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Abstract

Most members of the Rhizobiaceae possess single copies of the poly-3-hydroxybu-

tyrate biosynthesis genes, phbA, phbB and phbC. Analysis of the genome sequence

of Bradyrhizobium japonicum reveals the presence of five homologues of the PHB

synthase gene phbC as well as two homologues of the biosynthesis operon, phbAB.

The presence of multiple, seemingly redundant homologues may suggest a functional

importance. Each B. japonicum phbC gene was cloned and used to complement

the pleiotropic phenotype of a Sinorhizobium meliloti phbC mutant; this mutant is

unable to synthesize PHB, grow on certain PHB cycle intermediates and forms non-

mucoid colonies on yeast mannitol medium. Two of the five putative B. japonicum

phbC genes were found to complement the S. meliloti phbC mutant phenotype on

D-3-hydroxybutyrate although none of them could fully complement the pheno-

type on acetoacetate. Both complementing genes were also able to restore PHB

accumulation and formation of mucoid colonies on yeast mannitol agar to phbC mu-

tants. In-frame deletions were constructed in three of the five phbC open reading

frames in B. japonicum, as well as in both phbAB operons, by allelic replacement.

One of the phbC mutants was unable to synthesize PHB under free-living condi-

tions; one of the two phbAB operons was shown to be necessary and sufficient for

PHB production under free-living conditions. These mutants also demonstrated an

exopolysaccharide phenotype that was comparable to S meliloti PHB synthesis mu-

tants. These strains were non-mucoid when grown under PHB-inducing conditions

and, in contrast to wild-type B. japonicum, formed a compact pellet upon centrifu-

gation. Interestingly, none of the mutants exhibited carbon-utilization phenotypes

similar to those exhibited by S. meliloti PHB mutants. Wild-type B. japonicum

accumulates PHB during symbiosis, and plants inoculated with the phbC mutants

demonstrate a reproducible reduction in shoot dry mass. Analysis of bacteroid

PHB accumulation in the mutant strains suggests that the phbAB operons of B.
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japonicum are differently regulated relative to growth under free-living conditions;

mutants of the second phbAB operon demonstrated a significant reduction in PHB

accumulation during symbiosis. These data suggest that the first phbAB operon is

required for PHB synthesis only under free-living conditions, but is able to partially

substitute for the second operon during symbiosis. Deletion of both phbAB oper-

ons completely abolished PHB synthesis in bacteroids. Analysis of the upstream

regions of these genes suggest the existence of putative RpoN binding sites, perhaps

indicating a potential mode of regulation and highlighting the metabolic complexity

that is characteristic of the Rhizobiaceae.

PHB metabolism in S. meliloti has been studied in considerable detail with

two notable exceptions. No reports of the construction of either a β-ketothiolase

(phbA) or a PHB depolymerase (phaZ ) mutant have ever been documented. The

phaZ gene, encoding the first enzyme of the catabolic half of the PHB cycle in S.

meliloti, was identified and a phaZ mutant strain was generated by insertion muta-

genesis. The phaZ mutant demonstrates a Fix+ symbiotic phenotype and, unlike

other PHB cycle mutants, does not demonstrate reduced rhizosphere competitive-

ness. Bacteroids of this strain were shown to accumulate PHB, demonstrating

for the first time that S. meliloti is able to synthesize and accumulate PHB dur-

ing symbiosis. Interestingly, there is no significant difference in shoot dry mass

of plants inoculated with the phaZ mutant, suggesting that PHB accumulation

does not occur at the expense of nitrogen fixation. The phaZ mutant strain was

also used to demonstrate roles for PhaZ in the control of PHB accumulation and

exopolysaccharide production. When grown on high-carbon media, this mutant

demonstrates a mucoid phenotype characteristic of exopolysaccharide production.

Subsequent analyses of a phoA::exoF fusion confirmed elevated transcription levels

in the phaZ mutant background. In contrast, mutants of the PHB biosynthesis

gene, phbC, have a characteristically dry phenotype and demonstrate reduced exoF

iv



transcriptional activity. The phaZ mutant also demonstrates a significant increase

in PHB accumulation relative to the wild-type strain. Previous work on phasin

mutants in S. meliloti demonstrated that they lack the ability to synthesize PHB.

Transduction of the phaZ lesion into the phasin mutant background was used to

construct a phaZ -phasin mutant strain. Analysis of the PHB biosynthesis capacity

of this strain showed that the lack of PHB synthesis exhibited by S. meliloti phasin

mutants is due to loss of PHB biosynthesis activity and not due to an inherent

instability in the PHB granules themselves.

A recent study suggested that some bacteria may possess an alternate path-

way for acetate assimilation that would bypass the need for the glyoxylate cycle

in organisms that do not possess the enzyme, isocitrate lyase. In these organisms,

acetate is assimilated through the ethylmalonyl-CoA pathway, which has signifi-

cant overlap with the anabolic half of the PHB cycle, including reliance on the

PHB intermediate 3-hydroxybutyryl-CoA. The observation that phbB and phbC

mutants of S. meliloti are unable to grow well on acetoacetate – coupled with pre-

viously unexplained data that show a class of mutants (designated bhbA-D) are

able to grow on acetate, but not on hydroxybutyrate or acetoacetate – made it

tempting to speculate that an ethylmalonyl-CoA-like pathway might be present in

S. meliloti, and that this pathway mightoverlap with the PHB cycle at the point

of 3-hydroxybutyryl-CoA. An in-frame mutation of phbA was constructed by cross-

over PCR and allelic replacement. This mutant exhibited a complete abolition

of growth on acetoacetate, suggesting that PhbA represents the only exit point for

carbon from the PHB cycle and that an alternative ethylmalonyl-CoA-like pathway

is not present in this organism.

During symbiosis, rhizobial cells are dependent on the provision of carbon from

the host plant in order to fuel cellular metabolism. This carbon is transported into

the bacteroids via the dicarboxylate transport protein, DctA. Most rhizobia pos-
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sess single copies of the transporter gene dctA and its corresponding two-component

regulatory system dctBD. The completed genome sequence of B. japonicum sug-

gests that it possesses seven copies of dctA. Complementation of Sinorhizobium

meliloti dct mutants using the cosmid bank of B. japonicum USDA110 led to the

identification a dctA locus and a dctBD operon. Interestingly, the B. japonicum

dctABD system carried on the complementing cosmid was not able to comple-

ment the symbiotic deficiency of S. meliloti strains carrying individual mutations

in either dctA, dctB, or dctDsuggesting that the B. japonicum dctBD is unable to

recognize either DctB/DctD or the DctB/DctD-independent regulatory elements

in S. meliloti. All seven B. japonicum dctA ORFs were cloned and an analysis of

their capacity to complement the free-living phenotype of a S. meliloti dctA mu-

tant demonstrated that they all possess some capacity for dicarboxylate transport.

Mutants of all seven B. japonicum dctA ORFs were constructed and an analysis of

their free-living phenotypes suggested that significant functional redundancy exists

in B. japonicum DctA function. Given the large number of potential dctA genes in

the genome, coupled with an apparent lack of dctBD regulators, it is tempting to

speculate that different DctA isoforms may be used during free-living and symbi-

otic growth and may be subject to different regulatory mechanisms than those of

better-studied systems.

A comprehensive analysis of desiccation tolerance and ion sensitivity in S.

meliloti was conducted. The results of these analyses suggest that genetic elements

on both pSymA and pSymB may play a significant role in enhancing cell survival

under conditions of osmotic stress. The S. meliloti expR+ strains SmUW3 and

SmUW6 were both shown to exhibit considerably higher desiccation tolerance than

Rm1021, suggesting a role for enhanced exopolysaccharide production in facilitat-

ing survival under adverse conditions. Furthermore, scanning electron microscopy

of inoculated seeds suggests that S. meliloti cells initiate biofilm formation upon
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application to the surface of seeds. This finding has implications for the analysis

of OSS and the development of desiccation assays and may explain some of the

variability that is characteristic of desiccation studies.

vii



Acknowledgements

I would like to acknowledge my supervisor, Dr. Trevor Charles. He not only

provided me with the freedom to pursue the work described in this thesis, he also

allowed me the time to pursue extra curricular activities. His trust in my ability

to balance my PhD work with my engagement in student politics was a defining

component in my professional development as a graduate student. I would like to

thank all of the friends and colleagues with whom I worked at the Graduate Student

Association of the University of Waterloo, especially Marek Ratajczak, Craig Sloss,

Ian MacKinnon and Rose Vogt. The opportunities that I had during my tenure as

Vice President (Operations and Finance) were phenomenal and I remain indebted

to the Association.

I would like to extend a special thank you to the researchers at Agribiotics

who helped with the on-seed survival work described in this thesis. A special

thanks is extended to Jennifer Petts, Sarah Curtis and Ricardo Nordeste whose

help, friendship and humour made the endless hours of on-seed survival assays

bearable; I am forever indebted to Jennifer for the hours of titering she performed

on my behalf. I would also like to thank Dr. Michael Kahn for agreeing to share

the protocol for desiccation tolerance prior to its publication. This assay made

the high-throughput analysis of Sinorhizobium meliloti ion sensitivities doable in a

practical sense, and I remain grateful for his generosity.

In the Charles lab I would like to thank Dr. Scott Clark for teaching me every-

thing I now know about bacterial genetics and Ricardo Nordeste for his friendship

and support, especially during these past 12 months. I was also fortunate to have

the assistance of some very talented undergraduate students. Kathy Lam made a

significant contribution to the PhaZ, PhbA, and DctA work; Rebecca Zhou helped

considerably with the early development of on-seed survival assays; and Danielle

viii



Nash helped to get the Bradyrhizobium japonicum dctA clonings started. I’d also

like to acknowledge Andre Masella, whose presence in the lab always made the bad

days less miserable and the good ones more fun!

My parents sacrificed a great deal to give me and my sister opportunities that

they could have only dreamed of. I am grateful for their encouragement and sup-

port over the years. Finally, there are a number of individuals whom I have known

for only a short period of time but whose support during the final stages of this

work has been significant. More than most, Chris has had to endure and tolerate

a very cranky version of me over the past four months; I am most grateful for his

unwavering patience, and unfailing encouragement. I also owe Chris a debt of grat-

itude for his assistance in constructing figures in Adobe Illustrator. Furthermore,

my co-workers at the Council of Canadian Academies have been a continual source

of support, humour, and perspective and I am grateful to them for their friendship,

assistance and their nagging!

Financial support was provided by the Natural Sciences and Engineering Re-

search Council of Canada, Agribiotics and EMD Crop BioSciences Inc. and is most

gratefully acknowledged.

ix



Claims of Contributions to Knowledge

• This is the first study to investigate PHB synthesis in Bradyrhizobim japon-

icum. This study reports the cloning of all five phbC ORF from B. japonicum

and shows that only two of the five are capable of functionally complementing

the pleiotropic phenotype of the S. meliloti phbC phenotype.

• Mutants in three of the five phbC ORFs in B. japonicum were constructed.

All of the B. japonicum phbC mutants retain their capacity to synthesize

PHB under free-living conditions, and none of them display similar carbon

utilization phenotypes to those seen in the S. meliloti phbC mutant.

• Mutants of both B. japonicum phbAB operons were constructed and their

characterization is documented herein. This study shows that phbAB expres-

sion in B. japonicum appears to be differentially regulated between free-living

and symbiotic growth. This study also demonstrates a link between PHB

synthesis and EPS secretion in B. japonicum and shows that PHB synthesis

mutants of B. japonicum are impaired in their rhizosphere competitiveness,

in a manner reminiscent of PHB synthesis mutants in S. meliloti.

• In order to facilitate the study of B. japonicum USDA110, an antibiotic-

resistance and carbon utilization profile was developed.

• When tested using industry-standard methods, the S. meliloti pSymA mutant

SmA818 is impaired in on-seed survival, suggesting a potential role for pSymA

in facilitating survival under adverse conditions.

• The ability to synthesize PHB increases the survival of S. meliloti on-seed, im-

plying a potential role for PHB in the long-term survival of cells under adverse

storage conditions. Conversely, during the initial two weeks of desiccation,
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strains that cannot synthesize PHB demonstrate higher levels of desiccation

tolerance than those that can.

• The addition of trehalose to the growth medium of S. meliloti cells prior

to inoculation on-seed improves their survival during the initial 2-4 weeks

post-inoculation; the effect over longer-term storage appears to be negligible.

• S. meliloti cells appear to initiate biofilm formation upon application to the

surface of seeds. This finding has implications for the analysis of OSS and

the development of desiccation assays.

• The S. meliloti expR+ strains SmUW3 and SmUW6 both exhibit considerably

higher desiccation tolerance than Rm1021, suggesting a role for enhanced ex-

opolysaccharide production in facilitating survival under adverse conditions.

• The S. meliloti mutant RmF728, which carries a large deletion in pSymB,

has extremely poor desiccation tolerance relative to all other strains tested,

including RmF726 which carries an overlapping deletion.

• A number of S. meliloti pSymB mutants exhibit significant ion sensitivities,

including RmF728, RmG506, RmF514, and RmG471. Mutants possessing

multiple deletions typically demonstrated the most severe ion sensitivities.

• An ion sensitivity phenotype was identified for several short-chain dehydro-

genase/reductase mutants including Sma0326, SMc01698, SMb20871, and

SMc00553. This is the first study to identify a phenotype that can be at-

tributed to the particular SDR mutations in three of these strains.

• A tentative link between salt-sensitivity and poor desiccation tolerance in S.

meliloti was identified.
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• A region of the B. japonicum genome possessing functional copies of dctA,

dctB, and dctD was identified by heterologous complementation of an S.

meliloti dctABD mutant. The complementing cosmid was able to restore free-

living growth of the S. meliloti dctABD mutant on succinate. The dctABD

genes in question were identified as Blr3723, Blr3730 and Blr3731 respectively.

• The B. japonicum dctABD system carried on the complementing cosmid was

not able to complement the symbiotic deficiency of S. meliloti strains car-

rying individual mutations in either dctA, dctB, or dctD ; this suggests that

the B. japonicum dctBD encoded by Blr3730/Blr3731 is unable to recognize

either DctB/DctD or the DctB/DctD-independent regulatory elements in S.

meliloti.

• All seven putative B. japonicum dctA open reading frames were cloned into

the inducible expression vector pSW213. Three of the seven dctA ORFs

demonstrated delayed but strong complementation (Blr4298, Bll1718, and

Blr3723); partial complementation was seen from the other four ORFs.

• Mutants of all seven B. japonicum dctA open reading frames were constructed.

All of these mutants demonstrated a wild-type capacity to grow on succinate

as a sole carbon source, and all exhibited sensitivity to fluoroorotate. This

suggests that all of the mutants still possess a functional dicarboxylate system,

demonstrating redundancy in the B. japonicum dctA transport system.

• Analysis of the symbiotic capacity of one of the B. japonicum dctA mutants

revealed no impairment; no significant difference in the shoot dry masses of

plants inoculated with wild-type B. japonicum relative to those inoculated

with the mutant strain was recorded.

• Construction and characterization of an S. meliloti phaZ mutant represented
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the final step in the genetic characterization of the complete PHB cycle in S.

meliloti.

• phaZ mutants of S. meliloti do not share the carbon-utilization deficiencies

associated with other PHB cycle mutations.

• phaZ mutants of S. meliloti demonstrate a reduced capacity to survive long-

term carbon starvation, highlighting the significance of PHB as a carbon

source during prolonged periods of nutrient deprivation.

• phaZ mutants of S. meliloti demonstrate significant increases in PHB accu-

mulation, relative to wild-type, under free-living conditions.

• phaZ mutants of S. meliloti exhibit a statistically significant increase in suc-

cinoglycan biosynthesis, relative to wild-type, when grown under free-living

conditions.

• phaZ mutants of S. meliloti demonstrate that S. meliloti retains the capac-

ity to synthesize and accumulate PHB during symbiosis. Interestingly, an

analysis of shoot dry mass from plants inoculated with the S. meliloti phaZ

mutant indicates that PHB accumulation does not occur at the expense of

the S. meliloti-M.sativa symbiosis.

• Unlike other PHB cycle mutants, phaZ mutants of S. meliloti are not affected

in their capacity to compete in the rhizosphere for nodulation.

• An in-frame phbA mutant of S. meliloti was constructed. This is the first

report of the construction and characterization of a non-polar mutant phbA

mutant in S. meliloti.

• phbA mutants of S. meliloti do not synthesize PHB under free-living condi-

tions.
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• phbA mutants of S. meliloti appear to be more mucoid than their wild-type

counterparts. Interestingly, an analysis of their exopolysaccharide synthesis

suggests that this increase in mucoidy does not translate into significantly

higher secretions of EPS.

• The S. meliloti phbA mutant exhibits a complete abolition of growth on

acetoacetate as a sole carbon source. This suggests that PhbA represents

the only exit point for carbon from the PHB cycle and that an alternative

ethylmalonyl-CoA-like pathway is not present in this organism.

• The S. meliloti phbA mutant demonstrates residual β-ketothiolase activity.

Analysis of the S. meliloti genome sequence suggests the presence of a second

β-ketothiolase.

• S. meliloti phasin mutants are unaffected in their capacity to establish effec-

tive nitrogen-fixing symbioses with the host plant Medicago sativa. This is in

contrast to the pronounced reduction in symbiotic effectiveness reported for

the same strain on Medicago truncatula.

• Construction of phaZ -phasin mutants shows that the lack of PHB synthesis

exhibited by S. meliloti phasin mutants is due to loss of PHB biosynthesis

activity and not due to inherent instability in the PHB granules themselves.

• S. meliloti Phasin-phaZ mutants exhibit a comparable reduction in rhizo-

sphere competitiveness to phbC and bdhA mutants of S. meliloti.

• PHB cycle mutants were constructed in an expR+ nolR+ pstC+ (SmUW3)

background. An analysis of the rhizosphere competitiveness of these strains

indicates that the presence of expR does not affect rhizosphere competitive-

ness; phbC and bdhA mutants remain impaired in their capacity to compete

for nodulation in an expR+ background.
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• A comparison of SmUW24 (expR+, exoY−) and SmUW6 (expR+, exoY+)

suggests that the synthesis of EPSII is not sufficient to restore nodulation

competitiveness to the exoY strain.
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Chapter 1

Introduction and Literature
Review

1.1 Biological Nitrogen Fixation

Although dinitrogen constitutes approximately 80% of the atmosphere, in the

molecular form it is biologically unavailable to higher organisms; this phenomenon

is depicted graphically in the Nitrogen Cycle, as shown in Figure 1.1. As a result,

nitrogen is typically the limiting nutrient in the growth of crop plants and thus

plays a key role in establishing sustainable agricultural systems that are capable of

maintaining a stable ecological environment [26, 369]. In the past, crop rotation

with legumes was the main source of soil nitrogen utilized by farmers, capitaliz-

ing on biological nitrogen fixation (BNF) by the rhizobial symbionts of leguminous

plants (Figure 1.3); however, as the demand for food has increased, modern agri-

culture has become increasingly dependent on the application of external nitrogen

sources in order to maintain sufficient soil nitrogen to support high crop yields.

The population of the world is predicted to double, from 6.7 billion in 2008, to

over 13.5 billion within the next sixty years [276]. In 2005, more than 3.7 billion

people were considered to be malnourished [388] and the per capita availability of

cereal grains has been declining since 1985 [364]. Continued expansion of the human
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Figure 1.1: The nitrogen cycle. Modified from [284]
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Figure 1.2: World consumption of nitrogen-based fertilizers from 1960-
2002 [140]
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Figure 1.3: Nitrogen inputs in USA agriculture from 1961 to 1999 [105]
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population will place increasing pressure on the diminishing resources necessary

for food production. Increased food production necessitates the use of increased

levels of fertilizers. Indeed, in 2007 world nitrogen fertilizer production exceeded

154 million tons [278]. In 2008, world nitrogen demand is expected to exceed 160

million tons per year [278], equalling the amount now produced biologically each

year [105, 36]. To produce this amount of fertilizer necessitates the use of over 270

million tons of coal, or an equivalent non-renewable fossil fuel, which itself presents a

major environmental risk [248], producing potent greenhouse gasses and compounds

known to cause acid rain and smog [358]. BNF thus represents an environmentally

responsible and safe alternative to the use of exogenously applied fertilizers. Indeed,

legume crops in the US alone are responsible for the fixation of approximately 6

million tonnes of atmospheric nitrogen annually [155]. The economic value of this

process exceeds $2.3 billion (US) assuming an average nitrogen fertilizer cost of $379

per tonne [363]. The use of exogenously supplied rhizobia as a means of decreasing

reliance on industrially produced fertilizer has been the focus of major research

efforts for several years. Rhizobia-based seed and soil inoculants are now sold world-

wide, reducing the need for application of expensive fertilizer by facilitating optimal

nodulation of legumes and, in turn, maximizing levels of N2-fixation [33, 42, 67].

The use of legumes to improve soil nitrogen content has a long history, dating

back to the time of the Romans; however, it was not until the advent of detailed

N-balance studies that legumes were shown to accumulate N from sources other

than simply soil and fertilizer. In 1886 it was shown that the ability of legumes to

convert N2 from the atmosphere into compounds that could be used by the plant

was due to the presence of swellings or nodules on the legume root; more specifically

it was due to the presence of particular bacteria within these nodules [144]. The

first rhizobia were isolated from nodules in 1888; they were subsequntly were shown

to possess the ability to reinfect their legume hosts and to fix N2 in symbiosis [15].
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1.2 The Rhizobiaceae

The rhizobia are the members of the Rhizobiales order of the α-proteobacteria that

are capable of establishing symbiotic relationships with members of the Legumi-

nosae family of flowering plants. These symbiotic relationships involve bidirec-

tional signal exchange between the bacteria and plant partners, culminating in the

formation of nitrogen-fixing root nodules. The rhizobia include the genera Sinorhi-

zobium, Rhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium, and the

range of host plants they are capable of infecting is estimated to exceed 16,000

species [126]. These include the agriculturally important plants alfalfa, pea and

soybean, which yield over 300 million metric tons of crops per year, and account

for over 13% of the worlds total cultivated land [109]. In symbiosis with legumes,

the bacteria elicit formation of specialized, microaerophilic nodules on the roots

of the host plant in which, following infection and colonization of the nodule, the

bacteria undergo differentiation into a mature state known as a bacteroid, which

can reduce atmospheric dinitrogen to ammonia. The bacteroids are enclosed in a

plant-derived, peribacteroid membrane, through which all nutrients bound for the

bacteroid must pass.

As shown in Figure 1.4, symbiosis is the result of an elaborate exchange of sig-

nals between the host and the symbiont. The rhizobia respond to the presence of

plant-secreted flavonoids into the rhizosphere, the soil zone immediately surround-

ing the root system of the plant, by producing lipochitooligosaccharides known

as Nod factors (reviewed in [69]) which in turn, activate a transduction pathway

that ultimately leads to nodule formation [41]. Nod factors play a major role dur-

ing early nodule development and are known to be responsible for, among other

things, determining host-symbiont specificity as a result of host-specific recognition

of substitutions on the lipochitooligosaccharide backbone [55]. A more extensive
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discussion of the role of cell-surface factors in the symbiotic process is included in

Section 1.4. During differentiation into the mature bacteroid state, the bacteria

undergo significant biochemical and morphological changes in response to environ-

mental stimuli within the nodule; these stimuli presumably include chemical signals,

low oxygen concentration, pH changes, and other plant-determined conditions that

are needed to facilitate the reduction of atmospheric dinitrogen to ammonia [201].

1.2.1 Sinorhizobium meliloti

S. meliloti is a gram negative α-proteobacterium. Primarily a soil-dwelling bac-

terium, S. meliloti can enter into effective symbioses with several genera of forage

legumes including Medicago, Melilotus and Trigonella. The genome sequence of

S. meliloti, completed in 2001 [104], contains three replicons: a 3.65-Mb chromo-

some and two megaplasmids, pSymA (1.35 Mb) and pSymB (1.68 Mb), all three

of which contain genes required for symbiosis. The genome is estimated to encode

6204 proteins, approximately 60% of which have had functions ascribed on the ba-

sis of homology to proteins of known function. Furthermore, the ORFeome of S.

meliloti was constructed in 2005 [311], and represents a phenomenally valuable tool

for genetic investigations and manipulations in S. meliloti and related rhizobia.

In symbiosis with the host legumes Medicago sativa and Medicago truncatula, S.

meliloti elicits the formation of indeterminate nodules; nodules that are long and

cylindrical in structure, and possess a persistent apical meristem.

1.2.2 Bradyrhizobium japonicum

Among the Rhizobiaceae, B. japonicum is one of the most agriculturally important

since it is the the symbiont of soybean. B. japonicum nodules are large and spherical

in shape, and do not possess a persistent meristem. The genome of B. japonicum
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Figure 1.4: A schematic representation of the nodulation process (mod-
ified from [253])
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has been sequenced and is comprised of a single circular chromosome of 9.1 Mb [178,

179]. The genome is estimated to encode 8317 proteins, approximately 52% of which

have had functions ascribed on the basis of homology to proteins of known function,

and 30% demonstrated homology to hypothetical genes. 34% of B. japonicum genes

demonstrated significant similarity to genes in the related species S. meliloti and

M. loti [104, 176, 177], and 23% appeared to be unique to B. japonicum [178, 179].

Although mono-partite in nature, the genome does posses a 410-kb region that

contains many of the genes needed for symbiotic nitrogen fixation [123, 198, 350].

1.3 Carbon Metabolism in the Rhizobiaceae

The Rhizobiaceae can be split into two broad classes on the basis of their metabolism:

fast growers and slow growers [2, 85]. Fast-growing rhizobia are typically found as-

sociated with temperate legumes and have generation times of less than six hours;

these include, respectively, the common alfalfa and pea symbionts S. meliloti and

R. leguminosarum (reviewed in [330]). Slow-growing rhizobia are often tropical in

origin, have generation times that exceed six hours and include the soybean sym-

biont B. japonicum. While both groups are renowned for their metabolic diversity,

it has been reported that the fast-growing rhizobia demonstrate a broader capacity

for carbohydrate metabolism [116, 125, 300], while the slow growers can catabolize

a larger variety of aromatic and hydroaromatic compounds [115, 264].

There is a considerable wealth of information in the literature regarding the

diverse metabolic capacity of rhizobia however, the construction of a coherent and

integrated picture of rhizobial cellular metabolism has yet to be completed. As

bioinformatics tools become more powerful, attempts at developing integrative,

constraint-based metabolic models will become more elegant and accurate. A re-

cent study, using R. etli CFN42, documents the first attempt at a comprehensive
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metabolic reconstruction of a rhizobial species [289]. This model, depicted in Figure

1.5, integrates data from the R. etli genome, journal publications, online databases

and metabolism textbooks and represents an interesting and exciting step towards

a more complete understanding of bacterial metabolic networks.

The major metabolic function of the root nodule is to take N2 from the air and

reduce it to ammonia, providing the plant with a source of fixed nitrogen. In order

to fix nitrogen, the rhizobial cells must undergo a complex process of metabolic

and physiological differentiation into a mature state known as the bacteroid, which

is enveloped by the plant cell. The metabolism of bacteroids, which persist in

the nodules low O2 microenvironment that is compatible with the key O2-sensitive

enzymes in the nitrogen fixation process [295, 202], is overwhelmingly focused on

the production of fixed nitrogen which is then transferred to the host plant. This

process is fuelled by the plant host through the provision of large quantities of

C4-dicarboxylic acids such as malate or succinate [293, 99, 306].

Although bacteroid metabolism has been the subject of considerable study in

recent years, and despite the wealth of recent proteomics data [308, 309], the basic

questions of metabolic regulation and carbon utilization are largely unresolved. In

B. japonicum bacteroids it is conceivable that the microaerophilic nature of the

nodule may result in repression of key TCA enzymes. This would necessitate the

use of alternate pathways to bypass the rate-limiting reactions in order to facilitate

continued carbon oxidation, and perhaps modulate intracellular NAD(P)H levels.

These pathways are shown in Figure 1.6, which depicts an overview of bacteroid

metabolism in B. japonicum. In S. meliloti. previous studies have highlighted the

importance of the TCA to bacteroid metabolism because citrate synthase [147],

isocitrate lyase [233], succinate dehydrogenase [107], and malate dehydrogenase

[82] have all been shown to be essential to symbiosis.

Figure 1.6 shows that there are a number of potential bacteroid responses to
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Figure 1.5: A reconstruction of carbon metabolism in R. etli was mod-
elled using data from a wide variety of different sources including the
R. etli genome sequence, journal publications, online databases and
metabolism textbooks [289]
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Figure 1.6: Carbon metabolism in B. japonicum bacteroids. The
TCA has been highlighted in red. Pathways indicated include
the α-ketoglutarate shunt, the γ-aminobutyrate pathway, the malate-
aspartate shuttle, the modified dicarboxylic acid cycle and, the poly-β-
hydroxybutyrate synthesis pathway. Modified from [232]
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regulatory events. PHB metabolism is discussed in detail in Section 1.3.1; in order

to facilitate a complete discussion of bacteroid metabolism, a brief overview of other

pathways is included below.

1.3.0.1 Glyoxylate Shunt

The glyoxylate shunt, as indicated in Figure 1.6 and shown in more detail in Figure

1.7, represents an anapleurotic pathway that facilitates the growth of cells on C2-

substrates, allowing them to replenish TCA intermediates [59, 168]. This pathway

is widespread among prokaryotes, and is encoded by the genes for isocitrate lyase

(ICL) (EC 4.1.3.1) and malate synthase (MS) (EC 2.3.3.9), although data regard-

ing its role in symbiotic nitrogen fixation remains inconclusive. Radiorespirometric

analyses of B. japonicum indicated that up to 50% of acetyl-CoA that enters the

TCA is metabolized via malate synthase [329], and ICL activity has been detected

in bacteroids of senesced B. japonicum nodules [391]; however, isocitrate lyase activ-

ity has not been detected in bacteroids from soybean, pea, alfalfa or clover nodules

[130, 168], although free-living B. japonicum and S. meliloti cells demonstrate mea-

surable levels of ICL activity when grown on acetate under free-living conditions

[79, 130, 218]. Interestingly, malate synthase activity appears to be constitutive

[79, 130, 218], although activity levels appear to be higher in cowpea and soybean

nodules, relative to alfalfa or pea [121, 168]. Mutational analysis ofaceA (ICL) and

glcB (MS) in S. meliloti indicated that aceA is essential for growth on acetate, and

thus fundamental to the function of the glyoxylate shunt [282]. Interestingly, this

study also showed that glcB is not essential for growth on acetate, which is in stark

contrast to observations made in other bacteria, including E. coli [190, 257, 282],

suggesting that other pathways for C2-metabolism might exist in Rhizobia.
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Figure 1.7: The glyoxylate shunt
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1.3.0.2 Malate-Aspartate Shuttle

The malate-aspartate shuttle facilitates the oxidation of imported malate to ox-

aloacetate; oxaloacetate is subsequently transaminated to aspartate via a glutamate-

dependent aspartate aminotransferase [175]. This would necessitate transport of

glutamate across the peribacteroid membrane and into the bacteroid. The as-

partate aminotransferase reaction would result in the production of aspartate and

α-ketoglutarate; export of α-ketoglutarate, to compensate for malate import might

facilitate the maintenance of the PBM electrochemical potential (reviewed in [232]).

In B. japonicum bacteroids, accumulation of oxaloacetate would result in the

competitive inhibition of succinate dehydrogenase. The malate-aspartate shuttle

would allow the bacteroids to metabolize oxaloacetate under conditions where the

activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate are rate-

limiting relative to malate dehydrogenase. This would thus facilitate continued

carbon metabolism under otherwise inhibitory conditions (reviewed in [232]).

1.3.0.3 α-Ketoglutarate-Glutamate Shunt

α-Ketoglutarate dehydrogenase activity in other gram-negative bacteria is known to

be inhibited by NADH [156, 191, 329, 384] or repressed under conditions of oxygen

limitation [4, 127, 160]. Given the metabolic constrains of the nodule environment,

it is conceivable that a similar repression is experienced in bacteroids. Previous

studies in B. japonicum and R. leguminosarum have presented data that suggest

a significant portion of the carbon that enters the bacteroids is converted to gluta-

mate [211, 305]. Glutamate dehydrogenase activity is induced by the presence of

ammonium and α-ketoglutarate [101], both of which are likely to be present in the

bacteroid [232]. Therefore, if α-ketoglutarate dehydrogenase activity is repressed

then the accumulation of α-ketoglutarate would upregulate aspartate aminotrans-
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ferase and GOGAT [386], thus providing a key link between the glutamate shunt

and the malate-aspartate shuttle.

There is considerable evidence that glutamate, derived from α-ketoglutarate,

can act as the transamination donor in the aspartate-aminotransferase reaction

in R. leguminosarum bacteroids [211]. The resultant aspartate is secreted to the

plant, facilitating asparagine synthesis, which is then taken up by the plant as the

main nitrogen-source from the nodule (see Figure 1.11 in Section ). Glutamate

may also be decarboxylated to produce γ-aminobutyrate (GABA), which can be

further metabolized to succinate [175], thus providing a bypass of α-ketoglutarate

dehydrogenase while still removing an equivalent amount of CO2 and producing

succinate, which can then re-enter the TCA cycle.

1.3.0.4 Dicarboxylic Acid Cycle

In order to metabolize succinate or malate via the TCA cycle, bacteroids must

employ an anapleurotic pathway leading to the synthesis of acetyl-CoA. While B.

japonicum bacteroids apparently lack PEP carboxylase activity [335], it is conceiv-

able that PEP carboxykinase or malic enzyme may be employed in the synthesis

of acetyl-CoA. As shown in Figure 1.6, acetyl-CoA has four possible fates: 1. PHB

synthesis; 2. TCA cycle; 3. malate synthesis; 4. reduction to ethanol. The combi-

nation of the GABA pathway and PHB synthesis provides an effective mechanism

for the removal of excess carbon from the TCA cycle. For example, the GABA

pathway involves a decarboxylation step, as does α-ketoglutarate dehydrogenase;

employing a dicarboxylate-like pathway to channel oxaloacetate to pyruvate and

then acetyl-CoA eliminates two carbon molecules. These alternative pathways thus

represent potential detours around the decarboxylating steps of the TCA cycle [232].
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1.3.0.5 Reductive Pathways

As shown in Figure 1.6, it is conceivable that B. japonicum bacteroids may synthe-

size acetaldehyde or ethanol to support nitrogen fixation. The potential pathway

for ethanol synthesis would necessitate the upregulation of aldehyde dehydroge-

nase and alcohol dehydrogenase, both of which have been detected in bacteroids

(reviewed in [232]).

1.3.0.6 PHB Synthesis

While most of the carbon from the plant is channelled into energy production to fuel

nitrogen-reduction, it has been well-documented that in B. japonicum bacteroids,

some carbon is diverted into the production of intracellular storage polymers com-

posed of either glycogen or poly-β-hydroxybutyrate (PHB) that can be seen by

electron-microscopy [60, 74, 122, 149, 400]. PHB and glycogen deposits are found

in the cytoplasm as electron-transparent and electron-dense granules, respectively;

these granules are synthesized by many bacteria when carbon is abundant and

growth is limited by the shortage of another nutrient [400, 390]. PHB metabolism

is discussed in more detail in the following sections.

1.3.1 Polyhydroxybutyrate Metabolism

1.3.1.1 Cellular Role of PHB

PHB is the best-characterized member of the polyhydroxyalkanoates (PHAs) [217,

326]. PHAs have generated considerable interest as potential economically competi-

tive, environmentally benign replacements for synthetic, biologically inert polyester

plastics [217]. Indeed, the potential commercial value of PHAs has generated the

interest that has driven much of the research in this field.
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The cellular role of PHB, although not fully understood, is known to extend

further than simply acting as an intracellular carbon store that can be mobilized to

provide a bacterium with a competitive advantage over other soil microbes. PHAs

have been shown to protect the cell from a wide range of stresses including heat

shock, UV irradiation, exposure to oxidizing agents, and osmotic shock [173]; per-

haps by favouring the establishment of the bacterial cells and thus enhancing their

capacity to tolerate environmental stress [174]. PHB metabolism is also tightly

linked to the redox state of the cell; studies in Azotobacter beijerinkii, Azotobacter

insigni, and Rhizobium ORS571 have shown that accumulation of large amounts

of PHB is induced under conditions of oxygen limitation [313, 324, 328]. Under

low-oxygen conditions, such as those found in the root nodule, the redox potential

of the cell decreases as a result of aerobic metabolism, leading to a concurrent rise

in cellular NAD(P)H levels. This leads to inhibition of both NADP+-isocitrate

dehydrogenase (EC 1.1.1.42) and citrate synthase (EC 2.3.3.1) which, in turn, di-

vert acetyl-CoA and electrons away from the TCA cycle and into PHB synthesis

[160, 313]. It has been suggested that in Azotobacter, PHB synthesis fulfills a regula-

tory role as an alternative electron acceptor; under conditions of oxygen limitation,

NAD(P)H is channelled into PHB formation to relieve inhibition of isocitrate de-

hydrogenase and citrate synthase in order to allow continued operation of the TCA

cycle [314, 313]. This is supported by the observation that a strain of Azotobacter

vinelandii possessing a defective NADH oxidase synthesized massive amounts of

PHB during the exponential phase of growth; in these cells PHB acts as an alter-

native electron sink to facilitate the regeneration of NAD(P)+, and its production

allows cells to maintain a wild-type level of growth [261, 262]. Although further

studies are required to elucidate the mechanisms by which partitioning of acetyl-

CoA between the TCA cycle and PHB synthesis is controlled, it is feasible that

regulation of these pathways is probably controlled by a combination of factors,
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including the acetyl-CoA/CoA ratio, the redox states of the pyridine pool, and

reduced TCA cycle activity under microaerobic conditions [182].

While best-known for their ability to form nitrogen-fixing symbioses with legumes,

the rhizobia are indigenous soil bacteria and as such are well-adapted to sur-

viving in the typically oligotrophic, carbon-limiting environment of the bulk soil

[368]. Carbon-rich root exudates released by plants make the rhizosphere extremely

nutrient-rich relative to the bulk soil environment [368]. As rhizobia move between

the rhizosphere and the bulk soil, the ability to accumulate and then degrade PHB

and other carbon storage polymers would provide a competitive advantage over

other bacteria. Furthermore, the recent observation that the bdhA gene encod-

ing the PHB degradative enzyme 3-hydroxybutyrate dehydrogenase (BdhA, EC

1.1.1.30) in S. meliloti is upregulated in response to the presence of the alfalfa

root exudate biotin may be significant [153]. Rapid catabolism of stored PHB to

fuel cell division would allow the rhizobia to rapidly colonize the plant rhizosphere,

facilitating efficient nodulation and nitrogen fixation.

1.3.1.2 PHB Metabolism

The structural similarity of PHB to polypropylene and its development as a com-

mercial product has provided the stimulus for the isolation and study of PHA

biosynthesis genes from multiple bacterial species. The PHB cycle of S. meliloti

has been elucidated and is depicted graphically in Figure 1.8; analyses of S. meliloti

PHB mutant phenotypes have shown that the ability to synthesize and utilize PHB,

while important in competitive growth, is not essential for symbiosis [7, 390].

Synthesis of intracellular amorphous PHB storage granules from TCA cycle

intermediates can act as an over-flow pathway for the TCA cycle. Two acetyl-

CoA molecules are condensed by the action of a 3-ketothiolase, PhbA (PhaA; EC
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Figure 1.8: The poly-3-hydroxybutyrate cycle of S. meliloti
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2.3.1.9) to form acetoacetyl-CoA (AA-CoA) [267]. AA-CoA is then reduced to 3-

hydroxybutyryl-CoA (3-HB-CoA) by an acetoacetyl-CoA reductase, PhbB (PhaB;

EC 1.1.1.36) [268]. 3-HB-CoA forms the substrate for polymerization to yield PHB

through the action of PHB synthase, PhbC (PhaC; EC 2.3.1.-) [312].

Intracellularly, PHB degradation is initiated by the action of PHB depolymerase,

PhaZ, (EC 3.1.1.75) which releases the D-3-hydroxybutyrate (D-3-HB) monomer

[68]. D-3-HB is oxidized by the action of 3-hydroxybutyrate dehydrogenase, BdhA

(EC 1.1.1.30) to acetoacetate (AA) [6], which is esterified to acetoacetyl-CoA (AA-

CoA) by acetoacetyl-CoA synthetase, AcsA2, (EC 6.2.1.16) [40]. Following hydrol-

ysis of AA-CoA by PhbA, acetyl-CoA is assimilated via the TCA cycle and glyoxy-

late shunt enzymes [217]. Alternatively, upon cell death and lysis, PHB granules

are released into the extracellular environment where they undergo a transition

into a partially crystalline polymer and can be broken down by the action of ex-

tracellular PHB depolymerases [164]. The extracellular degradative enzymes are

phylogenetically unrelated to the intracellular enzymes and their substrate specifici-

ties are distinct, recognizing the amorphous and semi-crystalline forms respectively

[164, 341].

1.3.1.3 Genetics and Genomics of PHB Metabolism

Analysis of the genomic organization of PHB biosynthesis genes in the α-proteobacteria

has revealed that the genes encoding PHB synthases are typically not co-localized

with other genes in the PHB biosynthesis pathway [285], a pattern that appears

to be consistent throughout the rhizobia [104, 177, 178, 179]. This is in contrast

to other PHB-accumulating bacteria in which PHB synthesis genes are often found

clustered within the genome (Figure 1.10) [286]. In the β-proteobacterium Wauter-

sia eutropha phbC is found clustered with phbA and phbB to form the phbCAB

operon [312, 318] and in the γ-proteobacterium A. vinelandii these genes are clus-
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tered to form the phbBAC operon [269]. In rhizobia phbA and phbB are found

within an operon while phbC is typically found elsewhere in the genome. This

pattern has been confirmed for S. meliloti [104], Mesorhizobium loti [177], and

Bradyrhizobium japonicum [178]; although it is worth noting that B. japonicum

possesses two copies of the phbAB operon and five copies of phbC, which are dis-

tributed throughout the genome (Figure 1.9) [7].

The PHB cycle in S. meliloti is the most extensively studied of the rhizobial PHB

pathways. PHB biosynthetic genes were first discovered by heterologous comple-

mentation [390], heterologous hybridization [349], and mutagenesis [275]. Screening

of mutants for an inability to grow on PHB cycle intermediates resulted in the iden-

tification of several genes involved in the PHB degradation cycle [6, 8, 46, 70]. The

genes in the PHB degradation pathway are phaZ which is located on the chro-

mosome and has yet to be experimentally characterized; bdhA which is located on

pSymB; and acsA2 which is located on the chromosome [40]. Mutants of several

key PHB cycle enzymes have demonstrated interesting and informative phenotypes

that have helped elucidate potential roles for the PHB cycle in both free-living and

symbiotic growth. A summary of genes that have been shown to elicit an effect on

the PHB cycle is listed in Table 1.1.

22



Figure 1.9: PHB synthesis genes of B. japonicum are distributed
throughout the genome of the organism. phbAB-1 : Bll0225/Bll0226;
phbAB-2 : Blr3724/Blr3725; phbC-1 : Blr2885; phbC-2 : Blr3732; phbC-
3 : Bll4360; phbC-4 : Bll4548; phbC-5 : Bll6073
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Figure 1.10: PHB synthesis genes in the Rhizobia and related organisms
[351]
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PhbB and PhbC are key enzymes in the anabolic arm of the PHB cycle and

are encoded by genes located on the S. meliloti chromosome. Both phbB and phbC

mutants of S. meliloti strain Rm1021 are deficient in the ability to produce suc-

cinoglycan, resulting in dry, non-mucoid colonies when grown under carbon-rich

conditions; this phenotype is not observed in PHB degradation mutants [7]. Fur-

thermore, the inability of these mutants to utilize the PHB cycle intermediates

D-3-HB and AA as sole carbon sources [7, 40], suggests that the ability to syn-

thesize PHB is essential for its degradation. phbC mutants are able to establish

successful nitrogen-fixing symbioses with their host plant, and early studies implied

that phbC mutants were essentially indistinguishable from wild-type in their sym-

biotic effectiveness [275, 390]. More recent studies however, have shown that plants

inoculated with a phbC mutant strain, although appearing healthy, exhibit a de-

lay in nodule development and a reduction in the total number of nodules formed,

coupled with a significant reduction in shoot dry weight [7].

AcsA2 in S. meliloti is involved in the catabolic arm of the PHB cycle and is

responsible for the synthesis of acetoacetyl-CoA from AA [8]; this is in contrast

to Escherichia coli in which AA is activated by a CoA transferase [165]. acsA2

is located on the chromosome; mutants were generated by Tn5 mutagenesis and

are unable to use either D-3-HB or AA as sole carbon sources [40, 46, 70]. Over-

expression of acsA2 in S. meliloti Rm1021 conferred the ability to utilize L-(+)-

hydroxybutyrate (L-3-HB) as a sole carbon source, although it is worth considering

that AcsA2 has a higher Km and lower Vmax for L-3-HB than for AA, suggesting

that L-3-HB is not a natural substrate for the enzyme [8].

The S. meliloti bdhA gene is the first gene in an operon that also contains genes

encoding subunits for xanthine oxidase and xanthine dehydrogenase [6]. Rm11107,

a bdhA mutant of S. meliloti, was generated using Tn5 mutagenesis and identi-

fied by its ability to use AA but not D-3-HB as a sole carbon source. This is in
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contrast to phbC, phbB and acsA2 mutants, which are all unable to grow using

AA as a sole carbon source [7, 46, 70]. While neither BdhA nor PhbC is neces-

sary for an effective symbiosis [275, 390], S. meliloti strains able to synthesize and

degrade PHB demonstrate a measurable competitive advantage over mutants in

either the anabolic or catabolic pathways of the PHB cycle during both free-living

and symbiotic growth [7]. Moreover, the inability to synthesize PHB manifests a

more severe defect than the inability to utilize PHB-derived D-3-HB as a source of

carbon and energy [7]. This suggests that the ability of PHB to act as a redox reg-

ulator for removal of potentially growth inhibitory metabolites [80, 377] may be far

more critical than its use as an internal carbon and energy store [7]. The ability to

synthesize and break down PHB may confer a significant competitive advantage on

S. meliloti during saprophytic growth. This in turn would enhance the likelihood

of establishing successful symbioses upon receipt of the appropriate stimuli.

PHB cycle mutants in other species of rhizobia have also been investigated.

Rhizobium etli phaC mutants grow poorly on pyruvate as a sole carbon source

during free-living growth [43, 81]. This suggests that suppression of the TCA cycle

occurs in phaC mutants, possibly due to the increased NADH/NAD+ ratio, which in

turn causes suppression of key metabolic enzymes including pyruvate dehydrogenase

[43, 87]. This observation is similar to that reported for R. leguminosarum bv viciae

(which forms indeterminate nodules on the roots of pea) but not corroborated by

results from R. leguminosarum bv. phaseoli (which forms determinate nodules

on the roots of bean) [212]. These data suggest that, in at least R. etli and R.

leguminosarum bv. viciae, PHB synthesis is important for pyruvate metabolism.

R. etli phaC mutants also accumulated up to 50-fold more glycogen in free-living

growth than the wild-type strain, suggesting that carbon can be shuffled between

alternative storage polymers [43].

Analysis of the genome sequence of B. japonicum [178] indicated the presence
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of five phbC homologues (one of which has been shown to be able to functionally

complement a S. meliloti phbC mutation [7]) and two phbAB operons encoding

acetyl-CoA acetyltransferase and acetoacetyl-CoA reductase [178, 179]. The pres-

ence of so many copies of phbC suggests a significant role for PHB in B. japonicum

metabolism. Although the capacity of each of these genes to encode a functional

PHA synthase has not been experimentally determined, each one does contain the

conserved catalytic residues found in all PHA/PHB synthases [285].

While not strictly part of the PHB cycle, the aniA gene encodes a transcrip-

tion factor that is thought to be responsible for regulating expression of genes

whose products are important in the partitioning of carbon flow in the bacterial

cell [274]. In S. meliloti, AniA synthesis is stimulated under low-oxygen conditions,

and its production results in the channelling of excess carbon into PHB and glyco-

gen biosynthesis [274]. aniA mutants of S. meliloti exhibit a significant increase in

exopolysaccharide (EPS) production under anoxic conditions but show no increase

in intracellular carbon storage polymers [274]. In R. etli however, AniA appears

to also play a significant role in controlling carbon flow under aerobic conditions

[87, 274]. aniA mutants of R. etli exhibit a marked decrease in PHB accumulation,

a large increase in EPS biosynthesis and a drastic alteration of global protein ex-

pression, including the disappearance of PhaB during aerobic growth [87]. aniA in

R. etli was identified in a phaC mutant background by random Tn5 mutagenesis;

mutants restored in their ability to grow on pyruvate as a sole carbon source all

possessed a single insertion that mapped to an ORF with significant homology to

aniA of S. meliloti [87]. The precise role played by aniA in rhizobial metabolism

remains to be determined but, given the significance of carbon metabolism under

both free-living and symbiotic conditions, it is tempting to speculate that it will be

central to multiple metabolic pathways.
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1.3.1.4 PHB in the Rhizobia-Legume Symbiosis

The ability of bacterial cells to partition acetyl-CoA between the TCA cycle and

PHB synthesis in order to maintain respiration at sufficiently high levels under

microaerobic conditions is especially pertinent when one considers the metabolic

state of the bacteroid during symbiosis. Rhizobia are obligate aerobes; however, all

metabolic reactions occurring in the bacteroid must occur under the microaerobic

conditions necessary to protect the O2-labile nitrogenase enzyme that is responsible

for nitrogen reduction. As a result, tight regulation of free O2 in the root nodule is

essential to ensure that, while the concentration of free O2 is low, O2 flux remains

high enough to support the high level of respiration required for nitrogenase activity

[202]. Control of free O2 availability to the bacteroid is presumably a major factor

in the control of bacteroid metabolism; it has been proposed that O2 availability

is used by the host plant as a means of sanctioning non-fixing strains of rhizobia,

allowing the host plant to select against nodules that contain non-fixing rhizobia

[71, 185].

The roles of PHB in the rhizobia-legume symbiosis appear to be more diverse

than simply providing an alternative electron sink and data concerning the function

of PHB in bacteroid metabolism is often conflicting. While most rhizobia accumu-

late PHB under free-living conditions [43], not all rhizobia accumulate PHB during

symbiosis. The ability to accumulate PHB during symbiosis appears to be depen-

dent on the physiology of the nodule formed by the host plant. Two major types

of root nodule are formed in the rhizobia-legume symbiosis: determinate nodules

which do not possess a persistent meristem and instead form a spherical-shaped

structure, and indeterminate nodules which possess a persistent meristem resulting

in a long, cylindrical structure [134].
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1.3.1.5 Determinate Nodules

Bacteroids of determinate nodules, such as those formed by B. japonicum on soy-

bean and R. etli on beans, accumulate high levels of PHB during the active nitrogen-

fixing period of symbiosis [19, 181, 182, 391]. These PHB reserves may subsequently

be mobilized for use during periods of low carbon availability, such as during periods

of darkness or seed production by the host plant [18]. Bacteroids of B. japonicum

can accumulate up to 50% of their cellular dry weight as PHB [181, 188, 238, 391],

an amount which does not appear to fluctuate relative to nitrogenase activity but

which does decline under extended periods of carbon stress [391]. Whole nodules

of Lupinus angustifolius demonstrated reduced PHB levels and BdhA activity as

well as a rapid reduction in nitrogen fixation when the host plants were incubated

in darkness [110]. This suggests that PHB stores in determinate nodules may be

mobilized in order to support nitrogen fixation under conditions of reduced carbon

availability. The production of PHB and fixation of nitrogen in bacteroids, however,

seem incompatible: PHB and nitrogenase potentially compete for the same energy

and reductant sources and, therefore, PHB synthesis in bacteroids must compete

with nitrogen-fixation for photosynthate [43, 181]. This is further supported by the

observations that a phaC mutant of R. etli demonstrated higher and more pro-

longed nitrogenase activity relative to the wild-type strain during symbiosis [43]

and Tn5 mutants in the nitrogenase-encoding nifD, nifK, and nifH genes in B.

japonicum all accumulated higher levels of PHB relative to the wild-type strain

[135]. These data are not, however, corroborated by the observation that a phaC

mutant of R. leguminosarum bv. phaseoli was unaffected in symbiotic efficiency on

bean relative to the wild-type strain, suggesting that PHB production levels in the

bacteroid may not be the sole contributor to symbiotic performance [212].
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1.3.1.6 Indeterminate Nodules

Bacteroids occupying indeterminate nodules, such as S. meliloti on alfalfa, do not

accumulate PHB during symbiosis [149, 148]; PHB synthesis does occur, but is

presumably accompanied by an equivalent rate of degradation; any accumulation is

insufficient to allow for the formation of granules detectable by electron microscopy

[186]. These bacteria possess large numbers of PHB granules during the initial

stages of invasion, which involves passage through the infection thread by means of

cell division [103]. The cells then become enclosed in the plant-derived symbiosome

membrane [149, 148, 170] and begin the process of differentiation into the bacteroid

state. During differentiation, the PHB granules disappear and mature bacteroids

are notably devoid of visible PHB granules [149, 148, 212, 370]. While the carbon

source responsible for fuelling the invasion and infection process has not yet been

identified, it has been speculated that PHB, while not crucial to the process [7, 390],

may play some role during infection [46, 70]. Although PHB mutants are capable

of nodulation and establishing effective symbioses [275, 390], it is possible that in-

tracellular PHB stores may fuel cell division and growth during root infection and

invasion. Interestingly, a recent study in R. leguminosarum bv. viciae showed that,

under extraordinary conditions, PHB accumulation could occur; R. leguminosarum

bv viciae carrying mutations in aap and bra, encoding broad-specificity amino acid

transporters, possessed PHB granules in mature bacteroids [211]. These bacteroids

were unable to cycle amino acids between the bacteroid and the host plant resulting

in plants that displayed a Fix− phenotype, even though they had nodules that ap-

peared to possess an intermediate level of leghemoglobin and contained a functional

nitrogenase [211]. Blocking the amino acid cycling pathway between the plant and

the bacteroid, which appears to be essential for an effective symbiosis, prevents the

synthesis of aspartate from oxaloacetate, which increases carbon flow from dicar-

boxylate to pyruvate, which is in turn channelled into PHB synthesis. This study
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demonstrates that bacteroids of R. leguminosarum still retain the capacity to syn-

thesize and store large quantities of PHB, but only when carbon supply is in excess

and bacteroid metabolism is limited by the availability of a key nutrient. Further

study needs to be conducted to determine if this is a behaviour that is consistent

amongst all symbionts occupying indeterminate nodules.

S. meliloti possesses two malic enzymes: NADP+-dependent Tme, which is

present under free-living conditions, and NAD+-dependent Dme, which is present

under both free-living conditions and during symbiosis [78]. In contrast to Tme,

Dme is severely inhibited by the presence of acetyl-CoA, suggesting that Dme

functions in the pathway responsible for the conversion of dicarboxylate into acetyl-

CoA in the bacteroid [78]. While the reason for accumulation of PHB in bacteroids

of determinate nodules, but not those of indeterminate nodules, is not understood,

it has been suggested that the low activity of the NADP+-dependent malic enzyme

Tme in bacteroids of indeterminate nodules may play a role. The bacteroid is

supplied with malate and other C4-dicarboxylates by the plant; mutations in either

the dicarboxylate transport system [27, 99, 293] or the NAD+-dependent malic

enzyme Dme [77] have a severe effect on the capacity of the strain to enter into an

effective symbiosis. It has been hypothesized that the synthesis of PHB in S. meliloti

bacteroids might be inhibited because too little substrate, and too few reducing

equivalents are present to shuttle acetyl-CoA into the PHB biosynthetic pathway

[78]. In contrast to this, the NAD+-malic enzyme from B. japonicum bacteroids

demonstrated no inhibition in the presence of acetyl-CoA, suggesting that NAD+-

malic enzyme plays different physiological roles in these two species [49]. It has been

suggested that both NADP+- and NAD+-dependent malic enzymes are active in B.

japonicum bacteroids, but that the NAD+-dependent enzyme is primarily involved

in the conversion of malate to acetyl-CoA [57]. As the B. japonicum NAD+-malic

enzyme is not inhibited by acetyl-CoA, accumulation of acetyl-CoA that could be
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channelled into PHB biosynthesis would then be possible, facilitating the formation

of large PHB stores in these bacteroids.

When considering the differences between determinate and indeterminate nod-

ules, it is also worth considering the fate of the bacteroids following nodule senes-

cence. It is commonly believed that, following infection and differentiation, bac-

teroids of indeterminate nodules are terminally differentiated and are unable to

return to a free-living state, while bacteroids of determinate nodules are thought to

retain the capacity for free-living growth and can undergo a reverse differentiation

process upon nodule senescence [132, 232, 235, 337, 357]. It is therefore tempting

to speculate that PHB accumulation by bacteroids in determinate nodules and by

undifferentiated cells in the infection thread of indeterminate nodules may func-

tion to give the rhizobial cells a competitive advantage when released into the soil

following nodule senescence [70].

1.3.1.7 Summary of Rhizobial PHB Metabolism

The observation that, contrary to the commonly accepted paradigm, bacteroids of

indeterminate nodules retain the capacity to generate PHB granules is interesting.

The fact that bacteroids of R. leguminosarum bv. viciae aap/bra mutants produced

PHB granules that were visible by electron microscopy provides us with some valu-

able insight into nodule metabolism [211]. Nodules containing bacteroids incapable

of exporting fixed nitrogen will be perceived as ineffective by the plant, which will

impose sanctions upon them [70]. Recent data has shown that these sanctions are

likely to take the form of reduced O2 supply to the bacteroid [185]. This might

result in repression of the TCA cycle in the bacteroid but would not directly affect

the supply of dicarboxylates by the plant or uptake by the bacteroid. In order

to prevent build up of malate (or another C4-dicarboxylate) due to inhibition of

Dme by acetyl-CoA, the bacteroid could potentially channel the excess carbon into
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PHB biosynthesis. This would have the added benefit of regenerating NADP+,

which would presumably accumulate when nitrogenase activity is compromised. In

the absence of a functional TCA cycle however, regeneration of NAD+ is presum-

ably compromised and it is tempting to speculate that this might ultimately cause

inhibition of Dme.

The observation that plant tissue from nodules infected by R. leguminosarum

aap/bra mutants possesses increased levels of starch [211] suggests that, in the

absence of a functional TCA cycle, channelling of dicarboxylates into PHB biosyn-

thesis does not restore the metabolic state of the bacteroid to normal levels. Indeed,

it suggests that bacteroid carbon utilization appears to still be compromised. As-

suming that DctA is not feedback inhibited by a build-up of malate in the bacteroid

cytoplasm, it is conceivable that the plant employs additional measures to monitor

and regulate carbon demand by and supply to the bacteroid.

Carbon is transported from the sites of photosynthesis to the root nodule in

the form of sucrose, which is subsequently hydrolysed by the nodule plant cells

into fructose and UDP-glucose. It is from these sugars that malate (or another C4-

dicarboxylate) is synthesized and transported to the bacteroids. Malate is exported

from the plant via a dicarboxylate transporter in the plant-derived peribacteroid

membrane (PBM) [360, 393], and imported into the bacteroid by the bacterial

transporter DctA [98, 99, 293]. The sustained uptake of malate across the PBM

is dependent on subsequent uptake and metabolism by the bacteroid [359]; if bac-

teroid carbon metabolism is suppressed as a result of plant-enforced sanctions, it is

conceivable that transport of malate across the PBM will be reduced. This would

presumably cause an increase in malate levels within the root nodule tissue, which

would result in down-regulation of dicarboxylate synthesis; the excess carbon would

be channelled into starch biosynthesis instead. It is possible, given the apparent

ability of bacteroids from determinate nodules to undergo reverse differentiation
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following nodule senescence, that these symbioses have evolved to increase the pro-

vision of dicarboxylates to the bacteroid in order to fuel both cellular respiration

and PHB formation. Assisting the bacteroids in PHB accumulation has the poten-

tial benefit to the host plant of seeding the soil with a population of viable rhizobia

that would be available to nodulate the next generation of plants following seed

formation and plant death. In indeterminate nodules, where reverse differentia-

tion does not occur, there is no obvious benefit to either the plant or the bacteria

for the bacteroids to assimilate carbon reserves; PHB is not accumulated and, in-

deed, NAD+-malic enzyme has evolved to effectively switch off PHB accumulation

in the nodule under normal physiological conditions. It is only when the central

metabolic pathway of the bacteroid is blocked downstream of the branch point for

PHB biosynthesis that bacteroids of indeterminate nodules appear to be capable of

accumulating PHB. It is conceivable that, because PHB granules are osmotically

inert, PHB biosynthesis is employed as a measure to maintain appropriate osmotic

pressure in the bacteroid. If this is indeed the case, analysis of the ultra-structure of

root nodules incubated in a N2-reduced or N2-free environment might be expected to

reveal the presence of PHB granules in bacteroids of indeterminate nodules. Study

of broad-host-range rhizobial species such as Sinorhizobium sp. NGR234, which are

capable of symbioses involving either indeterminate and determinate nodules [280],

has the potential to reveal a great deal about the differential metabolic profiles that

appear to exist between bacteroids of each nodule type. Specifically, insight into

the regulation of malic enzyme(s) and the effects of an aap/bra double mutation in

a broad host range strain might reveal a great deal about nodule metabolism.

Further studies of the PBM dicarboxylate transporter are critical if we are to

understand the complex relationship between host and symbiont in the rhizobia-

legume symbiosis. It is worth considering that DctA and its plant-derived coun-

terpart have different kinetic properties; in nodules of soybean infected with B.
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japonicum, the PBM DCA transporter has a higher Km and lower Vmax than its

bacterial counterpart [360]. It is tempting to speculate that these differences may

account for the discrepancies in bacteroid PHB storage between determinate and

indeterminate nodules. Studies of the transport kinetics and regulation of the PBM

dicarboxylate transporters of determinate and indeterminate nodules is needed to

analyse this in more detail.

1.3.2 Dicarboxylic Acid Metabolism and Transport

The specificity of carbon source utilization by bacteroids to support BNF has been

under investigation since the 1960s, when it was shown that bacteroids of B. japon-

icum preferentially oxidized the TCA cycle intermediates succinate, malate and fu-

marate (all of which are dicarboxylates) over hexose sugars [329]. Since then, many

studies have been conducted on a variety of rhizobia, which show that BNF is highly

stimulated by the presence of dicarboxylates, especially succinate. C4-dicarboxylate

uptake rates by bacteroids have been shown to be 30-50 fold faster than for sugars

(reviewed in [195, 387]). Interestingly, the dependence on the TCA for N2-fixation

appears to differ between fast- and slow-growing rhizobia. Mutational analyses of

B. japonicum suggested that neither aconitase nor isocitrate dehydrogenase, both

central TCA cycle enzymes, were essential to the establishment of a effective sym-

biosis [315, 344]. This is in contrast to S. meliloti, in which isocitrate dehydrogenase

mutants are ineffective in symbiosis, although they are capable of eliciting the for-

mation of bacteroid-filled nodules [233]. A similar phenomenon is documented with

respect to the sucAB genes, which encode the 2-oxoglutarate enzyme complex and

are responsible for the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA

(reviewed in [387]). B. japonicum sucA mutants, although impaired in nodula-

tion effectiveness, can establish N2-fixing symbiosis with almost wild-type levels of

nitrogen-fixation [128], while similar mutants of R. leguminosarum were unable to
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form N2-fixing nodules on pea plants [377]. It is important to remember that these

experiments do not examine flux; it is thus likely, given the presence of both 2-

oxoglutarate dehydrogenase and succinate semialdehyde dehydrogenase [131], that

B. japonicum TCA cycle mutants are able to bypass the blocked points.

There have been many studies investigating the dependence of BNF on a func-

tional dicarboxylate transport system. Prior to the isolation of the C4-dicarboxylate

transport system of R. leguminosarum bv. trifolii in 1984 [292], researchers had

shown that mutants defective in the ability to transport C4-dicarboxylates were un-

able to enter into effective symbioses with their respective host legumes (reviewed

in [396]). Today, many examples have been documented to confirm the dependence

of BNF on C4–dicarboxylate transport and it is widely accepted that mutants are

impaired in their capacity to import dicarboxylic acids (DCAs) form ineffective,

non-nitrogen fixing nodules in symbiosis [11, 27, 84, 99, 117, 215, 382].

Transport of dicarboxylic acids into the bacteroids is also intimately linked to

the transport of amino acids, and ultimately to a complex C/N exchange pro-

cess between the host plant and the symbiont [211]. The theoretical model for

this exchange is shown in Figure 1.11. This model describes how the bacteroids

are believed to import glutamate from the host plant via the bacterial Aap/Bra

transporters [211]. Glutamate can then act as a transamination donor to produce

aspartate. Aspartate is secreted to the plant, facilitating asparagine synthesis, and

allowing the bacteria to shut down ammonia assimilation [211]. It is possible that

DctA functions as the aspartate carrier allowing aspartate to be exported from the

bacteria.
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1.3.2.1 DctA

The dicarboxylate transport system is encoded by three genes, dctA, dctB and dctD

[27, 382]. dctB and dctD encode the genes for a two-component regulatory system

in which the periplasmic sensor kinase (reviewed in [163]) DctB, responds to the

presence of C4–dicarboxylates in the bacterial periplasm [112, 111] modulates that

activity of the response regulator DctD [133, 206], which activates transcription of

dctA via the σ54-dependent, dctA promoter (reviewed in [396]). The regulation of

dctA expression is discussed in more detail in Section 1.3.2.2. DctB and DctD have

been well studied both structurally and functionally and both show homology to

two-component regulatory systems from many other bacteria.

Less is known about the structure and mechanism of DctA. DctA is approxi-

mately 46.5 kDa, and is a member of the glutamate transporter family, an important

family of secondary transporter proteins. This structural family includes trans-

porters found in mammalian neuronal, glial, and retinal cells, as well as bacterial

nutrient uptake proteins (reviewed in [319]). The bacterial transporters catalyse

the electrogenic symport of glutamate with at least two cations [347, 346, 348],

while the eukaryotic proteins require the symport of two or three sodium ions and

one proton and antiport of one potassium ion [5, 13, 180, 399]. The precise ion

requirements of DctA in rhizobial DctA systems remain to be determined.

Homology between family members is most evident in a stretch of approximately

150 residues from the C-terminal domain. This region contains four sequence motifs

(A through D), that show a high level of conservation between species. All of these

motifs have been suggested to play a role in the translocation pore or substrate

binding site [319]. Phylogenetic sequence analyses of these motifs have facilitated

the subdivision of the glutamate transporter family into five subfamilies as follows:

(i) eukaryotic glutamate transporters; (ii) bacterial glutamate transporters; (iii)
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eukaryotic neutral amino acid transporters; (iv) bacterial C4-dicarboxylate trans-

porters (of which DctA is a member); and (v) bacterial serine transporters [319].

The precise function of these conserved motifs remains elusive. It has been spec-

ulated that motif A, by virtue of its serine-and-threonine rich nature, may be a

ligand binding site. Motif C is believed to be involved in binding the carboxylate

group of substrates, since it is conserved only in the glutamate, neutral amino acid

and C4-dicarboxylate carriers. Mutagenesis studies have demonstrated that motif

B is involved in cation binding [319]. Motif D is located within the amphipathic

membrane-spanning helix 8 and, by virtue of the substrate-specific differences in

sequence, is believed to be a part of the translocation pore [228, 321]. Mutagenesis

studies have demonstrated that dicarboxylate transport is affected by alterations

to the conserved C-terminal domains, a region known to be important for ion and

substrate selection [320, 319, 321]. Interestingly however, the residue G114 in the

third transmembrane helix of S. meliloti also appears to be significant in substrate

recognition [352, 397] and indeed, multiple sequence alignment demonstrates a high

level of conservation in the region around G114, although the aligned sequences ex-

hibit substrate-specific variation, suggesting a role in substrate recognition.

The substrate specificity of several DctA homologues has been investigated [12,

89, 229, 234, 398], and is known to include aspartate, fumarate, malate, oxaloacetate

(OAA), and succinate. D-Lactate, 2-methylsuccinate, 2,2 or 2,3-dimethylsuccinate,

acetoacetate, β-hydroxybutyrate, mercaptosuccinate, α-ketoglutarate, and itaconate

are also potential substrates for this system [398]. In S. meliloti, not all substrates

recognized by DctA are inducers of DctA, and not all inducers of DctA-mediated

transport act as competitive inhibitors (and probably substrates) of DctA-mediated

transport [398]. It is worth noting that S. meliloti DctA has a much lower affinity

for orotate than either malate or succinate, suggesting that DctA is able to dis-

tinguish between very similar substrates based upon the relative positions of their
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carboxyl groups, and that substrate specificity may be defined by very specific

structural constraints [398]. DctA also has the capacity to transport orotic acid

and the toxic analogue fluoroorotic acid (FOA). Strains possessing a functional

DctA transport system cannot grow in the presence of FOA, facilitating an easy

and powerful screen for DctA activity [398].

1.3.2.2 Regulation of dctA Expression

Activation of dctA in previously characterized systems such as S. meliloti and R.

leguminosarum is outlined in Figures 1.12 and 1.13. DctB and DctD are consti-

tutively expressed at low levels [294]. The dctB gene product is located in the

cytoplasmic membrane and acts as a membrane-bound sensor that responds to the

presence of C4-dicarboxylates and transduces the signal across the membrane to

activate its cytoplasmically located C-terminus. This results in autophosphoryla-

tion and phosphotransfer to DctD [112, 287]. Phosphorylated DctD is able to bind

to two recognition sequences upstream of the dctA promoter at -110 and -143 bp

[112, 204] and interact with the alternative sigma factor RpoN (σ54) to activate

transcription of dctA (Figure 1.12) [199, 203, 204, 205, 294].

RpoN is associated with a wide variety of metabolic functions, including nitrogen

and carbon metabolism amongst the proteobacteria [35]. Standard phenotypes of

RpoN mutants in Rhizobia include the inability to transport dicarboxylic acids,

and form effective symbioses with host plants [53, 242, 294, 367, 327].

Promoters activated by RpoN do not contain canonical -35 and -10 sequences,

rather they possess the consensus -26 CTGGCACPu-N4-TTGCA -12 (invariant

nucleotides shown in bold) [73, 158]. RpoN-dependent transcription is modulated

by activator proteins, which allow σ54 to activate the core RNA polymerase under

different physiological conditions including the availability of dicarboxylates outside
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Figure 1.11: An overview of the role of amino-acid cycling in nitrogen
fixation in pea nodules. Although glutamate and aspartate are shown
as the amino acids most likely to cycle, others (such as alanine) may be
important. The reaction catalysed by AatA also forms 2-ketoglutarate,
which may be either metabolized by the bacteroid or exported back to
the plant. Export via Aap/Bra is shown with a question mark to indicate
that it is hypothetical [211]
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of the cell [241].

1.3.3 Dicarboxylate Transport in B. japonicum

Most members of the Rhizobiaceae possess a single dicarboxylate transport system,

but exceptions do exist. Both Sinorhizobium sp. NGR234 [366] and Rhizobium

tropici [14] have two systems that are capable of transporting C4-dicarboxylates,

but their capacity to support symbiotic nitrogen fixation remains unknown. Fur-

thermore, the completed genome sequence of Mesorhizobium loti revealed the pres-

ence of two genes with over 70% sequence identity to S. meliloti dctA [177, 176].

Early studies in B. japonicum suggested the presence of two succinate trans-

port systems that were active under free-living conditions [157]. Analysis of the

genome sequence of B. japonicum reveals seven genes homologous to S. meliloti

dctA. All seven possess the eight conserved domains and three sequence motifs that

are characteristic of members of the glutamate transporter family. An alignment of

the encoded amino acid sequences relative to each other, and to the DctA sequence

of S. meliloti, is shown in Figure 5.3. Interestingly, B. japonicum also possesses

two independent, differentially regulated rpoN homologues [197]. Although both

of these rpoN genes could complement the succinate- and nitrate-negative growth

phenotype of the S. meliloti rpoN mutant, B. japonicum mutants of either and

both homologues could grow on C4-dicarboxylates as a carbon source, suggesting

the existence of an rpoN -independent system for C4-dicarboxylate uptake [197].
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Figure 1.12: Transcriptional activation of dctA. DctD dimers bind to
upstream activating sequences at -110 and -143. Each subunit has three
domains, an amino terminus (N), an ATP binding site (ATP), and a
carboxy terminus (C). These proteins interact with RpoN (σ54). De-
pending upon the bacterial species, integration host factor (IHF) may
be involved [263]
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Figure 1.13: Model for the transcriptional activation of dctA [294]
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1.4 Exopolysaccharides and the Rhizobium-Legume

Symbiosis

Exopolysaccharides (EPSs) are species- and strain-specific heteropolysaccharides

that are secreted into the surrounding environment. They perform a number of

non-specific functions including stress-protection, surface-attachment and nutrient-

gathering (reviewed in [102]) as well as a significant role in the establishment of

the nitrogen-fixing symbiosis Figure 1.4. Rhizobial EPSs are structurally diverse,

exhibiting considerable variability in sugar composition, linkages, repeating unit

size, degree of polymerization and non-carbohydrate decoration (reviewed in [317]).

S. meliloti synthesizes two main groups of exopolysaccharides, succinoglycans

(EPSI) and galactoglucans (EPSII). Succinoglycan (EPSI) is one of the most well

characterized rhizobial EPS molecules. It consists of an octasaccharide repeating

unit of one galactose monomer and seven glucose residues joined by β-1,3, β-1,4

and β-1,6 glycosidic linkages [288]. Galactoglucans (EPSII) are structurally distinct

from succinoglycans and are synthesized only under conditions of phosphate limi-

tation [401] or mutation of the regulatory genes mucR or expR [113, 183, 265, 402].

Galactoglucan is a polymer of disaccharide repeating subunits of an acetylated glu-

cose and one pyruvylated galactose joined by an α-1,3 and a β-1,3 glycosidic bond

[146]. Both EPSI and EPSII are synthesized in high- and low-molecular weight

forms, depending on the degree of subunit polymerization. High-molecular weight

(HMW) forms are typically 106–107 Da in mass, while low-molecular weight (LMW)

forms exist as monomers, dimers, and trimers (reviewed in [317]).

The precise biological function of EPS in symbiosis is not well understood, how-

ever the essential role it plays is without question. The S. meliloti wild-type strain

Rm1021 synthesizes only one symbiotically active exopolysaccharide, succinogly-

can. Succinoglycan biosynthesis is controlled, through the expression of exo genes,
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by the ExoS/ChvI two-component regulatory system [51].

Strain Rm1021 is unable to synthesize EPSII because the expR gene required

for upregulation of symbiotically active galactoglucan is disrupted by an insertion

sequence (IS) element [265]. The expR gene product is a LuxR homologue that is

required for the activation of the exp genes in a cell density-dependent fashion via

the ExpR/Sin quorum-sensing system [150, 265]. The ExpR/Sin quorum-sensing

system is known to regulate the expression of over 200 genes under both free-living

and symbiotic conditions [150]; interestingly it is also responsible modulating suc-

cinoglycan biosynthesis [118]. S. meliloti Rm1021 requires an active succinoglycan

biosynthesis pathway in order to initiate a successful symbiosis (reviewed in [102]);

however, induction of LMW EPSII is sufficient to complement the nod− phenotype

of a succinoglycan biosynthesis mutant [119].

1.5 Desiccation Tolerance and On-Seed Survival

of Rhizobia

The Rhizobia, like most Gram-negative bacteria, are extremely sensitive to desic-

cation [374]; there is significant evidence to suggest that this is the main cause of

on-seed death in inoculant preparations [37, 38, 145, 222, 303, 304, 374]. It has

been shown in multiple Rhizobium species that death occurs very rapidly upon

application to the seed, and is concomitant with the rate of moisture loss from the

surface of the seed [37, 38, 296, 303]. It has also been demonstrated that the rate

of death, following application to the seeds, can be reduced by co-inoculation with

a compound designed to protect the bacterium from desiccation [303]. Desiccation

causes changes to occur in the cytoplasmic membrane of the cell that presumably

result in leakage of cellular material beyond a critical level required for viability
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[37, 38, 303, 304]. Relative humidity during storage can dramatically influence

the rate of survival of the bacterium [67, 374]. A study using R. leguminosarum

bv. trifolii showed that cells survived best at 100% relative humidity, and that

at 60% relative humidity, no viable cells were detected after 27 hours [67]. It is

possible that at high humidity levels, bacterial cells in general are metabolically

able to maintain a tolerable water balance through de novo synthesis of compatible

solutes [67]. Compatible solutes – including potassium ions, glutamate, glutamine,

quaternary amines (glycine betaine), proline, and the sugars trehalose and glu-

cosylglycerol [273] – help to maintain the water balance of the cell by means of

preferential exclusion, creating an environment that facilitates the preferential hy-

dration and consequent stabilization of cellular proteins [273]. When no water is

available in the immediate environment surrounding the bacteria, the cells cannot

rely on these mechanisms of preferential exclusion, and are thus more susceptible

to desiccation [67].

1.5.1 The Physiological Process of Desiccation

In order to survive desiccation, bacterial cells must be able to tolerate a number of

different physiological stressors including radiation, reactive oxygen species (ROS),

salts and solutes and temperature fluctuations [23, 67, 273, 283, 385]. The desicca-

tion process can be broken down into three main phases: drying (phase I), storage

(phase II), and rewetting (phase III), all of which may be manipulated in several

ways (reviewed in [376]) as depicted in Figure 1.14.

The rate of drying has a large impact on cell survival, with fast drying resulting

in more extensive and rapid cell death [10, 38], suggesting that the physiological

response to desiccation is adaptive. Water loss leads to an increase in the concen-

tration of salts and solutes, resulting in osmotic stress. Although osmotic stress

47



Figure 1.14: Model of two possible pathways for rhizobial response to
desiccation stress and desiccation-induced damage. Pathway A depicts
a response to water, osmotic, or salt stress. Pathway B outlines the
cellular response to desiccation-induced stress upon rewetting (modified
from [376])
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and desiccation stress are different phenomena, the relationship between the two

is undeniable and studies have shown that relationships between the two do exist

[50]. During storage, the water phase in the bacterial cells reaches equilibrium with

the surrounding gas phase so further desiccation is halted. During this time, the

viable population of cells typically declines, although the rate of decline can be

decreased by maintaining higher levels of relative humidity [222, 224]. Following

storage, the rewetting process can have a significant effect on survival rates. After

rewetting, cellular metabolism restarts and the accumulated damage is repaired.

If rewetting is too rapid it can induce significant disruption to the cell envelope

[37, 304], resulting in cell death; slower rehydration has been shown to considerably

increase survival [194].

Some of the more well characterized determinants for survival under conditions

of desiccation stress are depicted in Figure 1.14, and are discussed in more detail

in subsequent sections. The response to desiccation has to occur prior to actual

desiccation occurring. Cells must have sufficient time to sense and respond to

a decrease in water activity [376]. The mechanisms employed by the cells upon

sensing the onset of desiccation are outlined in Pathway “A” in Figure 1.15. In

this pathway, desiccation induces a physiological “preceding storage” response to

desiccation resulting in increased long-term survival. Pathway “B” in Figure 1.15

demonstrates an alternative pathway that is induced upon rewetting. Damage can

only be repaired when the water activity is sufficiently high to support cellular

metabolism. It is conceivable that some combination of these two pathways might

exist in all rhizobia.

1.5.1.1 The Role of Trehalose as an Osmoprotectant

There has been significant discussion of the role of trehalose, a non-reducing dis-

accharide of glucose, in increasing desiccation tolerance of bacterial cells, including
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Figure 1.15: The relationship between water activity (Aw) and time
during bacterial desiccation, highlighting the three main phases of drying
(modified from [376])
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rhizobia [62, 124, 166, 273, 332, 340]. Under low-stress conditions, S. meliloti can

utilize trehalose as its sole carbon source [29]. Under certain high-stress conditions,

including osmotic stress, S. meliloti synthesizes and accumulates trehalose, which

can serve as a compatible solute [29, 88, 152, 166]. Upon dehydration, biological

membranes typically experience significant, irreversible changes in their structural

and functional integrities [61]. In organisms capable of surviving complete dehy-

dration (the so-called anhydrobiotic organisms) trehalose can constitute up to 20%

of the dry weight of the cell, and up to 95% of the cellular carbohydrate content

[208, 333, 332]. In these organisms, no changes are observed in membrane integrity

following dehydration and subsequent rehydration, suggesting that trehalose may

play a role in protecting membranes from damage during these processes [61]. Fur-

thermore, at physiological concentrations, trehalose is the only carbohydrate known

to be able to stabilize membrane structure under conditions of sub-optimal dehy-

dration [61]; addition of trehalose to dry phospholipid membranes elicits a response

that mimics that seen upon addition of water [61]. Although the precise mecha-

nism by which trehalose stabilizes biomolecules remains unclear, several hypotheses

have been proposed to explain its protective effect [270]. The water-replacement

hypothesis suggests that sugar molecules can substitute for water molecules by

forming hydrogen bonds around the polar and charged groups of the phospholipid

membrane, thus stabilizing the native structure of the membrane in the absence

of water [62, 61, 208, 270]. In contrast, the water-entrapment hypothesis proposes

that sugar molecules act to concentrate the remaining water molecules around in-

dividual cellular components, maintaining localized solvation and protecting the

structural integrity of the membranes and proteins [208, 270]. It is likely that both

of these proposed mechanisms might have a role to play in osmoprotection and that

they are not mutually exclusive [270]. The cost of using trehalose as an additive in

the formulation of inoculants is likely to be prohibitive; however, the possibility of
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engineering rhizobial strains that can synthesize higher intrinsic levels of trehalose

under physiological conditions may hold some promise for improving OSS rates.

1.5.1.2 The Role of Exopolysaccharides in Desiccation Tolerance

Microorganisms also respond to desiccation stress by changing the structure of the

cell surface. The production of an exopolysaccharide (EPS) matrix surrounding the

cell membrane may slow the rate of moisture loss under dry conditions [139, 291,

389] although data to support this argument is conflicting [37, 139]. Reducing the

rate by which the cell loses moisture would increase the time available for metabolic

adjustment. The EPS of a Pseudomonas phbC species has been shown to hold

several times its own weight in water at low water potentials, presumably increasing

the water availability to the bacterium, and creating a controlled microenvironment

in order to increase its chances of survival [291].

Adaptations to the polysaccharide composition of S. meliloti cells undergoing

osmotic stress and desiccation have been observed in previous studies [30, 210, 266],

but again, results have been conflicting [39, 225, 259]. The mechanism by which EPS

may be expected to confer protection against desiccation remain unclear, although

it is reasonable to expect that the specific properties of individual polysaccharides

may be a major determinant (reviewed in [273]). As discussed in Section 1.4, S.

meliloti synthesizes two main groups of EPS, both of which can be affected by the

growth conditions (reviewed in [376]).

1.5.1.3 The Role of Oxygen on Survival

Reactive oxygen species (ROS) are by-products of the electron transport chain.

As rhizobia downregulate their metabolic activity in response to desiccation, they

might reasonably be expected to experience ROS-induced cellular damage as a
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result of free-radical production [376]. Indeed, previous studies have shown that

rhizobia are sensitive to O2 during desiccation [223, 258, 374]. Oxygen is believed to

become toxic to rhizobia at relative humidities below 70% [67]; dried cells appear

to have protective mechanisms against ROS so long as the relative humidity is

sufficient to permit cellular metabolism [376].

1.5.2 An Introduction to Rhizobial Inoculants

The use of exogenously supplied Rhizobium as a means of decreasing reliance upon

industrial fertilizers has been a topic of discussion for many years. Most legume-

Rhizobium interactions are species-specific, and ensuring that the appropriate rhi-

zobial species is able to infect and nodulate the host legume is vital. The aim of

inoculation with Rhizobium is to permit maximum nodulation and N2-fixation by

providing sufficient levels of viable, effective Rhizobium of the appropriate species;

to permit rapid colonization of the rhizosphere; and to facilitate nodulation as

early as possible following germination [33, 42, 67]. In a successful inoculation, the

bacteria become established in the rhizosphere surrounding the seed, out-compete

the indigenous microflora and, upon germination of the host plant, initiate sym-

biosis [226, 251, 316]. The mode of delivery of viable bacterial inoculants into the

soil however, has remained a central problem in the development of a widespread,

commercially feasible product [32, 33, 42, 145, 226, 227, 279, 332, 342, 355]. Ap-

plication of the bacteria directly on to the seed appears to be one of the most

attractive methods of inoculation and has thus far proved to be the most economi-

cally viable [226, 251, 316]. Studies investigating the viability of bacteria following

application to seeds however, showed very low levels of survival (Table 1.2), greatly

narrowing the planting window following inoculation [34, 67]. A variety of methods

are currently used to inoculate seeds but most of them require inoculation almost

immediately prior to planting which, although effective, is often cumbersome and
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requires the use of specialized equipment. As a result, there is a growing demand in

the market for pre-inoculated seed that can be purchased from the supplier with a

long planting window that would allow for greater flexibility in planting times [67].

As mentioned previously, the major limiting factor in the performance of pre-

inoculated seed is the ability of the bacteria to survive following application onto the

seeds. In one experiment, a 95% loss in bacterial viability was seen during the first

four hours post-application to the seeds and prior to planting; of the surviving 5%,

a further 83% died within the first 22 hours of planting [296]. Currently, the longest

planting window is that of alfalfa seeds inoculated with S. meliloti which, in certain

formulations, can survive on-seed for up to 24 months (Table 1.2). The superior

OSS of S. meliloti provides a more efficient transfer of inoculant to the field, coupled

with greater flexibility for planting, making it an attractive commercial product.

The high OSS means that S. meliloti inoculants can be applied to alfalfa seeds prior

to market, allowing for immediate planting by the grower and negating the need

for specialized equipment for inoculant application. Furthermore, the OSS rates of

S. meliloti provide the added convenience of delaying planting if needed (e.g. for

bad weather) without having to re-inoculate the seeds.

1.5.3 Commercial Viability of Rhizobial Inoculants

In North America alone, in excess of 76 million acres are planted with soybeans and

peas, and a further 5 million acres are planted with lentils [325, 362]. Currently, less

than 20% of this acreage is inoculated, presenting a growth potential of up to 5-fold.

Assuming a manufacturer’s return of $1.25 per acre, this represents a potential

profit of over $75 million if all legumes were inoculated. Studies analysing the

return-on-investment (ROI) of inoculation for farmers have largely been conducted

by individual inoculant companies, and unbiased data is therefore scarce. A recent
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study at the Ohio State University investigating soybean yield following inoculation

by a range of commercially available inoculants however, reported that the practice

of inoculation was indeed profitable to the farmer [21]. This study, using 66 separate

field trials and 7000 individual plots, evaluated the effects of inoculation on soybean

yield over a period of ten years, and concluded that inoculation was indeed a

profitable practice for the farmer with an average yield increase of 2-7 bu/acre,

translating to an ROI of over 300% [21]. Given the low cost of inoculant however,

even a small increase in yield of just 0.5 bu/acre is typically enough for the grower

to see an ROI [21]; therefore, a potential market exists for a soybean inoculant

product with an extended shelf-life that can be sold directly to the growers.

Worldwide, the potential benefits of inoculation technologies are extensive and

go beyond the environmental benefits outlined in Section 1.1. In Europe, where the

use of genetically modified crops is controversial, inoculation represents a technology

that has the benefit of reducing reliance upon environmentally damaging fertilizers

without altering the genome of the legume crop itself. The most exciting use of

improved inoculants lies in the developing world however, where crop yields are

typically insufficient to support the populations that depend on them. Currently,

852 million people in the world are hungry, and over 5 million children die each

year as a result of starvation and/or malnutrition [361, 361]. Inoculants represent

a relatively inexpensive ($2-$3 per acre, compared to $20-$30 per acre for nitrogen

fertilizers) [151] and far more efficient means of introducing nitrogen into the soil

than inorganic fertilizers [105, 227]. Rhizobial inoculants therefore represent a

potential means of increasing crop production and promoting self-sufficiency in

regions currently dependent upon outside aid.

Currently, inoculant technologies are not sufficiently robust to be used in many

of the developing countries that would benefit most from them. These countries are

often hot, lack properly refrigerated storage facilities, have poor infrastructure, and
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lack personnel with expertise and training in modern agricultural practices [250].

To circumvent the problems presented by lack of training, and the requirement for

modern machinery, inoculant would ideally be supplied on-seed; however, the lack

of storage facilities and lengthy transit times to reach the farmers is prohibitive,

given the rapid decline in viability of on-seed inoculants. If inoculant technologies

can be improved to increase the planting window post-application to the seed, the

potential benefits to developing countries would be huge.

Although improvements in the shelf-lives of liquid inoculants have been made

over the past few years, no significant advances towards improving OSS of the

bacteria have been reported [42]. Interestingly, most of the advances that have been

made in inoculant technology have been at the nutritional level, and have focused

on the composition of the inoculant formulae. Very few studies appear to have

been conducted at the molecular level to investigate the genetic factors affecting

OSS [42]. There appear to be significant differences between rhizobial species with

respect to their OSS characteristics [222, 303], although definitive studies have not

been conducted and data in the literature for individual strains is often conflicting,

presumably due to differences in experimental approaches [222].

1.6 Objectives of This Study

Initially the goal of this study was to characterize the on-seed survival phenotypes

of several rhizobial isolates and to identify the genetic determinants of desiccation

tolerance in rhizobia in order to improve the formulations of commercial inoculants.

Since earlier work by our industrial partner, Agribiotics, had identified a potential

link between PHB synthesis and enhanced desiccation tolerance, we sought to better

understand this relationship through mutant construction and analysis in both S.

meliloti and B. japonicum. Agribiotics was sold mid-way through this project and
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the company’s operations were moved to the United States. As a result, the focus

of the project moved away from desiccation tolerance and toward the analysis of

carbon metabolism, which proved easier to study with the facilities that were at

our disposal at the University of Waterloo.
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Table 1.2: Planting windows for commercial inoculant products

Inoculant Crop Product Planting window
Bradyrhizobium japonicum Soybean liquid 1-30 days

peat 2 days
Rhizobium leguminosarum Pea/lentil liquid 1 day

peat 2 days
Sinorhizobium meliloti Alfalfa Clay 24 months
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Chapter 2

Methods and Materials

2.1 Bacterial Strains and Plasmids

A complete list of strains and plasmids used in this study is shown in Table 2.1

2.2 Bacterial Growth and Storage Conditions

All growth media recipes and appropriate antibiotic concentrations are listed in

Appendix A.1.

Escherichia coli strains were routinely grown at 37◦C using Luria-Bertani (LB)

media [307].

Sinorhizobium meliloti strains were routinely cultured at 30◦C in either LB

[307] or TY [20] media. When S. meliloti was grown in modified M9 [243] or

Rhizobium Minimal Medium (RMM) [76] the medium was supplemented with 15

mM glucose, D-3-hydroxybutyrate (D3HB), L-3-hydroxybutyrate (L3HB), DL-3-

hydroxybutyrate (DLHB), acetoacetate (AA) or acetate as the carbon source. For

59



growth under high carbon conditions, S. meliloti was cultured in Yeast Mannitol

(YM) medium.

Bradyrhizobium japonicum strains were routinely cultured at 30◦C in Arabinose

Gluconate (AG) medium. When minimal media was required, B. japonicum was

grown in Vincent’s Minimal Medium (VMM), which contains very low levels of salt.

VMM was supplemented with 15 mM D3HB, AA, acetate, arabinose, mannitol,

lactose or glucose. For growth under high carbon conditions, B. japonicum was

grown in Modified AG (MAG).

Antibiotics were used in the growth media where appropriate. All antibiotics

used, and their respective concentrations, are listed in Appendix A.1.2.

All bacterial cultures were stored at -80◦C in glass cryovials containing 20% v/v

glycerol.

To screen for the presence of intracellular PHB, 400 µl 25 mM Nile Red mixed

in DMSO [323] was added to the growth medium.

2.2.1 Isolation of Spontaneous Antibiotic-Resistant Deriva-

tives

To isolate spontaneous antibiotic-resistant derivatives of particular strains, the

strain of interest was grown to late-log phase. 1 ml of the original culture was

harvested by centrifugation, resuspended in 100 µl 0.85% NaCl and the full volume

was subsequently plated on media containing the antibiotic in question. Following

incubation, colonies that grew up on the selective were restreaked three times on

the selective medium.
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2.3 Plant Growth Conditions

Plant nutrient solution recipe is listed in Appendix A.4.

2.3.1 Alfalfa (Medicago sativa)

Alfalfa plants (Medicago sativa c.v. Iroqouis) were routinely grown for nodulation

experiments with S. meiloti. Seed were surface-sterilized by rinsing with 95% EtOH

for five minutes, followed by rinsing in 1% hypochlorite for five minutes, and ten

rinses with sterile dH2O of five minutes each. Seeds were germinated for 36-48

hours on water agar plates (1.5% agar in dH2O) in the dark at room temperature.

Seedlings showing no signs of contamination were moved to sterile growth boxes,

consisting of three Magenta (Sigma GA-7 vessel) plant tissue boxes (Sigma-Aldrich,

St. Louis MO) with the top box inverted to act as an aseptic barrier and containing

vermiculite that had been soaked in plant nutrient solution. Five seedlings were

planted per box and each inoculant S. meliloti strain was typically tested in tripli-

cate. After emergence, each growth box was inoculated with 5 ml of a saturated S.

meliloti culture diluted 1:50 in sterile dH2O. Plants were grown for approximately

28 days post-inoculation in a growth chamber (Conviron CMP3244, Model # EF7,

Controlled Environments Ltd., Winnipeg) with 16 h, 25◦C day/8 h, 20◦C night and

light intensity of 300 µmoles m−2s−1. Shoot dry mass was measured by harvest-

ing the shoot portion of each plant and drying it at 60◦C until constant mass was

achieved.

2.3.1.1 Nodulation Kinetics

Nodulation kinetics were analysed by monitoring the appearance of nodules on

alfalfa plants grown on 1% agar slats containing plant nutrient solution. Assays
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were conducted in 25 x 150 mm glass tubes with translucent polypropylene caps

(Sigma-Aldrich, St. Louis MO). One two-day old seedling was transferred to a

single slant and, following a three-day incubation, was inoculated with 1 ml of a

saturated S. meliloti culture diluted 1:50 in sterile dH2O. Plants were grown for

approximately 28 days post-inoculation in a growth chamber (Conviron CMP3244,

Model # EF7, Controlled Environments Ltd., Winnipeg) with 16 h, 25◦C day/8 h,

20◦C night and light intensity of 300 µmoles m−2s−1. For each inoculant S. meliloti

strain, typically ten plants were inoculated. Nodule appearance was scored daily

for 28-days post-inoculation.

2.3.1.2 Competition Assay for Nodule Occupancy

Alfalfa plants for competition assays were prepared and grown in Magenta jars as

described above. For the competition assays, inoculations were carried out by mix-

ing 1:50 dilutions of saturated cultures of the two different strains in different pro-

portions (10:1, 1:1, 1:10) prior to inoculation. 28 days post-inoculation the plants

were harvested and the nodules collected; approximately 20 nodules were harvested

per Magenta jar. The nodules were surface-sterilized with 1% sodium hypochlorite

for approximately 15 minutes, washed twice with LB and then squashed in a few

drops of TY containing 0.3 M sucrose. The resultant suspension was streaked on

TY. Four single colonies from each streak plate were subsequently screened for the

antibiotic-resistance marker or growth phenotype associated with each strain. The

bacterial population of each nodule was thus scored as consisting of a single strain

or a mixture of two strains.

To determine the precise ratio of each strain in the initial inoculum, serial

dilutions of each saturated culture were conducted and CFU/ml was calculated

following plating of these dilutions on TY.
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2.3.2 Medicago truncatula

Seed pods were gently cracked with a hammer on a wire mesh, and ground so that

seeds fell through the mesh and were collected below. Prior to germination, seeds

were scarified by soaking in 5 volumes of concentrated H2SO4 for 5 minutes with

gentle agitation. The acid was decanted carefully and the seeds were rinsed with

sterile dH2O approximately 5 times. Following scarification, seeds were sterilized

in 5 volumes of commercial-grade Javex (5.25% NaOCl) for 3 minutes and then

washed 10 times in dH2O. After the final rinse, seeds were left in dH2O and placed

in the dark at 4◦C for 24-48 hours prior to germination for 36-48 hours on water agar

plates (1.5% agar in dH2O) in the dark at room temperature. Seedlings showing

no signs of contamination were moved to sterile growth boxes, consisting of three

Magenta (Sigma GA-7 vessel; Sigma-Aldrich, St. Louis MO) plant tissue boxes

with the top box inverted to act as an aseptic barrier and containing vermiculite

that had been soaked in plant nutrient solution. Five seedlings were planted per

box and each inoculant S. meliloti strain was typically tested in triplicate. After

emergence, each growth box was inoculated with 5 ml of a saturated S. meliloti

culture diluted 1:50 in sterile dH2O. Plants were grown for approximately 28 days

post-inoculation in a growth chamber (Percival Scientific, DiaMed Lab Supplies

Inc.) at 22◦C in a 18 h day/6 h night cycle. Shoot dry mass was measured by

harvesting the shoot portion of each plant and drying it at 60◦C until constant

mass was achieved.

2.3.3 Soybean (Glycine max)

Soybean seeds were surface sterilized by rinsing with 95% EtOH for five minutes,

followed by rinsing in 1% hypochlorite for five minutes, and ten rinses with ster-

ile dH2O of five minutes each. Seeds were germinated for 48 hours on water agar
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plates (1.5% agar in dH2O) in the dark at room temperature. Following germi-

nation, seedlings were transferred to sterilized pots that were filled with sterilized

vermiculite soaked in plant nutrient solution. Seedlings were incubated at room

temperature for 3 days and then, following emergence, inoculated with 5 ml of sat-

urated B. japonicum culture diluted 1:50 in sterile dH2O. Plants were incubated

under high-pressure sodium lamps, supplemented with regularly space compact

fluorescent bulbs on an 18 h day/6 h night cycle. Plants were watered every sec-

ond day with approximately 300 ml of sterile dH2O. After two weeks, sterile plant

nutrient solution was used in place of water for two consecutive waterings after

which, plants were again watered with sterile dH2O. Uninoculated controls were

spaced at regular intervals throughout the growth facility to monitor sterility and

to indicate the possibility of cross-contamination. Plants were grown for five weeks

post-inoculation and were then harvested. At this point, uninoculated controls

were carefully checked for evidence of nodulation.

2.3.3.1 Competition Assay for Nodule Occupancy

Soybean plants for competition assays were prepared and grown in sterilized pots

as described above. For the competition assays, inoculations were carried out by

mixing 1:50 dilutions of saturated cultures of the two different strains in different

proportions (10:1, 1:1, 1:10) prior to inoculation. 28 days post-inoculation the

plants were harvested and the nodules collected; approximately 20 nodules were

harvested per pot. The nodules were surface-sterilized with 1% sodium hypochlorite

for approximately 15 minutes, washed twice with AG broth and then squashed in a

few drops of liquid AG. The resultant suspension was streaked on AG. Four single

colonies from each streak plate were subsequently screened for the SmR marker

associated with the wild-type strain BjUW36. The bacterial population of each

nodule was thus scored as consisting of a single strain or a mixture of two strains.
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To determine the precise ratio of each strain in the initial inoculum, serial

dilutions of each saturated culture were conducted and CFU/ml was calculated

following plating of these dilutions on AG.

2.4 Molecular Biology Techniques

2.4.1 Small-Scale Preparation of Plasmid DNA

Plasmid DNA was routinely isolated using the Solution I, II, III alkaline lysis pro-

tocol [307]. All alkaline lysis solutions are described in Appendix A.2. 1.5 ml of

a 5 ml culture of E. coli cells carrying the plasmid of interest were grown to sat-

uration overnight and harvested at 13,000 rpm in a microcentrifuge. For low- and

medium-copy-number plasmids, the supernatant was decanted and the process re-

peated. The supernatant was decanted and the pellet resuspended in 100 µl of cold

Solution I. 200 µl of freshly prepared Solution II was added and the solutions were

mixed by inversion 4-6 times. Following a short incubation (less than 5 minutes)

at room temperature, 150 µl cold Solution III was added and the sample mixed

gently by inversion. The cell debris and genomic DNA were pelleted by centrifu-

gation at 13,000 rpm for 5 minutes and the supernatant was transferred to a fresh

tube. Soluble proteins were removed from the plasmid-containing supernatant by

chloroform extraction (Section 2.4.3.1) before being precipitated by the addition

of 0.8 volumes ice cold isopropanol. This sample was vortexed and incubated at

-20◦C for 3 minutes before centrifugation at 13,000 rpm for 30 minutes. The DNA

pellet was washed briefly in 70% EtOH and dried at room temperature before being

resuspended in an appropriate volume of sterile dH2O. Plasmid DNA was typically

stored at either room temperature or -20◦C.

When high-quality, high-purity DNA was needed for sequencing, plasmid DNA
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was isolated using a Sigma (Sigma-Aldrich, St. Louis MO) miniprep kit as per

manufacturer’s directions.

2.4.2 Small-Scale Preparation of Genomic DNA from S.

meliloti and B. japonicum

All genomic DNA preparation solutions are described in Appendix A.2. Genomic

DNA was isolated using standard protocols [236, 255]. Strains were grown to satu-

ration and cultures were pelleted at 13,000 rpm in a microcentrifuge tube. Pellets

were resuspended in 2.5 ml cold T10E25 pH 8.0 buffer. 250 µl of lysozyme solution

was added and the sample was mixed gently before incubation for 1 hour at 37◦C.

300 µl SDS-protease solution was added and the sample was mixed gently and incu-

bated for an additional 1-2 hours at 37◦C. Proteins were removed from the sample

by the addition of 500 µl phenol, gentle mixing and centrifugation at 10,000 rpm for

10 minutes. The aqueous layer, including the interface, was transferred to a fresh

tube; 150 µl of 5 M ammonium acetate and 3 ml ice-cold isopropanol were added

and the sample was mixed gently. The DNA precipitate was removed by spooling

around a sterile glass rod. The spooled DNA was rinsed briefly by immersion in

500 µl of each of ice-cold 70% EtOH and ice-cold 95% EtOH. The spooled DNA

was air-dried briefly and then resuspended in 500 µl T10E1 pH 8.0 buffer and stored

at 4◦C.

Alternatively, genomic DNA was isolated using the small-scale genomic DNA

isolation kit from MolBiol (Mo Bio Inc., Carlsbad CA) as per manufacturer’s in-

structions. When isolating DNA from B. japonicum, 4 ml of saturated culture was

used per extraction rather than the 1.8 ml recommended by the manufacturer.
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2.4.3 DNA Clean-Up

2.4.3.1 Phenol and Phenol/Chloroform Extraction

An equal volume of buffer-saturated phenol:chloroform (1:1) was added to the DNA

and the solution was mixed by vortexing. Most DNA solutions were vortexed for 10

sec, except for high molecular weight DNA which was gently rocked. The solution

was then centrifuged for 3 min and the aqueous layer was carefully removed and

transferred to a new tube. Two successive chloroform extractions were then used

to remove all traces of phenol. An equal volume of chloroform was added to the

aqueous layer, mixed and then centrifuged for 3 minutes. The aqueous layer was

transferred to a new tube and the DNA was cleaned by ethanol precipitation.

2.4.3.2 Ethanol Precipitation

25 µl of 10 M NH4OAc was added to each sample, and the volume brought up to

100 µl with dH2O. 2 volumes of ice cold 95% EtOH was then added, the sample

was vortexed to mix and then the samples were incubated at -20◦C for a minimum

of 30 minutes. The samples were centrifuged at maximum speed for 30 minutes

and the supernatant decanted. The pellet was washed in 70% EtOH, air-dried, and

resuspended in an appropriate volume of dH2O.

2.4.4 DNA Manipulations

2.4.4.1 Restriction Digests and Gel Electrophoresis

All electrophoresis solutions are described in Appendix A.2.3.

Standard protocols were used to maniplate DNA [307]. Restriction digests were

typically performed using enzymes purchased from Fermentas (Fermentas Canada
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Inc., Burlington ON). Reaction mixes were incubated at 37◦C for 30 min (for a

diagnostic digest) to overnight (for Southern analysis).

The restriction products were typically analysed by gel electrophoresis using

1% agarose in Tris-Acetate-EDTA (TAE) buffer. Gels contained either EtBr or

Gel Red
TM

(Biotium Inc., Hayward CA) to facilitate subsequent visualization of

the DNA. Samples were mixed with an appropriate volume of 6X loading dye

(see Appendix A.2) and run at 120-150 V for approximately 1 hour. Samples for

Southern blot analysis were typically run for 5-6 hours. Typically a 1 kb molecular

weight standard (Fermentas Canada Inc., Burlington ON) was included on each

gel.

When specific restriction fragments were needed for subsequent experiments,

the band of interest was cut from the gel and the DNA fragment isolated using

either the Roche DNA Extraction Kit (Roche Diagnostics Canada, Mississauga

ON) or Fermentas DNA Extraction Kit (Fermentas Canada Inc., Burlington ON)

as per manufacturer’s instructions.

2.4.4.2 Ligation

Restriction digests were typically cleaned by EtOH precipitation prior to ligation.

The volume in which the pellet was resuspended was calculated based on the needs

of each specific reaction.

Routine sticky-end ligations were performed by overnight incubation at room

temperature in a 10µl volume. T4 DNA ligase from Fermentas (Fermentas Canada

Inc., Burlington ON) was used as per manufacturer’s instructions.

Blunt-end ligations into pJET (Fermentas Canada Inc., Burlington ON) were

carried out using the CloneJet kit as per manufacturer’s instructions.
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2.4.4.3 Transformation of Plasmid DNA into E. coli

Plasmid DNA was typically transformed into chemically competent E. coli cells

(Section 2.4.4.4).

50 µl competent cells were mixed with the appropriate volume of DNA and

inclubated on ice for at least 30 minutes before being heat shocked for 90 seconds

at 42◦C. Cells were returned to ice for 2 minutes and were allowed to recover for at

least 1 hour at 37◦C in 1 ml LB before being plated onto selective media.

2.4.4.4 Preparation of Chemically Competent E. coli

Competent E. coli cells were prepared from LB-grown cultures harvested at OD600

between 0.4 and 0.6. Cells were harvested by centrifugation at 3,000 rpm for 10

min at 4◦C (Sorvall GSA rotor) and washed in 20 ml 0.1 M MgCl2. The cells

were harvested for a second time by centrifugation at 3,000 rpm for 10 min at 4◦C

(Sorvall GSA rotor), resuspended in 20 ml 0.1 M CaCl2 and incubated at 4◦C for 4

hours. Cells were collected by centrifugation at 3,000 rpm for 10 min, resuspended

in 10 ml of ice-cold 100 mM CaCl2 containing 15% glycerol, and aliquoted into

pre-chilled microcentrifuge tubes before storage at -70◦C.

2.4.4.5 Transfer of plasmid DNA by Conjugation into S. meliloti and

B. japonicum

Conjugation was typically performed by triparental mating between an E. coli

donor, an E. coli helper carrying pRK600, and a recipient.

Matings into S. meliloti were performed by combining 1 ml saturated broth

culture of the S. meliloti recipient with 500 µl each of the E. coli donor and helper

strains. All strains were washed, prior to mixing, in 0.85% NaCl to remove antibi-

otics. Mating mixtures were pelleted and resuspended in 50 µl for spotting onto
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a non-selective LB or TY plate. Matings were incubated overnight at 30◦C before

the spot was resuspended in 1 ml 0.85% NaCl. Serial dilutions of the resuspended

mating spot were made in 0.85% NaCl and 100 µl of the appropriate dilutions were

plated onto selective media.

Matings into B. japonicum used essentially the same strategy described for S.

meliloti except that between 5 and 10 ml of the recipient B. japonicum strain were

used in each mating, and mating spots were incubated for a minimum of 72 hours.

2.4.4.6 in vitro Mini Tn5 Mutagenesis of Plasmid DNA

in vitro mini Tn5 mutagenesis of plasmid DNA was performed using the EpiCentre R©

EZ-Tn5
TM

Insertion Kit (EpiCentre Biotechnologies, Madison WI, USA), as per

manufacturer’s instructions.

2.4.4.7 Homologous Recombination

Mutagenesis by allelic replacement was typically accomplished by conjugal transfer

of the desired fragment on the vector pK19mobsacB [310]. pK19mobsacB carries

the broad-host-range transfer machinery of plasmid RP4 and a modified sacB gene

from Bacillus subtilis with a narrow-host-range replication origin and the MCS of

pUC19.

2.4.4.8 Generalized Transduction into S. meliloti

Transductions were employed to facilitate the transfer of markers between different

S. meliloti strains using the ΦM13 generalized transducing phage [95]. This phage

infects the host and produces progeny phage within the host cell. Some of the

progeny phage mis-package host genomic DNA in place of phage DNA and this

results in the production of transducing particles. When these transducing particles
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are used to infect a new host they will infect the host cell but the infection will

not result in the production of new phage. Instead, the packaged DNA can be

maintained in the host cell by a double recombination event. Transductants can

then be isolated by selection for the desired marker (or by screening for loss of a

marker).

As mentioned above, transductions into S. meliloti were performed using ΦM13

generalized transducing phage [95]. A phage lysate was prepared by addition of 50

µl undiluted ΦM13 phage stock (of titre 1010 PFU/ml) to a mid-log culture of S.

meliloti at OD600 0.3 - 0.5 grown in LBMC. This was incubated for 6-8 hours (or

overnight), at which point cell lysis was evident. Unlysed cells were subsequently

killed by the addition of 2 drops of chloroform and cell debris was centrifuged out

at 2000 x g for 5 minutes. This lysate was stored at 4◦C until needed.

Transductions were performed by addition of 0.5 ml lysate to 0.5 ml late-log

culture grown in LBMC. Cells were then incubated at room temperature for 30

minutes to allow phage adsorption to the recipient cells. Phage were then removed

by three rounds of pelleting and resuspension in 1.5 ml dH2O. Following the final

wash, the pellet was resuspended in 250 µl dH2O and plated on the appropriate

selective media.

2.4.4.9 DNA Sequencing

Sequencing reactions were carried out using ABI BigDye terminator chemistry at

either the University of Waterloo sequencing facility, using a Applied Biosystems

3130xl Genetic Analyzer, or at the Mobix Lab at McMaster University using a 3730

DNA Analyzer (Applied Biosystems, Foster City, CA, USA).
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2.4.4.10 PCR

PCR cloning reactions were performed using an Eppendorf Mastercycler R© gradi-

ent thermocycler (Eppendorf, Toronto, ON) and KOD Polymerase reagents from

Novagen (EMD Biosciences, San Diego, CA). A typical cloning PCR reaction is

described in Appendix A.7.1.

PCR products for cloning were run on a 1% agarose gel and the band correspond-

ing to the appropriate PCR product was excised and purified by gel extraction. If

restriction sites were included in the primers of the PCR product, the purified DNA

was digested and ligated directly into the destination vector using T4 DNA Lig-

ase (Fermentas Canada Inc., Burlington ON). In the event that direct cloning was

not practical, the PCR product was ligated into the cloning vector, pGem-TEasy

(Promega, Madison WI) as per manufacturer’s instructions.

2.4.4.11 Cross-Over PCR

Cross-over PCR [154] was used to construct fragments for in-frame mutageneses

and allelic replacements. Cross-over PCR reactions were performed using an Ep-

pendorf Mastercycler R© gradient thermocycler (Eppendorf, Toronto, ON) and KOD

Polymerase reagents from Novagen (EMD Biosciences, San Diego, CA). A typical

crossover PCR reaction is described in Appendix A.7.2.

2.4.4.12 Colony PCR

PCR reactions for screening purposes were performed using a modified version of

standard protocols [403] in an Eppendorf Mastercycler R© gradient thermocycler

(Eppendorf, Toronto, ON) and NEB Taq reagents (New England Biolabs R© Inc.,

Ipswich, MA). Cells were resuspended in 100 µl dH2O, boiled at 94◦C for 10 minutes,

cooled to 4◦C and centrifuged to pellet out the cell debris; the supernatant was
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then used as the template in the subsequent PCR reaction. A typical colony PCR

reaction is described in Appendix A.7.3.

2.4.4.13 Primer Design

A complete list of primers used in this study is shown in Table 2.2. Tm was

calculated across hybridizing nucleotides as 4(G + C) + 2(A + T).

Primer design and analysis was performed using Amplify 3X for MacOSX (Bill

Engels, University of Wisconsin WI). Primers were purchased from Sigma Genosys

(Sigma-Aldrich, St. Louis MO).
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2.4.5 Cosmid Library Construction

2.4.5.1 Preparation of Inserts

Partial digestion of genomic DNA was optimized by gradient digest. Approximately

15 ng/µl of genomic DNA was used per enzyme tested. In a tube, 15 µl genomic

DNA was mixed with 100 µl 10X digest buffer and the volume was brought up to 500

µl with dH2O. This mixture was incubated on ice 30 mins. The reaction mix was

then aliquoted into 15 tubes (60 µl was added to the first tube; 30 µl was added

to the remaining 14) and 5 units of the appropriate restriction enzyme (tyically

Sau3AI) was added to the first tube. A concentration gradient was established by

transferring 30 µl from the first tube into the second, mixing, then transferring 30

µl from tube 2 into tube 3 and so on. 30 µl was removed from the final tube and

discarded. The reactions were incubated at 37◦C for 30 minutes and the reactions

were stopped by the addition of 1 µl 0.5 M EDTA mixed with 6X loading dye.

The digests were run on an agarose gel and the enzyme concentration that gives

fragments of approx. 25-50kb was selected for subsequent use.

Once an appropriate enzyme concentration had been determined, the genomic

DNA was partially digested by combining 33 µl 10X restriction buffer, 10 µg ge-

nomic DNA, restriction enzyme and the volume was brought up to 330 µl with

dH2O. The reaction mix was incubated at 37◦C for 30 minutes and the reactions

were stopped by heat inactivation at 65◦C for 15 minutes. The reaction was cleaned

up by a single phenol/chloroform extraction followed by two chloroform extractions

and an ethanol precipitation (Section 2.4.3). The digested DNA was then resus-

pended in 6 µl dH2O.
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2.4.5.2 Preparation of Cosmid DNA

Cosmid DNA was prepared using a standard miniprep protocol as described in

Section 2.4.1. The cosmid DNA digested by combining 20 µg cosmid DNA with

6 µl BamHI, 10 µl 10X restriction buffer and dH2O to 100 µl. The digest was

incubated at 37◦C and allowed to go to completion. The reaction was cleaned up

by a single phenol/chloroform extraction followed by two chloroform extractions and

an ethanol precipitation (Section 2.4.3). The digested DNA was then resuspended

in 180 µl T1E0.1, to give a final concentration of approximately 300 ng/µl DNA.

2.4.5.3 Ligation of Library Inserts into Cosmid DNA

8 µl digested cosmid DNA was mixed with 6 µl partially digested genomic DNA,

incubated at 42◦C for 10 minutes and then cooled to room temperature. 2 µl 10X

ligation buffer and 2 µl T4 ligase were then added, mixed and the reaction allowed

to proceed overnight at room temperature. The ligase was then inactivated by

incubation at 65◦C for 15 minutes prior to use, and the ligation reaction checked

by running 1 µl on a 0.8% agarose gel.

2.4.5.4 Library Construction, Packaging and Transfection

Packaging was performed using the EpiCentre R© MaxPlax
TM

Lambda Packaging

Extract (EpiCentre Biotechnologies, Madison WI, USA), as per manufacturer’s

instructions.

Cells were grown in an appropriate medium with no antibiotic (antibiotic in-

hibits the ability of phage to infect) and supplemented with 10 mM MgSO4 and

0.2% (w/v) maltose to OD600 of 1.0. Cells were harvested by centrifugation and

diluted to OD600 of 0.5 in 10 mM MgSO4. 1:10 and 1:50 dilution of the packaging

reaction were prepared by dilution in phage dilution buffer (Appendix A.2.6); 25

107



µl each dilution was mixed with 25 µl bacterial cells and incubated at room tem-

perature for 30 minutes. The reaction mix was then combined with 200 µl LB and

incubated at 37◦C for 1 hour with agitation every 15 minutes. Transfectants were

selected by plating the cells on LB with an appropriate antibiotic and incubated

overnight at 37◦C. The resulting colonies were pooled by suspending them in LB

broth and then the library was expanded for storage by growth to late-log phase

at 37◦C.

2.4.6 Southern Blot Analysis

All Southern Blot solutions are described in Appendix A.2.5.

2.4.6.1 Probe Labelling

Oligonucleotide DNA probes for use in Southern Blot hybridization were labelled

using the DIG terminal transferase DIG labelling kit from Roche (Roche Diagnostics

Canada, Mississauga ON) as per manufacture’s instructions. The oligonucleotides

that were used in this reaction were typically designed for PCR purposes and had

no additional modifications. Following labelling, the probe was diluted in 14 ml of

hybridization buffer. Typically 1 µl of probe was saved to check labelling efficiency.

2.4.6.2 Sample Preparation

Southern blot analyses for B. japonicum necessitated high-quality genomic DNA,

which was typically prepared using the MolBio genomic DNA extraction kit as

described in Section 2.4.2.

Genomic DNA was digested to completion in a total volume of 50 µl. The

complete digestion reaction was then run on a 0.8% agarose gel an 50 V for ap-

proximately 4-5 hours to ensure complete separation of DNA fragments. Gels were
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stained with EtBr and visualized using a Fluorochem R© 8000 UV transillumina-

tor (Alpha Innotech Corp., San Leandro, CA). Gels were depurinated by treatment

with 0.25 M HCl for 10 minutes followed by two, 15 minute washes in transfer buffer

to neutralize pH. DNA was transferred to a nitrocellulose membrane (Boehringer

Mannheim Canada; Laval QC) overnight in transfer buffer using standard tech-

niques [307]. Following transfer, the membrane was neutralized with 5X SSC for

10 minutes and the DNA was cross-linked to the membrane using a UV crosslinker

(Bio-Rad, Hercules, CA). The membrane was then incubated for one hour at the hy-

brdization temperature in hybridization buffer before the addition of DIG-labelled

probe. Hybridization was carried out overnight in a hybridization oven at a tem-

perature of 55◦C.

2.4.6.3 Southern Blot Visualization

Following hybridization, probes were decanted and stored at -20◦C to be reused.

Blots were typically washed twice for 15 minutes at room temperature in 50 ml

stringency buffer A, followed by two 15 minute washes in 50 ml stringency buffer

B at the hybridization temperature. Blocking and detection steps were carried out

using a Tris-NaCl buffer base.

Hybridization was detected by chemiluminescence following treatment with anti-

DIG-conjugated alkaline phosphatase and CDP-Star. Membranes were stripped for

reuse by two 15 minute washes in stripping buffer.
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2.5 Bacterial Growth Assays

2.5.1 Bacterial Growth Curves

2.5.1.1 Bioscreen-C Growth Curve Machine

Cells were grown to saturation in an appropriate complex medium, and standard-

ized to OD600 by dilution. Cells (1 ml) were then washed by pelleting and washing

in 0.85% NaCl, followed by resuspension in 10 ml minimal medium with no carbon

source. A 1:1000 dilution of this culture was used to inoculate an appropriate vol-

ume of minimal medium containing the carbon source of interest. Each well of the

100-well plate was inoculated with 400 µl of inoculum; typically triplicate samples

were set up for each test. Samples were incubated at 30◦C, with readings taken

every 10 minutes, preceded by 30 seconds of shaking.

2.5.1.2 Traditional Test Tube Method

Cells were grown to saturation in an appropriate complex medium, and washed

twice in 0.85% saline. A 0.15 ml aliquot of washed cells was subcultured into 5 ml

of minimal medium supplemented with the appropriate carbon source in a 16 mm x

150 mm culture tube. Tubes were placed vertically in a rack in a shaking incubator

set at 180 rpm, 30◦C. Growth was followed by measuring absorbance at 600 nm.

Upon completion of the growth test, culture purity was checked by streaking on

TY or AG agar.

2.5.2 Starvation Assay

Saturated TY cultures were washed twice to remove traces of nutrients, and were

subcultured 1:50 into carbon-free M9 medium. These cultures were incubated at
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30◦C, with shaking at 180 rpm. Viable cell counts were monitored at weekly in-

tervals by plating serial dilutions on TY agar. Samples at t=0 were each given a

relative value of 1, and all subsequent samples are compared to this starting value.

Samples were typically set up as triplicate cultures.

2.6 Protein Analysis

All protein solutions are described in Appendix A.3.

2.6.1 Protein Sample Preparation

2.6.1.1 Routine Confirmation of Over-Expression

Typically, protein samples were analysed following overnight incubation of E. coli

BL21(λDE3) pLysS cultures at 37◦C in autoinduction medium. For routine con-

firmation of over-expression, 200 µl of cells were pelleted and resuspended in 100

µl SDS-PAGE loading buffer. Samples were boiled at 100◦C in a dry heat block

for 10 minutes and then cooled to room temperature before use. Typically 20 µl of

sample was run on an SDS-PAGE gel for analysis.

2.6.1.2 Verification of Samples by SDS-PAGE

Protein samples were analysed on a single dimension SDS-PAGE protein gel using

the Bio-Rad Mini Protean 2 system (Bio-Rad, Hercules, CA). Approximately 4 ml

12% SDS-PAGE gel preparation was added to the unit, overlaid with dH2O and

allowed to solidify for 30-45 minutes. The dH2O was then removed and replaced

with 4% stacking gel preparation; a comb was added and the gel was allowed to

solidify for 30-45 minutes. The gels were transferred to the running apparatus in 1X
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Tris-Glycine running buffer. 20 µl samples were loaded into the wells; a control lane

of protein ladder (Fermentas Canada Inc., Burlington ON) was always included.

Gels were run at 80 V for 20 minutes and then 120 V for 2 hours before staining

in Coomassie Brilliant Blue straining solution for approximately 30 minutes to 1

hour. Gels were destained overnight in destain solution and then visualized on a

whitelight transilluminator.

2.6.1.3 Coomassie Brilliant Blue Staining

The gel was incubated in a volume of coomassie brilliant blue stain solution suffi-

cient to submerge it completely, for approximately 1 hr on a slowly rocking platform.

The gel was then typically destained from 6 hr to overnight at room temperature

on a slowly rocking platform. The destained gel would be scanned and the image

saved as a .tif file.

2.6.2 Western Blot Analysis

All solutions pertaining to Western Blot experiments are described in Appendix

A.3.2.

2.6.2.1 Western Blot Preparation

Proteins were transferred from the SDS-PAGE gel to a Millipore Immobilon-P

polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, Mass, USA) us-

ing an BioRad Mini-Protean-II system (Bio-Rad, Hercules, CA) as per manufac-

turer’s instructions. Protein transfer typically took 2-5 hr at 25mA, depending

upon gel size and total surface area of gels to be transferred. Transfer efficiency

was monitored by analysing the transfer of protein standards, and occasionally by
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subsequent staining of the PVDF membrane using a coomassie brilliant blue mem-

brane stain. Following transfer, the membrane was blocked from 30 min to overnight

in 5% dried milk blocking buffer prior to a brief wash in TEN and subsequent in-

cubation with the appropriate dilution of primary antibody. The membranes were

typically probed with a 1:50,000 dilution of mouse monoclonal anti-HIS primary

antibody (Sigma-Aldrich, St. Louis MO) for 2 hr, although this was extended up

to overnight if increased sensitivity was required. This was followed by a thorough

wash in approximately 2 l TEN on a slowly rocking platform. A 1:20,000 dilu-

tion of alkaline phosphatase-conjugated GAM secondary antibody (Sigma-Aldrich,

St. Louis MO) was used to probe for the presence of the primary antibody. The

membranes were exposed to the secondary antibody solution for approximately 1

hr before being thoroughly washed in TEN.

2.6.2.2 Western Blot Visualization

Hybridization was visualized by chemiluminescent detection using alkaline-phosphatase

conjugated secondary antibody. Samples were detected using the Typhoon system

(GE Canada, Mississauga ON).

2.6.3 Protein Purification Under Native Conditions

All solutions pertaining to protein purification under native conditions are described

in Appendix A.3.3.

BL21(λDE3) pLysS [64, 334] was used in all over-expression and purification

analyses. This strain expresses T7 RNA polymerase from a lac promoter. This

gene is present on the lambda lysogen called DE3. The pLysS plasmid limits

leaky expression and confers chloramphenicol resistance. Expression was induced

overnight using autoinduction media (Appendix A.1.1.10).
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50 ml of overnight culture was harvested by centrifugation. Cells were lysed by

the addition of 1 ml of Bugbuster reagent (EMD Chemicals Inc., Darmstadt, Ger-

many) and10 µl of Benzonase (EMD Chemicals Inc., Darmstadt, Germany. The

lysate was incubated on a rocking platform for 15 min at room temperature and

then centrifuged for 20 min at 4◦C at 16,000 rpm. The crude extract fraction (su-

pernatant) was transferred to a new tube. 50 µl of Ni-NTA resin (EMD Chemicals

Inc., Darmstadt, Germany) was added to the crude extract and the mix was incu-

bated on the rocking platform at 4◦C for 10 min before centrifugation at 700 rpm

for 1 minute. The pellet was washed three times in 1 ml wash buffer (Appendix

A.3.3). The bound protein was sequentially eluted with 50 µl of: 200 mM imida-

zole, 400 mM imidazole and 1 M imidazole elution butter. The resultant fractions

were analysed on an SDS PAGE gel and quantitated by Bradford assay.

2.6.4 Bradford Assay

Protein sample concentration was determined by Bradford assay using the BioRad

protein assay reagent (Bio-Rad, Hercules, CA). 100 µl of a 1 mg/ml BSA stock

solution was diluted in 900 µl dH2O. This 1:10 stock was then further diluted in

dH2O to produce 2, 4, 6, 8, 10 and 12 µg/ml protein standards in a final volume

of 800 µl. Appropriate dilutions of the protein samples were then made to produce

a final volume of 800 µl in dH2O. 200 µl of Biorad reagent was added to each

standard and each sample. All samples were incubated at room temperature for 5

minutes. Absorbance was assayed in a spectrophotometer using 800 µl dH2O plus

200 µl reagent as a blank. A standard curve was constructed by plotting absorbance

versus concentration for the BSA standards and the formula of that line was used

to extrapolate concentration of the unknown samples.
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2.7 Biochemical Assays

2.7.1 Preparation of Crude Cell Extract

Cell cultures were grown in an appropriate medium and under appropriate condi-

tions. Cells were harvested by centrifugation, the pellets washed twice in 20 mM

Tris-HCl pH 7.8, 1 mM MgCl2 buffer, and stored at -20◦C. Prior to sonication,

pellets were suspended in 4 ml of sonication buffer (20 mM Tris-HCl pH 7.8, 1 mM

MgCl2, 10% glycerol, 10 mM β-mercaptoethanol) per gram of wet weight of pellet,

and then maintained on ice. Cells were disrupted by sonication at 4◦C for 4 min at

30 s intervals. Cell debris was removed by centrifugation and the resultant cell-free

extracts were stored at 70◦C until needed. Protein concentration was determined

using standard techniques [307] (see Section 2.6.4).

2.7.2 PHB Analysis

2.7.2.1 PHB Isolation from Free-Living Cells

Cultures for PHB assays were grown in 250 ml Erlenmeyer flasks containing 50 ml

of high-carbon medium. For S. meliloti this was typically YMB; for B. japonicum

MAG was used. Cultures were grown at 30◦C and 180 rpm for 48 hours (S. meliloti)

or 72 hours (B. japonicum). S. meliloti cells were typically harvested, washed once

in 0.85% NaCl and resuspended in 50 ml 0.85% NaCl. Owing to the extremely

mucoid nature of B. japonicum cells grown under PHB-inducing conditions, B.

japonicum cells were not subjected to these saline washes. PHB was extracted

from 2 ml of cells, the remaining 48 ml were pelleted, dried at 60◦C until constant

mass was achieved and used to determine cell dry mass.

PHB content was determined using a modified version of the colourimetric assay

developed by Law and Slepecky [200]. This assay is based in the hydrolysis of PHB
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and subsequent conversion of the monomer to crotonic acid by concentrated H2SO4.

Crotonic acid has an absorption maximum at 235 nm. The amount of crotonic acid

can be used to determine PHB content of the initial sample. PHB content is

expressed as a percentage of total cellular dry mass.

Following the initial harvest, no plasticware was used in the PHB extraction

protocol; all glassware was washed thoroughly in boiling chloroform and rinsed

in EtOH prior to use to remove any traces of plasticizers. Cells were pelleted in

screw-capped pyrex centrifuge tubes (Corning Inc., Lowell, MA) at 6,000 rpm for

10 minutes. The cell pellet was washed in dH2O and pelleted again before being

resuspended in 2.0 ml of 5.25% NaOCl (Javex) and incubated at 37◦C for 1 hour

to allow for complete cell lysis to occur. The samples were then pelleted at 6,000

rpm for 15 minutes and washed in 5 ml dH2O. This was followed by a wash in

5 ml EtOH and a final wash in 5 ml acetone. The pellet, which was white in

colour, was allowed to dry before the PHB was extracted by the addition of 10 ml

of cold chloroform. The tubes were capped, vortexed and transferred to a boiling

water bath. The tubes were removed from the water bath and vortexed every 1-2

minutes for 10 minutes before cooling to room temperature. If necessary, pressure

was released by loosening the caps periodically. Once cool, the tubes were vortexed

again and 1 ml was removed and transferred to a glass test tube. The chloroform

was allowed to evaporate at room temperature for 24-48 hours before addition of 10

ml concentrated H2SO4. The tubes were then capped with marbles and transferred

to a boiling water bath for 10 minutes, after which time they were removed and

allowed to cool to room temperature. After mixing well by vortex, OD from 220-280

nm was measured (Spectra Max 190, Molecular Devices).

A standard curve was obtained by assaying known quantities of PHB. Standard

solutions were prepared from a 1 mg/ml PHB stock, made by adding 10 mg PHB

(Sigma-Aldrich, St. Louis MO) to 10 ml cold chloroform and heating in a boiling
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water bath to dissolve. From this, a 100 µg/ml stock was prepared. Aliquots of

0-100 µg PHB were transferred to test tubes and the chloroform was allowed to

evaporate before addition of 10 ml H2SO4 and processing as described above.

2.7.2.2 PHB Isolation from Soybean Bacteroids

Soybean bacteroids was isolated in a crude preparation using a modified version of

protocols described by Wong and Evans [391], and Vassileva and Ignatove [371].

Nodules were removed, by hand, from mature plants approximately 5 weeks post-

inoculation. 2-4 g of nodules were crushed with a mortar and pestle in 2 volumes

of 50 mM Tris-HCl (pH 8.4). The homogenate was filtered through 4 layers of

cheesecloth and centrifuged at 300 x g for 10 minutes to remove large debris. The

supernatant was then transferred to a deplasticized screw-capped pyrex centrifuge

tubes (Corning Inc., Lowell, MA) and centrifuged for 15 minutes at 8,000 x g and

4◦C to pellet the bacteroids. The pellet was washed twice in dH2O and dried at

60◦C. The pellet was weighed and then hydrolyzed overnight in 0.2 ml 5.25% NaOCl

(Javex) per mg bacteroid pellet.

Following incubation, the lysate was pelleted at 8,000 x g for 20 minutes then

washed once with dH2O and once with acetone. The pellet was then dried and

processed as described above.

2.7.2.3 Isolation of Native PHB Granules

Native PHB granules were isolated using a protocol modified from those described

previously by Merrick and Doudoroff, Gebauer and Jendrossek, Preusting et al

and Wang et al [108, 240, 277, 379]. The S. meliloti PHB depolymerase mutant

Rm11430 was grown to saturation in 500 ml YMB. Cells were harvested and washed

in 0.05 M potassium phosphate buffer (pH 7.0). The cell pellet was resuspended
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in 30 ml 0.05 M potassium phosphate buffer (pH 7.0) and cells were lysed by three

passages through an French Press.

Six Ultra-Clear
TM

Beckman Ultracentrifuge tubes (Beckman-Coulter, Missis-

sauga ON) were prepared with a discontinuous sucrose gradient as follows:

• 8 ml 2 M sucrose in 10 mM Tris-HCl (pH 8.0)

• 8 ml 1.66 M sucrose in 10 mM Tris-HCl (pH 8.0)

• 8 ml 1.33 M sucrose in 10 mM Tris-HCl (pH 8.0)

• 8 ml 1 M sucrose in 10 mM Tris-HCl (pH 8.0)

5 ml crude cell lysate was layered on top of the gradient and the tubes were

centrifuged at 26,000 rpm for 15 hours in a Beckman SW28 Ultracentrifuge rotor

(Beckman-Coulter, Mississauga ON). The PHB granule layer is clearly visible as a

discrete band at the interface of the 1.66 M and 1.33 M sucrose layers. The granules

were removed from the gradient and washed twice in 10 mM Tris-HCl (pH 8.0).

Granules were stored at 4◦C until use.

2.7.3 Alkaline Phosphatase Assay

Alkaline phosphatase activity of exoF ::TnphoA fusions in S. meliloti strains was

measured according to the method of Brinkmann and Beckwith [31]. Cells were

grown to an OD600 of 0.7. 1 ml of culture was washed twice in 1 M Tris-HCl

(pH 8.0), and resuspended in 1 ml 1 M Tris-HCl (pH 8.0). The OD600 of this

cell suspension was then measured. Following a 10 min equilibration period at

37◦C, 50 µl of 4 mg/ml p-nitrophenyl phosphate (NPP) was added to start the

reaction. The reaction was allowed to continue for 11 min at 37◦C before being

stopped by the addition of 50 µl of 1M K2HPO4. The cells were pelleted and 50
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µl of the supernatant was diluted in 450 µl of 1 M Tris-HCl (pH 8.0) and OD420

was measured. Units (U) of alkaline phosphatase activity were calculated using the

formula:

U=
1000 x OD600

Time(min) x OD600

Assuming a molar coefficient of 16,000 for p-nitrophenyl phosphate, 1 U is equal to

0.062 nmol of NPP hydrolyzed per min at a cell OD600of 1. Therefore:

nmol NPP hydrolyzed per min = U× 0.062

2.7.4 phbA Assay

2.7.4.1 Preparation of Crude Cell Extract

Cells were grown in 50 ml complex medium to late-log phase and then harvested

by centrifugation. The pellet was washed once in 50 ml 0.1 M Tris-HCl (pH 7.5)

and resuspended in 5 ml 0.1 M Tris-HCl (pH 7.5). Cells were disrupted on ice by

sonication in 4 cycles of 15 seconds on, 15 seconds off at 90% max setting.

2.7.4.2 Assay of β-Ketothiolase Activity

PhbA activity of S. meiloti was measured using a modified version of standard pro-

tocols [184, 249]. The assay measures the decrease of E303 of the Mg2+-Enol complex

of acetoacetyl-CoA as it is converted to acetyl-CoA. 10 µl 7 mM acetoacetyl-CoA,

100 µl 0.4 M MgCl2, and 750 µl 0.1 M Tris-HCl (pH 8.1) were mixed together and

incubated at 30◦C for 2 minutes. 10 µl crude cell extract was added to this solution

and the reaction was started by the addition of 30 µl 3.4 M CoA. The decrease

in absorbance at OD300 was measured and activity was calculated using a molar

extinction coefficient of 12.9 cm2.µmol−1 [159]. One U of activity is defined as the
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amount needed to catalyze the formation or cleavage of 1 µmol acetoacetyl-CoA in

1 minute. The formula used to calculate activity is as follows:

Units

min
=

∆A
min

× 1.5

(1.726× 104)× 1

2.7.5 Exopolysaccharide Quantitation

Solutions used in the isolation and quantitation of EPS are detailed in Appendix

A.6.

2.7.5.1 Isopropanol Precipitation of Exopolysaccharide

Cells were grown to saturation in 50 ml high-carbon medium (YMB for S. meliloti ;

MAG for B. japonicum in a 250 ml Erlenmeyer flask. 25 ml cells were pelleted at

6,000 rpm for 20 mins and the supernatant was transferred to a fresh tube. The

cell pellet was washed in 25 ml 1 M NaCl 10 mM EDTA and, following pellet-

ing, the supernatant was combined with the supernatant from the initial harvest.

The combined supernatants were centrifuged at 6,000 rpm for 20 mins to remove

all traces of cell debris and were then transferred to clean 250 ml glass beakers.

EPS was precipitated by the addition of 2 volumes (100 ml) ice cold isopropanol.

The beakers were covered with aluminium foil and incubated overnight at 4◦C to

facilitate the precipitation.

Following overnight incubation, the EPS precipitate wass removed by successive

rounds of centrifugation at 8,000 rpm for 20 mins in pre-weighed 50 ml centrifuge

tubes. The pellet was then dried at 60◦C overnight.
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2.7.5.2 Exopolysaccharide Quantitation by Mass

25 ml cells from the original culture were pelleted at 6,000 rpm for 20 mins in pre-

weighed tubes. The pellet was then dried at 60◦C until constant mass was achieved

in order to allow quantitation of CDM.

The dried EPS pellet and tube were weighed and the EPS mass determined by

subtracting the combined weight from the weight of the pre-weighed tube.

EPS was expressed as EPS as a percent of CDM

2.7.5.3 Exopolysaccharide Quantitation by Anthrone Assay

The anthrone assay used is a modified version of the protocols described by Morris

et al [247] and Trevelyan & Harrison [353].

25 ml cells from the original culture were pelleted at 6,000 rpm for 20 mins

in pre-weighed tubes. The pellet was then dried at 60◦C until constant mass was

achieved in order to allow quantitation of CDM.

Anthrone reagent must be prepared fresh daily. The recipe for preparation is

described in Appendix A.6. The dried EPS pellet was dissolved in 5 ml dH2O.

When necessary, 1:10 dilutions of the dissolved EPS were prepared. EPS for each

sample was typically measured in duplicate from 2 independent cultures. 5 ml

anthrone reagent was added to each test tube and the tubes were incubated on ice.

1 ml EPS sample was layered on top of the anthrone reagent and the tubes were

capped with marbles. The tube contents were mixed by thorough vortexing. The

tubes were transferred to a vigorously boiling water bath and heated for precisely

10 minutes (note, the time and intensity of heating are extremely important). The

tubes were then removed from the boiling water bath and plunged into an ice-cold

water bath for at least 2 mins. The intensity of the green colour was measured at

620 nm (Spectra Max 190, Molecular Devices) against an H2SO4 blank.
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A standard curve of glucose blanks from 0-25 µg glucose was also generated,

and the formula used to determine EPS content of each of the unknown samples.

This EPS content was then expressed as µg of glucose equivalents as a percentage

of CDM.

2.8 Desiccation Assay Techniques

2.8.1 On-Seed Survival Assays

On-seed survival was typically assayed by inoculating 400 g soybean seeds with

1.1 ml of saturated culture amended with 20% proprietary extender solution. The

soybean-culture mix was vigorously shaken for 30 seconds before 5 seeds were re-

moved, in triplicate, to 10 ml PBS in a sterile glass test tube. The tubes were

vortexed vigorously for 60 seconds and then serially diluted. 100 µl of the three

highest dilutions were plated in duplicate to determine CFU/seed at t=0. Sam-

ples were then assayed in this manner at appropriate intervals. Between sampling,

inoculated seeds were maintained at 16◦C, with approximately 70% humidity.

2.8.2 Filter Desiccation Assays

Desiccation tolerance was initially screened in using the filter desiccation protocol

kindly provided by Dr Mike Kahn’s lab at Washington State University (J. Humann,

personal communication).

200 µl of saturated cultures were transferred to 36 wells of a 96-well plate (in

order for the mutants to all fit onto the Whatman #1 filter only 36 can be picked

per plate).

Each assay was performed using both YMA and TY. A sterile Whatman #1
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filter (Whatman Canada Ltd., Toronto ON) was placed over the centre of each

plate, and allowed to become completely moist. Colonies were replicated from the

96-well plate onto each plate using a 48-prong replicator. The plates were then

incubated at 30◦C until growth was uniform.

After sufficient growth had formed on the replicated plates, the filter was re-

moved asceptically with forceps and placed cell-side-up on a sterile petri dish. The

filter was left to dry in the 30◦C incubator inside a plastic tub for 1 week. The

filters were rehydrated by inverting them onto fresh YMA plates and incubated

in the 30◦C incubator until growth was evident, checking every 12-24 hours and

recording any differences between patches.

2.8.3 96-Well Plate Desiccation Assays

Desiccation tolerance was assayed in a 96-well plate using the agar plug method

kindly provided by Dr Mike Kahn’s lab at Washington State University (J. Humann,

personal communication). Assays were carried out in sterile 96-well plates (VWR

International, Mississauga ON).

50 µl YMA were added to each of the wells of the 96-well plate. Plates were

allowed to solidify and then wrapped in parafilm until needed. Liquid cultures were

grown to saturation in the appropriate media and normalized to the same staring

OD600 by dilution. Each column (12 columns in total) was inoculated with 4 µl

in triplicate, for a total of 24 wells per sample. An airpore tape sheet (Qiagen

Inc., Mississauga ON) was placed over the entire plate, leaving the paper strip still

attached at the ends to facilitate easy removal. The 96-well plate lid was then

replaced (over the airpore strip) and the plate was incubated at 30◦C for 48 hours.

After 48 hours, the airpore sheet was pulled back to reveal the first row of wells,

to which 100 µl PBS was added. The PBS was removed, along with the agar plug,
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and transferred to a test tube containing 4.9 ml PBS. This solution was vortexed

vigorously and serial dilutions out to 10−6 were performed. 100 µl of these dilutions

were plated, in duplicate, on an appropriate medium in order to determine CFU/ml

at t=0. 96-well plates were then incubated at 30◦C and samples were removed in

this fashion at regular time points (typically 1, 2, 4, 8 and 16 weeks).

2.9 Microscopy Techniques

All microscopy solutions are described in Section A.8.

2.9.0.1 Preparation of Samples for Scanning Electron Microscopy (SEM)

Samples were fixed in sufficient 2.5% glutaraldehyde to be completely submerged

and were then incubated for 1 hour at 4◦C. Samples were washed three times in

phosphate buffer (PB) for 20 minutes each. At this point samples could be left for

up to 1 week if necessary. Samples were then dehydrated in a series of acetone as

follows: 20% for 10 minutes; 50% for 10 minutes; 70% for 2 x 10 minutes; 95% for 10

minutes; 100% for 2 x 10 minutes. Samples were subjected to critical point drying

using liquid CO2 as the transitional fluid, before being mounted on aluminium stubs

and coated with a thin layer of gold using a sputter-coater. Samples were examined

at an accelerating voltage of 15 kV on a Hitachi S-570 scanning electron microscope

(Hitachi, Tokyo, Japan).

2.9.0.2 Preparation of Samples for Transmission Electron Microscopy

(TEM)

Plants were harvested 28-30 days post-inoculation. Roots were washed to remove

traces of vermiculite, and the nodules were transferred into primary fixative (4%
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formaldehyde, 1% glutaraldehyde in 80 mM HEPES pH 7.0) and cut into small

pieces. The samples were subjected to 4 cycles of vacuum infiltration (2 mins

per cycle) and were left overnight at 4◦C. Following infiltration, the nodules were

washed thoroughly in sterile water, and stained for 4 hours in 1% OsO4. The nod-

ules were washed again in water and dehydrated through a gradient of acetone.

The nodules were embedded in epon araldite resin and transferred to BEEM cap-

sules for 48 hours at 60◦C. Ultrathin sections were cut using a Reichert Ultracut E

microtome, and were stained with uranyl acetate and lead citrate using standard

techniques [372]. Samples were analysed in a Philips CM10 transmission electron

microscope at an accelerating voltage of 60 kV.
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Chapter 3

Poly-3-Hydroxybutyrate Synthesis

in Bradyrhizobium japonicum

3.1 Poly-3-Hydoxybutyrate Metabolism in Bradyrhi-

zobium japonicum

PHB metabolism appears to play a diverse role in the metabolism of a range of

different prokaryotes. In R. leguminosarum, PHB synthesis has been shown to help

regulate the carbon and redox balance of the tricarboxylic acid (TCA) cycle [377]

and in S. meliloti, phbC mutants are impaired in their ability to grow on PHB cycle

intermediates [40]. In addition, phbC mutants of Rhizobium etli demonstrate higher

levels of N2-fixation during symbiosis [43] presumably because they are channelling

all of the available carbon into N2-fixation rather than into carbon storage; S.

meliloti phbC mutants show slightly decreased levels of N2-fixation [7], and are also

defective in competition for nodulation relative to the wild-type parental strain,

Rm1021 [390]. It has been suggested that accumulation of PHB during saprophytic

growth may be advantageous during nodule initiation or invasion [390] although the
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mechanisms through which this provision is made remain elusive.

Like many strains of rhizobia, Bradyrhizobium japonicum is capable of syn-

thesizing high levels of polyhydroxyalkanoates (PHA) under sub-optimal growth

conditions (reviewed in [351]) in which growth is inhibited by the lack of a key

nutrient but carbon supplies are abundant. These intracellular carbon stores can

later be mobilized to support metabolism under conditions of carbon starvation,

such as those experienced during long-term inoculant storage. In agreement with

this hypothesis, a phbC mutant in Azospirillum brasilense demonstrated a reduced

survival capacity in the absence of an exogenous carbon supply [172]. Furthermore,

PHA/PHB has been shown to protect the cell from a wide range of stresses, includ-

ing heat shock, UV irradiation, exposure to an oxidizing agent, and osmotic shock

[174], suggesting that the effects of PHA/PHB at the cellular level are diverse.

The PHB cycle in S. meliloti has been characterized, and is outlined in Figure 1.8.

Each gene in this cycle, except for phaZ, has been identified and analyses of mutant

phenotypes have shown that the ability to synthesize and utilize PHB is important

in competitive growth and long-term survival [390].

Unlike S. meliloti, B. japonicum elicits the formation of determinate nodules

on the roots of its host symbiont, soybean. Bacteroids of B. japonicum, and other

determinate-nodule-forming rhizobia, are capable of accumulating large amounts

of PHB during symbiosis. Indeed, some reports cite that B. japonicum bacteroids

may contain 30-70% PHB by mass [18, 122, 391], an amount that does not appear

to fluctuate relative to nitrogenase activity, but which does decline during periods

of carbon stress such as periods of darkness or during seed production by the host

plant [18, 17, 391]. While it is conceivable that PHB synthesis during symbiosis

might compete with nitrogenase for photosynthate, the ability of bacteroids from

determinate nodules to undergo a process of reverse differentiation following nodule

senescence [132, 231, 235, 337, 357] makes it likely that the accumulated PHB
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gives the cells a competitive advantage when released into the soil. Assisting the

bacteroids in PHB accumulation potentially benefits the host plant by “seeding”

the soil with a population of viable rhizobia that would be available to nodulate

the next generation of plants after seed formation and plant death.

Analysis of the recently completed genome sequence of B. japonicum [178, 179]

suggested the presence of five PHA/PHB synthase homologues (Blr2885, Blr3732,

Bll4360, Bll4548, and Bll6073) – one of which (Bll4360) was shown to be able

to functionally complement a S. meliloti phbC mutation – and two phbAB oper-

ons (Bll0225/Bll0226 and Blr3724/Blr3725) predicted to encode acetyl-CoA acetyl-

transferase and acetoacetyl-CoA reductase [7]. These genes are distributed through-

out the entire genome, as depicted in Figure 1.9. The presence of so many copies

of phbC suggests a significant role for PHA synthase in B. japonicum metabolism,

although it is not known if each of these genes encodes a functional PHA syn-

thase and, at the time this study was initiated, no studies had been conducted to

investigate this further.

Over 59 PHA synthase genes have now been cloned and characterized (reviewed

in [351]) and multiple sequence alignments show that these genes share an overall

identity of 8-96% with only eight strictly conserved, catalytically important amino

acids [285]. The five predicted phbC genes in B. japonicum range in size from 300

to 600 amino acids (discussed in Section 1.3.1), which is within the range of known

PHA synthases [7]. All five of the B. japonicum genes also contain the modified

lipase box motif, GX[S/C]XG, and at least seven of the eight highly conserved

residues found among phbC genes (see Figure 3.1 and Table 3.1) [7, 285].

The five phbC genes were cloned separately by PCR into pRK7813 [169] and

the ability of each to complement the pleiotropic phenotype of the S. meliloti phbC

mutant was examined. Of the five phbC homologues, only Blr3732 and Bll4360

were able to complement the PHB synthesis phenotype of S. meliloti phbC mutant.
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Furthermore, Blr3732, Bll4360 and Bll6073 all demonstrated a partial capacity to

complement the acetoacetate growth phenotype of the S. meliloti phbC mutant, but

none was able to fully restore growth on acetoacetate. Interestingly, recent data has

shown that Bll6073, an apparently non-complementing homologue, is up-regulated

in bacteroids [308, 309].

In order to determine whether different PHB synthases are used in symbiosis

relative to free-living growth, mutants of the phbC genes as well as of both phbAB

operons were constructed by allelic replacement. Single mutants of three of the phbC

loci (Blr2885, Blr3732 and Bll6073) and both phbAB operons (Bll0225/Bll0226 and

Blr3724/Blr3725) we constructed by cross-over PCR and allelic replacement. In

addition, double mutants of both phbAB operons as well as different combinations

of phbAB and phbC genes, have been constructed. The effects of these mutations

on free-living and symbiotic phenotypes was assessed.

This study highlights the complex metabolic networks that are characteristic

of the Rhizobiaceae and demonstrates that the PHB cycle plays an integral role

in central carbon metabolism in these bacteria under free-living and symbiotic

conditions. While previous studies have elucidated the mechanisms by which PHB

is synthesized and degraded, very little work has addressed the regulation and co-

ordination of PHB metabolism in each growth phase. This study represents the

next step in understanding the integral role that carbon metabolism has to play in

the life cycle of rhizobia.

129



Figure 3.1: Boxshade alignment of B. japonicum PhbC amino acid se-
quences. Black boxes indicate residues conserved in all PHA synthases;
Red boxes indicate the modified lipase box motif
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Table 3.1: Conserved catalytic residues in S. meliloti phbC and their
corresponding residues in each of the B. japonicum phbC ORFs

Rm1021 Blr2885 Blr3732 Bll4360 Bll4548 Bll6073
S290 S92 S247 S277 S100 S348
C349 C151 C306 C336 C154 C348
G352 G154 G309 G339 G157 G351
D381 D180 D338 D368 D182 D380
W450 W251 W406 W253 W437 W449
D504 D306 D462 D491 D307 D503
G531 G333 G489 G518 E334 G530
H532 H334 H490 H519 P335 H531
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3.2 Results and Discussion

3.2.1 Cloning of B. japonicum phbC Open Reading Frames

All strains and plasmids described in this chapter are listed in Table 2.1. For ease of

reading, a summary of the relevant strains and plasmids are listed in Tables 3.2 and

3.3. Primers were designed against the 5’ and 3’ regions of each phbC open reading

frame, and are listed in Table 2.2. Each ORF was amplified by PCR using KOD

polymerase (EMD Biosciences, San Diego, CA) and following standard protocols

[307]. As described in Table 2.2, primers were designed to include restriction sites

in the 5’ and 3’ regions, to facilitate easy cloning from the purified PCR product

directly into pRK7813 [169]. The resultant plasmids, described in Table 2.1 were

transferred into the phbC mutant strain of S. meliloti, Rm11105, by triparental

mating (Section 2.4.4.5) and transconjugants were isolated by plating on TY Sm200

Tc10. Following three rounds of streak purification, transconjugants were assayed

for the ability of the plasmid construct to complement several characteristic phbC

phenotypes of S. meliloti.

3.2.2 Complementation of S. meliloti phbC Mutant by B.

japonicum phbC ORFs

As described previously, the phbC mutant of S. meliloti demonstrates a pleiotropic

phenotype (reviewed in [351]). The cloned B. japonicum phbC genes were each

tested for their ability to complement the S. meliloti Rm11105 PHB synthesis,

EPS synthesis and acetoacetate utilization phenotypes.
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Table 3.2: Summary of strains constructed in the analysis of B. japon-
icum PHB metabolism

Strain Relevant Characteristics
USDA110 wt
BjUW1 USDA110 pMA105
BjUW2 USDA110 pMA106
BjUW4 USDA110 pMA108
BjUW5 USDA110 pMA109
BjUW8 USDA110 ∆Blr2885
BjUW9 USDA110 ∆Blr3732
BjUW10 USDA110 pMA107 #1
BjUW11 USDA110 pMA107 #2
BjUW12 USDA110 pMA108
BjUW13 USDA110 ∆Bll6073
BjUW14 USDA110 pMA109
BjUW15 USDA110 ∆Bll0225 and ∆Bll0226
BjUW16 USDA110 ∆Blr3725 and ∆Blr3726
BjUW17 USDA110 ∆Blr3725 and ∆Blr3726 #2
BjUW18 BjUW9 pMA107 #1
BjUW19 BjUW9 pMA107 #2
BjUW20 BjUW16 pMA110#1
BjUW21 BjUW16 pMA110#2
BjUW22 BjUW15 pMA111#1
BjUW23 BjUW15 pMA110#2
BjUW24 BjUW9 pMA111#1
BjUW25 BjUW9 pMA111#2
BjUW26 BjUW9 pMA105#1
BjUW27 BjUW9 pMA105#2
BjUW28 BjUW9 ∆Blr2885 #1
BjUW29 BjUW9 ∆Blr2885 #2
BjUW30 BjUW9 ∆Blr3725 and ∆Blr3726 #1
BjUW31 BjUW9 ∆Blr3725 and ∆Blr3726 #2
BjUW32 BjUW15 ∆Blr3725 and ∆Blr3726 #1
BjUW33 BjUW15 ∆Blr3725 and ∆Blr3726 #2
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Table 3.3: Summary of plasmids constructed or used in the analysis of
B. japonicum PHB metabolism

Plasmid Relevant Characteristics
pK19mobsacB Suicide vector KmR

pGEMTEasy Cloning vector for PCR-generated DNA fragments, AmpR

pRK7813 RK2 derivative carrying pUC9 polylinker. TcR

pMA100 pGEMTEasy Blr2885 AD joined fragment
pMA101 pGEMTEasy Blr3732 AD joined fragment
pMA102 pGEMTEasy Bll4360 AD joined fragment
pMA103 pGEMTEasy Bll4548 AD joined fragment
pMA104 pGEMTEasy Bll6073 AD joined fragment
pMA105 pK19mobsacB Blr2885 AD from pMA100
pMA106 pK19mobsacB Blr3732 AD from pMA101
pMA107 pK19mobsacB Bll4360 AD from pMA102
pMA108 pK19mobsacB Bll4548 AD from pMA103
pMA109 pK19mobsacB Bll6073 AD from pMA104
pMA110 pK19mobsacB Bll0225/Bll0226 AD
pMA111 pK19mobsacB Blr3725/Blr3726 AD
pMA156 pRK7813 Blr2885
pMA118 pRK7813 Blr3732
pMA119 pRK7813 Bll4360
pMA120 pRK7813 Bll4548
pMA121 pRK7813 Bll6073
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3.2.2.1 Restoration of EPS Synthesis

Exopolysaccharide synthesis was analysed by observing mucoidy of the colonies

when grown on high-carbon media. Wild-type S. meliloti demonstrates a charac-

teristic mucoid phenotype when grown under PGB-inducing conditions; this mu-

coidy is absent in the phbC strain Rm11105. As shown in Figure 3.2 when grown

on Yeast Mannitol agar (YMA), only Blr3732 and Bll4360 were able to restore EPS

production in Rm11105.

3.2.2.2 Restoration of PHB Accumulation

The ability to complement the PHB synthesis phenotype of Rm11105 was deter-

mined in two ways. Initially, each complemented clone was screened on YMA con-

taining Nile Red. Nile Red is a dye that binds to PHB granules in the cytoplasm

of the cell, and fluoresces under UV light. As shown in Figure 3.3, only Blr3732

and Bll4360 appeared to be able to complement the PHB synthesis phenotype of

this mutant.

In order to more quantitatively characterize PHB synthesis by these comple-

mented clones, PHB content was also determined by organic extraction [200], fol-

lowing growth to saturation in yeast mannitol broth. The data presented in Ta-

ble 3.4 confirm the results of the screening on YMA-Nile Red, showing that only

Blr3732 and Bll4360 are capable of complementing the PHB synthesis phenotype

of Rm11105.

3.2.2.3 Complementation of Carbon Source Utilization Phenotype of

the S. meliloti phbC Mutant

Rm11105 lacks the ability to grow on either acetate or acetoacetate as a sole carbon

source. All Rm11105 B. japonicum phbC transconjugants were tested for their
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Figure 3.2: Complementation of EPS phenotype of S. meliloti phbC
mutant with B. japonicum phbC genes
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Figure 3.3: Complementation of the PHB phenotype of S. meliloti phbC
mutant with B. japonicum phbC genes on YMA containing Nile Red
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Table 3.4: PHB accumulation by S. meliloti Rm11105 complemented
with B. japonicum phbC genes

Strain % PHB (w/w)
Rm1021 18.9
Rm11105 0.2
Rm11105 Blr2885 0.3
Rm11105 Blr3732 14.9
Rm11105 Bll4360 17.3
Rm11105 Bll4548 2.2
Rm11105 Bll6073 0.9
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ability to complement the carbon utilization phenotypes of Rm11105. The results

of these growth curves are shown in Figures 3.4, 3.5 and 3.6.

As shown in Figure 3.6 only Blr3732, Bll4360 and Bll6073 all demonstrated a

partial capacity to complement the acetoacetate growth phenotype of the S. meliloti

phbC mutant, but none was able to fully restore growth on acetoacetate. Inter-

estingly, recent data has shown that Bll6073, an apparently non-complementing

homologue, is up-regulated in bacteroids [308, 309].
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3.2.3 PHB Metabolism in B. japonicum

3.2.3.1 Characterization of B. japonicum Antibiotic Resistance Profile

A problem that quickly became apparent was the inherent tolerance that B. japon-

icum demonstrates towards many commonly used laboratory antibiotics [56]. For

this reason it was important to establish precisely which antibiotics could be used as

selective agents by determining how sensitive B. japonicum USDA110 is to various

antimicrobial agents. By spot-plating serial dilutions of B. japonicum USDA110

onto AG plates containing various concentrations of antibiotics, an elementary re-

sistance profile was compiled (Table 3.5). These data suggest that kanamycin resis-

tance would be the most useful selectable marker, and that the inherent resistance of

B. japonicum to tetracycline would make it a useful antibiotic for counter-selection

against E. coli donor strains. The data are summarized in Table 3.5 and form the

basis for the antibiotic concentrations documented in Appendix A.1.2.3.

3.2.3.2 Construction of B. japonicum PHB Synthesis Mutants

Single deletion mutants of three of the five phbC genes and both phbAB operons

of B. japonicum were generated by crossover PCR [336] (Figure 3.7). Primer sets

were designed such that the crossover PCR would generate a construct that would

produce an in-frame deletion as a result of allelic replacement in the host genome.

Primers used in constructing deletion mutants were designed in sets of four and were

designated A, B, C, and D based on the location of their target sequence relative to

those highlighted in Figure 3.7. A complete list of primers may be found in Table

2.2. The initial round of PCR produced an upstream product (A/B) and a down-

stream product (C/D), that were confirmed by gel electrophoresis. These products

were purified by gel extraction and used as the template for the second round of

PCR using primers A and D to generate a joined fragment that was then cloned into
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Table 3.5: Antibiotic resistance profile of B. japonicum USDA110 grown
on AG medium supplemented with different concentrations of antibiotics

Antibiotic Final Concentration (µg/ml)
Streptomycin 50 100 150 200 400

R S S S nd
Neomycin 50 100 150 200 400

R R R nd nd
Tetracycline 10 25 50 200 600

R R R S S
Chloramphenicol 25 50 100 200 400

R R R nd nd
Rifampicin 25 50 100 200 400

R R R nd nd
Gentamycin 20 40 100 150 200

R R R R R
Kanamycin 25 50 100 200 400

R S S S S

Note, growth is scored as either R (resistant, growth was evident above background)
or S (sensitive, no discernible growth).
nd: not determined
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the general cloning vector pGEM-TEasy R©. This product was confirmed by PCR

and subsequently cloned into the suicide vector pK19mobsacB [310]. All of these

plasmid constructs are documented in Table 2.1. This construct was transferred

into B. japonicum by triparental mating, as described in Section 2.4.4.5, and single

recombinants were selected by plating on AG Km50Tc10. Following three successive

rounds of streak purification on AG Km50Tc10, double recombinants were isolated

by growing the strains to saturation in AG with no selection and plating serial

dilutions of up to 10−4 on AG containing 5% sucrose. Sucrose-Resistant colonies

were then patched onto both AG sucrose and AG Km50 to distinguish between true

double-recombinants and single recombinants with sacB inactivation. True double

recombinants were then screened for the deletion by colony PCR (Section 2.4.4.12)

and confirmed by gel electrophoresis. A representative gel is shown in Figure 3.8.

Two phbC double mutants have also been constructed, as has a double mutant

of both phbAB operons. For reasons that remain unclear, two of the phbC open

reading frames proved recalcitrant to mutation.

3.2.3.3 Symbiotic Phenotype of B. japonicum phbC and phbAB Mu-

tants

The presence of so many putative phbC and phbAB open reading frames suggests

that PHB production may be important under different physiological conditions.

It is tempting to speculate that PHB production may be differentially regulated

under free-living and symbiotic conditions. Furthermore, since PHB production

during symbiosis would appear to divert carbon away from nitrogen fixation, it is

important to determine whether elimination of PHB production during symbiosis

has an effect on plant dry mass. In order to determine the symbiotic phenotype of

the B. japonicum PHB synthesis mutants, a soybean growth facility was constructed

by suspending high-pressure sodium lamps from a traditional greenhouse bench and

145



Figure 3.7: Crossover PCR strategy used to construct phbC and phbAB
mutations in B. japonicum
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Figure 3.8: Colony PCR of Blr2885 and Blr3724/3725 constructions. 1:
1 kb ladder; 2: WT Blr2885; 3: Mutant Blr2885; 4: WT Blr3724/3725;
5 and 6: Mutant Blr3724/3725
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supplementing the light production with compact fluorescent bulbs (Figure 3.9).

This facilitated the growth of up to 30 pots of soybean simultaneously, with no

detectable innoculum cross-contamination.

The data in Table 3.6 (from triplicate experiments) show that plants inoculated

with PHB synthesis mutants do appear to show reduced plant mass relative to those

inoculated by the wild-type strain. This reduction in plant mass is reproducible

but, when analysed using a Student’s t-test, the data are not statistically significant

except in the case of plants inoculated with BjUW9.

3.2.3.4 PHB accumulation of B. japonicum phbC and phbAB Mutants

Each mutant strain was tested for the ability to accumulate PHB under both free-

living and symbiotic conditions. For analysis of free-living PHB accumulation,

the standard PHB assay, using an organic extraction [200], was modified for use

with B. japonicum and was used to quantitate PHB accumulation in cells grown

under high-carbon conditions. B. japonicum USDA110 cannot utilize mannitol

as a sole carbon source, so it was necessary to modify the standard high-carbon

growth conditions in order to induce PHB accumulation. A high-carbon medium

containing an excess of arabinose and gluconate, which gave optimal growth relative

to other PHB-inducing media, was developed for this purpose (Appendix A.1).

To measure PHB accumulation in symbiosis, PHB had to be extracted directly

from the bacteroids. Soybean plants were grown as describe in Section 2.7.2.2 and

nodules were removed from the resultant root structures. The process of bacteroid

isolation is modified from Wong and Evans [391], and Vassileva and Ignatove [371]

and depicted in Figure 3.10.

As shown in Table 3.7, knocking out Bll0225/6 (phbAB, mutant BjUW15) was

sufficient to eliminate PHB production by B. japonicum USDA110 under free-living
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Figure 3.9: Soybean growth facility constructed within the Charles lab
at the University of Waterloo. This set-up employed two high-pressure
sodium bulbs, augmented by compact fluorescent bulbs and was capable
of holding up to 30 pots simultaneously without cross-contamination
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Figure 3.10: The process of bacteroid isolation from soybean nodules.
Nodules were weighed and then crushed using a pestle and mortar (a, b),
and the resultant crushate was filtered through three layers of cheese-
cloth (c). The filtered crushate was centrifuged at 300 x g (d) and
the supernatant transferred to a fresh tube for a second centrifugation
step at 8,000 x g (e). The supernatant was decanted and the resul-
tant bacteroid-containing pellet was dried and subject to organic PHB
extraction following standard techniques [200]
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Table 3.6: Shoot dry masses of soybean plants Inoculated with different
B. japonicum PHB synthesis mutants

Strain Relevant Characteristics
Average Mass
per Plant (g)

Uninoculated negative control 0.61a

USDA110 wild-type 1.60a

BjUW8 phbC Blr2885 1.09
BjUW9 phbC Blr3732 0.90a

BjUW13 phbC Bll6073 1.31
BjUW15 phbAB Bll0225 and Bll0226 1.22
BjUW16 phbAB Blr3724 and Blr3725 1.04
BjUW28 BjUW8 Blr3732 1.66
BjUW31 BjUW9 Blr3732 1.66
BjUW32 BjUW15 Blr3724 and Blr3725 1.13

a These differences are statistically significant

151



conditions; Blr3724/5 phbAB, mutant BjUW16) is required for PHB production

during symbiosis. This is the first example of B. japonicum mutants that are

unable to synthesize PHB.

3.2.3.5 Rhizosphere Competitiveness of B. japonicum PHB Synthesis

Mutants

The PHB synthesis mutants of S. meliloti demonstrate a distinct loss of rhizosphere

competitiveness relative to the wild-type strain [9]. To determine whether a similar

correlation between PHB synthesis capacity and nodulation competitiveness exists

in B. japonicum, the three phbAB mutants BjUW15, BjUW16 and BjUW32 were

all tested for their ability to compete for nodulation with BjUW36, a spontaneous

SmR-derivative of the wild type strain USDA110. BjUW36 was isolated by plating

cells from 1 ml of a saturated culture of B. japonicum USDA110 on AG Sm200. The

resultant colony was streak purified three times on AG Sm200 before use.

The data in Table 3.8 show the results of these competition assays. In each

trial, approximately 15 nodules were crushed and the bacteroids screened for SmR

or SmS. These data show that, similarly to S. meliloti, PHB synthesis mutants of

B. japonicum also demonstrate reduced rhizosphere competitiveness.

3.2.3.6 Growth Phenotypes of B. japonicum phbC and phbAB Mu-

tants

PHB synthesis mutants of S. meliloti demonstrate an inability to grow on the PHB

cycle intermediates acetoacetate and 3-hydroxybutyrate. Each of the B. japonicum

PHB mutants was analysed for growth on these carbon sources to determine if

this phenotype was consistent between the two species. Growth curves were gen-

erated using the Bioscreen-C growth curve machine (see Section 2.5.1.1) and were
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Table 3.7: PHB accumulation by B. japonicum PHB synthesis mutants
under both free-living and symbiotic conditions, expressed as mg PHB
as percent cell dry mass

mg PHB as % CDM
Strain Free-Living Bacteroid

USDA110 11.6 17.2
BjUW8 13.1 nd
BjUW9 9.3 15.6
BjUW13 11.4 nd
BjUW15 3 17.6
BjUW16 12.3 6.7
BjUW32 1.3 1.2
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Table 3.8: Nodulation competitiveness of the B. japonicum phbAB mu-
tants co-inoculated in the described ratios with the wild-type strain
USDA110 on Soybean (Glycine Max) plants

Strain (%) in innoculum No. nodules tested Nodule occupancy (%)
Strain 1 Strain 2 Both

USDA110 (10) + BjUW36 (90) 17 13 2 2
USDA110 (50) + BjUW36 (50) 15 6 6 3
USDA110 (90) + BjUW36 (10) 18 1 16 1
BjUW36 (10) + BjUW15 (90) 16 5 10 1
BjUW36 (50) + BjUW15 (50) 17 10 4 3
BjUW36 (90) + BjUW15 (10) 18 16 2 0
BjUW36 (10) + BjUW16 (90) 17 0 14 3
BjUW36 (50) + BjUW16 (50) 18 6 8 4
BjUW36 (90) + BjUW16 (10) nd nd nd nd
BjUW36 (10) + BjUW32 (90) 12 1 10 1
BjUW36 (50) + BjUW32 (50) 13 8 2 3
BjUW36 (90) + BjUW32 (10) 8 8 0 0

nd: not determined
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followed for 10 days in Vincent’s Minimal Medium (Appendix A.1), supplemented

with the appropriate carbon source. A representative samples of these growth

curves is shown in Figures 3.11, 3.12 and 3.13. As can be seen in these graphs,

no discernible difference was observed between wild-type B. japonicum USDA110

and any of the PHB synthesis mutants, suggesting that the regulatory pathways

for carbon metabolism differ between S. meliloti and B. japonicum.
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3.2.3.7 Exopolysaccharide Accumulation by B. japonicum phbC and

phbAB Mutants

PHB synthesis mutants of S. meliloti also demonstrate a distinctly non-mucoid

phenotype when grown under PHB-inducing conditions. This is in contrast to the

parental strain Rm1021, which appears mucoid when grown on high-carbon media

(although notably less mucoid than the expR+ strains). Isolation of exopolysaccha-

ride (EPS) from S. meliloti Rm1021 and PHB cycle intermediates demonstrates

a significant reduction in EPS production in these strains. As evidenced by the

ease with which PHB synthesis mutants form a compact pellet upon centrifugation

(Figure 3.14), it would appear that these strains demonstrate a similar reduction

in EPS biosynthetic capacity.

A quantitative analysis of B. japonicum EPS biosynthesis was conducted using a

standard isopropanol EPS precipitation protocol (modified from [221] as described

in Section 2.7.5). This protocol is described in detail in Section 2.7.5. The data

shown in Table 3.9, confirm the visual observation depicted in Figure 3.14. These

data show that B. japonicum PHB synthesis mutants demonstrate a similar reduc-

tion in EPS production to that exhibited by the non-PHB producing mutants of S.

meliloti.

3.3 Conclusions

While only two isomers, Blr3732 and Bll4360, could complement PHB synthesis

and EPS production phenotypes of Rm11105, three isomers (Blr3732, Bll4360 and

Bll6073) demonstrated a partial ability to confer growth on acetoacetate (Figure

3.6). It is noteworthy however, that none of the phbC isomers was able to fully

restore growth of Rm11105 on acetoacetate. Since all of these genes were expressed
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Figure 3.14: The EPS phenotype of the B. japonicum PHB synthesis
mutants is evident following centrifugation of a saturated culture. PHB
synthesis mutant BjUW15 forms a compact pellet following centrifuga-
tion for 30 minutes at 8,000 rpm; the wild-type strain USDA110 remains
recalcitrant to pelleting at this level of centrifugation
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Table 3.9: EPS accumulation by B. japonicum PHB synthesis mutants
expressed as mg EPS as percent cell dry mass

Strain mg EPS as % CDM
USDA110 8.29
BjUW9 8.28
BjUW13 6.77
BjUW15 5.09
BjUW16 10.32
BjUW32 5.08
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from the lacZ promoter on pRK7813, it is unlikely that any lack of complementation

could be attributed to lack of expression.

The results presented here clearly demonstrate that PHB synthesis by B. japon-

icum is regulated differently under symbiotic and free-living conditions through the

actions of PhbA and PhbB. It is apparent that phbAB Bll0225 and Bll0226 are up-

regulated only during symbiosis, while Blr3724 and Blr3725 are primarily active

under free-living conditions. Suzuki et al. demonstrated that bacteroids of B.

japonicum possessed two classes of 3-ketothiolases [338]. These two classes could

be distinguished from each other by their specificity for either acetoacetyl-CoA or

3-ketodecanoyl-CoA. Since some PHB synthesis does occur in strains BjUW15, it

is conceivable that in the wild-type strain these two specificities represent activity

from Blr3724 and Bll0225. Further work is needed to establish the regulatory mech-

anisms by which these genes are controlled, although earlier work has demonstrated

that NADH is a potent inhibitor of the acetoacetyl-CoA-specific enzyme [338]. This

introduces a potential role for NADH in promoting inhibition during early nodule

senescence when NADH concentrations in the bacteroid may be expected to rise

due to reduced nitrogen fixation [338].

It is interesting to note that the symbiotic phenotype of B. japonicum PHB

synthesis mutants is quite different to that observed for PHB synthesis mutants of

Rhizobium etli [43]. Plants inoculated with R. etli phaC mutants had higher shoot

dry masses relative to those inoculated with wild type cells [43]. Furthermore, these

plants possessed higher nitrogen contents and the bacteroids demonstrated higher

levels of nitrogenase activity [43]. These data might suggest that, in R. etli, PHB

synthesis in symbiosis occurs at the expense of nitrogen fixation. In contrast, a

comparison of the data presented in Tables 3.6 and 3.7 suggest that in B. japon-

icum, PHB accumulation during symbiosis does not occur at the expense of plant

biomass formation. Indeed, the only statistically significant difference in plant dry
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mass was a decrease in mass observed in plants inoculated with BjUW9, which

carries a deletion in Blr3732. This mutation did not affect PHB accumulation un-

der free-living conditions; symbiotic PHB accumulation was not determined. The

reason for this difference remains unclear, although it is conceivable that the in-

creased reductive power observed in the R. etli mutant may be channelled into

nitrogen fixation. A similar analysis of NAD+/NADH ratios in the B. japonicum

PHB synthesis mutants would be necessary to determine if this reductive capacity

is mirrored in B. japonicum. It is tempting to speculate however, that a similar ca-

pacity might not exist in B. japonicum, accounting for the discrepancy in symbiotic

efficiency observed between the two species.

While the reason for so many copies of the enzymes responsible for PHB syn-

thesis remain unclear, it is conceivable that the products of the 2 different phbAB

operons and the five phbC genes are structurally distinct. Since PHB synthase is

believed to be substrate-specific [66], it is tempting to speculate that the existence

of multiple isomers of all three biosynthesis genes may contribute to the production

of a more diverse repertoire of PHA end products. Indeed, in phbB in W. eutrophus,

the substrate specificities of the two isomers of phbA are believed to account for

the production of PHB containing either 3-hydroxybutyrate or 3-hydroxyvalerate

since the PHB synthase of this organism is specific for D-(-)-hydroxybutyrate, the

product of the NADPH-linked phbB variant [142]. It is also conceivable that the

phbC variants of B. japonicum may represent soluble and granule-associated forms.

In W. eutrophus, soluble PHB synthase is found when the cells are grown under

carbon-limited conditions; upon transition to nitrogen limitation, PHB accumula-

tion is upregulated and granule-associated PhbC can be detected, coupled with a

disappearance of soluble enzyme [143]. Further work needs to be done to deter-

mine under what conditions the different isoforms are upregulated. It should be

possible to construct relatively simple lacZ transcriptional fusions by single recom-
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bination into the B. japonicum genome. These fusions would facilitate the analysis

of each gene’s transcriptional activation under different conditions. These fusions

have been constructed for S. meliloti (see Table 2.1) and are described in more

detail in Section 9.1.

The correlation between PHB synthesis and EPS synthesis under free-living con-

ditions is interesting. Since it is comparable to the link seen in S. meliloti Rm11105,

it is conceivable that the regulation of PHB synthesis and EPS under free-living

conditions is similar in both species. Given the well documented requirement for

EPS in the establishment of nitrogen-fixing symbioses between S. meliloti and M.

sativa [120], it was interesting to observe a similar phenomenon in B. japonicum

(Table 3.8). Strain BjUW16 demonstrates wild-type EPS and PHB synthesis un-

der free-living conditions (Tables 3.9 and 3.7) but is unable to synthesize PHB

in symbiosis and appears to be unimpaired in rhizosphere competitiveness. This

lends further credence to the discussion in Section 6.3 that, while the production

of small amounts of EPS is sufficient to establish a successful symbiosis [120], it

is insufficient to permit competition with wild-type strains producing higher levels

of the EPS, if one assumes that the EPS itself is playing a role in signalling dur-

ing early nodulation. This is further corroborated by earlier work by Bhagwat et

al., who reported a link between EPS synthesis in B. japonicum and rhizosphere

competitiveness [22].

Despite the link between EPS production, PHB synthesis and rhizosphere com-

petitiveness that is consistent between S. meliloti and B. japonicum, it is interesting

to note that PHB synthesis mutants of B. japonicum do not exhibit comparable

carbon utilization phenotypes to S. meliloti. As shown in Figures 3.11, 3.12 and

3.13, B. japonicum PHB synthesis mutants exhibit growth that is comparable to

wild type USDA110 on acetoacetate and DL-hydroxybutyrate. The slight reduction

in growth that is observed in BjUW32 and BjUW15 is most likely attributed to
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reduced optical activity due to the reduction in EPS exhibited by this strain. This

is corroborated by the control assay on AG (Figure 3.11), in which this reduction

in optical density is apparent.

The reason for the recalcitrance of Bll4360 and Bll4548 to mutagenesis remains

unclear. The construction of single recombinants of both Bll4360 and Bll4548 was

successful; however, upon screening of subsequent double recombinants, 100% of

all recombinants were identified as wild-type. It is conceivable, although without

precedent, that either of these genes may play a necessary role in maintaining

viability of B. japonicum under free-living conditions. Analysis of the surrounding

genomic regions did not result in the identification of any potentially essential genes

whose function may have been disrupted by mutagenesis, lending credence to the

theory that the PHB synthases themselves may be the important genes. Given the

pleiotropic nature of the phbC mutation in S. meliloti, it is tempting to speculate

that either of these genes may confer additional properties upon B. japonicum

that are essential for viability. Further analysis of these genes and their resultant

products would be necessary to speculate further on this issue.
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Chapter 4

The Analysis of On-Seed Survival,

Desiccation Tolerance and Ion

Sensitivity in Rhizobia

4.1 Introduction

The application of live rhizobial cells to legume seeds is the basis for the North

American agricultural inoculant industry. The bacteria in these inoculants are

able to establish nitrogen-fixing symbioses, via the formation of root nodules, with

leguminous plants. The result of this association is a reduction in the need for ex-

ogenous nitrogen fertilizer, which has both environmental and economic benefits to

the grower. The live bacterial inoculants are delivered in various different formula-

tions (liquid, peat or granular) to be used as a seed coating or direct addition to the

soil surrounding the seed (in furrow). About 95% of the formulations are applied

on-seed. One of the most important factors determining the performance of these

inoculants is their ability to survive for long periods of time once applied to the

seeds. This property is known as on-seed survival (OSS). Superior OSS translates
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into greater planting time flexibility and more efficient delivery of bacterial cells to

the field.

S. meliloti, the symbiont of alfalfa, has the longest OSS of any major commercial

rhizobial inoculant species. Indeed, the OSS of S. meliloti is sufficiently long as to

allow pre-coated seeds to be taken directly to the market. This allows for immedi-

ate planting by the grower and negates the need for specialized equipment to apply

the inoculant. Furthermore, it has the added convenience of allowing planting to

be delayed, e.g. for bad weather, without having to re-inoculate the seeds. The

current industry standards for planting time windows are shown in Table 1.2. Al-

though reports indicate that there has been considerable improvement in bacterial

survival under storage conditions, these improvements have not led to a significant

improvement in OSS [42]. Previous studies have reported a 95% decrease in via-

bility in rhizobia applied on-seed after 4 hours with 83% of those surviving died

after another 22 h in the soil [296]. Additives, including glucose, maltose, sorbitol,

sucrose, glutamate, trehalose, polyvinylpyrrolidone, montmorillonite clay, and gum

arabic have been tested for their ability to increase OSS with varying degrees of suc-

cess [38, 54, 303, 332, 374]. In practice however, most of these additives either did

not provide a sufficiently significant improvement in OSS, or were not economically

viable.

Bacterial death on-seed is believed to be the result of desiccation-induced stress,

due to irreparable membrane damage [37]. Studies investigating cell-surface changes

in response to desiccation noted a thickening of the cell wall following transfer from

broth cultures into peat carrier; this cell surface modification was also correlated

with increased OSS [93]. Previous studies in S. meliloti have shown a close correla-

tion between poly-3-hydroxybutyrate (PHB) and succinoglycan exopolysaccharide

synthesis [7]. PHB is typically accumulated under conditions where carbon is abun-

dant but growth is limited by the availability of another key nutrient (reviewed in
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[351]). The accumulated carbon stores can then be degraded to support cellular

metabolism under carbon starvation conditions such as those experienced during

long-term inoculant storage. Consistent with such a role, a PHB synthesis mutant

of Azospirillum brasilense also exhibited a reduction in survival ability [173].

In this study we investigate the desiccation tolerance, ion sensitivity and OSS

properties of a number of wild-type and mutant S. meliloti and B. japonicum

strains. The effects of PHB synthesis are analysed by assessing desiccation tol-

erance of PHB mutants under both PHB-inducing and non-inducing conditions.

We report the results of a large-scale screen of ion-sensitivity across a spectrum

of wild-type and mutant S. meliloti strains, as well as show evidence of biofilm

formation by inoculant bacteria on the surface of the seed.

4.2 Results and Discussion

All strains used in this study are described in Table 2.1. For ease of reading, a

summary of relevant strains is also included in Table 4.1
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4.2.1 Characterization of the Desiccation Tolerance of Se-

lected Strains of Bacteria

4.2.1.1 Characterization of the On-Seed Survival Phenotype of Selected

Strains of Rhizobium

An initial screen, using an industry-standard on-seed survival (OSS) assay was

performed using a standard assay for OSS (described in Section 2.8) in order to

define the baseline levels of OSS for strains used in this study.

The standard OSS assay described in Section 2.8 involves inoculation of seeds

with between 6 x 109 and 7 x 109 CFU/ml to achieve a minimum seed titre in

soybean of 1.25 x 106 CFU/seed at the point of inoculation. The inoculated seeds

were kept covered during the experimental period, and maintained at approximately

18◦C and 70% humidity. At defined time points, groups of five soybean seeds were

removed in triplicate and transferred to 10 ml of phosphate-buffered saline (PBS).

The seeds were washed by vigorous vortexing, and the resultant cell-suspension was

titrated to extinction (10−6) in PBS, at which point the average CFU/ml in the

PBS wash solution was expected to be less than 250 CFU/ml. 100 µl of each of the

appropriate dilutions were spread-plated onto yeast-mannitol agar (YMA) and the

CFU/seed of each sample group was calculated from countable plates containing

30-300 colonies.

Several wild-type and mutant strains of Sinorhizobium meliloti were assessed

using a modified version of the Bradyrhizobium japonicum on-seed survival assay

protocol. The results of these assays are shown in Figures 4.1, 4.2, and 4.3. These

data suggest that there is a large degree of variability in the OSS profiles of S.

meliloti. Figure 4.1 shows that strain SmA818 appears to be particularly compro-

mised with respect to OSS, and this strain was subsequently studied in more detail.

Additional experiments using this industry-standard protocol were conducted and

176



the results are shown in Figure 4.4 and 4.5. The data in Figure 4.5 are equiva-

lent to that in Figure 4.4, but in Figure 4.5, the data have all been normalized to

the starting CFU/ml of the culture with the lowest starting titre; the implications

for which are discussed in more detail in Section 4.2.2. These data suggest that

SmA818 is impaired in OSS capacity, although additional experiments discussed in

the following sections make these data inconclusive.

4.2.1.2 OSS Under PHB-Inducing and Non-Inducing Conditions

The OSS capacity of S. meliloti and B. japonicum PHB synthesis mutants was as-

sessed under PHB-inducing conditions. In the case of S. meliloti, OSS was also as-

sessed under non-inducing conditions (TY) to facilitate a direct comparison. These

data are shown in Figures 4.6, 4.7, and 4.8. These data suggest that PHB synthesis

has little effect on the OSS capacity of B. japonicum, but that in S. meliloti the

phbC mutant strain Rm11105 appears to demonstrate reduced OSS under PHB-

inducing conditions, implying a potential role for PHB in the long-term survival of

cells under adverse storage conditions.

4.2.1.3 Media Additives and Conditioning

Trehalose has long been known to improve the desiccation tolerance of bacteria and

its ability to enhance desiccation tolerance in B. japonicum has been documented

in the literature [332]. The ability of trehalose to enhance OSS in S. meliloti was

tested by growing the cells in media supplemented with 10 mM trehalose prior to

inoculation. In addition, the effect of conditioning the cells prior to inoculation, by

growth in a medium of high osmotic potential, was also measured; osmotic shock

might induce the synthesis of cytoplasmic osmoprotectants. Cells were grown in

media supplemented with 0.5% or 1% final concetration of NaCl prior to inocula-
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Figure 4.1: On-seed survival profiles of selected S. meliloti strains
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Figure 4.2: On-seed survival profiles of additional selected S. meliloti
strains
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Figure 4.3: On-seed survival profiles of selected S. meliloti pSymB mu-
tant strains
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Figure 4.4: On-seed survival profiles of S. meliloti pSymA mutant strain
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Figure 4.5: On-seed survival profiles of S. meliloti pSymA mutant strain,
normalized using industry-standard protocols. All data points have been
normalized to the starting CFU/ml of the culture with the lowest start-
ing titre
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Figure 4.6: On-seed survival profiles of B. japonicum PHB-mutant
strains grown under PHB-inducing conditions
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Figure 4.7: On-seed survival profiles of S. meliloti PHB-mutant strains
grown under non-PHB-inducing conditions in TY medium
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Figure 4.8: On-seed survival profiles of S. meliloti PHB-mutant strains
grown under PHB-inducing conditions in Yeast Mannitol medium
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tion. The results of these trials are depicted graphically in Figure 4.9. These data

suggest that addition of trehalose may provide an advantage to cells during the first

few weeks post-inoculation but that over the longer-term, improvements in survival

appear to be negligible. These data also suggest that pre-conditioning with NaCl

did not positively affect OSS.

4.2.1.4 Scanning Electron Microscopy of Inoculated Soybean Seeds

There is considerable evidence to suggest that under desiccation conditions, the

bacterial cell surface experiences structural damage [62]. It is also conceivable that,

on the seed surface, the bacteria form biofilm-like structures in response to a high

inoculum density and the onset of physiological stress. In order to assess whether

any visible structural changes occur on-seed, or if biofilm development is induced,

scanning electron microscopy (SEM) of the surface of S. meliloti -inoculated alfalfa

seed was used. These pictures are shown in Figures 4.10, 4.11, 4.12, and 4.13. The

data in Figure 4.10 shows evidence for the existence of biofilms on the surface of

the seed. When examined at higher magnification, as shown in Figures 4.11 and

4.12, the existence of an extracellular matrix, characteristic of a biofilm, is evident

around individual bacterial cells. This is in contrast to the surface of uninoculated

seeds, which shown no evidence of biofilm activity (Figure 4.13).

4.2.2 Characterization of the Desiccation Tolerance of Se-

lected Strains of Rhizobium

The data in Figures 4.1, 4.2, 4.3, 4.6, and 4.9 demonstrate a high degree of variabil-

ity, resulting in data that is less than conclusive. In addition, the industry-standard

techniques for data analysis was inconsistent with other standard techniques re-

ported in the scientific literature. Many of these strains were reanalysed using a
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Figure 4.9: On-seed survival profiles of S. meliloti Rm1021 grown in LB
media supplemented with trehalose of NaCl prior to inoculation
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Figure 4.10: Scanning electron micrograph of an alfalfa seed inoculated
with S. meliloti Rm1021. The surface texture appears to show evidence
of biofilm activity at this resolution
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Figure 4.11: Scanning electron micrograph of an alfalfa seed inoculated
with S. meliloti Rm1021. Bacterial cells are visible and the appearance
of an extracellular matrix, consistent with biofilm formation, is evident
at this resolution

189



Figure 4.12: Scanning electron micrograph of an alfalfa seed inoculated
with S. meliloti Rm1021. Bacterial cells are visible and the appearance
of an extracellular matrix, consistent with biofilm formation, is evident
at this resolution
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Figure 4.13: Scanning electron micrograph of an uninoculated alfalfa
seed. Although the surface texture of the seed is clearly evident, there
is a notable absence of bacterial cells on uninoculated seeds
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newly developed assay for desiccation tolerance, discussed below.

The industry-standard method of OSS data analysis requires that all samples

analysed within a single experiment be normalized to the starting culture with the

lowest CFU/ml. A correction factor, by which all subsequent CFU/seed measure-

ments are multiplied, is calculated by dividing the CFU/ml of the culture with the

lowest titre by the titre of each individual culture. Data analysed in this fashion

often gave very different results than data reported as a percentage survival of the

original on-seed titre, as is common in the scientific literature. This is apparent in

the analysis of the pSymA-cured strain of S. meliloti SmA818. Using the industry-

standard method of analysis, this strain had a very low OSS (Figure 4.5); however,

as shown in Tables 4.2 and 4.3, when the data were analysed to show percent sur-

vival of the original on-seed titre, SmA818 OSS was not discernibly different to

that of the wild-type strain Rm1021. It is interesting to note that the parent strain

of SmA818, Rm2011, appears to have increased OSS when the data is analysed by

either method.
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This variability made data analysis extremely difficult in the scientific context.

As a result an alternative method was developed, by which we could test the asso-

ciated phenotype of desiccation tolerance . Following discussion with Dr. Michael

Kahn from Washington State University, we decided to adapt the method that

his lab developed for studying desiccation tolerance in rhizobia. This method, de-

scribed in Section 2.8, involves the inoculation of small agar plugs in the wells of a

96-well plate. Using a porous membrane to allow for consistent desiccation across

the entire plate, the samples were at 30◦C. Individual plugs were removed at reg-

ular intervals and serial dilutions were performed in order to calculate CFU/ml.

The titres were used to calculate percent survival based on the starting titre of the

inoculated plugs. This method was less time-consuming and less labour-intensive,

and the resultant data were easier to analyse.

All S. meliloti PHB cycle mutants were retested using this method. These data

are shown in Tables 4.4 and 4.5. Surprisingly, during the first 2 weeks of desiccation,

strains that cannot synthesize PHB appeared to have higher desiccation tolerance

than those that can. This result is counter-intuitive, and would necessitate further

investigation in any future study.
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Several additional strains of S. meliloti, including those carrying defined dele-

tions in the pSymB megaplasmid, have also been tested using the desiccation tol-

erance assay. As shown in Table 4.6 RmF728, which carries a defined deletion in

pSymB, has extremely poor desiccation tolerance relative to all other strains tested,

including RmF726 which carries an overlapping deletion.

Furthermore, Table 4.6 shows the desiccation-resistance profile of the expR+

derivatives of Rm1021, SmUW3 and SmUW6. Rm1021 carries an insertion se-

quence in the expR open reading frame. This makes it much less mucoid than

many field isolates of S. meliloti and thus, much easier to work with in the labora-

tory. We were interested in seeing if the increased mucoidy exhibited by SmUW3

and SmUW6 translated into enhanced desiccation tolerance. The data in Table 4.6

suggest that these strains do indeed exhibit considerably higher desiccation toler-

ance than Rm1021. This is consistent with results reported from other organisms

[254].
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4.2.3 Analysis of Ion Tolerance in S. meliloti

Osmotic stress is a consequence of the early stages of desiccation. It is conceivable

therefore, that an ability to tolerate osmotic stress may translate into enhanced

desiccation tolerance. S. meliloti is noted for being particularly halotolerant among

rhizobia [28, 30]. Over 200 mutant and wild-type strains of S. meliloti were screened

for ion sensitivity by replica plating onto modified LB supplemented with either

Na+, K+, Mg2+, Li+, or Ca2+ in place of the standard 86 mM NaCl. The modified

LB are listed below, and the final ion concentration is indicated in each case:

• 350 mM NaCl

• 350 mM KCl

• 50 mM MgCl2

• 50 mM LiCl

• 50 mM CaCl2

The strains selected included a number of wild-type S. meliloti isolates from

the lab collection, pSymB deletion mutants, PHB mutants, and Short-Chain De-

hydrogenase/Reductase (SDR) mutants. Cells were grown to saturation in LB and

300 µl of each culture was transferred to a well of a 96-well plate. These cultures

were then transferred to the appropriate test media by replica plating using an

EtOH-sterilized 48-prong replica plater designed to transfer culture from a 96-well

plate onto a standard petri plate. A photograph of the resultant growth is shown

in Figure 4.14. In addition to testing the media listed above, growth was tested on

standard LB (0.86 mM NaCl), VMM succinate and VMM mannitol as controls.
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Figure 4.14: Photograph of growth resulting from inoculation using the
48-prong replica plater used to assay ion tolerance
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The data shown in Table 4.7 show the results of the preliminary ion sensitivity

screens. Growth was scored out of 3, and the data presented represent the average

of three replicates.

202



T
a
b
le

4
.7

:
Io

n
T

o
le

ra
n
ce

p
ro

fi
le

s
o
f
S
.

m
e
li
lo

ti
w

il
d
-t

y
p

e
a
n
d

m
u
ta

n
t

st
ra

in
s.

D
a
ta

p
re

se
n
te

d
a
re

e
x
p

re
ss

e
d

a
s

g
ro

w
th

sc
o
re

d
o
u
t

o
f

3
,

a
n
d

re
p
re

se
n
t

th
e

a
v
e
ra

g
e

o
f

th
re

e
re

p
li

ca
te

s.
3
:

G
ro

w
th

e
q
u

iv
a
le

t
to

S
.

m
e
li
lo

i

R
m

1
0
2
1

o
n

u
n
m

o
d
ifi

e
d

L
B

o
r

V
M

M
S
u
cc

in
a
te

;
2
:

G
ro

w
th

is
7
5
%

o
f

th
a
t

fo
rm

e
d

b
y

st
ra

in
s

d
e
si

g
n

a
te

d
a
s

3
;

1
:

G
ro

w
th

is
V

is
ib

le
b
u
t

p
o
o
r;

0
:

N
o

g
ro

w
th

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

R
m

10
21

3
3

1
2

3
3

2.
5

3

R
m

20
11

2.
3

2
1.

5
3

3
3

2
3

S
m

U
W

3
3

3
1

3
3

3
2

3

S
m

U
W

6
3

3
1.

5
3

3
3

2.
5

3

R
m

11
10

5
2.

7
3

1
1.

5
3

3
2

3

R
m

11
10

7
3

3
2.

5
3

3
3

3
3

R
m

11
34

7
2.

7
3

2.
5

3
3

3
2

3

R
m

11
43

0
3

3
3

3
3

3
2.

5
3

S
m

A
81

8
3

2.
7

3
3

3
3

3
3

S
m

B
L

-3
3

3
0

0
3

3
1

3

R
m

41
2.

7
3

0
0

3
3

0.
5

3

R
m

10
4A

14
3

3
1

0
0

3
0.

5
3

R
m

11
37

7
3

3
2

3
3

3
2.

5
3

R
m

11
37

8
3.

3
3.

0
2.

5
3

3
3

3
3

R
m

11
37

9
3

0.
7

2.
5

3
3

3
2

3

R
m

F
93

0
3

2.
3

2
3

2
3

3
3

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

203



T
ab

le
4.

7
–

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

R
m

54
22

3
1

2
3

3
3

3
3

R
m

F
93

2
3

2.
3

3
3

3
3

3
3

R
m

F
12

1
3

1.
7

2
3

3
3

3
3

S
m

A
10

2
3

2.
7

3
3

3
3

3
3

R
m

70
55

2
2.

7
2

2.
5

3
3

2.
5

3

R
m

70
22

2
3

2
2.

5
3

3
2

3

R
m

70
53

3
3

2
3

3
3

2
3

R
m

11
40

5
3

2.
7

3
2

3
3

3
2.

5

R
m

80
02

2.
7

3
0.

5
1.

5
3

3
2

2.
5

R
m

50
00

3
3

0.
5

2.
5

3
3

2
3

R
m

11
47

8
3

3
3

3
3

3
3

3

R
m

11
47

9
3

3
3

3
3

3
3

3

R
m

11
48

2
3

3
3

3
3

3
3

3

R
m

P
11

0
3

2.
7

0
2

3.
0

N
T

1
3.

0

S
m

U
W

13
3

3
1

3
3

3
3

3

S
m

04
2

3
3

0
1

2.
5

3
1

3

10
2-

F
34

3
3

1.
5

3
3

3
3

2.
5

10
2-

F
51

3
2.

7
1

2
2.

5
2

2
1

A
K

63
1

1
1

0
0.

5
3

3
0

2.
5

N
G

R
23

4
3

3
0

0
0

3
0

3

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

204



T
ab

le
4.

7
–

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

R
C

R
20

11
2.

7
2

0
2.

5
3

3
2

3

R
C

R
20

12
2.

7
2

1.
5

2.
5

3
3

2
3

C
C

20
13

2
2

1.
5

3
2.

5
3

0
2.

5

R
m

10
21

p
M

A
16

5

2.
7

3
1

2
3

2.
5

2
3

R
m

G
27

0
2

1.
7

1
1

0
3

1
3

R
m

G
27

1
2

0
0.

5
1

0
2

1
3

R
m

G
27

7
3

1
2

1
0

3
1

3

R
m

G
37

3
3

0.
5

3
3

0
3

2.
5

3

R
m

G
46

2
3

1
1

2
1.

5
3

2
3

R
m

G
50

6
3

3
3

1.
5

1
3

2
3

R
m

F
11

7
3

3
2

3
3

3
3

3

R
m

F
90

9
2.

7
2.

7
N

T
2

3
3

2
3

R
m

F
63

8
3

2.
3

1
3

3
3

2.
5

3

R
m

F
66

6
3

2.
3

0.
5

2.
5

3
3

2.
5

3

R
m

F
68

0
2

2
0.

5
1.

5
3

3
2

3

R
m

F
69

3
2.

3
2

1.
5

3
3

3
3

3

R
m

F
51

4
3

2
3

0
0

3
2

3

R
m

G
47

0
3

2.
3

1.
5

3
3

3
3

2.
5

R
m

G
47

1
2.

5
1

1
2

2
2

2
2

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

205



T
ab

le
4.

7
–

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

R
m

G
47

2
2.

5
1

1
2

2
2

2
3

R
m

F
11

4
2

2
1

2
2

2
2

3

R
m

54
08

3
2.

7
1

3
3

3
3

3

R
m

54
16

3
2.

3
1

3
3

3
3

3

R
m

53
78

2.
7

2.
3

1
3

3
3

3
3

R
m

F
72

6
3

1
1.

5
3

2.
5

3
3

3

R
m

F
72

8
3

1
1

0
0

2
0

3

S
M

c0
08

80
-f

g
3

3
3

3
3

3
2

3

S
M

c0
08

80
-fl

3
3

3
2

3
3

2
3

S
M

c0
01

36
-fl

3
3

3
3

3
3

2
3

S
M

b
21

01
0-

fg
3

3
3

3
3

3
2

3

S
M

c0
15

71
-fl

3
3

3
3

3
3

2
3

S
M

c0
22

71
-fl

3
3

3
3

3
3

2
3

S
M

c0
22

71
-f

g
3

3
3

3
3

3
2

3

S
M

c0
02

68
-fl

3
3

3
2

3
3

2
3

S
M

c0
23

22
-f

g
3

3
3

3
3

3
2

3

S
M

c0
23

22
-fl

3
3

3
3

3
3

2
3

S
M

c0
25

22
-f

g
3

3
3

3
3

3
2

3

S
M

c0
25

22
-fl

3
3

3
3

3
3

2
3

S
M

c0
15

00
-fl

3
3

0
3

3
3

2
3

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

206



T
ab

le
4.

7
–

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

S
M

c0
02

64
-fl

3
3

3
3

3
3

1
3

S
M

c0
23

39
-fl

3
3

3
3

3
3

1
3

S
M

a0
32

9-
fg

3
3

3
3

3
3

1
3

S
M

a0
32

9-
fl

3
3

3
3

3
3

1
3

S
M

b
21

15
9-

fl
3

3
3

3
3

3
2

3

S
M

b
20

49
3-

fl
3

3
3

3
3

3
2

3

S
M

a0
18

7-
fl

3
3

3
3

3
3

1
3

S
M

a1
36

7-
fl

3
3

3
3

3
3

2
3

S
M

a0
33

5-
fg

3
3

3
3

3
3

1
3

S
M

a0
33

5-
fl

3
3

3
3

3
3

2
3

S
M

c0
43

91
-fl

3
3

3
3

3
3

1
3

S
M

c0
43

91
-f

g
3

3
3

3
3

3
2

3

S
M

a2
01

9-
fg

3
3

2
3

3
3

2
3

S
M

a2
01

9-
fl

3
3

3
3

3
3

2
3

S
M

a1
75

7-
fg

3
3

3
3

3
3

2
3

S
M

a1
75

7-
fl

3
3

3
3

3
3

1
3

S
M

c0
03

26
-fl

3
3

3
3

3
3

2
3

S
M

c0
16

98
-f

g
2

3
3

1
2

3
1

3

S
M

c0
05

53
-f

g
3

3
3

1
2

3
1

3

S
M

b
20

87
1-

fg
3

3
3

2
2

1
2

3

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

207



T
ab

le
4.

7
–

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e

S
tr

a
in

L
B

S
u
cc

in
a
te

M
a
n
n
it

o
l

N
a

+
L

i+
M

g
2
+

K
+

C
a

2
+

S
M

c0
11

57
3

3
3

3
2

3
2

3

S
M

c0
19

55
3

3
3

3
3

3
2

3

S
M

a0
32

6
3

3
3

1
2

3
1

3

S
M

c0
38

78
-fl

3
3

3
3

1
3

2
3

N
T

:
N

ot
T

es
te

d

208



Strains with the most severe ion sensitivities are summarized in Table 4.8.

The pSymB mutant strains with the most severe ion sensitivities carry multiple

deletions of pSymB. The regions of pSymB affected in these strains are highlighted

in Figure 4.15.
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4.3 Conclusions

This study highlights some of the key short-comings of the current system of as-

sessing OSS and desiccation tolerance in bacterial systems. Data from these assays

are characteristically variable and the assays themselves are extremely sensitive to

the slightest changes in the external environment, especially ambient humidity and

seasonal temperature variations. Furthermore, this study highlights how easy it is

to manipulate the data based on so-called standardization parameters. In analysing

any OSS data, it is important to bear in mind these considerations and assess the

data with an open mind and an eye to detail. Furthermore, the SEM data presented

here suggest that when on-seed, bacteria initiate the formation of biofilm structures

(Figures 4.10, 4.11, 4.12, and 4.13). These data are consistent with observations

made in B. japonicum, which documented significant induction of EPS synthesis

genes during the late stages of desiccation [63]. It is conceivable that the capacity

of a particular strain to form a biofilm may negatively impact its apparent OSS.

Although the OSS assay involves an extended period of vigorous vortexing prior to

titration, cells that are part of a biofilm are unlikely to be removed in this manner

since biofilms are characteristically able to withstand extended periods of mechan-

ical stress. The preliminary evidence of biofilm formation shown in these SEM

micrographs suggests that biofilm formation may have been a factor in influencing

the variability of the data generated. It would be prudent in any future studies of

OSS to take this into consideration.

The capacity of rhizobia to initiate biofilm formation on-seed may represent an

exploitable parameter in inoculant development since it might reasonably be ex-

pected to increase the survival of the rhizobia during storage. Initial conditions for

biofilm formation are known to be optimal under relatively high humidity and am-

bient temperature [86]. Manipulating the early inoculation and storage conditions
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Figure 4.15: Map of pSymB of S. meliloti with the regions implicated
in ion sensitivity highlighted. Modified from [47]
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to maximize biofilm formation and stabilization may enhance longer-term survival

of the rhizobial inoculant.

As discussed in Section 1.5, the synthesis of EPS may impact desiccation tol-

erance in S. meliloti. Indeed, previous studies have produced data that indicate

that the production of HMW EPS may be expected to increase survival under

desiccation conditions [376]. Since the results of our desiccation assay (Table 4.6)

suggest that strains with enhanced EPSII synthesis (SmUW3 and SmUW6) have

a higher tolerance of desiccation, and because studies have shown that the surface

polysaccharides of S. meliloti are affected by the osmolarity of the growth condi-

tions [30, 209, 210], it would be interesting to further analyse the particular EPS

composition of these strains. Furthermore, a more detailed assessment of the poten-

tial links between EPS, desiccation tolerance and ion sensitivity might be achieved

by analysing the limits of osmotic stress that SmUW3 and SmUW6 can withstand

relative to Rm1021.

Some studies have shown that rhizobia grown in media with low water activity

show increased survival during desiccation [50, 225]. The data presented in Figure

4.9 suggest that this is not the case over an extended period of time, for the S.

meliloti strain Rm1021. Indeed, other studies have presented data that suggest

the particular combinations of salts in the growth medium may induce specific

physiological responses and that no one combination of osmolytes is necessary or

sufficient to induce a protective effect [375]. The data presented here suggest that

a link between salt-sensitivity and poor desiccation tolerance in S. meliloti might

exist, especially in certain strains including RmF728. While the two phenotypes are

known to not be completely overlapping, considerable overlap has been identified

in some species [167, 246]. The screen conducted in this study has identified several

S. meliloti pSymB and SDR mutants that demonstrate extremely poor growth on

elevated levels of Na+ and K+. One of these mutants carries a deletion of a region of
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pSymB for which no definable phenotype has previously been attributed. Mutant

RmF514, which carries a 181 Kb deletion in pSymB, had been previously identified

as having elevated salt-sensitivity relative to the wild-type strain [75, 244], adding

validity to the screen that was developed in this study. Furthermore, an exoFI

mutant has previously been shown to have a marked Mg2+ sensitivity [244]; exoFI

is located within the region that is deleted in strain RmF514.

SMa0326 is annotated as an orthologue of fab1, encoding enoyl-ACP reductase

(EC 1.3.1.9), and previous work has reported a mutant of it to have a Fix− pheno-

type [161]. Previous studies have shown that ion sensitivity can result in reduced

rhizosphere competitiveness [244]; further analysis of the competition phenotypes

of these ion-sensitive strains might be prudent. Interestingly, this report is the

first study to identify a phenotype that can be attributed to the particular SDR

mutations in the other three SDR mutants listed in Table 4.8. Further analysis is

necessary to confirm the phenotype and determine the precise mechanism of action.
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Chapter 5

Mutational Analysis of

Dicarboxylate Transport in

Bradyrhizobium japonicum

5.1 Dicarboxylic Acid Transport and Metabolism

in Bradyrhizobium japonicum

The capacity of a bacteroid to perform biological nitrogen fixation appears to be

limited by the amount of photosynthate delivered to the nodule [138, 141, 299] and

is also intimately linked to the ability of bacteroids to transport dicarboxylic acids.

While sucrose, other sugars, and sugar alcohols are the most abundant forms of

photosynthate in the root nodule [331], previous studies have shown that bacteroids

preferentially import organic acids [16]. The bacteroids take atmospheric nitrogen

and reduce it to ammonia, which is supplied to the plant in exchange for a source

of carbon. The plant supplies the carbon in the form of C4-dicarboxylic acids

which enter the bacteroids through the membrane transport protein DctA. This
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relationship is outlined in Figure 5.1. In other rhizobia, DctA mutants are unable

to import DCAs and, as a result, form ineffective, nonfixing nodules in symbiosis

and are also unable to grow on DCAs as a sole carbon source during free-living

growth [11, 27, 99, 114, 293].

Although dicarboxylate transport has been reasonably well studied in other rhi-

zobial systems, relatively little work has been conducted in this area in B. japon-

icum. Previous studies have established that succinate transport in B. japonicum

cells occurs via an active transport mechanism that is dependent on an energized

membrane but that does not directly utilize ATP [229]. Early work has suggested

that B. japonicum preferentially transports succinate but is also capable of malate

import [229, 360]. Studies have also suggested that B. japonicum possesses at least

two succinate transport systems [157] but no further attempts to characterize them

have since been reported. Expression of S. meliloti dctABD in B. japonicum re-

sulted in enhanced growth rates on dicaroxylates, an increase in succinate uptake,

and higher levels of nitrogen-fixation activity [24].

Most rhizobia typically possess only a single copy of the dctA gene, along with

one copy of the dctBD two-component regulatory system. Analysis of the B. japon-

icum USDA110 genome sequence [178, 179] revealed the presence of 7 putative dctA

homologues and no annotated homologue of dctBD. Here we report the identifica-

tion, cloning and mutagenesis of the 7 dctA homologues of B. japonicum as well as

the identification and cloning of a putative dctBD locus.

5.2 Results and Discussion

All plasmids and strains constructed in this study are described in Table 2.1 and

have also been summarized in Tables 5.1 and 5.2 for convenience and ease of reading.
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Figure 5.1: Schematic of bacteroid metabolism. The plant provides
DCAs to the bacteroid. DCAs pass through a plant-derived transporter
in the peribacteroid membrane (PBM) and enter the bacteroid via DctA
in the bacteroid membrane
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Table 5.1: Summary of plasmids constructed in the analysis of B. japon-
icum dct

Plasmid Relevant Characteristics
pMA127 USDA110 cosmid clone complementing RmF726 for growth on suc-

cinate
pMA166 pGemTEasy carrying internal Blr3723 fragment
pMA170 pGemTEasy carrying complete B. japonicum dctBD operon
pMA172 pMA170 with central SgrAI fragment of dctBD deleted
pMA174 pMA172 with ΩSmSp cassette inserted in central EcoRV site of

truncated dctBD
pMA175 pK19mobsacB carrying ∆dctBDΩSmSp from pMA174
pMA176 pK19mobsacB carrying internal Blr3723 fragment from pMA166
pMA197 pMA127 Tn5 inserted into Blr3723
pMA198 pBBR1MCS2 Blr6145 plus 50 bp upstream sequence
pMA199 pJET Bll1718 Complete ORF
pMA200 pJET Bll1718 Truncated ORF
pMA201 pJET Blr3723 Complete ORF
pMA202 pJET Blr3840 Complete ORF
pMA203 pJET Blr3840 Truncated ORF
pMA204 pJET Blr4298 Truncated ORF
pMA205 pJET Blr6145 Truncated ORF
pMA206 pJET Bll7095 Complete ORF
pMA207 pJET Bll7095 Truncated ORF
pMA208 pJET Blr4298 Complete ORF
pMA209 pSW213 Blr3723 from pMA201
pMA210 pSW213 Blr3840 from pMA202
pMA211 pSW213 Blr4298 from pMA208
pMA212 pJET Blr6145 Complete ORF
pMA214 pSW213 Bll7095 from pMA206
pMA216 pSW213 Blr6145 from pMA212
pMA217 pSW213 Bll1718 from pMA199
pMA219 pJET Blr7187 Truncated ORF
pMA220 pJET Blr7187 Complete ORF
pMA221 pK19mob Bll1718 Truncated from pMA200
pMA222 pK19mob Bll7095 Truncated from pMA207
pMA223 pK19mob Blr6145 Truncated from pMA205
pMA224 pK19mob Blr7187 Truncated from pMA219
pMA225 pK19mob Blr3840 Truncated from pMA203
pMA226 pSW213 Blr7187 from pMA220
pMA227 pK19mob Blr4298 Truncated from pMA204
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Table 5.2: Summary of strains constructed in the analysis of B. japon-
icum dct

Strain Relevant Characteristics
BjUW34 USDA110 pMA176 single recombinant
BjUW37 USDA110 pMA175 single recombinant
BjUW40 USDA110 pMA221 single recombinant
BjUW42 USDA110 pMA222 single recombinant
BjUW44 USDA110 pMA223 single recombinant
BjUW46 USDA110 pMA225 single recombinant
BjUW48 USDA110 pMA224 single recombinant
BjUW50 USDA110 pMA227 single recombinant
BjUW52 USDA110 pMA232 single recombinant
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5.2.1 Determination of the Wild-Type Growth Character-

istics of B. japonicum USDA110 on Dicarboxylates

as Sole Carbon Sources

The ability of wild-type B. japonicum USDA110 to grow on the dicarboxylates

malate, succinate, and fumarate as sole carbon sources was measured by growth

curve analysis using the Bioscreen-C Growth Curve Machine. The data shown in

Figure 5.2 suggest that, while B. japonicum USDA110 can utilize succinate as a

sole carbon source under free-living conditions, it is unable to grow on either malate

or fumarate.

5.2.2 Identification of Putative dctA and dctBD Open Read-

ing Frames

A BLASTP analysis of the B. japonicum genome, using the S. meliloti DctA and

DctBD amino acid sequences, identified seven putative dctA loci as well as a pu-

tative dctBD homologue. These homologues are listed in Table 5.3. Figure 5.3

depicts a Boxshade diagram, constructed from a ClustalW alignment [343] , high-

lighting the level of sequence conservation between the seven DctA homologues of

B. japonicum and DctA of S. meliloti. Figure 5.4 shows a rooted phylogenetic tree,

constructed using ClustalW [343] and Phylip [92], that depicts the relationship

between the seven B. japonicum DctA sequences and other Rhizobial DctAs.
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Figure 5.2: Growth of wild-type B, japonicum on VMM supplemented
with arabinose, succinate or malate as a sole carbon source
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Domain 1
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Domain 4

Domain 5
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Domain 7

Domain 8

Motif A

Motif B

Motif D

Motif C

Figure 5.3: Alignment of the seven putative DctA amino acid sequences
of B. japonicum and DctA of S. meliloti. Analysis of the genome
sequence of B. japonicum USDA110 identified seven putative homo-
logues of dctA located throughout the genome. No putative dctBD 2-
component regulatory system was identified in the annotation. These
dctA genes encode DctA homologues that share considerable identity
with other known DctA proteins, including that of S. meliloti. The
eight domains and three motifs that show high levels of sequence con-
servation between all members of the glutamate transporter family of
proteins have been indicated. 222



Table 5.3: Putative dicarboxylate transport genes identified by in silico
analysis of the B. japonicum genome sequence

Gene ID Annotated Function % Identity to
S. meliloti ho-
mologue

Blr7187 C4-dicarboxylate transport protein 61%
Blr3723 C4-dicarboxylate transport protein 58%
Blr4298 C4-dicarboxylate transport protein 58%
Blr3840 C4-dicarboxylate transport protein 54%
Bll1718 C4-dicarboxylate transport protein 55%
Blr6145 C4-dicarboxylate transport protein 51%
Bll7095 C4-dicarboxylate transport protein 49%

Blr3730 two-component hybrid sensor and regulator 29%
Blr3731 two-component response regulator 50%
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Figure 5.4: Phylogenetic tree of the seven putative DctA amino acid
sequences of B. japonicum and DctAs of related members of the Rhizo-
biales.
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5.2.3 Heterologous Complementation of S. meliloti dctA

Mutant with B. japonicum USDA110 Cosmid Li-

brary

The pLAFR1 cosmid library of B. japonicum USDA110 [129] was conjugally trans-

ferred into S. meliloti strains carrying mutations in dctA (RmF642), dctB (RmF153),

dctD (RmF121) or dctABD (RmF726) [47, 97]. The ability to restore growth on

succinate as a sole carbon source was used as selection. Complementing clones

were selected and the cosmids mated back into E. coli for further analysis. These

cosmids were isolated and analysed for unique restriction patterns with BamHI and

EcoRI. Figure 5.5 shows a representative BamHI digest. All of the cosmids chosen

shared common bands, suggesting that they represent overlapping clones of the

same region of the genome. The sample in lane 4 was chosen for further study and

the plasmid was named pMA127.

5.2.3.1 Identification of the Complementing dctA ORF in pMA127

In silico analysis of different regions of the B. japonicum genome was used to

match the digestion pattern seen in Figure 5.5 to a specific genomic region. The

complementing clones all mapped to a region in the genome that is particularly

rich in genes responsible for energy production; Figure 5.6 shows a map of this

region. Gene identity was confirmed by EZ-Tn5 in vitro mutagenesis using the

EpiCentre R© EZ-Tn5
TM

Insertion Kit (EpiCentre Biotechnologies, Madison WI,

USA). KanR transposon mutants of pMA127 were selected in E. coli, and mutants

were conjugally transferred into S. meliloti RmF728 and screened for loss of the

ability to complement the succinate phenotype of RmF728. Subsequent sequencing

identified the dctA ORF as Blr3723 and the mutated plasmid was named pMA197.
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Figure 5.5: Restriction digest of eight cosmids isolated from the B.
japonicum cosmid library for their ability to complement the succinate
utilization phenotype of S. meliloti dctA, dctB, dctD and dctABD mu-
tants
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Figure 5.6: Map of the region of the genome found in pMA127 and
pMA131. Blr3723 is a putative dctA and Blr3730/3731 is a putative
dctAB two-component regulatory system
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5.2.3.2 Testing the Ability of pMA127 and pMA197 to Complement

the Free-living Phenotype of S. meliloti Dct Mutants

The ability of pMA127 and pMA197 to complement the free-living phenotype of

RmF121 (dctD), RmF153 (dctB) and RmF642 (dctA) was tested. The cosmids were

transferred into each strain by triparental mating and transconjugants were selected

on TY Sm200 Nm200 Tc10. The transconjugants were then screened for growth on

LB, VMM Glucose, VMM Succinate, VMM Arabinose 1 µg/ml FOA, and VMM

Arabinose 5 µg/ml FOA. The results are shown in Table 5.4. These data are quite

interesting. It appears that pMA127 is able to complement all three dct mutations

in S. meliloti. Interestingly, pMA197 does not appear to complement the dctB and

dctD mutants, which is unexpected since both of these mutants have functional

dctAs and the cosmid should still carry a functional dctBD. This suggests that the

B. japonicum dctBD located on the cosmid is unable to recognize the S. meliloti

dctA promoter. It also provides an explanation for why, although B. japonicum has

seven homologues of dctA, the heterologous complementation screen only identified

one region as capable of complementing the S. meliloti dct mutants.
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5.2.3.3 Testing the Ability of pMA127 and pMA197 to Complement

the Symbiotic Phenotype of S. meliloti Dct Mutants

Previous studies have shown that, unlike in other species of rhizoba, S. meliloti

dctA expression is independent of dctBD during symbiosis [90, 381, 394]. Although

this alternative symbiotic activation (ASA) phenomenon is well documented, its

mechanism of action remains unclear. A dctA::lacZ fusion is expressed in nodules of

a dctD mutant [25, 380] but the pattern of expression differs to that of a wild-type

strain (reviewed in [396]). DctB/DctD-dependent dctA expression is seen in the

infection and fixation zones of the nodule; DctB/DctD-independent dctA expression

is not seen until the transition from early to late symbiotic bacteroid development

[25]. In order for DctB/DctD-independent activation of dctA to occur, the cis-

acting regulatory elements found in the 5’ one-third of the dctA coding region must

be present; this region is not needed for DctB/DctD-dependent activation [25].

The ability of pMA127 and pMA197 to complement the symbiotic phenotype of

RmF642, the dctA mutant of S. meliloti was tested by inoculating Medicago sativa

plants with each strain and measuring the shoot dry mass (SDM) of the plants at 4-

weeks post-inoculation. Nodules from the plants inoculated with RmF642 pMA127

and RmF642 pMA197 were surface-sterilized, crushed and the contents screened

for TcR and NmR to confirm retention of the cosmids. The data shown in Figure

5.7 show that neither pMA127 nor pMA197 can complement the S. meliloti dctA

mutant in symbiosis. Figure 5.8 shows a representative photograph of alfalfa plants

from this experiment; the Fix− phenotype of the RmF642 and RmF642 pMA127

inocula is clearly apparent. When considered in the light of the data presented in

the previous sections, it is likely that the dctA promoter from B. japonicum can-

not be recognized by either DctB/DctD or the DctB/DctD-independent regulatory

elements in S. meliloti.
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Figure 5.7: Shoot dry masses of M. sativa plants inoculated with S.
meliloti dctA mutant RmF642, and complemented clones
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Figure 5.8: Representative photograph of M. sativa plants inoculated
with wild-type S. meliloti Rm1021, S. meliloti dctA mutant RmF642,
and RmF642 pMA127
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5.2.4 Cloning of B. japonicum dctA Open Reading Frames

In order to determine which of the seven dctA ORFs of B. japonicum were capable

of complementing the dctA phenotype of S. meliloti RmF642, all seven dctA ORFs

were cloned into the broad host-range vector pSW213 [48]. All primers used in

the cloning reactions are described in Table 2.2. Each ORF was cloned as a PCR

product into the PCR capture vector pJET (Fermentas Canada Inc., Burlington

ON) and the insert was verified by restriction digest and sequencing. The ORFs

were then subcloned into pSW213 and the insert and orientation verified by PCR

before transferring into RmF642 by triparental conjugation.

5.2.4.1 Complementation of S. meliloti RmF642 Free-Living Pheno-

types

The ability of each of the cloned dctA genes to complement the free-living phenotype

of RmF642 was tested by analysing their respective growth curves, generated using

the BioscreenC Growth Curve machine. Growth was tested on VMM Succinate,

VMM Succinate IPTG, and VMM Glucose IPTG 1 µg/ml. The results of these

growth curves are shown in Figures 5.9, 5.10, 5.11, 5.12, and 5.13.
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Figures 5.9 and 5.10 act as controls to show that all strains grew well on a

complex medium (LB), and that the Tetracycline was sufficient to inhibit growth

of both Rm1021 and RmF642 over the complete duration of the experiment. Fig-

ure 5.11 shows that, in the absence of the inducer IPTG, very little growth on

succinate is observed in any of the complemented strains before approximately

100 hours of incubation; at which point Rm1021 has already reached stationary

phase. Figure 5.13 show that, even in the presence of inducer, induction does not

occur until at least 60-80 hours of incubation, suggesting that perhaps the lacIq

inducible promoter system in pSW213 does not work well inS. meliloti. These fig-

ures do show, however, that complementation is apparent from pMA227 (Blr4298),

pMA217 (Bll1718) and pMA209 (Blr3723) and that some degree of partial com-

plementation is achieved from the other four ORFs. It is interesting to compare

Figures 5.12 and 5.13; it appears that the presence of Tc enhances the complemen-

tation capacity of the clones dctA ORFs. It is conceivable that the presence of the

Tc provides the selective pressure for plasmid maintenance prior to induction of

the dctA genes since induction is not realized until much later into the experiment.

Conversely, it is also possible that the Tc is being used as a carbon source by the

complemented clones; however, the data in Figure 5.10 suggest that this is not the

case. These data show that growth of both Rm1021 and RmF642 is completely

inhibited through the complete duration of the growth curve, suggesting that these

strains do not have the capacity to utilize the Tc as a carbon source, or that the

efficacy of the Tc is reduced following prolonged exposure to light.

5.2.5 Mutagenesis of B. japonicum dctA

An internal 500 bp fragment of Blr3723 was amplified and captured in pGEMTEasy

(Promega, Fischer Scientific Ltd., Nepean ON). The insert was confirmed by se-

quencing and subcloned into pK19mobsacB. The resultant construct was transferred
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into B. japonicum USDA110 by triparental conjugation; recombinants were selected

on AG Km50 Tc10 and streak purified three times. The mutagenesis was confirmed

by Southern Blot. A representative Southern Blot is shown in Figure 5.14.

Following successful mutagenesis of Blr3723, mutants of the remaining six dctA

ORFs were constructed in a similar fashion. PCR amplification was used to clone

the first 500 bp of each of the dctA ORFs. These fragments were captured in pJET

(Fermentas, Burlington ON), confirmed by sequencing and then subcloned into

pK19mob [310]; subclones were screened by restriction digest for plasmids contain-

ing inserts in the reverse orientation. Mutants of B. japonicum were constructed by

conjugal transfer of the pK19mob clones from E. coli. Recombinants were selected

on AG Km50 Tc10 and streak purified three times. The resultant mutant strains

are described in Table 2.1 and summarized in 5.2.

5.2.5.1 Analysis of Free-Living Phenotypes of B. japonicum dctA Mu-

tants

The free-living phenotype of each B. japonicum dctA mutant was analysed by as-

sessing growth on AG, AG Km25, VMM Arabinose, VMM Succinate and VMM

Maleate/Arabinose FOA 2 µg/ml. Growth curves were set up in the BioScreen-C

Growth Curve machine and were allowed to run for 10 days. The results of these

growth curves are shown in Figures 5.15, 5.16, 5.17, and 5.18. The data in Figures

5.15 and 5.16 show that all of the mutants grow well on the complex medium AG

and AG supplemented with Km25 while the wild-type USDA110 is unable to grow

on AG Km25. Figure 5.17 shows that, as expected, all of the strains are able to

grow in VMM using arabinose as a sole carbon source. Interestingly, as shown

in Figure 5.18, all of the dctA mutants were capable of growth on succinate as a

sole carbon source. This suggests that all of the mutants still possess a functional

dicarboxylate system, an assumption that is supported by the observation that
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Figure 5.14: Southern blot of B. japonicum Blr3723 Mutagenesis. Lane
1: Empty; Lane 2: Wild-type USDA110; Lanes 3 and 4: BjUW34; Lane
5: pMA176 (1:10 dilution); Lane 6: pMA176 (1:100 dilution)
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no growth occurred in VMM Maleate/Arabinose FOA 2 µg/ml (data not shown),

which shows that none of the mutants are capable of growth in the presence of FOA

(note, maleate was included in this medium as a potent inducer of dctA expression

in S. meliloti) [398].
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5.2.5.2 Analysis of the Symbiotic Phenotype of dctA Mutant BjUW34

The symbiotic phenotype of BjUW34 was tested, as described in Section 2.3 by

inoculating soybean plants with a culture of BjUW34 and comparing the shoot

dry mass (SDM) of the resultant plants with those inoculated with wild type B.

japonicum USDA110. The data are shown in Figure 5.19. These data show that

there is no significant difference in the shoot dry masses of plants inoculated with

wild-type B. japonicum relative to those inoculated with the mutant strain.

5.2.6 Construction of dctBD Mutants of B. japonicum

In order to construct a deletion mutant of Blr3730 and Blr3731, the complete

operon was amplified by PCR and cloned into pGEMTEasy (Promega, Fischer

Scientific Ltd., Nepean ON). The resultant plasmid was named pMA170 and the

insert was confirmed by sequencing. The central portion of the dctBD operon

was excised from the insert in pMA170 by digestion with SgrAI; the two external

portions were religated together and the loss of the internal region was confirmed

by restriction analysis. The resultant plasmid was named pMA172. In order to

generate a mutant with a selectable marker, an ΩSmSp cassette was subcloned out

of pTC265 as a SmaI fragment and ligated into the EcoRV site within the truncated

dctBD construct. The resultant construct was confirmed by sequencing and was

named pMA174. The insert from pMA174 was then subcloned into pK19mobsacB

to generate pTH175.

pTH175 was transferred into B. japonicum USDA110 by triparental conjugation

and single recombinants were selected on AG Am50 Tc10. Recombinants were streak

purified three times on AG Am50 Tc10 and the resultant strain was screened for

sucrose sensitivity. The resultant clone was named BjUW37.

In order to generate a dctBD mutant, it would be necessary to grow up BjUW37
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Figure 5.19: Average shoot dry masses of soybean plants inoculated with
wild-type B, japonicum and the dctA mutant BjUW34
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in the absence of selection, and then plate on AG sucrose Sm100 to select for double

recombinants that have retained the mutant version of the dctBD operon. Despite

several attempts to do this however, we have been unsuccessful in isolating double

recombinants. It is unclear at this point why this region is recalcitrant to muta-

genesis although, as shown in Figure 5.6, this region of the genome is extremely

dense in metabolically relevant genes; it is conceivable that double recombinants

are not viable due to polar effects on downstream genes, which include a putative

tRNA-dihydrouridine synthase ORF.

5.3 Conclusions

The high degree of conservation among the dctA homologues of B. japonicum is

intriguing and suggests that they may also be functional, perhaps under different

physiological conditions. Interestingly, B. japonicum also possesses 2 copies of rpoN

[197] which, in other rhizobia, is required for dctA expression under free-living

conditions. It is conceivable that different homologues of dctA may be controlled

by different homologues of RpoN. Furthermore, in S. meliloti expression of dctA

becomes independent of dctBD during symbiosis. It is tempting to speculate that

in B. japonicum other homologues of dctA may be activated under these conditions.

The data presented here support the hypothesis that B. japonicum dctA genes

permit a level of redundancy that allows loss of gene function without impairing

free-living growth. It would be interesting to measure the symbiotic capacity of the

other six B. japonicum dctA mutants, given the observation that BjUW34 does not

appear to be impaired in symbiotic capacity.

The data suggest that, in order to complement S. meliloti, dctA activation from

the native B. japonicum promoter requires the presence of an active B. japonicum

DctB/DctD. Interestingly however, when expressed from an S. meliloti -inducible
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promoter, all seven ORFs have some capacity to transport sufficient succinate to

support growth, and Blr4298, Blr3723 and Bll1718 are all capable of supporting

near wild-type levels of growth.

The widely known, and potentially physiologically relevant, substrates for the

rhizobial Dct system include succinate, malate, fumarate, aspartate and oxaloac-

etate (reviewed in [396]). Interestingly, our data suggest that B. japonicum USDA110

cannot grow on malate or fumarate as a sole carbon source (Figure 5.2). Interest-

ingly, previous studies have shown that bacteroids of B. japonicum appear to pos-

sess a transporter system that is capable of transporting both succinate and malate

[360]. Based on the data presented here, it appears likely that the malate-specific

dicarboxylate transporters are only expressed under symbiotic conditions. It would

therefore be interesting to determine whether any of the B. japonicum dctA ORFs

are capable of supporting growth of S. meliloti on malate or fumarate. Whether

this phenomenon is due to an inability to trasport the substrate by the DctA pro-

tein itself, or an inability to induce DctB/DctD is unclear, but testing the ability

of the individual dctA homologues to complement growth on malate and fumarate

in S. meliloti will help to answer this question.

Further work is needed to determine why dctBD has, thus far, been recalci-

trant to mutagenesis. It is conceivable that allelic replacement of dctBD causes

polar effects on downstream genes. It is also possible that DctB/DctD may be in-

volved in the regulation of other genes that are essential to growth under free-living

conditions.
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Chapter 6

Identification and characterization

of the intracellular

poly-3-hydroxybutyrate

depolymerase enzyme PhaZ of

Sinorhizobium meliloti

6.1 PhaZ in Sinorhizobium meliloti

S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Med-

icago sativa). These nodules are characterized by the existence of a persistent apical

meristem and an elongated morphology. Within the nodule, the bacteroids persist

and progress through defined zones of bacteroid differentiation [149]. Indeed, loss

of PHB granules from the cytoplasm of the bacteria invading indeterminate nod-

ules is a well-documented phenomenon that occurs at a specific point within bac-
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teroid development [148]. Bacteroids of indeterminate nodules undergo such large

physiological and metabolic changes relative to those of determinate nodules [239]

that, until recently, it was unclear whether mature bacteroids within indeterminate

nodules retained the capacity to synthesize and store PHB. A recent study [213]

clearly demonstrated that bacteroids of R. leguminosarum bv. viciae, which forms

indeterminate nodules on pea plants, retain the capacity to synthesize and store

large quantities of PHB but only when carbon supply is in excess and bacteroid

metabolism is limited by the availability of a key nutrient (reviewed in [351]).

During saprophytic growth, PHB accumulation occurs during periods of nu-

trient deprivation when carbon is in excess. This strategy is employed by many

species of bacteria. The first step in PHB degradation is catalyzed by a substrate-

specific depolymerase. PHB undergoes a transition from an amorphous granule

in the intracellular state to a denatured semi-crystalline form upon release into

the environment. As a result, different PHB depolymerases are employed depend-

ing on the nature of the substrate. While extracellular depolymerases have been

identified and characterized in a wide variety of bacteria, very little is yet known

about their intracellular counterparts. To date, only a handful of intracellular PHB

depolymerases have been reported in the literature, most of which appear to lack

the typical lipase box motif (Gly-X-Ser-X-Gly) associated with extracellular PHB

depolymerases [1, 106, 174, 189, 301, 356]. While the enzymes responsible for the

synthesis and storage of PHB have been characterized in a wide variety of bacteria,

including the rhizobia (reviewed in [351]), only a few studies have investigated the

role of intracellular PHB depolymerases and, to date, no studies have reported the

characterization of a rhizobial PHB depolymerase.

PhaZ was identified as the putative intracellular PHB depolymerase in S. meliloti

based on in silico analyses of the genome sequence and comparisons to other intra-

cellular PHA depolymerase sequences. Here we report the cloning and characteriza-
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tion of PhaZ from S. meliloti. This work is the first report of a PHB depolymerase

mutant in S. meliloti and, indeed, in the Rhizobiaceae. This work also represents

the final step in genetic characterization of the complete PHB cycle in these bac-

teria, since all other enzymes of both the synthetic and degradative pathways have

been studied previously in S. meliloti [7, 9, 8, 40, 46, 52, 275, 349, 378, 379, 390].

To the best of our knowledge, this work also documents the first confirmed example

of the presence of intracellular PHB granules in N2-fixing bacteroids of S. meliloti.

6.2 Results and Discussion

6.2.1 Identification of the S. meliloti phaZ Open Reading

Frame and Construction of an S. meliloti phaZ mu-

tant

All plasmids and strains constructed in this study are described in Table 2.1. The

phaZ gene was identified as a 1272 bp open reading frame SMc02770 in the S.

meliloti genome sequence [104] by comparison to phaZ of W. eutropha [302]. The

amino acid sequences of these two proteins share 51% identity. Interestingly, like

phaZ of W. eutropha, the PhaZ protein of S. meliloti does not possess a Gly-X-

Ser-X-Gly lipase box motif [162] that is characteristic of many extracellular PHB

depolymerases. The absence of this motif implies that these intracellular PhaZ ho-

mologues may use a different active site structure than extracellular PHB depoly-

merases. Primers were designed to internal regions of phaZ to amplify a fragment

(from S35 to F292) by PCR, and the resultant 835 bp fragment was cloned into

pGEM R©-T Easy (Promega) to generate pAZ101. An internal disruption of the

cloned phaZ fragment was generated by introducing a ΩSmSp cassette as a Cfr91

fragment into the unique KpnI site at 299 bp to yield pAZ102. The phaZ ::ΩSmSp
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was subsequently excised as an EcoRI fragment and subcloned into pK19mobsacB

to give pAZ103. pAZ103 was introduced into S. meliloti Rm5000 by triparental

mating using E. coli MT616 as a helper strain. Single recombinants were identified

by selecting for RfR, SmR, SpR transconjugants. Putative double recombinants

were identified by plating onto TY Sm Sp Sucrose (5%). Subsequent screening

for loss of vector-encoded NmR confirmed the loss of pK19mobsacB. The resultant

RfR, SmR, SpR, NmS phaZ mutant was designated Rm11417. The mutagenesis was

confirmed by Southern blot using the phaZ PCR product as a probe. The probe

hybridized to a 1.55 kb EcoRI fragment of genomic DNA in the wild-type strain

Rm5000, and to a 3.55 kb fragment in Rm11417, confirming the presence of the 2

kb ΩSmSp cassette (data not shown). This mutation was transduced into Rm1021

using the φM12 phage by standard techniques [95] and the resultant mutant was

designated Rm11430.

6.2.2 Cloning of phaZ Gene for Complementation Assays

Primers Smc02770F and Smc02770R (Table 2.2) were designed to the 5’ and 3’

regions of SMc02770, incorporating HindIII sites into the 5’ and 3’ ends as well as

a 3’ terminal His tag. The PCR product was cloned as a HindIII fragment into

pRK7813 and the resultant construct was named pMA157. This construct was

introduced into Rm11430 by triparental conjugation using E. coli MT616 as the

mobilizer strain.

6.2.3 Analysis of the Carbon-Utilization Phenotype of the

S. meliloti phaZ Mutant

The growth of Rm11430 was compared to that of Rm1021, Rm11105 [46], Rm11107

[46] and Rm11347 [7] on TY, YMA, and minimal media containing 15 mM acetate
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(A), acetoacetate (AA) or D-3-hydroxybutyrate (HB) as sole carbon sources. As

seen in Table 6.1, no difference in growth phenotype was observed between Rm11430

and Rm1021.

6.2.4 Analysis of the Carbon-Starvation S. meliloti phaZ

Mutant to Tolerate Long-Term Carbon Starvation

The ability of the phaZ mutant strain to withstand long-term carbon starvation

was tested, relative to both Rm1021 and Rm11105, by incubation for 4 weeks in

M9 liquid medium with no added carbon source. Cells were grown to late-log in

YMB and washed twice in M9. A 1:50 dilution was used to inoculate 75 ml of M9

salts. Starting cfu/ml was determined immediately following inoculation by serial

dilution of a 1 ml aliquot. Starting cultures typically contained approximately 2 x

105 cfu/ml. These starting values were each given a relative value of 1. 1 ml samples

were removed at 7 day intervals and serial dilutions were used to determine cfu/ml.

Values presented are the averages of 3 independent cultures. The data in Figure 6.1

show that the ability to synthesize and/or break down PHB has a significant impact

on long-term survival in the absence of an exogenous carbon source. The wild-

type strain Rm1021 is capable of increasing cell density during the early stages of

starvation, presumably by degrading readily mobilizable intracellular carbon stores,

a pattern which is not seen in either the phaZ or phbC mutants.

6.2.5 PHB Synthesis in phaZ mutants of S. meliloti

To assess the effect of the phaZ lesion on PHB content in Rm11430, total PHB

accumulation by stationary-phase cells was measured and compared to the wild-

type strain Rm1021. Cells were grown to stationary phase in either TY or YMB

and the accumulated PHB was measured as a total cellular dry weight (% w/w
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Table 6.1: Growth phenotypes of S. meliloti PHB cycle mutants

2*Strain Relevant
Characteristics

YMA
Phenotype

Carbon Source Utilization

Glucose D-3-
HB

Acetate AA

Rm1021 wild-type Mucoid + + + +
Rm11105 phbC ::Tn5 Dry + - + -
Rm11107 bdhA::Tn5 Mucoid + - + +
Rm11347 phbBΩ Dry + - + -
Rm11430 phaZ ΩSmSp Mucoid + + + +
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Figure 6.1: Viable cell counts of S. meliloti PHB mutants following
incubation in minimal media with no exogenous carbon source added
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±SD). These data are shown in Table 6.2. Under both conditions tested, Rm11430

demonstrates significantly increased PHB accumulation relative to Rm1021 sug-

gesting that, while synthesis of PHB is not impaired, the lesion in phaZ inhibits

degradation of PHB. The PHB accumulation phenotype of Rm11430 is comple-

mented by pMA157, demonstrating a clear relationship between the presence of

PhaZ and PHB accumulation.

6.2.6 Regulation of Succinoglycan Biosynthesis

The product of the exoF gene is involved in the transfer of the first sugar, galactose,

to the lipid carrier, upon which the subunits of succinoglycan are assembled [290].

pD82exoF ::TnphoA was constructed by homologous recombination between exoF

carried on pD82 [207] and the chromosomal exoF ::TnphoA fusion of strain Rm8369

[214]. The resultant plasmid was used to measure the transcriptional activity of

exoF in different S. meliloti PHB mutant backgrounds when grown under different

culture conditions. A Student’s t-test was used to analyse the data and determine

statistical significance of the observed differences. The results presented in Ta-

ble 6.3 represent the mean of three independent samples and show that Rm11430

demonstrates a statistically significant increase in exoF transcription when grown

in YM media, while synthetic mutants Rm11105 and Rm11347 exhibit a reduction

in exoF expression. This is consistent with the observation that colonies formed by

Rm11430 appear larger and more mucoid on YM agar than Rm1021.

6.2.7 PHB Accumulation During Symbiosis

Unlike bacteroids of determinate nodules, bacteroids of S. meliloti do not accu-

mulate PHB during symbiosis (reviewed in [351]). Interestingly, a mutant of R.

leguminosarum, unable to cycle amino acids between the bacteroid and plants,
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Table 6.2: PHB accumulation during free-living growth

Strain Relevant Characteristics PHB Accumulation
% cell dry mass

Rm1021 wild-type 18.94
Rm11105 phbC ::Tn5 0.24
Rm11430 phaZ ΩSmSp 28.55
Rm11430 pMA157 phaZ ΩSmSp pRK7813 phaZ 7.39
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Table 6.3: exoF::phoA Alkaline phosphatase assay

Strain Relevant
Characteristics

Activity (U) Std Error

Rm1021 wild-type 14.115 0.331
Rm11105 phbC ::Tn5 9.681a 0.264
Rm11347 phbBΩ 6.226a 0.223
Rm11107 bdhA::Tn5 16.134 0.714
Rm11430 phaZ ΩSmSp 15.663a 0.296

a These differences are statistically significant from the value recorded for
Rm1021, when analysed using a two-tailed Student’s t-test
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showed apparent accumulation of PHB in the bacteroid [213]. This suggests that

the pathway for PHB metabolism can function within bacteroids of indeterminate

nodules, however accumulation of PHB only occurs under extreme circumstances

for example, when carbon is in excess and bacteroid metabolism is limited by the

availability of a key nutrient. To confirm that S. meliloti bacteroids are capable of

PHB synthesis and accumulation, alfalfa nodules induced by Rm11430 were pre-

pared, sectioned and analysed by TEM. Figure 6.2B clearly shows that bacteroids of

Rm11430 accumulate PHB during symbiosis, with numerous, electron-transparent,

PHB granules visible within the cytoplasm of the bacteroids when viewed by TEM.

This is in contrast to bacteroids of Rm1021, shown in Figure 6.2A, which demon-

strate a notable absence of PHB.

Figure 6.3 shows that, in symbiosis with the host plant alfalfa, there is no sig-

nificant difference in shoot dry mass of plants inoculated with the phaZ mutant

Rm11430 and the wild-type strain Rm1021. Plants inoculated with Rm11430 had

an average shoot dry mass (SDM) of 10.51 mg compared to 11.06 mg for plants

inoculated with Rm1021, both of which were significantly different to the uninoc-

ulated controls, which had an average SDM of 4.13 mg. This is interesting since it

suggests that PHB accumulation, as confirmed in Figure 6.2 does not occur at the

expense of the S. meliloti-M.sativa symbiosis.

6.2.8 Analysis of Nodulation Competitiveness

The ability of S. meliloti Rm11430 to compete for nodule occupancy was assayed

by co-inoculating alfalfa plants with different strain combinations. Table 6.4 shows

that, when co-inoculated in approximately equal ratios with the wild-type strain,

Rm11430 demonstrated no discernable difference in competitiveness relative to

Rm1021. The percentage of Rm11430 in the original inoculum was similar to
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Figure 6.2: Bacteroids of Rm1021 (A) and Rm11430 (B). Electron-
transparent PHB granules are clearly visible in bacteroids of Rm11430
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Figure 6.3: Shoot Dry Masses of Alfalfa Plants Inoculated with either
Rm1021 or Rm11430
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the percentage of nodules that it occupied. In agreement with previous studies [9],

both Rm11105 (phbC ) and Rm11107 (bdhA) demonstrated significantly reduced

competitiveness relative to wild-type. Table 6.4 also shows that both Rm11105

and Rm11107 also demonstrate reduced competitiveness relative to Rm11430, with

the phbC phenotype being more pronounced than the bdhA phenotype.

6.2.9 Analysis of PhaZ Activity in vitro

6.2.9.1 Purification of PhaZ Under Native Conditions

In order to fully characterize the activity of the S. meliloti PhaZ enzyme, the

phaZ ORF was cloned into pET30b (EMD Biosciences, San Diego, CA) to gen-

erate pMA158 (Table 2.1). pMA158 was transformed into CaCl2-competent E.

coli BL21 (λDE3) pLysS [64, 334]; transformants were selected on LB Cm25 Km25.

Over-expression of phaZ was achieved by growth of the transformants in autoinduc-

tion (AI) medium (Section A.1) supplemented with Km100 and Cm25, as described

in Section A.1.2. Over expression was confirmed by SDS-PAGE analysis and a

representative gel is shown in Figure 6.4. An uninduced sample was prepared by

growth of the cells in AI medium lacking lactose.

PhaZ was purified under native conditions using an Ni-NTA resin (EMD Bio-

sciences, San Diego, CA) as described in Section 2.6.3. Samples were eluted in 250

mM, 400 mM and 1 M imidazole elution buffer and the best concentration was

determined to be 400 mM following analysis of the eluate on a 12.5% SDS-PAGE

gel. A representative gel is shown in Figure 6.5.

6.2.9.2 Purification of Native PHB Granules

In order to assay PhaZ activity, it will be necessary to isolate native PHB gran-

ules using conditions that would maintain their intracellular form. Samples were
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Figure 6.4: Overexpression of S. meliloti phaZ from pMA158 in E. coli
BL21 (λDE3) pLysS. Lane 1: uninduced sample; Lane 2: induced sample;
Lane 3: empty; Lane 4: MW standard. The sizes of the molecular weight
markers, in kDa, are indicated
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Figure 6.5: SDS-PAGE gel of S. meliloti phaZ fractions during purifi-
cation under non-denaturing conditions. Lane 1: MW marker; Lane 2:
uninduced sample; Lane 3: induced sample; Lane 4: crude cell extract;
Lane 5: flow-through; Lane 6: wash eluate; Lane 7: eluate 250 mM imi-
dazole; Lane 7: eluate 400 mM imidazole; Lane 7: eluate 1 M imidazole.
The sizes of the molecular weight markers, in kDa, are indicated
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prepared as described in Section 2.7.2.3 and PHB was separated out using a discon-

tinuous sucrose gradient. The resultant fractionation can be seen in Figure 6.6. The

PHB granules can be removed from the gradient and stored at 4◦C until needed.

6.3 Conclusions

Previous studies have demonstrated that the ability of certain bacteria to synthe-

size, accumulate and metabolize intracellular PHB stores is important in enhancing

their capacity to survive unfavourable growth conditions [173, 216, 298, 339]. Rhi-

zobia in the soil environment must contend with varying nutrient conditions, from

the carbon-deficient bulk soil, to the carbon-rich rhizosphere [365]. The ability

to accumulate and utilize carbon stores would be highly advantageous, allowing

rhizobia to cope with fluctuating carbon conditions, and thus, make them more

competitive against other bacterial populations [65]. Previous studies have shown

that mutant strains of S. meliloti, unable to synthesize (phbC ) or degrade (bdhA)

PHB, show a significant reduction in competitiveness for nodule occupancy [9, 390],

with mutants that are unable to synthesize PHB exhibiting a much greater loss in

competitiveness than those unable to degrade PHB [9].

This is the first study in which the competitiveness of an S. meliloti phaZ mu-

tant has been investigated. It was expected, based upon the phenotype of the

bdhA mutant [9], that the phaZ mutant would exhibit reduced nodulation com-

petitiveness. Interestingly, the phaZ mutant was as competitive as wild-type in

co-inoculation experiments, and consistently out-compteted both phbC and bdhA

mutants (Table 6.4). Studies in Azotobacter vinelandii have demonstrated a role

for PHB in protection of the cell against environmental stresses including PHB,

oxidative stress and UV damage [252]. It is conceivable that the ability of the phaZ

mutant to out-compete the phbC and bdhA mutants is due to an enhanced ability
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Figure 6.6: Fractionation of crude cell extract over a discontinuous su-
crose gradient for isolation of PHB granules. Granules were isolated
from S. meliloti Rm11430 cells grown to saturation in Yeast Mannitol
broth
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to tolerate the conditions encountered in the soil and rhizosphere as a result of the

increased cytoplasmic PHB concentration.

Interestingly, the phaZ mutant exhibits a similar reduction in long-term sur-

vival during starvation to the phbC mutant (Figure 6.1). This suggests that the

inability to degrade PHB is just as detrimental to the cells as the inability to accu-

mulate it. This also confirms that PHB degradation does play a significant role in

fueling cellular metabolism under adverse conditions, and that glycogen synthesis

and degradation is not able to replace the function of PHB metabolism under these

conditions.

Previous studies have shown that S. meliloti mutants defective in PHB synthesis

also exhibit a significant reduction in succinoglycan production under conditions

favouring both succinoglycan and PHB production [275], suggesting that these

pathways share common regulatory circuitry. S. meliloti phbB and phbC mutants

exhibit non-mucoid colony morphology on carbon-rich media, while bdhA mutants

show a mucoid colony morphology. This study further augments these observa-

tions by showing that a phaZ mutant is not only mucoid, but has up-regulated

exopolysaccharide production relative to the wild-type strain.

The role of EPS in the establishment of nitrogen-fixing symbioses between S.

meliloti and M. sativa has long been acknowledged [120], but the precise mechanism

of interaction remains elusive. Mutants unable to synthesize EPS are characteris-

tically Fix−. The observation that phbC and phbB mutants of S. meliloti are still

able to establish successful symbioses [7] suggests that synthesis of succinoglycan

in these mutants, albeit at a reduced level, is still sufficient to facilitate nodulation.

This is consistent with previous reports which suggest that the production of small

amounts of low-molecular-weight (LMW) EPS is sufficient to establish a successful

symbiosis [120]. Indeed, it is conceivable that the competition defect observed in

phbC mutants of S. meliloti may be due to extremely low levels of succinoglycan
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production. Rm11105 may produce sufficient succinoglycan to establish an effective

symbiosis but, assuming that the succinoglycan itself is playing a role in signalling

during early nodulation, not enough to allow it to compete with strains producing

higher levels of the EPS. Interestingly, the phaZ mutant demonstrates wild-type

competitiveness and is able to out-compete both the phbC and bdhA mutants for

nodulation. This indicates that EPS production is not the sole determinant in the

competition phenotype of other PHB cycle mutants. It is conceivable that another

metabolic pathway that is dependent on D-3-HB metabolism may play a role in

nodulation competitiveness. It is noteworthy that, although it has higher succino-

glycan production than Rm1021, the phaZ mutant was not more competitive than

the wild-type strain. This implies that there is a critical level of succinoglycan,

above which, further gains in competitiveness are not seen.

It is conceivable that, when PHB synthesis is inhibited, intermediates required

for succinoglycan are not synthesized efficiently. It is also possible that, in the

absence of a functional PHB synthesis pathway, enzymes required for succinoglycan

may be inhibited or down-regulated. Furthermore, it has been suggested that acetyl

phosphate may provide a regulatory link between PHB and succinoglycan synthesis

[245]. Studies in the thermophyllic Synechococcus sp. strain MA19, have shown that

acetyl phosphate is involved in the post-translational regulation of PHB synthase

in vitro, and that this regulation is concentration-dependent [245]. As well, this

study revealed that the enzyme phosphotransacetylase, which converts acetyl-CoA

to acetyl phosphate, is only active under PHB-accumulating conditions. In E.

coli, acetyl phosphate is known to function as a global signal that acts through

two-component regulatory signals [230], perhaps via direct phosphorylation of the

response regulator [187] itself. Furthermore, the ChvI protein, of the S. meliloti

ExoS-ChvI two-component regulatory system, is able to autophosphorylate in the

presence of acetyl phosphate in vitro [365]. Since PHB synthesis mutants may
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excrete excess acetyl-CoA, levels of acetyl phosphate will likely be low under these

conditions. Therefore, intracellular levels of acetyl phosphate may be an important

factor in the ExoS-ChvI-dependent regulation of succinoglycan synthesis.

Bacteroids of determinate nodules, in contrast to those found in indeterminate

nodules, can accumulate up to 50% of their cellular dry mass as PHB (reviewed

in [351]). The synthesis of PHB during symbiosis however, presumably occurs

at the expense of symbiotic nitrogen fixation; a theory that is corroborated by the

observation that a phaC mutant of R. etli demonstrates higher levels of nitrogenase

activity relative to wild-type [43]. Bacteroids of indeterminate nodules do not

accumulate PHB during symbiosis. It has been suggested [43] that this may be

the reason why the S. meliloti -alfalfa symbiosis is more effective than that of B.

japonicum-soybean or R. etli -bean [137]. Interestingly the data presented in this

study suggest that forced accumulation of PHB by S. meliloti during symbiosis does

not appear to have a negative effect on plant yield, suggesting that PHB synthesis

during symbiosis is not the only determinant of symbiotic performance.
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Table 6.4: Nodulation competitiveness of the S. meliloti wild-type strain
and bdhA, phbC and phaZ mutants co-inoculated in the described ratios
on M. sativa plants

Strain (%) in inoculum No. nodules tested Nodule occupancy (%)
Strain 1 Strain 2 Both

Rm11430 (60) + Rm1021 (40) 18 61.1 22.2 16.7
Rm11430 (91) + Rm1021 (9) 15 93.3 6.7 0
Rm11430 (54) + Rm11105 (46) 16 100 0 0
Rm11105 (59) + Rm1021 (41) 15 6.7 93.3 0
Rm11105 (88) + Rm1021 (12) 20 5 75 20
Rm11430 (51) + Rm11107 (49) 20 65 35 0
Rm11107 (49) + Rm1021 (51) 14 21.4 78.6 0
Rm11107 (77) + Rm1021 (23) 15 86.7 0 13.3
Rm11107 (44) + Rm11144 (56) 19 94.7 0 5.3
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Chapter 7

Mutational Analysis of the Role of

β-Ketothiolase (PhbA) in

Sinorhizobium meliloti

7.1 Introduction

In many species of bacteria, the glyoxylate shunt (Figure 1.7) represents an essential

pathway for the assimilation of tricarboxylic acid (TCA) cycle intermediates during

growth on C2-compounds (reviewed in Section 1.3). Interestingly, in S. meliloti,

only aceA (isocitrate lyase) is required for growth on acetate [282]; mutants of glcB

(malate synthase) retain the capacity to grow on acetate [282], perhaps indicating

an as-yet uncharacterized metabolic pathway for the assimilation of acetate in these

organisms.

A recent proposal has suggested that there is present in certain bacteria, an al-

ternate pathway for assimilation of acetate that would bypass the need for the gly-

oxylate cycle in organisms that do not possess the enzyme, isocitrate lyase (Figure
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7.1) [91]. In these organisms, acetate is assimilated through the ethylmalonyl-CoA

pathway, which has significant overlap with the anabolic half of the PHB cycle,

including reliance on the PHB intermediate 3-hydroxybutyryl-CoA. A class of mu-

tants in Sinorhizobium meliloti, designated bhbA-D, are able to grow on acetate,

but not on hydroxybutyrate or acetoacetate [45]. These phenotypes, along with the

previously unexplained hydroxybutyrate phenotypes of phbB and phbC mutants,

suggest that an ethylmalonyl-CoA-like pathway may be present in S. meliloti, and

that this pathway may overlap with the PHB cycle. A model for the proposed

pathway interaction is depicted in Figure 7.2.

In an attempt to further quantify the roles of PhbA, PhbB and PhbC in export-

ing carbon from the PHB cycle, including the requirements for granule association

on the activities of PhbA and PhbB, an in-frame mutant of S. meliloti phbA was

constructed and its phenotype analysed.

7.2 Results and Discussion

7.2.1 Construction of In-Frame phbA Mutant

Because the α-ketothiolase PhbA represents an input/output point of the PHB

cycle, but is not required for the PHB cycle itself, and because phbA is in an

operon upstream of phbB, prior PHB cycle studies have not included generation

of a phbA mutant. In order to study the effects of a phbA mutant without polar

effects on pbhB, an in-frame deletion of phbA was generated.

In S. meliloti, phbAB are predicted to form a single operon [3]. In order to

construct a mutant of phbA without disrupting the activity or regulation of phbB,

cross-over PCR was used [154, 336]. The primers used are listed in Table 2.2. The

primers were designed such that the resultant cross-over PCR product yielded a
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fragment that contained the phbB ORF, with an intact native ribosome binding

site (RBS), under the control of the native operon promoter. This construct was

cloned into pGEMTEasy and subcloned into both pBBR1MCS2 [196], to yield

pMA187, and pK19mobsacB [310], to yield pMA190. pMA187 should be capable

of complementing a phbB mutant of S. meliloti, and was constructed as a means of

testing the in-frame nature of the phbA deletion.

In order to generate a phbA mutant of S. meliloti, pMA190 was conjugally trans-

ferred into S. meliloti Rm1021 and single recombinants were isolated by selection on

TY Sm200 Nm200. Following three successive rounds of streak purification, the re-

sultant recombinants were grown up without selection and plated on TY containing

5% sucrose in order to select for strains that had undergone a second recombina-

tion event. Double recombinants were screened for NmS in order to confirm loss

of pMA190. Confirmed double recombinants were then screened by colony PCR

in order to differentiate between wild-type revertants and phbA deletion mutants.

The resultant strain was confirmed by PCR and named SmUW41.

7.2.2 PHB Synthesis by the phbA Mutant of S. meliloti

SmUW41 was screened for PHB synthesis using the Nile Red PHB screen [323]

described in Section 2.2. Single colonies were smeared onto YMA supplemented

with Nile Red and allowed to grow for approximately 72 hours. The resultant

growth was analysed for fluorescence under UV light. The photograph shown in

Figure 7.3 show that SmUW41 synthesizes no detectable PHB.

7.2.3 EPS Synthesis by the phbA Mutant of S. meliloti

Exopolysaccharide biosynthesis was quantitated by isopropanol precipitation of the

soluble EPS secreted into the growth medium, as described in Section 2.7.5. Al-
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though the SmUW41 strain is visibly more mucoid than Rm1021 when grown on

YMA, no detectable EPS production by SmUW41 was detected in this assay (data

not shown). This might suggest that an increase in mucoidy does not translate into

significantly higher secretions of EPS, and that accumulation of capsular polysac-

charide and biosynthesis of exopolysaccharide are not as closely correlated as first

thought.

7.2.4 Carbon Utilization Phenotype of the S. meliloti phbA

Mutant

Growth curves were set up using the BioScreenC growth curve machine. Growth

was assessed in VMM supplemented with 15 mM of either glucose, acetate, ace-

toacetate, or DL-Hydroxybutyrate. The results of these growth curves are shown

in Figures 7.4, 7.5, 7.6, and 7.7. These data show that the phbA strain SmUW41

cannot grow on acetoacetate (Figure 7.6), even after extended periods of incuba-

tion; this is in contrast to Rm11105 and Rm11347, both of which demonstrate

compromised, but delayed, growth on acetoacetate.
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Figure 7.1: Proposed alternative pathway for acetyl-CoA assimilation
[91].
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Figure 7.2: A model for the proposed interaction of the PHB Cycle of
S. meliloti with a potential ethylmalonyl-CoA pathway
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Figure 7.3: Growth of the S. meliloti phbA mutant SmUW41, and other
PHB Cycle mutants, on YMA supplemented with Nile Red. The lack
of fluorescence from strains Rm11105, Rm11347 and SmUW41 indicate
that no PHB accumulation is present in these cells. That is in contrast
to Rm1021, Rm11107 and Rm11430 which all accumulate large quan-
tities of cytoplasmic PHB under these conditions, as evidenced by the
fluorescence
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7.2.5 β-Ketothiolase Activity in the PHB Synthesis by the

phbA Mutant of S. meliloti

The β-Ketothiolase activity of SmUW41 was tested using a modified version of pre-

viously described protocols [184, 249] and is described in Section 2.7.4. This assay

monitors the decrease of E303 of the Mg2+-Enol complex of acetoacetyl-CoA as it

is converted to acetyl-CoA. The chart in Figure 7.8 show the results of this assay

and demonstrate the reduction in activity that is evident in the SmUW41 back-

ground. It is noteworthy that some β-Ketothiolase activity remains in this strain;

an analysis of the S. meliloti genome sequence reveals the presence of a second

β-Ketothiolase ORF, and it is conceivable that the activity evident in SmUW41 is

the result of this second gene.analys

7.3 Conclusions

If the model proposed in Figure 7.2 were correct, it predicts that a phbA mutant

of S. meliloti would be able to grow on acetoacetate as a sole carbon source by

channelling carbon out of the PHB cycle via phbB and subsequently through an

ethylmalonyl-CoA-like pathway. The data presented in Figure 7.6 suggest that

this is not the case and that PhbA represents the only exit point for carbon from

the PHB cycle. It is interesting to note that, unlike phbB and phbC mutants,

which do exhibit growth (albeit delayed) on acetoacetate, the phbA mutant shows

absolutely no growth on this substrate even after extended incubation (Figure 7.6).

This phenotype represents an interesting twist in the complicated investigation into

the role of the PHB metabolism in S. meliloti. It also suggests that, although the

data in Figure 7.8 indicates an alternative β-ketothiolase may be functional in S.

meliloti, it is unable to substitute for PhbA in growth on acetoacetate.

284



Figure 7.8: Results of the β-Ketothiolase activity assay. S. meliloti
phbA mutant SmUW41, and other PHB Cycle mutants, were assayed
for β-Ketothiolase activity. The results shown indicate the average from
two or three independent replicates, assayed using a modified version of
standard protocols [184, 249]
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Previous studies investigating the interesting carbon utilization phenotypes of

PHB synthesis mutants have suggested that the lack of PHB synthesis prevents

NADPH consumption, resulting in an accumulation of NADPH or NADH to in-

hibitory levels [193]. Indeed, a phaC mutant of R. etli has been shown to accu-

mulate NADH [43], although this mutant also showed reduced growth and organic

acid excretion when grown on succinate and glucose; a phenomenon exhibited to

a much lesser extent in S. meliloti phbC mutants (Figure 7.4). Further analysis of

both S. meliloti and R. etli phbC mutants is needed to determine the significance

of this phenomenon.
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Chapter 8

Analysis of the Role of Phasins in

PHB Synthesis and Rhizosphere

Competitiveness in Sinorhizobium

meliloti

8.1 Introduction

While the enzymology of PHB synthesis and degradation has been well character-

ized in S. meliloti, the regulation of these processes is far less understood. PHB

granules within the cytoplasm of the bacterial cell are typically coated in granule-

associated proteins known as Phasins. Phasins appear to be ubiquitous among

PHA-synthesizing bacteria, including Ralstonia eutropha, which has four phasin

genes [271, 272], and Methylobacterium extorquens, which has two [192].These pro-

teins have low molecular mass, are amphiphilic in nature and can comprise a sig-

nificant fraction of total cell protein [395]. Although they are not highly conserved
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at the sequence level (reviewed in [171]), they do all appear to perform similar

regulatory functions.

S. meliloti has two regulatory phasins, encoded by phaP1 and phaP2. A double

mutant of phaP1 and phaP2 cannot accumulate PHB, has greatly increased lev-

els of glycogen synthesis, and enhanced EPS production relative to Rm1021[379].

Mutants of these phasin genes also have impaired nitrogen fixation capacity on

Medicago truncatula plants. Here we show that on the host plant Medicago sativa

(alfalfa), no similar reduction in symbiotic capacity is observed. Furthermore, al-

though previous work has shown that the phaP1 phaP2 double mutant does not

accumulate PHB [379], it has not shown whether it retains the capacity to synthe-

size it and if so, whether the resultant molecule it is stable or unstable. The phaP1

phaP2 mutant is also more mucoid than the wild-type Rm1021 but its rhizosphere

competitiveness has not been investigated. To address the issue of PHB stabil-

ity, Phasin-PhaZ mutants were constructed and their resultant PHB synthesis and

rhizosphere competitive capacities were investigated.

8.2 Results and Discussion

8.2.1 Analysis of the Symbiotic Phenotype of S. meliloti

Phasin Mutants on Medicago sativa

Alfalfa plants were inoculated with S. meliloti cultures as described in Section

2.3. The data shown in Figure 8.1 show that, unlike with the host plant Medicago

truncatula, S. meliloti phasin mutants do not appear to demonstrate a reduced

symbiotic capacity.
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Figure 8.1: Shoot dry masses of alfalfa plants inoculated with S. meliloti
phasin mutants. Error bars indicate standard deviations
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8.2.2 Construction of S. meliloti phaZ -Phasin Mutants

A lysate of Rm11430 was prepared as described in Section 2.4.4.8 and transductions

into the SB100, SB104 and SM108 backgrounds were carried out as described previ-

ously [95]. Transductants were selected on LB containing Sp100 and streak purified

three times. The resultant strains are described in Table 2.1 and are summarized

in Table 8.1 for ease of reading.

8.2.3 Analysis of PHB Synthesis in S. meliloti Phasin-phaZ

Mutants

In order to determine whether the phaP1 phaP2 double mutant is capable of syn-

thesizing PHB, the PHB content of SmUW85, the phaP1 phaP2 phaZ triple mutant

was quantitated. Cells were grown to saturation in YMB and PHB extraction and

quantitation was carried out as described in Section 2.7.2. The results of this assay

are shown in Figure 8.2, and clearly suggest that the lack of PHB accumulation in

SB108 is due to a lack of synthesis rather than degradation of an unstable product

by means of PhaZ.

8.2.4 Analysis of the Competition Phenotype of S. meliloti

Phasin-phaZ Mutants

The ability of S. meliloti SmUW85 to compete for nodule occupancy was assayed

by co-inoculating alfalfa plants with different strain combinations. Table 8.2 shows

that, when co-inoculated in approximately equal ratios with the wild-type strain,

SmUW85 demonstrated a comparable reduction in rhizosphere competitiveness to

Rm11105 relative to the wild-type Rm1021.

290



Table 8.1: Summary of Phasin-phaZ mutants constructed in this study

Strain Relevant Characteristics
SB100 Rm1021 phaP1 ::pK19mob
SB104 Rm1021 phaP2 precise deletion
SB108 Rm1021 phaP1 phaP2
SmUW81 SB100 phaZ ::ΩSmSp
SmUW83 SB104 phaZ ::ΩSmSp
SmUW85 SB108 phaZ ::ΩSmSp
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Figure 8.2: PHB accumulation in S. meliloti Phasin and Phasin-PhaZ
Mutants. Rm1021: wild-type; Rm11105: Rm1021 phbC ; Rm11430:
Rm1021 phaZ ; SB100: Rm1021 phaP1 ::pK19mob; SB104: Rm1021
phaP2 ; SB108: Rm1021 phaP1 phaP2.
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Table 8.2: Nodulation competitiveness of the S. meliloti Rm11105 and
SmUW85 strains co-inoculated in the described ratios with the wild-type
strain Rm1021 on M. sativa plants

Strain (%) in inoculum No. nodules tested Nodule occupancy (%)
Strain 1 Strain 2 Both

Rm1021 (10) + Rm11105 (90) 19 19 0 0
Rm1021 (51) + Rm11105 (49) 21 20 0 1
Rm1021 (91) + Rm11105 (9) 22 22 0 0
Rm1021 (10) + SmUW85 (90) 15 14 0 1
Rm1021 (51) + SmUW85 (49) 14 14 0 0
Rm1021 (91) + SmUW85 (9) 11 11 0 0
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8.3 Conclusions

The PHB synthesis defect demonstrated by SB108 is not due to the degradation of

unstable PHB granules; this study shows that in a PHB depolymerase background,

the phaP1 phaP2 mutant does not accumulate PHB (Figure 8.2).

An earlier study demonstrated that the symbiotic phenotype of the phasin mu-

tant strains is host-dependent [379]. This study showed that on the host legume

Medicago truncatula, the plants exhibited significant reduction in shoot dry mass

and acetylene reduction activity [379]. The data presented here demonstrate that

this phenotype is host-specific, since Medicago sativa plants inoculated with the

phasin mutant strains exhibit similar shoot dry masses to those inoculated with

wild-type strains.

The competition data shown in Table 8.2 represents an interesting twist in

the competition phenotype discussed in Section B.1; it appears that the phaP1

phaP2 phaZ triple mutant, which is unable to synthesize PHB but does appear

to synthesize succinoglycan, demonstrates a comparable reduction in rhizosphere

competitiveness to the phbC mutant. The reason for this is unclear and certainly

worthy of further investigation.
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Chapter 9

Conclusions and Future Directions

9.1 Conclusions and Future Directions

Plants in poor soils routinely suffer nitrogen deprivation; starving in air that is 80%

nitrogen. N2 must be reduced to a biologically available form before it is accessible

to the plants that depend on it. Currently most farming operations in the developed

world rely on the application of chemical fertilizers to meet the nitrogen needs of

the crop plants, resulting in large increases in crop yield, but with concomitant and

significant environmental and socioeconomic ramifications. Nitrogen fertilizer has

one of the lowest input efficiencies, resulting in considerable environmental damage.

Nitrogen fertilizers contaminate surface and groundwater systems, threaten the

stability of the ozone layer, present a major threat to the human health, and are

prohibitively expensive. The need for integrated management of soil nutrients using

biological fertilizer as part of a more sustainable approach to commercial agriculture

is needed. For this to happen, biological nitrogen fixation technologies must be

accessible, dependable and well understood; more work is needed to understand

the intricacies of the intimate nitrogen-fixing relationship between rhizobia and

legumes. This study has investigated several aspects of carbon metabolism and
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desiccation tolerance in two commercially relevant rhizobial species, S. meliloti

and B. japonicum. This work was undertaken with a view to enhancing current

inoculant technologies as a means of augmenting the use of mineral fertilizers with

biological alternatives.

The relationship between PHB production and EPS synthesis is indicative of

the existence of similar, but thus far uncharacterized, regulatory circuits in both S.

meliloti and B. japonicum. The relationship between EPS synthesis and rhizosphere

competitiveness is intriguing and a more detailed analysis of the phenotypes of the

PHB cycle mutants in the SmUW3 background might be expected to help decipher

these networks. Some preliminary work in this area is outlined in Appendix B.1.

In order to facilitate the analysis of EPS synthesis in different Rhizobial strains

and species, it will be necessary to develop a quantitative EPS assay that is both

internally and externally robust. The isopropanol method used in this study is

very effective at comparing multiple samples prepared in the same assay, but there

might be value in exploring the possibility of using anthrone as a standard assay

in the future [247, 353], as described in Section 2.7.5.3, as a means of improving

standardization between studies.

To date, it has not been experimentally demonstrated whether PHB accumula-

tion is modulated by control at the transcriptional level. In order to facilitate an

analysis of PHB synthesis throughout the growth curve and under different growth

conditions, lacZ transcriptional fusions to S. meliloti phbC and phbAB have been

constructed. PCR was used to amplify the S. meliloti phbC, phbA, phbB and

phbAB ORFs, which were then captured in pJET. phbAB and phbC were then

subcloned, in both orientations, into pTH1703 [58] in order to generate gfp-lacZ

and gusA fusions. All of these constructions are recorded in Table 2.1. These con-

structs were then transferred into S. meliloti by triparental conjugation in order to

generate functional, choromosomally located fusions. These strains should be used
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to monitor the regulation of phbC and phbAB throughout the growth cycle of the

organism in order to determine when, and under which conditions, PHB synthesis

is up- and down-regulated.

The carbon utilization phenotypes associated with PHB cycle mutants in S.

meliloti remain unexplained and certainly warrant further investigation. The ob-

servation that a phbA mutant is completely unable to utilize acetoacetate as a sole

carbon source is somewhat unexpected given the phenotypes of other mutants in

this cycle. A more detailed analysis of this mutant, including an assessment of its

rhizosphere competitiveness and symbiotic phenotype are needed in order to more

fully determine the basis for the observed results documented herein. While the

results suggest that an ethylmalonyl-CoA-like pathway is either not present in S.

meliloti, or does not overlap with the PHB cycle, the phenotypes of the bhb mu-

tants, and their overlap with PHB cycle mutants, is certainly an area that warrants

further investigation since mutants of bhb and phbC are unable to utilize either

3-hydroxybutyrate or acetoacetate but are unaffected in their capacity to grow on

acetate.

Further analysis of the the role of dicarboxylates, as well as the regulation of

dctA genes in the B. japonicum-soybean symbiosis is needed in order to develop a

stronger understanding of bacteroid carbon metabolism in this organism. Analysis

of the symbiotic phenotypes of the dctA mutants constructed to-date will reveal

which, if any, are required for symbiosis. It is conceivable that the redundancy in

DctA transporters in B. japonicum may be sufficient to prevent any one mutant

from having a discernible symbiotic phenotype. To this end it may be necessary

to construct multiple dctA mutants. An analysis of the transport capacities of

each of the mutants may also yield valuable information regarding the roles that

each of the individual ORFs play in the physiology of this organism. Radio-label

transport assays using different labelled substrates would be a relatively fast and
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effective means of analysing this. The reason for the recalcitrance of B. japonicum

dctBD to mutation remains unclear; further analysis will be necessary given the

potential value of this mutant to developing a more comprehensive picture of carbon

regulation in symbioses of determinate nodules.

The development of improved inoculant technologies is necessary if we are to

reduce our dependence on exogenously applied fertilizers that are synthesized using

energy-intensive processes. This aspect of this work was prematurely terminated

when our partner Agribiotics was bought by EMD Crop Biosciences, and the op-

eration was moved to the United States. In this study we identify several strains

with interesting OSS and ion-tolerance phenotypes. Further analysis of the ge-

netic, physiological and environmental basis for these phenotypes is necessary to

start building a more comprehensive understanding of the biochemical factors that

influence desiccation tolerance in the Rhizobia. In order to facilitate this, a cosmid

library of the Agribiotics commercial inoculant strain of B. japonicum was con-

structed, as described in Section 2.4.5. This library was constructed from a strain

with superior OSS to B. japonicum USDA110, and may be useful as a tool for

identification of genes with a capacity to influence OSS.

As we look at the new century, we are realizing that the road ahead is one

unlike that travelled by previous generations. We face unprecedented economic

and environmental uncertainty. The development of new paradigms that integrate

genomics information with socio-economic and environmental understanding will

be key to ensuring a sustainable future for humanity. Symbiotic nitrogen fixation

has been an integral component of farming practices for hundreds of years. It is

a tried and true technology that is now in a prime position to play a pivotal role

in the molecular biotechnology advances of the 21st century; however, in order to

fully exploit the potential of biological nitrogen fixation, we must first develop a

comprehensive understanding of it in order to ensure we do not repeat the mistakes
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of our past in our efforts to repair them.
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Appendix A

Media Recipes, Solutions, and

Reaction Conditions

A.1 Growth Media and Antibiotics

A.1.1 Bacterial Growth Media Recipes

A.1.1.1 Luria Bertani (LB) Broth

• 5 g Yeast Extract

• 10 g Tryptone

• 5 g NaCl

• 1 l dH2O

• (15 g Agar)

A.1.1.2 LB-MC Broth

As LB but add MgCl2 and CaCl2 to a final concentration each of 2.5 mM.
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A.1.1.3 Typtone Yeast Extract (TY)

• 5 g Tryptone

• 5 g Yeast Extract

• 0.5 g CaCl2

• 1 l dH2O

• (15 g Agar)

A.1.1.4 Modified M9 Medium for Rhizobia

• 7 g Na2HPO4

• 3 g KH2PO4

• 1 g NH4Cl

• 1 g NaCl

• (15 g Agar)

This is autoclaved, cooled to 55◦C, and the following are added:

• 1 ml 0.5 M MgSO4

• 0.1 ml 1 M CaCl2

A.1.1.5 Rhizobium Minimal Medium (RMM)

Solutions A, B, C and D are prepared and sterilized separately. RMM is made by

adding 1% (v/v) each of RMM A and RMM B and 0.1% (v/v) each of RMM C

and RMM D.
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RMM A:

• 145 g KH2PO4

• 205 g K2HPO4

• 15 g NaCl

• 50 g NH4NO3

• 1 l dH2O

RMM B:

• 50 g MgSO4.7H2O

• 1 l dH2O

RMM C:

• 10 g CaCl2.2H2O

• 1 l dH2O

RMM D:

• 123.3 g MgSO4.7H2O

• 87 g K2SO4

• 0.247 g H3BO3

• 0.1 g CuSO4.5H2O

• 0.338 g MnSO4.H2O
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• 0.288 g ZnSO4.7H2O

• 0.056 g CoSO4.7H2O

• 0.048 g Na2MoO4.2H2O

• 1 l dH2O

Prepare the following solutions and filter sterilize. Add to cooled media.

• 0.2 ml Thiamine (1 mg/ml)

• 0.2 ml Ca-pantothenate (1 mg/ml)

• 0.2 ml biotin (1 mg/ml)

• Carbon Source (0.2% succinate: 2 ml 20% succinate in 200 ml final volume)

A.1.1.6 Vincent’s Minimal Medium (VMM)

Solutions A, B and C are prepared and sterilized separately. VMM was made by

adding 10% (v/v) VMM B and 1% (v/v) VMM C to VMM A. A carbon source

was also added to a final concentration of 15 mM.

VMM A:

• 1 g K2HPO4

• 1 g KH2PO4

• 1 g NH3Cl (or 0.6 g KNO3)

• 1 l dH2O

• (15 g Agar)
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VMM B:

• 0.05 g FeCl3

• 0.05 g MgCl3

• 0.5 g CaCl2

• 0.5 l dH2O

VMM C:

• 0.01 g Biotin

• 0.01 g Thaimin

• 0.01 g Ca-Pantothenate

A.1.1.7 Arabinose Gluconate (AG) Medium

• 1 g Arabinose

• 1 g Gluconate

• 1 g Yeast Extract

• 930 ml dH2O

• (17 g Agar)

Autoclave the above ingredients then add 10 ml of each of the following autoclaved

stock solutions to make one litre of media:

• A. Hepes - Mes Buffer, pH 6.6 - 6.9
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– 65.0 g Hepes (Sigma no. H-3375)

– 55.0 g Mes (Sigma no. M-8250)

– pH adjusted to 6.6 - 6.9 with NaOH

– volume to 500 ml with dH2O

• B. 0.67 g/l FeCl3.6 H2O

• C. 18.0 g/l MgSO4.7 H2O

• D. 1.30 g/l CaCl2 .2 H2O

• E. 25.0 g/lNa2SO4

• F. 32.0 g/l NH4Cl

• G. 12.5 g/l Na2HPO4

A.1.1.8 Modified Arabinose Gluconate (MAG) Medium

As AG but increase Arabinose and Gluconate content from 1 g/l each to 5 g/l.

A.1.1.9 Yeast Mannitol (YM) Medium

• 0.4 g Yeast Extract

• 10 g Mannitol

• 0.5 g K2HPO4

• 0.2 g MgSO4.7H2O

• 0.1 g NaCl

• 1l dH2O
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• pH to 7.0

• (18 g Agar)

A.1.1.10 Autoinduction Medium

This medium is designed for the over-expression of proteins from genes that are

under the control of lac repressor (e.g. pET30).

Base Medium

• 6 g Na2HPO4

• 3 g KH2HPO4

• 20 g Tryptone

• 5 g Yeast Extract

• 5 g NaCl

• 60 ml Glcerol

• 1 l dH2O

• pH to 7.2 with NaOH

Additives Filter sterilize the following:

• 10% Glucose

• 8% Lactose

Before using, add 25 ml lactose stock and 5 ml glucose stock to the base medium.

For an uninduced control, omit the lactose solution.
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A.1.1.11 ZYP-5052 Autoinduction Medium

ZY, 20X NPS, 50X 5052, 1 M MgSO4 and 1000X trace metal solution are made up

separately. To make 1 l ZYP-5052, the components are added as follows:

• 928 ml ZY

• 1.0 ml 1 M MgSO4

• 1.0 ml Trace Metals solution

• 20 ml 50X 5052

• 50 ml 20X NPS

Note, add 1 M MgSO4 before adding the 20X NPS to avoid precipitation.

Note, Kanamycin must be used in significantly higher concentrations (100 µg/ml)

than is typically used.

ZY:

• 10 g Tryptone

• 5 g Yeast Extract

• 925 ml dH2O

Autoclave to sterilize.

20X NPS:

• 6.6 g NH4SO4

• 13.6 g KH2PO4
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• 14.2 g Na2HPO4

• 100 ml dH2O

pH to 6.75. Autoclave to sterilize.

50X 5052:

• 25 g Glycerol

• 2.5 g Glucose

• 10 g Lactose

• 100 ml dH2O

1 M MgSO4:

• 24.65 g MgSO4.7H2O

• 100 ml dH2O

Trace Metals Solution

• 50 ml 0.1 M FeCl3

• 2.0 ml 1.0 M CaCl2.2H2O

• 1.0 ml 1.0 M MnCl2.4H2O

• 1.0 ml 1.0 M ZnSO4.7H2O

• 1.0 ml 0.2 M CoCl2.6H2O

• 2.0 ml 0.1 M CuCl2.2H2O
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• 1.0 ml 0.2 M NiCl2.6H2O

• 2.0 ml 0.1 M Na2MoO4.2H2O

• 2.0 ml 0.1 M H3BO3

Note, all stock solutions are made up and autoclaved separately (except FeCl3 which

is made up in HCl and is not autoclaved). The following volumes of these stock

solutions are then added to 36 ml sterile dH2O and the resultant solution is stored

at room temperature.

A.1.2 Antibiotic Concentrations

All antibiotic concentrations listed here are for solid media. Typically these con-

centrations were halved for growth in liquid culture. Antibiotics were typically

prepared at 1000X concentrations and a 1:1000 dilution was used. Stock solutions

were stored at 4◦C.

A.1.2.1 Antibiotic Concentrations for E. coli

• Ampicillin: 100 µg/ml

• Chloramphenicol: 25 µg/ml

• Gentamycin: 10 µg/ml

• Kanamycin: 25 µg/ml (100 µg/ml when using autoinduction medium)

• Naladixic acid: 5 µg/ml

• Tetracycline: 10 µg/ml
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A.1.2.2 Antibiotic Concentrations for S. meliloti

• Gentamycin: 75 µg/ml

• Neomycin: 200 µg/ml

• Spectinomycin: 100 µg/ml

• Streptomycin: 200 µg/ml

• Tetracycline: 10 µg/ml

• Trimethoprim: 400 µg/ml

A.1.2.3 Antibiotic Concetrations for B. japonicum

• Kanamycin: 50 µg/ml

• Streptomycin: 200 µg/ml

• Tetracycline: 200 µg/ml

A.2 Molecular Biology Reagents

A.2.1 Solutions for the Isolation of Genomic DNA

A.2.1.1 Lysozyme Solution

2 mg/ml powdered lysozyme dissolved in T10E1 immediately prior to use

A.2.1.2 SDS-Protease Solution

• 5 mg/mk proteinase K dissolved in T10E1
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• incubate 2h at 37◦C

• add 0.1 g/ml SDS

• incubate 20 minutes at 45◦C to dissolve SDS

A.2.1.3 T10E25

• 10 mM Tris-HCl pH 8.0

• 25 mM EDTA pH 8.0

• store at 4◦C

A.2.1.4 T10E1

• 10 mM Tris-HCl pH 8.0

• 1 mM EDTA pH 8.0

• store at room temperature

A.2.2 Solutions I, II and III for Small-Scale Preparation of

Plasmid DNA

A.2.2.1 Small-Scale Plasmid Preparation Solution I

• 50 mM glucose

• 25 mM Tris-HCl pH 8.0

• 10 mM EDTA pH 8.0

• autoclaved and stored at 4◦C
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A.2.2.2 Small-Scale Plasmid Preparation Solution II

• 0.2 N NaOH

• 1% SDS

A.2.2.3 Small-Scale Plasmid Preparation Solution III

• 60 ml 5M potassium acetate

• 11.5 ml glacial acetic acid

• 28.5 ml dH2O

• stored at 4◦C

A.2.2.4 T10E25

• 10 mM Tris-HCl pH 8.0

• 25 mM EDTA pH 8.0

A.2.2.5 T10E1

• 10 mM Tris-HCl pH 8.0

• 1 mM EDTA pH 8.0

A.2.3 Tris-Acetate-EDTA (TAE) Buffer

A.2.3.1 1X Working Solution

• 40 mM Tris-Acetate

• 1 mM EDTA
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A.2.3.2 50 X Stock Solution

• 242 g Tris base

• 57.1 ml Glacial acetic acid

• 100 ml 0.5 M EDTA

• pH 8.0

A.2.4 6X Agarose Gel Loading Dye

• 0.25% Bromophenol Blue

• 40% (w/v) Sucrose in dH2O

A.2.5 Southern Blot Reagents

A.2.5.1 Transfer buffer

• 0.4 M NaOH

• 0.6 M NaCl

A.2.5.2 20X SSC

• 175.3 g NaCl

• 88.2 g sodium citrate

• 1l dH2O
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A.2.5.3 Hybridization Buffer

• 5X SSC

• 1% w/v blocking reagent (Roche Diagnostics, Basel, Switzerland)

• 0.1% N-lauroyl sarcosine

• 0.02% SDS

A.2.5.4 Stringency Buffer A

• 2X SSC

• 0.1% SDS

A.2.5.5 Stringency Buffer B

• 0.1X SSC

• 0.1% SDS

A.2.5.6 Tris-NaCl Buffer

• 0.1 M Tris-Cl pH 8.0

• 0.15 M NaCl

A.2.5.7 Blocking Buffer

• 1% w/v blocking reagent in Tris-NaCl buffer
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A.2.5.8 Detection Buffer

• 0.1 M Tris-HCl pH 9.5

• 0.1 M NaCl

A.2.5.9 Stripping Solution

• 0.2 N NaOH

• 0.1% SDS

A.2.6 Cosmid Library Construction Solutions

A.2.6.1 Phage Dilution Buffer

• 10 mM Tris-HCl (pH 8.3)

• 100 mM NaCl

• 10 mM MgCl2

A.3 Reagents for Protein Work

A.3.1 SDS-PAGE Gel Recipes

A.3.1.1 12% Resolving Gel

• 4 ml Acrylamide/Bis-acylamide (30%)

• 2.5 ml 1.5 M Tris-HCl (pH 8.0)

• 100 µl 10% (w/v) SDS
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• 100 µl 0.06% (w/v) APS

• 5 µl (v/v) TEMED

• 3.32 µl dH2O

A.3.1.2 4% Stacking Gel

• 670 µl Acrylamide/Bis-acylamide (30%)

• 1.25 ml 0.5 M Tris-HCl (pH 6.8)

• 50 µl 10% (w/v) SDS

• 25 µl 0.06% (w/v) APS

• 5 µl (v/v) TEMED

• 3.05 µl dH2O

A.3.1.3 4X SDS-PAGE Running Buffer

• 12 g Tris-Base

• 57.6 g Glycine

• 1 l dH2O

• pH 8.3 with HCl

A.3.1.4 1X SDS-PAGE Running Buffer

• 250 ml 4X Stock solution

• 10 ml 10% SDS

• 740 ml dH2O
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A.3.1.5 Coomassie Brilliant Blue Staining Solution

• 0.25 g Coomassie Brilliant Blue R250

• 45 ml Water

• 45 ml Methanol

• 10 ml Glacial Acetic Acid

• Filter through Whatman #1 filter to remove sediment

A.3.1.6 SDS-PAGE Loading Dye

• 5 ml Glycerol

• 2.5 ml β-Mercaptoethanol

• 15 ml 10% SDS

• 25 ml Upper Buffer

• 2.5 ml dH2O

• Add Bromophenol Blue to colour

A.3.2 Western Blot Reagents

A.3.2.1 Western Transfer Buffer

25X Stock:

• 450 ml dH2O

• 120 mM Tris Base
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• 960 mM Glycine

• dH2O to 500 ml

1X Working Solution:

• 40 ml 25X stock

• 200 ml EtOH

• 760 ml dH2O

A.3.2.2 TBS

10X Stock:

• 200 mM Tris

• 5 M NaCl

• pH 7.5

1X Working Solution:

• 100 ml 10X TBS stock

• 900 ml dH2O

A.3.2.3 TTBS

• 990 ml 1X TBS

• 10 ml Tween-20

318



A.3.2.4 Blocking Buffer

• 2.5 g non-fat dried milk

• 50 ml 1X TBS

A.3.2.5 Antibody Buffer

• 1 g non-fat dried milk

• 50 ml TTBS

A.3.3 Protein Purification Solutions

A.3.3.1 1X Ni-NTA Bind Buffer

• 300 mM NaCl

• 50 mM sodium phosphate buffer

• 10 mM imidazole

• pH 8.0

A.3.3.2 1X Ni-NTA Wash Buffer

• 300 mM NaCl

• 50 mM sodium phosphate buffer

• 20 mM imidazole

• pH 8.0
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A.3.3.3 1X Ni-NTA Elution Buffer

• 300 mM NaCl

• 250 mM imidazole

• 50 mM sodium phosphate buffer

• pH 8.0

A.4 Plant Growth Media

Plant growth medium was prepared by adding 1 ml each of plant growth solutions

A, B, C and D to 2 l dH2O.

A.4.1 Plant Growth Solution A

• 294 g CaCl2

• 1 l dH2O

A.4.2 Plant Growth Solution B

• 136 g KH2PO4

• 1 l dH2O

A.4.3 Plant Growth Solution C

• 6.7 g FeCl3

• 1 l dH20
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A.4.4 Plant Growth Solution D

• 123 g MgSO4

• 87 g K2SO4

• 0.338 g MnSO4

• 0.247 g H2BO4

• 0.288 g ZnSO4

• 0.1 g CuSO4

• 0.056 g CoSO4

• 0.048 g Na2MoO4

• 1 l dH2O

A.5 Desiccation Assay Solutions

A.5.1 Phosphate Buffered Saline

• 8 g NaCl

• 0.2 g KCl

• 1.44 g Na2HPO4

• 0.24 g KH2PO4

• 1 l dH2O

• pH 7.0

Autoclave to sterilize
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A.6 Exopolysaccharide Isolation Reagents

A.6.1 Anthrone Reagent

Note: This reagent must be made fresh daily.

• 500 ml Concentrated H2SO4

• 200 ml dH2O

• 1.4 g Anthrone Reagent

A.7 Typical Reaction Conditions

A.7.1 Polymerase Chain Reaction (PCR) for Cloning

A.7.1.1 KOD HotStart PCR Reaction Mix

• 10 X Reaction buffer: 5 µl

• 2 mM dNTPs: 2.5 µl

• 10 mM Forward primer: 1.5 µl

• 10 mM Reverse primer: 1.5 µl

• Template DNA: 1 µl

• DMSO: As needed up to 5%

• dH2O to 50 µl
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A.7.1.2 Typical KOD HotStart PCR Reaction

• 94◦C: 2 mins

1 cycle of:

• 94◦C: 15 sec

• 65◦C: 30 sec

• 68◦C: 90 sec

Repeat cycle 9 times, decreasing annealing temperature by 1◦C each cycle 25 cycles

of:

• 94◦C: 15 sec

• 55◦C: 30 sec

• 68◦C: 90 sec

1 cycle of:

• 68◦C 5 mins

• 4◦C: Hold

A.7.2 Cross-Over PCR

A.7.2.1 Typical Initial Reaction Mix

• 10 X Reaction buffer: 5 µl

• 2 mM dNTPs: 2.5 µl
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• 10 mM Primer A (or C): 1.5 µl

• 10 mM Primer B (or D): 1.5 µl

• Template DNA: 1 µl

• DMSO: As needed up to 5%

• dH2O to 50 µl

A.7.2.2 Typical Joining Reaction Mix

• 10 X Reaction buffer: 5 µl

• 2 mM dNTPs: 2.5 µl

• 10 mM Outside primer A: 1.5 µl

• 10 mM Outside primer D: 1.5 µl

• Template DNA AB Reaction: 1 µl

• Template DNA CD Reaction: 1 µl

• DMSO: As needed up to 5%

• dH2O to 50 µl

A.7.3 Colony PCR

A.7.3.1 Typical Colony PCR Reaction Mix

• 10X Reaction buffer: 2.5 µl

• 10 mM dNTPs: 2.5 µl
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• 10 mM Forward primer: 1.5 µl

• 10 mM Reverse primer: 1.5 µl

• Template: 2 µl

• DMSO: as needed

• dH2O to 25 µl

A.7.3.2 Typical Colony PCR Program

• 94◦C: 2 mins

45 cycles of:

• 94◦C: 15 sec

• 40◦C: 30 sec

• 72◦C: 90 sec

1 cycle of:

• 72◦C 5 mins

• 4◦C: Hold

A.8 Microscopy Reagents

A.8.0.3 Phosphate Buffer

Solution A: 0.2 M Monobasic sodium phosphate Solution B: 0.2 M Dibasic sodium

phosphate Add 87.7 ml A to 12.3 ml B. pH 6.0
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A.8.0.4 Uranyl Acetate Stain

• 2 g UO2(CH3COO)22H2O

• 1.9 g H2C2O4

• 50 ml dH2O

• Add 25% NH4OH to pH 7-8

A.8.0.5 Lead Citrate Stain

Note: this stain reacts with CO2 and carbonate, causing it to precipitate. These

contaminants should be avoided during preparation and long-term storage. dH2O

is boiled for 10 minutes to remove any CO2, then covered and allowed to cool for

30 minutes before use.

• 1.33 g Pb(NO3)2

• 1.76 g NaH(C3H5O(COO)3

• 30 ml prepared dH2O

• Shake for 60 minutes to allow conversion of lead nitrate to citrate

• Add 8 ml of 1M NaOH; solution should clear

• Store in foil-lined plastic container at 4◦C

The stain is stable for up to 6 months; discard if it becomes cloudy.
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Appendix B

Analysis of the Role of ExpR in

Exopolysaccharide Synthesis and

Rhizosphere Competitiveness of

Sinorhizobium meliloti PHB

Cycle Mutants

B.1 Introduction

The phbC and bdhA mutants of S. meliloti both demonstrate a considerable reduc-

tion in rhizosphere competitiveness relative to the wild-type strain Rm1021, with

the phenotype of the phbC mutant being demonstrably more pronounced than that

of the bdhA strain [9]. Interestingly, neither strain exhibits a reproducible reduc-

tion in symbiotic effectiveness when inoculated by itself [275, 9, 390]. The lack of

equivalence between the competition phenotypes of the phbC and bdhA mutants
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suggests that the function of PHB as a redox regulator for removal of potential

growth inhibitory metabolites [80, 377] may be far more critical than the function

of PHB as an internal source of carbon and energy.

The data shown in Chapter 6.1 suggest that, unlike the bdhA strain, a phaZ

mutant of S. meliloti does not demonstrate a reduction in rhizosphere competitive-

ness. Furthermore, although this strain shows higher levels of exopolysaccharide

(EPS) production relative to Rm1021, it is not more competitive than the wild-type

strain. These data imply that that EPS production is not the sole determinant in

the competition phenotype of other PHB cycle mutants. Indeed, it is conceivable

that the competition defect observed in phbC mutants of S. meliloti may be due to

extremely low levels of succinoglycan production. Succinoglycan production may

be sufficient to permit the establishment of an effective symbiosis but, assuming

that the succinoglycan itself is playing a role in signalling during early nodulation,

insufficient to facilitate competition with strains producing higher levels of the EPS.

All studies examining the rhizosphere competitiveness of S. meliloti PHB cycle

mutants, to date, have been conducted in the Rm1021 background. As discussed in

Section 1.4, Rm1021 however, carries an insertion element (ISRm2011-1) within the

open reading frame of expR and only synthesizes EPSII under low phosphate condi-

tions [237, 297, 401]. Earlier work demonstrated that restoration of expR expression

could restore the production of symbiotically active EPSII, facilitating nodulation

in an EPSI mutant background, although the nodulation was less efficient than in

the presence of succinoglycan [265].

In this study we report the construction and characterization of PHB cycle mu-

tants in an expR+ nolR+ pstC+ (SmUW3) background. Furthermore, we report

the analysis of the rhizosphere competitiveness of strains SmUW1, SmUW24 and

SmUW6. These strains possess mutations in expR, exoY and nolR pstC respec-

tively, allowing an analysis of the potential role of these regulatory proteins in
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nodulation competitiveness and exopolysaccharide synthesis.

B.2 Results and Discussion

B.2.1 Construction of PHB Cycle Mutants in SmUW3 Back-

ground

Lysates of Rm11105, Rm11107, Rm11347 and Rm11430 were prepared as described

in Section 2.4.4.8 and transductions into the SmUW3 background were carried out

as described previously [95]. Transductants were selected on LB containing either

Nm200 (phbC and bdhA) or Sp100 (phbB and phaZ ) and streak purified three times.

The resultant strains are described in Table 2.1 and are summarized in Table B.1

for ease of reading.

B.2.2 Exopolysaccharide Biosynthesis in the SmUW3 Back-

ground

Exopolysaccharide biosynthesis was quantitated by isopropanol precipitation of the

soluble EPS secreted into the growth medium under EPS-inducing conditions, as

described in Section 2.7.5. Although the SmUW3 strain is visibly more mucoid

than Rm1021 on YMA, the results shown in Figure B.1 suggest that this increased

mucoidy does not translate into significantly higher secretions of EPS when cells

are grown in YMB. It would be interesting to compare these data to data generated

from cells grown in TY, which is non-EPS-inducing. It is important to remember

that EPS is distinct from capsular polysaccharide, and it is conceivable that the in-

creased mucoidy of the SmUW3 strain is entirely due to the production of insoluble

capsular polysaccharides that are not isolated in this particular assay. This may
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Table B.1: Summary of PHB cycle and exopolysaccharide mutants con-
structed in SmUW3 background

Strain Relevant Characteristics
SmUW1 Rm1021 pstC + nolR+

SmUW3 Rm1021 expR+ nolR+ pstC+

SmUW6 Rm1021 expR+

SmUW24 φ-Rm7055 transduced into SmUW6
SmUW33 φ-Rm11105 transduced into SmUW3
SmUW34 φ-Rm11107 transduced into SmUW3
SmUW35 φ-Rm11347 transduced into SmUW3
SmUW36 φ-Rm11430 transduced into SmUW3
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also explain the interesting phenotype recorded for the S. meliloti phbA mutant

(Section 7.2.3); SmUW41 also appeared to demonstrate an increase in mucoidy

but, when assayed for soluble EPS, did not appear to secrete detectable EPS into

the growth medium. Further analysis of the relationship between capsular polysac-

charide and soluble EPS in S. meliloti is necessary in order to characterize and

understand this phenotype more conclusively.

B.2.3 Competition Phenotype of PHB Cycle Mutants in

an SmUW3 or SmUW6 Background

The data in Table B.2 show the results of competition assays. In each trial, approx-

imately 15 nodules were crushed and the bacteroids screened for the appropriate

antibiotic resistance marker.

The comparison of SmUW1 and SmUW3 suggest that the presence of expR

does not affect rhizosphere competitiveness; this is corroborated by the data from

the comparison of Rm1021 and SmUW6, which also indicated that expR does not

affect the ability of the cells to compete for nodulation.

The mutation in SmUW24 was recently shown to be within exoY and not exoF

as first thought [207, 244]. The comparison of SmUW24 and SmUW6 suggests

that the synthesis of EPSII is not sufficient to restore nodulation competitiveness

to the exoY strain. Furthermore, the data in Table B.2 suggest that the reduction

in competitiveness exhibited by the phbC mutant (SmUW33 and Rm11105) is not

alleviated by the presence of a functional expR however, the phenotype of the bdhA

mutant is less severe in this background, resulting in an increased competitiveness

relative to wild-type.
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Figure B.1: Results of the isolation and quantitation of soluble ex-
opolysaccharide from Rm1021, SmUW3 and PHB cycle mutants of
S. meliloti. Rm1021: wild-type; SmUW3: Rm1021 expR+ nolR+

pstC+; Rm11105: Rm1021 phbC ; SmUW33: SmUW3 phbC ; SmUW34:
SmUW3 bdhA; SmUW35: SmUW3 phbB ; SmUW36: SmUW3 phaZ
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Table B.2: Nodulation competitiveness of the S. meliloti wild-type EPS
strains and PHB cycle mutants co-inoculated in the described ratios on
M. sativa plants

Strain (%) in inoculum No. nodules tested Nodule occupancy (%)
Strain 1 Strain 2 Both

SmUW1 (7) + SmUW3 (93) 10 2 7 1
SmUW1 (42) + SmUW3 (58) 15 5 6 4
SmUW1 (88) + SmUW3 (12) 16 13 2 1
SmUW3 (11) + SmUW33 (89) 23 12 8 3
SmUW3 (54) + SmUW33 (46) 14 13 0 1
SmUW3 (92) + SmUW33 (8) 16 16 0 0
SmUW3 (5) + SmUW34 (95) 14 0 7 7
SmUW3 (33) + SmUW34 (67) 18 3 4 11
SmUW3 (83) + SmUW34 (17) 17 0 15 2
SmUW33 (4) + SmUW34 (96) 18 1 13 4
SmUW33 (29) + SmUW34 (71) 17 0 17 0
SmUW33 (81) + SmUW34 (19) 15 0 11 4
Rm1021 (2) + Rm11105 (98) 16 11 3 2
Rm1021 (19) + Rm11105 (81) 16 15 1 0
Rm1021 (65) + Rm11105 (35) 20 19 0 1
Rm1021 (6) + Rm11107 (94) 19 19 0 0
Rm1021 (39) + Rm11107 (61) 14 14 0 0
Rm1021 (86) + Rm11107 (14) 18 18 0 0
SmUW24 (9) + SmUW6 (91) 16 0 14 2
SmUW24 (92) + SmUW6 (8) 16 0 15 1
SmUW24 (99) + SmUW6 (1) 17 4 10 3
Rm1021 (30) + SmUW6 (70) 18 3 11 4
Rm1021 (81) + SmUW6 (19) 20 14 5 1
Rm1021 (98) + SmUW6 (2) 19 18 0 1
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B.3 Conclusions

The relationship between EPS synthesis, PHB synthesis and rhizosphere compet-

itiveness is undeniable but a comprehensive understanding remains elusive. It is

conceivable that S. meliloti in the rhizosphere may use a quorum-sensing system

to co-ordinate the initiation of plant invasion [265]. S. meliloti possesses two QS

systems, the first is encoded by the sinRI locus, which is responsible for the produc-

tion of long-chain N-acyl homoserine lactones (AHLs) [219, 220]. Previous work has

shown that mutations of the sinI locus result in a strain with reduced nodulation

efficiency, [220], and mutations in an expR+ background completely abolish EPSII

synthesis [219].
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