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Abstract 

The design of wing and turbine blades requires sirnultanmus approximation of 

sectional airfoils. These aidoils are specified as a collection of data points. From 

the perspective of flow performance the sirfoils should be approWnsted to within 

a prespecified tolerance. Furthemore, to facilitate skinning, the curves must share 

a mutual degree and a mutual h o t  vector, Le., they must be compatible. 

This thesis sims to provide a method for creating a Non Uniform Rational B 

spline (NURBS) skeleton of wing/blade from the sectional data to facilitate the 

skinning process and to serve as an aid in the design process. The goal of this 

method is to simulatneously fit sectional data with NURBS curves that approximate 

it to s pre-specified tolerance with a minimum number of parameters (knots, weights 

and control points). 

This is achieved in two steps. First a skeleton of compatible curves that ap 

proximate the sectional data is constructed. Second, the curve approximation is 

modified to satisfy the tolerance requirement. The generation of the skeletal curves 

is based on nonlinear least square optimization. The method uses the BFGS descent 

direction to overcome the lethargic property and uses the condition number of the 

least square matrix to ensure the good behaviour of control points. The method for 

satisfying prespecified tolerance is based on identifying the h o t  span, that contains 

the most number of data points outside the p r e s p d e d  tolerance, and inserting 

additional knots in them. The process is continuecl until all points are within the 

prespecified tolerance. This method is called the tolerance based h o t  insertion 

method. This two step process is designed to enmire that the compatibility of the 



skeletal curves is maintained at al1 times. 

The method for fitting skeletal cuves is tested on three single-section cases and 

three multi-section cases. The tests showed that, for the single-section cases, the 

maximum error decreased by a factor of a least five , and up to ten, from the initial 

maximum error. For multi-section cases, the maximum error decreased by a factor 

between two, and up to sixteen, from the initial maximum error. Based on these 

tests it is concluded that parametization of data does not contribute to reduction in 

least square error. On the other hand, knots contribute the m a t  to the reduction 

of least square error. 

The tolerancebased h o t  insertion was tested on three skeletons and proved to 

be successful in satisfying the tolerance with relatively low number of parameters. 

The tests showed that proposed method reduced the numbers of control points of 

the compatible cumes that satisfy the prespecined tolerances between 20% to 40% 

in cornparison to the existing methods. 
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Chapter 1 

Introduction 

The goal of this thesis is to present a new approach of constmcting a set of Non- 

Uniform Rational Bspline (NURBS) curve/curves that approximate a given data 

set to within a prespecified tolerance while satisfying the compatibility condition. 

The compatibility condition refm to a constraint that the curves share a rnutual 

degree and a mutual h o t  vector. compatibility condition is required to dlow skin- 

ning of the curves without merging their knots. This goal is motivateci by a need 

to develop a set of skeletal cuves that can be skinned into a surface. Figure 1. l (a) 

shows an example of a data set that has been fitted with c w e s  shown in Fig- 

ure 1 .l (b) which a p p r h a t e  the data set to within a prespecified accuracy while 

satisfying the compatibility condition between the curves. Figure 1.1 (c) shows the 

surface constructed by skinning the skeletal cuves in Figure l.l(b). The goal of 

eliminating the h o t  merging process prior to rltinning is to reduce the number of 

coritrol points of the skinned surface. 

The Bcisting approacbes to this problem ignore the compatibility requirement 
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(a) data 

(b) fitted c m e s  

(c) skinned surface 

Figure 1.1: Construction of Turbomachine Blades and Aircraft Wmgs: (a) section 
c w e s  @en as data, (b) apprmhation n w e  to the data, (c) skinned surface over 
the approximation curves 
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durhg the apprmimation proceas. The appraimation is gesred toward satisfying 

the prespecified tolerance. This neglect raises the need to make the curves compat- 

ible after the tolerance is satisfied. Since compatibility is realized by knot merging, 

the number of control points of the compatible c w e s  may be excessive. This dis 

advantage will be carrieci over to the skinned surface that is constructecl over the 

curves. 

This reswch approaches the problem with a dinerent scheme. Compatibility is 

enforced first by constraining the curves to share a mutuai degree and a mutuai h o t  

vector. This constraint is then applied within the nonlinear least squares problems 

to generate a set of compatible curves. The resulting curves are compatible but 

do not yet satisfy the prespeciôed tolerance. These curves are then subjected to a 

repetitive h o t  insertion pro- that is bound to maintain the compatibility. This 

insertion is gesred to satisfy the prespecified tolersnce. 

1.1 Definitions of Airfoil and Tolerance 

This section gives the definitions of the airfoil and the tolerance that are used in 

this thesis. 

Airfoil is defined a s  a thin plate whose shape is designed to generate aerody- 

namic forces when the airfoil ie in motion relative to the sunoundhg fluid[l]. 

The curve defining the shape of airfoil can be broken apart into four subcu~es, 

namely: leading edge, trailing edge, pressure side, and suction side. Stream 

of fiuid makes k t  contact with the airfoil at the leading edge, separates into 



two streams each of which traverses the pressure side and the suction side re- 

spectively, and leaves the airfoil at the trailing edge. The stream of fluid that 

traverses the pressure side experiences an increase of static pressure, whereas 

that traversing the suction side experiences a decrease of static pressure. 

The definition of tolerance used in this thesis is different from the definition 

of tolersnce defined by the American National Standards Institute (ANSI). 

The definition of tolerance by ANS1 can be obtained in the work by Zeid[88]. 

In this thesis, the tolerance is defined os the rnazimum Eucledian distance 

that a pair of points is dlowed to be apart from eodi other. In other words, 

a pair of points xl and x* LP said to satiafy a tolemnce r if Ilxi - x2112 5 E. 

Othenuàae, these points are said to be out-of-tolerunce. 

When applied to a set of data points and the approximation curve obtained 

from least-square fitting of the data points, the tolerance is defined as the 

largest Eucledian distance that each of the data points is allowed to be apart 

from the associated point on the fitted curve. This definition of tolerance 

between a set of data points and the approximation curve can be considered 

as the stricter version of the ANS1 profile tolerance. 

This distinctive definition is introduced to allow a simple expression of tol- 

erance with respect to the parameters of the apprmcimation curve obtained 

fiom least-square fitting. 
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1.2 Motivation 

This research is aimed at reducing the geometric difficulties[46] fxed during aerody- 

namic daign of turbomachine blades snd aircraft wings. The developed geometric 

methods improve the construction of blade and wing surfaces from discrete data as 

illustrated in Figure 1.1. 

This section presents a brief description of the current airfoil and wing design 

procedures and proposes a method of compatible NURBS curves to improve the 

wing design proces. Simplified design procedures of airfoils and wing that serve a 

single flight condition are used as the vehicle to dgcribe the source of inefficiencies 

in the existing wing design process. The description focuses on the aerodynamic 

design of wine  with fixed geornetry. 

1.2.1 Airfoil Design Process 

Figure 1.2 illustrates a simplified airfoil design procedure. Existing airfoil design 

procedure starts with a specification of a flight condition in term of the Reynolds 

number of the mainstream flow, the desired pressure distribution dong the upper 

and lower parts of the aidoil, and the chord of the airfoil. These data are used to 

select an initial airfoil from a catalog. The criteria of selection is to find an airfoil 

whose pressure distribution appraximates the desired pressure distribution. The 

selected aidoil and the desired pressure distribution are then used as  input to an 

inviscid incompressible flow-based inverse design[20, 531. This geometric design, 

however, lacks the influence of boundary-layer and vortex phenomena. Figure 1.3 

illustrates most of the possible two dimensional flow phenomena that may occur on 



su bsonic airfoils. 

The airfoil geometry resulting from the existing inversedesign procedure are 

represented as a set of points. This airfoil geometry is subsequently subjected to 

redis t ic two dimensional flow anal ysis which 8ccoun ts for boundary-layer separation 

and vortex phenornena. If unfavorable performace occm along the curves of the 

airfoil, the designer locally perturbs the adverse regions in order to improve the 

flow along the airfoil. It is known that the change of realistic flow with respect to 

local perturbation is extremely nonlinear and difficult to anticipate. Prediction of 

necessary geometnc perturbance to adjust the pressure distribution and boundary 

layer development is a very difficult and time consuming task. This is due to 

the complex boundary layer behavior that defines the overall section performance. 

Besides this objective of favorable flow, there exists another objective to rninimize 

h g - t o - l i f t  ratio in order to reduce the fuel coosumption. In short, perfonning 

modification of airfoil geomety to obtain healthy and steody flow and minimum 

drag to lijt ratio is a tediow and cornples task. 

Existing point representation of the airfoil further worsens the situation encoun- 

tered by the designer. Modification of geometry is performed by translating one or 

more points in the adverse region. This method lada control over the continuity 

and smoothness of airfoil geometry which are very c n t i d  to the quality of flow 

along the airfoil. The lack of control over smoothness and the associated unpre- 

dictable behavior of the boundary layer development results in a the trial-and-error 

method for the design of airfoils. 

From the above discussion, it is fair to conclude that the existing airfoil design 
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(7) condition (7) 
l 

Inverse desi- 
idealized inviscidm 
incompressible flow 

Figure 1.2: Simplified Procedure of Airfoil Design 
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@ Transition point 
n 

Neqative natic p r m f e  C7) furbulent tmundary layer 

@ ~ositive staiic pinaire @ Suearniinc 

3 Stagnation w n t  O @ ~ l p i r a t i a n  point 
@ ~ e ~ o ~ i t y  vmor  @ ~ c p a r a t ~ d  ~ I O W  

@ Larninar bovndafv I i y t i  @ Wake 

Figure 1.3: Two Dimensional Flow Around an Airfoil[64] 



paradigm sufFers sigdicant inefficiency due to the use of point representation. Re 

placing this representation with NURBS representation will instantly provide the 

airloil designer with a set of NURBS shape modification tools, e.g. control point 

repositioning, weight modification, warping, flattening, bending, constraint-based 

cuve modification, smoothing, etc[5,6,22,27,29,44,52,57, 70, 71,74,77]. These 

tools are much superior to the modification tools for points. NURBS modifica- 

tion tools allow exceptional control over the continuity, smoothness, and locality of 

changes, of the modified region. The tasks inside the dashed box in Figure 1.2 are 

those with the most potential for improvement of performance through the use of 

NURBS representation. 

1.2.2 Wing Design Process 

The aerodynamic design of a h e d  geometry wing results in a wing geometry that 

serves a prespecified flight condition specified by the Reynolds number of the main- 

stream flow, angle of attack, and the overall lift force that the wing must generate. 

The objectives of wing's aerodynamic design is to achieve a healthy and stable flow 

that posçesses minimum drag to lift ratio. 

The simplifiecl design procedure is shown in Figure 1.4. The design starts with a 

prespecified flight condition. This typically includes the payload of the aircraft, the 

Bight altitude, and the cruking speed. Based on this epecification, wing geometry 

is estimateci; this typically includes chord, wing span, and sweep angle, a s  shown in 

Figure 1.5. These estimates of wing geometry and the prespecified fiîght condition 

are used as inputs to the airfoil design process. 
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mght Condition '-4 

Figure 1.4: Simplified Procedure of Wig Design 
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1 Vlof air relative to winql 

Figure 1.5: Wing Geometry[bL] 

After a number of airfoils have been designed, they are stacked at prespeci- 

fied positions and orientations along the wing span. Followjng this stacking, the 

wing surface is generated by skinning over these airfoils. Then the wing surface is 

subjected to a realistic threedimensional viscous flow to evaluate the quality and 

stability of the flow. This evaluation is particulady important to inspect the flow 

between the airfoils because the actual00w behavior in this region may sipificantly 

differ fiom the behavior of the designed airfoils. When adverse fiow behavior oc- 

curs, the wing geometry is modifiecl by rearranging the stacking of alrfoils and/or 

redesigning the airfoüs, as shown in Figure 1.4. Stacking remangement leaves the 

airfoil geometry unchanged, and it is performed by one or more of the following: 

repositioning airfoils along the wing span, reorienting the airfoil with respect to 
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luid flow oncoming direction, and inserting an additional airfoil in between two 

consecu t ive airfoils. 

The modification of the airfoil is performed using the method that was explained 

in the previous subsection, see Figure 1.2. Therefore, this modification carries over 

the inefficiencies found in the aidoil design procedure. hprovement of airfoil design 

procedure will automatically improve the wing design procedure. 

This section has presented the disadvantage of using the point representation in 

the airfoil and wing design and identified the resulting inefliciencies. Point represen- 

tation lacks robust tools for controlled modification. When this is linked with the 

unpredictable behavior of boundary layer development, it results in an expensive 

and tirne consuming aerodynamic design processes. 

The design procedures for airfoils and wings, illustrateci in Figures 1.2 and 1.4, 

show that the flow analysis and the expertise of the aerodynamicist are merged in 

a closed loop identified by the dashed boxes labeled TARGET OF IMPROVEMENT. 

In these loops, the geometric modeler serves as the tool of communication between 

the aerodynamicist and the flow analysis package. The instruction from the aero- 

dynamicist is in the form of mod%cation to the geometry of the airfoils/winp. The 

flow andysis package receives this instruction and subsequently produces the flow 

performance for the modified geometry. These loops are potentid candidates for 

automation. In the automated system the input will be the data set modeling the 

airfoil(s). The automated system interface will take t b  data and prepare it for a 

flow andysis. The results of the flow analysis may be analyzed by either an am+ 

dynamicist , an artificial-based system, a heuristic system, a mat hematical model, 



or etc. The outcome of the analysis will be in the form of a modification of the 

geometry of the airfoil. This loop will continue until the geometry of the airfoil 

produces the desired pressure distribution. Reaüzation of this automation needs 

intepation of geometric modeler and flow analysie. 

The magnitude and complexity of the automation depends on the number of 

geometric parameters in the representation. If point representation is the basis 

of the geometry, the automation may not be feasible due to the large number of 

degrees of &dom. A concise geometric representation is needed. Nonuniform 

Rational 8-splines offer such a concise representation. For NURBS modelers, the 

paramet ers are: control points, knots, weights, and degree. 

An infinite number of NURBS curves can be created to apprachate a given 

airfoil data set. Each of these curves is based on a different parameter set. Rom 

the perspective of complexity, it will be ideal to select that NURBS representation 

which results in a minimum number of parameters. The additional requirement 

of minimum number of control points does not affect the ability to do controlled 

modification of the NURBS c w e .  

1.3 Proposed Approach 

This research aims to investigate the representation of geometry of airfoils using 

NURBS cumes. Having NURBS geometry throughout the design cycle d o w s  con- 

trolled modification of wing and airfoil genmetry with much fewer degrees of bec- 

dom. 

In this thesis a new method of geometric constmction of airfoils and wings is 
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presented. In this proposed approach the dinerent airfoil data set, see Figure 1.1, 

which make up the skeleton of the wing, are simultaneously fitted with NURBS 

c w e s  that share a mutual h o t  vector and a mutual degree. 

Using Golub's expression for the least squares error of B spline apprmcimation[33, 

321, the sum of errors of an individual curve is a nonlinear hinction of knots, weights, 

and parameterization for data. For mdt icwe  sirnultaneou a p p r h a t i o n ,  the 

sum of errors for all curves is selected as the objective hnction, and it is a nonlinear 

function of mutual knots, weights, and parameterization for data  The solution of 

this problem of nonlinear least squares is obtained using an optimization scheme. 

This scheme must consider linear constraints due to the monotonidly inmeas- 

ing property of the knots and the parametrization for data, and positivity of the 

weights. The latter is to avoid singularity and to preserve the convex hull property 

of the resulting cwes .  The goal of solving this nonlinear least squares problem is 

to reduce the l e s t  squares error simultaneously in al1 the skeleton curves. This, 

however, may still fail to satisfy the prespecified tolerance. 

For satisfying the prespecified tolerance, the approach of knot insertion is taken 

in this research. The insertion serves as a mechanism to adjust (increase) the degree 

of fieedorn. The constraint that the Espline basis are dehed on a mutual knot and 

have a mutual degree guarantees compatibility of the curves thmughout the b o t  

insertion process. The final results are a set of approximation NURBS c w e s  that 

are compatible and satisfy the prespecified tolerance. The compatibility among the 

NURBS curves eliminates the need for b o t  merging prior to skinning. 

In conclusion, the proposed approach attempts to produce a set of NURBS 
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curves that satisfy a set of various prespecXed tolerances and the compatibility 

requirement with reasonably number of degrees of fieedorn (control points). Suc- 

cess of this attempt is measured by how few bais  are required to satisfy these 

tolerances. 

1.4 Objective of Research 

The objective of this research is to simultaneously fit one or more skeletal curves, 

each represented by a set of discrete points, with NURBS curves such that they 

have a reasonably low number of parameters (knots, weights, and control points) 

and the distance between the discrete point set and the point on the curve is l e s  

than a prespecified d u e .  

in order to achieve this goal, a method to fit a NURBS cume to a discrete 

data set is developed. To address this problern the least squares method is 

used. This method is a function of many parameters: knots, weights, control 

points, and parameterization of data. The proposed method optimizes al1 or 

a combination of these parameters to obtain a minimal representation. 

0 To study the sensitivity of the least squares error with respect to the various 

combinations of parameters an investigation was conducted by perfonning 

nonlinear l e s t  squares fitting of a single c w e .  Three data set were subjected 

to t h  investigation. These data wts represent NACA 2415 airfoil, WTEA 

airfoil, and an axial cornpressor airfoil. Each data set was subjected to five 

sets of combination of adjustable parameters. These sets are: 



- knots 

- knots and weights 

- knots, weights, and parameterization for the data 

- weights 

- parameterization for the data 

This investigation s e ~ e d  two objectives. The first objective was to rneasure 

the usehilness, in an engineering sense, of using the parameters as adjustable 

parameters. The usefulness was measured by the decrease of l e s t  squares 

error resulting from each of these five sets of adjustable parameters. The 

second objective was to rneasure the effectiveness of incorporation of the non- 

linear constraint in maintaining the accuracy and good behavior of the control 

points. 

The single curve method is then extended to a multicunte method. 

a Similar to the previous case, an investigation to determine the sensitivity to 

the ad just able parame ters was also conduct ed on mu1 t i c w e  (skelet on) cases. 

This investigation was conducted on three sets of skeleton: a two-section 

skeleton of a wing, a three-section skeleton of an axial cornpressor blde, and 

a three-section skeleton of an axial turbine blade. Each skeleton was subjected 

to five sets of combination of parameten identical to the combinations in the 

previous investigation. The goals of this investigation were the same as in the 

previous investigation. 
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a The methods developed above fit the discrete data representing the skeletal 

curies with NURBS curves based on the user selected degree and number of 

control points. Such a m e  may not be within a prespecified tolerance to 

al1 the discrete data points. An iterative method, called the Tolerance based 

knot insertion method, is developed to increase the number of control points 

and to meet the prespecified tolerance requirement. This is done by adding 

knots in specific regions of the curve. 

An investigation of knot insertion was conducted to study its effectiveness in 

sat isfying the prespecified tolerance. The resul t ing c w e s  from the previous 

investigation were subjected to Tolerance Based Knot insertion and the re 

duction of the number of control points to represent compatible sections that 

satisfy a prespecified tolerance was rneanired. The resulting number of con- 

trol points were compared with th= obtained from the knot removal based 

method[70, 821. 

1.5 Organization of Thesis 

Chapter 2 presents the theoretical background and literature review on the least 

squares apprcmhation with NURBS curvee. The first part of this chapter covers 

the derivation of expression of least squares problems with rational 5 splineâ; it is 

adopted fkom Golub's work[33,32]. Identification of parameters and elimination of 

control points fiom the parsmeters are also presented. The elimination of control 

points naturally transforma this problem into s nonlinear le& square problem. 



CHAPTER 1. INTRODUCTION 

Next the derivation of gradient is presented as its avaiiability and properties are 

critical for solving the nonlinear leaet square optimization problern. The second 

part of this chapter presents a literature review on this subject. The review focuses 

on NURBS appracimation with fixecl number of basis functions. 

Chapter 3 presents the proposed approaeh to solve the NURBS nonlinear least 

squares problem. The chapter starts with a definition of constraints on the feasible 

domain of the parameters. A new definition of nonlinear constraint is introduced 

to improve the accuracy of the control points. A new approach to satisfy this 

constraint will also be presented. This chapter ends with a discussion on the descent 

direction for the nonlinear least squares optimization problem. 

Chapter 4 presents the implementation of the method p r o p d  in Chapter 3. 

It also presents the investigation of sensitivity as discussed earlier. The implemen- 

tation serves as a check of numerical behavior of the proposed approach presented 

in the previous chapter. In particular, this chapter highlights the distinctions that 

knots, weights, and parameterization for data respectively, are capable of reducing 

the l e s t  squares error. It wili be shown that the l e s t  squares error does not suffer 

if weights and parameterization for data are eIiminated fiom the list of adjustable 

parameters. This chapter will also highlight the efktiveness of the proposed non- 

linear constraint in maintaining the accuracy of the control points. 

Chapter 5 presents an extension of the irnplementation of the p r o p d  approach 

to multicurve problems. This chapter9s highlight is the compatibility enjoyed by 

the skeleton curves. Similar to the previous chapter, it wil i  be shown that the least 

squares error does not suffer if weights and parameterization for data are eüminated 
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from the list of adjustable parameters. This chapter also shows the efkctiveness of 

the proposed nonlinear constraint in maintainhg the accuracy of the control points. 

Chapter 6 presents the Tolerance Based Knot Insertion method of providing suf" 

ficient number of basis in order to satisfy the prespecified accuracy. The number of 

basis are increased via a h o t  insertion method. Cornparison with existing methods 

for constructing compatible section curves is also provideci. The cornparison clearly 

demonstrates that Our approach is superior in the sense that the number of con- 

trol points required to produce compatible section c w e s  that satisfy a prespecified 

accuracy are much l e s  than the existing method. This chapter also presents an 

atternpt to srnooth the curves, and ends with a visualization of the skinned surface. 

Finally, this thesis is closed with a chapter that summarizes the ochievernent in 

this thesis. Possible future research directions are also presented. 



Chapter 2 

Curve Fitting: Basics and 

Literat ure Review 

This chap ter presen ts a theore tical background and li terature review of the least 

squares problems for parametnc Nonuniform Rational B-Spline (NURBS) curves. 

The coverage focuses on apprmimation problems where the nurnber of bais func- 

tions is constant. This chapter assumes familiarity with basics of NURBS; other- 

wise, readers may refer to Appendk A for theoretical exposition on NURBS curves 

and surfaces. 

2.1 Least Squares Approximation 

Approximation is suitable for constructing a c w e  fkom a set of data when the 

number of data is very large and/or the data contains measurement errors[70, 731. 

The cuve constructed by approximation does not exactly satisfy the data, instead 
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some disagreement between the data and the curve exists. The disagreement is 

rneasured by a vector nom. The alternatives of vector n o m  are one-nom (LI), 

twcmorm (&), and infinity n o m  (L,). Theoretidly, the selection of n o m  should 

be based on the statistical significance of the measurement error. In practice, how- 

ever, it is common to use the (&)-nom unless the n o m  ha8 some statistical signif- 

icance. Appraximation with two-nom is known as le&-squares pmblem. The use 

of one-nom and infinity-nom leads to problem with discontinuity in derivatives. 

Although special methods exist for dealing with these problems, the complexity of 

the problem is significantly increased compared with the least-squares problem(311. 

Ln this thesis, the disagreement between the data and the approximation curve 

is rneasured using a twenorm measure. The twc+aorm measure is selected for 

three reasons: k t  to allow elhination of linear parameters (the control points for 

NURBS curves) from the parameter set, second to simplify the expression for first 

derivative of the measure of disagreement with respect to its parameters, and third 

to provide the continuity of the first derivative of measure of disagreement. 

The use of twenorm as measure of the disagreement between the curve and 

the data yields a simple formulation of measun of disagreement, Le. E = d e '  
where e is a vector whose elexnents are Euclidean distances between the data and 

the correspondhg points on the c m .  To simpiify the derivative of the measure 

of disagreement, it is common to modify the measure of disagreement to a = eTe, 

simply the square of the original formulation. The modifieci expression yields a 

simpler first derivative, 



The expression of a NURBS appracimation cuve is p. = Rc, where p. is the 

value of NURBS curve at the psrameterization for the data, R is an overdeterrnined 

matrix of rational Espline basis, and c are the control points; the expression for 

the elements of R cm be found in Appendix A. The least squares error for the 

curve can be expressed as 

E = (P - P.)= (P - P.) 

= (P - wT (P - -) 
where R = R (u, w, t) 

p is the data set 

The objective of curve approximation is to minimize the measure of disagree- 

ment, that is to minimize E. The equation above clearly shows that minimization 

of E can be perfomed by adjusting R and c. 

2.2 Parameters of NURBS Least Squares 

Approximation with NURBS cuve requires the following set of parameters: d e  

gree of basis, number of basis bctions, knots, weights, coordinates of control 
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points, and parameterization for data; the last parameter applies only for para- 

metnc NURBS curves. The first two parameters are discrete, and the* values are 

normaily specified by the users instead of being computed. Degree of a cuve is a p  

plication dependent md is very rarely considerd as an adjustable parameter. The 

degree is specified based on continuity requirement. Most engineering applications 

use cubic curves since cubic is the lowest possible degree that provide curvature con- 

tinuity and capability of representing space c w e .  Although curves of higher degree 

are also capable of representing space curves, their tendency to oscillate limits their 

scope of applications[44j. The number of basis constitutes the degrees of freedom 

of the problems. The number of buis determines the lowest possible disagreement 

between the data and the approximation curve; a greater number of basis functions 

allows a smaller disagreement, i.e. a more accurate approximation. At best, the 

determination cm be performed heuristically. Existing methods of B-spline curve 

approximation that facüitate "heuristic adjustmentn of number of basis in order to 

satisfy a prespecified accuracy can be classified into two group. The first group is 

based on repeated knot insertion. Bartels et. al. [26, 281 and Diercbc[l7] developed 

their own methods that fdl into this group. Bart&' method is known as hierar- 

chid spline fitting whereas Dierckx's method does not have any particular name. 

TUer[82] and Piegl[70] developed a method based on knot removal. This method 

f d s  into the second group. Complete exposition on these heuristic methods d l  

be presented in Chapter 6. 

m e r  the degree and the number of basis fuactions have been specXed, the next 

step is to obtain the knots, weights, coordinates of control points, and parameter- 
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ization for data, that yields a minimum E.  Since the E is a nonlinear function of 

knots, weights, and pameterization for data, the solution of these parameters is 

O btained using op t imization. 

The next section will present an adaptation of Golub's work which demonstrates 

that control points are redundant parameters. They can be eliminated fiom the 

parameters without affecting the solution. 

2.3 Elimination of Control Points 

Eqn. (2.2) clearly shows the separation of linear parameters (control points) from 

nonlinear parameters (knots, weights, and parameterization of data). Nonlinear 

variables are implicitly embedded in the elements of matrix R whereas the linear 

parameters are explicitly shown in Eqn. (2.2). This type of least square problems 

is known as  the le& square pmblem with parumeter aepamtioa 

Golub(32, 331 shows that this least square problem can be simplified by elimi- 

nating the linear parameters from the domain of the parameters so that the actud 

domain of the problem is reduced to the domain of nonlineau panuneters only. 

Therefore, adjustment of parameters is performed only on the nonlinear parame- 

ters. However, elimination of linear parameters am only be performed if the mea- 

sure of disagreement uses two-nom measure. The author is not aware of methods 

of elimination of linear parameters for apprwimation problems that use onenorm 

or infinity-norm measure of disagreement. 

The process of elimination of control points starts with the formulation of the 

q l i c i t  expression of control points. For a given matrix R, the control points can 
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be explicitly written as a hinction of the data and the pseudo inverse of matrix R. 

The expression of the control point then becornes c = R+p where R+ denotes the 

pseudo inverse of m a t h  R 

The pseudo anuewe of an m x n matrix R is a unique n x m matrix such that 

c = R+p is the vector of minimum Euclidean length that minimizes 1 lp - Rc 1 1,. 
There are several mathematically quivalent expressions for the pseudo inverse of 

R When R is nonsingular, R+ = R-l. When R has full column rank, the 

pseudo inverse may be written as R+ = (RTR)-'R~. This expression of R+, 

however, is usehl only for descriptive purposes. For computational purposes, R+ 

should be computed using rnatrix factorization. When R has fidl column rank, 

QR decomposition can be used to compute R+ using R+ = RllQT; symbol R.. 

and Q denotes the nonsingular upper triangular matrix and the lower tnangular 

matrix in QR decompositions respectively. When R is rank deficient, the most 

convenient form of the pseudo inverse is based on the singular value decornposition 

(SVD). By performing SVD to the rank deficient matrix whose column rank is r,  

the decomposition wiil produce matrices U, W, and V satisfying R = wT. 
The pseudo inverse can then be calculatecl as R+ = VMUT; M is a diagonal 

matrix whase elements are the reciprocal of the elements of diagonal matrix W, 

except when the elernents of W are zero at which the elements of M are set to zero. 

Methods to compute the pseudo inverse can be found in many textbooks[31,34,67]. 

By substituting c = R+p into Eqn. (2.2), the m a u r e  of disagreement can be 

rewritten as 
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Eqn. (2.3) shows that the control points have been elMinatecl hom the expres 

sion of measure of disagreement. The proof that the minimum of the functional in 

Eqn. (2.3) is exactly identical to the minimum of the original functional in Eqn. (2.2) 

can be found in Golub's articles [32, 331; the principai requirement of this proof is 

that the measure of disagreement must use the twenorm. 

Equation (2.3 ) is the measure of disagreement of appracimation in one-dimensional 

problems. Threedimensional problems can be viewed as consisting of three one- 

dimensional problems. By restricting the curves in al1 coordinate directions to share 

a mutual set of knots, a mutual set of weights, and a mutual set of parameterization 

of data, the measure of disagreement in each coordinate can then be written as 

These measures of disagreement can be summarized in a simple expression 
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The use of addition operators is due to simplicity of derivatives of the overall 

measure of disagreement, that is 

Equations (2.2) to (2.7) have indicated dearly that NURBS l e s t  squares is a 

nonlinear least squares problem. Solution of this problem is obtained by an opti- 

mization method. Selection of an optimization method depends on the continuity 

of objective function, availability of gradient, and its continuity. Golub has proven 

that the objective function of this nonlinear least squares problem md the gra- 

dient are continuous if matrix R has a constant rank within the domain of the 

parameters[32, 331. Golub bas also denved the qress ion  of the gradient. An 

adaptation of his work will be presented in the next section. 

2.4 Derivatives of Residual 

The elhination of linear parameters £rom the formulation of measure of disagree- 

ment reduces the parameters that need to be adjusted to nonlinear parameters only. 

As already mentioned, adjustment of nonlinear parameters in the least square prob 

lems is performed using an optimization method. Good descent direction can be 

obtained using the gradient of the meanire of disagreement. Therefore, first deriva- 

tives of meastue of disagreement with respect to nonünear parameters are important 

in the adjustment of nonlinear parameters to minimize the me- of disagreement. 



CHAPTER 2. CURVE FITTING: BASICS AND LITERATURE REVlEW 28 

The measure of disagreement in Eqn. (2.3) can be written as a function of RR? 

Derivative of measure of disagreement with respect to a nonlinear parameter, Say 

ai, is 

The explicit expression of gradient of measure of disagreement can be obtained 

by deriving the term inside the square bracket. The procedure to derive the term 

requires identification of properties of RR' and (1 - FtR+). GoIub(32, 331 shows 

that the properties of the RR+ term that are relevant to the first derivative of 

rneasure of disagreement are 
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Golub[33] starts by differentiating both sides of Eqn. (2.13); the result is 

The right hand side of Eqn. (2.16) can be arranged to 

The following procedure derives the expressions of terms on the right hand side 

of Eqn. (2.17). The f h t  term can be rearranged to 

The term in the bracket in Eqn. (2.18) can be obtained by difkrentiating both 

sides of Eqn. (2.12); the dinerentiation yields 

dR aR 

Rearranging Eqn. (2.19) yields 
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Substituting Eqn. (2.20) into Eqn. (2.18) yields 

Eqn. (2.21) is the Bnal expression of the first tem in the nght hand side of 

Eqn. (2.17). Using Eqn. (2.1 l), the second term of the nght hand side of Eqn. (2.17) 

can be written as 

Substituting Eqn. (2.21) into Eqn. (2.23) yields 

Substituting Eqn. (2.21) and Eqn. (2.24) into Eqn. (2.17) yields 



Substituting Egn. (2.25) into Eqn. (2.16), followed by substituting Eqn. (2.16) 

Eqn. (2.10) yields 

Expanding terms fields 

The term inside the second square bracket vanishes due to Eqn. (2.15) so that 

Eqn. (2.27) simpMes to 

Substituting Eqn. (2.14) into Eqn. (2.28) yields a simple expression 
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Eqn. (2.29) is the find expression of the first derivative of measure of disagree- 

ment with respect to a nonlinear parameter. 

Equations (2.2) and (2.29) have shown the proper expressions for the objective 

function and its gradient. These equations are the hindamental forms of the NURBS 

nonlinear least squares problem. The next section will present literature review on 

this subject. 

Literature Survey 

This section presents literature survey in the field of curve approximation with 5 

splines. The survey focuses on approximation problems where Ieast squares nom 

is used and the degree of curve and the number of bais are hed .  Refemng to 

Equation (2.3), the general form of least square cuve  approximation with rational 

BspIine is 

min p T ( ~ - ~ ~ + ) T ( ~ - ~ ~ + ) P  
m r  ( u I w , ~ )  



CHAPTER 2. CURVE FI7'TING: BASES AND LITERATURE REVIEW 33 

2.5.1 Jupp: The Fkee Knot Approach 

Jupp is probably the fmt researcher who investigated the above objective function[49, 

50,511 where R contains Bspline basis. Hia work is limited on the functional inte 

gral B-spline, thus w and t are dropped from the parameter set. b o t s  become the 

only parameters that need to be adjusted. The most important finding in Jupp's 

work is the lethargy theorem that shows poor convergence of adjustment when two 

or more knots become nearly coincident. The theorem is based on Jupp's observk 

tion that the gradient lies on the null space of active constraint. In other words, the 

gradient does not have any cornponent in the range space of the active constraint. 

Jupp argues that the lack of component in the range space will trap the luiots in 

the null space; once two or more knots coincide, it is impossible for the knots to be 

separated. When the knots are almost coincident, the components of the gradient 

in the range space are not zero but they are very maIl. Such small components, 

sccording to Jupp, will cause the ho t s  to wander around the active constraint. 

The net result is poor convergence as stated in Jupp's lethargy theorem. In mm- 

mary, Jupp 's characterization of h o t  adj ustment is largely based on his argument 

that descent direction is soldy a function of projection of the gradient in the range 

space of the active constraints, not a function of the gradient itself. Based on his 

observation, Jupp concludes that, whenever one or more of knot constraints are 

active, the descent direction aiways lies in the null space of the constraint due to 

the lack of component in the range space of the constraints. 

Jupp's argument, however, c o n t d c t s  the characteristic of Newton and quasi- 

Newton descent directions. These descent directions always lie between gradient 
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and line of constant objective[31, 73, 151 provided that the Hessian or its approxi- 

mation is well-conditioned, positive definite, and is not dominated by its diagond. 

The key strategy is to keep the approximate Hessian, besides its projected matrix, 

throughout the optimization. When two or more bots coincide, the quasi Newton 

descent direction is calculated using the appraWnate Hessian instead of its pr* 

jected matrix. If the descent direction has component into the feasible domain, the 

constraints on those knots are deleted. Therefore, it becornes possible for those 

knots to separate. Experiments conducted by the author shows that the descent 

direction obtained from the BFGS method do have components in the range space 

of the constraints. These components allow the current iterate to leave the con- 

straints. This observation is opposite to Jupp's characterization of the behavior of 

h o t  adjustment. 

Jupp concludes that this lethargic property 6eem to make fitting splines with 

free knots a most unattractive problem. His supposition is supported by scarcity 

of published articles on fitting splines with free knots. Jupp proposes the variable 

transformation to overcome the lethargic property. The knots u are transformed 

to artificial variables h using a logarithmic h c t i o n  

Ui+i - Ui hi = log 
ui - w-1 

Jupp states that such transformation is smooth and transforms the problem into 

an unconstrained one. The combination of the transformation and the lethargic 

property impiies that the gradient will become arbitrarily small at large distances 
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from the origin in the transformed space. The overd e f k t  is that the nonlin- 

ear l e s t  squares algorithm always convergw (numerically) a hi te  distance from 

the origin even when the exact solution has multiple knots. However, Jupp does 

not address issues comrnonly found in variable transformation methods such as in- 

advertent exclusion of the desired minimum, significant increase of the degree of 

nonlinearity, adverse scaling of variables, inadvertent presence of singuiarities and 

discontinuities of derivatives, singularity or ill-conditioning of Hessian matrix, and 

inadvertent presence of additional local minima and stationary points. 

Finally, our three comrnents on Jupp's result are: (1) gradient's lack of, or 

its insignificance of, components in the range space of knots' active constraints 

does not always mean that the descent dwction obtained from the gradient has 

no or insignificant components in the range spsce of the active constraint, (2) 

transformation of variables (knots) are unnecesçary whenever the descent direction 

has significant components in the range space of the active constraints, and (3) 

ill-conditioning prevention of R is not addressed in spite of its significant influence 

on the accuracy of the solution of the obeervation equation Rc = p, in particular 

when computation is perfomed wit h finite precision. 

2.5.2 Gengoux and Mekhilef: Optimization of NURBS 

Gengoux investigates nonlinear least squares with NURBS m e s ,  in particular 

the optimization of knots and weights[30]. He uses a penalty method to handle the 

constraints. The penalty te- represent Iinear constraints on the weights and knots 

and nonlinear constraint on the condition number of R. The linear constraints are 
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represented by g (u, w, t) 5 0. The penalty term for these constrsints is 

The power r is either 2 or 3; r = 2 yields once differentiable @ whereas r = 3 

yields twice differentiable O. This penalty terms are weighted by factor cri. The 

penalty term representing the nonlinear constraint on the condition number of R 

is formulated indirectly as a function of control points. The term is defined as the 

sum of distances of two consecutive control points; the formulation of this term is 

When the matrix R is ill-conditioned 

1 bi+l - G I I ~  (2.33) 

, the control points have wildly large corn- 

ponents. These components WU, in turn, raise the pendty term Q2. Therefore, Q2 

functions as a signal and prevents the ill-conditionhg of R. However, Gengoux does 

not mention the analytical gradient of a2 with respect to knots, weights, and param- 

eterization of data. In the author's opinion, availability of this gradient is crucial in 

the optimization with respect to the nonlinear parameters. It appears that a2 does 

not function as it is supposed to. Gengoux's report clearly shows that whenever 

weights are set as the only adjustable parameters, one or more control points have 

very large components. This phenornena is surely caused by ill-conditioning of R 

despite the incorporation of a2. It is also unclear why Gengoux condudes that 
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the main cause of expIosion of the coordinates of the control points is caused by 

insufficiency of number of basis. 

The author's comments regarding Gengoux's experiments are: appears to 

be ineffective in maintaining the condition number of R under certain feasible 

maximum, and analytical gradient of every term in the objective function should 

be denved if possible. 

2.5.3 Heidrich: Separation of Weights 

Heidrich's approaches curve approximation with NURBS by fixing knots and pa- 

rame terization of data. Weights are the only adjustable nonlinear parameters. 

Heidrich shows that weights can be obtained by solving a set of homogeneous 

equations (381. 

One dimensional lest  squares problem with NURBS curve will be used to show 

Heidrich's approsch; cornplete illustration for thmedimensional problems cari be 

found in Heidnch's thesis. The evaiuation of the approximation curve at parameter 

tr can be written as 

By multiplying the right hand side with the denominator of the left hand side, 

the equation can be A t t e n  as 



The matrix fom of Equation (2.35) is 

where P is an rn x rn diagonal matrix whose diagonal elements are the data p, 

B is the rn x n matrix of Bspline basis, w E Rn is the weight vector, and C, is 

the homogeneous form of the control points, that is b,j = wiq. Equation (2.36) 

can be rearranged to 

The solution of the equation can be obtained by premultiplying both sida with 

the transpose of the matrix in the square bracket. Since the right hand side elements 

are zeros, t h  term remains and the ha1 equation becornes 

PTB1 ,LX. (2.38) 

[-B~PB] nxn [B~PPB] 
2nx 1 
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Eliminating the lower left terms of the diagonal yields 

The second row ciearly shows that weights csn be solved from the n-sets of 

homogeneous linear equations as 

Since the terms inside the square bracket depend only on the data P and the 

Bspline basis B, the weights can generdy be obtained by finding the nontrivial 

solution of the n x n sets of homogeneous equations. Heidrich points out that 

minimization algorithm must be used if nonnegative weights are to be obtained. 

In Heidrich's methods, the starting equation in Equation (2.34) is not exactly 

satisfied in the approximation problem. Since the data is not exactly satisfied by 

the approximating curve, the form of Equstion (2.34) should have been 

c;==, wicilvi (4) 
= PI + 6,; for k = l : r n  c; 1 WNi (4) 

where ek is the disagreement between the data and the point on the approxi- 

mating curve. It is not clear how Heidrich justifies the elimination of Q fkom the 
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equation. 

2.5.4 Survey of Optimizing Parameterization of Data 

Optirnization of parameterization of data is popular in the problems of fitting with 

Bsplines where nonlinear adj ustment is perfomed. Adjustment of parameteriza- 

tion of data is encouraged, perhaps, by the simplicity of the derivative of a Bspline 

curve with respect to the parsmeter. This s w e y  presents three approaches by 

S a r h ,  Hoschek, and Rogers. 

Sarkar: Optimization of Parameterization of Data 

Sarkar and Biblap[79, 781 investigated the optimization of parameterization of data 

on a surface with constant number of control points. The data is approximated 

by the parametric integral Espline. The set up starts with initialization of knots 

and parameterization of data. The control points are then solved fiom the overde- 

termined sets of equations Rc = p. Siukair obse~es that the l e s t  squares error 

1 lph - s (tk) 1 l2 does not represent the smallest distance between the data p k  and 

the approximation curve s (t). Using the current knots and the control points, the 

process proceeds with finding the parameter values that yield smdest distances be 

tween the data and the approlcimation Bspline curve. The Levenberg-Mardquardt 

method is employed to fhd such parameter dues.  After these best parsmeter 

values are obtained, they are used to constnict new R and, subsequently, the new 

R is used to find the new set of control points. The steps are repeated untü no 

further rehement of least square emom ca.n be obtained. 



CHAPTER 2. CURVE FITTING: BASICS AND LITERATURE REVIEW 41 

Sa,ricax9s work lada theoreticai justification to prove that the new control points 

obtained from the new parameter values will produce smaller least squares error. 

Sarkar's method, as reported in bis articles, fails whenever knots are included in 

the optimization. 

Hoschek: Parameter Optimization 

Hoschek's approach[42] is almost identical to Sarkar's. The difference lies in the 

method to find the new parameter values. The refinement of parameter is performed 

using the formula 

b - a  &=t,+av- 
C1 

where o and b are the first and the last knots respectively, p is the length of the 

polygon spanned by the data set pi's, and Aq is the magnitude of the projected 

error di on the tangent line at point Yi on the approximation curve. Figure 2.1 

illustrates the meaning of Ac(. 

Hoschek's work also lacks of theoretical background which proves that the new 

control points obtained from the new parsmeter values will always produce smaller 

least squaws error. 

Rogers: Parsmeter Optimization 

Rogers' approach[76] is similar to the previous two approaches. Rogem uses the 

ht-order  approximation to calculate the gradient. Steepest descent is then used 
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Figure 2.1: Projection of Error Vector di and the Correction Coefficient Aci 

to optimize the l e s t  square error. The adjustable parameters are limited only to 

parameterkation of data. This method is based on approximate values of gradient 

and the steepest descent met hod has poor convergence. 

2.5.5 Survey on Parameterization of Data 

This subsection presents a literature e w e y  on Bspline c w e  approximation where 

nonlinear parameters are not adjusted. The nonlinear parameters are set up only 

once, followed by computation of control points fiom the overdetermined equation 

Rc = p. Although setting up the nonlinear parameters means the determination 

or computation of the knots, the weights, and the parameterization of data, m a t  

of existing methods to compute these three sets of parameters focus on the last set 

of parameters, i.e. the parameterization of data Thus, this s w e y  is focused on 

the assigrnent of parameterization of data. 

The most widely known family of parameterizations of data has the form of 
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ti = ti,l + l l ~ i  - pi-1111 for i = 2, tm zr=2 I I P ~  - ~k-111; 

The well known values of P are 0, 1, and i, each of which represent uniform, 

chord length, and centripetal, parameterization respectively[70, 22, 441. Uniform 

parameterization, in general cases, produces poor results because this psrameteri- 

zation neglects the positions of the points. Chord length parameterization gener- 

dly produces better results than the uniform parameterization. If corners are not 

present in the data, chord length parameterization usually produces "adequately 

pleasing" results. However, if corners are present, t his parameterization usually 

fails to reproduce the corners. In bis paper[54, 55,561, Lee proposes the centripetal 

parameterization to overcome the inadequacy of bord  length parameterization to 

produce cunies with corners. 

Pararneterization of data is an important issue in interpolation problems. High 

cumture regions, corners, wiggles, and smoothness, are the main theme in the 

research of parameterization of data. Works on the parameterization of data, in 

particular for interpolation problems, are numerous[2, 12, 21, 25, 36, 38, 42, 54, 55, 

56, 62, 61, 631. In apprmimation problems, satisfying prespecified accuracy is the 

main issue. Thus, selecting a parameterization of data is usually less signifiant 

than finding the minimum degrees of heedom (number of basis functions). Most 

of the literature on apprcmirnation problems use the chord length or centripetal 

parameterization. 
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2.6 Summary 

This chapter has presented the theoretical background and literature review of 

NURBS least squares. The theoretical exposition hm shown the proper expression 

of the objective function and its gradient in Equations (2.3) and (2.29) respectively. 

The literature review has shown that there are two main obstacles in finding the 

solution for this problem, they are: the lethargic property of gradient with respect 

to coincident knots and the inaccuracy of control points. The next chapter will 

present a new approach to overcome these obstacles. 



Chapter 3 

Nonlinear Least Squares Method 

The previous chapter has highlighted two obstacles in solving the NURBS least 

squares problem: the possible degradation of R, that yields poor control points, 

and the lethargic property of gradient with respect to coincident knots. These 

obstacles motivate the development of a new approach that is presented in this 

chap ter. 

The degradation of R can be overcome by introducing a new constraint on 

the m ~ u m  permissible b i t  that the condition number of R may attain. This 

constraint is applied to the line minimization phase of the optimization. Detailed 

exposition and rationale of this constraint wil l  be presented in this chapter. Jupp 

has pointed out that the main caw of the lethargic behavior of the optimization 

is due to the lack of orthogonal component in the gradient. The descent direction 

identified by Broyden-Fletcher-Goldfarbshanno, commonly called BFGS direction, 

has orthogonal component provided that the the diagonal elements of the apprax- 

imate Hessian do not dominate the off'agonal elernents(l5, 31, 731. In this work 
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the BFGS descent direction is used to defeat the lethargic property. 

in this thesis an airfoil data set is approximated with a NURBS curve using 

nonlinear least squares method. In the next step parameters in the apprcmima, 

tion NURBS curve are optimized. This optimization is subject to both linear and 

nonlinear constraints. The linear constraint applies to knots, weights, and param- 

eterization for data. The nonlinear constraint applies to the condition number of 

rnatrix R. The details of the constraints are d&bed next. 

3.1 Constraints 

3.1.1 Sequence of Data 

The shape of a curve, represented by a set of data points, is determined by the 

coordinates of the data and its sequence. Figure (3.1) shows two sets of data that 

have identical coordinates but different sequences. The figure clearly shows that 

the difference in the sequence results in different shapes. 

Figure 3.1: Different Topology Resuiting in Dinerat Shapes 

In this given problems the parameter values assigneci to the data serve as se- 

quence information. This can be realized by constraining the values of the param- 

eters to be nondecreasing. This criterion must never be violatecl. 

Parameterization for data can be done in many ways. One method of assignment 

of the parameter value to the 6th point is by incrementing the parameter vdue of 

the preceding point, i.e. the ( i  - 1)-th point. The expression for the i-th parameter 
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value is 4 = &-i + 6& for all i ,  where b& is a positive real number. The positivity 

of dti  guarantees that the resulting parameterization is nondecreasing. 

The difference among existing methods of parameterization of data lies in the 

definition of 6t+ 

If psrarneterization is considerd ss an adjustable parameter, the nondecreasing 

property should not be violated. The simplest way to achieve this is to introduce 

constraints on the parameterization. Since 6ti is positive, the expression for these 

constraints are ti - ti-, > O. In our implementation, this expression is relaxed by 

first substituting the ">" with "Zn, and secondly by modifying the expression of 

the constraint to ti - ti- > 6ti. The order of magnitude of 6ti must be greater than 

the cornputer preciçion to maintain the nondecreasing property of the parameters. 

This modification of constraint is done to facilitate the solution of the linearly 

constrained least square problems. In this work, the Active-Set[3l] method is used 

for the adjtutment of parameters. 

The matrix form of these linear constraints is 

Subscript t refers to parameterization of data. The size of At is rn x (m - 1) 

where m is the number of point in the data set. Matrix At is a banded matrix with 

bandwidth equal to two. The nonzero elements of A, are au = -1 and ~i,i+~ for 

i = l : ( m - 1 ) .  
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3.1.2 Constraints Due To The Use of The B-spline Basis 

Funct ions 

IR Bspline c w e s  the knot sequence must be nondecreasing. Therefore, adjustment 

of knots must take this requirement into account. This requirement c m  be met by 

introducing constraints on the knots. The constraints on a h o t  sequence with q 

elements can be written as % - ui-1 2 O for i = 2 : q. The matrix form of the 

constraints is 

where subscript u refers to knots. Matrix Au is banded with bandwidth equal 

to two, and the elements in the bandwidth axe %,i = -1 and e,j+l = 1 for i = 1 : 

(q - 1). 

For practical purposes, the end bots are clamped to force the curve to interpo- 

late the Grst and the last control points; the clamping can be represented as a set 

of equality constraints ul = us = . . = uk and uq-t+~ = uq-k+2 = - = uq where 

k is the order of the B-spline ba is  and q is the number of knots. Since Bspline 

basis is inva,riant with respect to affine transformation of knots, end knots can be 

constrained further to ul = Q = . = = O and uq-k+l = uq-k+l = = u, = 1. 

Other constraints for practicd purpose are to set the parameter values of the 

fust and the 1 s t  points equal to the f h t  and the last domain knot respectively, that 

is tl = O and t,,, = 1 as describeci in Appendix A. The purpose of these constraints 
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is to guarantee that the data is fitted by the whole cuve instead of a portion of it. 

To prevent singularity of the basis and portability of the approximation curve, 

weights are constrained to positive values, that is wi > O for aU t. Using the same 

argument as in the case of constraint on parameters, constraint on weights are 

modifiai to wi 2 6, where 6, is a positive real number that is very close to, but 

larger than, computer precision. 

Since rational B-spline basie is invariant with respect to uniform scaling of 

weights, adjustment of weights must be able to prevent the chance of uniform 

scaling to occur. The prevention c m  be done by constraining one of the weight 

to remsin during the adjustment. This is implemented by introducing an equality 

constraint wi = 1. 

3.1.3 Condition Number of Matrix R 

In this work a constraint is used to maintain the good behavior of the control points. 

Since control points, c, are solved from the equation Rc = p, th& uniqueness and 

accuracy depends on the recipmcal of the condition nurnber of matrix R. Unique c 

is obtained if the reciprocal of the condition number of R is not zero. Schoenberg- 

Whitney's rule is a standard method to verify uniqueness of c[13]. Accuracy of c 

depends on computer precision in addition to the reciprocal of condition number 

of R. Accwacy of c cannot be guaranteed if the order of magnitude of reciprocal 

of condition number is l e s  than the computer precision. The strategy used to 

guarantee uniqueness and sccuracy of c is explained in the following paragraphs. 

Uniqueness is guaranteed if R has full column rank, which means that every 
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coIumn of R contains one or more nonzero elements. In other words, R has full 

column rank if every support of B-spline bais  contains at le& one data point. For 

a given set of parameterization of data t E Rm, and a complete set of rational EL 

spline basis Nf d&ed dong a knot sequence u E the Schoenberg-Whitney 

nile requires the existence of set t* c t to guarantee full column rank of matrix R. 

The set t* is defbed as 

Since the interval [uj, u ~ + ~ )  is the support of the B-spline basis N!, ds tence  to 

tj means that every basis is supported at  least one data point. 

Existence of t' guarantees that matrix R has full column rank and, therefore, 

guarantees uniqueness of the solution of the overdetermined equation Rc = p. 

For computation of Rc = p with finite precision, accuracy of c must be war- 

ranted. The accuracy of c can be assessed from the condition number of matrix 

R. When the reciprocal of the condition number of matrix R reaches cornputer 

precision (or stated differently, the condition number of R becomes large), matrix 

R becomes ill-conditioned and the solution of Rc = p will be inaccurate or will 

have wildly large components. 

An ideal way to prevent ill-conditionhg of matrix R is to introduce a constraint 

on the condition number of the matrix. The theoretical expression of constraint 

would be a n d  (R) 5 A where cond (R) is a function of knots, weights, and pa- 

rameterization of data, and A is a prespecined limit whose order of magnitude 
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must confom to cornputer precision. However, the mathematical expression of the 

condition number is difficult, if not impossible, ta derive. 

Fortunately, ill-conditionhg of matrix R has a specific pattern with respect 

to feasible knots, weights and parameterization of data, if the number of data is 

greater than the number of basis. The following paragraph will explain how the 

pattern of condition number of R csn be used to set up a strategy to prevent ill- 

conditioning of R. 

Matrix R becornes ill-conditioned whenever the Iargest rational B-spline basis 

in one or more columns of R approaches zero. This happens if either the weights 

associated with the bais approaches zero or the support of the bais  is almost 

devoid of data, that is the data within the support lie very close to the end of the 

support. 

Figure 3.2 shows the monoto~licdy decreasing behavior of the rational Bspline 

basis when the weight approaches zero; notice that the basis is exactly zero at zero 

weight . At this limit , the condition number of R reaches infinity. This phenornena 

is used to assume that the condition number of R behaves reciprocdly to the 

behavior of the basis, i.e. the condition number of R is monotonically increasing 

as the weight approaches zero. 

Matrix R may also become ill-conditioned whenever the data supporting the 

basis functions are concentrated near the ends of the support of the ba i s  functions. 

Figure 3.3 is used to explain how the concentration of data csn lead to ill- condi- 

tioning of R The c w e  represents the Nt( t )  cubic Bspline basis function. The 

support of N l ( t )  is [u8, ug). In this case this bais  function is set to be mpported 
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Figure 3.2: Vanishing Weight and Rational Espline Basis 
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by two data whose parameter values are t l l  and tlz. Because these data are the 

only support for the N,'(t) Espline bssis function, the Il-th and the lZ th  rows 

of R are those at which the N: (t) Bspline bash function are nonzero; the N: (t) 

for other rows are zero. Whenever tii and til are getting closer to ua and/or uo, 

the Nt(tli) and N: (t12) will be decreaçing, and at borne point both of these basis 

functions will be close to the machine precision. At this point, the matrix R will 

become ill-conditioned. More severe case occurs when tli and tia moves away from 

[u8, u9). In this case, the column of R corresponding to Nt (t) are al1 zero, and 

the matrix R no longer enjoys hill colurnn rank. This column rank deficiency will 

result in nonunique solution of Rc = p. 

To show the ill-conditioning of R with respect to the movement of parme- 

terization for data to the ends of the support of a cubic Bspline basis function, 

the h o t  vector in Figure 3.3 are set to u = {O, 0,0,0,1,2,3,4,5,6,6,6,6) and the 

pararneterization for data are set to 

t = {O, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 

tll, tl2, 

5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6) 

Therefore, the cubic Bspline bais  function N ' ( t )  are supported oniy if (tll, t12) E 

[us = 1, = 5). A test case was run by varying tli and t12 as folîows 
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Figure 3.3: The Bspiine Basis Function N' (t; u) and Its Supporting Data tli and 
tl2 
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The triangle in Figure 3.4 shows the domah of (tl 1, t12) d&ed by this equation. 

Based on the condition num ber of rnatrix R (t t 12), this triangular a r a  are into 

two subareas: white subarea where coud (R) 5 500 and shaded subarea where 

cond (R) > 500. The shaded subarea in the bottom left portion of the triangle 

represents the concentration of (tli, tlz) near the knot us. The shaded subarea in 

the top right portion of the triangle represents the concentration of (tll, t12) near 

the knot ue. The shaded subarea in the top left portion represents the case where 

t is near us and t l2 is near W. 

Another way that the Bspline basis hinction caa loose the supporting data is 

due to movement of knots. This knot movement may, again, result in concentration 

of data at  the end of supports of the basis function. To illustrate this, the same 

h o t  vector and parameterkation for data are used, except that til is set to 2.3 and 

t l2 is set to 3.6. h this case, the knots u8 and are Mned to 

When (ua, uo) 5 t 11, the Bspline basis function Nt (t) are not supported, and 

the column of R corresponding to Ni (t) are all zero. Figure 3.5 shows the tri- 

angular area defineci by (us,%) € [3,5) subject to us s -. The white sub 
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Figure 3.4: Mangular area defined by (tll, tL2) E [l, 5) subject to tll t L2. Shaded 
subareas represent (t t La) rsulting in cond (R) > 500. White subarea represent 
(tii, t 12) resulting in cond (R) 5 500. 
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area represents combinations of (us, w) E [3,5) subject to î ie 5 ug that yield 

cond (R) 5 500 whereas the shaded subarea represents conbination of (us, u9) E 

[3,5) subject to ue 5 u~ that yield cond (R) > 500. 

Figure 3.5: Tnaogular area definecl by (u8, UQ) E [3,5) eubject to u 5 W. Shaded 
subareas represent (us, up) resulting in cond (R) > 500. White subares represent 
(t l ,  t 12) resulting in cond (R) 5 500. 

The examples shown in Figures 3.2, 3.4, and 3.5, demonstrate the existence of 

unfavorable regions within which the condition number of matrix R is large such 
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that the solution of Rc = p may suffer inaccuracy or may be nonunique. The 

examples show that the locations of this udavorable regions are close to the linear 

constraints, leaving the interior favorable. 

3.1.4 Summary of Constraints 

In summary, the feasible domain of nonlinear parameters (knots, weights, and pa- 

rameterization of data) is given by the following eonstraints: 

1. Major constraints: 

rn Linear constraints: 

Feasible parameterization of data : Att 2 O 

Feasible kno t sequence : A,u 2 O 

Feasible weights : A,w 2 0  

a Nonhear  constraints: 

Accuracy of control points : cond (R) 5 A 

These major constraints determines the type of optimization that is used 

to obtain the solution of the nonlinear least squares problem. This will be 

described in the next section. 

2. Minor constraints: 
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Invariance of knots w.r.t. affine : ul = O a n d u q = l  

transformation 

Invariance of weights w.r.t. uniform : wl = 1 

scaling 

Coincident end knots : ul =ul= = O  and 

uq-k+l = uq-&+s = = uq = 1 

Bound of pararneterization of data : tl = O and & = 1 

Due to their simple expressions, al1 of these minor constraints can be satis 

fied by setting the nuiables and removing them from the list of adjustable 

parameters. 

3.2 Method To Satisfy Constraints 

This section presents the method to satisfy all of the constraints described in the 

previous section. The existence of nonlinear constraint, i.e. cond(R 5 A), signifi- 

cantly increases the complexity of satisfying the constraints[dl]. The simplest way 

to deal with a rnix of iinear and nonfinear constraints is to apply the method of non- 

linear constraints to the overall constraints. However, Gill suggests that it is slmost 

always worthwhile to treat the linear constrahis separately whenever possible[3 11. 

In this work, the characteristic of the nonlinear constraint shown in Figures 3.2, 

3.4, and 3.5, suggests that the infeasible domain with respect to the nonlinear con- 

straint is concentrated near the linear constraints. Therefore, most of the interior 

of the feasible domain with respect to the h e a r  constraints also satisfies the non- 

linear constraint. This characteristic f o m  the justiûcation to separate the method 
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of satisfying the linear constraints from that of the nonlinear constraint. The sept+ 

ration is performed by, firstly, computing the criticd step length that maintains the 

feasibility with respect to the linesr constraint, and secondly reducing this cntical 

step if necessary in order to maintain the feasibility with respect to the nonlinear 

constraint. The detail of this strategy is presented in the foilowing two subsections. 

3.2.1 Method To Satisfy The Linear Constraint 

Satisfying linear constraints is performed using the active-set method; adoption of 

Golub's procedure(3lj is used in our codes. 

To retain the feasibility of the subsequent iterations, it is necessary to ensure 

that the step length does not violate any linear constraints in the inactive set 

Ai. Thus, the step dong v to the nearest linear constraint (if any) becomes an 

upper bound for step length a. To calculate this bound, the vector $ = A,v is 

needed. If $j is nonnegative for all j, any positive movement dong v will not add 

any active linear constraint; in this case, the upper bound is infinity. However, 

if one or more components of $ are negative, there &sts a criticd step where 

the corresponding linear constraint becomes binding, i.e. the j -  th inactive linear 

constraint will become active. For example, if several components of are negative. 

Denoting a,,, as the -th row of & and b, as the m t h  component of bi, vector 

7 whose components are defined as 

bi,, - + 
7 = min. ( ll_ ) for a~ m arhere i>, < O 

a v e r s  
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can be calculated. Note that for feasible xts, the denominator is alwsys negative. 

Thus, for al1 rn where 11, is negative, the term inside the braces is always positive 

since the equation is applied only to negative denominator. The upper bound of 

the step length that retains the feasibility of subsequent iterations with respect to 

the linear constraints is the smdlest d u e  of the term in the braces for d l  i. 

3.2.2 Method To Satisfy The Nonlinear constra.int 

After the critical step that maintains the linear constraints is obtained, i.e. 7 in 

Equation 3.7, this step are verifid further to ensure that nonlinear constraint is 

not violated. The verifkation of this critical step and the strategy of reducing this 

step to satisfy the nonlinear constraints is desaibec! next. 

In Figure 3.6, the triangle represents the feasible domain with respect to the 

linear constraints. The white subarea in the triangle represents the feasible domain 

with respect to the nonlinear constraint, whereas the shaded subarea represents 

the infeaçible domain with respect to the nonlinear constraint. The solid circle 

represent the position at the current iteration; this position satisfies both the linear 

and nonlinear constraints. The vectors di and d2 represent two possible descent 

directions. The figure also shows two critical steps 71 and that are associated 

with di and da respectively; these cntical steps are computed using Equation 3.7. 

Line minimization dong the descent di can be performed at full step ri since 

the nonlinear constraint will be satisfied at this step. In this work, the condition 

number of matrix R is computed at  the fidl step 7 sRer it is obtained fiom the 

Equation 3.7. 
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Figure 3.6: Reduction of Critical Step To Satisfy The Nonlinear Constraint 
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On the other hand, line minimization dong the descent dl cannot be performed 

at full step because violation of the nonlinesr constraint will occur. To maintain 

the satisfaction of the linear constraint, a reduoed critical step, denoted by 7; in 

Figure 3.6, is used instead of the n. The method of computing the reduced critical 

step is presented next. 

Ideally, the procedure to reduce 7 m u t  be developed with a consideration to 

conform to the behavior of the condition number of R with respect to 7. However, 

ot her than jus t monotonically increasing with respect to increasing step length, the 

behavior of the condition number of R is difficult to be de&bed accurately. Thus, 

the simplest method of reducing the maximum feasible step is by reducing it with a 

constant factor. The crucial step of the development of such a method is to find the 

factor of reduction that produces the best compromise between adequate length of 

maximum feasible step and fast convergence of finding the step that yields feasible 

condition number of R. If the factor is too big, fast convergence is obtained at the 

expense of excessively short maximum step length, which in tum WU reduce the 

rate of convergence of the overail optimization. On the other hand, an overly small 

factor d l  d u c e  the convergence of hding feasible maximum step length. From 

trial and error expriment, a reduction factor of 20% yields the best compromise. 

With the scheme of constant-factor reduction and the empirical reduction factor 

of 2096, the mechankm to maintain the feasibility of the condition number of R can 

be setup to reduce a given 7 by 20% if the 7 yields i n f d b l e  condition number of 

R If the reduced 7 yields a feasible condition number, it is accepted. Otherwk, 

it is further reduced by 20% and the process is repeated until the condition number 
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at 7 is satisfied. 

Rom our experiment, incorporation of maximum dowable condition number 

of R into the determination of m h u m  feasible step proved to be effective to 

prevent inaccuracy of the solution of Rc = p. 

This section has presented a setup to satisfy the nonlinear constraint by limiting 

the maximum pemissible step such that the constraint wiil not be violated. Two 

useful features of this approach are: 

Ezplicit expression of nonlinear wristrnint k unneceasary. The concentration 

of the infeasible domain with respect to the nonlinear mnstraint at  narrow 

area around the linear constraints (as shown in Figures 3.2, 3.4, and 3.5) 

allows the use of truncation of the critical step (as shown in Figure 3.6) as 

a mechanism to maintain feasibility with respect to the nonlinear constraint. 

This feature permits a simple method for satisfying this constraint. 

a Simpier objective function. This feature is in contrat with the more compli- 

cated objective function due to Gengoux(3OJ. This feature's lack of penalty 

term yields simpler objective function such that the exact gradient can be 

derived. Availability of analytical gradient is very favorable for optimization 

problems. 

This section ends the fmt part of this chapter which introduces the dehition 

of constraints and the use of tmcation of the critical step to s a t i e  the linear 

constraint. The next section will describe the descent direction to reduce the hast 

square error. 
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3.3 Descent Direction 

The nonlinear l e s t  squares problems are distinguished from the general optimiza- 

tion problems by the special structure of the Hessian matriv of the objective h c -  

tion. The expression of Hessian are 

where J represents the Jacobian of the vector e = (1 - RR+) p, Q represents the 

elements of e, and Hi represents the Hessian of G. Most of algorithms for nonlinear 

least squares exploit this special structure. 

Least-squares methods are typically based on the premise that eventually the 

first-order term JTJ of (3.8) will dominate the second-order term xi eiHi. This 

is applicable whenever, at the solution, the residuals are sipificantly smaller 

than the eigenvalues of J ~ J .  Least-squares methods that use this assumption are 

the GausNewton and the Levenberg-Mardquardt methods. The Gauss-Newton 

method set the second-order term of (3.8) to zero. The Levenberg-Mardquardt 

method, on the other hand, set the second-order term to a scalar multiplication of 

identity matrix, i.e Ci eiH, = AI. Generally, the general convergence of these 

method is linear, except for zereresidual problems where the method exhibits 

quadratic convergence. 

The quasi-Newton method is aimed at least squares problem where the w u m g  

tion of domination of J%term over the xi eiH,-term does not apply, i.e. the 
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class of lame miducd problem. This method substitutes the xi %H,-term with a 

quasi-Newton apprmirnation M; an example of a quasi-Newton approximation is 

the update based on the BFGS update. However, it is important to note that the 

properties of hereditary positivedefiniteness and kstep termination of the BFGS 

update in the general optimization problem do not apply in the least squares case. 

This is because the approximation is applied onfy to part of the Hessian. The 

blending the exact and the appraximated curvature idormation is suspected to be 

the cause of the slower convergence of the quasi-Newton method in the least square 

problems than that in the general optimization problems. 

In this research, we do not asurne that, in general, the residuals ei are sig- 

nificantly smaller thaa the eigenvalues of J*J. This, combined with the possible 

slower convergence of the quasi-Newton for l e s t  squares problem, resulted in de- 

cision to treat this l e s t  square problem as a general minimization problem. Since 

the objective function of least squares fitting is smooth and its analytical derivative 

is available, second-order descent direction is used. Among existing second-order 

methods, variable metnc methods (ah known as quasi-Newton methods for general 

minimization problems) is weU known for good convergence. The two main flavors 

of this method are: BFGS and DFP. The former has been acknowledged to be em- 

pirically superior than the latter. The BFGS descent direction is accompanied by 

the standard backtracking method. For this research, codes to compute the BFGS 

descent direction, the a p p r h a t e  Hessian, and backtracking are adopted from al- 

gorithms presented in Numericd Recipes[73], and modifieci to suit the activeset 

method. Restart is performed when the appraimate Hessian becornes near-singuiar 
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or nonpositive definite due to buildup of roundoff errors. 

3.4 Dropping Linear Constraint from Active Set 

For general problems of Iinearly cunstrained optimization problems, the bookkeeg 

ing of gradient, a p p r h a t e  Hessian, and descent direction, are performed in the 

nul1 space of active constraints. The purpose of performing the computation in the 

nul1 space of the active constraints is to minimize the effect of rounding off error. 

In this research, besides the bookkeeping mentioned earlier, an additional book- 

keeping of gradient, approWnate Hessian, and descent direction, are performed . 
This extra storage and computation is critically important when one or more h o t  

constraints are active. Update of apprmcimate of Hessian and computation of de- 

scent direction are performed in the unconstrained space when h o t  constraints are 

active. The goal is to identify whether the descent direction has components that 

are orthogonal to the active h o t  constraints and point into the feasible domain. If 

it does, removd of knot constraints from the active set is attempted. Otherwise, 

the currently active h o t  constraints rernain in the active set. The Lagrange first 

order approximation was used for the determination to eliminate an active linear 

cons t raint from the active set [3 11. 

This method of additional bookkeeping stems from the observation that the 

gradient is orthogonal to the range space of the active knot constraints. It must be 

noted, however, that this strategy may interfm with the standard anti zigzagging 

mechanism which relies on the gradient for constraint deletion from the active set. 

The proposed method, on the contrary, determina the deletion fiom the descent 
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direction. Nevertheless, the benefit of overcoming the lethargic property justses 

the possible slower convergence due to zigzagging. 

This chapter has presented a proposed method to overcome the main obstacles 

in the NURBS least squares problems. The next chapter will present the imple- 

mentation of this method and its resdts. 



Chapter 4 

Nonlinear NURBS Fitting 

This chapter presents implementation of the method that was explained in the 

previous chapter. The main purpose of the implementation is to measure the per- 

formance of the proposed optimization method to obtain a NURBS curve that 

approxirnates a given data set. The NURBS curve is a function of the optimized 

parsmet ers, namel y, kno ts, weights, and parameterization for data. These param- 

eters can be optimîzed together or in various combinations such as knots, knots & 

weights, and h o t  & weights & parameterization for data. Another important pur- 

pose of this irnplementation is to meanire the sensitivity of reduction of the least 

squares error with respect to these combinations of optimized parameters. This 

sensitivity analysis will be used in justifying which parameters can be dropped 

fiom the optimization. This results in an optimization with fewer degree of fie- 

dom. Aiso of particular importance is the efktiveness of the proposed nonlinear 

constraint in providing accurate control points. 

Three sets of data representing a NACA 2415 airfoil, a WTEA airfoil, and an 



axial cornpressor airfoil, were used to accomplish the above goals. Each data set 

was fitted with a NURBS curve using the p r o p d  method while optimizing the 

following five combinations of parameters. These are: 

1. knots; 

2. weights; 

3. parameterization for data; 

4. knots and weights; and 

5. knots, weights, and parameterization for data 

The first three tests were conducted to observe the behavior of each nonlinear 

parameter. The 1 s t  two tests were conducted to observe the behavior of s combi- 

nation of parameters. The first and the fourth tests allow s cornparison of curve 

approximation of a given data set with an inte@ and a rational Bspline curves 

respectively. Results from the fifth test is used to justify whether parameterization 

for data can be dropped from the optimization. This is due to the large size of 

these parameters. 

The proposed 15 test cases were fitted with the method describecl in Chapter 3. 

The termination of optimization was based on Lagrange multipliers and the stan- 

dard termination cnteria as suggested in(15, 731. Ardength parameterization was 

used to initiaüze the paramzterization for data Weights were initialized to one. 

b o t s  were initialized using the averaging method[70]. Maximum permissible con- 

dition number for R w a  set to 500 based on a consideration that its reciprocal is 



stül much larger than the machine's precbion (10-~). Tolerances of activity for the 

linear constraints were set to 1 0 - ~  for h o t  a d  weight constraints, and to 1Od5 for 

constraints of parameterization for the data. 

4.1 NACA 2415 Airfoil 

NACA 2415 is a planar airfoil and it is defined by two parts: upper and lower parts. 

The analytical definition of NACA 2415 can be found in Abbott's book[l]. The data 

curve for this airfoil was obtained by sampling 46 points on each of the upper and 

lower parts, totaling to 97 points after the identical points at the leading edge are 

merged into s single point.The data is sequenced by starting from the middle of 

the trailing edge, going up to the junction with the upper part and proceeding 

dong the upper part to the junction between the upper part and the Ieading edge, 

going around the leading edge up to the junction between the leading edge and the 

lower part, proceeding dong the lower part up to the junction of the lower part and 

the trailing edge, and hal ly proceeding to the middle of the trailing edge where 

the sequence of data starts. The chord length of the airfoii wsî set to 12 [mm]. 

Figure 4.1 shows the NACA 2415 airfoil. 

The degree of approximation curve is set to cubic and the number of basis is 

set to 12. 

4.1.1 Optimization of Knots 

When the knots were optimized to fit the NACA 2415 data set with NURBS curve, 

the total least squares error, Le. ere, + eF%, decreases £iom 0.186 [mm2] to 



NACA 241 5 airfoil 

Figure 4.1: NACA 2415 with 12 mm chordlength 

0.002 [mm2] in 51 iterations; Figure 4.2 shows the decrease of error with respect 

to number of iteration. It is clear that the deaease of error beyond lû-th iteration 

is marginal (insignificant). The pro- of b o t  adjustment stops d e r  1225 (not 

shown in Figure 4.2 due to insignificance decrease of error) iteration due to grdient 

tolerance. Due to ma,rginaJ decrease of error beyond lû-th iteration, the following 

discussion is focused on the first 10 iteration of this knot adjustment. Figure 4.3 

shows the distributions of error along the airfoil before and after knot adjustment; 

solid lines represent the distribution before adjustment and circles represent the 

distribution after adjustment. This figure show that, in general, the disagreement 

between the data and the approximation curves & o p  after the knot is adjusted. 

The maximum errors before and after h o t  adjustment are about 0.191 millimeters, 

and 0.0 15 millimet ers respectively. 

Figure 4.4 shows the knot distributions, along the curves, before and after knot 

adjustment. The multiplicity of hots at the leading edge is 2, i.e. ue = W. 

Figure 4.5 shows the control polygons of the approximation c w e s  before and 

after h o t  adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R 



Reduction of d e  after 52 iterations 

Figure 4.2: Reduction of least squares error of NACA airfoil vs. number of iteration 
obtained from optimiPng the knots 



Figure 4.3: Error distributions of NACA airfoil before and after optimizing the 
knots 
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Knat dlstrlbutkn of section 1 of NACA 241 5 

Figure 4.4: Distributions of Knots of NACA airfoil before and after optimizing the 
knots 
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Figure 4.5: Control polygons of NACA airfoi1 before and after optimizing the b o t s  



4.1.2 Optimization of Weights 

The total least squares error decreases from 0.186 [mm2] to 0.028 [mm2] in 51 

iterations; Figure 4.6 shows the decrease of error with respect to number of iteration. 

Figure 4.7 shows the distributions of error along the airfoil before and after knot 

adjustment ; solid lines represent the distn bu tion before adjustment and circles 

represent the distribution after adjustment. The maximum errors before and after 

b o t  adjustment are about 0.191 millimeters, and 0.058 millimeters respectively. 

Figure 4.8 shows the control polygons of the approximation cuves  before and after 

knot adjustrnent. This figure illustrates the good behavior of control points. This 

is a result of constraining the condition number of R. 



Reduction of eTe after 52 iterations 

Figure 4.6: Reduction of l e s t  squares error of NACA avfoil vs. number of iteration 
obtained from optimizing the weights 



q of secüon 1 after 52 iterations 

index of data 

Figure 4.7: Error distributions of NACA airfoil before and after optimizing the 
weights 
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l O o initial 
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Control Mnîs  of section 1 of NACA 2415 

Figure 4.8: Control polygons of NACA airfoil before and after optimizing the 
weights 
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4.1.3 Optimization of Parameterization for Data 

The totai least squares error decreases from 0.186 [mm2] to 0.068 [mm2] in 3 iter- 

ations; Figure 4.9 shows the decrease of error with respect to nurnber of iteration. 

Figure 4.10 shows the distributions of error dong the airfoil before and BRer h o t  

adjustment ; solid line represents the distribution before adjustment and circles rep  

resent the distribution after adjustment. The maximum errors before and aiter 

h o t  adjustment are about 0.191 miIlimeters, and 0.113 millimeters respectively. 

Figure 4.11 shows the control polygons of the appraximation curves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition nurnber of R. 

Adjustment of parameters exhibited a phenomena of ill-conditioned Hessian. 

This phenomena forced our algonthm to reset the appr-ate Hessian at every 

iteration, leading to the use of the steepestdescent direction instead of the BFGS 

one. The backtrack algorithm failed to obtain adequate step length after three 

iteration. 



Reduction of eTe after 4 iterations 

Figure 4.9: Reduction of least squares error of NACA airfoil vs. number of iteration 
obtained hom optimizing the parameterization for data 
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Figure 4.10: Error distributions of NACA airfoil before and after optimivng the 
parameterkation for data 
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l O o initial 
a 0 optimized 1 

Conîrol poinîs of section 1 of NACA 24 t 5 

Figure 4.11: Control polygons of NACA airfoil before and after optimizing the 
paramet erization for data 
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4.1.4 Optimization of Knots and Weights 

The total l e s t  squares error decreaçes from 0.186 [mm2] to 0.002 [mm2] in 51 iter- 

ations; Figure 4.12 shows the decreafe of m r  with respect to number of iteration. 

Figure 4.13 shows the distributions of error dong the airfoil before and after knot 

adjustment ; solid lines represent the distribution before adjustment and circles r ep  

ment the distribution f i e r  adjustment. The mmimwn errors before and after 

h o t  sdjustment are about 0.191 rnillimeters, and 0.015 rnillimeters respectively. 

The weights practically did not change as indicated by extreme values of 1.0062 

and 0.9924 from their initial values of unity. 

Figure 4.14 shows the h o t  distributions, dong the curves, before and after knot 

adjustment. The multiplicity of bo t s  at  the Ieading edge is 2, i.e. ue = W. 

Figure 4.15 shows the control polygons of the apprcnrimation c w e s  before and 

after knot adjustment. This Bgure illustrata the good behavior of control points. 

This is a result of constraining the condition number of R. 



Reduction of eTe after 52 iterations 

Figure 4.12: Reduction of lest  squares error of NACA airfoil vs. number of itera- 
tion obtained from optimizing the combination of knots and weights 
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Figure 4.13: Error distributions of NACA airfoil before and after optimizing the 
combination of knots and weights 
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Figure 4.14: Distributions of Knots of NACA d o i l  before and after optimizing 
the combination of knots and weights 
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Figure 4.15: Control polygons of NACA airfoil before and after optimizing the 
combination of knots and weighte 



4.1.5 Optimization of Knots, Weights and Parameteriza- 

tion for Data 

The total least squares error decreases from 0.186 [mm2] to 0.061 [mm2] in 2 itera- 

tions; Figure 4.16 shows the decrease of error with respect to number of iteration. 

Figure 4.17 shows the distributions of enor dong the airfoi1 before and after knot 

adjustment ; solid lines represent the distribution before adjustment and circles rep 

resent the distribution after adjustment. The maximum errors before and after 

knot adjustment are about 0.191 millimeters, and 0.107 millimeters respectively. 

Figure 4.18 shows the control polygons of the a p p r d a t i o n  curves before and 

after knot adjustment. This figure illustratai the good behavior of control points. 

This is a result of constraining the condition number of R. 

Adjustment of parameters exhibi ted a phenomena of ill-conditioned Hessian. 

This phenomena forced our algorithm to reset the apprwimate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. The backtrack algorithm failed to obtain adequate step length after three 

iteration. 



Reduction of ere after 3 iterations 

Figure 4.16: Reduction of l e s t  squares error of NACA airfoil vs. number of itera- 
tion obtained fkom optimizing the combination of knots, weights, and parameteri- 
zation for data 
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Figure 4.17: Error distributions of NACA airfoil before and after optimizing the 
combination of knots, weights, and paraxneterization for data 
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Figure 4.18: Control polygons of NACA airfoil before and after optimizing the 
combination of knots, weights, and parameterbation for data 



4.2 WTEA Airfoil 

WTEA airfoil is a planar airfoil propnetary of deHavilland. The data curve consists 

of 97 points. The data is sequenced by starting from the middle of the trailing edge, 

going up to the junction with the upper part and proceeding dong the upper part to 

the junction between the upper part and the leading edge, going around the leading 

edge up to the junction between the leading edge and the lower part, proceeding 

dong the lower part up to the junction of the lower part and the trailing edge, and 

finally proceeding to the middle of the trailing edge where the sequence of data 

starts. Figure 4.19 shows the shape of WTEA airfoil. The degree of approximation 

curve is set to cubic and the number of bais is set to 12. 

Figure 4.19: WTEA airfoi1 
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4.2.1 Optimization of Knots 

The totd l e s t  squares error decreases h m  0.737 [mm2] to 0.023 [mm2] in 51 iter- 

ations; Figure 4.20 shows the decreese of error with respect to number of iteration. 

Figure 4.21 shows the distributions of error along the airfoil More and after h o t  

adj ustment; solid lines represent the distribution before adjustment and circles rep  

resent the distribution after adjustment. The marximurn errors before and aRer 

h o t  adjustment are about 0.21 1 millimeters, and 0.030 millimeters respectively. 

Figure 4.22 shows the h o t  distributions, along the curves, before and after knot 

adjustment. Active knot constraints were UT = us = ug and u l ~  = u12. 

Figure 4.23 shows the control polygons of the apprcacimation curves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 
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Reduction of 0% after 52 iterations 

Figure 4.20: Reduction of least squares error of WTEA ainoil vs. number of 
iteration obtained from optixnizing the knots 



index of data 

Figure 4.21: Error distributions of WTEA airfoi1 before and after optimizing the 
knots 
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Figure 4.22: Distributions of Knots of WTEA airfoi1 before and after optimizing 
the knots 
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Figure 4.23: Control polygons of WTEA airfoil before and after optimizing the 
knots 



4.2.2 Optimization of Weights 

The total least squares error decreases from 0.737 [mm2] to 0.059 [mm2] in 51 iter- 

ations; Figure 4.24 shows the decrease of error with respect to number of iteration. 

Figure 4.25 shows the distributiom of error dong the airfoil before and after h o t  

adj us t ment; solid lines represent the distribution before adj ustment and &cles r ep  

resent the distribution after adjustment. The maximum errors before and after 

knot adjustment are about 0.211 millimeters, and 0.054 millimeters respectively. 

Al1 weight constraints were inactive. 

Figure 4.26 shows the control polygons of the appraximation cumes before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 
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Reduction of eTe after 52 iterations 

Figure 4.24: Reduction of l e s t  squares error of WTEA airfoil vs. number of 
iteration obtained from optimiPng the weights 
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Figure 4.25: Error distributions of WTEA airfoil before and after optimizing the 
weights 
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Figure 4.26: Control polygons of WTEA airfoil before and after optimizing the 
weights 



The total least squares error decreases from 0.737 [mm2] to 0.193 [mm2] in 2 itera- 

tions; Figure 4.27 shows the decrease of error with respect to number of iteration. 

Figure 4.28 shows the distributions of error dong the airfoil before and after b o t  

adjustment ; solid lines represent the distribution before adjustment and circles r ep  

resent the distribution after adjustment. The m b u m  mors before and after 

h o t  adjustment are about 0.191 millimeters, and 0.113 millimeters respectively. 

Figure 4.29 shows the control polygons of the approximation curves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 

Adjustment of parameters exhibited a phenomena of ill-conditioned Hesçian. 

This phenomena forced Our algorithm to reset the approximate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. The backtrack dgorithm failed to obtain adequate step length after three 

iteration. 
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Reduction of eTe after 3 iterations 

Figure 4.27: Reduction of le& squares =or of WTEA airfoil vs. number of 
iteration ob tained from optimizing the parameterization for data 
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Figure 4.28: Error distributions of WTEA airfoil before and after optimizing the 
parameterization for data 
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Figure 4.29: Control polygons of WTEA airfoil before and after optimiPng the 
parameterization for data 
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4.2.4 Optimization of Knots and Weights 

The total Ieast squares error decreases from 0.737 [mm2] to 0.012 [mm2] in 51 iter- 

ations; Figure 4.30 shows the decrease of error with respect to number of iteration. 

Figure 4.31 shows the distributions of error along the airfoil before and after knot 

sdjustment ; solid lines represent the distribution before adjustment and circles r eg  

resent the distribution after adjustment. The m h u m  errors before and after 

h o t  adjustment are about 0.211 millimeters, and 0.024 millimeters respectively. 

The weights practically did not change as iadicated by extreme values of 1.0362 

and 0.9278 from their initial values of unity. 

Figure 4.32 shows the h o t  distributions, along the curves, before and after knot 

adjustment. Only one knot constraint was active, Ur = us. 

Figure 4.33 shows the control polygons of the apprmimation curves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R 
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Figure 4.30: Reduction of least squares enor of WTEA airfoi1 vs. number of 
iteration obtained fkom optimizing the combination of knots and weights 
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Figure 4.31: Error distributions of WTEA airfoil before and after optimizing the 
combination of knots and weights 
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Knat distribution of &on 1 of WiEA airfoil 

Figure 4.32: Distributions of Knots of WTEA airfoil before and after optimizing 
the combination of knots and weights 
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Figure 4.33: Control polygons of WTEA airfoil before and after optimizing the 
combination of knots and weights 
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4.2.5 Optimization of Knots, Weights and Parameteriza- 

tion 

The total least squares error decreases from 0.737 [mm2] to 0.105 [mm2] in 2 itera- 

tions; Figure 4.34 shows the decrease of e m r  with respect to number of iteration. 

Figure 4.35 shows the distributions of error dong the airfoi1 before and after h o t  

adjus t ment; solid lines represen t the dis tri bu tion before adjus tmen t and circles rep 

ment  the distribution after adjustment. The maximum errors before a d  after 

knot adjustment are about 0.21 1 millimeters, and 0.187 millimeters respectively. 

Figure 4.36 shows the control polygons of the approximation curves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition nurnber of R. 

Adjustment of parameters d b i t e d  a phenomena of ill-conditioned Hessian. 

This phenomena forced Our algorithm to reset the appraximate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. The backtrack algorithm fsiled to obtain dequate step length &ter three 

iteration. 
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Reduction of eTe after 3 iterations 

Figure 4.34: Reduction of lesst squares error of WTEA airfoil vs. number of 
iteration obtained Eom optimizing the combination of knots, weights, and param- 
eterization for data 
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Figure 4.35: Error distributions of WTEA airfoil before and aRer optimizing the 
combination of knots, weights, and parameterization for data 
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Figure 4.36: Control polygons of WTEA airfoil before and after optimizing the 
combination of knots, weights, and parameterization for data 



4.3 Axial Cornpressor 

This threedimensional blade section is a proprietary of the Concepts ET1 of Ver- 

mont. The data curve consista of 77 points. The data is sequenced by starting fiom 

the middle of the trailing edge, going up to the junction with the upper part and 

proceeding dong the upper part to the junction between the upper part and the 

leading edge, going around the leading edge up to the junction between the leading 

edge and the lower part, proceeding along the lower part up to the junction of the 

lower part and the trailing edge, and finaily proceeding to the middIe of the trailing 

edge where the sequence of data starts. Figure 4.37 shows the shape of the blade 

section. The degree of approximation curve is set to cubic and the number of bais 

is set to 22. 

4.3.1 Optimization of Knots 

The total least squares error decreases fiom 9.09 [dl to 0.327 [mm2] in 51 itera- 

tions; Figure 4.38 shows the decrease of error with respect to number of iteration. 

Figure 4.39 shows the distributions of error along the airfoi1 before and f i e r  h o t  

adj ustment; d i d  lines represent the distribution before adjustment and circles rep  

ment the distribution after adjustment. The maximum errors before and after 

h o t  adjustment are about 1.21 millimeters, and 0.206 millimeters respectively. 

Figure 4.40 shows the h o t  distributions, along the curves, before and f i e r  h o t  

adjustment. Only one h o t  constraint was active, us = up. 

Figure 4.41 shows the control polygons of the approximation c w e s  before aad 

after h o t  sdjustment. This figure illustrates the good behavior of control points. 
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Figure 4.37: Blade Section of Concepts ET1 
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This is a result of constraining the condition number of R. 

Reduction of eTe after 52 iterations 

Figure 4.38: Reduction of least squares error of cornpressor blade's airfoil vs. num- 
ber of iteration obtained from optirnizing the knots 



e1 of section 1 after 52 Herilons 

o optimized I 0- I 

index of data 

Figure 4.39: Error distributions of cornpressor blade's airfoil before and after opti- 
mizing the knots 



Knot distribution of section 1 of Cornpressor at mid 

. . . . . . . . I -  initial 
optimized 

Figure 4.40: Distributions of Knots of cornpressor blade's airfoil before and after 
optimizing the knots 



Control points of section 1 of Cornpressor at mid 

0 initial 1: 0 optirnized 

Figure 4.41: Control polygons of cornpressor blade's airfoi1 before and after opti- 
mizing the kno ts 
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4.3.2 Optimization of Weights 

The total least squares error decreases fiom 9.09 [mm2] to 0.78 [mm2] in 51 itera- 

tions; Figure 4.42 shows the decrease of error with respect to number of iteration. 

Figure 4.43 shows the distributions of error dong the airfoil before and after b o t  

adj ustment ; solid lines represent the distribution before adjustment and circles r e p  

men t  the distribution after adjustment. The maximum errors before and after h o t  

adjustment are about 1.2 1 millimeters, and 0.421 millimeters respectively. Active 

weight constraint were wa = E,. Figure 4.44 shows the control polygons of the 

approximation curves before and after h o t  adjustment. 



Reduction of eTe after 52 iterations 

Figure 4.42: Reduction of least squares error of cornpressor blade's airfoil vs. num- 
ber of iteration obtained from optimizing the weights 
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e, of sectbn 1 after U beraîlons 

Index of data 

Figure 4.43: Error distributions of cornpressor blade's airfoil before and after opti- 
mizing the weights 



Control points of section 1 of Cornpressor at mid 

0 initial 1 optimired 

Figure 4.44: Control polygons of cornpressor blade's aidoil before and after opti- 
rnizing the weights 



4.3.3 Optimization of Parameterization for Data 

The total Ieast squares error decreases from 9 .O9 [mm2] to 1.76 [mm2] in 4 iterations; 

Figure 4.45 shows the decrease of error with respect to number of iteration. Fig- 

ure 4.46(b) shows the distributions of error dong the aidoil before and aRer h o t  

adjustment ; solid lines represent the distribution before adjustment and circles r e g  

resent the distribution after adjustment. The maximum errors before and after 

kno t adj ustmen t are about 1.2 1 millimeters, and 0.781 millime ters respectively. 

Figure 4.47 shows the control polygons of the approximation curves before and 

after knot adjustrnent. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 

Adjustment of parameters exhibitecl a phenomena of ill-conditioned Hessian. 

This phenornena forced OUI algorithm to reset the apprcmbate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrack algorithm failed to obtain adequate step length after three iteration. 



Reduction of eTe after 5 tterations 

Figure 4.45: Reduction of least squares error of cornpressor blade's airfoi1 vs. num- 
ber of iteration ob t ained from optimizing the parameterkation for data 



ei of section 1 after 5 brations 

Index of data 

Figure 4.46: Error distributions of cornpressor blade's airfoil before snd after opti- 
mizing the parameterization for data 



Control points of section 1 of Cornpressor at mid 

0 initial 10 optirnized 

Figue 4.47: Control polygons of cornpressor blade's airfoii before and atter opti- 
mizing the parameterization for data 



4.3.4 Optimization of Knots and Weights 

The total least squares error decreases fiom 9.09 [mm2] to 0.335 [mm2] in 51 itera- 

tions; Figure 4.48 shows the decreaee of error with respect to number of iteration. 

Figure 4.49 shows the distributions of emor dong the airfoil before and after knot 

adjustment; solid lines represent the distribution before adjustment and circles rep  

ment the distribution after adjustment. The maximum errors before and after 

knot adjustment are about 1.21 millimeters, and 0.208 mülimeters respectively. 

The weights practically did not change as indicated by extreme values of 1.0064 

and 0.9932 fiom their initial values of unity. 

Figure 4.50 shows the h o t  distributions, dong the curves, before and after h o t  

adjustment. None of the constraints was active. 

Figure 4.51 shows the control polygons of the apprmhation cuves before and 

after knot adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 



Reduction of eTe after 10 iterations 

Figure 4.48: Reduction of least squares enor of cornpressor blade's aidoil vs. num- 
ber of iteration obtained from optimizing the combination of knots and weights 
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initial d o a p t i m i l a l  

index of data 

Figure 4.49: Error distributions of cornpressor blade's airfoil before and d e r  opti- 
mizing the combination of knots and weights 



Knot distribution of section 1 of Cornpressor at mid 

........ optimized 

Figure 4.50: Distributions of Knots of cornpressor blade's airfoil before and after 
optimizing the combination of knots and weights 



Control points of section 1 of Cornpressor at mid 

0 initial 1 optirnized 

Figure 4.51: Control polygons of cornpressor blade's airfoil before and f ier  opti- 
mizing the combination of knots and weights 



4.3.5 Optimization of Knots, Weights and Parameteriza- 

tion 

The total least squares error decreases from 9.09 [mm2] to 3.98 [mm2] in 1 item 

tions; Figure 4.52 shows the decrease of emr with respect to number of iteration. 

Figure 4.53 shows the distributions of error dong the airfoil before and after h o t  

adj us tment ; solid lines represent the distribution before adjustmen t and circles r ep  

resent the distribution after adjustment. The maximum errors before and after 

knot adjustment are about 1.21 milluneters, and 0.998 millimeters respectively. 

Figure 4.54 shows the control polygons of the approximation curves before and 

after h o t  adjustment. This figure illustrates the good behavior of control points. 

This is a result of constraining the condition number of R. 

Adjust ment of parameters exhibiteci a phenomena of U-condi tioned Hessian. 

This phenomena forced our algorithm to reset the approximate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. The backtrack algorithm fded to obtain adequate step length dter three 

iteration. 



Figure 4.52: Raluction of least squares error of cornpressor blade's airfoil vs. n u -  
ber of iteration obtaîned from optimizing the combination of knots, weights, and 
parameterization for data 



initial dl 

index of data 

Figure 4.53: Error distributions of cornpressor blade's aidoil before and after opti- 
mizing the combination of knots, weights, and parameterbation for data 
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Control points of section 1 of Cornpressor 8t mid 

0 initial 1 0 optirnired 

Figure 4.54: Control polygons of cornpressor blade's airfoil before and after opti- 
mizing the combination of knots, weights, and parameterization for data 
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4.4 Discussion 

Results of the experiments are tabulated in Tables 4.1, 4.2, and 4.3, each of which 

lists the least-squares mor, the maximum distance between data and their approx- 

imation, and the number of iteration for parameter adjustment respectively. 

Table 4.1: Least Square Error of Three Sets of Data and Five Sets of Adjustable 
Parame t ers 

Residual ege. + eye, + e k  [mm2] 
Adjusted parameters 

Data Initial u w t (UA ( u , w , ~ )  
NACA 2415 0.186 0.002 0.028 0.068 0.002 0.061 
WTEA 0.737 0.023 0.059 0.193 0.012 0.105 
Cornpressor 9.09 0.327 0.78 1.76 0.335 3.98 

Table 4.2: Maximum Distances Between Thre  Sets of Data and Their Approxima- 
tion for Five Sets of Adjusted Parameters 

Maximum distance between data and curve [mm] . . 
Adj us t ed parameters 

Data Initial u w t ( u , ~ )  (u,w,t) 
NACA 2415 0.191 0.015 0.058 0.113 0.015 0.107 
WTEA 0.211 0.030 0.054 0.113 0.024 0.187 
Corn~ressor 1.21 0.206 0.421 0.781 0.208 0.998 

These results must be analyzed based on three criteria: 

perfoxmance of the approximation, 

0 the sensitivity of various combinations of optimized parameters, and 

the e f k t  of constraining the condition number of matrix Ft. 



Table 4.3: Number of Iteration for Three Sets of Data and Five Sets Adjusted 
Parameters 

Adjusted parameters 
Data u w t (u,w) (u,w,t) 
NACA 2415 51 51 3 51 2 
WTEA 51 51 2 51 2 
Com~ressor 51 51 4 51 1 

The performance of the approximation showed that the Ieast squares error is 

reduced by a factor of 93 for the NACA 2415 airfoil. This factor is obtained 

by dividing the initial error by the resulting error optimization of knots (under 

column u). The factor of error reduction is 61 and 27 for the WTEA and the 

axial compressor airfoils respectively. TabIe4.2 shows that the approximation also 

reduces the maximum distance between the curve and the data by factors of 12.7, 

7, and 5.8, for the NACA 2415, the WTEA, and the &al compressor, airfoüs 

respectively. A barchart constructed from Table4.2 is shown in Figure 4.55. This 

barchart shows the ratios of the maximum error before the optimization and the 

maximum error after the optimization for al1 combinations of parameters that were 

tested in this research. The unit of the ratios is in percent. 

Table 4.1 and 4.2, and Figure 4.55, suggest that the best results (smallest raid- 

uals and smallest maximum error) are obtained fiom h o t  adjustment and h o t -  

weight adjustment as shown in columns u and (u, w). However, these columns also 

show that hot-weight adjustment produce only marginal improvement of accuracy 

over h o t  adjustment. This phenomena is consistent for the three different sets of 

data. Sections 4.1.4, 4.2.4, and 4.3.4, show that weights are practically wichsnged 
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Combination of optimized parameten 

Figure 4.55: Barchart of the ratios of the maximum mors fier the optimization 
and the maximum errors before the optimization. 
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on the h o t -  weight adjustrnents. The constancy of weights explains why h o t -  

weight sdjustment produce similar accuracy to one produced by h o t  adjustment. 

This behavior can be used to justify the exclusion of weights from the adjustable 

parameters whenever knots are optimized. The effect of this exclusion for low order 

curves, whose orders are significantly smaller than their number of basis, is that 

the adjustable parameters will be halfed. This will result in faster computation. 

Table 4.3 lists the number of iteration before our algorithm terminated the 

adjustment process. The table clearly shows that premature termination occured 

when adjustable parameters contain parameterization of data; this phenornena is 

shown in columns t and (u, w, t). 

This premature termination consistently occured in the baclttracking part of the 

optimization. Standard texts of optimization suggest that this early termination is 

due to nonlinearity of the parameterization for the data[3l], and cannot be handled 

easily. This finding can be used to justify dropping the parameterization for data 

from the adjustable parameters of NURBS least squares problem. The m a t  signifi- 

cant benefit from this elimination is a significamt reduction of number of adjustable 

parameters, which yields significantly lower computation tirne. 

Columns u, w, and (u, w) in Tables 4.1 and 4.2 show the reduction of error and 

do not treat panimeterization of data as an adjustable parameter. These columns 

clearly indicate that adjustment of knots produces significautly greater reduction 

of error than unadjusted knots, i.e. columns W. This hding can be u d  to 

justify that knots should be adjusted. This is the opposite of Jupp9s[49, 50, 511 

and Sarkar's[79, 781 works respectively, in which adjustment of b o t s  produced 
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unfavorable reduction of l r s t  squares error. The favorable reduction of error in this 

research's h o t  adjustment can be attributed to the proposed method of elimination 

of active knot constraints as describeci in Section 3.3. 

Focusing on columns u and (u, w) in Table 4.1 and 4.2 shows that adjusting 

knots and weights simultaneously yields only marginal improvement in the reduc- 

tion of least squares error over the error obtained from adjusting only the knots. 

This finding, dong with the finding in previous paragrapl, can be used to justify 

the elimination of weights and parameterization of data from the set of adjustable 

parameters. The elimination of these parameters results in insignificant loss of 

reduction of error. Moreover, this elimination reduces the number of adjustable 

parameters, which leads to significant reduction of computation t h e .  



Chapter 5 

Multicurve Least Squares Method 

The previous two chapters have presented a method for optimally fitting a data set 

representing an airfoil with a NURBS curve. The optimization can be done over 

various combination of parameters. Chapter 4 studied the effectiveness of these 

combinations. In this chapter an implementation of a method to simultaneously fit 

many c m e s ,  represented by discrete data set, is presented. 

5.1 Introduction 

An application of this method can be found in turbine blade and wing design. 

In these application the wing/blade is defined by t w ~  or more airfoil sections each 

represented by a set of data points. These form the skeletal curves of the wing/blade 

skdeton and are skinned to generate the wing/blade sudace. 

The proposed method forces the skeletal eurves to share a mutual knot vector 

and a mutual degree. This ensures compatibility between the diflrerent curves. In 
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order to extend the method developed for single curve application (see Chapter 3 

and 4) a new objective function, a new list of parameters, a new iist of constraints, 

and a method for h o t  initialization, are needed. This is discussed below. 

5.1.1 Definition of Objective Function 

Performing nonlinear less t squares to a set of data curves simul taneously requires 

the definition of a new objective hinction. It must be a function of the lest  squares 

errors of the individual data curves and its gradient must be well defineci and simple 

to derive. Based on this requirement, we propose the new objective function to be 

the surn of the least square mors of the individual data curves; denoting the new 

objective hinction as E and the least squares error of a section curve as ci, the 

expression for the objective function le 

E = E( where 1 is the number of curves 
i 

The partial derivative of the objective hinction is simply 

The definition of Zki/a is definecl in Equation (2.29). 
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5.1.2 Optimization Parameters 

The parameters of the objective function consist of the union of parameters of 

the individual skeletal curves. In this thesis, the union is constructed by stacking 

individual skeletal cume's parameters and can be written sa 

The number of elements of wi's is identical for al1 i because of mutual u and 

degree. On the contrary, ti's may have different number of elements depending 

on the size of the data. The hear parameters ci are obtained from wpi where 

R, = R, (u, wi, t,) as describeci earlier in Equation 2.3. 

5.1.3 Linear and Nonlinear Constraints 

The matrix of linear constraints is obtained by combining the matrices of linear 

constraints of individual skeletal curve as follows 



where A, is the matrix of linear constraints on the knots, A,,* is the matrix of 

linear constraint on the weights of the i-th skeletal curve, and Alti is the m a t e  of 

linear constraint on the parameterization of the Cth skdetal curve. 

The nonlinear constraints are fomed by stacking the nonlinear constraints of 

individual curves as follows 

where & is the overdetermined le& square matrix of the à-th cuve and cond (R) 

is the condition number of R+ In this chapter, &'s are set to 500 for all i. 
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5.1.4 Initialization of Knots 

Initial knots are computed using a modifiecl version of Piegl's averaging procedure[70]. 

The modincation are the use of the union of the parametrization of the skeletal 

cunes, i.e. t = ti U ta U U t,, for computing the knots. The parameterization 

of data used to compute initial knots is obtained from the union of the parameter- 

ization of data of al1 curves; denoting the union by t, its definition is 

The Schoenberg-Whitney condition m a t  likely will be satisfied by this initializa- 

tion of knots whenever the data curves consist of fairly uniform numbers of points. 

Care must be taken, however, when the numbers of data of the section curves are 

nonuniformly distributed. In this case knot initiahation may fd to satisfy the 

Schoenberg- Whitney condition. When this happens, the problem can be overcome 

by reparameterization. This is done by computing a temporary h o t  vector us- 

h g  the parameterization values of the curves that failed the Schoenberg- Whitney 

condition. The knot vector has the same number of elements as the previously 

obtained mutual h o t  vector. The reparameterization is then performed as follows. 

When h o t  initialization u fails to satisfy the Schoenberg-Whitney condition 

on the parameterization t, there are one or more Bspline basis of arder k not 

supported by the combination of u, k, and t. This is illustrateci in Figure 5.1, 

where the Bspline basis, N', is not supported by the data (shown in O). 

In this case, a temporary h o t  vector, v is computed using the averaging 
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Figure 5.1 : Failure of h o t  Initialization due to La& of Support for Espline Basis 
Nj 
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method[70]. The vector v is based on t and the prespecified number of basis. 

The latter forces vectors u and v to have identical number of elements. The aver- 

aging method guarantees that all Espline bais defined by v, t, and the prespecified 

number of basis, are supported. 

A new parameterization for the data points is then computed by relocating 

elements of t in such a way that they occupy the same i n t d  and that their 

relative positions within the interval remains the same. For t, E [ u ~ , v ~ + ~ ) ,  its 

relative position within interval is denoted by aj and it csn be computed from the 

linear equation tj = (1 - aj) ui + ajvi+<. The new parameterization on u can then 

be computed using ti = (1 - aj) ui + ajui+i. 

This reparameterization wiU distribute the data uniformly dong the mutual 

knot vector u. Thus, the problem of unsupported basis is eliminated. Furthmore, 

the definition of aj preserves geometnc information for the subset of data which lie 

on a single interval. 

The proposed method was implemented to measure its performance in obtain- 

ing NURBS skeletal curves that a p p r h a t e  a given data set. The NURBS curves 

are functions of the optimized parameters, namely, knots, weights, and panrm- 

eterization for data These parameters can be optimized together or in various 

combinations such as knots, lcnots & weights, and h o t  & weights & parameteriza- 

tion for data. Another important purpose of thîs Mplementation is to measure the 

sensitivity of reduction of the least squares error with respect to these combinations 

of optimized parameters. This sensitivity analysis wil l  be used in justif@ng which 

parameters can be dropped from the optimization. This results in an optimization 
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with fewer degree of freedom. A h  of particular importance is the effectiveness of 

the proposed nonlinear constraint in providing accurate control points. 

Three sets of data representing a skeleton of an airplane wing, a skeleton of an 

axial cornpressor blade, and a skeleton of a turbine blade were used to accomplish 

the above goals. Each data set was fitted simultaneously with NURBS skeletal 

curves curve using the propased method while optimizing the following five combi- 

nations of parameters. These are: 

1. knots; 

2. weights; 

3. parameterizat ion for data; 

4. knots and weights; and 

5. knots, weights, and parameterization for data. 

The first three tests were conducted to observe the behavior of e h  nonlin- 

ear parameters. The last two tests were conducted to observe the behavior of a 

combination of parameters. The first and the fourth tests allow a cornparison of 

approximation with integral and rational Eqline methods respectively. Results 

fiom the mh tests are used to juste the deletion of parameterization from the list 

of adjustable parameters. 

The proposed 15 set of skdetal c w e s  were fitted with the method described in 

this chapter. The termination cnteria for the optimization was based on Lagrange 

multipliers and the standad termination critena as suggested in[15,73]. Arclength 
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parameterization was used to initialize the parameterization for data. Weights were 

initidized to one. Knots were initialized ushg the averaging method[70]. Maximum 

permisîible condition number for R was set to 500 b d  on a consideration that 

its reciprocal is still much Iarger than the machine's precision (IO-=). Tolerances of 

activity for the hear  constraints were set to IO-' for knot and weight constraints, 

and to 10-~ for constraints of parameterbation for the data. 

5.2 Wing Airfoils 

This section presents the decrease of objective hinction and the decrease of error 

distribution of a two-section skeleton. The cwes  forming the skeleton are the 

NACA 2415 and the WTEA, and the data are identical to ones used in the previous 

chapter. Figure 5.2 shows the three dimensional view of the airfoils and their 

relative locations. 

5.2.1 Optimization of Knots 

The sum of least-square error decreased fiom O.nl mm2 to 0.005 mm2 in 51 it- 

eration as shown in Figure 5.3. The largest distances between the data and the 

approximation cuves decreased from 0.244 rnillimetem to 0.0 15 millimeters for 

NACA 2415 and fkom 0.158 millimeters to 0.011 millimeters for the WTEA as 

shown in Figure 5.4 and 5.5 respectively. The shape of the NACA 2415 and the 

WTEA, dong with their junctions, are shown in Figure 5.6. Active knot constra.int 

is ue =%. 
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Figure 5.2: The NACA 2415 (la) and WTEA (right) Airfoils Form the Skeletal 
C w e s  of The Wing 
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Figure 5.3: Reduction of error vs. number of iteration for twecurve wing airfoils 
obtained from optimizing the bots 
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index of data 

Figure 5.4: Error distribution of NACA airfoil of twwurve wing airfoüs obtained 
from optimizing the knots. 



CHAPTER 5. MULTICURVE LEAST SQUARES METHOD 

ei of tedion 2 afier 52 iteïations 
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Figure 5.5: Error distribution of WTEA of two-curve wing airfoils obtained from 
optimizing the hots. 
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Figure 5.6: Shape of NACA 2415 (top) and WTEA (bottom) before and aRer 
optimization of knots. 
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5.2.2 Optimization of Weights 

The s u m  of least-square error decreased from 0.771 [mm2] to 0.073 [mm2] in 51 

iteration as shown in Figure 5.7. The largest distances between the data and the 

approximation curves decreased h m  0.244 millimeters to 0.063 rnillimeters for 

NACA 2415 and from 0.158 millimeters to 0.038 millimeters for the WTEA as 

shown in Figure 5.8 and 5.9 respectively. The shape of the NACA 2415 and the 

WTEA, dong with their junctions, are shown in Figure 5.10. Al1 constraints are 

Figure 5.7: Reduction of error va. number of iteration for twecurve wing airfoils 
obtained from optimiPng the weights 

inactive. 
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initiai 
optimized 

index of data 

Figure 5.8: Error distribution of NACA airfoil of two-curve wing airfoils obtained 
fkom optimizing the weights. 
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Figure 5.9: Error distribution of WTEA of twecurve wing airfoils obtained from 
optimizing the weights. 
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Figure 5.10: Shape of NACA 2415 (top) and WTEA (bottom) Before and After 
Optimization of Weights 
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5.2.3 Optimization of Parameterization 

The sum of least-square error decreased from O.Ti1 [mm2] to 0.240 [mm2] in 2 

iteration as shown in Figure 5.11. The larggt distances between the data and 

the approximation curves decreased from 0.244 millimeters to 0.158 millimeters 

for NACA 2415 and fkom 0.158 xdheters to 0.080 millirneters for the WTEA as 

shown in Figure 5.12 and 5.13. The shape of the NACA 2415 and the WTEA, 

dong with their junctions, are shown in Figure 5.14. 

Optimization of parameters exhibited a phenornena of ill-conditioned Hessian. 

This phenornena forced our algorithm to reset the a p p r b a t e  Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrack algonthm failed to obtain adequate step length after two iteration. 
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Figure 5.11: Reduction of error vs. number of iteration for two-cu~e wing airfoils 
ob t ained £rom op t imizing the parameterization for data 
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Figure 5.12: Error distribution of NACA airfoil of twwume wing aidoils obtained 
fiom optimizing the parameterization for data 
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initial 1 o o  optirnized 

Figure 5.13: Enor distribution of WTEA of twwxrve wing aidoils obtained from 
optimizing the parameterization for data. 
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........ op tim ized 

Figure 5.14: Shape of NACA 2415 (top) and WTEA (bottom) Before and After 
Optimization of Knots 
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5.2.4 Optimization of Knots and Weights 

The sum of least-square error decreased from 0.771 [mm2] to 0.006 [mm2] in 42 

iteration as shown in Figure 5.15. The largest distances between the data and 

the approximation curves decreased from 0.244 millimeters to 0.027 millimeters 

for NACA 2415 and from 0.158 millirneters to 0.014 millimeters for the WTEA as 

shown in Figure 5.16 and 5.17. The shape of the NACA 2415 and the WTEA, dong 

with their junctions, are shown in Figure 5.18. Active knot constraint is us = ug. 

The change of weights before and after optimization is less than 5 percent. 
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Fiedudion of eTe after 43  iterations 

Figure 5.15: Reduction of error vs. number of iteration for t w P c w e  wing airfoils 
obtained £iom optimizing the combination of knots and weights 
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Figure 5.16: Error distribution of NACA aidoil of twwxrve wing airfoils obtained 
fiom optimizing the combination of knots and weights. 
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Figure 5.17: Error distribution of WTEA of t w o - m e  wing aidoils obtained from 
optimizing the combination of knots and weights. 
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Figure 5.18: Shape of NACA 2415 (top) and WTEA (bottom) before and after 
optimization of combination of knots and weights. 
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5.2.5 Optimization of Knots, Weights, and Parameteriza- 

tion 

The sum of least-square error deaeased from 0.771 [mm2] to 0.199 [mm2] in 5 

iteration as shown in Figure 5.19. The largest distances between the data and 

the approximation curves decreased hom 0.244 millimeters to 0.143 miIlimeters 

for NACA 2415 and fkom 0.158 &eters to 0.073 millimeters for the WTEA as 

shown in Figure 5.20 and 5.21. The shape of the NACA 2415 and the WTEA, 

dong wi th their junctions, sre shown in Figure 5.22. 

Optimization of parameters exhibited a phenomena of ill-condi tioned Hessian. 

This phenomena forced our algorithm to reset the appmximate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrsck algorithm failed to obtain adequate step length after five iteration. 
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Figure 5.19: Muction of error m. number of iteration for twecurve wing airfoils 
ob t ained from optimizing the combination of knots, weights, and parameterization 
for data 
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Figure 5.20: Error distribution of NACA ainoil of two-cuve wing airfoils obtained 
from optimizing the combination of knots, weights, and parsmeterization for data. 
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Figure 5.21: Error distribution of WTEA of t w w m v e  wing airfoüs obtained from 
optimizing the combination of knots, weights, and parameterization for data. 
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Figure 5.22: Shape of NACA 2415 (top) and WTEA (bottom) before and after 
optimization of combination of knots, weights, and parameterization for data. 
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5.3 Cornpressor Blades 

Figure 5.23 shows three airfoils definhg the blade of an axial compressor. The blade 

is a proprietary of the Concepts ETI, hc. The airfoils are shown in four views, 

which are the XZ-plane at the upper left box, the isometric view at the upper right 

bac, the XY-plane at the lower left bax, and the YX-plane at the lower right box. 

The axis of rotation of the compreçsor is the 2-axis. The relative position of the 

airfoils dong the radial, i.e. the X - a ,  direction is shown in the XZ-plane view 

and the XY-plane view. In these views, the left most airfoil is at the hub of the 

shaft of the compressor and the right m a t  airfoil is at the tip of the blade. The 

location of the airfoil in the middle is at r = (1 - 0.605) n U b  + 0.605 rtip. 

5.3.1 Optimization of Knots 

The sum of least-square error decreased fkom 27.5 [mm2] to 1.53 [mm2] in 51 it- 

eration as shown in Figure 5.24. The largest distances between the data and the 

approximation curves decreased from 1.16 millimeters to 0.359 millimeters for hu b 

airfoil, fiom 1.25 millimeters to 0.229 mülirneters for mid section airfoil, and fiom 

1.19 millimeters to 0.268 millimeters for tip airfoil as shown in Figure 5.25, 5.26, 

and 5.27. The shape of the sirfoils, dong with the distribution of knots, are shown 

in Figure 5.28, 5.29, and 5.30. AU constraints are inactive. 
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1 I - D E A S M a s t e r S e r i e s 4 :  Desiqn 

Figure 5.23: Data of Cornpressor 
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Figure 5.24: Reduction of error vs. number of iteration for three-cuve cornpressor 
blade's airfoils obtained from optimizing the bots  
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Figure 5.25: Error distribution of hub airfoil of three-curve cornpressor blade ob 
tained from optimizing the knots. 
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Figure 5.26: Error distribution of midsection aidoil of threecwe cornpressor blade 
obtained from optimizing the knots. 
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Figure 5.27: Error distribution of tip airfoil of threearve cornpressor blade ob- 
tained fiom optimizing the knots. 
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Knot distribution of section 1 of Cornpressor blades 

Figure 5.28: Fitted c w e s  of hub airfoil of cornpressor blade obtained from opti- 
rnizing knots. 
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Figure 5.29: Fitted curves of mid section ainoil of cornpressor blade obtained from 
optimizing knots. 



CHAPTER 5. MULTICURVE LEAST SQUARES METHOD 

Knot distributbn of section 3 of Compre 

. , . . . . . . optirnized 

Figure 5.30: Fit ted curves of tip airfoil of cornpressor blade obtained from optimiz- 
h g  knots. 
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5.3.2 Optimization of Weights 

The sum of le&-square error decreased £rom 27.5 [ m d ]  to 3.45 [mm2] in 51 it- 

eration as shown in Figure 5.31. The large& distances between the data and the 

apprarrimation curves decreased from 1.16 mibneters to 0.485 mihneters for hub 

airfoil, from 1.25 millimeters to 0.424 mülimeters for mid section airfoil, and from 

1.19 millimeters to 0.430 millimeters for tip airfoil as shown in Figures 5.32, 5.33, 

and 5.34, respectively. The shape of the sections, dong with their junctions, are 

shown in Figures 5.35, 5.36, and 5.37. All constraints are inactive. 
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Reduction of efe after 52 iteraîbns 

Figure 5.31: Reduction of error vs. number of iteration for three-cm cornpressor 
blade's airfoils obtained £iom optimizing the weights 
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Figure 5.32: Error distribution of hub ainoil of three-cwe cornpressor blade ob- 
tained from optimizing the weights. 
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Figure 5.33: Error distribution of midsection aidoil of threecurve cornpressor blade 
obtained fiom optimizing the weights. 
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Figure 5.34: Error distribution of tip airfoil of threecurve cornpressor blade ob 
tained from optimizing the weights. 
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Knot distribution of section 1 of Cornpressor blades 

Figure 5.35: Fitted c w e s  of hub aidoil of cornpressor blade obtained fkom opti- 
mizing weights. 
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Figure 5.36: Fitted curves of mid section aidoil of cornpressor blade obtained fiom 
op timizing weights . 
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Figure 5.37: Fitted curves of tip airfoil of cornpressor blade obtained from optimiz- 
ing weights. 
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5.3.3 Optimization of Parameterization 

The sum of lest-square error decressed from 27.5 [mm2] to 6.56 [mm2] in 2 iteration 

as shown in Figure 5.38. The largest distances between the data and the approxi- 

mation Cumes decreased fiom 1.16 millimeters to 0.661 miIlimeters for hub airfoil, 

from 1.25 millimeters to 0.774 millimeters for mid section airfoil, and from 1.19 mil- 

limeters to O.7?6 millimeters for tip airfoil as shown in Figurea 5.39, 5.40, and 5.41. 

The shape of the sections, dong with their junctions, are shown in Figures 5.42, 

5.43, and 5.44. AU constraints are inactive. 

Optimization of parameters exhibited a phenomena of ill-conditioned Hessian. 

This phenomena forced our algonthm to reset the apprmimate Hessian at every 

iteration, leading to the use of the ateepest-descent direction instead of the BFGS 

one. Backtradc algorithm failed to obtain adequate step length after two iteration. 
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Figure 5.38: Reduction of error vs. number of iteration for three-cwe cornpressor 
blade's airfoils obtsined fiom op timizing the parameterization for data 
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Figure 5.39: Error distribution of hub ainoil of threecwe cornpressor blade o b  
tained fkom optimizing the parameterization for data 
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Figure 5.40: Error distribution of nidsection airfoil of threecwe cornpressor blade 
ob tajned from opt imizing the parameterization for data. 
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Figure 5.41: Eror distribution of tip airfoil of three-curve cornpressor blade OB 
tained from optimizing the parameterization for data 
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Knot distribution of section 1 of Cornpressor blades 

Figure 5.42: Fitted c w e s  of hub airfoil of cornpressor blade obtained from opti- 
mizing parameterization for data 
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Knot distribution of section 2 of Cornpressor blades 

Figure 5.43: Fitted cwe6  of mid section airfoi1 of cornpressor blade obtained fiom 
optimizing parsmeterkation for data 
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Figure 5.44: Fitted curves of tip aidoil of cornpressor blade obtained from optimiz- 
ing parameterkation for data 
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5.3.4 Optimization of Knots and Weights 

The sum of least-square error decreased fiom 27.5 [mm] to 1.52 [mm2] in 19 it- 

eration as  shown in Figure 5.45. The largest distances between the data and the 

appraximation curves decreased from 1.16 millimeters to 0.344 rnillimeters for hub 

airfoil, from 1.25 millimeters to 0.235 millimeters for mid section airfoil, and from 

1.19 millimeters to 0.276 millimeters for tip airfoil, as shown in Figures 5.46, 5.47, 

and 5.48. The shape of the sections, dong with their junctions, are shown in Fig- 

ures 5.49, 5.47, and 5.48. Al1 constraints are inactive. The backtrack algorithm 

failed due to excessively small step length. Change of weights are less than 0.5% 

for the three sections. 
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Reduction of eTe after 20 iterations 

Figure 5.45: Reduction of =or vs. number of iteration for threecurve cornpressor 
blade's airfoils obtained fiom optimizing the combination of knots and weights 
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Figure 5.46: Emor distribution of hub airfoil of three-cm cornpressor blade o b  
tained fiom optimizing the combination of knots and weights. 
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Index of data 

Figure 5.47: Error distribution of midsection airfoil of three-cume cornpressor blade 
obtained from optimizing the combination of knots and weights . 
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Figure 5-48: Error distribution of tip airfoil of three-cwe cornpressor blade ob- 
tained from optimizing the combination of knots and weights. 
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Knot distribution of section 1 of Cornpressor biades 

Figure 5.49: Fitted cuves of hub airfoil of cornpressor blade obtained from opti- 
mipng combination of knots and weights. 
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Knot distribution of section 2 of Cornpressor blades 

Figure 5.50: Fitted c w e s  of mid section airfoil of cornpressor Made obtained from 
optimizing combination of knots and weights. 
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Figure 5.51: Fitted c w e s  of tip aidoil of cornpressor blade obtained fiom optimiz- 
ing combination of knots and weights. 
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5.3.5 Optimization of Knots, Weights, and Parameteriza- 

tion 

The sum of least-square error decreased from 27.5 [mm2] to 7.34 [mm2] in 51 it- 

eration as shown in Figure 5.52. The largat distances between the data and the 

appraximation curves decreased from 1.16 millimeters to 0.871 rnillimeters for hub 

airfoil, from 1.25 rnillimeters to 0.871 millirneters for mid section airfoil, and from 

1.19 millimeters to 0.795 millimetere for tip airfoü as shown in Figures 5.53, 5.53, 

and 5.53, respectively. The shapes of the sections, dong with their junctions, are 

shown in Figures 5.56, 5.57, and 5.58. 

Op tirnization of parameters exhibiteci a phenomena of ill-conditioned Hessian. 

This phenomena forced our algorithm to reset the apprdmate  Hessian at  every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrack algorithm failed to obtain dequate step length after two iteration. 
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Figure 5.52: Reduction of error vs. number of iteration for three-cuve cornpressor 
blade's airfoils obtained kom optimizing the combination of knots, weights, and 
parameterization for data 
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Figure 5.53: Error distribution of hub aidoil of threeewe cornpressor blsde ob- 
tained from optimizing the combination of knots, weights, and parameterization for 
data. 
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Figure 5.54: Error distribution of midsection airfoil of threecwe cornpressor blade 
obtained fiom optimizing the combination of knots, weights, and parameterization 
for data 
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Figure 5.55: Error distribution of tip airfoil of threecurve cornpressor blade o b  
tained from optimizing the combination of knots, weights, and parameterization 
for data 
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Knot distribution of section 1 of Cornpressor blades 

Figure 5.56: Fitted curves of hub airfoil of cornpressor blade obtained from opti- 
mizing combination of knots, weights, and parameterization for data. 
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Figure 5.57: Fitted curves of mid section S o i 1  of cornpressor blade obtained kom 
optirnjzing combination of knots, weights, and parameterization for data. 
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Figure 5.58: Fitted curves of tip airfoi1 of cornpressor blade obtained from optimiz- 
h g  combination of knots, weighte, and parameterization for data. 
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5.4 Turbine Blades 

Figure 5.59 shows three airfoils defining the blade of an k a 1  turbine. The blade is 

a propnetary of the Concepts ETI, Inc. The allfoils are shown in an isometnc view. 

The axis of rotation of the turbine is the 2-&. The left most airfoi1 is at the hub 

of the shaft of the turbine and the right mat airfoil is at the tip of the blade. The 

location of the airfoil in the middle is at r = (1 - 0.529) rbub + 0.529 rtip. 

1-DEAS Mas t e r  Ser ies 4: Des ign 

Figure 5.59: Data of Turbine Blades: Left Blade is Section 1, Middle Blade is 
Section 2, and Right Blade is Section 3 
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5.4.1 Optimization of Knots 

The s u m  of least-square error d e c r d  from 16.8 [mm2] to 5.0 [mm2] in 50 it- 

eration as shown in Figure 5.60. The large& diatances between the data and the 

approximation cuves decreased from 0.983 millimeters to 0.438 millimeters for hub 

airfoils, from 0.881 millimeters to 0.476 millimeters for mid section airfoil, and from 

0.785 millimetes to 0.521 miilimeters for tip airfoil, as shown in Figures 5.61, 5.62, 

and 5.63, respectively. The shapes of the sections, dong with their junctions, are 

shown in Figures 5.64, 5.65, and 5.66. Al1 constraints are inactive. 
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Figure 5.60: Reduction of enor vs. number of iteration for threecwe turbine 
blade's airfoils ob tained from op timizing the knots 
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Figure 5.61: Erroi distribution of hub airfoü of three-cwe turbine blade obtained 
kom optimizing the knots. 
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Figure 5.62: Error distribution of rnidsection airfoi1 of three-curve turbine blade 
obtained from optimizing the lcnots. 
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Figure 5.63: Error distribution of tip airfoil of threecurve turbine blade obtained 
fiom optimizing the knots. 
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Knot distribution of section 1 of Turbine blades 

Figure 5.64: Fitted curves of hub airfoil of turbine blade obtained fiom optimizing 
knots. 
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Knot distribution of section 2 of Turbine blades 

Figure 5.65: Fitted curves of mid section airfoil of turbine blade obtained fiom 
optimizing knots. 
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Knot distribution of section 3 of Turbine blades 

Figure 5.66: Fitted curves of tip airfoil of turbine blade obtained from optimizing 
knots. 
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5.4.2 Optimization of Weights 

The sum of least-square error decreased from 16.8 [mm2] to 2.1 [mm2] in 25 it- 

eration as shown in Figure 5.67. The largest distances between the data and the 

approximation curws decreased from 0.983 millimeters to 0.41 6 millimeters for hub 

airfoil, kom 0.881 millimeters to 0.413 milheters for mid section airfoil, and from 

0.785 millimeters to 0.301 millimeters for tip airfoil, as shown in Figures 5.68, 5.69, 

and 5.70, respectively. The shapes of the sections, dong with their junctions, are 

shown in Figures 5.71, 5.72, and 5.73. ws of section 3 is active. The backtrack 

aigorithm encountered round off error. 
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Redudlon of efe after 25 kemt bns 

Figure 5.67: Reduction of error W. nwnber of iteration for threwxfye turbine 
blade's aidoils obtained from optimizing the weights 
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Figure 5.68: Error distribution of hub airfoil of threecwe turbine blade obtained 
from optimizing the weights. 
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Figure 5.69: Error distribution of midsection airfoil of threwurve turbine blade 
obtained fkom optimizhg the weighb. 
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Figure 5.70: Error distribution of tip airfoil of three-curve turbine blade obtained 
from optimizing the weights. 
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Knot distribution of section 1 of Turbine blades 

Figure 5.71: Fitted c w e s  of hub airfoil of turbine blade obtained fiom optimizing 
weights. 
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Knot distribution of M i o n  2 of Turbine blades 

Figure 5.72: Fitted curves of mid section airfoil of turbine blade obtained from 
optimizing weights. 
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Knot distribution of section 3 of Turbine blades 

Figure 5.73: Fitted curves of tip airfoil of turbine blade obtained from optimizing 
weights. 
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5.4.3 Optimization of Parameterization 

The sum of least-square error decreased from 16.8 [mm2] to 15.6 [mm2] in one 

iteration as shown in Figure 5.74. The largat distances between the data md the 

a p p r h a t i o n  curves inaeased ( 1 )  from 0.983 millimeters to 1.3 1 miliimeters for 

hub airfoil, from 0.881 millimeters to 0.1.24 millimeters for mid section airfoil, and 

from 0.785 millimeters to 1 .O6 millimeters for tip airfoil, as shown in Figures 5.75, 

5.76, and 5.77. The shapes of the sections, dong with their junctions, are shown 

in Figures 5.78, 5.79, and 5.80. 

Optimization of parameters exhibited a phenomena of ill-conditioned Hessian. 

This phenomena forced our algorithm to reset the appraximate Hessian at every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrack algorithm failed to obtain adequate step length after two iteration. 
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Figure 5.74: Reduction of error vs. number of iteration for threenirve turbine 
blade's airfoils obtained from optimiPng the parameterization for data 
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Figure 5.75: Error distribution of hub sirfoi1 of threeninre turbine blade obtained 
from optimizing the paramet erization for data 
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Figure 5.76: Error distribution of midsection airfoil of threecurve turbine blade 
obtained from optimizhg the pararneterization for data. 



CHAPTER 5. MULTICURVE LEAST SQUARES METHOD 

e, of section 3 after 2 heratbns 

initial 
optirnirad 

- 
index of data 

Figure 5.m Error distribution of tip airfoil of three-curve turbine blade obtained 
kom optimizing the parameterization for data. 
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Knot distribution of section 1 of Turbine blades 

Figure 5.78: Fitted curves of hub airfoil of turbine blade obtained from optimizing 
parameterization for data. 



CHAPTER 5. MULTICURVE LEAST SQUARES METHOD 

Knot distribution of section 2 of Turbine blades 

Figure 5.79: Fitted curves of mid section airfoi1 of turbine blade obtained from 
optimizing parsmeterization for data 
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Knot distribution of section 3 of Turbine blades 

Figure 5.80: Fitted cuves of tip airfoil of turbine blade obtained from optimizing 
parameterization for data. 
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5.4.4 Optimization of Knots and Weights 

The sum of least-square error decreased from 16.8 [mm2] to 4.470 [mm2] in 51 

iteration as shown in Figure 5.81. The largest distances between the data and the 

approximation curves decreased from 0.983 millimeters to 0.423 rnillimeters for hu b 

airfoil, from 0.881 millimeteni to 0.453 millimetere for mid section sirfoil, and from 

0.785 millimeters to 0.495 millimeters for tip airfoil, as shown in Figures 5.82, 5.83, 

and 5.84, respectively. The shapes of the sections, dong with their junctions, are 

shown in Figures 5.85, 5.86, and 5.87. Active h o t  constrsints are UT = us = u9. 

Change of weights are less than 3 percent for the three section curves. 
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Figure 5.81: Reduction of error vs. numbex of iteration for three-curve turbine 
blade's airfoils obtained fÎom optimizing the combination of knots and weights 
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Figure 5.82: Error distribution of hub airfoil of thre+curve turbine blade obtained 
from optimizing the combination of knota and weights. 
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Figure 5.83: Error distribution of midsection Moi1 of three-curve turbine blade 
obtained from optimizing the combination of knots and weights . 
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Figure 5.84: Error distribution of tip airfoil of three-cwe turbine blade obtained 
kom optimizing the combination of knots and weights. 
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Knot distribution of section 1 of Turbine blades 

Figure 5.85: Fitted curves of hub airfoi1 of turbine Made obtained from optimizing 
combination of knots and weights. 
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Knot distribution of section 2 of Turûine blades 

Figure 5.86: Fitted c w e s  of mid section airfoil of turbine blade obtained fkom 
optimizing combination of knots and weights. 
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Knot distribution of section 3 of Turbine blades 

Figure 5.87: Fitted c w e s  of tip airfoil of turbine blade obtained from optimizing 
combination of knots and weights. 
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5.4.5 Optimization of Knots, Weights, and Parameteriza- 

tion 

The sum of le&-square error decreased from 16.8 [mm2] to 5.52 [md] in 1 it- 

eration as shown in Figure 5.88. The largest distances between the data and the 

approximation curves decreased from 0.983 millimeters to 0.502 millimeters for hub 

airfoil, from 0.881 miIlimeters to 0.556 millimeters for mid section airfoil, and from 

0.785 millimeters to 0.615 millimeters for tip airfoil, as shown in Figures 5.89, 5.90, 

and 5.91. The shapes of the sections, dong with their junctions, are shown in 

Figures 5.92, 5.93, and 5.94. 

Optimization of parameters exhibited a phenomena of ill-conditioned Hessian. 

This phenomena forced our algorithm to m e t  the appracimate Hessian at  every 

iteration, leading to the use of the steepest-descent direction instead of the BFGS 

one. Backtrack algorithm failed to obtain adequate step length after two iteration. 

5.5 Discussion 

Results of the experiments are tabulated in Tables 5.1, 5.2, and 5.3, each of which 

lists the least-squares emr ,  the maximum distance between data and the approxi- 

mating cuves, and the number of iteration for parameter adjustment respectively. 

These results must be analyzed based on three enteria: 

performance of the appraximation, 

0 the sensitivity of various combinations of optimized parameters, and 
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tîe rate 

Figure 5.88: Reduction of enor vs. number of iteration for threecurve turbine 
blade's aidoils obtained fkom optimizing the combination of knots, weights, and 
parameterization for data 
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index of data 

Figure 5.89: Error distribution of hub aidoil of three-curve turbine blade obtained 
fiom optirnihg the combination of knots, weights, and parameterization for data. 

Table 5.1: Least Square Error of Three Skeleton and Five Combinations of Ad- 
just able Parame ters 

Residual Ln=, ( e f ~  + ere, + eTe.), [mm2] 
Adjusted parameters 

Data Initial u w t (u, W) (u, W, t) 
M o &  0.771 O.MI5 0.073 0.240 0.006 0.199 
Turbine blades 16.80 4.98 2.07 15.6 4.47 5.52 
Cornpressor bl& 27.5 1.53 3.45 6.56 1.52 7.34 
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q of section 2 after 2 bratbns 

initial d l  

index of data 

Figure 5.90: Error distribution of midsection airfoil of three-cwe turbine blsde 
obtained from optimizing the combinat ion of knots, weights, and paramet erization 
for data. 
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10 20 30 40 50 60 70 80 
index of data 

Figure 5.91: Error distribution of tip airfoil of three-cwe turbine blade obtained 
fiom optimizing the combination of knots, weights, and parameterization for data. 
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Knot distribution of section 1 of Turbine blades 

Figure 5.92: Fitted curves of hub airfoil of turbine blade obtained fkom optimizing 
combination of knots, weights, and parameterization for data. 
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Figure 5.93: Fitted c w e s  of mid section airfoil of turbine blade obtained fiom 
op timizing combinat ion of knots, weights, and parameterization for data. 



CHAPTER 5. MULTICüRVE LEAST SQUARES METHOD 

Knot distribution of section 3 of Turbine blades 

Figure 5.94: Fitted curves of tip airfoil of turbine blade obtained fiom optimizing 
combination of knots, weights, and parameterization for data. 
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Table 5.2: M h u m  Distances Between Three Skeletons and The Appraximating 
Curves for Five Combinations of Adjustable Parameters 

Maximum distance between data and curve [mm] 
Adjusted parameters 

Data Initial u w t ( e w )  (u,w,t) 
Airfoils: 

NACA 0.244 
WTEA 0.158 

Turbine Blades: 
Section 1 0.983 
Section 2 0.881 
Section 3 0.785 

Compressor Blades: 
Section 1 1.16 
Section2 1.25 
Section3 1.19 

Table 5.3: Nurnber of Iteration for Three Skeletal Curves and Five Combinations 
of Adjustable Parameters 

..- - -- 

Adjustd parameters - 
Data u w t h .w)  (u,w,t) 

Turbine blades 51 24 1 51 1 
Cornpressor blades 51 51 2 19 2 
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the effect of constraining the condition number of mat* K 

The performance of the approximation showed that the least squares error is 

reduced by a factor of 154 for the wing skeleton. This factor is obtained by dividing 

the initial error by the best find error fiom various combinations of adjustable 

parameters. The factor of error reduction is 3.8 and 18 for the turbine and the 

axial compressor blades respectively. 

Table 5.4 presents the factors of reduction of maWnum distance between the 

curve and the data. The largest factors of reduction consistently occur under col- 

umn u, i.e. when optimization is performed only on knots. For the two sections 

of the wing, the factors of reduction are 16.3 and 14.4 respectively. For the three 

sections of the turbine blade, these factors are 2.2, 1.9, and 1.5, respectively. For 

the three sections of the compressor blade, these factors are 3.2, 5.7, and 4.4. 

Table 5.1, 5.2, and 5.4, suggest that the best results (smallest residuals and 

smdest maximum error) are obtained fiom h o t  adjustment and knot-weight ad- 

justment as shown in colurnns u and (u, w). However, these columns also show 

that hot-weight adjustment produce only marginal improvement of accuracy over 

h o t  adjustment. This phenornena is consistent for the three different sets of data. 

Sections 5.2.4, 5.3.4, and 5.4.4, show that weights are practically unchangeci on the 

hot-weight adjustments. 

This behavior can be used to justify the exclusion of weights iiom the adjustable 

parameters whenever knots are optimized. The &ect of this exclusion for low order 

curves, whose orders are sigdicantly mder than their number of basis, is that 

the adjustable parameters wül be halved. This will remit in faster computation. 
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Table 5.4: Reduction Maximum Distances Between Three Sets of Data and Their 
Approximation for Five Sets of Adjusted Parameters 

Maximum distance in mm 
Adjusted parameters 

Data u w t (u,w) (u,w,t) 
Airfoils: 

NACA 16.3 3.9 1.5 9.0 1.7 
WTEA 14.4 4.2 2.0 11.3 2.2 

Turbine: 
Section 1 2.2 2.4 0.75 2.3 2.0 
Section 2 1.9 2.1 0.7 1.9 1.6 
Section 3 1.5 2.6 0.7 1.6 1.3 

Corn pressor: 
Section 1 3.2 2.4 1.8 3.4 1.3 
Section 2 5.7 2.9 1.6 5.3 1.4 
Section 3 4.4 2.8 1.5 4.3 1.5 

Table 5.3 lists the number of iteration before our algonthm terminateci the 

adjustment process. The table clearly shows that premature termination occured 

when adjustable parameters contain parsmeterization of data; this phenornena is 

shown in columns t and (u, w, t). 

Optîmizing the parameterization for data, both individually and in combina- 

tion with other parameter, caused premature termination of optimization as shown 

in Table 4.3. This premature termination consistently occurd in the backtracking 

part of the optimization. Standard texts of optimization suggest that this early ter- 

mination is due to nonlinearity of the parameterization for the data[31], and csnnot 

be handled easily. This finding can be used to justify dropping the parsmeteriz* 

tion for data fkom the adjustable parameters of NURBS least squares problem. The 

most significant benefit from this elimination îs a signifiant reàuction of number 
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of adjustable parameters, which yields signifimtly lower computation tirne. 

Columns u, w, and (u, w) in Tables 5.1 and 5.2 show the reduction of error 

where parameterization for the data were not adjusted. These columns clearly 

indicate that adjustment of knots produces signincantly greater reduction of error 

than that of unadjusted knots, Le. columne W. This finding can be used to justify 

that knots should be adjusted. The favorable reduction of error in this research's 

h o t  adjustment can be attnbuted to the proposed method of elimination of active 

h o t  constraints as described in Section 3.3. 

Focusing on columns u and (u, w) in Table 4.1 and 4.2 shows that adjusting 

knots and weights simultaneously yields only marginal improvement in the reduc- 

tion of least squares error over the error obtained fkom adjusting only the knots. 

This finding can be used to justûy, dong with those findings in previous para- 

graphs, the elimination of weights and parameterization for the data from the set 

of adjustable parameters. This significant elimination of parameters only results in 

insignificant l o s  of reduction of error. Moreover, thh &mination reduces the num- 

ber of adjustable parameters, which leads to significant reduction of computation 

t h e .  

In conclusion, this chapter has demonstrated that the proposed methods to 

satisfy the linear constraint and to overcome the lethargic property are effective 

in reducing the least squares error. However, the m a t  important feature of this 

proposed approach of multicurve fitting is the mmpatibility of the fitted curves. 

The results in this chapter have clearly indicated that optirnization of the mutual 

h o t  vector improves the error distribution dong the fitted c w e s .  To the author's 
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knowledge, no literature is available for this compatible multicurve appracimation. 

The advantages of this approach will be showed in the next chapter, in which 

these compatible curves are subjected to repetitive knots insertion to satisfy the 

prespecified tolerance. 



Chapter 6 

Tolerance Based Knot Insert ion 

In the previous chapter a skeleton of curves was created over a mutual hot  vector 

and a mutual degree. These curves a p p r h a t e  a discrete data set of points. 

The accuracy of this approximation, measured by the largest deviation between 

discrete point and the closest point on the curve, m u t  be controlled in many 

applications such a s  airplane wing design. The methods presented so far, fit the 

best approximation without changing the numbers of control points of the NURBS 

curves. These methods do not take into account the prespecified tolerance and may 

reçu1 t in curves t hat violate this requirement. 

This chapter presents a method which extends the multicwe appraicimation 

method to be able to appraximate the set of skeletal curves to within a prespecified 

tolerance. The method is based on h o t  insertion. 

The purpose of h o t  insertion is to incresse the number of basis functions, 

and thereby the flacibility of the curve. The compatibility among skeletal curves 

must be maintained throughout the h o t  insertion process. The ha1 results are 
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compared with Piegl's h o t  removal based method. 

This chapter starts with a literature review of existing curve fitting methods that 

are designed to satisfy a prespecified tolerance. It is followed by a bnef exposition 

of the proposed strategy of h o t  insertion and the results of applying the proposed 

rnethod to a skeleton of curves descnbed in the previous chapter. 

6.1 Literature Survey 

Curve approximation to achieve a prespecified tolerance must have a mechanism 

to adjust the number of basis supporting the approximation curves. For Espline 

curves, the number of basis is equal to the number of h o t s  less the order of the basis. 

Adjustment of number of basis can only be perfomed by knot insertion and hot 

removal. Forsey and Bartels developed the hierachical fitting method based on 

kno t insertion [28] . Tiller developed a knot-removal based cume approximation[82, 

70). Brief description of these methods are presented in the following sections. 

Hierarchicd Fit t ing 

The Himarchical Surface Fitting technique, proposed by Forsey and Bartels[28], 

uses h o t  insertion to satisfy a prespecified acmacy. This method consists of 

repetition of the following set of three sequentid taslts: 

1. identification and isolation of out-of-tolerance regions, 

2. rehement of the bas& and the control points supporting the out-of-tolerance 

regions by h o t  insertion, and 
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3. solving control points supporthg the out-of-tolerance region from a linearly 

constrained least-sqiiare equation. 

IR Figure 6.1 the shaded areas are an example of out-of-tolerance regions that 

have been identified. Bounding boxes of constant u and u covering these regions 

are introduced to isolate the out-of-tolerance regions. The uee of constant u and 

v is intended to simplify the d a t i o n  of linear constraints and the subsequent 

refinement . 
Parameter space of stnface 

Figure 6.1: The Shaded Regions are Out-Of-Tolerance Region 

The purpose of rhement is to increase the degree of fieedom of the least-square 

problem in order to achieve the required tolerance. The refinement is perfonned 

by inserthg knots. To minimize the computation, refmement is performed locally 



CHAPTER 6. TOLERANCE BASED KNOT INSERTION 268 

in the out-of-tolerance region. The rehement task produces refined control points 

forming the control net supporthg the out-of-tolerance region. The perimeter of 

this net will be ked during the third task in order to force the perimeter of the 

out-of-tolerance region to interpolate perimeter cuves d&ed by the constant pa- 

rameter lines of the isolating box. This also localïzes the influence of the solution 

of the least-square equation to wi thin the out-of- tolerance region. Equation (6.1) 

illustrates the refined control points that must be fixeci for surface of degree p and 

q in u and v repectively. 

Vaud refers to fixed control points whereas Vh refers to the control points 

that will be computed f?om the lest-square equation. Recalliog that the expres 

sion of this equation is [Bu (u)] [VI [B: (u)] = [Pl, the expression of the linearly 

constrained least-square equation of the fiee control points will be 

Retaining the control points on the perimeter of the refined V d o m  trMming 

p left-mat, and right-mat, columns of Bu; for Bv, tRmming applies to the q left- 

most, and right-most , columm. This trimming reduces the amputation of solving 
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the least-square equation. Details of theoretical background and implementation 

can be found in Forsey's article[28]. 

The advantsgeous features of the Hiersrchical Fitting are: (1) efficient computs- 

tion due to locaiized computation of the rehed control pointa, and (2) economical 

storage throughout the many levels of the fitting process. Absent fiom Forsey's 

article[28] is any discwion about the degeneration of the least squares equation 

(6.2) when it becornes ill-conditioned or rank deficient. This degeneration may oc- 

cur in tight tolerance situation where the required number of basis approsches the 

number of data such that there is one or more Bspline basis not supported by the 

data. 

The application of the Hierarchical fitting to curve approximation is straight- 

forward; in this case, the out-of-tolerance region takes the form of a line segment 

instead of a box. Suppose that the spsn of out of tolerance segment is t E [t,, t j )  

and that the Bspline basis supported in this segment are Ni for i = k : m. The 

refinement can be perfomed by repetitive h o t  insertion at ti and t, such that 

the augmented Bspline ba is  Ni' for i = km : m* are all zero for t [ti, t j ] .  In 

general, the number of knots that must be inserted at t, equals the order of the 

Bspline basis; the same applies to t,. Thus, for Bspline curve of order k, each 

out-of-tolerance segment requires not more than 2k new knots. The result of this 

insertion is an increase of the number of baQs which contradicts the objective of 

minimizing t hem. 

Application of the Hierarchical fitthg to a skeleton results in distribution of out- 

of-tolerance region such as the one shown in Figure 6.2. The simplest way to apply 
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the Hierarchicd fitting is to consider each out-f-tolerance segment as an individual 

region and to perform local refinement in this region. However, compatibility will 

be destroyed because knot insertion is performed only on one curve. The violation 

of compatibility is not tolerable in Our application. Therefore this simple scheme is 

not a viable way to eliminate the out-of-tolerance regions. 

Figure 6.2: Line Segments of Out-Of-Tolerance Region 

An altemative scheme to maintain the compatibility of the skeletal curves is 

to merge all the out-of-tolerance lines. Figure 6.3 illustrates the out-of-tolerance 

segment, generated by mergkg th mt-of- tolerance regions shown in Figure 6.2. It 

is clear that merging has a tendency to destroy the localîty of the out-of-tolerance 

regions. In this situation, the number of out-of-tolerance data inaesse sharply 

such that computationdy-efficient feature of the Hierarchical fitting method is 

gone. Thus, the Hierarchical fitting is not readily applicable to this problem. 
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Figure 6.3: Merging of Out-Of-Tolerance Region, Resulting in The Out of Tolerance 
Region Shown Here for Each C m  

6.1.2 Method Based onKnot Removal 

To provide background on this method, a brief discussion on the theory of h o t  

removal is presented below. Consider the removal of h o t  u, = {u, 1 u, # %+,) of 

multiplicity s = {s 1 1 5 s 5 p )  from the Bspline of degree p. The rem04 of u, is 

performed by computing new control points c' using the following equaüons[70,82]: 
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i ( p - s - l )  i f @ - s + l ) i s e v e n  
where : j = 

i ( P - 8 )  if @ -  s+ 1) is odd 

The knot u, is said to be mathernaticdly remouable if the following equation is 

satisfied: 

Removal of knots that satisfy the above equation nill produce the original curve. 

On the contrary, removal of ]mots which do not satisfy the above equation wiil 

produce a dinerent m e  whose m h u m  deviation from the original curve is not 

greater than E,  where E iB given by: 



CHAPTER 6. TOLERANCE BASED KNUT INSERTION 

By setting E equal to a given tolerance, knot removal can be performed to ad 

possible knots which result in new curve whose deviation from the original curve is 

less thao the tolerance. The complete exposition of the b o t  removal can be found 

in the works by Lyche, et. al.[58, 59, 601. 

Based on Equation 6.6, Tiller(70, 821 developed a curve approximation method 

to satisfy a prespecified tolerance. The method follows the following steps: 

1. Interpolation of data with iinear Bspline curwe. This is the step 

where curve compatibility must be enforced. Successful enforcement requires 

that the number of data be unifonn and that the c w e s  share a mutual 

parameter vector t. The latter has a potential to yield unsatisfactory param- 

eterization when the data are not well distributed. 

2. Removal of aü possible knote without violating the tolerance. For a 

set of compatible cwes,  a h o t  can only be removed if it satisfies Equation 6.6 

for every cuve in the set of the compatible c w e s .  Therefore, the probability 

that a knot of a set of compatible c m  can be removed while satisfying 

Equation 6.6 for al1 curves in the set of compatible m e s  is lower than the 

probability to remove the same h o t  in a single curve problem. The reduction 

of probability is linearly proportional to the number of curves in the set of 

compatible curves. 
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3. Do the folIowing until prespecihl tolerance ie achieved: 

(a) Increase multiplicity of all domain knote by one in preparation 

of degree elevation. This step sharply increases the number of basis 

(control points), leading to contradictions with our aim of minimum 

number of control points. 

(b) Solve for the control points. Use the least squares equation con- 

structed from the new knots and the elevated degree to obtain the control 

points. This step is the most questionable link due to la& of theoreti- 

cai foundation that warrants the preservation of the previously obtained 

satisfaction of prespecified t olerance. 

(c) Removal of aii possible knota without violating the tolerance. 

In compatible curves for a knot to be removed it must be removeable 

in each of the skeletal curves. This reduces the likelihood of removing a 

h o t  significantly. 

The final result is a curve of the p respded  degree whose distance fiom the 

data is l e s  than the prespecifed tolerance. Tiller[70,82] claims that the advantages 

of starting with a linear interpolation of a cuve and working up to least square 

fitting of the prespeciôed degree are threfold: 

1. Cusp and discontinuities in curvature inherent in the data tend to be captured 

at the appropriate stage. 

2. The evolving cuve tends to "settlen into a natural parameterization. 
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3. Wiggles in the ha1 curve tend to be m;n;mized. 

Tiller's approximation method[70,82] requires that the number of @ + 1) points 

within every interval of domain knob is required in order to prevent the matrix R of 

the least square equation Rc = p from becoming ilkonditioned or rank deficient. 

This requirement is satisfied by providing a user-supplied routine to generate the 

additional data points. In approximation problems, where the tolerance is tight, it 

is normal to expect that the number of control points of the approximation c w e  

exceeds the number of the original data. 

These methods by Forsey and BarteIs[26,28] and Tiller[70,82] in general are ro- 

bust and efficient. However, as already explaineci, they are not suitable for our cases 

where compatibility and minimum number of degree of freedom (control points) are 

needed simultaneously. Therefore, we resort to a more conservative and traditional 

scheme of adjustment of degree of freedom. 

6.2 Tolerance Based Knot Insertion 

This section presents a method of inaeasing the degrees of fkeedom of least square 

NURBS fitting in order to satisfy a prespded tolerance. The inputs to the method 

are a set of data, prespecified tolerance, and a set of compatible NURBS curves 

that approximate the data but do not, as yet, satisfy the tolerance. 

The tolerance based h o t  insertion method begins by identifying an out-of- 

tolerance region which is a h o t  interval containhg m b u m  number of points 

whose distance £rom the fitted c m  is larger than prespecified tolerance. 
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The out-of-tolerance region is refined by inserting a knot at a location in this 

region for al1 the skeletal cuves. The proposed method uses mid-insertion, i.e. the 

location of inserted knot is at the mid of the in te r4  of interest. 

To achieve minimum number of additional control point, the proposed method 

does not raises the multiplicity of ui or q + l  (recd that the Hierarchical fitting 

does this to preserve the shape and continuity of the neighboring intervals and that 

rsising multiplicity will introduce 2k new control points). Thus, the refinement 

is not local, Le. the segment outside of [q, u+~] is sffected by the refinement and 

change of status fkom within- tolerance to out-of-tolerance may occur. Nevertheless, 

when the degree of heedom becornes suEciently high, al1 intervals will eventually 

become wi thin-tolerance intervals. The benefit of eliminating knot insertion at u, 

and U,+I is to ensure that increasing the number of control points is only performed 

when necessary, thereby avoiding unnecessary addition of the control points. To 

achieve the prespecified tolerance, knot insertion is performed repeatedly. 

The strategy of h o t  insertion is laid out as follows: 

1. Start with compatible NURBS curves which contain out-of-tolerance points. 

2. Select a h o t  interval in which h o t  insertion will be perfomed. The sdection 

is done using the following steps: 

(a) Rank the intemals based on the number of out-of-tolerance points in 

those intervals [w, u ~ + ~ )  for all i. The higher this nurnber the higher 

the rank of the intervsl. If no intervals contains outof-tolerance points, 

the cuve has satisfied the tolerance. Terminate this algorithm of h o t  

insertion. 
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(b) If two or more intenals have identical number of out-of-tolerance points, 

the ranks for these intervale is assigned based on the the least squares 

error for each of these intervals. Higher error results in higher rank. This 

step ranks the interval such that the worst i n t d  occupies the highest 

rank. 

(c) Starting fkom the highest rank, and walking d o m  the rank, find the first 

interval in which the knot insertion produces matrix R whose condition 

number is below the pennissible maximum. This interval is one in which 

h o t  insertion will be performed. This step is added to prevent ill- 

conditioning of k It is possible that all the intervals are ruled out. In 

this case, additional points (resampling) are introduced in the data, and 

this step is repeated. 

3. Insert a knot at the middle of the selected interval. The insertion will yield a 

new matrix fi. Due to the method of selection described above, this i n t d  is 

the worst interval which still results in well- conditioned R. The new control 

points are then solved from the least square equation & = p. Repeat the 

overall process by looping back to step 2. 

This proposed algorithm caa achieve the goal of satisfying the tolerance with 

minimum number of control points (degree of fieedom). The additional control 

points allows the c w e  to be more accurate in apprmcimating the data. Defining a 

h o t  interval as the srnailest unit of out-of-tolerance region maintains the compat- 

ibility. Controlling the condition number of mat+ R enmires the accuracy of the 

new control points. Inserting the hot ody when it is necessary improves the like- 
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lihood of obtaining the fewest number of control pointa. However, this algorithm 

is not without disadvaatages: computing the condition number is expensive and 

forbidding local rehement slows dom the convergence. The next section shows 

the results obtained from the implementation of this proposed algorithm. 
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6.3 Experiment 

The proposed technique was tested on three skeletons, nsmely airplane wing, com- 

pressor blade, and turbine blade. Ritthexmore, each of these skeieton was fitted 

with integral and rational B-spline curves. This resulted in fitting of 6 skeletons 

which are summarized in Table 6.1. The results of the six cases are given in the 

following suhsections. 

Table 6.1: Sources of skeleton 

Data Tolerance Type of BSpline 
[mm1 Int egral Rational 

Airfoik of wing 0.002 Section 5.2.1 Section 5.2.4 
Sections of cornpressor 0.010 Section 5.3.1 Section 5.3.4 
Sections of turbine 0.040 Section 5.4.1 Section 5.4.4 

6.3.1 Wing Skeletal Cumes 

In this test case, the prespded tolerance is set to 2 microns, Le. 0.016% of 

chord (which is a common value useà in airfoi1 design). The skeleton of compatible 

curves were obtained from sections 5.2.1 and 5.2.4. Repeated h o t  insertions were 

perfonned uti l  the cuves satisfy the prespecified amracy. Figures 6.4 and 6.5 

show the error distribution after repeated h o t  insertion; the former is the case 

where optimization is perfomed on the mutual knots whereas in the latter case 

optimization is perfomed on both knots and weights. Figures 6.6 and 6.7 show the 

control polygon for the ha i  compatible integral and rational curvts, respectively, 
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that satisfY the prespecified tolenuice. These figures demonstrates that requiiing 

the condition number of R to be below a certain prespecified maximum results in 

well behaved control points. 

Figure 6.4: Error Distribution dong Integral Bspline Wing Skeleton after Applying 
Tolerance Based Knot Insertion Method with Prespecified Tolerance of 2 microns 

6.3.2 Cornpressor Skeletal Curves 

In this setup, the accuracy is set to 10 microns as requested by the designer. The 

already compatible m e s  are obtained fkom sections 5.3.1 and 5.3.4. Repeated 

knot insertion were performed until the m e s  satisfy the prespecified accuracy. 
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Figure 6.5: Error Distribution dong Rational Espline Wing Skeleton after A p  
plying Tolerance B a d  Knot Insertion Method with Prespecified Tolerance of 2 
microns 

Figure 6.6: Control Points of Integral Espline Wig Skeletal C w e s  Bdore and 
After Application of Tolerance Based Knot Insertion Method 
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Figure 6.7: Control Points of Rational Bspline Wing Skeletd Curves Before and 
After Application of Tolerance B d  Knot Insertion Method 

Figures 6.8 and 6.9 show the error distribution after repeated h o t  insertion; the 

former is the case where optimization is performed on the mutual knots whereas 

the latter case optimization is performed on both knots and weights. Figures 6.10 

and 6.1 1 show the control polygon for the final compatible curves satisfying the 

prespecified tolerance; notice the fhite components of the control points. 

6.3.3 Turbine Skeletal Curves 

In this setup, the accuracy is set to 40 microns. The alredy compatible curves are 

obtained fkom Sections 5.4.1 and 5.4.4. Repeated h o t  insertion were performed 

untii the c m e s  satisfy the prespecified accuracy. Figures 6.12 and 6.13 show the 

error distribution after repeated h o t  insertion; the former k the case where opti- 

mization is performed on the mutual knots whereas in the latter case optimization 

is performed on both knots and weights. Figures 6.14 and 6.15 show the control 

polygon for the ha1 compatible curves satisfying the prespedied tolerance; notice 
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Figure 6.8: Error Distribution dong Integral Bepline Cornpressor Skeleton after 
Applying Tolerance Based Knot Insertion Method with Prespecified Tolerance of 
10 iuicrons 
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Figure 6.9: Error Distribution dong Rational Espline Cornpressor Skeleton after 
Applying Tolerance B a d  Knot Insertion Method with Prespecified Tolermce of 
10 microns 

Figure 6.10: Control Points of Integral Espline Cornpressor Skeletal Curves More 
and After Application of Tolerance Based Knot Insertion Method 
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moimm *LI-- 

Figure 6.11: Control Points of Rational Bspüne Cornpressor Skeletal Cumes Before 
and After Application of Tolerance Based Knot Insertion Method 

the finite components of the control points. 
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Figure 6.12: Error Distribution dong Integral Espline Thbine Skeleton after A p  
plying Tolerance Based Knot Insertion Method with Prespecified Tolerance of 40 
microns 



CHAPTER 6. TOLERANCE BASED KNOT INSERTION 

data d œdkm 2 

Figure 6.13: Error Distribution dong Rational Bspline nirbine Skeleton after 
Applying Tolerance Based Knot Insertion Met hod wit h Prespecified Tolerance of 
40 microns 

Figure 6.14: Control Points of Integrd Espline Turbine Skeletal Curves Before and 
Mer Application of Tolerance Based Knot Insertion Method 
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Figure 6.15: Control Points of Rational Bspline nirbine Skeletai Curves Before 
and After Application of Toleraace B a d  Knot Insertion Method 

6.4 Discussion 

Results of experiments presented in previous section clearly show that the tolerance 

based knot insertion method is viable to achieve a prespecified tolerance. Table 6.2 

lists the number of control points of compatible curves obtained by the application 

of the proposed method, and compares the number of control points with those 

frDm hot-remod+knot-merging method due to TilIer[70, 82). The table shows 

that the proposed method is better than the hot-removal/merging approach in 

term of minimiang the number of control points. 

Table 6.2: Cornparison between P r o p d  Method and Piegl's Method 

Met hods 
Knot Removal Proposeci 

Airfoils of wing 78 30 
Sections of cornpressor 124 24 
Sections of turbine 97 25 
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Table 6.3 iists the resulting numbers of control points; for cornparison, the 

number of control points from tolerance b d  knot ineertion method in Table 6.2 

are also listed. The nurnbeni of control points under the hot-remoral column are 

obtained by applying hot-removal method to every c w e  individually. 

Table 6.3: Results of Individual C w e  Fitting 

Number of Bais  to Satisfy Tolerance 

Section curves Knot Removai Tolerance Based Method 
fiom Table 6.2 

NACA 2415 
WTEA 

Corn pressor (hu b) 
Cornpressor (mid) 
Cornpressor (tip) 

Turbine (hub) 
%bine (mid) 
Turbine (tip) 

A larger number of control points is required in the the hot-removal method 

because it starts with linear interpolation and repetitively raiees the degm untii the 

desired degree is obtained. For Bspline c w s  of order k and with q control points, 

raiung the degree by one produces q - k additional control points. Therefore, if 

degree is raised m times, the total number of additional control points is rn (q - k); 

in this experiment, cubic c m e  is desired so that the total nnmber of additional 
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control points is 2 (q - k). The degree raising atep is responsible for the higher 

number of control points obtained from the knot-removal method. The tolerance 

based b o t  insertion met hod avoids unnecessary sddi tion of control points. 

The c w e s  obtained from the hot-remord method are not compatible yet 

whereaa those curves fiom the tolerance based h o t  insertion method are already 

compatible. Compatibility of the latter is achieved by rnerging the knots of the 

curves. The net effect of merging is sumrning up of the number of control points. 

Cornparison of knot-removal columns in Table 6.2 and 6.3 shows that those numbers 

are related as follows: 

Wing : 78 k: 31 + 51 
Cornpressor : 124 41 + 36 + 55 
Tùr bine : 97 36 + 35 + 34 

Thus the hot-removal/rnerging approach sders from the degree raishg and 

h o t  merging steps such that the number of control points required to satisfy toler- 

ance and compatibility is much higher than that obtained from the tolerance based 

h o t  insertion approach. 

However, the proposed approach is not without drawback. It requires much 

higher computation than the lmotremovai/merging approach. The most expensive 

computation part in the proposed method is the decomposition of matrix R; this 

decomposition is performed in the computation of condition number of R and the 

solution of the le& square equation Rc = p. However, for the proposed application 

of blading and airfoil design this is not a major conceni as the cumputational 

t h e  is a srnail fraction of time spent in manual modification. In the proposed 
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approach, the decomposition is performed very fresuently, in particular during the 

optimization of parameters. For m number of iteration and n number of curws, 

the decomposition is performed mn times. On the other hand, the hot-removal 

approach performa the decornposition in the d e p  raising step only; for n curves 

of order k, the decomposition is performed n (k - 1) times. If rn > k, which is very 

common in practice, the proposed approseh requires significantly higher number of 

decomposition than that of the hot-removal approach. 

The resulta of experiments in thie chapter have highlighted the feature of the 

proposed approach in rninhizing the number of required control points to satisfy 

tolerance and compatibility. This feature can be attributed to the lack of need to 

merge the kno ts because curve compatibility is k ing  maintaineci througho u t the 

approximation process. 

The following sections will present attempt to smooth the curves and visualiza- 

tion of the skinned surface. 

6.5 Attempt of Smoothing 

This section presents an attempt to smooth the c w e s  obtained in the previous sec- 

tions. Brief description of curve smoothing can be found in AppendixB. Smoothing 

is perfomed by moving control points to eliminate infieetion points. Unfortunately, 

the amount of displacement required is larger tban the tolerance. A compromise 

is made by displacing the curve by no more than the tolerance. In al1 cases the 

tolerance is too tight to d o w  impmvexnent in the smoothness of the c w e s .  For 

this resson only the smoothing of the NACA airfoil is presented. 
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The displacement needed to remove inflection points in the NACA 2415 airfoil 

reached 50c where e is the prespecfied tolerance set during the previous least square 

approximation. To illustrate our attempts, a distribution of c m t u r e  is plot ted in 

Figure 6.16. 

Figure 6.16: Curvature Distribution at Knots of NACA 2415. Changes of Signs at 
ut4 and ule causing Mection Points 

It is very clear that knots uid and u18 are offending since the cumature at these 

knots change sign. The smoothing be- with removal of Mection points at ui8. 

In the k t  attempt, the prespecified tolerance of 2 microns is ignored, i.e. the 

cuve is allowed to displace infinitely. Figure 6.17 shows improvement of curvature 

around the vicinity of ulr snd the curves before and after removal of inflection 

points are shown as dotted and solid lines respectively. The figure clearly shows 
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that the inflection at uls is completely removed. The displacement of the curve is 

about 98 microns, approximately 50 tima the tolerance. 

In the second attempt, the displacement is limited not to exceed 2 microns 

tolerance. Figure 6.18 shows improvement of curvature around the vicinity of uie 

and the curves before and after removai of infiection points are shown as dotted and 

solid lines respectively. The infiection at uie stiil exhts and jump of cumrture barely 

improves. The change in the curve is not visuaüy obseniable. Unfortunately, this 

phenornena &O occurred during attempts to smooth the rest of the curves obtained 

from Chapter 6. 

6.6 Skinning 

This section presents the visualization of surfaces obtained by skinning the curves 

from the previous section. No preparation, e.g. h o t  merging, L required prior to 

skinning since the c u ~ e s  are already compatible. The skiming is pedormed on two 

types of curves: the integrai Bspline curves and the NURBS curves. The following 

two subsectioris shows the results of skinning for each case. 

6.6.1 Integral B-spline Case 

Figure 6.19, 6.20, and 6.21, show the s h e d  surf'es for h g ,  cornpressor blade, 

and turbine blade, respectively. The figures also show the control net of the skinned 

surface. The purpose of presenting the control net is to show that parameterization 

of data and averaging the knots yields w d  conditioned matrix R 
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Figure 6.17: Smoothed NACA 2415 C w e :  (a) Curvature at uls Change Sign to 
Positive and (b) Mection Point is Eliminated. The Smoothed Curve Displaced 
by No More Than 98 microns. Dotted and solid lines represent before and after 
smoot hing. 
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Figure 6.18: Partially Smoothed NACA 2415 C w e :  (a) Curvature at ula Remains 
Negative and (b) Mection Point still Es t .  The Smoothed C w e  Displaced by No 
More Than 2 microns. Dotted and solid lines represent before and after smoothing. 
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(4 (b) 

Figure 6.19: Integral B-spline Skinned Surface of Wing: (a) Surface and (b) Control 
Net 

Figure 6.20: Integral B-spline Skinned SUrfxe of Cornpressor blade: (a) Surface 
and (b) Control Net 
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Figure 6.21: Intepal B-spline Skinned Surface of Turbine blade: (a) Surface and 
(b) Control Net 

6.6.2 Rational B-spline Case 

Figure 6.22, 6.23, and 6.24, show the skinned surfaces for wing, cornpressor blade, 

and turbine blade, respectively. The figures also show the control net of the skinned 

surface. The purpose of presenting the control net is to show that parameterization 

of data snd averaging the knots yields well conditioned matrix R 

Figure 6.22: Rational Espline Skinned Surface of Wig: (a) S u r f .  and (b) Con- 
trol Net 
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(4 (b) 

Figure 6.23: Rational Bspline Skinned Surface of Cornpressor blade: (a) Surface 
and (b) Control Net 

(a) (b) 

Figure 6.24: Rational Bspline Skinned Surface of Turbine blade: (a) Surface and 
(b) Control Net 



Chapter 7 

Conclusions and Future Work 

This thesis has presented a new method to constnict a skeleton made of NURBS 

curves that are ready for the skinning with no additional requirement. Figure 7.1 

shows the existing and the proposed approaches for cornparison purposes. 

The highlight of the figure is the lack of knot merging prior to skinning in 

the proposed approach. This is achieved by enforcing compatibility during the 

simultaneous l e s t  squares fitting of the curves. The results have shown that the 

proposed approach requires significantly fewer number of control points than the 

existing approaches and produces compatible c w e s .  

The compatibility enforcement requires that the curves share a mutual h o t  

vector and a mutual degree. This results in a poor distribution of panuneteriz* 

tion for the data and a poor overdetermined matrix R, which in tum results in 

relatively big least squares moi. Optimization of parameters, i.e. knots, weights, 

and parameterbation for the data, is performed to Mprove the mat& in order 

to reduce the resulting least squares m r .  This optimization is characterized by 
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Figure 7.1: Cornparison of Existing and Proposed Approaches 
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two cntically unfavorable phenornena: lethargic behavior of gradient with respect 

to knots and poor control points due to ill- conditioning of matrix R. The former 

is overcome by deletion of linear constraints from the active set and by the use of 

BFGS descent direction to obtain a descent direction that has a nonzero component 

in the range spwe of the active set. The latter is overcome by incorporating the 

condition number of R into a nonlinear constraint. 

Careful optimization of parameters has resulted in reduction of least squares 

error while maintaining the qudity of control points obtained from Rc = p and 

enforcing the compatibili ty of the curves.Once the optimization is completed, h o t  

insertion is performed to the curves to meet the prespecified tolerance. Again, 

compatibility constraint is enforced during thia insertion. The h a 1  results are 

compatible curves that satisfy the tolerance. These curves are the ultimate results 

that this research was seeking. These curves can then be skinned immediately 

without the need to mage the knots. 

7.1 Achievements 

The achievements that have been presented in this thesis are: 

1. A new method to construct a NURBS ekeleton using a constrained 

least-square approximation. The new method simultaneously fits NURBS 

m e s  to dinerent sets of data points while sharing the same knot vector and 

degree. This is done using constrained least squares approximation. The 

constraint forces the cuves to share a mutual knot and a mutud degree, and 

results in the following least squares equations: 
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This also forced the objective functions Ei (u, -) and the overdetermined 

matrices R, (u, - )  to be functions of a mutual knot u and a mutual degree 

resulting in compatible skeletal curves. The le& squares error were then 

combined into a single objective function expressed as E = Ci Ei. The sum- 

mation operator was selected to provide simple expression for the gradient of 

this objective function and to force the continuity of tbis objective hinction to 

be qua1 to the lowest continuity of those of the ~ ~ ' 6 .  Of course, this objective 

hinction requires that the measurement error (variances) of &j are more or l e s  

uniform with respect to t. It is sate to assume that the requirement is satisfied 

because the data are obtained from a single measuring equipment. The com- 

patibility produced by this constraint eliminates the need to merge the knots 

pnor to skinning such that the number of control points of the skinned surface 

are kept reasonably lower than that obtsined from the existing method. 

2. Dealing with lethargic piopertiee of knot aaustment. Chapter 2 has 

presented the lethargic property of least square NURBS approximation with 

adjustable knots. This property arises from the exact similarity of expressions 

of the derivatives of NURBS basis with respect to coincident bots .  This 

property d l  cause the fmt derivatives of & with respect to coincident knots 
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to be identical. #en this is combined with the active linear constraints 

on the coincident knots, i.e. uj = uk, the b t  derivative of i6 located in 

the nul1 space of the active linear constraints. A new method was presented 

to deal with the lethargy problem. By keeping the appraWnate Hessian 

(besides the projected one) during the optimization and using the BFGS 

descent direction, components into the feasible region can be obtained. By 

moving dong this direction the constraint can be removed fkom the active 

set and allow the knots to separate in the subsequent iteration. Because of 

this method, coincident knots need not prevent h o t  optimization. Results 

of experiments have show that h o t  optimization contnbuted to the largest 

decrease in least squares mor. 

Insignificant reduction of least squares error obtained fkom the ad- 

justment of parameterization for the data. Numerical cornparisons of 

the reduction of least squares error with respect to variation of its parame- 

ters, i.e. knots u, weights w, and parameterization for data t have showed 

that parameterization for the data has relatively negligible contribution in 

the reduction of least squares error. This phenornenon can be used as a jus 

tification for eliminating data parameterization from the list of adjustable 

parameters of the l e s t  squares problem. Since typicd least squares problems 

are overdetermined with number of rom being much greater than the number 

of columns, the parameterization for the data constitutes the largest portion 

of the parameters. Therefore, its elimination greatly reduces the number of 

parameters of the least squares problem, and hence reduces the computations 



CHAPTER 7. CONCLUSIONS AIVD FUTURE WORK 

required within the l e s t  squares problem. 

4. Less reduction of least squares error obtained fkom the adjuetment 

of weights compared with the reduction resulted from knots adjust- 

ment. This thesis has presented the phenomenon that the weights contnbutes 

significantly less to the reduction of least squares error than the knots. This 

phenomenon can be used as  a justification to elirninate the weights from the 

parameters of the problem. Benefits of eüminating the weights are twofold: 

decreasing the number of parameters and simplifying the NURBS curves to 

become integral Bspline Cumes. The latter benefit is espedally advantageous: 

singularity no longer exist, convex huli property is guaranteed, and portabil- 

ity of the c w e s  becornes greater; the 1st one is due to the fact that not al1 

NURBS geornetric package are designed to receive negative weights. 

5. Introduction of nonlinear conetra.int on the condition number of &. 

Adjustment of parameters is constrained to keep the condition number below 

a prespecined permissible value, which is set to 500 in this work. Limiting 

the permissible value on the condition number maintains the quality of the 

control points c, i.e. there ie a unique solution of Rc = p and none of the 

elements has a wildly large value. 

6. New method to satisfy the nonlinear coxmtra.int, i.e. condition num- 

ber of matrix R. This thesis uses a new mechanism to satisfy this nonlinear 

const raints, based on its unique charac t erist ic inst ead of the standard met h- 

o&. The rnatrix R degenerates to become ill-conditioned if one or more of 
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the following occur: two or more knots come close together; two or more pa- 

rameterization for the data corne close together; and one or more weights a p  

proaches zero. These three conditions will activate linear constraints. There 

fore, activation of linear constraints can be used as a m i n g  signal that 

violation of nonlinear constraint may occur. Since activation of linear con- 

straints are verified in the determination of permissible step length before llne 

search, the definition of the permissible step length is modified to ~atisfy the 

nonlinear constraint dong with the linear ones. This new method has two 

benefits: elimination of the need of an explicit expression for the nonlinear 

constraints, which is highIy complicated if not impassible at all, and elimi- 

nation of the standard mechanism to satisfy the nonlinear constraint. These 

benefits reduces the wmplexity of the implementation. 

7.2 Future Work 

Houmouziadis[46] points out that, when the degrees of aeedom for the ge- 

ometry variation in a turbine are considered as adjustable parameters, 

no feasible true 3D flow optimization can be carried out because it may take one 

or more years to define the turbine. The hidden information is the assumption 

that the geometry of the blade is represented as a set of points instead of some 

mathematical representation and that the la& of a geumetnc modeler within the 

fluid flow analysis package. 

The technique proposed in this thesis, namely the use of NURBS representation 

instead of point representation coupled with the minimum number of parameters, 
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can overcome the above obstacles by reducing the degree of fkeedom by a factor 

of 5 at least. This evaluation is based on the skeleton discussed in this thesis. By 

allowing true 3D flow optimization to be conducted on a geometry thb work has 

opened a vast field of research. The research effort could be focused in: integrating 

NURBS representation with flow analysis; and developing a heuriotic/art%cid in- 

telligence/optimization based system for closing the automation loop as discmd 

in Chapter 1. 
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Appendix A 

Non Uniform Rational B-Spline 

Basics 

This chapter briefly discusses the basics of nonuniform rational Bsplines, abbrevi- 

ated as NURBS. The discussion is limited to material which is important to this 

thesis; complete and detailed discussion on NURBS can be found in textbooks(22, 

44, 701. The first section discusses the definition, properties, and derivatives, of B 

spline basis functions. The second section discusses the definition, properties, and 

derivstives, of rational Espline basis functions, and the defition and properties 

of NURBS curves and surfaces. The 1st section lists existing methods to construct 

NURBS curves and surfaces. 
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A. l  B-spline Basis hnctions 

A.1.1 Definition of B-spline Basis 

There are a number of ways to dehe  the Espline basis functions and to prove their 

important properties, e.g., by divided differences of truncated power functions, by 

blossoming, and by a recurrence formula Here the recurrence formula b used 

to illustrate the definition of the Bspline basis functions. This formula leads to 

efficient cornputer implernentation. 

A Bspline basis functions is d&ned dong a knot vector, a simple sequence of 

nondecreasing red numbers. Knot vectors are denoted by u and their definitions is 

A knot q is said to have a multiplicity of m 2 1 if ui-p = l<imP+ 1 = = zli-1 = 

ui = u i + ~  = --• = y+,-1 = w+rn-p-l for O 5 p < m. 

Bspline basis functions are specifid by two integers: the order of the basis 

function and the index of the basis function. The notation NF (u; t )  , or Nt (t) for 

its short notation, refers to the i-th Espline basis function of order k defined on 

knot vector u. In most literature, the knot vector ia usually eliminated from the 

notation of the B-spline basis; the short notation is NF (t) . The order of Bspline 

basis function must satisfy inequality 1 5 k 5 (q - 1), and the index of Bspline 

basis hinction m u t  satise inequaiify 1 5 i 5 (q - k). 
Bspline basis functions are evaluated at a value t in the parameter space, and 
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the complete dehition of B-spline basis function at t is 

fork= 1: 

N: ( t )  = (t - u ~ )  
~ ; - l  ( t )  + (%+k - t )  ( t )  

ui+k-1 - % ui+k - ui+l 
(A-3) 

where 

N;-I (t)  
= O  if u ~ + ~ - ~ - U ~  = O for dj 

A.1.2 Properties of B-spline Basis 

The above dehition of the basis function r d t s  in the following properties for 

Espline basis function. 

1. Local support property: The duence  of N: (t) is limited to a portion of 

the parameter space N!, if t ia located outside the support of Nt (t), that is 

t [% 9 ~ i + k ) *  
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2. Nonnegativity: Nt (t)  is nonnegative, that is N: ( t )  2 0, for dl values of t 

and all permissible d u e s  of i and k. 

3. Single Maximum: Except for k = 1, Nf (t) attains exactiy one m h u m  

value. 

4. Invariance under a f h e  transformation: when h o t  vector u and pa- 

rameter t are subjected to f f i e  transformation ui = sui + for ail i and 

t8 = at + @ respectively, N! (u', t*) = Nf (u, t ) .  

5. Partition of unity: this property only applies to the parameter values in 

the domain ho t .  For a set of Bspline basis functions that are of order k 

and that are dehed on a h o t  vector u with q elements where q 2 2k, the 

dornain knots are defined as 

For dl t E ud, the sum of all supported N: (t) is equal to one, that is 

N^ (t)  = 1. ~ j = i - r + i  

in addition to these, Espline basis functions enjoy other properties which can 

be found in textbooks[22, 44, 701. 
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A.1.3 Derivatives of B-spline Basis 

The Bspline basis function depends on the parameter and the h o t  sequence. The 

derivatives with respect to them are shown below: 

Derivatives of B-spline Basie with Respect to Parameter 

The derivative of a Bspline basis hinction with respect to parameter t is defined 

as 

The derivative of Bspline basis function with respect to parameter exists if and 

only if t is inside the support of N:, that is t E [ui, u ~ + ~ ) .  In general, the Bspline 

basis function is (k - 2)-times continuously differentiable; however, if t assumes the 

value of one of the supporting knots of N:, the continuity will dso depends on the 

multiplicity of the knot and the B-spline basis functions becomes (k - 1 - m)-times 

continuously differentiable where m is the multiplicity of the h o t .  Details of this 

derivation can be found in standard Bspline textbooks[22, 44, 701. 

Derivatives of B-spiine Basie with Respect to Knote 

The derivative of a Bspline basis hinction with rapect to an element of the knot 

vector is dehed as 
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where û is a knot vector obtained by raising the multiplicity of uj by one, and fik 
is Espline basis of the same order as Nk's and is define on Ci. 

The denvative of a Bspline basis function with respect to a support hot  p o s  

sesses a special characteristic when the multiplicity of the knot is more than one. 

Suppose the multiplicity of knot uj is two, that is uj = u,+~ shown in Fig- 

ure (A.1). Let s and v denote the h o t  vectors obtained from u by raising the mul- 

tiplicity of uj and u,+i by one respectively, as shown in Figure (A.2), it is clear that 

s = v since uj = uj+l. Thus, the basis of order k defined on s and v are identical. 

When these basis are applied to Equation (A.7), they yield a N , h j  = a N / û ~ , + ~ .  

In generd, if a h o t  uj has multiplicity of m, i.e. uj = uj+l = = U , + ~ - I  < uj+rn 

the equalities on the first derivative of Bspline bas& with respect to these coinciding 

knots are 

This property of the derivative is the background of what is known as the lethurgy 

t h e o m .  This lethargic property is intrinsic to free knot spline problems and aec t s  

the stable and effective cumputation of optimal knots [50,49, 51, 17). This theorem 

were discussed in Chapter 2. 
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U 
)*' 

Figure A.l: Double ffiots, uj = uj+i 

Figure A.2: Tkiple Knots. s and v are obtained by raising the multiplicity of uj 

and uj+i respec tively 

NURBS Cumes and Surfaces 

A.2.1 Rational B-spline Basis Function 

The rational Bspline basis function is defined as 

where w is an array of real numbers, w E Rn and n = q - k; the short notation of 

the rational Bspline basis hinction is &k (t) .  The rational B-spline basis function 

may become singular whenever the denominator in Eq. (A.9) is zero. Singularities 

can be avoided by setting all weights to be nonzero and uniform in 8ign. Depending 
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on the signs of the weights, rational Espline basb functions may have positive or 

negative values. However, most of the implementations of rational Espline curves 

and surfaces restnct the weights to be positive nonzero in order to preserve the 

convex hull property of the curvs and e u r f ~ ~ e 8 .  Thmughout thb theriu, the 

ecope of discuraion to mtiond B-upline bu& functionn b limited to 

nonzero and poaitiue weighb. With this limitation, the rational Bspline basis 

hnction enjoys the same properties of the Espline basis function. 

The derivatives of rational Bspline basis function with respect to its variables 

can be obtained by using the chain-rule of derivatives and the derivatives of Bspline 

basis in Eqns. (A.6) and (A.?). They are defined as the following: 

Derivative of Rational Basis with respect to Parameter 

The derivative of a rational B-spline basis function with respect to parameter t is 

defined as 

Derivative of Rational Basis with respect to Knot 

The derivative of a rational Bspline basis function with respect to element of an 

element of knot vector u is dehed as 
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(A. 11) 

Derivative of Rational Basis with respect to Weight 

The derivative of a rational Espline basis function with respect to weight w is 

defined as 

(A. 12) 

A.2.2 NURBS Curves 

NURBS curves and surfaces are defined by three sets of parameters: (1) the knot 

vector, (2) the control polygon and (3) the weights; the formulation of NURBS 

curves is 

(A. 13) 

where p's are the nodes of control polygon and @ (u) is the rational Espline basis 

function as defined in Eq. (A.9). 

The dimensions of NURBS c m e s  is dictated by the dimension of the Euclidean 

point p of the control polygon. 

NURBS c m e s  enjoy the following propertim: 
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1. Anne invariance: affine invariance transformations cm be perfonned by 

applying the transformations to the control polygon. 

2. Strong convex huli property: for t E [ui, ui+ 1) ,  x (t) lies within the convex 

hull of control points pi-k+i, pi-k+l, , pi- 1, pi. 

3. Local approximation: control point pi bas local influence on the curve, 

that is only portion of the curve where t E [ui, Y + ~ )  is infiuenced by pi. 

4. For t E ud, x (t) is infinitely differentiable except when t  assumes a value of 

a knot; in this case, x ( t )  becomes k - m - 1 times differentiable where m is 

the multiplicity of the knot. 

A.2.3 NURBS Surfaces 

A NURBS surface is d h e d  as 

(A. 14) 

where pu's are the nodes of control nets, is rational Bspline bais  functions 

defined on a h o t  u, and $ are rationai Espline bas& functions dehed on a knot 

v. NURBS surfaces enjoy the following properties 

1. Afane invariance: affine invariance transformations can be perforxned by 

applying the transformations to the control net. 
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3. Local modification: p~ only influences a part of the surfaces where ui 5 

t < ui+& and vj  5 8 < vj+i. 

4. For t E ud, x (t, s) is infinitely dinerentiable in the direction of u except when 

t assumes a vdue of one of knots in u; in this case, x (t,  s )  becornes k - m - 1 

times differentiable in the direction of u where rn is the multiplicity of the 

hot.  

For s E vd, x (t ,  9 )  is infinitely differentiable in the direction of v except when 

s assumes a value of one of h o t s  in v; in this case, x (t, s) becornes 1 - h - 1 

times differentiable in the direction of v where h is the multiplicity of the 

knot. 

A.3 Construction of Curves and Surfaces 

Construction refers to procedures to compute or specify the parameters of NURBS 

curves and surfaces: control polygon/net, weights, degrees, and bots .  Many types 

of cume and surface construction techniques exist; the selection depends on the 

type of information passed on to the designers. There are three basic types of 

curve constructions: 

1. Conversion fiom other types of c w e s .  In this method of construction, a 

curve defined in a certain representation, e.g. conics or monomiais, is given 
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and the parameters of a NURBS curve are computed based on the parameters 

of the given curve. However, conversion fiom one type of curves to NURBS 

is not always possible; exact conversion can only be pedonned on few types 

of @veXI Cumes. 

Fitting, refers to the construction of NURBS curves from a given set of geo- 

metric data, usually in the form of points and derivative vectors. There are 

two types of curve fitting: interpolation and approximation. Interpolation 

produces a NURBS curve that exactly satisfies the data whereas approxima- 

tion only approximate the given data. 

Modification of NURBS curves. This type of construction starts with a 

NURBS cume and a geometric modification information (shape, constraints, 

etc.) and subsequently the NURBS curve is modSed to incorporate the g e  

ometric modification information. Many interesting modification techniques 

exist: warping, flattening, bending, constraint-based cume modification, fie+ 

forrn deformation, to name a few. 

There are four types of techniques of surface constructions: 

1. Conversion: almost identical to construction of c w e s  accept that the input 

is a surface definition instead of a curve. 

2. Modification of NURBS sUTf8~e8. As in the cuve modification, surface mod- 

ification techniques also recognize warping, flattening, constrained d a c e  

modification, bending, and many more. 
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3. Fitting NURBS surfaces to a given set of points and derivatives vector; as 

in the construction of curves, surface fitting techniques are dassified into 

interpolation and apprcmimat ion. 

4. Cume based construction. This type of construction is specijic to surfaces; 

no equivdent type of construction exists in curve construction methods. One 

or more set of NURBS curvee are given, sometimes accompanied by a set 

of points and derivative vectors, and a NURBS surface if constructed based 

on the given information. The surfaces produced nom this technique have 

special names that describe the way the surfaces are constructed, e.g. d e d  

surface, surface of revolution, swung surface, skinned surface, swept surface, 

to name a few. 

Appendix A ha9 given the definition of NURBS c w e s  and surfaces and has 

descnbed some of the important properties relevant to th& work. 
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Curve Smoothing 

This appendix presents a bnef summary on the smoothness of a curve and the 

standard methods to improve it. Curve smoothness, a.k.a. curve fairness, is a 

measure of geometnc quality. Farin(221 defines fair curve a s  a curve whose curvature 

plot is continuous and consists of only a few monotone pieces. The number of 

curvature extrema of a fair cuve should be few and the extrema should only occur 

where explicitly desired by the designer, and nowhere else! This definition of fairness 

is well accepted[9,18,80]. Although this dehition is subjective, it has proven to be 

very practical. Other existing definitions of measwes of smoothness can be found 

in Hoschek's text[44]. 

Improvement of smoothness consists of two parts: searching for unwanted in- 

fiections and subsequently removing them. Methods to search unwanted idections 

can be classifd into two: manual and automatic. Manual search is performed 

by manual inspection of the cumture plot, i.e. the plot of cunrature versus arc 

length. For planar curves, the infiection points are characterized by the cu~v8ture's 



chsnge of sign. On the other hand, the curvature of a space curve is nonnega- 

tive by definition; the m a t  common practice to locate the inflection points is to 

project the curve onto a plane and -ch for change in sign on the projected curve. 

Existing methods of automatic search for surfka consist of three types: isoline 

method, reflection line method, and mapping method; details of these methods can 

be obtained in Hoschek's text[44]. This research uses manual search of idection 

points. 

Once unwanted inflection points are found, their removal is performed. As far 

as removal of inflection points is concerned, there are two types of infiection points: 

those at the knot, i.e. t = w, snd those within a knot interval, i.e. t # W. This 

section focuses on the removal of first type of inflection points. They are caused by 

the decrease in the differentiability of the Bspline basis at the offending h o t ;  this 

decrease is one of the properties of the basis. Farin suggests that for an offending 

knot, w, the remedy is to decrease the Espline bmis' differentiability by translat- 

ing the control points such that two consecutive segments [q-l,q] and [*, u,+~] 

actually becomes a single segment, in e t ,  eliminating the decrease of number of 

times differentiability of Bspline basis at W. Farin's method to remove an Mection 

point at  u, minimizes the number of control points that must be translatai in order 

to locaiize the change experience by the cuve. For NURBS curves of degree p and 

control points Q, removal of knot u, of multiplicity a, translation of control points 

depends on whether p - s is an even or an odd number. The foliowing presents 

Farin's method of translation of control points. 



Let j = @ - s) 12, c:-,, = G - ~ - L ,  and c:-, = G-.+L. 

Compute in the forward duection 

Compute in the backward direction 

Translate q - p t j  to a new position, 

for inte@ cume 
(B-4) 

1 1 c - ç 1 1 for rational curve 



Let j = ( p  - s - 1) 12, c:-~-, = ç-,-1, and c:-, = Ç-,+i. 

Compute in the forward direction 

Compute in the backward direction 

c; = q+i - ~i+lc;+~ for i = (r  - s - 1) : -1 : (t - p +  j + 1) (B.6) 
(1 - %+l) 

Translate G-p+j with a translation vector of 

- (1 - 4 - p + j + i )  
(C-p+j - ~ : - p + ~ + l )  

(1 ar - * j+~ )2  

Translate Ç-?+j+i with a translation vector of 

The original curve will be displacecl not Iarger than v where 



(IM, for integral curve 
= ( l + ~ ;  : I l a )  1 1 d 1 I l  for rational curve 

where 

B.1 Partial Smoothing 

Partial smoothing refm to translation of control points in the direction specified in 

the previous sections but the amount of translation is smaller than those suggested 

in Equations (B.3), (B.7)and (B.8). Partid smoothing is used whenever there 

exists upper b i t  that u is prohibited to exceed. Partial smoothing compromises 

improvement of cumture distribution and iimitation on nu. 
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Basics of S kinning 

Skinning is a process of blending a set of section curves together to form a surface[?O]. 

It is a newer term for lofting. The blending direction is in the longitudinal direction. 

The blending may interpolate or approximate the curves, although the former is 

more common than the latter[69]. This chapter focuses on interpolatory skinning 

over sets of NURBS section curves, resul ting in NURBS skinned surfaces. 

NURBS section c w e s  are dehed in u direction and skinning is perfomed 

in the v direction. Pnor to skinning the curves must be made compatible, i.e. 

they share a mutual degree and a mutual knot vector u. The mutual degree is 

achieved by raising the degrees of the cumes up to the degree of the c w e  with 

highest degree. Then, h o t  merging is performed to produce a mutual h o t  vector. 

h o t  insertion is performed as necessary to the curvea to make their knot vectom 

identical to the mutual h o t  vector. The compatibility makes the m e s  have 

an identical number of control points. Figure C.1 shows an example of a set of 

NURBS section curves that already made compatible; the set contains m NURBS 



APPENDlX C. BASICS OF SKINN?NG 

curves, each of which has n control points. The section c w e s  in this figure are 

in the topbottom (vertical) direction and the skinning is performed in the le& 

right (horizontal) direction. Pi ,j denotes the i-th control point of the j-th curve. 

Skinning is perfomed by constructing n interpolating curves each of which, Xk ( v ) ,  

interpolates PI,':,. 

Figure C.1: Control points of m section curves each of which consists of n control 
points 

This appendix focuses on the Espline interpolation method where the knots 

need not coincide with the parameter values for the data and where the number 



of unknown control points is exactly identical to the number of data[70]. Thereby, 

end conditions are l e s  significant in this work. This type of interpolation method is 

described in many texts[44,70,22]. For the example of Figure C. 1, the interpolation 

can be expressed as 

Rdi = pi for i = 1 : n 

where 

Equation (C.l) will produce n control polygons each of which consists of m 

control points. These control polygons fom the control net of the NURBS skinned 

surface. Equation ((2.1) requires that a mutual square matrix of rational Espline 

bssis, R, is shared by all of the interpolating equations. This is needed to conform 

to the definition of NURBS surface as shown in Equation (A.14). 

The need of a mutual R is satisfied if every row control points shares a 

mutuai parameter value in the u direction, e-g. 3k. Piegl proposes a method to 

cornpute these parameters as follows: 
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for k = 1 

" = I  sr-1 + t#k for k = 2 : (m - 1) 

Il for k = m 

The parameterkation hnction 6 (Pu, Pic-i) can be selected from one of the 

existing methods of computing the parameterization of given data points, such as 

unifom parameterization, arc length parameterization, centripet al parameterizsr 

tion, etc; see [12, 14,38,54]. However, to the author's knowledge, those parameter- 

ization are intended for single curve interpolation. None of them has been tested 

for parameterization for skinning. Therefore, we take a safe route by selecting the 

well known arc length parameterization. 

The construction of mutual knot vector v follows after e haa ben computed. 

The method developed by Piegl[70] is selected to calculate the knots dong the 

skinuhg direction. Interpolation of q points using Bspline basis of order k requires 

knots v E Wk where its values are: 



This method of computing the b o t s  v talces the distribution of parameterization 

of data s into account such that in most cases the resulting square matrix R E Wxq 

is full column rank and well-conditioned[70]. 

Once the parameterization for PiJ and the h o t  vator v is obtained, matrix R 

can be computed. Then this matrix is substituted into Eguation (C.l) to obtain 

the control net of the skinned surface. 

Because the skinning equation is based on curve interpolations, the skinning 

inherits unsatisfactory results commonly found in curve interpolation, e.g. self- 

intersecting, poor resulting shape, unwanted idection, etc. The most cornmon 

cause of these unfavorable results is poor distribution of knots and parameterization 

for the data. Particularly for NURBS cases there are two additional hazards: mixed 

weights and continuity gap. The former occurs when one or more weights are zero 

and/or the weights contains both positive and negative elements. Zero weight 

causes singularity and mixed weights destroys the convex hull property. The latter 

hazard refm to inequali ty of continuity between homogenmus curves and Cartesian 

cames. Hohmmeyer address the nature of this problem of continuity gap dong with 

methods to solve it[39]. 

Jones' work is partieulady attractive in the shape control of interpolating c w e s  



and skinned sUfface[48]. The shape control refers to constraints to enforce some 

convexity measures on the curve. Jones defines polygon convezity curistroint for the 

shape control function; its definition for a set of n control points is 

where i is a predetermined unit veetor. It is clear that the constraint is a 

quadratic inequality constraint . Jones states that any set of control points satisfy- 

ing the polygon convexity constraint d l  produce a NURBS cuve whose projection 

on the plane perpendicular i is convex everywhere. To obtain such NURBS cuve 

interpolating a set of data, Jones[48] starts with an arbitrary interpolating curve. 

Then the control points are modified to satisfy the constraint. Denoting the mod- 

ified control points by p', the objective function is a quadratic function defined 

as 

Then, the problem is formulated to minimize the objective function subject 

to the polygon convexity constraint. Jones[48] wanis that this quadratic problem 

subject to quadratic inequality ainstraint may becorne a severe test for optimiza- 

tion software. The solution wiU be an interpolating c w e  satisfying a prespecified 

oonvexity. Jones' work[48] ais0 fornulates the conveJrity constraint that must be 
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satisfied by two neighboring compatible curves if the blending of those curves must 

produce section curves satisfying the convexity constraint anywhere dong the blend- 

ing direction. However, the formulation of su& constraints become complicated as 

it is required to convert the producta of Esplines of order m into sums of Bspline 

of order 272 - 1. The conversion boils dom to carefui selection of knots in order to 

make the conversion possible. 

In summary, the author wishes to raise the reader's awareness of potential haz- 

ards that may be encountered in the construction of skinned surfaces. Those haz- 

ards are either mathematical or engineering in nature. The former includes singu- 

Iarity whereas the latter include control of surface quality. It is beyond the scope 

of this work to propose a solution to those hazards; neither does this work atternpt 

to implement the aforementioned measure to enforce quality of the s k i ~ e d  surfaxe. 

The scope of this work is limited to usage of the slOnning method as descnbed in 

Piegl's text[70]. 




