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Abstract

We study a simple extension of the decoupling limit of boundary effective actions

for the Dvali-Gabadadze-Porrati model, by covariantizing the π lagrangian and cou-

pling to gravity in the usual way. This extension agrees with DGP to leading order

in Mpl−1, and simplifies the cosmological analysis. It is also shown to softly break

the shift symmetry, while still being consistent with solar system observations. The

generally covariant equations of motion for π and the metric are derived, then the

cosmology is developed under the Cosmological Principle. Three analytic solutions

are found and their stability is studied. Interesting DGP phenomenology is repro-

duced, and we consider one of the stable solutions. The cosmological analogue of the

Vainshtein effect is reproduced and the effective equation of state, wπ, is shown to be

bounded by −1 from above. This solution is additionally shown to be an attractor

solution in an expanding universe. We evolve π numerically and reproduce these

properties, and show that the universe will go through a contraction phase, due to

this π field. We then place a constraint on rc ≥ 1029 cm, given recent WMAP5 data.

This lower bound on rc gives an upper bound on the anomalous perihelion precession

of the moon ∼ 1×10−13, 2 orders of magnitude below current experimental precision.
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Chapter 1

Introduction

Perhaps the most important conceptual problem in cosmology today, is the observa-

tional inference of dark energy. It is thought to comprise over 70% of our universe’s

energy density, a value determined by the observed accelerated expansion of the uni-

verse [1]. Cosmic acceleration is now firmly established through observations of the

Cosmic Microwave Background (CMB) anisotropy, Type Ia supernovae, and baryon

acoustic oscillations, and requires explanation [2, 3, 4]. It is generally attributed to

vacuum energy, with models that use a cosmological constant Λ, and cold dark matter

(ΛCMD) [1, 5, 6, 7]. However, an alternative explanation is that Einstein’s theory of

gravity is breaking down on the largest observable scales. To reconcile the increased

expansion rate at large range with theory, the former assumes an effective repulsive

force between cosmological objects at large distances, while the latter postulates a

weakening of the gravitational force at large distances.

It has proven, however, theoretically challenging to consistently alter Einstein

gravity at large distances. One of the rare examples is the Dvali-Gabadadze-Porrati
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(DGP) model [8]. In this scenario, our visible universe is confined to a brane in

a 4+1-dimensional bulk. Although the bulk is flat and infinite in extent, 3+1-

dimensional gravity is recovered, at least at sufficiently small distances, due to an

intrinsic Einstein-Hilbert term on the brane. The full 5d action therefore takes the

form

SDGP =
M3

5

2

∫
M5

d5x
√
−g5R5 +

M2
4

2

∫
M4

d4x
√
−g4R4 +M2

4

∫
M4

d4x
√
−g4K , (1.1)

where M4 and M5 respectively denote the 4d and 5d Planck scales, and K is the

usual Gibbons-Hawking term [9] (see Fig. 1.1). In other words, the brane Ricci scalar

represents an intrinsic graviton kinetic term that localizes the gravitational flux lines

near the brane. The resulting gravitational force law scales as r−2 at short distances,

but asymptotes to r−3, corresponding to 4+1-dimensional behavior, at large distances.

The cross-over scale is set by the ratio of the two Planck scales: rc =
M2

4

M3
5
, as shown

in Fig. 1.2. To satisfy solar system and cosmological constraints, rc must be of order

of the present Hubble radius: ∼ 1028 cm [10].

The DGP model is phenomenologically very rich. From the 4d effective theory

on the brane, there is no massless graviton; instead the action is that of a resonance

graviton — an infinite sum of massive states. The absence of a graviton zero-mode

follows from the infinite extent of the bulk, which prevents the usual Kaluza-Klein

mass gap between the graviton zero-mode and massive KK modes characteristic of

compact extra dimensions.

At quadratic order, the action for the 4d graviton is of the Fiertz-Pauli (FP)

form [11], except for the fact that the mass term is not constant but depends on 4d

momentum: m2(p) = p2 + p
rc

. Theories of massive gravity have a long history. Fiertz
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Figure 1.1: A visual depiction of the DGP framework.
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and Pauli first showed that requiring Lorentz invariance and the absence of ghost-like

instabilities uniquely fixes the tensor structure at quadratic order. Decades later, van

Dam, Veltman and Zhakarov (vDVZ) pointed out that the resulting tensor structure

of the one-particle exchange amplitude between conserved sources Tµν and T ′µν is that

of a scalar-tensor (or Brans-Dicke [12]) theory [13]:

A ∼ 1

p2 +m2

(
T µνT ′µν −

1

3
TT ′

)
, (1.2)

By constrast, general relativity (GR) gives a coefficient of 1
2

in front of the TT ′ term.

The puzzling observation is that this 1
3

coefficient persists even in the massless limit

m→ 0 — surprisingly, the theory does not reduce to GR even in the limit of infinites-

imal mass! Moreover, such a large departure from GR is already ruled out time-delay

observations in the solar system, thus it would seem that a massive graviton of arbi-

trarily small mass is ruled out by solar system tests.

This vDVZ discontinuity arises because the longitudinal (or helicity-0) mode, usu-

ally denoted by π, does not decouple in the limit m → 0. However, as pointed out

by Vainshtein [14], π becomes non-linear in the vicinity of astrophysical sources. In

other words, the linearized approximation assumed in Eq. (1.2), while applicable to

the helicity-2 (or Einsteinian) part of the metric, in fact breaks down near the Sun.

The scale at which perturbative theory breaks down in massive gravity is given by

the Vainshtein radius: rV = (rSchm
−4)1/5, where rSch is the Schwarzschild radius of

the source. Vainshtein conjectured that due to these non-linear effects GR would be

recovered for r � rV. Since rV →∞ as m→ 0, GR would recover everywhere in this

limit. However it is clear that the recovery of GR is rather tricky, since it hinges on

one of the degrees of freedom becoming strongly coupled everywhere.
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The DGP model shares many of the key features of massive gravity. At the lin-

earized level, the exchange amplitude between sources on the brane is of the form

Eq. (1.2), except for the trivial substitution m2 → r−1
c p. However, the longitudinal

mode π is non-linear below a scale r?, which is the analogue of the Vainsthein radius:

r? = (rSchr
2
c )

1/3 . (1.3)

And indeed, it has been shown that the Vainshtein effect applies in DGP: the standard

Schwarzschild metric is recovered near sufficiently massive sources, plus correction

suppressed by powers of r
r?

[15, 16, 17]. A conceptual analogue is to think of sound

waves propagating through a dense 2d medium, surrounded by air. At short distances,

the sound wave will be confined to the 2d ‘brane’ because of its large density. This

is the scale that r? defines, the so-called Einstein sphere, as GR is recovered exactly

within. At large distances the sound waves will leak into the 3d bulk, the scale rc

defines, the distance at which gravity becomes 4+1 dimensional. Between r? and rc

this is a complicated region where the theory is a scalar-tensor theory (see Fig. 1.2). In

the sound analogy, if 2d beings existed on this ‘brane’ they would observe a ‘modified

sound law’ after some scale, due to the 3d leaking. This is potentially our current

position in our historical understanding of gravity.

Much work has been done to study the cosmology of the DGP model. Assuming

a spatially-flat universe for simplicity, the Friedmann equation on the brane is given

by [18]

H2 =
8πG

3
ρ± H

rc
, (1.4)

where ρ is the energy density of matter fields on the brane. Much attention has been

paid to the “plus” (or self-accelerating) branch of this equation, because of its asymp-
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Figure 1.2: The regimes of interactions for a gravitational source in DGP.
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totically de Sitter solution even in the absence of vacuum energy. However, various

arguments have by now firmly established that this branch suffers from instabili-

ties [19, 20, 21, 22, 23]. Here we instead focus on the “minus” or normal branch,

which is stable. In this case, the 1
Hrc

correction slows down the expansion rate, and

one must invoke a cosmological constant or some other form of dark energy to gener-

ate cosmic acceleration.

The cosmological viability of the DGP model has been the subject of a large body

of literature, focusing almost exclusively on the self-accelerating (or plus) branch [24,

25, 26, 27, 28, 29]. Recently, [30] has shown that self-accelerating DGP cosmology is

strongly disfavored compared to ΛCDM, due to modifications in the expansion and

growth histories. Even allowing for spatial curvature to alleviate the tension with the

expansion history, the modification to the growth of perturbations still generates too

large an Integrated Sachs-Wolfe component for the low multipoles of the CMB an-

gular power spectrum. Although this analysis focused on the plus branch, we expect

the excess of power at large angular scales to also afflict the normal branch [31].

In general, the study of cosmology has been hampered by the sheer complexity of

studying perturbations in a higher-dimensional space-time. In this thesis, we will use

a specific limit in which the theory admits a local, four-dimensional description. This

limit exploits the fact that near sources the non-linearities are dominated by those

of π. Thus, by taking M4,M5 → ∞ and rc → ∞, but keeping the strong coupling

scale Λ = (M4r
−2
c )1/3 fixed, one decouples gravity but treats π non-linearly. In other

words, this limit corresponds to taking rSch → 0, thus making helicity-2 modes weakly

coupled everywhere, but keeping r? fixed, thereby focusing on the π non-linearities.

This so-called decoupling limit was first used in [32] and [33].
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In [20], it was shown that the decoupling limit reproduces many of the key fea-

tures of the full DGP model. In particular, it displays the Vainshtein effect through

the non-linear interactions of π; it has both flat and self-accelerated solutions. More

generally, solutions to the decoupled theory come in two branches, set by a choice of

sign in the π equation of motion. (In the higher dimensional theory, this corresponds

to a choice of sign of the extrinsic curvature of the brane.) One branch of solutions

has stable perturbations, whereas the other branch is unstable. The asymptotically

flat and self-accelerations solutions are a particular example of such pairs of solutions.

Classically, the two branches are disconnected, unless the matter violates some energy

condition [20]. It remains an open question whether quantum mechanical transitions

can connect them [23, 24].

In this thesis, we study a simple extension of the decoupling theory, by covari-

antizing the π Lagrangian and coupling to gravity in the usual way. This offers the

simplest non-linear and generally covariant extension, which agrees with DGP to

leading order in 1/M4. Our approach has the advantage of being four-dimensional,

which greatly simplifies the cosmological analysis.

Despite its remarkable simplicity, our 4d theory reproduces many of the key fea-

tures of the full-fledged DGP model. Our Friedmann equation allows two branches of

solutions, depending on the sign of the velocity of π. One branch corresponds to self-

acceleration, the other is asymptotically flat. As in standard DGP, the self-accelerated

and flat branches are unstable and stable, respectively. The π field contributes an

effective energy density to the Friedmann equation on the stable (unstable) branch

which has an effective equation of state w < −1 (w > −1), in agreement with [34].

Moreover, the π field displays a cosmological analogue of the Vainshtein effect.
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In the presence of a background fluid, such as matter or radiation, the π dynamics

are dominated by its non-linear interactions at early times (Hrc � 1); the resulting

effective energy density is then suppressed compared to the background fluid. In this

regime where the π field is subdominant, we analytically derive a tracking solution in

which π̇ is constant. Furthermore, we show that it is an attractor, as small perturba-

tions redshift away. We then check numerically the existence of this tracking solution

and its attractor property. We numerically determine the effect on the total equation

of state wtot, and show the universe will go through a contraction phase, due to this

π field. We additionally show that for the majority of the evolution, wπ tracks wtot,

as expected from the π̇ is constant analysis. As a concluding calculation, we place a

rough (yet stronger) constraint on rc ≥ 1029 cm, using WMAP5 constraints on ΩΛ

and wDE, as well as our numerical model.

This thesis is organized in the following manner; In Chapter 2, we provide further

background and motivation of DGP and its 4d effective models. In Chapter 3, we

make generalizations to the 4d effective action in [20], in an effort to covariantize it.

Requirements of stability place restrictions on how general an action we can have,

and we pick a simple covariant action which satisfies these requirements. In Chap-

ter 4, we develop its theoretical framework, then assume homogeneity and isotropy

to calculate our modified equations of motion and Friedmann equations. In Chapter

5, we determine a handful of analytical solutions to these equations and discuss their

stability and evolution, making contact with discussions in Chapter 2. Finally, in

Chapter 6 we evolve these equations numerically in order to determine the cosmol-

ogy for an arbitrary solution set. We show the validity of our analytic analysis in

Chapter 5, and discuss the cosmological implications of this model.
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Chapter 2

Background and Motivation

We start by describing the DGP model, and its main properties. Three scales of

interest exist in this model; the scale at which the gravity looks 4d, the scale at which

non-linear terms become important, and the scale that the theory becomes strongly

coupled and loses predictivity. We present the unstable “self-accelerating” solution1.

The discussion is then turned to the boundary effective action of Luty, Porrati, and

Rattazzi [33], in which the 4+1 bulk has been integrated out, and its dynamics appear

as a π field scalar degree of freedom, on the boundary. We make note of the useful

decoupling limit [32, 33], then move to the Nicolis and Rattazzi (NR) truncated π

action [20], which immediately reveals the LPR action’s interesting structure. We

show that the NR action is free of n > 2 higher order derivatives, and invariant under

the shift symmetry. We end this chapter by discussing the observation viability of

DGP (and its 4d effective models), in terms of solar system phenomenology.

1By “self-accelerated”, we mean the de Sitter solution without vacuum energy or cosmological
constant.
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2.1 The Dvali-Gabadadze-Porrati Model

In the DGP model, our visible universe is confined to a brane in a 4+1-dimensional

bulk. The bulk is flat and infinite in extent, and gravity is purely Einstein-Hilbert.

There is a large Einstein-Hilbert term localized on the brane, which allows 3+1-

dimensional gravity to be recovered at sufficiently small distances. The full 5d action

is given by

SDGP =
M3

5

2

∫
M5

d5x
√
−g5R5 +

M2
4

2

∫
M4

d4x
√
−g4R4 +M2

4

∫
M4

d4x
√
−g4K , (2.1)

where M4 and M5 respectively denote the 4d and 5d Planck scales, and K is the

Gibbons-Hawking term. The crossover scale between 3+1-dimensional gravity and

4+1-dimensional gravity is set by the ratio of these two Planck scales,

rc =
M2

4

M3
5

. (2.2)

At distances shorter than rc (in the 3+1-dimensional regime), we have the usual grav-

itational force law r−2. But at distances larger than rc, gravity leaks into the 4+1

dimensional bulk, and we have the modified gravitational force law r−3. A conceptual

analogue is to think of sound waves propagating through a dense 2d medium, sur-

rounded by air. At short distances, the sound wave will be confined to the 2d ‘brane’

because of its large density, but at large distances the sound waves will leak into the

3d bulk. If 2d beings existed on this ‘brane’ they would observe a ‘modified sound

law’ after some scale, due to the 3d leaking2. This is precisely the scale that rc defines,

in DGP. To satisfy solar system and cosmological constraints, rc must be of order of

the present Hubble radius: ∼ 1028 cm [10] (which we will show in Section 2.3).

2Credit to G. R. Dvali for this thought experiment.
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This, however, is not the complete story for distances < rc. The DGP model re-

duces to a 4d scalar-tensor theory of gravity in this limit, where the scalar π, couples

to the gravitational strength. This coupling survives even in the limit of m → 0,

which means that DGP does not limit to GR at distances smaller than rc! This is

precisely the vDVZ discontinuity which appears in theories of massive gravity [13].

One would expect then, that DGP would suffer the same fate as massive gravity

theories, and predict unacceptable deviations from observational constraints placed

on general relativity. Vainshtein [14], however, showed in massive gravity that, at

distances close to an astrophysical source (such as the Sun), π becomes non-linear.

The scale at which the non-linear terms become important is the Vainshtein radius:

rV = (rSchm
−4)

1
5 , (2.3)

where rSch is the Schwarzschild radius of the source. He claimed that the non-linear

effects of π actually restore predictions to that of GR, and that GR would be fully

recovered for r � rV. Since rV → ∞ as m → 0, GR is recovered everywhere in this

limit. Such was the case in massive gravity, and it is indeed true that DGP suffers

the same fate. An analogous Vainshtein radius exists for DGP, in which π becomes

non-linear, and GR is recovered3,4! This scale is given by,

r? ∼
(
rSchr

2
c

) 1
3 , (2.4)

and is an important length scale in this theory, and its effective models, for the reasons

above.

As shown in [33], there is a final additional length scale of importance, in DGP.

3With corrections suppressed by powers of r/r?. See [15, 16, 17].
4In Section 2.3, we will show this explicitly for the Sun.
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It is the scale where the theory becomes strongly coupled and quantum mechanical

effects come to dominate,

Λ ∼ M2
5

M4

=

(
M4

r2
c

) 1
3

. (2.5)

Below this length, one cannot trust calculations done in the DGP framework without

UV completion [38]. For rc of order of the present Hubble radius, Λ−1 corresponds to

∼ 103 km.

For late time cosmology, the DGP model has a “self-accelerating” branch, which

can be seen by the modified Friedmann equation [18],

H2 = − k

a2
+

(
ε

2rc
+

√
1

4r2
c

+
8πGρ

3

)2

, (2.6)

where ρ is the energy density of matter fields on the brane. For ε = +1 the rc

terms can act as a cosmological constant. This solution attracted a lot of attention

because of this naturally occurring effective vacuum energy, without the need to put

a cosmological constant in by hand. However, it has now been established that this

branch suffers from instabilities [19, 20, 21, 22, 23]5. Here we instead focus on the

ε = −1, or normal branch, which is stable. We will, however, reproduce the analogue

to this “self-accelerated” solution in our 4d effective theory.

The study of the cosmology of this stable branch is notoriously difficulty. This

is due to the complexity of studying perturbations in a higher-dimensional space-

time. The natural step then, is to produce a 4d effective theory which reproduces the

interesting phenomenology of DGP, while simplifying the calculations. This was first

done by Luty, Porrati, and Rattazzi, whose model we will now describe.

5It has been conjectured the whole theory is not bounded from below, and thus unstable [23].
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2.2 The Luty-Porrati-Rattazzi Effective Model

The first successful attempt at capturing the interesting phenomenology of the DGP

model was the Luty-Porrati-Rattazzi (LPR) boundary effective action. This was

done by integrating out the bulk degrees of freedom and encapsulating them into a

single 4d scalar degree of freedom π (x). π is often referred to as the ”brane-bending”

mode, and represents the 4+1-dimensional bulk dynamics of DGP on the boundary.

The calculation is long and involved, but amounts to choosing convenient gauges and

applying the Israel junction conditions between the bulk and the brane. The first

step is to write the 4+1 part of the action in terms of ADM-like variables: the lapse

N =
(
g55

(5)

)− 1
2
, the shift Nµ = g(5)5µ and the 4d metric g(4)µν = g(5)µν ;

SDGP(5) =
M3

5

2

∫
d4x

∫ ∞
0

dy
√
−g(4)N

[
R
(
g(4)

)
−KµνKµν +K2

]
, (2.7)

where

Kµν =
1

2N

(
ġ(4)µν −∇(4)µNν −∇(4)νNµ

)
. (2.8)

Choose the de Donder gauge for both metrics,

g(5)µν = η(5)µν + h(5)µν , (2.9)

g(4)µν = η(4)µν + h(4)µν . (2.10)

One is now in the position to integrate out the bulk fields, using the Israel junction

conditions to match the bulk to the boundary6, gives the induced boundary action.

Adding this to the kinetic term on the boundary gives the quadratic boundary La-

6It is also convenient to add a gauge fixing term, and note the condition the residual gauge
freedom has, but for brevity this has not been reproduced here. See [33, Section 3] for details.
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grangian,

SLPR ' M2
4

∫
d4x

(
1

2
h′µν�h′µν −

1

4
h′�h′ −mNµ4Nµ + 3m2π�π

)
−M3

5

∫
d4x (∂π)2�π, (2.11)

where 4 =
√
−� =

√
−ηµν∂µ∂ν , and h′µν = h(4)µν −mπη(4)µν , and we have assumed

that p� m.

To study the strong interactions regime, one can take the decoupling limit, M4,

M5 → ∞, while requiring Λ to be fixed, which sends m → 0. This decoupling limit

is analyzed in the detail by Nicolis and Rattazzi, in flat space [20]. These conditions

reduce Eq. (2.11) to,

SNR =

∫
d4x

[
−3(∂π)2 − 1

Λ3
(∂π)2�π +

Tπ

2M4

]
. (2.12)

The first variation with respect to π shows that the resulting π equation of motion is

given by,

3�π + Λ−3
[
(�π)2 − (∂µ∂νπ)2] = − T

4M4

, (2.13)

which is remarkably free of n > 2 derivatives7.

One can also show that this action is invariant under the shift symmetry,

∇µπ → ∇µπ + Cµ, (2.14)

which implies,

(∂π)2 → (∂π)2 + 2Cµ∇µπ + C2, (2.15)

�π → �π. (2.16)

7We will discuss this property more generally in Chapter 3.
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Under this transformation, LNR from Eq. (2.12) becomes,

L′NR = −3(∂π)2 − Λ−3(∂π)2�π +
Tπ

2M4

−6Cµ∇νπ�π − 3C2 − Λ−3
[
2Cµ∇νπ�π + C2�π

]
, (2.17)

and all the extra terms are either total derivatives which disappear upon integration,

or constants which disappear upon variation. This is simply equivalent to saying that

the π of motion in Eq. (2.13) is dependent only on second derivatives of π. But it is

a useful exercise to show this explicitly at the level of the action, in anticipation of

generalizing Eq. (2.12) in Section 3.1, and breaking this shift symmetry in Section 3.2.

Nicolis and Rattazzi have shown that this truncated action captures DGP for a

wide range of cosmological regimes, however it is only valid in flat space and for

non-relativistic matter sources [20]. In the next chapter we will try to extend this

effective action to curved space and relativistic matter sources, by covariantizing it

and softening the decoupling limit, but first we will remark on the phenomenological

consistency of DGP and this truncated boundary effective action.
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2.3 Solar System Consistency

The reason DGP is interesting is because it is observationally a viable alternative

to GR. It is consistent with our strongest constraints: solar system phenomenology.

Much work has been done to verify this consistency due to the Vainshtein effect [10,

15, 35, 36]. One can estimate the relative correction to the gravitational potential8 by

showing that the scale r? at which the non-linear interactions of χ (r), the longitudinal

graviton, become comparable to the linear interactions for

r? =
(
rSchr

2
c

) 1
3 . (2.18)

By requiring this to smoothly match the linear regime, and approximating the solution

inside r? as an analytic series in r−1
c , one can determine the leading behaviour of χ (r)

for distances r � r?,

χ (r � r?) ∼
rSch

r?

(
r

r?

) 1
2

, (2.19)

which has the following relative gravitational potential correction,

δ ∼ r

rc

√
r

rSch

. (2.20)

For the Earth, rSch = 0.886 cm, the Earth-Moon distance is r = 3.84× 1010 cm, and

rc = 1028 cm, this gives an anomalous perihelion precession of the moon ∼ 1× 10−12,

while current observational limits are of the order ∼ 1× 10−11. This effect, however,

may be observable in the near future, as there is to be expected a ten-fold increase

of precision in the next set of Lunar Laser Ranging experiments [10, 36].

A thematically similar, but different consistency check can be done with Eq. (2.12),

by computing the r? effect due to the Sun [20]. We consider a static point-like source

8As was done in [36].
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of mass M , T = −Mδ3 (~x), and look for a general, static, spherically symmetric

solution. Then Eq. (2.13) becomes,

~∇ ·
[
6 ~E + r̂

4

Λ

E2

r

]
=

M

2M4

δ3 (~x) , (2.21)

where ~E ≡ ~∇π ≡ r̂E (r). Integrate over a sphere centered at the origin, and this

yields the following solutions to the resulting quadratic equation,

E± (r) =
Λ3

4r

[
±
√

9r4 +
1

2π
r3
cr − 3r2

]
. (2.22)

At distances close to the source, the two solutions reduce to,

E± (r � r?) = ± Λ3

4
√

2π

r
3
2
?

r
1
2

, (2.23)

which relates to a correction of the Newton force,

Fπ
FNewton

∼
(
r

r?

) 3
2

∼
(
r3

r�Sch

) 1
2 1

rc
. (2.24)

Given r�Sch ∼ 105 cm and rc ∼ 1028 cm, even a correction of order 10−2 to the Newton

force due to this fifth π force will not be observed unless r ∼ 1019 cm, far outside the

solar system.

Thus, our strongest constraints do not observationally rule out the DGP model.

It is a viable infrared modification to gravity, making it an interesting theory to study

cosmological results and implications in. The rest of this thesis will be focused on

this endeavour. We will start in the next chapter, by softening the decoupling limit

used by LPR, as well as, Nicolis and Rattazzi, to covariantize the boundary effective

action.
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Chapter 3

4d Effective Action

In this chapter we generalize the LPR effective theory by making it covariant, extend-

ing it to curved space and relativistic dynamics. We also take a weaker decoupling

limit, only requiring M4 to be finite, instead of M4 → ∞. We determine what con-

straints are placed on a general 4d effective action, in order to ensure there are no

n > 2 higher order derivatives. We also show how the shift symmetry is broken by

our generalization. We then choose a simple covariant form of the action in Jordan

frame and show how it limits to the LPR action and relates to the discussion which

preceded it.
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3.1 Constraints on Generalization

In Section 2.2, we saw that the LPR boundary effective model had the property of

being free of n > 2 order higher derivatives. This is an important property to have, in

order to avoid ghosts appearing in the higher derivative contributions to the action. In

this section we will try to determine what class of effective actions has this property.

We will make the following generalizations to the LPR model1,

SGLPR = M4

∫
d4x
√
−g [A(X) +B(X)D (Y )] , (3.1)

where X ≡ M−4(∂π)2 and Y ≡ Λ−3�π. Note that from now, we will work only in

3+1 dimensions, so the subscript on M4 has been removed for brevity. We can make

contact with Eq. (2.12), by A(X) = −3X, B(X) = −X, and D (Y ) = Y .

The first variation of Eq. (3.1) with respect to π yields the following equation of

motion,[
∇µπ∇µ

dA

dX
+
dA

dX
�π +∇µπD (Y )∇µ

dB

dX
+
dB

dX
∇µπ∇µD (Y ) +

dB

dX
D (Y ) �π

]
− M4

2Λ3
∇µ

[
dD

dY
∇µB(X) +B(X)∇µdD

dY

]
= 0. (3.2)

And we can immediately require dD
dY

to be constant, otherwise we are getting n > 2

higher derivatives in π, which we have no possibility of cancelling2. So

dD

dY
= constant, (3.3)

which we will call C. Substitution of this into Eq. (3.2), leaves us with the following

n > 2 derivative terms,

C

Λ3

dB

dX
∇µπ∇µ�π and − C

Λ3

M4

2
�B(X).

1For simplicity, we have set the Lagrangian for the matter field to zero.
2In a recent paper, [37], it was shown that there is a special class of more general combinations

of functions D (Y ) and B(X) that, in fact, do cancel n > 2 higher derivatives.
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And we can expand M4

2
�B(X) and show that the combination of these two terms

result in no n > 2 derivatives,

M4

2
�B(X) =

2

M4

d2B

dX2
∇νπ∇µ∇νπ∇απ∇µ∇απ

+
dB

dX

[
(∂µ∂νπ)2 +∇µπ�∇µπ

]
. (3.4)

In flat space the ∇µ�π and �∇µπ terms precisely cancel3. We are left with no n > 2

order higher derivatives, which means that there are no additional constraints on

B(X). Thus, B(X) can be an arbitrary function of M−4(∂π)2. We should pause here

to stress how unique this (∂π)2�π structure is. Our action contained a second-order

(covariant) derivative of π and we took the variation with respect to π. Yet for any

arbitrary B(X), the resulting action has no n > 2 order higher derivatives. Also note

that there is no way in which A(X) can contribute to higher order derivatives, which

is not as surprising4. A(X) is then a general function as well. For simplicity, we

absorb the constant C from Eq. (3.3) into B(X) which gives us the following form of

our generalized LPR model,

SGLPR = M4

∫
d4x
√
−g
[
A(X) + Λ−3B(X)�π

]
, (3.5)

which has been shown to be free of n > 2 order higher derivatives.

The analogue to the solar system phenomenology of Section 2.3 is as follows5;

again we consider a static point-like source of mass m, T = −mδ3 (~x), and look for a

general, static, spherically symmetric solution. Then Eq. (3.2) becomes,

~∇ ·
[
−2

dA

dX
~E − r̂ 4

Λ3

dB

dX
Λ
E2

r

]
=

m

2M
δ3 (~x) , (3.6)

3This result holds in curved space, but you will pick up a term proportional to Rαµ∇απ.
4A(X) only contains first-order derivatives in the action.
5We have reinserted the matter field Lagrangian, the same one as in Eq. (2.12).
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where ~E ≡ ~∇π ≡ r̂E (r). Integrate over a sphere centered at the origin, and this

yields the following solutions to the resulting quadratic equation,

E± (r) = −Λ3

4r

(
dB

dX

)−1
±
√(

dA

dX

)2

r4 − 1

2Λ3π

dB

dX

(m
M

)
r − dA

dX
r2

 . (3.7)

Again, we consider distances close to the source and all the dA
dX

terms are negligible

compared to the dB
dX

term (they will be suppressed by a factor r
r?

). The two solutions

then reduce to,

E± (r � r?) = ∓ Λ
3
2

√
2π

(
dB

dX

)−1 [
−dB
dX

(m
M

)
r−1

] 1
2

, (3.8)

and we require6 dB
dX

< 0. The effect of A(X) (or more correctly dA
dX

) on E± is sup-

pressed by a factor r
r?

, for small distances from the source. Hence, its effect negligible

for distances within the solar system. It follows from this, that the solar system

consistency derived in Section 2.3 is recovered exactly.

6At least for r � r?.
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3.2 Broken Shift Symmetry

In Section 2.2 we showed that the LPR effective action was invariant under Eq. (2.14).

This shift symmetry represents a Galilean symmetry which is the decoupling remnant

of the full 5D Lorentz symmetry7. Since the Galilean invariance is only approximate,

we do expect Eq. (2.14) to be softly broken in the full DGP. In this section, we will

show how general A(X) and B(X) break Eq. (2.14). Under transformations Eq. (2.15)

and Eq. (2.16), LGLPR from Eq. (3.5) becomes,

L′GLPR = M4A
(
M−4

[
(∂π)2 + 2Cµ∇µπ + C2

])
+M4Λ−3B

(
M−4

[
(∂π)2 + 2Cµ∇µπ + C2

])
�π

≈ M4
[
A(X) + Λ−3B(X)�π

]
+

1

M4

(
dA

dX
+ Λ−3 dB

dX
�π

)(
2Cµ∇µπ + C2

)
. (3.9)

For a shift symmetric action, the third term would have to disappear, requiring dA
dX

=

const. and dB
dX

= const., so that it can be split up into total derivatives and constants.

This is precisely the form that Eq. (2.17) took. However, for arbitrary functions

A(X) and B(X), the third term can not, in general, be put into this form. Then the

shift symmetry is must be broken. This breaking, however, will be soft if M � Λ.

To reproduce LPR in the limit Mpl → ∞, it is natural to identify M = Mpl, which

ensures that the shift symmetry is very softly broken for our general model, as it is

in DGP.

7See [38, Section 5].
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3.3 Covariant 4d Effective DGP

We now choose a simple covariant form of this (∂π)2�π structure in Jordan frame.

We have the freedom to choose an action which is simple in Einstein or Jordan frame,

but we decide on Jordan frame because π does not couple to T (m) in this frame8.

Hence, this is the frame in which we will be looking for cosmological results. We will,

however, develop the resulting theoretical model of this action, in both frames. As

a simple choice for a covariant completion of LPR, we choose the following action in

Jordan frame,

SJ =

∫
d4x
√
−g
[
Mpl

2

2
RΩ−2 − Λ−3(∂π)2�π

]
, (3.10)

where Λ
ΛLPR

= const. For the limit Mpl → ∞ and Λ
ΛLPR

= 1, Eq. (3.10) reproduces

LPR. To show this explicitly and make contact with the discussion in the preceding

sections, we transform Eq. (3.10) into Einstein frame by the conformal transformation,

gµν = Ω−2g̃µν , (3.11)

and note that,

�π = Ω2
(
�̃π − 2∇̃απ∇̃α ln Ω

)
. (3.12)

In anticipation of a kinetic term proportional to (∂π)2 and the conformal transforma-

tion of R we demand that 3Mpl
2Ω−5�Ω = 3β2Ω−2

(
∂̃π
)2

. This specifies our conformal

factor as,

Ω = eβMpl
−1π, (3.13)

where we have used Eq. (3.12) for �Ω. Using Eq. (3.13) in Eq. (3.12) we will pick up

an additional (∂π)4 term in this transformation. Our corresponding Einstein action

8This will be shown explicitly in Section 4.1.
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then takes the following form

SE =

∫
d4x
√
−g
{
Mpl

2

2
R− 3β2(∂π)2 − Λ−3(∂π)2 [�π + 2βMpl

−1(∂π)2]} . (3.14)

The sign in front of (∂π)2 is negative-definite, while the sign on (∂π)2�π was chosen to

be negative in accordance with Eq. (3.8). The DGP result explicitly specifies β = +1,

which we will not enforce. This form of the action in Einstein frame corresponds to

following functions in Eq. (3.5)9,

A(X) = −3β2(∂π)2 − 2βMpl
−1Λ−3 (∂π)4 , (3.15)

B(X) = −(∂π)2. (3.16)

To take the LPR decoupling limit, Mpl → ∞, choose β = +1 and Λ = ΛLPR, and

their model is recovered exactly.

We are now in the position to develop the theoretical and cosmological frameworks

for our model using Eq. (3.10) and Eq. (3.14) as our actions in their respective frames.

9Further work with A(X) and B(X) as arbitrary functions can be found in the Appendix A.
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Chapter 4

Field Equations and Cosmology

In Section 3.3, we chose particular forms of the 4d effective action in both Jordan and

Einstein frame. In this chapter, we will derive the generally covariant equations of

motion for π and the gravitational field for both actions, since it will be useful to go

back and forth between these two frames. The Einstein frame is convenient because

the gravitational sector is standard, with the Planck mass being constant. However,

the matter stress tensor couples to π and is therefore not conserved. Conversely,

the matter fields obey standard conservation equations in Jordan frame, but one

must accept a space-time varying Planck scale. In each frame, we then specialize the

equations of motion to the cosmological context, making the usual assumptions of

homogeneity and isotropy. These will then be studied analytically and numerically

in Chapters 5 and 6, respectively. There will be more emphasis put on Jordan frame,

motivated by the discussion in Section 3.3. As such, we will additionally derive an

alternate form for the π equation of motion and determine an effective wπ in the

cosmological context, for Jordan frame.
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4.1 Jordan Frame

We begin with the derivation of the covariant equation of motion of π in Jordan frame.

In this frame the π field does not couple to the matter stress tensor, but instead it

couples to the Ricci scalar. It has the advantage of the conservation equations of the

matter fields being unaffected, but the Planck scale varies depending on Ω−2. It is this

advantage which we alluded to in Section 3.3, and will now explicitly show. We take

the first variation with respect to π of the Jordan frame action given in Eq. (3.10),

δπLJ = −βMplRΩ−2δπ + 2Λ−3∇µ [∇µπ�π] δπ − Λ−3(∂π)2�δπ. (4.1)

Integration by parts and noting that ∇µ�π −�∇µπ = −Rα
µ∇απ give,

βMplRΩ−2 = 2Λ−3
[
(�π)2 − (∇µ∇νπ)2 −∇µπRβ

µ∇βπ
]
, (4.2)

as our π equation of motion. And as discussed, the π field only couples to the Ricci

scalar while T (m) is left untouched.

To derive Einstein’s equations, we start in the usual way by the first variation of

Eq. (3.10) with respect to the metric,

δgLJ =
√
−g
{
Mpl

2

2
δ
(
RΩ−2

)
− Λ−3δ

[
(∂π)2�π

]}
+δ
(√
−g
) [Mpl

2

2
RΩ−2 − Λ−3(∂π)2�π

]
, (4.3)

with δ (RΩ−2) = δ (Rµν) g
µνΩ−2 + Rµνδg

µνΩ−2, and noting that δ (Ω−2) = 0. Two

subtleties arise in this modified derivation;

First,
√
−g δ (Rµν) g

µνΩ−2 is no longer a total derivative, as is the case in the Ein-

stein frame derivation [39, Appendix E]. Accordingly, one must vary the Christoffels
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in the full definition of Rµν and then use integration by parts to find,

δ (Rµν) g
µνΩ−2 =

(
gµν�Ω−2 −∇µ∇νΩ

−2
)
δgµν . (4.4)

Second, a subtlety arises when calculating (∂π)2δ�π, as another Christoffel ap-

pears and must too be varied,

(∂π)2δ�π =

[
∇απ

(
gµν∇β∇απ∇βπ − 2∇µ∇απ∇νπ

)
+

1

2
gµν(∂π)2�π

]
δgµν . (4.5)

Subsitution of Eq. (4.4) and Eq. (4.5) into Eq. (4.3) give

Ω−2Gµν = Mpl
−2Tµν +∇µ∇νΩ

−2 − gµν�Ω−2

+Mpl
−2Λ−3

[
2∇µπ∇νπ�π + gµν∇απ∂

α(∂π)2 − 2∇(µπ∇ν)(∂π)2] , (4.6)

as our Jordan frame field equations. If we neglect the second line, this corresponds to

a Brans-Dicke theory with Ω−2 playing the role of φ and the Brans-Dicke parameter

ωBD = 0. Hence, our effective theory limits to a Brans-Dicke theory, for Λ→∞.

We can also derive an alternative form for the π equation of motion, by substi-

tuting for the Ricci scalar via,

Ω−2Gµ
µ = −RΩ−2. (4.7)

Taking Eq. (4.7) in terms of Eq. (4.2), we substitute Gµ
µ into the trace of Eq. (4.6).

This gives,

T µµ = 2Λ−3βMpl

[
(∇µ∇νπ)2 − (�π)2 +∇µπRβ

µ∇βπ
]

+6βΩ−2
[
2β(∂π)2 −Mpl�π

]
− 2Λ−3

[
(∂π)2�π +∇µπ∂

µ(∂π)2] . (4.8)

Which relates π to the trace of the stress energy tensor.

We now specialize this analysis to the cosmological context, by assuming homo-

geneity and isotropy, which demands π to only be a function of time. First we derive
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the cosmological π equation of motion. Under these assumptions, Eq. (4.2) reduces

to,

d

dt

(
Hπ̇2

)
+ 3H

(
Hπ̇2

)
=

1

6
βMplΛ

3RΩ−2. (4.9)

Or equivalently,

d

dt
ΠJ + 3HΠJ = RΩ−2, (4.10)

where ΠJ ≡ 6β−1Mpl
−1Λ−3Hπ̇2. This is precisely equivalent to the equation of a

scalar field with canonical kinetic term, which couples to R, if we make the identifi-

cation φ̇↔ ΠJ .

We now turn our attention to the Friedmann equations, which are given by T00

and Tii. We will see that the π field modifies the standard Friedmann equations by

adding an effective energy density and pressure. For these derivations we will assume,

as usual, that the matter is described by a perfect fluid:

Tµν = (ρ+ P )uµuν + Pgµν , (4.11)

where ρ and P denote the energy density and pressure of the fluid. Using (4.11) and

the above assumptions of homogeneity and isotropy, we get the following modified

Friedmann equations,

3Mpl
2H2 = Ω2

n∑
i

ρi + 6Hπ̇
(
βMpl − Ω2Λ−3π̇2

)
, (4.12)

and

Mpl
2

(
2
ä

a
+H2

)
= −Ω2

n∑
i

Pi + 2β
[
Mpl (π̈ + 3Hπ̇)− 2βπ̇2

]
−2Ω2Λ−3π̇2π̈. (4.13)
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We can further combine these two equations to get the modified acceleration equation,

ä

a
= −Ω2Mpl

−2

6

{
n∑
i

ρi + 3
n∑
i

Pi

+3
[
π̇2
(
3Λ−3π̈ + 4β2Ω−2

)
−
(
Λ−3π̇2 + 2βMplΩ

−2
)

(π̈ + 2Hπ̇)
]}
. (4.14)

From Eq. (4.12) and Eq. (4.13) we can also determine what the effective w for this π

field is, by identifying ρπ and Pπ,

ρπ = 6Hπ̇
(
βMplΩ

−2 − Λ−3π̇2
)
, (4.15)

Pπ = 2Λ−3π̇2π̈ − 2βΩ−2
[
Mpl (π̈ + 3Hπ̇)− 2βπ̇2

]
. (4.16)

From this we can infer an effective equation of state wπ for π, defined as usual as the

ration of the pressure to the energy density:

wπ = −1 +
Λ−3π̇2 (π̈ − 3Hπ̇) + βΩ−2 (2βπ̇2 −Mplπ̈)

3Hπ̇ (βMplΩ−2 − Λ−3π̇2)
, (4.17)

is our effective w for the π field.
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4.2 Einstein Frame

We now follow the same procedure in Einstein frame. In this frame, the gravitational

sector of the action is as in Einstein gravity, in particular the Planck mass is constant,

but the π field couples to the trace of the matter stress tensor. Start again with the

π equation of motion by taking the first variation of Eq. (3.14) with respect to π,

δπLE = −6β2∇µπ∇µδπ − 2Λ−3∇µπ∇µδπ�π − Λ−3(∂π)2�δπ

−2βMpl
−1Λ−3 (4∇µπ∇νπ∇νπ∇µδπ) . (4.18)

Integration by parts and noting that ∇µ�π −�∇µπ = −Rα
µ∇απ give,

16βMpl
−1Λ−3∇νπ∇µ∇νπ∇µπ + 2�π

[
3β2 + 4βMpl

−1Λ−3(∂π)2]
+2Λ−3

[
(�π)2 − (∇µ∇νπ)2 −∇µπRβ

µ∇βπ
]

= T
(m)
E . (4.19)

We see that π couples to the trace of the stress tensor, thus it mediates a fifth force

between matter particles. In particular, in the absence of the non-linear terms, this

fifth force would have a strength of order β2 times that of gravity. As we have seen in

Section 2.3 however, the non-linear terms play a crucial role in rendering the theory

phenomenologically viable by suppressing the effects of π near astrophysical sources.

The field equations, are derived using Eq. (3.14) again, but now varying with

respect to the metric,

δgLE =
√
−g
[
Mpl

2

2
δR− 3β2δ(∂π)2 − Λ−3δ(∂π)2�π

−Λ−3(∂π)2δ�π − 2βMpl
−1Λ−3δ (∂π)4] , (4.20)

with δR = δgµνRµν + gµνδRµν . We note that
√
−g (δRµν) g

µν is a total derivative

[39, Appendix E]. As in the Jordan frame derivation, (∂π)2δ�π must be calculated
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carefully.1 Substituting Eq. (4.5) into Eq. (4.20) we get,

Gµν = Mpl
−2Tµν + 2Mpl

−2
[
3β2 − 4βMpl

−1Λ−3(∂π)2]∇µπ∇νπ

−Mpl
−2gµν

[
3β2(∂π)2 + 2βMpl

−1 (∂π)4]
+Mpl

−2Λ−3
[
2∇µ∇ν�π + gµν∇απ∂

α(∂π)2 − 2∇(µπ∇ν)(∂π)2] , (4.21)

as our field equations.

We put these in the cosmological context and again start with the π equation of

motion. Eq. (4.19) reduces to,

T
(m)
E =

d

dt
ΠE + 3HΠE , (4.22)

where ΠE ≡ 8βMpl
−1Λ−3π̇3 +6Λ−3Hπ̇2−6β2π̇. And this has the form of the equation

of a scalar field with canonical kinetic term, which couples to T
(m)
E , if we make the

identification φ̇↔ ΠE . Structurally the Einstein frame and Jordan frame π equation

of motion are very similar, with the Ricci scalar playing the role of T
(m)
E .

We now turn our attention to the Friedmann equations, again given by T00 and

Tii. We will again assume Eq. (4.11) as in Jordan frame, to determine the corrections

due to the π field.

3Mpl
2H2 =

n∑
i

ρi + 3β2π̇2 − 6Λ−3π̇3
(
H + βMpl

−1π̇
)
, (4.23)

Mpl
2

(
2
ä

a
+H2

)
= −

n∑
i

Pi − 3β2π̇2 + 2Λ−3π̇2
(
βMpl

−1π̇2 − π̈
)
, (4.24)

are our modified Friedmann equations in Einstein frame. We can combine these two

equations in the usual way to get the modified acceleration equation,

ä

a
= −Mpl

−2

6

{
n∑
i

ρi + 3
n∑
i

Pi

+6π̇2
[
2β2 + Λ−3

(
π̈ − 2βMpl

−1π̇2 −Hπ̇
)]}

. (4.25)

1See Eq. (4.5).
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And these are our cosmological equations in Einstein frame.

We now attempt to find analytic solutions to the cosmological equations in Jordan

frame, where we have purposefully choose an uncomplicated action.
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Chapter 5

Analytical Results

Despite its remarkable simplicity, we will see in this chapter that our 4d scalar theory

reproduces many of the key features of the full DGP model. In particular, we will

derive both static and self-accelerated solutions. This shows that the self-accelerated

solution of DGP is not unique to five-dimensional theories. More generally, our cos-

mological solutions come in two branches, which depend on the choice of sign for π̇.

As in DGP, the asymptotically trivial branch is stable, whereas solutions continu-

ously connected to the self-accelerated cosmology have ghost-like instabilities. This

also agrees with the conclusions reached by LPR in the decoupling limit.
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5.1 Static and Self-Accelerating Solutions

In this section, we show that the vacuum solutions1 allow two branches of solutions: a

flat solution and a self-accelerated solution. For simplicity, we assume that |π| �Mpl.

We will check numerically in Chapter 6, that this is a consistent approximation, for

a wide range of times. In this limit, e−2βMpl
−1π → 1, i.e. Ω−2 ≈ 1. For very late time

cosmology this limit will break down, since π is growing and will eventually be of

order ∼ Mpl. To seek a self-accelerated solution, we take as the ansatz that H = H0

is a constant. Moreover, we will see that we can also take π̇ to be constant,

3H2
0 π̇

2 =
1

6
βMplΛ

3R. (5.1)

One solution is clearly H0 = 0. Substituting this solution into Eq. (4.13), gives π̇ = 0

as well. This is the flat, trivial branch that is seen in DGP. If, however, if we assume

H is not zero, and use the fact that R = 6H2
0 for constant H, we get;

π̇2 =
1

3
βMplΛ

3, (5.2)

π̇ = α

(
βMplΛ

3

3

) 1
2

, (5.3)

with α = ±1.

We can use Eq. (5.2) in Eq. (4.12), with
∑n

i ρi = 0 to get,

H2
0 =

4

3
βMpl

−1H0π̇, (5.4)

and clearly the left hand side must be positive. If β,H0 > 0, then α from Eq. (5.3) is

forced to be +1. Hence, π̇ must be positive. We can divide by H0 on both sides and

Eq. (5.4) reduces to

H0 =
4

3
βMpl

−1π̇, (5.5)

1i.e. devoid of matter or radiation.
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as the Friedmann equation in this limit. And we have found a self-accelerating solution

in our 4d effective theory. This is exactly as in DGP. Thus the existence of a self-

accelerated solution is not unique to higher dimensional gravity, but, as we have shown

here, can be obtained in a scalar field theory with non-linear derivative interactions.

Although not further developed in this thesis, one can imagine such a cleverly chosen

4d action could provide an alternative explanation of the vacuum energy problem, by

having a stable self-accelerating solution.
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5.2 Constant π̇ Tracking Solution

We now move on to the more realistic case of the evolution of π in the presence of

matter and/or radiation. We will assume the same simplifying Ω−2 approximation

as with the static and self-accelerating solutions, and seek solutions where π is a

subdominant component. We will see that the backreaction of π can be consistently

neglected at early times, when Hrc � 1. This makes sense since π is strongly coupled,

and much like in the solar system phenomenology of Section 2.3, and its dynamics will

be suppressed in this regime. For a background dominated by a fluid with constant

equation of state w,

a = a0t
2

3(1+w) , (5.6)

ȧ = a0

[
2

3 (1 + w)

]
t

2
3(1+w)

−1, (5.7)

R = 6

(
ä

a
+
ȧ2

a2

)
=

4 (1− 3w)

3t2 (1 + w)2 . (5.8)

Substitution of Eq. (5.6), Eq. (5.7), and Eq. (5.8) into Eq. (4.9) gives,

π̇2 +
1 + w

1− w
t
d

dt
π̇2 =

1

3
βMplΛ

3 1− 3w

1− w
, (5.9)

and if we assume that π̇ is constant in time the second term disappears. We can then

analytically solve for π̇,

π̇ = α

(
βMplΛ

3

3

1− 3w

1− w

) 1
2

. (5.10)

For β > 0, this is only valid for w ≤ 1
3

(and w > 1). For β < 0, this is valid for

1
3
≤ w < 1. If w makes a transition so that these conditions are no longer satisfied,

π will depart from the above solution, as our assumptions have broken down. Its

evolution must then be solved numerically, as we will do in Chapter 6.
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Let us now check to see whether our constant π̇ solution is an attractor. We will

analyze π fluctuations for this solution by perturbing Eq. (4.9) about π̇ = π̇ + δπ̇,

2π̇

[
d

dt
(Hδπ̇) + 3H (Hδπ̇)

]
= 0, (5.11)

where we have used that π̈ = 0 and ignored O (δπ̇)2 terms. Eq. (5.11) has the same

structure as a fluid with w = 0, which can be seen by multiplying both terms by a3

a3

to get a total time derivative,

2π̇

a3

[
d

dt

(
a3Hδπ̇

)]
= 0, (5.12)

δπ̇ =
C ′

ȧa2
. (5.13)

Recall Eq. (5.6) and Eq. (5.7),

δπ̇ = C (1 + w) t−
1−w
1+w , (5.14)

with C = 3
2a3

0
C ′. And for,

−1 < w < 1, (5.15)

the fluctuations of π̇ will redshift away as the universe expands. And we have shown

that our constant π̇ tracking solution is an attractor under the Ω−2 approximation.

38



5.3 Stability

In this section, we study whether perturbations around the π solutions derived above

are free of ghost-like instabilities, that is, whether perturbations have positive kinetic

terms. Additionally, we will also verify that fluctuations have a real-valued sound

speed. This analysis can, of course, be equally performed in either Einstein or Jordan

frame. For concreteness, we choose to work in Einstein frame, since the kinetic

term for metric and π fluctuations are diagonal in this frame. We only focus on

perturbations in π, which is a valid approximation in the strong coupling regime

Hrc � 1. Indeed, in this limit the backreation of π on the metric is consistently

small. The Einstein action given in Eq. (3.14) contains 3 terms in which instabilities

could potentially arise,

3β2(∂π)2, Λ−3(∂π)2�π, and 2βMpl
−1Λ−3 (∂π)4 .

The term that dominates over the others is the non-linear term. This is as expected

since the solutions of interest were derived in the strong coupling regime where non-

linearities are important. To show this, we will only be concerned with orders of

magnitude, and we will note that in each of our analytic solutions that π̇2 ∼MplΛ
3.

3β2(∂π)2 ∼ MplΛ
3, (5.16)

Λ−3(∂π)2�π ∼ MplHπ̇

∼ H (MplΛ)
3
2 , (5.17)

2βMpl
−1Λ−3 (∂π)4 ∼ MplΛ

3. (5.18)

And the 3β2(∂π)2 and 2βMpl
−1Λ−3 (∂π)4 terms are of the same order. Consequently,

we only need to compare the 3β2(∂π)2 and Λ−3(∂π)2�π terms, which will compare
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the Λ−3(∂π)2�π term to both terms,

Λ−3(∂π)2�π

3β2(∂π)2 ∼ HMpl

1
2

Λ
3
2

∼ Hrc. (5.19)

For Hrc � 1, the Λ−3(∂π)2�π term will dominate the other two terms. Accordingly,

we analyze the stability of this term, by perturbing around π = π+ δπ. Keeping only

terms quadratic in perturbation we obtain,

Λ−3(∂π)2�π(δπ)2 = Λ−3 (∂δπ)2 �π + 2Λ−3∇µπ∇µδπ�δπ. (5.20)

Using integration by parts and noting that π̇ is constant in all our solutions, one can

obtain,

Λ−3(∂π)2�π(δπ)2 = −6Λ−3Hπ̇ (∂δπ)2 . (5.21)

In general, the equation of motion for π in the strong coupling regime is approxi-

mately invariant2 under π̇ → −π̇, thus both signs are allowed. Clearly we have two

branches of solutions from Eq. (5.21), depending on whether π̇ is positive or negative.

For stability, we require the sign on the kinetic term to be positive, otherwise the

solution suffers from ghost instabilities. Then, by this analysis, the positive branch

is unstable and the negative branch is stable. This is exactly the same structure that

arises in DGP [20]!

Additionally, the speed of sound is manifestly real, another requirement of sta-

bility. We can easily see from Eq. (5.21), that (∂0δπ)2 and
(
~∇π
)2

have the same

coefficient, which gives the speed of sound, cs = 1, just like fluctuations of normal

scalar fields. In particular, perturbations in π do not cluster, but instead free-stream.

2For example, see Eq. (4.22).
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We will now consider the stability of our analytic solutions. For the static solu-

tion, only Eq. (5.16) contributes to the quadratic lagrangian for perturbations, and

it manifestly has the right sign. This is just the statement that perturbations around

flat space are stable, and also is agrees with DGP. For the self-acclerating solution,

we have Eq. (5.2) and Eq. (5.5). Substitution into Eq. (5.21) yields,

(∂π)2�π(δπ)2 = −8

3
β2Λ3 (∂δπ)2 . (5.22)

We can clearly say that this solution is unstable, as the sign of the 2nd order perturba-

tions is negative-definite. Again, this is precisely the same result as DGP, where our

self-accelerating solution suffers from instability. Finally we analyze the constant π̇

tracking solution, we have Eq. (5.10), with Hubble defined by Eq. (5.6) and Eq. (5.7).

Then Eq. (5.21) becomes,

(∂π)2�π(δπ)2 = −α 4

t (1 + w)

(
βMplΛ

3

3

1− 3w

1− w

) 1
2

(∂δπ)2 . (5.23)

As we said before, we have choice over the sign of the 2nd order perturbations. If we

choose α = −1 this branch will be stable, and α = +1 will be the unstable branch.

So, we choose α = −1 and our constant π̇ tracking solution is a stable, useful approx-

imation of the π fluid evolution.

It must be noted that we have restricted our attention for this analysis to per-

turbative stability, by focusing on the quadratic lagrangian. It is nevertheless true

that, even the “stable” branch is actually unstable under non-linear perturbations.

In other words, it is possible that there exists other regions of solution space around

which perturbations are unstable. However, as shown in [20], at least in the decou-

pling limit, the stable branch is stable non-linearly and classically disconnected from

the unstable branch.
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5.4 Constant π̇ Tracking Solution Revisited

It appears that we have found a constant π̇ solution branch which is stable. We wish

to now check that π is a subdominant energy component at early times, in order to

satisfy constraints on dark energy contributions at big bang nucleosynthesis and in

the cosmic microwave background [1, 40]. To do so, we start with Eq. (4.12), and

rearrange to determine the contribution,

n∑
i

ρi = 3Mpl
2H2

[
1 + 2Mpl

−1H−1π̇
(
Mpl

−1Λ−3π̇2 − β
)]
. (5.24)

Substitute Eq. (5.10),

n∑
i

ρi = 3Mpl
2H2

[
1− 4β

3 (1− w)
Mpl

−1H−1π̇

]
, (5.25)

noting that Λ3 =
Mpl

r2c
and π̇2 ∼MplΛ

3. Then π̇ ∼ Mpl

rc
and,

n∑
i

ρi = 3Mpl
2H2

{
1− 4α

[
β

3 (1− w)

] 3
2

(1− 3w)
1
2

1

Hrc

}
. (5.26)

For sufficiently large rc we see that the correction is very small for early universe

evolution (Hrc � 1). We are taking rc to be of the order of the Hubble radius today,

so early-time phenomenology is not affected by this solution.

We can additionally determine what the effective equation of state for this π field

is. Recall Eq. (4.17) and substitute Eq. (5.10),

wπ = −1 +

(
1− βMpl

Λ−3π̇2

)−1

+
2β2π̇

3H

(
βMpl − Λ−3π̇2

)−1

= −1 +

(
1− 3− 3w

1− 3w

)−1

+
2βπ̇

3HMpl

(
1− 1− 3w

3− 3w

)−1

=

(
−3

2
+ βMpl

−1H−1π̇

)
(1− w) . (5.27)
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Again note that Λ3 =
Mpl

r2c
and π̇2 ∼MplΛ

3. Then π̇ ∼ Mpl

rc
then,

wπ = −3

2
(1− w)− β√

3
[β (1− 3w) (1− w)]

1
2

1

Hrc
, (5.28)

where we have used α = −1 from the stability argument. For β > 0, wπ ≤ −1 for

all w ≤ 1
3
. One should note that the 1

Hrc
also makes wπ even more negative, for late

times. For β < 0 and early times (Hrc � 1), −1 ≤ wπ < 0 for all 1
3
≤ w < 1. For

β < 0 and late times (Hrc ≈ 1), wπ can take on any value greater than −1, since β

is variable. At w’s limits, 1
3

and 1, wπ must equal −1 and 0, respectively. It should

be noted that the constant π̇ tracking solution for β < 0 most likely breaks down at

late times, since it requires 1
3
≤ w < 1.

From Eq. (4.14) we can also determine this solution’s effect on the acceleration

equation. Again using π̈ = 0,

ä

a
= −H

2

2

[
1

3Mpl
2H2

(
n∑
i

ρi + 3
n∑
i

pi

)
+

4β2π̇2

Mpl
2H2

− 2Λ−3π̇3

Mpl
2H
− 4βπ̇

MplH

]
,(5.29)

where we have inserted H2

H2 to compare 1
3Mpl

2H2 (
∑n

i ρi + 3
∑n

i pi), which is of order

unity, to the correction due to π. This is given by,(
ä

a

)
π

=
4β3π̇2

Mpl
2H2

− 2Λ−3π̇3

Mpl
2H
− 4βπ̇

MplH
. (5.30)

Inserting Eq. (5.10) and α = −1,(
ä

a

)
π

=
2β

3
√

3

(
7− 9w

1− w

)(
β

1− 3w

1− w

) 1
2 1

Hrc
+

4β3

3

(
1

Hrc

)2

. (5.31)

For Hrc � 1, these are small corrections to early time cosmology, as expected. For

β > 0 and late times, the π field will cause the universe to accelerate.

We now leave this analytical approximation and evolve the π field numerically.
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Chapter 6

Numerical Results

In appears we have developed an effective 4d action which consistently reproduces

many of the interesting features of DGP. We now numerically analyze this model

for general functions of π to determine its cosmological implications. We expect an

attracting branch of solutions corresponding to the choice of α = −1, as we saw in

chapter 5. We show this numerically, by finding that the constant π̇ tracking solution

is an attractor. This simultaneously shows that our Ω−2 ≈ 1 approximation is indeed

consistent. Perhaps the most interesting aspect of this model is that it has an effective

wπ ≤ −1 for w ≤ 1
3
. We show the effect this modification has on the wtot, the relative

fluid densities, and the late-time behaviour of the universe. We additionally show

that wπ tracks wtot, as we expect from the tracking solution (giving further weight

to the claim that our approximation is consistent), and then place a rough constraint

on rc from WMAP5 data.
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6.1 Linearized Equations

In this section, we linearize our equations in order to numerically integrate them. This

is accomplished by defining new parameters which reduce our Friedmann equation, π

equation of motion, and continuity equations to first order. We start with Eq. (4.9),

d

dt

(
Hπ̇2

)
+ 3H2π̇2 = βMplΛ

3H2

(
H ′

H
+ 2

)
Ω−2, (6.1)

where ′ denotes the derivative with respect to the e-folding time N = ln a (and

dN = Hdt), and we have replaced R according to,

R = 6

(
ä

a
+
ȧ2

a2

)
= 6

(
Ḣ +H2 +H2

)
= 6H2

(
H ′

H
+ 2

)
. (6.2)

Define the following variables to linearize our equations,

MplΛ
3q ≡ π̇2, (6.3)

H

H̃
≡ 2

(
Λ3

Mpl

) 1
2

, (6.4)

λ ≡ e−2βMpl
−1π, (6.5)

zi ≡
ρi

4MplΛ3λH̃2
. (6.6)

And make note of the following implied relations,

π′ =
α

2
Mpl

q
1
2

H̃
, (6.7)

π̈ = αΛ3H̃
q′

q
1
2

, (6.8)

H ′

H
=

H̃ ′

H̃
, (6.9)

λ′ = −αβλq
1
2

H̃
. (6.10)
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Now, Eq. (6.1) becomes,

H2q′ +HH ′q + 3H2q = βλH2

(
H ′

H
+ 2

)
, (6.11)

q′ =
H̃ ′

H̃
(βλ− q) + 2βλ− 3q. (6.12)

And we have linearized the π equation of motion in terms of the variable q. Next, we

take (4.12) and substitute our new variables,

1 =

∑n
i ρi

3Mpl
2H2λ

+
2π̇

MplH

(
β − q

λ

)
= α

q
1
2

H̃

(
β − q

λ

)
+

1

3

n∑
i

zi. (6.13)

This is our linearized form of the Friedmann equation. We will use this a check in

our numerical integration, to ensure that our variables are evolving correctly and

satisfying our equations (i.e. that this combination of variables always equals 1, for

each time step). Rearranging (6.13) we get

zm = 3− zr − zΛ + 3α
q

1
2

H̃

( q
λ
− β

)
, (6.14)

which is our linearized ρm equation. We can also determine our form of the continuity

equation from Eq. (6.6),

z′i
zi

=
ρ′i
ρi
− λ′

λ
− 2H̃ ′

H̃

=
1

H̃

(
αβq

1
2 − 2H̃ ′

)
− 3 (1 + wi) , (6.15)

where we have used ρ′i = −3 (1 + wi) ρi. The last remaining variable that we need to

linearize is H, which we do so by taking the derivative of the Friedmann equation,

d

dN

(
λH̃2

)
=

d

dN

[
α (βλ− q) H̃q

1
2 + H̃2

∑n
i ρi

3Mpl
2H2

]
. (6.16)
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One can massage Eq. (6.16), using Eq. (6.12), Eq. (6.14) and the definition of our

variables, to obtain,

H̃ ′ =
2αλq

3
2 − H̃ (3q2 − βλq + 2λ2) + 2αH̃2λq

1
2

(
1
3
zr − zΛ + 3

)
(q − βλ)2 − 4αH̃λq

1
2

. (6.17)

And given Eq. (6.10), Eq. (6.12), Eq. (6.15), and Eq. (6.17) we are now in the position

to numerically integrate these functions, and determine the evolution of our model

for general π.
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6.2 Runge-Kutta Integration

Using the linearized equations derived in Section 6.1, we run a Runge-Kutta of the

fourth order (rk4) integration. The actual code is included in Appendix B. The figures

included on the following pages were generated based on that code.

We first show the attracting branch of solutions1 in Fig. 6.1 - 6.3, corresponding

to the choice of α = −1. Each of these plots has a different initial condition for π̇,

perturbed by a term δπ̇. Fig. 6.1 is the unperturbed evolution, Fig. 6.2 has δπ̇ = 7π̇0,

and Fig. 6.3 has δπ̇ = 10π̇0. Clearly, these plots also show that the constant π̇

tracking solution is also an attractor, and thus our approximation in Chapter 5 was a

consistent one. In particular, Fig. 6.3, clearly shows the general ρπ evolution following

the constant π̇ tracking solution. It must be noted that in these figures, we are plotting

log ρi vs. 1 + Z, but ρπ < 0, for α = −1 (this is most easily seen from Eq. (4.15)).

Thus, we are actually plotting αρπ to make contact with the evolution of the other

fluid densities. This subtlety of the π field having an effective negative energy density

will make for some interesting late-time dynamics, as well as, trick one’s intuition

about wπ < −1. Additionally note that the Ω−2 ≈ 1 is a good approximation all the

way up to the present.

In next series of figures, Fig. 6.4 - 6.12, we show the effect rc has on suppressing

the π dynamics, a theme which has been discussed throughout this thesis2. Each

series of plot will start first by showing, rc ∼ 5 × 1029 cm, then rc ∼ 6 × 1029 cm,

and finally rc ∼ 1× 1030 cm. Fig. 6.4 - 6.6 show the effect that π has on the density

parameters Ωi. Since ρπ < 0 the π field density parameter will also be negative.

1These plots have rc ∼ 5× 1029 cm.
2See Sections 2.1, 2.3, 3.3, and 5.4.
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Figure 6.1: Stability of π̇ tracking solution: δπ̇ = 0
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Figure 6.2: Stability of π̇ tracking solution: δπ̇ = 7π̇0
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Figure 6.3: Stability of π̇ tracking solution: δπ̇ = 10π̇0
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This means that as π grows, the other fluid components must have
∑n

notπ Ωnotπ > 1,

since
∑n

i Ωi = 1! This is dramatically shown in Fig. 6.4. We have also plotted the

effective density parameter of the dark sector, namely the combination of Ωπ and

ΩΛ, and it limits to 1, as expected. Again, we must stress here that rc dampens or

enhances the effects of the π, as it defines the scale that at which gravity crosses over

between 3+1-dimensional behaviour and 4+1-dimensional behaviour. These graphs

show nicely that our model is completely consistent with the DGP picture. The

higher rc we choose, the further we suppress the π effect, and the longer it takes π

to have an effect. It must be noted that the π is only suppressed, for t→∞, and π

asymptotes to the same solution shown dramatically in Fig. 6.4, for any rc.

We next move to the series of plots (Fig. 6.7 - 6.9) which show wtot vs. 1 +Z, for

our model. An immediate property that is noticed, is that wtot grows for late times!

This seems completely at odds to the result derived in Eq. (5.28). For late times, we

have only ρΛ and ρπ. wΛ = −1 and we have shown that wπ < −1 for all times, then

how is wtot ≮ −1? This is where ρπ < 0 causes very interesting dynamics, and tricks

one’s intuition. If we consider the late-time behaviour, with only ρΛ and ρπ we have,

Ḣ =
n∑
i

−1

2
(1 + wi) ρi = −1

2
(1− 1) ρΛ −

1

2
(1 + wπ) ρπ

= −1

2
(1 + wπ) ρπ. (6.18)

Also recall, the continuity equation,

ρ̇π = −3H (1 + wπ) ρπ. (6.19)

and we have from before that wπ < −1, then (1 + wπ) < 0.
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Figure 6.4: Ωi vs. 1 + Z: rc ∼ 5× 1029 cm
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Figure 6.5: Ωi vs. 1 + Z: rc ∼ 6× 1029 cm
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Figure 6.6: Ωi vs. 1 + Z: rc ∼ 1× 1030 cm
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Figure 6.7: wtot vs. 1 + Z: rc ∼ 5× 1029 cm
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Figure 6.8: wtot vs. 1 + Z: rc ∼ 6× 1029 cm
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Figure 6.9: wtot vs. 1 + Z: rc ∼ 1× 1030 cm
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This means that Eq. 6.19 has the following structure,

ρ̇π ∼ +3Hρπ, (6.20)

where the R.H.S. coefficient is positive-definite. Then, ρ̇π is always the same sign as

ρπ, hence, |ρπ| will always grow! We start with ρπ < 0, then we will always have

ρπ < 0. Now if we consider this behaviour in Eq. (6.18), we see that Ḣ is indeed

negative for wπ < −1. The dynamics, however, go further than that. As one can

see from Fig. 6.7, it appears that the universe is heading for a contraction phase.

This is precisely what this analysis expects, as ρπ is becoming increasingly negative

(wπ is also becoming increasingly negative). Then we have from Eq. (6.18), Ḣ also

becoming increasingly negative. This is what you would expect for a fluid growing

with positive density, exactly a contraction phase! So we see in this theory, that the

late-time behaviour is that of a contracting universe, due to the π field, certainly

something one would not immediately expect in an DGP effective model.

We now turn to the final three figures, Fig. 6.10 - 6.12. These show wπ as function

of redshift. In particular, we are showing that wπ does indeed track wtot, as we

analytically showed for the constant π̇ solution. We include these plots add further

weight to the claim that our approximation in Chapter 5 is completely consistent.

Notice that during matter domination, wπ is indistinguishable from the expected wπ

of the tracking solution, and equals −3
2

as expected. There is one additional thing to

note about these last figures, at very late times, it appears that wπ and the expected

wπ from the tracking solution have completely different behaviours. Indeed, at very

late times the Ω−2 ≈ 1 approximation does eventually break down3.

3The timescale is, of course, dependent on rc.
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Figure 6.10: Effective equation of state, wπ vs. 1 + Z: rc ∼ 5× 1029 cm

60



10−410−2100102104

−3

−2.5

−2

−1.5

−1

1+Z, Redshift

w
!

Effective Equation of State, w
!
, vs. Redshift, 1+Z

 

 

w
!

w
!
 tracking soln

Figure 6.11: Effective equation of state, wπ vs. 1 + Z: rc ∼ 6× 1029 cm
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Figure 6.12: Effective equation of state, wπ vs. 1 + Z: rc ∼ 1× 1030 cm
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We will clarify this issue as follows; wπ becomes increasingly negative for late times,

but as we saw in the previous series of graphs, this causes wtot to increase. Since

wπ of the tracking solution only tracks wtot and neglects Ω−2, it increases as well.

The discrepancy is doubly enhanced, since wπ becoming more negative is driving the

constant π̇ equation of state positively.

We will now end this numerical analysis by placing a rough constraint on rc.

Clearly for an rc too small, we will see unwanted deviations from the observed cos-

mological history, since π has an increasingly earlier effect. To constrain rc we fix

ΩDE to 0.736 today (the maximum likelihood value from WMAP5 [1]). From this,

we vary rc until we at the maximum allowed value of w today, which is -0.932 (also

from WMAP5). This places a bound on rc ≥ 5 × 1029 cm. This bound on rc is an

order of magnitude greater than previous older bounds. Correspondingly, our bound

gives a maximum anomalous perihelion precession of the moon ∼ 1 × 10−13. This

is two orders of magnitude below current experiments, and one order of magnitude

below upcoming experiments [10, 36]. This constraint on rc is admittedly a rough

estimate. Our methodology was coarse on many levels. First, we should not fix ωDE

and then allow w to vary based on rc. Instead, we should allow both parameters to

vary. Second, the constraint on w we use assumes constant w, which is of course not

valid in our case. To do a careful job we should repeat the entire likelihood analysis

within our context, but this is something which has been left for future analysis.
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Chapter 7

Discussions and Outlook

Cosmic acceleration requires an explanation. While the currently accepted model

uses vacuum energy as that explanation, it may be the case that Einstein’s theory of

gravity is becoming unreliable at the bounds of our observations. It behooves us to

then, develop a new model of gravity which is consistent with Einstein gravity, but

modifies it at large distances. The Dvali-Gabadadze-Porrati model is a rare example

of such a consistent infrared modification. It is, however notoriously difficult to study

cosmology in, which further motivates one to find a simple 4d effective model which

captures its phenomenology over a large range of physical regimes. In this thesis, we

have developed such a model.

Our 4d effective theory encapsulates many of DGP’s key features in a simple π

action. As is the case with DGP, our Friedmann equation allows two branches of

solutions, depending on the sign of the velocity of π. One branch corresponds to self-

acceleration, and the other is asymptotically flat. The π field contributes an effective

energy density to the Friedmann equation on the stable (unstable) branch which has
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an effective equation of state w < −1 (w > −1).

Furthermore, the π field displays a cosmological analogue of the Vainshtein effect.

In the presence of a background fluid, such as matter or radiation, the π dynamics

are dominated by its non-linear interactions at early times (Hrc � 1); the resulting

effective energy density is then suppressed compared to the background fluid. In

this regime where the π field is subdominant, we have analytically derived a tracking

solution in which π̇ is constant. We have shown that it is an attractor, since small

perturbations redshift away. We have checked numerically the existence of this track-

ing solution and its attractor property and determined the effect on the total equation

of state wtot. The late-time dynamics of universes which follow this model will go

through a contraction phase, due to the π field. Additionally, it has been shown that

wπ tracks wtot for the majority of the evolution. Finally, from WMAP5 constraints

on ΩΛ and wDE, we have placed a rough (yet, stronger) constraint on rc ≥ 1029 cm.

There are two immediate avenues which should be explored in this model; The cal-

culation of luminosity-distance as function of redshift, which would place a stronger,

and more accurate constraint on rc; And the consequences on structure formation

due to cosmological perturbations in this model. Some work should also be done an-

alyzing the model general combination of functions which do not have n > 2 higher

order derivatives.
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APPENDIX

A. General A(X) and B(X)

We will derive the π-EOM and field equations for a general A(X) and B(X) Einstein

action. So, we start with the generalized NR action,

SGNR =

∫
d4x
√
−g [A(X) +B(X)�π] . (A.1)

The π-EOM is,

2∇νπ∇µ∇ν

[
d2A

dX2
∇νπ +

d2B

dX2
(∇νπ�π −∇απ∇µ∇απ)

]
+
dA

dX
�π +

dB

dX

[
(�π)2 − (∇µ∇νπ)2 −∇µπRβ

µ∇βπ
]

= −T
(m)
E
2

, (A.2)

where we have used ∇µ�π −�∇µπ = −Rβ
µ∇βπ. Varying with respect to the metric

gives,

Tµν = 2
dA

dX
∇µπ∇νπ − gµνA(X)

+
dB

dX

[
2∇µπ∇νπ�π + gµν∇απ∂

α (∂π)2 −∇(µπ∇ν) (∂π)2] , (A.3)

as our stress-energy tensor. We can now assume an FRW background and that π is

only a function of time. Let’s calculate T00 and Tii,

T00 = 2π̇

(
dA

dX
π̇ − 3H

dB

dX
π̇2

)
+ A(X), (A.4)

Tii = −A(X) + 2
dB

dX
π̈π̇2. (A.5)

We can alternatively consider the following form of (A.2),

2∇µ

[
− dA
dX
∇µπ +

dB

dX
(∇απ∇µ∇απ −∇µπ�π)

]
= T

(m)
E , (A.6)
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and identify jµ as,

−2
dA

dX
∇µπ + 2

dB

dX
(∇απ∇µ∇απ −∇µπ�π) . (A.7)

Using the identity, ∇µj
µ = 1√

−g∂µ (
√
−gjµ) for T

(m)
E = 0, and

√
−g = a3 and π only

a function of time,

∂t

{
a3

[
2
dA

dX
π̇ + 2

dB

dX

(
−3Hπ̇2

)]}
= 0, (A.8)

dA

dX
π̇ − 3H

dB

dX
π̇2 =

C

a3
. (A.9)

This reduces T00 considerably for T
(m)
E = 0,

T00 =
C

2a3
+ A(X). (A.10)

From (A.8), we can solve for π̇,

π̇ =

dA
dX
±
√(

dA
dX

)2
+ 12H dB

dX

(
C
a3

)
6H dB

dX

. (A.11)

for T
(m)
E = 0.
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B. rk4 Integration Matlab Code

The following code was run in Matlab to numerically integrate our equations, to

evolve our associated cosmology.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Nathan Chow %

% %

% Modified Gravity - Effective DGP Code %

% matter, radiation, cosmological constant, %

% and pi field %

% %

% rk4 integration %

% %

% M.Sc - Sept. 2007 - December 2008 %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

%set display to most decimal places (15)

format long g

%specify general variables, i.e. Ca = 3
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al = -1;

ep = 1;

Mpl = 1;

Ca = 3;

Cb = 1e63;

Cbtil = 20;

%specify equation of state parameters

wr = 1/3;

wm = 0;

wl = -1;

%N runs from N_i = -4 to N_f = 4, with 3000 steps

stepsize = 3000;

Ai = 1e-4;

Af = 1e4;

N = linspace(log(Ai),log(Af),stepsize);

%set initial conditions

hubtil(1) = 1.58e5;

hubble(1) = 2*((Mpl*Cb)^(-1/2))*((Ca/3)^0.75)*hubtil(1);

hubtil(1) = hubtil(1)*Cbtil;

lambda(1) = 0.99;
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pidot(1) = 1e-32;

q(1) = (Cb/Mpl)*((3/Ca)^0.5)*(pidot(1)^2);

BenchQ = al*((q(1)^0.5)/hubtil(1))*(ep - q(1)/lambda(1));

BenchR = 0.995;

BenchM = 0.99999999999 - BenchR - BenchQ;

BenchL = 1 - BenchR - BenchM - BenchQ;

zr(1) = 3*BenchR;

zm(1) = 3*BenchM;

zl(1) = 3*BenchL;

pidotconst(1) = (al*(((Mpl/Cb)*((Ca/3)^0.5)*q(1))^(0.5)))/(Cbtil^2);

%rk4 integration

for j = 1:(stepsize - 1);

%output which stepsize it’s currently on

fprintf(’step %d of %d\n’,j,stepsize-1);

%we use the friedmann equation as a check that everything is

%evolving correctly

check(j) = al*((q(j)^0.5)/hubtil(j))*(ep - q(j)/lambda(j))

+ (1/3)*(zm(j) + zr(j) + zl(j));
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%width of stepsize

h(j) = N(j+1) - N(j);

%rk4 a values

ahubtil(j)= (2*al*lambda(j)*(q(j)^1.5) - hubtil(j)*(3*(q(j)^2)

- ep*lambda(j)*q(j) + 2*(lambda(j)^2))

+ 2*al*(hubtil(j)^2)*lambda(j)*(q(j)^0.5)*((1/3)*zr(j) - zl(j)

+ 3))/((q(j) - ep*lambda(j))^2 - 4*al*hubtil(j)*lambda(j)

*(q(j)^0.5));

aq(j) = (ahubtil(j)/hubtil(j))*(ep*lambda(j) - q(j))

+ 2*ep*lambda(j) - 3*q(j);

alambda(j) = -al*ep*lambda(j)*(q(j)^0.5)/hubtil(j);

azr(j) = ((1/hubtil(j))*(al*ep*(q(j)^0.5) - 2*ahubtil(j))

- 3*(1 + wr))*zr(j);

azm(j) = ((1/hubtil(j))*(al*ep*(q(j)^0.5) - 2*ahubtil(j))

- 3*(1 + wm))*zm(j);

azl(j) = ((1/hubtil(j))*(al*ep*(q(j)^0.5) - 2*ahubtil(j))

- 3*(1 + wl))*zl(j);

%rk4 b values

bhubtil(j)= (2*al*(lambda(j) + (h(j)/2)*alambda(j))*((q(j)

+ (h(j)/2)*aq(j))^1.5) - (hubtil(j) + (h(j)/2)*ahubtil(j))

*(3*((q(j) + (h(j)/2)*aq(j))^2) - ep*(lambda(j) + (h(j)/2)
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*alambda(j)) *(q(j) + (h(j)/2)*aq(j)) + 2*((lambda(j)

+ (h(j)/2) *alambda(j))^2)) + 2*al*((hubtil(j) + (h(j)/2)

*ahubtil(j))^2) *(lambda(j) + (h(j)/2)*alambda(j))

*((q(j) + (h(j)/2)*aq(j))^0.5) *((1/3)*(zr(j) + (h(j)/2)

*azr(j)) - (zl(j) + (h(j)/2)*azl(j)) + 3)) /(((q(j) + (h(j)/2)

*aq(j)) - ep*(lambda(j) + (h(j)/2) *alambda(j)))^2

- 4*al*(hubtil(j) + (h(j)/2)*ahubtil(j))*(lambda(j)

+ (h(j)/2)*alambda(j))*((q(j) + (h(j)/2)*aq(j))^0.5));

bq(j) = (bhubtil(j)/(hubtil(j) + (h(j)/2)*ahubtil(j)))

*(ep*(lambda(j) + (h(j)/2)*alambda(j)) - (q(j) + (h(j)/2)

*aq(j))) + 2*ep*(lambda(j) + (h(j)/2)*alambda(j))

- 3*(q(j) + (h(j)/2)*aq(j));

blambda(j) = -al*ep*(lambda(j) + (h(j)/2)*alambda(j))

*((q(j) + (h(j)/2)*aq(j))^0.5)/(hubtil(j)

+ (h(j)/2)*ahubtil(j));

bzr(j) = ((1/(hubtil(j) + (h(j)/2)*ahubtil(j)))

*(al*ep*((q(j) + (h(j)/2)*aq(j))^0.5) - 2*bhubtil(j))

- 3*(1 + wr))*(zr(j) + (h(j)/2)*azr(j));

bzm(j) = ((1/(hubtil(j) + (h(j)/2)*ahubtil(j)))

*(al*ep*((q(j) + (h(j)/2)*aq(j))^0.5) - 2*bhubtil(j))

- 3*(1 + wm))*(zm(j) + (h(j)/2)*azm(j));

bzl(j) = ((1/(hubtil(j) + (h(j)/2)*ahubtil(j)))

*(al*ep*((q(j) + (h(j)/2)*aq(j))^0.5) - 2*bhubtil(j))

- 3*(1 + wl))*(zl(j) + (h(j)/2)*azl(j));
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%rk4 c values

chubtil(j)= (2*al*(lambda(j) + (h(j)/2)*blambda(j))*((q(j)

+ (h(j)/2)*bq(j))^1.5) - (hubtil(j) + (h(j)/2)*bhubtil(j))

*(3*((q(j) + (h(j)/2)*bq(j))^2) - ep*(lambda(j) + (h(j)/2)

*blambda(j))*(q(j) + (h(j)/2)*bq(j)) + 2*((lambda(j)

+ (h(j)/2)*blambda(j))^2)) + 2*al*((hubtil(j) + (h(j)/2)

*bhubtil(j))^2)*(lambda(j) + (h(j)/2)*blambda(j))

*((q(j) + (h(j)/2)*bq(j))^0.5)*((1/3)*(zr(j) + (h(j)/2)

*bzr(j)) - (zl(j) + (h(j)/2)*bzl(j)) + 3))/(((q(j) + (h(j)/2)

*bq(j)) - ep*(lambda(j) + (h(j)/2)*blambda(j)))^2

- 4*al*(hubtil(j) + (h(j)/2)*bhubtil(j))*(lambda(j)

+ (h(j)/2)*blambda(j))*((q(j) + (h(j)/2)*bq(j))^0.5));

cq(j) = (chubtil(j)/(hubtil(j) + (h(j)/2)*bhubtil(j)))

*(ep*(lambda(j) + (h(j)/2)*blambda(j)) - (q(j) + (h(j)/2)

*bq(j))) + 2*ep*(lambda(j) + (h(j)/2)*blambda(j))

- 3*(q(j) + (h(j)/2)*bq(j));

clambda(j) = -al*ep*(lambda(j) + (h(j)/2)*blambda(j))

*((q(j) + (h(j)/2)*bq(j))^0.5)/(hubtil(j)

+ (h(j)/2)*bhubtil(j));

czr(j) = ((1/(hubtil(j) + (h(j)/2)*bhubtil(j)))

*(al*ep*((q(j) + (h(j)/2)*bq(j))^0.5) - 2*chubtil(j))

- 3*(1 + wr))*(zr(j) + (h(j)/2)*bzr(j));

czm(j) = ((1/(hubtil(j) + (h(j)/2)*bhubtil(j)))
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*(al*ep*((q(j) + (h(j)/2)*bq(j))^0.5) - 2*chubtil(j))

- 3*(1 + wm))*(zm(j) + (h(j)/2)*bzm(j));

czl(j) = ((1/(hubtil(j) + (h(j)/2)*bhubtil(j)))

*(al*ep*((q(j) + (h(j)/2)*bq(j))^0.5) - 2*chubtil(j))

- 3*(1 + wl))*(zl(j) + (h(j)/2)*bzl(j));

%rk4 d values

dhubtil(j)= (2*al*(lambda(j) + h(j)*clambda(j))*((q(j)

+ h(j)*cq(j))^1.5) - (hubtil(j) + h(j)*chubtil(j))

*(3*((q(j) + h(j)*cq(j))^2) - ep*(lambda(j) + h(j)

*clambda(j))*(q(j) + h(j)*cq(j)) + 2*((lambda(j)

+ h(j)*clambda(j))^2)) + 2*al*((hubtil(j) + h(j)

*chubtil(j))^2)*(lambda(j) + h(j)*clambda(j))*((q(j)

+ h(j)*cq(j))^0.5)*((1/3)*(zr(j) + h(j)*czr(j)) - (zl(j)

+ h(j)*czl(j)) + 3))/(((q(j) + h(j)*cq(j)) - ep

*(lambda(j) + h(j)*clambda(j)))^2 - 4*al*(hubtil(j)

+ h(j)*chubtil(j))*(lambda(j) + h(j)*clambda(j))

*((q(j) + h(j)*cq(j))^0.5));

dq(j) = (chubtil(j)/(hubtil(j) + h(j)*chubtil(j)))

*(ep*(lambda(j) + h(j)*clambda(j)) - (q(j) + h(j)

*cq(j))) + 2*ep*(lambda(j) + h(j)*clambda(j))

- 3*(q(j) + h(j)*cq(j));

dlambda(j) = -al*ep*(lambda(j) + h(j)*clambda(j))

*((q(j) + h(j)*cq(j))^0.5)/(hubtil(j) + h(j)*chubtil(j));
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dzr(j) = ((1/(hubtil(j) + h(j)*chubtil(j)))*(al*ep*((q(j)

+ h(j)*cq(j))^0.5) - 2*dhubtil(j)) - 3*(1 + wr))

*(zr(j) + h(j)*czr(j));

dzm(j) = ((1/(hubtil(j) + h(j)*chubtil(j)))*(al*ep*((q(j)

+ h(j)*cq(j))^0.5) - 2*dhubtil(j)) - 3*(1 + wm))

*(zm(j) + h(j)*czm(j));

dzl(j) = ((1/(hubtil(j) + h(j)*chubtil(j)))*(al*ep*((q(j)

+ h(j)*cq(j))^0.5) - 2*dhubtil(j)) - 3*(1 + wl))

*(zl(j) + h(j)*czl(j));

%calculate the rk4 weighted change in

%each variable

changehubtil(j) = (h(j)/6)*(ahubtil(j) + 2*bhubtil(j)

+ 2*chubtil(j) + dhubtil(j));

changeq(j) = (h(j)/6)*(aq(j) + 2*bq(j) + 2*cq(j) + dq(j));

changelambda(j) = (h(j)/6)*(alambda(j)

+ 2*blambda(j) + 2*clambda(j) + dlambda(j));

changezr(j) = (h(j)/6)*(azr(j) + 2*bzr(j) + 2*czr(j) + dzr(j));

changezm(j) = (h(j)/6)*(azm(j) + 2*bzm(j) + 2*czm(j) + dzm(j));

changezl(j) = (h(j)/6)*(azl(j) + 2*bzl(j) + 2*czl(j) + dzl(j));

%step each variable

hubtil(j+1) = hubtil(j) + changehubtil(j);

q(j+1) = q(j) + changeq(j);
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zr(j+1) = zr(j) + changezr(j);

zm(j+1) = zm(j) + changezm(j);

zl(j+1) = zl(j) + changezl(j);

lambda(j+1) = lambda(j) + changelambda(j);

%calculate pidot and hubble based on the

%linearized variables

pidot(j) = al*(((Mpl/Cb)*((Ca/3)^0.5)*q(j))^(0.5));

hubble(j) = 2*((Mpl*Cb)^(-1/2))

*((Ca/3)^0.75)*hubtil(j);

%as well as rho_pi, rho_m, rho_r, rho_l

rhopi(j) = 12*lambda(j)*(hubtil(j)^2)/(Cbtil^2)

*(Mpl/Cb)*((Ca/3)^(3/2))*al*((q(j)^0.5)/hubtil(j))

*(ep - q(j)/lambda(j));

rhor(j) = 4*lambda(j)*(hubtil(j)^2)/(Cbtil^2)

*(Mpl/Cb)*((Ca/3)^(3/2))*zr(j);

rhom(j) = 4*lambda(j)*(hubtil(j)^2)/(Cbtil^2)

*(Mpl/Cb)*((Ca/3)^(3/2))*zm(j);

rhol(j) = 4*lambda(j)*(hubtil(j)^2)/(Cbtil^2)

*(Mpl/Cb)*((Ca/3)^(3/2))*zl(j);

zpi(j) = al*((q(j)^0.5)/hubtil(j))

*(ep - q(j)/lambda(j));
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%we will plot in terms of redshift

Z(j) = exp((-N(j))) - 1;

%the equation of state at each time

wtot(j) = -(2/3)*changehubtil(j)/(h(j)*hubtil(j)) - 1;

%plot our tracking solution

rhopiconst(j) = (-6)*Cb*hubble(j)

*(pidotconst(1)^3) + 6*ep*hubble(j)*Mpl

*lambda(j)*((Ca/3)^(1/2))*pidotconst(1);

%in some runs, the tracking solution breaks down

%(because of the lambda factor) so we set its

%value to zero, in the regime it breaks down

if al*rhopiconst(j) < 0;

rhopiconst(j) = 0;

end

%plot standard slope to compare plots with

slope3rd(j) = 1/3;

slope0th(j) = 0;

slopeminus1(j) = -1;

slope0(j) = 0.55e-30;
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slope15(j) = (hubble(1)*(1+Z(j))^(1.5))*2.45e-7;

slope2(j) = (hubble(1)*(1+Z(j))^(2))*1e-8;

slope3(j) = (rhom(1)*(1+Z(j))^3)*1e-12;

slope4(j) = (rhor(1)*(1+Z(j))^4)*1e-16;

end

%plot the energy density of the fluids vs. redshift, include

%standard slope = -4, -3 lines, as well as the rho_pi = const.

%tracking sol’n

figure

loglog(1+Z,rhom,’+’,1+Z,rhor,’x’,1+Z,rhol,’x’,1+Z,

al*rhopi,’x’,1+Z,slope3,’-’,1+Z,slope4,’-’,1+Z,

al*rhopiconst,’-’);

ylim([1e-68 1e-50])

set(gca,’XDir’,’reverse’);

%plot hubble vs. redshift, and slope = 2, 3/2, 0

figure

loglog(1+Z,hubble,’+’,1+Z,slope2,’-’,1+Z,

slope15,’-’,1+Z,slope0,’-’);

ylim([1e-32 1e-26])

set(gca,’XDir’,’reverse’);

%plot the equation of state vs. redshift, and wtot = 1/3, 0, -1
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figure

semilogx(1+Z,wtot,’x’,1+Z,slope3rd,’-’,1+Z,

slope0th,’-’,1+Z,slopeminus1,’-’);

ylim([-1.5 0.5])

set(gca,’XDir’,’reverse’);

Z(stepsize) = Z(stepsize-1);

zpi(stepsize) = zpi(stepsize-1);

%plot the density parameter of the fluids vs. redshift

figure

semilogx(1+Z,zr/3,’+’,1+Z,zm/3,’-’,1+Z,zl/3,’-’,1+Z,zpi,’-’);

ylim([-1 1.5])

set(gca,’XDir’,’reverse’);
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