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Abstract

The Boneh-Boyen signature scheme is a short signature scheme which is prov-
ably secure in the standard model under the q-Strong Diffie-Hellman (SDH) assump-
tion. The primary objective of this thesis is to examine the relationship between
the Boneh-Boyen signature scheme and SDH. The secondary objective is to survey
surrounding topics such as the generic group model, related signature schemes, in-
tractability assumptions, and the relationship to identity-based encryption (IBE)
schemes. Along these lines, we analyze the plausibility of the SDH assumption using
the generic bilinear group model. We present the security proofs for the Boneh-
Boyen signature scheme from [14], with the addition of a small improvement in
one of the probability bounds. Our main contribution is to give the reduction in
the reverse direction; that is, to show that if the SDH problem can be solved then
the Boneh-Boyen signature scheme can be forged. This contribution represents the
first known proof of equivalence between the SDH problem and Boneh-Boyen sig-
natures. We also discuss the algorithm of Cheon [25] for solving the SDH problem.
We analyze the implications of Cheon’s algorithm for the security of the Boneh-
Boyen signature scheme, accompanied by a brief discussion on how to counter the
attack.
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Chapter 1

Introduction

The notion of a digital signature scheme as a digital analog of hand-written sig-
natures was introduced by Diffie and Hellman in 1976 [28]. The first concrete
signature scheme to appear was the RSA signature scheme [49]. Many signature
schemes followed after that: Rabin signatures [48], ElGamal signatures [30], Full
Domain Hash (FDH) [9], Schnorr signatures [50], DSA [1], and Elliptic Curve DSA
(ECDSA) [2, 3], to name a few.

In this thesis, we focus on the signature scheme recently introduced by Boneh
and Boyen [13, 14]. We begin by reviewing some basic definitions and notations
that are needed for the remainder of this thesis.

1.1 Signature Schemes and Security Definitions

In the analog world, we associate a signed document to a unique person, say Alice,
according to her unique hand-writing. In the digital world, Alice’s secret key, which
she keeps secret from anyone else as the name suggests, plays the role of her unique
hand-writing. The public key associated with Alice’s secret key is used to verify
whether or not a given signature was generated by Alice. We formally define a
signature scheme as follows.

1.1.1 Definition. A digital signature scheme consists of a triplet of algorithms
(KeyGen, Sign,Verify) satisfying the following properties.

• KeyGen, given some security parameter `, outputs a random key pair (PK, SK)
of size specified by `. PK denotes a public key, and SK denotes a private key.

• Sign takes a message m ∈ M and a private key SK as input, and outputs a
signature σ. We call the set M the message space.

• Verify receives a message m, a signature σ, and a public key PK as input, and
outputs true or false.
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We say that a signature scheme is consistent if, whenever the key pair (SK,PK)
is properly generated by the algorithm KeyGen, it satisfies

∀m ∈M, σ ← Sign(m, SK) =⇒ Verify(m,σ,PK) = true.

The definition of consistency guarantees that Alice never gets rejected for a
signature that she generates herself, which is clearly a property that any signature
scheme should satisfy.

In addition to consistency, we require a signature scheme to be secure. In the
world of hand-written signatures, Oscar should not be able to create a document
which Alice did not sign, and have others accept it as a document signed by Alice.
For digital signatures to have security characteristics analogous to hand-written
signatures, we require that only a holder of a secret key SK can generate a signa-
ture σ corresponding to SK. The definition of security commonly used today is
called existential unforgeability under an adaptive chosen message attack, and was
established by Goldwasser, Micali, and Rivest [33]. We describe two versions of
existential unforgeability — strong and weak — found in [13, 14], both defined in
terms of games played between a challenger and a forger.

Strong Existential Unforgeability. Strong existential unforgeability is de-
fined via the following game between a challenger C and an adversary A.

1. The challenger C generates a random key pair (PK, SK), and gives the public
key PK to the adversary A.

2. The adversary A can adaptively make up to qS queries for signatures of mes-
sages m1, . . . ,mqS ∈ M of its choice. Each time C receives a message mi for
1 ≤ i ≤ qS, it must respond with a valid signature σi = Sign(mi, SK).

3. Eventually, A outputs a (message, signature) pair (m∗, σ∗), and wins the game
if (m∗, σ∗) 6= (mi, σi) for all i = 1, . . . , qS and Verify(m∗, σ∗,PK) = true.

The adversary A’s advantage in the above game is defined as

Adv Sig(A) := Pr [Verify(m∗, σ∗,PK) = true] ,

where the probability is taken over the coin tosses made by A and C.

1.1.2 Definition. An algorithm A is said to (t, qS, ε)-break a signature scheme if
A runs in time t, makes at most qS signature queries, and Adv Sig(A) ≥ ε. We
say that a signature scheme is (t, qS, ε)-strongly existentially unforgeable under an
adaptive chosen message attack if there is no algorithm that (t, qs, ε)-breaks it.
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Weak Existential Unforgeability. Weak existential unforgeability is defined
via the following game between a challenger C and an adversary A.

1. The adversary A chooses up to qS messages m1, . . . ,mqS ∈M and sends them
to the challenger C.

2. The challenger C generates a random key pair (PK, SK), and gives A the
public key PK and valid signatures σi = Sign(mi, SK) for all i = 1, . . . , qS.

3. Eventually, A outputs a (message, signature) pair (m∗, σ∗), and wins the game
if m∗ 6= mi for all i = 1, . . . , qS and Verify(m∗, σ∗,PK) = true.

The adversary A’s advantage is defined as

Adv Sig W(A) = Pr [Verify(m∗, σ∗,PK) = true]

where the probability is taken over the coin tosses made by A and C.

1.1.3 Definition. An algorithm A is said to (t, qS, ε)-weakly break a signature
scheme ifA runs in time t, makes at most qS signature queries, and Adv Sig W(A) ≥
ε. We say that a signature scheme is (t, qS, ε)-existentially unforgeable under a weak
chosen message attack if there is no algorithm that (t, qs, ε)-weakly breaks it.

The difference between strong and weak existential unforgeability is that, in
the weak scenario, an adversary A is required to submit signature queries before
receiving a public key. Thus, roughly speaking, signature schemes with strong exis-
tentially unforgeablility are ‘more secure’ than those with weak existential unforge-
ability. Boneh and Boyen [13, 14] use the notion of weak existential unforgeability
as a building block to establish strong existential unforgeability for the full version
of their signature scheme (see Section 4.1 and Section 4.2 for details).

1.2 Bilinear Pairings

Many recent cryptographic schemes, including Boneh-Boyen signatures, make use of
bilinear pairings. Let G1, G2, and GT be cyclic groups of order |G1| = |G2| = |GT | =
p, where p is prime. The operations in G1, G2, and GT are written multiplicatively.

1.2.1 Definition. A function e : G1 × G2 → GT is called a bilinear pairing if it
satisfies the following conditions:

Bilinearity: For any u1, u2, u ∈ G1 and v1, v2, v ∈ G2,

e(u1u2, v) = e(u1, v) · e(u2, v) and e(u, v1v2) = e(u, v1) · e(u, v2).

Non-degeneracy: There exists u ∈ G1 and v ∈ G2 such that e(u, v) 6= 1GT .
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A pair of groups (G1,G2) of prime order p is called a bilinear group pair if there
exists an efficiently computable bilinear pairing e : G1 × G2 → GT into a target
group GT of order p, and group operations in G1, G2, and GT can be computed
efficiently.

It is often useful to classify pairings into three different types following the
convention in [32]. We say that a bilinear group pair (G1,G2) or its corresponding
pairing e : G1 ×G2 → GT is of:

Type 1 if G1 = G2 (i.e. the pairing is symmetric), or if there exists an isomorphism
ψ : G2 → G1 such that ψ and its inverse ψ−1 : G1 → G2 are both efficiently
computable.

Type 2 if G1 6= G2 but there exists an isomorphism ψ : G2 → G1 which is effi-
ciently computable. (Without loss of generality, we can assume the direction
of the isomorphism is from G2 to G1 by swapping G1 and G2 if necessary.)

Type 3 if G1 6= G2 and there are no efficiently computable isomorphisms between
G1 and G2.

1.3 Short Signatures

A good signature scheme is both secure and efficient. Naturally, there is a trade-
off between these two goals. Making the algorithms more complex or making the
key and signature sizes longer generally increases the level of security, but at the
cost of decreased efficiency. Although balancing the two conflicting goals is of
interest in any application, certain applications require especially short signatures.
For example, a person may need to type in a digital signature when registering a
purchased product, in which case short signatures are necessary to minimize typing.
Likewise, when we imprint a digital signature on a barcode such as on a postage
stamp, the information capacity is highly limited [42, 46].

The U.S. national standards DSA and ECDSA are relatively short compared
to widely-used RSA-based signatures; both DSA and ECDSA achieve the 80-bit
security level using signatures having length equal to 320 bits [26, 1, 2]. Several
modifications for DSA signatures have been suggested [44, 46, 42, 5], with the
shortest ones being half the length of the original DSA under certain conditions.
We note, however, that none of these are always as short as 160 bits.

Boneh, Lynn, and Shacham [17, 18] proposed a short signature scheme, which
is derived from the Boneh-Franklin identity-based encryption (IBE) scheme [15]
by applying a generic transformation from an IBE scheme to a signature scheme.
Widely known as the BLS signature scheme, their scheme achieves 80-bit security
with signatures of length approximately 160 bits for messages of any length. Its
security is based on a variant of the computational Diffie-Hellman (CDH) assump-
tion. The drawback of BLS signatures is that the security proof makes use of the
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random oracle model. Since no concrete hash function is capable of perfectly mod-
eling a random oracle [9, 24], the use of the random oracle model is a controversial
issue. For this reason, a short signature scheme that is provably secure under the
standard model is of interest to cryptographers.

In 2004, Boneh and Boyen [13, 14] introduced a new signature scheme with sig-
natures as short as BLS, and which is provably secure under the standard model.
In order to prove the security of the new signature scheme, Boneh and Boyen intro-
duced a new assumption called the q-Strong Diffie-Hellman (q-SDH) assumption.
Roughly speaking, the q-SDH assumption in a cyclic group G of order p states that,
given a generator g ∈ G and gx, gx

2
, . . . , gx

q
for some secret exponent x ∈ Z∗p, it is

hard to find a pair (c, g
1
x+c ) where c is any elemnt of Zp. The problem of finding

a pair (c, g
1
x+c ) is called the q-SDH problem, and it can be reduced to the CDH

problem.

1.4 Our Results

Previously, no equivalence was known between the security of the SDH assumption
and the security of the Boneh-Boyen signature scheme. The original Boneh-Boyen
paper [13, 14] provides a security reduction, but it only goes in one direction:
namely, if the q-SDH assumption holds, then Boneh-Boyen signatures are unforge-
able. In this thesis, we study the security of Boneh-Boyen signatures, and focus on
proving the converse of the security proofs provided in [13, 14]. In other words, we
show that solving SDH is at least as hard as forging Boneh-Boyen signatures.

The motivation for reducing the signature scheme to the underlying SDH prob-
lem is two-fold. One motivation is provided by the work of Koblitz and Menezes
[36, 37]. They raised a concern about using a non-standard problem in a security
proof. Inventing a new ‘hard’ problem seems to have become a common practice
when one wants a provable security guarantee on a new cryptographic scheme and
existing assumptions do not ensure the desired security property. Statements of
such new problems tend to be more complicated than standard hard problems;
many of them are even defined in terms of interactive games played between a chal-
lenger and a solver. They point out that there is a risk in using a non-standard
problem because we often do not know the exact level of difficulty of such a prob-
lem. Encouraging study of such a problem is important in order to gauge its level
of difficulty, and to assess the plausibility of the resulting assumption. Koblitz and
Menezes thus suggest one or both of the following when introducing a new prob-
lem: use a problem which is interesting to study in its own right, or to prove that
solving the problem is as hard as attacking the protocol. The latter ensures that
solving the problem enables an attack on the protocol, so that cryptoanalysts are
encouraged to study the problem. We thus implement the second suggestion in
order to encourage more study regarding the SDH problem.

Another motivation for our work is provided by Cheon’s recent analysis of the
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q-SDH problem [25]. Prior to Cheon’s result, the only way to solve the q-SDH
problem was to use a generic discrete logarithm (DLOG) algorithm such as Pollard

rho [47], which takes time O(p
1
2
+ε). Cheon [25] presents algorithms that can be

used to solve the q-SDH problem for large q in O(p
1
3
+ε) time in most cases. Thus,

using Cheon’s algorithms in conjunction with the reduction in the reverse direction
allows the forgery of Boneh-Boyen signatures in faster than O(p

1
2
+ε) time. In fact,

our result indicates that under some circumstances Boneh-Boyen signatures can be
forged in O(p

2
5 + ε) time.

1.5 Outline

In Chapter 2, we define the strong Diffie-Hellman assumption and several related
intractability assumptions. The two versions of the Boneh-Boyen paper ([13] and
[14]) use slightly different definitions of SDH. Following the convention established
in [19], we use the notation SDH and SDH′ to denote the versions appearing in [13]
and [14] respectively. Note that although both versions of SDH are presented in
Chapter 2, we mostly deal with SDH′ in this thesis. Boneh and Boyen analyze the
security of the SDH′ assumption in the generic bilinear group model. Section 2.3 de-
fines the generic bilinear group model, presents the generic group security bound for
SDH′ from [14], and briefly discusses philosophical aspects of the generic (bilinear)
group model.

Section 3.1 presents the basic and full versions of the Boneh-Boyen signature
schemes as they appear in [13] and [14]. In Sections 3.2 to 3.4, we present several
signature schemes based on assumptions presented in Chapter 2. We also briefly
describe how the Boneh-Boyen and BLS signature schemes were derived; in fact,
they are both obtained via a generic transformation from an IBE scheme. We
introduce the notion of IBE in Section 3.5, and present the Boneh-Boyen IBE
scheme from which the Boneh-Boyen signature scheme was derived.

Chapter 4 and Chapter 5 contain our main contributions. In Chapter 4, we
first present the (forward) security proof for both the basic and full versions of the
Boneh-Boyen signature scheme as given in [14]. In Section 4.4 and Section 4.5, we
present the converse of the security theorems; that is, we show that forging both
basic and full Boneh-Boyen signatures is no harder than solving SDH′.

Chapter 5 discusses how the theorems of Chapter 4 affect the security of the
Boneh-Boyen signature schemes. We review Cheon’s algorithms for solving the SDH
problem. We then show how these algorithms can be used to forge Boneh-Boyen
signatures. In Section 5.4 we discuss some possible ways to counter our attack.
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Chapter 2

Intractability Assumptions

A number of pairing-based cryptographic protocols rely on the q-SDH problem and
its variants as the basis for their security. In this chapter, we describe the q-SDH
problem and other related problems [13, 14, 41, 12, 29, 19].

Many of the problems that we discuss come in two forms — computational
and decisional. Generally speaking, a decisional problem asks to distinguish a
random element and a valid output for its computational counterpart. Although
the corresponding variants are usually obvious, we present both computational and
decisional versions of the problems in this chapter, whenever helpful.

The problems we present in this chapter naturally give rise to associated in-
tractability assumptions. Throughout this thesis, whenever we say “xyz assump-
tion” where the xyz problem is defined, we mean that the xyz problem is intractable.
In the case of a computational problem, intractable means no probabilistic polyno-
mial time (PPT) algorithm can output a correct answer with non-negligible prob-
ability. In the case of a decisional problem, it means no PPT algorithm can output
a correct answer with probability non-negligibly greater than 50%.

2.1 Diffie-Hellman and Related Assumptions

As its name suggest, the SDH problem is closely related to the classic Diffie-Hellman
(DH) problem [28]. We start by reviewing this classic problem and its variations.

2.1.1 Diffie-Hellman

The idea behind the Diffie-Hellman problem first appeared in the classic key agree-
ment protocol of Diffie and Hellman [28]. Some articles that study the DH problems
or that use the DH assumptions include [8, 11, 38, 16, 54, 23, 39, 40, 7, 43, 10]. We
recall both the computational and decisional versions of DH.
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Computational Diffie-Hellman (CDH). [40]

Set up: a cyclic group G of prime order p

Input: g, gx, gy ∈ G where g ∈ G is a generator, and x, y ∈ Zp

Output: gxy ∈ G

The decisional version of the DH problem, first explicitly formulated by Brands
[21], is given as follows.

Decisional Diffie-Hellman (DDH). [40]

Set up: a cyclic group G of prime order p

Input: g, gx, gy, h ∈ G where g ∈ G is a generator, x, y ∈ Zp, and h ∈ G
Output: true if h = gxy, false otherwise

It is easy to see from the definition that, if we have an algorithm to solve the DLOG
problem (given g, gx ∈ G, output x ∈ Zp) then CDH can also be solved. Whether
the converse is also true stands as one of the major open problems in cryptography.

Also, in general, if one has an algorithm to solve the computational version of
a problem, then using the algorithm as a subroutine, one can immediately solve
the decisional version of the problem. This principle applies to CDH and DDH.
The converse of such a statement is usually not known to hold. Some crypto-
graphic protocols utilize such a “gap” between the difficulty of the computational
and decisional versions of a problem (see [18], for example).

2.1.2 co-Diffie-Hellman

The co-Diffie-Hellman problem was introduced by Boneh, Lynn, and Shacham
[18, 17] to assist in the security proof of the BLS signature scheme.

Computational co-Diffie-Hellman (co-CDH). [18]

Set up: cyclic groups G1 and G2 of prime order p, generators g1 ∈ G1 and
g2 ∈ G2, and an efficiently computable isomorphism ψ : G2 → G1 such
that ψ(g2) = g1

Input: g2, g
x
2 ∈ G2 and gy1 ∈ G1 where x, y ∈ Zp

Output: gxy1 ∈ G1

Decisional co-Diffie-Hellman (co-DDH). [18]

Set up: cyclic groups G1 and G2 of prime order p, generators g1 ∈ G1 and
g2 ∈ G2, and an efficiently computable isomorphism ψ : G2 → G1 such
that ψ(g2) = g1

8



Input: g2, g
x
2 ∈ G2 and gy1 , h ∈ G1 where x, y ∈ Zp

Output: true if h = gxy1 , and false otherwise

2.1.1 Definition. Let G1 and G2 be cyclic groups of prime order p, and let g1 and
g2 be generators of G1 and G2 respectively. We say that (g2, g

x
2 , g

y
1 , h) ∈ G2

2×G2
1 is

a co-Diffie-Hellman tuple if h = gxy1 .

We observe that the above problems are generalizations of CDH and DDH. When
the two groups G1 and G2 are identical, co-CDH and co-DDH are equivalent to
CDH and DDH, respectively.

2.1.3 Bilinear Diffie-Hellman

The most natural extension of the Diffie-Hellman problem to a bilinear group setting
is the series of bilinear Diffie-Hellman (BDH) problems. We present three variations
of the BDH problems in order to account for the different types of pairings. The
most basic BDH version appeared in Joux’s construction of a three-party Diffie-
Hellman key agreement protocol [35], and also in the security proof of the IBE
scheme of Boneh and Franklin [15]. The three variations of the BDH problems,
each with both computational and decisional problems, are as follows.

Computational BDH. [35, 15, 19]

Set up: a cyclic group G of prime order p with an efficiently computable
bilinear map e : G×G→ GT

Input: g, gx, gy, gz ∈ G, where g ∈ G is a generator and x, y, z ∈ Zp

Output: e(g, g)xyz ∈ GT

Decisional BDH. [35, 15, 19]

Set up: a cyclic group G of prime order p with an efficiently computable
bilinear map e : G×G→ GT

Input: g, gx, gy, gz ∈ G and v ∈ GT , where g ∈ G is a generator and x, y, z ∈
Zp

Output: true if v = e(g, g)xyz, and false otherwise

Computational BDH′. [12]

Set up: cyclic groups G1 and G2 of prime order p with an efficiently com-
putable bilinear map e : G1 ×G2 → GT

Input: g1, g
x
1 , g

z
1 ∈ G1 and g2, g

x
2 , g

y
2 ∈ G2 where g1 ∈ G1 and g2 ∈ G2 are

generators and x, y, z ∈ Zp

9



Output: e(g1, g2)
xyz ∈ GT

Decisional BDH′. [12]

Set up: cyclic groups G1 and G2 of prime order p with an efficiently com-
putable bilinear map e : G1 ×G2 → GT

Input: g1, g
x
1 , g

z
1 ∈ G1, g2, g

x
2 , g

y
2 ∈ G2, and v ∈ GT where g1 ∈ G1 and

g2 ∈ G2 are generators and x, y, z ∈ Zp

Output: true if v = e(g1, g2)
xyz, and false otherwise

2.1.2 Remark. BDH is computationally equivalent to BDH′ in symmetric pairings.

Proof. It is clear that BDH ≤P BDH′. In order to prove BDH ≥P BDH′, we use an
algorithmA that solves the computational BDH problem to solve the computational
BDH′ problem. Suppose we receive g1, g

x
1 , g

z
1, g2, g

x
2 , g

y
2 ∈ G as input to the BDH′

problem. Let a ∈ Zp be such that g2 = ga1 . If we give g1, g
x
1 , g

y
2 = gay1 , g

z
1 as input

to A, the algorithm returns e(g1, g1)
axyz = e(g1, g2)

xyz, as desired.

Computational BDH′′. [19]

Set up: cyclic groups G1 and G2 of prime order p with an efficiently com-
putable bilinear map e : G1 ×G2 → GT

Input: gz1 ∈ G1 and g2, g
x
2 , g

y
2 ∈ G2 where g1 ∈ G1 and g2 ∈ G2 are generators

and x, y, z ∈ Zp

Output: e(g1, g2)
xyz ∈ GT

Decisional BDH′′. [19]

Set up: cyclic groups G1 and G2 of prime order p with an efficiently com-
putable bilinear map e : G1 ×G2 → GT

Input: gz1 ∈ G1, g2, g
x
2 , g

y
2 ∈ G2, and v ∈ GT where g1 ∈ G1 and g2 ∈ G2 are

generators and x, y, z ∈ Zp

Output: true if v = e(g1, g2)
xyz, and false otherwise

2.1.3 Remark. It is clear that BDH′ ≤P BDH′′ for all types of pairings. Further,
BDH′′ is actually equivalent to BDH′ for Type 1 and Type 2 pairings. Below we
prove that BDH′′ ≤P BDH′ for Type 1 and Type 2 pairings.

Proof. We use an oracle for BDH′ to solve the BDH′′ problem. Suppose we are
given gz1 ∈ G1 and g2, g

x
2 , g

y
2 ∈ G2. Let u ← ψ(g2), and suppose u = ga1 for some

a ∈ Zp. Then we can compute v ← ψ(gx2 ) = ux. If we give the BDH′ oracle
u, v = ux, gz1 = uz/a ∈ G1 and g2, g

x
2 , g

y
2 ∈ G2 as an instance of the BDH′ problem,

then the oracle outputs e(u, g2)
xyz/a = e(g1, g2)

xyz, as desired.

10



To sum up, we have the following relationships between the hardness of the
three variations of the BDH problems.

BDH =P
symmetric

BDH′
=P

Type 1, 2
BDH′′

≤P
Type 3

BDH′′

2.2 SDH and Related Assumptions

In this section we review the class of Strong Diffie-Hellman (SDH)-type problems.
These problems are related to the standard family of Diffie-Hellman problems. In
most cases, the problems are parametrized by a parameter q, which is usually
reflected in the notation, as in q-SDH.

2.2.1 Strong Diffie-Hellman and Strong Diffie-Hellman′

We start with the two variations of the strong Diffie-Hellman problems that are
used in the Boneh-Boyen signature scheme [13, 14]. Below, we give the formal
definition of the q-Strong Diffie-Hellman problem in a cyclic group pair (G1,G2)
[13], where q is some parameter. Note that we occasionally drop the parameter q,
and simply call the problem SDH.

q-Strong Diffie-Hellman (q-SDH). [13]

Set up: cyclic groups G1 and G2 of prime order p with an isomorphism
ψ : G2 → G1

Input: a (q + 2)-tuple (g1, g2, g
x
2 , . . . , g

xq

2 ) ∈ G1 ×Gq+1
2 , where g1 = ψ(g2)

Output: (c, g
1
x+c

1 ) for some c ∈ Z∗p such that x+ c 6= 0

The SDH problem forms the basis for the security of the version of the Boneh-Boyen
signature scheme given in [13]. The full version of the paper [14] uses a slightly
different version of SDH, which we call SDH′ in accordance with Boyen [19]. The
q-Strong Diffie-Hellman′ (q-SDH′) problem in a cyclic group pair (G1,G2), where
q is some parameter, is given in [14] as follows:

q-Strong Diffie-Hellman′ (q-SDH′). [14]

Set up: cyclic groups G1 and G2 of prime order p

Input: a (q + 3)-tuple (g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 ) ∈ Gq+1

1 × G2
2, where g1 ∈ G1

and g2 ∈ G2 are generators and x ∈ Z∗p

Output: (c, g
1
x+c

1 ) for some c ∈ Zp such that x+ c 6= 0

11



Since the SDH′ problem is central to this thesis, we give here a rigorous definition
of the SDH′ assumption. A similar definition regarding SDH is omitted.

2.2.1 Definition. We define the advantage Adv q -SDH′(A) of a polynomial time
algorithm A in solving the q-SDH′ problem in (G1,G2) by

Adv q -SDH′(A) := Pr

[
A(g1, g

x
1 , . . . , g

xq

1 , g2, g
x
2 ) = (c, g

1
x+c

1 )

]
,

where the probability is taken over the random choice of generators g1 ∈ G1 and
g2 ∈ G2, the random choice of x ∈ Z∗p, and the coin tosses made by A. An
algorithm A is said to (t, ε)-break the q-SDH′ problem in (G1,G2) if A runs in time
t and Adv q -SDH′(A) ≥ ε. We say that the (q, t, ε)-SDH′ assumption holds in
(G1,G2) if there is no algorithm that (t, ε)-breaks the q-SDH′ problem in (G1,G2).

We occasionally refer to the (q, t, ε)-SDH′ assumption as the q-SDH′ assumption,
or sometimes simply as the SDH′ assumption. Wei and Yuen [57] observed the
following reduction between SDH and SDH′.

2.2.2 Lemma. If an isomorphism ψ : G2 → G1 can be computed in time Tψ, then

the (q, t, ε)-SDH assumption implies the
(
q, t−Θ(q2T + qTψ), p−1

p−2
ε
)

-SDH′ assump-

tion, where T is the upper bound for the time needed for one exponentiation in
G2.

Proof. Suppose A is an algorithm that (t′, ε′)-breaks the q-SDH′ problem. We
construct an algorithm that (t′ + Θ(q2T + qTψ), p−2

p−1
ε′)-breaks the q-SDH problem.

We are given an input
g1, g2, g

x
2 , . . . , g

xq

2

to the q-SDH problem, where x ∈ Z∗p is random, g2 ∈ G2 is a random generator,
and g1 = ψ(g2). We pick r ∈ Z∗p and s ∈ Zp randomly such that x + s 6= 0. Let
h2 ← gr2 and y ← x+ s. For each k = 1, 2, . . . , q, we calculate

k∏
i=1

(
gx

i

2

)(ki)sk−i
= g

Pk
i=1 (ki)sk−ixi

2 = g
(x+s)k

2 = gy
k

2

and apply the mapping ψ to each gy
k

2 to obtain gy1 , g
y2

1 , . . . , g
yq

1 . We also compute
gr2 = h2 and (gy2)r = hy2. We give

g1, g
y
1 , . . . , g

yq

1 , h2, h
y
2

to A. Because of the randomizing effect of r and s, the generators g1 ∈ G1 and
h2 ∈ G2 are random generators that are independent of each other.

Thus, with probability ε, the algorithm A outputs (c, g
1
y+c

1 ) = (c, g
1

x+s+c

1 ) for
some c ∈ Zp such that x+s+c 6= 0. Since it is information-theoretically impossible
for A to know the value of s, it follows that s+c is uniform in Zp\{−x}. Therefore,
s+ c ∈ Z∗p occurs with probability p−2

p−1
. The process of calculating gy2 , . . . , g

yq

2 takes

Θ(q2T ) time, and mapping these to gy1 , . . . , g
yq

1 takes Θ(qTψ) time; hence the whole
process takes time t+ Θ(q2T + qTψ).

12



2.2.2 Diffie-Hellman Inversion

Note that a solver of the SDH problem and the SDH′ problem can freely choose
the value c ∈ Zp, allowing many possible correct solutions for those problems. We
now present the two variants of the q-SDH problem, known as the q-Diffie-Hellman
Inversion (q-DHI) problem and the q-Diffie-Hellman Inversion′ (q-DHI′) problem,
in which the value of c is specified in the input. Afterwards, we present the q-
weak Diffie-Hellman (q-wDH) problem, which is computationally equivalent to the
q-DHI problem. Unlike SDH, these problems are defined over a single cyclic group
G of prime order p.

q-Diffie-Hellman Inversion (q-DHI). [19, 12, 41, 29]

Set up: a cyclic group G of prime order p

Input: a (q + 1)-tuple (g, gx, . . . , gx
q
) ∈ Gq+1, where g ∈ G is a generator

and x ∈ Z∗p
Output: g1/x

q-Diffie-Hellman Inversion′ (q-DHI′).

Set up: a cyclic group G of prime order p

Input: a (q + 1)-tuple (g, gx, . . . , gx
q
, c) ∈ Gq+1 × Zp, where g ∈ G is a

generator, x ∈ Z∗p , and x+ c 6= 0

Output: g
1
x+c

We observe that, given an algorithm to solve the DHI problem in G1, the SDH′

problem can immediately be solved. Similarly, if there is an algorithm that solves
the DHI problem in G2 and if there exists an isomorphism ψ : G2 → G1 that maps
g2 to g1, then the SDH problem can be solved. The converse of these reductions
are not known to hold. We also obtain the following reduction between DHI and
DHI′.

2.2.3 Lemma. The q-DHI problem in G is computationally equivalent to the q-
DHI′ problem in G up to polynomials in log p and q.

Proof. Clearly, if an oracle for the q-DHI′ problem is available, then we can solve
the q-DHI problem by letting c = 0. Conversely, suppose A is an oracle that solves
the q-DHI problem. Given an instance (g, gx, . . . , gx

q
, c) of the q-DHI′ problem, we

compute g
1
x+c using A. For each k = 1, 2, . . . , q, we calculate

gk ←
k∏
i=1

(
gx

i
)(ki)ck−i

= g
Pk
i=1 (ki)ck−ixi = g(x+c)k .

If we give (g, g1, . . . , gq) to A as an input to the q-DHI problem, then A will output

g
1
x+c , as desired. The reduction requires Θ(q2) exponentiations in G, which is

polynomial in q and log p.
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Next, we define the q-weak Diffie-Hellman (q-wDH) problem in G.

q-Weak Diffie-Hellman (q-wDH).

Set up: a cyclic group G of prime order p

Input: a (q + 1)-tuple (g, gx, . . . , gx
q
) ∈ Gq+1, where g ∈ G is a generator

and x ∈ Z∗p
Output: gx

q+1

Some authors [41, 25] use the term “weak Diffie-Hellman” to refer to DHI. Also,
Cheon [25] refers to our wDH as the “strong Diffie-Hellman” problem. Note, how-
ever, that no computational equivalence is known between SDH in Section 2.2.1
and wDH. Instead, the following equivalence is known.

2.2.4 Lemma. The q-wDH problem in G is computationally equivalent to the
q-DHI problem in G up to polynomials in log p.

Proof. Let A be an oracle that solves the q-wDH problem, and suppose an instance
(g, gx, . . . , gx

q
) of the q-DHI problem is given. We compute g

1
x usingA. Let h← gx

q

and let y ← 1/x in Zp. We know h is a generator because x 6= 0 implies p - xq.
Observe that hy = gx

q−1
, hy

2
= gx

q−2
, . . . , hy

q−1
= gx, hy

q
= g. If we give A the

(q + 1)-tuple (gx
q
, . . . , gx, g) = (h, hy, . . . , hy

q
) as an input to the q-wDH problem,

then A will return hy
q+1

= g1/x, as desired.

Conversely, let B be an oracle that solves the q-DHI problem, and suppose an
instance (g, gx, . . . , gx

q
) of the q-wDH problem is given. We compute gx

q+1
using B.

Let h← gx
q

and let y ← 1/x in Zp as above. Then, if we give B the (q + 1)-tuple
(gx

q
, . . . , gx, g) = (h, hy, . . . , hy

q
) as an input to the q-DHI problem, then B will

return h1/y = gx
q+1

, as desired.

Bao et al. [7] observe the special case of the above lemma where q = 1. They
also note the equivalence between 1-wDH and CDH. These observations can also
be found in [10].

2.2.3 Modified and Hidden Strong Diffie-Hellman

Further variations of the q-SDH problem can be found in the work of Boyen and
Waters [20, 19]. The modified q-SDH (q-MSDH) problem in a cyclic group G is as
follows:

q-Modified Strong Diffie-Hellman (q-MSDH). [20, 19]

Set up: a cyclic group G of prime order p

Input: a generator g ∈ G, a group element gx where x ∈ Z∗p, and q−1 pairs

(c1, g
1

x+c1 ), . . . , (cq−1, g
1

x+cq−1 ) where each ci ∈ Zp

14



Output: (c, g
1
x+c ) for some c ∈ Zp \{c1, . . . , cq−1}

The above formulation corresponds to the version given in [19]. The version given
in [20] differs slightly in that the values of ci and c are required to be nonzero.
The difference is not significant, because the two versions reduce to each other in
a manner similar to that given in the proof of Lemma 2.2.2.

Solving the q-MSDH problem is essentially equivalent to existentially forging
Boneh-Boyen basic signatures (Section 3.1) given q−1 known (message, signature)
pairs. Boyen [19] remarks that the MSDH assumption is weaker than the SDH
assumption. Our result in Section 4.4, however, implies that solving (q+ 1)-MSDH
is in fact no harder than solving q-SDH.

A computationally harder version of MSDH, where g, gx are not given and the
constant c ∈ Zp is prescribed in input, appears in Mitsunari et al.’s paper [41].
They call this problem the collusion attack (CA) problem, and they show that the
CA problem is equivalent to the DHI problem (wDH in their terminology). Our
result, although discovered independently, represents an extension of their result to
the (M)SDH setting, and relies on many of the same techniques.

Another problem, known as the q-Hidden Strong Diffie-Hellman problem or
HSDH problem, is also introduced in [20].

q-Hidden Strong Diffie-Hellman (q-HSDH). [20, 19]

Set up: a cyclic group G of prime order p

Input: g, gx, h ∈ G and q−1 triples (gc1 , g
1

x+c1 , hc1), . . . , (gcq−1 , g
1

x+cq−1 , hcq−1)
where each ci ∈ Zp

Output: (gc, g
1
x+c , hc) for some c ∈ Zp \{c1, . . . , cq−1}

HSDH can be viewed as a variation of MSDH where the constants ci’s are not given
in the clear. We need to raise not only g but also h to the power of each ci in order
to prevent a trivial attack. To see this, suppose the required output of HSDH were

of the form (gc, g
1
x+c ). If (gc1 , g

1
x+c1 ) were given as part of the input, we observe

that
g

1
x+c1

gx
= g

1
x+c1

−x
= gc and gxgc1 = g

1

x+( 1
x+c1

−x) = g
1
x+c

where c = 1
x+c1
− x. Thus,

(
g

1
x+c1 /gx, gxgc1

)
would be a trivial solution for HSDH

unless c = ci for one of the input pairs (gci , g
1

x+ci ).

2.2.4 2-Variable Strong Diffie-Hellman

The q-2-Variable Strong Diffie-Hellman (q-2SDH) assumption and its variant (q-
2SDHS) arise in the work of Okamoto [45], where it is used to prove the security of
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a signature scheme and a partially-blind signature scheme based on it. The q-2SDH
problem and the q-2SDHS problem are stated as follows:

q-2-Variable Strong Diffie-Hellman (q-2SDH). [45]

Set up: a bilinear group pair (G1,G2) with an efficiently computable isomor-
phism ψ : G2 → G1

Input: a (2q + 6)-tuple (g1, g2, g
x
2 , . . . , g

xq

2 , g
y
2 , g

yx
2 , . . . , g

yxq

2 , g
y+b
x+a

2 , a, b) where
g2 ∈ G2 is a generator, g1 ← ψ(g2), and x, y, a, b ∈ Z∗p

Output: (c, g
1
x+c

1 ) where c ∈ Z∗p

Variant of the q-2-Variable Strong Diffie-Hellman (q-2SDHS). [45]

Set up: a bilinear group pair (G1,G2) with an efficiently computable isomor-
phism ψ : G2 → G1

Input: a (3q + 4)-tuple (g1, g2, g
x
2 , g

y
2 , g

y+b1
x+a1
2 , . . . , g

y+bq
x+aq

2 , ga1
2 , . . . , g

aq
2 , b1, . . . , bq)

where g2 ∈ G2 is a generator, g1 ← ψ(g2), and x, y, a1, . . . , aq, b1, . . . , bq ∈
Z∗p

Output: (gc2, g
y+d
x+c

1 , d) for some d ∈ Z∗p \{b1, . . . , bq}

It is clear that the q-2SDH assumption is stronger than both the q-SDH and the
q-SDH′ assumptions. Whether either of 2 SDH or 2 SDHS reduces to the other is
not known.

2.3 Generic Security of the SDH′ Assumption

In order to give some assurance as to the security of the Boneh-Boyen signature
scheme, Boneh and Boyen [14] prove a lower bound on the complexity of the q-
SDH′ problem in the generic bilinear group model. In this section we review their
derivation of the lower bound.

The definition of the generic bilinear group model in [14] is based on the generic
group model introduced earlier by Shoup [53] to prove the corresponding lower
bounds for the discrete logarithm and related problems. Intuitively, the generic
group model is where groups and pairings are only available at the most abstract
level without any specific implementations of them. The formal definition is as
follows.

2.3.1 Definition. Let G1, G2, and GT be cyclic groups of prime order p such that
a bilinear pairing e : G1×G2 → GT exists. Let S1, S2, and ST be sets of bit strings
of cardinality at least p. We say that (G1,G2) is a generic bilinear group pair with
target group GT , if the following conditions hold.
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1. The group order p is known.

2. Each element of G1, G2, and GT is represented by an arbitrary unique string
in S1, S2, and ST , respectively.

3. Computations of group operations (multiplications and/or divisions) in G1,
G2, and GT , a bilinear pairing e : G1 × G2 → GT , an isomorphism ψ : G2 →
G1, and the inverse ψ−1 : G1 → G2 are only available through oracles.

The model of computation in which an algorithm has to work in a generic bilinear
group pair is called the generic bilinear group model. We say that an algorithm is
a generic algorithm if it works in the generic group model.

There are several things to note. First, the above definition implies that a
generic algorithm can test the equality in G1, G2, and GT without the help of
oracles. Second, a generic algorithm can compute the identity element of any of G1,
G2, and GT by asking the respective group operation oracle to compute h/h for any
element h. Third, a generic algorithm can also implement a O(log p) time square
and multiply exponentiation algorithm in each group using the corresponding group
operation oracle.

Also note that we provide oracles for computing isomorphisms ψ and ψ−1, even
though efficiently computable isomorphisms are not always available in an actual
bilinear group pair [32]. This does not cause a problem in our context, because
allowing more power to the adversary can only strengthen the result we obtain.

In order to derive a lower bound for q-SDH′, we first prove in Theorem 2.3.2
an upper bound for the advantage Adv q -SDH′ in the generic group model, and
then we turn the probability bound into a lower bound for the time complexity in
Theorem 2.3.3.

2.3.2 Theorem. [14, Theorem 12] Let A be an algorithm that solves the q-SDH′

problem in the generic bilinear group pair (G1,G2) with target group GT , where G1,
G2, and GT are of prime order p. Suppose A makes a total of qG queries to oracles
for the group operations in G1, G2, and GT , a bilinear pairing e : G1 × G2 → GT ,
an isomorphism ψ : G2 → G1, and the inverse ψ−1 : G1 → G2. Then,

ε := Adv q -SDH′(A) ≤ (qG + q + 3)2(q + 1)

p− 1
.

Asymptotically, we have

ε = O

(
q2
Gq + q3

p

)
.

Proof. We prove the theorem via an adversarial argument. We simulate the generic
bilinear group model and the challenger of the q-SDH′ problem; we provide A with
a random q-SDH′ instance, and simulate the oracles that interact with A. We
say that A wins the game if we fail to simulate the generic group model or if A
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successfully gives a correct q-SDH′ output. We argue that Adv q -SDH′(A) in the
generic bilinear group model is bounded above by the probability that A wins the

game, which, in turn, is bounded above by (qG+q+3)2(q+1)
p−1

.

We first pick a random x ∈ Z∗p and random generators g1, g2, and gT of G1,

G2, and GT , respectively. The (q + 3)-tuple (g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 ) ∈ Gq+1

1 × G2
2

represented as an element in Sq+1
1 × S2

2 is the q-SDH′ instance that A must solve.
Our aim is to simulate the oracles in such a way that no information about the
value of x is leaked during the interactions with A.

During the simulation, we maintain three lists L1 = {(F1,i, ξ1,i) : i = 1, . . . , k1},
L2 = {(F2,i, ξ2,i) : i = 1, . . . , k2}, and LT = {(FT,i, ξT,i) : i = 1, . . . , kT}, where k1,
k2, and kT are counters that keep track of the number of elements in the lists. The
strings ξ1,i ∈ S1, ξ2,i ∈ S2, and ξT,i ∈ ST are bit strings given to A as encodings of
elements of G1, G2, GT , respectively. The polynomials F1,i and F2,i are of degree
at most q in Zp[X], and the FT,i are polynomials of degree at most 2q in Zp[X].

The three lists L1, L2, and LT are initialized by an “encoding” of the q-SDH
instance (g1, g

x
1 , . . . , g

xq

1 , g2, g
x
2 ) as follows; we set F1,i ← X i−1 for i = 1, . . . , q + 1,

F2,1 ← 1, and F2,2 ← X; we let ξ1,1, . . . , ξ1,q+1 be distinct random bit strings from
S1, and let ξ2,1 and ξ2,2 be distinct random bit strings from S2; we let k1 ← q + 1,
k2 ← 2, and kT ← 0.

We give the instance (ξ1,1, . . . , ξ1,q+1, ξ2,1, ξ2,2) ∈ Sq+1
1 × S2

2 to A.

The algorithm A may make at most qG oracle queries. Since the encodings of
group elements are random bit strings, we may assume that A only makes oracle
queries on strings that are already obtained through the input of the q-SDH problem
or through previous oracle queries. We respond to each type of query as follows.

Group operation. Suppose A asks to perform a multiplication or a division in
G1. Let ξ1,i and ξ1,j (where 1 ≤ i, j ≤ k1) be the two operands that A gives to us.
We start by incrementing the counter k1 by one. Next, we let F1,k1 ← F1,i + F1,j if
A asked for a multiplication, and let F1,k1 ← F1,i − F1,j if A asked for a division.
Note that F1,k1 has degree at most q.

If the list L1 already has an entry (F1,`, ξ1,`) for some ` < k1 with an identical
polynomial F1,` = F1,k1 , then we copy the encoding of this entry. That is, we let
ξ1,k1 ← ξ1,`. Otherwise, we assign ξ1,k1 a random string from S1 \{ξ1,1, . . . , ξ1,k1−1}.
We append the pair (F1,k1 , ξ1,k1) to L1, and return the string ξ1,k1 to A.

Queries on group operations in G2 and GT are responded to similarly using the
respective lists L2 and LT .

Bilinear pairing. Suppose A asks to perform a bilinear pairing from G1×G2 →
GT . Let ξ1,i and ξ2,j with 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2 be the two operands that A
gives to us. We first increment the counter kT by one. Next, we let FT,kT ← F1,i·F2,j,
so that FT,kT is a polynomial of degree at most 2q.
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If the list LT already has an entry (FT,`, ξT,`) for some ` < kT with an identical
polynomial FT,` = FT,kT , then we duplicate the encoded string of this entry. That
is, we let ξT,kT ← ξT,`. Otherwise, we assign ξT,kT a random string from ST \
{ξT,1, . . . , ξT,kT−1}. We append the entry (FT,kT , ξT,kT ) to the list LT , and return
the string ξT,kT to A.

Isomorphism. A may ask to perform an isomorphism from G2 to G1. Suppose A
gives us the string ξ2,i for some 1 ≤ i ≤ k2. Upon receiving the query, we increment
the counter k1 by one. Next, we copy the polynomial corresponding to the input
string to our new polynomial. That is, we let F1,k1 ← F2,i.

If the list L1 happens to have a previous entry (F1,`, ξ1,`), ` < k1 with the same
polynomial F1,` = F1,k1 , then we simply copy the corresponding string: ξ1,k1 ← ξ1,`.
Otherwise, we assign ξ1,k1 a random string from S1 \{ξ1,1, . . . , ξ1,k1−1}. We append
the entry (F1,k1 , ξ1,k1) to the list L1, and return the string ξ1,k1 to A.

A query on the inverse isomorphism from G1 to G2 is responded to in a similar
manner. We receive a string in S1, calculate and append a new entry to the list L2,
and return a string in S2.

After qG queries, we have that qG = k1 + k2 + kT − (q+ 3). Suppose A outputs a
pair (c, ξ1,`) for some c ∈ Zp and 1 ≤ ` ≤ k1 as an answer to the q-SDH′ problem.
We analyze the probability that A wins the game.

Our simulation of the generic bilinear group model provided to A is flawed if
and only if there are two distinct polynomials within L1, L2, or LT that assume the
same value when evaluated at X ← x. Otherwise, our simulation was perfect, and
if the output provided by A is correct then

F1,`(x) =
1

x+ c
⇐⇒ (x+ c)F1,`(x) = 1.

Thus, the probability that A wins the game is at most Pr[E1 ∪ E2 ∪ ET ∪ EA]
where the events E1, E2, ET , and EA are defined as follows:

EA — (x+ c)F1,`(x) = 1.

E1 — There exist distinct polynomials F1,i and F1,j with 1 ≤ i, j ≤ k1 such that
F1,i(x) = F1,j(x).

E2 — There exist distinct polynomials F2,i and F2,j with 1 ≤ i, j ≤ k2 such that
F2,i(x) = F2,j(x).

ET — There exist distinct polynomials FT,i and FT,j with 1 ≤ i, j ≤ kT such that
FT,i(x) = FT,j(x).

We further define
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EB — E1 ∪ E2 ∪ ET .

Consider the interaction between the actual generic bilinear group oracles and
A. We may assume that the oracles keep track of the lists of polynomials L′1, L

′
2,

and L′T with respective lengths k′1, k
′
2, and k′T , similar to the lists L1, L2, and LT

that we maintain. The only difference is that L′1, L
′
2 and L′T may contain distinct

polynomials that have the same encoding. We define the following events for this
generic bilinear group interaction.

E′
A — A solves the q-SDH problem with q′G = k′1 +k′2 +k′T − (q+ 3) oracle queries.

E′
1 — There exist distinct polynomials F ′1,i and F ′1,j with 1 ≤ i, j ≤ k′1 such that

F ′1,i(x) = F ′1,j(x).

E′
2 — There exist distinct polynomials F ′2,i and F ′2,j with 1 ≤ i, j ≤ k′2 such that

F ′2,i(x) = F ′2,j(x).

E′
T — There exist distinct polynomials F ′T,i and F ′T,j with 1 ≤ i, j ≤ k′T such that

F ′T,i(x) = F ′T,j(x).

E′
B — E ′1 ∪ E ′2 ∪ E ′T .

We are interested in the probability Pr[E ′A] where q′G = qG. Note that, if k′1 = k1,
k′2 = k2, and k′T = kT , then

Pr[E ′B] = Pr[EB] and Pr[EA | EB] = Pr[E ′A | E ′B].

Hence,

Pr[E ′A] = Pr[E ′A ∩ E ′B] + Pr[E ′A ∩ E ′B]

≤ Pr[EA ∩ EB] + Pr[EB]

≤ Pr[EA] + Pr[EB].

Thus, we can bound Pr[E ′A] by bounding Pr[EA] and Pr[EB].

Note that the polynomials F1,i, F2,i, FT,i, and (X + c)F1,` respectively have
degree at most q, q, 2q, and q + 1. Also, notice that we have given A an SDH′

instance and query response without giving any information about our choice of x.
Therefore,

Pr[EA] + Pr[EB] = Pr[EA] + Pr[E1] + Pr[E2] + Pr[ET ]

≤ q + 1

p− 1
+

(
k1

2

)
q

p− 1
+

(
k2

2

)
q

p− 1
+

(
kT
2

)
2q

p− 1

≤
[
q + 1

q
+
k2

1 + k2
2 + 2k2

T

2

]
q

p− 1

≤ (k1 + k2 + kT )2q

p− 1

=
(qG + q + 3)2q

p− 1
.
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Asymptotically,

ε = O

(
(qG + q)2q

p

)
= O

(
q2
Gq + qGq

2 + q3

p

)
= O

(
q2
Gq + q3

p

)
,

where the last equality follows from the inequality of arithmetic and geometric
means.

2.3.3 Theorem. [14, Corollary 13] Any algorithm that solves the q-SDH′ problem
with constant probability ε > 0 in a generic bilinear group pair (G1,G2) of order p
where q = o( 3

√
p) requires Ω(

√
εp/q) generic operations.

Proof. Suppose there is a generic algorithm that solves the q-SDH′ problem with
constant probability ε > 0 as long as q = o( 3

√
p). Then, by Theorem 2.3.2, there

exist an integer N and a constant C > 0 such that

ε ≤ C(q2
Gq + q3)

p
for all qG, q, p ≥ N with q = o( 3

√
p).

This implies that

q2
G ≥

εp

Cq
− q2 for all qG, q, p ≥ N with q = o( 3

√
p).

Now, for q = o( 3
√
p), we have that q3 = o(p) and so q2 = o(p/q). Therefore,

q2
G = Ω

(
p

q
− q2

)
= Ω

(
p

q

)
,

and so qG = Ω(
√
p/q), as desired.

2.3.1 Random Oracles and Generic Groups

Both the random oracle model [9] and the generic (bilinear) group model represent
formalizations of an ideal cryptographic environment, which is in fact not realizable
in practice. Naturally, this renders controversial the use of such non-standard
models [19, 36, 31, 27, 24].

As we saw in Theorem 2.3.3, Boneh and Boyen use the generic bilinear group
assumption to prove a lower bound on the SDH (resp. SDH′) problem on which
the security of Boneh-Boyen signatures is based [13] (resp. [14]). Boyen [19],
in acknowledging that SDH was viewed as a non-standard assumption when first
introduced in [13], states that “without the support of a bilinear generic-group
analysis, the authors of (the reference [13, 14]) would have never dared make such
an unusual assumption.”

Nonetheless, Boyen recognizes the pitfalls accompanying the use of the generic
group model. He warns that “the very act of placing oneself in the generic group
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model amounts to making an extremely strong assumption” and even says that a
security proof in the generic group model “brings little insight as to its real-world
security.” Comparing the random oracle model and the generic group model, he
notes the following:

After all, random oracles are used to model the destruction of any
exploitable structure by “bit-mashing” hash contraptions that are de-
signed with this particular goal as the primary objective: make the num-
ber of rounds large enough and you are almost guaranteed to fulfill that
requirement, whatever the design of the round function. Generic groups,
on the other hand, formalize the belief that the particular presentation
of a group will expose some aspects of its structure while hiding others:
one’s choice of mathematical implement is thus much more constrained,
as it has to fulfill the two conflicting goals of structure removal and
structure preservation. Once we have chosen a particular type of pre-
sentation for our bilinear groups (e.g., supersingular elliptic curves over
prime finite fields), the structure-hiding properties are mostly bound by
this choice, with little room for subsequent adjustment.

In short, the above says that the primary objective of the design of good hash
functions is to make them behave as close to random oracles as possible, whereas in
implementing actual groups, making them resemble the generic group is certainly
not the priority, and also that the extent to which we can remove the structure of
groups is limited. Boyen’s concludes his discussion [19] by saying:

The generic-group model should thus be viewed as a meta-assumption,
useful not for proving the security of actual schemes, but to assess the
plausibility of specific, weaker assumptions on which actual schemes are
shown to rest.

Koblitz and Menezes [36] make a similar point. They state that although both
the random oracle model and the generic group model are idealizations of real
objects, “it is reasonable to think of a well-constructed real-world hash function as a
deterministic function that is essentially indistinguishable from a random function.”
They argue that, if we give the same sequence of inputs to a random oracle and a
good hash function, then the outputs of a random oracle and a good hash function
cannot be distinguished with probability significantly greater than 50%. On the
other hand, they say that “the generic group model is not a literal description of any
of the groups that might be used in real-world cryptography.” They give several
examples that show how encodings of actual groups can be easily distinguished
from random strings without even consulting a group operation, some of which we
describe below:

• The identity element of a group G is often easy to identify. If G is a multi-
plicative group of a finite field, then the identity element is 1. If G is an elliptic
curve expressed in projective coordinates, the identity element is (0, 1, 0).
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• In an elliptic curve y2 = f(x), a point and its inverse have the same x-
coordinate.

• The x-coordinate of any point on an elliptic curve y2 = f(x) over Fp evaluated
at f is a quadratic residue modulo p.

• In DSA, we use a multiplicative subgroup G of Z∗p of prime order q. If Z∗p is
generated by g, then G is generated by gk where p − 1 = qk. Since such k
must be even, all the elements of G are quadratic residues modulo p.

The primary motivation for the Boneh-Boyen signature scheme, as evidenced by
the titles of [13, 14], was to achieve security without random oracles while retaining
signature lengths as short as BLS signatures (Section 3.2). However, it is clear from
the above discussion that the relevance of the generic group security of the SDH
problem is at least as debatable as that of the random oracle model. In any case,
our aim here is only to raise awareness of the issue, without taking a position for
one side or the other.
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Chapter 3

Boneh-Boyen Signatures and
Related Schemes

So far we have encountered several DH and SDH related intractability assumptions
that form the basis for proving the security of cryptographic schemes. Here we
review the Boneh-Boyen signature scheme and three other schemes — the BLS,
Waters, and Okamoto signature schemes — that are provably secure under these
assumptions. All of the above schemes are relatively new, with the oldest being
BLS which first appeared in 2001 [17]. They also all implicitly or explicitly make
use of bilinear pairings. Interestingly, all three schemes except for the Okamoto
scheme are obtained via a common generic conversion method from identity-based
encryption (IBE) schemes to signature schemes. We describe IBE and the generic
conversion method in Section 3.5.

3.1 Boneh-Boyen Signatures

We begin with Boneh-Boyen signatures [13, 14]. Boneh and Boyen present two
variants of their signature scheme in each of [13, 14]: the basic signature scheme
and the full signature scheme. The former is deterministic and weakly secure,
whereas the latter is randomized and strongly secure. The basic scheme is used to
prove the security of the full scheme in both papers.

Let G1, G2, and GT be cyclic groups of prime order p, and let e : G1×G2 → GT

be a bilinear pairing. The differences between the signatures defined in the two
papers are as follows:

• The schemes in [13] assume the existence of an efficiently computable isomor-
phism ψ : G2 → G1, and the generator g1 ∈ G1 is defined to be ψ(g2). On
the other hand, in [14] both g1 ∈ G1 and g2 ∈ G2 are taken to be random
generators.
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• The message space of the schemes in [13] is Z∗p, whereas the message space is
Zp in [14].

• In the full signature scheme in [13], the randomizer r is chosen from Z∗p. On
the other hand, in the full signature scheme given in [14], the randomizer r is
randomly chosen from Zp.

• In [13], the generator g1 ∈ G1 is part of the public key. In [14], the generator
g1 ∈ G1 is part of the secret key, and need not be made public in practice.

• The security of the signature schemes in [13] relies on the q-SDH assump-
tion, and that of the schemes in [14] relies on the q-SDH′ assumption. Recall
that the SDH and SDH′ assumptions are similar but slightly different (Sec-
tion 2.2.1).

3.1.1 Boneh-Boyen Signatures: Version 1

Following chronological order, we begin with the version of Boneh-Boyen signatures
from Eurocrypt 2004 [13].

The Basic Signature Scheme.

System parameters: Cyclic groups G1, G2, and GT of prime order p, an effi-
ciently computable isomorphism ψ : G2 → G1, and an efficiently computable
bilinear pairing e : G1 ×G2 → GT .

Key generation: Choose a random generator g2 ∈ G2, and set g1 ← ψ(g2).
Choose a random integer x ∈ Z∗p, and compute v ← gx2 . Let ζ ← e(g1, g2) ∈
GT . The public key is PK = (g1, g2, v, ζ), and the private key is SK = x.

Signing: Given a message m ∈ Z∗p and a private key SK = x, output the signature

σ ← g
1

x+m

1 where the exponent is calculated modulo p. In the unlikely event
that x+m ≡ 0 (mod p), Sign(m, SK) outputs σ ← 1.

Verification: Verify(m,σ, (g1, g2, v, ζ)) = true if and only if

e(σ, v · gm2 ) = ζ.

The Full Signature Scheme.

System parameters: Cyclic groups G1, G2, and GT of prime order p, an effi-
ciently computable isomorphism ψ : G2 → G1, and an efficiently computable
bilinear pairing e : G1 ×G2 → GT .
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Key generation: Choose a random generator g2 ∈ G2, and set g1 ← ψ(g2).
Choose random integers x, y ∈ Z∗p, and compute u ← gx2 and v ← gy2 . Let
ζ ← e(g1, g2) ∈ GT . The public key is PK = (g1, g2, u, v, ζ), and the private
key is SK = (x, y).

Signing: Given a message m ∈ Z∗p and a private key SK = (x, y), choose a random

r ∈ Z∗p such that x + m + yr 6≡ 0 (mod p), and compute σ ← g
1

x+m+yr

1 where
the exponent is calculated modulo p. The signature is (σ, r).

Verification: Verify(m, (σ, r), (g1, g2, u, v, ζ)) = true if and only if

e(σ, u · gm2 · vr) = ζ.

We remark that the message space as stated above is Z∗p, but it can be extended
to {0, 1}∗ using a collision resistant hash function H : {0, 1}∗ → Z∗p. We have the
following theorem regarding the security of the full signature scheme in [13].

3.1.1 Theorem. [13, Theorem 3.1] If the (q, t′, ε)-SDH assumption holds in the
bilinear group pair (G1,G2), then the full version of the Boneh-Boyen signature
scheme in [13] is (t, qS, ε)-strongly existentially unforgeable under an adaptive cho-
sen message attack provided that

qS < q, ε ≥ 2ε′, and t ≤ t′ −Θ(q2T )

where T is the maximum time required for one exponentiation in G1, G2, and Zp.

The proof is similar to that of Theorem 4.2.1, and is omitted here. The bound
for the probability ε is different from ε ≥ 2(ε′+ qS/p) as given in [13, Theorem 3.1].
This is because the same technique used in the proof of Lemma 4.2.2 to improve
the probability bound there also applies here.

3.1.2 Boneh-Boyen Signatures: Version 2

Next, we describe the version of the Boneh-Boyen signature scheme from the Jour-
nal of Cryptology [14]. This is the version that we are going to focus on in the
subsequent chapters.

The Basic Signature Scheme.

System parameters: Cyclic groups G1, G2, and GT of prime order p, and a
bilinear pairing e : G1 ×G2 → GT .

Key generation: Choose random generators g1 ∈ G1, g2 ∈ G2, and a random
integer x ∈ Z∗p. Compute v ← gx2 and ζ ← e(g1, g2) ∈ GT . The public key is
PK = (g1, g2, v, ζ), and the private key is SK = (g1, x).
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Signing: Given a message m ∈ Zp and a private key SK = (g1, x), output the

signature σ ← g
1

x+m

1 where the exponent is calculated modulo p. In the
unlikely event that x+m ≡ 0 (mod p), output σ ← 1.

Verification: Verify(m,σ, (g1, g2, v, ζ)) = true if and only if

e(σ, v · gm2 ) = ζ.

The Full Signature Scheme.

System parameters: Cyclic groups G1, G2, and GT of prime order p, and a
bilinear pairing e : G1 ×G2 → GT .

Key generation: Choose random generators g1 ∈ G1, g2 ∈ G2, and random in-
tegers x, y ∈ Z∗p. Compute u ← gx2 , v ← gy2 , and ζ ← e(g1, g2) ∈ GT . The
public key is PK = (g1, g2, u, v, ζ), and the private key is SK = (g1, x, y).

Signing: Given a message m ∈ Zp and a private key SK, choose a random r ∈ Zp

such that x + m + yr 6≡ 0 (mod p), and compute σ ← g
1

x+m+yr

1 where the
exponent is calculated modulo p. The signature is (σ, r).

Verification: Verify(m, (σ, r), (g1, g2, u, v, ζ)) = true if and only if

e(σ, u · gm2 · vr) = ζ.

We remark that the message space as stated above is Zp, but it can be extended
to {0, 1}∗ using a collision resistant hash function H : {0, 1}∗ → Zp. We also note
that in the descriptions above, g1 is present in both the public key and the private
key. In practice, g1 can be omitted from the public key. The security proofs for
these signature schemes are given in Chapter 4.

3.2 BLS Signatures

The BLS signature scheme of Boneh, Lynn, and Shacham [17, 18] was the first short
signature scheme to appear in the literature. The version that is first introduced
[17] is shown to be secure in a bilinear group pair (G,G) if CDH is hard and DDH
is easy in G. The full version of the paper [18] generalizes the scheme to allow
the use of Type 2 pairings as well as Type 1 pairings. Accordingly, the underlying
assumption has also been generalized using the co-CDH and co-DDH problems.

3.2.1 Definition. A pair of groups (G1,G2) of prime order p is called a gap co-
Diffie-Hellman (co-GDH) pair if it satisfies the following properties:

1. The group operations in G1 and G2 can be computed efficiently.
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2. There exists an efficiently computable isomorphism ψ : G2 → G1.

3. The co-DDH problem on (G1,G2) can be solved efficiently.

4. The co-CDH problem on (G1,G2) is intractable.

Note that the definitions of co-CDH, co-DDH, and co-GDH pair do not require
any pairings. In practice, however, the only group pairs that are believed to be
co-GDH are bilinear group pairs. Thus we may safely call BLS a pairing based
signature scheme. Nevertheless, for the sake of generality, we present the version
from [18], which is based on co-GDH pairs.

System parameters: A co-Gap Diffie-Hellman group pair (G1,G2), a generator
g2 ∈ G2, a full-domain hash function H : {0, 1}∗ → G1.

Key generation: Choose random x ∈ Zp, g2 ∈ G2, and compute v ← gx2 . The
public key is PK = v, and the private key is SK = x.

Signing: Given a message m ∈ {0, 1}∗ and a private key SK = x, output the
signature σ ← H(M)x.

Verification: Verify(m,σ, v) = true if and only if (g2, v,H(m), σ) is a co-Diffie-
Hellman tuple.

The following theorem establishes the security of the BLS signature scheme. We
refer the reader to [18] for a proof.

3.2.2 Theorem. If (G1,G2) is a co-GDH group pair, then the BLS signature
scheme above is existentially unforgeable under an adaptive chosen-message attack
in the random oracle model.

3.3 Waters Signature Scheme

In the paper “Efficient identity-based encryption without random oracles” [56],
Waters introduces a signature scheme obtained by applying a generic conversion
(see Section 3.5) to his IBE scheme. Although the scheme is not discussed in detail
in the paper, it turns out that Waters signatures are short and secure under the
standard model, with the only underlying assumption being CDH. The scheme is
as follows.

System parameters: Cyclic group G of prime order p, efficiently computable
bilinear pairing e : G×G→ GT .

Key generation: Choose a generator g ∈ G and x ∈ Zp, and set u← gx. Choose
random elements v and w from G. Additionally, choose a random vector
W = (w1, . . . , wn) ∈ Gn of length n. The public key is PK = (g, u, v, w,W ),
and the private key is SK = vx.
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Signing: Given a message M = {m1, . . . ,mn} ∈ {0, 1}n and a private key SK = vx,
choose a random r ∈ Zp and calculate σ1 ← vx (w

∏n
i=1w

mi
i )

r
and σ2 ← gr.

The signature is σ ← (σ1, σ2).

Verification: Verify(M, (σ1, σ2), (g, u, v, w,W )) = true if and only if

e(u, v) · e
(
σ2, w

n∏
i=1

wmii

)
= e(g, σ1).

Note that if σ = (σ1, σ2) is a valid signature of message M = {m1, . . . ,mn} under
SK = vx, then

e(u, v) · e
(
σ2, w

n∏
i=1

wmii

)
= e(gx, v) · e

(
gr, w

n∏
i=1

wmii

)
= e(g, vx) · e

(
g,
(
w

n∏
i=1

wmii

)r)
= e(g, σ1),

so that the scheme is consistent. We have the following security theorem:

3.3.1 Theorem. If the CDH assumption holds in G, then the Waters signature
scheme above is existentially unforgeable under an adaptive chosen-message attack
in the standard model.

The proof of the above theorem is similar to the security proof of the Waters IBE
scheme [56]. We remark that the message space as stated above is {0, 1}n, but it can
be extended to {0, 1}∗ using a collision resistant hash function H : {0, 1}∗ → {0, 1}n
without loss of security.

3.4 Okamoto Signature Scheme

Okamoto [45] proposes a signature scheme as a building block for a pair of signature
schemes, one blind and one partially blind, which are presented within the same
paper. The security of the signatures depends on a new assumption called the 2SDH
assumption which we presented in Section 2.2.4. 2SDH is stronger than SDH, but
Okamoto claims that his scheme is more suitable than the Boneh-Boyen or Waters
signature schemes for many applications such as blind signatures, credentials, and
group signatures. The scheme is as follows.

System parameters: Cyclic groups G1, G2, of prime order p, an efficiently com-
putable isomorphism ψ : G2 → G1, and an efficiently computable bilinear
pairing e : G1 ×G2 → GT .

30



Key generation: Choose random generators g2, u2, v2 ∈ G2, and set g1 ← ψ(g2).
Choose x ∈ Z∗p, and set w2 ← gx2 . The public key is PK = (g1, g2, w2, u2, v2),
and the private key is SK = x.

Signing: Let u1 ← ψ(u2) and v1 ← ψ(v2). Given a message m ∈ Z∗p and a private
key SK = x, choose random r, s ∈ Z∗p such that x + r 6≡ 0 (mod p), and

calculate σ ← (gm1 u1v
s
1)

1
x+r . The signature is (σ, r, s).

Verification: Verify(m, (σ, r, s), (g1, g2, w2, u2, v2)) = true if and only if

e(σ,w2g
r
2) = e(g1, g

m
2 u2v

s
2).

Suppose (σ, r, s) is a valid signature of message m under SK = x, and PK =
(g1, g2, w2, u2, v2). Suppose further that u2 = ga2 and v2 = gb2 for some a, b ∈ Zp.
Then,

e(σ,w2g
r
2) = e((gm1 u1v

s
1)

1
x+r , gx+r2 )

= e(gm1 u1v
s
1, g2)

= e(gm+a+bs
1 , g2)

= e(g1, g
m+a+bs
2 )

= e(g1, g
m
2 u2v

s
2),

so that the scheme is consistent. The security theorem is as follows.

3.4.1 Theorem. If the 2SDH assumption holds in (G1,G2), then the Okamoto sig-
nature scheme above is existentially unforgeable under an adaptive chosen-message
attack in the standard model.

We refer the reader to [45] for a proof. We remark that the message space as
stated above is Z∗p, but it can be extended to {0, 1}∗ using a collision resistant hash
function H : {0, 1}∗ → Z∗p.

3.5 Identity-Based Encryption and Relationship

to Signature Schemes

We have mentioned on several occasions that Boneh-Boyen, BLS, and Waters sig-
natures are obtained via a generic transformation from identity-based encryption
(IBE) schemes. In this section we recall the definition of an IBE scheme, the generic
transformation to signature schemes [15], and the Boneh-Boyen IBE scheme [12]
from which Boneh-Boyen signatures were derived.

One of the important issues in public key cryptography is certification of public
keys. When Alice sends a secret message to Bob using his public key, she wants
to make sure that her copy of Bob’s key really belongs to Bob and not Carol. As
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obvious as it may sound, the issue of obtaining an authentic copy of a key is not
trivial. One way to solve this problem is to establish a public key infrastructure
(PKI) that manages keys and issues certificates of keys. However, widespread
deployment of PKIs lead to many difficulties in practice [55].

Shamir introduced the notion of identity-based encryption in 1985 [51]. An
IBE scheme can alleviate the problem of running a complicated PKI. In an IBE
scheme, anyone can compute Bob’s public key using only public information such
as Bob’s email address. Thus Bob does not have to ask a certification authority
(CA) to issue him a certificate. Instead, we need a trusted party called a private
key generator (PKG) that issues private keys corresponding to identity strings.
When Bob receives an encrypted message, he authenticates himself to the PKG
and obtains the private key corresponding to his public key (this procedure only
needs to be done once). Note that the private key is generated using a master
secret key that the PKG possesses, so only the PKG can compute the private key
corresponding to an identity string. The formal definition of an IBE scheme is as
follows.

3.5.1 Definition. An identity-based encryption (IBE) scheme consists of a quadru-
ple of algorithms (SetUp,Extract,Encrypt,Decrypt) satisfying the following proper-
ties.

• SetUp takes some security parameter ` as an input, and outputs a random
key pair (param,master-key), where param denotes the public parameters,
and master-key denotes a master key. The PKG publishes param and keeps
master-key secret.

• Extract takes param, master-key, PKID as input, where PKID may be any binary
string, and outputs a secret key SKID corresponding to the public key PKID.

• Encrypt receives the public parameters param, a public key PKID, and a mes-
sage M as input, and outputs a ciphertext C.

• Decrypt takes param, PKID, SKID, and a ciphertext C as input, outputs a
message M .

We say that an IBE scheme is consistent if, whenever the secret key SKID cor-
responding to the ID PKID is properly generated by the algorithm Extract with
parameters param and a master key master-key generated by SetUp, then,

∀M ∈M, Decrypt(param,PKID, SKID, C) = M

where C = Encrypt(param,PKID,M).

A generic method to convert any IBE scheme to a signature scheme was given
by Boneh and Franklin [15], and attributed to Moni Naor. Suppose SetUp, Extract,
Encrypt, and Decrypt are the four algorithms comprising an IBE scheme. We can
construct a signature scheme with algorithms KeyGen, Sign, and Verify as follows:
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• KeyGen takes some security parameter ` as an input, and outputs a random
key pair (PK, SK) ← SetUp(`). That is, the public parameters in the IBE
scheme comprise the public key of the signature scheme, and the correspond-
ing master key becomes a secret key.

• Sign takes a message m and a secret key SK as input, and outputs a signature
σ ← Extract(PK, SK,m). That is, σ is the secret key of the IBE scheme
corresponding to the identity m.

• Verify, upon receiving a message m, a signature σ, and a public key PK
as input, generates a random message M ′ for the IBE scheme. Next, using
PK as the public parameters and m as the identity, it encrypts M ′ and lets
C ′ ← Encrypt(PK,m,M ′). Finally, it computes the decryption of C ′ under
the IBE scheme using σ as the secret key. It outputs true if

Decrypt(PK,m, σ, C ′) = M ′,

and false otherwise.

We describe below the Boneh-Boyen IBE scheme from which the Boneh-Boyen
signature scheme is derived.

Boneh-Boyen IBE.

System parameters: Cyclic groups G and GT of prime order p with an efficiently
computable bilinear pairing e : G×G→ GT . Here g is a generator of G.

Set up: Choose random x, y ∈ Z∗p, and set u ← gx and v ← gy. Calculate ζ ←
e(g, g). The public parameters are param = (g, u, v), and the master secret is
master-key = (x, y).

Secret key extraction: Given a master key master-key and an identity PKID ∈
Z∗p, choose a random r ∈ Zp such that x + PKID + yr 6≡ (mod p). Set

K ← g
1

x+PKID+yr . The secret key corresponding to PKID is SKID = (r,K).

Encryption: Given a message M ∈ GT , a public parameter param, and the iden-
tity PKID, choose a random s ∈ Z∗p. Calculate a ← usgsPKID , b ← vs, and
c← ζsM . The ciphertext is C = (a, b, c).

Decryption: Given a secret key SKID = (r,K) and a ciphertext C = (a, b, c),
output the message M = c

e(abr,K)
. Note that if C is a valid ciphertext of M ,

then we have

c

e(abr, K)
=

c

e(gs(x+PKID+yr), g
1

x+PKID+yr )
=

c

e(g, g)s
= M.
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It is straightforward to verify that when the generic transformation is applied to
Boneh-Boyen IBE, then the resulting signature scheme is equivalent to the Boneh-
Boyen full signature scheme that is defined in the bilinear group pair (G1,G2) where
G = G1 = G2. Also, under this transformation, the Boneh-Franklin IBE scheme
[15] yields the BLS signature scheme (Section 3.2), and the Waters IBE scheme [56]
yields the Waters signature scheme (Section 3.3).
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Chapter 4

Reductions Between Boneh-Boyen
Signatures and the SDH′ Problem

Having reviewed the definitions of signature schemes and intractability assump-
tions, we are now ready to examine reductions between Boneh-Boyen signatures
and the SDH (SDH′) problem. As we have seen in Section 3.1, Boneh and Boyen
published two versions of their paper [13, 14], which in total contain four different
versions of the signature scheme — a basic scheme and a full scheme in each paper.
The differences between the schemes in [13] and [14] are not significant as far as
security proofs are concerned. Thus, in this chapter, we focus on the schemes from
the full version of the paper [14]. We show that all four versions can be reduced to
the SDH′ problem; that is, given an SDH′ oracle, it is possible to forge Boneh-Boyen
signatures. This result is the converse of the security proof given by Boneh and
Boyen, and shows that forging Boneh-Boyen signatures is equivalent to the SDH′

problem. We remark that our reductions from Boneh-Boyen signatures to SDH′ do
not always extend to the original formulation of the SDH problem [13]. This issue
is briefly discussed in Section 4.6.

4.1 Reduction from SDH′ to the Basic Signature

Scheme

In this section and the next section, we give the security proofs for the two versions
of the Boneh-Boyen signature scheme contained in the full version of their paper
[14]. These proofs are identical to the ones in [14], except in one instance where
we improve a probability bound. We start with the basic version of the signature
scheme.

4.1.1 Theorem. [14, Lemma 9] If the (q, t′, ε)-SDH′ assumption holds in (G1,G2),
then the basic Boneh-Boyen signature scheme presented in Section 3.1.2 is (t, qS, ε)-
existentially unforgeable under a weak chosen message attack provided that

qS ≤ q, and t ≤ t′ −Θ(q2
ST )
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where T is the maximum time needed for one exponentiation in G1 and Zp.

Proof. The following proof is taken from [14, Lemma 9].

Let A be a forger that (t, qS, ε)-weakly breaks the basic Boneh-Boyen signature
scheme in Section 3.1.2, and suppose q ≥ qS. We construct an algorithm B that
(t+ Θ(q2T ), ε)-breaks the q-SDH′ problem with the aid of A.

Set up. Algorithm B is given a random instance (h0, h1, . . . , hq, g2, v) ∈ Gq+1
1 ×G2

2

of the q-SDH problem, where hi = gx
i

for i = 0, 1, . . . , q, and v = gx2 . The objective

of the algorithm B is to output (c, g
1
x+c

1 ) for some c ∈ Zp.

Query and key generation. The algorithm B invokes A. Since A is a weak
forger, it submits qS messages m1, . . . ,mqS ∈ Zp for signature queries to B before
it receives a public key.

Algorithm B must simulate the KeyGen algorithm of the basic signature scheme
and generate a valid public key for A. Using the messages m1, . . . ,mqS , the algo-
rithm B defines a polynomial

f(X)←
qS∏
i=1

(X +mi).

It then expands f(X) to obtain the coefficients α0, . . . , αqS ∈ Zp such that f(X) =∑qS
i=0 αiXi. Now, the algorithm B picks ρ ∈ Z∗p randomly, and calculatates

g′1 ←

(
qS∏
i=0

hαii

)ρ

= g
ρf(x)
1 and ζ ← e(g′1, g2).

If g′1 happens to be the identity element of G1, then it means f(x) = 0, and we
have x+mi = 0 for one of i ∈ {1, . . . , qS}. In this case, B can recover the secret x
and easily solve the given q-SDH′ problem. Thus, we assume that g′1 is a generator
of G1 and also that f(x) 6= 0. The algorithm B gives PK ← (g′1, g2, v, ζ) to A as
a public key of the basic signature scheme. Note that the randomizer ρ makes g′1
a random generator of G1, so that A cannot distinguish PK from a public key
generated by the KeyGen algorithm.

Query response. Next, B simulates the Sign algorithm of the basic signature
scheme and produce signatures of the given messages m1, . . . ,mqS ∈ Zp. To do so,
B defines the polynomials

fi(X)←
qS∏

j=1,j 6=i

(X +mj) =
f(X)

X +mi
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for i = 1, . . . , qS, and expands them to get the coefficients βi,0, . . . , βi,qS such that
fi(X) =

∑qS−1
j=0 βi,jX

j. It then calculates

σi ←

(
qS−1∏
j=0

h
βi,j
j

)ρ

= g′1
1

x+mi

for each i = 1, . . . , qS, and gives (σ1, . . . , σqS) to A as a response to the signature
query A issued.

Signature output. Eventually, A outputs (m∗, σ∗) ∈ Zp×G1 as a forgery of the
basic signature scheme. If (m∗, σ∗) is not a valid forgery, then B aborts. Otherwise,
we have that m∗ is distinct from all of m1, . . . ,mqS , and that e(g′1, g2) = e(σ∗, vg

m∗
2 ).

That is,

σ∗ = g′1
1

x+m∗ = g
ρf(x)
x+m∗
1 .

SDH output. Finally, B derives a valid SDH output from (m∗, σ∗). Since m∗ 6=
mi for i = 1, . . . , qS, the algorithm B can find a polynomial quotient s(X) and a
nonzero remainder t ∈ Z∗p such that f(X) = (X +m∗)s(X) + t. Therefore, we have

σ∗ = g
ρs(x)
1 g

ρt
x+m∗
1 .

The algorithm B expands s(X) and obtains the coefficients γ0, . . . , γqS−1 such that
s(X) =

∑qS−1
i=0 γiX

i. It calculates

M∗ ←

(
σ1/ρ
∗

qS−1∏
i=0

h−γii

)1/t

= g
1

x+m∗
1 ,

and outputs (m∗,M∗) as a solution to the q-SDH problem. It is clear that B
succeeds when A successfully forges the basic signature scheme, which happens
with probability ε. The running time of B is dominated by the running time of A
and the calculations of σ1, . . . , σqS , which take t+ Θ(q2

ST ) time in total.

4.2 Reduction from SDH′ to the Full Signature

Scheme

In this section, we prove that the SDH′ problem can be reduced to an existen-
tial forgery of the Boneh-Boyen full signature scheme. Specifically, we prove the
following.
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4.2.1 Theorem. [14, Theorem 8] If the (q, t′, ε)-SDH′ assumption holds in (G1,G2),
then the full Boneh-Boyen signature scheme presented in Section 3.1.2 is (t, qS, ε)-
strongly existentially unforgeable under an adaptive chosen message attack provided
that

qS ≤ q, ε ≥ 2ε′, and t ≤ t′ −Θ(q2T )

where T is the maximum time needed for one exponentiation in G1, G2, and Zp.

Proof. This follows immediately from Theorem 4.1.1 and Lemma 4.2.2 below.

We note that the bound ε ≥ 2ε′ for the probability above is slightly better
than the bound ε ≥ 2ε′ + qS/p given in [14, Theorem 8]. This is due to a slight
modification in the proof of Lemma 4.2.2.

4.2.2 Lemma. [14, Lemma 10] If the basic Boneh-Boyen signature scheme pre-
sented in Section 3.1.2 is (t′, qS, ε

′)-existentially unforgeable under a weak chosen
message attack, then the full signature scheme in Section 3.1.2 is (t, qS, ε)-strongly
existentially unforgeable under an adaptive chosen message attack provided that

ε ≥ 2ε′ and t ≤ t′ −Θ(qST )

where T is the maximum time required for one exponentiation in G1, G2, and Zp.

Proof. This proof is identical to [14, Lemma 10] except for a small modification
which yields a slightly better probability analysis.

Let A be a forger that (t, qS, ε)-breaks the full Boneh-Boyen signature scheme.
We construct an algorithm B that (t + Θ(qST ), qS, ε/2)-weakly breaks the basic
signature scheme.

We distinguish two types of forgers that A can simulate depending on the sig-
nature queries it makes and the forgery it outputs at the end. Suppose A is given a
public key PKA = (g1, g2, U ← gx2 , V ← gy2 , ζ), makes signature queries on messages

m1, . . . ,mqS , and receives σ
(A)
1 , . . . , σ

(A)
qS as a response to the queries. Suppose also

that A outputs a valid forgery (m∗, (σ∗, r∗)) at the end. We say that A is a:

Type 1 forger if either

1. mi = −x for some i ∈ {1, . . . , qS}, or

2. σ∗ 6= σ
(A)
i for all i ∈ {1, . . . , qS}; and

Type 2 forger if both

1. mi 6= x for all i ∈ {1, . . . , qS}, and

2. σ∗ = σ
(A)
i for some i ∈ {1, . . . , qS}.

Let A1 and A2 denote Type 1 and Type 2 forgers of the full signature scheme,
respectively. We show how to construct algorithms B1 and B2 that successfully
forge the basic signature scheme using A1 and A2, respectively. Since B does not
know the type of forger A simulates, it flips a fair coin, and decides whether it
simulates B1 or B2. We describe below how the forgery is performed when the
types of A and B are the same.
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Case 1: A = A1 and B = B1

Set up. The algorithm B1 picks w1, . . . , wqS ∈ Zp uniformly at random with re-
placement, and sends them to the challenger. In return, B1 receives the
public key PK = (g1, g2, u, ζ) and the signatures σ1, . . . , σqS for the messages
w1, . . . , wqS . For convenience, we write u = gx2 where x ∈ Z∗p. Since PKA is
generated by the KeyGen algorithm, g1 and g2 are random generators of G1

and G2, respectively, and x is a random element of Z∗p. B1 checks if any of
the signatures satisfy σi = 1. If this holds for some i, then x = −wi, and B1

can produce a forgery on any message of its choice. Otherwise, B1 proceeds
to the next step.

Key generation. B1 picks y ∈ Z∗p randomly, and provides A1 with a public key
PKA = (g1, g2, U ← u, V ← gy2 , ζ). Note that PKA is indistinguishable from a
public key picked uniformly at random from the key space.

Queries and response. A1 asks B1 for signatures on messages m1, . . . ,mqS ∈ Zp

in an adaptive manner. Upon receiving mi, the algorithm B1 simply calculates
ri ← wi−mi

y
, and gives (σi, ri) to A1 as a signature on mi. Note that this gives

σi = g
1

x+wi
1 = g

1
x+mi+yri
1 . Also, since wi is uniform in Zp\{−x}, the randomizer

ri is uniform in Zp \
{
−x+mi

y

}
, which makes (σi, ri) a valid signature on mi.

Full signature output. With probability ε, the algorithm A1 eventually outputs
a valid forgery (m∗, (σ∗, r∗)) of the full signature scheme such that σ∗ =

g
1

x+m∗+yr∗
1 .

Basic signature output. The algorithm B1 outputs (m∗ + yr∗, σ∗) as a forgery
to the basic signature scheme. Since σ∗ 6= σi for all i ∈ {1, . . . , qS}, it follows
that (m∗ + yr∗, σ∗) is a valid forgery of the basic signature scheme.

Case 2: A = A2 and B = B2

Set up. The algorithm B2 picks w1, . . . , wqS ∈ Z∗p uniformly at random with re-
placement, and sends them to the challenger. In return, B2 receives the
public key PK = (g1, g2, u, ζ) and the signatures σ1, . . . , σqS of the messages
w1, . . . , wqS . For convenience, we write u = gy2 where y ∈ Z∗p. Since PKA is
generated by the KeyGen algorithm, g1 and g2 are random generators of G1

and G2, respectively, and y is a random element of Z∗p. B2 checks if any of
the signatures satisfy σi = 1. If this holds for some i, then y = −wi, and B2

can produce a forgery on any message of its choice. Otherwise, B2 proceeds
to the next step.

Key generation. The algorithm B2 picks x ∈ Z∗p randomly, and provides A2

with a public key PKA = (g1, g2, U ← gx2 , V ← u, ζ). Note that PKA is
indistinguishable from a public key picked uniformly at random from the key
space.
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Queries and response. The algorithm A2 asks B2 for signatures on messages
m1, . . . ,mqS in an adaptive manner. Upon receiving mi, the algorithm B2

flips a weighted coin that gives ci = 1 with probability p−2
p−1

and ci = 0 with

probability 1
p−1

. If ci = 1, then B2 lets ri ← x+mi
wi

, and calculates

σ
(A)
i ← σ

1/ri
i = g

1
wiri+yri
1 = g

1
x+mi+yri
1 .

If ci = 0, then B2 simply lets ri ← 0, and calculates σ
(A)
i ← g

1
x+mi
1 . The

algorithm B2 then gives (σ
(A)
i , ri) to A2 as a signature of mi. Note that ri is

uniform in Zp\{−x+mi
y
}, because x+mi

wi
is uniform in Z∗p\{−x+mi

y
}. Therefore,

(σ
(A)
i , ri) is a valid signature of message mi.

Full signature output. With probability ε, the algorithm A2 eventually outputs
a valid forgery (m∗, (σ∗, r∗)) of the full signature scheme.

Basic signature output. Let i ∈ {1, . . . , qS} be such that σ
(A)
i = σ∗. We know

that r∗ 6= ri, because otherwise we would also have m∗ = mi, which makes
(m∗, (σ∗, r∗)) an invalid forgery. Therefore,

σ∗ = g
1

x+m∗+yr∗
1 = g

1
x+mi+yri
1 = σ

(A)
i

=⇒ y =
mi −m∗
r∗ − ri

.

Thus, B2 has found the secret key to the basic signature scheme, and it can
forge any signature of its choice.

From the above discussion, we know that B succeeds in forging the basic signa-
ture scheme if the types of A and B are the same and A successfully forges the full
signature scheme. This happens with probability 1

2
ε. We note that in some cases

it is possible for B to exploit A even when the types of the two algorithms do not
match. However, such cases contribute very little to the overall success probability
of B, and we can safely ignore them. The overall running time of B is dominated
by the running time of A which is t, and the time required to calculate ri and σ

(A)
i

for all i ∈ {1, . . . , qS}, which is Θ(qST ).

4.3 Method of Partial Fractions

In the next two sections and in Chapter 5, we prove a series of theorems, all of
which involve using either an SDH solver or Cheon’s algorithm [25] to forge Boneh-
Boyen signatures. In order to do so, we need to construct an input to one of these
algorithms using queried signatures. We use a technique involving partial fractions
to accomplish this task. The following result is a refinement and generalization of
a formula given by Mitsunari et al. [41].
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4.3.1 Lemma. Let F be a field, and x ∈ F. Let d, k ∈ Z be such that d ≥ 1, k ≥ 0.
Let mi for i = 1, . . . , d be distinct elements of F such that x+mi 6= 0. Then,

xk∏d
i=1(x+mi)

=



d∑
i=1

(−mi)
k

(x+mi)
∏

j 6=i(mj −mi)
for 0 ≤ k < d,

1 +
d∑
i=1

(−mi)
d

(x+mi)
∏

j 6=i(mj −mi)
for k = d,

x+
d∑
i=1

[
−mi +

(−mi)
d+1

(x+mi)
∏

j 6=i(mj −mi)

]
for k = d+ 1.

Proof. By the principle of permanence of identity [4, p. 456], it suffices to prove
that the equations hold when F = C, since they then form an algebraic identity.
Thus, we let

f(x) =
xk

(x+m1) · · · (x+md)
,

and treat f(x) as a complex function in x. We can write f(x) as a partial fraction
of the form

f(x) = akx+ bk +
c1

x+m1

+
c2

x+m2

+ · · ·+ cd
x+md

where

ak =

{
1 if k = d+ 1,

0 otherwise,
bk =


−
∑d

i=1mi if k = d+ 1,

1 if k = d, and

0 otherwise,

and each ci is a constant. By symmetry, we only need to prove

c1 =
(−m1)

k∏
j 6=1(mj −m1)

.

Note that

f(x)− c1
x+m1

= akx+ bk +
c2

x+m2

+ · · ·+ cd
x+md

has an analytic Taylor series expansion about x = −m1. Thus c1 is the residue of f
at the simple pole x = −m1. If we write f(x) = φ(x)

x+m1
where φ(x) = xk

(x+m2)···(x+md)
,

then φ(x) is analytic and nonzero at x = −m1. A standard theorem in complex
analysis (see [22, p. 234] or [6, p. 115]) gives

c1 = φ(−m1) =
(−m1)

k∏
j 6=1(mj −m1)

as desired.
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4.3.2 Corollary. Let G be a cyclic group of order p. Let g ∈ G be a generator and
x ∈ Zp. If m1, . . . ,md are distinct elements of Zp such that x + mi 6≡ 0 (mod p),
then we have

g
xkQd

i=1(x+mi) =



d∏
i=1

g
(−mi)k

(x+mi)
Q
j 6=i(mj−mi) for 0 ≤ k < d,

g ·
d∏
i=1

g
(−mi)d

(x+mi)
Q
j 6=i(mj−mi) for k = d,

gx · g−
Pd
i=1mi ·

d∏
i=1

g
(−mi)d+1

(x+mi)
Q
j 6=i(mj−mi) for k = d+ 1.

Assume that all the mi and the g
1

x+mi are known. Further, assume that g is also
known in the last two cases, and gx is known in the last case. Then, calculating

g
xkQd

i=1
(x+mi) for a single value of k takes Θ(dT + d2Tp) time, where T is the upper

bound for the time needed for one exponentiation in G, and Tp is the time needed

for one operation in Zp. Calculating all of g
1Qd

i=1
(x+mi) , g

xQd
i=1

(x+mi) , . . . , g
xd+1Qd

i=1
(x+mi)

takes Θ(d2T ) time.

Proof. The first part is a straightforward application of Lemma 4.3.1, and the
runtime of Θ(dT + d2Tp) is obvious from the equations. Next, given

g
(−mi)k−1

(x+mi)
Q
j 6=i(mj−mi)

for all i = 1, . . . , d, we note that calculating g
xkQd

i=1
(x+mi) takes Θ(dT ) time for k ≤ d,

and Θ(dT + dTp) time for k = d + 1. Thus, calculating g
xkQd

i=1
(x+mi) for all k =

0, . . . , d+ 1 takes Θ(d2T + d2Tp) = Θ(d2T ) time in total.

4.4 Reduction from the Basic Signature Scheme

to SDH′

In this section, we show that an existential forgery of the basic Boneh-Boyen signa-
ture scheme under chosen message attack (indeed, under known message attack) re-
duces to the q-SDH′ problem. This result is the converse of Theorem 4.1.1 (Lemma
9 in [14]), and it also serves to illustrate the main idea behind the corresponding
result for the full signature scheme that we present in Theorem 4.5.1.

4.4.1 Theorem. If there is an algorithm that (t′, ε′)-breaks the q-SDH′ problem,
then we can (t, qS, ε)-weakly break the basic Boneh-Boyen signature scheme pre-
sented in Section 3.1.2 provided that

t ≥ t′ + Θ(q2T ), qS ≥ q, and ε ≤ p− 1− q
p− 1

ε′,
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where T is the upper bound for the time needed for one exponentiation in G1.

Proof. Let A be an algorithm that (t′, ε′)-breaks the q-SDH′ problem. We construct
an algorithm B which performs existential forgeries of the basic signature scheme
under a known message attack.

First, the algorithm B selects distinct random messages m1, . . . ,mqS , and send
them to the challenger. The challenger returns a public key (g1, g2, g

x
2 , ζ) together

with the valid signatures

(σ1, . . . , σqS) = (g
1/(x+m1)
1 , . . . , g

1/(x+mqS )

1 ).

of messages m1, . . . ,mqS .

Let hk ← g
xk

(x+m1)···(x+mq)
1 for each k = 0, . . . , q. The algorithm B calculates

(h0, h1, . . . , hq) via Corollary 4.3.2, and feeds the (q+3)-tuple (h0, h1, . . . , hq, g2, g
x
2 )

to A. With probability ε′, the algorithm A returns

(m∗, g
1

(x+m1)···(x+mq)(x+m∗)
1 )

for some m∗ ∈ Zp.

We claim that m∗ is not equal to any of the mi except with negligible probability.

To show this, observe that g1 is not disclosed to A and that g1 = h
(x+m1)···(x+mq)

xk

k for
all k = 0, . . . , q. Thus, from the point of view ofA, any combination of m1, . . . ,mq is
equally likely to give rise to a fixed input (h0, h1, . . . , hq). That is, A has no better
than random chance of choosing an m∗ which coincides with one of m1, . . . ,mq.
Therefore, m∗ 6= mi for all i = 1, . . . , q with probability at least p−1−q

p−1
. If m∗ = mi

for some 1 ≤ i ≤ q, then B aborts. Otherwise B can calculate σ∗ = g
1

x+m∗
1 as

follows. By Lemma 4.3.1,

1

(x+m1) · · · (x+mq)(x+m∗)

=
1

(x+m∗)
∏q

j=1(mj −m∗)
+

q∑
i=1

1

(x+mi)
∏

j 6=i(mj −mi)
,

and therefore

1

x+m∗

=

[
1

(x+m1) · · · (x+mq)(x+m∗)
−

q∑
i=1

1

(x+mi)
∏

j 6=i(mj −mi)

]
q∏
j=1

(mj −m∗).

Thus B can calculate

σ∗ ←

[
g

1
(x+m1)···(x+mq)(x+m∗)
1 /

q∏
i=1

(
g

1
x+mi
1

)Q
j 6=i

1
mj−mi

]Qq
j=1(mj−m∗)

= g
1

x+m∗
1 .
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In this way B can output (m∗, σ∗) which is a valid forgery for the basic signature
scheme.

The bounds for ε and qS are obvious from the construction of B. The running
time is bounded by the calculation of

g
1

(x+m1)···(x+mq)
1 , g

x
(x+m1)···(x+mq)
1 , . . . , g

xq

(x+m1)···(x+mq)
1 ,

which takes Θ(q2T ) time by Corollary 4.3.2, and the query of A, which takes time
t′.

Recall that in practice g1 can be omitted from the public key of the Boneh-
Boyen basic signature scheme. If g1 is not public, then B cannot compute the value
of hq in the above proof. One workaround is to allow B to make q + 1 signature
queries, and calculate

h′k ← g
xk

(x+m1)...(x+mq+1)

1

for all k = 0, . . . , q, instead of h0, . . . , hq. In this case, the statement of Theo-
rem 4.4.1 still holds, provided that the condition qS ≥ q is replaced by qS ≥ q + 1.

4.5 Reduction from the Full Signature Scheme to

SDH′

We now show that strong existential forgery of the full Boneh-Boyen signature
scheme under chosen message attack can be reduced to the q-SDH′ problem. This
result is the converse of Theorem 4.2.1 (Theorem 8 in [14]).

4.5.1 Theorem. If there is an algorithm that (t′, ε′)-breaks the q-SDH′ problem,
then we can (t, qS, ε)-break the full Boneh-Boyen signature scheme in Section 3.1.2
provided that

t ≥ t′ + Θ(q2
ST ), qS ≥ q + 1, and ε ≤ (p− 2− q) (p− 1− (q2 + q) /2)

(p− 1)2
ε′,

where T is the upper bound for the time needed for one exponentiation in G1.

Proof. Let A be an algorithm that (t′, ε′)-breaks the q-SDH′ problem. Using A, we
construct a forger B for the full signature scheme under a chosen message attack.

First, B receives the public key (g1, g2, g
x
2 , g

y
2 , ζ) from the challenger. Next, B

randomly selects a message m∗ ∈ Zp, and queries the challenger for qS different
signatures of m∗. Each time the challenger receives m∗, it sends back a valid
signature (σi, ri) = (g

1/(x+m∗+yri)
1 , ri) to B, where ri ∈ Zp is chosen at random so

that x + m∗ + yri 6≡ 0 (mod p). In this way, B obtains qS valid (and hopefully
distinct) signatures (σ1, r1), . . . , (σqS , rqS) of the same message m∗. If {r1, . . . , rqS}
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does not contain q + 1 distinct elements of Zp, then B aborts. Otherwise, let

h← g
1/y
1 and z ← x+m∗

y
. Then, for each i = 1, . . . , q + 1,

σi = g
1

x+m∗+yri
1 =

(
g

1
y

1

) 1
x+m∗
y +ri

= h
1

z+ri .

For each k = 1, . . . , q, the algorithm B can calculate

h
zk

(z+r1)···(z+rq+1) =

q+1∏
i=1

σ
(−ri)

kQ
j 6=i(rj−ri)

i

by Corollary 4.3.2, because B knows each σi and each ri. Also note that if we let
g′2 ← gy2 , then gx2g

m∗
2 = g′2

z. When B queries A with the input

(h
1

(z+r1)···(z+rq+1) , h
z

(z+r1)···(z+rq+1) , . . . , h
zq

(z+r1)···(z+rq+1) , g′2, g
′
2
z
),

the algorithm A returns (r∗, h
1

(z+r1)···(z+rq+1)(z+r∗) ) for some r∗ ∈ Zp with probability
ε′. If r∗ = ri for some 1 ≤ i ≤ q+ 1, then B aborts, but this event occurs with only
negligible probability, by the same argument as in Theorem 4.4.1. Otherwise, by
Lemma 4.3.1,

1

(z + r1) · · · (z + rq+1)(z + r∗)

=
1

(z + r∗)
∏q+1

j=1(rj − r∗)
+

q+1∑
i=1

1

(z + ri)
∏

j 6=i(rj − ri)
,

and therefore,

1

z + r∗
=

[
1

(z + r1) · · · (z + rq+1)(z + r∗)
−

q+1∑
i=1

1

(z + ri)
∏

j 6=i(rj − ri)

]
q+1∏
j=1

(rj − r∗).

Thus, B can calculate

σ∗ ←

[
h

1
(z+r1)···(z+rq+1)(z+r∗)/

q+1∏
i=1

(
h

1
z+ri

)Q
j 6=i

1
rj−ri

]Qq+1
j=1(rj−r∗)

= h
1

z+r∗ = g
1

x+m∗+yr∗
1 .

In this way B outputs (m∗, (σ∗, r∗)), which is a strong existential forgery for the
full signature scheme.

The bound for qS is obvious from the construction of B. The running time is

bounded by the calculation of h
1

(z+r1)···(z+rq+1) , h
z

(z+r1)···(z+rq+1) , . . . , h
zq

(z+r1)···(z+rq+1) ,
which takes Θ(q2T ) by Corollary 4.3.2, and the query of A, which takes time t′.

The probability that B succeeds in the attack is P1P2ε
′ where P1 is the probabil-

ity that the random elements {r1, . . . , rqS} returned by the signing oracle comprise
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at least q + 1 distinct elements, and P2 is the probability that the r∗ returned by
A differs from the q + 1 values ri used by B. We know that P2 ≥ p−2−q

p−1
using the

argument from the proof of Theorem 4.4.1. Moreover, P1 ≥ 1− Q where Q is the
probability that among r1, . . . , rq+1 there exist 1 ≤ i < j ≤ q + 1 such that ri = rj.
Overall, we have

Q ≤
q+1∑
j=2

Pr (∃i < j such that ri = rj) ≤
q+1∑
j=2

j − 1

p− 1
=
q(q + 1)

2(p− 1)

so P1 ≥ 1−Q ≥ p−1−q(q+1)/2
p−1

, which yields the bound for ε.

Again, recall that in practice g1 is omitted from the public key of the Boneh-
Boyen full signature scheme. Unlike in the case of basic signatures, there is no
difference in the proof in this case even if g1 is not made public. The statement
and the proof remain the same.

4.6 Boneh-Boyen Signatures (Original Version)

In Theorems 4.4.1 and 4.5.1, we forged Boneh-Boyen signatures from the full version
of the paper [14] using SDH′ solvers, thereby proving the converse of the security
theorems from that paper. We now consider the corresponding result for the original
version of the paper [13].

The core technique that we used to prove the two theorems is to calculate

consecutive powers of the form h
1

(z+r1)···(z+rq)
1 , . . . , h

zq

(z+r1)···(z+rq)
1 ∈ G1 from signatures

of the form h
1

z+r1
1 , . . . , h

1
z+rq

1 ∈ G1 using Corollary 4.3.2. This is still possible under
the original version of the Boneh-Boyen signature scheme. Thus, an SDH′ solver
yields an algorithm for forging Boneh-Boyen signatures under the original scheme.

However, the security assumption used for the version 1 Boneh-Boyen signature
scheme in [13] is the SDH assumption rather than the SDH′ assumption. Thus,
a true converse to the security theorem of the version 1 scheme would be to forge
version 1 signatures using an SDH solver. If we knew that the SDH′ problem was no
harder than the SDH problem, then this result would be immediate. Unfortunately,
this is not known, even though the reverse implication, that SDH is no harder than
SDH′, is known to hold under certain conditions (Lemma 2.2.2).

We thus consider the question of proving that an SDH solver implies the exis-
tence of a forger for version 1 signatures, by applying the same technique as the
one used in Theorem 4.4.1 and Theorem 4.5.1. In such a proof, we would need
to use version 1 signatures to construct consecutive powers in the group G2 rather
than G1, because of the difference between the input needed for SDH and SDH′.
The problem is that the signatures of the version 1 scheme are elements of G1

rather than of G2. Thus, in order to construct consecutive powers of the form
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h
1

(z+r1)···(z+rq)
2 , . . . , h

zq

(z+r1)···(z+rq)
2 , we would need to construct consecutive powers in

G1, and then apply the inverse ψ−1 of the isomorphism ψ : G2 → G1. Now recall
from the classification of pairings introduced in Section 1.2 that not every bilinear
group pair admits efficiently computable isomorphisms in both directions. From
the above observations, we conclude that a reduction similar to Theorem 4.4.1 and
Theorem 4.5.1 applies to version 1 signatures only when the scheme is implemented
using a Type 1 bilinear group pair (G1,G2).
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Chapter 5

Security Analysis of Boneh-Boyen
Signatures

It is easy to see that using a generic DLOG algorithm that runs in time t′, the
secret key of any version of the Boneh-Boyen signature scheme can be recovered in
time t′. In fact, when Boneh and Boyen signatures were first introduced, the only
known attack against the scheme was to apply a generic DLOG algorithm such as
Pollard rho [47] or Shanks’ baby-step giant-step algorithm [52].

We observed in the previous chapter that Boneh-Boyen signatures can be forged
if there is an algorithm that efficiently solves the SDH′ problem. In other words,
our result indicates that we do not need an algorithm as powerful as solving DLOG
in order to forge the signatures; an SDH′ algorithm suffices.

Cheon [25] presents a pair of algorithms which under some circumstances com-
pute the secret exponent x from the input of an instance of the q-SDH problem.
Specifically, Cheon proves the following theorem:

5.0.1 Theorem. Let G be a cyclic group of prime order p and let g be a generator.
Let T denote the upper bound for the time needed for one exponentiation in G.

1. Given a divisor d of p− 1 and the group elements g, gx, and gx
d
, the value of

x can be recovered in time O
((√

p/d+
√
d
)
T
)

.

2. Given a divisor d of p+1 and the group elements g, gx, gx
2
, . . . , gx

2d
, the value

of x can be recovered in time O
((√

p/d+ d
)
T
)

.

We refer to the algorithms that accomplish the first and the second task in
Theorem 5.0.1 as Cheon’s p−1 algorithm and Cheon’s p+1 algorithm, respectively.

Note that Cheon’s p − 1 algorithm and the p + 1 algorithm solve the q-SDH′

problem if q ≥ d in the first case or q ≥ 2d in the second; in fact, they reveal
the secret exponent x. Thus, when applied to Boneh-Boyen signatures, Cheon’s
algorithms not only produce a forgery but reveal the secret key. We discuss exactly
how to apply Cheon’s algorithms to Boneh-Boyen signatures in Section 5.3.
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5.1 Shanks’ Baby-Step Giant-Step Algorithm

Cheon’s algorithms can be implemented using Shanks’ baby-step giant-step algo-
rithm [52] or the Pollard lambda method [47]. For practical applications, the Pollard
lambda method is preferable because it requires much less memory. However, for
convenience, we will only discuss the baby-step giant-step algorithm. Let G be a
cyclic group of order n. Recall that the discrete log (DLOG) problem is as follows:

Discrete Logarithm (DLOG)

Input: a generator g ∈ G and h ∈ G

Output: the nonnegative integer x < n such that h = gx

Note that the brute force method of finding x would take O(n) operations in
G. The baby-step giant-step algorithm accomplishes the task in O(

√
n) operations

with O(
√
n) space.

Given g and h = gx ∈ G, let m← d
√
ne and observe that x < m2. The idea is

to find x by finding two integers q and r such that x = mq + r and 0 ≤ q, r < m.
For such q and r, we have hg−r = gmq. The algorithm is as follows:

1: m← d
√
ne

2: for i = 0 to m− 1 do
3: compute Li ← hg−i, and store (Li, i) in a hash table
4: end for
5: for j = 0 to m− 1 do
6: Rj ← gmj

7: if the hash table has an entry (Li, i) with Li = Rj then
8: return i+mj
9: end if

10: end for

We calculate Li’s and Rj’s from the previous terms by repeated multiplication
by g−1 and gm, respectively. Each hash table look-up takes constant time. Thus
the entire algorithm takes O(

√
n) operations in G.

5.2 Cheon’s Algorithm for SDH

5.2.1 Cheon’s p− 1 Algorithm

We prove the first part of Theorem 5.0.1 in this section. Suppose we are given input
g, g1, gd ∈ G where gi = gx

i
for some x ∈ Z∗p. We want to find x.
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Instead of directly finding x using the baby-step giant-step algorithm, we write
x = ζk0 for some fixed generator ζ0 of Z∗p, and look for the value k. We do this
by dividing the algorithm into two phases, and applying an idea similar to the
baby-step giant-step in each phase. The two phases accomplish the following:

Phase 1. Find k0 such that xd = (ζd0 )k0 so that

dk0 ≡ dk (mod p− 1) =⇒ k ≡ k0 (mod
p− 1

d
).

Phase 2. Find the quotient m such that k = k0 +mp−1
d

. We can then calculate k
from k0 and m.

The full proof follows.

Proof of Theorem 5.0.1.1.

Phase 1. Suppose g, g1, gd ∈ G and x ∈ Z∗p are given where each gi = gx
i
. Let

ζ0 be a generator of Z∗p, and let ζ ← ζd0 . Then, ζ generates all the p−1
d

th roots of

unity. Since xd is a p−1
d

th root of unity, there exists a nonnegative integer k0 less

than p−1
d

such that xd = ζk0 . Let d1 ←
⌈√

p−1
d

⌉
, and write k0 = d1u + v for some

nonnegative integers u and v with v < d1. Since d2
1 ≥

p−1
d

> k0 ≥ d1u, we must
have u < d1 as well. For such u and v, we have

(xd)ζ−v = ζd1u,

and thus

gζ
−v

d = gζ
d1u . (5.2.1)

Conversely, if integers u and v satisfy (5.2.1), then k0 ≡ d1u+ v (mod p−1
d

). Since

k0 <
p−1
d

, it suffices to find the smallest nonnegative integer u and corresponding v
that satisfy (5.2.1).

To do so, we first calculate Li ← gζ
−i

d for all i = 0, 1, . . . , d1 − 1 by repeated
exponentiation by ζ−1, and store the entries of the form (Li, i) in a hash table.
Next, for j = 0, 1, . . . , d1 − 1, we compute Rj ← gζ

d1j (by exponentiating Rj−1 by
ζd1) until a hash table entry (Li, i) such that Li = Rj is found. For such i and j, let

u← i and v ← j so that k0 = d1u+ v. Phase 1 takes time O(d1T ) = O(
√

p−1
d
T ).

Phase 2. Let x = ζk0 for some integer 0 ≤ k < p−1. Then, dk ≡ dk0 (mod p−1)
so that k ≡ k0 (mod p−1

d
). Write k = k0 + mp−1

d
for some integer m such that

0 ≤ m < d. Let d2 ←
⌈√

d
⌉
. Then we can write m = d2u

′+v′ for some nonnegative
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integers u′, v′ with v′ < d2. Since d2
2 ≥ d > m ≥ d2u

′, we must have u′ < d2 as well.
For such u′ and v′, we have k − v′ p−1

d
= k0 + d2u

′ p−1
d

so that

xζ
−v′ p−1

d
0 = ζk00 ζ

d2u′
p−1
d

0 ,

which implies

g
ζ
−v′ p−1

d
0

1 =
(
gζ

k0
0

)ζd2u′ p−1
d

0

. (5.2.2)

Conversely, if integers u′ and v′ satisfy (5.2.2), then m ≡ d2u
′ + v′ (mod d). Since

m < d, it suffices to find the smallest nonnegative integer u′ and corresponding v′

that satisfy (5.2.2). We follow a procedure similar to what we did in Phase 1 to
find u′ and v′; we repeatedly exponentiate the left hand side and the right hand

side by ζ
− p−1

d
0 and ζ

d2
p−1
d

0 , respectively. Phase 2 takes O(d2T ) = O(
√
dT ) time.

The total time needed for the above process is O
((√

p−1
d

+
√
d
)
T
)

.

5.2.2 Cheon’s p + 1 Algorithm

We prove the second part of Theorem 5.0.1 in this section. Suppose we are given
input g, g1, . . . , g2d ∈ G where gi = gx

i
for some x ∈ Z∗p. We want to find x.

As in the previous section, the algorithm consists of two phases, in each of which
we apply an idea similar to the baby-step giant-step algorithm. Let a be a quadratic
non-residue modulo p and let θ be a root of y2 = a in some extension field F of
Zp. Then, there exists a subgroup H ⊆ F∗ of order p+ 1. We define an embedding
from Zp into H such that x 7→ β, and find β instead of x in a baby-step giant-step
manner. We find βd in Phase 1, and we find β in Phase 2. Finally, we recover x by
inverting the embedding. The full proof follows.

Proof of Theorem 5.0.1.2.

Set up. Suppose g, g1, . . . , g2d ∈ G and x ∈ Z∗p are given where each gi = gx
i
.

Let a be a quadratic non-residue modulo p, and let θ be a root of y2 = a in some
extension field F of Zp. Then, it is easy to verify that Zp[θ] is a field with p2

elements, and so Zp[θ]
∗ is a cyclic group of order p2 − 1. Let H be the subgroup of

Zp[θ]
∗ of order p+ 1.

We consider mapping x to an element β ← β0 + β1θ in Zp[θ]
∗ where

β0 =
1 + ax2

1− ax2
∈ Zp and β1 =

2x

1− ax2
∈ Zp.

We claim that β ∈ H. Since every (p+1)th root of unity in Zp[θ]
∗ is in H, it suffices

to show βp+1 = 1. Note that θp = θa
p−1
2 = −θ because a is a quadratic non-residue
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modulo p. Therefore, we have

βp+1 = (β0 + β1θ)
p(β0 + β1θ)

= (βp0 + βp1θ
p)(β0 + β1θ)

= (β0 − β1θ)(β0 + β1θ)

= β2
0 − aβ2

1 = 1.

Phase 1. Let γ be a primitive element of Zp[θ], so that ζ0 ← γp−1 generates H.
Let ζ ← ζd0 . Then ζ generates all the p+1

d
th roots of unity. Since βd is a p+1

d
th

root of unity, there exists an integer k0 with 0 ≤ k0 <
p+1
d

such that βd = ζk0 . We

find k0 using the baby-step giant-step method. Let d1 ←
⌈√

p+1
d

⌉
. By the division

algorithm, there exist nonnegative integers u and v such that

k0 = d1u+ v (5.2.3)

and v < d1. Since d2
1 ≥

p+1
d
> k0 ≥ d1u, we also have u < d1. (5.2.3) implies

βdζ−v = ζd1u. (5.2.4)

We write

βd =
1

(1− ax2)d
(f0(x) + f1(x)θ)

where f0(x) and f1(x) are polynomials of degree 2d and 2d− 1, respectively. Also,
we let

ζ i = si + tiθ.

Then (5.2.4) is equivalent to

1

(1− ax2)d
(f0(x) + f1(x)θ) (s−v + t−vθ) = sd1u + td1uθ, or

[f0(x)s−v + af1(x)t−v] + [f0(x)t−v + f1(x)s−v] θ = (1− ax2)dsd1u + (1− ax2)dtd1uθ.

This implies

gf0(x)s−vgf1(x)at−v = g(1−ax2)dsd1u and (5.2.5)

gf0(x)t−vgf1(x)s−v = g(1−ax2)dtd1u . (5.2.6)

Conversely, if u and v satisfy (5.2.5) and (5.2.6), then k0 ≡ d1u + v (mod p+1
d

).

Since k0 <
p+1
d

, it suffices to pick the smallest u and corresponding v that satisfy
(5.2.5) and (5.2.6).

To do so, we first compute gf0(x), gf1(x), and g(1−ax2)d using the input g, g1, . . . , g2d.
Since f0(x), f1(x), and (1− ax2)d respectively have degree 2d, 2d− 1, and 2d in x,
this can be done in time O((6d + 2)T ) = O(dT ). Next, we calculate ζ−i and ζd1i

for all i = 0, 1, . . . , d1 − 1 (and thus s−i, t−i, sd1i, and td1i for i = 0, 1, . . . , d1 − 1)
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by repeatedly multiplying by ζ−1 and ζd1 , respectively. Since each operation in
H ⊂ Zp[θ]

∗ requires only a constant number of operations in Zp, this process takes

O(d1Tp) = O
(√

p+1
d
Tp

)
time, where Tp is the time required for one operation in

Zp.

Then we calculate

Li,1 ←
(
gf0(x)

)s−i (
gf1(x)a

)t−i
and Li,2 ←

(
gf0(x)

)t−i (
gf1(x)

)s−i
for all i = 0, 1, . . . , d1 − 1, and store the entries of the form (Li,1, Li,2, i) in a hash
table. Next, for j = 0, 1, . . . , d1 − 1, we compute

Rj,1 ←
(
g(1−ax2)d

)sd1j
and Rj,2 ←

(
g(1−ax2)d

)td1j
until a hash table entry (Li,1, Li,2, i) such that Li,1 = Rj,1 and Li,2 = Rj,2 is found.
For such i and j, let u ← i and v ← j so that k0 = d1u + v. The above process

takes O(d1T ) = O
(√

p+1
d
T
)

time.

The total time Phase 1 takes is O
((
d+

√
p+1
d

)
T
)

.

Phase 2. Write β = ζk0 for some integer 0 ≤ k < p+ 1. Then, ζdk0 = βd = ζdk00 so
that dk ≡ dk0 (mod p+ 1) and k ≡ k0 (mod p+1

d
). Write k = k0 +mp+1

d
for some

integer m such that 0 ≤ m < d. Let d2 ←
⌈√

d
⌉
. Then we can write m = d2u

′ + v′

for some nonnegative integers u′, v′ with v′ < d2. Since d2
2 ≥ d > m ≥ d2u

′, we
must have u′ < d2 as well. For such u′ and v′, we have k − v′ p+1

d
= k0 + d2u

′ p+1
d

so
that

βζ
−v′ p+1

d
0 = ζk00 ζ

d2u′
p+1
d

0 . (5.2.7)

If we write

ζ
−i p+1

d
0 = s′i + t′iθ and ζk00 ζ

d2j
p+1
d

0 = s′′j + t′′j θ,

then (5.2.7) is equivalent to

(1 + ax2) + 2xθ

1− ax2
(s′v′ + t′v′θ) = s′′u′ + t′′u′θ

⇐⇒
[
(1 + ax2)s′v′ + 2axt′v′

]
+
[
(1 + ax2)t′v′ + 2xs′v′

]
θ = (1− ax2)s′′u′ + (1− ax2)t′′u′θ

⇐⇒
[
(1 + ax2)s′v′ + 2axt′v′

]
= (1− ax2)s′′u′ and[

(1 + ax2)t′v′ + 2xs′v′
]

= (1− ax2)t′′u′ .

This implies

g(1+ax2)s′
v′g2axt′

v′ = g(1−ax2)s′′
u′ and (5.2.8)

g(1+ax2)t′
v′g2xs′

v′ = g(1−ax2)t′′
u′ . (5.2.9)
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Conversely, if integers u′ and v′ satisfy (5.2.8) and (5.2.9), then

k0 +m
p+ 1

d
≡ k ≡ k0 + (d2u

′ + v′)
p+ 1

d
(mod p+ 1)

⇐⇒mp+ 1

d
≡ (d2u

′ + v′)
p+ 1

d
(mod p+ 1)

⇐⇒m ≡ d2u
′ + v′ (mod d).

Sincem < d, it suffices to find the smallest nonnegative integer u′ and corresponding
v′ that satisfy (5.2.8) and (5.2.9).

To do so, we first compute g1−ax2
, g2x, and g2ax using the input g, g1, g2 in time

O(T ). Next, we calculate ζ
−i p+1

d
0 and ζk00 ζ

id2
p+1
d

0 for all i = 0, 1, . . . , d2− 1 (and thus

s′i, t
′
i, s
′′
i , and t′′i for i = 0, 1, . . . , d2 − 1) by repeated multiplications by ζ

− p+1
d

0 and

ζ
d2
p+1
d

0 , respectively. Since each operation in H ⊂ Zp[θ]
∗ requires only a constant

number of operations in Zp, this process takes O(d2Tp) = O
(√

dTp

)
time, where

Tp is the time for one operation in Zp.

The remaining process to find u′ and v′ using a hash table is very similar to
what we did in Phase 1. It requires O(d2) = O(

√
dT ) time.

The total time needed for Phase 2 is O
(√

dT
)

.

Recovering x. Finally, we solve the simultaneous equations

β0 =
1 + ax2

1− ax2
and β1 =

2x

1− ax2

in Zp using β2
0 − β2

1a = 1, and find the unique solution

x← β0 − 1

aβ1

.

as desired.

5.3 Recovering the Private Key in the Boneh-

Boyen Signature Scheme

We now show how Cheon’s algorithms can be applied to find the secret exponent
in the Boneh-Boyen signature scheme. As before, we let G1, G2, and GT be cyclic
groups of prime order p. We also let T denote the upper bound for the time needed
for one exponentiation in G1 and Tp denote the time needed for one operation in
Zp.

5.3.1 Theorem. (Basic scheme)
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1. Suppose a positive divisor d of p−1 is given. Given d valid message-signature
pairs, the private key x in the basic Boneh-Boyen signature scheme can be

computed in time at most O
((√

p/d+ d
)
T + d2Tp

)
.

2. Suppose a positive divisor d of p+1 is given. Given 2d valid message-signature
pairs, the private key x in the basic Boneh-Boyen signature scheme can be

computed in time at most O
((√

p/d+ d2
)
T
)

.

5.3.2 Theorem. (Full scheme)

1. Suppose a positive divisor d of p − 1 is given. Then the private key pair
(x, y) of the full Boneh-Boyen signature scheme can be computed under
a chosen message attack, using 2d + 2 signature queries, in time at most

O
((√

p/d+ d
)
T + d2Tp

)
, with probability at least

(
p−1−d(d+1)/2

p−1

)2

.

2. Suppose a positive divisor d of p + 1 is given. Then the private key pair
(x, y) of the full Boneh-Boyen signature scheme can be computed under
a chosen message attack, using 4d + 2 signature queries, in time at most

O
((√

p/d+ d2
)
T
)

, with probability at least
(
p−1−d(2d+1)

p−1

)2

.

Recall that in practice g1 is omitted from the public key of Boneh-Boyen signa-
tures. The effect of not having g1 in the public key on Theorem 5.3.1 and Theo-
rem 5.3.2 is analogous to its effect on Theorem 4.4.1 and Theorem 4.5.1. That is, the
full signature scheme (Theorem 5.3.2) is not affected, but one more (message, sig-
nature) pair is needed to recover the secret key of the basic scheme (Theorem 5.3.1).

The proofs of these two theorems are similar. We only give the proof of Theo-
rem 5.3.2.

Proof. (1) Let d be a positive divisor of p− 1. We construct an algorithm A which
recovers the private key of the signature scheme under a chosen message attack,
using Cheon’s algorithm. Suppose A is given the public key (g1, g2, g

x
2 , g

y
2 , ζ). The

algorithm A randomly selects a message ma ∈ Zp, and queries for signatures of this
same message d+1 times. As a result, A obtains d+1 valid (and hopefully distinct)

signatures (σ1, r1), . . . , (σd+1, rd+1), where σi = g
1

x+ma+yri
1 for each i = 1, . . . , d + 1.

Let h← g
1/y
1 and za ← x+ma

y
. Then, we have

σi =

(
g

1
y

1

) 1
x+ma
y +ri

= h
1

za+ri

for each i = 1, . . . , d + 1. If the set {r1, . . . , rd+1} does not consist of distinct
elements, then A aborts. Otherwise, assume r1, . . . , rd+1 are distinct. Using Corol-
lary 4.3.2, A calculates

h
1

(za+r1)···(za+rd+1) , h
za

(za+r1)···(za+rd+1) , and h
zda

(za+r1)···(za+rd+1) .
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Then, it runs Cheon’s p−1 algorithm in G1 with these inputs, and obtains za = x+ma
y

as output.

Next, A repeats the above process with a different random message mb, and
obtains zb = x+mb

y
. Since A knows za, zb, ma, and mb, it can solve a linear system

of equations to obtain the private exponents x and y.

Since calculating h
1

(z+r1)···(za+rd+1) , h
z

(z+r1)···(za+rd+1) , and h
zd

(z+r1)···(za+rd+1) for z = za

and zb takes time O(dT +d2Tp) and Cheon’s algorithm takes O
((√

p/d+
√
d
)
T
)

time, the overall runtime is O
((√

p/d+ d
)
T + d2Tp

)
. The attack succeeds if the

set {r1, . . . , rd+1} for ma consists of distinct elements (and likewise for mb). Using
an argument analogous to the one used in Theorem 4.4.1, we see that a lower bound

for this probability is
(
p−1−d(d+1)/2

p−1

)2

.

(2) We now suppose d is a divisor of p + 1. The proof here is similar, except
that A needs to calculate

h
1

(z+r1)···(z+r2d+1) , h
z

(z+r1)···(z+r2d+1) , . . . , h
z2d

(z+r1)···(z+r2d+1) .

from the signatures h
1

z+r1 , . . . , h
1

z+r2d+1 , in order to obtain z = za and zb using
Cheon’s p + 1 algorithm. This takes O (d2T ) time, and Cheon’s algorithm takes

O
((√

p/d+ d
)
T
)

time, for a total runtime of O
((√

p/d+ d2
)
T
)

. The attack

succeeds if the set {r1, . . . , r2d+1} for each of za and zb consists of distinct elements,

and the probability of this is at least
(
p−1−d(2d+1)

p−1

)2

.

From Theorems 5.3.1 and 5.3.2, we find that the private key in the Boneh-Boyen
signature scheme can be computed faster than with the Pollard rho algorithm as
long as p − 1 or p + 1 has a divisor d with d . p1/4, with the minimum running
time achieved when d ≈ p1/5. If a divisor d of p − 1 or p + 1 size approximately
p1/5 exists, then the private key for the basic (resp., full) scheme can be computed
using O(d) known (resp., chosen) signatures in time O(p2/5T ).

5.4 Countermeasures and Mitigation

Other than increasing the key length, the most direct defense against the above
attack is to choose a group order p for which p− 1 and p + 1 admit no divisors of
intermediate size. For example, suppose we choose a group order p ≈ 2256 to achieve
128-bit security against the Pollard-Rho attack, which runs in time approximately√
πp/2Tp [34, 47]. Analyzing the proof of Theorem 5.3.2 more closely, we find that

the private key of the full Boneh-Boyen signature scheme can be obtained in time
approximately 4

√
p/dT + 2d2Tp if d is a divisor of p− 1. Thus, assuming that T ≈

(2 log2 p)Tp with the ordinary square and multiply algorithm for exponentiation,
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we find that roughly speaking p − 1 should not have a divisor between 23 and 64
bits long if a 128-bit security level is desired. For the p+ 1 algorithm the constants
in the running time are much harder to determine, so we omit a detailed analysis
of this case. Nevertheless, we expect that divisors of similar size should also be
avoided for p+ 1. Primes of this form are rare, especially in the context of bilinear
group pairs, but they are not impossible to find. In such cases, Cheon’s algorithms
no longer apply, and Theorems 5.3.1 and 5.3.2, while still valid, have no practical
impact in the absence of a faster algorithm for solving q-SDH.

Another possibility is to modify the signature scheme in such a way that the
proof of security under q-SDH still holds, but our reduction in the converse direction
does not. We observe that our reduction algorithms rely on the fact that the

denominator in the exponent g
1

x+m+yr is linear in both m and r. Accordingly, it
would be natural to look for signature schemes with nonlinear denominators whose
security can still be proven under the q-SDH assumption. One example of such a
signature scheme is given by Wei and Yuen [57], and another example is the scheme

σ ← (g
1

x+mr+yr2

1 , r). We emphasize that we have not checked the security proofs for
any of these modified schemes, nor have we made any systematic effort to examine
whether our techniques for proving the converse can be extended to such schemes.
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Chapter 6

Conclusions and Future Work

This thesis presents the issues related to Boneh-Boyen signatures and the strong
Diffie-Hellman problem on which the security of the Boneh-Boyen signature schemes
rest. We present several intractability assumptions related to SDH, and several
signature schemes related to Boneh-Boyen signatures. Our contribution includes
showing that the existential forgery of signatures for both the basic and full versions
of the Boneh-Boyen signature scheme can be reduced to the q-SDH problem via
an algorithm which is quadratic in q. This result establishes the equivalence of
the q-SDH assumption and the security of Boneh-Boyen signatures, thus resolving
an open problem posed in [19, 37]. Together with Cheon’s q-SDH analysis, the

reduction algorithm allows us to recover Boneh-Boyen private keys in time O(p
2
5
+ε)

for groups of order p whenever p± 1 satisfies certain divisibility properties. There
are several topics that are worthy of further study, some of which we mention below:

Modification to Boneh-Boyen Signatures. We discussed in Section 5.4 one
possible way to modify Boneh-Boyen signatures to prevent our attack. Proving the
security of our proposed scheme under the SDH (SDH′) assumption remains an
open question. We are also interested in other possible modifications that would
accomplish this goal.

Non-generic Algorithms. All the algorithms that we have seen in this thesis
are generic algorithms. It is interesting to look for an efficient non-generic algo-
rithm that solves the SDH (SDH′) problem or that forges Boneh-Boyen signatures
implemented in certain groups. Such an algorithm might beat the lower bound
presented in Theorem 2.3.3.

SDH Based Schemes. It may be worthwhile to look for other schemes based
on SDH or related assumptions for which no reduction to the SDH problem is
known, and either to prove the equivalence to the assumption, or to find a weaker
assumption on which the security of such a scheme can rest.
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Extending Cheon’s Algorithm. We discussed Cheon’s p − 1 and p + 1 algo-
rithms in Section 5.2. Notice that p − 1 and p + 1 are the first and the second
cyclotomic polynomial at p. It is worth investigating whether the algorithm can be
extended to work with divisors of cyclotomic polynomials at p other than p± 1. If
the algorithm can be adapted to higher degree cyclotomic polynomials in such a
way that the overall algorithm outperforms Pollard rho, then one would have more
options for solving SDH on a given group.
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