to cover node v, we say that v is

covered by applying the domination rule to u and denote it by u
D→ v. Similarly,

when we apply rule (R2) to node u to cover node v, we say that v is covered by

applying the propagation rule to u and denote it by u
P→ v. When all nodes are of

the domination type (i.e., VD = V) we get the PDS problem, and when all nodes
are of simple type (i.e., VD = ∅) we get the Propagation problem.

Consider the 4 × 4 grid shown in Figure 4.1 and assume that the black nodes
are the domination nodes and the gray nodes are the simple nodes. Consider
Figure 4.2(a) and assume that we have picked the two nodes denoted by a square.
First, by applying the domination rule to the black node, we cover all four of its
neighbors; these dominations are denoted by the 4 arrows labeled by D in the figure.
Next, by applying the propagation rule sequentially to the nodes we can cover all
the remaining nodes in this graph. The applications of the propagation rule are
denoted by arrows labeled by P . The covered nodes are enclosed in circles. Figure
4.2(b) shows the same 4× 4 grid, where we have picked different nodes. The three
nodes picked cannot cover the whole graph. We can only apply the domination rule
to the first node in the first row to cover its neighbor in the second column. We
can apply the propagation rule only twice, as shown in the figure. At this stage,
any covered node either has no non-covered neighbors or has at least 2 non-covered
neighbors. Therefore, we cannot apply the propagation rule any more. The covered
nodes are enclosed in circles.

We reformulate the General Propagation problem as an orientation prob-
lem; our dynamic programming algorithms are based on the new formulation. Infor-

50

D

D

D

D

P

P

P P

P

P P

P

P

P

(a) Feasible solution

D

P

P

(b) Infeasible solution

Figure 4.2: Applications of covering rules; picked nodes are enclosed in a square,
and covered nodes are enclosed in a circle.

mally speaking, the orientation of edges shows how the propagation rule is applied;

that is, we orient the edge {u, v} from u to v if u
D/P→ v.

Definition 4.1.1 An orientation of an undirected graph G = (V,E) is obtained by
assigning an orientation to some (but not necessary all) edges of G. We denote an

orientation of G by Ô = (V,Ed, Eu) where Ed is the set of oriented edges and Eu
is the set of undirected edges.

u1u2

u3

u4 u5

u6 u7 u8

(a) Valid orientation

u3u4

u2u1

v w

u

(b) Invalid orientation

Figure 4.3: Orientations of the 4× 4 grid given in Figure 4.1.

Definition 4.1.2 A dependency path, P = v0, e1, v1, e2, v2, . . ., in an orientation
Ô is a sequence of some edges such that P has no two consecutive unoriented edges
and each oriented edge ei in P is oriented from vi−1 to vi (i.e., all oriented edges are
directed away from the start node of P). The length of a dependency path is defined
as the number of oriented edges in the path. A dependency cycle is a dependency
path that starts and ends at the same node.

51

Figure 4.3 shows two different orientations for the example of the General
Propagation problem given in Figure 4.1. Consider the first orientation given in
4.3(a). The path P = u1, u2, u3, u4, u5, u6 is a dependency path since all oriented
edges are in the same direction and there are no two consecutive unoriented edges.
The path P ′ = u1, u2, u3, u6, u5 is not a dependency path since it has two consecutive
unoriented edges. Also, the path P ′′ = u1, u6, u5, u4 is not a dependency path, since
(u5, u4) is a backward edge. It can be checked that there are no dependency cycles
in this orientation.

Definition 4.1.3 A valid orientation Ô = (V,Ed, Eu) of an undirected graph G =
(V,E) is an orientation of G with the following properties:

(O1) Each node of the directed graph Gd = (V,Ed) has in-degree at most 1:

∀v ∈ V : d−Gd(v) ≤ 1

(O2) A simple node with no in-coming edges has at most 1 out-going edge:

∀v ∈ V \ VD : d−Gd(v) = 0 =⇒ d+
Gd

(v) ≤ 1

(O3) A node with an in-coming edge has at most 1 out-going edge;

∀v ∈ G : d−Gd(v) = 1 =⇒ d+
Gd

(v) ≤ 1

(O4) G has no dependency cycle.

A node with in-degree 0 in Gd = (V,Ed) is called a source of Ô.

Consider the graph in Figure 4.1 and its orientation given in 4.3(a). It can be
checked that there are no dependency cycles in this orientation, and also all of the
degree constraints (O1-O3) are satisfied. Hence, the considered orientation is a
valid orientation. Now consider the second orientation given in Figure 4.3(b). This
orientation is not valid since it violates the properties of a valid orientation:

• The condition (O1) is violated because the node v has in-degree 2

• The condition (O2) is violated because the simple node u has in-degree 0 and
out-degree 2

• The condition (O3) is violated because w has in-degree 1 but out-degree 2,

• The condition (O4) is violated because the cycle C = u1, u2, u3, u4, u1 is a
dependency cycle; note there are no 2 consecutive unoriented edges, and all
edges are in the same direction. There are several other dependency cycles, for
example, there is a dependency cycle of length 9 containing the edge (v, w),
indicated by dashed lines.

52

Theorem 4.1.4 Let G be an instance of the General Propagation problem.
The graph G has a valid orientation with S as the set of sources if and only if
P(S) = V (G).

Proof: Let VD be the set of nodes of domination type. Suppose S ⊆ V (G) is a
solution to the General Propagation problem; thus, P∗(S) = V (G). Then we

give a valid orientation Ô with S as the set of sources by orienting the edges in G
according to the way that S propagates inG. We orient an edge (v, w) from v toward
w if either v is a domination node and w is covered by applying the domination

rule to v (i.e., v
D→ w), or node w is covered by applying the propagation rule to v

(i.e., v
P→ w). When we apply the covering rules to S, we first apply all possible

domination rules, and only after that we apply the propagation rules. Also, we do
not apply the domination rule or the propagation rule to cover previously covered
nodes. It is easy to check that with this orientation the degree requirements (O1-
O3) are satisfied; each node can be covered at most once (O1), the propagation rule
can be applied to a node v and cover at most one of the neighbors of v (O2-O3).

Now, we need to prove that there is no dependency cycle. We write v < w when
a node w is covered in a round after node v. By way of contradiction, suppose that
C∗ = u1, u2, . . . , um is a dependency cycle. Note that all oriented edges in C∗ are
in the same direction, say oriented in the forward direction. First we claim that
there is no source node of domination type in C∗. Suppose u2 is a source node (i.e.,
u2 ∈ S) of domination type in C∗ such that the covering rule (R1) is applied to u2

before any other node in this cycle, and assume that {u2, u3} is oriented from u2

to u3. Since u2 is a source node, then either {u1, u2} is oriented in the backward
direction (i.e., from u2 to u1) or it is unoriented. The first case is not possible, since
in C∗ all oriented edges are in the same direction. If {u1, u2} is unoriented, then
{um, u1} cannot be oriented from um to u1; note that the covering rule is applied
to u2 before any other node in C∗, so u1 cannot be covered through um. Hence, the
two consecutive edges incident to u1 in C∗ are unoriented. This is a contradiction,
so C∗ has no source node of domination type.

Now, focus on the edges of C∗. Assume that all edges in C∗ are oriented.
Then the oriented edges (ui, ui+1) imply that ui < ui+1 for all i = 1, 2, . . . ,m − 1;
therefore, u1 < u2 < · · · < um, but this is a contradiction since the last oriented
edge from um back to u1 implies that um < u1. Hence, there is no dependency
cycle with all edges oriented. Now, assume that the dependency cycle C∗ has some
unoriented edges. We show that a similar contradiction occurs when there are no
two consecutive unoriented edges. Consider an unoriented edge {v, w} of C∗, and
consider the maximum sequence w1 = w, . . . , w` of oriented edges starting from w
in the cycle C∗; such a sequence exists since there are no two consecutive unoriented
edges in C∗. Note that there is an in-coming edge to v in the cycle C∗, so v cannot
be a source node. Therefore, by the propagation rule, we see that v should be
covered before the propagation rule can be applied to w1 = w to cover w2; thus, we
have w2 > v. The oriented edge from wi to wi+1 (for i ≥ 2) shows that wi+1 > wi.

53

Combining these dependencies, we see that v < w`; i.e., v is covered before the last
node, in the sequence of oriented edges starting from w1, is covered. Repeating
this argument, we get an ordering in which some of the nodes in C∗ are covered.
This cyclic ordering gives a contradiction. As an example, suppose that m is even
and the edges of C∗ are alternatively unoriented and oriented (starting with an
unoriented edge); then we get u1 < u3 < u5 < · · · < um−1 < u1 (see Figure 4.4 for
an example) and this gives the contradiction u1 < u1. Hence, the first part of the
theorem follows: If S is a solution to the General Propagation problem, then
G has a valid orientation with S as the set of sources.

u1 u2 u3 u4 u5 u6

Figure 4.4: A dependency cycle

Now suppose that G has a valid orientation Ô = (V,Ed, Eu) with S ⊆ V (G) as
the set of sources. Note that the domination nodes in S (i.e., S∩VD) cover all their

out-neighbors in the orientation Ô; the set of nodes covered by these applications
of (R1) is Y = S ∪ {w ∈ V : ∃v ∈ S ∩ VD, (v, w) ∈ Ed}. If there is a node v in Y
with an out-neighbor w 6∈ Y such that v has no other neighbors in V \ Y , then by
applying rule (R2) we can cover w; note that we applied the propagation rule (R2)

to v to cover w according to the orientation Ô. Now, we prove that by applying
the propagation rule to nodes in Y (according to the orientation Ô) we can cover
all nodes in G. Suppose that this does not occur; that is, P∗(S) 6= V (G). Let
X ⊂ V be the maximal set of nodes that can be covered by Y ; that is, P∗(S) = X.
We claim that there is at least one oriented edge from X to V \ X. Note that
all of the sources are in X, so each of the nodes in V \ X has in-degree 1 in
Gd = (V,Ed). Hence, if there is no oriented edge from X to V \ X, then there
should be an oriented cycle in G[V \ X]. This is not possible since there are no
dependency cycles. Therefore, there is at least one oriented edge from X to V \X.
Let e1 = (x1, y1), . . . , ek = (xk, yk) be all of the oriented edges from X to V \X. If
some xi has all of its neighbors in X except yi, then by applying the propagation
rule to xi the node yi will be covered. By the maximality assumption of X this
cannot happen. Therefore, each xi has another neighbor, say zi, in V \ X. Then
(xi, zi) is an unoriented edge by the out-degree requirement; either xi has in-degree
1 and (O2) applies or xi is a simple node and (O3) applies, so xi has out-degree at
most 1. Now, we construct a dependency cycle as follows: starting from x1, use an
unoriented edge to move to a node z1 in V \X; then move in the reverse direction
over a sequence of oriented edges (z2, z1), (z3, z2), · · · (such a sequence exists since
each zi ∈ V \ X is not a source node, so it has in-degree 1) until we reach an
oriented edge (zi, zi−1) with zi−1 ∈ V \ X and zi ∈ X (such an edge exists since
G[V \ X] has no oriented cycle); note that (zi, zi−1) is one of the oriented edges
(x1, y1), · · · , (xk, yk). If zi = x1, then we have a dependency cycle; otherwise, we
again use an unoriented edge (zi, zi+1) to move to a node in V \X. By repeating

54

these steps, we will eventually find a dependency cycle. Note that all oriented edges
are in the same direction and there are no two consecutive unoriented edges in this
cycle. This is a contradiction, since Ô has no dependency cycle. Hence, we have
X = V , so S covers G. Hence, the second part of the theorem follows: If G has a
valid orientation with S as the set of sources, then P∗(S) = V (G). �

Theorem 4.1.5 Let (G, W) be a node-weighted graph that has bounded tree-width;
that is, tw(G) = O(1) and W : V (G)→ R. There is a linear time dynamic program-
ming algorithm that solves the General Propagation problem on (G, W).

The proof is given in Appendix B, which shows the design and analysis of a dy-
namic programming algorithm; the dynamic program makes critical use of the tree
decomposition of G of bounded tree-width.

4.1.2 Reformulation of the `-round General Propagation
problem

In this subsection, we introduce an extension of the General Propagation prob-
lem called the `-round General Propagation problem. We reformulate it as an
orientation problem, and based on this reformulation, we provide a polynomial-time
dynamic programming algorithm for bounded tree-width graphs.

Let us formalize the notion of parallel rounds. Let G = (V,E) be a given graph,
and assume that VD is the set of nodes of domination type. Given a positive integer
`, and a subset of nodes S ⊆ V , the set of nodes that can be covered by applying, at
most, ` rounds of parallel propagation, denoted by P`(S, VD), is defined recursively
as follows. To simplify the notation, when the set VD is clear from the context, we
denote the set of covered nodes by P`(S).

P`(S) =


S ` = 0
S
⋃
N [S ∩ VD]

⋃ {v : {u, v} ∈ E,N [u] \ {v} ⊆ S} if ` = 1
P`−1(S)

⋃{
v : {u, v} ∈ E,N [u] \ {v} ⊆ P`−1(S)

}
if ` > 1

In the first round, we apply the domination rule to all of the domination nodes
in S and cover N [S ∩ VD], and we apply one parallel round of the propagation
rule to the simple nodes in S and cover {v : {u, v} ∈ E,N [u] \ {v} ⊆ S}. In more
detail, if u is a domination node, then all of its neighbors are added to P1(S) by
the domination rule. If u is a simple node, and all of its neighbors except v are in
S, then v is added to P1(S) by the propagation rule. After the first round, there is
no distinction between the domination nodes and the simple nodes, and we apply
the propagation rule in `− 1 parallel rounds.

The goal in the `-round General Propagation problem is to find a minimum-
sized subset of nodes S ⊆ V , such that P`(S) = V . We use δ`(G, VD) to denote
the size of an optimal solution for the `-round General Propagation problem

55

on G, where VD is the set of domination nodes. An extension of the problem is
also of interest: the goal is to cover a given subset V ′ of the nodes in G – i.e., find
a minimum-sized set of nodes S such that V ′ ⊆ P`(S). We denote an instance of
the extended problem by 〈G, VD, V ′〉, and we denote by 〈G, W, VD, V ′〉 an instance
of the problem when G is a weighted graph with node-weights W. We reformulate
the `-round General Propagation problem as an orientation problem. In order
to make sure that nodes are covered in at most ` parallel rounds, we need to know
the round in which nodes are covered in addition to the way that the propagation
occurs.

Definition 4.1.6 (valid timed-orientation) Let 〈G, VD, V ′〉 be an instance of the
extended `-round General Propagation problem. A valid-timed orientation
for 〈G, VD, V ′〉 is an orientation Ô = (V,Ed, Eu) (see Definition 4.1.1) together
with a time vector {tv : v ∈ V } (where tv ∈ {0, 1, . . . , `} ∪ {+∞}) that satisfies the
following properties:

(P1) ∀v ∈ V ′ : 0 ≤ tv ≤ `,

(P2) ∀v ∈ V : 1 ≤ tv ≤ `⇒ d−Gd(v) = 1,

(P3) ∀v ∈ V : tv = +∞⇒ d−Gd(v) = d+
Gd

(v) = 0,

(P4) ∀v ∈ V : tv = 0⇒ d−Gd(v) = 0,

(P5) ∀(u, v) ∈ Ed : tv =

{
1 if tu = 0 and u ∈ VD
1 + max {tw : w ∈ N [u] \ v} otherwise.

where Gd = (V,Ed). A node v with tv = 0 is called a source of the valid timed-
orientation.

Consider the 4× 4 grid in Figure 4.5, and suppose that the black nodes are of
the domination type and the gray nodes are of the simple type. Assume that the
goal is to cover all nodes (i.e., V ′ = V) in ` = 5 parallel rounds. Picking the nodes
enclosed in a square, we can cover all nodes in 5 parallel rounds. The label assigned
to each node shows the round in which the node is covered. It is easy to check that
the orientation shown, together with the time-label assigned to the nodes, satisfy
properties (P1-P5); moreover, the orientation and the labels correspond to the way
that the parallel propagation rule is applied. For example, focus on the property
(P5) and consider the following two oriented edges, e1 = (u, v), and e2 = (u′, v′).
Domination node u is picked, so it covers all of its neighbors (e.g., v) in 1 round.
Simple node u′ is picked, but it has 3 neighbors that are not picked. Thus, u′ cannot
cover v′ unless all of its neighbors except v′ are covered, and this happens in the
2nd parallel round.

Theorem 4.1.7 Let 〈G, VD, V ′〉 be an instance of the extended `-round General
Propagation problem. Then S ⊆ V is the set of sources of a valid `-round
orientation if and only if V ′ ⊆ P`(S, VD).

56

0

12

1

1

0

2

3 4

5

5

5

1

4

43

v

u

u′

v′

Figure 4.5: A valid timed-orientation of a 4× 4 grid

Proof: Suppose S ⊆ V covers V ′ in at most ` parallel rounds; e.g., V ′ ⊆ P`(S, VD).
We construct a valid `-round orientation with S as the set of sources as follows.
We orient the edges in the same way as the domination rule and the propagation
rule apply. Consider an edge {u, v} ∈ E(G) and assume that v is covered by
applying either the propagation rule or the domination rule to u, then we orient
the edge {u, v} from u toward v. We do not apply any one of the rules to cover
a previously covered nodes; this is needed to make sure that the property (P2)
is satisfied. Let Ed be the set of oriented edges and let Eu be the rest of the
edges. This defines an orientation Ô = (V,Ed, Eu) of G. Now we define the time
vector. For any node v that is not covered let tv = +∞, and for any other node
v ∈ P`(S, VD) let tv = min {r : r ≥ 0, v ∈ Pr(S)}. It is straightforward to check
that the above orientation and time vector {tv : v ∈ V } satisfies properties (P1)-
(P5) in the definition of the valid `-round orientation. Hence, there is a valid
`-round orientation with S as the set of sources.

Now assume that G has a valid `-round orientation with S as the set of sources.
Consider the corresponding orientation Ô = (V,Ed, Eu) and the time vector (tv :
v ∈ V) that satisfied properties (P1)-(P5). Define Vr = {v ∈ V : 0 ≤ tv ≤ r}.
We claim that Vr ⊆ Pr(S, VD). First note that this completes the proof, since
any node v ∈ V ′ has 0 ≤ tv ≤ ` by (P1). We prove the claim by induction
on r. For the base case r = 1 we need to check that V1 ⊆ S ∪ N [S ∩ VD] ∪
{v : (u, v) ∈ E,N [u] \ {v} ⊆ S} = P1(S, VD). By (P5), each node v ∈ V1 with
tv = 1 has an in-coming edge from a source node u with tu = 0. There are two
cases to consider:

1. u is a domination node: The node v can be covered by the domination rule
in the first round; i.e., v ∈ N [S ∩ VD].

2. u is a simple node: so by (P5) all neighbors of u except v have time-label 0.
Hence, N [u] \ v ⊆ S, and consequently v can be covered in the first round by
applying the propagation rule to u; i.e., v ∈ {v : (u, v) ∈ E,N [u] \ {v} ⊆ S}

Now assume that the induction hypothesis holds for r = k (where k ≥ 1),
Vk ⊆ Pk(S, VD). Consider a node v such that tv = k + 1. By (P2) it has ex-

57

actly one incoming edge, say (u, v) ∈ Ed. The node u has tu ≥ 1, so by prop-
erty (P5) any w ∈ N [u] − v has tw ≤ k. Therefore, N [u] \ {v} ⊆ Pk(S, VD).
This is correct for any node v with tv = k + 1, so X = {v ∈ V : tv = k + 1} ⊆{
v : (u, v) ∈ E,N [u] \ {v} ⊆ Pk(S, VD)

}
. Hence, by the definition of the paral-

lel propagation rule X can be covered in one parallel round, so we have Vk+1 =
Vk ∪X ⊆ Pk+1(S, VD). This proves the induction step and completes the proof. �

Theorem 4.1.8 Given an instance 〈G, W, VD, V ′〉 of the `-round General Prop-
agation problem where G = (V,E) is an undirected graph with tree-width k,
a minimum weight set S ⊆ V such that V ′ ⊆ P`(S) can be obtained in time
O(ck

2+k log ` · |V |), for a constant c. Moreover, if G is a planar graph, then the
algorithm has the running time of O(ck log ` · |V |).

The proof is given in Appendix B, which shows the design and analysis of a dynamic
programming algorithm.

4.2 PTAS for `-round General Propagation prob-

lem on planar graphs

In this section, we provide a PTAS for the `- round General Propagation
problem on planar graphs for ` = O(logn

log logn
).

Consider a fixed embedding of a planar graph G. We define the nodes at level i
denoted by Li as follows [7]. Let L1 be the set of nodes on the exterior face of the
given embedding of G. For i > 1, the set Li is defined as the set of nodes on the
exterior face of the graph induced on V \ ∪i−1

j=1Lj; that is, we delete the nodes in
L1 ∪ . . . Li−1 from the embedding of G, then take Li to be the set of nodes on the
exterior face. We denote by L[a, b] = ∪bi=aLi the set of nodes at levels a through b.
A planar graph is called d-outerplanar if it has an embedding where no node is at
a level greater than d. For example, consider the graph in Figure 4.6. Clearly, the
graph is a 2-outerplanar graph. The set L1 = {u1, u2, . . . , u8} is the set of nodes at
level 1, and the set L2 = {v1, v2, . . . , v8} is the set of nodes at level 2.

u3

u4

u5u6

u8

u7

u1 u2

v3

v1 v2

v5v6

v4v7

v8

Figure 4.6: A 2-outerplanar graph

58

Before describing our PTAS, let us look at Baker’s PTAS [7] for the Dominat-
ing Set problem on planar graphs. Given the parameter ε = 1

k
, Baker’s algorithm

finds a solution with a size within (1 + ε) times the optimal value. This algorithm
considers k different decompositions, D1, . . . ,Dk, of the nodes of G and then finds
a solution for each of them. The ith decomposition consists of blocks with k + 1
consecutive levels. The jth block in decomposition Di contains nodes of levels jk+i
through (j+1)k+ i. (Note that each Di is obtained from D1 by shifting the levels.)
Also note that every two consecutive blocks in a given decomposition share a com-
mon level. Next, the algorithm solves the Dominating Set problem optimally on
each block of Di. This is possible since each block is (k + 1)-outerplanar; hence, it
has a tree-width of at most 3(k + 1)− 1 [11], and the Dominating Set problem
can be solved optimally by dynamic programming [7]. (The result in Section 4.1.2
for ` = 1 also shows this fact). It then takes the union of the optimal solutions
for the blocks in Di to obtain a solution for the Dominating Set problem in
graph G. Let Si denote this solution. Thus, we get k solutions S1, . . . , Sk from the
decompositions D1, . . . ,Dk. Finally, the algorithm outputs the solution that has
minimum size, i.e., mini=1,...,k |Si|, among all k decompositions. It is not hard to
argue that the size of this solution is within k+1

k
= 1 + ε times the optimal value.

The key property needed for this argument is the fact that consecutive blocks share
a common level.

Algorithm 2 PTAS for `-round General Propagation

1: Given a planar embedding of G, and the parameter 0 < ε ≤ 1.
2: Let k = 4 · d `

ε
e.

3: for i = 1 to k do
4: for all j ≥ 0 do
5: Solve the extended problem on Ii,j = 〈G[Bi,j], VD ∩ Ci,j, Ci,j〉
6: Let Oi,j be an optimal solution for Ii,j
7: end for
8: Πi = ∪j≥0Oi,j
9: end for

10: r ← argmin {W(Πi) : i = 1, · · · , k}
11: Output ΠO = Πr.

Let us describe our PTAS informally. Consider a parameter k, that is a function
of the parameter ` and the approximation factor (1 + ε); k will be defined later in
the formal description of our algorithm. Consider a fixed planar embedding of G.
We decompose the graph in k different ways, D1, . . . ,Dk. In each decomposition the
graph is decomposed into blocks of k+ 4` consecutive levels. The jth block in Di is
defined as Bi,j = L[jk+ i− 2`, (j+ 1)k+ i− 1 + 2`]. We denote the k middle levels
of Bi,j by Ci,j = L[jk+ i, (j+1)k+ i−1]. In our PTAS, for each decomposition Di,
we optimally solve instances Ii,j = 〈G[Bi,j], VD ∩Ci,j, Ci,j〉 of the extended `-round
General Propagation problem in each block of Di. Note that each instance
Ii,j can be optimally solved by using the dynamic programming algorithm given in
Section 4.1.2. Let Oi,j denote the optimal solution for this instance. We then take

59

the union of the solutions corresponding to blocks in Di; Πi = ∪j≥0Oi,j. By doing
this for all k decompositions we get k different solutions for the original graph G.
Finally, we choose the solution with minimum weight among these k solutions. We
will see that the 2` extra levels around the k middle levels plays an important role
in the feasibility and the near optimality of the final output of the algorithm.

To make the role of common levels clear, consider an instance of the 4-round
General Propagation problem shown in Figure 4.6. Suppose that all nodes in
this graph are of domination type (i.e., VD = V). Hence, the considered problem is
actually the 4-round PDS problem. Assume that we partition the planar graph into
two blocks. The first block is the outer cycle and the second block is the inner cycle.
It is easy to check that the size of an optimal solution in any one of these blocks is 1.
For example {u1} and {v5} are optimal solutions for the first block and the second
block respectively. But if we consider the original graph G, it is straightforward to
check that S = {u1} ∪ {v5} is not a solution; the set of nodes that can be power
dominated in at most four parallel rounds is P4(S) = {u1, u2, u5, u8, v1, v4, v5, v6}.
Note that the propagation rule was applied in the subgraph but not in the original
graph, so in the subgraph u may have all but one node of N [u] in P (S) but this
need not hold for the original graph (see u8, for example).

To prevent such difficulties we need to consider extra levels around each block
as we did in the blocks Bi,j above. We will show that our algorithm finds a solution
S for the instance Ii,j such that S in the original graph G covers at least the k
middle levels of Bi,j. This implies that the union of the solutions for the blocks in a
given decomposition will be a solution for G, since the union of the k middle levels
of the blocks covers all the nodes in G.

Theorem 4.2.1 Let ` be a given parameter, where ` = O(logn
log logn

). Then Algorithm
2 is a PTAS for the weighted `-round General Propagation problem on planar
graphs.

Proof: Let Π∗ be an optimal solution for the `-round General Propagation
problem in G. To prove the theorem, it is enough to prove the following two claims:

1. Oi,j is a solution for the instance 〈G, VD, Ci,j〉 of the extended `-round Gen-
eral Propagation problem,

2. Π∗ ∩Bi,j is a solution for 〈G[Bi,j], VD ∩ Ci,j, Ci,j〉.

First let us see how the theorem follows from the above claims. The first claim shows
that Πi, for each i, is a solution for the `-round General Propagation problem
on G, since ∪j≥0Ci,j = V . The second claim shows that W(Oi,j) ≤ W(Π∗ ∩ Bi,j), so
W(Πi) ≤

∑
j W(Π∗ ∩Bi,j). In the right hand side we have counted the nodes in the

optimal solution twice on 4` common levels between any two consecutive blocks.
By considering all values of the parameter i, 1 ≤ i ≤ k, we can find i such that the
weight of double counted nodes from the optimal solution Π∗ is at most 4`

k
W(Π∗).

60

This implies that W(ΠO) ≤ (1 + 4`
k

)W(Π∗), where ΠO is the output of the algorithm
and W(ΠO) = min1...k W(Πi). By setting k = 4 · d `

ε
e, we get an (1 + ε) approximation

algorithm.

Now we analyze the running time of the algorithm. In step (5) we solve an
instance of the extended `-round General Propagation problem. The graph in
this instance has k + 4` levels, so it is (k + 4`)-outerplanar. It is known that the
tree-width of any d-outerplanar graph is at most 3d− 1 [11]. Therefore, step (5) of
our algorithm can be done in cO(`/ε log `) time by Theorem 4.1.8, since the considered
graph has tree-width at most 3(k+ 4`)− 1 < 12(d `

ε
e+ `). This shows that ` should

be O(log n/log log n) in order to have a polynomial-time algorithm and in this case

step (5) can be done in nO(1
ε
) time. Also note that the value of j can be at most

n
k
, since the number of levels in a planar graph is at most n (the number of nodes)

and each Ci,j has k levels. This shows that the algorithm executes step 5 at most
k× n

k
= n times. Therefore, the running time of the algorithm is polynomial in the

number of nodes of G for a fix ε > 0.

Proof of the first claim: We know that Oi,j is a solution for 〈G[Bi,j], VD ∩
Ci,j, Ci,j〉. Let tv denotes the round in which node v is covered in G[Bi,j]. Hence,
any node v ∈ Ci,j and possibly some nodes v ∈ Bi,j \ Ci,j satisfy 0 ≤ tv ≤ `. For
simplicity we use L(s) to denote the levels L[jk+i−2(`−s), (j+1)k+i−1+2(`−s)]
for any s ≥ 0; note that L(0) = Bi,j and L(`) = Ci,j. Observe that L(s+ 1) (for
s ≥ 1) is obtained from L(s) by deleting the first two and the last two levels of
L(s).

First note that by taking Oi,j all nodes with tv = 0 in L(0) are covered in
G. Next, we claim the following: for each s, 0 ≤ s ≤ `, all nodes v ∈ L(s)
with tv ≤ s can be covered in G in at most s parallel rounds. We prove the
statement by induction on s. The base case s = 0 is trivial. Assume that the
statement is correct for all s < s′. Consider a node v with tv = s′ which lies in
L(s′), and assume that it was covered by applying the propagation rule to node u
(see Figure 4.7 for an illustration). It is easy to see that u is inside of the levels

Ci,j

Ls
′

Ls
′−1

v u

w4

w2

w3

w1

Figure 4.7: Illustration for the induction step

L[jk+i−2(`−s′)−1, (j+1)k+i−1+2(`−s′)+1], and therefore all of the neighbors of
u are inside the levels L[jk+i−2(`−s′)−2, (j+1)k+i−1+2(`−s′)+2] = L(s′ − 1).
The node v was covered by u, so any w ∈ N [u] − v satisfies tw ≤ s′ − 1. Then by

61

the induction hypothesis any node w ∈ N [u]− v is already covered in G, so v can
be covered by applying the propagation rule to u. The case when a node is covered
by applying a domination rule is similar. This completes the induction step and
proves the statement. An important property is that all nodes with tv = s′ should
be covered in parallel. Note that by the induction hypothesis nodes with tv < s′

are all covered in the parallel round s′− 1, so all nodes with tv = s′ can be covered
in parallel at the parallel round s′. To prove the first claim it is enough to note
that L(`) = Ci,j, so all nodes in Ci,j with 0 ≤ tv ≤ ` (that is, all the nodes in Ci,j)
can be covered in G in ` parallel rounds.

Proof of the second claim: We know that Π∗ is a solution for G. Let tv denotes
the round in which v ∈ Bi,j is covered in G. Hence, each v ∈ Bi,j satisfies: 0 ≤
tv ≤ `. Define L(s) as before. The same induction hypothesis as above proves the
following: for each s, 0 ≤ s ≤ `, all nodes v with tv ≤ s in L(s) can be covered
in the induced subgraph G[Bi,j] staring with Π∗ ∩Bi,j. The proof is similar to the
proof of the first claim. Note that the set L(`) is Ci,j, so all of the nodes in Ci,j can
be covered in G[Bi,j] in at most ` parallel rounds.

In other words, for any solution S∗ for G, the intersection with Bi,j suffices to
cover all of the nodes in Ci,j in the subinstance 〈G[Bi,j, VD ∩ Ci,j, Ci,j〉, but nodes
in Bi,j \ Ci,j may not be covered. �

4.3 Directed PDS

We reformulate Directed PDS in terms of valid colorings of the edges in order
to develop an algorithm based on dynamic programming for Directed PDS. Our
method applies to directed graphs such that the underlying undirected graph has
bounded tree-width.

There are several notions for the tree-width of directed graphs such as DAG
width [60], directed tree-width [38], and Kelly-width [35]. Directed acyclic graphs
have width equal to zero for the first two notions [60], and have Kelly-width of 1.
Hence, Theorem 3.3.2 gives a hardness threshold of O(2logn1−ε

) even if the directed
graph has width ≤ 1 according to any of the above three notions.

Definition 4.3.1 A coloring of a directed graph G = (V,E) is a partitioning of
the edges in G into red and blue edges. We denote a coloring by C = (V,Er ∪ Eb)
where Er is the set of red edges and Eb is the set of blue edges.

We reformulate the Directed PDS problem via a so-called valid coloring of di-
rected graphs; informally speaking, these colorings “model” the application of rules
(D1) and (D2) of Directed PDS (see Definition 3.3.1)

Definition 4.3.2 A valid coloring C = (V,Er, Eb) of a directed graph G = (V,E)
is a coloring of G with the following properties:

62

1. No two antiparallel edges can be colored red.

2. The subgraph induced by the red edges, Gr = (V,Er), has the following prop-
erties:

(a) ∀v ∈ G : d−Gr(v) ≤ 1, and

(b) ∀v ∈ G : d−Gr(v) = 1 =⇒ d+
Gr

(v) ≤ 1.

3. G has no dependency cycle. A dependency cycle is a sequence of directed
edges whose underlying undirected graph forms a cycle such that all the red
edges are in one direction, all the blue edges are in the other direction, and
there are no two consecutive blue edges.

We call a node a source of C if it has no incoming edges in Gr.

Our dynamic programming algorithm for Directed PDS is based on the following
lemma. The proof of the following theorem is similar to Theorem 4.1.4. Note the
similarity between the valid orientation and the valid coloring. Blue edges play the
same role as unoriented edges, and Red edges play the same role as oriented edges.

Theorem 4.3.3 Given a directed graph G and S ⊆ V (G), S power dominates G
if and only if there is a valid coloring of G with S as the set of origins.

Theorem 4.3.4 Given a directed graph G and a tree decomposition of width k of its
underlying undirected graph, Directed PDS can be optimally solved in O(ck

2 · n)
time for a constant c.

4.4 Target set selection

In this section, we present our algorithmic results for the Target Set Selection
problem. Let G = (V,E) be an undirected graph, and assume a threshold t(v),
where 1 ≤ t(v) ≤ d(v), is assigned to each node v ∈ V . In the Target Set
Selection problem, the goal is to select a minimum-sized set of nodes that covers
all nodes. The set of nodes that can be covered by S, denoted by P∗(S), is defined
by the following rules.

(R1) Start with P(S) = S and sequentially apply rule (R2)

(R2) Add node v to P(S) if at least t(v) of its neighbors are in P(S).

The set P(S) changes as we repeatedly apply rule (R2). Informally speaking, first
we activate all nodes in S. Next, in each round we activate node v if at least t(v)
of its neighbors are active. This process will continue until no new nodes can be

63

activated. Let P∗(S) denote the final set P(S). A set S is called a target set if
P∗(S) = V . The goal in this problem is to find a minimum-sized target set. Given
a weight function W : V → Q, defined on the nodes of G, we can also ask for the
target set S of minimum weight.

The threshold model has been introduced to study phenomena in social net-
works. In this model, each node has a threshold and if the number of its infected
neighbors is at least equal to the threshold, then the node becomes infected. In the
Target Set Selection problem the goal is to influence the network by targeting
a minimum number of nodes. Refer to [40, 41] for further discussion on this model
and other related models. These models are closely related to our propagation
model, although neither model is a special case of the other one. Chen [16] showed
that the Target Set Selection problem cannot be approximated within the
ratio 2log1−ε n, by a reduction from the MinRep problem.

Definition 4.4.1 A valid target-orientation Ô = (V,Ed, Eu) of an undirected graph
G = (V,E) is an orientation of G with the following properties:

1. Each node v of the graph Gd = (V,Ed) has either no in-coming edges or at
least t(v) in-coming edges;

∀v ∈ G : d−Gd(v) = 0 or d−Gd(v) ≥ t(v)

2. Gd has no directed cycle.

A node with in-degree 0 in Gd = (V,Ed) is called a source of Ô.

2 3 1

1

121

42

(a) 3× 3 grid

2 3 1

1

121

42

(b) Valid orientation

Figure 4.8: Example for the Target Set Selection problem.

Theorem 4.4.2 Given a graph G = (V,E) and the threshold function t : V → Z+,
G has a valid target-orientation with S as the set of sources if and only if S is a
target set for G.

64

Proof: Assume S is a target set for G. We orient edges in the following way.
Consider an edge {u, v}. We orient it from u to v if u is covered before v. If both
u and v are picked (i.e., u, v ∈ S), then we do not orient the edge {u, v}. The
nodes from S have in-degree 0 in this orientation. A node not in S has at least t(v)
in-coming edges, since it has at least t(v) neighbors that are covered before it. It is
easy to see that there is no directed cycle in this orientation. Consider the order in
which nodes are covered, and note that an edge is oriented from a node, say u, in
this ordering toward a node, v, that appears (not necessary immediately) after u.

Assume that there is a valid target-orientation for G with source nodes S. The
graph Gd = (V,Ed) is an acyclic digraph. Suppose u1, u2, . . . is a topological or-
dering of Gd. We claim that nodes of G can be covered in this order by activating
the nodes in S. To prove the claim, note that all in-neighbors of a node ui appear
before it in the given topological order. Hence, an induction proof on i (the index
of nodes in this ordering) proves the claim. �

Consider the 3 × 3 grid shown in Figure 4.8(a), and assume that the labels
assigned to them denote their thresholds. It can be checked that the boxed nodes
cover the whole graph. The valid target-orientation corresponding to this solution
is shown in Figure 4.8(b); note that the in-degree of each non-picked node is at
least its threshold, and also there is no directed cycle in the shown orientation.

Theorem 4.4.3 There is a polynomial-time dynamic programming algorithm that
solves the weighted Target Set Selection problem on G with bounded-tree-
width. Moreover, the running time of this algorithm is O(ck

2 ·T k+1 · |V (G)|), where
T is the maximum threshold of nodes, k is the tree-width of the input graph, and c
is a constant.

4.4.1 PTAS for the `-round Target Set Selection problem

In this section, we introduce the `-round extension of the Target Set Selection
problem, and present a PTAS for this problem on planar graphs for small values of
`.

Let G = (V,E) be an undirected graph, and assume that t : V → N is the
threshold function. Given a subset of nodes S ⊆ V , the set of nodes that can be
activated in at most ` parallel rounds, denoted by P`(S), is defined recursively as
follows:

P`(S) =


S ` = 0

P`−1(S)
⋃{

v :
∣∣N(v) ∩ P`−1(S)

∣∣ ≥ t(v)
}

` ≥ 1

Given a graph G = (V,E) and a parameter `, the goal in the `-round Target Set
Selection problem is to find a minimum size subset of nodes S ⊆ V , such that
P`(S) = V . For our PTAS, we also need to solve an extension of the problem in

65

which the goal is to cover a subset V ′ of nodes. Let 〈G, V ′, t〉 denote an instance of
the extended problem. Now, we reformulate the `-round Target Set Selection
problem as an orientation problem. Informally speaking, an oriented edge shows
that the head of the oriented edge is covered after the tail node. We also assign a
time label to each node to show the parallel round in which the node is covered.

Definition 4.4.4 (valid `-round target-orientation) Let 〈G, V ′, t〉 be an instance of
the extended `-round Target Set Selection problem. A valid `-round target-
orientation for 〈G, V ′, t〉 is an orientation Ô = (V,Ed, Eu) (see Definition 4.1.1)
together with a time vector {rv : v ∈ V } (where rv ∈ {0, 1, . . . , `} ∪ {+∞}) that
satisfies the following properties:

(P1) ∀v ∈ V ′ : 0 ≤ rv ≤ `,

(P2) ∀v ∈ V : rv = 0⇒ d−Gd(v) = 0,

(P3) ∀v ∈ V : rv = +∞⇒ d−Gd(v) = d+
Gd

(v) = 0,

(P4) ∀v ∈ V : d−Gd(v) = 0 ∨ d−Gd(v) ≥ t(v),

(P5) ∀v ∈ V : d−Gd(v) > 0⇒ rv = 1 + max {ru : (u, v) ∈ Ed}

where Gd = (V,Ed). A node v with rv = 0 is called a source of the valid `-round
target-orientation.

The proof of the following result is similar to the proof of Theorem 4.1.7 and
Theorem 4.4.2.

Theorem 4.4.5 Let 〈G, V ′, t〉 be an instance of the extended `-round Target
Set Selection problem. Then S ⊆ V is the set of sources of a valid `-round
target-orientation if and only if V ′ ⊆ P`(S).

Theorem 4.4.6 Given an instance 〈G, V ′, t〉 of the `-round Target Set Se-
lection problem where G = (V,E) is an undirected graph with tree-width k,
a minimum weight set S ⊆ V such that V ′ ⊆ P`(S) can be obtained in time
O(ck

2+k log ` · T k+1 · |V |), where c is a constant and T is the maximum threshold of
nodes. Moreover, if G is a planar graph then the algorithm has the running time
of O(ck log ` · T k+1 · |V |).

Theorem 4.4.7 Let ` be a given parameter, where ` = O(logn
log logn

). Then there
is a PTAS for the weighted `-round Target Set Selection problem on planar
graphs.

66

Proof: The algorithm is the same as Algorithm 2 for the `-round General Prop-
agation problem. We only need to change the decompositions in the follow-
ing way. The set Ci,j is defined as before. Recall that Bi,j had 2` extra levels
around Ci,j. Here, we only need ` extra levels around Bi,j. Hence, we define
Bi,j = L[jk+ i− `, (j+ 1)k+ i−1 + `]. The rest of algorithm is the same as before.
The analysis is also similar to the analysis of the PTAS for the `-round General
Propagation problem. �

67

Part II

Packing Steiner trees

68

Chapter 5

Packing Steiner trees

5.1 Introduction

In the Steiner Tree Packing problem we are given a graph G = (V,E) and a
subset of nodes R ⊆ V ; each node in R is called a terminal node. The terminal
nodes are called black nodes, and the non-terminal nodes are called white nodes
or Steiner nodes. An edge between two white nodes is called a white edge. A
Steiner node or an edge is called an element. A tree that contains all terminal
nodes in R is called an R-Steiner tree (or Steiner tree, for short). The goal in this
problem is to find a set of disjoint R-Steiner trees of maximum cardinality. We
study two versions of the problem: In the edge-disjoint version, the Steiner trees
are required to be edge-disjoint; that is, each edge of the graph should be in at most
one Steiner tree. In the element-disjoint version, the Steiner trees are required to
be element-disjoint; that is, each element should be in at most one tree.

We say that two nodes are k-edge connected if there exist k edge-disjoint paths
between them. Similarly, we say that two nodes are k-element connected if there
exist k element-disjoint paths between them. The set of terminals, R, is called k-
edge connected (or k-element connected) if each pair of terminal nodes inR is k-edge
connected (or k-element connected). Without loss of generality, for both versions
of the Steiner Tree Packing problem, we can assume that there are no edges
between terminal nodes, by subdividing edges if needed. Note that subdividing
an edge doesn’t change the connectivity between terminal nodes. This operation
doesn’t also change the optimum value of both versions of the Steiner Tree
Packing problem.

There are two well-known special cases of the Steiner tree packing problem. The
first special case has |R| = 2, say R = {s, t}. Then the goal is to find a maximum
set of edge-disjoint s-t paths (or, openly disjoint s-t paths). This problem can be
solved via max-flow algorithms, and the optimal value is described by Menger’s
theorem [51].

Theorem 5.1.1 (Menger [51]) Let G = (V,E) be a graph and s, t ∈ V . Then

69

the minimum number of edges whose deletion separates s from t is equal to the
maximum number of edge-disjoint s-t paths in G.

Another important case is when all of the nodes are terminal nodes (i.e., R = V);
in this case we have the edge-disjoint Spanning Tree Packing problem. Tutte
[71] and Nash-Williams [57] independently proved the following min-max theorem
for this special case.

Theorem 5.1.2 (Tutte and Nash-Williams) An undirected graph G has k edge-
disjoint spanning trees if and only if for any partition P of V into |P| non-empty
subsets we have e(P) ≥ k(|P| − 1), where e(P) is the number of edges in G with
end-nodes in different sets of P.

It follows easily form this theorem that a k-edge connected graph has
⌊
k
2

⌋
edge-

disjoint spanning trees. Kriesell [45] conjectured that this also extends to the
edge-disjoint Steiner Tree Packing problem.

Conjecture 5.1.3 (Kriesell [45]) If the set of terminal nodes, R, is k-edge con-
nected in G, then there exist

⌊
k
2

⌋
edge-disjoint R-Steiner trees in G.

Kriesell considered a special case of the conjecture in which each Steiner node has
even degree [45], and he gave a simple proof for that case. Frank, Kiraly and
Kriesell [27] considered another special case and proved the following: if there are
no white edges (i.e., the Steiner nodes form an independent set) and the terminals
are 3k-edge connected, then there exist k edge-disjoint Steiner trees. This is proved
using a generalization of the Tutte–Nash-Williams theorem to hypergraphs [27].
Now, consider arbitrary graphs and Kriesell’s (general) conjecture. Jain, Mahdian
and Salavatipour [36] designed an approximation algorithm with a guarantee of

O(|R|
4

). Later on, Lau [46, 47] using the result of Frank et al. [27] proved that if
the terminals are 24k-edge connected, then there exist k edge-disjoint Steiner trees.
This gives an approximation algorithm with a guarantee of 24.

Kaski [39] proved that the problem of finding two edge-disjoint Steiner trees is
NP-hard, and also showed that the edge-disjoint Steiner Tree Packing problem
is NP-hard even with 7 terminals. Jain, Mahdian and Salavatipour [36] studied an
LP relaxation of the edge-disjoint Steiner Tree Packing problem and proved
that the edge-disjoint Steiner Tree Packing problem is APX-hard. Cheriyan
and Salavatipour [17] proved that the problem is APX-hard even with 4 terminal
nodes.

Cheriyan and Salavatipour [18] studied the element-disjoint Steiner Tree
Packing problem and designed an approximation algorithm with a guarantee of
O(log n) for the problem. They [17] also proved that the element-disjoint Steiner
Tree Packing problem is hard to approximate within a factor of Ω(log n).

In this chapter, we study approximation algorithms and hardness results for
both versions of the Steiner Tree Packing problem on planar graphs. We also

70

study standard linear programming relaxations of both versions of the problem.
The main results in this chapter are as follows:

• In Section 5.2, we prove that if we have a planar graph such that the terminal
nodes are k-element connected, then there exist at least

⌊
k
2

⌋ − 1 element-
disjoint Steiner trees. This provides an approximation algorithm with a guar-
antee of (almost) 2 for the element-disjoint version of the problem on planar
graphs. Based on this, we get an approximation algorithm with a guarantee
of (almost) 4 for the edge-disjoint version of the problem on planar graphs.

• In Section 5.3, we prove that both versions of the Steiner Tree Packing
problem are NP-hard even with three terminals (i.e., |R| = 3). Moreover,
based on a major recent result of Naves [58, 59], we show that the edge-disjoint
version of the problem is NP-hard even in planar graphs with 3 terminals on
the same face of the embedding.

• In Section 5.4, we show that even on planar graphs the standard LP relaxation
of the edge-disjoint Steiner Tree Packing problem has integrality ratio at
least 2−ε, where the additive term ε is a function of k and R and for fixed |R|,
ε→ 0 as k →∞. The edge-connectivity between terminal nodes is an upper
bound on the objective value of the standard LP relaxation of the edge-disjoint
Steiner Tree Packing problem. Hence, assuming Kriesell’s conjecture,
the integrality ratio is at most 2. Moreover, we modify our construction to
get a similar result for the element-disjoint version of the problem.

5.2 Approximation algorithms for planar graphs

5.2.1 Element-disjoint Steiner trees

The following theorem is the main result of this section.

Theorem 5.2.1 Let G = (V,E) be an undirected planar graph, and let R ⊆ V be
the set of terminals, and assume that the set of terminals is k-element connected.
Then there are at least

⌊
k
2

⌋− 1 element-disjoint Steiner trees in G.

We define the Bipartite Steiner Tree Packing problem to be a subproblem
of the element-disjoint Steiner Tree Packing problem such that the graph is
bipartite, all terminal nodes are in one part of the bipartition, and all Steiner nodes
are in the other part. Consider a planar instance of the element-disjoint Steiner
Tree Packing problem, i.e., the associated graph is planar. We can transform
it into a planar instance of Bipartite Steiner Tree Packing by using the
following theorem. The theorem is due to Hind and Oellermann, see [34], and a
short proof is given in [18].

71

Theorem 5.2.2 [34] Consider a graph G = (V,E) that has a set of terminals R
such that R is k-element connected. There is a polynomial-time algorithm that
repeatedly deletes or contracts white edges to obtain a bipartite graph G′ from G
such that R stays k-element connected, and moreover, R forms one part of the
bipartition of G′.

A hypergraph is a pair H = (V, E) where V is the node-set of H and E is a
collection of non-empty subsets of V . A subset Z ∈ E is called a hyperedge of
H. Given a partition P = {V1, . . . , Vt} of V into non-empty subsets, a hyperedge
Z ∈ E is called a crossing hyperedge if it intersects at least two subsets of P and
otherwise it is called an internal hyperedge. We use |P| to denote the number of
sets Vi in P , and we denote the number of crossing hyperedges corresponding to
the partition P by eH(P) (or simply, by e(P)). Given a hypergraph H = (V, E), we
associate a bipartite graph GH = (V, U ;E) to H as follows. Corresponding to each
hyperedge Z ∈ E we have a node uZ ∈ U . A node v ∈ V is adjacent to uZ ∈ U if
v ∈ Z; note that the degree of uZ in GH is the size of Z.

Consider the hypergraph H shown in Figure 5.1(a). The node-set of H is V =
{t1, t2, t3, t4, t5}, and the hyperedges of H are Z1 = {t1, t2}, Z2 = {t2, t3, t5}, Z3 =
{t1, t2, t3, t4} and Z4 = {t4, t5}. Figure 5.1(b) shows the bipartite graph, G =
(V, U ;E), associated withH. Consider the partition P = {{t1, t2} , {t3, t4, t5}} of V ;
this partition is shown in dashed lines in Figure 5.1(b). The hyperedges Z2, Z3 are
crossing hyperedges w.r.t. (with respect to) P , and hyperedges Z1, Z4 are internal
hyperedges w.r.t. P . Thus, e(P) = 2, since there are two crossing hyperedges in
P . Given a partition P , a useful operation is to contract an internal hyperedge:
we identify all nodes in Z into a single node and remove Z from the hypergraph.
For example, Figure 5.1(c) shows the bipartite representation of the hypergraph
obtained by contracting the internal hyperedge Z4 = {t4, t5}. If we further contract
Z1 = {t1, t2} we get a copy of K2,3. If we contract some internal hyperedges (w.r.t.
P) of H, then we obtain a “shrunk” hypergraph H′ and a partition P ′ of V (H′);
note that the crossing hyperedges of H (w.r.t. P) are the same as the crossing
hyperedges of H′ (w.r.t. P ′).

Let G = (R,U ;E) be an instance of the Bipartite Steiner Tree Packing
problem, where R is the set of terminal nodes and U is the set of Steiner nodes. We
associate a hypergraph HG = (R, E) to G as follows. The terminal nodes of G are
the nodes inHG, and corresponding to each Steiner node u ∈ U we have a hyperedge
Zu that contains the set of neighbors of u in G. Also, given any hypergraph H,
we may view its associated graph GH as an instance of the Bipartite Steiner
Tree Packing problem.

A hypergraphH is k-partition connected if eH(P) ≥ k(|P|−1) for every partition
P of V . A 1-partition connected hypergraph is simply called partition-connected.
If a hypergraph H is partition-connected, then it is easy to see that the asso-
ciated bipartite graph GH is connected, and so it contains a Steiner tree (with
terminal set V (H)). But the converse does not hold: for a connected instance
of Bipartite Steiner Tree Packing, the associated hypergraph may not be

72

t2t1

t3

t5 t4

(a) Hypergraph

t2t1 t3 t4 t5

u1 u2 u3 u4

(b) Bipartite representation

t2t1 t3 t4,5

u1 u2 u3

(c) Contracting {t4, t5}

Figure 5.1: A Hypergraph and its bipartite representation

partition-connected. Frank et al. [27] proved the following generalization of the
Tutte–Nash-Williams theorem.

Theorem 5.2.3 (Theorem 2.8 in [27]) A hypergraph H = (V, E) is k-partition
connected if and only if there is a partition E1, . . . , Ek of E into k subsets such that
each of the sub-hypergraphs Hi = (V, Ei) is partition-connected.

Therefore, we can obtain ` element-disjoint Steiner trees in G if HG is `-partition
connected. Now we prove the following lemma that completes the proof of Theorem
5.2.1.

Lemma 5.2.4 Let G = (R,U ;E) be a bipartite planar graph such that R is k-
element connected. Then the hypergraph HG = (R, E) associated with G is

⌊
k−2

2

⌋
-

partition connected.

Proof: We may assume that G is connected. Consider the hypergraph H and
define the fractional partition-connectivity, λ∗, as follows:

λ∗ = min
P

e(P)

|P| − 1
, (5.1)

where the minimum is over all partitions P of R with |P| ≥ 2. Let λ denote the
partition-connectivity of H. It follows from the definition of partition-connectivity
that λ = bλ∗c. Let P∗ = {X1, X2, . . . , X`} be a partition that achieves the minimum
ratio λ∗. In the rest of the proof, except where mentioned otherwise, crossing
hyperedges and internal hyperedges are w.r.t. P∗.

Consider the Steiner nodes of G that correspond to the internal hyperedges. We
contract all the edges of G that are incident to these Steiner nodes, and we call the
resulting graph G′. In more detail, consider each internal hyperedge Zu ∈ E and
contract all edges in G adjacent to the Steiner node u corresponding to hyperedge
Zu. We may ignore all parallel edges in G′ formed by these edge contractions.

Claim 5.2.5 The obtained graph G′ is a bipartite planar graph and has the follow-
ing properties:

73

1. All of the remaining Steiner nodes in G′ correspond to crossing hyperedges in
H, and they form one part of the bipartition,

2. The other part of the bipartition has |P∗| nodes, and each node has degree at
least k.

Proving this claim completes the lemma. This follows because G′ has at least
k |P∗| edges and at most 2(e(P∗) + |P∗|) − 4 edges; a planar bipartite graph on
n nodes has at most 2n − 4 edges (this is a standard fact about planar bipartite
graphs, see for example Diestel’s book [23]). Hence, we have

k |P∗| ≤ 2(e(P∗) + |P∗|)− 4 =⇒ e(P∗) ≥ (k − 2) |P∗|
2

+ 2 =⇒ λ∗ >
k − 2

2
.

Proof of Claim 5.2.5: Consider a set Xi ∈ P∗ of size at least 2 and arbitrarily
partition it into two non-empty setsX ′i andX ′′i , and let P ′ be the obtained partition.

Since P∗ is the minimum ratio partition, we have λ′ = e(P ′)
|P ′|−1

≥ λ∗. Hence, e(P ′) ≥
λ∗(|P ′|−1) > λ∗(|P∗|−1) = e(P∗). Hence, there exists a hyperedge that is crossing
w.r.t. P ′ but is not crossing w.r.t. P∗; that is, one of the internal hyperedges w.r.t.
P∗ intersects both X ′i and X ′′i . This reasoning applies to each set Xi ∈ P∗ and
to each 2-partition X ′i, X

′′
i of Xi; hence, for each Xi ∈ P∗, the subgraph of G

induced by Xi and the Steiner nodes corresponding to the hyperedges internal to
Xi is connected. Thus, contracting all edges in G adjacent to the Steiner nodes
corresponding to the internal hyperedges (w.r.t. P∗) will shrink each set Xi of P∗
into a single node. The obtained graph G′ is planar, and it is easy to see that it is
bipartite with all the Steiner nodes corresponding to the crossing hyperedges (w.r.t
P∗) in one part of the partition and all of the “contracted” nodes in the other part.
Now we prove that the degree of each contracted node is at least k using the fact
that the terminals are k-element connected in G. To see this, consider a shrunk
node vi corresponding to a subset Xi ∈ P∗, and assume that it has less than k
neighbors in G′. Let Y ′ be the set of neighbors of vi, so |Y ′| < k. Note that Y ′

separates vi from any other contracted node vj in G′, i.e., vi and vj are in different
connected components of G′\Y ′. Now focus on the original hypergraph H and note
that Y ′ (viewed as a subset of E(H)) contains all hyperedges that intersect both
Xi and R \ Xi; thus, in the original graph G, we see that Y ′ (viewed as a subset
of U) separates Xi from the rest of the terminals, because Y ′ contains all Steiner
nodes that are adjacent to both Xi and R \ Xi. This is a contradiction because
the terminals are k-element connected in G; that is, for any set of white nodes Y
whose deletion separates a pair of terminals, we must have |Y | ≥ k. This shows
that each contracted node has degree at least k in G′. �

This completes the proof. �

Now, we describe an algorithm that given a planar graph G, where the set of
terminals is k-element connected, it finds at least

⌊
k
2

⌋− 1 element-disjoint Steiner
trees.

Algorithm:

74

1. In the first step, we reduce the given graph G = (V,E) to an instance G′ of
the Bipartite Steiner Tree Packing problem using Theorem 5.2.2; note
that G′ is obtained from G by removing or contracting white edges in G.

2. In the second step, using results of Frank et al. [27], we decompose the as-
sociated hypergraph H of G′, using Edmonds’ matroid partition algorithm,
into the maximum number of partition-connected sub-hypergraphs. The in-
dependence test in this algorithm is to check if the given hypergraph is a
hyperforest. (See the running time analysis given below for more discussion.)

3. Each partition-connected sub-hypergraph corresponds to an Steiner tree in
G′. By “uncontracting” the edges in G that were contracted in the first step
of the algorithm, we obtain at least

⌊
k
2

⌋− 1 element-disjoint Steiner trees in
G.

Running time of the above algorithm: In the first step, we take a white edge e
and delete it from G. Then we check if the terminals are still k-element connected.
If they are k-element connected, then we take another white edge and continue,
otherwise, we identify the end-nodes of e and move to the next white edge. The
k-element connectivity can be tested in time O(kn |R|) for planar graphs using the
augmenting-paths algorithm for the maximum s-t flow problem. Hence, the total
running time of the first step is O(kn2 |R|), since the number of white edges is O(n).

In the second step, we decompose H into the maximum number of disjoint
partition-connected sub-hypergraphs via Theorem 5.2.3. The proof of this theorem
is based on Edmonds’ matroid partition theorem, and the proof can be “imple-
mented” via the matroid partition algorithm. The running time of the matroid
partition algorithm is O(n2.5f(n)), where n denotes the size of the groundset of the
matroid, and f(n) denotes the running time for testing independence in the given
matroid. The test for independence corresponds to testing whether a hypergraph
satisfies the conditions for a hyperforest, and this in turn corresponds to testing
whether a bipartite graph (R,U ;E) has positive surplus, i.e., ∀S ⊆ U : |Γ(S)| > |S|.
It is easy to show that f(n) = O(n3) for an arbitrary bipartite graph, and for planar
bipartite graphs this improves to f(n) = O(n2); this can be done using matching
algorithms in bipartite graphs. Hence, the running time of our algorithm on planar
graphs is O(kn2 |R|+ n4.5) = O(n4.5).

5.2.2 Edge-disjoint Steiner trees

Theorem 5.2.6 Let G = (V,E) be an undirected planar graph, let R ⊆ V be the
set of terminals, and assume that R is k-edge connected. Then there are at least⌊
k
4

⌋− 1 edge-disjoint Steiner trees in G.

Proof: We first reduce G to a planar graph G′ with Steiner nodes of degree at most
4. This is done by repeatedly replacing a Steiner node of degree more than 4 by

75

=⇒

v′v

Figure 5.2: Gadget for high degree Steiner nodes

=⇒

v′v

1′1 2 2′3 3′ 1′1 2 2′3 3′

Figure 5.3: Routing the paths via the gadget

a gadget that preserves the connectivity and planarity, but doesn’t introduce any
new Steiner nodes of degree more than 4. Let v be a Steiner node of degree d > 4
in G. We replace node v by the gadget shown in Figure 5.2. The gadget has

⌈
d
2

⌉−1
rows including the last row containing a single node v′. Clearly, the obtained graph
has one less Steiner node of degree more than 4; also, the set of terminal nodes
and their degrees stay the same. Moreover, R is k edge-connected in the obtained
graph. To show this, we claim that any set of paths using edges incident to v can
be rerouted via the gadget. We sketch a proof of this claim, although the gadget
and its properties are well known, see [53, 59]. This can be proved by induction
on the number of rows in the gadget. The base case is when there is only one row
containing the single node v′, and note that v′ has degree at most 4. Clearly for
this case the claim is true. Given a paring of edges used in the paths going through
v, we first route one of the extreme pairs (i.e., the pair using the left most edge or
the pair using the right most edge), say the left most pair, using the first horizontal
row of the gadget. Next, we send the other pairs using the vertical edges to the
next horizontal row. Some of the paths may need to be “shifted” to the left; for
example, the path labeled (2, 2′) is shifted on the first row to the left in Figure 5.3.
Finally, we inductively reroute the remaining paths.

We replace all Steiner nodes of degree more than 4 to get a planar graph G′

with no Steiner node of degree more than 4 such that the terminal nodes are k-
edge connected in G′. Also observe that edge-disjoint Steiner trees in G′ can be
transformed to edge-disjoint Steiner trees in G.

We can assume that G′ has no edge connecting two terminals; such an edge
can be subdivided by introducing a Steiner node. Now we show that the terminal
nodes in G′ are

⌈
k
2

⌉
element-connected. Let X be a set of white nodes of minimum

76

cardinality whose deletion separates some two terminals, i.e., G′\X has at least two
connected components C1, C2, . . . , C` that each contains a terminal. There are at
most 4 |X| edges going out of X since each white node in X has degree ≤ 4. Hence,
there is a component Cj that has at most 2 |X| edges entering it, and consequently
there is an edge-cut of size at most 2 |X| that separates a pair of terminals. Since
such a cut has size ≥ k, we have |X| ≥ k

2
. This shows that terminal nodes are

⌈
k
2

⌉
element-connected in G′. Now we apply Theorem 5.2.1 to G′ and obtain

⌊
k
4

⌋ − 1
element-disjoint Steiner trees in G′. These Steiner trees are clearly edge-disjoint.
Thus, G has at least

⌊
k
4

⌋− 1 edge-disjoint Steiner trees. �

5.3 Hardness results

5.3.1 General graphs

In this subsection, we prove the following hardness result.

Theorem 5.3.1 The element-disjoint Steiner Tree Packing problem with 3
terminals is NP-hard.

We prove our result by a reduction from the 2DirPath problem. In the 2DirPath
problem, we are given a directed graph G = (V,E) with two pairs (x1, y1), (x2, y2)
of nodes. The goal in this problem is to find two node-disjoint paths P1 and P2

such that Pi, for i = 1, 2, is a directed path in G from xi to yi. We denote this
instance of the problem by I = (G, x1, y1, x2, y2).

Theorem 5.3.2 ([26]) It is NP-complete to decide if a given instance of the 2DirPath
problem has a solution.

Reduction: Let I = (G, x1, y1, x2, y2) be an instance of the 2DirPath problem.
We construct an undirected graph G′ (with three terminal nodes r, t1, t2) from G
as follows. All the nodes of G are kept in G′, and we denote these nodes by the
same label in both graphs.

1. Add the following new nodes r, t1, t2, x
′
1, x
′
2 to G. The terminal nodes in G

are R = {r, t1, t2}.
2. In the next step we install copies of the gadget given in Figure 5.4. The

unlabeled nodes and the nodes labeled by u′, v′ are called internal nodes of
the gadget, and the rest of nodes are called external nodes. The internal nodes
of each gadget are disjoint from the internal nodes of the other gadgets.

3. Replace each directed edge (u, v) ∈ E(G) by a new copy of the gadget shown
in Figure 5.4.

77

u v

t1

t2

r

e− e+

u′ v′

Figure 5.4: Gadget corresponding to a directed edge e = (u, v) ∈ E(G)

t1

t2

r G

x1

x2

y2

y1

x′1

x′2

Figure 5.5: The constructed graph G′ with 3 terminals

4. Add the following (undirected) edges to G: {x′1, x1}, {x′2, x2}, {r, x′1}, {r, x′2},
{x′1, t2}, {x′2, t1}, {y1, t1}, {y2, t2}. Let G′ be the obtained undirected graph.
(See figure 5.5 for an illustration).

The following lemma completes the proof of Theorem 5.3.2.

Lemma 5.3.3 The instance I of the 2DirPath problem has a solution if and only
if there are λ = |E(G)|+ 2 element-disjoint Steiner trees in G′.

Proof: Observe that using the internal nodes of each gadget we can find a Steiner
tree. We call such a tree a local Steiner tree. Hence, G′ has at least |E(G)| element-
disjoint Steiner trees. Also note that each terminal has degree λ = |E(G)| + 2, so
there are at most λ element-disjoint Steiner trees in G′.

Assume that I is a yes instance and P1, P2 are two node-disjoint directed paths
in G from x1 to y1, and x2 to y2 respectively. We show that G′ has λ element-
disjoint Steiner trees. First, make |E(G)| element-disjoint local Steiner trees cor-
responding to the directed edges in G. Next, we form two partial Steiner trees
T1 = {{r, x′1} , {x′1, t2} , {x′1, x1}} and similarly T2 = {{r, x′2} , {x′2, t1} , {x′2, x2}}.
Note that Ti consists of the 3 edges incident to x′i, and we need to add a path from

78

xi to ti. Now we augment the partial Steiner trees T1, T2 by modifying the local
Steiner trees of the directed edges on P1, P2. For each edge e = (u, v) ∈ P1 we form
two partial Steiner trees in the gadget corresponding to e. The first one is a path of
length three from u to t1, and the second tree is obtained from the path of length
four from t2 to v by adding the edge {r, v′} to it; these two partial Steiner trees are
denoted by dashed lines in Figure 5.4. Now, we combine partial Steiner trees as
follows. First, combine the partial Steiner tree T1 with the first partial Steiner tree
corresponding to the first directed edge of P1. Next, combine the second partial
Steiner tree corresponding to each edge of P1 with the first partial Steiner tree
corresponding to the next edge of P1. Finally, add the edge {y1, t1} to the second
partial tree corresponding to the last edge of P1. This completes T1 as well as all
partial trees corresponding to the edges of P1. Similarly, we can complete the par-
tial Steiner tree T2 and all the partial Steiner trees corresponding to the edges of
P2. Clearly, any two of these Steiner trees are element-disjoint by our construction
and by the fact that P1, P2 are node-disjoint. Therefore, G′ has λ element-disjoint
Steiner trees.

Now assume that G′ has λ element-disjoint Steiner trees. We prove that G has
two node-disjoint directed paths P1 and P2 where each Pi is an xi-yi path. Any
two edges incident to a terminal must be in two different Steiner trees since each
terminal has degree λ in G′. Thus, we may assume that each Steiner tree has the
three terminals as leaf nodes and has no other leaf nodes; that is, each Steiner tree
is a subdivision of K1,3. Therefore, x′1 and x′2 each has degree three in two different
Steiner trees. Let us denote the Steiner tree that contains x′i by Ti. Observe that
T1 has an x′1-t1 path via x1, and similarly T2 has an x′2-t2 path via x2. In order to
find P1 and P2 we label the edges in G′ that are incident to the original nodes of
G; for example, in Figure 5.4 e− and e+ are two such edges. Consider the gadget
corresponding to e = (u, v) ∈ E(G). If the edge e− adjacent to u in this gadget
is not used in any Steiner tree, then label e− by L(e−) = ∅. Otherwise, consider
the Steiner tree, T , containing e−. Let S ⊆ {r, t1, t2} be the set of terminals in the
component of T − e− containing u. Assign the label L(e−) = S to e−. Similarly,
we can assign a label L(e+) to the edge e+ (the edge incident to v) by considering
the component in T ′− e+ containing v′, where T ′ is the Steiner tree containing e+.

In the rest of the proof, we assume w.l.o.g. (without loss of generality) that no
Steiner tree uses both edges e−, e+ of a gadget. Suppose there is a Steiner tree T
that uses both edges e−, e+ of a gadget. Then no other Steiner tree can “enter”
this gadget. Thus, we can replace T by a local Steiner tree of this gadget. This
preserves the number of element-disjoint Steiner trees.

Claim 5.3.4 In the gadget corresponding to an edge (u, v) ∈ E(G) we have

L(e−) = L(e+) ∈ {∅, {r} , {r, t1} , {r, t2}} .

Proof: Observe that each terminal t ∈ {r, t1, t2} is incident to exactly one edge of
the gadget, and denote that edge by e(t). Moreover, each of these three edges must

79

be in one of the Steiner trees. First, note that if either L(e−) = ∅ or L(e+) = ∅,
then both labels are the same. Otherwise, at least one of the three edges incident
to the terminals in the gadget cannot be in any Steiner tree. Now assume that
L(e−) 6= L(e+), and let the two Steiner trees using e− and e+ be T −, T +. Now focus
on the components in T − − e− and T + − e+ containing u and v, respectively, and
observe that the terminal sets in these two components are L(e−) and R \ L(e+).
Since L(e−) 6= L(e+) there is a terminal t that either is missing from these two
components or appears in both of them. This is not possible because in the first
case, the edge e(t) cannot be present in both Steiner trees, and in the second case,
e(t) cannot be used in any other Steiner tree. Thus, L(e−) = L(e+). Observe that
the Steiner tree using edge e+ must contain the edge e(r) = {r, v′} otherwise this
edge cannot be used in any Steiner tree. Hence, the label assigned to e+ is either
∅ or it contains the terminal r. This completes the proof. �

This labeling of edges in G′ induces a labeling for the directed edges in G;
label the directed edge (u, v) ∈ E(G) by the label of e−, L(e−), in the gadget
corresponding to (u, v). By the above claim, this is the same as the label of e+ in
that gadget.

Claim 5.3.5 Let e = (u, v) be a directed edge in G such that v 6∈ {y1, y2} and the
label of e is in {{r, t1} , {r, t2}}. Then there is an out-going edge from v, call it
f , that has the same label as e, and all other edges incident to v (in-coming or
out-going) have the label ∅.

Proof: Let e = (u, v) be an edge with label Λ = {r, t1}; the proof for the other case
is similar. Consider the gadget corresponding to e in G′, and let T be the Steiner
tree containing the edge e+. Note that T is connected to r, t1 in this gadget, so
it must be connected to t2 via node v. Hence, v has degree 2 in T . Let f be the
directed edge incident to v whose gadget contains the remaining edges of T . The
edge f is in G since v 6∈ {y1, y2}. If f is an in-coming edge to v, then it is labeled
by {t2} but this is not possible by Claim 5.3.4. Hence, f is an out-going edge of v,
and it follows from the definition of the labels that f has the same label as e. �

Now, we claim that there is a directed path in G from x1 to y1 whose edges are
labeled by {r, t2}, and similarly, there is a directed path in G from x2 to y2 whose
edges are labeled by {r, t1}. Consider the tree T1 containing x′1; it must use one of
the directed edges of G incident to x1, so either there is an out-going edge from x1

labeled {r, t2} or an in-coming edge to x1 labeled {t1}; but the latter is ruled out
by Claim 5.3.4. Similarly, one of the directed edges of G going out of x2 is labeled
{r, t1} . Hence, by Claim 5.3.5, there is a directed path P1 starting from x1 whose
edges are labeled by {r, t2}, and that can only end at either y1 or y2; but the latter
is not possible, otherwise the edge {y2, t2} cannot be in any Steiner tree. Thus, P1

is a directed path from x1 to y1. Similarly, there is a directed path P2 from x2 to
y2. It also follows from Claim 5.3.5 that P1 and P2 are node-disjoint. �

80

5.3.2 Planar graphs

In this section, we prove the following result.

Theorem 5.3.6 The edge-disjoint Steiner Tree Packing problem in planar
graphs with 3 terminals is NP-hard even with all terminals on the outer-face.

We reduce the Edge-Disjoint Path problem with 2 demand edges to the
Steiner Tree Packing problem in planar graphs with 3 terminals. Let I =
(G;x1, y1, d1;x2, y2, d2) be an instance of the planar Edge-Disjoint Path prob-
lem, where G = (V,E) is a planar graph and (x1, y1), (x2, y2) are demand edges.
Moreover, the demand edges are in the outer-face and they are crossing; that is,
adding them to G makes the obtained graph non-planar. The goal in this problem
is to find d1 paths from x1 to y1 and d2 paths from x2 to y2 such that all of the
d1 + d2 paths are edge-disjoint. Our result is based on the following major recent
result of Naves [58, 59].

Theorem 5.3.7 (Theorem 9 in [58]) The planar Edge-Disjoint Path prob-
lem with two crossing demand pairs on the outer-face is NP-hard.

Reduction:

1. Start from a copy of G and add 3 terminal nodes {t, t1, t2} and two non-
terminal nodes s1, s2 to the outer-face of G.

2. Add d1 parallel edges from s1 to each of t, t2, x1, and similarly we add d2

parallel edges from s2 to each of t, t1, x2.

3. Finally, we add d1 parallel edges from y1 to t1, and d2 parallel edges from y2

to t2. Note that the obtained graph is planar.

4. Let H be the obtained graph, and let R = {t, t1, t2} (see Figure 5.6 for an
illustration).

The following lemma completes the proof of Theorem 5.3.6.

Lemma 5.3.8 The planar graph H has d1 + d2 edge-disjoint Steiner trees if and
only if the Edge-Disjoint Path problem in G has a solution.

Proof: Assume that the Edge-Disjoint Path problem in G has a solution; that
is, there are d1 edge-disjoint x1-y1 paths, and there are d2 edge-disjoint x2-y2 paths,
and all these d1 + d2 paths are edge-disjoint. Observe that by adding edges {s1, t},
{s1, x1}, {s1, t2}, {y1, t1} to any x1-y1 path in G we get a Steiner tree. Hence,
using d1 edge-disjoint x1-y1 paths, we get d1 edge-disjoint Steiner trees. Similarly,
we can get d2 edge-disjoint Steiner trees using d2 edge-disjoint x2-y2 paths. These

81

t1

t2

t G

d1 d1
d1

d1

d2

d2

d2

d2

x1

x2

y2

y1

s1

s2

Figure 5.6: Planar graph with 3 terminals on the outer-face

d1 + d2 Steiner trees are all edge-disjoint. Thus, graph H has d1 + d2 edge-disjoint
R-Steiner trees.

Now we prove the other direction. Suppose that H has d1 + d2 edge-disjoint
Steiner trees. The degree of each terminal in any one of these d1 + d2 Steiner trees
is one since each terminal has degree d1 + d2 in H. Therefore, each Steiner tree has
a Steiner node of degree three. We claim that this degree three node is either s1

or s2, and moreover only one of s1 or s2 can be in any Steiner tree. Focus on the
edges with exactly one end-node in V (G); these are the edges crossing the dashed
box in Figure 5.6. First we show that each Steiner tree, in the optimal packing,
has exactly two of these crossing edges. To see this, consider a Steiner tree T . If
T has no crossing edges, then terminal t is forced to have degree two in T , which
is not possible. Also note that T cannot have only one crossing edge since there
are no terminal node in V (G). This shows that T has at least two crossing edges.
This implies that each Steiner tree has exactly two crossing edges since there are
(d1 + d2) Steiner trees and 2(d1 + d2) crossing edges in total. Hence, the degree
three node in each Steiner tree cannot be in V (G) (i.e., it cannot be inside the
dashed box in Figure 5.6), so the degree three node is either s1 or s2. Also since
there are 3(d1 + d2) edges adjacent to s1 and s2 no tree contains both s1 and s2.
Now consider a Steiner tree T containing s1. Tree T uses the edge {s1, x1} to enter
G and it has no edges adjacent to s2, so it must contain {y1, t1}. Hence, T contains
a x1-y1 path inside G. Similarly, if T contains s2, then it has a x2-y2 path inside
G. Therefore, the d1 + d2 Steiner trees give us a solution to the instance I of the
planar Edge-Disjoint Path problem. �

5.4 Integrality ratio for packing Steiner trees in

planar graphs

In this section, we first show that even on planar graphs the standard LP relax-
ation of the edge-disjoint Steiner Tree Packing problem has integrality ratio

82

approaching 2. This shows that any approximation algorithm, for the edge-disjoint
Steiner Tree Packing problem, that uses the optimal value of this LP relax-
ation as an upper bound has approximation guarantee of at least 2 even on planar
graphs. Moreover, most of the upper bounds known to us are no better than the
optimal value of the LP relaxation. Finally, we modify our integrality ratio example
to get a similar result for the element-disjoint version of the problem.

Integrality ratio example for packing edge-disjoint Steiner trees:

Consider the following linear programming relaxation of the edge-disjoint ver-
sion of the problem. Let T be the set of all R-Steiner trees in G = (V,E).

(LP-edge) zLP (G) = max
∑
T∈T

xT

subject to ∑
T∈T :e∈T

xT ≤ 1 ∀e ∈ E

xT ≥ 0 ∀T ∈ T

Start from a k × dk grid and add d terminal nodes, R = {t1, . . . , td}, to the
outer face of the grid. Connect terminal t1 to the first k consecutive nodes on the
bottom-most row of the grid, next, connect terminal t2 to the second k consecutive
nodes on the bottom-most row, and continue in this way to connect each terminal
to a set of k consecutive nodes. Note that the set of neighbors of terminals are
disjoint. Now, replace each Steiner node of degree 4 in the obtained graph by the
gadget shown in Figure 5.7. Let G be the obtained graph. Note that G is a planar

v
⇒ 4-cycle

Figure 5.7: Gadget for degree 4 nodes

graph, and each Steiner node has degree at most 3. There are k edge-disjoint paths
between any two terminal nodes; each path is formed by using one row and two
columns of the grid. Hence, the terminal set R is k-edge-connected.

First, we prove that G has at most kd
2(d−1)

+
(
d
3

)
element-disjoint Steiner trees.

Note that edge-disjoint Steiner trees in G are also element-disjoint since each Steiner
node has degree at most 3 in G. Next, we show that LP-edge has optimal value of
zLP (G) = k. Proving these two claims shows that LP-edge has integrality ratio of
2− ε.

83

t1 t2 ti td

i-th row

j-th row

Figure 5.8: Integrality ratio example for the edge-disjoint problem

Theorem 5.4.1 The above linear programming relaxation of the edge-disjoint Steiner
Tree Packing problem has an integrality ratio of 2− 2

|R|−ε even on planar graphs,

where the additive term ε is a function of k and |R| and for fixed |R|, ε → 0 as
k →∞.

Now we prove the above two claims.

Lemma 5.4.2 Graph G has at most kd
2(d−1)

+
(
d
3

)
element-disjoint Steiner trees.

Proof: Let S be a maximum-size set of element-disjoint R-Steiner trees. The
edges incident to terminals are called terminal edges. Let S1 be the set of Steiner
trees from S with less than 2(d − 1) terminal edges, and S2 be the remaining
subset of S (i.e., S2 = S \ S1). Note that |S2| ≤ kd

2(d−1)
since any Steiner tree in

S2 has at least 2(d − 1) terminal edges and there are kd terminal edges in total.
Now, we show that S1 ≤

(
d
3

)
. Note that each Steiner tree in S1 has at least 3

terminals of degree one. Hence, any Steiner tree T ∈ S1 has at least one Steiner
node v of degree at least 3. Let T be a Steiner tree in S1 and v be a Steiner
node of degree at least 3 in T . Consider the maximal subtree F of T containing
v such that all leaves of F are terminals and all internal nodes of F are non-
terminals; such a subtree is called a full component of T . Denote the leaves of
the full component F containing v by L(T, v), and note that |L(T, v)| ≥ 3. Let
F = {L(T, v)|T ∈ S1, v is a non-terminal node, dT (v) ≥ 3}. The set F contains all
full components corresponding to non-terminal nodes of degree at least 3 in Steiner
trees from S1. We claim that |F| ≤ (d

3

)
; this completes the proof since |S1| ≤ |F|.

Note that the full components in F are element-disjoint. Given a set of 3 terminals
R′ ⊆ R, we show that R′ can appear on the leaves of at most one subtree in F .
Note that G is a planar graph with all terminals on the outer face. Assume that
there are two subgraph F ′, F ′′ ∈ F where both contain R′. Consider the union of

84

F ′, F ′′, and add a node on the outer face of G and connect it to R′. The obtained
graph contains a subdivision of K3,3 as a subgraph. This is a contradiction since
G is a planar graph. Hence, corresponding to each subset of size three from R we
have at most one subtree in F . Therefore, |F| ≤ (d

3

)
. �

Lemma 5.4.3 The linear program LP-edge has objective value zLP (G) = k.

Proof: The optimal value zLP (G) is at most k since each terminal has degree k.
Now, we create 2k half-integral Steiner trees, and this shows that zLP (G) ≥ k.
Corresponding to each row of the original grid we construct a pair of half-integral
Steiner trees. The `th pair uses the `th row and columns `, k+`, . . . , ik+`, . . . , dk+`
of the grid. One of the trees in this pair uses the upper two edges of the 4-cycles
and the other tree uses the lower two edges of the 4-cycles of the `th row. Similarly
one of them uses the right two edges of the 4-cycles and the other one uses the left
two edges of the 4-cycles of the columns. In Figure 5.8 Steiner trees for the ith row
and the jth row are shown. It is easy to check that each edge of the modified grid
is contained in at most two Steiner trees; Figure 5.8 shows how two Steiner trees
cross each other. Hence, the k pairs of half-integral Steiner trees form a solution to
LP-edge of value k. �

Integrality ratio example for packing element-disjoint Steiner trees:

Consider the following linear programming relaxation of the element-disjoint
Steiner Tree Packing problem. For notational convenience, we assume there
are no edges between terminals, by subdividing edges if needed. We show that
LP-element also has an integrality ratio of 2− ε in planar graphs.

(LP-element) zLP (G) = max
∑
T∈T

xT

subject to ∑
T∈T :v∈T

xT ≤ 1 ∀v ∈ V \R

xT ≥ 0 ∀T ∈ T

Start from a 2k × 2kd grid and subdivide the alternate edges of the last row of
the grid. Now add d terminal nodes R = {t1, . . . , td} to the outer face of the grid.
Next connect each terminal node ti to k consecutive subdivided nodes (see Figure
5.9 for an illustration). Let G be the obtained graph. The same analysis as in
Theorem 5.4.2 shows that G has at most kd

2(d−1)
+
(
d
3

)
element-disjoint Steiner trees.

We claim that LP-element has optimal value of zLP = k. This proof is also similar
to Lemma 5.4.3. We construct k pairs of half-integral Steiner trees. Each pair is
obtained from two consecutive rows by connecting each terminal to these two rows
using two consecutive columns. Figure 5.9 shows two pairs of half-integral Steiner
trees and shows how they cross each other. It is easy to check that each Steiner
node is contained in at most 2 half-integral Steiner trees. Hence, these 2k Steiner

85

t1 t2 ti td

i-th row

j-th row

Figure 5.9: Integrality ratio example for the element-disjoint problem

trees form a feasible solution to LP-element. Thus, we have zLP ≥ k; moreover,
zLP ≤ k since each terminal has degree k. Therefore, the above planar example
proves the following theorem.

Theorem 5.4.4 The LP relaxation of the element-disjoint Steiner Tree Pack-
ing problem has an integrality ratio of 2− 2

|R| − ε even on planar graphs, where the

additive term ε is a function of k and |R| and for fixed |R|, ε→ 0 as k →∞.

86

Appendices

87

Appendix A

Tree-width

In this section we provide standard definitions and basic properties of tree decom-
positions and related parameters.

Definition A.1 [23] A tree decomposition of a graph G = (V,E) is a pair 〈{Xi ⊆ V |i ∈ I} , T =
(I, F)〉 such that T is a tree with V (T) = I, E(T) = F , and satisfying the following
properties:

(T1)
⋃
i∈I Xi = V , and every edge uv ∈ E has both ends in some Xi,

(T2) For all i, j, k ∈ I if j is on the unique path from i to k in T then we have
Xi ∩Xk ⊆ Xj,

The width of 〈{Xi|i ∈ I} , T 〉 is maxi∈I |Xi| − 1. The tree-width of G, denoted by
tw(G), is defined as the minimum width over all tree decompositions. The nodes of
T are called T -nodes and Xi’s are called bags.

Definition A.2 A path decomposition is a tree decomposition 〈{Xi ⊆ V |i ∈ I} , T =
(I, F)〉, where T is a simple path. Similarly, the path-width of the graph G, denoted
by pw(G), is defined as the minimum width over all path decompositions.

For designing a dynamic programming algorithm based on tree decomposition,
it is easier to work with a nice tree decomposition.

Definition A.3 A tree decomposition 〈{Xi ⊆ V |i ∈ I} , T = (I, F)〉, where T is
a rooted tree, is called a nice tree decomposition if the following conditions are
satisfied:

1. every node of T has at most two children,

2. if a node i has two children j and k, then Xi = Xj = Xk. The node i is called
a Join node.

88

3. if a node i has one child j, then either

• Xj ⊂ Xi and |Xi \Xj| = 1; i is called an Introduce node, or

• Xi ⊂ Xj and |Xj \Xi| = 1; i is called a Forget node.

Let G be a given graph of tree-width k (i.e., tw(G) = k). It is known that
any tree decomposition of width k can be transformed to a nice tree decomposition
with width k in linear time. Thus, we can always assume that we are given a nice
tree-decomposition of the input graph.

Lemma A.4 (Lemma 13.1.3 in [42]) Given a tree-decomposition of a graph G
of width k and O(n) nodes, where n is the number of nodes in G, one can find a
nice tree-decomposition of G of width k and with at most 4n nodes in O(n) time.

Bodlaender et al. [12] showed that the tree-with and path-width can be approx-
imated within poly-logarithmic ratio.

Theorem A.5 ([12]) Given a graph a graph G = (V,E), there exists a polynomial
time algorithm that finds a tree decomposition of width at most O(tw(G) log n),
where n = |V |. Also there exists a polynomial time algorithm that finds a path
decomposition of width at most O(pw(G) log2 n).

Seymour and Thomas [69] gave a polynomial time algorithm for computing
branch-width of planar graphs; this implies a polynomial time approximation algo-
rithm with guarantee of 3

2
for computing tree-width of planar graphs.

89

Appendix B

Dynamic programming algorithms

In this section we present our dynamic programming algorithms for three related
problems, namely, the General Propagation problem, the extended `-round
General Propagation problem, and the Directed PDS problem. These al-
gorithms are based on the dynamic programming algorithm designed by Guo et al.
[30] to optimally solve PDS for undirected graphs with bounded tree-width. We
also present dynamic programming algorithms for the Target Set Selection
and `-round Target Selection Set problems; these algorithms are very similar
to the algorithms for the General Propagation problem and its extensions.

By Lemma A.4, we can assume that we are given a nice tree decomposition of
the undirected graph G, 〈{Xi|i ∈ I} , T 〉. Let Ti denote the subtree of T rooted at

T -node i, and Yi =
(⋃

j∈V (Ti)
Xj

)
\Xi. We denote the subgraph of G induced on

node set Yi ∪Xi by Gi (i.e., Gi = G [Yi ∪Xi]).

B.1 The general propagation problem

We start by describing the state of bags in our dynamic programming algorithm.

The state of a bag: Given a valid orientation Ô of G, the state of a bag Xi

describes the orientation of the edges in G[Xi]. In order to detect the dependency

cycles in Ô without reconstructing the whole orientation, we need to store more
information. This extra information enables us to detect a dependency cycle in Gi

that goes through Xi, by considering only the state of the bag Xi. A bag state s
contains the following information: 1) state of each edge, 2) state of each node, and
3) state of each pair of nodes in G[Xi].

• State of an edge: The state of an edge e = {u, v} ∈ E(G[Xi]) denoted
by s(e) shows the orientation that is assigned to e, and has the following 3
values:

1. s(e) = (u, v): the edge e is oriented from u to v,

90

2. s(e) = (v, u): the edge e is oriented from v to u, and

3. s(e) = ⊥: the edge e is unoriented.

• State of a node: For each node v ∈ Xi we define two states denoted by
s−(v) and s+(v) that is the number of in-coming and out-going edges between
v and Yi, respectively. The state s−(v) can take any value from {0, 1}, and
the state s+(v) can take any value from {0, 1, 2}. The s+(v) = 2 denotes
that there are at least 2 oriented edges from v to Yi. To distinguish between
propagation nodes and domination nodes we only need to know if the out-
degree of a node is ≥ 2 or not. By the degree constraints in Definition 4.1.3,
we cannot have a node v with in-degree 1 and out-degree > 1. Hence, these
two node states have the following 5 combinations:

1. s−(v) = 0, s+(v) = 0: There are no oriented edges between v and Yi,

2. s−(v) = 0, s+(v) = 1: There is no in-coming edge from Yi, and exactly
one out-going edge from v to Yi,

3. s−(v) = 0, s+(v) = 2: There is no in-coming edge from Yi, and there are
at least two out-going edges from v to Yi,

4. s−(v) = 1, s+(v) = 0: There is exactly one in-coming edge from Yi, and
no out-going edge from v to Yi, and

5. s−(v) = 1, s+(v) = 1: There is exactly one in-coming edge from Yi, and
one out-going edge from v to Yi.

• State of a pair of nodes: We categorize dependency paths according to
the type of their first and last edges. There are 4 possible types UU , UD,
DU , and DD. The type xy (x, y ∈ {U,D}) denotes that the first edge is of
type x and the last edge is of type y, where U means the edge is unoriented
and D means that the edge is oriented. For example, a dependency path of
type UD is a dependency path where the first edge is unoriented and the last
edge is oriented. We define an operation denoted by ⊗ that takes the type
of two dependency paths and returns the type of the dependency path that
is obtained by concatenating the given two paths. Let P1 be a dependency
path of type t1 from u to v, and P2 be a dependency path of type t2 from
v to w. We denote by t1 ⊗ t2 the type of the dependency path from u to w
that is obtained by concatenating P1 and P2. If the concatenation of the two
paths is not a dependency path, then the operator ⊗ returns ∅. For example,
DD ⊗ UU = DU and DU ⊗ UD = ∅; in the second example, note that after
concatenating the given two paths we get two consecutive unoriented edges
so the resulting path is not a dependency path. A single oriented edge (u, v)
is considered to be a dependency path of type DD, and an unoriented edge
{u, v} is considered to be a dependency path of type UU .

For a pair (u, v) ∈ Xi × Xi (u 6= v) the state of (u, v) denoted by s(u, v)
shows the type of dependency paths from u to v in G[Yi ∪ {u, v}]; so we have
s(u, v) ⊆ {UU,UD,DU,DD}. Note that there are 24 = 16 different states

91

for each pair of nodes; s(u, v) = ∅ means that there is no dependency path
from u to v in G[Yi ∪ {u, v}].

Given a valid orientation Ô of G, we say that Ô is under the restriction of the bag
state si of the bag Xi if Ô satisfies the following conditions:

1. the orientation (in Ô) of an edge e ∈ E(G[Xi]) is the same as si(e),

2. for each pair of nodes (u, v) ∈ Xi ×Xi, the type of the dependency paths in

G[Yi ∪ {u, v}] (in the orientation Ô) are as given by si(u, v), and

3. for each node u ∈ Xi, the number of oriented edges (in the orientation Ô)
between u and Yi coincides with s−i (u) and s+

i (u).

Let us denote by ∆i the set of all possible states for the bag Xi. Note that
|∆i| ≤ 3k(k+1)/2 · 5k+1 · 16k(k+1); since the number of relevant edges, nodes, and
pairs of nodes are less than equal to k(k + 1)/2, k + 1, k(k + 1), respectively. The
dynamic programming algorithm will compute in a bottom-up fashion a mapping
Ai : ∆i → R ∪ {+∞}. For a bag state si ∈ ∆i, the value Ai(si) is the minimum

weight of the origins in an optimal valid orientation Ô of Gi under the restriction
that the state of nodes, edges, and pairs of nodes in Xi is given by si. Before we
describe our dynamic programming algorithm, let us see how to detect dependency
cycles going through a bag Xi.

Detecting dependency cycles and checking the degree constraints: Let i
be a node in the tree-decomposition T , let Xi be the corresponding bag in G, and
let s ∈ ∆i. We define a procedure called valid(Xi, s) that return true if and only

if an orientation Ô of Gi under the restriction of s satisfies the degree constraints
in Xi and also has no dependency cycles going thorough Xi. Let’s denote by d−s (u)
and d+

s (u) the in-degree and out-degree of a node u (respectively) in the orientation
of G[Xi] given by the state of edges s(e). The total number of in-coming edges to

a node u in the orientation Ô of Gi under the restriction of s is d−s (u) + s−(u); the
first term is the number of in-coming oriented edges to u in G[Xi] and the second
term is the number of oriented edges from Yi to u. The number of out-going edges
from u can also be computed in this way; note that we only need to know if the
out-degree is ≥ 2 or not.

• Degree constraints: The degree constraints at node u ∈ Xi is satisfied if

– s−(u)+d−s (u) ≤ 1 and ((s−(u) + d−s (u) = 1)⇒ s+(u) + d+
s (u) ≤ 1), and

– if u is a propagation node and (s−(u)+d−s (u) = 0) then s+(u)+d+
s (u) ≤

1.

The first condition says that the in-degree of each node is at most 1 and
if the in-degree is 1 then the out-degree should be at most 1. The second

92

condition says that if a propagation node is an origin of the orientation then
its out-degree is at most 1; note that a domination node with in-degree 0 has
no restriction and it can have any number of out-going edges.

• Dependency cycles: Let C be a dependency cycle in Gi going through `
nodes from Xi in the order u1, u2, . . . , u`. Each two consecutive nodes uj, uj+1

in the dependency cycle C that appears in Xi are either connected by an
edge from G[Xi] or by a dependency path in G[Yi∪{uj, uj+1}]. Note that the
direction of the edge {uj, uj+1} and the type of dependency paths from uj to
uj+1 in G[Yi ∪ {uj, uj+1}] are all stored in the bag state s. By combining the
types of dependency paths for each consecutive nodes uj, uj+1 (for i = 1, . . . , `)
we can check if there is a dependency cycle going through u1, u2, . . . , u`. For
example, if ` = 3, s(u1, u2) = DD, s(u2, u3) = UD, and s({u3, u1}) = ⊥ then
there is a dependency cycle going through u1, u2, u3; note that the combination
of these 3 dependency paths yields a dependency cycle. In total, there are
O((k + 1)!) such dependency cycles going through Xi, and checking any one
of them needs O(k) time.

In time O(k · (k + 1)!), we can check if there is a dependency cycle going through
Xi and also check if the degree constraints are satisfied.

Step 1: (Initialization): In this step for each leaf node i of T , we initialize
the mapping Ai as follows. For a given state si ∈ ∆i, we define Ai(si) as +∞ if
valid(Xi, si) = false, there exists a node v ∈ Xi with s−i (v) + s+

i (v) 6= 0, or there
exists a pair of nodes u, v ∈ Xi such that si(u, v) 6= ∅. Otherwise, we define Ai(si)
as the weight of nodes with in-degree 0 in the orientation given by si, i.e.,

Ai(si) = W
({
u ∈ Xi|d−si(u) = 0

})
.

Step 2: (Bottom-Up Computation): After initialization, we visit the nodes
in T in a bottom-up fashion and at each bag Xi we compute the mapping Ai
corresponding to Xi. The update process depends on the type of T -nodes we are
visiting. Let j be a child of node i in T . Informally, we say that a bag state sj of

j is compatible with a bag state si of i if there exists a valid orientation Ô that is
under the restriction of both si and sj in the graphs Gi and Gj, respectively. The
formal definition of compatibility will be given for each type of nodes separately.

Forget node: Suppose i is a forget node with child j, and Xj = Xi ∪ {x}. Note
that Gi and Gj have the same set of nodes, so a valid orientation of Gj is also
a valid orientation of Gi. The state of nodes and pairs of nodes can be different
in these two graphs due to the node x. Given a bag state si for the node i, to
compute Ai(si) we need to compute the set of bag states, ∆(si), of the node j that
are compatible with si. A bag state sj of the node j is compatible with si if the
following conditions are satisfied:

1. for each v ∈ Xi:

93

• if {x, v} ∈ E(G[Xj]) then

– s−i (v) = s−j (v)+1 if sj({x, v}) = (x, v), and otherwise s−i (v) = s−j (v)

– s+
i (v) = min(2, s+

j (v) + 1) if sj({x, v}) = (v, x), and otherwise
s+
i (v) = min(2, s+

j (v))

• if {x, v} 6∈ E(G[Xj]) then

s−i (v) = s−j (v), s+
i (v) = s+

j (v)

The number of oriented edges between v and Yi might increase from the
number of oriented edges between v and Yj, since x ∈ Yi \ Yj. The above
conditions checks these changes.

2. for each edge e ∈ E(G[Xi]) we have si(e) = sj(e)

3. for each pair (u, v) ∈ Xi ×Xi we have:

si(u, v) = sj(u, v) ∪ (sj(u, x) ∪ t(u,x))⊗ (sj(x, v) ∪ t(x,v)),

where t(u,x), t(x,v) ∈ {UU,UD,DU,DD} denote the type of the oriented edge
(defined by the orientation in sj) from u to x and the oriented edge from x
to v, respectively. This condition is saying that si(u, v) (type of dependency
paths between u and v) extends sj by adding the new type of dependency
paths that could be formed through the new node x in Yi \ Yj.

Let ∆(si) be the set of all bag states sj for Xj that are compatible with the bag
state si for Xi. The function Ai is computed as follows:

Ai(si) = min
sj∈∆(si)

Aj(sj).

If ∆(si) = ∅ then Ai(si) is defined to be +∞. The computation of Ai is correct
since Gi and Gj are the same graph, and so a valid orientation under the restriction
of sj is also a valid orientation under the restriction of si.

Introduce node: Suppose i is an introduce node with child j, and Xi = Xj ∪{x}.
Given a bag state si of the bag Xi, to compute Ai(si) we need to compute the set of
all bag states, ∆(si), of the node j that are compatible with si. If valid(Xi, si) =
false, then we define ∆(si) as ∅. By the properties of the tree decomposition
we know that the newly introduced node x has no neighbor in Yi. Therefore, if
s−i (x) + s+

i (x) 6= 0 or there exits v ∈ Xj such that s(v, x) 6= ∅ or s(x, v) 6= ∅, then
we define ∆(si) as ∅. Otherwise ∆(si) contains a bag state sj of Xj if the following
conditions are satisfied:

1. for each e ∈ E(G[Xj]) we have: si(e) = sj(e),

2. for each v ∈ Xj we have: s−i (v) = s−j (v) and s+
i (v) = s+

j (v), and

3. for each pair of nodes (u, v) ∈ Xj ×Xj we have: si(u, v) = sj(u, v).

94

Note that adding the node x to Gj does not change the state of nodes, edges, and

pairs of nodes in Xj since x has no neighbor in Yi. Hence, a valid orientation Ô
under the restriction of si is a valid orientation under the restriction of sj, if sj is
compatible with si. Now, we can compute Ai(si) using ∆(si) in the following way:

Ai(si) = min
sj∈∆(si)

{
Aj(sj) + W(x) · (1− d−si(x))− W({u ∈ Xj ∩N(x) : si({x, u}) = (x, u)})}.

Note that x should be counted as an origin if and only if d−si(x) = 0. In the bag
state si the newly introduced node x could be an origin and also some of the origins
in sj might not be origins in si due to oriented edges from x to them. We need to
modify the value of Aj(sj) as above to compensate for these changes.

Join node: Suppose i is a join node with children j and l; so we haveXi = Xj = Xl.
We need to compute the set, ∆(si), of “compatible“ pairs (sj, sl) with si, where
sj and sl are bag states of Xj and Xl, respectively. If valid(Xi, si) = false then
we define ∆(si) = ∅. Otherwise, ∆(si) contains the pair (sj, sl) if the following
conditions ate satisfied:

1. for each v ∈ Xi we have:

s−i (v) = s−j (v) + s−l (v), s+
i (v) = min(2, s+

j (v) + s+
l (v))

2. for each edge e ∈ E(G[Xi]) we have: si(e) = sj(e) = sl(e), and

3. for each pair of nodes (u, v) ∈ Xi ×Xi, we have si(u, v) = sj(u, v) ∪ sl(u, v).

From the properties of tree decompositions we know that Yj ∩ Yl = ∅ and Yi =
Yj ∪ Yl. Now we can compute Ai(si) in the following way. By combining the valid
orientations in Gj and Gl we get an orientation of Gi. In the obtained orientation a
node u ∈ Xi that is an origin in the orientation of Gj or Gl might not be an origin
anymore, or it might be double counted if it is an origin in both Gj and Gl.

Ai(si) = min
(sj ,sl)∈∆(si)

{Aj(sj) + Al(sl)− W(Bsi(sj, sl))}

where Bsi(sj, sl) is defined as follows. The set Bsi(sj, sl) contains a node u ∈ Xi if
any one the following conditions is satisfied:

• d−si(u) + s−i (u) = 0; u is counted twice as an origin,

• d−sj(u) + s−j (u) = 0 and d−sl(u) + s−l (u) = 1; u is an origin in Gj but not in Gl,
or

• d−sj(u) + s−j (u) = 1 and d−sl(u) + s−l (u) = 0; u is an origin in Gl but not in Gj.

95

Step 3: (At root r): Finally, we compute the minimum weight of origins in an
optimal valid orientation of G by finding the minimum of Ar(s) over all possible
s ∈ ∆r.

The bottle neck in the computation of the mapping Ai is at a join node i, where
for each bag state si we need to consider all pairs of compatible bag states of its two

children. Hence, at each bagXi we can computeAi in timeO
((

3k(k+1)/2 · 5k+1 · 16k(k+1)
)3
)

=

O(ck
2
), for some constant c. Therefore, the total running time of our algorithm is

O(ck
2 · n).

B.2 The `-round general propagation problem

Our dynamic programming algorithm is based on valid timed-orientations. This
dynamic programming algorithm is similar to the dynamic programming algorithm
for PDS given in [30].

Fix a parameter ` and consider the `-round General Propagation problem.
Assume that the graph G = (V,E) and V ′ ⊆ V and a nice tree decomposition
〈{Xi ⊆ V | i ∈ I} , T = (I, F)〉 of G with tree-width k are given as input. We start
by describing the state of bags in our dynamic programming algorithm.

The state of a bag: Given a valid timed-orientation of G, the state of a bag Xi

describes the orientation of the edges in G[Xi] and the time label assigned to each
node. In order to check the conditions of the valid timed-orientation, we need to
store more information.

• State of an edge: The state of an edge e = {u, v} ∈ E(G[Xi]) denoted by
s(e) shows the orientation that is assigned to e; i.e., s(e) ∈ {(u, v), (v, u),⊥}
• State of a node: For each node v ∈ Xi we define the following five states:

– s−(v): denotes the number of in-coming edges to v from Yi,

– s+(v): denotes the number of out-going edges from v to Yi,

– st(v): denotes the time label assigned to v in the orientation,

– sm(v): denotes the maximum time label assigned to the neighbors of v
in Yi except it’s unique out-neighbor (if there is any),

– sr(v) denotes the time label assigned to the out-neighbor of v in Yi (if
there is any). Informally speaking, this shows the round in which v covers
it’s unique out-neighbor by an application of the propagation rule.

For each node v ∈ Xi, s
t(v) takes a value from {0, 1, 2, . . . , `} ∪ {+∞}, s−(v) takes

a value from {0, 1}, s+(v) takes a value from {0, 1, 2}, sm(v) takes a value from
{0, 1, . . . , `} ∪ {+∞}, and sr(v) takes a value from {0, 1, 2, . . . , `} ∪ {+∞}. The
s+(v) = 2 denotes that there are at least 2 oriented edges from v to Yi. The state

96

sr(v) is needed to check if the property (P5) in the valid time-orientation is satisfied.
If v is a source node of domination type or it has no out-neighbor in the orientation
then sr(v) is not used and has value sr(v) = 0 otherwise it keeps the time label
assigned to it’s unique out-neighbor (in Yi).

Let us denote by ∆i the set of all possible states of the bag Xi. It is straightfor-
ward to check that the number of bag states for Xi is |∆i| ≤ 3mi × 5ni × (`+ 2)3ni .
For each bag Xi we will compute and store a mapping Ai : ∆i → R ∪ {+∞}. For
a bag state s ∈ ∆i, the value Ai(s) shows the weight of origins in the optimal valid
timed-orientation of the subproblem induced on Gi under the restriction that the
orientation of edges and labeling of nodes in Xi is defined by the state s.

We define a procedure called valid(Xi, s) that returns true if the timed orien-
tation of G[Xi] given by the state s satisfies the properties (P1-P5) in the definition
of the valid timed-orientation. Note that the number of oriented edges between a
node v to Yi are stored in the state s. Also using the direction of edges in G[Xi]
given by the state s, we can compute the in-degree of v in G[Xi], denoted by d−s (u),
and the out-degree of v in G[Xi], denoted by d+

s (v). After computing these infor-
mation, it is straightforward to check the properties (P1,P3,P4). Property (P5)
should be checked for each directed edge (u, v). The important case to check is
when u is not a source node of domination type; note that this is the only case
that the propagation rule applies. In this case, we only need to check property
(P5) when all neighbors of u are in Gi and u has no neighbors in G \Gi, and this
happen either at the root node or at a Forget Node. In order to do this test,
we need to keep the time label assigned to v in the state sr(u) since v might not
be in the considered bag and could be deep down in the tree, and also note that
sm(u) should be the maximum of time labels of all neighbors of u except v. Note
that property (P2) should also be checked at a Forget Node. Observe that, the
valid(Xi, s) procedure can be done in time O(k2). Now we describe our dynamic
programming algorithm.

Step 1: (Initialization) In this step for each leaf node i in the tree T , we define
(initialize) the mapping Ai for each s ∈ ∆i. If valid(Xi, s) = false or there exists a
node v such that one of s−(v), s+(v), sm(v), sr(v) is not 0, then define Ai(s) = +∞.
Otherwise, let Ai(s) be the weight of nodes with st(v) = 0.

Step 2: (Bottom-Up Computation) After initialization, we visit the nodes
of T in a bottom-up fashion and at each bag Xi we compute the mapping Ai
corresponding to Xi. The update process depends on the type of T -nodes we are
visiting. Recall that there are three node types: Forget Node, Join Node,
Introduce Node. In the following, we describe how to compute Ai for each of
these three node types.

Forget Node: Suppose i is a forget node with child j, and assume that Xj =
Xi ∪ {x}. The bag states si ∈ ∆i and sj ∈ ∆j are called forget-compatible and

denoted by si
F∼ sj, if

(F1) ∀e ∈ E(G[Xj]) : si(e) = sj(e).

97

(F2) ∀v ∈ V (G[Xj]) :

– s−i (v) = s−j (v) + 1 if sj({x, v}) = (x, v), otherwise s−i (v) = s−j (v)

– s+
i (v) = min(2, s+

j (v) + 1) if sj({x, v}) = (v, x), otherwise s+
i (v) =

min(2, s+
j (v))

– sti(v) = stj(v).

(F3) ∀v ∈ V (G[Xj]) :

smi (v) =

{
max{smj (v), stj(x)} if {x, v} ∈ E(G[Xj]) and sj({x, v}) 6= (v, x)

smj (v) otherwise

(F4) The property (P5) should be satisfied on x if x has an out-going edge in Gi.
Also if there is a directed edge from a node v to x and v is not a source node
of domination type, then sri (v) must be equal to stj(x). Also property (P2)
should be satisfied on x.

Now we compute the mapping Ai for the bag Xi as follows: ∀s ∈ ∆i

Ai(s) =

{
+∞ valid(Xi, s) = false

min{Aj(sj) : sj ∈ ∆j, s
F∼ sj} otherwise

Introduce Node: Suppose i is an introduce node with child j, and assume that
Xi = Xj ∪{x}. The bag states si ∈ ∆i and sj ∈ ∆j are called introduce-compatible

and denoted by si
I∼ sj, if

(I1) ∀e ∈ E(G[Xj]) : si(e) = sj(e)

(I2) ∀v ∈ V (G[Xj]) : stj(v) = sti(v), s−j (v) = s−i (v), s+
j (v) = s+

i (v), smj (v) = smi (v),
and srj(v) = sri (v).

We now compute the mapping Ai for the bag Xi as follows. If valid(Xi, si) = false,
sri (x) 6= 0, or smi (x) 6= 0, then Ai(si) = +∞. Otherwise,

Ai(si) = min
si
I∼sj

{
Aj(sj) +

{
W(x) if sti(x) = 0

0 otherwise

}

Join Node: Suppose that i is a join node with j and k as its children, and assume
that Xi = Xj = Xk. We say sj ∈ ∆j and sk ∈ ∆k are join-compatible with si ∈ ∆i

and denote it by si
J∼ (sj, sk), if the following conditions hold:

(J1) ∀v ∈ V (GXi]) :

– s−i (v) = s−j (v) + s−k (v)

98

– s+
i (v) = min(2, s+

j (v) + s+
k (v))

– smi (v) = max(smj (v), smk (v))

– sti(v) = stj(v) = stk(v)

– srl (v) = max(sri (v), srj(v)).

(J2) ∀e ∈ E(G[Xi]) : si(e) = sj(e) = sk(e)

We now compute the mapping Ai for the bag Xi as follows. If valid(Xi, si) = false
then Ai(si) = +∞. Otherwise,

Ai(si) = min
si
J∼(sj ,sk)

{
Aj(sj) + Ak(sk)− W

({
v ∈ Xi : sti(v) = 0

})}
Step 3: (At root r) Let r be the root of the tree decomposition T . Finally
we compute the minimum weight of origins in the optimal solution for `-round
General Propagation problem in the following way:

δ(G) = min {Ar(s) : s ∈ ∆r}.
Note that at the root node, we need to check properties (P2) and (P5). If (P2) or
(P5) is not satisfied in a bag state s, then Ar(s) = ∞. Let me be the maximum
number of edges that a bag can have, and also note that the maximum number
of nodes in a bag is (k + 1). It is easy to check that each step of the dynamic
programming algorithm can be computed in time O(cme+k log `), for some constant
c. This shows that the total running time of our algorithm is O(cme+k log ` · |V |).

B.3 The directed PDS problem

In this section, we describe our dynamic programming algorithm for the Directed
PDS problem. This algorithm is similar to the dynamic programming algorithm
designed by Guo et al. [30] to optimally solve PDS for undirected graphs of bounded
tree-width.

Consider a valid coloring C of the digraph G. We store the color of the edges
in each bag by assigning a state to that bag (the formal definition of a state will
follow). We can reconstruct the coloring C from the states of all bags in the tree
decomposition of G; so there is no need to store the coloring C in the dynamic
programming algorithm. This algorithm is similar to the dynamic programming
algorithm for the General Propagation problem. The Blue edges in the coloring
correspond to the unoriented edges in the valid orientations, and the Red edges
correspond to the oriented edges. Here, we only describe the states of a bag.
The rest of the dynamic programming algorithm can be easily adapted for the
Directed PDS problem.

The state of a bag: Given a coloring C, the state of a bag Xi describes the
coloring of the edges in G[Xi]. In order to detect the dependency cycles in the

99

coloring C without reconstructing the whole coloring, we need to store some more
information. This extra information enables us to detect a dependency cycle in Gi

which goes through Xi, by considering only the state of the bag Xi. A bag state s
contains the following information:1) state of each edge, 2) state of each node, and
3) state of each pair of nodes for G[Xi].

• State of an edge: The state of an edge e ∈ E(G[Xi]) denoted by s(e) is
the color that is assigned to e; i.e., s(e) ∈ {R,B}.
• State of a node: The state of a node v ∈ Xi has two parameters s−(v)

and s+(v), where s−(v) denotes the number of in-coming red edges to v from
nodes in Yi, and s+(v) denotes the number of out-going red edges to Yi from v.
The values that these two parameters can take is the same as in the dynamic
programming algorithm for the General Propagation problem.

• State of a pair of nodes: A dependency path from u to v is a path P
where all red edges in P are directed from u to v and all blue edges are
directed from v to u. We categorize dependency paths according to the color
of their first and last edges. There are 4 possible types RR,RB,BR,BB;
for example, a path of type RB is a path with the first edge colored red and
the last edge colored blue. For a pair (u, v) ∈ Xi × Xi (u 6= v) the state
of (u, v) denoted by s(u, v) shows the type of dependency paths from u to v
in G[Yi ∪ {u, v}]; that is, s(u, v) ⊆ {RR,RB,BR,BB}. Note that there are
24 = 16 different states for each pair of nodes; s(u, v) = ∅ means that there
is no dependency path from u to v in G[Yi ∪ {u, v}].

B.4 The target set selection problem

The dynamic programming algorithm for the Target Set Selection is similar
to the dynamic programming algorithm for the general Propagation problem.
Here, we only describe the state of bags needed for our algorithm. The other
modifications are straightforward, and we skip them here.

The state of a bag: Given a valid target-orientation Ô of G, the state of a bag
Xi describes the orientation of the edges in G[Xi]. In order to detect the directed

cycles in Ô without reconstructing the whole orientation, we need to store some
more information. This extra information enables us to detect a directed cycle in
Gi that goes through Xi, by considering only the state of the bag Xi. A bag state
s contains the following information: 1) state of each edge, 2) state of each node,
and 3) state of each pair of nodes in G[Xi].

• State of an edge: The state of an edge e = {u, v} ∈ E(G[Xi]) denoted by
s(e) shows the orientation that is assigned to e; i.e., s(e) ∈ {(u, v), (v, u),⊥}.
• State of a node: For each node v ∈ Xi we define a state denoted by by
s−(v) that is the number of in-coming edges to v from Yi.

100

• State of a pair of nodes: For a pair (u, v) ∈ Xi × Xi (u 6= v) the state
of (u, v) denoted by s(u, v) shows the existence of a directed path from u to
v in G[Yi ∪{u, v}]. s(u, v) = true if there is such a directed path from u to v,
and it is assigned false otherwise.

Let T be the maximum threshold assigned to the nodes of G. It is easy to
check that there are at most 3k(k+1)/2 · T (k+1) · 2k(k+1) bag states, where k is the
tree-width of G. Note that since the largest threshold is T , each node has at most
T different values for s−(v). Hence, the total running time of our algorithm is
O(ck

2 · T k+1 · |V (G)|) for some constant c.

B.5 The `-round target set selection problem

The dynamic programming algorithm for the `-round Target Set Selection is
similar to the dynamic programming algorithm for the `-round General Propa-
gation problem. Here, we only describe the state of bags needed for our algorithm.
The other modifications are straightforward, and we skip them here.

The state of a bag:

• State of an edge: The state of an edge e = {u, v} ∈ E(G[Xi]) denoted by
s(e) shows the orientation that is assigned to e.

• State of a node: For each node v ∈ Xi we define the following states:

– s−(v) denotes the number of in-coming edges from Yi to v

– s+(v) denotes the number of out-going edges from v to Yi; note that for
the out-degree we only need to know if s+(v) > 0, so it takes value from
{0, 1}.

– sr(v) denotes the time-label assigned to v.

– sm(v) denotes the maximum time-label assigned to the in-neighbors of
v in Yi.

Let T be the maximum threshold assigned to the nodes of G. It is easy to check
that there are at most 3k(k+1)/2 ·(2T)(k+1) ·(`+2)2k+2 bag states, where k is the tree-
width of G. The total running time of our algorithm is O(ck

2+k log ` · T k+1 · |V (G)|)
for some constant c.

101

Bibliography

[1] A. Aazami. Domination in graphs with bounded propagation: algorithms,
formulations and hardness results. accepted for publication in Journal of Com-
binatorial Optimization, July 2008. 1

[2] A. Aazami, J. Cheriyan, and K. Raju Jampani. Hardness results and approx-
iamtion algorithms for packing Steiner trees. manuscript, in preparation, Oct.
2008. 1

[3] A. Aazami and M. D. Stilp. Approximation algorithms and hardness for dom-
ination with propagation. 22 pages, submitted to a journal on Aug. 2006 (re-
vision submitted on Oct 2007). 1

[4] A. Aazami and M. D. Stilp. Approximation algorithms and hardness for domi-
nation with propagation. In Proceedings of the 10th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, volume
4627 of LNCS, pages 1–15. Springer, 2007. 1, 8

[5] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002. 31, 38

[6] N. Alon. A propagation process on Cayley graphs. 2008. 8

[7] B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. J. ACM, 41(1):153–180, 1994. 2, 46, 47, 48, 49, 58, 59

[8] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa. Power system observ-
ability with minimal phasor measurement placement. IEEE Transactions on
Power Systems, 8(2):707–715, 1993. 7, 30

[9] M. Bellare, S. Goldwasser, C. Lund, and A. Russeli. Efficient probabilistically
checkable proofs and applications to approximations. In STOC ’93: Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of computing, pages
294–304, 1993. 25

[10] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the spread of viruses on
the internet. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 301–310, 2005. 8

102

[11] H. L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin
of the EATCS, 36:116–126, 1988. 59, 61

[12] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks.
Approximating treewidth, pathwidth, frontsize, and shortest elimination tree.
J. Algorithms, 18(2):238–255, 1995. 89

[13] D. J. Brueni. Minimal PMU placement for graph observability, a decomposition
approach. M.S. thesis, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 1993. 7, 30

[14] D. J. Brueni and L. S. Heath. The PMU placement problem. SIAM J. Discret.
Math., 19(3):744–761, 2005. 31

[15] D. Burgarth and V. Giovannetti. Full control by locally induced relaxation.
Physical Review Letters, 99:100501, 2007. 8

[16] N. Chen. On the approximability of influence in social networks. In SODA
’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1029–1037, 2008. 8, 64

[17] J. Cheriyan and M.R. Salavatipour. Hardness and approximation results for
packing steiner trees. Algorithmica, 45(1):21–43, 2006. 70

[18] J. Cheriyan and M.R. Salavatipour. Packing element-disjoint steiner trees.
ACM Transactions on Algorithms, 3(4), 2007. 70, 71

[19] J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed
cut problems. In STOC ’07: Proceedings of the thirty-ninth annual ACM sym-
posium on Theory of computing, pages 179–188, 2007 (Full version is avaiable
on the home pages of both authors). 23, 25

[20] V. Chvatal. A greedy heuristic for the set covering problem. Math. Oper. Res.,
4:233–235, 1979. 30

[21] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique width. In Workshop on Graph-Theoretic
Concepts in Computer Science, pages 1–16, 1998. 30, 48

[22] E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: new connections
between FPT algorithms and PTASs. In Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 590–601, 2005. 46, 47, 48

[23] R. Diestel. Graph Theory. Springer-Verlag, New York, 2nd edition, 2000. 4,
12, 37, 74, 88

[24] M. Dorfling and M. A. Henning. A note on power domination in grid graphs.
Discrete Applied Mathematics, 154(6):1023–1027, 2006. 31, 39

103

[25] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–
652, 1998. 30

[26] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111–121, 1980. 77

[27] A. Frank, T. Király, and M. Kriesell. On decomposing a hypergraph into k
connected sub-hypergraphs. Discrete Applied Mathematics, 131(2):373–383,
2003. 70, 73, 75

[28] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., New York, NY, USA,
1979. 4, 31

[29] AIM Minimum Rank Special Graphs Work Group. Zero forcing sets and the
minimum rank of graphs. Linear Algebra and its Applications, 428(7):1628–
1648, 2008. 7, 8, 12, 28

[30] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity
results for power domination in graphs. In Proceedings of the 15th International
Symposium on Fundamentals of Computation Theory, volume 3623 of LNCS,
pages 172–184. Springer, 2005 (to appear in Algorithmica). 2, 31, 38, 48, 49,
90, 96, 99

[31] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning.
Domination in graphs applied to electric power networks. SIAM J. Discrete
Math., 15(4):519–529, 2002. 30

[32] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in Graphs:
Advanced Topics. Marcel Dekker, 1998. 40

[33] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination
in Graphs. Marcel Dekker, 1998. 40

[34] H.R. Hind and O. Oellermann. Menger-type results for three or more vertices.
Congressus Numerantium, 113:179–204, 1996. 71, 72

[35] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games,
and orderings. In Proceedings of the 18th Annual ACM Symposium on Discrete
Algorithms, pages 637–644, Philadelphia, PA, USA, 2007. 62

[36] K. Jain, M. Mahdian, and M.R. Salavatipour. Packing steiner trees. In SODA,
pages 266–274, 2003. 70

[37] D. S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. Syst. Sci., 9(3):256–278, 1974. 30

[38] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-
width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001. 62

104

[39] P. Kaski. Packing steiner trees with identical terminal sets. Inf. Process. Lett.,
91(1):1–5, 2004. 70

[40] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 137–146,
2003. 8, 64

[41] D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion model
for social networks. In ICALP ’05: Automata, Languages and Programming,
32nd International Colloquium, pages 1127–1138, 2005. 8, 64

[42] T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS.
Springer, 1994. 38, 89

[43] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Parameterized power dom-
ination complexity. Inf. Process. Lett., 98(4):145–149, 2006. 30, 48

[44] G. Kortsarz. On the hardness of approximating spanners. Algorithmica,
30(3):432–450, 2001. 19, 20, 32

[45] M. Kriesell. Edge-disjoint trees containing some given vertices in a graph. J.
Comb. Theory, Ser. B, 88(1):53–65, 2003. 70

[46] L.C. Lau. On approximate min-max theorems for graph connectivity problems.
PhD thesis, University of Toronto, 2006. 70

[47] L.C. Lau. An approximate max-steiner-tree-packing min-steiner-cut theorem.
Combinatorica, 27(1):71–90, 2007. 70

[48] C. S. Liao and D. T. Lee. Power domination problem in graphs. In Proceedings
of the 11th International Computing and Combinatorics Conference, volume
3595 of LNCS, pages 818–828. Springer, 2005. 31

[49] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975. 30

[50] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. 30

[51] K. Menger. Zur allegemeinen kurventheorie. Fund. Math., 36:95–115, 1927. 69

[52] M. Middendorf. Minimum broadcast time is NP-complete for 3-regular planar
graphs and deadline 2. Inf. Process. Lett., 46(6):281–287, 1993. 8

[53] M. Middendorf and F. Pfeiffer. On the complexity of the disjoint paths prob-
lem. Combinatorica, 13(1):97–107, 1993. 76

105

[54] L. Mili, T.L. Baldwin, and A.G. Phadke. Phasor measurements for voltage and
transient stability monitoring and control. In Proceedings of the EPRI-NSF
Workshop on Application of Advanced Mathematics to Power Systems, 1991.
7, 30

[55] S. Morris. Contagion. Review of Economic Studies, 67(1):57–78, 2000. 8

[56] E. Mossel and S. Roch. On the submodularity of influence in social networks. In
STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 128–134, New York, NY, USA, 2007. ACM. 8

[57] C. S. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Jour-
nal of London Mathemathical Society, 36:445–450, 1961. 70

[58] G. Naves. The hardness of routing two pairs on one face. Technical re-
port, Laboratoire G-SCOP, avaiable at http://hal.archives-ouvertes.fr/hal-
00313944/en/, 2008. 71, 81

[59] G. Naves and A. Sebő. Multiflow feasibility: an annotated tableau. In Re-
search Trends in Combinatorial Optimization, pages 261–283. Springer Berlin
Heidelberg, 2008. 71, 76, 81

[60] J. Obdrzálek. Dag-width: connectivity measure for directed graphs. In Pro-
ceedings of the 17th Annual ACM Symposium on Discrete Algorithms, pages
814–821. ACM Press, 2006. 62

[61] R. Pastor-Satorras and A. Vespignani. Epidemics and immunization in scale-
free networks. In Handbook of Graphs and Networks: From the Genome to the
Internet, edited by S. Bornholdt, H. G. Schuster, pages 111–130. Wiley-VCH,
2003. 8

[62] D. Peleg. Local majority voting, small coalitions and controlling monopo-
lies in graphs: A review. In Proceedings of the 3rd Colloquium on Structural
Information & Communication Complexity, pages 170–179, 1996. 8

[63] J. Plesńık. The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Inf. Process. Lett., 8(4):199–201, 1979. 14

[64] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral
marketing. In KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 61–70, 2002. 8

[65] F. S. Roberts. Challenges for discrete mathematics and theoretical computer
science in the defense against bioterrorism. In Mathematical and Modeling
Approaches in Homeland Security, SIAM Frontiers in Applied Mathematics
Series, edited by H. T. Banks and C. Castillo-Chavez, pages 1–34, 2003. 8

[66] N. Robertson and P.D. Seymour. Graph minors: X. obstructions to tree-
decomposition. J. Comb. Theory Ser. B, 52(2):153–190, 1991. 13

106

[67] N. Robertson, P.D. Seymour, and R. Thomas. Quickly excluding a planar
graph. J. Comb. Theory, Ser. B, 62(2):323–348, 1994. 38

[68] S. Severini. Nondiscriminatory propagation on trees. to appear in Journal of
Physics A: Math. Theor. (Fast Track Communication), 2008. 8

[69] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinator-
ica, 14(2):217–241, 1994. 89

[70] P. Slav́ık. A tight analysis of the greedy algorithm for set cover. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing, pages 435–441,
New York, NY, USA, 1996. ACM Press. 30

[71] W. T. Tutte. On the problem of decomposing a graph into n connected factors.
Journal of London Mathemathical Society, 36:221–230, 1961. 70

[72] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001. 4, 34

107

	List of Figures
	Introduction
	Overview of results
	Propagation problems
	Steiner tree packing problems

	Presentation overview
	Preliminary definitions and notations

	I Propagation problems
	The propagation problem
	Preliminaries on Propagation
	Path-width: A lower bound
	Hardness of the propagation problem
	NP-hardness in planar weighted graphs
	Hardness of approximation in weighted graphs

	Further discussion
	Parallel propagation and the diameter
	A conjecture on graph product

	The power dominating set problem
	Hardness of approximation
	The reduction from MinRep to PDS

	Approximation algorithms for planar graphs
	Analysis of the algorithm
	Lower bounds via disjoint strong regions

	Extensions of PDS
	PDS in directed graphs
	-round PDS problem

	Improved hardness results
	Conclusion

	Algorithms for the general propagation problem
	Dynamic programming for bounded tree-width graphs
	Reformulation of the General Propagation problem
	Reformulation of the -round General Propagation problem

	PTAS for -round General Propagation problem on planar graphs
	Directed PDS
	Target set selection
	PTAS for the -round Target Set Selection problem

	II Packing Steiner trees
	Packing Steiner trees
	Introduction
	Approximation algorithms for planar graphs
	Element-disjoint Steiner trees
	Edge-disjoint Steiner trees

	Hardness results
	General graphs
	Planar graphs

	Integrality ratio for packing Steiner trees in planar graphs

	Appendices
	Tree-width
	Dynamic programming algorithms
	The general propagation problem
	The -round general propagation problem
	The directed PDS problem
	The target set selection problem
	The -round target set selection problem

	Bibliography

