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Abstract

Most members of the Rhizobiaceae possess single copies of the poly-3-hydroxybu-
tyrate biosynthesis genes, phbA, phbB and phbC. Analysis of the genome sequence
of Bradyrhizobium japonicum reveals the presence of five homologues of the PHB
synthase gene phbC' as well as two homologues of the biosynthesis operon, phbAB.
The presence of multiple, seemingly redundant homologues may suggest a functional
importance. Each B. japonicum phbC' gene was cloned and used to complement
the pleiotropic phenotype of a Sinorhizobium meliloti phbC' mutant; this mutant is
unable to synthesize PHB, grow on certain PHB cycle intermediates and forms non-
mucoid colonies on yeast mannitol medium. Two of the five putative B. japonicum
phbC' genes were found to complement the S. meliloti phbC' mutant phenotype on
D-3-hydroxybutyrate although none of them could fully complement the pheno-
type on acetoacetate. Both complementing genes were also able to restore PHB
accumulation and formation of mucoid colonies on yeast mannitol agar to phbC mu-
tants. In-frame deletions were constructed in three of the five phbC open reading
frames in B. japonicum, as well as in both phbAB operons, by allelic replacement.
One of the phoC' mutants was unable to synthesize PHB under free-living condi-
tions; one of the two phbAB operons was shown to be necessary and sufficient for
PHB production under free-living conditions. These mutants also demonstrated an
exopolysaccharide phenotype that was comparable to S meliloti PHB synthesis mu-
tants. These strains were non-mucoid when grown under PHB-inducing conditions
and, in contrast to wild-type B. japonicum, formed a compact pellet upon centrifu-
gation. Interestingly, none of the mutants exhibited carbon-utilization phenotypes
similar to those exhibited by S. meliloti PHB mutants. Wild-type B. japonicum
accumulates PHB during symbiosis, and plants inoculated with the phoC' mutants
demonstrate a reproducible reduction in shoot dry mass. Analysis of bacteroid

PHB accumulation in the mutant strains suggests that the phbAB operons of B.
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japonicum are differently regulated relative to growth under free-living conditions;
mutants of the second phbAB operon demonstrated a significant reduction in PHB
accumulation during symbiosis. These data suggest that the first phbAB operon is
required for PHB synthesis only under free-living conditions, but is able to partially
substitute for the second operon during symbiosis. Deletion of both phbAB oper-
ons completely abolished PHB synthesis in bacteroids. Analysis of the upstream
regions of these genes suggest the existence of putative RpoN binding sites, perhaps
indicating a potential mode of regulation and highlighting the metabolic complexity

that is characteristic of the Rhizobiaceae.

PHB metabolism in S. meliloti has been studied in considerable detail with
two notable exceptions. No reports of the construction of either a [-ketothiolase
(phbA) or a PHB depolymerase (phaZ) mutant have ever been documented. The
phaZ gene, encoding the first enzyme of the catabolic half of the PHB cycle in S.
meliloti, was identified and a phaZ mutant strain was generated by insertion muta-
genesis. The phaZ mutant demonstrates a Fix™ symbiotic phenotype and, unlike
other PHB cycle mutants, does not demonstrate reduced rhizosphere competitive-
ness. Bacteroids of this strain were shown to accumulate PHB, demonstrating
for the first time that S. meliloti is able to synthesize and accumulate PHB dur-
ing symbiosis. Interestingly, there is no significant difference in shoot dry mass
of plants inoculated with the phaZ mutant, suggesting that PHB accumulation
does not occur at the expense of nitrogen fixation. The phaZ mutant strain was
also used to demonstrate roles for PhaZ in the control of PHB accumulation and
exopolysaccharide production. When grown on high-carbon media, this mutant
demonstrates a mucoid phenotype characteristic of exopolysaccharide production.
Subsequent analyses of a phoA::exoF fusion confirmed elevated transcription levels
in the phaZ mutant background. In contrast, mutants of the PHB biosynthesis

gene, phbC, have a characteristically dry phenotype and demonstrate reduced exoF
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transcriptional activity. The phaZ mutant also demonstrates a significant increase
in PHB accumulation relative to the wild-type strain. Previous work on phasin
mutants in S. meliloti demonstrated that they lack the ability to synthesize PHB.
Transduction of the phaZ lesion into the phasin mutant background was used to
construct a phaZ-phasin mutant strain. Analysis of the PHB biosynthesis capacity
of this strain showed that the lack of PHB synthesis exhibited by S. meliloti phasin
mutants is due to loss of PHB biosynthesis activity and not due to an inherent

instability in the PHB granules themselves.

A recent study suggested that some bacteria may possess an alternate path-
way for acetate assimilation that would bypass the need for the glyoxylate cycle
in organisms that do not possess the enzyme, isocitrate lyase. In these organisms,
acetate is assimilated through the ethylmalonyl-CoA pathway, which has signifi-
cant overlap with the anabolic half of the PHB cycle, including reliance on the
PHB intermediate 3-hydroxybutyryl-CoA. The observation that phbB and phbC
mutants of S. meliloti are unable to grow well on acetoacetate — coupled with pre-
viously unexplained data that show a class of mutants (designated bhbA-D) are
able to grow on acetate, but not on hydroxybutyrate or acetoacetate — made it
tempting to speculate that an ethylmalonyl-CoA-like pathway might be present in
S. meliloti, and that this pathway mightoverlap with the PHB cycle at the point
of 3-hydroxybutyryl-CoA. An in-frame mutation of phbA was constructed by cross-
over PCR and allelic replacement. This mutant exhibited a complete abolition
of growth on acetoacetate, suggesting that PhbA represents the only exit point for
carbon from the PHB cycle and that an alternative ethylmalonyl-CoA-like pathway

is not present in this organism.

During symbiosis, rhizobial cells are dependent on the provision of carbon from
the host plant in order to fuel cellular metabolism. This carbon is transported into

the bacteroids via the dicarboxylate transport protein, DctA. Most rhizobia pos-



sess single copies of the transporter gene dctA and its corresponding two-component
regulatory system dctBD. The completed genome sequence of B. japonicum sug-
gests that it possesses seven copies of dctA. Complementation of Sinorhizobium
meliloti dct mutants using the cosmid bank of B. japonicum USDA110 led to the
identification a dctA locus and a dctBD operon. Interestingly, the B. japonicum
dctABD system carried on the complementing cosmid was not able to comple-
ment the symbiotic deficiency of S. meliloti strains carrying individual mutations
in either dctA, dctB, or dctDsuggesting that the B. japonicum dctBD is unable to
recognize either DctB/DctD or the DetB/DetD-independent regulatory elements
in S. meliloti. All seven B. japonicum dctA ORFs were cloned and an analysis of
their capacity to complement the free-living phenotype of a S. meliloti dctA mu-
tant demonstrated that they all possess some capacity for dicarboxylate transport.
Mutants of all seven B. japonicum dctA ORFs were constructed and an analysis of
their free-living phenotypes suggested that significant functional redundancy exists
in B. japonicum DctA function. Given the large number of potential dctA genes in
the genome, coupled with an apparent lack of dctBD regulators, it is tempting to
speculate that different DctA isoforms may be used during free-living and symbi-
otic growth and may be subject to different regulatory mechanisms than those of

better-studied systems.

A comprehensive analysis of desiccation tolerance and ion sensitivity in S.
meliloti was conducted. The results of these analyses suggest that genetic elements
on both pSymA and pSymB may play a significant role in enhancing cell survival
under conditions of osmotic stress. The S. meliloti expR' strains SmUW3 and
SmUWG6 were both shown to exhibit considerably higher desiccation tolerance than
Rm1021, suggesting a role for enhanced exopolysaccharide production in facilitat-
ing survival under adverse conditions. Furthermore, scanning electron microscopy

of inoculated seeds suggests that S. meliloti cells initiate biofilm formation upon
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application to the surface of seeds. This finding has implications for the analysis
of OSS and the development of desiccation assays and may explain some of the

variability that is characteristic of desiccation studies.
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Claims of Contributions to Knowledge

e This is the first study to investigate PHB synthesis in Bradyrhizobim japon-
tcum. This study reports the cloning of all five phdC' ORF from B. japonicum
and shows that only two of the five are capable of functionally complementing

the pleiotropic phenotype of the S. meliloti phbC' phenotype.

e Mutants in three of the five phdbC' ORFs in B. japonicum were constructed.
All of the B. japonicum phbC mutants retain their capacity to synthesize
PHB under free-living conditions, and none of them display similar carbon

utilization phenotypes to those seen in the S. meliloti phbC' mutant.

e Mutants of both B. japonicum phbAB operons were constructed and their
characterization is documented herein. This study shows that phbAB expres-
sion in B. japonicum appears to be differentially regulated between free-living
and symbiotic growth. This study also demonstrates a link between PHB
synthesis and EPS secretion in B. japonicum and shows that PHB synthesis
mutants of B. japonicum are impaired in their rhizosphere competitiveness,

in a manner reminiscent of PHB synthesis mutants in S. meliloti.

e In order to facilitate the study of B. japonicum USDA110, an antibiotic-

resistance and carbon utilization profile was developed.

e When tested using industry-standard methods, the S. meliloti pSymA mutant
SmAS&18 is impaired in on-seed survival, suggesting a potential role for pSymA

in facilitating survival under adverse conditions.

e The ability to synthesize PHB increases the survival of S. meliloti on-seed, im-
plying a potential role for PHB in the long-term survival of cells under adverse

storage conditions. Conversely, during the initial two weeks of desiccation,



strains that cannot synthesize PHB demonstrate higher levels of desiccation

tolerance than those that can.

The addition of trehalose to the growth medium of S. meliloti cells prior
to inoculation on-seed improves their survival during the initial 2-4 weeks

post-inoculation; the effect over longer-term storage appears to be negligible.

S. meliloti cells appear to initiate biofilm formation upon application to the
surface of seeds. This finding has implications for the analysis of OSS and

the development of desiccation assays.

The S. meliloti expR* strains SmUW3 and SmUWG6 both exhibit considerably
higher desiccation tolerance than Rm1021, suggesting a role for enhanced ex-

opolysaccharide production in facilitating survival under adverse conditions.

The S. melilot: mutant RmF728, which carries a large deletion in pSymB,
has extremely poor desiccation tolerance relative to all other strains tested,

including RmF726 which carries an overlapping deletion.

A number of S. meliloti pSymB mutants exhibit significant ion sensitivities,
including RmF728, RmG506, RmF514, and RmG471. Mutants possessing

multiple deletions typically demonstrated the most severe ion sensitivities.

An ion sensitivity phenotype was identified for several short-chain dehydro-
genase/reductase mutants including Sma0326, SMc01698, SMb20871, and
SMc00553. This is the first study to identify a phenotype that can be at-

tributed to the particular SDR mutations in three of these strains.

A tentative link between salt-sensitivity and poor desiccation tolerance in S.

meliloti was identified.
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e A region of the B. japonicum genome possessing functional copies of dctA,
dctB, and dctD was identified by heterologous complementation of an S.
meliloti dctABD mutant. The complementing cosmid was able to restore free-
living growth of the S. meliloti dctABD mutant on succinate. The dctABD

genes in question were identified as Blr3723, Blr3730 and Blr3731 respectively.

e The B. japonicum dctABD system carried on the complementing cosmid was
not able to complement the symbiotic deficiency of S. meliloti strains car-
rying individual mutations in either dctA, dctB, or dctD; this suggests that
the B. japonicum dctBD encoded by Blr3730/Blr3731 is unable to recognize
either DctB/DctD or the DetB/DetD-independent regulatory elements in S.

meliloti.

e All seven putative B. japonicum dctA open reading frames were cloned into
the inducible expression vector pSW213. Three of the seven dctA ORFs
demonstrated delayed but strong complementation (Blr4298, BII1718, and

Blr3723); partial complementation was seen from the other four ORFs.

e Mutants of all seven B. japonicum dctA open reading frames were constructed.
All of these mutants demonstrated a wild-type capacity to grow on succinate
as a sole carbon source, and all exhibited sensitivity to fluoroorotate. This
suggests that all of the mutants still possess a functional dicarboxylate system,

demonstrating redundancy in the B. japonicum dctA transport system.

e Analysis of the symbiotic capacity of one of the B. japonicum dctA mutants
revealed no impairment; no significant difference in the shoot dry masses of
plants inoculated with wild-type B. japonicum relative to those inoculated

with the mutant strain was recorded.

e Construction and characterization of an S. meliloti phaZ mutant represented
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the final step in the genetic characterization of the complete PHB cycle in S.

meliloti.

phaZ mutants of S. melilot: do not share the carbon-utilization deficiencies

associated with other PHB cycle mutations.

phaZ mutants of S. meliloti demonstrate a reduced capacity to survive long-
term carbon starvation, highlighting the significance of PHB as a carbon

source during prolonged periods of nutrient deprivation.

phaZ mutants of S. meliloti demonstrate significant increases in PHB accu-

mulation, relative to wild-type, under free-living conditions.

phaZ mutants of S. meliloti exhibit a statistically significant increase in suc-
cinoglycan biosynthesis, relative to wild-type, when grown under free-living

conditions.

phaZ mutants of S. meliloti demonstrate that S. meliloti retains the capac-
ity to synthesize and accumulate PHB during symbiosis. Interestingly, an
analysis of shoot dry mass from plants inoculated with the S. meliloti phaZ
mutant indicates that PHB accumulation does not occur at the expense of

the S. meliloti-M.sativa symbiosis.

Unlike other PHB cycle mutants, phaZ mutants of S. meliloti are not affected

in their capacity to compete in the rhizosphere for nodulation.

An in-frame phbA mutant of S. meliloti was constructed. This is the first
report of the construction and characterization of a non-polar mutant phbA

mutant in S. meliloti.

phbA mutants of S. meliloti do not synthesize PHB under free-living condi-

tions.
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e phbA mutants of S. meliloti appear to be more mucoid than their wild-type
counterparts. Interestingly, an analysis of their exopolysaccharide synthesis
suggests that this increase in mucoidy does not translate into significantly

higher secretions of EPS.

e The S. meliloti phbA mutant exhibits a complete abolition of growth on
acetoacetate as a sole carbon source. This suggests that PhbA represents
the only exit point for carbon from the PHB cycle and that an alternative

ethylmalonyl-CoA-like pathway is not present in this organism.

e The S. meliloti phbA mutant demonstrates residual [-ketothiolase activity.
Analysis of the S. meliloti genome sequence suggests the presence of a second

(-ketothiolase.

e 5. meliloti phasin mutants are unaffected in their capacity to establish effec-
tive nitrogen-fixing symbioses with the host plant Medicago sativa. This is in
contrast to the pronounced reduction in symbiotic effectiveness reported for

the same strain on Medicago truncatula.

e Construction of phaZ-phasin mutants shows that the lack of PHB synthesis
exhibited by S. meliloti phasin mutants is due to loss of PHB biosynthesis

activity and not due to inherent instability in the PHB granules themselves.

e S. meliloti Phasin-phaZ mutants exhibit a comparable reduction in rhizo-

sphere competitiveness to phbC and bdhA mutants of S. meliloti.

e PHB cycle mutants were constructed in an expRt nolR™ pstCt (SmUW3)
background. An analysis of the rhizosphere competitiveness of these strains
indicates that the presence of expR does not affect rhizosphere competitive-
ness; phbC and bdhA mutants remain impaired in their capacity to compete

for nodulation in an ezpR* background.

Xiv



e A comparison of SmUW24 (ezpR™, exoY™) and SmUWG6 (expR™, exoY™)
suggests that the synthesis of EPSII is not sufficient to restore nodulation

competitiveness to the exoY strain.
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Dedication

To Helen MacPherson, who planted a seed and inspired a dream...
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Chapter 1

Introduction and Literature
Review

1.1 Biological Nitrogen Fixation

Although dinitrogen constitutes approximately 80% of the atmosphere, in the
molecular form it is biologically unavailable to higher organisms; this phenomenon
is depicted graphically in the Nitrogen Cycle, as shown in Figure As a result,
nitrogen is typically the limiting nutrient in the growth of crop plants and thus
plays a key role in establishing sustainable agricultural systems that are capable of
maintaining a stable ecological environment [26, 369]. In the past, crop rotation
with legumes was the main source of soil nitrogen utilized by farmers, capitaliz-
ing on biological nitrogen fixation (BNF) by the rhizobial symbionts of leguminous
plants (Figure ; however, as the demand for food has increased, modern agri-
culture has become increasingly dependent on the application of external nitrogen

sources in order to maintain sufficient soil nitrogen to support high crop yields.

The population of the world is predicted to double, from 6.7 billion in 2008, to
over 13.5 billion within the next sixty years [276]. In 2005, more than 3.7 billion
people were considered to be malnourished [388] and the per capita availability of

cereal grains has been declining since 1985 [364]. Continued expansion of the human

1
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population will place increasing pressure on the diminishing resources necessary
for food production. Increased food production necessitates the use of increased
levels of fertilizers. Indeed, in 2007 world nitrogen fertilizer production exceeded
154 million tons [27§]. In 2008, world nitrogen demand is expected to exceed 160
million tons per year [278], equalling the amount now produced biologically each
year [105], B6]. To produce this amount of fertilizer necessitates the use of over 270
million tons of coal, or an equivalent non-renewable fossil fuel, which itself presents a
major environmental risk [248], producing potent greenhouse gasses and compounds
known to cause acid rain and smog [358]. BNF thus represents an environmentally
responsible and safe alternative to the use of exogenously applied fertilizers. Indeed,
legume crops in the US alone are responsible for the fixation of approximately 6
million tonnes of atmospheric nitrogen annually [I55]. The economic value of this
process exceeds $2.3 billion (US) assuming an average nitrogen fertilizer cost of $379
per tonne [363]. The use of exogenously supplied rhizobia as a means of decreasing
reliance on industrially produced fertilizer has been the focus of major research
efforts for several years. Rhizobia-based seed and soil inoculants are now sold world-
wide, reducing the need for application of expensive fertilizer by facilitating optimal

nodulation of legumes and, in turn, maximizing levels of No-fixation [33] 42, [67].

The use of legumes to improve soil nitrogen content has a long history, dating
back to the time of the Romans; however, it was not until the advent of detailed
N-balance studies that legumes were shown to accumulate N from sources other
than simply soil and fertilizer. In 1886 it was shown that the ability of legumes to
convert Ny from the atmosphere into compounds that could be used by the plant
was due to the presence of swellings or nodules on the legume root; more specifically
it was due to the presence of particular bacteria within these nodules [144]. The
first rhizobia were isolated from nodules in 1888; they were subsequntly were shown

to possess the ability to reinfect their legume hosts and to fix Ny in symbiosis [15].



1.2 The Rhizobiaceae

The rhizobia are the members of the Rhizobiales order of the a-proteobacteria that
are capable of establishing symbiotic relationships with members of the Legumi-
nosae family of flowering plants. These symbiotic relationships involve bidirec-
tional signal exchange between the bacteria and plant partners, culminating in the
formation of nitrogen-fixing root nodules. The rhizobia include the genera Sinorhi-
zobium, Rhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium, and the
range of host plants they are capable of infecting is estimated to exceed 16,000
species [126]. These include the agriculturally important plants alfalfa, pea and
soybean, which yield over 300 million metric tons of crops per year, and account
for over 13% of the worlds total cultivated land [109]. In symbiosis with legumes,
the bacteria elicit formation of specialized, microaerophilic nodules on the roots
of the host plant in which, following infection and colonization of the nodule, the
bacteria undergo differentiation into a mature state known as a bacteroid, which
can reduce atmospheric dinitrogen to ammonia. The bacteroids are enclosed in a
plant-derived, peribacteroid membrane, through which all nutrients bound for the

bacteroid must pass.

As shown in Figure [1.4] symbiosis is the result of an elaborate exchange of sig-
nals between the host and the symbiont. The rhizobia respond to the presence of
plant-secreted flavonoids into the rhizosphere, the soil zone immediately surround-
ing the root system of the plant, by producing lipochitooligosaccharides known
as Nod factors (reviewed in [69]) which in turn, activate a transduction pathway
that ultimately leads to nodule formation [41]. Nod factors play a major role dur-
ing early nodule development and are known to be responsible for, among other
things, determining host-symbiont specificity as a result of host-specific recognition

of substitutions on the lipochitooligosaccharide backbone [55]. A more extensive



discussion of the role of cell-surface factors in the symbiotic process is included in
Section [1.4] During differentiation into the mature bacteroid state, the bacteria
undergo significant biochemical and morphological changes in response to environ-
mental stimuli within the nodule; these stimuli presumably include chemical signals,
low oxygen concentration, pH changes, and other plant-determined conditions that

are needed to facilitate the reduction of atmospheric dinitrogen to ammonia [201].

1.2.1  Stnorhizobium melilots

S. melilotr is a gram negative a-proteobacterium. Primarily a soil-dwelling bac-
terium, S. meliloti can enter into effective symbioses with several genera of forage
legumes including Medicago, Melilotus and Trigonella. The genome sequence of
S. meliloti, completed in 2001 [104], contains three replicons: a 3.65-Mb chromo-
some and two megaplasmids, pSymA (1.35 Mb) and pSymB (1.68 Mb), all three
of which contain genes required for symbiosis. The genome is estimated to encode
6204 proteins, approximately 60% of which have had functions ascribed on the ba-
sis of homology to proteins of known function. Furthermore, the ORFeome of S.
meliloti was constructed in 2005 [311], and represents a phenomenally valuable tool

for genetic investigations and manipulations in S. melilot: and related rhizobia.

In symbiosis with the host legumes Medicago sativa and Medicago truncatula, S.
meliloti elicits the formation of indeterminate nodules; nodules that are long and

cylindrical in structure, and possess a persistent apical meristem.

1.2.2 Bradyrhizobium japonicum

Among the Rhizobiaceae, B. japonicum is one of the most agriculturally important
since it is the the symbiont of soybean. B. japonicum nodules are large and spherical

in shape, and do not possess a persistent meristem. The genome of B. japonicum
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Figure 1.4: A schematic representation of the nodulation process (mod-

ified from [253])



has been sequenced and is comprised of a single circular chromosome of 9.1 Mb [178|
179]. The genome is estimated to encode 8317 proteins, approximately 52% of which
have had functions ascribed on the basis of homology to proteins of known function,
and 30% demonstrated homology to hypothetical genes. 34% of B. japonicum genes
demonstrated significant similarity to genes in the related species S. meliloti and
M. loti [104, 176, 177], and 23% appeared to be unique to B. japonicum [178, [179].
Although mono-partite in nature, the genome does posses a 410-kb region that

contains many of the genes needed for symbiotic nitrogen fixation [123] [198] [350].

1.3 Carbon Metabolism in the Rhizobiaceae

The Rhizobiaceae can be split into two broad classes on the basis of their metabolism:
fast growers and slow growers [2, 85]. Fast-growing rhizobia are typically found as-
sociated with temperate legumes and have generation times of less than six hours;
these include, respectively, the common alfalfa and pea symbionts S. meliloti and
R. leguminosarum (reviewed in [330]). Slow-growing rhizobia are often tropical in
origin, have generation times that exceed six hours and include the soybean sym-
biont B. japonicum. While both groups are renowned for their metabolic diversity,
it has been reported that the fast-growing rhizobia demonstrate a broader capacity
for carbohydrate metabolism [116, [125] [300], while the slow growers can catabolize

a larger variety of aromatic and hydroaromatic compounds [1T5], 264].

There is a considerable wealth of information in the literature regarding the
diverse metabolic capacity of rhizobia however, the construction of a coherent and
integrated picture of rhizobial cellular metabolism has yet to be completed. As
bioinformatics tools become more powerful, attempts at developing integrative,
constraint-based metabolic models will become more elegant and accurate. A re-

cent study, using R. etli CFN42, documents the first attempt at a comprehensive



metabolic reconstruction of a rhizobial species [289]. This model, depicted in Figure
integrates data from the R. etli genome, journal publications, online databases
and metabolism textbooks and represents an interesting and exciting step towards

a more complete understanding of bacterial metabolic networks.

The major metabolic function of the root nodule is to take Ny from the air and
reduce it to ammonia, providing the plant with a source of fixed nitrogen. In order
to fix nitrogen, the rhizobial cells must undergo a complex process of metabolic
and physiological differentiation into a mature state known as the bacteroid, which
is enveloped by the plant cell. The metabolism of bacteroids, which persist in
the nodules low O, microenvironment that is compatible with the key Oq-sensitive
enzymes in the nitrogen fixation process [295], 202], is overwhelmingly focused on
the production of fixed nitrogen which is then transferred to the host plant. This
process is fuelled by the plant host through the provision of large quantities of

Cy-dicarboxylic acids such as malate or succinate [293], 99| B306].

Although bacteroid metabolism has been the subject of considerable study in
recent years, and despite the wealth of recent proteomics data [308| 309], the basic
questions of metabolic regulation and carbon utilization are largely unresolved. In
B. japonicum bacteroids it is conceivable that the microaerophilic nature of the
nodule may result in repression of key TCA enzymes. This would necessitate the
use of alternate pathways to bypass the rate-limiting reactions in order to facilitate
continued carbon oxidation, and perhaps modulate intracellular NAD(P)H levels.
These pathways are shown in Figure [1.6] which depicts an overview of bacteroid
metabolism in B. japonicum. In S. meliloti. previous studies have highlighted the
importance of the TCA to bacteroid metabolism because citrate synthase [147],
isocitrate lyase [233], succinate dehydrogenase [I07], and malate dehydrogenase

[82] have all been shown to be essential to symbiosis.
Figure [1.6] shows that there are a number of potential bacteroid responses to
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Figure 1.5: A reconstruction of carbon metabolism in R. etli was mod-
elled using data from a wide variety of different sources including the
R. etli genome sequence, journal publications, online databases and
metabolism textbooks [289]
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regulatory events. PHB metabolism is discussed in detail in Section [1.3.1} in order
to facilitate a complete discussion of bacteroid metabolism, a brief overview of other

pathways is included below.

1.3.0.1 Glyoxylate Shunt

The glyoxylate shunt, as indicated in Figure[1.6|and shown in more detail in Figure
represents an anapleurotic pathway that facilitates the growth of cells on Cs-
substrates, allowing them to replenish TCA intermediates [59] [168]. This pathway
is widespread among prokaryotes, and is encoded by the genes for isocitrate lyase
(ICL) (EC 4.1.3.1) and malate synthase (MS) (EC 2.3.3.9), although data regard-
ing its role in symbiotic nitrogen fixation remains inconclusive. Radiorespirometric
analyses of B. japonicum indicated that up to 50% of acetyl-CoA that enters the
TCA is metabolized via malate synthase [329], and ICL activity has been detected
in bacteroids of senesced B. japonicum nodules [391]; however, isocitrate lyase activ-
ity has not been detected in bacteroids from soybean, pea, alfalfa or clover nodules
[130, [168], although free-living B. japonicum and S. meliloti cells demonstrate mea-
surable levels of ICL activity when grown on acetate under free-living conditions
[79, 130, 218]. Interestingly, malate synthase activity appears to be constitutive
[79, 130, 18], although activity levels appear to be higher in cowpea and soybean
nodules, relative to alfalfa or pea [121), [168]. Mutational analysis ofaceA (ICL) and
gleB (MS) in S. meliloti indicated that aceA is essential for growth on acetate, and
thus fundamental to the function of the glyoxylate shunt [282]. Interestingly, this
study also showed that glcB is not essential for growth on acetate, which is in stark
contrast to observations made in other bacteria, including E. coli [190, 257, 282],

suggesting that other pathways for Cy-metabolism might exist in Rhizobia.
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1.3.0.2 Malate-Aspartate Shuttle

The malate-aspartate shuttle facilitates the oxidation of imported malate to ox-
aloacetate; oxaloacetate is subsequently transaminated to aspartate via a glutamate-
dependent aspartate aminotransferase [I75]. This would necessitate transport of
glutamate across the peribacteroid membrane and into the bacteroid. The as-
partate aminotransferase reaction would result in the production of aspartate and
a-ketoglutarate; export of a-ketoglutarate, to compensate for malate import might

facilitate the maintenance of the PBM electrochemical potential (reviewed in [232]).

In B. japonicum bacteroids, accumulation of oxaloacetate would result in the
competitive inhibition of succinate dehydrogenase. The malate-aspartate shuttle
would allow the bacteroids to metabolize oxaloacetate under conditions where the
activities of citrate synthase, isocitrate dehydrogenase and a-ketoglutarate are rate-
limiting relative to malate dehydrogenase. This would thus facilitate continued

carbon metabolism under otherwise inhibitory conditions (reviewed in [232]).

1.3.0.3 «a-Ketoglutarate-Glutamate Shunt

a-Ketoglutarate dehydrogenase activity in other gram-negative bacteria is known to
be inhibited by NADH [156], 191, 329] [384] or repressed under conditions of oxygen
limitation [4, 127, [160]. Given the metabolic constrains of the nodule environment,
it is conceivable that a similar repression is experienced in bacteroids. Previous
studies in B. japonicum and R. leguminosarum have presented data that suggest
a significant portion of the carbon that enters the bacteroids is converted to gluta-
mate [211), B05]. Glutamate dehydrogenase activity is induced by the presence of
ammonium and a-ketoglutarate [101], both of which are likely to be present in the
bacteroid [232]. Therefore, if a-ketoglutarate dehydrogenase activity is repressed

then the accumulation of a-ketoglutarate would upregulate aspartate aminotrans-
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ferase and GOGAT [386], thus providing a key link between the glutamate shunt

and the malate-aspartate shuttle.

There is considerable evidence that glutamate, derived from a-ketoglutarate,
can act as the transamination donor in the aspartate-aminotransferase reaction
in R. leguminosarum bacteroids [211]. The resultant aspartate is secreted to the
plant, facilitating asparagine synthesis, which is then taken up by the plant as the
main nitrogen-source from the nodule (see Figure in Section ). Glutamate
may also be decarboxylated to produce y-aminobutyrate (GABA), which can be
further metabolized to succinate [175], thus providing a bypass of a-ketoglutarate
dehydrogenase while still removing an equivalent amount of CO, and producing

succinate, which can then re-enter the TCA cycle.

1.3.0.4 Dicarboxylic Acid Cycle

In order to metabolize succinate or malate via the TCA cycle, bacteroids must
employ an anapleurotic pathway leading to the synthesis of acetyl-CoA. While B.
japonicum bacteroids apparently lack PEP carboxylase activity [335], it is conceiv-
able that PEP carboxykinase or malic enzyme may be employed in the synthesis
of acetyl-CoA. As shown in Figure[1.6] acetyl-CoA has four possible fates: 1. PHB
synthesis; 2. TCA cycle; 3. malate synthesis; 4. reduction to ethanol. The combi-
nation of the GABA pathway and PHB synthesis provides an effective mechanism
for the removal of excess carbon from the TCA cycle. For example, the GABA
pathway involves a decarboxylation step, as does a-ketoglutarate dehydrogenase;
employing a dicarboxylate-like pathway to channel oxaloacetate to pyruvate and
then acetyl-CoA eliminates two carbon molecules. These alternative pathways thus

represent potential detours around the decarboxylating steps of the TCA cycle [232].
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1.3.0.5 Reductive Pathways

As shown in Figure[1.6] it is conceivable that B. japonicum bacteroids may synthe-
size acetaldehyde or ethanol to support nitrogen fixation. The potential pathway
for ethanol synthesis would necessitate the upregulation of aldehyde dehydroge-
nase and alcohol dehydrogenase, both of which have been detected in bacteroids

(reviewed in [232]).

1.3.0.6 PHB Synthesis

While most of the carbon from the plant is channelled into energy production to fuel
nitrogen-reduction, it has been well-documented that in B. japonicum bacteroids,
some carbon is diverted into the production of intracellular storage polymers com-
posed of either glycogen or poly-g-hydroxybutyrate (PHB) that can be seen by
electron-microscopy [60, [74], 122] 149, [400]. PHB and glycogen deposits are found
in the cytoplasm as electron-transparent and electron-dense granules, respectively;
these granules are synthesized by many bacteria when carbon is abundant and
growth is limited by the shortage of another nutrient [400] 390]. PHB metabolism

is discussed in more detail in the following sections.

1.3.1 Polyhydroxybutyrate Metabolism
1.3.1.1 Cellular Role of PHB

PHB is the best-characterized member of the polyhydroxyalkanoates (PHAs) [217,
326]. PHAs have generated considerable interest as potential economically competi-
tive, environmentally benign replacements for synthetic, biologically inert polyester
plastics [217]. Indeed, the potential commercial value of PHAs has generated the

interest that has driven much of the research in this field.
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The cellular role of PHB, although not fully understood, is known to extend
further than simply acting as an intracellular carbon store that can be mobilized to
provide a bacterium with a competitive advantage over other soil microbes. PHAs
have been shown to protect the cell from a wide range of stresses including heat
shock, UV irradiation, exposure to oxidizing agents, and osmotic shock [I73]; per-
haps by favouring the establishment of the bacterial cells and thus enhancing their
capacity to tolerate environmental stress [174]. PHB metabolism is also tightly
linked to the redox state of the cell; studies in Azotobacter beijerinkii, Azotobacter
insigni, and Rhizobium ORS5H71 have shown that accumulation of large amounts
of PHB is induced under conditions of oxygen limitation [313] 324], 328]. Under
low-oxygen conditions, such as those found in the root nodule, the redox potential
of the cell decreases as a result of aerobic metabolism, leading to a concurrent rise
in cellular NAD(P)H levels. This leads to inhibition of both NADP*-isocitrate
dehydrogenase (EC 1.1.1.42) and citrate synthase (EC 2.3.3.1) which, in turn, di-
vert acetyl-CoA and electrons away from the TCA cycle and into PHB synthesis
[160, 313]. It has been suggested that in Azotobacter, PHB synthesis fulfills a regula-
tory role as an alternative electron acceptor; under conditions of oxygen limitation,
NAD(P)H is channelled into PHB formation to relieve inhibition of isocitrate de-
hydrogenase and citrate synthase in order to allow continued operation of the TCA
cycle [314), B13]. This is supported by the observation that a strain of Azotobacter
vinelandii possessing a defective NADH oxidase synthesized massive amounts of
PHB during the exponential phase of growth; in these cells PHB acts as an alter-
native electron sink to facilitate the regeneration of NAD(P)™, and its production
allows cells to maintain a wild-type level of growth [261, 262]. Although further
studies are required to elucidate the mechanisms by which partitioning of acetyl-
CoA between the TCA cycle and PHB synthesis is controlled, it is feasible that

regulation of these pathways is probably controlled by a combination of factors,
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including the acetyl-CoA/CoA ratio, the redox states of the pyridine pool, and

reduced TCA cycle activity under microaerobic conditions [182].

While best-known for their ability to form nitrogen-fixing symbioses with legumes,
the rhizobia are indigenous soil bacteria and as such are well-adapted to sur-
viving in the typically oligotrophic, carbon-limiting environment of the bulk soil
[368]. Carbon-rich root exudates released by plants make the rhizosphere extremely
nutrient-rich relative to the bulk soil environment [368]. As rhizobia move between
the rhizosphere and the bulk soil, the ability to accumulate and then degrade PHB
and other carbon storage polymers would provide a competitive advantage over
other bacteria. Furthermore, the recent observation that the bdhA gene encod-
ing the PHB degradative enzyme 3-hydroxybutyrate dehydrogenase (BdhA, EC
1.1.1.30) in S. meliloti is upregulated in response to the presence of the alfalfa
root exudate biotin may be significant [I53]. Rapid catabolism of stored PHB to
fuel cell division would allow the rhizobia to rapidly colonize the plant rhizosphere,

facilitating efficient nodulation and nitrogen fixation.

1.3.1.2 PHB Metabolism

The structural similarity of PHB to polypropylene and its development as a com-
mercial product has provided the stimulus for the isolation and study of PHA
biosynthesis genes from multiple bacterial species. The PHB cycle of S. meliloti
has been elucidated and is depicted graphically in Figure[1.8; analyses of S. meliloti
PHB mutant phenotypes have shown that the ability to synthesize and utilize PHB,

while important in competitive growth, is not essential for symbiosis [7], [390].

Synthesis of intracellular amorphous PHB storage granules from TCA cycle
intermediates can act as an over-flow pathway for the TCA cycle. Two acetyl-

CoA molecules are condensed by the action of a 3-ketothiolase, PhbA (PhaA; EC
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2.3.1.9) to form acetoacetyl-CoA (AA-CoA) [267]. AA-CoA is then reduced to 3-
hydroxybutyryl-CoA (3-HB-CoA) by an acetoacetyl-CoA reductase, PhbB (PhaB;
EC 1.1.1.36) [268]. 3-HB-CoA forms the substrate for polymerization to yield PHB
through the action of PHB synthase, PhbC (PhaC; EC 2.3.1.-) [312].

Intracellularly, PHB degradation is initiated by the action of PHB depolymerase,
PhaZ, (EC 3.1.1.75) which releases the D-3-hydroxybutyrate (D-3-HB) monomer
[68]. D-3-HB is oxidized by the action of 3-hydroxybutyrate dehydrogenase, BdhA
(EC 1.1.1.30) to acetoacetate (AA) [6], which is esterified to acetoacetyl-CoA (AA-
CoA) by acetoacetyl-CoA synthetase, AcsA2, (EC 6.2.1.16) [40]. Following hydrol-
ysis of AA-CoA by PhbA, acetyl-CoA is assimilated via the TCA cycle and glyoxy-
late shunt enzymes [217]. Alternatively, upon cell death and lysis, PHB granules
are released into the extracellular environment where they undergo a transition
into a partially crystalline polymer and can be broken down by the action of ex-
tracellular PHB depolymerases [164]. The extracellular degradative enzymes are
phylogenetically unrelated to the intracellular enzymes and their substrate specifici-
ties are distinct, recognizing the amorphous and semi-crystalline forms respectively

[164], 341].

1.3.1.3 Genetics and Genomics of PHB Metabolism

Analysis of the genomic organization of PHB biosynthesis genes in the a-proteobacteria
has revealed that the genes encoding PHB synthases are typically not co-localized
with other genes in the PHB biosynthesis pathway [285], a pattern that appears
to be consistent throughout the rhizobia [104, 177, 178, 179]. This is in contrast
to other PHB-accumulating bacteria in which PHB synthesis genes are often found
clustered within the genome (Figure [1.10)) [286]. In the S-proteobacterium Wauter-
sia eutropha phbC' is found clustered with phbA and phbB to form the phbCAB

operon [312| [318] and in the ~-proteobacterium A. vinelandii these genes are clus-
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tered to form the phb BAC operon [269]. In rhizobia phbA and phbB are found
within an operon while phbC' is typically found elsewhere in the genome. This
pattern has been confirmed for S. meliloti [104], Mesorhizobium loti [177], and
Bradyrhizobium japonicum [I78]; although it is worth noting that B. japonicum
possesses two copies of the phbAB operon and five copies of phbC, which are dis-

tributed throughout the genome (Figure [1.9) [7].

The PHB cycle in S. meliloti is the most extensively studied of the rhizobial PHB
pathways. PHB biosynthetic genes were first discovered by heterologous comple-
mentation [390], heterologous hybridization [349], and mutagenesis [275]. Screening
of mutants for an inability to grow on PHB cycle intermediates resulted in the iden-
tification of several genes involved in the PHB degradation cycle [0}, 8, 46| [70]. The
genes in the PHB degradation pathway are phaZ which is located on the chro-
mosome and has yet to be experimentally characterized; bdhA which is located on
pSymB; and acsA2 which is located on the chromosome [40]. Mutants of several
key PHB cycle enzymes have demonstrated interesting and informative phenotypes
that have helped elucidate potential roles for the PHB cycle in both free-living and
symbiotic growth. A summary of genes that have been shown to elicit an effect on

the PHB cycle is listed in Table [1.1]
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PhbB and PhbC are key enzymes in the anabolic arm of the PHB cycle and
are encoded by genes located on the S. meliloti chromosome. Both phbB and phbC
mutants of S. meliloti strain Rm1021 are deficient in the ability to produce suc-
cinoglycan, resulting in dry, non-mucoid colonies when grown under carbon-rich
conditions; this phenotype is not observed in PHB degradation mutants [7]. Fur-
thermore, the inability of these mutants to utilize the PHB cycle intermediates
D-3-HB and AA as sole carbon sources [7, 40], suggests that the ability to syn-
thesize PHB is essential for its degradation. phbC mutants are able to establish
successful nitrogen-fixing symbioses with their host plant, and early studies implied
that phoC' mutants were essentially indistinguishable from wild-type in their sym-
biotic effectiveness [275] [390]. More recent studies however, have shown that plants
inoculated with a phbC mutant strain, although appearing healthy, exhibit a de-
lay in nodule development and a reduction in the total number of nodules formed,

coupled with a significant reduction in shoot dry weight [7].

AcsA2 in S. meliloti is involved in the catabolic arm of the PHB cycle and is
responsible for the synthesis of acetoacetyl-CoA from AA [8]; this is in contrast
to Escherichia coli in which AA is activated by a CoA transferase [165]. acsA2
is located on the chromosome; mutants were generated by Tnd mutagenesis and
are unable to use either D-3-HB or AA as sole carbon sources [40)], 46, [70]. Over-
expression of acsA2 in S. meliloti Rm1021 conferred the ability to utilize L-(+)-
hydroxybutyrate (L-3-HB) as a sole carbon source, although it is worth considering
that AcsA2 has a higher K,, and lower V,,,, for L-3-HB than for AA, suggesting

that L-3-HB is not a natural substrate for the enzyme [§].

The S. meliloti bdhA gene is the first gene in an operon that also contains genes
encoding subunits for xanthine oxidase and xanthine dehydrogenase [6]. Rm11107,
a bdhA mutant of S. meliloti, was generated using Tnd mutagenesis and identi-

fied by its ability to use AA but not D-3-HB as a sole carbon source. This is in
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contrast to phbC, phbB and acsA2 mutants, which are all unable to grow using
AA as a sole carbon source [7, 146, [70]. While neither BdhA nor PhbC is neces-
sary for an effective symbiosis [275] [390], S. meliloti strains able to synthesize and
degrade PHB demonstrate a measurable competitive advantage over mutants in
either the anabolic or catabolic pathways of the PHB cycle during both free-living
and symbiotic growth [7]. Moreover, the inability to synthesize PHB manifests a
more severe defect than the inability to utilize PHB-derived D-3-HB as a source of
carbon and energy [7]. This suggests that the ability of PHB to act as a redox reg-
ulator for removal of potentially growth inhibitory metabolites [80, [377] may be far
more critical than its use as an internal carbon and energy store [7]. The ability to
synthesize and break down PHB may confer a significant competitive advantage on
S. meliloti during saprophytic growth. This in turn would enhance the likelihood

of establishing successful symbioses upon receipt of the appropriate stimuli.

PHB cycle mutants in other species of rhizobia have also been investigated.
Rhizobium etli phaC mutants grow poorly on pyruvate as a sole carbon source
during free-living growth [43, [R1]. This suggests that suppression of the TCA cycle
occurs in phaC mutants, possibly due to the increased NADH/NAD™ ratio, which in
turn causes suppression of key metabolic enzymes including pyruvate dehydrogenase
[43,87]. This observation is similar to that reported for R. leguminosarum bv viciae
(which forms indeterminate nodules on the roots of pea) but not corroborated by
results from R. leguminosarum bv. phaseoli (which forms determinate nodules
on the roots of bean) [212]. These data suggest that, in at least R. etli and R.
leguminosarum bv. wiciae, PHB synthesis is important for pyruvate metabolism.
R. etli phaC' mutants also accumulated up to 50-fold more glycogen in free-living
growth than the wild-type strain, suggesting that carbon can be shuffled between

alternative storage polymers [43].

Analysis of the genome sequence of B. japonicum [I78] indicated the presence
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of five phbC' homologues (one of which has been shown to be able to functionally
complement a S. meliloti phbC mutation [7]) and two phbAB operons encoding
acetyl-CoA acetyltransferase and acetoacetyl-CoA reductase [178, [I79]. The pres-
ence of so many copies of phbC suggests a significant role for PHB in B. japonicum
metabolism. Although the capacity of each of these genes to encode a functional
PHA synthase has not been experimentally determined, each one does contain the

conserved catalytic residues found in all PHA /PHB synthases [285].

While not strictly part of the PHB cycle, the aniA gene encodes a transcrip-
tion factor that is thought to be responsible for regulating expression of genes
whose products are important in the partitioning of carbon flow in the bacterial
cell [274]. In S. meliloti, AniA synthesis is stimulated under low-oxygen conditions,
and its production results in the channelling of excess carbon into PHB and glyco-
gen biosynthesis [274]. aniA mutants of S. meliloti exhibit a significant increase in
exopolysaccharide (EPS) production under anoxic conditions but show no increase
in intracellular carbon storage polymers [274]. In R. etli however, AniA appears
to also play a significant role in controlling carbon flow under aerobic conditions
[87,274]. aniA mutants of R. etli exhibit a marked decrease in PHB accumulation,
a large increase in EPS biosynthesis and a drastic alteration of global protein ex-
pression, including the disappearance of PhaB during aerobic growth [87]. aniA in
R. etli was identified in a phaC mutant background by random Tns mutagenesis;
mutants restored in their ability to grow on pyruvate as a sole carbon source all
possessed a single insertion that mapped to an ORF with significant homology to
aniA of S. meliloti [87]. The precise role played by aniA in rhizobial metabolism
remains to be determined but, given the significance of carbon metabolism under
both free-living and symbiotic conditions, it is tempting to speculate that it will be

central to multiple metabolic pathways.
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1.3.1.4 PHB in the Rhizobia-Legume Symbiosis

The ability of bacterial cells to partition acetyl-CoA between the TCA cycle and
PHB synthesis in order to maintain respiration at sufficiently high levels under
microaerobic conditions is especially pertinent when one considers the metabolic
state of the bacteroid during symbiosis. Rhizobia are obligate aerobes; however, all
metabolic reactions occurring in the bacteroid must occur under the microaerobic
conditions necessary to protect the Oo-labile nitrogenase enzyme that is responsible
for nitrogen reduction. As a result, tight regulation of free O, in the root nodule is
essential to ensure that, while the concentration of free O is low, O, flux remains
high enough to support the high level of respiration required for nitrogenase activity
[202]. Control of free Oy availability to the bacteroid is presumably a major factor
in the control of bacteroid metabolism; it has been proposed that O, availability
is used by the host plant as a means of sanctioning non-fixing strains of rhizobia,
allowing the host plant to select against nodules that contain non-fixing rhizobia

1711, [185).

The roles of PHB in the rhizobia-legume symbiosis appear to be more diverse
than simply providing an alternative electron sink and data concerning the function
of PHB in bacteroid metabolism is often conflicting. While most rhizobia accumu-
late PHB under free-living conditions [43], not all rhizobia accumulate PHB during
symbiosis. The ability to accumulate PHB during symbiosis appears to be depen-
dent on the physiology of the nodule formed by the host plant. Two major types
of root nodule are formed in the rhizobia-legume symbiosis: determinate nodules
which do not possess a persistent meristem and instead form a spherical-shaped
structure, and indeterminate nodules which possess a persistent meristem resulting

in a long, cylindrical structure [134].
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1.3.1.5 Determinate Nodules

Bacteroids of determinate nodules, such as those formed by B. japonicum on soy-
bean and R. etli on beans, accumulate high levels of PHB during the active nitrogen-
fixing period of symbiosis [19, 181, 182, [391]. These PHB reserves may subsequently
be mobilized for use during periods of low carbon availability, such as during periods
of darkness or seed production by the host plant [18]. Bacteroids of B. japonicum
can accumulate up to 50% of their cellular dry weight as PHB [18T] 188 238 [391],
an amount which does not appear to fluctuate relative to nitrogenase activity but
which does decline under extended periods of carbon stress [391]. Whole nodules
of Lupinus angustifolius demonstrated reduced PHB levels and BdhA activity as
well as a rapid reduction in nitrogen fixation when the host plants were incubated
in darkness [I10]. This suggests that PHB stores in determinate nodules may be
mobilized in order to support nitrogen fixation under conditions of reduced carbon
availability. The production of PHB and fixation of nitrogen in bacteroids, however,
seem incompatible: PHB and nitrogenase potentially compete for the same energy
and reductant sources and, therefore, PHB synthesis in bacteroids must compete
with nitrogen-fixation for photosynthate [43, [I81]. This is further supported by the
observations that a phaC mutant of R. etli demonstrated higher and more pro-
longed nitrogenase activity relative to the wild-type strain during symbiosis [43]
and Tnd mutants in the nitrogenase-encoding nifD, nifK, and nifH genes in B.
japonicum all accumulated higher levels of PHB relative to the wild-type strain
[135]. These data are not, however, corroborated by the observation that a phaC
mutant of R. leguminosarum bv. phaseoli was unaffected in symbiotic efficiency on
bean relative to the wild-type strain, suggesting that PHB production levels in the

bacteroid may not be the sole contributor to symbiotic performance [212].
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1.3.1.6 Indeterminate Nodules

Bacteroids occupying indeterminate nodules, such as S. meliloti on alfalfa, do not
accumulate PHB during symbiosis [149] [148]; PHB synthesis does occur, but is
presumably accompanied by an equivalent rate of degradation; any accumulation is
insufficient to allow for the formation of granules detectable by electron microscopy
[186]. These bacteria possess large numbers of PHB granules during the initial
stages of invasion, which involves passage through the infection thread by means of
cell division [103]. The cells then become enclosed in the plant-derived symbiosome
membrane [149, 148 170] and begin the process of differentiation into the bacteroid
state. During differentiation, the PHB granules disappear and mature bacteroids
are notably devoid of visible PHB granules [149, [148], 212, [370]. While the carbon
source responsible for fuelling the invasion and infection process has not yet been
identified, it has been speculated that PHB, while not crucial to the process [7,[390],
may play some role during infection [40, [70]. Although PHB mutants are capable
of nodulation and establishing effective symbioses [275], 390], it is possible that in-
tracellular PHB stores may fuel cell division and growth during root infection and
invasion. Interestingly, a recent study in R. leguminosarum bv. viciae showed that,
under extraordinary conditions, PHB accumulation could occur; R. leguminosarum
bv viciae carrying mutations in aap and bra, encoding broad-specificity amino acid
transporters, possessed PHB granules in mature bacteroids [211]. These bacteroids
were unable to cycle amino acids between the bacteroid and the host plant resulting
in plants that displayed a Fix™ phenotype, even though they had nodules that ap-
peared to possess an intermediate level of leghemoglobin and contained a functional
nitrogenase [211]. Blocking the amino acid cycling pathway between the plant and
the bacteroid, which appears to be essential for an effective symbiosis, prevents the
synthesis of aspartate from oxaloacetate, which increases carbon flow from dicar-

boxylate to pyruvate, which is in turn channelled into PHB synthesis. This study
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demonstrates that bacteroids of R. leguminosarum still retain the capacity to syn-
thesize and store large quantities of PHB, but only when carbon supply is in excess
and bacteroid metabolism is limited by the availability of a key nutrient. Further
study needs to be conducted to determine if this is a behaviour that is consistent

amongst all symbionts occupying indeterminate nodules.

S. meliloti possesses two malic enzymes: NADP'-dependent Tme, which is
present under free-living conditions, and NAD"-dependent Dme, which is present
under both free-living conditions and during symbiosis [78]. In contrast to Tme,
Dme is severely inhibited by the presence of acetyl-CoA, suggesting that Dme
functions in the pathway responsible for the conversion of dicarboxylate into acetyl-
CoA in the bacteroid [78]. While the reason for accumulation of PHB in bacteroids
of determinate nodules, but not those of indeterminate nodules, is not understood,
it has been suggested that the low activity of the NADP*-dependent malic enzyme
Tme in bacteroids of indeterminate nodules may play a role. The bacteroid is
supplied with malate and other Cy-dicarboxylates by the plant; mutations in either
the dicarboxylate transport system [27, 09, 293] or the NAD*-dependent malic
enzyme Dme [77] have a severe effect on the capacity of the strain to enter into an
effective symbiosis. It has been hypothesized that the synthesis of PHB in S. meliloti
bacteroids might be inhibited because too little substrate, and too few reducing
equivalents are present to shuttle acetyl-CoA into the PHB biosynthetic pathway
[78]. In contrast to this, the NAD%-malic enzyme from B. japonicum bacteroids
demonstrated no inhibition in the presence of acetyl-CoA, suggesting that NAD™-
malic enzyme plays different physiological roles in these two species [49]. It has been
suggested that both NADP*- and NAD'-dependent malic enzymes are active in B.
japonicum bacteroids, but that the NAD"-dependent enzyme is primarily involved
in the conversion of malate to acetyl-CoA [57]. As the B. japonicum NADT-malic

enzyme is not inhibited by acetyl-CoA, accumulation of acetyl-CoA that could be
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channelled into PHB biosynthesis would then be possible, facilitating the formation

of large PHB stores in these bacteroids.

When considering the differences between determinate and indeterminate nod-
ules, it is also worth considering the fate of the bacteroids following nodule senes-
cence. It is commonly believed that, following infection and differentiation, bac-
teroids of indeterminate nodules are terminally differentiated and are unable to
return to a free-living state, while bacteroids of determinate nodules are thought to
retain the capacity for free-living growth and can undergo a reverse differentiation
process upon nodule senescence [132], 232) 235 337, B57]. It is therefore tempting
to speculate that PHB accumulation by bacteroids in determinate nodules and by
undifferentiated cells in the infection thread of indeterminate nodules may func-
tion to give the rhizobial cells a competitive advantage when released into the soil

following nodule senescence [70].

1.3.1.7 Summary of Rhizobial PHB Metabolism

The observation that, contrary to the commonly accepted paradigm, bacteroids of
indeterminate nodules retain the capacity to generate PHB granules is interesting.
The fact that bacteroids of R. leguminosarum bv. viciae aap/bra mutants produced
PHB granules that were visible by electron microscopy provides us with some valu-
able insight into nodule metabolism [211]. Nodules containing bacteroids incapable
of exporting fixed nitrogen will be perceived as ineffective by the plant, which will
impose sanctions upon them [70]. Recent data has shown that these sanctions are
likely to take the form of reduced Og supply to the bacteroid [I85]. This might
result in repression of the TCA cycle in the bacteroid but would not directly affect
the supply of dicarboxylates by the plant or uptake by the bacteroid. In order
to prevent build up of malate (or another Cy-dicarboxylate) due to inhibition of

Dme by acetyl-CoA, the bacteroid could potentially channel the excess carbon into
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PHB biosynthesis. This would have the added benefit of regenerating NADP™,
which would presumably accumulate when nitrogenase activity is compromised. In
the absence of a functional TCA cycle however, regeneration of NAD™ is presum-
ably compromised and it is tempting to speculate that this might ultimately cause

inhibition of Dme.

The observation that plant tissue from nodules infected by R. leguminosarum
aap/bra mutants possesses increased levels of starch [211] suggests that, in the
absence of a functional TCA cycle, channelling of dicarboxylates into PHB biosyn-
thesis does not restore the metabolic state of the bacteroid to normal levels. Indeed,
it suggests that bacteroid carbon utilization appears to still be compromised. As-
suming that DctA is not feedback inhibited by a build-up of malate in the bacteroid
cytoplasm, it is conceivable that the plant employs additional measures to monitor

and regulate carbon demand by and supply to the bacteroid.

Carbon is transported from the sites of photosynthesis to the root nodule in
the form of sucrose, which is subsequently hydrolysed by the nodule plant cells
into fructose and UDP-glucose. It is from these sugars that malate (or another Cy-
dicarboxylate) is synthesized and transported to the bacteroids. Malate is exported
from the plant via a dicarboxylate transporter in the plant-derived peribacteroid
membrane (PBM) [360, B93], and imported into the bacteroid by the bacterial
transporter DctA [08, 09, 293]. The sustained uptake of malate across the PBM
is dependent on subsequent uptake and metabolism by the bacteroid [359]; if bac-
teroid carbon metabolism is suppressed as a result of plant-enforced sanctions, it is
conceivable that transport of malate across the PBM will be reduced. This would
presumably cause an increase in malate levels within the root nodule tissue, which
would result in down-regulation of dicarboxylate synthesis; the excess carbon would
be channelled into starch biosynthesis instead. It is possible, given the apparent

ability of bacteroids from determinate nodules to undergo reverse differentiation
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following nodule senescence, that these symbioses have evolved to increase the pro-
vision of dicarboxylates to the bacteroid in order to fuel both cellular respiration
and PHB formation. Assisting the bacteroids in PHB accumulation has the poten-
tial benefit to the host plant of seeding the soil with a population of viable rhizobia
that would be available to nodulate the next generation of plants following seed
formation and plant death. In indeterminate nodules, where reverse differentia-
tion does not occur, there is no obvious benefit to either the plant or the bacteria
for the bacteroids to assimilate carbon reserves; PHB is not accumulated and, in-
deed, NAD'-malic enzyme has evolved to effectively switch off PHB accumulation
in the nodule under normal physiological conditions. It is only when the central
metabolic pathway of the bacteroid is blocked downstream of the branch point for
PHB biosynthesis that bacteroids of indeterminate nodules appear to be capable of
accumulating PHB. It is conceivable that, because PHB granules are osmotically
inert, PHB biosynthesis is employed as a measure to maintain appropriate osmotic
pressure in the bacteroid. If this is indeed the case, analysis of the ultra-structure of
root nodules incubated in a No-reduced or Na-free environment might be expected to
reveal the presence of PHB granules in bacteroids of indeterminate nodules. Study
of broad-host-range rhizobial species such as Sinorhizobium sp. NGR234, which are
capable of symbioses involving either indeterminate and determinate nodules [280],
has the potential to reveal a great deal about the differential metabolic profiles that
appear to exist between bacteroids of each nodule type. Specifically, insight into
the regulation of malic enzyme(s) and the effects of an aap/bra double mutation in

a broad host range strain might reveal a great deal about nodule metabolism.

Further studies of the PBM dicarboxylate transporter are critical if we are to
understand the complex relationship between host and symbiont in the rhizobia-
legume symbiosis. It is worth considering that DctA and its plant-derived coun-

terpart have different kinetic properties; in nodules of soybean infected with B.
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japonicum, the PBM DCA transporter has a higher K,,, and lower V,,,, than its
bacterial counterpart [360]. It is tempting to speculate that these differences may
account for the discrepancies in bacteroid PHB storage between determinate and
indeterminate nodules. Studies of the transport kinetics and regulation of the PBM
dicarboxylate transporters of determinate and indeterminate nodules is needed to

analyse this in more detail.

1.3.2 Dicarboxylic Acid Metabolism and Transport

The specificity of carbon source utilization by bacteroids to support BNF has been
under investigation since the 1960s, when it was shown that bacteroids of B. japon-
icum preferentially oxidized the TCA cycle intermediates succinate, malate and fu-
marate (all of which are dicarboxylates) over hexose sugars [329]. Since then, many
studies have been conducted on a variety of rhizobia, which show that BNF is highly
stimulated by the presence of dicarboxylates, especially succinate. Cy-dicarboxylate
uptake rates by bacteroids have been shown to be 30-50 fold faster than for sugars
(reviewed in [195, [387]). Interestingly, the dependence on the TCA for Ny-fixation
appears to differ between fast- and slow-growing rhizobia. Mutational analyses of
B. japonicum suggested that neither aconitase nor isocitrate dehydrogenase, both
central TCA cycle enzymes, were essential to the establishment of a effective sym-
biosis [315],[344]. This is in contrast to S. meliloti, in which isocitrate dehydrogenase
mutants are ineffective in symbiosis, although they are capable of eliciting the for-
mation of bacteroid-filled nodules [233]. A similar phenomenon is documented with
respect to the sucAB genes, which encode the 2-oxoglutarate enzyme complex and
are responsible for the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA
(reviewed in [387]). B. japonicum sucA mutants, although impaired in nodula-
tion effectiveness, can establish No-fixing symbiosis with almost wild-type levels of

nitrogen-fixation [128§], while similar mutants of R. leguminosarum were unable to
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form Na-fixing nodules on pea plants [377]. Tt is important to remember that these
experiments do not examine flux; it is thus likely, given the presence of both 2-
oxoglutarate dehydrogenase and succinate semialdehyde dehydrogenase [131], that

B. japonicum TCA cycle mutants are able to bypass the blocked points.

There have been many studies investigating the dependence of BNF on a func-
tional dicarboxylate transport system. Prior to the isolation of the C4-dicarboxylate
transport system of R. leguminosarum bv. trifolii in 1984 [292], researchers had
shown that mutants defective in the ability to transport Cy-dicarboxylates were un-
able to enter into effective symbioses with their respective host legumes (reviewed
in [396]). Today, many examples have been documented to confirm the dependence
of BNF on Cy—dicarboxylate transport and it is widely accepted that mutants are
impaired in their capacity to import dicarboxylic acids (DCAs) form ineffective,

non-nitrogen fixing nodules in symbiosis [11], 27, [84] 99| 117, 215], 1382].

Transport of dicarboxylic acids into the bacteroids is also intimately linked to
the transport of amino acids, and ultimately to a complex C/N exchange pro-
cess between the host plant and the symbiont [211]. The theoretical model for
this exchange is shown in Figure [1.11, This model describes how the bacteroids
are believed to import glutamate from the host plant via the bacterial Aap/Bra
transporters [211]. Glutamate can then act as a transamination donor to produce
aspartate. Aspartate is secreted to the plant, facilitating asparagine synthesis, and
allowing the bacteria to shut down ammonia assimilation [211]. It is possible that
DctA functions as the aspartate carrier allowing aspartate to be exported from the

bacteria.
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1.3.2.1 DctA

The dicarboxylate transport system is encoded by three genes, dctA, dctB and dctD
[27,1382). dctB and dctD encode the genes for a two-component regulatory system
in which the periplasmic sensor kinase (reviewed in [163]) DctB, responds to the
presence of C,—dicarboxylates in the bacterial periplasm [112, [I11] modulates that
activity of the response regulator DctD [133] 200], which activates transcription of
dctA via the os4-dependent, dctA promoter (reviewed in [396]). The regulation of
dctA expression is discussed in more detail in Section [1.3.2.2] DctB and DctD have
been well studied both structurally and functionally and both show homology to

two-component regulatory systems from many other bacteria.

Less is known about the structure and mechanism of DctA. DctA is approxi-
mately 46.5 kDa, and is a member of the glutamate transporter family, an important
family of secondary transporter proteins. This structural family includes trans-
porters found in mammalian neuronal, glial, and retinal cells, as well as bacterial
nutrient uptake proteins (reviewed in [319]). The bacterial transporters catalyse
the electrogenic symport of glutamate with at least two cations [347, 346] [348],
while the eukaryotic proteins require the symport of two or three sodium ions and
one proton and antiport of one potassium ion [5 13|, 180, B99]. The precise ion

requirements of DctA in rhizobial DctA systems remain to be determined.

Homology between family members is most evident in a stretch of approximately
150 residues from the C-terminal domain. This region contains four sequence motifs
(A through D), that show a high level of conservation between species. All of these
motifs have been suggested to play a role in the translocation pore or substrate
binding site [319]. Phylogenetic sequence analyses of these motifs have facilitated
the subdivision of the glutamate transporter family into five subfamilies as follows:

(i) eukaryotic glutamate transporters; (ii) bacterial glutamate transporters; (iii)
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eukaryotic neutral amino acid transporters; (iv) bacterial C4-dicarboxylate trans-
porters (of which DctA is a member); and (v) bacterial serine transporters [319).
The precise function of these conserved motifs remains elusive. It has been spec-
ulated that motif A, by virtue of its serine-and-threonine rich nature, may be a
ligand binding site. Motif C is believed to be involved in binding the carboxylate
group of substrates, since it is conserved only in the glutamate, neutral amino acid
and Cy-dicarboxylate carriers. Mutagenesis studies have demonstrated that motif
B is involved in cation binding [319]. Motif D is located within the amphipathic
membrane-spanning helix 8 and, by virtue of the substrate-specific differences in
sequence, is believed to be a part of the translocation pore [228] [321]. Mutagenesis
studies have demonstrated that dicarboxylate transport is affected by alterations
to the conserved C-terminal domains, a region known to be important for ion and
substrate selection [320, 319, B21]. Interestingly however, the residue G114 in the
third transmembrane helix of S. meliloti also appears to be significant in substrate
recognition [352] 397] and indeed, multiple sequence alignment demonstrates a high
level of conservation in the region around G114, although the aligned sequences ex-

hibit substrate-specific variation, suggesting a role in substrate recognition.

The substrate specificity of several DctA homologues has been investigated [12],
89,229, 234], [398], and is known to include aspartate, fumarate, malate, oxaloacetate
(OAA), and succinate. D-Lactate, 2-methylsuccinate, 2,2 or 2,3-dimethylsuccinate,
acetoacetate, S-hydroxybutyrate, mercaptosuccinate, a-ketoglutarate, and itaconate
are also potential substrates for this system [398]. In S. meliloti, not all substrates
recognized by DctA are inducers of DctA, and not all inducers of DctA-mediated
transport act as competitive inhibitors (and probably substrates) of DctA-mediated
transport [398]. It is worth noting that S. meliloti DctA has a much lower affinity
for orotate than either malate or succinate, suggesting that DctA is able to dis-

tinguish between very similar substrates based upon the relative positions of their
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carboxyl groups, and that substrate specificity may be defined by very specific
structural constraints [398]. DctA also has the capacity to transport orotic acid
and the toxic analogue fluoroorotic acid (FOA). Strains possessing a functional
DctA transport system cannot grow in the presence of FOA, facilitating an easy

and powerful screen for DctA activity [398].

1.3.2.2 Regulation of dctA Expression

Activation of dctA in previously characterized systems such as S. meliloti and R.
leguminosarum is outlined in Figures and DctB and DctD are consti-
tutively expressed at low levels [294]. The dctB gene product is located in the
cytoplasmic membrane and acts as a membrane-bound sensor that responds to the
presence of Cy-dicarboxylates and transduces the signal across the membrane to
activate its cytoplasmically located C-terminus. This results in autophosphoryla-
tion and phosphotransfer to DetD [112] 287]. Phosphorylated DctD is able to bind
to two recognition sequences upstream of the dctA promoter at -110 and -143 bp
[112, 204] and interact with the alternative sigma factor RpoN (054) to activate
transcription of dctA (Figure [199, 203, 204, 205], 294].

RpoN is associated with a wide variety of metabolic functions, including nitrogen
and carbon metabolism amongst the proteobacteria [35]. Standard phenotypes of
RpoN mutants in Rhizobia include the inability to transport dicarboxylic acids,

and form effective symbioses with host plants [53], 242 294, 367, 327].

Promoters activated by RpoN do not contain canonical -35 and -10 sequences,
rather they possess the consensus -26 CTGGCACPu-N4-TTGCA -12 (invariant
nucleotides shown in bold) [73], 158]. RpoN-dependent transcription is modulated
by activator proteins, which allow o4 to activate the core RNA polymerase under

different physiological conditions including the availability of dicarboxylates outside
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Figure 1.11: An overview of the role of amino-acid cycling in nitrogen
fixation in pea nodules. Although glutamate and aspartate are shown
as the amino acids most likely to cycle, others (such as alanine) may be
important. The reaction catalysed by AatA also forms 2-ketoglutarate,
which may be either metabolized by the bacteroid or exported back to
the plant. Export via Aap/Bra is shown with a question mark to indicate
that it is hypothetical [211]
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of the cell [241].

1.3.3 Dicarboxylate Transport in B. japonicum

Most members of the Rhizobiaceae possess a single dicarboxylate transport system,
but exceptions do exist. Both Sinorhizobium sp. NGR234 [366] and Rhizobium
tropici [14] have two systems that are capable of transporting C,-dicarboxylates,
but their capacity to support symbiotic nitrogen fixation remains unknown. Fur-
thermore, the completed genome sequence of Mesorhizobium loti revealed the pres-

ence of two genes with over 70% sequence identity to S. meliloti dctA [177), 176].

Early studies in B. japonicum suggested the presence of two succinate trans-
port systems that were active under free-living conditions [157]. Analysis of the
genome sequence of B. japonicum reveals seven genes homologous to S. meliloti
dctA. All seven possess the eight conserved domains and three sequence motifs that
are characteristic of members of the glutamate transporter family. An alignment of
the encoded amino acid sequences relative to each other, and to the DctA sequence
of S. meliloti, is shown in Figure [5.3] Interestingly, B. japonicum also possesses
two independent, differentially regulated rpoN homologues [197]. Although both
of these rpoN genes could complement the succinate- and nitrate-negative growth
phenotype of the S. melilott rpoN mutant, B. japonicum mutants of either and
both homologues could grow on Cy-dicarboxylates as a carbon source, suggesting

the existence of an rpoN-independent system for Cy-dicarboxylate uptake [197].
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Figure 1.12: Transcriptional activation of dctA. DctD dimers bind to
upstream activating sequences at -110 and -143. Each subunit has three
domains, an amino terminus (N), an ATP binding site (ATP), and a
carboxy terminus (C). These proteins interact with RpoN (o5). De-
pending upon the bacterial species, integration host factor (IHF) may
be involved [263]
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1.4 Exopolysaccharides and the Rhizobium-Legume
Symbiosis

Exopolysaccharides (EPSs) are species- and strain-specific heteropolysaccharides
that are secreted into the surrounding environment. They perform a number of
non-specific functions including stress-protection, surface-attachment and nutrient-
gathering (reviewed in [102]) as well as a significant role in the establishment of
the nitrogen-fixing symbiosis Figure [I.4, Rhizobial EPSs are structurally diverse,
exhibiting considerable variability in sugar composition, linkages, repeating unit

size, degree of polymerization and non-carbohydrate decoration (reviewed in [317]).

S. meliloti synthesizes two main groups of exopolysaccharides, succinoglycans
(EPSI) and galactoglucans (EPSII). Succinoglycan (EPSI) is one of the most well
characterized rhizobial EPS molecules. It consists of an octasaccharide repeating
unit of one galactose monomer and seven glucose residues joined by (-1,3, 3-1,4
and [-1,6 glycosidic linkages [288]. Galactoglucans (EPSII) are structurally distinct
from succinoglycans and are synthesized only under conditions of phosphate limi-
tation [401] or mutation of the regulatory genes mucR or expR [113], 183, 265 [402].
Galactoglucan is a polymer of disaccharide repeating subunits of an acetylated glu-
cose and one pyruvylated galactose joined by an a-1,3 and a (3-1,3 glycosidic bond
[146]. Both EPSI and EPSII are synthesized in high- and low-molecular weight
forms, depending on the degree of subunit polymerization. High-molecular weight
(HMW) forms are typically 105-107 Da in mass, while low-molecular weight (LMW)

forms exist as monomers, dimers, and trimers (reviewed in [317]).

The precise biological function of EPS in symbiosis is not well understood, how-
ever the essential role it plays is without question. The S. meliloti wild-type strain
Rm1021 synthesizes only one symbiotically active exopolysaccharide, succinogly-

can. Succinoglycan biosynthesis is controlled, through the expression of exo genes,
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by the ExoS/Chvl two-component regulatory system [51].

Strain Rm1021 is unable to synthesize EPSII because the ezpR gene required
for upregulation of symbiotically active galactoglucan is disrupted by an insertion
sequence (IS) element [265]. The ezpR gene product is a LuxR homologue that is
required for the activation of the exp genes in a cell density-dependent fashion via
the ExpR/Sin quorum-sensing system [150, 265]. The ExpR/Sin quorum-sensing
system is known to regulate the expression of over 200 genes under both free-living
and symbiotic conditions [I50]; interestingly it is also responsible modulating suc-
cinoglycan biosynthesis [I18]. S. meliloti Rm1021 requires an active succinoglycan
biosynthesis pathway in order to initiate a successful symbiosis (reviewed in [102]);
however, induction of LMW EPSII is sufficient to complement the nod™ phenotype

of a succinoglycan biosynthesis mutant [119].

1.5 Desiccation Tolerance and On-Seed Survival

of Rhizobia

The Rhizobia, like most Gram-negative bacteria, are extremely sensitive to desic-
cation [374]; there is significant evidence to suggest that this is the main cause of
on-seed death in inoculant preparations [37, 38, 145, 222, 303, B304, 374]. It has
been shown in multiple Rhizobium species that death occurs very rapidly upon
application to the seed, and is concomitant with the rate of moisture loss from the
surface of the seed [37, 38, 296, B03]. It has also been demonstrated that the rate
of death, following application to the seeds, can be reduced by co-inoculation with
a compound designed to protect the bacterium from desiccation [303]. Desiccation
causes changes to occur in the cytoplasmic membrane of the cell that presumably

result in leakage of cellular material beyond a critical level required for viability
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[37, 38, 303, B04]. Relative humidity during storage can dramatically influence
the rate of survival of the bacterium [67, B74]. A study using R. leguminosarum
bv. trifolii showed that cells survived best at 100% relative humidity, and that
at 60% relative humidity, no viable cells were detected after 27 hours [67]. It is
possible that at high humidity levels, bacterial cells in general are metabolically
able to maintain a tolerable water balance through de novo synthesis of compatible
solutes [67]. Compatible solutes — including potassium ions, glutamate, glutamine,
quaternary amines (glycine betaine), proline, and the sugars trehalose and glu-
cosylglycerol [273] — help to maintain the water balance of the cell by means of
preferential exclusion, creating an environment that facilitates the preferential hy-
dration and consequent stabilization of cellular proteins [273]. When no water is
available in the immediate environment surrounding the bacteria, the cells cannot
rely on these mechanisms of preferential exclusion, and are thus more susceptible

to desiccation [67].

1.5.1 The Physiological Process of Desiccation

In order to survive desiccation, bacterial cells must be able to tolerate a number of
different physiological stressors including radiation, reactive oxygen species (ROS),
salts and solutes and temperature fluctuations |23, (67, 273] 283, [385]. The desicca-
tion process can be broken down into three main phases: drying (phase I), storage
(phase II), and rewetting (phase III), all of which may be manipulated in several

ways (reviewed in [376]) as depicted in Figure [1.14]

The rate of drying has a large impact on cell survival, with fast drying resulting
in more extensive and rapid cell death [10, B8], suggesting that the physiological
response to desiccation is adaptive. Water loss leads to an increase in the concen-

tration of salts and solutes, resulting in osmotic stress. Although osmotic stress
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Figure 1.14: Model of two possible pathways for rhizobial response to
desiccation stress and desiccation-induced damage. Pathway A depicts
a response to water, osmotic, or salt stress. Pathway B outlines the
cellular response to desiccation-induced stress upon rewetting (modified
from [376])
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and desiccation stress are different phenomena, the relationship between the two
is undeniable and studies have shown that relationships between the two do exist
[50]. During storage, the water phase in the bacterial cells reaches equilibrium with
the surrounding gas phase so further desiccation is halted. During this time, the
viable population of cells typically declines, although the rate of decline can be
decreased by maintaining higher levels of relative humidity [222], 224]. Following
storage, the rewetting process can have a significant effect on survival rates. After
rewetting, cellular metabolism restarts and the accumulated damage is repaired.
If rewetting is too rapid it can induce significant disruption to the cell envelope
[37, B04], resulting in cell death; slower rehydration has been shown to considerably

increase survival [194].

Some of the more well characterized determinants for survival under conditions
of desiccation stress are depicted in Figure [1.14] and are discussed in more detail
in subsequent sections. The response to desiccation has to occur prior to actual
desiccation occurring. Cells must have sufficient time to sense and respond to
a decrease in water activity [376]. The mechanisms employed by the cells upon
sensing the onset of desiccation are outlined in Pathway “A” in Figure .15 In
this pathway, desiccation induces a physiological “preceding storage” response to
desiccation resulting in increased long-term survival. Pathway “B” in Figure [1.15
demonstrates an alternative pathway that is induced upon rewetting. Damage can
only be repaired when the water activity is sufficiently high to support cellular
metabolism. It is conceivable that some combination of these two pathways might

exist in all rhizobia.

1.5.1.1 The Role of Trehalose as an Osmoprotectant

There has been significant discussion of the role of trehalose, a non-reducing dis-

accharide of glucose, in increasing desiccation tolerance of bacterial cells, including
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rhizobia [62], 124, 166], 273, 332], 340]. Under low-stress conditions, S. meliloti can
utilize trehalose as its sole carbon source [29]. Under certain high-stress conditions,
including osmotic stress, S. meliloti synthesizes and accumulates trehalose, which
can serve as a compatible solute [29 88| 152, [166]. Upon dehydration, biological
membranes typically experience significant, irreversible changes in their structural
and functional integrities [61]. In organisms capable of surviving complete dehy-
dration (the so-called anhydrobiotic organisms) trehalose can constitute up to 20%
of the dry weight of the cell, and up to 95% of the cellular carbohydrate content
[208, 333, 332]. In these organisms, no changes are observed in membrane integrity
following dehydration and subsequent rehydration, suggesting that trehalose may
play a role in protecting membranes from damage during these processes [61]. Fur-
thermore, at physiological concentrations, trehalose is the only carbohydrate known
to be able to stabilize membrane structure under conditions of sub-optimal dehy-
dration [61]; addition of trehalose to dry phospholipid membranes elicits a response
that mimics that seen upon addition of water [6I]. Although the precise mecha-
nism by which trehalose stabilizes biomolecules remains unclear, several hypotheses
have been proposed to explain its protective effect [270]. The water-replacement
hypothesis suggests that sugar molecules can substitute for water molecules by
forming hydrogen bonds around the polar and charged groups of the phospholipid
membrane, thus stabilizing the native structure of the membrane in the absence
of water [62, [61], 208, 270]. In contrast, the water-entrapment hypothesis proposes
that sugar molecules act to concentrate the remaining water molecules around in-
dividual cellular components, maintaining localized solvation and protecting the
structural integrity of the membranes and proteins [208, 270]. It is likely that both
of these proposed mechanisms might have a role to play in osmoprotection and that
they are not mutually exclusive [270]. The cost of using trehalose as an additive in

the formulation of inoculants is likely to be prohibitive; however, the possibility of
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engineering rhizobial strains that can synthesize higher intrinsic levels of trehalose

under physiological conditions may hold some promise for improving OSS rates.

1.5.1.2 The Role of Exopolysaccharides in Desiccation Tolerance

Microorganisms also respond to desiccation stress by changing the structure of the
cell surface. The production of an exopolysaccharide (EPS) matrix surrounding the
cell membrane may slow the rate of moisture loss under dry conditions [139] 2911
389] although data to support this argument is conflicting [37, 139]. Reducing the
rate by which the cell loses moisture would increase the time available for metabolic
adjustment. The EPS of a Pseudomonas phbC species has been shown to hold
several times its own weight in water at low water potentials, presumably increasing
the water availability to the bacterium, and creating a controlled microenvironment

in order to increase its chances of survival [291].

Adaptations to the polysaccharide composition of S. meliloti cells undergoing
osmotic stress and desiccation have been observed in previous studies [30, 210, [266],
but again, results have been conflicting [39] 225]259]. The mechanism by which EPS
may be expected to confer protection against desiccation remain unclear, although
it is reasonable to expect that the specific properties of individual polysaccharides
may be a major determinant (reviewed in [273]). As discussed in Section [1.4] S.
meliloti synthesizes two main groups of EPS, both of which can be affected by the

growth conditions (reviewed in [376]).

1.5.1.3 The Role of Oxygen on Survival

Reactive oxygen species (ROS) are by-products of the electron transport chain.
As rhizobia downregulate their metabolic activity in response to desiccation, they

might reasonably be expected to experience ROS-induced cellular damage as a
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result of free-radical production [376]. Indeed, previous studies have shown that
rhizobia are sensitive to Oz during desiccation [223] 258 [374]. Oxygen is believed to
become toxic to rhizobia at relative humidities below 70% [67]; dried cells appear
to have protective mechanisms against ROS so long as the relative humidity is

sufficient to permit cellular metabolism [376].

1.5.2 An Introduction to Rhizobial Inoculants

The use of exogenously supplied Rhizobium as a means of decreasing reliance upon
industrial fertilizers has been a topic of discussion for many years. Most legume-
Rhizobium interactions are species-specific, and ensuring that the appropriate rhi-
zobial species is able to infect and nodulate the host legume is vital. The aim of
inoculation with Rhizobium is to permit maximum nodulation and No-fixation by
providing sufficient levels of viable, effective Rhizobium of the appropriate species;
to permit rapid colonization of the rhizosphere; and to facilitate nodulation as
early as possible following germination [33], [42], [67]. In a successful inoculation, the
bacteria become established in the rhizosphere surrounding the seed, out-compete
the indigenous microflora and, upon germination of the host plant, initiate sym-
biosis [226], 2511, 316]. The mode of delivery of viable bacterial inoculants into the
soil however, has remained a central problem in the development of a widespread,
commercially feasible product [32, B3], [42], [145] 226, 227, 279, 332], 342, B355]. Ap-
plication of the bacteria directly on to the seed appears to be one of the most
attractive methods of inoculation and has thus far proved to be the most economi-
cally viable [226], 2511, B16]. Studies investigating the viability of bacteria following
application to seeds however, showed very low levels of survival (Table , greatly
narrowing the planting window following inoculation [34] [67]. A variety of methods
are currently used to inoculate seeds but most of them require inoculation almost

immediately prior to planting which, although effective, is often cumbersome and
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requires the use of specialized equipment. As a result, there is a growing demand in
the market for pre-inoculated seed that can be purchased from the supplier with a

long planting window that would allow for greater flexibility in planting times [67].

As mentioned previously, the major limiting factor in the performance of pre-
inoculated seed is the ability of the bacteria to survive following application onto the
seeds. In one experiment, a 95% loss in bacterial viability was seen during the first
four hours post-application to the seeds and prior to planting; of the surviving 5%,
a further 83% died within the first 22 hours of planting [296]. Currently, the longest
planting window is that of alfalfa seeds inoculated with S. meliloti which, in certain
formulations, can survive on-seed for up to 24 months (Table . The superior
OSS of S. meliloti provides a more efficient transfer of inoculant to the field, coupled
with greater flexibility for planting, making it an attractive commercial product.
The high OSS means that S. meliloti inoculants can be applied to alfalfa seeds prior
to market, allowing for immediate planting by the grower and negating the need
for specialized equipment for inoculant application. Furthermore, the OSS rates of
S. meliloti provide the added convenience of delaying planting if needed (e.g. for

bad weather) without having to re-inoculate the seeds.

1.5.3 Commercial Viability of Rhizobial Inoculants

In North America alone, in excess of 76 million acres are planted with soybeans and
peas, and a further 5 million acres are planted with lentils [325 [362]. Currently, less
than 20% of this acreage is inoculated, presenting a growth potential of up to 5-fold.
Assuming a manufacturer’s return of $1.25 per acre, this represents a potential
profit of over $75 million if all legumes were inoculated. Studies analysing the
return-on-investment (ROI) of inoculation for farmers have largely been conducted

by individual inoculant companies, and unbiased data is therefore scarce. A recent
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study at the Ohio State University investigating soybean yield following inoculation
by a range of commercially available inoculants however, reported that the practice
of inoculation was indeed profitable to the farmer [21]. This study, using 66 separate
field trials and 7000 individual plots, evaluated the effects of inoculation on soybean
yield over a period of ten years, and concluded that inoculation was indeed a
profitable practice for the farmer with an average yield increase of 2-7 bu/acre,
translating to an ROI of over 300% [21]. Given the low cost of inoculant however,
even a small increase in yield of just 0.5 bu/acre is typically enough for the grower
to see an ROI [21]; therefore, a potential market exists for a soybean inoculant

product with an extended shelf-life that can be sold directly to the growers.

Worldwide, the potential benefits of inoculation technologies are extensive and
go beyond the environmental benefits outlined in Section [I.1 In Europe, where the
use of genetically modified crops is controversial, inoculation represents a technology
that has the benefit of reducing reliance upon environmentally damaging fertilizers
without altering the genome of the legume crop itself. The most exciting use of
improved inoculants lies in the developing world however, where crop yields are
typically insufficient to support the populations that depend on them. Currently,
852 million people in the world are hungry, and over 5 million children die each
year as a result of starvation and/or malnutrition [361) B61]. Inoculants represent
a relatively inexpensive ($2-$3 per acre, compared to $20-$30 per acre for nitrogen
fertilizers) [151] and far more efficient means of introducing nitrogen into the soil
than inorganic fertilizers [105, 227]. Rhizobial inoculants therefore represent a
potential means of increasing crop production and promoting self-sufficiency in

regions currently dependent upon outside aid.

Currently, inoculant technologies are not sufficiently robust to be used in many
of the developing countries that would benefit most from them. These countries are

often hot, lack properly refrigerated storage facilities, have poor infrastructure, and
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lack personnel with expertise and training in modern agricultural practices [250].
To circumvent the problems presented by lack of training, and the requirement for
modern machinery, inoculant would ideally be supplied on-seed; however, the lack
of storage facilities and lengthy transit times to reach the farmers is prohibitive,
given the rapid decline in viability of on-seed inoculants. If inoculant technologies
can be improved to increase the planting window post-application to the seed, the

potential benefits to developing countries would be huge.

Although improvements in the shelf-lives of liquid inoculants have been made
over the past few years, no significant advances towards improving OSS of the
bacteria have been reported [42]. Interestingly, most of the advances that have been
made in inoculant technology have been at the nutritional level, and have focused
on the composition of the inoculant formulae. Very few studies appear to have
been conducted at the molecular level to investigate the genetic factors affecting
OSS [42]. There appear to be significant differences between rhizobial species with
respect to their OSS characteristics [222) [303], although definitive studies have not
been conducted and data in the literature for individual strains is often conflicting,

presumably due to differences in experimental approaches [222].

1.6 Objectives of This Study

Initially the goal of this study was to characterize the on-seed survival phenotypes
of several rhizobial isolates and to identify the genetic determinants of desiccation
tolerance in rhizobia in order to improve the formulations of commercial inoculants.
Since earlier work by our industrial partner, Agribiotics, had identified a potential
link between PHB synthesis and enhanced desiccation tolerance, we sought to better
understand this relationship through mutant construction and analysis in both S.

meliloti and B. japonicum. Agribiotics was sold mid-way through this project and
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the company’s operations were moved to the United States. As a result, the focus
of the project moved away from desiccation tolerance and toward the analysis of
carbon metabolism, which proved easier to study with the facilities that were at

our disposal at the University of Waterloo.
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Table 1.2: Planting windows for commercial inoculant products

Inoculant Crop Product Planting window
Bradyrhizobium japonicum Soybean liquid 1-30 days

peat 2 days
Rhizobium leguminosarum Pea/lentil liquid 1 day

peat 2 days
Sinorhizobium meliloti Alfalfa Clay 24 months
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Chapter 2

Methods and Materials

2.1 Bacterial Strains and Plasmids

A complete list of strains and plasmids used in this study is shown in Table

2.2 Bacterial Growth and Storage Conditions

All growth media recipes and appropriate antibiotic concentrations are listed in
Appendix [A ]

FEscherichia coli strains were routinely grown at 37°C using Luria-Bertani (LB)
media [307].

Sinorhizobium meliloti strains were routinely cultured at 30°C in either LB
[B07] or TY [20] media. When S. meliloti was grown in modified M9 [243] or
Rhizobium Minimal Medium (RMM) [76] the medium was supplemented with 15
mM glucose, D-3-hydroxybutyrate (D3HB), L-3-hydroxybutyrate (L3HB), DL-3-

hydroxybutyrate (DLHB), acetoacetate (AA) or acetate as the carbon source. For
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growth under high carbon conditions, S. melilot: was cultured in Yeast Mannitol

(YM) medium.

Bradyrhizobium japonicum strains were routinely cultured at 30°C in Arabinose
Gluconate (AG) medium. When minimal media was required, B. japonicum was
grown in Vincent’s Minimal Medium (VMM), which contains very low levels of salt.
VMM was supplemented with 15 mM D3HB, AA, acetate, arabinose, mannitol,
lactose or glucose. For growth under high carbon conditions, B. japonicum was

grown in Modified AG (MAG).

Antibiotics were used in the growth media where appropriate. All antibiotics

used, and their respective concentrations, are listed in Appendix [A.1.2]

All bacterial cultures were stored at -80°C in glass cryovials containing 20% v /v

glycerol.

To screen for the presence of intracellular PHB, 400 pl 25 mM Nile Red mixed

in DMSO [323] was added to the growth medium.

2.2.1 Isolation of Spontaneous Antibiotic-Resistant Deriva-

tives

To isolate spontaneous antibiotic-resistant derivatives of particular strains, the
strain of interest was grown to late-log phase. 1 ml of the original culture was
harvested by centrifugation, resuspended in 100 ul 0.85% NaCl and the full volume
was subsequently plated on media containing the antibiotic in question. Following
incubation, colonies that grew up on the selective were restreaked three times on

the selective medium.
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2.3 Plant Growth Conditions

Plant nutrient solution recipe is listed in Appendix [A.4]

2.3.1 Alfalfa (Medicago sativa)

Alfalfa plants (Medicago sativa c.v. Iroqouis) were routinely grown for nodulation
experiments with S. meiloti. Seed were surface-sterilized by rinsing with 95% EtOH
for five minutes, followed by rinsing in 1% hypochlorite for five minutes, and ten
rinses with sterile dH;O of five minutes each. Seeds were germinated for 36-48
hours on water agar plates (1.5% agar in dH5O) in the dark at room temperature.
Seedlings showing no signs of contamination were moved to sterile growth boxes,
consisting of three Magenta (Sigma GA-7 vessel) plant tissue boxes (Sigma-Aldrich,
St. Louis MO) with the top box inverted to act as an aseptic barrier and containing
vermiculite that had been soaked in plant nutrient solution. Five seedlings were
planted per box and each inoculant S. meliloti strain was typically tested in tripli-
cate. After emergence, each growth box was inoculated with 5 ml of a saturated S.
meliloti culture diluted 1:50 in sterile dH,O. Plants were grown for approximately
28 days post-inoculation in a growth chamber (Conviron CMP3244, Model # EF7,
Controlled Environments Ltd., Winnipeg) with 16 h, 25°C day/8 h, 20°C night and
light intensity of 300 gmoles m~2s~!. Shoot dry mass was measured by harvest-

ing the shoot portion of each plant and drying it at 60°C until constant mass was

achieved.

2.3.1.1 Nodulation Kinetics

Nodulation kinetics were analysed by monitoring the appearance of nodules on

alfalfa plants grown on 1% agar slats containing plant nutrient solution. Assays
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were conducted in 25 x 150 mm glass tubes with translucent polypropylene caps
(Sigma-Aldrich, St. Louis MO). One two-day old seedling was transferred to a
single slant and, following a three-day incubation, was inoculated with 1 ml of a
saturated S. meliloti culture diluted 1:50 in sterile dH,O. Plants were grown for
approximately 28 days post-inoculation in a growth chamber (Conviron CMP3244,
Model # EF7, Controlled Environments Ltd., Winnipeg) with 16 h, 25°C day/8 h,

25~1 . For each inoculant S. meliloti

20°C night and light intensity of 300 gmoles m™
strain, typically ten plants were inoculated. Nodule appearance was scored daily

for 28-days post-inoculation.

2.3.1.2 Competition Assay for Nodule Occupancy

Alfalfa plants for competition assays were prepared and grown in Magenta jars as
described above. For the competition assays, inoculations were carried out by mix-
ing 1:50 dilutions of saturated cultures of the two different strains in different pro-
portions (10:1, 1:1, 1:10) prior to inoculation. 28 days post-inoculation the plants
were harvested and the nodules collected; approximately 20 nodules were harvested
per Magenta jar. The nodules were surface-sterilized with 1% sodium hypochlorite
for approximately 15 minutes, washed twice with LB and then squashed in a few
drops of TY containing 0.3 M sucrose. The resultant suspension was streaked on
TY. Four single colonies from each streak plate were subsequently screened for the
antibiotic-resistance marker or growth phenotype associated with each strain. The
bacterial population of each nodule was thus scored as consisting of a single strain

or a mixture of two strains.

To determine the precise ratio of each strain in the initial inoculum, serial
dilutions of each saturated culture were conducted and CFU/ml was calculated

following plating of these dilutions on TY.
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2.3.2 Medicago truncatula

Seed pods were gently cracked with a hammer on a wire mesh, and ground so that
seeds fell through the mesh and were collected below. Prior to germination, seeds
were scarified by soaking in 5 volumes of concentrated HoSO, for 5 minutes with
gentle agitation. The acid was decanted carefully and the seeds were rinsed with
sterile dH,O approximately 5 times. Following scarification, seeds were sterilized
in 5 volumes of commercial-grade Javex (5.25% NaOC]I) for 3 minutes and then
washed 10 times in dH,O. After the final rinse, seeds were left in dH,O and placed
in the dark at 4°C for 24-48 hours prior to germination for 36-48 hours on water agar
plates (1.5% agar in dH,O) in the dark at room temperature. Seedlings showing
no signs of contamination were moved to sterile growth boxes, consisting of three
Magenta (Sigma GA-7 vessel; Sigma-Aldrich, St. Louis MO) plant tissue boxes
with the top box inverted to act as an aseptic barrier and containing vermiculite
that had been soaked in plant nutrient solution. Five seedlings were planted per
box and each inoculant S. meliloti strain was typically tested in triplicate. After
emergence, each growth box was inoculated with 5 ml of a saturated S. meliloti
culture diluted 1:50 in sterile dH5O. Plants were grown for approximately 28 days
post-inoculation in a growth chamber (Percival Scientific, DiaMed Lab Supplies
Inc.) at 22°C in a 18 h day/6 h night cycle. Shoot dry mass was measured by
harvesting the shoot portion of each plant and drying it at 60°C until constant

mass was achieved.

2.3.3 Soybean (Glycine max)

Soybean seeds were surface sterilized by rinsing with 95% EtOH for five minutes,
followed by rinsing in 1% hypochlorite for five minutes, and ten rinses with ster-

ile dH5O of five minutes each. Seeds were germinated for 48 hours on water agar
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plates (1.5% agar in dH50) in the dark at room temperature. Following germi-
nation, seedlings were transferred to sterilized pots that were filled with sterilized
vermiculite soaked in plant nutrient solution. Seedlings were incubated at room
temperature for 3 days and then, following emergence, inoculated with 5 ml of sat-
urated B. japonicum culture diluted 1:50 in sterile dH;O. Plants were incubated
under high-pressure sodium lamps, supplemented with regularly space compact
fluorescent bulbs on an 18 h day/6 h night cycle. Plants were watered every sec-
ond day with approximately 300 ml of sterile dH,O. After two weeks, sterile plant
nutrient solution was used in place of water for two consecutive waterings after
which, plants were again watered with sterile dH,O. Uninoculated controls were
spaced at regular intervals throughout the growth facility to monitor sterility and
to indicate the possibility of cross-contamination. Plants were grown for five weeks
post-inoculation and were then harvested. At this point, uninoculated controls

were carefully checked for evidence of nodulation.

2.3.3.1 Competition Assay for Nodule Occupancy

Soybean plants for competition assays were prepared and grown in sterilized pots
as described above. For the competition assays, inoculations were carried out by
mixing 1:50 dilutions of saturated cultures of the two different strains in different
proportions (10:1, 1:1, 1:10) prior to inoculation. 28 days post-inoculation the
plants were harvested and the nodules collected; approximately 20 nodules were
harvested per pot. The nodules were surface-sterilized with 1% sodium hypochlorite
for approximately 15 minutes, washed twice with AG broth and then squashed in a
few drops of liquid AG. The resultant suspension was streaked on AG. Four single
colonies from each streak plate were subsequently screened for the Sm” marker
associated with the wild-type strain BjUW36. The bacterial population of each

nodule was thus scored as consisting of a single strain or a mixture of two strains.
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To determine the precise ratio of each strain in the initial inoculum, serial
dilutions of each saturated culture were conducted and CFU/ml was calculated

following plating of these dilutions on AG.

2.4 Molecular Biology Techniques

2.4.1 Small-Scale Preparation of Plasmid DNA

Plasmid DNA was routinely isolated using the Solution I, II, IIT alkaline lysis pro-
tocol [307]. All alkaline lysis solutions are described in Appendix [A.2] 1.5 ml of
a b ml culture of E. coli cells carrying the plasmid of interest were grown to sat-
uration overnight and harvested at 13,000 rpm in a microcentrifuge. For low- and
medium-copy-number plasmids, the supernatant was decanted and the process re-
peated. The supernatant was decanted and the pellet resuspended in 100 pl of cold
Solution I. 200 pul of freshly prepared Solution II was added and the solutions were
mixed by inversion 4-6 times. Following a short incubation (less than 5 minutes)
at room temperature, 150 ul cold Solution III was added and the sample mixed
gently by inversion. The cell debris and genomic DNA were pelleted by centrifu-
gation at 13,000 rpm for 5 minutes and the supernatant was transferred to a fresh
tube. Soluble proteins were removed from the plasmid-containing supernatant by
chloroform extraction (Section before being precipitated by the addition
of 0.8 volumes ice cold isopropanol. This sample was vortexed and incubated at
-20°C for 3 minutes before centrifugation at 13,000 rpm for 30 minutes. The DNA
pellet was washed briefly in 70% EtOH and dried at room temperature before being
resuspended in an appropriate volume of sterile dH,O. Plasmid DNA was typically

stored at either room temperature or -20°C.

When high-quality, high-purity DNA was needed for sequencing, plasmid DNA
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was isolated using a Sigma (Sigma-Aldrich, St. Louis MO) miniprep kit as per

manufacturer’s directions.

2.4.2 Small-Scale Preparation of Genomic DNA from S.

meliloti and B. japonicum

All genomic DNA preparation solutions are described in Appendix [A.2] Genomic
DNA was isolated using standard protocols [236] 255]. Strains were grown to satu-
ration and cultures were pelleted at 13,000 rpm in a microcentrifuge tube. Pellets
were resuspended in 2.5 ml cold TygEqs pH 8.0 buffer. 250 ul of lysozyme solution
was added and the sample was mixed gently before incubation for 1 hour at 37°C.
300 pul SDS-protease solution was added and the sample was mixed gently and incu-
bated for an additional 1-2 hours at 37°C. Proteins were removed from the sample
by the addition of 500 ul phenol, gentle mixing and centrifugation at 10,000 rpm for
10 minutes. The aqueous layer, including the interface, was transferred to a fresh
tube; 150 pl of 5 M ammonium acetate and 3 ml ice-cold isopropanol were added
and the sample was mixed gently. The DNA precipitate was removed by spooling
around a sterile glass rod. The spooled DNA was rinsed briefly by immersion in
500 ul of each of ice-cold 70% EtOH and ice-cold 95% EtOH. The spooled DNA
was air-dried briefly and then resuspended in 500 pl T19E; pH 8.0 buffer and stored
at 4°C.

Alternatively, genomic DNA was isolated using the small-scale genomic DNA
isolation kit from MolBiol (Mo Bio Inc., Carlsbad CA) as per manufacturer’s in-
structions. When isolating DNA from B. japonicum, 4 ml of saturated culture was

used per extraction rather than the 1.8 ml recommended by the manufacturer.
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2.4.3 DNA Clean-Up
2.4.3.1 Phenol and Phenol/Chloroform Extraction

An equal volume of buffer-saturated phenol:chloroform (1:1) was added to the DNA
and the solution was mixed by vortexing. Most DNA solutions were vortexed for 10
sec, except for high molecular weight DNA which was gently rocked. The solution
was then centrifuged for 3 min and the aqueous layer was carefully removed and
transferred to a new tube. Two successive chloroform extractions were then used
to remove all traces of phenol. An equal volume of chloroform was added to the
aqueous layer, mixed and then centrifuged for 3 minutes. The aqueous layer was

transferred to a new tube and the DNA was cleaned by ethanol precipitation.

2.4.3.2 Ethanol Precipitation

25 pl of 10 M NH,OAc was added to each sample, and the volume brought up to
100 pl with dH50. 2 volumes of ice cold 95% EtOH was then added, the sample
was vortexed to mix and then the samples were incubated at -20°C for a minimum
of 30 minutes. The samples were centrifuged at maximum speed for 30 minutes
and the supernatant decanted. The pellet was washed in 70% EtOH, air-dried, and

resuspended in an appropriate volume of dH5O.

2.4.4 DNA Manipulations

2.4.4.1 Restriction Digests and Gel Electrophoresis

All electrophoresis solutions are described in Appendix [A.2.3]

Standard protocols were used to maniplate DNA [307]. Restriction digests were

typically performed using enzymes purchased from Fermentas (Fermentas Canada
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Inc., Burlington ON). Reaction mixes were incubated at 37°C for 30 min (for a

diagnostic digest) to overnight (for Southern analysis).

The restriction products were typically analysed by gel electrophoresis using
1% agarose in Tris-Acetate-EDTA (TAE) buffer. Gels contained either EtBr or
Gel Red™ (Biotium Inc., Hayward CA) to facilitate subsequent visualization of
the DNA. Samples were mixed with an appropriate volume of 6X loading dye
(see Appendix and run at 120-150 V for approximately 1 hour. Samples for
Southern blot analysis were typically run for 5-6 hours. Typically a 1 kb molecular
weight standard (Fermentas Canada Inc., Burlington ON) was included on each

gel.

When specific restriction fragments were needed for subsequent experiments,
the band of interest was cut from the gel and the DNA fragment isolated using
either the Roche DNA Extraction Kit (Roche Diagnostics Canada, Mississauga
ON) or Fermentas DNA Extraction Kit (Fermentas Canada Inc., Burlington ON)

as per manufacturer’s instructions.

2.4.4.2 Ligation

Restriction digests were typically cleaned by EtOH precipitation prior to ligation.
The volume in which the pellet was resuspended was calculated based on the needs

of each specific reaction.

Routine sticky-end ligations were performed by overnight incubation at room
temperature in a 10ul volume. T4 DNA ligase from Fermentas (Fermentas Canada

Inc., Burlington ON) was used as per manufacturer’s instructions.

Blunt-end ligations into pJET (Fermentas Canada Inc., Burlington ON) were

carried out using the ClonelJet kit as per manufacturer’s instructions.
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2.4.4.3 Transformation of Plasmid DNA into E. col:

Plasmid DNA was typically transformed into chemically competent FE. coli cells

(Section [2.4.4.4)).

50 pl competent cells were mixed with the appropriate volume of DNA and
inclubated on ice for at least 30 minutes before being heat shocked for 90 seconds
at 42°C. Cells were returned to ice for 2 minutes and were allowed to recover for at

least 1 hour at 37°C in 1 ml LB before being plated onto selective media.

2.4.4.4 Preparation of Chemically Competent E. coli

Competent FE. coli cells were prepared from LB-grown cultures harvested at ODggg
between 0.4 and 0.6. Cells were harvested by centrifugation at 3,000 rpm for 10
min at 4°C (Sorvall GSA rotor) and washed in 20 ml 0.1 M MgCly,. The cells
were harvested for a second time by centrifugation at 3,000 rpm for 10 min at 4°C
(Sorvall GSA rotor), resuspended in 20 ml 0.1 M CaCl, and incubated at 4°C for 4
hours. Cells were collected by centrifugation at 3,000 rpm for 10 min, resuspended
in 10 ml of ice-cold 100 mM CaCl, containing 15% glycerol, and aliquoted into

pre-chilled microcentrifuge tubes before storage at -70°C.

2.4.4.5 Transfer of plasmid DNA by Conjugation into S. meliloti and

B. japonicum

Conjugation was typically performed by triparental mating between an E. coli

donor, an E. coli helper carrying pRK600, and a recipient.

Matings into S. meliloti were performed by combining 1 ml saturated broth
culture of the S. meliloti recipient with 500 ul each of the E. colt donor and helper
strains. All strains were washed, prior to mixing, in 0.85% NaCl to remove antibi-

otics. Mating mixtures were pelleted and resuspended in 50 ul for spotting onto
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a non-selective LB or TY plate. Matings were incubated overnight at 30°C before
the spot was resuspended in 1 ml 0.85% NaCl. Serial dilutions of the resuspended
mating spot were made in 0.85% NaCl and 100 pl of the appropriate dilutions were

plated onto selective media.

Matings into B. japonicum used essentially the same strategy described for S.
meliloti except that between 5 and 10 ml of the recipient B. japonicum strain were

used in each mating, and mating spots were incubated for a minimum of 72 hours.

2.4.4.6 in vitro Mini Tn5 Mutagenesis of Plasmid DNA

in vitro mini Tnd mutagenesis of plasmid DNA was performed using the EpiCentre®
EZ-Tn5 " Insertion Kit (EpiCentre Biotechnologies, Madison WI, USA), as per

manufacturer’s instructions.

2.4.4.7 Homologous Recombination

Mutagenesis by allelic replacement was typically accomplished by conjugal transfer
of the desired fragment on the vector pK19mobsacB [310]. pK19mobsacB carries
the broad-host-range transfer machinery of plasmid RP4 and a modified sacB gene
from Bacillus subtilis with a narrow-host-range replication origin and the MCS of

pUC19.

2.4.4.8 Generalized Transduction into S. meliloti

Transductions were employed to facilitate the transfer of markers between different
S. meliloti strains using the ®M13 generalized transducing phage [95]. This phage
infects the host and produces progeny phage within the host cell. Some of the
progeny phage mis-package host genomic DNA in place of phage DNA and this

results in the production of transducing particles. When these transducing particles
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are used to infect a new host they will infect the host cell but the infection will
not result in the production of new phage. Instead, the packaged DNA can be
maintained in the host cell by a double recombination event. Transductants can
then be isolated by selection for the desired marker (or by screening for loss of a

marker).

As mentioned above, transductions into S. meliloti were performed using $M13
generalized transducing phage [95]. A phage lysate was prepared by addition of 50
pl undiluted ®M13 phage stock (of titre 10! PFU/ml) to a mid-log culture of S.
meliloti at ODgg 0.3 - 0.5 grown in LBMC. This was incubated for 6-8 hours (or
overnight), at which point cell lysis was evident. Unlysed cells were subsequently
killed by the addition of 2 drops of chloroform and cell debris was centrifuged out

at 2000 x ¢ for 5 minutes. This lysate was stored at 4°C until needed.

Transductions were performed by addition of 0.5 ml lysate to 0.5 ml late-log
culture grown in LBMC. Cells were then incubated at room temperature for 30
minutes to allow phage adsorption to the recipient cells. Phage were then removed
by three rounds of pelleting and resuspension in 1.5 ml dH5O. Following the final
wash, the pellet was resuspended in 250 ul dH2O and plated on the appropriate

selective media.

2.4.4.9 DNA Sequencing

Sequencing reactions were carried out using ABI BigDye terminator chemistry at
either the University of Waterloo sequencing facility, using a Applied Biosystems
3130xl Genetic Analyzer, or at the Mobix Lab at McMaster University using a 3730

DNA Analyzer (Applied Biosystems, Foster City, CA, USA).
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2.4.4.10 PCR

PCR cloning reactions were performed using an Eppendorf Mastercycler® gradi-
ent thermocycler (Eppendorf, Toronto, ON) and KOD Polymerase reagents from

Novagen (EMD Biosciences, San Diego, CA). A typical cloning PCR reaction is
described in Appendix [A.7.1]

PCR products for cloning were run on a 1% agarose gel and the band correspond-
ing to the appropriate PCR product was excised and purified by gel extraction. If
restriction sites were included in the primers of the PCR product, the purified DNA
was digested and ligated directly into the destination vector using T4 DNA Lig-
ase (Fermentas Canada Inc., Burlington ON). In the event that direct cloning was
not practical, the PCR product was ligated into the cloning vector, pGem-TEasy

(Promega, Madison WI) as per manufacturer’s instructions.

2.4.4.11 Cross-Over PCR

Cross-over PCR [154] was used to construct fragments for in-frame mutageneses
and allelic replacements. Cross-over PCR reactions were performed using an Ep-
pendorf Mastercycler® gradient thermocycler (Eppendorf, Toronto, ON) and KOD
Polymerase reagents from Novagen (EMD Biosciences, San Diego, CA). A typical
crossover PCR reaction is described in Appendix [A.7.2]

2.4.4.12 Colony PCR

PCR reactions for screening purposes were performed using a modified version of
standard protocols [403] in an Eppendorf Mastercycler® gradient thermocycler
(Eppendorf, Toronto, ON) and NEB Taq reagents (New England Biolabs® Inc.,
Ipswich, MA). Cells were resuspended in 100 pl dH5O, boiled at 94°C for 10 minutes,

cooled to 4°C and centrifuged to pellet out the cell debris; the supernatant was
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then used as the template in the subsequent PCR reaction. A typical colony PCR
reaction is described in Appendix [A.7.3

2.4.4.13 Primer Design
A complete list of primers used in this study is shown in Table Tm was
calculated across hybridizing nucleotides as 4(G + C) + 2(A + T).

Primer design and analysis was performed using Amplify 3X for MacOSX (Bill
Engels, University of Wisconsin WI). Primers were purchased from Sigma Genosys

(Sigma-Aldrich, St. Louis MO).
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2.4.5 Cosmid Library Construction
2.4.5.1 Preparation of Inserts

Partial digestion of genomic DNA was optimized by gradient digest. Approximately
15 ng/pul of genomic DNA was used per enzyme tested. In a tube, 15 ul genomic
DNA was mixed with 100 ul 10X digest buffer and the volume was brought up to 500
pul with dH5O. This mixture was incubated on ice 30 mins. The reaction mix was
then aliquoted into 15 tubes (60 pul was added to the first tube; 30 ul was added
to the remaining 14) and 5 units of the appropriate restriction enzyme (tyically
Sau3Al) was added to the first tube. A concentration gradient was established by
transferring 30 ul from the first tube into the second, mixing, then transferring 30
pl from tube 2 into tube 3 and so on. 30 pl was removed from the final tube and
discarded. The reactions were incubated at 37°C for 30 minutes and the reactions
were stopped by the addition of 1 ul 0.5 M EDTA mixed with 6X loading dye.
The digests were run on an agarose gel and the enzyme concentration that gives

fragments of approx. 25-50kb was selected for subsequent use.

Once an appropriate enzyme concentration had been determined, the genomic
DNA was partially digested by combining 33 ul 10X restriction buffer, 10 ug ge-
nomic DNA| restriction enzyme and the volume was brought up to 330 ul with
dH50. The reaction mix was incubated at 37°C for 30 minutes and the reactions
were stopped by heat inactivation at 65°C for 15 minutes. The reaction was cleaned
up by a single phenol/chloroform extraction followed by two chloroform extractions
and an ethanol precipitation (Section . The digested DNA was then resus-
pended in 6 ul dH50O.
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2.4.5.2 Preparation of Cosmid DNA

Cosmid DNA was prepared using a standard miniprep protocol as described in
Section [2.4.1] The cosmid DNA digested by combining 20 pg cosmid DNA with
6 pl BamHI, 10 pl 10X restriction buffer and dH2O to 100 pl. The digest was
incubated at 37°C and allowed to go to completion. The reaction was cleaned up
by a single phenol/chloroform extraction followed by two chloroform extractions and
an ethanol precipitation (Section . The digested DNA was then resuspended

in 180 ul T1Eq 1, to give a final concentration of approximately 300 ng/ul DNA.

2.4.5.3 Ligation of Library Inserts into Cosmid DNA

8 ul digested cosmid DNA was mixed with 6 pl partially digested genomic DNA,
incubated at 42°C for 10 minutes and then cooled to room temperature. 2 pl 10X
ligation buffer and 2 ul T4 ligase were then added, mixed and the reaction allowed
to proceed overnight at room temperature. The ligase was then inactivated by
incubation at 65°C for 15 minutes prior to use, and the ligation reaction checked

by running 1 ul on a 0.8% agarose gel.

2.4.5.4 Library Construction, Packaging and Transfection

Packaging was performed using the EpiCentre® MaxPlax' " Lambda Packaging
Extract (EpiCentre Biotechnologies, Madison WI, USA), as per manufacturer’s

mstructions.

Cells were grown in an appropriate medium with no antibiotic (antibiotic in-
hibits the ability of phage to infect) and supplemented with 10 mM MgSO, and
0.2% (w/v) maltose to ODgo of 1.0. Cells were harvested by centrifugation and
diluted to ODgoo of 0.5 in 10 mM MgSQOy. 1:10 and 1:50 dilution of the packaging
reaction were prepared by dilution in phage dilution buffer (Appendix [A.2.6)); 25
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ul each dilution was mixed with 25 ul bacterial cells and incubated at room tem-
perature for 30 minutes. The reaction mix was then combined with 200 pl LB and
incubated at 37°C for 1 hour with agitation every 15 minutes. Transfectants were
selected by plating the cells on LB with an appropriate antibiotic and incubated
overnight at 37°C. The resulting colonies were pooled by suspending them in LB
broth and then the library was expanded for storage by growth to late-log phase
at 37°C.

2.4.6 Southern Blot Analysis

All Southern Blot solutions are described in Appendix [A.2.5]

2.4.6.1 Probe Labelling

Oligonucleotide DNA probes for use in Southern Blot hybridization were labelled
using the DIG terminal transferase DIG labelling kit from Roche (Roche Diagnostics
Canada, Mississauga ON) as per manufacture’s instructions. The oligonucleotides
that were used in this reaction were typically designed for PCR purposes and had
no additional modifications. Following labelling, the probe was diluted in 14 ml of

hybridization buffer. Typically 1 ul of probe was saved to check labelling efficiency.

2.4.6.2 Sample Preparation

Southern blot analyses for B. japonicum necessitated high-quality genomic DNA,
which was typically prepared using the MolBio genomic DNA extraction kit as
described in Section [2.4.2]

Genomic DNA was digested to completion in a total volume of 50 pl. The
complete digestion reaction was then run on a 0.8% agarose gel an 50 V for ap-

proximately 4-5 hours to ensure complete separation of DNA fragments. Gels were
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stained with EtBr and visualized using a Fluorochem® 8000 UV transillumina-
tor (Alpha Innotech Corp., San Leandro, CA). Gels were depurinated by treatment
with 0.25 M HCI for 10 minutes followed by two, 15 minute washes in transfer buffer
to neutralize pH. DNA was transferred to a nitrocellulose membrane (Boehringer
Mannheim Canada; Laval QC) overnight in transfer buffer using standard tech-
niques [307]. Following transfer, the membrane was neutralized with 5X SSC for
10 minutes and the DNA was cross-linked to the membrane using a UV crosslinker
(Bio-Rad, Hercules, CA). The membrane was then incubated for one hour at the hy-
brdization temperature in hybridization buffer before the addition of DIG-labelled
probe. Hybridization was carried out overnight in a hybridization oven at a tem-

perature of 55°C.

2.4.6.3 Southern Blot Visualization

Following hybridization, probes were decanted and stored at -20°C to be reused.
Blots were typically washed twice for 15 minutes at room temperature in 50 ml
stringency buffer A, followed by two 15 minute washes in 50 ml stringency buffer
B at the hybridization temperature. Blocking and detection steps were carried out

using a Tris-NaCl buffer base.

Hybridization was detected by chemiluminescence following treatment with anti-
DIG-conjugated alkaline phosphatase and CDP-Star. Membranes were stripped for

reuse by two 15 minute washes in stripping buffer.
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2.5 Bacterial Growth Assays

2.5.1 Bacterial Growth Curves
2.5.1.1 Bioscreen-C Growth Curve Machine

Cells were grown to saturation in an appropriate complex medium, and standard-
ized to ODgg by dilution. Cells (1 ml) were then washed by pelleting and washing
in 0.85% NaCl, followed by resuspension in 10 ml minimal medium with no carbon
source. A 1:1000 dilution of this culture was used to inoculate an appropriate vol-
ume of minimal medium containing the carbon source of interest. Each well of the
100-well plate was inoculated with 400 ul of inoculum; typically triplicate samples
were set up for each test. Samples were incubated at 30°C, with readings taken

every 10 minutes, preceded by 30 seconds of shaking.

2.5.1.2 Traditional Test Tube Method

Cells were grown to saturation in an appropriate complex medium, and washed
twice in 0.85% saline. A 0.15 ml aliquot of washed cells was subcultured into 5 ml
of minimal medium supplemented with the appropriate carbon source in a 16 mm x
150 mm culture tube. Tubes were placed vertically in a rack in a shaking incubator
set at 180 rpm, 30°C. Growth was followed by measuring absorbance at 600 nm.
Upon completion of the growth test, culture purity was checked by streaking on

TY or AG agar.

2.5.2 Starvation Assay

Saturated TY cultures were washed twice to remove traces of nutrients, and were

subcultured 1:50 into carbon-free M9 medium. These cultures were incubated at
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30°C, with shaking at 180 rpm. Viable cell counts were monitored at weekly in-
tervals by plating serial dilutions on TY agar. Samples at t=0 were each given a
relative value of 1, and all subsequent samples are compared to this starting value.

Samples were typically set up as triplicate cultures.

2.6 Protein Analysis

All protein solutions are described in Appendix [A.3]

2.6.1 Protein Sample Preparation
2.6.1.1 Routine Confirmation of Over-Expression

Typically, protein samples were analysed following overnight incubation of E. coli
BL21(ADE3) pLysS cultures at 37°C in autoinduction medium. For routine con-
firmation of over-expression, 200 ul of cells were pelleted and resuspended in 100
1l SDS-PAGE loading buffer. Samples were boiled at 100°C in a dry heat block
for 10 minutes and then cooled to room temperature before use. Typically 20 ul of

sample was run on an SDS-PAGE gel for analysis.

2.6.1.2 Verification of Samples by SDS-PAGE

Protein samples were analysed on a single dimension SDS-PAGE protein gel using
the Bio-Rad Mini Protean 2 system (Bio-Rad, Hercules, CA). Approximately 4 ml
12% SDS-PAGE gel preparation was added to the unit, overlaid with dH,O and
allowed to solidify for 30-45 minutes. The dH,;O was then removed and replaced
with 4% stacking gel preparation; a comb was added and the gel was allowed to

solidify for 30-45 minutes. The gels were transferred to the running apparatus in 1X
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Tris-Glycine running buffer. 20 ul samples were loaded into the wells; a control lane
of protein ladder (Fermentas Canada Inc., Burlington ON) was always included.
Gels were run at 80 V for 20 minutes and then 120 V for 2 hours before staining
in Coomassie Brilliant Blue straining solution for approximately 30 minutes to 1
hour. Gels were destained overnight in destain solution and then visualized on a

whitelight transilluminator.

2.6.1.3 Coomassie Brilliant Blue Staining

The gel was incubated in a volume of coomassie brilliant blue stain solution suffi-
cient to submerge it completely, for approximately 1 hr on a slowly rocking platform.
The gel was then typically destained from 6 hr to overnight at room temperature
on a slowly rocking platform. The destained gel would be scanned and the image

saved as a .tif file.

2.6.2 Western Blot Analysis

All solutions pertaining to Western Blot experiments are described in Appendix

A32

2.6.2.1 Western Blot Preparation

Proteins were transferred from the SDS-PAGE gel to a Millipore Immobilon-P
polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, Mass, USA) us-
ing an BioRad Mini-Protean-II system (Bio-Rad, Hercules, CA) as per manufac-
turer’s instructions. Protein transfer typically took 2-5 hr at 25mA, depending
upon gel size and total surface area of gels to be transferred. Transfer efficiency

was monitored by analysing the transfer of protein standards, and occasionally by
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subsequent staining of the PVDF membrane using a coomassie brilliant blue mem-
brane stain. Following transfer, the membrane was blocked from 30 min to overnight
in 5% dried milk blocking buffer prior to a brief wash in TEN and subsequent in-
cubation with the appropriate dilution of primary antibody. The membranes were
typically probed with a 1:50,000 dilution of mouse monoclonal anti-HIS primary
antibody (Sigma-Aldrich, St. Louis MO) for 2 hr, although this was extended up
to overnight if increased sensitivity was required. This was followed by a thorough
wash in approximately 2 1 TEN on a slowly rocking platform. A 1:20,000 dilu-
tion of alkaline phosphatase-conjugated GAM secondary antibody (Sigma-Aldrich,
St. Louis MO) was used to probe for the presence of the primary antibody. The
membranes were exposed to the secondary antibody solution for approximately 1

hr before being thoroughly washed in TEN.

2.6.2.2 Western Blot Visualization

Hybridization was visualized by chemiluminescent detection using alkaline-phosphatase
conjugated secondary antibody. Samples were detected using the Typhoon system

(GE Canada, Mississauga ON).

2.6.3 Protein Purification Under Native Conditions

All solutions pertaining to protein purification under native conditions are described
in Appendix [A.3.3

BL21(ADE3) pLysS [64, 334] was used in all over-expression and purification
analyses. This strain expresses T7 RNA polymerase from a lac promoter. This
gene is present on the lambda lysogen called DE3. The pLysS plasmid limits

leaky expression and confers chloramphenicol resistance. Expression was induced

overnight using autoinduction media (Appendix |A.1.1.10)).
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50 ml of overnight culture was harvested by centrifugation. Cells were lysed by
the addition of 1 ml of Bugbuster reagent (EMD Chemicals Inc., Darmstadt, Ger-
many) and10 pl of Benzonase (EMD Chemicals Inc., Darmstadt, Germany. The
lysate was incubated on a rocking platform for 15 min at room temperature and
then centrifuged for 20 min at 4°C at 16,000 rpm. The crude extract fraction (su-
pernatant) was transferred to a new tube. 50 pl of Ni-NTA resin (EMD Chemicals
Inc., Darmstadt, Germany) was added to the crude extract and the mix was incu-
bated on the rocking platform at 4°C for 10 min before centrifugation at 700 rpm
for 1 minute. The pellet was washed three times in 1 ml wash buffer (Appendix
A.3.3). The bound protein was sequentially eluted with 50 ul of: 200 mM imida-
zole, 400 mM imidazole and 1 M imidazole elution butter. The resultant fractions

were analysed on an SDS PAGE gel and quantitated by Bradford assay.

2.6.4 Bradford Assay

Protein sample concentration was determined by Bradford assay using the BioRad
protein assay reagent (Bio-Rad, Hercules, CA). 100 ul of a 1 mg/ml BSA stock
solution was diluted in 900 pl dH,O. This 1:10 stock was then further diluted in
dH,0 to produce 2, 4, 6, 8, 10 and 12 ug/ml protein standards in a final volume
of 800 pl. Appropriate dilutions of the protein samples were then made to produce
a final volume of 800 ul in dH;O. 200 ul of Biorad reagent was added to each
standard and each sample. All samples were incubated at room temperature for 5
minutes. Absorbance was assayed in a spectrophotometer using 800 pl dH,O plus
200 ul reagent as a blank. A standard curve was constructed by plotting absorbance
versus concentration for the BSA standards and the formula of that line was used

to extrapolate concentration of the unknown samples.
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2.7 Biochemical Assays

2.7.1 Preparation of Crude Cell Extract

Cell cultures were grown in an appropriate medium and under appropriate condi-
tions. Cells were harvested by centrifugation, the pellets washed twice in 20 mM
Tris-HCI pH 7.8, 1 mM MgCl, buffer, and stored at -20°C. Prior to sonication,
pellets were suspended in 4 ml of sonication buffer (20 mM Tris-HCI pH 7.8, 1 mM
MgCly, 10% glycerol, 10 mM [-mercaptoethanol) per gram of wet weight of pellet,
and then maintained on ice. Cells were disrupted by sonication at 4°C for 4 min at
30 s intervals. Cell debris was removed by centrifugation and the resultant cell-free
extracts were stored at 70°C until needed. Protein concentration was determined

using standard techniques [307] (see Section [2.6.4]).

2.7.2 PHB Analysis
2.7.2.1 PHB Isolation from Free-Living Cells

Cultures for PHB assays were grown in 250 ml Erlenmeyer flasks containing 50 ml
of high-carbon medium. For S. meliloti this was typically YMB; for B. japonicum
MAG was used. Cultures were grown at 30°C and 180 rpm for 48 hours (5. meliloti)
or 72 hours (B. japonicum). S. meliloti cells were typically harvested, washed once
in 0.85% NaCl and resuspended in 50 ml 0.85% NaCl. Owing to the extremely
mucoid nature of B. japonicum cells grown under PHB-inducing conditions, B.
japonicum cells were not subjected to these saline washes. PHB was extracted
from 2 ml of cells, the remaining 48 ml were pelleted, dried at 60°C until constant

mass was achieved and used to determine cell dry mass.

PHB content was determined using a modified version of the colourimetric assay

developed by Law and Slepecky [200]. This assay is based in the hydrolysis of PHB
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and subsequent conversion of the monomer to crotonic acid by concentrated HoSO,.
Crotonic acid has an absorption maximum at 235 nm. The amount of crotonic acid
can be used to determine PHB content of the initial sample. PHB content is

expressed as a percentage of total cellular dry mass.

Following the initial harvest, no plasticware was used in the PHB extraction
protocol; all glassware was washed thoroughly in boiling chloroform and rinsed
in EtOH prior to use to remove any traces of plasticizers. Cells were pelleted in
screw-capped pyrex centrifuge tubes (Corning Inc., Lowell, MA) at 6,000 rpm for
10 minutes. The cell pellet was washed in dH,O and pelleted again before being
resuspended in 2.0 ml of 5.25% NaOCI (Javex) and incubated at 37°C for 1 hour
to allow for complete cell lysis to occur. The samples were then pelleted at 6,000
rpm for 15 minutes and washed in 5 ml dH,O. This was followed by a wash in
5 ml EtOH and a final wash in 5 ml acetone. The pellet, which was white in
colour, was allowed to dry before the PHB was extracted by the addition of 10 ml
of cold chloroform. The tubes were capped, vortexed and transferred to a boiling
water bath. The tubes were removed from the water bath and vortexed every 1-2
minutes for 10 minutes before cooling to room temperature. If necessary, pressure
was released by loosening the caps periodically. Once cool, the tubes were vortexed
again and 1 ml was removed and transferred to a glass test tube. The chloroform
was allowed to evaporate at room temperature for 24-48 hours before addition of 10
ml concentrated H,SO4. The tubes were then capped with marbles and transferred
to a boiling water bath for 10 minutes, after which time they were removed and
allowed to cool to room temperature. After mixing well by vortex, OD from 220-280

nm was measured (Spectra Max 190, Molecular Devices).

A standard curve was obtained by assaying known quantities of PHB. Standard
solutions were prepared from a 1 mg/ml PHB stock, made by adding 10 mg PHB

(Sigma-Aldrich, St. Louis MO) to 10 ml cold chloroform and heating in a boiling
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water bath to dissolve. From this, a 100 pg/ml stock was prepared. Aliquots of
0-100 pg PHB were transferred to test tubes and the chloroform was allowed to

evaporate before addition of 10 ml H,SO4 and processing as described above.

2.7.2.2 PHB Isolation from Soybean Bacteroids

Soybean bacteroids was isolated in a crude preparation using a modified version of
protocols described by Wong and Evans [391], and Vassileva and Ignatove [371].
Nodules were removed, by hand, from mature plants approximately 5 weeks post-
inoculation. 2-4 g of nodules were crushed with a mortar and pestle in 2 volumes
of 50 mM Tris-HCI1 (pH 8.4). The homogenate was filtered through 4 layers of
cheesecloth and centrifuged at 300 x ¢ for 10 minutes to remove large debris. The
supernatant was then transferred to a deplasticized screw-capped pyrex centrifuge
tubes (Corning Inc., Lowell, MA) and centrifuged for 15 minutes at 8,000 x g and
4°C to pellet the bacteroids. The pellet was washed twice in dH,O and dried at
60°C. The pellet was weighed and then hydrolyzed overnight in 0.2 ml 5.25% NaOC]l

(Javex) per mg bacteroid pellet.

Following incubation, the lysate was pelleted at 8,000 x ¢g for 20 minutes then
washed once with dH,O and once with acetone. The pellet was then dried and

processed as described above.

2.7.2.3 Isolation of Native PHB Granules

Native PHB granules were isolated using a protocol modified from those described
previously by Merrick and Doudoroff, Gebauer and Jendrossek, Preusting et al
and Wang et al [108, 240, 277, 379]. The S. meliloti PHB depolymerase mutant
Rm11430 was grown to saturation in 500 ml YMB. Cells were harvested and washed

in 0.05 M potassium phosphate buffer (pH 7.0). The cell pellet was resuspended
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in 30 ml 0.05 M potassium phosphate buffer (pH 7.0) and cells were lysed by three

passages through an French Press.

Six Ultra-Clear " Beckman Ultracentrifuge tubes (Beckman-Coulter, Missis-

sauga ON) were prepared with a discontinuous sucrose gradient as follows:

8 ml 2 M sucrose in 10 mM Tris-HCI (pH 8.0)

8 ml 1.66 M sucrose in 10 mM Tris-HCI (pH 8.0)

8 ml 1.33 M sucrose in 10 mM Tris-HCI (pH 8.0)

8 ml 1 M sucrose in 10 mM Tris-HCI (pH 8.0)

5 ml crude cell lysate was layered on top of the gradient and the tubes were
centrifuged at 26,000 rpm for 15 hours in a Beckman SW28 Ultracentrifuge rotor
(Beckman-Coulter, Mississauga ON). The PHB granule layer is clearly visible as a
discrete band at the interface of the 1.66 M and 1.33 M sucrose layers. The granules
were removed from the gradient and washed twice in 10 mM Tris-HCI (pH 8.0).

Granules were stored at 4°C until use.

2.7.3 Alkaline Phosphatase Assay

Alkaline phosphatase activity of exoF::TnphoA fusions in S. meliloti strains was
measured according to the method of Brinkmann and Beckwith [31]. Cells were
grown to an ODggg of 0.7. 1 ml of culture was washed twice in 1 M Tris-HCI
(pH 8.0), and resuspended in 1 ml 1 M Tris-HCl (pH 8.0). The ODggy of this
cell suspension was then measured. Following a 10 min equilibration period at
37°C, 50 pl of 4 mg/ml p-nitrophenyl phosphate (NPP) was added to start the
reaction. The reaction was allowed to continue for 11 min at 37°C before being

stopped by the addition of 50 ul of 1M KyHPO,. The cells were pelleted and 50
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pl of the supernatant was diluted in 450 ul of 1 M Tris-HCI (pH 8.0) and ODyg
was measured. Units (U) of alkaline phosphatase activity were calculated using the

formula:
B 1000 x OD600
~ Time(min) x OD600

Assuming a molar coefficient of 16,000 for p-nitrophenyl phosphate, 1 U is equal to
0.062 nmol of NPP hydrolyzed per min at a cell ODgggof 1. Therefore:

nmol NPP hydrolyzed per min = U x 0.062

2.7.4 phbA Assay
2.7.4.1 Preparation of Crude Cell Extract

Cells were grown in 50 ml complex medium to late-log phase and then harvested
by centrifugation. The pellet was washed once in 50 ml 0.1 M Tris-HCI (pH 7.5)
and resuspended in 5 ml 0.1 M Tris-HCI (pH 7.5). Cells were disrupted on ice by

sonication in 4 cycles of 15 seconds on, 15 seconds off at 90% max setting.

2.7.4.2 Assay of $-Ketothiolase Activity

PhbA activity of S. meiloti was measured using a modified version of standard pro-
tocols [184, 249]. The assay measures the decrease of Ezg3 of the Mg?T-Enol complex
of acetoacetyl-CoA as it is converted to acetyl-CoA. 10 ul 7 mM acetoacetyl-CoA,
100 gl 0.4 M MgCly, and 750 pl 0.1 M Tris-HCI (pH 8.1) were mixed together and
incubated at 30°C for 2 minutes. 10 ul crude cell extract was added to this solution
and the reaction was started by the addition of 30 ul 3.4 M CoA. The decrease
in absorbance at OD3gy was measured and activity was calculated using a molar

extinction coefficient of 12.9 cm?.ymol™! [I59]. One U of activity is defined as the
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amount needed to catalyze the formation or cleavage of 1 pmol acetoacetyl-CoA in

1 minute. The formula used to calculate activity is as follows:

Units BA w15

min

min  (1.726 x 10%) x 1

2.7.5 Exopolysaccharide Quantitation

Solutions used in the isolation and quantitation of EPS are detailed in Appendix

(A6l

2.7.5.1 Isopropanol Precipitation of Exopolysaccharide

Cells were grown to saturation in 50 ml high-carbon medium (YMB for S. meliloti;
MAG for B. japonicum in a 250 ml Erlenmeyer flask. 25 ml cells were pelleted at
6,000 rpm for 20 mins and the supernatant was transferred to a fresh tube. The
cell pellet was washed in 25 ml 1 M NaCl 10 mM EDTA and, following pellet-
ing, the supernatant was combined with the supernatant from the initial harvest.
The combined supernatants were centrifuged at 6,000 rpm for 20 mins to remove
all traces of cell debris and were then transferred to clean 250 ml glass beakers.
EPS was precipitated by the addition of 2 volumes (100 ml) ice cold isopropanol.
The beakers were covered with aluminium foil and incubated overnight at 4°C to

facilitate the precipitation.

Following overnight incubation, the EPS precipitate wass removed by successive
rounds of centrifugation at 8,000 rpm for 20 mins in pre-weighed 50 ml centrifuge

tubes. The pellet was then dried at 60°C overnight.
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2.7.5.2 Exopolysaccharide Quantitation by Mass

25 ml cells from the original culture were pelleted at 6,000 rpm for 20 mins in pre-
weighed tubes. The pellet was then dried at 60°C until constant mass was achieved

in order to allow quantitation of CDM.

The dried EPS pellet and tube were weighed and the EPS mass determined by

subtracting the combined weight from the weight of the pre-weighed tube.

EPS was expressed as EPS as a percent of CDM

2.7.5.3 Exopolysaccharide Quantitation by Anthrone Assay

The anthrone assay used is a modified version of the protocols described by Morris

et al [247] and Trevelyan & Harrison [353].

25 ml cells from the original culture were pelleted at 6,000 rpm for 20 mins
in pre-weighed tubes. The pellet was then dried at 60°C until constant mass was

achieved in order to allow quantitation of CDM.

Anthrone reagent must be prepared fresh daily. The recipe for preparation is
described in Appendix [A.6] The dried EPS pellet was dissolved in 5 ml dH,O.
When necessary, 1:10 dilutions of the dissolved EPS were prepared. EPS for each
sample was typically measured in duplicate from 2 independent cultures. 5 ml
anthrone reagent was added to each test tube and the tubes were incubated on ice.
1 ml EPS sample was layered on top of the anthrone reagent and the tubes were
capped with marbles. The tube contents were mixed by thorough vortexing. The
tubes were transferred to a vigorously boiling water bath and heated for precisely
10 minutes (note, the time and intensity of heating are extremely important). The
tubes were then removed from the boiling water bath and plunged into an ice-cold
water bath for at least 2 mins. The intensity of the green colour was measured at

620 nm (Spectra Max 190, Molecular Devices) against an HySO, blank.

121



A standard curve of glucose blanks from 0-25 pg glucose was also generated,
and the formula used to determine EPS content of each of the unknown samples.
This EPS content was then expressed as ug of glucose equivalents as a percentage

of CDM.

2.8 Desiccation Assay Techniques

2.8.1 On-Seed Survival Assays

On-seed survival was typically assayed by inoculating 400 g soybean seeds with
1.1 ml of saturated culture amended with 20% proprietary extender solution. The
soybean-culture mix was vigorously shaken for 30 seconds before 5 seeds were re-
moved, in triplicate, to 10 ml PBS in a sterile glass test tube. The tubes were
vortexed vigorously for 60 seconds and then serially diluted. 100 ul of the three
highest dilutions were plated in duplicate to determine CFU/seed at t=0. Sam-
ples were then assayed in this manner at appropriate intervals. Between sampling,

inoculated seeds were maintained at 16°C, with approximately 70% humidity.

2.8.2 Filter Desiccation Assays

Desiccation tolerance was initially screened in using the filter desiccation protocol
kindly provided by Dr Mike Kahn’s lab at Washington State University (J. Humann,

personal communication).

200 pl of saturated cultures were transferred to 36 wells of a 96-well plate (in
order for the mutants to all fit onto the Whatman #1 filter only 36 can be picked

per plate).

Each assay was performed using both YMA and TY. A sterile Whatman #1
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filter (Whatman Canada Ltd., Toronto ON) was placed over the centre of each
plate, and allowed to become completely moist. Colonies were replicated from the
96-well plate onto each plate using a 48-prong replicator. The plates were then

incubated at 30°C until growth was uniform.

After sufficient growth had formed on the replicated plates, the filter was re-
moved asceptically with forceps and placed cell-side-up on a sterile petri dish. The
filter was left to dry in the 30°C incubator inside a plastic tub for 1 week. The
filters were rehydrated by inverting them onto fresh YMA plates and incubated
in the 30°C incubator until growth was evident, checking every 12-24 hours and

recording any differences between patches.

2.8.3 96-Well Plate Desiccation Assays

Desiccation tolerance was assayed in a 96-well plate using the agar plug method
kindly provided by Dr Mike Kahn’s lab at Washington State University (J. Humann,
personal communication). Assays were carried out in sterile 96-well plates (VWR

International, Mississauga ON).

50 pl YMA were added to each of the wells of the 96-well plate. Plates were
allowed to solidify and then wrapped in parafilm until needed. Liquid cultures were
grown to saturation in the appropriate media and normalized to the same staring
ODgoo by dilution. Each column (12 columns in total) was inoculated with 4 pul
in triplicate, for a total of 24 wells per sample. An airpore tape sheet (Qiagen
Inc., Mississauga ON) was placed over the entire plate, leaving the paper strip still
attached at the ends to facilitate easy removal. The 96-well plate lid was then
replaced (over the airpore strip) and the plate was incubated at 30°C for 48 hours.
After 48 hours, the airpore sheet was pulled back to reveal the first row of wells,

to which 100 ul PBS was added. The PBS was removed, along with the agar plug,
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and transferred to a test tube containing 4.9 ml PBS. This solution was vortexed
vigorously and serial dilutions out to 1076 were performed. 100 pl of these dilutions
were plated, in duplicate, on an appropriate medium in order to determine CFU /ml
at t=0. 96-well plates were then incubated at 30°C and samples were removed in

this fashion at regular time points (typically 1, 2, 4, 8 and 16 weeks).

2.9 Microscopy Techniques

All microscopy solutions are described in Section [A.8]

2.9.0.1 Preparation of Samples for Scanning Electron Microscopy (SEM)

Samples were fixed in sufficient 2.5% glutaraldehyde to be completely submerged
and were then incubated for 1 hour at 4°C. Samples were washed three times in
phosphate buffer (PB) for 20 minutes each. At this point samples could be left for
up to 1 week if necessary. Samples were then dehydrated in a series of acetone as
follows: 20% for 10 minutes; 50% for 10 minutes; 70% for 2 x 10 minutes; 95% for 10
minutes; 100% for 2 x 10 minutes. Samples were subjected to critical point drying
using liquid COj as the transitional fluid, before being mounted on aluminium stubs
and coated with a thin layer of gold using a sputter-coater. Samples were examined
at an accelerating voltage of 15 kV on a Hitachi S-570 scanning electron microscope

(Hitachi, Tokyo, Japan).

2.9.0.2 Preparation of Samples for Transmission Electron Microscopy

(TEM)

Plants were harvested 28-30 days post-inoculation. Roots were washed to remove

traces of vermiculite, and the nodules were transferred into primary fixative (4%
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formaldehyde, 1% glutaraldehyde in 80 mM HEPES pH 7.0) and cut into small
pieces. The samples were subjected to 4 cycles of vacuum infiltration (2 mins
per cycle) and were left overnight at 4°C. Following infiltration, the nodules were
washed thoroughly in sterile water, and stained for 4 hours in 1% OsO,. The nod-
ules were washed again in water and dehydrated through a gradient of acetone.
The nodules were embedded in epon araldite resin and transferred to BEEM cap-
sules for 48 hours at 60°C. Ultrathin sections were cut using a Reichert Ultracut E
microtome, and were stained with uranyl acetate and lead citrate using standard
techniques [372]. Samples were analysed in a Philips CM10 transmission electron

microscope at an accelerating voltage of 60 kV.
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Chapter 3

Poly-3-Hydroxybutyrate Synthesis

in Bradyrhizobium japonicum

3.1 Poly-3-Hydoxybutyrate Metabolism in Bradyrh:i-

zobium japonicum

PHB metabolism appears to play a diverse role in the metabolism of a range of
different prokaryotes. In R. leguminosarum, PHB synthesis has been shown to help
regulate the carbon and redox balance of the tricarboxylic acid (TCA) cycle [377]
and in S. meliloti, phbC' mutants are impaired in their ability to grow on PHB cycle
intermediates [40]. In addition, phbC mutants of Rhizobium etli demonstrate higher
levels of Ny-fixation during symbiosis [43] presumably because they are channelling
all of the available carbon into Ns-fixation rather than into carbon storage; S.
meliloti phbC mutants show slightly decreased levels of Na-fixation [7], and are also
defective in competition for nodulation relative to the wild-type parental strain,
Rm1021 [390]. It has been suggested that accumulation of PHB during saprophytic

growth may be advantageous during nodule initiation or invasion [390] although the
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mechanisms through which this provision is made remain elusive.

Like many strains of rhizobia, Bradyrhizobium japonicum is capable of syn-
thesizing high levels of polyhydroxyalkanoates (PHA) under sub-optimal growth
conditions (reviewed in [35I]) in which growth is inhibited by the lack of a key
nutrient but carbon supplies are abundant. These intracellular carbon stores can
later be mobilized to support metabolism under conditions of carbon starvation,
such as those experienced during long-term inoculant storage. In agreement with
this hypothesis, a phbC' mutant in Azospirillum brasilense demonstrated a reduced
survival capacity in the absence of an exogenous carbon supply [172]. Furthermore,
PHA /PHB has been shown to protect the cell from a wide range of stresses, includ-
ing heat shock, UV irradiation, exposure to an oxidizing agent, and osmotic shock
[I74], suggesting that the effects of PHA/PHB at the cellular level are diverse.
The PHB cycle in S. meliloti has been characterized, and is outlined in Figure [1.8]
Each gene in this cycle, except for phaZ, has been identified and analyses of mutant
phenotypes have shown that the ability to synthesize and utilize PHB is important

in competitive growth and long-term survival [390].

Unlike S. meliloti, B. japonicum elicits the formation of determinate nodules
on the roots of its host symbiont, soybean. Bacteroids of B. japonicum, and other
determinate-nodule-forming rhizobia, are capable of accumulating large amounts
of PHB during symbiosis. Indeed, some reports cite that B. japonicum bacteroids
may contain 30-70% PHB by mass [18 122} [391], an amount that does not appear
to fluctuate relative to nitrogenase activity, but which does decline during periods
of carbon stress such as periods of darkness or during seed production by the host
plant [I8, 17, B91]. While it is conceivable that PHB synthesis during symbiosis
might compete with nitrogenase for photosynthate, the ability of bacteroids from
determinate nodules to undergo a process of reverse differentiation following nodule

senescence [132], 231], 235 337, B57] makes it likely that the accumulated PHB
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gives the cells a competitive advantage when released into the soil. Assisting the
bacteroids in PHB accumulation potentially benefits the host plant by “seeding”
the soil with a population of viable rhizobia that would be available to nodulate

the next generation of plants after seed formation and plant death.

Analysis of the recently completed genome sequence of B. japonicum [178, [179]
suggested the presence of five PHA /PHB synthase homologues (Blr2885, Blr3732,
Bl14360, BIl14548, and BIlI6073) — one of which (Bll4360) was shown to be able
to functionally complement a S. meliloti phbC mutation — and two phbAB oper-
ons (B110225/B110226 and Blr3724/Blr3725) predicted to encode acetyl-CoA acetyl-
transferase and acetoacetyl-CoA reductase [7]. These genes are distributed through-
out the entire genome, as depicted in Figure [1.9, The presence of so many copies
of phbC' suggests a significant role for PHA synthase in B. japonicum metabolism,
although it is not known if each of these genes encodes a functional PHA syn-
thase and, at the time this study was initiated, no studies had been conducted to

investigate this further.

Over 59 PHA synthase genes have now been cloned and characterized (reviewed
in [351]) and multiple sequence alignments show that these genes share an overall
identity of 8-96% with only eight strictly conserved, catalytically important amino
acids [285]. The five predicted phbC genes in B. japonicum range in size from 300
to 600 amino acids (discussed in Section [1.3.1)), which is within the range of known
PHA synthases [7]. All five of the B. japonicum genes also contain the modified
lipase box motif, GX[S/C|XG, and at least seven of the eight highly conserved
residues found among phbC' genes (see Figure 3.1 and Table [7, 285].

The five phbC' genes were cloned separately by PCR into pRK7813 [169] and
the ability of each to complement the pleiotropic phenotype of the S. meliloti pho C
mutant was examined. Of the five phbC' homologues, only Blr3732 and Bll4360

were able to complement the PHB synthesis phenotype of S. meliloti phbC' mutant.
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Furthermore, Blr3732, Bll4360 and Bl16073 all demonstrated a partial capacity to
complement the acetoacetate growth phenotype of the S. meliloti phb C' mutant, but
none was able to fully restore growth on acetoacetate. Interestingly, recent data has

shown that BllI6073, an apparently non-complementing homologue, is up-regulated

in bacteroids [308, [309].

In order to determine whether different PHB synthases are used in symbiosis
relative to free-living growth, mutants of the phbC' genes as well as of both phbAB
operons were constructed by allelic replacement. Single mutants of three of the pho C'
loci (BIr2885, BIr3732 and Bl16073) and both phbAB operons (B110225/B110226 and
Blr3724/BIr3725) we constructed by cross-over PCR and allelic replacement. In
addition, double mutants of both phbAB operons as well as different combinations
of phbAB and phbC' genes, have been constructed. The effects of these mutations

on free-living and symbiotic phenotypes was assessed.

This study highlights the complex metabolic networks that are characteristic
of the Rhizobiaceae and demonstrates that the PHB cycle plays an integral role
in central carbon metabolism in these bacteria under free-living and symbiotic
conditions. While previous studies have elucidated the mechanisms by which PHB
is synthesized and degraded, very little work has addressed the regulation and co-
ordination of PHB metabolism in each growth phase. This study represents the
next step in understanding the integral role that carbon metabolism has to play in

the life cycle of rhizobia.
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Figure 3.1: Boxshade alignment of B. japonicum PhbC amino acid se-
quences. Black boxes indicate residues conserved in all PHA synthases;
Red boxes indicate the modified lipase box motif
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Table 3.1: Conserved catalytic residues in S. melilot: phbC and their
corresponding residues in each of the B. japonicum phbC ORFs

Rm1021 | Blr2885 Blr3732 Bll4360 Bll4548 Bl6073
5290 S92 5247 S277 S100 5348
C349 C151 C306 C336 C154 C348
G352 G154 G309 G339 G157 G351
D381 D180 D338 D368 D182 D380
W450 W251 W406 W253 W437 W449
D504 D306 D462 D491 D307 D503
G531 G333 G489 G518 E334 G530
Hb532 H334 H490 H519 P335 Hb531
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3.2 Results and Discussion

3.2.1 Cloning of B. japonicum phbC Open Reading Frames

All strains and plasmids described in this chapter are listed in Table 2.1} For ease of
reading, a summary of the relevant strains and plasmids are listed in Tables and
Primers were designed against the 5" and 3’ regions of each phbC open reading
frame, and are listed in Table 2.2l Each ORF was amplified by PCR using KOD
polymerase (EMD Biosciences, San Diego, CA) and following standard protocols
[307]. As described in Table primers were designed to include restriction sites
in the 5" and 3’ regions, to facilitate easy cloning from the purified PCR product
directly into pRK7813 [169]. The resultant plasmids, described in Table were
transferred into the phbC mutant strain of S. meliloti, Rm11105, by triparental
mating (Section and transconjugants were isolated by plating on TY Smyg
Tcyp. Following three rounds of streak purification, transconjugants were assayed
for the ability of the plasmid construct to complement several characteristic phbC

phenotypes of S. meliloti.

3.2.2 Complementation of S. meliloti phbC Mutant by B.
japonicum phbC ORF's

As described previously, the phbC mutant of S. meliloti demonstrates a pleiotropic

phenotype (reviewed in [351]). The cloned B. japonicum phbC' genes were each

tested for their ability to complement the S. meliloti Rm11105 PHB synthesis,

EPS synthesis and acetoacetate utilization phenotypes.
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Table 3.2: Summary of strains constructed in the analysis of B. japon-
icum PHB metabolism

Strain Relevant Characteristics

USDA110 wt

BjUW1 USDA110 pMA105

BjUW?2 USDA110 pMA106

BjUW4 USDA110 pMA108

BjUW5 USDA110 pMA109

BjUWS USDA110 ABIr2885

BjUW9 USDA110 ABIr3732

BjUW10 USDA110 pMA107 #1

BjUWI1 USDA110 pMA107 #2

BjUW12 USDA110 pMA108

BjUW13 USDA110 ABII6073

BjUW14 USDA110 pMA109

BjUW15 USDA110 ABII0225 and ABI10226
BjUW16 USDA110 ABIr3725 and ABIr3726
BjUW17 USDA110 ABIr3725 and ABIr3726 #2
BjUW18 BjUW9 pMA107 #1

BjUW19 BjUWY9 pMA107 #2

BjUW20 BjUW16 pMA110#1

BjUW21 BjUW16 pMA1104#2

BiUW22 BjUW15 pMA111#1

BjUW23 BjUW15 pMA1104#2

BjUW24 BjUW9 pMAI111#1

BjUW25 BjUW9 pMA111#42

BjUW26 BjUW9 pMA105#1

BjUW27 BjUW9 pMA105#2

BjUW28 BjUW9 ABIr2885 #1

BjUW29 BjUW9 ABIr2885 #2

BjUW30 BjUW9 ABIr3725 and ABIr3726 #1
BjUW31 BjUW9 ABIr3725 and ABIr3726 #2
BjUW32 BjUW15 ABIr3725 and ABIr3726 #1
BjUW33 BjUW15 ABIr3725 and ABIr3726 #2
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Table 3.3: Summary of plasmids constructed or used in the analysis of
B. japonicum PHB metabolism

Plasmid Relevant Characteristics

pK19mobsacB | Suicide vector Km®

pGEMTEasy | Cloning vector for PCR-generated DNA fragments, Amp®
pRK7813 RK2 derivative carrying pUC9 polylinker. TcF
pMA100 pGEMTEasy Blr2885 AD joined fragment
pMA101 pGEMTEasy Blr3732 AD joined fragment
pMA102 pGEMTEasy Bll4360 AD joined fragment
pMA103 pGEMTEasy Bll4548 AD joined fragment
pMA104 pGEMTEasy BlI6073 AD joined fragment
pMA105 pK19mobsacB Blr2885 AD from pMA100
pMA106 pK19mobsacB Blr3732 AD from pMA101
pMA107 pK19mobsacB Bll4360 AD from pMA102
pMA108 pK19mobsacB Bl14548 AD from pMA103
pMA109 pK19mobsacB Bl6073 AD from pMA104
pMA110 pK19mobsacB Bl10225/B110226 AD
pMA111 pK19mobsacB Blr3725/Blr3726 AD
pMA156 pRK7813 BIr2885

pMA118 pRK7813 BIr3732

pMA119 pRK7813 Bll4360

pMA120 pRK7813 Bll4548

pMA121 pRK7813 BlI6073
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3.2.2.1 Restoration of EPS Synthesis

Exopolysaccharide synthesis was analysed by observing mucoidy of the colonies
when grown on high-carbon media. Wild-type S. meliloti demonstrates a charac-
teristic mucoid phenotype when grown under PGB-inducing conditions; this mu-
coidy is absent in the phbdC strain Rm11105. As shown in Figure [3.2] when grown
on Yeast Mannitol agar (YMA), only BIr3732 and Bll14360 were able to restore EPS

production in Rm11105.

3.2.2.2 Restoration of PHB Accumulation

The ability to complement the PHB synthesis phenotype of Rm11105 was deter-
mined in two ways. Initially, each complemented clone was screened on YMA con-
taining Nile Red. Nile Red is a dye that binds to PHB granules in the cytoplasm
of the cell, and fluoresces under UV light. As shown in Figure [3.3] only Blr3732
and Bll4360 appeared to be able to complement the PHB synthesis phenotype of

this mutant.

In order to more quantitatively characterize PHB synthesis by these comple-
mented clones, PHB content was also determined by organic extraction [200], fol-
lowing growth to saturation in yeast mannitol broth. The data presented in Ta-
ble confirm the results of the screening on YMA-Nile Red, showing that only
Blr3732 and Bll4360 are capable of complementing the PHB synthesis phenotype
of Rm11105.

3.2.2.3 Complementation of Carbon Source Utilization Phenotype of

the S. meliloti phbC Mutant

Rm11105 lacks the ability to grow on either acetate or acetoacetate as a sole carbon

source. All Rm11105 B. japonicum phbC' transconjugants were tested for their
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Figure 3.2: Complementation of EPS phenotype of S. meliloti phbC
mutant with B. japonicum phbC genes
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Figure 3.3: Complementation of the PHB phenotype of S. meliloti phbC
mutant with B. japonicum phbC genes on YMA containing Nile Red
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Table 3.4: PHB accumulation by S. meliloti Rm11105 complemented
with B. japonicum phbC genes

Strain % PHB (w/w)
Rm1021 18.9

Rm11105 0.2

Rm11105 Blr2885 0.3

Rm11105 Blr3732 14.9

Rm11105 BlI4360 17.3

Rm11105 Bll4548 2.2

Rm11105 Bl6073 0.9
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ability to complement the carbon utilization phenotypes of Rm11105. The results
of these growth curves are shown in Figures [3.4] and [3.6]

As shown in Figure [3.6] only Blr3732, Bll4360 and Bl16073 all demonstrated a
partial capacity to complement the acetoacetate growth phenotype of the S. meliloti
phbC' mutant, but none was able to fully restore growth on acetoacetate. Inter-
estingly, recent data has shown that BlI6073, an apparently non-complementing

homologue, is up-regulated in bacteroids [308, 309).
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3.2.3 PHB Metabolism in B. japonicum
3.2.3.1 Characterization of B. japonicum Antibiotic Resistance Profile

A problem that quickly became apparent was the inherent tolerance that B. japon-
icum demonstrates towards many commonly used laboratory antibiotics [56]. For
this reason it was important to establish precisely which antibiotics could be used as
selective agents by determining how sensitive B. japonicum USDA110 is to various
antimicrobial agents. By spot-plating serial dilutions of B. japonicum USDA110
onto AG plates containing various concentrations of antibiotics, an elementary re-
sistance profile was compiled (Table . These data suggest that kanamycin resis-
tance would be the most useful selectable marker, and that the inherent resistance of
B. japonicum to tetracycline would make it a useful antibiotic for counter-selection
against £. coli donor strains. The data are summarized in Table and form the

basis for the antibiotic concentrations documented in Appendix [A.1.2.3]

3.2.3.2 Construction of B. japonicum PHB Synthesis Mutants

Single deletion mutants of three of the five phbC' genes and both phbAB operons
of B. japonicum were generated by crossover PCR [330] (Figure [3.7)). Primer sets
were designed such that the crossover PCR would generate a construct that would
produce an in-frame deletion as a result of allelic replacement in the host genome.
Primers used in constructing deletion mutants were designed in sets of four and were
designated A, B, C, and D based on the location of their target sequence relative to
those highlighted in Figure A complete list of primers may be found in Table
The initial round of PCR produced an upstream product (A/B) and a down-
stream product (C/D), that were confirmed by gel electrophoresis. These products
were purified by gel extraction and used as the template for the second round of

PCR using primers A and D to generate a joined fragment that was then cloned into
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Table 3.5: Antibiotic resistance profile of B. japonicum USDA110 grown
on AG medium supplemented with different concentrations of antibiotics

Antibiotic Final Concentration (ug/ml)
Streptomycin 50 100 150 200 400
R S S S nd
Neomycin 50 100 150 200 400
R R R nd nd
Tetracycline 10 25 50 200 600
R R R S S
Chloramphenicol | 25 50 100 200 400
R R R nd nd
Rifampicin 25 50 100 200 400
R R R nd nd
Gentamycin 20 40 100 150 200
R R R R R
Kanamycin 25 50 100 200 400
R S S S S

Note, growth is scored as either R (resistant, growth was evident above background)
or S (sensitive, no discernible growth).
nd: not determined
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the general cloning vector pGEM—TEasy®. This product was confirmed by PCR
and subsequently cloned into the suicide vector pK19mobsacB [310]. All of these
plasmid constructs are documented in Table 2.1} This construct was transferred
into B. japonicum by triparental mating, as described in Section [2.4.4.5] and single
recombinants were selected by plating on AG KmsyTcyq. Following three successive
rounds of streak purification on AG KmjsgTcig, double recombinants were isolated
by growing the strains to saturation in AG with no selection and plating serial
dilutions of up to 107* on AG containing 5% sucrose. Sucrose-Resistant colonies
were then patched onto both AG sucrose and AG Kmjq to distinguish between true
double-recombinants and single recombinants with sacB inactivation. True double
recombinants were then screened for the deletion by colony PCR (Section
and confirmed by gel electrophoresis. A representative gel is shown in Figure [3.8]
Two phbC' double mutants have also been constructed, as has a double mutant
of both phbAB operons. For reasons that remain unclear, two of the phbC open

reading frames proved recalcitrant to mutation.

3.2.3.3 Symbiotic Phenotype of B. japonicum phbC and phbAB Mu-

tants

The presence of so many putative phbC and phbAB open reading frames suggests
that PHB production may be important under different physiological conditions.
It is tempting to speculate that PHB production may be differentially regulated
under free-living and symbiotic conditions. Furthermore, since PHB production
during symbiosis would appear to divert carbon away from nitrogen fixation, it is
important to determine whether elimination of PHB production during symbiosis
has an effect on plant dry mass. In order to determine the symbiotic phenotype of
the B. japonicum PHB synthesis mutants, a soybean growth facility was constructed

by suspending high-pressure sodium lamps from a traditional greenhouse bench and
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Figure 3.7: Crossover PCR strategy used to construct phbC and phbAB
mutations in B. japonicum
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1 2 3 4 5 6

Figure 3.8: Colony PCR of BIr2885 and Blr3724/3725 constructions. 1:
1 kb ladder; 2: WT BIr2885; 3: Mutant Blr2885; 4: WT Blr3724/3725;
5 and 6: Mutant Blr3724/3725
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supplementing the light production with compact fluorescent bulbs (Figure .
This facilitated the growth of up to 30 pots of soybean simultaneously, with no

detectable innoculum cross-contamination.

The data in Table (from triplicate experiments) show that plants inoculated
with PHB synthesis mutants do appear to show reduced plant mass relative to those
inoculated by the wild-type strain. This reduction in plant mass is reproducible
but, when analysed using a Student’s t-test, the data are not statistically significant

except in the case of plants inoculated with BjUW9.

3.2.3.4 PHB accumulation of B. japonicum phbC and phbA B Mutants

Each mutant strain was tested for the ability to accumulate PHB under both free-
living and symbiotic conditions. For analysis of free-living PHB accumulation,
the standard PHB assay, using an organic extraction [200], was modified for use
with B. japonicum and was used to quantitate PHB accumulation in cells grown
under high-carbon conditions. B. japonicum USDA110 cannot utilize mannitol
as a sole carbon source, so it was necessary to modify the standard high-carbon
growth conditions in order to induce PHB accumulation. A high-carbon medium
containing an excess of arabinose and gluconate, which gave optimal growth relative

to other PHB-inducing media, was developed for this purpose (Appendix |A.1]).

To measure PHB accumulation in symbiosis, PHB had to be extracted directly
from the bacteroids. Soybean plants were grown as describe in Section and
nodules were removed from the resultant root structures. The process of bacteroid
isolation is modified from Wong and Evans [391], and Vassileva and Ignatove [371]

and depicted in Figure [3.10]

As shown in Table [3.7, knocking out B110225/6 (phbAB, mutant BjlUW15) was

sufficient to eliminate PHB production by B. japonicum USDA110 under free-living

148



Figure 3.9: Soybean growth facility constructed within the Charles lab
at the University of Waterloo. This set-up employed two high-pressure
sodium bulbs, augmented by compact fluorescent bulbs and was capable
of holding up to 30 pots simultaneously without cross-contamination
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Figure 3.10: The process of bacteroid isolation from soybean nodules.
Nodules were weighed and then crushed using a pestle and mortar (a, b),
and the resultant crushate was filtered through three layers of cheese-
cloth (c). The filtered crushate was centrifuged at 300 x g (d) and
the supernatant transferred to a fresh tube for a second centrifugation
step at 8,000 x g (e). The supernatant was decanted and the resul-
tant bacteroid-containing pellet was dried and subject to organic PHB
extraction following standard techniques [200]
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Table 3.6: Shoot dry masses of soybean plants Inoculated with different
B. japonicum PHB synthesis mutants

Strain Relevant Characteristics Average Mass
per Plant (g)
Uninoculated | negative control 0.61¢
USDA110 wild-type 1.60¢
BjUWS phbC Blr2885 1.09
BjUW9 phbC Blr3732 0.90¢
BjUW13 phbC Bl16073 1.31
BjUW15 phbAB Bl110225 and BI110226 1.22
BjUW16 phbAB Blr3724 and Blr3725 1.04
BjUW28 BjUWS BIr3732 1.66
BjUW31 BjUW9 BIr3732 1.66
BjUW32 BjUW15 Blr3724 and Blr3725 1.13

® These differences are statistically significant
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conditions; Blr3724/5 phbAB, mutant BjUW16) is required for PHB production
during symbiosis. This is the first example of B. japonicum mutants that are

unable to synthesize PHB.

3.2.3.5 Rhizosphere Competitiveness of B. japonicum PHB Synthesis

Mutants

The PHB synthesis mutants of S. meliloti demonstrate a distinct loss of rhizosphere
competitiveness relative to the wild-type strain [9]. To determine whether a similar
correlation between PHB synthesis capacity and nodulation competitiveness exists
in B. japonicum, the three phbAB mutants BjUW15, BjUW16 and BjUW32 were
all tested for their ability to compete for nodulation with BjUW36, a spontaneous
Sm’-derivative of the wild type strain USDA110. BjUW36 was isolated by plating
cells from 1 ml of a saturated culture of B. japonicum USDA110 on AG Smygg. The

resultant colony was streak purified three times on AG Smygy before use.

The data in Table 3.8 show the results of these competition assays. In each
trial, approximately 15 nodules were crushed and the bacteroids screened for Sm#
or Sm®. These data show that, similarly to S. meliloti, PHB synthesis mutants of

B. japonicum also demonstrate reduced rhizosphere competitiveness.

3.2.3.6 Growth Phenotypes of B. japonicum phbC and phbAB Mu-

tants

PHB synthesis mutants of S. melilot: demonstrate an inability to grow on the PHB
cycle intermediates acetoacetate and 3-hydroxybutyrate. Each of the B. japonicum
PHB mutants was analysed for growth on these carbon sources to determine if
this phenotype was consistent between the two species. Growth curves were gen-

erated using the Bioscreen-C growth curve machine (see Section [2.5.1.1]) and were
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Table 3.7: PHB accumulation by B. japonicum PHB synthesis mutants
under both free-living and symbiotic conditions, expressed as mg PHB
as percent cell dry mass

mg PHB as % CDM
Strain Free-Living Bacteroid
USDA110 11.6 17.2
BjUWS 13.1 nd
BjuUwW9 9.3 15.6
BjUW13 114 nd
BjUW15 3 17.6
BjUW16 12.3 6.7
BjUW32 1.3 1.2
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Table 3.8: Nodulation competitiveness of the B. japonicum phbAB mu-
tants co-inoculated in the described ratios with the wild-type strain
USDA110 on Soybean (Glycine Max) plants

Strain (%) in innoculum

No. nodules tested

Nodule occupancy (%)
Strain 1 Strain 2 Both

USDA110 (10) + BjUW36 (90) 17 13 2 2
USDA110 (50) + BjUW36 (50) 15 6 6 3
USDA110 (90) + BjUW36 (10) 18 1 16 1
BjUW36 (10) + BjUW15 (90) 16 5 10 1
BjUW36 (50) + BjUW15 (50) 17 10 4 3
BjUW36 (90) + BjUW15 (10) 18 16 2 0
BjUW36 (10) + BjUW16 (90) 17 0 14 3
BjUW36 (50) + BjUW16 (50) 18 6 8 4
BjUW36 (90) + BjUW16 (10) nd nd nd nd
BjUW36 (10) + BjUW32 (90) 12 1 10 1
BjUW36 (50) + BjUW32 (50) 13 8 2 3
BjUW36 (90) + BjUW32 (10) 8 8 0 0

nd: not determined
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followed for 10 days in Vincent’s Minimal Medium (Appendix , supplemented
with the appropriate carbon source. A representative samples of these growth
curves is shown in Figures [3.11] and [3.13] As can be seen in these graphs,
no discernible difference was observed between wild-type B. japonicum USDA110
and any of the PHB synthesis mutants, suggesting that the regulatory pathways

for carbon metabolism differ between S. meliloti and B. japonicum.
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3.2.3.7 Exopolysaccharide Accumulation by B. japonicum phbC and
phbAB Mutants

PHB synthesis mutants of S. meliloti also demonstrate a distinctly non-mucoid
phenotype when grown under PHB-inducing conditions. This is in contrast to the
parental strain Rm1021, which appears mucoid when grown on high-carbon media
(although notably less mucoid than the expR™ strains). Isolation of exopolysaccha-
ride (EPS) from S. meliloti Rm1021 and PHB cycle intermediates demonstrates
a significant reduction in EPS production in these strains. As evidenced by the
ease with which PHB synthesis mutants form a compact pellet upon centrifugation
(Figure [3.14), it would appear that these strains demonstrate a similar reduction

in EPS biosynthetic capacity.

A quantitative analysis of B. japonicum EPS biosynthesis was conducted using a
standard isopropanol EPS precipitation protocol (modified from [221] as described
in Section . This protocol is described in detail in Section The data
shown in Table [3.9] confirm the visual observation depicted in Figure [3.14] These
data show that B. japonicum PHB synthesis mutants demonstrate a similar reduc-
tion in EPS production to that exhibited by the non-PHB producing mutants of S.

meliloti.

3.3 Conclusions

While only two isomers, Blr3732 and Bll4360, could complement PHB synthesis
and EPS production phenotypes of Rm11105, three isomers (Blr3732, Bll14360 and
BII6073) demonstrated a partial ability to confer growth on acetoacetate (Figure
. It is noteworthy however, that none of the phbC isomers was able to fully

restore growth of Rm11105 on acetoacetate. Since all of these genes were expressed
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Figure 3.14: The EPS phenotype of the B. japonicum PHB synthesis
mutants is evident following centrifugation of a saturated culture. PHB
synthesis mutant BjUW15 forms a compact pellet following centrifuga-
tion for 30 minutes at 8,000 rpm; the wild-type strain USDA110 remains
recalcitrant to pelleting at this level of centrifugation
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Table 3.9: EPS accumulation by B. japonicum PHB synthesis mutants
expressed as mg EPS as percent cell dry mass

Strain mg EPS as % CDM
USDA110 8.29

BjUW9 8.28

BjUW13 6.77

BjUW15 5.09

BjUW16 10.32

BjUW32 5.08

161



from the lacZ promoter on pRK7813, it is unlikely that any lack of complementation

could be attributed to lack of expression.

The results presented here clearly demonstrate that PHB synthesis by B. japon-
icum is regulated differently under symbiotic and free-living conditions through the
actions of PhbA and PhbB. It is apparent that phbAB Bl10225 and Bl110226 are up-
regulated only during symbiosis, while Blr3724 and Blr3725 are primarily active
under free-living conditions. Suzuki et al. demonstrated that bacteroids of B.
japonicum possessed two classes of 3-ketothiolases [338]. These two classes could
be distinguished from each other by their specificity for either acetoacetyl-CoA or
3-ketodecanoyl-CoA. Since some PHB synthesis does occur in strains BjlUW15, it
is conceivable that in the wild-type strain these two specificities represent activity
from Blr3724 and Bl10225. Further work is needed to establish the regulatory mech-
anisms by which these genes are controlled, although earlier work has demonstrated
that NADH is a potent inhibitor of the acetoacetyl-CoA-specific enzyme [338]. This
introduces a potential role for NADH in promoting inhibition during early nodule
senescence when NADH concentrations in the bacteroid may be expected to rise

due to reduced nitrogen fixation [338].

It is interesting to note that the symbiotic phenotype of B. japonicum PHB
synthesis mutants is quite different to that observed for PHB synthesis mutants of
Rhizobium etli [43]. Plants inoculated with R. etli phaC mutants had higher shoot
dry masses relative to those inoculated with wild type cells [43]. Furthermore, these
plants possessed higher nitrogen contents and the bacteroids demonstrated higher
levels of nitrogenase activity [43]. These data might suggest that, in R. etliy PHB
synthesis in symbiosis occurs at the expense of nitrogen fixation. In contrast, a
comparison of the data presented in Tables and suggest that in B. japon-
icum, PHB accumulation during symbiosis does not occur at the expense of plant

biomass formation. Indeed, the only statistically significant difference in plant dry
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mass was a decrease in mass observed in plants inoculated with BjUW9, which
carries a deletion in Blr3732. This mutation did not affect PHB accumulation un-
der free-living conditions; symbiotic PHB accumulation was not determined. The
reason for this difference remains unclear, although it is conceivable that the in-
creased reductive power observed in the R. etli mutant may be channelled into
nitrogen fixation. A similar analysis of NADT/NADH ratios in the B. japonicum
PHB synthesis mutants would be necessary to determine if this reductive capacity
is mirrored in B. japonicum. It is tempting to speculate however, that a similar ca-
pacity might not exist in B. japonicum, accounting for the discrepancy in symbiotic

efficiency observed between the two species.

While the reason for so many copies of the enzymes responsible for PHB syn-
thesis remain unclear, it is conceivable that the products of the 2 different phbAB
operons and the five phbC' genes are structurally distinct. Since PHB synthase is
believed to be substrate-specific [66], it is tempting to speculate that the existence
of multiple isomers of all three biosynthesis genes may contribute to the production
of a more diverse repertoire of PHA end products. Indeed, in phbB in W. eutrophus,
the substrate specificities of the two isomers of phbA are believed to account for
the production of PHB containing either 3-hydroxybutyrate or 3-hydroxyvalerate
since the PHB synthase of this organism is specific for D-(-)-hydroxybutyrate, the
product of the NADPH-linked phbB variant [142]. It is also conceivable that the
phbC' variants of B. japonicum may represent soluble and granule-associated forms.
In W. eutrophus, soluble PHB synthase is found when the cells are grown under
carbon-limited conditions; upon transition to nitrogen limitation, PHB accumula-
tion is upregulated and granule-associated PhbC can be detected, coupled with a
disappearance of soluble enzyme [143]. Further work needs to be done to deter-
mine under what conditions the different isoforms are upregulated. It should be

possible to construct relatively simple lacZ transcriptional fusions by single recom-
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bination into the B. japonicum genome. These fusions would facilitate the analysis
of each gene’s transcriptional activation under different conditions. These fusions
have been constructed for S. meliloti (see Table and are described in more
detail in Section [0.11

The correlation between PHB synthesis and EPS synthesis under free-living con-
ditions is interesting. Since it is comparable to the link seen in S. melilots Rm11105,
it is conceivable that the regulation of PHB synthesis and EPS under free-living
conditions is similar in both species. Given the well documented requirement for
EPS in the establishment of nitrogen-fixing symbioses between S. melilot: and M.
sativa [120], it was interesting to observe a similar phenomenon in B. japonicum
(Table . Strain BjUW16 demonstrates wild-type EPS and PHB synthesis un-
der free-living conditions (Tables and but is unable to synthesize PHB
in symbiosis and appears to be unimpaired in rhizosphere competitiveness. This
lends further credence to the discussion in Section that, while the production
of small amounts of EPS is sufficient to establish a successful symbiosis [120], it
is insufficient to permit competition with wild-type strains producing higher levels
of the EPS, if one assumes that the EPS itself is playing a role in signalling dur-
ing early nodulation. This is further corroborated by earlier work by Bhagwat et
al., who reported a link between EPS synthesis in B. japonicum and rhizosphere

competitiveness [22].

Despite the link between EPS production, PHB synthesis and rhizosphere com-
petitiveness that is consistent between S. meliloti and B. japonicum, it is interesting
to note that PHB synthesis mutants of B. japonicum do not exhibit comparable
carbon utilization phenotypes to S. meliloti. As shown in Figures and
B.13, B. japonicum PHB synthesis mutants exhibit growth that is comparable to
wild type USDA110 on acetoacetate and DL-hydroxybutyrate. The slight reduction

in growth that is observed in BjUW32 and BjUW15 is most likely attributed to
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reduced optical activity due to the reduction in EPS exhibited by this strain. This
is corroborated by the control assay on AG (Figure [3.11]), in which this reduction

in optical density is apparent.

The reason for the recalcitrance of Bl14360 and Bll4548 to mutagenesis remains
unclear. The construction of single recombinants of both Bll4360 and Bll4548 was
successful; however, upon screening of subsequent double recombinants, 100% of
all recombinants were identified as wild-type. It is conceivable, although without
precedent, that either of these genes may play a necessary role in maintaining
viability of B. japonicum under free-living conditions. Analysis of the surrounding
genomic regions did not result in the identification of any potentially essential genes
whose function may have been disrupted by mutagenesis, lending credence to the
theory that the PHB synthases themselves may be the important genes. Given the
pleiotropic nature of the phbC' mutation in S. meliloti, it is tempting to speculate
that either of these genes may confer additional properties upon B. japonicum
that are essential for viability. Further analysis of these genes and their resultant

products would be necessary to speculate further on this issue.
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Chapter 4

The Analysis of On-Seed Survival,
Desiccation Tolerance and Ion

Sensitivity in Rhizobia

4.1 Introduction

The application of live rhizobial cells to legume seeds is the basis for the North
American agricultural inoculant industry. The bacteria in these inoculants are
able to establish nitrogen-fixing symbioses, via the formation of root nodules, with
leguminous plants. The result of this association is a reduction in the need for ex-
ogenous nitrogen fertilizer, which has both environmental and economic benefits to
the grower. The live bacterial inoculants are delivered in various different formula-
tions (liquid, peat or granular) to be used as a seed coating or direct addition to the
soil surrounding the seed (in furrow). About 95% of the formulations are applied
on-seed. One of the most important factors determining the performance of these
inoculants is their ability to survive for long periods of time once applied to the

seeds. This property is known as on-seed survival (OSS). Superior OSS translates
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into greater planting time flexibility and more efficient delivery of bacterial cells to

the field.

S. meliloti, the symbiont of alfalfa, has the longest OSS of any major commercial
rhizobial inoculant species. Indeed, the OSS of S. meliloti is sufficiently long as to
allow pre-coated seeds to be taken directly to the market. This allows for immedi-
ate planting by the grower and negates the need for specialized equipment to apply
the inoculant. Furthermore, it has the added convenience of allowing planting to
be delayed, e.g. for bad weather, without having to re-inoculate the seeds. The
current industry standards for planting time windows are shown in Table [I.2] Al-
though reports indicate that there has been considerable improvement in bacterial
survival under storage conditions, these improvements have not led to a significant
improvement in OSS [42]. Previous studies have reported a 95% decrease in via-
bility in rhizobia applied on-seed after 4 hours with 83% of those surviving died
after another 22 h in the soil [296]. Additives, including glucose, maltose, sorbitol,
sucrose, glutamate, trehalose, polyvinylpyrrolidone, montmorillonite clay, and gum
arabic have been tested for their ability to increase OSS with varying degrees of suc-
cess [38, [64) 303], 332, B74]. In practice however, most of these additives either did
not provide a sufficiently significant improvement in OSS, or were not economically

viable.

Bacterial death on-seed is believed to be the result of desiccation-induced stress,
due to irreparable membrane damage [37]. Studies investigating cell-surface changes
in response to desiccation noted a thickening of the cell wall following transfer from
broth cultures into peat carrier; this cell surface modification was also correlated
with increased OSS [03]. Previous studies in S. meliloti have shown a close correla-
tion between poly-3-hydroxybutyrate (PHB) and succinoglycan exopolysaccharide
synthesis [7]. PHB is typically accumulated under conditions where carbon is abun-

dant but growth is limited by the availability of another key nutrient (reviewed in
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[351]). The accumulated carbon stores can then be degraded to support cellular
metabolism under carbon starvation conditions such as those experienced during
long-term inoculant storage. Consistent with such a role, a PHB synthesis mutant

of Azospirillum brasilense also exhibited a reduction in survival ability [I73].

In this study we investigate the desiccation tolerance, ion sensitivity and OSS
properties of a number of wild-type and mutant S. melilott and B. japonicum
strains. The effects of PHB synthesis are analysed by assessing desiccation tol-
erance of PHB mutants under both PHB-inducing and non-inducing conditions.
We report the results of a large-scale screen of ion-sensitivity across a spectrum
of wild-type and mutant S. meliloti strains, as well as show evidence of biofilm

formation by inoculant bacteria on the surface of the seed.

4.2 Results and Discussion

All strains used in this study are described in Table 2.1} For ease of reading, a

summary of relevant strains is also included in Table
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4.2.1 Characterization of the Desiccation Tolerance of Se-

lected Strains of Bacteria

4.2.1.1 Characterization of the On-Seed Survival Phenotype of Selected

Strains of Rhizobium

An initial screen, using an industry-standard on-seed survival (OSS) assay was
performed using a standard assay for OSS (described in Section in order to

define the baseline levels of OSS for strains used in this study.

The standard OSS assay described in Section involves inoculation of seeds
with between 6 x 10° and 7 x 10 CFU/ml to achieve a minimum seed titre in
soybean of 1.25 x 10® CFU/seed at the point of inoculation. The inoculated seeds
were kept covered during the experimental period, and maintained at approximately
18°C and 70% humidity. At defined time points, groups of five soybean seeds were
removed in triplicate and transferred to 10 ml of phosphate-buffered saline (PBS).
The seeds were washed by vigorous vortexing, and the resultant cell-suspension was
titrated to extinction (107%) in PBS, at which point the average CFU/ml in the
PBS wash solution was expected to be less than 250 CFU/ml. 100 pl of each of the
appropriate dilutions were spread-plated onto yeast-mannitol agar (YMA) and the
CFU/seed of each sample group was calculated from countable plates containing

30-300 colonies.

Several wild-type and mutant strains of Sinorhizobium meliloti were assessed
using a modified version of the Bradyrhizobium japonicum on-seed survival assay
protocol. The results of these assays are shown in Figures [£.1} [4.2] and These
data suggest that there is a large degree of variability in the OSS profiles of S.
meliloti. Figure shows that strain SmAS818 appears to be particularly compro-
mised with respect to OSS, and this strain was subsequently studied in more detail.

Additional experiments using this industry-standard protocol were conducted and
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the results are shown in Figure and [£.5] The data in Figure are equiva-
lent to that in Figure [4.4] but in Figure [4.5] the data have all been normalized to
the starting CFU/ml of the culture with the lowest starting titre; the implications
for which are discussed in more detail in Section [£.2.2] These data suggest that
SmAS818 is impaired in OSS capacity, although additional experiments discussed in

the following sections make these data inconclusive.

4.2.1.2 OSS Under PHB-Inducing and Non-Inducing Conditions

The OSS capacity of S. meliloti and B. japonicum PHB synthesis mutants was as-
sessed under PHB-inducing conditions. In the case of S. meliloti, OSS was also as-
sessed under non-inducing conditions (TY) to facilitate a direct comparison. These
data are shown in Figures [4.6] [4.7, and [4.§l These data suggest that PHB synthesis
has little effect on the OSS capacity of B. japonicum, but that in S. meliloti the
phbC mutant strain Rm11105 appears to demonstrate reduced OSS under PHB-
inducing conditions, implying a potential role for PHB in the long-term survival of

cells under adverse storage conditions.

4.2.1.3 Media Additives and Conditioning

Trehalose has long been known to improve the desiccation tolerance of bacteria and
its ability to enhance desiccation tolerance in B. japonicum has been documented
in the literature [332]. The ability of trehalose to enhance OSS in S. meliloti was
tested by growing the cells in media supplemented with 10 mM trehalose prior to
inoculation. In addition, the effect of conditioning the cells prior to inoculation, by
growth in a medium of high osmotic potential, was also measured; osmotic shock
might induce the synthesis of cytoplasmic osmoprotectants. Cells were grown in

media supplemented with 0.5% or 1% final concetration of NaCl prior to inocula-
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tion. The results of these trials are depicted graphically in Figure [£.9] These data
suggest that addition of trehalose may provide an advantage to cells during the first
few weeks post-inoculation but that over the longer-term, improvements in survival
appear to be negligible. These data also suggest that pre-conditioning with NaCl

did not positively affect OSS.

4.2.1.4 Scanning Electron Microscopy of Inoculated Soybean Seeds

There is considerable evidence to suggest that under desiccation conditions, the
bacterial cell surface experiences structural damage [62]. Tt is also conceivable that,
on the seed surface, the bacteria form biofilm-like structures in response to a high
inoculum density and the onset of physiological stress. In order to assess whether
any visible structural changes occur on-seed, or if biofilm development is induced,

scanning electron microscopy (SEM) of the surface of S. meliloti-inoculated alfalfa

seed was used. These pictures are shown in Figures 4.10} 4.11} [4.12] and |4.13] The

data in Figure [4.10| shows evidence for the existence of biofilms on the surface of
the seed. When examined at higher magnification, as shown in Figures 4.11| and
[4.12] the existence of an extracellular matrix, characteristic of a biofilm, is evident
around individual bacterial cells. This is in contrast to the surface of uninoculated

seeds, which shown no evidence of biofilm activity (Figure [4.13]).

4.2.2 Characterization of the Desiccation Tolerance of Se-

lected Strains of Rhizobium

The data in Figures[4.1} [4.2] and [4.9demonstrate a high degree of variabil-

ity, resulting in data that is less than conclusive. In addition, the industry-standard
techniques for data analysis was inconsistent with other standard techniques re-

ported in the scientific literature. Many of these strains were reanalysed using a
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Figure 4.10: Scanning electron micrograph of an alfalfa seed inoculated
with S. melilot: Rm1021. The surface texture appears to show evidence
of biofilm activity at this resolution
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Figure 4.11: Scanning electron micrograph of an alfalfa seed inoculated
with S. melilot: Rm1021. Bacterial cells are visible and the appearance
of an extracellular matrix, consistent with biofilm formation, is evident
at this resolution
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Figure 4.12: Scanning electron micrograph of an alfalfa seed inoculated
with S. melilot: Rm1021. Bacterial cells are visible and the appearance
of an extracellular matrix, consistent with biofilm formation, is evident
at this resolution
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Figure 4.13: Scanning electron micrograph of an uninoculated alfalfa
seed. Although the surface texture of the seed is clearly evident, there
is a notable absence of bacterial cells on uninoculated seeds
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newly developed assay for desiccation tolerance, discussed below.

The industry-standard method of OSS data analysis requires that all samples
analysed within a single experiment be normalized to the starting culture with the
lowest CFU/ml. A correction factor, by which all subsequent CFU /seed measure-
ments are multiplied, is calculated by dividing the CFU/ml of the culture with the
lowest titre by the titre of each individual culture. Data analysed in this fashion
often gave very different results than data reported as a percentage survival of the
original on-seed titre, as is common in the scientific literature. This is apparent in
the analysis of the pSymA-cured strain of S. meliloti SmA818. Using the industry-
standard method of analysis, this strain had a very low OSS (Figure ; however,
as shown in Tables and when the data were analysed to show percent sur-
vival of the original on-seed titre, SmA818 OSS was not discernibly different to
that of the wild-type strain Rm1021. It is interesting to note that the parent strain
of SmA818, Rm2011, appears to have increased OSS when the data is analysed by

either method.
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This variability made data analysis extremely difficult in the scientific context.
As a result an alternative method was developed, by which we could test the asso-
ciated phenotype of desiccation tolerance . Following discussion with Dr. Michael
Kahn from Washington State University, we decided to adapt the method that
his lab developed for studying desiccation tolerance in rhizobia. This method, de-
scribed in Section [2.8] involves the inoculation of small agar plugs in the wells of a
96-well plate. Using a porous membrane to allow for consistent desiccation across
the entire plate, the samples were at 30°C. Individual plugs were removed at reg-
ular intervals and serial dilutions were performed in order to calculate CFU/ml.
The titres were used to calculate percent survival based on the starting titre of the
inoculated plugs. This method was less time-consuming and less labour-intensive,

and the resultant data were easier to analyse.

All S. meliloti PHB cycle mutants were retested using this method. These data
are shown in Tables[{.4and [4.5] Surprisingly, during the first 2 weeks of desiccation,
strains that cannot synthesize PHB appeared to have higher desiccation tolerance
than those that can. This result is counter-intuitive, and would necessitate further

investigation in any future study.

195



960 70'¢ 61°€ 19701 16°0T 97°9¢ 00T | 9EMNWS
8€'€ €6y €061 P8VI 94°1€ 88°€9 00T OEyITWY
6€°L 0¥ 0T L8C GL6T 6¢° LG 9T ov 00T LYETTWY
¢¢0 v€0 040 9¢'8 L0°G v€°4¢ 00T LOTTTUWY
6¢°S 6¢°C 844 66°S¢ gLl 8¢V 00T GoTTTwYyg
v¢0 9¢0 0’1 LT'T 99°¢ 8T0T 00T T[0Ty
Syoom Q Syoem 9 SyooMm Syoom ¢ SyooMm g Yoom Syoem () | juemoou]
soqeor[daa

9911} JO 93eiaAe oY)} juesardaa pue ‘oiduwes Jurjiels a9yl Jo [ealaans juadiod se possardxe age pojusseid eje(
*SUOIIPUO0D SUDNPUI-H J-UOU Jopun UMOIS sjueinuu a[0Ad qHJ 2702w S Jo sa[goad uoryeddiso( :§'§ 9[qelL

196



250 970 69'1 90°C 0LL G9°G8 001 | 9emnus
170 9T'0 FL0 L0°€ F0'C IR 00T | ogpTTmry
80'T 090 250 17'C 0'¢ 1L°€E 00T | peTTUonyg
10°0 F0'0 700 Fg'0 18°0 66 1T 00T | 0TTTUOy
050 0£°0 967 6’1 6L°G gT'ge 00T | coTTTUIY
10°0 10°0 070 620 €T 29°€l 00T | TE0TUIY

Syoom § SyooMm Q SyooM SyooM ¢ SyooM g Yoom T syeem () | juemoou]

sojedr[doa 901y} Jo aSeraae a1} juasaidoa pue ‘ojdures Surjie)s ayj Jo [eAIAINS JuadIad se passoadxe are pajuasaad
e)R( ‘SUOI}IPUOd SUNpUl-gHJ JIOPUN UMOIS sjueinui 9[0Ad qHJ 707212w *§ JO so[goad uor)esdisa(] :G'§ 9[qel,

197



Several additional strains of S. meliloti, including those carrying defined dele-
tions in the pSymB megaplasmid, have also been tested using the desiccation tol-
erance assay. As shown in Table RmF 728, which carries a defined deletion in
pSymB, has extremely poor desiccation tolerance relative to all other strains tested,

including RmF726 which carries an overlapping deletion.

Furthermore, Table shows the desiccation-resistance profile of the expR*
derivatives of Rm1021, SmUW3 and SmUW6. Rm1021 carries an insertion se-
quence in the expR open reading frame. This makes it much less mucoid than
many field isolates of S. meliloti and thus, much easier to work with in the labora-
tory. We were interested in seeing if the increased mucoidy exhibited by SmUW3
and SmUWG6 translated into enhanced desiccation tolerance. The data in Table [4.6]
suggest that these strains do indeed exhibit considerably higher desiccation toler-

ance than Rm1021. This is consistent with results reported from other organisms

[254].
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4.2.3 Analysis of Ion Tolerance in S. meliloti

Osmotic stress is a consequence of the early stages of desiccation. It is conceivable
therefore, that an ability to tolerate osmotic stress may translate into enhanced
desiccation tolerance. S. meliloti is noted for being particularly halotolerant among
rhizobia [28,30]. Over 200 mutant and wild-type strains of S. meliloti were screened
for ion sensitivity by replica plating onto modified LB supplemented with either
Na®, K+, Mg?*, LiT, or Ca?* in place of the standard 86 mM NaCl. The modified

LB are listed below, and the final ion concentration is indicated in each case:

350 mM NaCl

350 mM KCl

50 mM MgCl,

50 mM LiCl

50 mM CaCl,

The strains selected included a number of wild-type S. meliloti isolates from
the lab collection, pSymB deletion mutants, PHB mutants, and Short-Chain De-
hydrogenase/Reductase (SDR) mutants. Cells were grown to saturation in LB and
300 pl of each culture was transferred to a well of a 96-well plate. These cultures
were then transferred to the appropriate test media by replica plating using an
EtOH-sterilized 48-prong replica plater designed to transfer culture from a 96-well
plate onto a standard petri plate. A photograph of the resultant growth is shown
in Figure In addition to testing the media listed above, growth was tested on
standard LB (0.86 mM NaCl), VMM succinate and VMM mannitol as controls.
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Figure 4.14: Photograph of growth resulting from inoculation using the
48-prong replica plater used to assay ion tolerance
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The data shown in Table [£.7 show the results of the preliminary ion sensitivity
screens. Growth was scored out of 3, and the data presented represent the average

of three replicates.
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Strains with the most severe ion sensitivities are summarized in Table [4.8]

The pSymB mutant strains with the most severe ion sensitivities carry multiple
deletions of pSymB. The regions of pSymB affected in these strains are highlighted
in Figure
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4.3 Conclusions

This study highlights some of the key short-comings of the current system of as-
sessing OSS and desiccation tolerance in bacterial systems. Data from these assays
are characteristically variable and the assays themselves are extremely sensitive to
the slightest changes in the external environment, especially ambient humidity and
seasonal temperature variations. Furthermore, this study highlights how easy it is
to manipulate the data based on so-called standardization parameters. In analysing
any OSS data, it is important to bear in mind these considerations and assess the
data with an open mind and an eye to detail. Furthermore, the SEM data presented

here suggest that when on-seed, bacteria initiate the formation of biofilm structures

(Figures [4.10} [4.11] [4.12] and [4.13)). These data are consistent with observations

made in B. japonicum, which documented significant induction of EPS synthesis
genes during the late stages of desiccation [63]. It is conceivable that the capacity
of a particular strain to form a biofilm may negatively impact its apparent OSS.
Although the OSS assay involves an extended period of vigorous vortexing prior to
titration, cells that are part of a biofilm are unlikely to be removed in this manner
since biofilms are characteristically able to withstand extended periods of mechan-
ical stress. The preliminary evidence of biofilm formation shown in these SEM
micrographs suggests that biofilm formation may have been a factor in influencing
the variability of the data generated. It would be prudent in any future studies of

0SS to take this into consideration.

The capacity of rhizobia to initiate biofilm formation on-seed may represent an
exploitable parameter in inoculant development since it might reasonably be ex-
pected to increase the survival of the rhizobia during storage. Initial conditions for
biofilm formation are known to be optimal under relatively high humidity and am-

bient temperature [86]. Manipulating the early inoculation and storage conditions
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Figure 4.15: Map of pSymB of S. melilot: with the regions implicated
in ion sensitivity highlighted. Modified from [47]
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to maximize biofilm formation and stabilization may enhance longer-term survival

of the rhizobial inoculant.

As discussed in Section the synthesis of EPS may impact desiccation tol-
erance in S. meliloti. Indeed, previous studies have produced data that indicate
that the production of HMW EPS may be expected to increase survival under
desiccation conditions [376]. Since the results of our desiccation assay (Table
suggest that strains with enhanced EPSII synthesis (SmUW3 and SmUW®6) have
a higher tolerance of desiccation, and because studies have shown that the surface
polysaccharides of S. meliloti are affected by the osmolarity of the growth condi-
tions [30, 209, 210], it would be interesting to further analyse the particular EPS
composition of these strains. Furthermore, a more detailed assessment of the poten-
tial links between EPS, desiccation tolerance and ion sensitivity might be achieved
by analysing the limits of osmotic stress that SmUW3 and SmUW6 can withstand

relative to Rm1021.

Some studies have shown that rhizobia grown in media with low water activity
show increased survival during desiccation [50}, 225]. The data presented in Figure
[4.9] suggest that this is not the case over an extended period of time, for the S.
melilott strain Rm1021. Indeed, other studies have presented data that suggest
the particular combinations of salts in the growth medium may induce specific
physiological responses and that no one combination of osmolytes is necessary or
sufficient to induce a protective effect [375]. The data presented here suggest that
a link between salt-sensitivity and poor desiccation tolerance in S. melilot: might
exist, especially in certain strains including RmF728. While the two phenotypes are
known to not be completely overlapping, considerable overlap has been identified
in some species [167, 246]. The screen conducted in this study has identified several
S. meliloti pSymB and SDR mutants that demonstrate extremely poor growth on

elevated levels of Na™ and K. One of these mutants carries a deletion of a region of
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pSymB for which no definable phenotype has previously been attributed. Mutant
RmF514, which carries a 181 Kb deletion in pSymB, had been previously identified
as having elevated salt-sensitivity relative to the wild-type strain [75] 244], adding
validity to the screen that was developed in this study. Furthermore, an exoFIl
mutant has previously been shown to have a marked Mg?™ sensitivity [244]; exoFI

is located within the region that is deleted in strain RmF514.

SMa0326 is annotated as an orthologue of fab1, encoding enoyl-ACP reductase
(EC 1.3.1.9), and previous work has reported a mutant of it to have a Fix~ pheno-
type [161]. Previous studies have shown that ion sensitivity can result in reduced
rhizosphere competitiveness [244]; further analysis of the competition phenotypes
of these ion-sensitive strains might be prudent. Interestingly, this report is the
first study to identify a phenotype that can be attributed to the particular SDR
mutations in the other three SDR mutants listed in Table [£.8] Further analysis is

necessary to confirm the phenotype and determine the precise mechanism of action.
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Chapter 5

Mutational Analysis of
Dicarboxylate Transport in

Bradyrhizobium japonicum

5.1 Dicarboxylic Acid Transport and Metabolism

in Bradyrhizobium japonicum

The capacity of a bacteroid to perform biological nitrogen fixation appears to be
limited by the amount of photosynthate delivered to the nodule [138, 141], 299] and
is also intimately linked to the ability of bacteroids to transport dicarboxylic acids.
While sucrose, other sugars, and sugar alcohols are the most abundant forms of
photosynthate in the root nodule [331], previous studies have shown that bacteroids
preferentially import organic acids [I6]. The bacteroids take atmospheric nitrogen
and reduce it to ammonia, which is supplied to the plant in exchange for a source
of carbon. The plant supplies the carbon in the form of Cy-dicarboxylic acids

which enter the bacteroids through the membrane transport protein DctA. This
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relationship is outlined in Figure 5.1} In other rhizobia, DctA mutants are unable
to import DCAs and, as a result, form ineffective, nonfixing nodules in symbiosis
and are also unable to grow on DCAs as a sole carbon source during free-living

growth [11], 27, 09, 114, 293].

Although dicarboxylate transport has been reasonably well studied in other rhi-
zobial systems, relatively little work has been conducted in this area in B. japon-
tcum. Previous studies have established that succinate transport in B. japonicum
cells occurs via an active transport mechanism that is dependent on an energized
membrane but that does not directly utilize ATP [229]. Early work has suggested
that B. japonicum preferentially transports succinate but is also capable of malate
import [229, 360]. Studies have also suggested that B. japonicum possesses at least
two succinate transport systems [I57] but no further attempts to characterize them
have since been reported. Expression of S. meliloti dctABD in B. japonicum re-
sulted in enhanced growth rates on dicaroxylates, an increase in succinate uptake,

and higher levels of nitrogen-fixation activity [24].

Most rhizobia typically possess only a single copy of the dctA gene, along with
one copy of the dctBD two-component regulatory system. Analysis of the B. japon-
icum USDA110 genome sequence [178] [179] revealed the presence of 7 putative dctA
homologues and no annotated homologue of dctBD. Here we report the identifica-
tion, cloning and mutagenesis of the 7 dctA homologues of B. japonicum as well as

the identification and cloning of a putative dctBD locus.

5.2 Results and Discussion

All plasmids and strains constructed in this study are described in Table and

have also been summarized in Tables[5.1]and [5.2]for convenience and ease of reading.
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Figure 5.1: Schematic of bacteroid metabolism. The plant provides
DCAs to the bacteroid. DCAs pass through a plant-derived transporter

in the peribacteroid membrane (PBM) and enter the bacteroid via DctA
in the bacteroid membrane
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Table 5.1: Summary of plasmids constructed in the analysis of B. japon-

icum dct

Plasmid Relevant Characteristics

pMA127 USDAT110 cosmid clone complementing RmF726 for growth on suc-
cinate

pMA166 pGemTEasy carrying internal Blr3723 fragment

pMA170 pGemTEasy carrying complete B. japonicum dctBD operon

pMA172 pMA170 with central SgrAl fragment of dctBD deleted

pMA174 pMA172 with QSmSp cassette inserted in central EcoRV site of
truncated dctBD

pMA175 pK19mobsacB carrying AdctBDQ2SmSp from pMA174

pMA176 pK19mobsacB carrying internal Blr3723 fragment from pMA166

pMA197 pMA127 Tnb inserted into Blr3723

pMA198 pBBR1IMCS2 BIr6145 plus 50 bp upstream sequence

pMA199 pJET BII1718 Complete ORF

pMA200 pJET BII1718 Truncated ORF

pMA201 pJET BIlr3723 Complete ORF

pMA202 pJET BIlr3840 Complete ORF

pMA203 pJET BIr3840 Truncated ORF

pMA204 pJET Blr4298 Truncated ORF

pMA205 pJET BIr6145 Truncated ORF

pMA206 pJET BII7095 Complete ORF

pMA207 pJET BII7095 Truncated ORF

pMA208 pJET Blr4298 Complete ORF

pMA209 pSW213 BlIr3723 from pMA201

pMA210 pSW213 Blr3840 from pMA202

pMA211 pSW213 Blr4298 from pMA208

pMA212 pJET BIr6145 Complete ORF

pMA214 pSW213 BII7095 from pMA206

pMA216 pSW213 Blr6145 from pMA212

pMA217 pSW213 BII1718 from pMA199

pMA219 pJET BIr7187 Truncated ORF

pMA220 pJET BIr7187 Complete ORF

pMA221 pK19mob BlI1718 Truncated from pMA200

pMA222 pK19mob BlI7095 Truncated from pMA207

pMA223 pK19mob Blr6145 Truncated from pMA205

pMA224 pK19mob Blr7187 Truncated from pMA219

pMA225 pK19mob Blr3840 Truncated from pMA203

pMA226 pSW213 BlIr7187 from pMA220

pMA227 pK19mob Blr4298 Truncated from pMA204
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Table 5.2: Summary of strains constructed in the analysis of B. japon-
icum dct

Strain Relevant Characteristics

BjuUW34 USDA110 pMA176 single recombinant
BjUW37 USDA110 pMA175 single recombinant
BjUW40 USDA110 pMAZ221 single recombinant
BjUWA42 USDA110 pMA222 single recombinant
BjUw44 USDA110 pMA223 single recombinant
BjUW46 USDA110 pMA225 single recombinant
BjuUwW48 USDA110 pMA224 single recombinant
BjUW50 USDA110 pMA227 single recombinant
BjUW52 USDA110 pMAZ232 single recombinant
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5.2.1 Determination of the Wild-Type Growth Character-
istics of B. japonicum USDA110 on Dicarboxylates

as Sole Carbon Sources

The ability of wild-type B. japonicum USDA110 to grow on the dicarboxylates
malate, succinate, and fumarate as sole carbon sources was measured by growth
curve analysis using the Bioscreen-C Growth Curve Machine. The data shown in
Figure [5.2] suggest that, while B. japonicum USDA110 can utilize succinate as a
sole carbon source under free-living conditions, it is unable to grow on either malate

or fumarate.

5.2.2 Identification of Putative dctA and dctBD Open Read-

ing Frames

A BLASTP analysis of the B. japonicum genome, using the S. meliloti DctA and
DctBD amino acid sequences, identified seven putative dctA loci as well as a pu-
tative dctBD homologue. These homologues are listed in Table [5.3] Figure
depicts a Boxshade diagram, constructed from a Clustal W alignment [343] , high-
lighting the level of sequence conservation between the seven DctA homologues of
B. japonicum and DctA of S. meliloti. Figure 5.4 shows a rooted phylogenetic tree,
constructed using ClustalW [343] and Phylip [92], that depicts the relationship

between the seven B. japonicum DctA sequences and other Rhizobial DctAs.
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Figure 5.2: Growth of wild-type B, japonicum on VMM supplemented
with arabinose, succinate or malate as a sole carbon source
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Figure 5.3: Alignment of the seven putative DctA amino acid sequences
of B. japonicum and DctA of S. meliloti. Analysis of the genome
sequence of B. japonicum USDA110 identified seven putative homo-
logues of dctA located throughout the genome. No putative dctBD 2-
component regulatory system was identified in the annotation. These
dctA genes encode DctA homologues that share considerable identity
with other known DctA proteins, including that of S. meliloti. The
eight domains and three motifs that show high levels of sequence con-
servation between all members of the glutamate transporter family of
proteins have been indicated. 299



Table 5.3: Putative dicarboxylate transport genes identified by in silico
analysis of the B. japonicum genome sequence

Gene ID Annotated Function % Identity to
S. meliloti ho-
mologue

Blr7187 C4-dicarboxylate transport protein 61%

Blr3723 Cy-dicarboxylate transport protein 58%

Blr4298 Cy-dicarboxylate transport protein 58%

Blr3840 C4-dicarboxylate transport protein 54%

BII1718 Cy-dicarboxylate transport protein 55%

Blr6145 Cy-dicarboxylate transport protein 51%

BII7095 Cy-dicarboxylate transport protein 49%

Blr3730 two-component hybrid sensor and regulator | 29%

Blr3731 two-component response regulator 50%
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Bradyrhizobium sp ORS278 DctA

Bradyrhizebium sp BTAi DctA

B.japonicum USDAI 10 BIré145

Bradyrhizobium sp ORS278 putative Na:dca symporter

S. medicae WSM419 DetA
S.meliloti Rm 02| DctA
G Sinorhizobium sp NGR234 DctA

R. leguminesarum trifolii WSM2304 DctA
R. etli CFN42 DctA

9 R. leguminosarum 3841 DetA
A.tumefaciens C58 DctA
Mesorhizobium sp CJI DctA
M. loti MAFF303099 DctA

: M.loti MAFF303099 DctA

A. caulinodans ORS571 DctA

R. galagae DctA
Bradyrhizobium sp BTAi DetA
Bradyrhizobium sp ORS278 DctA
B. japonicum USDAI 10 BIII 718
B. japonicum USDAI 10 BIr3723
Bradyrhizobium sp ORS278 DctA
B. japonicum USDAI 10 BIr4258
B. japonicum USDAI 10 BIr7 187
B. japonicum USDAI 10 BII7095
A caulinodans ORS571 DctA
Bradyrhizobium sp BTAi DetA
Bradyrhizobium sp ORS278 DctA
B. japonicum USDAI 10 BIr3840
A. caulinodans ORS571 DctA
g R.leguminosarum 3841 putative DetA
A. caulinodans ORS57 | DetA

Figure 5.4: Phylogenetic tree of the seven putative DctA amino acid
sequences of B. japonicum and DctAs of related members of the Rhizo-
biales.
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5.2.3 Heterologous Complementation of S. melilot: dctA
Mutant with B. japonicum USDA110 Cosmid Li-

brary

The pLAFR1 cosmid library of B. japonicum USDA110 [129] was conjugally trans-
ferred into S. meliloti strains carrying mutations in dctA (RmF642), detB (RmF153),
detD (RmF121) or detABD (RmF726) [47, 97]. The ability to restore growth on
succinate as a sole carbon source was used as selection. Complementing clones
were selected and the cosmids mated back into E. coli for further analysis. These
cosmids were isolated and analysed for unique restriction patterns with BamHI and
EcoRI. Figure [5.5 shows a representative BamHI digest. All of the cosmids chosen
shared common bands, suggesting that they represent overlapping clones of the
same region of the genome. The sample in lane 4 was chosen for further study and

the plasmid was named pMA127.

5.2.3.1 Identification of the Complementing dctA ORF in pMA127

In silico analysis of different regions of the B. japonicum genome was used to
match the digestion pattern seen in Figure to a specific genomic region. The
complementing clones all mapped to a region in the genome that is particularly
rich in genes responsible for energy production; Figure [5.6| shows a map of this
region. Gene identity was confirmed by EZ-Tnd in wvitro mutagenesis using the
EpiCentre® EZ-Tn5 " Tnsertion Kit (EpiCentre Biotechnologies, Madison WI,
USA). Kan® transposon mutants of pMA127 were selected in E. coli, and mutants
were conjugally transferred into S. meliloti RmF728 and screened for loss of the
ability to complement the succinate phenotype of RmF728. Subsequent sequencing

identified the dctA ORF as Blr3723 and the mutated plasmid was named pMA197.
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Figure 5.5: Restriction digest of eight cosmids isolated from the B.
japonicum cosmid library for their ability to complement the succinate
utilization phenotype of S. meliloti dctA, dctB, dctD and dctABD mu-

tants
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Figure 5.6: Map of the region of the genome found in pMA127 and
pMA131. BIr3723 is a putative dctA and Blr3730/3731 is a putative
dctAB two-component regulatory system
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5.2.3.2 Testing the Ability of pMA127 and pMA197 to Complement

the Free-living Phenotype of S. meliloti Dct Mutants

The ability of pMA127 and pMA197 to complement the free-living phenotype of
RmF121 (dctD), RmF153 (dctB) and RmF642 (dctA) was tested. The cosmids were
transferred into each strain by triparental mating and transconjugants were selected
on TY Smygy Nmoygy Tcig. The transconjugants were then screened for growth on
LB, VMM Glucose, VMM Succinate, VMM Arabinose 1 ug/ml FOA, and VMM
Arabinose 5 pg/ml FOA. The results are shown in Table 5.4 These data are quite
interesting. It appears that pMA127 is able to complement all three dct mutations
in S. meliloti. Interestingly, pMA197 does not appear to complement the dctB and
dctD mutants, which is unexpected since both of these mutants have functional
dctAs and the cosmid should still carry a functional dctBD. This suggests that the
B. japonicum dctBD located on the cosmid is unable to recognize the S. meliloti
dctA promoter. It also provides an explanation for why, although B. japonicum has
seven homologues of dctA, the heterologous complementation screen only identified

one region as capable of complementing the S. meliloti dct mutants.
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5.2.3.3 Testing the Ability of pMA127 and pMA197 to Complement

the Symbiotic Phenotype of S. meliloti Dct Mutants

Previous studies have shown that, unlike in other species of rhizoba, S. meliloti
dctA expression is independent of dctBD during symbiosis [90, 3811 [394]. Although
this alternative symbiotic activation (ASA) phenomenon is well documented, its
mechanism of action remains unclear. A dctA::lacZ fusion is expressed in nodules of
a dctD mutant [25], B80] but the pattern of expression differs to that of a wild-type
strain (reviewed in [396]). DctB/DctD-dependent dctA expression is seen in the
infection and fixation zones of the nodule; DctB/DctD-independent detA expression
is not seen until the transition from early to late symbiotic bacteroid development
[25]. In order for DctB/DctD-independent activation of detA to occur, the cis-
acting regulatory elements found in the 5 one-third of the dctA coding region must

be present; this region is not needed for DctB/DetD-dependent activation [25].

The ability of pMA127 and pMA197 to complement the symbiotic phenotype of
RmF642, the dctA mutant of S. meliloti was tested by inoculating Medicago sativa
plants with each strain and measuring the shoot dry mass (SDM) of the plants at 4-
weeks post-inoculation. Nodules from the plants inoculated with RmF642 pMA127
and RmF642 pMA197 were surface-sterilized, crushed and the contents screened
for Tc® and Nm?® to confirm retention of the cosmids. The data shown in Figure
[5.7] show that neither pMA127 nor pMA197 can complement the S. meliloti dctA
mutant in symbiosis. Figure [5.8 shows a representative photograph of alfalfa plants
from this experiment; the Fix~ phenotype of the RmF642 and RmF642 pMA127
inocula is clearly apparent. When considered in the light of the data presented in
the previous sections, it is likely that the dctA promoter from B. japonicum can-
not be recognized by either DctB/DctD or the DetB/DetD-independent regulatory

elements in S. meliloti.
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Figure 5.7: Shoot dry masses of M. sativa plants inoculated with S.
meliloti dctA mutant RmF642, and complemented clones
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Figure 5.8: Representative photograph of M. sativa plants inoculated
with wild-type S. melilot:i Rm1021, S. meliloti dctA mutant RmF642,
and RmF642 pMA127
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5.2.4 Cloning of B. japonicum dctA Open Reading Frames

In order to determine which of the seven dctA ORF's of B. japonicum were capable
of complementing the dctA phenotype of S. meliloti RmF642, all seven dctA ORF's
were cloned into the broad host-range vector pSW213 [48]. All primers used in
the cloning reactions are described in Table 2.2 Each ORF was cloned as a PCR
product into the PCR capture vector pJET (Fermentas Canada Inc., Burlington
ON) and the insert was verified by restriction digest and sequencing. The ORF's
were then subcloned into pSW213 and the insert and orientation verified by PCR

before transferring into RmF642 by triparental conjugation.

5.2.4.1 Complementation of S. meliloti RmF642 Free-Living Pheno-

types

The ability of each of the cloned dctA genes to complement the free-living phenotype
of RmF642 was tested by analysing their respective growth curves, generated using
the BioscreenC Growth Curve machine. Growth was tested on VMM Succinate,

VMM Succinate IPTG, and VMM Glucose IPTG 1 pg/ml. The results of these

growth curves are shown in Figures 5.9} [5.10] [5.11] .12} and [5.13]
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Figures [5.9| and act as controls to show that all strains grew well on a
complex medium (LB), and that the Tetracycline was sufficient to inhibit growth
of both Rm1021 and RmF642 over the complete duration of the experiment. Fig-
ure [5.11] shows that, in the absence of the inducer IPTG, very little growth on
succinate is observed in any of the complemented strains before approximately
100 hours of incubation; at which point Rm1021 has already reached stationary
phase. Figure [5.13| show that, even in the presence of inducer, induction does not
occur until at least 60-80 hours of incubation, suggesting that perhaps the lacl?
inducible promoter system in pSW213 does not work well inS. meliloti. These fig-
ures do show, however, that complementation is apparent from pMA227 (Blr4298),
pMA217 (BI1718) and pMA209 (Blr3723) and that some degree of partial com-
plementation is achieved from the other four ORFs. It is interesting to compare
Figures and [5.13} it appears that the presence of Tc¢ enhances the complemen-
tation capacity of the clones dctA ORFs. It is conceivable that the presence of the
Tec provides the selective pressure for plasmid maintenance prior to induction of
the dctA genes since induction is not realized until much later into the experiment.
Conversely, it is also possible that the Tc is being used as a carbon source by the
complemented clones; however, the data in Figure [5.10| suggest that this is not the
case. These data show that growth of both Rm1021 and RmF642 is completely
inhibited through the complete duration of the growth curve, suggesting that these
strains do not have the capacity to utilize the Tc as a carbon source, or that the

efficacy of the Tc is reduced following prolonged exposure to light.

5.2.5 Mutagenesis of B. japonicum dctA

An internal 500 bp fragment of Blr3723 was amplified and captured in pGEMTEasy
(Promega, Fischer Scientific Ltd., Nepean ON). The insert was confirmed by se-

quencing and subcloned into pK19mobsacB. The resultant construct was transferred
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into B. japonicum USDA110 by triparental conjugation; recombinants were selected
on AG Kmjsy Ty and streak purified three times. The mutagenesis was confirmed

by Southern Blot. A representative Southern Blot is shown in Figure [5.14]

Following successful mutagenesis of Blr3723, mutants of the remaining six dctA
ORF's were constructed in a similar fashion. PCR amplification was used to clone
the first 500 bp of each of the dctA ORFs. These fragments were captured in pJET
(Fermentas, Burlington ON), confirmed by sequencing and then subcloned into
pK19mob [310]; subclones were screened by restriction digest for plasmids contain-
ing inserts in the reverse orientation. Mutants of B. japonicum were constructed by
conjugal transfer of the pK19mob clones from E. coli. Recombinants were selected
on AG Kmjsg Tcyp and streak purified three times. The resultant mutant strains

are described in Table 2.1] and summarized in [5.2

5.2.5.1 Analysis of Free-Living Phenotypes of B. japonicum dctA Mu-

tants

The free-living phenotype of each B. japonicum dctA mutant was analysed by as-
sessing growth on AG, AG Kmys, VMM Arabinose, VMM Succinate and VMM
Maleate/Arabinose FOA 2 ug/ml. Growth curves were set up in the BioScreen-C
Growth Curve machine and were allowed to run for 10 days. The results of these

growth curves are shown in Figures[5.15] [5.16] [5.17, and [5.18] The data in Figures

and show that all of the mutants grow well on the complex medium AG
and AG supplemented with Kmss while the wild-type USDA110 is unable to grow
on AG Kmgs. Figure [5.17] shows that, as expected, all of the strains are able to
grow in VMM using arabinose as a sole carbon source. Interestingly, as shown
in Figure [5.18] all of the dctA mutants were capable of growth on succinate as a
sole carbon source. This suggests that all of the mutants still possess a functional

dicarboxylate system, an assumption that is supported by the observation that
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Figure 5.14: Southern blot of B. japonicum Blr3723 Mutagenesis. Lane
1: Empty; Lane 2: Wild-type USDA110; Lanes 3 and 4: BjUW34; Lane
5: pMA176 (1:10 dilution); Lane 6: pMA176 (1:100 dilution)

241



no growth occurred in VMM Maleate/Arabinose FOA 2 ug/ml (data not shown),
which shows that none of the mutants are capable of growth in the presence of FOA

(note, maleate was included in this medium as a potent inducer of dctA expression

in S. meliloti) [395].
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5.2.5.2 Analysis of the Symbiotic Phenotype of dctA Mutant BjUW 34

The symbiotic phenotype of BjUW34 was tested, as described in Section by
inoculating soybean plants with a culture of BjUW34 and comparing the shoot
dry mass (SDM) of the resultant plants with those inoculated with wild type B.
japonicum USDA110. The data are shown in Figure [5.19] These data show that
there is no significant difference in the shoot dry masses of plants inoculated with

wild-type B. japonicum relative to those inoculated with the mutant strain.

5.2.6 Construction of dctBD Mutants of B. japonicum

In order to construct a deletion mutant of Blr3730 and Blr3731, the complete
operon was amplified by PCR and cloned into pGEMTEasy (Promega, Fischer
Scientific Ltd., Nepean ON). The resultant plasmid was named pMA170 and the
insert was confirmed by sequencing. The central portion of the dctBD operon
was excised from the insert in pMA170 by digestion with SgrAl; the two external
portions were religated together and the loss of the internal region was confirmed
by restriction analysis. The resultant plasmid was named pMA172. In order to
generate a mutant with a selectable marker, an 2SmSp cassette was subcloned out
of pT'C265 as a Smal fragment and ligated into the EcoRV site within the truncated
dctBD construct. The resultant construct was confirmed by sequencing and was
named pMA174. The insert from pMA174 was then subcloned into pK19mobsacB

to generate pTH175.

pTH175 was transferred into B. japonicum USDA110 by triparental conjugation
and single recombinants were selected on AG Amsg Tcyg. Recombinants were streak
purified three times on AG Amsg Tcyp and the resultant strain was screened for

sucrose sensitivity. The resultant clone was named BjUW37.
In order to generate a dctBD mutant, it would be necessary to grow up BjUW37
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in the absence of selection, and then plate on AG sucrose Smygg to select for double
recombinants that have retained the mutant version of the dctBD operon. Despite
several attempts to do this however, we have been unsuccessful in isolating double
recombinants. It is unclear at this point why this region is recalcitrant to muta-
genesis although, as shown in Figure [5.6] this region of the genome is extremely
dense in metabolically relevant genes; it is conceivable that double recombinants
are not viable due to polar effects on downstream genes, which include a putative

tRNA-dihydrouridine synthase ORF.

5.3 Conclusions

The high degree of conservation among the dctA homologues of B. japonicum is
intriguing and suggests that they may also be functional, perhaps under different
physiological conditions. Interestingly, B. japonicum also possesses 2 copies of rpoN
[197] which, in other rhizobia, is required for dctA expression under free-living
conditions. It is conceivable that different homologues of dctA may be controlled
by different homologues of RpoN. Furthermore, in S. meliloti expression of dctA
becomes independent of dctBD during symbiosis. It is tempting to speculate that

in B. japonicum other homologues of dctA may be activated under these conditions.

The data presented here support the hypothesis that B. japonicum dctA genes
permit a level of redundancy that allows loss of gene function without impairing
free-living growth. It would be interesting to measure the symbiotic capacity of the
other six B. japonicum dctA mutants, given the observation that BjUW34 does not

appear to be impaired in symbiotic capacity.

The data suggest that, in order to complement S. meliloti, dctA activation from
the native B. japonicum promoter requires the presence of an active B. japonicum

DctB/DctD. Interestingly however, when expressed from an S. meliloti-inducible
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promoter, all seven ORFs have some capacity to transport sufficient succinate to
support growth, and Blr4298, Blr3723 and BlI1718 are all capable of supporting

near wild-type levels of growth.

The widely known, and potentially physiologically relevant, substrates for the
rhizobial Dct system include succinate, malate, fumarate, aspartate and oxaloac-
etate (reviewed in [390]). Interestingly, our data suggest that B. japonicum USDA110
cannot grow on malate or fumarate as a sole carbon source (Figure [5.2). Interest-
ingly, previous studies have shown that bacteroids of B. japonicum appear to pos-
sess a transporter system that is capable of transporting both succinate and malate
[360]. Based on the data presented here, it appears likely that the malate-specific
dicarboxylate transporters are only expressed under symbiotic conditions. It would
therefore be interesting to determine whether any of the B. japonicum dctA ORFs
are capable of supporting growth of S. meliloti on malate or fumarate. Whether
this phenomenon is due to an inability to trasport the substrate by the DctA pro-
tein itself, or an inability to induce DctB/DctD is unclear, but testing the ability
of the individual dctA homologues to complement growth on malate and fumarate

in S. meliloti will help to answer this question.

Further work is needed to determine why dctBD has, thus far, been recalci-
trant to mutagenesis. It is conceivable that allelic replacement of dctBD causes
polar effects on downstream genes. It is also possible that DctB/DetD may be in-
volved in the regulation of other genes that are essential to growth under free-living

conditions.
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Chapter 6

Identification and characterization
of the intracellular
poly-3-hydroxybutyrate
depolymerase enzyme PhaZ of

Stnorhizobium melilot:

6.1 PhaZ in Sinorhizobium melilot

S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Med-
icago sativa). These nodules are characterized by the existence of a persistent apical
meristem and an elongated morphology. Within the nodule, the bacteroids persist
and progress through defined zones of bacteroid differentiation [149]. Indeed, loss
of PHB granules from the cytoplasm of the bacteria invading indeterminate nod-

ules is a well-documented phenomenon that occurs at a specific point within bac-

251



teroid development [148]. Bacteroids of indeterminate nodules undergo such large
physiological and metabolic changes relative to those of determinate nodules [239]
that, until recently, it was unclear whether mature bacteroids within indeterminate
nodules retained the capacity to synthesize and store PHB. A recent study [213]
clearly demonstrated that bacteroids of R. lequminosarum bv. wviciae, which forms
indeterminate nodules on pea plants, retain the capacity to synthesize and store
large quantities of PHB but only when carbon supply is in excess and bacteroid

metabolism is limited by the availability of a key nutrient (reviewed in [351]).

During saprophytic growth, PHB accumulation occurs during periods of nu-
trient deprivation when carbon is in excess. This strategy is employed by many
species of bacteria. The first step in PHB degradation is catalyzed by a substrate-
specific depolymerase. PHB undergoes a transition from an amorphous granule
in the intracellular state to a denatured semi-crystalline form upon release into
the environment. As a result, different PHB depolymerases are employed depend-
ing on the nature of the substrate. While extracellular depolymerases have been
identified and characterized in a wide variety of bacteria, very little is yet known
about their intracellular counterparts. To date, only a handful of intracellular PHB
depolymerases have been reported in the literature, most of which appear to lack
the typical lipase box motif (Gly-X-Ser-X-Gly) associated with extracellular PHB
depolymerases [I], 106, 174, 189 BOTl, 356]. While the enzymes responsible for the
synthesis and storage of PHB have been characterized in a wide variety of bacteria,
including the rhizobia (reviewed in [351]), only a few studies have investigated the
role of intracellular PHB depolymerases and, to date, no studies have reported the

characterization of a rhizobial PHB depolymerase.

PhaZ was identified as the putative intracellular PHB depolymerase in S. meliloti
based on in silico analyses of the genome sequence and comparisons to other intra-

cellular PHA depolymerase sequences. Here we report the cloning and characteriza-
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tion of PhaZ from S. meliloti. This work is the first report of a PHB depolymerase
mutant in S. meliloti and, indeed, in the Rhizobiaceae. This work also represents
the final step in genetic characterization of the complete PHB cycle in these bac-
teria, since all other enzymes of both the synthetic and degradative pathways have
been studied previously in S. meliloti [7, O, [8, 40, [46], 52, 275] 349, 378, 379, 390].
To the best of our knowledge, this work also documents the first confirmed example

of the presence of intracellular PHB granules in Ns-fixing bacteroids of S. meliloti.

6.2 Results and Discussion

6.2.1 Identification of the S. melilot: phaZ Open Reading
Frame and Construction of an S. meliloti phaZ mu-

tant

All plasmids and strains constructed in this study are described in Table 2.1} The
phaZ gene was identified as a 1272 bp open reading frame SMc02770 in the S.
meliloti genome sequence [104] by comparison to phaZ of W. eutropha [302]. The
amino acid sequences of these two proteins share 51% identity. Interestingly, like
phaZ of W. eutropha, the PhaZ protein of S. meliloti does not possess a Gly-X-
Ser-X-Gly lipase box motif [162] that is characteristic of many extracellular PHB
depolymerases. The absence of this motif implies that these intracellular PhaZ ho-
mologues may use a different active site structure than extracellular PHB depoly-
merases. Primers were designed to internal regions of phaZ to amplify a fragment
(from S35 to F292) by PCR, and the resultant 835 bp fragment was cloned into
pGEM®—T Easy (Promega) to generate pAZ101. An internal disruption of the
cloned phaZ fragment was generated by introducing a 2SmSp cassette as a Cfr91

fragment into the unique Kpnl site at 299 bp to yield pAZ102. The phaZ::Q2SmSp
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was subsequently excised as an EcoRI fragment and subcloned into pK19mobsacB
to give pAZ103. pAZ103 was introduced into S. meliloti Rm5000 by triparental
mating using E. coli M'T616 as a helper strain. Single recombinants were identified
by selecting for Rff, Smf, Spf transconjugants. Putative double recombinants
were identified by plating onto TY Sm Sp Sucrose (5%). Subsequent screening
for loss of vector-encoded Nm® confirmed the loss of pK19mobsacB. The resultant
Rf%, Sm”, Sp”, Nm® phaZ mutant was designated Rm11417. The mutagenesis was
confirmed by Southern blot using the phaZ PCR product as a probe. The probe
hybridized to a 1.55 kb EcoRI fragment of genomic DNA in the wild-type strain
Rm5000, and to a 3.55 kb fragment in Rm11417, confirming the presence of the 2
kb QSmSp cassette (data not shown). This mutation was transduced into Rm1021
using the M12 phage by standard techniques [95] and the resultant mutant was

designated Rm11430.

6.2.2 Cloning of phaZ Gene for Complementation Assays

Primers Smc02770F and Smc02770R (Table were designed to the 5" and 3’
regions of SMc02770, incorporating HindIII sites into the 5" and 3’ ends as well as
a 3’ terminal His tag. The PCR product was cloned as a HindIII fragment into
pRK7813 and the resultant construct was named pMA157. This construct was
introduced into Rm11430 by triparental conjugation using E. colt MT616 as the

mobilizer strain.

6.2.3 Analysis of the Carbon-Utilization Phenotype of the
S. meliloti phaZ Mutant

The growth of Rm11430 was compared to that of Rm1021, Rm11105 [46], Rm11107

[46] and Rm11347 [7] on TY, YMA, and minimal media containing 15 mM acetate
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(A), acetoacetate (AA) or D-3-hydroxybutyrate (HB) as sole carbon sources. As
seen in Table[6.1], no difference in growth phenotype was observed between Rm11430
and Rm1021.

6.2.4 Analysis of the Carbon-Starvation S. melilot: phaZ

Mutant to Tolerate Long-Term Carbon Starvation

The ability of the phaZ mutant strain to withstand long-term carbon starvation
was tested, relative to both Rm1021 and Rm11105, by incubation for 4 weeks in
M9 liquid medium with no added carbon source. Cells were grown to late-log in
YMB and washed twice in M9. A 1:50 dilution was used to inoculate 75 ml of M9
salts. Starting cfu/ml was determined immediately following inoculation by serial
dilution of a 1 ml aliquot. Starting cultures typically contained approximately 2 x
10° cfu/ml. These starting values were each given a relative value of 1. 1 ml samples
were removed at 7 day intervals and serial dilutions were used to determine cfu/ml.
Values presented are the averages of 3 independent cultures. The data in Figure[6.1
show that the ability to synthesize and/or break down PHB has a significant impact
on long-term survival in the absence of an exogenous carbon source. The wild-
type strain Rm1021 is capable of increasing cell density during the early stages of
starvation, presumably by degrading readily mobilizable intracellular carbon stores,

a pattern which is not seen in either the phaZ or phbC mutants.

6.2.5 PHB Synthesis in phaZ mutants of S. melilot:

To assess the effect of the phaZ lesion on PHB content in Rm11430, total PHB
accumulation by stationary-phase cells was measured and compared to the wild-
type strain Rm1021. Cells were grown to stationary phase in either TY or YMB

and the accumulated PHB was measured as a total cellular dry weight (% w/w
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Table 6.1: Growth phenotypes of S. melilot: PHB cycle mutants

2*Strain Relevant YMA Carbon Source Utilization
Characteristics Phenotype
Glucose D-3- Acetate AA
HB

Rm1021 wild-type Mucoid + + + +
Rm11105 | phbC::Tnb Dry + - + -
Rm11107 bdhA::Tnd Mucoid + - + +
Rm11347 | phbBX) Dry + - + -
Rm11430 phaZ QSmSp Mucoid + + + +
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Figure 6.1: Viable cell counts of S. meliloti PHB mutants following
incubation in minimal media with no exogenous carbon source added
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+SD). These data are shown in Table[6.2] Under both conditions tested, Rm11430
demonstrates significantly increased PHB accumulation relative to Rm1021 sug-
gesting that, while synthesis of PHB is not impaired, the lesion in phaZ inhibits
degradation of PHB. The PHB accumulation phenotype of Rm11430 is comple-
mented by pMA157, demonstrating a clear relationship between the presence of

PhaZ and PHB accumulation.

6.2.6 Regulation of Succinoglycan Biosynthesis

The product of the ezoF' gene is involved in the transfer of the first sugar, galactose,
to the lipid carrier, upon which the subunits of succinoglycan are assembled [290].
pD82exoF::TnphoA was constructed by homologous recombination between ezoF
carried on pD82 [207] and the chromosomal ezoF'::TnphoA fusion of strain Rm8369
[214]. The resultant plasmid was used to measure the transcriptional activity of
exoF in different S. meliloti PHB mutant backgrounds when grown under different
culture conditions. A Student’s t-test was used to analyse the data and determine
statistical significance of the observed differences. The results presented in Ta-
ble represent the mean of three independent samples and show that Rm11430
demonstrates a statistically significant increase in exoF' transcription when grown
in YM media, while synthetic mutants Rm11105 and Rm11347 exhibit a reduction
in exoF expression. This is consistent with the observation that colonies formed by

Rm11430 appear larger and more mucoid on YM agar than Rm1021.

6.2.7 PHB Accumulation During Symbiosis

Unlike bacteroids of determinate nodules, bacteroids of S. meliloti do not accu-
mulate PHB during symbiosis (reviewed in [351]). Interestingly, a mutant of R.

leguminosarum, unable to cycle amino acids between the bacteroid and plants,
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Table 6.2: PHB accumulation during free-living growth

Strain Relevant Characteristics PHB Accumulation
% cell dry mass

Rm1021 wild-type 18.94

Rm11105 phbC'::Tnd 0.24

Rm11430 phaZQ2SmSp 28.55

Rm11430 pMA157 | phaZQ2SmSp pRK7813 phaZ | 7.39
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Table 6.3: exoF::phoA Alkaline phosphatase assay

Strain Relevant Activity (U) Std Error
Characteristics

Rm1021 wild-type 14.115 0.331

Rm11105 phbC::Tnd 9.681¢ 0.264

Rm11347 phbBS2 6.226° 0.223

Rm11107 bdhA::Tnb 16.134 0.714

Rm11430 | phaZQ2SmSp 15.663¢ 0.296

@ These differences are statistically significant from the value recorded for
Rm1021, when analysed using a two-tailed Student’s t-test
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showed apparent accumulation of PHB in the bacteroid [213]. This suggests that
the pathway for PHB metabolism can function within bacteroids of indeterminate
nodules, however accumulation of PHB only occurs under extreme circumstances
for example, when carbon is in excess and bacteroid metabolism is limited by the
availability of a key nutrient. To confirm that S. meliloti bacteroids are capable of
PHB synthesis and accumulation, alfalfa nodules induced by Rm11430 were pre-
pared, sectioned and analysed by TEM. Figure[6.2B clearly shows that bacteroids of
Rm11430 accumulate PHB during symbiosis, with numerous, electron-transparent,
PHB granules visible within the cytoplasm of the bacteroids when viewed by TEM.
This is in contrast to bacteroids of Rm1021, shown in Figure 6.2]A, which demon-

strate a notable absence of PHB.

Figure 6.3 shows that, in symbiosis with the host plant alfalfa, there is no sig-
nificant difference in shoot dry mass of plants inoculated with the phaZ mutant
Rm11430 and the wild-type strain Rm1021. Plants inoculated with Rm11430 had
an average shoot dry mass (SDM) of 10.51 mg compared to 11.06 mg for plants
inoculated with Rm1021, both of which were significantly different to the uninoc-
ulated controls, which had an average SDM of 4.13 mg. This is interesting since it
suggests that PHB accumulation, as confirmed in Figure does not occur at the

expense of the S. meliloti-M.sativa symbiosis.

6.2.8 Analysis of Nodulation Competitiveness

The ability of S. meliloti Rm11430 to compete for nodule occupancy was assayed
by co-inoculating alfalfa plants with different strain combinations. Table shows
that, when co-inoculated in approximately equal ratios with the wild-type strain,
Rm11430 demonstrated no discernable difference in competitiveness relative to

Rm1021. The percentage of Rm11430 in the original inoculum was similar to
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Figure 6.2: Bacteroids of Rm1021 (A) and Rm11430 (B). Electron-
transparent PHB granules are clearly visible in bacteroids of Rm11430
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Rm1021 or Rm11430
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the percentage of nodules that it occupied. In agreement with previous studies [9],
both Rm11105 (phbC) and Rm11107 (bdhA) demonstrated significantly reduced
competitiveness relative to wild-type. Table also shows that both Rm11105
and Rm11107 also demonstrate reduced competitiveness relative to Rm11430, with

the phbC' phenotype being more pronounced than the bdhA phenotype.

6.2.9 Analysis of PhaZ Activity in wvitro
6.2.9.1 Purification of PhaZ Under Native Conditions

In order to fully characterize the activity of the S. melilott PhaZ enzyme, the
phaZ ORF was cloned into pET30b (EMD Biosciences, San Diego, CA) to gen-
erate pMA158 (Table . pMA158 was transformed into CaCls-competent F.
coli BL21 (ADE3) pLysS [64, 334]; transformants were selected on LB Cmas Kmos.
Over-expression of phaZ was achieved by growth of the transformants in autoinduc-
tion (AI) medium (Section supplemented with Kmo and Cmys, as described
in Section [A.1.2l Over expression was confirmed by SDS-PAGE analysis and a
representative gel is shown in Figure An uninduced sample was prepared by

growth of the cells in AI medium lacking lactose.

PhaZ was purified under native conditions using an Ni-NTA resin (EMD Bio-
sciences, San Diego, CA) as described in Section . Samples were eluted in 250
mM, 400 mM and 1 M imidazole elution buffer and the best concentration was
determined to be 400 mM following analysis of the eluate on a 12.5% SDS-PAGE

gel. A representative gel is shown in Figure [6.5]

6.2.9.2 Purification of Native PHB Granules

In order to assay PhaZ activity, it will be necessary to isolate native PHB gran-

ules using conditions that would maintain their intracellular form. Samples were
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Figure 6.4: Overexpression of S. meliloti phaZ from pMA158 in E. col:
BL21 (ADE3) pLysS. Lane 1: uninduced sample; Lane 2: induced sample;
Lane 3: empty; Lane 4: MW standard. The sizes of the molecular weight
markers, in kDa, are indicated
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Figure 6.5: SDS-PAGE gel of S. meliloti phaZ fractions during purifi-
cation under non-denaturing conditions. Lane 1: MW marker; Lane 2:
uninduced sample; Lane 3: induced sample; Lane 4: crude cell extract;
Lane 5: flow-through; Lane 6: wash eluate; Lane 7: eluate 250 mM imi-
dazole; Lane 7: eluate 400 mM imidazole; Lane 7: eluate 1 M imidazole.
The sizes of the molecular weight markers, in kDa, are indicated
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prepared as described in Section [2.7.2.3|and PHB was separated out using a discon-
tinuous sucrose gradient. The resultant fractionation can be seen in Figure[6.6] The

PHB granules can be removed from the gradient and stored at 4°C until needed.

6.3 Conclusions

Previous studies have demonstrated that the ability of certain bacteria to synthe-
size, accumulate and metabolize intracellular PHB stores is important in enhancing
their capacity to survive unfavourable growth conditions [173, 216} 298], 339]. Rhi-
zobia in the soil environment must contend with varying nutrient conditions, from
the carbon-deficient bulk soil, to the carbon-rich rhizosphere [365]. The ability
to accumulate and utilize carbon stores would be highly advantageous, allowing
rhizobia to cope with fluctuating carbon conditions, and thus, make them more
competitive against other bacterial populations [65]. Previous studies have shown
that mutant strains of S. meliloti, unable to synthesize (phdC') or degrade (bdhA)
PHB, show a significant reduction in competitiveness for nodule occupancy [9, [390],
with mutants that are unable to synthesize PHB exhibiting a much greater loss in

competitiveness than those unable to degrade PHB [9].

This is the first study in which the competitiveness of an S. meliloti phaZ mu-
tant has been investigated. It was expected, based upon the phenotype of the
bdhA mutant [9], that the phaZ mutant would exhibit reduced nodulation com-
petitiveness. Interestingly, the phaZ mutant was as competitive as wild-type in
co-inoculation experiments, and consistently out-compteted both phbC and bdhA
mutants (Table [6.4). Studies in Azotobacter vinelandii have demonstrated a role
for PHB in protection of the cell against environmental stresses including PHB,
oxidative stress and UV damage [252]. It is conceivable that the ability of the phaZ

mutant to out-compete the phbC and bdhA mutants is due to an enhanced ability
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Figure 6.6: Fractionation of crude cell extract over a discontinuous su-
crose gradient for isolation of PHB granules. Granules were isolated

from S. melilott Rm11430 cells grown to saturation in Yeast Mannitol
broth
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to tolerate the conditions encountered in the soil and rhizosphere as a result of the

increased cytoplasmic PHB concentration.

Interestingly, the phaZ mutant exhibits a similar reduction in long-term sur-
vival during starvation to the phbC mutant (Figure . This suggests that the
inability to degrade PHB is just as detrimental to the cells as the inability to accu-
mulate it. This also confirms that PHB degradation does play a significant role in
fueling cellular metabolism under adverse conditions, and that glycogen synthesis
and degradation is not able to replace the function of PHB metabolism under these

conditions.

Previous studies have shown that S. meliloti mutants defective in PHB synthesis
also exhibit a significant reduction in succinoglycan production under conditions
favouring both succinoglycan and PHB production [275], suggesting that these
pathways share common regulatory circuitry. S. meliloti phbB and phbC mutants
exhibit non-mucoid colony morphology on carbon-rich media, while bdhA mutants
show a mucoid colony morphology. This study further augments these observa-
tions by showing that a phaZ mutant is not only mucoid, but has up-regulated

exopolysaccharide production relative to the wild-type strain.

The role of EPS in the establishment of nitrogen-fixing symbioses between S.
meliloti and M. sativa has long been acknowledged [120], but the precise mechanism
of interaction remains elusive. Mutants unable to synthesize EPS are characteris-
tically Fix~. The observation that phbC' and phbB mutants of S. meliloti are still
able to establish successful symbioses [7] suggests that synthesis of succinoglycan
in these mutants, albeit at a reduced level, is still sufficient to facilitate nodulation.
This is consistent with previous reports which suggest that the production of small
amounts of low-molecular-weight (LMW) EPS is sufficient to establish a successful
symbiosis [120]. Indeed, it is conceivable that the competition defect observed in

phbC' mutants of S. meliloti may be due to extremely low levels of succinoglycan
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production. Rm11105 may produce sufficient succinoglycan to establish an effective
symbiosis but, assuming that the succinoglycan itself is playing a role in signalling
during early nodulation, not enough to allow it to compete with strains producing
higher levels of the EPS. Interestingly, the phaZ mutant demonstrates wild-type
competitiveness and is able to out-compete both the phbC and bdhA mutants for
nodulation. This indicates that EPS production is not the sole determinant in the
competition phenotype of other PHB cycle mutants. It is conceivable that another
metabolic pathway that is dependent on D-3-HB metabolism may play a role in
nodulation competitiveness. It is noteworthy that, although it has higher succino-
glycan production than Rm1021, the phaZ mutant was not more competitive than
the wild-type strain. This implies that there is a critical level of succinoglycan,

above which, further gains in competitiveness are not seen.

It is conceivable that, when PHB synthesis is inhibited, intermediates required
for succinoglycan are not synthesized efficiently. It is also possible that, in the
absence of a functional PHB synthesis pathway, enzymes required for succinoglycan
may be inhibited or down-regulated. Furthermore, it has been suggested that acetyl
phosphate may provide a regulatory link between PHB and succinoglycan synthesis
[245]. Studies in the thermophyllic Synechococcus sp. strain MA19, have shown that
acetyl phosphate is involved in the post-translational regulation of PHB synthase
in vitro, and that this regulation is concentration-dependent [245]. As well, this
study revealed that the enzyme phosphotransacetylase, which converts acetyl-CoA
to acetyl phosphate, is only active under PHB-accumulating conditions. In F.
coli, acetyl phosphate is known to function as a global signal that acts through
two-component regulatory signals [230)], perhaps via direct phosphorylation of the
response regulator [I87] itself. Furthermore, the Chvl protein, of the S. meliloti
Exo0S-Chvl two-component regulatory system, is able to autophosphorylate in the

presence of acetyl phosphate in wvitro [365]. Since PHB synthesis mutants may
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excrete excess acetyl-CoA, levels of acetyl phosphate will likely be low under these
conditions. Therefore, intracellular levels of acetyl phosphate may be an important

factor in the ExoS-ChvIl-dependent regulation of succinoglycan synthesis.

Bacteroids of determinate nodules, in contrast to those found in indeterminate
nodules, can accumulate up to 50% of their cellular dry mass as PHB (reviewed
in [351]). The synthesis of PHB during symbiosis however, presumably occurs
at the expense of symbiotic nitrogen fixation; a theory that is corroborated by the
observation that a phaC' mutant of R. etli demonstrates higher levels of nitrogenase
activity relative to wild-type [43]. Bacteroids of indeterminate nodules do not
accumulate PHB during symbiosis. It has been suggested [43] that this may be
the reason why the S. meliloti-alfalfa symbiosis is more effective than that of B.
japonicum-soybean or R. etli-bean [137]. Interestingly the data presented in this
study suggest that forced accumulation of PHB by S. meliloti during symbiosis does
not appear to have a negative effect on plant yield, suggesting that PHB synthesis

during symbiosis is not the only determinant of symbiotic performance.
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Table 6.4: Nodulation competitiveness of the S. meliloti wild-type strain
and bdhA, phbC and phaZ mutants co-inoculated in the described ratios

on M. sativa plants

Strain (%) in inoculum

No. nodules tested

Nodule occupancy (%)
Strain 1 Strain 2 Both

Rm11430 (60) + Rm1021 (40)
Rm11430 (91) + Rm1021 (9)

Rm11430 (54) + Rm11105 (46)
Rm11105 (59) + Rm1021 (41)
Rm11105 (88) + Rm1021 (12)
Rm11430 (51) + Rm11107 (49)
Rm11107 (49) + Rm1021 (51)
Rm11107 (77) + Rm1021 (23)
Rm11107 (44) + Rm11144 (56)

18
15
16
15
20
20
14
15
19

61.1 22.2 16.7

93.3 6.7 0
100 0 0
6.7 93.3 0
> 75 20
65 35 0
21.4 78.6 0
86.7 0 13.3
94.7 0 2.3
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Chapter 7

Mutational Analysis of the Role of

#-Ketothiolase (PhbA) in

Stnorhizobirum melilott

7.1 Introduction

In many species of bacteria, the glyoxylate shunt (Figure represents an essential
pathway for the assimilation of tricarboxylic acid (TCA) cycle intermediates during
growth on Cy-compounds (reviewed in Section . Interestingly, in S. melilots,
only aceA (isocitrate lyase) is required for growth on acetate [282]; mutants of glcB
(malate synthase) retain the capacity to grow on acetate [282], perhaps indicating
an as-yet uncharacterized metabolic pathway for the assimilation of acetate in these

organisms.

A recent proposal has suggested that there is present in certain bacteria, an al-
ternate pathway for assimilation of acetate that would bypass the need for the gly-

oxylate cycle in organisms that do not possess the enzyme, isocitrate lyase (Figure
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7.1]) [91]. In these organisms, acetate is assimilated through the ethylmalonyl-CoA
pathway, which has significant overlap with the anabolic half of the PHB cycle,
including reliance on the PHB intermediate 3-hydroxybutyryl-CoA. A class of mu-
tants in Sinorhizobium meliloti, designated bhbA-D, are able to grow on acetate,
but not on hydroxybutyrate or acetoacetate [45]. These phenotypes, along with the
previously unexplained hydroxybutyrate phenotypes of phoB and phbC' mutants,
suggest that an ethylmalonyl-CoA-like pathway may be present in S. meliloti, and
that this pathway may overlap with the PHB cycle. A model for the proposed

pathway interaction is depicted in Figure

In an attempt to further quantify the roles of PhbA, PhbB and PhbC in export-
ing carbon from the PHB cycle, including the requirements for granule association
on the activities of PhbA and PhbB, an in-frame mutant of S. meliloti phbA was

constructed and its phenotype analysed.

7.2 Results and Discussion

7.2.1 Construction of In-Frame phbA Mutant

Because the a-ketothiolase PhbA represents an input/output point of the PHB
cycle, but is not required for the PHB cycle itself, and because phbA is in an
operon upstream of phbB, prior PHB cycle studies have not included generation
of a phbA mutant. In order to study the effects of a phbA mutant without polar

effects on pbhB, an in-frame deletion of phbA was generated.

In S. meliloti, phbAB are predicted to form a single operon [3]. In order to
construct a mutant of phbA without disrupting the activity or regulation of phbB,
cross-over PCR was used [I54, [336]. The primers used are listed in Table [2.2] The

primers were designed such that the resultant cross-over PCR product yielded a
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fragment that contained the phbB ORF, with an intact native ribosome binding
site (RBS), under the control of the native operon promoter. This construct was
cloned into pGEMTEasy and subcloned into both pPBBRIMCS2 [196], to yield
pMA187, and pK19mobsacB [310], to yield pMA190. pMA187 should be capable
of complementing a phbB mutant of S. meliloti, and was constructed as a means of

testing the in-frame nature of the phbA deletion.

In order to generate a phbA mutant of S. meliloti, pPMA190 was conjugally trans-
ferred into S. meliloti Rm1021 and single recombinants were isolated by selection on
TY Smygy Nmygg. Following three successive rounds of streak purification, the re-
sultant recombinants were grown up without selection and plated on TY containing
5% sucrose in order to select for strains that had undergone a second recombina-
tion event. Double recombinants were screened for Nm® in order to confirm loss
of pMA190. Confirmed double recombinants were then screened by colony PCR
in order to differentiate between wild-type revertants and phbA deletion mutants.

The resultant strain was confirmed by PCR and named SmUW41.

7.2.2 PHB Synthesis by the phbA Mutant of S. melilot:

SmUW41 was screened for PHB synthesis using the Nile Red PHB screen [323]
described in Section Single colonies were smeared onto YMA supplemented
with Nile Red and allowed to grow for approximately 72 hours. The resultant
growth was analysed for fluorescence under UV light. The photograph shown in
Figure |7.3| show that SmUW41 synthesizes no detectable PHB.

7.2.3 EPS Synthesis by the phbA Mutant of S. melilot:

Exopolysaccharide biosynthesis was quantitated by isopropanol precipitation of the

soluble EPS secreted into the growth medium, as described in Section 2.7.5] Al-
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though the SmUW41 strain is visibly more mucoid than Rm1021 when grown on
YMA, no detectable EPS production by SmUW41 was detected in this assay (data
not shown). This might suggest that an increase in mucoidy does not translate into
significantly higher secretions of EPS, and that accumulation of capsular polysac-
charide and biosynthesis of exopolysaccharide are not as closely correlated as first

thought.

7.2.4 Carbon Utilization Phenotype of the S. meliloti phbA

Mutant

Growth curves were set up using the BioScreenC growth curve machine. Growth
was assessed in VMM supplemented with 15 mM of either glucose, acetate, ace-
toacetate, or DL-Hydroxybutyrate. The results of these growth curves are shown
in Figures [7.5 [7.6] and These data show that the phbA strain SmUW41
cannot grow on acetoacetate (Figure , even after extended periods of incuba-
tion; this is in contrast to Rm11105 and Rm11347, both of which demonstrate

compromised, but delayed, growth on acetoacetate.
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Rm11105

Rn§1 107

Rm11347

SmUW44 Rm#1430

Figure 7.3: Growth of the S. meliloti phbA mutant SmUWA41, and other
PHB Cycle mutants, on YMA supplemented with Nile Red. The lack
of fluorescence from strains Rm11105, Rm11347 and SmUWA41 indicate
that no PHB accumulation is present in these cells. That is in contrast
to Rm1021, Rm11107 and Rm11430 which all accumulate large quan-
tities of cytoplasmic PHB under these conditions, as evidenced by the
fluorescence
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Figure 7.6: Growth curves of the S. meliloti phbA mutant SmUW41, and other PHB Cycle mutants, in VMM

Acetoacetate medium
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Figure 7.7: Growth curves of the S. meliloti phbA mutant SmUW41, and other PHB Cycle mutants, in VMM

DL-Hydroxybutyrate medium



7.2.5 [-Ketothiolase Activity in the PHB Synthesis by the

phbA Mutant of S. meliloti

The (-Ketothiolase activity of SmUW41 was tested using a modified version of pre-
viously described protocols [184] 249] and is described in Section [2.7.4] This assay
monitors the decrease of Esp3 of the Mg?T-Enol complex of acetoacetyl-CoA as it
is converted to acetyl-CoA. The chart in Figure [7.8 show the results of this assay
and demonstrate the reduction in activity that is evident in the SmUW41 back-
ground. It is noteworthy that some (-Ketothiolase activity remains in this strain;
an analysis of the S. meliloti genome sequence reveals the presence of a second
(-Ketothiolase ORF, and it is conceivable that the activity evident in SmUW41 is

the result of this second gene.analys

7.3 Conclusions

If the model proposed in Figure were correct, it predicts that a phbA mutant
of S. melilots would be able to grow on acetoacetate as a sole carbon source by
channelling carbon out of the PHB cycle via phtB and subsequently through an
ethylmalonyl-CoA-like pathway. The data presented in Figure suggest that
this is not the case and that PhbA represents the only exit point for carbon from
the PHB cycle. It is interesting to note that, unlike phbB and phbC mutants,
which do exhibit growth (albeit delayed) on acetoacetate, the phbA mutant shows
absolutely no growth on this substrate even after extended incubation (Figure .
This phenotype represents an interesting twist in the complicated investigation into
the role of the PHB metabolism in S. meliloti. It also suggests that, although the
data in Figure [7.8| indicates an alternative [-ketothiolase may be functional in S.

meliloti, it is unable to substitute for PhbA in growth on acetoacetate.
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Figure 7.8: Results of the (-Ketothiolase activity assay. S. melilot:
phbA mutant SmUW41, and other PHB Cycle mutants, were assayed
for $-Ketothiolase activity. The results shown indicate the average from
two or three independent replicates, assayed using a modified version of

standard protocols [184, 249]
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Previous studies investigating the interesting carbon utilization phenotypes of
PHB synthesis mutants have suggested that the lack of PHB synthesis prevents
NADPH consumption, resulting in an accumulation of NADPH or NADH to in-
hibitory levels [I93]. Indeed, a phaC mutant of R. etli has been shown to accu-
mulate NADH [43], although this mutant also showed reduced growth and organic
acid excretion when grown on succinate and glucose; a phenomenon exhibited to
a much lesser extent in S. meliloti phbC' mutants (Figure . Further analysis of
both S. meliloti and R. etli phbC' mutants is needed to determine the significance

of this phenomenon.
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Chapter 8

Analysis of the Role of Phasins in
PHB Synthesis and Rhizosphere
Competitiveness in Sinorhizobium

melilotr

8.1 Introduction

While the enzymology of PHB synthesis and degradation has been well character-
ized in S. meliloti, the regulation of these processes is far less understood. PHB
granules within the cytoplasm of the bacterial cell are typically coated in granule-
associated proteins known as Phasins. Phasins appear to be ubiquitous among
PHA-synthesizing bacteria, including Ralstonia eutropha, which has four phasin
genes [271], 272], and Methylobacterium extorquens, which has two [192].These pro-
teins have low molecular mass, are amphiphilic in nature and can comprise a sig-

nificant fraction of total cell protein [395]. Although they are not highly conserved
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at the sequence level (reviewed in [I71]), they do all appear to perform similar

regulatory functions.

S. meliloti has two regulatory phasins, encoded by phaP1 and phaP2. A double
mutant of phaPI and phaP2 cannot accumulate PHB, has greatly increased lev-
els of glycogen synthesis, and enhanced EPS production relative to Rm1021[379).
Mutants of these phasin genes also have impaired nitrogen fixation capacity on
Medicago truncatula plants. Here we show that on the host plant Medicago sativa
(alfalfa), no similar reduction in symbiotic capacity is observed. Furthermore, al-
though previous work has shown that the phaP1 phaP2 double mutant does not
accumulate PHB [379], it has not shown whether it retains the capacity to synthe-
size it and if so, whether the resultant molecule it is stable or unstable. The phaP1
phaP2 mutant is also more mucoid than the wild-type Rm1021 but its rhizosphere
competitiveness has not been investigated. To address the issue of PHB stabil-
ity, Phasin-PhaZ mutants were constructed and their resultant PHB synthesis and

rhizosphere competitive capacities were investigated.

8.2 Results and Discussion

8.2.1 Analysis of the Symbiotic Phenotype of S. melilot:

Phasin Mutants on Medicago sativa

Alfalfa plants were inoculated with S. meliloti cultures as described in Section
The data shown in Figure [8.1] show that, unlike with the host plant Medicago
truncatula, S. meliloti phasin mutants do not appear to demonstrate a reduced

symbiotic capacity.
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Figure 8.1: Shoot dry masses of alfalfa plants inoculated with S. melilot:
phasin mutants. Error bars indicate standard deviations
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8.2.2 Construction of S. melilot: phaZ-Phasin Mutants

A lysate of Rm11430 was prepared as described in Section [2.4.4.8|and transductions
into the SB100, SB104 and SM108 backgrounds were carried out as described previ-
ously [05]. Transductants were selected on LB containing Spigp and streak purified

three times. The resultant strains are described in Table 2.1l and are summarized

in Table [8.1] for ease of reading.

8.2.3 Analysis of PHB Synthesis in S. meliloti Phasin-phaZ

Mutants

In order to determine whether the phaP1 phaP2 double mutant is capable of syn-
thesizing PHB, the PHB content of SmUWSb5, the phaP1 phaP2 phaZ triple mutant
was quantitated. Cells were grown to saturation in YMB and PHB extraction and
quantitation was carried out as described in Section [2.7.2] The results of this assay
are shown in Figure 8.2] and clearly suggest that the lack of PHB accumulation in
SB108 is due to a lack of synthesis rather than degradation of an unstable product

by means of PhaZ.

8.2.4 Analysis of the Competition Phenotype of S. melilot:

Phasin-phaZ Mutants

The ability of S. melilots SmUWS&5 to compete for nodule occupancy was assayed
by co-inoculating alfalfa plants with different strain combinations. Table [8.2] shows
that, when co-inoculated in approximately equal ratios with the wild-type strain,
SmUWS&5 demonstrated a comparable reduction in rhizosphere competitiveness to

Rm11105 relative to the wild-type Rm1021.
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Table 8.1: Summary of Phasin-phaZ mutants constructed in this study

Strain Relevant Characteristics

SB100 Rm1021 phaP1::pK19mob
SB104 Rm1021 phaP2 precise deletion
SB108 Rm1021 phaP1 phaP?2
SmUWS&1 SB100 phaZ::Q2SmSp

SmUWS3 SB104 phaZ::QQSmSp

SmUWS5 SB108 phaZ::QQSmSp
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Figure 8.2: PHB accumulation in S. melilot: Phasin and Phasin-PhaZ

Mutants.

Rm1021: wild-type; Rm11105: Rm1021 phbC; Rm11430:

Rm1021 phaZ; SB100: Rm1021 phaP1::pK19mob; SB104: Rm1021
phaP2; SB108: Rm1021 phaP1 phaP2.
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Table 8.2: Nodulation competitiveness of the S. meliloti Rm11105 and
SmUWSBS5 strains co-inoculated in the described ratios with the wild-type
strain Rm1021 on M. sativa plants

Strain (%) in inoculum No. nodules tested ~ Nodule occupancy (%)
Strain 1 Strain 2 Both
Rm1021 (10) + Rm11105 (90) 19 19 0 0
Rm1021 (51) + Rm11105 (49) 21 20 0 1
Rm1021 (91) + Rm11105 (9) 22 22 0 0
Rm1021 (10) + SmUWS5 (90) 15 14 0 1
Rm1021 (51) + SmUWS5 (49) 14 14 0 0
Rm1021 (91) + SmUWS5 (9) 11 11 0 0
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8.3 Conclusions

The PHB synthesis defect demonstrated by SB108 is not due to the degradation of
unstable PHB granules; this study shows that in a PHB depolymerase background,
the phaP1 phaP2 mutant does not accumulate PHB (Figure .

An earlier study demonstrated that the symbiotic phenotype of the phasin mu-
tant strains is host-dependent [379]. This study showed that on the host legume
Medicago truncatula, the plants exhibited significant reduction in shoot dry mass
and acetylene reduction activity [379]. The data presented here demonstrate that
this phenotype is host-specific, since Medicago sativa plants inoculated with the
phasin mutant strains exhibit similar shoot dry masses to those inoculated with

wild-type strains.

The competition data shown in Table represents an interesting twist in
the competition phenotype discussed in Section [B.I} it appears that the phaP1
phaP?2 phaZ triple mutant, which is unable to synthesize PHB but does appear
to synthesize succinoglycan, demonstrates a comparable reduction in rhizosphere
competitiveness to the phbC' mutant. The reason for this is unclear and certainly

worthy of further investigation.
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Chapter 9

Conclusions and Future Directions

9.1 Conclusions and Future Directions

Plants in poor soils routinely suffer nitrogen deprivation; starving in air that is 80%
nitrogen. Ny must be reduced to a biologically available form before it is accessible
to the plants that depend on it. Currently most farming operations in the developed
world rely on the application of chemical fertilizers to meet the nitrogen needs of
the crop plants, resulting in large increases in crop yield, but with concomitant and
significant environmental and socioeconomic ramifications. Nitrogen fertilizer has
one of the lowest input efficiencies, resulting in considerable environmental damage.
Nitrogen fertilizers contaminate surface and groundwater systems, threaten the
stability of the ozone layer, present a major threat to the human health, and are
prohibitively expensive. The need for integrated management of soil nutrients using
biological fertilizer as part of a more sustainable approach to commercial agriculture
is needed. For this to happen, biological nitrogen fixation technologies must be
accessible, dependable and well understood; more work is needed to understand
the intricacies of the intimate nitrogen-fixing relationship between rhizobia and

legumes. This study has investigated several aspects of carbon metabolism and
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desiccation tolerance in two commercially relevant rhizobial species, S. meliloti
and B. japonicum. This work was undertaken with a view to enhancing current
inoculant technologies as a means of augmenting the use of mineral fertilizers with

biological alternatives.

The relationship between PHB production and EPS synthesis is indicative of
the existence of similar, but thus far uncharacterized, regulatory circuits in both S.
meliloti and B. japonicum. The relationship between EPS synthesis and rhizosphere
competitiveness is intriguing and a more detailed analysis of the phenotypes of the
PHB cycle mutants in the SmUW3 background might be expected to help decipher
these networks. Some preliminary work in this area is outlined in Appendix [B.1]
In order to facilitate the analysis of EPS synthesis in different Rhizobial strains
and species, it will be necessary to develop a quantitative EPS assay that is both
internally and externally robust. The isopropanol method used in this study is
very effective at comparing multiple samples prepared in the same assay, but there
might be value in exploring the possibility of using anthrone as a standard assay
in the future [247, [353], as described in Section , as a means of improving

standardization between studies.

To date, it has not been experimentally demonstrated whether PHB accumula-
tion is modulated by control at the transcriptional level. In order to facilitate an
analysis of PHB synthesis throughout the growth curve and under different growth
conditions, lacZ transcriptional fusions to S. meliloti phbC' and phbAB have been
constructed. PCR was used to amplify the S. melilot: phbC, phbA, phbB and
phbAB ORFs, which were then captured in pJET. phbAB and phbC were then
subcloned, in both orientations, into pTH1703 [58] in order to generate gfp-lacZ
and gusA fusions. All of these constructions are recorded in Table 2.1 These con-
structs were then transferred into S. melilot: by triparental conjugation in order to

generate functional, choromosomally located fusions. These strains should be used
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to monitor the regulation of phbC' and phbAB throughout the growth cycle of the
organism in order to determine when, and under which conditions, PHB synthesis

is up- and down-regulated.

The carbon utilization phenotypes associated with PHB cycle mutants in S.
meliloti remain unexplained and certainly warrant further investigation. The ob-
servation that a phbA mutant is completely unable to utilize acetoacetate as a sole
carbon source is somewhat unexpected given the phenotypes of other mutants in
this cycle. A more detailed analysis of this mutant, including an assessment of its
rhizosphere competitiveness and symbiotic phenotype are needed in order to more
fully determine the basis for the observed results documented herein. While the
results suggest that an ethylmalonyl-CoA-like pathway is either not present in S.
meliloti, or does not overlap with the PHB cycle, the phenotypes of the bhb mu-
tants, and their overlap with PHB cycle mutants, is certainly an area that warrants
further investigation since mutants of bhb and phbC' are unable to utilize either
3-hydroxybutyrate or acetoacetate but are unaffected in their capacity to grow on

acetate.

Further analysis of the the role of dicarboxylates, as well as the regulation of
dctA genes in the B. japonicum-soybean symbiosis is needed in order to develop a
stronger understanding of bacteroid carbon metabolism in this organism. Analysis
of the symbiotic phenotypes of the dctA mutants constructed to-date will reveal
which, if any, are required for symbiosis. It is conceivable that the redundancy in
DctA transporters in B. japonicum may be sufficient to prevent any one mutant
from having a discernible symbiotic phenotype. To this end it may be necessary
to construct multiple dctA mutants. An analysis of the transport capacities of
each of the mutants may also yield valuable information regarding the roles that
each of the individual ORFs play in the physiology of this organism. Radio-label

transport assays using different labelled substrates would be a relatively fast and
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effective means of analysing this. The reason for the recalcitrance of B. japonicum
dctBD to mutation remains unclear; further analysis will be necessary given the
potential value of this mutant to developing a more comprehensive picture of carbon

regulation in symbioses of determinate nodules.

The development of improved inoculant technologies is necessary if we are to
reduce our dependence on exogenously applied fertilizers that are synthesized using
energy-intensive processes. This aspect of this work was prematurely terminated
when our partner Agribiotics was bought by EMD Crop Biosciences, and the op-
eration was moved to the United States. In this study we identify several strains
with interesting OSS and ion-tolerance phenotypes. Further analysis of the ge-
netic, physiological and environmental basis for these phenotypes is necessary to
start building a more comprehensive understanding of the biochemical factors that
influence desiccation tolerance in the Rhizobia. In order to facilitate this, a cosmid
library of the Agribiotics commercial inoculant strain of B. japonicum was con-
structed, as described in Section [2.4.5] This library was constructed from a strain
with superior OSS to B. japonicum USDA110, and may be useful as a tool for

identification of genes with a capacity to influence OSS.

As we look at the new century, we are realizing that the road ahead is one
unlike that travelled by previous generations. We face unprecedented economic
and environmental uncertainty. The development of new paradigms that integrate
genomics information with socio-economic and environmental understanding will
be key to ensuring a sustainable future for humanity. Symbiotic nitrogen fixation
has been an integral component of farming practices for hundreds of years. It is
a tried and true technology that is now in a prime position to play a pivotal role
in the molecular biotechnology advances of the 21st century; however, in order to
fully exploit the potential of biological nitrogen fixation, we must first develop a

comprehensive understanding of it in order to ensure we do not repeat the mistakes
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of our past in our efforts to repair them.
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Appendix A

Media Recipes, Solutions, and

Reaction Conditions

A.1 Growth Media and Antibiotics

A.1.1 Bacterial Growth Media Recipes

A.1.1.1 Luria Bertani (LB) Broth

5 g Yeast Extract

10 g Tryptone

5 g NaCl

11dH,O

(15 g Agar)

A.1.1.2 LB-MC Broth

As LB but add MgCl, and CaCl, to a final concentration each of 2.5 mM.
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A.1.1.3 Typtone Yeast Extract (TY)

e 5 g Tryptone

5 g Yeast Extract

0.5 g CaCl,

11dH,O

(15 g Agar)

A.1.1.4 Modified M9 Medium for Rhizobia

o 7 g NaQHPO4

3 ¢ KH,PO,

1 g NaCl

(15 g Agar)

This is autoclaved, cooled to 55°C, and the following are added:

e 0.1 ml 1M CaCl,

A.1.1.5 Rhizobium Minimal Medium (RMM)

Solutions A, B, C and D are prepared and sterilized separately. RMM is made by
adding 1% (v/v) each of RMM A and RMM B and 0.1% (v/v) each of RMM C
and RMM D.

301



RMM A:

15 g Na(Cl

50 g NH4NO3

11dH,0O

RMM B:

e 50 g MgSO47HQO

e 11dH50

RMM C:

e 10 g CaCbQHQO

e 11dH,0O

RMM D:

87 g KQSO4

0.1 g CUSO45H20
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0.048 g Na2 MOO4 . 2H2 O

11dH,O

Prepare the following solutions and filter sterilize. Add to cooled media.

0.2 ml Thiamine (1 mg/ml)

0.2 ml Ca-pantothenate (1 mg/ml)

0.2 ml biotin (1 mg/ml)

Carbon Source (0.2% succinate: 2 ml 20% succinate in 200 ml final volume)

A.1.1.6 Vincent’s Minimal Medium (VMM)

Solutions A, B and C are prepared and sterilized separately. VMM was made by
adding 10% (v/v) VMM B and 1% (v/v) VMM C to VMM A. A carbon source

was also added to a final concentration of 15 mM.

VMM A:

e 1 g K,HPO,

1 ¢ KH,PO,

1 g NH3ClI (or 0.6 g KNO3)

11dH,O

(15 g Agar)
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VMM B:

e 0.05 g FeCl;
e 0.05 ¢ MgCls
e 0.5 g CaClg

e 0.51dH,0

VMM C:

e 0.01 g Biotin
e 0.01 g Thaimin

e (0.01 g Ca-Pantothenate

A.1.1.7 Arabinose Gluconate (AG) Medium

e 1 g Arabinose

1 g Gluconate

1 g Yeast Extract

930 ml dH,O

(17 g Agar)

Autoclave the above ingredients then add 10 ml of each of the following autoclaved

stock solutions to make one litre of media:

e A. Hepes - Mes Buffer, pH 6.6 - 6.9
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— 65.0 g Hepes (Sigma no. H-3375)
— 55.0 g Mes (Sigma no. M-8250)
— pH adjusted to 6.6 - 6.9 with NaOH

— volume to 500 ml with dH,O
e B. 0.67 g/l FeCl;.6 H,O
e C. 18.0 g/1 MgS0O,4.7 H,O
e D. 1.30 g/l CaCl, .2 HO
e E. 25.0 g/INapSOy
e F. 32.0 g/l NH,CI

o G. 125 g/l NagHPO4

A.1.1.8 Modified Arabinose Gluconate (MAG) Medium

As AG but increase Arabinose and Gluconate content from 1 g/l each to 5 g/l.

A.1.1.9 Yeast Mannitol (YM) Medium

e 0.4 g Yeast Extract

10 g Mannitol

0.1 g NaCl

11 dH,O

305



e pH to 7.0

e (18 g Agar)

A.1.1.10 Autoinduction Medium

This medium is designed for the over-expression of proteins from genes that are

under the control of lac repressor (e.g. pET30).

Base Medium

6 g NagHPO,

3 ¢ KILHPO,

20 g Tryptone

5 g Yeast Extract

5 g NaCl

60 ml Glcerol

11dH,O

pH to 7.2 with NaOH

Additives Filter sterilize the following:

e 10% Glucose

o 8% Lactose

Before using, add 25 ml lactose stock and 5 ml glucose stock to the base medium.

For an uninduced control, omit the lactose solution.
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A.1.1.11 ZYP-5052 Autoinduction Medium

7Y, 20X NPS, 50X 5052, 1 M MgSO, and 1000X trace metal solution are made up

separately. To make 1 1 ZYP-5052, the components are added as follows:

e 928 ml ZY

1.0 ml 1 M MgSO,

e 1.0 ml Trace Metals solution

20 ml 50X 5052

50 ml 20X NPS

Note, add 1 M MgSO, before adding the 20X NPS to avoid precipitation.

Note, Kanamycin must be used in significantly higher concentrations (100 pg/ml)

than is typically used.

7Y:

e 10 g Tryptone
e 5 g Yeast Extract

e 925 ml dH,O

Autoclave to sterilize.

20X NPS:

e 6.6 g NH4SO4

e 13.6 g KHQPO4
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e 14.2 g Na,HPO,

e 100 ml dH,O

pH to 6.75. Autoclave to sterilize.

50X 5052:

e 25 g Glycerol

2.5 g Glucose

10 g Lactose

100 ml dH,O

1 M MgSOy:

100 ml dH,O

Trace Metals Solution

50 ml 0.1 M FeClj

2.0 ml 1.0 M CaCl,.2H,O

1.0 ml 1.0 M ZnSO,.7TH;0

1.0 ml 0.2 M CoCls.6H;0O
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e 2.0 ml 0.1 M NaQMOO4.2HQO

Note, all stock solutions are made up and autoclaved separately (except FeCls which
is made up in HCI and is not autoclaved). The following volumes of these stock
solutions are then added to 36 ml sterile dH,O and the resultant solution is stored

at room temperature.

A.1.2 Antibiotic Concentrations

All antibiotic concentrations listed here are for solid media. Typically these con-
centrations were halved for growth in liquid culture. Antibiotics were typically
prepared at 1000X concentrations and a 1:1000 dilution was used. Stock solutions

were stored at 4°C.

A.1.2.1 Antibiotic Concentrations for E. colz

e Ampicillin: 100 pg/ml

Chloramphenicol: 25 ug/ml

Gentamycin: 10 pg/ml

Kanamycin: 25 pg/ml (100 pg/ml when using autoinduction medium)

Naladixic acid: 5 ug/ml

Tetracycline: 10 pg/ml
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A.1.2.2 Antibiotic Concentrations for S. melilot:

Gentamycin: 75 pg/ml

e Neomycin: 200 ug/ml

Spectinomycin: 100 pg/ml

Streptomycin: 200 pg/ml

Tetracycline: 10 pug/ml

Trimethoprim: 400 pg/ml

A.1.2.3 Antibiotic Concetrations for B. japonicum

e Kanamycin: 50 ug/ml
e Streptomycin: 200 pug/ml

e Tetracycline: 200 pg/ml

A.2 Molecular Biology Reagents

A.2.1 Solutions for the Isolation of Genomic DNA
A.2.1.1 Lysozyme Solution

2 mg/ml powdered lysozyme dissolved in T1oE; immediately prior to use

A.2.1.2 SDS-Protease Solution

e 5 mg/mk proteinase K dissolved in TyoE;
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e incubate 2h at 37°C
e add 0.1 g/ml SDS

e incubate 20 minutes at 45°C to dissolve SDS

A.2.1.3 T10E25

e 10 mM Tris-HCI pH 8.0
e 25 mM EDTA pH 8.0

e store at 4°C

A.2.1.4 TyE,;

e 10 mM Tris-HCI pH 8.0
e 1 mM EDTA pH 8.0

e store at room temperature

A.2.2 Solutions I, IT and III for Small-Scale Preparation of

Plasmid DNA

A.2.2.1 Small-Scale Plasmid Preparation Solution I

50 mM glucose

25 mM Tris-HCI pH 8.0

10 mM EDTA pH 8.0

autoclaved and stored at 4°C
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A.2.2.2 Small-Scale Plasmid Preparation Solution II

e 0.2 N NaOH

e 1% SDS

A.2.2.3 Small-Scale Plasmid Preparation Solution III

e 60 ml 5M potassium acetate
e 11.5 ml glacial acetic acid
e 28.5 ml dH,O

e stored at 4°C

A.2.2.4 T10E25

e 10 mM Tris-HCI pH 8.0

e 25 mM EDTA pH 8.0

A.2.25 Ty,E;

e 10 mM Tris-HCI pH 8.0

e 1 mM EDTA pH 8.0

A.2.3 Tris-Acetate-EDTA (TAE) Buffer
A.2.3.1 1X Working Solution

e 40 mM Tris-Acetate

e 1 mM EDTA
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A.2.3.2 50 X Stock Solution

242 g 'Tris base

57.1 ml Glacial acetic acid

100 ml 0.5 M EDTA

pH 8.0

A.2.4 6X Agarose Gel Loading Dye

e 0.25% Bromophenol Blue

e 40% (w/v) Sucrose in dH,O

A.2.5 Southern Blot Reagents
A.2.5.1 Transfer buffer

e 0.4 M NaOH

e 0.6 M NaCl

A.2.5.2 20X SSC

e 175.3 g NaCl
e 88.2 g sodium citrate

[ J 11 dHQO
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A.2.5.3 Hybridization Buffer

e 5X SSC
e 1% w/v blocking reagent (Roche Diagnostics, Basel, Switzerland)

e 0.1% N-lauroyl sarcosine

e 0.02% SDS

A.2.5.4 Stringency Buffer A

e 2X SSC

e 0.1% SDS

A.2.5.5 Stringency Buffer B

e 0.1X SSC

e 0.1% SDS

A.2.5.6 Tris-NaCl Buffer

e 0.1 M Tris-Cl pH 8.0

e 0.15 M NaCl

A.2.5.7 Blocking Buffer

e 1% w/v blocking reagent in Tris-NaCl buffer
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A.2.5.8 Detection Buffer

e 0.1 M Tris-HCI pH 9.5

e 0.1 M NaCl

A.2.5.9 Stripping Solution

e 0.2 N NaOH

e 0.1% SDS

A.2.6 Cosmid Library Construction Solutions
A.2.6.1 Phage Dilution Buffer

e 10 mM Tris-HCI (pH 8.3)
e 100 mM NaCl

e 10 mM MgCl,

A.3 Reagents for Protein Work

A.3.1 SDS-PAGE Gel Recipes
A.3.1.1 12% Resolving Gel
e 4 ml Acrylamide/Bis-acylamide (30%)
e 2.5ml 1.5 M Tris-HCI (pH 8.0)
e 100 pul 10% (w/v) SDS
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e 100 p1 0.06% (w/v) APS
e 5 ul (v/v) TEMED

o 3.32 ul dH,O

A.3.1.2 4% Stacking Gel

e 670 pul Acrylamide/Bis-acylamide (30%)

1.25 ml 0.5 M Tris-HCI (pH 6.8)

50 ul 10% (w/v) SDS

25 41 0.06% (w/v) APS

5 ul (v/v) TEMED

3.05 pl dH,O

A.3.1.3 4X SDS-PAGE Running Buffer

e 12 g Tris-Base
e 57.6 g Glycine
e 11dH,0O

e pH 8.3 with HCI

A.3.1.4 1X SDS-PAGE Running Buffer

e 250 ml 4X Stock solution
e 10 ml 10% SDS
e 740 ml dH5O
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A.3.1.5 Coomassie Brilliant Blue Staining Solution

e 0.25 g Coomassie Brilliant Blue R250

45 ml Water

45 ml Methanol

10 ml Glacial Acetic Acid

Filter through Whatman #1 filter to remove sediment

A.3.1.6 SDS-PAGE Loading Dye

e 5 ml Glycerol

2.5 ml B-Mercaptoethanol

15 ml 10% SDS

25 ml Upper Buffer

e Add Bromophenol Blue to colour

A.3.2 Western Blot Reagents
A.3.2.1 Western Transfer Buffer

25X Stock:

e 120 mM Tris Base
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e 960 mM Glycine

e dH5O to 500 ml

1X Working Solution:

e 40 ml 25X stock

e 200 ml EtOH

e 760 ml dH,O

A.3.2.2 TBS

10X Stock:

e 200 mM Tris

e 5 M NaCl

o pH 7.5

1X Working Solution:

e 100 ml 10X TBS stock

e 900 ml dH5,O

A.3.2.3 TTBS

e 990 ml 1X TBS

e 10 ml Tween-20
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A.3.2.4 Blocking Buffer

e 2.5 g non-fat dried milk

e 50 ml 1X TBS

A.3.2.5 Antibody Buffer

e 1 g non-fat dried milk

e 50 ml TTBS

A.3.3 Protein Purification Solutions

A.3.3.1 1X Ni-NTA Bind Buffer

e 300 mM NaCl

e 50 mM sodium phosphate buffer

e 10 mM imidazole

e pH 8.0

A.3.3.2 1X Ni-NTA Wash Buffer

e 300 mM NaCl

e 50 mM sodium phosphate buffer

e 20 mM imidazole

e pH 8.0
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A.3.3.3 1X Ni-NTA Elution Buffer

300 mM NaCl

250 mM imidazole

50 mM sodium phosphate buffer

pH 8.0

A.4 Plant Growth Media

Plant growth medium was prepared by adding 1 ml each of plant growth solutions

A, B, Cand D to 21 dH,0.

A.4.1 Plant Growth Solution A

e 294 g CaCl,

o 1 1 dHQO

A.4.2 Plant Growth Solution B

e 136 g KHQPO4

o 1 1 dHQO

A.4.3 Plant Growth Solution C

e 6.7 g FeCl,
o 11dH,0
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A.4.4 Plant Growth Solution D

87 g KQSO4

0.338 g MnSOy4

0.288 g ZnSO,

0.1 g CuSOy4

0.056 g CoSO4

0.048 g NayMoO,

11dH,O

A.5 Desiccation Assay Solutions

A.5.1 Phosphate Buffered Saline

8 g NaCl

0.2 g KCI1

1.44 g NagHPO4

11dH,0

pH 7.0

Autoclave to sterilize
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A.6 Exopolysaccharide Isolation Reagents

A.6.1 Anthrone Reagent

Note: This reagent must be made fresh daily.

e 500 ml Concentrated HySO4
e 200 ml dH5O

e 1.4 ¢ Anthrone Reagent

A.7 Typical Reaction Conditions

A.7.1 Polymerase Chain Reaction (PCR) for Cloning
A.7.1.1 KOD HotStart PCR Reaction Mix

e 10 X Reaction buffer: 5 ul

e 2 mM dNTPs: 2.5 ul

e 10 mM Forward primer: 1.5 ul
e 10 mM Reverse primer: 1.5 pul
e Template DNA: 1 ul

e DMSO: As needed up to 5%

e dH,0 to 50 pl
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A.7.1.2 Typical KOD HotStart PCR Reaction

e 94°C: 2 mins

1 cycle of:

e 94°C: 15 sec

e 65°C: 30 sec

e 68°C: 90 sec

Repeat cycle 9 times, decreasing annealing temperature by 1°C each cycle 25 cycles

of:

e 94°C: 15 sec

e 55°C: 30 sec

e 68°C: 90 sec

1 cycle of:

e 68°C 5 mins

e 4°C: Hold

A.7.2 Cross-Over PCR

A.7.2.1 Typical Initial Reaction Mix

e 10 X Reaction buffer: 5 ul

e 2 mM dNTPs: 2.5 pul
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10 mM Primer A (or C): 1.5 ul

10 mM Primer B (or D): 1.5 ul

Template DNA: 1 ul

DMSO: As needed up to 5%

dH50 to 50 ul

A.7.2.2 Typical Joining Reaction Mix

e 10 X Reaction buffer: 5 ul

2 mM dNTPs: 2.5 ul

10 mM Outside primer A: 1.5 ul

10 mM Outside primer D: 1.5 pul

Template DNA AB Reaction: 1 pul

Template DNA CD Reaction: 1 ul

DMSO: As needed up to 5%

dH50 to 50 ul

A.7.3 Colony PCR
A.7.3.1 Typical Colony PCR Reaction Mix

e 10X Reaction buffer: 2.5 ul

e 10 mM dNTPs: 2.5 pl
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10 mM Forward primer: 1.5 ul

10 mM Reverse primer: 1.5 ul

Template: 2 ul

e DMSO: as needed

dH,0 to 25 ul

A.7.3.2 Typical Colony PCR Program

e 94°C: 2 mins
45 cycles of:

e 94°C: 15 sec
e 40°C: 30 sec

e 72°C: 90 sec
1 cycle of:

e 72°C 5 mins

e 4°C: Hold

A.8 Microscopy Reagents

A.8.0.3 Phosphate Buffer

Solution A: 0.2 M Monobasic sodium phosphate Solution B: 0.2 M Dibasic sodium

phosphate Add 87.7 ml A to 12.3 ml B. pH 6.0
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A.8.0.4 Uranyl Acetate Stain
e 2 g UOy(CH3CO0)92H50
e 1.9 g HyCy04
e 50 ml dH,O

e Add 25% NH,OH to pH 7-8

A.8.0.5 Lead Citrate Stain

Note: this stain reacts with CO, and carbonate, causing it to precipitate. These
contaminants should be avoided during preparation and long-term storage. dH,O
is boiled for 10 minutes to remove any CO,, then covered and allowed to cool for

30 minutes before use.

30 ml prepared dH,0O

Shake for 60 minutes to allow conversion of lead nitrate to citrate

Add 8 ml of 1M NaOH; solution should clear

Store in foil-lined plastic container at 4°C

The stain is stable for up to 6 months; discard if it becomes cloudy.
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Appendix B

Analysis of the Role of ExpR in
Exopolysaccharide Synthesis and
Rhizosphere Competitiveness of

Sinorhizobium melilot: PHB

Cycle Mutants

B.1 Introduction

The phbC and bdhA mutants of S. meliloti both demonstrate a considerable reduc-
tion in rhizosphere competitiveness relative to the wild-type strain Rm1021, with
the phenotype of the phbC' mutant being demonstrably more pronounced than that
of the bdhA strain [9]. Interestingly, neither strain exhibits a reproducible reduc-
tion in symbiotic effectiveness when inoculated by itself [275] 9] 390]. The lack of

equivalence between the competition phenotypes of the phbC and bdhA mutants
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suggests that the function of PHB as a redox regulator for removal of potential
growth inhibitory metabolites [80), B77] may be far more critical than the function

of PHB as an internal source of carbon and energy.

The data shown in Chapter suggest that, unlike the bdhA strain, a phaZ
mutant of S. meliloti does not demonstrate a reduction in rhizosphere competitive-
ness. Furthermore, although this strain shows higher levels of exopolysaccharide
(EPS) production relative to Rm1021, it is not more competitive than the wild-type
strain. These data imply that that EPS production is not the sole determinant in
the competition phenotype of other PHB cycle mutants. Indeed, it is conceivable
that the competition defect observed in phbC mutants of S. meliloti may be due to
extremely low levels of succinoglycan production. Succinoglycan production may
be sufficient to permit the establishment of an effective symbiosis but, assuming
that the succinoglycan itself is playing a role in signalling during early nodulation,

insufficient to facilitate competition with strains producing higher levels of the EPS.

All studies examining the rhizosphere competitiveness of S. meliloti PHB cycle
mutants, to date, have been conducted in the Rm1021 background. As discussed in
Section[I.4] Rm1021 however, carries an insertion element (ISRm2011-1) within the
open reading frame of expR and only synthesizes EPSII under low phosphate condi-
tions [237, 297, 401]. Earlier work demonstrated that restoration of ezpR expression
could restore the production of symbiotically active EPSII, facilitating nodulation
in an EPSI mutant background, although the nodulation was less efficient than in

the presence of succinoglycan [265].

In this study we report the construction and characterization of PHB cycle mu-
tants in an ezpR™ nolRT pstCT (SmUWS3) background. Furthermore, we report
the analysis of the rhizosphere competitiveness of strains SmUW1, SmUW24 and
SmUWG. These strains possess mutations in expR, exoY and nolR pstC respec-

tively, allowing an analysis of the potential role of these regulatory proteins in
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nodulation competitiveness and exopolysaccharide synthesis.

B.2 Results and Discussion

B.2.1 Construction of PHB Cycle Mutants in SmUW3 Back-

ground

Lysates of Rm11105, Rm11107, Rm11347 and Rm11430 were prepared as described
in Section and transductions into the SmUW3 background were carried out
as described previously [95]. Transductants were selected on LB containing either
Nmygy (phbC' and bdhA) or Spigy (phbB and phaZ) and streak purified three times.
The resultant strains are described in Table 2.1l and are summarized in Table [B.1]

for ease of reading.

B.2.2 Exopolysaccharide Biosynthesis in the SmUW3 Back-

ground

Exopolysaccharide biosynthesis was quantitated by isopropanol precipitation of the
soluble EPS secreted into the growth medium under EPS-inducing conditions, as
described in Section Although the SmUWS3 strain is visibly more mucoid
than Rm1021 on YMA, the results shown in Figure suggest that this increased
mucoidy does not translate into significantly higher secretions of EPS when cells
are grown in YMB. It would be interesting to compare these data to data generated
from cells grown in TY, which is non-EPS-inducing. It is important to remember
that EPS is distinct from capsular polysaccharide, and it is conceivable that the in-
creased mucoidy of the SmUW3 strain is entirely due to the production of insoluble

capsular polysaccharides that are not isolated in this particular assay. This may

329



Table B.1: Summary of PHB cycle and exopolysaccharide mutants con-
structed in SmUW3 background

Strain Relevant Characteristics

SmUW1 Rm1021 pstCt nolR™

SmUW3 Rm1021 expR"™ nolR* pstC*t
SmUWG6 Rm1021 ezpR™

SmUW24 ¢-Rm7055 transduced into SmUW6
SmUW33 ¢-Rm11105 transduced into SmUW3
SmUW34 ¢-Rm11107 transduced into SmUW3
SmUW35 ¢-Rm11347 transduced into SmUW3
SmUW36 ¢-Rm11430 transduced into SmUW3
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also explain the interesting phenotype recorded for the S. meliloti phbA mutant
(Section ; SmUW41 also appeared to demonstrate an increase in mucoidy
but, when assayed for soluble EPS, did not appear to secrete detectable EPS into
the growth medium. Further analysis of the relationship between capsular polysac-
charide and soluble EPS in S. meliloti is necessary in order to characterize and

understand this phenotype more conclusively.

B.2.3 Competition Phenotype of PHB Cycle Mutants in

an SmUW3 or SmUWG6 Background

The data in Table show the results of competition assays. In each trial, approx-
imately 15 nodules were crushed and the bacteroids screened for the appropriate

antibiotic resistance marker.

The comparison of SmUW1 and SmUW3 suggest that the presence of expR
does not affect rhizosphere competitiveness; this is corroborated by the data from
the comparison of Rm1021 and SmUWSG6, which also indicated that ezpR does not

affect the ability of the cells to compete for nodulation.

The mutation in SmUW24 was recently shown to be within ezoY and not exoF
as first thought [207, 244]. The comparison of SmUW24 and SmUWG6 suggests
that the synthesis of EPSII is not sufficient to restore nodulation competitiveness
to the exoY strain. Furthermore, the data in Table suggest that the reduction
in competitiveness exhibited by the phbC' mutant (SmUW33 and Rm11105) is not
alleviated by the presence of a functional expR however, the phenotype of the bdhA
mutant is less severe in this background, resulting in an increased competitiveness

relative to wild-type.
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Figure B.1: Results of the isolation and quantitation of soluble ex-
opolysaccharide from Rm1021, SmUW3 and PHB cycle mutants of
S. meliloti. Rm1021: wild-type; SmUW3: Rml1021 expR"™ nolR"
pstCt; Rm11105: Rm1021 phbC; SmUW33: SmUW3 phbC; SmUW34:
SmUW3 bdhA; SmUW35: SmUW3 phbB; SmUW36: SmUW3 phaZ
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Table B.2: Nodulation competitiveness of the S. melilot: wild-type EPS
strains and PHB cycle mutants co-inoculated in the described ratios on
M. sativa plants

Strain (%) in inoculum No. nodules tested ~ Nodule occupancy (%)
Strain 1 Strain 2 Both
SmUWL (7) + SmUW3 (93) 10 > 7 1
SmUW1 (42) + SmUWS3 (58) 15 5 6 4
SmUWT1 (88) + SmUWS3 (12) 16 13 2 1
SmUW3 (11) + SmUW33 (39) 23 12 8 3
SmUWS3 (54) + SmUW33 (46) 14 13 0 1
SmUW3 (92) + SmUWS33 (8) 16 16 0 0
SmUW3 (5) + SmUW34 (95) 14 0 7 7
SmUW3 (33) + SmUW34 (67) 18 3 4 11
SmUW3 (83) + SmUW34 (17) 17 0 15 2
SmUW33 (4) + SmUW34 (96) 8 1 13 4
SmUWS33 (29) + SmUW34 (71) 17 0 17 0
SmIUWS33 (81) + SmUW34 (19) 15 0 11 4
Rm1021 (2) + Rm11105 (98) 16 11 3 5
Rm1021 (19) + Rm11105 (81) 16 15 1 0
Rm1021 (65) + Rm11105 (35) 20 19 0 1
Rm1021 (6) + Rm11107 (94) 19 19 0 0
Rm1021 (39) + Rm11107 (61) 14 14 0 0
Rm1021 (86) + Rm11107 (14) 18 18 0 0
SmUW24 (9) + SmUWG (91) 16 0 14 >
SmUW24 (92) + SmUWG (8) 16 0 15 1
SmUW24 (99) + SmUW6 (1) 17 4 10 3
Rm1021 (30) + SmUWG (70) 8 3 11 4
Rm1021 (81) + SmUWG6 (19) 20 14 5 1
Rm1021 (98) + SmUWG6 (2) 19 18 0 1
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B.3 Conclusions

The relationship between EPS synthesis, PHB synthesis and rhizosphere compet-
itiveness is undeniable but a comprehensive understanding remains elusive. It is
conceivable that S. melilot: in the rhizosphere may use a quorum-sensing system
to co-ordinate the initiation of plant invasion [265]. S. meliloti possesses two QS
systems, the first is encoded by the sinRI locus, which is responsible for the produc-
tion of long-chain N-acyl homoserine lactones (AHLs) [219, 220]. Previous work has
shown that mutations of the sinl locus result in a strain with reduced nodulation
efficiency, [220], and mutations in an expR' background completely abolish EPSIT

synthesis [219].
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