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Abstract 

It has been suggested for many decades that the essential and ubiquitous enzyme fructose 1,6-

bisphosphate aldolase (FBA) could be a good drug target against bacteria and fungi, since lower 

organisms possess a metal-dependent (Class II) FBA, as opposed to higher organisms which possess 

a Schiff-base forming, metal-independent (Class I) FBA.  The purpose of this doctoral project was to 

purify and study the inhibition of Class II FBA from pathogenic organisms.  The capacity of various 

thiol compounds, as well as various derivatives of the metal-chelating compound dipicolinic acid, to 

inhibit the purified Class II FBAs from Mycobacterium tuberculosis, Pseudomonas aeruginosa, 

Bacillus cereus, and from the Rice Blast causative agent Magnaporthe grisea, was compared.  The 

genes were subcloned in the Escherichia coli vector pT7-7 and the enzymes purified to near 

homogeneity, and characterized using a coupled assay.  A small fed-batch fermentor was used to 

express the enzymes in E. coli, and yields of up to 2 grams of purified protein per liter of bacterial 

culture were obtained.  The commercially available compound 2,3-dimercaptopropane sulfonate was 

found to be the most effective inhibitor against the aldolase from M. tuberculosis, with a second order 

binding rate constant of 500 ± 4 M-1s-1, which is three times and twenty times higher than the 

constants obtained with dipicolinic acid and EDTA, respectively.   

In an attempt to detect the enzyme dynamics during catalysis or inhibition, tryptophan residues were 

used as reporter groups and introduced by site-directed mutagenesis into the catalytic mobile loops 

and near the active site of the aldolases from M. tuberculosis, P. aeruginosa and B. cereus.  The 

kinetic characterization of the mutants is described; as well as the effect of substrate binding on the 

steady-state and time-resolved fluorescence signals.  Finally, the possibility of using the recombinant 

Class II FBP aldolases for industrial chemical synthesis was explored by measuring the enzymatic 

stability in organic solvents, at high temperatures and at different pH conditions.  Surprisingly, the 
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commercial Class I enzyme from rabbit muscle was more stable than the metalloenzymes in most 

conditions tested.   The results presented in this thesis will be useful for the future design of Class II 

FBP aldolase inhibitors. 
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Chapter 1 

Introduction 

1.1 Biochemistry and drug discovery 

The central goal of the project described in this thesis is the discovery of a new drug against 

bacterial and fungal pathogens.  The widespread recognition of microorganisms as disease agents in 

the mid-nineteenth century quickly led to better sanitation and large vaccination campaigns, reducing 

dramatically the number of deaths by infectious disease.  The search for antimicrobial agents which 

could block essential cellular functions in microbes, but not in humans, followed.  Today, thanks to 

the widespread availability of vaccination and antibiotics, less than 1% of all fatalities are caused by 

bacterial infections in the United Kingdom (WHO 2004), compared to up to three quarters of all 

fatalities in the mid-18th century England (Gage 2005; 1993). 

Of these two major weapons we now have against microbes, vaccination remains the most cost-

effective intervention measure in medicine, as for each $1 in vaccination, $5 to $10 are saved in 

treatment (Kaufmann 2007).  However, vaccination is not effective or practical for all microbial 

infections.  For example, there is a vaccine offering good protection against the severe form of 

tuberculosis (TB) in children, but vaccination still cannot prevent the adult, pulmonary form of TB.  

There are also vaccines that are not used on a large scale because the risk of infection is too small to 

justify the cost and potential vaccine risks, as is the case for anthrax.  Vaccinations have been 

ineffective in cases of AIDS and infections associated with immunosuppressive drugs used in organ 

transplants, wounds including massive burns, chronic diseases such as cystic fibrosis, or old age, 
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where the immune system is weakened and susceptible to secondary infections by opportunistic 

pathogens.  Therefore, the need for drugs that can cure established microbial infections remains. 

Today, there are two main methods for antimicrobial drug discovery: screening or design.  The 

“golden age” of antibiotic discovery during which most drug classes in use today were discovered, 

occurred by screening from 1940 to 1960.  Several advances during the subsequent years, particularly 

in molecular biology, brought the design of drugs within our reach.  A major turning point, the 

discovery that protein sequences are encoded in genomic DNA, came in the 1940s.  The subsequent 

development of the x-ray crystallography technique led to the elucidation of DNA structure and of the 

first enzyme structure in the 1950s.  The new DNA cloning techniques combined with the genome 

sequencing efforts have greatly accelerated the biochemical study of drug-targeted proteins.  It is now 

estimated that the human genome contains 20,000 to 25,000 protein-coding genes (International 

Human Genome Sequencing Consortium (I.H.G.S.C. 2004)), roughly 5 times as many as the number 

present in typical bacterial genomes (Wellcome Trust Sanger Institute (W.T.S.I. 2008)).  We now see 

the beginning of systems biology and the bird’s-eye view of all the enzymatic reactions happening in 

one organism.  With each technological advance, we improve our understanding of the complexity of 

life, and we find more opportunities for disease treatment.   

In spite of these remarkably rapid advances in biological sciences, the number of antimicrobial 

agents has declined steadily since 1960.  In fact, only two new classes of antibiotics were introduced 

between 1960 and the beginning of the 21st century: quinolones (nalidixic acid) in 1962 and 

phosphonates (fosfomycin) in 1969 (Walsh and Wright 2005).  Current antibiotics have only four 

general targets in the cell: folate metabolism, ribosomes, envelope synthesis, and nucleic acid 

replication (Walsh 2003).  Resistance to all these classes of antibiotics has already been observed 

(Franceschi and Duffy 2006).  In addition to bacterial infections, the number of invasive fungal 

infections, such as those caused by Candida albicans, is also increasing due to the increased number 
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of AIDS patients and other immunocompromised patients.  New drug-resistant fungal strains are also 

seen with higher frequency (Shao et al. 2007; Veiga-Crespo et al. 2007).  Current medical antifungal 

agents are plagued by the development of resistance and cause side effects in patients, emphasizing 

the constant need for the development of new drugs (Pasqualotto and Denning 2008).  It is important 

to note that it is harder to find suitable antifungal agents than antibacterial agents, because fungi are 

eukaryotes and thus share many enzymes and metabolic routes with plants and humans, resulting in 

toxic side-effects for the host.  The number of validated drug targets in fungi is thus small in 

comparison with bacteria (Brown and Wright 2005).  In addition to human pathogens, there are also 

numerous microbial plant pathogens, bacterial and fungal, that cause problems in agriculture.  The 

oomycete Phytophtora infestans causing potato blight and the fungus Magnaporthe grisea causing 

rice blast, as well as numerous other strains, are responsible for important crop losses each year 

worldwide (Oerke 2004).  New antifungal agents are therefore needed to counter both the rise of 

pesticide-resistant crop pathogens and the drug-resistant human pathogens. 

The two approaches that can be used for drug discovery, screening of natural compounds (and of 

synthetic compounds librairies) or target-based design, have not been equally successful.  The vast 

majority of drugs used today are actually derivatives of natural compounds discovered through 

phenotype-based screening (Brown and Wright 2005).  This led major pharmaceutical companies to 

invest heavily in the techniques of High Throughput Screening.  With the advances in genomics and 

computer modeling, the focus was shifted towards target-based drug discovery in the early 1990s.  

This approach has not been as successful as anticipated, in part because there are problems such as 

cell membrane permeability and intracellular modifications of drugs as some antimicrobials are 

prodrugs that are activated by intracellular enzymes.  Most large pharmaceutical companies have now 

pulled out of antimicrobial research, as the financial return on investement is not high enough.  

Antibiotics are not used for long periods like drugs against chronic conditions, and the development 
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of resistance in the pathogens limits the useful life of the drugs (Nathan 2004).  Over the last ten 

years, there were less than a dozen new antibacterial compounds produced by these companies that 

can significantly help to counter the problem of resistance.  The major mechanism for drug resistance 

in bacteria is genetic change followed by natural selection.  The bacteria can also acquire 

extrachromosomal DNA (usually plasmids) that includes genes that confer resistance to specific 

antibiotics.  Five mechanisms of resistance have been identified (Black 1999).  One mechanism is 

alteration of the target, for example the bacterial ribosomes, which prevents the effective binding of 

the antimicrobial agent.  Another mechanism is the alteration of the membrane permeability, which 

occurs through changes in membrane proteins that are part of transport systems or membrane pores.  

A third mechanism is the development of enzymes which inactivate drugs, such as β-lactamases.  

Bacteria can also become drug-resistant through the alteration of an enzyme, for example by 

increasing its affinity for its substrate at the expense of the drug, as is seen in sulfonamide-resistance.  

A final mechanism is the alteration of a metabolic pathway, whereby bacteria can bypass the reaction 

inhibited by the antimicrobial agent.  These resistance mechanisms are the reasons behind the 

constant need for new generations of drugs.  Most of the “new” antibiotics produced in the last ten 

years are in fact 2nd , 3rd, or subsequent generation derivatives of natural compounds discovered 

decades ago (Monaghan and Barrett 2006).   

Although structure-based drug design has not yet been very successful for the production of novel 

antibacterial or antifungal compounds, this approach was indeed successful in the design of inhibitors 

of viral and mammalian enzymes.  In the case of AIDS, the structure of a protease led to the design of 

5 marketed drugs (Franceschi and Duffy 2006).  Inhibitors produced against the zinc-dependant 

mammalian enzyme carbonic anhydrase offer other examples (Krishnamurthy et al. 2008).  Structure-

based drug design has great potential for the production of new drugs.  However, it is still a rather 

lengthy process, making it potentially better suited for academic than for industrial research.  Due to 
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the long duration of the drug discovery process, the choice of the appropriate target at the outset is 

obviously critical.  The subsequent sections in this chapter will introduce the target chosen for this 

project. 

1.2 Fructose 1,6-bisphosphate aldolase as a new drug target  

In this section, the distribution and role of fructose 1,6-bisphosphate aldolase among living organisms 

will be reviewed.  The biological roles of the enzyme will be discussed, as well as the consequence of 

the reduction of its activity for bacterial and fungal growth.  The potential and limitations of this 

enzyme as a new antibacterial and antifungal drug target will be outlined. 

1.2.1 Role of FBP aldolases 

The beginning of the scientific investigation of the metabolic pathways occurred around the 

beginning of the 20th century.  The most common glycolytic pathway was elucidated between 1932 

and 1939 (Meyerhof 1948), concomitant with the identification of central metabolic enzymes such as 

fructose 1,6-bisphosphate (FBP) aldolase (Meyerhof et al. 1936).  FBP aldolases (E.C. 4.1.2.13) 

catalyze the reversible aldol condensation of dihydroxyacetonephosphate (DHAP) and 

glyceraldehyde 3-phosphate (GAP) (Figure 1.1) in glycolysis, gluconeogenesis, and the Calvin cycle 

(Figure 1.2).   

The pathways of glycolysis and gluconeogenesis are universal and present in nearly all living 

organisms.  The Clavin cycle is found in photosynthetic organisms and chemoautotrophic bacteria 

and allows the fixation of carbon dioxide into glyceraldehyde 3-phosphate, which can then be 

incorporated into other sugars (Voet and Voet 2004).  Only 2 known prokaryotic genome sequences 

do not encode a homologue of the FBP aldolase, and it is possible that they encode an enzyme too 

divergent from known sequences for it to be identified by genomic analysis.  The organisms 
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apparently lacking an FBP aldolase are the Archea Thermoplasma acidophilum and Pyrobaculum 

aerophilum (Verhees et al. 2003).  Some FBP aldolases have a structural role in the cell in addition to 

their catalytic role, as will be briefly discussed in the following section. 
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Figure 1.1 Fructose 1,6-bisphosphate aldolase reaction 

 

1.2.2 Phylogeny of FBP aldolases 

The FBP aldolases all adopt the (β/α)8 barrel fold, also known as the “TIM barrel” fold for the 

structure of triose phosphate isomerase (see section 1.3.2), but are divided into two groups depending 

on the reaction mechanism (Rutter 1964).  The Class I aldolase forms a Schiff base using an active-

site lysine residue with the carbonyl group of the substrate; whereas the Class II enzyme uses a 

divalent metal ion as an electron sink to stabilize the carbanion formed on the 3rd carbon of the 

substrate (Figure 1.3).  Although the two classes of FBP aldolases share the same overall fold and 

catalyze the same overall reaction, they do not share any significant sequence homology or common 

catalytic residues.  The locations of their active sites in the TIM barrel structure are also distinct, 

suggesting independent evolution (Sánchez et al. 2002).  Recent reports also suggest that these 
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enzymes may have evolved independently from a common (β/α)8 barrel ancestor, like numerous 

other families of (β/α)8 barrel fold enzymes, based on structural alignments (Nagano et al. 2002). 
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Figure 1.2 Biochemical pathways involving fructose-1,6-bisphosphate aldolase 

The box represents the sugar metabolites and enzymes of glycolysis (the Embden-Meyerhof-Parnas 
pathway, from glucose to pyruvate) and gluconeogenesis (from pyruvate to glucose).  The white 
arrows depict the reactions of the Calvin cycle (also called reductive pentose phosphate cycle) from 
photosynthetic organisms and chemoautotrophic bacteria, which are used to fix atmospheric carbon 
from CO2.  The illustration was adapted from biochemistry textbook figures (Voet and Voet 2004). 
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Figure 1.3 The two different catalytic mechanisms of the Class I and Class II aldolases 

In Class I enzymes, the carbonyl function of the substrate and the amino group of a lysine side-chain 
in the active site condense to form a Schiff base intermediate.  In Class II aldolases, the active site 
divalent metal acts as an electron sink that stabilizes the carbanion intermediate.  
 
 
 

Only the Class I FBP aldolase is present in higher plants and mammals, but both classes can be 

present in lower organisms such as Escherichia coli and Mycobacterium tuberculosis.  Some authors 

have suggested that the presence of two classes of aldolases in one organism is redundant and that 

higher organisms have eliminated one of them during evolution (Marsh and Lebherz 1992). In 

organisms that possess two aldolases, the expression of one of the enzymes is constitutive, whereas 

the expression of the other one can be induced by a change in the growing conditions (aerobic versus 

anaerobic, or autotrophically-grown versus heterotrophically-grown) (van den Bergh et al. 1996; 

Marsh and Lebherz 1992; Bai et al. 1974; Stribling and Perham 1973; Willard and Gibbs 1968b).   

The distribution of Class II enzymes among microorganisms has been analyzed in several reports, 

and a phylogenetic tree of the Class II FBP aldolases from various lower organisms is presented 

below (Figure 1.4).  The Class II enzymes are divided into the groups “A” and “B” depending in their 

amino acid sequences (Rogers and Keeling 2004; Plaumann et al. 1997).   Several  large  insertions or 
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Type B Type A 

 

Figure 1.4 Phylogenetic tree of Class II aldolases. 

The Class II enzymes are divided into the Type A and Type B subgroups as indicated by the dashed 
line (Plaumann et al. 1997).  The sequence alignment was performed using ClustalW (Larkin et al. 
2007), and the illustration was done with PhiloDraw (Choi et al. 2000).  The E. coli agaY gene 
encodes a tagatose bisphosphate aldolase; most of the other aldolases have been shown to be specific 
for FBP. The source of the amino acid sequences were NCBI GeneBank and Protein Data Bank: 
Haemophilus influenzae Rd KW20 GeneID: 949539; Helicobacter pylori 26695 GeneID: 900140; 
Bacillus cereus ATCC 10987 GeneID: 1207675; Mycobacterium tuberculosis H37Rv GeneID: 
886474; Pseudomonas aeruginosa PAO1 GeneID: 880792; Magnaporthe grisea GeneID: 2674368; 
Streptococcus pneumoniae Gene ID: 933499; Candida albicans SC5314 Protein ID: EAL04108.1; 
Burkholderia cenocepacia mc0-3 Gene ID: 6124318; Escherichia coli K12 MG1655 GeneID: 947415 
PDB#1B57; Escherichia coli AgaY PDB#1GVF; Saccharomyces cerevisiae GeneID: 853805; 
Thermophilus aquaticus PDB#1RV8 Gene: AAF22441; Giardia lamblia PDB#2ISV; Treponema 
pallidum GeneID 2611197; Yersinia pestis GeneID 1176799; Mycoplasma genitalium GeneID: 
875427; Euglena gracilis Protein ID CAA61912; Clostridium difficile GeneID: 4914942. 
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deletions separate the two groups (Sánchez et al. 2002).  It has been noted that Group A contains 

mostly enzymes that function in glycolysis and gluconeogenesis; while group B is more 

heterogeneous and has aldolases with diverse metabolic roles and substrate specificities (Sauve and 

Sygusch 2001b).  This will be explaied in more detail in section 1.3.3. 

1.2.3 Knock-out studies of Class II FBP aldolase 

Attempts to disrupt the Class II FBP aldolase genes from Mycobacterium tuberculosis, 

Escherichia coli, Streptomyces galbus, Bacillus subtilis, Pseudomonas aeruginosa and Candida 

albicans by insertion or deletion mutagenesis have been unsuccessful, thereby suggesting that the 

Class II FBP aldolases are essential for the viability of these organisms (Rodaki et al. 2006; Gerdes et 

al. 2003; Jacobs et al. 2003; Kobayashi et al. 2003; Sassetti et al. 2003; Giaever et al. 2002; Sassetti 

et al. 2001; Wehmeier 2001).  A study of RNA interference/RNA silencing in Giardia lamblia found 

no viable organism when the Class II FBP aldolase was targeted (Galkin et al. 2007).  The gene was 

also part of the essential genes of a minimal bacterium genetically derived from Mycoplasma 

genitalium (Glass et al. 2006).  The failure to create a viable knock-out mutation is, however, not a 

proof that the Class II FBP is essential, as it could instead be due to technical problems.  A study 

where this gene would be introduced on a plasmid, and the subsequent knock-out of the genomic 

copy of the Class II FBP aldolase would prove that the gene is essential, if the plasmid cannot be 

cured from the knock-out organism.  Such a study has to our knowledge not been performed with the 

Class II FBP aldolase. 

It is interesting that in E. coli the Class II FBP aldolase is apparently essential, since this 

organism also possesses a Class I FBP aldolase (Thomson et al. 1998).  Studies have shown that the 

Class II FBP aldolase in E. coli is constitutively expressed while the Class I FBP aldolase gene is 

only expressed in the presence of gluconeogenic substrates (Scamuffa and Caprioli 1980; Stribling 
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and Perham 1973).  Thus, the organism is still viable when its Class I FBP aldolase gene is disrupted 

(Gerdes et al. 2003).     M. tuberculosis also possess a Class I FBP aldolase which has been purified 

previously (Bai et al. 1982; 1974), but it is not yet known if that gene is essential for the viability of 

the organism.  There is also no gene in the M. tuberculosis genome that shares sequence similarity to 

known Class I FBP aldolase (Camus et al. 2002; Cole et al. 1998).   

Only two studies of transposon insertion have described the Class II FBP aldolase gene as “non-

essential”: those done with Haemophilus influenzae and Helicobacter pylori (Salama et al. 2004; 

Akerley et al. 2002).  However, details of the exact location of the insertion in the fba gene were not 

made available by the authors; there was only mention that there was a single “hit” obtained in the   

H. pylori aldolase gene.  It is therefore possible that the transposon insertion did not completely 

inactivate the enzyme in those cases, as it is known that some essential genes tolerate insertions in 

specific areas (Gerdes et al. 2003), for example near the C-terminus of the protein.   

1.2.4 Why is FBP aldolase essential? – Glucose metabolism review 

Several studies have focused on mutant bacterial strains with low Class II FBP aldolase activity 

that is due to heat instability of the aldolase, or other unidentified reasons.  The consequences of this 

bottleneck on metabolic processes were analyzed.  To illustrate the interpretation of the results of 

these investigations, a metabolic map showing the different pathways for glucose metabolism in 

bacteria is presented below (Figure 1.5). This figure is adapted from a multi-genome comparisons 

study that has shown that the glycolysis pathway has high plasticity and versatility in lower 

organisms (Dandekar et al. 1999).  The standard glycolysis, or Embden-Meyerhof-Parnas (EMP) 

pathway presented in Figure 1.2 is the common glucose degradation route, but other methods of 

glucose degradation such as the Entner-Doudoroff (ED) pathway can be used by prokaryotes as an 

alternative to classical glycolysis, for example in Pseudomonas species (Conway 1992; Lessie and 
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Phibbs 1984).  In addition, there are alternate routes and bypasses to the reactions of glycolysis for 

glucose degradation, for example the pentose phosphate pathway, or hexose monophosphate shunt 

(Figure 1.5).  Due to these alternate pathways, at least one in silico study concluded that the blocking 

of FBP aldolase as an antibiotic strategy may not be successful for some pathogens (Dandekar et al. 

1999).  However, the absence of a viable fba gene knock-out in several microorganisms (Section 

1.2.3) as well as the growth inhibition observed in the following studies of mutants with low FBP 

aldolase activity, both indicate that developing antimicrobials against Class II FBP aldolase may be a 

good strategy, particularly because some critical cell processes appear to be strongly regulated in 

function of the concentration of metabolites and flux in glycolysis, as will be described below. 

Analysis of the effect of low FBP aldolase activity on cell processes in the presence of glucogenic 

substrates (glucose, fructose, gluconate, ribose, etc.) showed growth inhibition and an accumulation 

of either FBP or triose phosphates (GAP and DHAP) in E. coli cells possessing heat-sensitive 

aldolase activity (Frey et al. 1975; Su et al. 1975; Bock and Neidhardt 1966a; 1966b), as well as in 

some yeast glucose-negative clones isolated from a mutagenized culture, which had lost over 95% of 

normal FBP aldolase activity (Lobo 1984).  In P. aeruginosa, a mutant strain named ALD1 isolated 

from a mutagenized culture, and possessing less than 4% of wild-type Class II FBP aldolase activity, 

grew in Luria-Bertani or glutamate minimal media on supplementation with fructose or mannitol, but 

did not grow well on fructose or mannitol alone, and did not grow at all on glucose, gluconate, 

glutamate, glycerol, succinate, or lactate (Banerjee et al. 1985).  High levels of triose phosphates were 

detected in the P. aeruginosa mutant ALD1 when grown on gluconate, which is consistent with the 

fact that the Entner-Doudoroff pathway is predominantly used in this organism.  It was also observed 

that FBP accumulated when the strain was grown on fructose or mannitol (Banerjee et al. 1987).   
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Figure 1.5 Pathways for glucose degradation 

The alternative routes that bypasses (top) or are different (bottom) from the standard glycolytic 
pathway (centre) found in various species are shown. Paths and species examples are shown on the 
extreme left.  The EC numbers given in the Entner-Doudoroff and Pentose phosphate pathways are 
representing the following enzymes: glucose 6-phosphate 1-dehydrogenase (EC 1.1.1.49), 6-
phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), 6-
phosphogluconate dehydratase (EC 4.2.1.12), 2-keto-3-deoxy-6-phosphogluconic aldolase (EC 
4.1.2.14), 2-keto-3-deoxy-gluconate aldolase (EC 4.1.2.20). G acid stands for glyceric acid, and the 
enzymes and metabolites of the standard pathway of glycolysis are presented in more details in Figure 
1.2.  Figure adapted from (Dandekar et al. 1999). 

 

The growth of mutant E. coli cells with heat-sensitive FBP aldolase activity has been shown to be 

blocked at non-permissive temperatures in the presence of glucogenic substrates, even when other 

carbon sources are present, because of the catabolite repression occuring on other pathways, where 

the presence of a utilizable carbon and energy source such as glucose severely inhibits the synthesis 

of new catabolic enzymes.  The mutant cells were able to grow on the non-glucogenic substrates such 
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as glycerol and succinate (and alcohol for yeast), but failed to grow in glycerol-containing minimal 

media in the presence of even trace amounts of glucose.  The depletion of ATP was ruled out to 

explain the growth inhibition effect in E. coli, however there is a 7- to 20-fold increase in the 

intracellular concentration of FBP upon shift to the non-permissive temperature when the cells are 

grown using glucose as the carbon source (Su et al. 1975; Bock and Neidhardt 1966b).  In one of the 

reports (Bock and Neidhardt 1966b), the authors even suggested that the growth of E. coli on 

succinate and glycerol could be made possible by the presence of a “biosynthetic” FBP aldolase, 

which turned out to be an accurate prediction, as a Class I FBP aldolase expression was later found to 

be induced in E. coli in conditions of gluconeogenesis, i.e. in pyruvate or lactate-grown cells 

(Stribling and Perham 1973).  The authors also acknowledged the possibility that the temperature-

sensitive aldolase could still have enough residual activity to allow some hexose and pentose 

synthesis and allow the cell to grow on glycerol and succinate, without causing the accumulation of 

FBP which they said was the compound responsible for the inhibition of the Entner-Doudoroff 

pathway and other cell processes (Bock and Neidhardt 1966b). 

The E. coli strains with a temperature-sensitive aldolase were found to immediately stop nucleic 

acid and phospholipid synthesis upon being shifted to the non-permissive temperature, but protein 

synthesis continued at a slower rate for a short period (Su et al. 1975; Bock and Neidhardt 1966a).  

The quick decline in stable RNA translation leads to cell growth inhibition (Singer et al. 1991a; 

Singer et al. 1991b).  Recent studies have shown that the accumulation of phosphorylated metabolites 

in E. coli cells affect the concentration of initiating nucleoside triphosphate (iNTP) and of the rRNA 

translation initiation factor guanosine 5’-diphosphate 3’-diphosphate (ppGpp), in turn inhibiting the 

initiation of rRNA translation and thus stopping the production of ribosomes at the source, a 

phenomenon termed the stringent response (Schneider and Gourse 2003b; 2003a).  This effect has 

been observed in E. coli when the carbon source is shifted from glucose to lactate (Winslow 1971), 
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and is similar to what is observed during starvation for amino acids (Neidhardt and Magasanik 1960).  

The cells can later resume growth when transferred into a medium without glucogenic substrates or 

when returned to a permissive temperature, in the case of FBP aldolase temperature sensitive (ts) 

strains.  Two temperature-sensitive Class II FBP aldolase Bacillus subtilis mutants with a severe 

deficiency in RNA synthesis at non-permissive temperatures, were also isolated (Mitchell et al. 1992; 

Trach et al. 1988).  In yeast, a knock-out of the fba gene resulted in a strain able to grow only in 

media where metabolites on both sides of the glycolysis block are present, for example media 

contaning galactose and lactate (Schwelberger et al. 1989). 

Revertants of the E. coli FBP aldolase (ts) strain have been obtained (Schreyer and Bock 1973), 

and genetic analysis showed that the mutation of other enzymes prevents the accumulation of 

phosphorylated metabolites and can restore growth on glucogenic substrates.  Large numbers of 

spontaneous revertants with mutations affecting 6-phosphogluconate dehydrogenase activity (pentose 

phosphate pathway, EC 1.1.1.44, see Figure 1.5), or fba- gnd- mutants, could be easily isolated by 

growth on gluconate at non-permissive temperature.  An additional mutation in these fba- gnd- strains 

in phosphoglucose isomerase (second enzyme in glycolysis, see Figure 1.2) could also partially 

restore the growth on glucose at non-permissive temperatures.  The fba- gnd- pgi- mutants were found 

to degrade glucose predominantly via the Entner-Doudoroff pathway, but their growth on fructose 

was still strictly temperature-sensitive.  The authors reported an important correlation between the 

temperature used for growth and the number of revertants obtained; it thus appears that the amount of 

residual activity of the FBP aldolase is critical for the revertant strains to arise without any 

mutagenesis and enrichment procedure.  Spontaneous revertants were also obtained in yeast FBP 

aldolase (ts) mutants grown on glucose and a P. aeruginosa aldolase mutant grown on gluconate, but 

most of the revertants had regained the wild-type aldolase activity level (Banerjee et al. 1985; Lobo 

1984).   
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In all the Class II FBP aldolase deficient organisms studied, it was noted that the growth 

inhibition occurred only when the mutants had less than 5% of the wild-type strain FBP aldolase 

activity.  One of the E. coli fba- revertants obtained by Bock and Neidhart had 5% of the wild-type 

activity, as opposed to less than 2% for the temperature sensitive strain h8 (Bock and Neidhardt 

1966a).  Another E. coli FBP aldolase temperature sensitive strain named ts8 could grow at 30 °C 

with only 10% of the wild-type FBP aldolase activity level, but not at 42 °C where the aldolase 

activity was virtually undetectable (less than 0.01% of wild-type activity level) (Singer et al. 1991a).  

In yeast, the fba mutants had 1 to 2% of the FBP cleavage and 2 to 5% of the triose phosphate 

condensation catalytic activity registered in the wild-type strain (Lobo 1984).  The growth of a strain 

of Candida albicans with an engineered Class II FBP aldolase expression system was found to be 

significantly inhibited only when the quantity of active aldolase was less than 15% of that of the wild-

type organism, and near-complete growth inhibition occurred only when that quantity dropped to 

below 4% of wild-type levels (Rodaki et al. 2006).  This same team also tested the virulence of the 

engineered strain in mice, and found that the fungal burdens were at least 2 orders of magnitude lower 

for the mice infected with the conditional mutants, but these strains still established an infection in the 

mice.  The mutant’s virulence is thus partially but not completely attenuated.  The authors of this 

study concluded that the effect of Class II FBP aldolase depletion appears static rather than cidal, and 

they did not find a synergistic effect of the aldolase depletion mutation with an azole antifungal.  

They also conclude that a drug inhibiting the aldolase activity could be protective but likely not cure 

systemically infected patients (Rodaki et al. 2006).  One important caveat in this study is that they 

could not measure the actual level of FBP aldolase expression in the mutated C. albicans strain 

infecting the mice: it could have been close to 5% of the wild-type levels, thus allowing the mutant 

strain to grow.  The authors themselves state that, although their results suggest the Class II FBP 

aldolase is not an attractive drug target, it may be because the activity is depleted slowly when 
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transcription is turned off.  In other words, there may still be significant FBP aldolase activity under 

the conditions they employed.  Thus, they did not rule out the aldolase as a good drug target in this 

fungus, since the transcriptional control of the FBP aldolase gene does not have the immediate and 

stringent effect that a potent inhibitor would have on the FBP aldolase activity level in the cell.  

1.2.5 Possible alternative roles of FBP aldolases and their potential as vaccine 

targets 

Some studies have indicated that Class II FBP aldolases could be a good vaccine target.  A team 

from the University of Guelph successfully immunized chickens against Clostridium perfrigens using 

recombinant His-tagged Class II FBA as a vaccine (Kulkarni et al. 2007).  In the mammalian immune 

response to Candida albicans infection, Class II FBP aldolase was identified as one of the antigens 

that induce protective IgG2a antibody isotype in the sera from vaccinated animals (Fernandez-Arenas 

et al. 2004a; 2004b). Glycolytic enzymes associated with the cell surface of Streptococcus 

pneumoniae, one of which being the Class II FBP aldolase, were found to be antigenic in humans and 

to elicit protective immune response in the mouse (Ling et al. 2004).  In Paracoccidioides 

brasiliensis, a fungal pathogen of humans, a Class II FBP aldolase was identified as an antigen in sera 

of patients with paracoccidioidomycosis (PCM) (da Fonseca et al. 2001).  FBA Class II was also 

identified as a major protein released from Streptococcus agalactiae, and a possible candidate for use 

as a vaccine antigen (Fluegge et al. 2004).  In Giardia lamblia, a protozoan causing diarrhea, the 

Class II FBP aldolase was one of 16 identified immunoreactive proteins (Palm et al. 2003).  Some 

Class I FBP aldolases from parasitic worms and nematodes also attracted interest for their vaccine 

target potential (Marques et al. 2008; McCarthy et al. 2002). 

The Class II FBP aldolase was shown to be well expressed in cells.  Studies on E. coli, yeast and 

C. albicans showed that the growth of mutated cells still occurs when the FBP aldolase activity is 
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only 5% of the wild-type levels (see previous section).  Class II FBP aldolase is in fact one of the 

most abundant soluble proteins in microbial cells, with an estimated 47,000 protein copies per cell in 

E. coli (Ishihama et al. 2008).  It comprises 2% of all soluble proteins that have a pI between 4 and 7 

in C. albicans (Yin et al. 2004).  The protein was also found in the cell wall of S. pneumoniae 

(Portnoi et al. 2006) and in culture filtrates of M. tuberculosis (Rosenkrands et al. 2002).  The fact 

that the enzyme is present in a 20-fold excess based on the growth requirements for its catalytic 

activity suggests that the protein may have another role in the cell in addition to that catalytic activity.  

On the other hand, it could be over-expressed simply to ensure it does not become a rate-limiting step 

in glycolysis, as suggested by some researchers (Schwelberger et al. 1989). 

It is possible that the Class II aldolases have other roles in the cell aside from the reaction they 

catalyze (Carneiro et al. 2005).  The participation of the enzyme in multi-protein complexes could 

also have been one influence in the evolutionary selection in favor of Class I aldolase in higher 

organisms, as enzymes of this Class have been shown to interact with F-actin and are localized along 

stress fibers in fibroblasts.  It is therefore possible that Class I FBP aldolases play a structural role in 

the cytoskeleton in mammals in addition to their catalytic role in central metabolism (Wang et al. 

1997).  It is also known that the structural association of vertebrate FBP aldolases with other enzymes 

affect their catalytic efficiency (Pezza et al. 2003).  In contrast, the Class II FBP aldolase does not 

appear to be involved in an essential multi-protein complex, as the yeast Class II aldolase can be 

replaced by the fruit fly Class I enzyme with no apparent ill effect (Boles and Zimmermann 1993).  It 

would be interesting to see if a similar switch of a Class II aldolase in a human pathogen would affect 

its pathogenicity or survival in the host, since this cytoplasmic enzyme is immunoreactive.  However 

at this time there is no evidence that Class II FBP aldolases have other roles besides their involvement 

in central metabolism. 
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1.2.6 Summary: Justification for the choice of Class II aldolase as drug target 

We propose the glycolysis/gluconeogenesis pathway, at the core of all cells’ central metabolism, 

may be a drug target.  In this pathway, we are targeting an essential metabolic enzyme, Class II FBP 

aldolase, which is not found in eukaryotic cells.  We propose that the blockage of this central pathway 

will inhibit the growth of the cell by shutting down its core metabolism and all synthetic pathways 

due to the accumulation of phosphorylated metabolites (Schneider and Gourse 2003b; Su et al. 1975; 

Bock and Neidhardt 1966b).  This will result in the inhibition of ribosomal RNA transcription and 

effectively prevent ribosomes from being synthesized.  An FBP aldolase inhibitor would be relevant 

especially in the case of human pathogens that obtain their carbon and energy requirements from 

nutrients in the human blood, where glucose is the principal energy source (ex. H. pylori (Mendz et 

al. 1994)).  It is however likely that the inhibition of the Class II FBP aldolase will have a static rather 

than cidal effect on microorganisms, and that an effective eradication of the target pathogens may 

require other complementary drugs, for example RNA translation inhibitors.  It is also possible that a 

FBP inhibitor may be ineffective in the case of organisms which (I) have access to other carbon 

sources providing metabolites for both sides of the FBP aldolase reaction, (II) do not experience 

strong catabolic repression, (III) do not exhibit stringent control over RNA synthesis when FBP or 

triose phosphates accumulate.  In other words, as is the case with most drugs, in vivo testing will be 

necessary to assess the usefulness of FBP aldolase inhibitors for each target pathogen.  On the 

positive side, a Class II FBP aldolase inhibitor would have great potential as a broad spectrum 

antibiotic. 

1.3 Class II FBP aldolase structure and mechanism 

Detailed knowledge of the structure and mechanism of the target enzyme is essential in structure-

based drug design.  In this section, the structural properties that allow the Class II FBP aldolases to 
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specifically bind to their substrates and catalyze aldol cleavage and condensation reactions to yield 

products stereospecifically will be reviewed.  Several enzymes related to Class II FBP aldolases in 

terms of structure, mechanism or substrate specificity will also be briefly mentioned.  

1.3.1 Aldolase groups and DHAP-dependant aldolases 

The aldolases are classified into 5 groups regardless of mechanism but based on their substrate 

specificity:  (1) DHAP-dependent aldolases comprising the FBP aldolases, the tagatose 1,6-

bisphosphate (TBP) aldolases, the fuculose 1-phosphate aldolases (FucA), and the rhamnulose 1-

phosphate aldolases (RhuA);  (2) the pyruvate- or phosphoenol pyruvate-dependent aldolases such as 

N-acetylneuraminic acid aldolase and KDPG aldolase (EC 4.1.2.14, see Fig. 1.5); (3) transketolase 

and transaldolase, which are part of the pentose phosphate pathway and have a broad substrate 

specificity; (4) the 2-deoxy-D-ribose 5-phosphate (DERA) aldolase, which catalyses the condensation 

of acetaldehyde and GAP; and (5) glycine-dependant aldolases, for example the serine 

hydroxymethyltransferases and threonine aldolase (Fessner 2004; Seoane 2000; Takayama et al. 

1997).  Of particular interest are the four different DHAP-dependant aldolases.  Each generate one 

unique aldol condensation product whose stereochemistry at C-3 and C-4 are different, as shown in 

Figure 1.6 (Takayama et al. 1997). 

The four complementary DHAP-dependent aldolases have a high substrate specificity for DHAP, 

but a broad substrate specificity for the aldehyde acceptor in the aldol condensation reaction (Fessner 

et al. 1996).  Some aldehydes that can be substrates for the Class II FBP aldolase from E. coli in 

addition to GAP include chloroacetaldehyde and methylglyoxal (Henderson et al. 1994).   
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Figure 1.6  DHAP-dependant aldolases and their substrates 

See details in the text.  Figure adapted from (Takayama et al. 1997).  Illustration made with the 
program MDL ISIS Draw (MDL Information Systems). 
 

The Class II FBP and TBP aldolases are not evolutionarily related to the Class II FucA and 

RhuA, as they do not share the same structure. Both FBP and TBP aldolases have the TIM barrel fold, 

which will be described in the following section, whereas both FucA and RhuA exhibit a different 

alpha and beta (α/β) fold (PDB structures ID: 1DOS, 1GVF, 1FUA, and 1OJR, respectively (Kroemer 

et al. 2003; Hall et al. 2002; Blom et al. 1996; Dreyer and Schulz 1996).  It is relevant to note that 

TBP aldolases, FucA and RhuA are not present in mammals or plants.  The potential toxicity of a 

drug that mimics the DHAP structure would therefore be more likely to involve other DHAP-binding 

enzymes in higher organisms, such as the glycolytic enzymes Class I FBP aldolase and triose 

phosphate isomerase (Fig. 1.2), as well as glycerol-3-phosphate dehydrogenase, which is involved in 

lipid metabolism.  Even if the overall fold of FucA and RhuA is not related to that of FBP aldolase, 

the availability of the structural information on the active site of these other Class II DHAP-
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dependant aldolases can still be useful for inhibitor design, which will be discussed further in Chapter 

4.  

1.3.2 Industrial use of FBP aldolases 

Being able to catalyze stereospecific C-C bond formation, FBP aldolases have been used for the 

synthesis of aza sugars important in the pharmaceutical industry as glycoprocessing inhibitors (Wong 

et al. 1995).  It was suggested that the enzymes could also be useful for the production of C13-labelled 

sugars, deoxysugars, and high-carbon sugars, among many carbohydrate derivatives (Machajewski 

and Wong 2000).  There have been studies comparing the prokaryotic Class I enzymes to the 

mammalian Class I enzyme from Rabbit muscle, and it was found that the prokaryotic enzymes were 

more stable at high temperatures and in the presence of organic solvents, and had different 

specificities for the aldehyde used in the condensation reaction (Schoevaart et al. 2000).  There also 

have been suggestions that Class II enzymes could be better for industrial synthesis as they were 

shown to be more stable than the rabbit muscle enzyme in some cases (Von der Osten et al. 1989).   

The information obtained on the range of accepted substrates for industrial synthesis is useful in 

rational ligand design, because it gives an idea of which ligands are capable of accessing/binding the 

active site.  The consensus is that DHAP specificity is very strict; but DHA may also be used in the 

presence of arsenate, which mimics a phosphate ion (Schoevaart et al. 2001).  A similar dependence 

on DHAP and inability to use DHA is observed in Fuculose 1-phosphate, and was explained 

structurally in that case by the requirement for the presence of the phosphate group to pull the DHAP 

molecule “down” so that its two oxygen atoms would not bind the catalytic zinc ion too tightly 

(Joerger et al. 2000).  The aldehydes used in the condensation reaction for Class II aldolases are 

varied (Fessner and Walter 1997; Henderson et al. 1994): this gives an idea of potential steric clashes, 

which is helpful for ligand design. The absence of reaction with an alternate aldehyde substrate could 
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also be due to the displacement of the mobile loop, however, which doesn’t mean that the aldehyde 

has a low affinity for the active site.  Still, since the enzymes could potentially be useful for the 

pharmaceutical industry, it would be beneficial to investigate the stability and specificity of various 

Class II FBP aldolases. 

1.3.3 TIM barrel, or (βα)8-barrel, enzymes superfamily 

The Class I and Class II FBP aldolases form two separate families in the 21 TIM barrel 

superfamilies of enzymes identified by structure-based sequence alignments (Nagano et al. 2002).  

The TIM barrel, or (βα)8-barrel, structure (Figure 1.7) is one of the most common folds adopted by 

proteins, and is present in many enzymes involved in molecular or energy metabolism  (Ishihama et 

al. 2008; Gerstein and Levitt 1997).  A few important characteristics of the TIM barrel that are highly 

conserved across the different enzyme families: (1) the catalytically active residues are all located at 

the C-terminal ends of the β-strands and in the βα-loops.  The global dipolar electrostatic field along 

the barrel axis is believed to create a positive potential at the catalytic face, which is optimal for the 

binding of negatively charged metabolites.  (2) They often contain phosphate binding sites, as two-

thirds of all enzymes with this structure have a phosphorylated substrate or cofactor.  A structurally 

conserved phosphate-binding motif is present in some enzyme families, including both FBP aldolases 

families.  (3) They often contain metal ion binding sites, as about half of all TIM barrel enzymes use 

divalent metal ions for catalysis (see section 1.3.8) (Sterner and Hocker 2005; Nagano et al. 2002).  

Several of these TIM barrel families have been suggested to have evolved from a common ancestor 

based on these conserved features. 



Chapter 1 Introduction 

 24

 

Figure 1.7 TIM barrel structure 

The structure at left is that of the monomer of triose phosphate isomerase from chicken muscle (PDB 
ID: 1tim).  The numbering of the β-sheets (arrows) and α-helices (cylinders) is shown on the right.  
The illustration on the left was produced with PyMOL (DeLano Scientific LLC). 

  

Class II FBP and TBP aldolases are included in the same TIM barrel family, abbreviated as 

“ALD2” (Nagano et al. 2002).  The mechanisms for substrate binding and discrimination between the 

stereoisomers in FBP and TBP aldolases are not well understood (Zgiby et al. 2000), but the 

stereospecificity of the E. coli TBP aldolase, AgaY, has successfully been altered towards FBP 

catalysis by directed evolution (Williams et al. 2003).  The mutation of four amino acids in the 

evolved AgaY aldolase active site resulted in a 100-fold change in specificity for FBP over TBP.  The 

location of the mutations suggest that they affect the position of the bound GAP as well as the DHAP 

enediolate plane relative to the incoming GAP, which allows the condensation reaction to occur on 

the opposite face of this molecule.  It is not possible to distinguish TBP aldolases from FBP aldolases 

based on the amino acid sequence alone.  The Class II FBP aldolase from Thermus caldophilus was 

even reported to have dual stereoselectivity (Lee et al. 2006).   



Chapter 1 Introduction 

  25

1.3.4 Structure of Class II FBP aldolase 

The structures of Class II FBP aldolases are shown in Figure 1.8.  In addition to the core TIM 

barrel structure, there is a dimerization arm composed of two long antiparallel α helices (named α10 

and α11 in E. coli, or α8 and α8a in Thermus aquaticus) at the C-terminal end of the polypeptide 

chain.  Mutagenesis experiments have confirmed that the enzyme is a functional dimer, with amino 

acid residues from both subunits required at each active site (Cooper et al. 1996; Qamar et al. 1996).  

Some enzymes are tetramers, or rather “dimer of dimers”, as in the aldolases from T. aquaticus 

(Sauve and Sygusch 2001a) and T. caldophilus (Lee et al. 2006), as well as for the TBP aldolase from 

E. coli (Hall et al. 2002).  In the T. aquaticus tetramer, the interdimer interface was found to be three 

times smaller than the intradimer interface (Izard and Sygusch 2004).  Other Class II FBP aldolases 

have also been determined by gel filtration to be either dimers or tetramers (Pelzer-Reith et al. 1994; 

Hill et al. 1976; Harris et al. 1969; Willard and Gibbs 1968a).  An octameric Class II FBP aldolase 

was reported in Synechocystis sp. PCC6803, a cyanobacterium (Nakahara et al. 2003). 

Various divalent metals such as Zn2+, Co2+, Fe2+, and to a lesser extent Mn2+ and Ni2+, have been 

shown to enable catalysis (Kobes et al. 1969).  Some aldolase crystal structures have also been 

obtained with non-native metals such as cadmium (Hall et al. 2003) and yttrium (Izard and Sygusch 

2004).  Only one divalent ion per subunit is required for catalysis, but crystal structures of the E. coli 

and T. aquaticus aldolases have shown two mutually exclusive binding sites for this metal, as seen in 

Figure 1.9.  One site is buried, and the other one is solvent-exposed, and the latter was determined to 

be the catalytically active metal position.  The rotation of two histidine side-chains (His110 and His264 

in E. coli) allows the metal to move between the two positions, which are 3.2 Ǻ apart in the Zn2+-

dependant E. coli FBP aldolase (Blom et al. 1996) and 1.85 Ǻ apart in the Co2+ -dependant                

T. aquaticus FBP aldolase (Izard and Sygusch 2004).  The metal movement between the two sites is 

thought to be triggered by substrate binding.    
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Figure 1.8 Structures of Class II FBP aldolases 

In panel A, the E. coli dimeric aldolase (PDB ID: 1B57) is shown with the core TIM barrel of each 
subunit colored in green and cyan, respectively, and the active site zinc ions shown as pink spheres.  
The dimerization arms comprising the antiparallel α-helices 10 and 11 of each subunit are shown in 
brown and violet, respectively.  In panel B, the Thermus caldophilus tetrameric aldolase (PDB ID: 
2FJK) is shown with the four subunits positioned to highlight the “dimer of dimers” organization.  
One dimer is shown in green and cyan, and the other (perpendicular to the first dimer) is shown in 
yellow and pink.  The illustrations were produced with PyMOL (DeLano Scientific LLC). 
 
 
 

In addition to the catalytic metal ion, other metals have been identified in the E. coli crystal 

structures.  A structural Zn2+ ion is found in the E. coli aldolase active site in the presence of the 

substrate analogue phosphoglycolohydroxamate (PGH), and a binding site for a monovalent cation 

(K+ or NH4
+) is also identified in some structures (Figure 1.9) (Hall et al. 2003).   

There are two mobile loops in the active site of FBP aldolases that undergo a large 

conformational change upon ligand binding: these are the loops β5-α7 and β6-α8 in E. coli, which 

correspond to the residues 134-152 and 175-190 respectively in the T. aquaticus aldolase (Zgiby et al. 
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2002).  The closure of these loops over the active site is coordinated, and the “closed” conformation 

required for catalysis has been suggested to be stabilized by the presence of the substrate phosphate 

moiety (Izard and Sygusch 2004).  The loops and residues that participate in catalysis are identified in 

a sequence alignment of the E. coli and T. aquaticus FBP aldolases and highlighted in the E. coli 

enzyme structure (Figures 1.10 and 1.11). 
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Figure 1.9 Stereo image of the E. coli Class II FBP aldolase active site metals 

Panel A: The metal binding sites found in three E. coli Class II FBP aldolase structures (PDB IDs 
1DOS, 1ZEN, and 1B57) are shown.  The structures are overlaid, with the N, O and P atoms coloured 
cyan, red and purple, respectively.  In the 1DOS structure, the mutually exclusive Zns and Znb are 
shown as yellow spheres and the C atoms of the ligands are also shown in yellow.  In the 1ZEN 
structure, M1, M2 and C atoms are shown in green; M1 and M2 were identified as Zn2+ (centre, 
equivalent to Znb) and a monovalent cation such as K+, or possibly NH4

+ (lower left).  In the 1B57 
structure where the enediolate analogue Phosphoglycolohydroxamate (PGH) is bound in the active 
site, the catalytic (Cat) and structural (Struct) Zn2+ and ligands are shown in blue and the activating 
Na+ is in cyan. The Figure was published by (Hall et al. 2003), © 2003 International Union of 
Crystallography (http://journals.iucr.org/).  Reproduced with permission.  Panel B: The 
structures of the substrate DHAP, and of the inhibitor and reaction intermediate analogue PGH. 

 

http://journals.iucr.org/
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Figure 1.10 Comparison of structural features of Class II FBP aldolases 

The sequences of the T. aquaticus and E. coli FBP aldolases (GeneID: AAF22441 and 947415, 
respectively) as well as the associated Protein Data Bank secondary structures 1RV8 and 1B57, are 
presented as indicated.  The conserved residues are shaded in blue.  The α-helices (red cylinders) and 
β-strands (green arrows) are identified following the numbering proposed for the E. coli enzyme 
(Cooper et al. 1996).  The thick dashed blue lines correspond to the sections of missing electron 
density in the crystal structures.  The mobile loops are indicated by dashed boxes around the 
sequences.  The filled circles (●) indicate the catalytic divalent ion ligands (for the buried and 
exposed positions); the hollow circles (○) indicate the structural Zn2+ ligands in the E. coli enzyme 
structure (see Figure 1.9); the triangles (▲) indicate the residues involved in catalysis as characterized 
in the E. coli enzyme, and the squares (■) indicate the residues involved in substrate binding.  The 
hollow squares (□) correspond to the substrate binding residues contributing to the active site of the 
adjacent subunit of the functional dimer.  Note that the N-terminal methionine is absent from the 
mature E. coli FBP aldolase, which is why the sequence numbering starts with zero (0) in order to be 
consistent with the numbering used in the literature and in PDB sequences.  The alignment was done 
using the ClustalW program (Larkin et al. 2007) and the graphic representation was done with 
Jalview (Clamp et al. 2004).   
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Figure 1.11 E. coli Class II FBP aldolase active site 

The image is an enlarged view of the active site, looking down from the C-terminal end of the β 
sheets of the TIM barrel core.  The two subunits of the dimeric enzyme are represented in cyan and 
green, with only a portion of the dimerization arm of the green subunit being visible.  The catalytic 
and structural zinc ions are shown as dark grey spheres, with their amino acid ligands shown as lines.  
The phosphoglycolohydroxamate (PGH) inhibitor bound to the catalytic zinc ion is also shown in 
stick figure (carbons in cyan, nitrogen in blue, oxygens in red, phosphorus in orange; see structure in 
Fig. 1.9 B).  The β5-α7 mobile loop backbone is shown in yellow, with the electron density missing 
between the residues Glu182 (in red) and Leu195 (far left, in yellow).  The catalytic residue Asp109 is 
shown in dark blue, and the adjacent subunit residues Lys325 and Arg331 are shown as green sticks.  
Note that the Glu182 and Arg331 functional groups have an ionic interaction in this crystal structure 
(shown as black dots). The figure was made with PyMOL (DeLano Scientific LLC) using the 
coordinates of the PDB structure 1B57. 
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1.3.5 Class II FBP aldolase mechanism 

Aldol cleavage and aldol condensation occur through the formation of a carbanion by cleavage of 

a C-C or C-H bond.  The base-catalyzed cleavage of these stable bonds is facilitated by stabilization 

of the resulting negative charge by the presence of the electron-withdrawing α-carbonyl group.  The 

C-C-heteroatom system acquires a planar configuration which allows resonance stabilization of the 

negative charge by the formation of an enediolate.  Class II aldolases further stabilize the enediolate 

by neutralizing its negative charge through bidentate coordination with a metal ion (Voet and Voet 

2004). 

The identities of the amino acids that participate in catalytic mechanism of the Class II FBP 

aldolase from E. coli have been elucidated mostly by the group of Dr. Alan Berry (U.K.) (Hall et al. 

2003; Williams et al. 2003; Hall et al. 2002; Zgiby et al. 2002; Zgiby et al. 2000; Hall et al. 1999; 

Plater et al. 1999; Cooper et al. 1996; Qamar et al. 1996; Berry and Marshall 1993).  The reaction 

mechanism proposed by this group is presented in Figure 1.12 (the amino acid residues that 

participate in catalysis are also shown in Figures 1.10 and 1.11).  The enzyme follows an ordered 

mechanism (Hill et al. 1976; Rose et al. 1965) in the condensation reaction, with DHAP binding first 

to the active site, triggering a conformational change that brings the catalytic divalent metal from a 

buried position to a solvent-exposed position (Zns site, Figure 1.9).  DHAP forms a bidentate ligand 

to the divalent metal in this complex.  The divalent metal acts as an electron sink, facilitating the      

1-proS hydrogen abstraction (Rose and Rieder 1958) by Glu182, a residue located on the β5-α7 large 

mobile loop, thus stabilizing the resulting enediolate intermediate.  The second substrate, GAP, then 

binds to the active site and its carbonyl function is attacked by the enediolate carbanion, forming a 

new C-C bond between the two trioses.  The side chain of the residue Asp109 simultaneously 

protonates the GAP carbonyl to form an alcohol functional group, resulting in an enzyme-FBP 

complex.  The product FBP is then released from the active site in the final step.  All steps are fully 
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reversible.  In the cleavage direction, GAP is the first product to leave the active site in an ordered 

mechanism.  
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Figure 1.12 Proposed mechanism of the E. coli Class II FBP aldolase 

The mechanism is shown in the condensation reaction direction, and all steps are fully reversible.  
The nomenclature for numbering the carbons of the substrates is as indicated on the left.  See details 
in the text.  Figure adapted from (Zgiby et al. 2002). Illustration made with the program MDL ISIS 
Draw (MDL Information Systems). 
 

 

The zinc ligands in the proposed mechanism have been identified beyond any doubt after 

obtaining crystal structures of the enzyme with and without a substrate analogue 

(phosphoglycolohydroxamate, or PGH, see Figure 1.9), but E. coli enzyme mutants had also been 

produced earlier to identify some of these ligands.  In particular, the mutant H110A had no detectable 



Chapter 1 Introduction 

  33

activity, and had a zinc content of ~0.15 per dimer, as opposed to ~2 for the wild-type (Berry and 

Marshall 1993).   

The residue Asp109 was shown to be involved in one of the two proton exchanges of the catalytic 

mechanism through kinetic analysis of E. coli mutants.  The mutant D109A had a kcat 3,000 times 

lower than the wild-type enzyme for FBP cleavage, and carbanion formation could not be measured 

in the cleavage reaction.  However, the rate of carbanion formation (production of the enediolate 

intermediate) was only ~8 times lower than the wild-type in the condensation direction, using DHAP 

as the substrate (Plater et al. 1999).  Furthermore, the same study showed via Fourier transform 

infrared spectroscopy (FTIR) experiments that the D109A mutant is unable to polarize the carbonyl 

group of GAP.  These results are consistent with the proposal that Asp109 deprotonates the C-4 

hydroxyl group of FBP in the cleavage direction (Figure 1.12).  Interestingly, in the enzyme-PGH 

structure, the carboxylate group of Asp109 has hydrogen bonds with the hydroxyl group of PGH (Hall 

et al. 1999), which indicates that this residue is in a position where it could interact with the C-1 

hydroxyl function of DHAP (or C-3 hydroxyl in FBP), in addition to the GAP carbonyl group (see the 

structures of DHAP and PGH in Figure 1.9B).  The equivalent conserved residue (Asp80) in the         

T. aquaticus FBP aldolase structure also can form an hydrogen bond with the C-3 hydroxyl group of 

FBP when this substrate is modeled into the active site, based on the position of two sulfate ions in 

the crystal structure that are located in the putative FBP phosphate groups binding sites (Izard and 

Sygusch 2004). 

The residues Arg331 and Glu182 are proposed to be involved in the binding of the GAP phosphate 

group and in proton exchange, respectively, based on kinetic analysis of enzyme mutants and on 

structural modeling (Zgiby et al. 2002; Qamar et al. 1996).  These two residues form an ionic bond in 

the E. coli structure  in complex with the substrate analogue PGH, which is the only crystal structure 

where Glu182 is visible, as it is part of the β5-α7 mobile loop that is disordered in all crystal structures 
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obtained to date.  There is no FBP aldolase structure available with an analogue of GAP or FBP 

bound in the active site, but the residue corresponding to Arg331 in T. aquaticus (Arg278 in that 

sequence) was shown to form an ionic bond to a sulfate ion positioned where the GAP phosphate 

group is believed to bind, adding some structural evidence to support the conclusions derived from 

kinetic analysis (Izard and Sygusch 2004).  This conserved arginine residue is located in the α10-

loop-α11 dimerization arm of the enzyme, and is part of the opposite subunit in the active dimer (see 

Figures 1.10 and 1.11).  The E. coli mutants R331A and R331E showed respectively ~600-fold and 

~1800-fold reductions in specificity (kcat/KM) for FBP compared to the wild-type enzyme, but only 

have ~8-fold reductions in specificity for DHAP based on the detection of carbanion formation from 

these substrates.  The product inhibition by GAP during FBP cleavage was also significantly 

decreased for the mutant R331A compared to the wild-type, clearly pointing towards an interaction of 

Arg331 with the FBP C-6 (or GAP) phosphate group (Qamar et al. 1996).  The ionic bond between 

Arg331 and Glu182 in the crystal structure is thus thought to be a crystallization artifact (Zgiby et al. 

2002). 

The residue Glu182 was mutated to an alanine, and the resulting mutant had a kcat 300 times lower 

and a KM 10 times lower than the wild-type enzyme in the FBP cleavage reaction, and an apparent kcat 

~60 fold lower than the wild-type enzyme for carbanion formation from DHAP.  The kinetic analysis 

of this mutant suggests that it is responsible for the 1-proS proton abstraction from DHAP in the 

condensation reaction, and protonation of the carbanion in the cleavage reaction (Zgiby et al. 2002).  

The same study used a deuterium-labeled substrate, namely [1(S)-2H]DHAP, to show via kinetic 

isotope effect that proton abstraction from DHAP was the rate-limiting catalytic step in the E182A 

mutant, but not in the wild-type enzyme.  It is relevant to note that in the mechanism proposed by 

Berry and collaborators (Figure 1.13), the Asp109 and Glu182 are not restored to their initial 

protonation state at the end of the catalytic cycle.  One interesting possibility, based on the enzyme-



Chapter 1 Introduction 

  35

PGH crystal structure as well as the kinetic results obtained by Berry’s group, would be that the 

Glu182 residue is critical for loop closure and active site structure, instead of directly being responsible 

for proton exchange.  In fact, the simultaneous mutation of four glycine residues located in the β5-α7 

loop containing Glu182 (G176A, G179A, G180A and G184A) results in a mutant which has similar 

kinetic parameters as the E182A mutant for FBP cleavage, but with an apparent kcat ~30 times lower 

than E182A for carbanion oxidation from DHAP (Zgiby et al. 2002).  Zgiby and collaborators 

mention that the pKa of the Glu182 side-chain should be perturbed from its normal value of ~4.3 and 

increased substantially to function as a proton abstractor in the condensation reaction, and they argue 

that loop closure may provide the necessary apolar environment for this to occur.  This is consistent 

with the kinetic parameters obtained with the “loop” mutant described above, as the removal of the 

glycine residues is expected to severely restrict the flexibility of the β5-α7 loop and therefore affect 

the position of Glu182 relative to the substrate, and likely hinder or prevent the formation of an apolar 

micro-environment for the Glu182 side-chain in the active site.  A crystal structure obtained with an 

FBP analogue, where the GAP binding site would be occupied and the mobile loop better defined, 

would nevertheless be helpful to confirm the role of Glu182 in the proposed mechanism presented in 

Figure 1.12.   

Several other acidic residues in the vicinity of the active site, which were potential proton donors 

or acceptors were mutated in the E. coli aldolase (namely, D144, D288, D290, D329, and E181), but 

these mutations had a less dramatic effect on catalysis (Zgiby et al. 2002; Plater et al. 1999).  

However, binding and catalysis were clearly affected by mutations of Asp109 (described above), 

Glu174, which is one of the buried zinc ion ligands in the absence of substrate (Znb site, Figure 1.10), 

and Asn286.  The mutant N286D had an 8,000-fold reduction in kcat for FBP cleavage compared to the 

wild-type enzyme, and carbanion formation from FBP or DHAP was equally affected (Plater et al. 

1999).  Product inhibition kinetics done with the mutant N286A, which had a ~200 fold higher kcat for 
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FBP cleavage than the mutant N286D, showed that this residue is important for binding DHAP (or 

the DHAP-end of FBP).  This residue has extensive contacts with the inhibitor PGH (and by analogy 

with DHAP) in the E. coli aldolase crystal structure 1B57, and is a ligand to a monovalent cation in 

the 1ZEN (ligand-free) crystal structure.  Plater and collaborators also suggested that it could have an 

electrostatic role in the mechanism such as the repulsion of the carbanion intermediate.  The mutation 

clearly affects catalysis more than binding, since the mutants’ KM for FBP and DHAP were only 

slightly increased (~10 fold or less).  The mutation of a nearby conserved aspartate residue (D288A) 

had only a small effect on catalysis in comparison, with a ~4 fold reduction in kcat for FBP cleavage 

compared to the wild-type enzyme.  The Asp288 residue was suggested to have a minor role in GAP 

binding (Plater et al. 1999), as shown in Figure 1.13.  The equivalent conserved residue Asp288 in the 

T. aquaticus FBP aldolase (Asp253 in that sequence) is also proposed to bind to the C-4 hydroxyl 

group of FBP based on molecular modeling experiments (Izard and Sygusch 2004).  

Other residues were identified as being important for substrate binding or enzyme structure by the 

kinetic analysis of various E. coli Class II FBP aldolase mutants.  Asn35,  Ser61, and Lys325 are all part 

of the substrate-binding pocket according to a kinetic analysis of enzyme mutants (Zgiby et al. 2000) 

as well as the enzyme-PGH structure (Hall et al. 1999), as shown in Figure 1.13.  Lys325 interacts with 

the phosphate group of PGH (see Figure 1.11), but the mutant K325A had a similar substrate affinity 

for FBP and DHAP as the wild-type enzyme, with an apparent decrease in affinity for GAP.  The 

catalytic efficiency of this mutant was significantly decreased for both the condensation and cleavage 

reactions (7- to 18-fold) compared to the wild-type, and as a result it was proposed that this residue is 

critical for the positioning of other catalytic residues in the E. coli FBP aldolase (Zgiby et al. 2000).  

Asn35 is next to the catalytic residue Asp109 and near the nitrogen atom of PGH (C-1 of DHAP), and 

product inhibition assays done with the mutant N35A which has only 1.5% of the catalytic activity of 
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Figure 1.13 Putative binding groove for the substrate GAP in the E. coli FBP aldolase 

The solvent accessible surface is shown in inset, and the main figure highlights the GAP binding 
surface, omitting the surface of the loop residues.  The figure was done with PyMOL (DeLano 
Scientific LLC) using the coordinates of the PDB structure 1B57, and the viewing angle is similar to 
that of Figure 1.11, with a slight clockwise rotation of the molecule.  The catalytic and structural Zn2+ 
ions are shown as dark grey spheres (top), and the Na+ cation is shown as a purple sphere (left).  The 
inhibitor PGH is shown in space-fill spheres (oxygen in red, phosphorus in orange, carbons in green 
and nitrogen in blue).  The β5-α7 mobile loop residues are shown in magenta with Glu181 (magenta) 
and Glu182 (red) represented as large sticks.  The putative GAP substrate-binding (and solvent-
accessible) surface, which includes residues from both of the dimer subunits as indicated,  is colored 
as follows: Arg331 in green, Ser61 in pink, Asp109 in dark blue, Asn35 in yellow, Asp288 in brown, Lys325 
in pale cyan, Gln292 in orange, Asp329 in deep purple, and the catalytic zinc ligand His110 in cyan.  In 
the presence of GAP, the loop residue Glu182 (centre) would be displaced to expose the guanidino 
group of Arg331 located in the red-egded hole in the protein surface around the side-chain of Glu182 
(the surface of Glu182 is omitted in the main Figure) (Zgiby et al. 2002).   
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the wild-type enzyme, showed that it is involved in binding both DHAP and GAP.  The mutant S61A 

had a large increase in KM in both the FBP cleavage and condensation reactions, and product 

inhibition assays showed that it had a decreased affinity for GAP, but a similar affinity for DHAP 

than the wild-type enzyme, indicating that Ser61 is critical for GAP (or the C-4 to C-6 end of FBP) 

binding.  Ser61 is located between Asp109, Asn35 and Lys325 in the active site; in fact, these residues 

form a water-exposed groove covered by the β5-α7 mobile loop residues Glu181 and Glu182 

immediately next to PGH in the E. coli enzyme structure, as shown in Figure 1.13.  

It is relevant to note that almost all the residues proposed to be involved in metal binding, 

substrate binding, and catalysis in the E. coli aldolase are completely conserved across all Class II 

FBP aldolases (see Figures 1.10 and 1.20), except for Ser61, Glu181, Asp288, Lys325, and Arg331, which 

are strongly, but not completely, conserved.  Most of these residues are involved in GAP binding and 

are less conserved among the Type B aldolases (Figure 1.4).  The Type B group contains enzymes 

which have a more broad substrate specificity than the Type A enzymes, as mentioned previously 

(Section 1.2.2).      

According to the large and relatively open GAP (substrate) binding area of the enzyme structure 

presented in Figure 1.13, it seems like the furanose form of FBP which predominates in solution (see 

Figure 1.14) could also fit in the active site and undergo linearization there to allow catalysis to occur 

on the linearized, or keto form, of FBP.  The exact conformation(s) of FBP and DHAP that bind to 

the active site are relevant for inhibitor rational design.  The proton transfer that happens during the 

linearization/cyclization of FBP could also be involved in changing the initial or final protonation 

state of Asp109 and Glu182 for true completion of the catalytic cycle (Figure 1.12).  It is also possible 

that some of the mutants of active site residues that affect the kinetic parameters (for example, Lys325) 

could be also impaired in the “linearization” of FBP, if the enzyme can in fact catalyze this reaction.   
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Figure 1.14 Spontaneous cyclization of D-fructose-1,6-bisphosphate and hydration of 
dihydroxyacetone phosphate in solution 

Panel A: The FBP molecule exists as an equilibrium of three conformations: α-D-fructofuranose-1,6-
bisphosphate (on the left); linearized form (centre); and β-D-fructofuranose-1,6-bisphosphate (on the 
right).  The β anomer is favored over the α anomer as they exist in a 4:1 ratio, and only ~1.8% of the 
molecules are in the linear form at equilibrium at 25 °C .  The tautomerization rates at 25 °C are  k1 = 
5.3 ± 0.4 s-1; k-1 = 55 ± 6 s-1; k2 = 21.0 ± 1.5 s-1; and k-2 = 940 ± 75 s-1, and these rates were apparently 
not affected by pH in the range from 7 to 10 pH units and also not affected by the ionic strength of the 
solution or the presence of organic buffers.  Panel B:  DHAP exists in two forms in solution, carbonyl 
(left) and gem-diol hydrate (right), in proportions of 56 ± 2% and 44 ± 2% respectively at 25 °C.  The 
rate constants are k1 = 0.36 s-1 and k-1 = 0.45 s-1 for the hydration and dehydration reactions, 
respectively (Szwergold et al. 1995). 
 

 

There are several different reports regarding the anomeric specificities of the FBP aldolases.  The 

yeast aldolase was found to possess an anomerase activity, but not the Class I enzymes or the E. coli 

Class II enzyme, based on rapid quench kinetic experiments (Schray et al. 1975).  A more recent 

report stated that Class I aldolase catalyses the ring opening of the β anomer of FBP, and that only the 
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β anomer could bind productively to the muscle enzyme (Choi and Tolan 2004).  Another report 

based on 13C NMR spectra analysis also suggests that the keto (open-chain) form of FBP is the only 

one that binds to the active site and is used as a substrate by the E. coli Class II enzyme (Szwergold et 

al. 1995).  However, this conclusion was based on the detection of the polarization of the carbonyl 

bond of the substrate, and this study was published before the enzyme structure was determined, 

along with the discovery that a conformational change occurs upon substrate binding to bring the 

buried zinc ion to its catalytically active position where it can polarize the carbonyl from DHAP.  The 

same study concluded that the E. coli enzyme increased the enolization rate of DHAP by a factor of at 

least 103 relative to the uncatalyzed rate (Figure 1.14)  (Szwergold et al. 1995).  A recent crystal 

structure of the T. aquaticus FBP aldolase in the presence of ammonium sulfate has shown that there 

are two sulfate binding sites that are 10 Ǻ apart that correspond to the FBP phosphate binding sites 

(Figure 1.15).  These binding sites can accommodate the structure of the linearized form of the 

substrate FBP, but not the cyclic forms.  Considering that the spontaneous linearization rate of the 

predominant β-D-fructofuranose-1,6-bisphosphate is ~21 s-1 at 25 °C, the anomerase activity would be 

irrelevant for the catalytic rate of the aldolases that have a turnover number below this value for FBP 

cleavage, as long as they can initially bind to the cyclic forms of FBP.  Of all the Class II enzymes 

characterized to date, only the yeast FBP aldolase has a turnover number significantly higher than the 

spontaneous linearization rate, with an activity of ~100 s-1 at 30 °C (Belasco and Knowles 1983).  The 

number and identity of substrate conformation(s) that can bind to the active site of most Class II 

aldolases thus still remain unclear. 

1.3.6 Catalytic loops 

The active site of the Class II FBP aldolases includes two mobile loops that are expected to bring 

the catalytic zinc ion to a solvent-accessible position and close over the substrate during catalysis, as 
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shown in Figures 1.11, 1.13, and 1.15.  These loops form a large portion of the enzyme surface that is 

in contact with the substrate during catalysis (see Figure 1.13), and thus their structure and properties 

are very relevant for the rational design of ligands.  Such loops are common features in TIM barrel 

enzymes, and their functions in substrate binding and catalysis were extensively studied in several 

enzymes, in particular in triose phosphate isomerase itself (Aparicio et al. 2003; Williams and 

McDermott 1995).  It was also shown that loop movement can facilitate inhibitor binding in zinc-

dependent metallo β-lactamases  (Concha et al. 2000).  There are several general reasons for loop 

motion during enzymatic catalysis.  The movements may bring into position the amino acids 

participating in catalysis, as is proposed for the β5-α7 loop residue Glu182 in the E. coli aldolase 

(Zgiby et al. 2002).   Such movements may also exclude water molecules from the active site and 

create a hydrophobic environment in which the pKas of ionizable groups are altered, as is also 

proposed for the Glu182 residue carboxylate function.  The loops can also protect reactive 

intermediates, as is the case for triose phosphate isomerase (Pompliano et al. 1990).  It is possible that 

loop closure in the E. coli enzyme helps to prevent the DHAP carbanion from reacting with other 

substrates.  The ionic interaction between Glu182 and Arg331 may not be a crystallization artifact, but 

instead could be a way to keep the carbanion isolated from the environment until GAP displaces the 

Glu182 residue and the β5-α7 loop by binding to Arg331 in the condensation reaction (Figures 1.11 and 

1.13).   

The Class II FBP crystal structures provide clear indications of loop movements, and previous 

studies have confirmed this through comparisons of the E. coli enzyme structures with and without 

PGH bound in the active site (Zgiby et al. 2002).  The structures of apo- and substrate bound             

T. aquaticus fructose-1,6-bisphosphate aldolase have three regions of weaker electron density that 

show higher B-factors (see yellow and red colouring of the backbone in the structures shown in 

Figure 1.15).  The regions of missing electron density in the E. coli and T. aquaticus structures are 
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also indicated in dashed boxes around the amino acid sequences in Figure 1.10.  Izard and Sygusch 

(2004) argue that the closing and opening of the two active site loops has to be coordinated because 

of steric interference (Figure 1.15). 

What controls the loop movements?  Is it a natural motion of the enzyme, or are the movements 

influenced by the presence of substrate or inhibitor?  In the case of TIM, Williams and McDermott 

report that the loop movements are not ligand-gated, but a natural motion of the protein with a time 

scale similar to that of catalytic turnover (Williams and McDermott 1995).  However, for other 

enzymes such as metallo-β-lactamases, studies with tryptophan mutants showed that loops closed in 

presence of ligands (Garrity et al. 2004).  The E. coli Class II FBP aldolase was studied by liquid 

state NMR and the loop movements did not seem to be coordinated by the presence of DHAP, as the 

backbone motions in the ns time scale were not significantly different from those of the free enzyme.  

However, structural changes in the β5-α7 loop were detected upon DHAP binding as 10 assigned 

residues from this loop had chemical shift and peak intensity perturbations in their NMR spectra 

(Hilcenko 2003).  The enzyme movements in the presence of GAP were not studied.  There were 

limitations reported to doing liquid NMR studies even with a 900 MHz machine, because of the large 

size of the dimer (78 kDa) and the limited stability of the E. coli aldolase.  About 38% of the 

backbone resonances were successfully assigned in that study.  Some regions like the α10-α11 loop 

and α11 helix were not assigned, possibly because of flexibility (their dynamic behaviour seems to 

occur on ms time scale).  It was concluded that a full NMR assignment using the standard triple 

resonance strategy is not feasible on this protein (Hilcenko 2003).   

Tryptophan mutants were also constructed to detect movements induced by the presence of 

substrate in the E. coli Class II FBP aldolase. The native enzyme’s combined four tryptophans’ signal 

was shown to respond to DHAP binding at  10 °C  or lower  (but not at 20 °C).   Attempts  to  identify 
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Figure 1.15 Structure of the unligated T. aquaticus monomer and E. coli Class II FBP aldolase 
dimer colored according to B-factors 

The higher B factors are indicated by a more red colouring.  In the T. aquaticus aldolase (top), the 
sulfate ions are shown in red and orange, the Na+ cation is shown in purple, and the Co2+ ion is shown 
in pink.  In the E. coli aldolase structure (bottom), the two mutually exclusive Zn2+ positions are 
represented by green spheres.  The active site loops are identified with black (β5-α7 loop) and white 
(β6-α8 loop) arrows.  Note that a portion of the T. aquaticus β5-α7 loop is missing from the monomer 
structure. Figure done with PyMOL (DeLano Scientific LLC) using the coordinates of the PDB 
structures 1RV8a and 1DOS.   
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which tryptophan residue is responsible for the change in signal by mutating each residue were 

unsuccessful since the resultant enzymes were inactive (Hilcenko 2003).  However, detection of 

movements by introducing tryptophan residues in the loops of FBP aldolase has not been attempted. 

In summary, to date even though X-ray crystal structures suggest the possibility of loop 

movements upon substrate binding, this has not been confirmed using other techniques.  It is possible 

that the loop movements are part of the natural enzyme motions and not dependent on the presence of 

substrate.  It is therefore difficult to predict which structural characteristics of a novel ligand would be 

desirable in order to improve its binding to the active site through interactions with the mobile loops. 

1.4 Inhibitors of FBP aldolase  

In this thesis, the objective will be to gather as much structural and kinetic information as possible on 

Class II FBP aldolase in order to facilitate rational ligand design, which is a long-term goal of this 

multidisciplinary project.  In this section, the compounds that are already known to inhibit the Class I 

and Class II FBP aldolases will be described, along with the structural basis for the inhibition.  The 

inhibitors can generally be classified in two groups: the mechanism-based inactivators, and the 

substrate analogues.  This latter category of inhibitor is especially relevant to inform novel ligand 

design. 

1.4.1 Mechanism-based inactivators 

The yeast Class II FBP aldolase was discovered to be inhibited by chelating agents soon after it 

was isolated, which lead to the conclusion that this enzyme is metal-dependent (Warburg and 

Christian 1943).  Numerous chelating agents have since been used to inhibit the Class II enzyme, 

including EDTA, cysteine, o-phenanthroline, and pyrophosphate (Jagannathan et al. 1956).  The 

Class I enzymes can be inhibited in the presence of DHAP or FBP by sodium borohydride, which 
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irreversibly reduces the Schiff-base complex between the active site lysine and the substrate (Rutter 

1964).  These FBP aldolase inhibitors are of course not useful for medical treatment as they are not 

specific and can affect numerous other enzymes that are either metal-dependent, or form a Schiff-base 

intermediate. 

1.4.2 Substrate analogue inhibitors 

Several inhibitors that affect Class I FBP aldolases have been identified, and they are generally 

substrate analogues that are monophosphorylated or disphosphorylated, and that resemble the 

substrate DHAP or FBP.  A previous review of the inhibitors of the Class I FBP aldolase (Gefflaut et 

al. 1995) stated that the presence of a hydrogen bond donor at position 3 is critical for the inhibitor 

affinity for the active site for phosphorylated compounds.  Some other inhibitors are F1P and F6P, 

and some monophosphorylated alcohols with KI/KM ratios of ~50 to 500 for the Class I enzyme 

(Gefflaut et al. 1995).  The presence of a second phosphate group increases the affinity significantly 

for longer chain compounds that are closer in size to FBP.  Examples of potent inhibitors include 

hexitol-1,6-bisphosphate, D-arabinol-1,5-bisphosphate, 5-deoxy-FBP and D-glucitol-1,6-

bisphosphate with KI/KM values close or lower than 1.  The most potent Class I aldolase inhibitors 

described in that review were 2,6-naphthalenediol-bisphosphate derivatives (KI ~0.4 μM) (Gefflaut et 

al. 1995). 

1.4.3 Inhibitors with high affinity for Class I aldolases 

Recent studies have focused on Class I FBP aldolase inhibitors as this enzyme is a potential drug 

target for protozoan parasites such as Plasmodium falciparum (malaria), Leishmania mexicana 

(leishmaniasis), and the family Trypanosomatidae (sleeping sickness) (Azéma et al. 2006; Dax et al. 

2006).  Some Schiff-base forming inhibitors of the Class I protozoan enzymes that have minimal 
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effects on the human and rabbit Class I aldolases, are hydroxynaphthaldehyde phosphate derivatives, 

with inhibition constants as low as 24 nM for the T. brucei aldolase (Dax et al. 2006; Dax et al. 2005; 

Blonski et al. 1997).  Other reaction intermediates or substrate analogues which are also slow-binding 

inhibitors of the Class I FBP aldolases include β-dicarbonyl phosphoryated compounds (Blonski et al. 

1998).   

1.4.4 Inhibitors with high affinity for Class II aldolases 

Very few potent Class II FBP aldolase inhibitors are known.  The best known (and for more than 

30 years, it was the only one known) is PGH (see structure in Figure 1.9b), with a KI of 0.01 μM for 

the yeast aldolase.  It is not specific for Class II aldolase, however, since it has a KI of 1 μM for the 

rabbit muscle Class I aldolase, as well as a KI of 3 μM for the Rabbit muscle Triose phosphate 

isomerase (TIM) (Gavalda et al. 2005; Fonvielle et al. 2004; Lewis and Lowe 1973).  PGH is also a 

potent inhibitor of other enzymes utilizing DHAP such as methylglyoxal synthase, L-rhamnulose-1-

phosphate synthase, tagatose-bisphosphate aldolase, L-fuculose-1-phosphate aldolase, etc. (Kroemer 

et al. 2003; Hall et al. 2002; Marks et al. 2001; Fessner et al. 1996).  Two new derivatives of PGH 

shown in Figure 1.16, phosphoglycoloamidoxime (PGA) and phosphoglycolohydrazide (PGHz), are 

more specific for the Class II FBA versus the Class I enzyme (KI of 0.34-3.3 μM for Class II 

enzymes, versus KI of 370 μM (PGHz) or >1 mM (PGA) for the rabbit FBA) (Fonvielle et al. 2004).  

However, they are also good inhibitors of the rabbit TIM, with KI of 111 μM (PGHz) and 4.5 μM 

(PGA) (Gavalda et al. 2005), which makes these compounds likely toxic for humans.   

 

N-sulfonyl hydroxamate derivatives were recently synthesized and tested as inhibitors of the 

Class II FBP aldolase (Gavalda et al. 2005).  Two of these were competitive inhibitors specific for 

this enzyme (PGS1 and PGS2, Figure 1.16), as they were not significant inhibitors of the Class I 
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enzyme or TIM.  They had a KI of 350 and 100 μM, with the E. coli FBA, respectively.  The authors 

concluded that a phosphate group, as opposed to a phosphonate group, was essential for binding of 

the compounds to the FBA active site. 
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Figure 1.16 Class II FBP aldolase inhibitors 

See details in the text.  The PGH derivatives were synthesized and published in (Gavalda et al. 2005; 

Fonvielle et al. 2004). 

 

To conclude this section, there is still a need for new leads in order to produce a potent and 

specific inhibitor of Class II FBP aldolases, as there is no ligand with sufficiently high affinity (nM 

range) that is specific for these enzymes.  However, the recent synthesis of inhibitors that have a high 

affinity for the Class I T. brucei FBP aldolase, while not significantly inhibiting the human Class I 

enzyme, is proof that this goal is indeed achievable (Dax et al. 2006). 

 

1.5 Target organisms 

In order to test and improve the design of the first series of inhibitory compounds, the Class II 

FBP aldolases from six pathogenic organisms were cloned, purified and characterized.  The Class II 

FBP aldolases were chosen to cover most of the evolutionary branches of the Class II aldolase 
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phylogenetic tree (Figure 1.4), with emphasis on the most devastating human and plant pathogens.  

The aldolases from Mycobacterium tuberculosis, Pseudomonas aeruginosa, Bacillus cereus (which 

has an amino acid sequence identical to that of Bacillus anthracis), Helicobacter pylori, Magnaporthe 

grisea, Streptococcus pneumoniae, and Haemophilus influenzae were cloned into E. coli 

overexpression vectors for this project.  A sequence alignment of these aldolases, along with some of 

the best-characterized aldolases such as those from E. coli and S. cerevisiae, is presented below 

(Figure 1.17). 

 

 

 

 

(Following page) 

Figure 1.17 Sequence alignment of Class II FBP aldolases 

The secondary structure for the E. coli Class II FBP aldolase (PDB ID 1B57, sequence framed with 
red dashed line) is indicated below the alignment.  The secondary structure elements have been 
identified according to the E. coli aldolase structure reported by Cooper and collaborators (Cooper et 
al. 1996).  The alignment was done using the ClustalW program (Larkin et al. 2007) and the graphic 
representation was done with Jalview (Clamp et al. 2004).  The blue shading indicates >80%, >60%, 
and >40% conservation of residues within the alignment, with the darkest blue corresponding to the 
highest amino acid conservation. The source of the amino acid sequences were NCBI GeneBank and 
Protein Data Bank: Helicobacter pylori 26695 GeneID: 900140; Thermophilus aquaticus PDB#1RV8 
GeneID: AAF22441; Pseudomonas aeruginosa PAO1 GeneID: 880792; Burkholderia cenocepacia 
GeneID: 6124318; Giardia lamblia PDB#2ISV;  Treponema pallidum GeneID: 2611197; Clostridium 
difficile GeneID: 4914942; Escherichia coli  AgaY (TBP aldolase) PDB#1GVF; Yersinia pestis 
GeneID: 1176799; Bacillus cereus ATCC 10987 GeneID: 1207675; Streptococcus pneumoniae Gene 
ID: 933499; Mycoplasma genitalium Gene ID: 875427; Haemophilus influenzae Rd KW20 GeneID: 
949539; Escherichia coli K12 MG1655 GeneID: 947415 PDB#1B57; Candida albicans SC5314 
Protein ID: EAL04108.1; Saccharomyces cerevisiae GeneID: 853805; Magnaporthe grisea GeneID: 
2674368; Euglena gracilis Protein ID: CAA61912; Mycobacterium tuberculosis H37Rv GeneID: 
886474.  Note that the numbering of amino acids may not correspond to that used in PDB structures, 
as the N-terminal methionine is absent (cleaved off ) in some of these proteins. 
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Mycobacterium tuberculosis is a human pathogen that is the causative agent of TB.  According to 

the most recent statistics from the World Health Organization, tuberculosis is still one of the leading 

causes of death in developing countries and one of the most common infectious diseases in the world.  

Each year M. tuberculosis infects over 8 million people and causes more than 1.5 million deaths.  It 

has been estimated that 1/3 of the world’s population and 10% of Canadians have the latent form of 

tuberculosis and respiratory diseases in Canada (WHO 2004).  In the latent stage the bacteria are less 

susceptible to the normal line of drugs recommended for the treatment of TB, hence the long duration 

of TB chemotherapy (6 to 8 months), which often results in patients not adhering to the drug 

treatment program (O'Brien and Nunn 2001).   

In M. tuberculosis, which possesses both a Class I and a Class II FBP aldolase (see section 1.2.2), 

glucose is oxidized by EMP (94%) and the pentose phosphate pathway (6%) (Jayanthi Bai et al. 

1975).  The Class II enzyme has been shown to be constitutively expressed, and its expression is 

increased at low oxygenation level, a condition that is expected to occur during the bacteria’s latent 

infection stage of lung tissues (Rosenkrands et al. 2002).  These results are echoed by other studies 

showing that Class II FBP aldolase expression is up-regulated in response to stress in a variety of 

prokaryotes (Tomas et al. 2004; Wilkins et al. 2002; Marino et al. 2000; Schmid et al. 2000).  In 

contrast, the Class I enzyme activity was detected only in high-oxygenation growth conditions (Bai et 

al. 1974).  In addition, the absence of a Class II FBP aldolase gene (fba, Rv0363c) knock-out in a 

previous high-density mutagenesis study of M. tuberculosis (Sassetti et al. 2003; 2001) indicates that 

the gene could be essential for growth.  Mutants of Class I fba were not identified in that study since 

the gene encoding this enzyme has not been identified in the genome, i.e. no homologues of known 

Class I FBP aldolases are present. 

Pseudomonas aeruginosa is an opportunistic pathogen that infects immunocompromised 

individuals, including those undergoing cancer treatment, individuals with AIDS and those afflicted 
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with the genetic disease cystic fibrosis.  Cystic fibrosis is the most common genetic disease among 

Caucasians in Canada, and by adulthood 80% of the patients are infected with P. aeruginosa (Saiman 

and Siegel 2004).  In P. aeruginosa, mutations that reduce the FBP aldolase activity result in the lack 

of growth of the bacterium on minimal media with carbohydrate carbon sources (see section 1.2.4). 

Furthermore, the Class II FBP aldolase is essential for the synthesis of alginate, which is secreted by 

P. aeruginosa (Banerjee et al. 1985) and forms a coat that is partially responsible for bacterial 

resistance to therapy.  One aspect of the pathogenesis of chronic lung infection in CF is the ability of 

P. aeruginosa to grow as a biofilm, which reportedly increases bacterial resistance to phagocytic 

killing and antibiotics. Of two, independent, pathways to biofilm formation, one is alginate-dependent 

(Lyczak et al. 2002). A drug disrupting the formation of alginate may increase bacterial sensitivity to 

both antibiotics and the immune system. The FBP aldolase from P. aeruginosa was recently 

suggested to be a potential drug target (Sakharkar et al. 2004). 

Bacillus cereus and Bacillus anthracis both share the same Class II FBP aldolase and cause food 

poisoning and anthrax, respectively (Valjevac et al. 2005).  The lung form of anthrax is deadly and 

cases have occurred as a result of biological warfare.  Anthrax vaccines exist, but the low risk of the 

disease does not justify widespread vaccination protocols (Kaufmann 2007).  However, drug-resistant 

strains of B. anthracis continue to appear and drugs are required in case of an anthrax attack 

(Brouillard et al. 2006). 

Rice blast is the most devastating disease of rice and is caused by Magnaporthe grisea (also 

named Pyricularia grisea in its asexual state), an ascomycete fungus (Zhu et al. 2000).  It is one of 

the most studied among phytopathogenic fungi (Soanes et al. 2002), and also causes serious disease 

on other grasses including wheat and barley.  M. grisea is responsible for losses of 11-30% of the 

world’s rice harvest each year, and has a very significant economic impact in agriculture 
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(Talbot 2003).  Genetically resistant cultivars of rice generally become susceptible to blast after only 

a few growing seasons (Bonman et al. 1992), making the use and continued development of effective 

fungicides necessary.  The genome of M. grisea was sequenced recently (Dean et al. 2005), and the 

gene of its Class II FBP aldolase made publicly available, making it an attractive target for this 

project.  The M. grisea aldolase is closely related to the essential S. cerevisiae aldolase, according to 

amino acid sequence alignments (Figure 1.17).   

Streptococcus pneumoniae is the most common bacterial cause of community-acquired 

pneumonia, a leading cause of mortality and morbidity (Alpuche et al. 2007).  It is estimated that up 

to 1 million children die of pneumococcal disease annually in the world, and that pneumococci cause 

between 10% and 20% of all deaths among children in developing countries (Kaufmann 2007).  The 

increase in antimicrobial resistance has raised concerns about the efficacy of available therapies, and 

a call for new therapeutic agents. S. pneumoniae is one of the best examples of the global emergence 

of antibiotic resistance (Adam 2002).  Very recently, Song and co-workers (Song et al. 2005) in 

Korea reported an allelic replacement mutagenesis study which identified the Class II FBP aldolase 

gene as essential in S. pneumoniae, reinforcing our conviction that bacterial Class II FBP aldolases 

represent very attractive targets for totally new antibacterial agents. 

Haemophilus influenzae is one of the most frequent causes of community-acquired pneumonia, 

and there is an increasing prevalence of antibiotic resistance in this pathogen (Alpuche et al. 2007).  

H. influenzae type b (Hib) causes bacteremia and acute bacterial meningitis in infants and young 

children (under 5 years of age), and the vaccination is very effective in preventing the disease.  

However, non-typable H. influenzae causes ear infections and sinusitis in children, and pneumonia in 

children and adults.  The FBP aldolase from this organism is interesting because of its high sequence 

similarity to the Class II aldolases from E. coli and M. tuberculosis (Figure 1.17).  By comparing the 

properties of those three enzymes, it may be easier to pinpoint the regions of the enzyme that are 
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critical for its specificity (for substrate and inhibitors) and catalytic efficiency, as well as its 

oligomeric state. 

Helicobacter pylori is responsible for gastric ulcers and about half of all stomach cancers, and 

infects about 50% of the world’s population (Brown 2000).  The bacterial virulence factors promote 

the persistence of infection and chronic inflammation, as well as DNA damage which can lead to 

cancer in genetically susceptible hosts (McNamara and El-Omar 2008).  An antibiotic could be 

economically viable, as there are antibiotic-resistant strains (Jafri et al. 2008).   

Escherichia coli is a commensal bacterium which is part of the normal human intestinal 

microflora.  However, some strains are pathogenic due to their acquisition of virulence factors, and 

can cause diseases such as dysentery, meningitis, diarrhoea, haemolytic uremic syndrome, and 

urinary tract infections (Kaper et al. 2004).  The aldolase from E. coli will also be purified to have a 

better evaluation of our procedures compared with the available literature.  The E. coli enzyme is the 

best-characterized Class II aldolase (Section 1.3). 

1.6 Summary 

Drug resistance is on the rise worldwide for bacterial and fungal pathogens, and novel drugs and 

drug targets are urgently needed.  The metal-dependant Class II FBP aldolase has been shown to be 

an essential enzyme in prokaryotes under several growth conditions in vitro, and is a promising new 

target for rational drug design.  It has been observed that the FBP aldolase activity level must 

decrease below 5% of wild-type levels before the effects on growth start to be significant, which 

means that only a very potent inhibitor would have a protective effect for animals or plants against 

pathogenic organisms in vivo.  The active site of the E.coli Class II FBP aldolase has been extensively 

studied and the substrate binding pocket is well defined, excepted for the elements in the mobile loops 

that could be involved in substrate or inhibitor binding, which will require further investigation.  No 
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specific and high affinity (nM range) inhibitor of Class II FBP aldolases is currently available, but 

some research groups are making progresses in this direction.  The recent successful efforts towards 

the design of specific and potent inhibitors of the prokaryotic Schiff-base forming Class I FBP 

aldolase are encouraging, as they prove that it is possible to accurately target the active site of 

evolutionarily divergent aldolases even if they share the same substrate specificity.  The Class II 

aldolases from several devastating human and crop pathogens will thus be studied for this project. 

1.7 Project overview 

In order to maximize our chances of finding an effective inhibitor against the microbial, metal-

containing FBP aldolase (also called Class II FBP aldolase), we decided to study the enzymes from 

several microbes, including both human and plant pathogens.  This thesis describes the cloning of the 

genes encoding these enzymes, their expression, purification and characterization.  We took two 

approaches towards the production of a drug candidate against these enzymes.  First, we screened 

numerous known and commercially available metal-binding chemicals, to evaluate their effectiveness 

as Class II FBP aldolase inhibitors.  After identification of the most effective inhibitory chemicals, 

some derivatives were synthesized to increase their effectiveness, and the results of these efforts are 

also reported.  Our second approach was to get a better understanding of the enzyme active site and 

the structural changes it undergoes during catalysis, in order to facilitate drug design.  To achieve this 

we made mutants of some aldolases by introducing fluorescent probes, namely tryptophan residues, 

around the active site.  Probe fluorescence was then monitored during catalysis and/or inhibition.  We 

also attempted to test the microbial aldolases with different substrates to measure their specificity, or 

active site structures.  In addition to being useful for inhibitor synthesis, the information on the 

specificity of microbial aldolases may lead to the commercial use of these enzymes as tools in 

commercial organic synthesis due to their ability to catalyse stereospecific C-C bond formation.  In 
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conclusion, the results from these studies and recommendations for future directions towards the goal 

of novel drug discovery against Class II FBP aldolase are presented. 

1.8 Research objectives 

The purpose of this doctoral study is to put in place the foundation for a long-term study using the 

Class II FBP aldolases from several microorganisms as novel targets for inhibitor development.  The 

overall objectives of this thesis are to: 

1) Clone the genes encoding the Class II FBP aldolases from various pathogens and purify the 

over-expressed enzymes. 

2) Characterize the enzymes in terms of metal utilization, stability, kinetic parameters and their 

susceptibility to inhibition by a range of metal-chelating synthetic compounds. 

3) Gain a better understanding of the reaction mechanism of the Class II FBP aldolases. 

4) Investigate possible links between structural features such as mobile loops, enzyme kinetics 

and inhibition parameters. 

5) Make recommendations for the rational design of ligands that can inhibit the Class II 

aldolase, possibly leading to new antibacterial or antifungal agents. 

The results presented in this project will facilitate future in vitro studies with the targeted enzymes, 

and recommendations are also made for further inhibitor development.   

1.9 Outline of the thesis 

This thesis consists of six chapters, with a common focus of laying down the groundwork necessary 

to achieve rational inhibitor development.  The scope of each chapter is listed as follows:  
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 Chapter 1 reviews the previous progress in rational drug design, the reasons behind our 

choice of fructose 1,6-bisphosphate aldolase as a new drug target, and the work done by other groups 

to better understand the structure-function relationship of this enzyme.  Known inhibitors of this 

enzyme are also reviewed.  The hypothesis, objectives and the scope of the thesis are also given in 

this chapter. 

 Chapter 2 presents the work done to clone and isolate the Class II FBP aldolases from various 

human and plant pathogens.  Of particular interest is the use of a small bench-top fermentor to 

produce gram-scale amounts of purified enzyme. 

 Chapter 3 describes the characterization of the various recombinant enzymes in terms of 

structural and kinetic properties, their stability, and their metal content.  The properties are compared 

with those previously published for the enzymes purified from their original hosts.  The activity of the 

purified enzymes was also determined in the presence of various organic solvents and at elevated 

temperatures, to investigate the potential use of Class II aldolases in industrial organic synthesis.  

 Chapter 4 investigates the effectiveness of various inhibitory compounds, commercially 

available or synthesized by our group, on the aldol cleavage reaction.  Models of inhibition are also 

proposed and recommendations for future inhibitor design are discussed. 

 Chapter 5 describes the design and purification of enzyme mutants for the purpose of 

investigating the loop movements during catalysis and inhibition.  The preliminary results obtained 

with steady-state and time-resolved fluorescence experiments are discussed. 

 Chapter 6 presents the conclusions of this study, contributions of this research and 

recommendations for future work. 
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Chapter 2 

Cloning, expression and purification of Class II FBP aldolases 

2.1 Introduction 

The objective in this chapter was to obtain, for each of the target enzymes, a reliable protein over-

expression system and an efficient purification protocol, which would yield a large quantity of pure 

aldolase at sufficient concentration for characterization and possible structural analysis.  Affinity tags 

were not used for the purification to prevent protein misfolding.  We previously reported that several 

N-terminally-tagged constructs of the M. tuberculosis aldolase were misfolded (Ramsaywak et al. 

2004; Ramsaywak 2003).  Affinity tags may also interfere with enzymatic activity, metal binding 

capacity, or inhibitor binding.  The E. coli  expression vector, pT7-7 (Tabor and Richardson 1985), 

containing a T7 promoter and an ampicillin resistance gene, was used to express the native Class II 

FBP aldolases, as we have successfully used this system previously for the M. tuberculosis aldolase 

purification (Ramsaywak et al. 2004).  For protein expression, a new protocol was developed to 

obtain higher cell yields using a 2-L working volume bench top fermentor, in collaboration with the 

laboratory of Dr. Eric Jervis in the Department of Chemical Engineering at the University of 

Waterloo.  A similar protein purification protocol to the one for the M. tuberculosis enzyme, was used 

to purify the recombinant FBP aldolases with some modifications depending on each enzyme’s 

properties.  The yields of recombinant enzymes in E. coli, as well as the properties of these 

recombinant enzymes, will be compared with the results obtained by other investigators who purified 

the Class II FBP aldolase from the natural host in Mycobacterium tuberculosis (Bai et al. 1982; 
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1974), Pseudomonas putida (Bang and Baumann 1978) and Bacillus cereus hosts (Sadoff et al. 

1969).   

The work presented in this chapter was performed in collaboration with chemical engineers 

Jeremy Bezaire and Jason Yaeck from the laboratory of Dr. Jervis (University of Waterloo) for the 

development of fermentation protocols.  The cloning of the aldolases was performed by several 

undergraduate students under my supervision using oligonucleotides that I designed.  The aldolases 

from Bacillus cereus, Haemophilus influenzae and Helicobacter pylori were cloned by Sarah de 

Groot; the Pseudomonas aeruginosa aldolase was cloned by Gorica Milojevic; and the Streptococcus 

pneumoniae aldolase was cloned by Natasha Kruglyak.  In the case of the Magnaporthe grisea 

aldolase, the cloning of the gene including its introns was done by Sarah de Groot, and the introns 

were later removed using site-directed mutagenesis by Christine How.  The purifications of the 

aldolases from P. aeruginosa, E. coli, H. pylori, and M. tuberculosis were also done with much help 

from Sarah de Groot, who was a 3-time NSERC summer undergraduate student research award 

(USRA) recipient.   

An E. coli FBP aldolase overproducing strain was obtained from American Type Culture 

Collection (ATCC), and the purified E. coli enzyme was also generously provided by Dr. Jurgen 

Sygusch from the University of Montreal. 

Part of the work described in this chapter has been published (Labbe et al. 2007; Ramsaywak et 

al. 2004). 
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2.2 Procedures 

2.2.1 Cloning of FBP aldolases in vector pT7-7 

2.2.1.1 Materials 

All buffers and solutions were prepared with deionized Milli Q water (Millipore, Bedford, MA).  

Restriction enzymes were purchased from Fermentas (Glen Burnie, MD), unless otherwise indicated.  

Oligonucleotides were synthesized by Sigma-Genosys Canada (Oakville, ON).  Purified genomic 

DNA from pathogenic bacterial strains was obtained from the American Type Culture Collection 

(ATCC, Manassas, VA), unless otherwise indicated.   

2.2.1.2 Bacterial strains 

The E. coli strain Bl21(λDE3) was obtained from Novagen (Madison, WI).  The E. coli strain XL1 

Blue was obtained from Clontech (Palo Alto, CA).  The Subcloning Efficiency DH5α Competent 

Cells were obtained from Invitrogen Canada Inc. (Burlington, ON).  The E. coli FBP aldolase 

overexpression strain (pKEN-WTFDP8 Phagemid in E. coli XL1-Blue) was obtained from ATCC 

(Manassas, VA), Catalogue No.77472 (Henderson et al. 1994).    

2.2.1.3 Genomic DNA 

The genomic DNA from P. aeruginosa PAO1 (FBP aldolase GeneID 880792) was kindly 

provided by Dr Stephen Y.K. Seah (University of Guelph, ON).  The genomic DNA of other strains 

were purchased from the American Type Culture Collection (ATCC): H. pylori 26695 (FBP aldolase 

GeneID 900140) ATCC catalog no 700392D; B. cereus ATCC 10987 (GeneID 2748113), catalog no 

10987D; H. Influenzae strain Rd KW20 (GeneID 949539), ATCC catalog no 51907D; S. pneumoniae 

R6 (GenBank Accession No. AE008341) ATCC catalog no BAA-255D.  The cDNA of M. grisea 70-
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15 containing the gene of Class II FBP aldolase was made available to the public as a result of the 

Magnaporthe Sequencing Project.  We obtained the BAC vector containing the aldolase gene (Clone 

Name 20B24) from the Fungal Genetics Stock Center (School of Biological Sciences, University of 

Missouri, Kansas City, Missouri, USA).  The aldolase has been given the GenBank protein accession 

no. XP_369021.   

The construction of the M. tuberculosis FBP aldolase expression vector was completed prior to the 

start of this doctoral project and that work has been published (Ramsaywak et al. 2004; Ramsaywak 

2003).  The gene of Class II FBP aldolase was obtained using a cosmid from the M. tuberculosis 

H37Rv genome library (MTY13E10, GenBank accession no. Z95324), which was a gift from Dr. 

Nadine Honoré (Pasteur Institute, Paris, France).   

2.2.1.4 General molecular biology methods 

The protocols and recipes described in the manual “Molecular Cloning” (Sambrook et al. 1989) 

were followed.  DNA restriction digest was performed at the recommended temperatures and with the 

appropriate buffers as recommended by the manufacturer.  Plasmid vectors used for ligation were 

dephosphorylated with alkaline phosphatase, and the alkaline phosphatase was heat-inactivated at    

65 °C for twenty minutes following the dephosphorylation. DNA ligation reactions were incubated at 

10 °C for 72 hours, and then desalted by dialysis against a 10% glycerol sterile solution, using MF-

Millipore TM Membrane Filters (Millipore Corporation, Billerica, MA). Plasmid DNA were purified 

using the FlexiPrepTM kit (Amersham Pharmacia Biotech, Pisataway, NJ) according to the 

manufacturer’s instructions. The PCR products and DNA fragments were recovered from 1% agarose 

gels with the QIAquick gel extraction kit (Qiagen, Mississauga, ON). The ligation mixtures were 

transformed into E. coli DH5α competent cells (Invitrogen) or by electroporation into XL1-Blue cells 

(Clonetech). 

http://sbs.umkc.edu/
http://www.umkc.edu/
http://www.umkc.edu/
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2.2.1.5 PCR amplification of FBP aldolase genes 

FBP aldolase genes were amplified from bacterial genomic DNA using specific primers that also 

introduce restriction sites at the 5’ and 3’ ends to facilitate insertion into expression plasmids (Table 

2.1).  Typical PCR reactions is performed using using the PWO DNA polymerase kit (Roche, Laval, 

QC) with an initial denaturation of 1 min at 94 °C followed by 35 cycles of denaturation for 1.5 min 

at 95 °C, annealing for 1.5 min at 65 °C, and elongation for 2-3 min at 72 °C; and a final extension 

for 15 minutes at 72 °C.  The H. influenzae aldolase was amplified using an annealing temperature of 

45 °C instead of 65 °C.  Due to the high GC content of the gene, PCR of the P. aeruginosa FBP 

aldolase gene requires PCR enhancer (Invitrogen, Carlsbad, CA) and a modified PCR amplification 

protocol.  The reaction sequence included 32 cycles as follows: jump start at 85 °C; one cycle of 

denaturation at 94 °C for 90 seconds, annealing at 72 °C for 2 minutes and 30 seconds and elongation 

at 72 °C for 4 minutes; then 7 cycles where the annealing temperature decreased by one degree for 

each cycle (71 °C to 65 °C).  In Cycles 9 through 32, the annealing temperature was maintained at   

50 °C.  The final extension was performed at 72 °C for 15 minutes.  The protocol to amplify the S. 

pneumoniae aldolase was also modified.  The reaction sequence included 21 cycles as follows: one 

initial cycle of denaturation at 94 °C for 5 minutes, then 6 cycles where the annealing temperature 

decreased by two degrees for each cycle (66 °C to 56 °C), consisting of: a denaturation at 94 °C for 

30 seconds, annealing for 30 seconds and elongation at 72 °C for 2.5 minutes.  This was followed by 

15 cycles where the annealing temperature was maintained at at 56 °C: denaturation at 94 °C for 30 

seconds, annealing at 56 °C for 30 seconds, and extension at 72 °C for 2.5 minutes.  The final 

extension was done at 70 °C for 5 minutes.   
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Table 2.1 Primers used to PCR amplify FBP aldolase genes 

Organism Primers* Introduced 
restriction 
sites 

P. aeruginosa PAEFOR: 5’-GGAATTCTGCATATGGCACTCATCAGCATGCGCC-3’ 

PAEREV: 5’-AAACTGCAGCCCGGGTTAGTTGACCTTCGGATCC-3’ 

NdeI 

SmaI 

H. pylori HPYFOR 5’-GGAATTCTGCATATGTTAGTTAAAGGCAATG-3’ 

HPYLREV3 5’-GCTCGCTCATCCCAATATCGATGTTACACTCTTTCCTTGTTG-3’ 

EcoRI, NdeI 

ClaI 

B. cereus BCERFOR1: 5’-TGAGCTCTAAGAAGGAGATATACATATGCCTTTAGTTTCTA 

TGAAAGAAATGCTAAACAAAGCAC-3’ 

BCEREV2: 5’-ACTCGGATCCCGGAATTTTATTCTTACGCTTTACCGTTAGAA 

CCG-3’ 

SacI, NdeI 

 

BamHI 

M. grisea MGRISFOR1: 5’-ACGCATACTACCTTTTAAACAGGGCATATGGGTGTTCTTCAG 

CGAGCTCGGTCTCAAGC-3’ 

MGRISREV2: 5’-CATCATTACGAGCATCAATCGATAGGTTGCGTGGGAATTTA 

GATGGTG-3’ 

NdeI 

 

ClaI 

H. influenzae HINFOR 5’-GCGGAATTCTGATGGCTAAATTATTAGATATTGTGAAACCCGG-3’ 

HINFREV2 5’-AACTATCGAAGCTTGTGGATTATAAAACATCAACACAATTTAA 

GTCTTCG-3’ 

EcoRI 

HindIII 

S. pneumoniae SpnefbaFOR: 5’-CAGGAGGCCTGATCATATGGCAAT CGTTTCAGCAG-3’ 

SpnefbaR2: 5’-TTACTGCAGCTAGATTATGCTTTACCTTCTGAA CCGAATACG-3’ 

NdeI 

PstI 

*: The restriction sites are underlined, and the start and stop codons of the amplified genes are shown 
in bold.  The ribosome binding site added to the BCERFOR1 primer is also shown in bold (see details 
in the text).  N.B.: The HPYLREV3 primer binds to the genomic DNA downstream of the H. pylori 
aldolase gene location. 
 

2.2.1.6 Cloning into the expression vectors pT7-7 and pT7-5 

To ligate the gene in the E. coli expression vector pT7-7 (Tabor and Richardson 1985), both vector 

and insert were digested and subcloned into the appropriate cloning sites of the pT7-7 vector (see 

plasmid maps in Appendix A).  For most constructs, the NdeI site was used at the N-terminus of the 
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protein to obtain a native recombinant enzyme.  However, the NdeI restriction site of the pT7-7 vector 

could not be used as the H. influenzae gene contains one such site.  Some 5 extra amino acids 

(sequence MARIL) are therefore added at the N-terminus of the protein expressed by the resulting 

pT7-7/HIFBA plasmid because of the position of the EcoRI restriction site in the multiple cloning site 

of the pT7-7 vector.  The 858 bp fba gene from B. cereus ATCC 10987 also contains a NdeI 

restriction site which prevented the use of the pT7-7 vector for native protein expression, so this gene 

was instead cloned in the vector pT7-5, NCBI Nucleotide ID=AY230150, (Tabor and Richardson 

1985), using the SacI and the BamHI restriction sites.  The ribosome binding site (RBS) missing from 

the pT7-5 vector was introduced by including the sequence of the RBS present in the pT7-7 vector in 

the primer used for the gene amplification (Table 2.1).   

2.2.1.7 Removal of introns in M. grisea FBP aldolase 

Three introns in the M. grisea FBP aldolase were removed by site-directed mutagenesis using 

PCR to allow for expression in E. coli.  The FBP aldolase gene is 1345 bp in size.  The gene contains 

three introns located at the following positions: 131-217 bp, 637-754 bp, and 982-1044 bp, 

respectively (Figure 2.3).  We performed three sequential PCR reactions with different primer sets, 

verifying the removal of each intron by analytical digests and DNA sequencing after each reaction.  

PCR was performed using the Pfu DNA polymerase kit (Fermentas).  The PCR product was used to 

transform E. coli strain DH5α by heat shock, and then the transformed E. coli was grown on LB 

media containing ampicillin.  The first intron (131-217 bp) was removed from the pT7-7/MGFBA3 

expression vector using the DelMGI1F primer: 5’-CTCGTCGTCCACCATTATCGCCTCCCTTGA-

3’ and the DelMGI1R primer: 5’-TCAAGGGAGGCGATAATGGTGGACGACGAG-3’.  An 

NdeI/SalI double digestion was used to verify that the first intron had been removed successfully.  

The second intron (637-754 bp) was removed from pT7-7/MGFBA1 using the DelMGI2F primer:  
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5’-GGTGGTGAGGAGGATGGTGTCAACAACGAG-3’ and the DelMGI2R primer:                      

5’-CTCGTTGTTGACACCATCCTCCTCACCACC-3’. A NdeI/SalI double digestion was again used 

to verify that the second intron had been removed successfully.  The third intron (982-1044 bp) was 

removed from pT7-7/MGFBA2 using the DelMG3FF primer:                                

5’-CGAGGAGAAGAAGCCTATCTTTTTCGTCTTCCACGGTG -3’ and the DelMG3RR primer: 

5’-CACCGTGGAAGACGAAAAAGATAGGCTTCTTCTCCTCG-3’.  A NdeI/HindIII double 

digestion was used to verify that the third intron had been removed successfully.  DNA sequencing 

was used to confirm that all three introns had been removed successfully in the pT7-7/MGFBA 

expression vector. 

2.2.2 Growth and expression 

2.2.2.1 Fermentor growth 

For large scale expression, a single colony of E. coli Bl21(λDE3) transformed with one of the 

various pT7-7/FBA plasmids was used to inoculate a 1.5 mL culture of Luria-Bertani broth with    

100 μg/mL ampicillin, then grown at 37 ºC overnight.  This overnight culture was used to inoculate a 

60 mL shake flask containing minimal media (Tables 2.2 and 2.3) supplemented with 100 μg/mL 

ampicillin.  This shake flask was grown for approximately 11 hours before being used to inoculate a  

3 L continuous stirred tank reactor (CSTR) with a 1.15 L working volume of minimal media (Tables 

2.2 and 2.3).   
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Table 2.2 Media composition 

Media Component Inoculum 

(g/L) 

Fermentation Culture 

(g/L) 

Feed Solution 

(g/L) 

Na2HPO4
.(7 H2O) 11.4 14.57 -- 

KH2PO4 3 7.67 -- 

K2HPO4 -- 9.43 -- 

NH4Cl 2 3.86 -- 

MgSO4 (7 H2O) 0.49 0.43 8.10 

CaCl2 0.01 0.087 0.30 

FeSO4 (7 H2O) -- 0.12 -- 

NaCl 1 -- -- 

Glucose 2 4.35 450.00 

Trace metals -- 0.87 ml/L* -- 

Ampicillin 0.1 0.1 -- 

Antifoam -- -- 8 - 16 

* See Table 2.3 

 

Table 2.3 Trace metals solution composition 

Component Amount 

(mg/L) 

Citric acid 3840 

FeSO4 (7H2O) 55.6 

ZnSO4 (7H2O) 28.7 

MnSO4 (H2O) 16.9 

CuSO4 (5 H2O) 2.5 

CoCl2 2.5 

H3BO3 6.2 
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Dissolved oxygen, pH, temperature, and substrate feeding were controlled throughout the 

fermentation.  Dissolved oxygen was measured using an AppliSens polarographic probe that was 

calibrated from 0 to 100% air saturation at 1 atm head-space pressure.  Control of dissolved oxygen 

utilized manual adjustment of the air/O2 flow rate and proportional-integral algorithm control of the 

stirrer speed on an ADI 1030 Bio Controller (Applikon Inc., USA).   A minimum stir speed of 400 

rpm was maintained to ensure a well mixed culture at all times.  Air was fed from facility supplied 

compressed air.  Oxygen was fed using compressed oxygen cylinders (Praxair, Kitchener ON).  The 

maximum dissolved oxygen set-point was set to be 30% of air saturation.  pH was measured using an 

AppliSens gel-filled pH sensor and maintained above a minimum value of 6.8 using software 

controlled additions of 5 N NH4OH.  Temperature was maintained at 37oC using proportional-integral 

algorithm control from an Applikon ADI 1030 Bio Controller using recirculated cooling water or an 

electrical heating pad as required.  Substrate feed rate control was maintained using custom software 

developed in the LabView real time control environment (National Instruments, USA).  This software 

allows the user to select from dissolved oxygen-stat, pH-stat, exponential, linear, and constant feeding 

methods.  For this work, fed-batch substrate feeding control was accomplished using a pH-stat 

algorithm.  In this system, the nitrogen source in the media is supplied by the base (NH4OH) which is 

also used as the base to increase the pH when it falls below a fixed value (pH 6.8).  A modified pH-

stat control method induces the substrate feeding by detecting a change in the slope of the pH/time 

trend.  A decrease in culture pH results from the consumption of glucose (here the sole carbon source) 

and the subsequent production of acetic acid (see glucose degradation pathways in Figure 1.5).  A 

change in slope followed by an increase of the culture pH indicates that the acetic acid is consumed 

throught the glyoxylate shunt and therefore that there is a starvation with respect to the primary 

carbon source.  These instances of increasing pH induce pulsed substrate additions and hence 

automatically regulate culture feeding.  The culture was induced at an OD600 between 30 and 100 by 
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adding isopropyl-β-thiogalactoside to a final concentration of 0.5-2.5 mM.  At induction 0.2 mM 

ZnCl2 was also added to prevent the formation of the inactive Class II FBP aldolase apoenzyme.  The 

induction phase lasted approximately 3.5 hours, after which cells were harvested by centrifugation 

and stored at -80 ºC.  Between 55 g and 400 g of cells (wet weight) in ~ 1.5 to 2 L of bacterial culture 

were obtained for each construct. 

2.2.2.2 Shake-flask growth for E. coli and M. tuberculosis aldolase overexpression 

One colony of the E. coli Bl21(λDE3) strain transformed with the pKEN-WTFDP8 Phagemid 

(obtained from ATCC) was used to inoculate 2 flasks of 50 mL of LB broth supplemented with      

100 μg/mL of ampicillin which were incubated at 37 ºC, 225 rpm, overnight.  Then 6 flasks of 4 L 

capacity, containing 1 L of TB broth supplemented with 100 μg/mL of ampicillin, were inoculated 

with 15 mL of this preculture.  The bacteria were grown at 37 ºC, 200 rpm for 3.25 hours before 

induction with 500 μM IPTG when the cultures reached an OD600 of ~1.1 to 1.3.  The cells were 

harvested 3 hours later by centrifugation, frozen on dry ice, and kept at -80 ºC.    

The M. tuberculosis aldolase was overexpressed in shake-flasks by P. Ramsaywak as reported 

previously (Ramsaywak et al. 2004; Ramsaywak 2003).  Briefly: a single colony of E. coli 

Bl21(λDE3) transformed with the plasmid pT7-7/MTFBA was used to inoculate a 50 mL culture of 

Luria-Bertani broth (Difco) with 100 μg/mL ampicillin, then grown at 37 ºC overnight.  One litre of 

the same medium was inoculated with 10 mL of the overnight culture and grown at 37 ºC to 

exponential phase, OD600 of 0.6.  Isopropyl-β-thiogalactoside was then added to a final concentration 

of 500 µM, and 240 µL of a solution of trace elements (FeSO4·7H2O (40 g/L), MnSO4·H2O (10 g/L), 

AlCl3·6H2O (10 g/L), CoCl2·H2O (4 g/L), ZnSO4·7H2O (2 g/L), Na2MoO4·2H2O (10 g/L), 

CuCl2·2H2O (1 g/L), and H3BO3 (0.5 g/L)) was also added to each liter of culture.  The temperature 
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was reduced to 18 ºC and the cells were further grown for 3 hours.  The cells were harvested and 

stored at –80 ºC. 

2.2.3 Enzymatic assays 

The coupled assay used to monitor the aldol cleavage reaction is a modified version of the 

procedure described by (Blostein and Rutter 1963).  We adapted the coupled assay (Figure 2.1) 

described for single cuvette monitoring for a more efficient 96-well plate spectrophotometer by 

adding bovine serum albumin (BSA) to prevent the aldolase and coupling enzymes from sticking to 

the ELISA 96-well plates.  The assay volume, the quantities of NADH, and the amount of coupling 

enzymes were also optimized for these conditions.    

 

 

 

Figure 2.1 Coupled enzymatic assay to monitor FBP cleavage. 

The assays were done in 96-well microtiter plates to maximize efficiency.  The oxidation of NADH 
was monitored at a wavelength of 340 nm in a plate reader. 
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The standard assay mixture (final volume 100 µL) contained the FBP aldolase (0.003 to 0.020 

U/mL), 0.3 mM NADH, 0.2 U/mL of rabbit muscle α-glycerophosphate dehydrogenase, 2.25 U/mL 

of rabbit muscle triose phosphate isomerase, 0.2 mg/mL BSA, 100 mM potassium acetate and 50 mM 

TRIS-HCl, pH 8.  For the pH optimum determination, a 50 mM glycylglycine buffer was used instead 

of TRIS-HCl.  Assays were performed at 30 ºC in quadruplicate in 96-well flat bottom polystyrene 

plates (Corning, NY).  The reaction was initiated by the addition of FBP (final concentration              

4-3000 µM) and monitored at 340 nm for 10 minutes on a 96-well plate reader (Spectramax 190, 

Molecular Devices, Sunnyvale, CA).  Better results were obtained when the assay solutions were pre-

warmed in the 96-well plate at the assay temperature (~10 minutes) prior to mixing with the substrate.  

The molar extinction coefficient for NADH was determined with a standard curve in which the 

absorbance at 340 nm was plotted against NADH concentrations ranging from 0 to 350 µM.  The 

slope of the standard curve (0.00155 absorbance units per µM) was used to calculate the activity of 

the Class II FBP aldolase in the following equation: 

 

Equation 2.1:    v (in U) = v (milliOD/min) * 1/1000 (OD unit/milliOD units) ÷ 2 (mol of NADH 

oxidized per mol of FBP cleaved) ÷ -0.00155 OD/µM (slope of NADH standard curve) * 0.0001 L 

(assay volume) 

 

 One unit (U) of aldolase activity is defined as 1 µmol of FBP cleaved per min at 30 ºC, unless 

indicated otherwise (some early assays were performed in 50 mM Hepes pH 7.3 at 28 °C).   Kinetic 

parameters were estimated by fitting the data to the Michaelis-Menten equation using the least 

squares and dynamic weighting options of the Leonora software program (Cornish-Bowden 1995).   
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2.2.4 Protein quantification 

Protein concentration was determined by the dye binding method of Bradford (Bradford 1976) 

using BSA as a reference standard. 

2.2.5 SDS-PAGE 

The purity of the preparations were estimated by SDS-PAGE on 12%-polyacrylamide gels 

according to the method of Laemmli (Laemmli 1970).  All gels were stained with Coomassie Blue. 

2.2.6 Purification 

2.2.6.1 Crude extract preparation 

M. grisea aldolase 

The temperature was maintained at 4 ºC throughout the purification.  A portion of the harvested 

cells (55 grams of the fermentor-grown cells) were resuspended by adding buffer A (50 mM Tris-HCl 

buffer pH 7.5, 1 mM β-mercaptoethanol, 50 mM NaCl) containing 0.1 mg/mL DNaseI and 0.55 

mg/mL lysozyme to obtain a total volume of around twice the pelleted cells initial volume (2x55=110 

mLs).  The cells were then lysed using a homogenizer and the lysate was centrifuged at 48,000 g for 

25 minutes.  To remove nucleic acids, 2 grams of protamine sulphate was added to the supernatant 

and the solution was stirred for 45 minutes.  The crude cell extract was then centrifuged at 48,000 g 

for 25 minutes and the precipitate discarded.   

 
M. tuberculosis aldolase 

Fermentor-grown cells: Modifications to the protocol used for M. grisea aldolase: 41 grams of 

fermentor-grown cells were resuspended, and the Buffer A was composed of 50 mM sodium 
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phosphate pH 7.0, 100 mM NaCl, with DNAse and lysozyme added as described above.  The cells 

were ruptured using a French Press (40 mL cell volume) from Carver (Wabash, IN). 

Shake-flask grown cells: Modifications to the protocol used for M. grisea aldolase:  2.16 grams of 

cells were resuspended in 40 mL of buffer A (50 mM phosphate buffer pH 7.0, 1 mM β-

mercaptoethanol, 0.1 M NaCl) containing 0.1 mg/mL DNaseI.  The cells were lysed using a 

homogenizer.  To remove the nucleic acids, 2% (w/v) protamine sulphate was added to the 

supernatant (0.1 mg of protamine sulfate per mg of protein).   

 
P. aeruginosa aldolase 

Modifications to the protocol used for M. grisea aldolase: 105 grams of fermentor-grown cells 

were resuspended, and the buffer A was composed of 50 mM sodium phosphate pH 7.0, 100 mM 

NaCl,  0.3 mM ZnCl2, 1 mM β-mercaptoethanol, with 0.6 mg/ml lysozyme and 25 μg/ml DNAse 

added.    3.5 grams of protamine sulfate were used to precipitate nucleic acids. 

 
B. cereus aldolase 

Modifications to the protocol used for M. grisea aldolase: 103 grams of fermentor-grown cells 

were resuspended, and the Buffer A was composed of 50 mM sodium phosphate pH 7.0, 100 mM 

NaCl,    1 mM β-mercaptoethanol, with 0.1 mg/mL DNAse and 0.55 mg/mL lysozyme added.  3.7 

grams of protamine sulfate were used to precipitate nucleic acids. 

 
H. pylori aldolase 

Modifications to the protocol used for M. grisea aldolase: 32 grams of fermentor-grown cells were 

resuspended, and the Buffer A was composed of 20 mM Tris-HCl buffer pH 8.0, 100 mM NaCl,        

1 mM β-mercaptoethanol, with 0.1 mg/mL DNAse and 0.55 mg/mL lysozyme added.  The cells were 

ruptured using a French Press (40 mL cell volume) from Carver (Wabash, IN). 
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E. coli aldolase 

Modifications to the protocol used for M. grisea aldolase: 47 grams of shake-flask grown cells 

were resuspended.  Buffer A consisted of 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.3 mM ZnCl2, 1 

mM  β-mercaptoethanol, with 0.6 mg/mL lysozyme and 50 μg/mL DNAse added.  The cells were 

ruptured with a French Press (40 mL cell capacity) from Carver (Wabash, IN). 

 

2.2.6.2 Ammonium sulfate fractionation 

M. grisea aldolase  

Solid ammonium sulfate was added to the supernatant to 40% saturation, and the solution stirred 

for an additional 40 minutes.  The extract was then centrifuged at 48,000 g for 25 minutes and the 

pellet discarded.  The supernatant was then brought to 80% saturation with ammonium sulfate, stirred 

for 1 hour and centrifuged following the same procedure.  Following this extraction, the supernatant 

was discarded and the precipitate containing the enzyme was resuspended in buffer A.  The solution 

was dialysed against buffer B (25 mM TRIS-HCl pH 7.5, 25 mM NaCl, 0.3 mM ZnCl2, 1 mM          

β-mercaptoethanol) using a Spectra/Por 1 Membrane with a molecular weight cut-off of 6-8 kDa 

from Spectrum Laboratories, Inc (Rancho Dominguez, CA).   

 

M. tuberculosis aldolase 

Fermentor-grown cells: Modifications to the protocol used for the M. grisea aldolase: the buffer B 

was composed of 50 mM sodium phosphate pH 7.0, 100 mM NaCl. 

Shake-flask grown cells:  Modifications to the protocol used for the M. grisea aldolase: the 

ammonium sulfate cuts were 43.5% and 83.5%. The supernatant was discarded and the precipitate 

containing the enzyme was resuspended in 2.5 mL of buffer A (50 mM phosphate buffer pH 7.0,       
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1 mM β-mercaptoethanol, 0.1 M NaCl).  The excess salt was then removed from the sample using a 

PD-10 desalting column (Amersham Pharmacia Biotech) equilibrated with buffer A.  The fractions 

containing the protein (total 4 mL) were pooled, flash-frozen in liquid nitrogen and stored at -80 ºC 

overnight. 

 

P. aeruginosa aldolase 

Modifications to the protocol used for the M. grisea aldolase: the buffer B was composed of         

50 mM sodium phosphate pH 7.0, 100 mM NaCl, 0.3 mM ZnCl2, 1 mM β-mercaptoethanol.  The 

ammonium sulfate cuts were 40% and 60%, and the pellet from the 60% cut was resuspended in 

buffer B and dialyzed in the same buffer for chromatography. 

 

B. cereus aldolase 

Modifications to the protocol used for the M. grisea aldolase: the buffer B was composed of        

50 mM sodium phosphate pH 7.0, 100 mM NaCl, 1 mM β-mercaptoethanol.  The ammonium sulfate 

cuts were 40% and 60%, and the supernatant from the 60% cut was dialyzed against buffer B and 

concentrated with an Amicon fitted with a 10 kDa cut-off membrane for chromatography. 

 

H. pylori aldolase 

Modifications to the protocol used for the M. grisea aldolase: the buffer B was composed of        

20 mM Tris-HCl buffer pH 8.0, 100 mM NaCl, 1 mM β-mercaptoethanol.  The ammonium sulfate 

cuts were 40% and 60%, and the pellet from the 60% cut was dialyzed against buffer B and 

concentrated with an Amicon fitted with a 10 kDa cut-off membrane for chromatography. 
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E. coli aldolase 

Modifications to the protocol used for the M. grisea aldolase: the buffer B was composed of        

50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.3 mM ZnCl2, 1 mM β-mercaptoethanol.  The ammonium 

sulfate cuts were 45% and 80%.  After the 80% ammonium sulfate cut, the pellets were resuspended 

in buffer C: 100 mM Tris-HCl pH 7.5, 3 mM ZnCl2.  The protein was dialyzed against buffer C 

before chromatography. 

2.2.6.3 Chromatography 

M. grisea aldolase 

The dialysed protein solution was centrifuged at 48,000 g for 25 minutes and the pellet was 

discarded.  The protein sample was applied to a thermo-jacketed column (50 mm x 5 cm) containing 

100 mL of DEAE Sepharose CL-6B resin (Amersham Pharmacia Biotech) equilibrated with buffer B 

and mounted on an ÄKTA Purifier HPLC system (GE Healthcare Bio-Sciences, Baie d’Urfé, QC, 

Canada).  The aldolase was washed with 7 CV of buffer B at 1 mL/min, and eluted with a gradient of 

25 mM to 500 mM NaCl over 10 CV at a flow rate of 3 mL/min.  The fractions containing aldolase 

activity were pooled, and loaded in 3 mLs aliquots on a ResourceQ 6 mLs column also mounted on 

the ÄKTA Purifier.  The enzyme was washed with 2 CV of Buffer C (25 mM TRIS-HCl pH 7.5,     

25 mM NaCl), and eluted with a salt gradient of 25 mM to 500 mM NaCl over 10 CV at a flow rate 

of 5 mLs/min.  The fractions containing activity were pooled and the purity of the preparation was 

estimated by SDS-PAGE on 12%-polyacrylamide gels.  The purest fractions were either flash-frozen 

in liquid nitrogen in 50 µl aliquots and kept at -80 ºC, or supplemented with glycerol to a final 

concentration of 50% and kept at -20 ºC (both methods used for kinetic assays), or dialysed against a 

85% saturated ammonium sulphate solution supplemented with 250 μM ZnCl2 and kept at 4 ºC (used 

for crystallographic trials).   
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M. tuberculosis FBP aldolase 

From fermentor-grown cells:  The dialyzed enzyme was diluted with 50 mM sodium phosphate 

buffer pH 7.0 to bring NaCl concentration in the sample down to 90 mM before loading on the DEAE 

column (45 mLs of resin).  The protein was extensively washed at 5 mL/min using 50 mM sodium 

phosphate buffer pH 7.0, 90 mM NaCl, until the OD280 of the eluate was below 0.1 units.  The 

gradient used for the elution was from 90 mM NaCl to 500 mM NaCl over 20 CV (in 50 mM sodium 

phosphate buffer pH 7), at 5 mL/min.  Following this column, the purification was continued using a 

Bio-Scale CHT10 hydroxyapatite column (10 mm x 88 mm, 10 mL bed volume) from Bio-Rad 

(Mississauga, ON).  The protein eluted from the DEAE column was thus pooled, concentrated with 

the Amicon apparatus (10 kDa cut-off membrane), dialyzed in 10 mM sodium phosphate buffer pH 

6.8 using a Spectra/Por 1 Membrane with a molecular weight cut-off of 6-8 kDa from Spectrum 

Laboratories, Inc (Rancho Dominguez, CA).  The dialyzed protein was loaded at 2 mL/min on the 

CHT10 column preequilibrated with buffer C (10 mM sodium phosphate buffer pH 7.2).  The protein 

was washed with buffer C and then eluted using a gradient 0% to 20% buffer D (500 mM sodium 

phosphate buffer pH 7) over 12 column volumes at 5 mL/min.  The fractions were then pooled, 

dialyzed in Buffer E (50 mM Tris-HCl pH 8.0, 200 mM NaCl) and concentrated to 0.75 mL before 

injection on a gel filtration column.  The gel filtration was done on a thermojacketed Sephacryl S-300 

High resolution column 95 cm x 16 mm (Pharmacia, Uppola, Sweden; now operated under GE 

Healthcare).  The protein was eluted with Buffer E at 1 mL/min at 4 ºC, the active fractions were 

pooled and concentrated using an Amicon (Beverly, MA) with a 10 kDa cut-off membrane.  The 

enzyme was then dialyzed against a 3.33 M ammonium sulfate solution in a Spectra/Por 1 Membrane 

(see above), and stored at 4 ºC.   

From shake-flask grown cells:  The desalted protein solution was thawed, filtered through a     

0.20 µm membrane and diluted to a volume of 5 mL with buffer A (50 mM phosphate buffer pH 7.0, 
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1 mM β-mercaptoethanol, 0.1 M NaCl).  The protein sample was applied to a thermo-jacketed 

column (16mm x 10cm) containing 20 mL of DEAE Sepharose CL-6B resin (Amersham Pharmacia 

Biotech) equilibrated with buffer A and mounted on a BioCadTM Sprint Perfusion Chromatography 

system (PerSeptive Biosystem).  The protein was washed with 40 mL of buffer A and eluted by a 

linear salt gradient (0.1-0.5 M NaCl) over 4 column volumes at a flow rate of 1 mL/min.  The peak 

fractions containing FBP aldolase activity were pooled and concentrated.  The concentrated protein  

(2 mL) was injected onto a thermojacketed column (16 mm x 83 cm) containing 160 mL of Sephacryl 

S-200 superfine media (Amersham Pharmacia Biotech) equilibrated with buffer B (50 mM TRIS-HCl 

buffer pH 7.8, 200 mM NaCl, 200 μM ZnCl2 and 1 mM β-mercaptoethanol) and mounted on the 

BioCadTM system as described above.  The protein was eluted with one column volume of buffer B at 

a flow rate of 1 mL/min and 2 mL fractions were collected.  The appropriate fractions were pooled 

and concentrated prior to storage at 4 ºC. 

 

P. aeruginosa aldolase 

The thermo-jacketed column containing 42 mLs of DEAE Sepharose CL-6B resin (Amersham 

Pharmacia Biotech) was pre-equilibrated with buffer B (50 mM sodium phosphate pH 7.0, 100 mM 

NaCl, 0.3 mM ZnCl2, 1 mM β-mercaptoethanol), and the sample was loaded at 3 mL/min.  The 

column was washed with 20 CV of buffer B at 1 mL/min, and then with 8 CV of the same buffer at   

3 mL/min (until the OD280 of the eluate was ~ 0.11 units).  The protein was eluted with a gradient of 

100 mM to 500 mM NaCl over 6 CV at 3 mL/min.  The fractions containing the enzyme were pooled, 

dialyzed against buffer C (25 mM Tris-HCl pH 8, 100 mM NaCl, 0.3 mM ZnCl2, 1 mM                    

β-mercaptoethanol) and loaded on a Q Sepharose Fast Flow (Pharmacia, Uppola, Sweden; now 

operated under GE Healthcare) thermojacketed column containing 45 mLs of resin.  The enzyme was 

eluted with a gradient from 100 mM to 500 mM NaCl in buffer D (25 mM Tris-HCl pH 8, 100 mM 
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NaCl, 1 mM β-mercaptoethanol), at 3 mL/min.  The fractions were pooled, dialyzed in an 80% 

saturated ammonium sulfate solution, in a Spectra/Por 1 Membrane (see above), and stored at 4 ºC. 

  
B. cereus aldolase 

The enzyme was injected on a 160 mm x 20 mm thermo-jacketed column containing 50 mLs of 

DEAE Sepharose CL-6B resin (Amersham Pharmacia Biotech) equilibrated with buffer B (50 mM 

sodium phosphate pH 7.0, 100 mM NaCl, 1 mM β-mercaptoethanol) at a rate of 3 mL/min.  The 

column was washed with buffer B and with a salt concentration increase at 120 mM NaCl until the 

OD280 of the eluate was lowered to ~ 0.14 units.  The protein was then eluted with a gradient from 

120 mM to 500 mM NaCl over 6 CV, at a rate of 3 mL/min.  The fractions were either flash-frozen in 

liquid nitrogen and kept at -80ºC, or pooled, concentrated by filtration using Centriprep YM10 

(Millipore, Billerica, MA), and dialyzed in an 80% saturated ammonium sulfate solution, in a 

Spectra/Por 1 Membrane (see above), and stored at 4 ºC. 

 
H. pylori aldolase 

The enzyme was injected on a 160 mm x 20 mm thermo-jacketed column containing 50 mLs of 

DEAE Sepharose CL-6B resin (Amersham Pharmacia Biotech) preequilibrated with buffer B (20 mM 

Tris-HCl buffer pH 8.0, 100 mM NaCl, 1 mM β-mercaptoethanol), and the enzyme was washed off 

the column with buffer B in an absorbance peak immediately following that of the unbound sample.  

The fractions from this peak were pooled, supplemented with 0.1 mM CoCl2 and dialyzed against a 

3.9 M ammonium sulfate, pH 7.0, 0.1 mM CoCl2 solution, and stored at 4 ºC. 

 
E. coli aldolase 

The protein was injected on a Q Sepharose Fast Flow (Pharmacia, Uppola, Sweden; now operated 

under GE Healthcare) thermojacketed column containing 150 mL of resin, preequilibrated with buffer 

C (100 mM Tris-HCl pH 7.5, 3 mM ZnCl2).  The column was washed with buffer C for ~5 CV at a 
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flow rate up to 2.5 mL/min.  The protein was then eluted with a KCl gradient (0 to 1M KCl over    

11.7 CV) at a flow rate of 2.5 mL/min.  At this point the eluted enzyme was pooled and dialyzed 

against a 3.9 M ammonium sulfate solution at 4ºC for storage.  A portion of the pooled enzyme was 

later dialyzed against buffer D (50 mM Tris-HCl pH 7.0, 100 mM NaCl, 0.3 mM ZnCl2) and then the 

salt concentration was diluted by half with the addition of buffer E (50 mM Tris-HCl pH 8.0).  The 

protein was loaded on a ResourceQ 6 mLs column preequilibrated with buffer E.  The enzyme was 

eluted with a gradient from 0% to 100% buffer F (50 mM Tris-HCl pH 7.0, 500 mM NaCl, 0.3 mM 

ZnCl2) over 20 CV.  The purest fractions (in buffer containing approximatively 0.1 mM ZnCl2) were 

pooled, flash-frozen in liquid nitrogen in small aliquots, and kept at -80 ºC. 

2.2.7 ESI mass spectrometry 

The molecular mass of the Class II FBP aldolase monomers were determined by mass 

spectrometry at the WATSPEC Mass Spectrometry Facility at the University of Waterloo.  

Measurements were performed in positive ion mode on a Micromass Q-TOF UltimaTM Global mass 

spectrometer (Micromass) equipped with a Z-spray electrospray ionization source.  Prior to ESI-MS 

analysis, a ~100 µL sample of each protein was dialyzed against milliQ water overnight (see in-house 

technique using a 1.5 mL plastic centrifuge tube in Figure 2.2) and brought to a concentration of       

10 µM using a Microcon centrifugal YM-10 filter concentrator (Millipore).  Proteins were denatured 

by 10-fold dilution in water/acetonitrile (50:50 [v/v] with 0.1% formic acid) before introduction into 

the ESI source with the aid of a syringe pump. 
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Figure 2.2 In-house technique for dialysis of a small volume of protein solution 

 

2.3 Results 

2.3.1 Cloning 

In this study, the Class II aldolase genes from B. cereus, H. influenzae, S. pneumoniae, M. grisea, 

H. pylori, and P. aeruginosa were amplified from the organisms’ genomic DNA and ligated into the 

expression vector pT7-7 (Tabor and Richardson 1985).  The clones were verified by analytical 

restriction digestions and by sequencing to ensure there were no mutations present in the aldolase 

gene portion of the resulting expression vectors.   
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The sequence of the FBP aldolase gene of M. grisea was identified and made publicly available 

as a result of the M. grisea genome sequencing project.  The 1805 bp sequence, identified as a 

probable Class II FBP aldolase gene (also identified as hypothetical protein MG00223.4 in the Broad 

Institute website), constitutes of five exons (respectively 54, 131, 421, 229, and 302 bp) separated by 

four introns (406, 85, 116, and 61 bp).  After sequence alignment analysis with other Class II FBP 

aldolases (Figure 1.17), and considering the ESTs overlapping the putative aldolase gene (made 

available online through the Program for the Biology of Filamentous Fungi supported by the Texas 

A&M University), we determined that the first putative exon contaning the first 18 amino acids of the 

GenBank sequence was not part of the fba gene and so it was not included in our final construct.  The 

last 1344 bp of the putative aldolase gene was cloned in the E. coli expression vector pT7-7, and the 

three introns present in the sequence were looped out by site-directed mutagenesis (Figure 2.3).  The 

final construct pT7-7/MGFBA therefore expresses the native enzyme in E. coli, and the final gene 

sequence was also verified by sequencing. 

 

 

Figure 2.3 Structure of the M. grisea aldolase gene 

The 4 exons are indicated by solid rectangles, and the non-coding sequences by a line. The restriction 
sites locations are indicated above the gene. 
 

The B. cereus and H. influenzae aldolase genes contain NdeI restriction sites and therefore the 

genes cannot be easily inserted into the NdeI site of pT7-7.  The B. cereus aldolase gene was cloned 
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in the plasmid pT7-5, with a primer (Table 2.1) that included the missing RBS site from this plasmid 

to make it equivalent to the vector pT7-7 (see resulting plasmid sequence in the Appendix A).  The   

H. influenzae aldolase gene was cloned further in the multiple cloning site of the vector pT7-7 (in the 

EcoRI restriction site), such that the recombinant enzyme would be expressed with 5 additional amino 

acids at the N-terminus.  The H. influenzae aldolase was however not yet purifed, so only the cloning 

and small-scale expression tests for this enzyme are reported in this thesis. 

2.3.2 Growth and expression 

We chose to express the enzyme without affinity tags to avoid possible interference with the 

folding of the enzyme as previously mentioned.   However, purification of native enzymes is often 

less efficient than that of tagged enzymes.  To compensate for potential lower purification 

efficiencies, we decided to use a high cell density fermentation to increase product yield and then 

optimize purification procedures for litre volumes of concentrated crude cell extract.  A 3 L bench-top 

fermentor with a 2 L working volume was used for expression of the recombinant aldolases in this 

study.  Table 2.3 shows the yields of cells obtained in the fermentor, which are all above 55 g.  This 

yield is at least 10-fold higher than in a typical batch culture of the same volume (see amount of cells 

obtained per volume in Figure 2.4).  

A chart showing the culture growth and glucose feeding over time for a typical fermentation is 

presented in Figure 2.5.  Fed-batch feeding was initiated automatically following 8 hours of batch 

culture, with subsequent feeding on demand using a pH-stat control strategy (Bezaire et al. 

manuscript submitted) (Figure 2.6).  The cultures grown under these conditions have reached a 

maximum optical density of 268 (OD600) and can routinely reach optical densities about 200 (OD600).  
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Figure 2.4 Harvested E. coli Bl21(λDE3) cells from 1.5 L fermentor culture  

 

Figure 2.5 Culture growth and substrate feeding profiles 

The amount of glucose added to the culture is indicated by a solid line, and the optical density of the 
culture measured from withdrawn aliquots is indicated by squares.  The time of induction of 
recombinant protein expression by IPTG is indicated by an arrow. 
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Figure 2.6 pH stat feeding control 

The pH-stat control was able to induce automatic substrate feeding by detecting a change in slope in 
the pH trend that results from a switch between acetic acid production and consumption. 
 

 

Expression of FBP aldolases grown in fermentor or by fed batch was compared.  The 

overexpression of the aldolases in the growing cells was verified by SDS-PAGE (Figures 2.7-2.9).  It 

was observed that the aldolase expression was not as high in fermentor-grown cells compared to 

shake-flask grown cells when the induction was done using 0.5 mM IPTG (see Figures 2.7 and 2.8).  

However, better results were obtained in high-density fermentor cultures when 2.5 mM IPTG was 

used for the recombinant protein induction (Figure 2.9).   
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Figure 2.7 Fermentor expression of P. aeruginosa FBP aldolase in E. coli Bl21(λDE3) 

The first lane shows the molecular weight markers, and the lanes 2-4 show induced 1.5 mL cultures.   
The fermentor samples are in the box and the optical density is indicated under each lane.  The last 
lane contains 5 µg of purified enzyme.  The gel was stained with Coomassie Blue. 
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Figure 2.8 Expression of B. cereus aldolase in fermentor culture and 1.5 mL cultures 

The induction times are indicated above the gel, and “B.I.” stands for “before induction”.  The arrow 
on the right indicates the position of the overexpressed aldolase (M.W.: 30.7 kDa).  The gel was 
stained with Coomassie Blue. 
 

                      

       OD600
5h P P 

A B 

Figure 2.9 Expression of the M. tuberculosis aldolase in the fermentor 

A) The culture was induced with 0.5 mM IPTG when the OD600 reached 65, and was harvested 5 
hours later (cell lysate shown in first lane). B) The culture was induced with 2.5 mM IPTG when the 
OD600 reached 50 (5th lane), and was harvested 3 hours later (8th lane, at OD600=87).  The purified  M. 
tuberculosis enzyme (1 µg for gel A and 2 µg for gel B) are shown in lanes P of the gels (M.W.: 
36,413 Da).  The gels were stained with Coomassie Blue. 
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Table 2.4 Cell weight obtained for fermentor and shake-flask bacterial cultures after 

recombinant aldolase expression 

The E. coli cells weight is shown for the overexpression of the aldolases from M. tuberculosis 
(MTFBA); P. aeruginosa (PAFBA); B. cereus (BCFBA); M. grisea (MGFBA); H. pylori (HPFBA); 
and E. coli (ECFBA). 

Construct Fermentor culture 
OD600 at induction 

time 

Fermentor yield 

grams of cells in 
~2L, wet weight 

Shake-flask yield 

g/L, wet weight 

(growth medium) 

pT7-7/MTFBA 55 

65 

50 

154 

160 

151 

2.2 to 2.6 (LB)* 

pT7-7/PAFBA 62 

71 

208 

190 

~5 (TB) 

pT7-7/BCFBA 75 412  

pT7-7/MGFBA 30 

96 

75 

275 

 

pT7-7/HPFBA N/A 189  

pT7-7/ECFBA   ~8 (TB) 

*Cells grown in shake-flasks by P. Ramsaywak (Ramsaywak 2003) 

 

The aldolases from S. pneumoniae and H.influenzae were only expressed in small scale cultures 

and have not been purified yet.  The expression of the H. influenzae recombinant aldolase can be seen 

in Figure 2.10.   
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Figure 2.10 Small-scale expression of the H. influenzae FBP aldolase 

The molecular weight markers are shown in the first lane.  The last four lanes show the cultures of 
E. coli Bl21(λDE3) transformed with the plasmid pT7-7/HIFBA before induction (B.I.) and after 1, 2, 
and 3 hours of induction with 0.5 mM IPTG, respectively.  The gel was stained with Coomassie Blue. 

 

2.3.3 Purification 

Purification of the different FBP aldolases involved the use of ammonium sulfate fractionation and 

anion exchange chromatography.  To achieve higher than 95% purity, most of the aldolases require 

additional chromatographic steps that may include hydroxyapatitite or gel filtration chromatography.  

The purification tables for each of the aldolases are shown in Tables 2.5 to 2.12. SDS-PAGE gels of 

the purified proteins are shown in Figures 2.15 and 2.16.   It is noteworthy that between 200 mg and 

300 mg of pure P. aeruginosa, M. grisea, and B. cereus aldolases were obtained from 55 g to 100 g 

(wet weight) of recombinant E. coli cells, after ammonium sulfate fractionation and anion-exchange 

chromatography.  
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2.3.3.1  M. tuberculosis aldolase 

The purification procedure for the M. tuberculosis enzyme produced by fermentor-grown cells was 

different than the one published previously (results shown in Figure 2.11 and Table 2.5) (Ramsaywak 

et al. 2004) in part because the expression level of the enzyme in the fermentor was lower than in the 

cells grown using batch culture.  The results of the purification from fermentor-grown cells are shown 

in Figure 2.12 and Table 2.6.  A similar enzyme purity of >95% was achieved, with a enzyme specific 

activity over 30 U/mg, but an additional chromatographic step was required and thus the yield went 

down from 14% (shake-flask grown cells) to 2.7% (fermentor-grown cells).  When higher IPTG 

concentration used to induce expression in the fermentor grown cells, we could achieve an apparent 

90% purity and a specific activity of 21 U/mg using one less chromatography step, with a   9% yield 

(Figure 2.13 and Table 2.7).  The purified M. tuberculosis Class II FBP aldolase is very stable, as it 

was still fully active in elution buffer after 4 months at 4 °C, and retained all its activity after two 

weeks in a metal-free buffer. 
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Figure 2.11 SDS-PAGE showing purification of the recombinant M. tuberculosis Class II 
fructose 1,6-bisphosphate aldolase from shake-flask grown cells  

The lanes correspond to the following purification steps: 1) bacterial lysate (30 μg); 3) crude extract 
(10 μg); 4) ammonium sulphate fractionation (10 μg); 5) DEAE chromatography (5 μg); 6) size 
exclusion chromatography (5 μg).  Lane 2 contains the molecular mass markers.  The purified 
enzyme subunits have a molecular mass of 36,413 Da, as determined by ESI mass spectroscopy.  The 
gel was stained with Coomassie Blue. 
 

Table 2.5 Purification of the recombinant M. tuberculosis Class II fructose 1,6-bisphosphate 
aldolase (shake-flask grown) 

One unit of activity corresponds to the cleavage of 1 μmol of FBP/min at 28 °C. 

 

Step 

Protein 

 (mg) 

Activity 

 (units) 

Yield 

 (%) 

Specific activity 

 (μmol/min per mg) 

 

Purification  

1.  Cell Extract 210 197 100 0.94 1 

2.  Ammonium sulphate 154 51 26.1 0.33 0.35 

3.  DEAE 2.80 30.6 15.4 10.9 11.6 

4.  Gel filtration 0.80 28.4 14.4 35.1 37.4 
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Figure 2.12 SDS-PAGE of the M. tuberculosis aldolase purification from fermentor-grown cells 
(induced with 0.5 mM IPTG) 

The lanes correspond to the following purification steps: 2) crude extract (20 μg); 3) protamine 
sulphate (20 μg); 4) ammonium sulphate fractionation 40% (20 μg); 5) ammonium sulphate 
fractionation 80% (20 μg); 6) DEAE and Hydroxyapatite chromatography (5 μg); 7) gel filtration 
chromatography (5 μg).  Lane 1 contains the molecular mass markers.  The gel was stained with 
Coomassie Blue. 



Chapter 2 Cloning, expression and purification of Class II FBP aldolases 

  91

 

Table 2.6 Purification table for the M. tuberculosis FBP aldolase (fermentor-grown, induced 
with 0.5 mM IPTG) 

One unit of activity corresponds to the cleavage of 1 μmol of FBP/min at 30 °C. 
 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 3,890 6,370 100 1.64 1 

2. Ammonium sulfate 1,380 3,720 58 2.7 1.6 

3. DEAE 52 630 10 12 7.3 

4. Hydroxyapatite and 

gel filtration 

5.4 173 2.7 32 19.5 
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Figure 2.13 SDS-PAGE of the purification of the FBP aldolase from M. tuberculosis (fermentor-

grown, induced with 2.5 mM IPTG) 

The lanes correspond to the following purification steps: 2) crude extract (27 μg); 3) ammonium 
sulphate fractionation 43% (28 μg); 4) ammonium sulphate fractionation 83% (23 μg); 5) Sepharose 
Q chromatography (5 μg); 6) gel filtration chromatography (4 μg).  Lane 1 contains the molecular 
mass markers.  The gel was stained with Coomassie Blue. 
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Table 2.7 Purification table for the M. tuberculosis FBP aldolase (fermentor-grown, induced 
with 2.5 mM IPTG) 

One unit of activity corresponds to the cleavage of 1 μmol of FBP/min at 30 °C. 
 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 5,400 6,770 100 1.25 1 

2. Ammonium sulfate 1,702 4,040 60 2.4 1.9 

3. Sepharose Q 230 1,320 19 5.7 4.6 

4. Superdex 200 28 600 9 21 16.8 

 

 

2.3.3.2 P. aeruginosa aldolase 

It was observed that the amount of DEAE (anion exchange) resin used for the purifications has a 

bearing in the purity of the enzyme.  This is because lower amounts of resin relative to the amount of 

loaded crude extract would result in less binding of contaminating proteins in the column. A good 

example is the purification we report for the P. aeruginosa aldolase, where only one anion-exchange 

chromatography step was sufficient to obtain a >95% pure enzyme (Figure 2.14, last lane).  Attempts 

to purify the enzyme further using another anion-exchange column were not successful as the enzyme 

lost activity over time (Table 2.8).  Over 2 grams of purified enzyme (1.8 U/mg) were obtained after 

the first anion exchange column, from 105 grams of fermentor-grown cells.  The reported purification 

was done in Tris-HCl buffers containing added zinc chloride excepted for the Sepharose-Q (second 

anion-exchange) chromatography, where ZnCl2 was not added.  The final enzyme preparation had a 

specific activity of 1.4 U/mg, or 19 U/mg in the presence of 0.7 mM CoCl2 (see metal titration curve 
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in Chapter 3).  A previous similar purification done in 50 mM sodium phosphate buffers (pH 7.0) not 

supplemented with ZnCl2 yielded 1.7 grams of >95% pure enzyme from 90 grams of cells, with a 

specific activity of over 4 U/mg (or 27 U/mg in the presence of 0.7 mM CoCl2) after the first anion 

exchange chromatography.  The activity of this zinc-free preparation was stable for a least a year in 

50% glycerol at -20 °C.  It therefore seems that the Tris-HCl buffer with zinc chloride is not as good 

as sodium phosphate buffer in the case of this enzyme. 

 

 

Figure 2.14 SDS-PAGE of the elution fraction from the Sepharose-Q column containing the P. 
aeruginosa aldolase 

The fractions shown were kept in three separate pools (30-39; 40-45; 46-64).  Only the pool made 
with the purest fractions (40-45) was used for kinetic assays.  The low molecular weight contaminants 
visible on the gel were later eliminated during dialysis (see Figure 2.15).  11 µg of protein were 
loaded in each lane for the fractions 40 to 44. The last lane (DEAE) shows 13 µg of the enzyme after 
DEAE chromatography.  The first lane (M) contains the molecular mass markers.  The gel was 
stained with Coomassie Blue. 
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Table 2.8 Purification table of the P. aeruginosa FBP aldolase 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 10,830 8,670 100 0.80 1 

2. Ammonium sulfate 5,540 5,210 60 0.94 1.2 

3. DEAE 2,151 3,872 45 1.8 2.25 

4. Sepharose Q 
(only purest fractions) 

305 427 4.9 1.4* 1.8 

* The enzyme lost activity in storage before this chromatographic step.   

 

 

2.3.3.3 B. cereus aldolase 

The B. cereus aldolase was also purified to >95% purity (see Figure 2.15) using only one 

chromatographic step (Table 2.9).  The purified enzyme was less stable than the P. aeruginosa 

aldolase as it lost almost a third of its activity after a few months, and after 3 years in storage (in 

saturated ammonium sulfate at 4 °C), the activity was around ~2 U/mg.  A second purification was 

attempted from 54 grams of the cells obtained during the same fermentation, using buffers 

supplemented with 0.3 mM zinc chloride, and in which the enzyme was directly loaded on a DEAE 

column instead of being purified by ammonium sulfate cuts first.  This modified procedure failed to 

produce an enzyme with a higher specific acvtivity, as the eluted enzyme (1.07 gram) was ~60% pure 

and had a specific activity of about 2 U/mg.  The procedure described in the methods section is 

therefore more effective, as it resulted in 210 mg of >95% pure enzyme with a specific activity of    

~9 U/mg (Table 2.9). 
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Figure 2.15 SDS-PAGE of the purified FBP aldolases 

The first and last lanes (marked M) contain the low molecular weight markers, with sizes indicated on 
the right.  The five middle lanes each contain 3 micrograms of purified recombinant FBP aldolases 
from the following organisms: M. grisea (MG); P. aeruginosa (PA); M. tuberculosis (MT); B. cereus 
(BC); and H. pylori (HP).  The molecular weight of each recombinant aldolase is indicated at the 
bottom.  The 12% acrylamide gel was stained with Coomassie Blue.   

 

 

Table 2.9 Purification table for the B. cereus FBP aldolase 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 7,510 8,300 100 1.1 1 

2. Ammonium sulfate 520 1,800 22 3.4 3.1 

3. DEAE  210 1,900 23 9.2 8.4 
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2.3.3.4 M. grisea aldolase 

The enzyme was >95% pure (see Figure 2.15) after two anion exchange chromatographic steps 

(Table 2.10). We determined that the specific activity of the purified enzyme was ~70 U/mg.  The 

enzyme is stable for over a year when precipitated in an ammonium sulfate solution and kept at 4 °C, 

or when snap-frozen in liquid nitrogen and kept at -80 °C, as described in the previous section.   

 

Table 2.10 Purification of the recombinant M. grisea Class II FBP aldolase 

The cell extract was prepared from 55 g wet weight of E. coli Bl21(DE3) cells expressing pT7-
7/MGFBA.   
 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 5,510 63,300 100 11.5 1 

2. Ammonium sulfate 2,490 39,100 62 15.7 1.4 

3. DEAE   570 28,500 45 50.0 4.3 

4. ResourceQ   265 18,600 29 70.3 6.1 

 

 

2.3.3.5  H. pylori aldolase 

The H. pylori aldolase did not bind to the DEAE column and was collected as the flow through.  

There is no improvement in binding when the column equilibration buffer pH was increased and it 

was observed that the enzyme is unstable and prone to aggregation.  A second purification was 

performed with addition of 5 µM CoCl2 in the purification buffers, by doing ammonium sulfate cuts 

and using a Resource Q column, and storing the enzyme in 50% glycerol at -20 °C, but again the 
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enzyme had little activity (~1 U/mg) and was unstable.  Attempts to reactivate the enzyme by addition 

of CoCl2 or ZnCl2 (by direct addition or dialysis at 4 °C) were not successful. Therefore the kinetic 

tests were done using the first preparation’s flow-through from the DEAE column (Figure 2.15).  The 

enzyme had about 50% of its activity remaining after 9 months when stored in 80% saturated 

ammonium sulfate, 0.1 mM CoCl2 at 4 °C.   

Table 2.11 Purification table of the H. pylori FBP aldolase 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 1,830 1,300 100 0.7 1 

2. Ammonium sulfate 540 320 25 0.6 0.9 

3. DEAE  

With added CoCl2* 

79 87 

720 

7 1.1 

9.1 

1.6 

* The activity of this fraction was also measured in the presence of 5 µM CoCl2, which activates 
the enzyme by a factor ~8 (see metal titration curve in Chapter 3). 

 

2.3.3.6 E. coli aldolase 

The purity of the enzyme after each step of the purification can be seen in Figure 2.17, and the 

purification table is shown in Table 2.12.  About 26 mg of ~95% pure enzyme were obtained from 

46.5 grams of cells after the first anion exchange chromatography step (Figure 2.16, “pool A” in lane 

6).  The purified E. coli enzyme (Figure 2.16, lanes 9 and 10; Table 2.12 last row) which was flash-

frozen in 50 mM Tris buffer pH 8.0 containing 0.3 mM ZnCl2 gradually lost activity in storage at       

-80 °C over time (~50% loss after 2 weeks), so we instead used the purified enzyme (7 U/mg) 
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generously provided by Dr. J. Sygusch (University of Montreal), which was stable when flash-frozen 

in 50 mM sodium phosphate, 200 mM NaCl, pH 7.9 and kept at -80 °C, for our kinetic assays.   

 

 

Figure 2.16 SDS-PAGE of the purification steps for the E. coli FBP aldolase  

The lanes correspond to the following purification steps: 2) crude extract (20 μg); 3) ammonium 
sulphate fractionation 45% pellet (20 μg); 4) ammonium sulphate fractionation 45% supernatant     
(20 μg); 5) ammonium sulphate fractionation 80% pellet (20 μg); 6) to 8) Sepharose Q 
chromatography pools A, B, and C (5 μg); 9) ResourceQ chromatography (5 μg); 10) ResourceQ 
chromatography (10 μg).  Lane 1 contains the molecular mass markers.  The gel was stained with 
Coomassie Blue. 
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Table 2.12 Purification table for the E. coli FBP aldolase 

 

Step 

Protein 

(mg) 

Activity 

(U) 

Yield 

(%) 

Specific activity 

(µmol/min/mg) 

Purification 

 

1. Cell extract 4,230 14,000 100 3.3 1 

2. Ammonium sulfate 1,390 7,800 56 5.6 1.7 

3. SepharoseQ (pool A) 

(pools A, B, and C) 

26 

75 

N/A N/A N/A N/A 

4. ResourceQ* 1.8 68.4 1 38 11.5 

N/A: the enzyme activity was strongly inhibited by the presence of 30 µM ZnCl2 in the assay (from 
the purification buffer) and was around ~1 U/mg in the SepharoseQ elution pools.   

* Only a portion (47%) of the SepharoseQ “pool A” was used for this step.  The protein concentration 
for this step was estimated from the ResourceQ chromatography elution profile and from the SDS-
PAGE (Figure 2.16). 

 

2.3.4 Mass spectrometry results 

 

The theoretical and measured molecular mass of the recombinant aldolases are shown in Table 

2.13.  Two peaks were obtained by ESI mass spectrometry for the aldolases from B. cereus and       

M. grisea, which correspond to the molecular weight of the entire cloned sequences, and the 

sequences minus the N-terminal methionine, respectively.  The N-terminal methionine was thus not 

completely cleaved for these aldolases: this occurs frequently in the case of highly overexpressed 

recombinant enzymes.  We could not get a reliable signal from the H. pylori aldolase on the mass 

spectrometer in spite of numerous attempts, and even when the enzyme was apparently >90% pure on 

a SDS-PAGE (Figure 2.15).  This may be due to the aggregation problems we experienced with this 

enzyme; or possibly the enzyme degraded very quickly when dialyzed.  The results shown are all 



Chapter 2 Cloning, expression and purification of Class II FBP aldolases 

  101

equivalent to the expected molecular masses, within the error margin resulting from the mass 

spectrometer calibration procedure (+/- 3 Da), except for the H. pylori aldolase which is ~5 Da lower 

than expected for the sequence including the N-terminal methionine residue. 

Table 2.13 Mass spectrometry results for purified recombinant aldolases 

Aldolase Theoretical M.W.* 
   (+Met)                       (-Met) 

(Da) 

Measured M.W. 
(Da) 

M. tuberculosis   36,544                         36,413  36,411 

P. aeruginosa   38,574                         38,443 38,440.5 

M. grisea   39,776                         39,645  39,775   and     39,644 

E. coli   39,147                         39,016 39,012.5 

B. cereus   30,673                         30,542 30,671    and    30,540 

H. pylori   33,773                         33,642 33,767.5  

*The mass with and without the N-terminal methionine residue are shown 

2.4 Discussion 

The Class II aldolases from 6 microorganisms have been successfully cloned and expressed in      

E. coli.  The aldolases from M. tuberculosis, M. grisea, P. aeruginosa, B. cereus, H. pylori, and        

E. coli have also been purified to near homogeneity.  It is relevant to note that the amino acid 

sequence of the B. cereus FBP aldolase is completely identical to that of Bacillus anthracis, the 

causative agent of anthrax.  However, the nucleotide sequences differ slightly: there are three 

nucleotides that are substituted in the aldolase gene when (855/858 nucleotides identical in the FBP 

aldolase gene, see Appendix A).  The class II aldolases from M. tuberculosis, B. cereus and P. putida 

were previously isolated from the host organisms and partially characterized (Bai et al. 1982; Bang 

and Baumann 1978; Sadoff et al. 1969).  The amino acid sequence of the P. putida FBP aldolase is 
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96% identical to that of the P. aeruginosa PAO1 aldolase (see P. aeruginosa Protein ID: 

NP_249246.1, and P. putida Protein IDs: ZP_01637933.1; ZP_01715354.1 and NP_747063.1), so the 

results obtained in these previous studies will be considered in the evaluation of the recombinant 

enzymes reported here. 

As mentioned in this chapter, we chose to express the native enzymes in E. coli without adding an 

affinity tag to avoid potential problems with improper folding the aldolases and/or metal 

incorporation, as problems were reported previously for N-terminally tagged Class II aldolases by our 

group and others (Ramsaywak et al. 2004; Wehmeier 2001).  We chose to overexpress our enzymes 

in an E. coli strain that was not aldolase deficient, because our expression system is very effective and 

the small amount of native E. coli aldolase can be easily separated from our desired recombinant 

enzymes during the purification procedure.  The native E. coli aldolase has a molecular weight of 

39,016 Da and is not visible either on our purified enzyme SDS-PAGE gels, or detected by mass 

spectrometry analysis.  However, if the aldolases were to be used as a vaccine component (see section 

1.2.5), for example in the case of anthrax (Whiting et al. 2004), this overexpression system would 

obviously not be the best choice as there may still be traces of native E. coli enzymes, including the 

native FBP aldolase, in the purified protein preparations. 

In most cases, half or more of the peak of enzyme activity eluted from the chromatography 

columns was discarded after visualization of the fractions on SDS-PAGE, and only the pure fractions 

were pooled (see example Figure 2.14).  This was essential in order to limit the purification to a 

minimum number of steps and to achieve apparent purity of the enzymes in a timely manner, with the 

goal of conserving the highest specific activity in our samples.  Our final yields were obviously 

diminished by this practice.  Although only the purest fractions were pooled, the yields for the 

recombinant enzymes are superior to those of the purifications from the native hosts, as discussed 

below. 
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It was observed that the amount of anion exchange resin used during the first chromatographic step 

in the purifications, was directly affecting the purity of the eluted enzyme, and thus affected the 

number of chromatographic steps that were subsequently required.  For example, the P. aeruginosa 

aldolase was purified using the DEAE resin alone, because the amount of resin used was limiting and 

it seems the aldolase saturated the resin and prevented the binding of most contaminants.  It would 

thus be worthwhile in the future to determine the optimal amount of anion exchange resin to use for a 

given amount of cell lysate, if the native enzymes were to be routinely purified 

For the M. tuberculosis aldolase, a total of 6.1 mg of enzyme with a specific activity of 4 U/mg 

were previously obtained from 50 grams of cells from surface cultures of M. tuberculosis H37RV 

grown for 3 weeks.  The purification consisted of ammonium sulfate fractionation, DEAE and gel 

filtration chromatography.  A purification factor of 64 and a yield of 50% were reported (Bai et al. 

1982; 1975).  The authors state that the enzyme was stable when stored at -20 °C for 4 weeks.  In 

comparison, the purest recombinant enzyme we obtained has a specific activity about 9 times higher 

than the aldolase purified from the native bacteria (35 U/mg), and the enzyme yield was also higher 

for the same number of chromatographic steps.  A yield of 0.8 mg was obtained from only ~2 grams 

of E. coli cells.  A higher enzyme yield was obtained from 41 grams of fermentor-grown cells, 

resulting in a total of 28 mg of purified aldolase with a specific activity of 21 U/mg.  The expression 

of this enzyme in a recombinant host is clearly beneficial in terms of yield and enzymatic activity, in 

addition to it being safer and faster growing than the native host.  The M. tuberculosis aldolase was 

however one of the most difficult recombinant enzymes to purify in this project, as it had a 

comparatively low level of expression and is co-eluted with other E. coli enzymes in the anion 

exchange chromatographic steps.  The highest amount of M. tuberculosis aldolase purified (28 mg) is 

about ten times lower than that obtained for the P. aeruginosa, M. grisea, and B. cereus aldolases 

(200 mg to 300 mg each) from comparable quantities of fermentor-grown cells.  
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No protein yield was reported for the previously purified P. putida aldolase (Bang and Baumann 

1978), which is 96% identical to the P. aeruginosa enzyme.  The authors report a 26- to 30-fold 

purification with a recovery of 70-75% after ammonium sulfate (40-60%) precipitation and DEAE 

chromatography, resulting in a final specific activity 4.9 to 5.7 U/mg in the presence of 0.7 mM 

CoCl2.  The activity of the preparation was reported to be completely dependent on the presence of 

added cobalt, and the activity decreased by 18% over 2 weeks at 4 °C.  Similar purifications done 

from fermentor-grown cells in the present study yielded >95% pure enzyme with specific activities of 

19 U/mg and 27 U/mg respectively in the presence of 0.7 mM CoCl2.  The use of a recombinant 

expression system is therefore clearly advantageous for this enzyme as well. 

The vegetative cells and spores of B. cereus were previously grown in a 100-L fermentor to purify 

the FBP aldolase (Sadoff et al. 1969).  The authors did not specify the total amount of cells obtained, 

but stated that they were resuspended in batches of 500 grams for the purifications.  The yield was 59 

mg of aldolase at 6.38 U/mg (71-fold purification and 38% activity yield from crude extracts) from 

spores; and 6.6 mg of aldolase at 57.9 U/mg (170-fold purification and 8% activity yield) from 

vegetative cells, after ammonium sulfate fractionation and 2 chromatographic steps.  They state that 

the purified vegetative aldolase was unstable, but could be stabilized by the addition of 3 mM 

magnesium and 0.1 mM DTT.  In the present study, 210 mg of pure recombinant enzyme with a 

specific activity of 9.2 U/mg was obtained after 1 chromatographic step less than the previous 

reported study, from 103 grams of fermentor-grown E. coli cells.  The addition of Co2+ to the purified 

BCFBA did not increase the specific activity in our study.  Sadoff and collaborators have reported 

inconsistent results for the effect of divalent metal ions on the purified BCFBA activity (Sadoff et al. 

1969).  As stated above, the enzyme they purified from vegetative B. cereus cells had a reported 

specific activity of 58 U/mg, a value significantly higher than that obtained for our recombinant 

enzyme.  Sadoff and collaborators used a different coupled assay to determine the enzyme’s activity, 
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where glyceraldehyde-3-phosphate dehydrogenase is used to reduce NAD+. Their assays were done in 

the absence of triose phosphate isomerase, which results in the accumulation of the product DHAP in 

the assay as the FBP cleavage reaction proceeds.  The different assay procedure could potentially 

explain the discrepancy with our value.  The value that they reported for the KM of BCFBA (2 mM) is 

also much higher than the one we determined using our NADH-linked assay (450 μM, see kinetic 

analysis in Chapter 3).  By contrast, the KM value reported for the P. putida aldolase by Bang and 

Baumann (30 μM) using the NADH-linked assay is equivalent to the one we determined for the 

closely related P. aeruginosa (34 μM, see Chapter 3).   We subsequently purified PAFBA and 

BCFBA using buffers supplemented with 0.3 mM zinc chloride, but this did not increase the specific 

activity of either recombinant enzyme.   

The use of a recombinant system is thus obviously useful in terms of yield of enzyme for a given 

amount of cells.  However, the activity of the recombinant B. cereus aldolase is 6-fold lower than 

reported from vegetative cells from this organism.  The correct protein folding may thus not be 

achieved or the native metals may not be accessible in the E. coli expression system for this enzyme.  

The E. coli expression is however better for the M. tuberculosis (35 U/mg) and M. grisea (70 U/mg) 

recombinant aldolases.  The highest specific activity ever reported for a Class II FBP aldolase is    

150 U/mg (100 s-1) for the yeast enzyme assayed at 30 °C (Belasco and Knowles 1983).  The aldolase 

from M. grisea shares 66% amino acid sequence identity with the yeast enzyme (Figures 1.14 and 

1.17), has to our knowledge not been purified previously, and its specific activity is among the 

highest reported to date for FBP aldolases (Labbe et al. 2007). 

We used an existing recombinant vector for the E. coli Class II aldolase.  The E. coli enzyme 

activity obtained by the team who constructed the plasmid was 23.3 U/mg (Henderson et al. 1994), 

with an assay temperature of 25 °C.  The activity we obtained using the same expression plasmid was 
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higher (38 U/mg), but this may be due to the higher assay temperature (30 °C).  Only 2 anion 

exchange chromatographic steps (SepharoseQ and ResourceQ) were needed to obtain ~1.8 mg of  

>95% purified enzyme from 46.5 grams of cells (14,000 U) in the procedure described here.  This 

yield could have been improved by a factor 6 (~11 mg pure enzyme) if all the 76 mg obtained after 

the first chromatography step had been used in the second one, instead of only 12 mg.  Henderson and 

collaborators started from 17,000 U in the crude extract, and obtained 8 mg of enzyme with a specific 

activity of ~17 U/mg after 2 anion exchange columns (DEAE and MonoQ).  However an additional 

chromatofocusing step is required to obtain a higher purity (23.3 U/mg).  The two purification 

methods using shake-flask grown cells with the same overexpression plasmid thus seem equivalent in 

terms of yield versus the number of purification steps.  The purified enzyme was however unstable in 

the storage conditions employed here.  The half-life of the E. coli aldolase was previously reported to 

be 60 days at 25 °C in Triethanolamine buffer containing 0.3 mM ZnCl2 (Von der Osten et al. 1989); 

but we found that the enzyme had a half-life of  only ~30 days at -80 °C in a similar buffer. 

The expression and purification methods did not seem to be the major factor determining the final 

specific activity of the recombinant enzymes, as various conditions yielded purified enzymes with 

similar properties (within a factor ~2).  It can be concluded that for Class II aldolases, the main factor 

influencing the specific activity and stability is the E. coli recombinant expression system itself.  The 

aldolases from B. cereus, B. anthracis, S. pneumoniae, H. pylori and P. aeruginosa can be classified 

as “Type B” aldolases according to the classification of proposed by Plaumann and collaborators 

(Plaumann et al. 1997), whereas the aldolases from M. tuberculosis, M. grisea and H. influenzae are 

classified as “Type A” (Figure 1.4).  The type B aldolases have a much lower specific activity than 

the type A enzymes in this recombinant system, and it is not known if this is an intrinsic property of 

the Type B enzymes, or if this is due to the inadequacy of the E. coli expression system for these 

enzymes, since many type B enzymes have been reported to use a divalent metal ion other than zinc.  
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The recombinant enzyme from P. aeruginosa had a higher specific activity (4-fold) than reported 

when purified from the original host.  However, the recombinant B. cereus aldolase activity was 

much lower (6-fold) than that reported earlier when the enzyme was purified from the host (Sadoff et 

al. 1969).  It is particularly surprising that the H. pylori aldolase is the most unstable among the 

recombinant enzymes, since it is most related to a thermostable aldolase (that of Thermus aquaticus, 

see Figure 1.4).  It would thus be interesting to try to purify the Type B enzymes from a Pseudomonas 

overexpression system for comparison. 

The use of a fermentor allowed for the production of large amounts of cells in a conveniently small 

volume, but did not seem to be advantageous over batch cultures in terms of enzymatic yield, when 

the same amount of cells is used for the purifications.  The expression level of the aldolases was 

usually lower in the fermentor, and this was attributed to the use of an insufficient amount of IPTG.  

This amount needs to be optimized according to the cell density of the fermentor culture to allow for 

the complete de-repression of the T7 RNA polymerase expression (under the control of the lacUV5 

promoter in the E. coli BL21(λDE3) strain) which maximizes the recombinant gene expression.     

The purified recombinant aldolases can be used for kinetic and inhibition assays, which will be the 

subjects of the two following chapters. 
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Chapter 3 

Characterization of recombinant Class II FBP aldolases 

3.1 Introduction 

The purified recombinant Class II FBP aldolase enzymes were characterized to: i) compare their 

properties with those of the native enzymes, ii) gain the necessary information for design of inhibition 

kinetic assays (Chapter 4), and iii) investigate the potential of Class II enzymes for organic synthesis  

by comparison with the Class I rabbit muscle aldolase.   

The kinetic parameters and optimum pH for the activity of the recombinant aldolases will be 

presented here and compared with those of other Class II aldolases previously characterized (Table 

3.1).  These properties for the M. grisea and H. pylori aldolases have to our knowledge not been 

determined previously.  The temperature and organic solvent stability of the recombinant enzymes 

were also determined.  The stability of the Class II aldolase in organic solvents was investigated only 

for the E. coli enzyme previously (Hao and Berry 2004; Hao 2003).  The quaternary structure and 

metal content of the M. tuberculosis aldolase were determined previously by our group (Ramsaywak 

et al. 2004; Ramsaywak 2003), but the quaternary structure of the aldolases from M. grisea and P. 

aeruginosa were determined for the first time in this project.  The metal content of the recombinant 

aldolases as well as their reactivation by various divalent metals will also be described here.    

Some of the work presented in this chapter was performed by undergraduate students under my 

supervision.  The metal titration and some of the kinetic characterization assays were done by 

NSERC summer Undergraduate Student Research Award (USRA) recipient Sarah de Groot.  The 
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organic solvent and temperature stability assays, as well as several assays to test the pH-dependence 

of the aldolases’ kinetic parameters, were done by NSERC summer USRA recipient Timothy 

Rasmusson.  The gel filtration chromatographies to determine the molecular weight of the aldolases 

from B. cereus and M. grisea were kindly performed by Dr. Stephen Seah (University of Guelph).  
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Table 3.1 Kinetic parameters table for Class II FBP aldolases published by other groups 

N/A: not available.  *Previously classified as Anacystis nidulans.  ** Molecular weight > 200 kDa   † 
Activity originally reported as U/mg.  ‡ Activity originally reported as moles FBP cleaved per min 
per mole (i.e. per dimer or tetramer) of aldolase. 

References: A (Plater et al. 1999); B (Pelzer-Reith et al. 1994); C (Rutter 1964); D (Bai et al. 
1975); E (Hill et al. 1976); F (Willard and Gibbs 1968a); G (Nakahara et al. 2003); H (Sauve and 
Sygusch 2001b); I (Sadoff et al. 1969); J (Bang and Baumann 1978). 

 

 

 

 

Organism 

Quaternary 

Structure 

(subunits) 

 

Km

(μM) 

 

kcat

(s-1) 

Specificity 

(kcat / Km) 

102 μM-1 s-1

 

 

Reference 

   

TYPE A   

  Escherichia coli 2 170 10.5 6 A 

  Euglena gracilis 2 175 14.1 † 8 B 

  Saccharomyces cerevisiae 2 370 57.5 ‡ 16 C 

  Mycobacterium tuberculosis ** 80 2.5 † 3.1 D 

TYPE B      

  Bacillus stearothermophilus        

                               -Zn form  2 12 5.6 † 47 E 

                               -Co form 2 4.55 10.4 † 230 E 

  Clostridium perfringens 2 300 41.7 ‡ 14 C 

  Saprospira thermalis 4 190 27.5 ‡ 14 F 

*Synechococcus sp. PCC6301 4 160 21.8 ‡ 14 F 

  Synechocystis sp. PCC6803 8 8 5.1 † 64 G 

  Themophilus aquaticus 4 305 25.3 † 8 H 

  Bacillus cereus 2 2000 29.5† 1.5 I 

  Pseudomonas putida N/A 30 3.7† 12 J 
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3.2 Procedures 

3.2.1 Quaternary structure determination 

The molecular weight of the native protein was determined by size exclusion chromatography.  

The Class II FBP aldolase from M. grisea (7 mg) and B. cereus (6 mg) were dialyzed in 50 mM 

phosphate buffer pH 7.0, 0.2 M NaCl and then injected onto a Superdex 200 HR (26 mm x 60 cm) 

column (Amersham Pharmacia Biotech) equilibrated with the same buffer (injection volume:          

1.5 mL).  The proteins were eluted at a flow rate of 3 mL/min at 25 ºC.  For reference, standards from 

a Molecular Weight Marker Kit (SIGMA) were used according to the manufacturer’s instructions.  

Dextran Blue (2 mg/mL), β-amylase (3 mg/mL), alcohol dehydrogenase (5 mg/mL), BSA               

(10 mg/mL), carbonic anhydrase (3 mg/mL), and cytochrome C (2 mg/mL) were resuspended in the 

column equilibration buffer to the recommended concentration (in brackets), applied to the same 

column, and eluted using the same protocol.   

For the the aldolase from P. aeruginosa, a Superdex 200 column (10 mm x 30 cm) was used.  The 

enzyme (115 µg) was dialyzed in 50 mM Tris-HCl, 10% glycerol, 100 mM NaCl, 1 mM DTT, pH 7.5 

and the column was equilibrated with the same buffer.  The injection volume was 50 µL, and the 

proteins were eluted at a flow rate of 0.75 mL/min at 7 ºC.  The molecular weight markers (above) 

were resuspended in the column equilibration buffer, applied to the same column, and eluted using 

the same protocol. 

3.2.2 Enzyme stability 

3.2.2.1 Stability in assay solution at 4 °C 

The assay mixture described in section 2.2.3 was prepared (one preparation large enough for      

50 assays for each enzyme) and kept at 4 °C.  Aliquots were withdrawn periodically to determine 
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their activity, and the assays were done in quadruplicate.  In some cases, divalent metals were also 

added to the assay mixture at concentrations indicated in the results section.  

3.2.2.2 Temperature stability 

Concentrated samples of the different aldolases were diluted in 50 mM HEPES buffer with       

pH 7.3, and then divided into 50 μL samples. The samples were incubated at the desired temperature 

using an Amplitron II Thermolyne PCR thermocycler for ten minutes, then placed on ice immediately 

for 20 minutes. Following this, 2.5 μL of the sample were taken and the aldolase activity was assayed 

as described above, but with 50 mM HEPES buffer pH 7.3 (at 30 °C) instead of 50 mM Tris-HCl    

pH 8.0. 

3.2.2.3 Organic solvent stability 

Samples of concentrated aldolase were diluted in various concentrations of the desired organic 

solvent in water. The samples (15 μL) were assayed for aldolase activity as outlined in the above 

paragraph at time 0 to confirm the enzyme activity. The samples were then incubated at room 

temperature for 3.5 hours, upon which another 15 μL portion was withdrawn and assayed for aldolase 

activity.  The Class I rabbit muscle aldolase (RAMA) and the Class II S. cerevisiae aldolase (SC) 

used in the assay were purchased from Sigma-Aldrich (Mississauga, ON).   

3.2.3 Determination of Michaelis-Menten parameters for FBP cleavage 

Assays were performed as described in section 2.2.3.  The coupling enzymes were verified to be 

present in excess quantity, and therefore not limiting for the detection of the FBP cleavage rate.  The 

H. pylori enzyme was tested in the assay mixture supplemented with 5 μM CoCl2.  For the pH 

optimum determination, a 50 mM glycylglycine buffer was used instead of TRIS-HCl.  The pH 
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curves for each enzyme were done using 1.5 mM of FBP.   A similar relative activity profile in 

function of pH was obtained for the aldolase from B. cereus using 4 mM FBP.  

3.2.4 Metal content determination 

The total zinc contents of the Class II FBP aldolases were determined spectrophotometrically 

using the chelator 4-(2-pyridylazo)-resorcinol (PAR, Figure 3.1) as described by Siemann and 

collaborators (Siemann et al. 2002).  In a typical experiment, the aldolase (4-16 µM) in Hepes          

50 mM, pH 7.3, containing guanidine hydrochloride (4 M, unless otherwise indicated) was incubated 

at ~90 ºC for at least 30 minutes, cooled on ice and supplemented with PAR (final concentration:      

50 µM).  The absorbance in the range of 350-600 nm was recorded, using a Cary 1-Bio UV-Visible 

spectrophotometer (Varian, Mississauga, ON).  A calibration curve was constructed using ZnCl2 

standards (0-10 µM) by recording the absorbance at 495 nm under identical experimental conditions 

(see above).  The data on the zinc content of the sample and its protein concentration provided the 

basis for establishing the stoichiometry with respect to the metal ion. 

 

Figure 3.1 PAR structure 

3.2.5 Metal replacement studies 

The M. tuberculosis aldolase was incubated with 10 mM EDTA for 4 hours at 4 °C.  The 

enzyme was then desalted using a PD-10 column previously equilibrated with 10 volumes of Chelex 

(Bio-Rad Corp.) (Himmelhoch et al. 1966) treated water followed by 2.5 volumes of Chelex-treated 
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50 mM Tris-HCl pH 7.4.  The assay plates and the plastic vials used to prepare the assay mixture and 

the metal stock solutions were also previously treated with 10% Nitric acid for 15 minutes and then 

rinsed with Chelex-treated water.  The metal stock solutions (~0.5 to 1.8 mM) were prepared by 

dissolving the metal chlorides in Chelex-treated water, except for ZnCl2, MnCl2 and CoCl2 which 

precipitate under these conditions.  The CoCl2 and ZnCl2 were dissolved in Chelex-treated 20 mM 

Tris-HCl pH 7.4, and the MnCl2 was dissolved in Chelex-treated 20 mM Tris-HCl pH 7.4 and 10 mM 

DTT.  The activity was tested using the coupled assay described in section 2.2.3., with divalent 

metals added to the assay mixture in the concentrations indicated in the results section.   

P. aeruginosa, H. pylori, and B. cereus aldolases were inactivated with 1 mM EDTA                 

(P. aeruginosa aldolase), 1.5 mM EDTA (H. pylori aldolase) or 5 mM EDTA (B. cereus aldolase) for 

15 minutes at room temperature, then diluted into the assay mixture such that the final concentration 

of EDTA was 10 µM (P. aeruginosa aldolase), 15 µM (H. pylori aldolase) or 50 µM (B. cereus 

aldolase) in the assay.  The divalent metals were added to the assay mixture in the concentration 

indicated in the results section.  The metal stock solutions (5 mM) were prepared by dissolving the 

chloride salts in Chelex-treated 50 mM Tris-HCl pH 8.0, except for the ZnCl2 and CoCl2 solutions.  

The ZnCl2 was made by dissolving the metal chloride to a concentration of 0.8 mM in 100 mM Tris-

HCl pH 6.9.  The CoCl2 solution was made as described in the previous paragraph (lower pH to avoid 

oxidation and precipitation).  The activity was tested using the coupled assay described in section 

2.2.3.   

3.3 Results 

3.3.1 Quaternary structure 

Gel filtration experiments revealed that the enzymes of M. grisea and B. cereus are dimeric (see 

Figure 3.2).  The aldolases from S. cerevisiae and E. coli, which share 66% and 51% amino acid 
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sequence identity respectively with the M. grisea enzyme (see Figures 1.4 and 1.17), are also dimeric 

(Baldwin et al. 1978; Harris et al. 1969).  A crystal structure was solved by the laboratory of             

Dr. Sygusch (University of Montreal) for the M. grisea aldolase purified in our laboratory, in which 

the enzyme was also dimeric (Figure 3.3).  The M. tuberculosis Class II aldolase has 39% sequence 

identity with the M. grisea enzyme, but has a tetrameric structure (Ramsaywak et al. 2004).  The 

aldolase from P. aeruginosa is also tetrameric according to a gel filtration experiment (Figure 3.4).   
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Figure 3.2 Quaternary structure determination of the recombinant B. cereus and M.grisea Class 
II FBP aldolases by gel filtration  

Molecular mass standard consists of β-amylase (200 kDa), alcohol dehydrogenase (150 kDa), Bovine 
Serum Albumin (66 kDa), carbonic anhydrase (29 kDa), and cytochrome C (12.4 kDa) (squares).  
The solid and dashed arrows indicate the elution volume of the dimeric B. cereus (~66.4 kDa) and   
M. grisea (~79.3 kDa) aldolases, respectively (filled circles).  The theoretical weight of the aldolase 
dimer is 61,346 Da for B. cereus and 79,288 Da for M. grisea.  
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Figure 3.3 Dimeric M. grisea FBP aldolase crystal structure. 

The structure was determined by Dr. Sygusch's laboratory (University of Montreal) using our purified 
enzyme.  The dimer subunits are shown in green and blue, and the sodium and zinc ions are 
represented as yellow and grey spheres, respectively.  The structure coordinates have not yet been 
deposited in the Protein Data Bank.  The image was produced using PyMOL (DeLano Scientific, San 
Francisco, CA). 
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Figure 3.4 Quaternary structure determination of the recombinant P. aeruginosa Class II 
fructose 1,6-bisphosphate aldolase by gel filtration 

Molecular mass standard consists of β-amylase (200 kDa), alcohol dehydrogenase (150 kDa), Bovine 
Serum Albumin (66 kDa), carbonic anhydrase (29 kDa), and cytochrome C (12.4 kDa) (squares).  
The arrow indicates the elution volume of the FBP aldolase under non-denaturing conditions (filled 
circle), showing that the enzyme has a tetrameric structure (~180 kDa).  The theoretical weight of the 
tetrameric enzyme is 154 kDa. 
 

 

3.3.2 Optimum pH 

The pH optima of the recombinant aldolases for the FBP cleavage reaction were determined in 

glycylglycine buffer (Figure 3.5).  Each point represents the relative activity of the enzyme at each 

pH value, determined by conducting assays in quadruplicate at a substrate concentration greater than 

10 times the enzyme’s KM (except for the B. cereus aldolase, which was 3 times the KM value, see 
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section 3.2.3).   The aldolases from M. grisea, B. cereus, H. pylori, and M. tuberculosis all have a pH 

optimum between 7.75 and 8.  However, the P. aeruginosa aldolase has a significantly different pH-

activity curve with a pH optimum of 8.5.   

0

20

40

60

80

100

120

7.25 7.5 7.75 8 8.25 8.5 8.75 9
pH

%
 A

ct
iv

ity

MG
BC
PA
HP
MT

 

Figure 3.5 pH optimum of the purified Class II aldolases for the FBP cleavage reaction 

The coupled assays were performed in 50 mM glycylglycine buffer.  Each point represents the 
average of 4 replicates.  Note that the H. pylori aldolase activity was tested in an assay mixture 
supplemented with 5 μM CoCl2.  All data were normalized relative to the highest activity recorded for 
each enzyme.  The aldolases are identified in the legend according to their host organism: M. grisea 
(MG); B. cereus (BC); P. aeruginosa (PA); H. pylori (HP); and M. tuberculosis (MT). 
  
 

3.3.3 Enzyme stability 

The aldolases were characterized with respect to their tolerance to various organic solvents 

(Figure 3.6).  The Class I rabbit muscle aldolase (RAMA) was also tested as a reference, since it is 
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the most widely used FBP aldolase in organic synthesis.  The results show that RAMA is the most 

stable overall in the five organic solvents tested, whereas the M. grisea aldolase is the most easily 

inactivated.  The aldolases are most tolerant to DMSO (often up to 50% v/v) and least tolerant to       

t-butanol and acetonitrile (less than 20% v/v).  RAMA and the aldolases from B. cereus and              

P. aeruginosa are stable in DMF and acetone at concentrations at or above 25% v/v.   
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Figure 3.6 Organic solvent stability of FBP aldolases 

The enzymes were pre-incubated in various solvent concentrations for 6 hours before being diluted in 
the assay mixture.  Each bar indicates the highest concentration of organic solvent that results in the 
retention of more than 50% of the enzyme’s activity (based on 4 replicates).  The aldolases are 
identified according to their source organism: rabbit muscle and S. cerevisiae (RAMA and SC, 
respectively, purchased from Sigma-Aldrich, Mississauga, ON); B. cereus (BC); P. aeruginosa (PA); 
M. tuberculosis (MT); and M. grisea (MG).  *The B. cereus aldolase was activated in DMSO.   
 

The enzymes were also tested for their stability at higher temperatures.  The results presented in 

Figure 3.7 show that the aldolase from B. cereus is very resistant to heat, as it retained almost half of 
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its activity after 10 minutes of incubation at 90ºC.  The other enzymes lost almost all their activity 

after a similar incubation at 60ºC.  The aldolase from M. grisea was again the least stable 

recombinant aldolase, as it lost 25% of its activity after 10 minutes of incubation at 45ºC.  The 

addition of 0.7 mM Co2+ during the incubation did not significantly increase the P. aeruginosa 

aldolase stability (results not shown).  Note that the temperature stability of the P. aeruginosa and B. 

cereus aldolases were significantly reduced after long-term storage.  When assayed 14 months later 

for example, the B. cereus aldolase only retained 16 ± 2% of its activity after 10 minutes of 

incubation at 70 °C, and had less than 2% activity after incubation at 80 °C.      
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Figure 3.7 Temperature stability of the purified FBP aldolases. 

The enzymes were pre-incubated for 10 minutes at the temperature indicated, cooled on ice, and 
assayed at 30°C.  Each point represents the average of 4 replicates.  The aldolases are identified 
according to their host organism as described in Figures 3.5 and 3.6. 
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The stability of the aldolases at 4 °C was also monitored to ensure that the diluted enzyme would 

be stable while being kept on ice during the kinetic and inhibition tests done within the same day.  

The results shown in Figure 3.8 indicate that RAMA and the M. tuberculosis aldolase are stable for 

several days in these conditions, but that the other enzymes lose a significant amount of activity over 

24 hours.   The aldolases from B. cereus and P. aeruginosa are particularly unstable when diluted in 

the assay mixture, and lost over 95% of their activity after 24 hours.  The stability of these enzymes 

were then tested by incubation in 5 μM of either ZnCl2 or CoCl2 (Figure 3.9).  The results show that 

the aldolase from P. aeruginosa is stable for several days in the assay mixture supplemented with 

ZnCl2.  The aldolase from B. cereus was also significantly more stable in the presence of either 

metals, as it retained ~60% of its activity after 24 hours.  
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Figure 3.8 Enzyme stability in assay mixture at 4 °C 

Each point represents the average of 4 replicates.  The assay mixture was supplemented with 5 µM 
CoCl2 in the case of the H. pylori aldolase (HP).  The M. grisea aldolase originally stored both at 4 °C 
(in a saturated ammonium sulfate solution, MG-AS) and -80 °C (flash-frozen in liquid nitrogen, MG-
FF) were tested as indicated. The other aldolases are identified according to their source organism: 
rabbit muscle and S. cerevisiae (RAMA and SC, respectively, purchased from Sigma-Aldrich, 
Mississauga, ON); M. tuberculosis (MT); B. cereus (BC); and P. aeruginosa (PA).  
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Figure 3.9 Stability of the B. cereus and P. aeruginosa aldolases in the assay mixture at 4 °C 

The enzymes were incubated without metal (data from Figure 3.8, hollow symbols), and with 5 µM 
ZnCl2 (PA-Zn and BC-Zn, solid black symbols) or 5 µM CoCl2 (PA-Co and BC-Co, solid grey 
symbols).  Each point represents the average of 4 replicates.   
 
 

3.3.4 Metal content and metal specificity 

The zinc content of the purified aldolases is shown in Table 3.2.  The Zn2+ is tightly bound to the 

enzyme, and as a consequence the aldolases need to be denatured to release their Zn2+ ions.   Using a 

colorimetric assay with PAR, we determined that the purified M. grisea aldolase had a zinc content 

0.83 ± 0.05 per subunit.  The enzyme had in that case been pre-incubated with 6 M guanidine-HCl for 

30 minutes at 90 °C prior to the PAR addition.  The other Class II type A aldolases from E. coli,        

S. cerevisiae and M. tuberculosis are also zinc-dependent (Ramsaywak et al. 2004; Scamuffa and 

Caprioli 1980; Harris et al. 1969).   M. tuberculosis FBP aldolase zinc content was calculated to be 



Chapter 3 Characterization of recombinant Class II FBP aldolases 

  125

0.54 ± 0.09 per subunit using the PAR test after incubation at room temperature in 4M guanidine-HCl 

for 30 to 45 minutes (no heating).  The PAR assay was later done after heating two other samples 

from separate M. tuberculosis purifications (specific activity 33 U/mg) at 93 °C for 30 minutes 

followed by a cooling on ice.  The zinc content obtained by this method was 49.4 ± 0.8%.     

Table 3.2 Zinc content of the recombinant aldolases 

Source* Zinc content  

(per subunit) 

Denaturation 

conditions 

M. grisea 0.83 ± 0.05 6 M Guanidine-HCl 
90 °C for 30 minutes 

M. tuberculosis 0.494 ± 0.008 4 M Guanidine-HCl 
93 °C for 30 minutes 

B. cereus 0.97 ± 0.10 4 M Guanidine-HCl 
85 °C for 60 minutes 
and 25 °C for 4 days 

P. aeruginosa 0.16 ± 0.02 4 M Guanidine-HCl 
85 °C for 60 minutes 
and 25 °C for 4 days 

*The H. pylori aldolase was not tested because Co2+ is added to the 
 purified enzyme for stability. 

 

The B. cereus aldolase had an apparent zinc content of 0.82 ± 0.08 per subunit immediately after 

the PAR test preceded by 1 hour incubation at 85 °C in 4M Guanidine-HCl.  However 4 days later the 

absorbance of the enzyme samples left at room temperature in the presence of PAR had increased 

significantly and the zinc content was calculated to be 97 ± 10%.  It seems like the enzyme was not 

fully denatured even after the heat treatment in denaturing conditions, and still retained some of its 

Zn2+.  This is consistent with the high temperature stability of this enzyme, as shown in Figure 3.7.  In 

a similar way, the P. aeruginosa FBP aldolase had an apparent zinc content of 0.08 ± 0.02 per subunit 

immediately after the same procedure, but 4 days later the absorbance was measured again and the 

zinc content was 0.16 ± 0.02 per subunit.  It appears that the zinc ions take a long time to leach out of 
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these type B enzymes.  The zinc content of the H. pylori aldolase was not determined since the 

purifed enzyme was stored in a solution supplemented with 5 µM CoCl2, in addition to being only 

~90% pure.   

The aldolases from P. aeruginosa and H. pylori were observed to be activated by CoCl2.  These 

enzymes were titrated with this metal to determine the optimal concentration to be used in the kinetic 

assays (Figure 3.10).  The activation curve obtained with the P. aeruginosa aldolase mirrors that 

presented by others for the P. putida aldolase, as they also had determined that an activation peak was 

reached at ~0.7 mM CoCl2 (Bang and Baumann 1978).  The H. pylori aldolase is also activated by 

this metal ion, but was increasingly inhibited when the CoCl2 concentration was higher than 5 μM.  
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Figure 3.10 Effect of CoCl2 on the aldolases from P. aeruginosa and H. pylori 

The aldolases reached their activity peak at a CoCl2 concentration of 0.75 mM (P. aeruginosa, 
circles) and 5 µM (H. pylori, squares) respectively.  
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The metal specificity of the recombinant aldolases from M. tuberculosis, B. cereus, P. aeruginosa 

and H. pylori was further tested by treatment with a metal chelator, followed by reactivation with 

various divalent metals (Figures 3.11 and 3.12).  It was observed that after a 2 hour incubation with      

1 mM EDTA, M. tuberculosis aldolase is completely inactivated.  When EDTA was removed from 

the enzyme using a desalting column, it was found to recover 80% of its activity when added to the 

assay mixture.  It is possible that EDTA froms an inhibitory ternary complex with the metal ion and 

enzyme and the desalting column simply removes EDTA, allowing the enzyme to regain function. 

However, a more likely explaination would be that trace amounts of Zn2+ present in the assay 

described in section 2.2.3 are sufficient to reactivate the enzyme, making a metal-replacement study 

difficult to perform in the absence of a chelating agent.  A typical assay would contain ~25 ng of M. 

tuberculosis aldolase per 100 µl reaction, as well as 20 µg BSA, which is a known zinc-binding 

protein (Kd of 10-7.6 M and    10-8.2 M, (Ohyoshi et al. 1999)).  The BSA is likely to be the main source 

of extraneous zinc in this assay, but there could also be traces of zinc in the commercial coupling 

enzymes mixture and other assay components.  Previous authors have noted that a zinc contamination 

as low as 1 ng/mL could fully reactivate the S. cerevisiae aldolase in a normal assay (Kobes et al. 

1969).  We therefore decided to do the metal replacement studies with a small amount of EDTA 

present in the assay mixture.  The aldolases likely have a lower affinity for zinc than EDTA, as the 

dissociation constants determined previously (Henderson et al. 1994) for the two Zn2+ ions in the 

dimeric E. coli FBP aldolase are K1=10-8.9 M and K2=10-11.8 M, whereas the Kd of EDTA for zinc is 

approximatively 10−16M.  

The aldolase from M. tuberculosis was inactivated by EDTA and desalted, leaving only a small 

amount of residual EDTA in the enzymatic assay.  The enzyme had ~10% residual activity in the 

assay in the absence of added metal.  Various divalent metals at a final concentration of 2 µM were 

then used in the assay mixture.  As a control, the enzyme not treated with EDTA was also tested by 



Chapter 3 Characterization of recombinant Class II FBP aldolases 

 128

adding 2 µM of the same divalent metals to measure their effect (inhibitory or activating, see Figure 

3.11).  The results clearly show that the M. tuberculosis aldolase is a zinc-dependent enzyme, with 

CoCl2 only producing a small activation (less than 30%) in the same conditions.  The other metals did 

not significantly reactivate the enzyme relative to the control. 

The aldolases from P. aeruginosa, B. cereus and H. pylori were in contrast more activated by the 

presence of CoCl2 than ZnCl2 after inactivation with EDTA (Figure 3.12).  It is relevant to point out 

that there was a relatively high amount of EDTA (50 μM) in the assays done with B. cereus (Figure 

3.12, Panel B), so the quantities of metal chlorides used for the reactivation (20 μM and 100 μM) 

were likely to be insufficient for a maximum reactivation.  The instability of the H. pylori aldolase in 

the absence of metal also likely prevented its full reactivation.   The results still indicate that CoCl2 

and CdCl2 were able to significantly reactivate the B. cereus and the H. pylori aldolases.  It is also 

interesting to note that MnCl2 increased the activity of the P. aeruginosa aldolase by a factor 2.5 

relative to its pre-inactivation activity level, whereas the CoCl2 increased it by a factor 5.5.  The 

results from these experiments (Figure 3.12) are only presented for qualitative purposes, as the 

addition of calcium chloride also partially reactivates the B. cereus and H. pylori aldolases, and 

appears to fully reactivate the P. aeruginosa aldolase to its pre-EDTA treatment activity level (Figure 

3.12, Panel A).  This indicates that the metal(s) trapped by the residual EDTA can be released using 

this protocol, as opposed to the protocol followed for the M. tuberculosis aldolase where CaCl2 did 

not reactivate the enzyme (Figure 3.11).  The levels of reactivation obtained with CaCl2 in Figure 

3.12 are assumed to indicate the limit under which the reactivation results cease to be valid.   
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Figure 3.11 Activity of the M. tuberculosis aldolase in the presence of 2 µM of various divalent 

metals 
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Panel A: enzyme before EDTA treatment.  Panel B: enzyme after EDTA treatment and desalting. 
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Figure 3.12 Reactivation of the FBP aldolases from P. aeruginosa, B. cereus and H. pylori with 
divalent metals after EDTA treatment 

The divalent metals indicated at the bottom of the figure were added in the concentrations of 20 µM 
(white bars) or 100 µM (black bars).  B.I. and A.I. stand for before and after inactivation, 
respectively, and these activities were measured without addition of divalent metal (solid grey bars).  
The assays measured before inactivation (B. I.) did not contain EDTA.  Panel A: P.aeruginosa 
aldolase.  The assay mixture contained 10 µM EDTA in addition to the divalent metal indicated.  
Panel B: B. cereus aldolase.  The assay mixture contained 50 µM EDTA in addition to the divalent 
metal indicated.  Panel C: H. pylori aldolase.  Note that the sample before inactivation (B.I.) was 
assayed in the presence of 6 µM CoCl2. The assay mixture for the other samples contained 15 µM 
EDTA in addition to the divalent metal indicated.   
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3.3.5 Kinetic parameters 

The kinetic parameters determined using the coupled assay, in the presence of excess 

triosephosphate isomerase and α-glycerophosphate dehydrogenase, are presented in Table 3.3.  The 

parameters were determined at pH 8.0, which is close to the Class II aldolases pH optimum (pH 7.75 

to 8.0, Figure 3.5), except for the P. aeruginosa aldolase which is ~20% less active at pH 8.0 

compared to its optimum pH 8.5.  The highest kcat was obtained with the M. grisea enzyme, but the 

aldolase from M. tuberculosis demonstrated the highest specificity for FBP, as the apparent second-

order rate constant of the reaction, or kcat/Km, is 1.08 x 106 M-1·s-1 for this enzyme.  The KM of the B. 

cereus aldolase was found to be one order of magnitude greater than that of the other enzymes.  The 

type B aldolases also have a significantly lower kcat than the type A enzymes purified.   

Table 3.3 Kinetic parameters and quaternary structure of recombinant Class II aldolases (this 

study) 

Activity determined in Tris-HCl pH 8.0, at 30 °C.  Kinetic parameters were estimated by fitting the 
data to the Michaelis-Menten equation using the least squares and dynamic weighing options of the 
Leonora software program (Cornish-Bowden 1995).  * Assays done in the presence of 5 µM CoCl2.   

 

 

Recombinant aldolase 

Quaternary 

Structure 

(subunits) 

 

KM

(μM) 

 

kcat

(s-1) 

Specificity 

(kcat / Km) 

102 μM-1 s-1

TYPE A  

Magnaporthe grisea 2 51 ± 1 45.7±0.4 90 ± 2 

Mycobacterium tuberculosis 4 27.9±0.9 30.1±0.3 108 ± 3 

TYPE B     

Pseudomonas aeruginosa 4 35 ± 2 1.53±0.02 4.4 ± 0.2 

Helicobacter pylori* 2 66 ± 1 2.87±0.02 4.35 ± 0.07 

Bacillus cereus 2 450 ± 10 2.95±0.03 0.66 ± 0.01 
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A study on the aldol condensation reaction using GAP and DHAP as substrates was also 

attempted using a colorimetric method described by Roe and collaborators (Roe et al. 1949), with 

modifications introduced by Collins (Collins 1974).  The method is based on the fact that the sugar 

FBP is reductive and can react with resorcinol in certain conditions to give a colored product that can 

be monitored spectrophotometrically at λ 520 nm.  Unfortunately, it was found that the triose 

phosphates also react with resorcinol to a significant extent using this method, making a kinetic 

analysis unreliable due to background noise from the reactants.  This problem had also been noted 

earlier by other authors (Lewis and Lowe 1977).  An alternative method such as the oxidation of the 

carbanion intermediate by hexacyanoferrate (III) (Healy and Christen 1973) should instead be used 

for the aldol condensation kinetic analysis.  This method however results in the indiscriminate 

detection of carbanion formation in both the aldol condensation and aldol cleavage reactions, and of 

course only allows the monitoring of the half reaction (the reagent oxidizes the enediolate 

intermediate shown in Figure 1.12).  One other problem that we have noted with the hexacyanoferrate 

assay is that the extinction coefficient (1,000 M-1 cm-1 at λ 420 nm) is ~6 times lower than that of 

NADH (6,220 M-1 cm-1 at λ 340 nm), and this combined with the high concentration required to 

achieve a 100% turnover detection, results in the assays being done near the detection limits of the 

spectrophotometer, which in turn results in a high standard deviation.  Alternatively, a stopped 

coupled assay using NADH as the reporter molecule described by (Lewis and Lowe 1977) could also 

be used to monitor the aldol condensation, although the procedure is work-intensive.     

3.4 Discussion 

The M. grisea aldolase was found to be dimeric in this study, like its close relative the yeast FBP 

aldolase.  All other Class II Type A FBP aldolases characterized previously are dimers with 
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molecular masses of approximately 80 kDa (Table 3.1), except for the M. tuberculosis FBP aldolase 

which was found to be a tetramer by our group (Ramsaywak et al. 2004).   

The Class II Type B aldolase from P. aeruginosa was also determined to be a tetramer in this 

study.  There are both dimeric and tetrameric Class II Type B aldolases, as shown in Table 3.1, and 

even an octameric enzyme (Synechocystis sp. PCC6803 FBP aldolase, (Nakahara et al. 2003)), as 

mentioned above in section 1.3.4.  The recombinant H. pylori aldolase purified here was too unstable 

to allow the determination of its quaternary structure, but Sauvé and Sygusch (2001b) reported that 

the recombinant enzyme from that organism migrated like a tetramer on non-denaturing gels.  In 

contrast, the recombinant B. cereus aldolase was found to be a dimer, as was reported for the enzyme 

purified from the native host (Sadoff et al. 1969).   

Sauvé and Sygusch (2001b) suggested that a 21 amino acid insertion between the α-helix 9 and β-

sheet 8 (see alignment in Figure 1.17) in Class II aldolases correlated with a tetrameric quaternary 

structure.  While this is true for the P. aeruginosa and B. cereus Type B enzymes, the M. tuberculosis 

Class II aldolase (Type A) does not possess this insertion but is tetrameric.  The quaternary structure 

of the type A Class II FBP aldolases therefore does not appear to correlate with the identifiable 

insertion in the amino acid sequence, contrary to the suggestion of Sauvé and Sygusch (2001b).    

The Class I FBP aldolases have a broad optimal pH range, usually extending from 7 to 9 (Rutter 

1964).  In contrast, the Class II aldolases have a sharp pH optimum which usually peaks between pH 

7.5 and 8 (Rutter 1964), and this was confirmed by the results obtained in this study.  The aldolase 

from P. aeruginosa is an exception, as its pH optimum curve was found to be shifted towards more 

alkaline conditions, with a peak at pH 8.5.  The pH optimum recorded for P. aeruginosa is identical 

to that recorded previously for the P. putida aldolase (Bang and Baumann 1978).  The pH optimum 

recorded for the recombinant M. tuberculosis Class II aldolase in this study is also consistent with that 
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reported previously for the enzyme purified from the native host (Bai et al. 1975; 1974).  However, 

the B. cereus aldolase purified from its native host had a pH optimum between 8 and 9 (Sadoff et al. 

1969), whereas the recombinant enzyme purified from E. coli had a pH optimum of 7.8 to 8.0.  Sadoff 

et al. (1969) used a different coupled assay than the one used in the present study to determine the 

enzyme’s activity.  The assay involved the use of the coupling enzyme glyceraldehyde-3-phosphate 

dehydrogenase which reduces NAD+ in the presence of arsenate as the GAP product is formed.  The 

different assay conditions could explain the discrepancy with our value.  Alternatively, the protein 

mya be post-translationnally modified in the native host or the divalent metal used by the aldolase in 

its native host could also be different than the one present in the recombinant enzyme (which was 

found to have one zinc per subunit), as will be discussed below.   

There have been reports that the Class II aldolase from E. coli is more stable than the Class I 

rabbit muscle aldolase (RAMA), and consequently that the Class II enzymes could be better suited for 

organic synthesis (Takayama et al. 1997; Henderson et al. 1994; Von der Osten et al. 1989).  In this 

study however, we found that the recombinant Class II aldolases are usually less stable than RAMA 

in the coupled assay mixture and in various organic solvents.  Only the M. tuberculosis and                

P. aeruginosa enzymes have a comparable stability to RAMA.  However, the P. aeruginosa aldolase 

has to be stabilized by adding exogenous zinc chloride.  The B. cereus aldolase was however found to 

be significantly more stable than RAMA at high temperatures.  This organism is not thermophilic, but 

it produces thermotolerant spores that may necessitate enzymes with higher stability with regards to 

temperature.  As mentioned above, Sauvé and Sygusch (2001b) have speculated that a 21 amino acid 

insertion between the α-helix 9 and β-sheet 8 (see alignment in Figure 1.17) in Class II aldolases 

potentially stabilized a tetrameric quaternary structure, and possibly conferred thermostability to the 

enzymes.  However, the dimeric B. cereus does not possess this insertion and is significantly more 

thermostable than the tetrameric P. aeruginosa aldolase, which does have this insertion.  The 
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tetrameric quaternary structure therefore does not seem to confer a greater stability than the dimeric 

structure in the aldolases studied here, contrary to the suggestion by Sauvé and Sygusch (2001b).  The 

higher temperature stability may instead result from the compact structure of the B. cereus enzyme, as 

it has the smallest subunit size amongst the enzymes tested (see Figure 2.15).  Considering its 

exceptional temperature stability, it is very surprising that the B. cereus aldolase was found to be the 

most unstable when diluted in the enzymatic assay solution at 4 °C (Figures 3.8 and 3.9).  The assay 

component which causes this instability has not been identified, but the fact that the enzyme is 

stabilized by the addition of divalent metal indicates that the B. cereus aldolase may bind its metal 

cofactor loosely.  It may also be the case for the P. aeruginosa aldolase.  

The recombinant Class II Type A aldolases from M. grisea and M. tuberculosis contain 0.8 and 

0.5 Zn2+ ion per monomer as determined by the PAR assay.  This is confirmed using ICP-MS in the 

case of the M. tuberculosis aldolase (Ramsaywak et al. 2004).  The low zinc content for the              

M. tuberculosis enzyme may be due to the metal ions leaching out of the enzyme active site when 

exposed to a zinc-free buffer.  The Mycobacterium enzyme prepared in a metal-free buffer still 

demonstrated a specific activity of 35 U/mg when transferred to the assay mixture.  No extra metal 

was added to the assay mixture, however, this mixture was not metal-free, and the contamination with 

as little as 1 ng/mL Zn2+ in a similar assay mixture was previously reported to be sufficient to fully 

activate the yeast FBP aldolase apoenzyme (Kobes et al. 1969).  The addition of ZnCl2 to the assay 

did not increase the specific activity of the recombinant enzyme.  The presence of substrate may 

result in a drastic increase of the affinity of the enzyme for zinc ions, as previously reported for 

metallo-β-lactamases (Wommer et al. 2002).  Incubation of the M. tuberculosis aldolase with 1 mM 

EDTA completely abolished its catalytic activity, in agreement with observations by Bai and 

collaborators (Bai et al. 1974).  The activity of the EDTA-inactivated enzyme was restored upon the 

addition of 2 µM Zn2+ and was restored to about 30% with the addition of 2 µM Co2+.  The addition 
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of Cu2+, Ni2+, Cd2+, Mn2+ or Mg2+ did not reactivate the enzyme significantly.  These results indicate 

that the M. tuberculosis and M. grisea Class II FBP aldolases are likely zinc-dependent enzymes, like 

the other Class II Type A FBP aldolases from E. coli, G. lamblia, and S. cerevisiae characterized 

previously (Galkin et al. 2007; Hall et al. 2003; Rutter and Ling 1958).   

The recombinant B. cereus aldolase, a Type B enzyme, has a metal content of 1 Zn2+ ion per 

monomer.  However, the other Type B aldolase from P. aeruginosa had a Zn2+ content of about 0.16 

ion per subunit.  The specific activity of this enzyme was increased by a factor 6 (Figure 3.10) in the 

presence of 0.7 mM cobalt chloride.  Bang and Baumann (1978) had also reported that the partially 

purified P. putida aldolase’s activity was completely dependent on the presence of added cobalt, and 

they obtained a specific activity of ~0.5 U/mg in the presence of 0.7 mM cobalt chloride, which is 

~50-fold lower than the specific activity of the pure recombinant enzyme from P. aeruginosa in the 

same conditions reported in this thesis.  The low zinc content and low activity (in the absence of 

CoCl2) of the recombinant enzyme therefore does not appear to be a consequence of the use of an E. 

coli expression system.  The specific activity of the recombinant P. aeruginosa aldolase was also 

increased more than twofold after EDTA inactivation followed by the addition of 100 µM manganese 

(II)-chloride.  The zinc-dependent E. coli and yeast aldolases have also been reported previously to be 

activated by Mn2+ and Co2+, although only Zn2+ could fully restore the yeast aldolase’s activity 

(Stribling and Perham 1973; Kobes et al. 1969; Knox et al. 1948).  It is unclear which metal ion the 

P. aeruginosa aldolase utilizes in vivo, because of the very high concentration of Co2+ required to 

fully activate it.  The specific activity of the B. cereus aldolase was partially restored after EDTA 

inactivation by Co2+ and Cd2+, in addition to Zn2+, but not significantly restored by Cu2+, Mn2+, Mg2+, 

or Ni2+.  The addition of Co2+ to the purified B. cereus aldolase did not increase the specific activity.  

Sadoff et al. (1969) have reported inconsistent results for the effect of divalent metal ions on the 

purified B. cereus aldolase activity.  The enzyme they purified from vegetative B. cereus cells had a 
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reported specific activity of 58 U/mg, a value significantly higher than that obtained for our 

recombinant enzyme (Sadoff et al. 1969), which is surprising considering that the recombinant 

enzyme’s active sites appears fully occupied by zinc.  

There are wide variations in the apparent catalytic parameters of both types of Class II aldolases, 

as can be seen in Tables 3.1 and 3.3.  The observed turnover number of the mycobacterial enzyme is 

higher than those reported for other Class II Type A FBP aldolases, such as from E. coli (10.5 s-1) or 

Euglena gracilis (14.1 s-1) (Plater et al. 1999; Pelzer-Reith et al. 1994), but lower than the kcat values 

reported for the FBP aldolase of S. cerevisiae (57.5 s-1) (Kadonaga and Knowles 1983) (Table 3.1).  

Note that a specific activity of 150 U/mg (100 s-1) was also reported for the yeast enzyme assayed at 

30 °C (Belasco and Knowles 1983), which is over two times higher than the turnover number 

obtained in this study with the recombinant M. grisea aldolase (kcat of 45.7 s-1 at 30 °C), which shares 

66% amino acid sequence identity with the yeast enzyme.  The apparent KM of the M. tuberculosis 

aldolase was the lowest among all the characterized Type A FBP aldolases, with KM of 170, 175 and 

370 µM for the enzymes from E. coli, E. gracilis, and S. cerevisiae, respectively (Plater et al. 1999; 

Pelzer-Reith et al. 1994; Rutter 1964), and 51 µM for the M. grisea enzyme characterized in this 

study, which gives the mycobacterial enzyme the highest catalytic efficiency (kcat/KM) for FBP 

cleavage.   

Among the Type B FBP aldolases that have been characterized, most have an apparent KM 

between 160 and 300 µM for FBP (Sauve and Sygusch 2001b; Willard and Gibbs 1968a; Rutter 

1964).  However, the Co2+ form of the dimeric Bacillus stearothermophilus enzyme has an apparent 

KM of 4.55 µM for FBP, and the octameric Type B FBP aldolase from Synechocystis sp. PCC 6803 

has a KM of 8 µM (Nakahara et al. 2003; Hill et al. 1976).  The value reported by Sadoff and 

collaborators for the KM of the B. cereus aldolase (2 mM) is much higher than the one we determined 

using our NADH-linked assay (450 μM).  By contrast, the KM value reported for the P. putida 
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aldolase by Bang and Baumann (30 μM) using the same coupled assay used in this study is equivalent 

to the one we determined (34 μM) (Bang and Baumann 1978; Sadoff et al. 1969).   Although the H. 

pylori aldolase was cloned and expressed in E. coli and purified previously, no kinetic parameters 

were reported (Sauve and Sygusch 2001b).  The KM obtained in the present study for the H. pylori 

aldolase (66 μM) is in the same range as those obtained with the other recombinant aldolases except 

for the Bacillus enzyme.  The kcat of all three type B recombinant aldolases are between 1.5 s-1 and     

3 s-1, which is one order of magnitude lower than most kcat values obtained for other type B enzymes 

(Table 3.1).  There are at least two other type B enzymes which have a turnover number lower than 

10 s-1 (Bacillus stearothermophilus and  Synechocystis sp. PCC6803), but these aldolases also have 

very low KM and thus their specificity for FBP is at least one order of magnitude higher than the type 

B enzymes characterized in the present project.  It is unclear if these low values are the result of the 

expression of these type B aldolases in E. coli, or if the low turnover number is an actual 

characteristic of these aldolases.   

One of the most variable regions between the two types of aldolases, as determined from the 

alignment reported by Sauvé and Sygush (2001b), is the long flexible β5-α7 loop that was shown to 

close over the active site during catalysis in the E. coli FBP aldolase (see Figures 1.15 and 1.17).  As 

described in section 1.3.5, this loop contains a glutamate residue critical for catalysis and was shown 

to undergo movements of more than 5 Å upon DHAP binding (Zgiby et al. 2002).  The composition 

and length of this loop may play a major role in the aldolase catalytic efficiency.  A 3D overlay 

alignment of the E. coli aldolase crystallographic structures with models of other type A aldolases 

threaded through the structure using the SwissModel software (Schwede et al. 2003) revealed that all 

the amino acids located within 7 Å of the zinc atom are completely conserved among Class II 

aldolases (~30 residues, see sequence alignments in Figures 1.10 and 1.17).   The enzyme’s kinetic 

parameters could be dependent on the residues present in the mobile loops, which close over the 
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active site during catalysis and are missing from the crystal structures (Section 1.3.6).  In the 

sequence alignments (Figures 1.10 and 1.17), there are notable differences in the composition of the 

small mobile loop (residues 224 to 238) of the S. cerevisiae FBP aldolase compared with the other 

type A aldolases.  This loop contains a histidine residue which is a ligand for the active site zinc ion.   

This ion is mobile in a Class II FBP aldolase and moves from a buried position to a solvent-exposed 

position upon substrate binding (Figure 1.9).  The sequence differences in this loop may partially 

account for the observed variation in kinetic parameters between the Class II FBP aldolases.  The 

loop mobility will be the subject of Chapter 5. 

A crystal structure was obtained for the M. grisea FBP aldolase purified in this study.  The 

availability of the crystal structures of the other recombinant Class II FBP aldolases would be useful 

to identify the residues determining the quaternary structure and the specificity of these enzymes. 

The lack of availability of an accurate and direct colorimetric assay to monitor the FBP aldolase 

activity is a serious hindrance for both the metal utilization analysis and for the aldol condensation 

reaction.  A colored reporter substrate would be a useful tool for these purposes. 
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Chapter 4 

Inhibition of Class II FBP aldolases 

4.1 Introduction 

In this project, a series of commercially available and synthetic compounds were to be screened 

to determine which ones can be used as starting points for rational ligand design for this enzyme.  A 

few known inhibitors of Class II aldolases, all derivatives of the reaction intermediate analogue PGH, 

have been presented in section 1.4.4 (Figure 1.16, p.47) (Gavalda et al. 2005; Fonvielle et al. 2004; 

Lewis and Lowe 1973).  However, as discussed in that section, PGH is a potent inhibitor of other 

enzymes which use DHAP as a substrate, and therefore it is likely to be toxic.  Although some of the 

PGH derivatives appear to specifically inhibit the Class II aldolases, none of them possess the low 

nM-range inhibition capacity of the parent compound.  The usual starting point for inhibitor design is 

the enzyme’s natural substrate, but in this project the emphasis will be on compounds which first and 

foremost have some affinity for the metal ion that is unique to Class II aldolases, as the toxic cross-

inhibition of Class I aldolases is to be avoided.  

The effectiveness of a drug depends on ADME/Tox/PK/PD (adsorption, distribution, metabolism, 

excretion, toxicology, pharmacokinetics, pharmacodynamics) factors more than it depends on the 

affinity constant of the compound for its target (Whitesides and Krishnamurthy 2005) and that is 

beyond the scope of this doctoral project, even though drug design is indeed the long-term objective 

of this research.  However, it is useful to have a general idea of which chemical structures have been 

successful in medicine, in order to guide the choice of a starting molecule for rational design.  Even 

though the metal-chelating compounds listed in section 1.4.1 are not used to target specific enzymes 
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in medicine, some drugs possess metal-chelating functions such as a hydroxamic acid group, which is 

found in PGH.  For example, several compounds used in clinical trials as metalloprotease inhibitors 

for cancer therapy have a hydroxamic acid function (Giavazzi and Taraboletti 2001).  There are, 

however, significant side-effects associated with some of these drugs with hydroxamic functions 

(Rosenblum et al. 2003) and because of this, other metal-binding moieties such as thiols and 

carboxylates will be the focus of this project.  Since possibly 2800 different proteins that are zinc-

binding are encoded by the human genome (Andreini et al. 2006), the specificity of the zinc-chelating 

drugs is crucial to avoid toxicity.   

Our chosen approach to obtain novel drug candidates that are non-toxic to humans or plants is to 

modify metal chelating compounds that specifically inhibit the Class II aldolase over the mammalian 

Class I aldolase.  Ultimately the synthesized compounds should be specific inhibitors of the Class II 

enzymes and form a stable ternary complex with the enzyme and the active-site zinc, instead of 

promoting the release of the catalytic zinc ion (non-complexing inhibition).  An example of 

structurally similar chelating inhibitors (D-cysteine and D-penicillamine) that display complexing 

versus non-complexing inhibition patterns with the zinc protease carboxypeptidase A, has been 

presented previously (Chong and Auld 2000).   

In this chapter, the results of studies of several commercial and newly synthesized metal-binding 

compounds will be described in terms of their capacity to inhibit the Class II FBP aldolases from     

M. tuberculosis, M. grisea, P. aeruginosa, B. cereus, S. cerevisiae and E. coli.  The Class I FBP 

aldolase from rabbit muscle was used as a negative control to assess the specificity of the compounds 

for the Class II enzymes.  The inhibition kinetics of the most potent compounds with the aldolase 

from M. tuberculosis and the stability of the enzyme-inhibitor complexes will be discussed.  The 

results will be compared with those obtained with other known Class II FBP aldolase inhibitors. 
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Some of the work presented in this chapter was performed by fellow graduate students, and by 

undergraduate students under my supervision.  Some of the inhibition kinetic assays were done by 

M.Sc. student Peggy Ramsaywak, and by NSERC summer Undergraduate Student Research Award 

(USRA) recipient Sarah de Groot.   The commercially available inhibitory compounds were obtained 

from Sigma-Aldrich (Mississauga, ON) and the other inhibitory compounds were synthesized in the 

laboratory of Dr. G.I. Dmitrienko (Dept. of Chemistry, University of Waterloo) by Ph.D. students 

Matt D. Brown and Anthony Krismanich, by USRA recipient Tim Rasmusson, and by post-doctoral 

fellow Muhong Shang.  The molecular modeling was done with the help of Timothy Ramadhar.   

4.2 Procedures 

4.2.1 Inhibition screens 

The standard assay mixture (final volume 100 µL) contained the FBP aldolase (0.003 to        

0.020 U/mL), 0.3 mM NADH, 0.2 U/mL of rabbit muscle α-glycerophosphate dehydrogenase, 2.25 

U/mL of rabbit muscle triose phosphate isomerase, 0.2 mg/mL BSA, 100 mM potassium acetate, 5% 

v/v DMSO and 23.75 mM Hepes, pH 7.3 (see coupled reaction scheme presented in Figure 2.1).  The 

molecular weights and laboratory codes of the compounds synthesized in Dr. Dmitrienko’s laboratory 

are shown in Appendix B.  The structure of each of the synthetic inhibitors was established by 1H 

NMR (300MHz), 13C NMR (75 MHz), and mass spectrometry.  The purity of the compounds was 

assessed to be greater than 95% by examination of the 1H NMR spectra.  The molecules tested for 

inhibition (except compounds 4 and 6, shown in Figure 4.2) were dissolved in 100% DMSO to 

produce 100 mM stock solutions.  The compound 4 was instead dissolved in 50% DMSO, 50% 25 

mM Hepes pH 7.3 to produce a 50 mM stock solution, and the compound 6 was dissolved directly in 

50 mM Hepes, pH 7.3 to produce a 50 mM stock solution.  DPA and compound 7 were further 

diluted with DMSO to a concentration of 20 mM prior to their addition to the assay mixture.  The 
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compound EDTA was diluted in the Hepes buffer and tested in the same way but without DMSO.  

These compounds were incubated with the enzyme mixture for 15 minutes prior to the addition of the 

substrate FBP.  Assays were performed at 25 ºC in quadruplicate in 96-well flat bottom polystyrene 

plates (Corning, NY).  The reaction was initiated by the addition of FBP (final concentration 30 or 

200 µM) and monitored at 340 nm for 10 minutes on a 96-well plate reader (Spectramax 190, 

Molecular Devices, Sunnyvale, CA).     

4.2.2 Inhibition assays (IC50s) 

The assays were done as described above, but in 50 mM Hepes buffer pH 7.3 at 28 ºC.  The FBP 

concentration was at least 10 times the enzyme’s KM.  The concentration of inhibitor was varied 

depending on the amount of inhibition recorded, but inhibitor concentrations of 20, 50, 75, 100, 200, 

500, and 1000 µM were typically used to determine the IC50s.  The enzymes were pre-incubated with 

the inhibitor for 15 minutes in the coupled assay mixture prior to the addition of the substrate FBP.  

The compound 6 was freshly dissolved prior to the kinetic assays as it became less potent during 

long-term storage in solution.  The molecular weights and laboratory codes of the compounds 

synthesized in Dr. Dmitrienko’s laboratory are shown in Appendix B.  The commercial compounds 

tested were purchased from Sigma-Aldrich (Mississauga, ON) and were freshly diluted in buffer prior 

to the assays.   

4.2.3 Metal reactivation assays 

The assays were done as described in section 4.2.1, with the following modifications.  The reaction 

was monitored in a 1 cm pathlength quartz cuvette in a Varian Cary 1 UV-Visible spectrophotometer 

(Varian, Mississauga, ON).   The assay final volume was 1 mL, and the BSA was omitted from the 

reaction.  The reaction was started by addition of 3 nM of M. tuberculosis aldolase to the cuvette 

containing 500 µM of FBP and 500 µM of inhibitor.  Small volumes of a 1 mM ZnCl2 solution were 
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subsequently added to reactivate the enzyme.  The NADH coefficient of extinction used to calculate 

the aldolase activity was 6220 M-1cm-1. 

4.2.4 Second order rate constants determination 

The M. tuberculosis aldolase was used for these assays.  Four replicates were done for each 

combination of substrate and inhibitor concentrations, and the reaction was monitored by absorbance 

readings every six seconds for 10 minutes using the coupled assay described in section 2.2.3.  The 

assays were started by addition of the enzyme to the substrate and inhibitor mixture, without pre-

incubation of the enzyme with the inhibitor.  The FBP concentrations used were 25, 40, 60, 80, 120, 

200, and 500 µM.  The inhibitor concentrations were 20, 50, 100 and 500 µM of DMPS and DPA; 20, 

50 and 500 µM of compound 6; 20, 50 and 100 µM of compound 13, and 50, 100 and 500 µM of 

EDTA.  The Equations 4.1 and 4.2 (Morrison and Walsh 1988; Tsou 1988) presented below were 

fitted to each progress curve by non-linear regression using automatic outlier elimination (Rout 

coefficient Q set to 1% to exclude outliers, with no weighing) to obtain the apparent constants k or A 

using the GraphPad Prism software (GraphPad Software Inc, La Jolla, CA).  A secondary plot of the 

apparent constant A multiplied by the inhibitor concentration versus the FBP concentration was then 

performed to obtain the constant k+0 for each inhibitor (Equation 4.3), again using non-linear 

regression with GraphPad Prism as described above.  The equations are described in more detail in 

Appendix C. 

Equation 4.1 (reversible inhibition)   [P]t=vst + (v0 – vs) (1-e-kt)/k  

Equation 4.2 (irreversible inhibition)   [P]t= (v0/[I]A) (1-e-[I]At) 

When t approaches infinity, Equation 4.2 becomes:   [P]∞= (v0/[I]A)    

Equation 4.3 (competitive irreversible inhibition)  A= k+0/(1+[S]/KM)   
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where [P]t is the concentration of product formed at time t, v0 is the initial velocity, vs is the end 

velocity, [I] is inhibitor concentration, [S] is the concentration of substrate, KM is the Michaelis 

constant, and k+0 is the second order rate constant for the binding of the competitive inhibitor (Figure 

4.1).  The description of the apparent constants k and A depends on the type of inhibition 

(Competitive, Noncompetitive or Uncompetitive, see Appendix C).  Note that the constant k in 

Equation 4.1 is equivalent to [I]*A in Equation 4.2. 

 

Figure 4.1 Scheme of competitive reversible inhibition with associated rate constants 

 

4.3 Results 

4.3.1 Inhibition screens 

The first set of compounds (DPA and compounds 1 to 7, Figure 4.2), as well as the metal chelator 

EDTA, were tested for their inhibition of the FBP cleavage reaction by the M. tuberculosis aldolase, 

and the results obtained with 1 mM of these compounds are presented in Table 4.1.  The chelators 

EDTA and DPA completely inhibited the enzyme, whereas the DPA derivatives 1 and 6 partially 

inhibited the reaction (36% and 89% inhibition, respectively) after 15 minutes of pre-incubation.  The 

remaining compounds were comparatively poor inhibitors.     
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Figure 4.2 Compounds with characteristics related to the cyclic form of the substrate FBP used 
for the initial inhibitor screen. 

The compounds were chosen because the negatively charged carboxylate and phosphonate groups 
overlap with those of the two phosphates of FBP in its furanose form (Figure 1.14).  The compound 
DPA is pyridine-2,6-dicarboxylic acid (dipicolinic acid).  The compounds 5 and 7 are N-oxides of the 
compounds 6 and DPA, respectively (see Appendix B). 
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Table 4.1 Inhibition screen of compounds with FBP related structures 

The assays were done after a pre-incubation of 1 mM of the compound with the M. tuberculosis 
aldolase for 15 minutes.  The concentration of FBP was 200 μM. 
 

Compound  % Inhibition 

EDTA      100 

DPA      100 

1        36 ± 1 

2          8 ± 6 

3        11 ± 2 

4          0 

5        16 ± 4 

6*        89 ± 11 

7        14 ± 3 

*assays done with 30 μM FBP instead of 200 μM FBP 

 

The experiment was then performed to determine if the inhibition was reversible.  The 

concentrated enzyme (100X compared to the assay concentration, or ~0.8 µM of M. tuberculosis 

aldolase) was incubated with 1 mM of the inhibitors EDTA, DPA, and compound 1, or 250 µM of 

compound 6 for 15 minutes, in the presence of 5% v/v DMSO.  The enzyme was only ~60% inhibited 

by the compounds 1 and 6 in these conditions.  The aldolase was in contrast 100% inhibited by the 

pre-incubation with 1 mM EDTA and DPA under these conditions.  The enzyme and inhibitor 

mixture was then diluted in the assay such that the inhibitor concentration was 10 µM (or 2.5 µM for 

compound 6), and the reaction was immediately started by addition of FBP at a final concentration of 

200 µM.  The M. tuberculosis aldolase recovered its full activity in all cases but with DPA, where 

only ~5% of the activity was recovered. Time-course assays were also done with 1 mM EDTA and 
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1mM compound 6, and it was found that the enzyme gradually lost activity over time during the pre-

incubation with the inhibitor.   

After more aldolases were cloned and purified, several other potential inhibitory compounds were 

tested.  Some were found to have no significant effect or were comparatively weaker inhibitors of the 

Class II aldolase reaction (Figure 4.3).  These include nalidixic acid, which was probably inhibitory 

mostly to one of the coupling enzymes, as the rabbit muscle aldolase reaction was inhibited to a 

greater extent than those done with the Class II aldolases (~30% to 50% inhibition with 1 mM 

nalidixic acid).  Another compound tested was 4-bromoisophthalic acid, which did not inhibit the 

aldolases from M. tuberculosis, M. grisea, or B. cereus, and only inhibited the P. aeruginosa aldolase 

by 10% at 1 mM concentration.  Chelidonic acid was also tested and found to have no effect on the 

Class II aldolase reaction, but the structurally related chelidamic acid (compound 1, see Appendix B) 

had an IC50 of 1.3 mM for the enzymes from M. grisea, P. aeruginosa, and B. cereus, and an IC50 of 

0.3 mM for the aldolase from M. tuberculosis (this compound was however not tested with the Class I 

rabbit muscle enzyme).  These results are consistent with those obtained in the first inhibitor screen, 

where the compounds based on the pyridine-2,6-dicarboxylic acid structure were found to be 

inhibitory, as opposed to the non-pyridine based structures.  The thiol-containing reducing agent used 

in some Class II aldolase purification buffers, β-mercaptoethanol, did not cause any detectable 

inhibition at a concentration of 2 mM.  The effect of 1 mM of tiopronin and 5-mercapto-1H-tetrazole-

1-methanesulfonic acid was tested by pre-incubation of the M. tuberculosis aldolase for 15 minutes.  

Tiopronin was relatively potent and caused 50% inhibition (no effect on the Class I aldolase), but the 

second compound caused only a 10% inhibition (the second compound was not tested with the Class I 

aldolase).  

In light of these results, the focus was then turned to DPA derivatives and thiol-containing 

compounds.  The IC50 values of such inhibitors after 15 minutes of incubation were then determined 
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with several aldolases (Figure 4.4 and Tables 4.2 and 4.3).    It is relevant to note that the presence of 

metal in the assay was also found to significantly decrease the inhibitory capacity of the compounds, 

as less than 30% inhibition was observed after 15 minutes of incubation with 1 mM DPA or 

compound 6 for the P. aeruginosa aldolase in the presence of 0.7 mM CoCl2, whereas the IC50 values 

in the absence of metal were 200 µM or less. 

 

 

 

Figure 4.3 Other commercially available molecules tested for inhibition 
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A 

B 

Figure 4.4 DPA derivatives and thiol-containing inhibitors  

Panel A: Derivatives of pyridine-2,6-dicarboxylic acid (DPA) that were synthesized by our 
collaborators (see Appendix B).  Panel B: commercial thiol-containing compounds.  The thiol-
containing compounds were investigated because some of them are already used for medical 
treatment in humans and animals (DMPS and DMSA), and they were also found to be inhibitors of 
another zinc metalloenzyme in vitro (Siemann et al. 2003).  
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Table 4.2 Summary of IC50 values with DPA derivatives 

IC50 (µM) obtained for each compound† 

(95% confidence interval) 

Source 

Organism 

DPA 6 8 9 10 11 12 EDTA

M. grisea 79 

(74-84) 

78 

(68-92) 

960 

(880-1,050) 

1,370 

(1,320-1,420) 

540 

(480-630) 

430 

(400-470) 

740 

(710-770) 

53 

(45-66) 

M. 

tuberculosis 

28 

(24-36) 

57 

(54-62) 

650 

(590-710) 

560 

(520-600) 

190  

(160-230) 

110* 

(91-140) 

81 

(61-120) 

48 

(44-53) 

B. cereus 150 

(130-170) 

78 

(70-89) 

1,050 

(950-1,170) 

1,100 

(990-1,250) 

N/I 170 

(150-180) 

740 

(690-790) 

8 

(7-11) 

P. aeruginosa 95 

(81-120) 

130 

(100-180) 

>1,000 >1,500 >1,000 270 

(230-340) 

240 

(200-300) 

41 

(37-45) 

S. cerevisiae - 140 

(120-160) 

940 

(870-1,020) 

- - - 1,060 

(1,000-1,100) 

- 

Rabbit 

muscle 

N/I N/I N/I - N/I 680 

(620-740) 

N/I N/I 

†A one phase decay equation was fitted to the data by non-linear regression, and the 95% confidence 
interval for each IC50 value is indicated in brackets  
N/I: no inhibition  
-: not determined 
*The inhibition is affected by pH.  This compound was also tested at a higher pH with the                
M. tuberculosis aldolase (assay at pH 8.0 instead of pH 7.3), and the IC50 was found to be ~500 µM in 
these conditions.  The other compounds were not tested at different pH. 
 



Chapter 4 Inhibition of Class II FBP aldolases 

  153

 

Table 4.3 Summary of inhibition with thiol-containing compounds 

% Inhibition obtained with each compound Source 

Organism Thiolactic 

acid 

2 mM 

Thioglycolic 

acid 

2 mM 

1,3-

propanedithiol 

2 mM 

1,2-

ethanedithiol 

0.5 mM 

DMSA 

 

0.33 mM 

DMPS 

 

2 mM 

M. grisea N/I Activates N/I 27 ± 1 32.1 ± 0.9 100† 

M. tuberculosis 16.7 ± 0.7 25 ± 3 16.1 ± 0.8 80 ± 10 28 ± 1 100‡ 

B. cereus 8.0 ± 0.3 16.5 ± 0.6 10.0 ± 0.7 - N/I - 

P. aeruginosa 8.7 ± 0.3 15.2 ± 0.4 N/I 24.8 ± 0.5 N/I - 

E. coli 8.9 ± 0.4 24 ± 1 - 42 ± 3 N/I - 

Rabbit Muscle - - - N/I N/I* N/I 

N/I: no inhibition   
-:not determined   
† IC50= (31 ± 3) µM 
‡ IC50= (5.2 ± 0.4)  µM 
* (25.9 ± 0.6) % inhibition with 2 mM DMSA 

 

According to the data presented in Tables 4.2 and 4.3, the compounds tested appear to be 

generally no better than EDTA at inhibiting the Class II aldolases.  However, these results were 

obtained after 15 minutes of pre-incubation in the absence of the substrate FBP.  While performing 

similar experiments without pre-incubation with the inhibitory compounds, it was observed that the 

compounds were much less effective inhibitors when the substrate was present, pointing to a 

competitive mechanism.  It was also observed that some compounds could inactivate the aldolases at 

a faster rate than others in the presence of the substrate.  Some inhibitors were therefore assayed by 

varying both their concentration and the substrate concentration used to start the reaction, with and 

without the 15 minutes of pre-incubation of the enzyme with the inhibitor, as shown in Figure 4.5.  

However, the analysis showed that the competitive, uncompetitive, or mixed inhibition models did 

not fit the resulting data.  Instead, the compounds exhibited a competitive and time-dependent pattern 
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of inhibition of the FBP cleavage reaction.  The inhibition did not appear reversible under the assay 

conditions (reverse reaction too slow to be detected), but the enzyme could be reactivated upon the 

addition of zinc to the assay mixture.  Some typical progress curves are reproduced below (Figures 

4.6 and 4.7, see modified assay described in section 4.2.3).  The inhibition experiments were from 

then on performed in the presence of substrate (no pre-incubation) and analyzed using a time-

dependent inhibition model, which will be presented in the following section. 
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Figure 4.5 Cornish-Bowden plots of the inhibition data with the compounds 6 and 8 

Panel A: inhibition of the M. grisea FBP aldolase by the compound 6 (no pre-incubation period).  
Panel B: inhibition of the M. tuberculosis aldolase by compound 8 after 15 minutes of pre-incubation 
of the enzyme with the inhibitor.  Each point represents the average of four replicates.  The M. grisea 
aldolase had a Ki=72 µM and αKi=158 µM for compound 6 according to calculations done using the 
mixed inhibition equation and dynamic weighing options of Leonora.  However the data obtained at 
higher substrate concentrations (>100 µM) and higher inhibitor concentration did not fit the mixed 
inhibition model and were excluded from these calculations, as can be seen in the figure by the 
plotted lines not passing through a single point in the upper left (-x/+y) quadrant in Panel A.   
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Figure 4.6 Progress curves of FBP cleavage by M. tuberculosis Class II aldolase in the presence 
of different metal-chelating inhibitors 

3 nM of enzyme was used to start the reaction in the presence of 500 μM FBP (yellow line) and the 
following compounds: Bovine serum albumin (3 μM, green line); EDTA (5 mM, blue line); DMPS 
(500 μM, pink line); DPA (500 μM, grey line); and compound 13 (500 μM, red line).  After 
substracting the background NADH oxidation from the data, the enzyme was calculated to be 
completely inactivated after 20 minutes.   
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Figure 4.7 Progress curve of FBP cleavage by M. tuberculosis Class II aldolase in the presence 
of compound 13 and added zinc chloride 

The enzyme’s activity could be restored by addition of zinc chloride to the assay mixture, as shown in 
this graph obtained in the presence of 500 μM of compound 13. The enzyme (3 nM) was added to the 
assay mixture with 500 μM FBP and 500 μM of compound 13 to start the reaction.  The arrows 
indicate when the specified amounts of zinc were added, to a total of 20 μM zinc chloride.  The 
starting velocity (over the first minute of reaction) was 3.9 μM FBP cleaved per min, after 8 minutes 
of reaction the inhibited enzyme had a residual activity of 0.3 μM FBP cleaved per minute, and the 
velocity after addition of 20 μM ZnCl2 was 3.5 μM FBP cleaved per min (90% reactivation).  The 
assay volume was not significantly changed by the addition of zinc chloride (2% increase).  Similar 
results were obtained with the inhibitors DMPS (100% reactivation with 20 μM ZnCl2 added) and 
DPA (68% reactivation with 40 μM ZnCl2 added).  This particular experiment was not attempted with 
EDTA because of the high concentration (~5 mM EDTA) required to inactivate the enzyme before 
5% of the FBP substrate was cleaved in these conditions; see instead the metal reactivation study 
presented in Chapter 3 (Figure 3.11).  
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4.3.2 Inhibition model 

In order to determine the inhibition mechanism of the inhibitors, we chose to use the enzyme 

from M. tuberculosis, as it generally was the most sensitive to the inhibitors during the initial screens 

(Tables 4.2 and 4.3).  The most potent inhibitors from these screens (DPA, compounds 6 and 13, and 

DMPS) were chosen for these studies, and EDTA was used for comparison.   

The slow-binding inhibition progress curves can be fitted to Equation 4.1 (Morrison and Walsh 

1988) (see Methods section) in the case of reversible inhibition.  The inhibition of the Class II 

aldolases was shown to be reversible upon the addition of metal (Figure 4.7), but the end velocity (vs) 

obtained in our assay conditions is too low to be detected.  This could be due to the background 

NADH oxidation which is relatively high in our coupled assay, and this masks any potential small 

residual aldolase activity.  The observed enzyme inhibition is therefore not distinguishable from 

irreversible inactivation, so we will consider the end velocity (vs) in Equation 4.1 to be negligible and 

use instead the Equation 4.2 (Tsou 1988).  An example of the Equation 4.2 fitted to the progress 

curves obtained for the cleavage of FBP by the M. tuberculosis aldolase in the presence of the 

inhibitor DMPS is shown in Figure 4.8.  As is apparent in this figure, the initial velocity and the total 

amount of FBP cleaved cannot be easily determined using the coupled assay due to uncertainty on the 

initial absorbance of the NADH solution as well as the delay between the start of the reaction and the 

first absorbance measurement in the plate reader.  The progress curves are therefore analyzed as a 

function of time with Equation 4.2 by non-linear regression to determine the apparent constant A, 

instead of simply using a plot of the total amount of FBP cleaved ([P]∞) until complete inactivation 

(at time approaching infinity), versus the initial velocity. 
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Figure 4.8 Progress curves of FBP cleavage by the M. tuberculosis aldolase in the presence of 
500 µM DMPS 

The initial FBP concentration for each curve is shown in the legend on the right.  The initial 
absorbance value differed slightly for each curve due to the coupling assay procedure, so a variable 
representing the initial cleaved FBP concentration (arbitrary value) was included in the Equation 4.2 
for the analysis.  This modified Equation 4.2 was fitted to the data by non-linear regression (see 
resulting lines over each data set) using the GraphPad Prism software.   
  

Tsou argues that the type of irreversible inhibition (Equation 4.2) can be distinguished by suitable 

plots of A and [S] (Tsou 1988) (see Appendix C).  In the case of competitive inhibition (Figure 4.1), 

A is defined by Equation 4.3, and thus a plot of 1/A versus [S] should give a straight line.  A typical 

plot obtained with two metal chelating inhibitors is shown in Fig 4.9.   
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Figure 4.9 Tsou's test for competitive irreversible inhibition 

The apparent constant A was obtained by fitting Equation 4.2 (Tsou 1988) using non-linear regression 
to the progress curves obtained with the M. tuberculosis aldolase, in the presence of different 
inhibitors (compounds and concentrations indicated in the legend) and various concentrations of FBP.  
Each point represents the average value of 4 replicate assays.  Straight lines indicate that the 
inhibition is competitive with respect to the substrate FBP (see Appendix C). 
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Since the inhibition appears irreversible under the assay conditions used, the apparent KI cannot 

be determined for a one-step inhibition mechanism (Figure 4.1), as it would represent the ratio of the 

forward and reverse inhibitor binding rate constants (k+0/k-0).  The binding capacity of the inhibitors 

will instead be compared using their second order binding rate constant k+0 (Equation 4.3, Figure 4.1).  

This constant can be directly obtained from the ordinate intercepts in Figure 4.9, but the high standard 

deviation observed on the apparent rate constant A at higher substrate concentrations called for the 

use of a more robust approach.  An example of a secondary plot used to calculate the second order 

rate constant from several data sets for each inhibitor is presented in Figure 4.10.   The rate constants 

obtained with the most potent inhibitors are presented in Table 4.4.   
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Figure 4.10 Secondary plot of the apparent inhibition constants obtained with the M. 
tuberculosis aldolase in the presence of DMPS, as a function of the FBP concentration 

The concentrations of DMPS used (in µM) are indicated in the legend on the right.  The Equation 4.3 
defining the apparent constant A according to Tsou (1988) for competitive inhibition (see text) was 
fitted to the data by non-linear regression using the GraphPad Prism software.  The equation was 
fitted independently to the data from each inhibitor concentration (shown as lines on the Figure), and 
the global parameters were also calculated.  The apparent A constants multiplied by the inhibitor 
concentration (A*[I], represented by k in Equation 4.1) were obtained from 95 progress curves and 
are shown with their error bars representing the standard deviation. Of those 95 points, 80 were 
analyzed, and 15 were outliers.  The global R2 value was calculated to be 0.9911.   
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Table 4.4 Second order rate constants for the binding of chelating inhibitors to the recombinant 
Class II aldolase from M. tuberculosis 

Each value is calculated from a secondary plot (see Figure 4.10, Equation 4.3) using the apparent 
constant A (Equation 4.2) obtained for multiple assays done simultaneously in a microtiter plate in 
the presence of various concentrations of FBP and inhibitor. 
 

Inhibitor k+0 

M-1 s-1

R2 value of 

secondary plot 

DPA    151 ± 2 0.9866 

6    479 ± 9 0.9686 

13    277 ± 7 0.9092 

DMPS    500 ± 4 0.9911 

EDTA      25 ± 1 0.9153 

 
 

As can be seen from the results presented in Table 4.4, the inhibitors DMPS and compound 6 can 

inactivate the Class II FBP aldolase from M. tuberculosis ~20 times faster than EDTA, and ~3 times 

faster than DPA in the presence of the substrate FBP, whereas the inhibitor 13 can inactivate the 

enzyme almost 2 times faster than DPA in the presence of FBP.  The apparent second order rate 

constants obtained for the irreversible reaction with these inhibitors are over 3 orders of magnitude 

lower than the second order rate constant determined for the FBP cleavage reaction for the                

M. tuberculosis aldolase (kcat/Km = 1.08 x 106 M-1·s-1, see Table 3.3). 

 

4.4 Discussion 

Although the Class II FBP aldolases are potential targets for antimicrobial therapy there have 

been few potent Class II FBP aldolase inhibitors reported in the literature.  The molecule PGH has 

been reported to inhibit the yeast Class II aldolase with KI of 0.01 μM but it also inhibits the rabbit 
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muscle Class I aldolase and other enzymes utilizing DHAP as substrate, such as methylglyoxal 

synthase, L-rhamnulose-1-phosphate synthase, tagatose-bisphosphate aldolase, L-fuculose-1-

phosphate aldolase, etc. (Kroemer et al. 2003; Hall et al. 2002; Fessner et al. 1996; Mildvan et al. 

1971).  Derivatives of PGH such as, phosphoglycoloamidoxime (PGA) and phosphoglycolohydrazide 

(PGHz) (Figure 1.16, p.47), are more specific for the Class II FBA (Fonvielle et al. 2004), but are 

also good inhibitors of the rabbit TIM, which makes these compounds likely toxic for humans.   

 In order to create more specific inhibitors for the Class II aldolases, compounds that have 

potential zinc chelating groups were tested.  The results were compared with the general metal ion 

chelators, EDTA and thiol containing compounds.  The molecule 2,6-pyridinedicarboxylic acid (or 

dipicolinate, DPA, Figure 4.2) was the most potent inhibitor according to our initial compound screen 

(Table 4.1). Derivatives of DPA were then synthesized and IC50 values were determined with a wider 

range of FBP aldolases.  IC50 values are generally similar with DPA and compound 6, which differs 

from DPA by the substitution of the carboxylate with a phosphomethyl group at the 6-position of the 

pyridine ring. Addition of other substituents (in compounds 8 to 12) resulted in higher IC50 values for 

most enzymes.  Two exceptions are compounds 11 and 12, respectively with hydroxymethyl and 

formyl substituents in position 4 of the pyridine ring, which had IC50s comparable to DPA and 

Compound 6 with the M. tuberculosis aldolase.  The generally poorer inhibition observed with 

compounds 8 to 10 in M. tuberculosis aldolase does not appear to be due to steric hindrance in the 

active site of the enzyme since Compound 13, with a 3,5-dicarboxyphenyl substituent in position 4 of 

the pyridine ring was later found to be better than DPA in inhibiting this enzyme. 

Upon further analysis, it was noticed that the inhibition by these compounds was weaker in the 

presence of the FBP substrate, implying a competitive mechanism.  A time-dependent analysis of 

reaction progress curves of the cleavage of FBP by the M. tuberculosis aldolase in the presence of the 

most potent inhibitors showed that compounds 6, 13, and DMPS were better competitive inhibitors 
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than DPA, according to their second-order binding rate constants.  EDTA was comparatively a weak 

inhibitor of the enzyme in the presence of substrate, being 6 times less potent than DPA.    

The results have been analyzed using a one-step inhibition model (Figure 4.1).  Other researchers 

have pointed out that a two-step model is also possible for this type of competitive and irreversible 

inhibition, where the first step is a reversible equilibrium between the free enzyme and the EI 

complex, and the second step is an irreversible inactivation (Leytus et al. 1984).  They argue that the 

primary data appears similar for both models, and that the progress curves for both models can be 

analyzed using equations with a similar format as Equation 4.2, or P=(j/k)*(1-e-kt).  However, a plot of 

the apparent first-order constant k obtained at high inhibitor concentration, versus the concentration of 

inhibitor, can differentiate between the one-step and two-step models.  The concentrations of 

inhibitors used in our study were not high enough to allow us to rule out a two-step model for our 

inhibitors excepted in the case of DMPS, which appeared to be a one-step process.  Some researchers 

have shown that chelating inhibitors with a one-step inhibition process were bound to the active site, 

whereas others following a two-step process were removing the metal ion from the active site (Chong 

and Auld 2000; Bardsley and Childs 1974).  In our study, the enzymes were reactivated by the 

addition of small amounts of zinc (i.e. ~10 times less zinc than the inhibitor concentration), which 

indicates that either the inhibitors are forming an unstable ternary complex with the active site and the 

zinc ion (one-step process), or they remove the metal ion from the active site (two-step process).  The 

practical consequences are the same in both cases in our study, in that the inhibitors do not have a 

sufficient affinity for the active site to form a stable complex in the presence of extraneous zinc.  

Interestingly, an unstable ternary complex between DPA and cobalt carbonic anhydrase has been 

observed previously by absorption spectroscopy (Hirose and Kidani 1981).  In contrast, the inhibitor 

PGH was shown to form a stable complex with the cobalt-dependant Bacillus stearothermophilus 

Class II FBP aldolase, as the inhibited enzyme was not reactivated in the presence of excess cobalt 
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(Lewis and Lowe 1977).  Our data however shows that some chelating inhibitors, such as DMPS and 

Compound 6, are better able to compete with the substrate FBP for the access to the active site zinc in 

the M. tuberculosis aldolase in comparison with DPA or EDTA, which means that some of the 

studied compounds have a higher affinity for the active site than others.   

The compound DMPS was modeled into the active site of the E. coli FBP aldolase in complex 

with PGH (Figure 4.12).  Although the compounds appear to form equivalent interactions with the 

active site amino acids compared to PGH, the sulfur-zinc bonds are not of an optimal length (the 

average length for sulfur-Zn2+ bonds is 2.3 ± 0.2 Å in protein structures (Tamames et al. 2007)) 

because DMPS is one carbon atom “shorter” than PGH or the substrate DHAP (see Figures 1.9b and 

4.11).  It is also relevant to note that the zinc-chelating functions of the inhibitory compounds are still 

solvent-accessible in the closed-loop form of the enzyme (see the opening in the surface of the 

enzyme indicated by arrows at the bottom of the Figure 4.12, panels A to C, which corresponds to the 

GAP binding site).  Therefore extraneous metal ions could access the active site through that opening 

and interact with an inhibitor bound in the active site, possibly weakening its interaction with the 

catalytic zinc, if the interaction is not optimal.  In an attempt to create a similar molecule that was 

closer in structure to the substrate DHAP, a derivative of DMPS with a sulphonate group and a longer 

main chain (Compound AK4) was also modeled into the E. coli aldolase active site (Figure 4.11 and 

Figure 4.12, panels C and F).   The zinc-sulfur bonds were indeed slightly shorter after minimization, 

but the Compound AK4 seemed to have a smaller number of strong interactions with the active site 

amino acids (dashed lines in Figure 4.12, panels D to F).  Other derivatives that have a longer chain 

that would extend into the putative GAP binding site could form a more stable complex with the 

enzyme in the presence of extraneous zinc, as the zinc-chelating functions could then be shielded 

from the solvent in the closed loop enzyme structure.  Indeed, longer-chain FBP analogues containing 

metal chelating functions have been shown recently to be very potent inhibitors of the S. cerevisiae, 
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H. pylori and M. bovis  Class II aldolases, with Ki as low as 13 nM (Fonvielle et al. 2008).  It is 

relevant to note that the amino acid sequences of the Class II FBP aldolases from M. bovis and         

M. tuberculosis are identical, and therefore the inhibition results can be applied to both aldolases. 

The images were produced using MDL ISISTM/Draw 2.5 (MDL Information Systems, Inc.) and 
PyMOL (DeLano Scientific, San Francisco, CA).  In the space-fill representations on the right, the 
carbons are pink, the oxygens are red, the sulfurs are yellow, the fluorines are cyan, the phosphorus is 
orange, and the nitrogen is dark blue. 

Figure 4.11 PGH and sulfur-containing analogues 
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Figure 4.12 DMPS and AK4 docked into the E. coli Class II FBP aldolase active site  
The compounds DMPS (Panels B and E) and AK4 (Panels C and F) were positioned in the space occupied by the inhibitor PGH in the E. coli Class II FBP 
aldolase PDB structure 1B57 (Panels A and D) and a sphere of 6 Å around the inhibitor was minimized (20, 000 iterations) using the MMFF94 force field in 
Sybyl (Tripos, St-Louis, MO).  The catalytic and structural (right) zinc ions (see Figure 1.9) are represented as grey spheres.  The solvent-accessible surface of 
the enzyme is colored according to electrostatic charges, and the molecules DMPS and AK4 are represented as sticks.  Only a 30 Å–thick slab of the structure is 
shown, and the plain light grey area represents the interior of the protein.  The black arrows indicate the opening in the surface which allows solvent and substrate 
access to the catalytic Zn2+ ion.  The distances between the catalytic Zn2+ ion and the ligands from the inhibitors are indicated in Panels A to C.  In Panels D, E, 
and F, the interactions (2.5 to 3.2 Å) between the inhibitors and the active site residues are shown as black dashes.  The active site residues forming bonds with 
the inhibitors are shown as sticks: Asp109 is in red, His226 in cyan, Gly227 in yellow, His264 in black, Gly265 in orange, Gly266 in pink, Ser267 in green, Asn286 in 
brown, Asp288 in blue, and Thr289 in purple.  The images were produced using PyMOL (DeLano Scientific, San Francisco, CA). 

F 

3.67 Å 

2.87 Å 

AK4

C A B 
4.08 Å 

3.13 Å 

2.22 Å 

2.26 Å 

D E 
DMPSPGH 

 

 



Chapter 4 Inhibition of Class II FBP aldolases 

 169 

The inhibition model proposed for the Class II FBP aldolase inhibitors characterized in this study 

will now be compared with the inhibition model described for PGH.  The compound PGH was first 

reported to have a Ki of 0.05 µM for Class II FBP aldolase (Lewis and Lowe 1973).  PGH was later 

shown to display a time-dependent competitive inhibition pattern as seen in our study in the presence 

of high FBP concentrations, and the PGH Ki was then calculated to be 1.2 nM for the                        

B. stearothermophilus aldolase (Lewis and Lowe 1977).  However, the PGH inhibition was 

reversible, as enzyme activity is not completely inhibited after the equilibrium was reached between 

the enzyme and the inhibitor, in contrast to what was observed in the present study.  As mentioned 

above, the presence of a divalent metal did not affect the inhibition by PGH, but the presence of 

divalent ion completely restored the activity of the enzyme inhibited by EDTA in the Lewis and 

Lowe (1977) study, as was observed here with the Class II enzymes.  However, after exhaustive 

dialysis of the PGH-inactivated B. stearothermophilus enzyme, 1/3 of the activity could be restored 

upon the addition of excess metal.  Lewis and Lowe (1977) reported a ~90% inhibition of the aldolase 

after a 15-minutes reaction with 500 µM FBP in the presence of 2 µM PGH.  In contrast, a similar 

level of inhibition in our study was obtained using 500 µM of the most potent inhibitory compounds 

(DMPS, Compound 6 and 13, and DPA), which indicates that these compounds are at least 250 times 

less potent than PGH, not considering the lower KM for FBP of the Co2+-containing                          

B. stearothermophilus aldolase (4.55 µM, see Table 3.1) compared to that of the M. tuberculosis 

aldolase (28 µM, Table 3.3).  Lewis and Lowe (1977) further calculated the PGH k+0 (see Figure 4.1) 

to be 4 ± 3 x 105 M-1 s-1 and its k-0 to be 4.3 ± 0.9 x 10-4 M-1 s-1.  The k+0 (or kon) of PGH is therefore 

~1000 times higher than the k+0 constants calculated for DMPS and Compound 6, which are the most 

potent inhibitors identified in the present study.  This is consistent with the PGH Ki being at least 3 

orders of magnitude lower than the IC50s obtained in the present study for DPA, DMPS, and 

Compounds 6 and 13.   
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The PGH derivatives synthesized in recent years (including PGA, PGHz, PGS1, and PGS2, see 

Figure 1.16) were reported to be strictly competitive with the substrate, but their behavior in the 

presence of excess divalent metal was not reported.  The reported Ki values were also determined 

using initial velocities in the presence of substrate and inhibitor, with no mention of time-dependence 

or reversibility of the inhibition (Fonvielle et al. 2008; Gavalda et al. 2005; Fonvielle et al. 2004).  A 

crystallographic structure of the H. pylori Class II FBP aldolase in complex with a newly synthesized 

biphosphorylated FBP analogue inhibitor containing a N-substituted hydroxamate function was 

recently obtained (Fonvielle et al. 2008).  This novel and powerful inhibitor, with a reported Ki of 13 

nM for the H. pylori aldolase, and a Ki of 264 µM for the Class I rabbit muscle aldolase, has an 

improved selectivity for the Class II aldolases and is able to form a stable ternary complex with the 

enzyme like the compound PGH.  The authors reported that the zinc chelation by this inhibitor was 

not optimal and could be improved.  The use of metal-chelating substrate analogues, like the ones 

reported in the present study, is therefore very promising for the development of new drugs targeting 

the Class II FBP aldolase.   
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Chapter 5 

Preliminary work on enzyme loop dynamics 

5.1 Introduction 

The active site of the Class II FBP aldolases includes two mobile loops: the the β6-α8 loop that is 

expected to bring the catalytic zinc ion to a solvent-accessible position, and the β5-α7 loop which is 

expected to close over the substrate during catalysis, as shown in Figures 1.11, 1.13, and 1.15.  These 

loops form a large portion of the enzyme surface that is in contact with the substrate during catalysis 

(see Figure 1.13), and thus their structure and properties are very relevant for the rational design of 

ligands.  Interestingly, the length and amino acid sequence of these loops varies widely among the 

Class II aldolases, as can be seen in sequence alignments (Figures 1.10 and 1.17).  The composition 

of these mobile loops may provide a structural basis to explain the wide variation in the Class II FBP 

aldolase kinetic parameters (Tables 3.1 and 3.3), since the other active site amino acids involved in 

metal and substrate binding, as well as catalysis, are highly conserved (see section 1.3.5).   

The Class II FBP crystal structures provide clear indications of loop movements, and previous 

studies have confirmed this through comparisons of the E. coli enzyme structures with and without 

PGH bound in the active site (Zgiby et al. 2002).  The structures of apo- and substrate bound             

T. aquaticus fructose-1,6-bisphosphate aldolase have three regions of weaker electron density that 

show higher B-factors (see yellow and red colouring of the backbone in the structures shown in 

Figure 1.15).  It is however not known at this time whether the loop movements are influenced by the 

presence of the FBP substrate (i.e. ligand-gated), or if they occur spontaneously (natural motion of the 

protein).     
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The loop movements of other enzymes, such as metallo-β-lactamase, hypoxanthine-guanine-

xanthine phosphoribosyltransferase, and asparaginase, have been successfully studied by stopped-

flow and/or steady-state tryptophan fluorescence (Garrity et al. 2004; Munagala et al. 2001; Aung et 

al. 2000).  These studies have linked the fluorescence quenching, and subsequent return to resting 

value, of a tryptophan residue inserted into an active site mobile loop, under single-turnover 

conditions, with the enzyme turnover rate.  In the asparaginase study, the fluorescence emission 

spectrum of the enzyme was also shown to be red-shifted in the presence of increasing concentration 

of substrate (Aung et al. 2000).  Other studies have used time-resolved tryptophan fluorescence to 

study loop movements and global conformational changes in enzymes in the presence of ligands, for 

example in mutants of fructose-1,6-bisphosphatase (Wen et al. 2001).      

In the case of the E. coli Class II FBP aldolase, NMR studies were attempted to examine 

movements upon DHAP binding (Hilcenko, 2003, also see section 1.3.6).  It was concluded that the 

β5-α7 loop did not change from an open to a closed conformation upon DHAP binding (FBP or GAP 

binding were not studied), and that the time scale of motion of a few ns for the loops β5-α7 and β6-

α8 means that loop closure cannot be rate-limiting (Hilcenko, 2003).  A fluorescence-based 

investigation of the loop movements in the same enzyme was not possible because the enzyme 

possesses 4 native tryptophan residues which could not be completely substituted without the loss of 

enzyme function (Hilcenko, 2003).  The substitution of the native tryptophans was desirable because 

it was observed that the native E. coli Class II FBP aldolase fluorescence spectra changed upon 

DHAP binding.  It was also reported that the mutation D183W (next to the catalytic E182 in the β5-

α7 loop) results in over a 100-fold decrease in kcat and a four-fold decrease in KM in the E. coli 

enzyme, and this low activity prevented the study of this mutant for fluorescence changes upon 

substrate binding (Hilcenko, 2003).  In contrast, the mutant M190W (M190 is also found within the 

E. coli aldolase β5-α7 loop) has similar kinetic properties as the wild type enzyme (Hilcenko, 2003).  
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The fluorescence changes observed upon DHAP binding for this mutant (which possessed a total of 5 

tryptophan residues) were however similar to those observed with the wild-type E. coli aldolase, and 

it was concluded that the difference in fluorescence intensity did not come from the inserted W190 

residue.   It is noteworthy that the fluorescence changes upon binding of FBP or GAP were not 

studied by these authors.   

In light of these results, and based on the Class II FBP aldolase sequence alignment (Figure 1.17), 

the recombinant aldolase from H. pylori (containing no native tryptophan residue), as well as the 

aldolases from M. tuberculosis, P. aeruginosa, and B. cereus (each possessing one native tryptophan 

residue) were chosen as templates for site-directed mutagenesis and intrinsic fluorescence studies.  

The following six mutations are proposed:       

• M. tuberculosis FBP aldolase (Class II, type A), with a single native tryptophan residue (W130) 

in the hydrophobic core of the barrel (see Figure 5.1): 

1) Y280W – Residue is next to the substrate binding site (near C6-phosphate of substrate, close 

to the dimer interface in the E. coli FBP aldolase structure) 

2) N173W – Within the mobile β5-α7 loop 

3) I175W – Within the mobile β5-α7 loop 

 

• H. pylori FBP aldolase (Class II, type B) with no native tryptophan residue (see Figure 5.2a):  

4) F185W – in the middle of the mobile β6-α8 loop, which contains one catalytic zinc ligand. 

 

• P. aeruginosa FBP aldolase (Class II, type B) with a single native tryptophan residue (W240) at 

the dimer interface (see Figure 5.2b):  

5) F202W – in the middle of the mobile β6-α8 loop, which contains one catalytic zinc ligand. 
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• B. cereus FBP aldolase (Class II, type B) with a single native tryptophan residue (W30) at the 

dimer interface (see Figure 5.2c): 

6) I149W – Within the mobile β5-α7 loop 

 

The residues chosen as targets are not conserved across all Class II FBP aldolases, as shown in 

Figure 5.3.  The other mutations (I149W, N173W and I175W) are all located on the large catalytic 

loop near the position of the residue M190 in E. coli (see Figure 5.3), which was previously mutated 

to a tryptophan with no adverse effect on the enzyme kinetics, as described above.  The mutations 

F185W, F202W, and Y280W are conservative and are not expected to adversely affect the structure 

of the enzymes. 

In this chapter, the mutagenesis, purification and kinetic characterization of these Class II FBP 

aldolase tryptophan mutants will be reported.  The preliminary steady-state and time-resolved 

fluorescence studies results for the enzymes in the presence of substrate and inhibitors will also be 

presented and discussed. 

Some of the work presented in this chapter was performed by undergraduate students under my 

supervision.  The site-directed mutagenesis was performed by Sarah de Groot, except for the 

mutagenesis for MTY280W which was done by Willis Lang.  The aldolase mutants were purified 

with the help of Diana Arsene, Sarah de Groot, Natasha Kruglyak and Willis Lang.  The fluorescence 

experiments were also done with assistance from Diana Arsene and Natasha Kruglyak. 
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E. coli FBP aldolase 

W130 

I175 Y280 N173 

Figure 5.1 Targeted amino acids for tryptophan replacement in the M. tuberculosis Class II 
FBP aldolase 
The image is a model of the M. tuberculosis Class II FBP aldolase monomer, created by threading its amino 
acid sequence onto the E. coli FBP aldolase structure with PGH bound (PDB entry 1B57, shown in inset with 
the other subunit in blue) using the online program SWISS-MODEL (www.expasy.ch) (Schwede et al. 2003; 
Guex and Peitsch 1997; Peitsch 1995).  The β strands are in green and the α helices are in red.  The large mobile 
loop (β5-α7) is in the closed position and is shown in black.  The small mobile loop (β6-α8, containing one of 
the catalytic zinc ligands) is shown in orange.  The native tryptophan (W130) is shown in yellow (buried in the 
hydrophobic core of the barrel).  The targeted residues N173, I175, and Y280 are shown in pink, purple and 
blue sticks, respectively.  The catalytic zinc is indicated by a black sphere, with the inhibitor PGH chelating it in 
space-fill representation (oxygens in red, carbons in white, phosphorus in orange, nitrogen in blue) along with 
the sodium ion associated with the phosphate group (dark red sphere).  The structural zinc ion is shown as a 
cyan sphere.  The image was done using DeepView/Swiss-PdbViewer (Guex and Peitsch 1997), POV-RayTM 
for Windows (Persistence of Vision Raytracer Pty. Ltd.), and PyMOL (DeLano Scientific LLC).  After the 
submission of this thesis, a structure of the M. tuberculosis Class II aldolase was published (Pegan et al. 2009) 

http://www.expasy.ch/
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Figure 5.2 Targeted amino acids for tryptophan replacement in the H. pylori, P. aeruginosa and 
B. cereus Class II FBP aldolases  
Models of the Class II FBP aldolase monomers from H. pylori (Panel A); P. aeruginosa (Panel B); and B. 
cereus (Panel C).  The sequence of each monomer was threaded on the T. aquaticus FBP aldolase structure 
(PDB entry 1RV8) with a catalytic cobalt (blue sphere) in the buried position and 2 sulfate molecules (shown as 
yellow and red sticks) in the putative binding sites for the substrate’s phosphate groups, using the online 
program SWISS-MODEL (www.expasy.ch) (Schwede et al. 2003; Guex and Peitsch 1997; Peitsch 1995).  The 
β strands are in green and the α helices are in red.  The large mobile loop (β5-α7) is in the open position and is 
shown in black.  The small mobile loop (β6-α8, containing a catalytic zinc histidine ligand, shown as blue 
sticks) is colored in light orange.  The native tryptophans (PAFBA W240 and BCFBA W30) are shown as 
yellow sticks.  The loop residues targeted for mutagenesis (HPFBA F185, PAFBA F202, and BCFBA I149) are 
shown as pink sticks.  The images were done using DeepView/Swiss-PdbViewer (Guex and Peitsch 1997) and 
POV-RayTM for Windows (Persistence of Vision Raytracer Pty. Ltd.). 
 

http://www.expasy.ch/
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Figure 5.3 Targeted amino acids for site-directed mutagenesis 

The figure shows portions of the Class II aldolases alignment presented in Figure 1.17.  The targeted 
amino acids in the sequence of the aldolases from H. pylori, P. aeruginosa, B. cereus and M. 
tuberculosis are shown in filled yellow boxes.  The residues D183 and M190 in the E. coli FBP 
aldolase sequence (mutated to tryptophans by other authors, see text) are also shown in yellow and 
pink boxes, respectively.  Note that the numbering of amino acids may not correspond to that used in 
PDB structures, as the N-terminal methionine is absent (cleaved off ) in some of these proteins. 
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5.2 Methods 

5.2.1 Site-directed mutagenesis 

The plasmids pT7-7/MTFBA, pT7-7/PAFBA, pT7-7/HPFBA and pT7-5/BCFBA (see Chapter 2 

and Appendix A) were used as templates for the site-directed mutagenesis reactions.  The primers 

used for each mutant are presented in Table 5.1.  The PCR was performed using the Pwo DNA 

Polymerase kit (Roche Diagnostics) on an Endurance TC-512 Thermal cycler (Techne, Burlington, 

NJ).  A two-stages site-directed mutagenesis protocol was used (Wang and Malcolm 1999).  The first 

5 cycles were done using two separate mixtures including either the forward or reverse primer, to 

promote maximal annealing of the primers with the template plasmid.  After these five cycles, the two 

mixtures containing the forward and reverse primers were combined for the last 12 cycles. The initial 

denaturation for one minute at 94 °C, and the cycles consisted of a denaturation for 1.5 minute at     

95 °C, annealing for 1.5 minute at 65 °C, and extension for 3 minutes at 72 °C.  The final extension 

was done at 72 °C for 15 minutes. 



Chapter 5 Preliminary work on enzyme loop dynamics 

  179

 

Table 5.1 Primers used in site-directed mutagenesis 

The mutations used to introduce the tryptophan codon (TGG), as well as the silent mutations used to 
insert or remove a restriction site, are shown in bold.  The positions of the restriction sites (added or 
removed as indicated) are underlined. 
 
Mutant Primers Restriction 

sites 

(added or 

removed) 

MTY280W MTY280WF: 5’-CACCGACACCCAGTGGGCGTTCACCCGC-3’ 

MTY280WR: 5’-GCGGGTGAACGCCCACTGGGTGTCGGTG-3’ 

MluI 

(removed) 

MTI175W MTI175WF: 5’-GAGGACGGCGTCGCGAACGAGTGGAACGAGAAGCTGTAC- 

ACC-3’ 

MTI175WR: 5’-GGTGTACAGCTTCTCGTTCCACTCGTTCGCGACGCCGTC- 

CTC-3’ 

Tth111I 

or PsyI 

(added) 

MTN173W MTN173WF: 5’-GAGGACGGCGTCGCGTGGGAGATCAACGAGAAG-3’ 

MTN173WR: 5’-CTTCTCGTTGATCTCCCACGCGACGCCGTCCTC-3’ 

Tth111I 

or PsyI 

(added) 

BCI149W BCI149WF2: 5’-CGGACAAGAAGACGACGTCTGGGCTGAAGGCGTAATT- 

TAC-3’ 

BCI149WR2: 5’-GTAAATTACGCCTTCAGCCCAGACGTCGTCTTCTTGTCCG-

3’ 

AatII 

(added) 

PAF202W PAF202WF: 5’-CACCAGCCACGGCGCATACAAGTGGACCAAGCCGC-3’ 

PAF202WR: 5’-GCGGCTTGGTCCACTTGTATGCGCCGTGGCTGGTG-3’ 

NarI 

(removed) 

HPF185W HPF185WF: 5’-GGGACAAGCCACGGCGCCTTTAAATGGAAGGGCGAGCC-3’ 

HPF185WR 5’-GGCTCGCCCTTCCATTTAAAGGCGCCGTGGCTTGT-3’ 

NarI 

(added) 

 

In order to assess the success of the mutagenesis, the primers were designed to incorporate silent 

mutations to add or remove restriction sites from the templates (Table 5.1).  For the mutant 

MTY280W, a MluI site was removed.  The wild-type gene has another MluI site (Appendix A), 

yielding two fragments of 497 bp and 2989 bp when the plasmid is digested.  After the mutation, only 
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the linear plasmid (3486 bp) is obtained after MluI digestion.  For the mutants MTI175W and 

MTN173W, a Tth111I site was added (Tth111I shares the same recognition sequence as PsyI). The 

vector pT7-7/MTFBA already contains this restriction site, such that after mutation the digestion 

yields two fragments of 777 bp and 2709 bp.  An AatII restriction site was added for the mutant 

BCI149W.  The pT7-5/BCFBA vector also has an AatII restriction site, such that after the mutation, 

the digestion of the vector gives two fragments of 1727 and 1525 base pairs. For the mutant 

PAF202W, a NarI site was removed. Before mutation, the NdeI and NarI double digestion of the 

pT7-7/PAFBA vector yields a 597 bp fragment, which is not present after mutation.  Finally, a NarI 

site was added for the mutant HPF185W.   

5.2.2 Expression and purification 

The mutated aldolases were expressed and purified using the methods described in Chapter 2.  

The mutant PAF202W was expressed in a fermentor as described in section 2.2.2.1.  The mutants 

BCI149W, MTY280W, MTN173W and MTI175W were expressed in shake-flasks as described in 

section 2.2.2.2.  The mutants were purified using the same methods as the corresponding native 

enzymes (see section 2.2.6), with the following modifications: 

The mutant BCI149W was purified from 11 g of cells from a 3 L culture grown in LB broth 

supplemented with 0.1 mM ZnCl2, and 0.36 g of protamine sulfate was used to precipitate nucleic 

acids.  After ammonium sulfate fractionation, the anion-exchange chromatography was done using a 

100 mls bed volume DEAE sepharose CL 6B column.  The protein was washed with 10 CV of buffer 

B (50 mM Tris-HCl, 0.1 M NaCl, 0.2 mM ZnCl2, pH 8.0) until the OD280 was less than 0.12, before 

the start of the elution gradient which was from 100 mM to 400 mM NaCl over 5 CV.  The active 

fractions were pooled, dialyzed against a 3.9 M ammonium sulfate solution, and stored at 4 °C. 
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The mutant PAF202W was purified from 48 g of cells.  Buffer A was composed of 50 mM Tris-

HCl, 0.1 M NaCl, pH 8.0, with 0.1 mg/mL DNAse I and 0.5 mg/mL lysozyme added.  0.94 g of 

protamine sulfate was used to precipitate nucleic acids.    Buffer B used to dialyze the protein after 

ammonium sulfate fractionation was composed of 50 mM Tris-HCl, 0.1 M NaCl, pH 8.0.  The first 

anion exchange chromatography was done using a thermo-jacketed column (16mm x 10cm) 

containing 20 mL of DEAE Sepharose CL-6B resin.  The protein was washed with 10 CV of buffer B 

and eluted using a gradient from 100 mM to 500 mM NaCl over 10 CV at a flow rate of 1 mL/min.  

The active fractions were pooled and supplemented with glycerol to a final concentration of 50%, and 

stored at -20 °C.  The protein was then loaded (70 mg per run) on a 6 mL ResourceQ column pre-

equilibrated with buffer C (50 mM Tris-HCl, 0.1 M NaCl, 1 mM β-mercaptoethanol, pH 8.0), washed 

with 5 CV of the same buffer, and eluted using a gradient of 100 mM to 500 mM NaCl over 20 CV at 

a flow rate of 5 mL/min.  The active fractions were pooled, supplemented with glycerol to a final 

concentration of 50%, and stored at -20 °C.  

The mutants MTY280W and MTN173W were purified from ~4 g of cells grown in TB broth.  

The enzymes were purified as described in Chapter 2 for the native M. tuberculosis aldolase grown in 

shake-flask.  The DEAE column had a bed volume of 24 mL (16 mm x 12 cm), and the gel filtration 

column used was a 124 mL bed volume HighLoad 16/60 Superdex 200 column (Amersham-

Pharmacia Biotech).  The 3 most active elution fractions (2 mL each) of the purified enzymes were 

either frozen in liquid nitrogen and stored at -80 °C (MTY280W), or supplemented with glycerol to a 

final concentration of 50% and stored at -20 °C (MTN173W).   The mutant MTN173W was then 

further purified by loading the pooled gel filtration fractions onto a 1 mL ResourceQ column 

(Pharmacia LKB Biotechnology) pre-equilibrated with buffer C (50mM TRIS-HCl, 100mM NaCl, 

pH 7.8).  The protein was washed with 13 CV using buffer C, and then eluted with a gradient from 
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100 mM to 500 mM NaCl over 40 CV.  The 4 most active fractions (1 mL each) were supplemented 

with glycerol to a final concentration of 50% and stored at -20 °C.  

The mutant MTI175W was purified from 20.5 g of cells grown in LB broth.  The purification 

procedure was as described above for the mutant MTN173W, excepted that the protein eluted from 

the gel filtration column was split into two pools, and further purified using a 6 mL Resource Q 

column (in two subsequent runs) for the last anion-exchange chromatography step, instead of using 

the 1 mL ResourceQ column.  The active fractions were pooled, supplemented with glycerol to a final 

concentration of 50% and stored at -20 °C. 

5.2.3 Activity assays, protein assays, and SDS-PAGE 

The enzymatic assays and the kinetic parameters determination were done as described in section 

2.2.3.  The characterization of the M. tuberculosis FBP aldolase mutants was done at 30 °C using      

50 mM Hepes pH 7.3 as the assay buffer, instead of 50 mM Tris-HCl, pH 8.0.  The B. cereus and      

P. aeruginosa aldolase mutants were assayed in 50 mM Tris-HCl, pH 8.0.  Protein concentration was 

determined by the dye binding method of Bradford (Bradford 1976) using BSA as a reference 

standard.  The purity of the preparations were estimated by SDS-PAGE on 12%-polyacrylamide gels 

according to the method of Laemmli (Laemmli 1970).  All gels were stained with Coomassie Blue. 

5.2.4 Steady-state fluorescence 

The M. tuberculosis wild-type aldolase and its mutants I175W, N173W, and Y280W were 

dialyzed in 1L of dialysis buffer (50 mM Hepes buffer, pH 7.3, with 5 μM ZnCl2) overnight at 4 °C. 

Dialysis tubing with 6-8,000 molecular weight cut-off was used in each case to remove the glycerol. 

The dialyzed samples were then concentrated using VivaSpin columns (Viva Science) with a     

10,000 Da cut-off, followed by Nanosep 10,000 Da cut-off columns (PALL Life Sciences), to a total 

volume of less than 100μl.  A Bradford assay and NADH enzyme-coupled assay was performed to 
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determine the specific activity of each enzyme sample to be used in the fluorescence studies.  The 

concentrations of enzyme used in the presence of 5.3 mM FBP and 4.2 mM DMPS were: 8.5 mg/mL 

(230 µM) for the wild-type M. tuberculosis aldolase; 2.8 mg/mL (77 µM) for MTI175W mutant;    

1.7 mg/mL (47 µM) for the MTN173W mutant; and 0.9 mg/mL (25 µM) for the MTY280W mutant.  

The enzyme concentrations were 1.2 times higher for the scans taken prior to the addition of FBP and 

DMPS (100 µL of each enzyme solution were used for the first scan, then 10 µL of FBP stock and    

10 µL of DMPS stock were added for the second scan).  The specific activity immediately prior to the 

fluorescence scans was 9.1 U/mg for the wild-type enzyme, and 17.3 U/mg, 14.2 U/mg, and 4.1 U/mg 

for the I175W, N173W and Y280W mutants, respectively. 

Prior to starting the emissions scans, the following parameters were adjusted: excitation slit 1 and 

2 on the fluorimeter (PTI, Photon technology International, Birmingham, NJ) were opened to 1 mm 

and 2 mm, respectively. The emission slits were then adjusted; emission slit 1 and 2 were opened to   

1 mm and 2 mm, respectively.  The lamp was warmed up at 75 Watts.  The excitation wavelength 

was set to 295 nm, to avoid excitation of native tyrosine residues in the enzyme sample. The emission 

scan was performed from 300 to 450 nm, using a 2 nm step-size and 0.5 second integration. Only one 

scan was taken for each sample, which were placed in a 90 μl quartz cuvette. 

5.2.5 Time-resolved fluorescence 

A Pulsed Diode LED (PDL 800-B light source with a sub-nano second pulsed LED PLS-301 

plug-in head, PicoQuant) was used as the light source (excitation wavelength of 298 nm, minimum 

pulse width of 0.45 ns).  The detector was a FluoTime 100 Compact Fluorescence Lifetime 

Spectrometer (PicoQuant GmbH, Berlin, Germany).  All samples were run in a 90 μl quartz cuvette, 

which was tilted in the “magic” 54.7 ° angle position to compensate for emission anisotropy.  Time 

Harp 200 software was used to collect the data.  Data was collected up to a 5,000 photon count for 
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each trial, unless otherwise indicated, and the fluorescence emission was recorded over ~135 ns       

(34 ps per channel).  A light-scattering colloidal silica solution (Ludox) was used to record the 

instrument response function.  To eliminate some of the background signal attributed to light 

scattered by the buffer (50 mM Hepes, pH 7.3, with 5 µM ZnCl2), a 320 nm filter was used.  An 

exponential function was then fitted to the data using the Marquardt algorithm in the FluoroFit 

software (PicoQuant GmbH, Berlin, Germany), and the parameters were altered until a minimal χ2 

value was obtained. 

The BCI149W mutant had a concentration of 0.73 mg/mL (24 µM) and a specific activity of        

3 U/mg. The B. cereus wild-type aldolase had a concentration of ~32 mg/mL (~1 mM) and a specific 

activity of ~6.6 U/mg.  The enzymes were diluted by ~10% after the addition of 5.3 mM FBP. 

Due to the limited amount of the M. tuberculosis aldolase and its mutants, the samples used for 

time-resolved fluorescence spectroscopy were the same ones used for steady-state fluorescence 

studies (see enzyme concentrations in section 5.2.4).  The samples used with the 320 nm emission 

filter for these time-resolved fluorescence studies were the same samples previously used without the 

filter, which had been flash-frozen in liquid nitrogen (after addition of 5.3 mM FBP and 4.2 mM 

DMPS) and stored at -80 °C for 6 days.  

5.3 Results 

5.3.1 Cloning, purification and characterization 

The proposed mutants were all generated by site-directed mutagenesis.  The success of the 

mutagenesis was verified by performing appropriate restriction digests and by gene sequencing.  The 

mutants were then purified, except for the mutant HPF185W, which was not studied because the 

native H. pylori FBP aldolase was too unstable in our hands (see section 2.3.3.5).  The SDS-PAGE of 

the purified proteins are shown in Figures 5.4 to 5.8, and the molecular weight of the enzymes are 
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shown in Table 5.2.  A summary of the purification and characterization results is presented in Table 

5.3.  

 

 

 
kDa     1      2       3 

 

Figure 5.4 SDS-PAGE analysis of the purified MTI175W mutant 

Lane 1 contains the molecular weight markers.  Lanes 2 and 3 contain respectively 1.4 µg and 0.6 µg 
of the purified M. tuberculosis aldolase I175W mutant.  The gel was stained with Coomassie Blue. 
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Figure 5.5 SDS-PAGE analysis of the purified MTN173W mutant 

The molecular weight markers are shown in the extreme left lane.  The lanes B10 and B9 each 
contain ~1.2 µg of the purified M. tuberculosis aldolase N173W mutant. The gel was stained with 
Coomassie Blue. 
 

 

Figure 5.6 SDS-PAGE analysis of the purified MTY280W mutant 

Lane 1 contains the molecular weight markers, and lanes 2 to 4 contain 20 µL aliquots from the 3 
most active fractions (total volume of 2 mL each) eluted from the gel filtration column.  Lane 2 
contains approximatively 3 µg of the purified M. tuberculosis aldolase Y280W mutant.  The gel was 
stained with Coomassie Blue. 
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Figure 5.7 SDS-PAGE analysis of the purified BCI149W mutant  

Lane 1 contains the molecular weight markers; lane 2 = 20 µg of crude extract; lane 3 = 10 µg of 40% 
ammonium sulfate cut supernatant; lane 4 = 5 µg of 60% ammonium sulfate cut supernatant.  The 
purified B. cereus aldolase I149W mutant is shown in lanes 5 and 6:  lane 5 = 5 µg of DEAE fractions 
pool D; lane 6 = 5 µg of DEAE fractions pool E.  The gel was stained with Coomassie Blue. 
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Figure 5.8 SDS-PAGE analysis of the purified PAF202W mutant 

Lane 1 contains the molecular weight markers; lane 2 contains ~7 µg of the DEAE fractions pool; and 
lanes 3 to 8 contain ~2 µg of the purified P. aeruginosa aldolase F202W mutant (pools A to F, as 
indicated at the bottom of the gel).  The gel was stained with Coomassie Blue. 
 
 
 

Table 5.2 Mass spectrometry results for the purified tryptophan mutants 

Aldolase Theoretical M.W.* 
   (+Met)               (-Met) 

(Da) 

Measured M.W.† 
(Da) 

M. tuberculosisY280W   36,567                36,436 36,432 (major, 100%) and  
25,802 (minor, 43%) 

M. tuberculosis N173W   36,617                36,485 36,482.5 

M. tuberculosis I175W   36,618                36,486 36,483.5 

P. aeruginosa F202W   38,610                38,479 38,482 

B. cereus I149W   30,746                30,615 30,613.5 (major, 100%) and 
30,649.5 (minor, 28%)    

*The mass with and without the N-terminal methionine residue are shown 
†When more than one peak was obtained, the relative intensity of each signal is indicated in brackets. 
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Table 5.3 Purification results and kinetic parameters of the tryptophan mutants 

Aldolase† 

Total 

Protein 

(mg) 

Percent 

Yield 

(%) 

Specific 

Activity 

(µmol FBP/min/mg)

KM

(µM FBP) 

kcat

(s-1) 

MT wild-type 0.80 14.40 35.1 20.3 ± 0.3 21.0 ± 0.1 

MTY280W 1.50 2.00 2.60 90 ± 7 1.38 ± 0.04 

MTI175W 1.55 2.17 31.8 20 ± 2 19.9 ± 0.4 

MTN173W 0.33 4.71 27.8 17 ± 2 16.6 ± 0.3 

BC wild-type 210 23 9.2 450 ± 10 2.95 ± 0.03 

BCI149W 

(C to E) 
100 19 3 to 4.7 730 ± 50 2.40 ± 0.07  

PA wild-type 305 4.9 1.4 35 ± 2 1.53 ± 0.02 

PAF202W 

(A to F) 
309 4.8 0.7 to 0.98  45 ± 2* 0.45* to 0.63* 

† Results for the wild-type enzymes are those presented in Chapters 2 and 3 and are included as a 
reference.  The M. tuberculosis aldolase (wild-type and mutants) kinetic parameters presented in this 
Table were determined in 50 mM Hepes pH 7.3, whereas the other enzymes were assayed in 50 mM 
Tris-HCl pH 8.0. Kinetic parameters were estimated by fitting the data to the Michaelis-Menten 
equation using the least squares and dynamic weighting options of the Leonora software program 
(Cornish-Bowden 1995).  *Enzyme lost activity rapidly.   
 

The enzymes with mutations in the large catalytic loop (MTN173W, MTI175W, and BCI149W) 

have kinetic parameters similar to the corresponding wild-type enzymes.  The mutant PAF202W, 

which had a mutation in the small loop participating in the catalytic zinc coordination, rapidly lost 

activity after its purification and was not used for fluorescence experiments.  The mutant MTY280W, 

with a mutation near the C6 phosphate binding site and dimerization interface, had a kcat ~15 times 
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lower than the wild-type enzyme (the lower purity of the enzyme is partially responsible for the lower 

kcat), but only a 4-fold increase in its KM for FBP cleavage.   The purified mutants all had the expected 

molecular weight according to the ESI-MS results (Table 5.2), and all have their N-terminal 

methionine cleaved.  The minor peak at 30,649.5 Da (enzyme + 36 Da) obtained with the BCI149W 

mutant, and the peak at 25,802 Da obtained with the MTY280W mutant may be due to the presence 

of contaminating proteins, as several contaminating proteins can be seen on the SDS-PAGE gels of 

the purified fractions (see Figures 5.6 and 5.7).  The mutant MTY280W is only ~70% pure, and the 

BCI149W is ~90% pure.  The MTN173W and MTI175W mutant enzymes were purified by the extra 

anion-exchange purification step resulting in 95% pure enzyme.  The small amount of purified         

M. tuberculosis aldolase mutants obtained (1.5 mg or less) will only allow for preliminary 

fluorescence studies. 

5.3.2 Equilibrium fluorescence studies 

The fluorescence spectrum of the wild-type aldolase from B. cereus has a maximum intensity 

around 323 nm, consistent with the burial of the tryptophan residue (W30) at the dimer interface 

(Figure 5.2 Panel C).  The native tryptophan residue of this aldolase does respond to FBP binding as 

there is a small blue shift (4 nm) in the fluorescence peak in the presence of substrate for the wild-

type enzyme.  No significant shift in fluorescence is observed for the mutant BCI149W, which has 

two tryptophan residues (Figure 5.9 and Table 5.4).  The emission peak of BCI149W occurs at a 

higher wavelength than the wild-type enzyme (peaks at 339 nm and 323 nm, respectively) which is 

consistent with the water-exposed position of the tryptophan residue inserted in the large mobile loop, 

compared to the hydrophobic environment of the native B. cereus aldolase tryptophan (Figure 5.2 

Panel C).  The inserted W149 has a much higher fluorescence emission than the native W30 in the 

mutant (see the relative fluorescence intensity versus the enzyme concentration of the wild-type and 

mutant B. cereus aldolases in Figure 5.10), and therefore makes the highest contribution to the overall 
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fluorescence spectrum of BC149W.  This may explain why the small blue shift in the fluorescence of 

the native tryptophan upon substrate binding is not detectable in the mutant.  The excitation scan of 

these enzymes is presented in Figure 5.10, showing that the presence of DMPS did not affect the 

excitation spectra of BCI149W.  However, it was observed that DPA-based inhibitors absorb light in 

the tryptophan excitation range and do affect the fluorescence emission of the aldolases (Figure 5.11).  

Therefore the inhibitor DMPS was used instead for subsequent fluorescence studies.   
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Figure 5.9 Fluorescence emission spectra of the B. cereus wild-type aldolase and its mutant 
BCI149W in the presence or absence of FBP 

The excitation wavelength was 295 nm, the step size was 2 nm, and the integration time was 0.5 s.  
The buffer was 50 mM Hepes, 5 µM ZnCl2, pH 7.3.  The enzyme concentration was 1 mM for BC-
WT and 24 µM for BCI149W, and the concentration of FBP was 5.3 mM.  The emission peak is at 
323 nm for the B. cereus wild-type enzyme in the absence of FBP, and the peak is slightly blue-
shifted (to 319 nm) in the presence of the substrate.  No shift is observed for the fluorescence 
emission peak of the mutant in these conditions.   
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Figure 5.10 Fluorescence emission spectra of the wild-type aldolase from B. cereus (BC-WT) 
and of the mutant BCI149W in the presence of FBP or DMPS, in function of the excitation 
wavelength. 

The emission was recorded at 350 nm, and the integration time was 0.5 s.  The buffer consisted of   
50 mM Hepes, 5 µM ZnCl2, pH 7.3, and the enzyme concentration was 1 mM for BC-WT and 24 µM 
for BCI149W.  The concentration of FBP was 5.3 mM and the concentration of DMPS was 5 mM. 
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Figure 5.11 Absorption spectra of compound 6 and effect on fluorescence emission of B. cereus 
aldolase mutant I149W in function of the excitation wavelength. 

Panel A: UV-Vis absorption spectra of compound 6 (insert).  The DPA derivative had a concentration 
of 312.5 µM and was dissolved in 50 mM Hepes, pH 7.3.  Panel B: Excitation spectra of the 
BCI149W mutant (3 µM of enzyme, dissolved in 50 mM Tris-HCl, 1 µM ZnCl2, pH 8.0) in the 
presence and absence of 0.5 mM compound 6.  The emission was recorded at 350 nm, and a 1 mL 
quartz cuvette was used.   
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The emission spectra of BCI149W in the presence and absence of DMPS is shown in Figure 5.12.  

No significant shift in fluorescence emission was observed in the presence of this inhibitor. 
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Figure 5.12 Fluorescence emission spectra of mutant BCI149W enzyme in the presence of 
DMPS 

The excitation was done at 295 nm.  The buffer consisted of 50 mM Hepes, 5 µM ZnCl2, pH 7.3, the 
enzyme concentration was 24 µM, and the concentration of DMPS was 5 mM.  The step size was 2 
nm, the integration time was 0.5 seconds and 5 averages were taken for each sample.  
  
 

The emission spectra of the wild-type and mutated M. tuberculosis aldolases are shown in Figure 

5.13.  The red-shift of the fluorescence emission of the mutated aldolases is consistent with the 

greater solvent-exposure of the inserted tryptophan residues, compared to the wild-type tryptophan 

residue (W130, Figure 5.1).  A small shoulder is actually noticeable in the spectra of the MTY280W 

and MTN173W mutated aldolases around 337 nm (Figure 5.13), corresponding to the emission of the 
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wild-type tryptophan residue in each mutant.  The emission spectra of the wild-type aldolase from M. 

tuberculosis as well as its mutants Y280W, N173W and I175W did not significantly shift upon 

binding of FBP or DMPS (Figure 5.14).  The peak emission wavelengths of the enzymes are 

summarized in Table 5.4.  
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Figure 5.13 Emission spectra of the M. tuberculosis aldolase and its mutants 

The excitation wavelength was 295 nm, and the emission spectra were recorded in 2 nm intervals.  
The buffer was 50 mM Hepes, pH 7.3 containing 5 μM ZnCl2.  The enzyme concentration was       
280 µM for the wild-type M. tuberculosis aldolase (MT-WT), 94 µM for the I175W mutant, 57 µM 
for the N173W mutant, and 31 µM for the Y280W mutant.  The buffer spectrum was substracted 
from the data obtained with the enzymes.  The emission peak was at 337 nm for the wild-type          
M. tuberculosis aldolase; 349 nm for the Y280W mutant; and 353 nm for the I175W and the N173W 
mutants.  
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Figure 5.14 Fluorescence emission spectra of the M. tuberculosis aldolase and its mutants in the 
presence of FBP and DMPS 

The spectra were taken for the enzymes alone (solid curves, also presented in Figure 5.12), and for 
the enzymes in the presence of 5.3 mM FBP and 4.2 mM DMPS (dashed curves).   The excitation 
wavelength was 295 nm.  The enzyme concentrations are described in Figure 5.12.  The enzyme 
concentrations were lower after the addition of FBP and DMPS (see section 5.2.4), and the 
fluorescence intensity for these curves was adjusted proportionally to this dilution.  The emission 
peaks were not significantly shifted from the values obtained after addition of FBP and DMPS     
(Fig. 5.12).  
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Table 5.4 Peak fluorescence emission wavelengths of the native and mutated Class II FBP 
aldolases from B. cereus and M. tuberculosis 

The excitation wavelenght was 295 nm and the buffer was 50 mM Hepes pH 7.3, with 5 μM ZnCl2 
added.  The concentration of FBP was 5.3 mM and the concentration of DMPS was 4.2 mM. 
 

Emission peak 

without FBP 

Emission peak with FBP (*), or 

FBP and DMPS (†) 

 

(nm) (nm) 

B. cereus Wild-Type 323 319* 

BCI149W 339 339* 

M. tuberculosis Wild-Type 337 337† 

MTN173W 353 351† 

MTI175W 351 353† 

MTY280W 349 349† 

 

5.3.3 Time-resolved fluorescence 

The preliminary time-resolved results obtained are shown in Table 5.5 and Figure 5.16.  The      

B. cereus wild-type aldolase and BCI149W mutant aldolase were analyzed before and after the 

addition of 5.3 mM FBP (final concentration).  No significant change in fluorescence lifetime could 

be detected for the BCI149W mutant, and only a very small decrease (0.1 ns) was observed for the 

wild-type B. cereus aldolase in the presence of FBP.  M. tuberculosis aldolase and its mutants were 

analyzed before and after the addition of 5.3 mM FBP and 4.2 mM DMPS.  Significant changes in 

fluorescence lifetime were observed in the presence of FBP for all enzymes except the MTN173W 

mutant.  The fluorescence lifetime decreased by 0.2 and 0.6 ns in the presence of FBP for the wild-

type and MTI175W enzymes respectively; but increased by 0.3 ns for the MTY280W mutant.  The 

subsequent addition of DMPS did not cause significant changes in fluorescence lifetimes. 
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The use of a 3-exponential equation did not significantly improve the χ2 values (these values 

ranged between 0.99 and 1.274 with a 3-exponential equation, compared with 1.057 to 1.458 with a 

2-exponential equation).  A 4-exponential equation could not be used as the background noise was 

too high (low resolution, yielding arbitrary results for the decay constants).  The results obtained 

using a 320 nm cut-off emission filter with the M. tuberculosis wild-type aldolase and its mutants are 

also shown, as the filter improved the signal-to-noise ratio significantly.  Without the use of the     

320 nm cut-off emission filter, approximatively 99% of the signal (see amplitudes α associated with 

each of the decay constants τ) was due to noise and emissions with a lifetime shorter than 0.5 ns, 

which is the resolution limit using this pulsed LED source.  The time-resolved analysis was actually 

limited by the high background noise obtained with the pulsed LED source used for excitation, which 

displays low resolution (pulse width ~0.5 ns).  The light source pulse width (~0.5 ns) overlapped 

significantly with the expected lifetimes of the excited states of the tryptophan residues, which are 

usually between 0.3 ns and 10 ns (Beechem and Brand 1985)).  When the 320 nm filter was used 

(Table 5.5, enzyme samples marked with an asterix), the amplitude attributed to this “noise” 

diminished slightly (94% to 97% of the signal).  The mutant Y280W had the lowest signal-to-noise 

ratio since it had a concentration 2- and 3 times lower than for N173W and I175W, respectively, as 

described in section 5.2.4.  It is relevant to note that the analysis of the signal coming from the buffer 

alone yielded results very similar to those obtained with the enzyme solutions, albeit with an 

amplitude 3 to 5 times lower than the protein samples for the lifetimes above 0.5 ns (Table 5.5 and 

Figure 5.16 panel D).  This “buffer” signal was later attributed to contaminants in the 90 µl quartz 

cuvette, which affected all of the time-resolved fluorescence results.  The same cuvette filled with 

buffer alone did not give a significant signal in steady-state fluorescence experiments (see Figures 

5.9, 5.12 and 5.13), but the time-resolved apparatus is much more sensitive to the presence of trace 

contaminants.  Based on the rate of detection in photons per second, the emission signal from the     
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M. tuberculosis wild-type and mutant aldolases was only 25% to 47% more intense than the signal 

from the buffer alone in the time-resolved experiments done using the 320 nm emission filter, which 

illustrates the extent of the light scattering by the less-than-ideally cleaned 90 µl cuvette.  The results 

still appear reliable for the fluorescence lifetimes above 0.5 ns, as the sample analysis produced 

nearly identical τ1 values with and without the use of the 320 nm emission filter.  As mentioned 

above, this filter increased the intensity (α1) of the τ1 fluorescence lifetime signal by a factor four to 

six (Table 5.5, see enzyme samples marked with an asterix).       
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Table 5.5 Time-resolved decay constants and associated amplitudes  

τn represent the fluorescent lifetimes and αn represent the percentage contribution of fluorescence 
lifetime decay measurements.  A 2-exponential function was fitted to the signal (photon count in 
function of time) recorded for each sample excited at 298 nm by a pulsed light-emitting diode (LED) 
source (PLS-295, PicoQuant GmbH, Berlin, Germany).  The χ2 values are indicated, and the quality 
of the fits was verified by visual inspection of the residuals (see Figure 5.15).  The FBP concentration 
was 5.3 mM and the DMPS concentration was 4.2 mM.  The buffer was composed of 50 mM Hepes, 
5 µM ZnCl2, pH 7.3.   *An emission filter (320 nm) was used for samples marked with an asterix. 

Enzyme τ1 (ns) τ2 (ns) α1 (%) α2 (%) χ2

BC 4.54 ± 0.02 0.101 ± 0.005 4.00 ± 0.02 96 ± 5 1.295 

BC + FBP 4.45 ± 0.02 0.101 ± 0.005 4.00 ± 0.02 96 ± 4 1.300 

BCI149W 4.11 ± 0.03 0.097 ± 0.004 1.00 ± 0.01 99 ± 4 1.267 

BCI149W+FBP 4.13 ± 0.03 0.103 ± 0.004 1.00 ± 0.01 99 ± 4 1.251 

MT 3.90 ± 0.05 0.121 ± 0.003 1.00 ± 0.01 99 ± 2 1.237 

MT+FBP 3.67 ± 0.04 0.094 ± 0.004 1.00 ± 0.01 99 ± 4 1.217 

MT+FBP+DMPS 3.76 ± 0.04 0.109 ± 0.003 1.00 ± 0.01 99 ± 3 1.167 

MT+FBP+DMPS* 3.77 ± 0.03 0.189 ± 0.004 4.00 ± 0.04 96 ± 2 1.425 

MTI175W 4.17 ± 0.05 0.080 ± 0.004 1.00 ± 0.01 99 ± 4 1.231 

MTI175W+FBP 3.61 ± 0.04 0.090 ± 0.003 1.00 ± 0.01 99 ± 4 1.247 

MTI175W+FBP+DMPS 3.63 ± 0.04 0.098 ± 0.003 1.00 ± 0.01 99 ± 3 1.251 

MTI175W+FBP+DMPS* 3.69 ± 0.03 0.221 ± 0.004 6.00 ± 0.05 94 ± 2 1.458 

MTN173W 4.02 ± 0.05 0.092 ± 0.003 1.00 ± 0.01 99 ± 4 1.230 

MTN173W+FBP 3.98 ± 0.05 0.086 ± 0.004 1.00 ± 0.01 99 ± 5 1.173 

MTN173W+FBP+DMPS 4.06 ± 0.05 0.096 ± 0.004 1.00 ± 0.01 99 ± 4 1.155 

MTN173W+FBP+DMPS* 3.94 ± 0.03 0.181 ± 0.004 5.00 ± 0.04 95 ± 2 1.274 

MTY280W 3.78 ± 0.07 0.068 ± 0.003 0.268 ± 0.006 100 ± 5 1.201 

MTY280W+FBP 4.11 ± 0.07 0.076 ± 0.003 0.291 ± 0.006 100 ± 4 1.251 

MTY280W+FBP+DMPS 4.07 ± 0.06 0.079 ± 0.003 0.415 ± 0.007 100 ± 4 1.194 

MTY280W+FBP+DMPS* 4.09 ± 0.03 0.128 ± 0.005 3.00 ± 0.02 97 ± 3 1.316 

Buffer 2.9 ± 0.1 0.100 ± 0.006 0.19 ± 0.01 100 ± 6 1.129 

Buffer+FBP 2.6 ± 0.1 0.087 ± 0.004 0.22 ± 0.01 100 ± 4 1.057 

Buffer* 2.42 ± 0.06 0.123 ± 0.004 1.00 ± 0.04 99 ± 3 1.117 
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(Following pages) 

Figure 5.15 Time-resolved fluorescence 

The results are shown for the B. cereus aldolase (1 mM, Panel A) and its mutant I149W (24 µM, 
Panel B), for the M. tuberculosis aldolase mutant I175W (47 µM) in the presence of 5.3 mM FBP and 
4.2 mM DMPS (Panel C) and for the enzyme buffer alone (50 mM Hepes, 5 µM ZnCl2, pH 7.3, Panel 
D).  The top charts represent the photon count in function of time (34 ps per channel).  The red trace 
is the instrument response function obtained with the light-scattering colloïdal silica solution (Ludox), 
and the (top) blue traces were obtained with the protein samples.  The recordings were stopped at a 
photon count of 5,000 excepted for the instrument response function in panels C and D, which was 
stopped at a photon count of 10,000.  The goodness-of-fit can be judged by the plot of the residuals 
obtained after fitting a 2-exponential function (black trace) is shown under each graph, with the 
corresponding time units indicated.  The data was analyzed over a total of 64 ns, and the analysis 
limits are indicated by the pink vertical lines.  The quality of the fit is also indicated by the χ2 value 
shown on the graphs.   A 320 nm filter was used to reduce the background noise in Panels C and D.  
The data was analyzed and the graphics produced using the PicoQuant FluoroFit software (Berlin, 
Germany).  
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5.4 Discussion 

Tryptophan residues were introduced in specific positions in FBP aldolases in attempts to monitor 

loop movements upon ligand binding. In total three tryptophan residues were introduced in              

M. tuberculosis FBP aldolase, and 1 each in B. cereus, H. pylori, and P. aeruginosa FBP aldolases. 

Both the native and mutant H. pylori aldolases were found to be unstable and are therefore not 

characterized further.  Kinetic analysis was performed on the other mutants and the kinetic parameters 

obtained were similar to their native counterparts except for Y280W and F202W mutants of              

M. tuberculosis and P. aeruginosa aldolases, respectively.  The presence of impurities in some 

mutated enzymes preparations in comparison with their wild-type counterparts, particularly for 

MTY280W (Figure 5.6), may have contributed to the decrease in turnover number.  The residue 

Y280 of M. tuberculosis aldolase is located in the dimer interface of the enzyme and it is near the C6 

phosphate binding site of the active site.  Sequence alignment of the M. tuberculosis aldolase with 

other FBP aldolases reveal that several other Class II type A aldolases, such as that from E. coli, have 

a tryptophan residue in that position (Figure 5.3). However, M. tuberculosis differs from the other 

type A aldolases in that it is a tetramer instead of a dimer (Ramsaywak et al. 2004; see also section 

3.4).  Therefore the interface between subunits may be different (see modeled M. tuberculosis 

aldolase in Figure 5.1, where the dimerization arm, comprising the Y280 residue, is significantly 

different than that of the E. coli aldolase shown in inset), and substitution to a bulkier tryptophan 

residue may negatively impact the conformation of the protein and it is thus less catalytically 

efficient.  This mutant however was deemed to have retained enough catalytic activity for the 

fluorescence studies.  The residue F202 of the P. aeruginosa aldolase is located in the small mobile 

loop which includes a divalent metal ligand (Figure 5.2 B), and the rapid loss of activity of the 

purified enzyme could be due to a decreased metal affinity.  This inactivated enzyme was not used for 

fluorescence studies.  The other mutants, which all featured tryptophan residues introduced in the 
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large catalytic loop, have similar kinetic parameters as their native enzyme, suggesting that 

introduction of tryptophan residues in this loop did not adversely affect the conformation of the 

enzyme. 

Fluorescence studies were performed on the B. cereus and M. tuberculosis enzymes with addition 

of the substrate FBP and inhibitor DMPS.  Fluorescence studies were also attempted with compound 

6 (see Chapter 4), however the absorption and emission spectra of this compound overlap with that of 

tryptophan of the enzymes (Figure 5.10) and it is therefore not possible to use tryptophan 

fluorescence to monitor enzyme conformation change upon binding of compound 6.  The wild-type 

M. tuberculosis and B. cereus aldolases each contain a single native tryptophan residue, and upon 

addition of FBP, there is a noticeable quenching of tryptophan fluorescence.  In the B. cereus 

aldolase, the native tryptophan residue is in the dimer interface of the subunits (Figure 5.2C) and 

since the active site of the enzyme is made up by residues of both subunits (Figure 1.13), ligand 

binding may cause conformational change that resulted in a change in environment of the tryptophan 

residue.  In the B. cereus I149W mutant, the maximal fluorescence emission wavelength is red shifted 

by 18 nm compared to the wild-type enzyme.  This is consistent with relative higher solvent exposure 

at position 149 (in the large catalytic loop) of the enzyme.  Upon FBP binding, the mutant showed 

and increase in fluorescence emission, while binding of DMPS showed quenching of fluorescence.  In 

the native M. tuberculosis aldolase, it is surprising that the native tryptophan residue is also quenched 

upon binding of FBP and the inhibitor DMPS, although the tryptophan residue is located in the 

hydrophobic core of the TIM barrel, which is not near the active site.  The three tryptophan mutants 

in the M. tuberculosis aldolase all showed a red shift in fluorescence emission relative to the wild-

type.  Again this may be due to the higher solvent exposure in the introduced tryptophans.  Addition 

of FBP and DMPS causes quenching of the tryptophan fluorescence in two of the mutants Y280W 

and N173W, similar to what is observed in the wild-type enzyme.  In contrast, the presence of FBP 
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and DMPS causes an increase in fluorescence in the mutant I175W.  The unique response of this 

mutant to the presence of ligands could in the future be further characterized by replacing the native 

M. tuberculosis tryptophan by an isoleucine residue (W130I mutation), since isoleucine is relatively 

common in this position for both type A and B aldolases, according to the sequence alignment 

presented in Figure 1.17.  The I175W-W130I mutant could then be used for stopped-flow 

fluorescence studies to monitor ligand binding.  In a similar way, the B. cereus I149W mutant could 

be further characterized by mutation of the native W30 to another residue, possibly a phenylalanine.  

The changes in fluorescence upon ligand binding for this mutant could also be monitored using a 

stopped-flow spectrophotometer. 

The tryptophan mutants of the B. cereus and M. tuberculosis enzymes were also analyzed using 

time-resolved fluorescence to monitor the possibility of loop movements upon binding of ligands.  It 

is expected that proteins have at least one distinct fluorescence lifetime for each of its tryptophan 

residues, related to the environment of these residues.  In our study, only a two-exponential function 

could be used to analyze the data because of high background noise.  In addition, the lifetimes of    

0.5 ns or less could not be resolved because of the long pulse width (~0.5 ns) of the light-emitting 

diode used as the excitation source.  In spite of these limitations, some differences in fluorescence 

lifetimes could be detected for several enzymes in the presence of FBP.  The enzyme which showed 

the largest difference in fluorescence lifetime upon FBP binding was the M. tuberculosis aldolase 

I175W mutant, with a decrease from 4.2 ns to 3.6 ns for the longer lifetime component.  The wild-

type M. tuberculosis and the mutant Y280W also respectively displayed a decrease of 0.2 ns and an 

increase of 0.3 ns in fluorescence lifetime (longer component) upon FBP binding.  In contrast, the    

B. cereus enzymes had similar lifetimes (within 0.1 ns) before and after the addition of substrate.  

 In the future, it would be interesting to repeat these experiments with a better light source, and 

better enzyme samples (with increased purity).  Pulsed diode LED has low resolution and is less 
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powerful (at most 80 µW) than a pulsed diode laser light source, which have a pulse width as low as 

50 ps, and power up to 150 mW.  The excitation wavelength of 298 nm that was used in these 

experiments is also sub-optimal and an excitation wavelength of 292 nm or even 295 nm would have 

significantly increased the fluorescence emission signal from the aldolases (see Figure 5.11).  Light 

sources with such lower wavelengths were unfortunately not available for these experiments.  It 

would also be interesting to do time-resolved fluorescence with the double mutant proposed above 

(M. tuberculosis I175W-W130I), where the signal from the native tryptophan would be eliminated.     

These fluorescence studies were attempted with the goal of obtaining real time information on 

loop movements upon ligand binding, in order to discover if the loops conformation is indeed 

affected by the presence of the ligand.  It was also hoped that, even if the loop movements are not 

dependent upon the presence of the ligand, as was suggested previously (Hilcenko, 2003), the 

presence of a ligand in the active site would cause detectable changes in fluorescence from tryptophan 

residues introduced in the vicinity of the active site.  This in turn could be insightful to learn how 

inhibitors bind to the active site, and possibly to guide further inhibitor design based on the response 

of the loop(s).  Loops cannot be easily modeled, particularly when based on enzyme models 

generated using crystal structures of other enzymes.  These types of fluorescence experiments could 

be complementary to the inhibition assays, especially in the case of metal-binding inhibitors where 

complexing or non-complexing inhibition can occur.  A difference in fluorescence emission intensity 

or a difference in fluorescence lifetime for an active-site tryptophan residue in the presence of the 

inhibitor could help confirm the inhibition model determined using kinetic analysis.  In other words, 

the tryptophan fluorescence could help to distinguish between an inhibitor remaining bound in the 

active site, and one that is chelating the catalytic metal out of the enzyme’s active site.  Further 

studies will be needed to assess if some of the mutants described in the present study can be used to 

guide future inhibitor design. 
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Chapter 6 

Original contributions and recommendations 

6.1 Conclusions 

The objective of this multidisciplinary project is to rationally design Class II FBP aldolase 

inhibitors that can be used as new antimicrobial agents.  Inhibitors that are substrate analogues, may 

also act on the human Class I aldolases with associated toxicity.  The approach taken in this thesis 

was to start with metal-binding compounds which will be specific for metal-dependent Class II 

enzymes, but would not affect the Class I FBP aldolase activity.  These compounds contained 

different functional groups which may improve their affinity for the active site of the Class II FBP 

aldolases.  The development of new generations of inhibitory compounds was to be guided by kinetic 

analysis and structural analysis of target enzymes with bound inhibitors. This doctoral project served 

to put in place the foundation for a long-term study using the Class II FBP aldolases from several 

microorganisms as templates for metal-chelating inhibitor development.   

The goals of this doctoral project as stated in section 1.7 were to: 1) clone, express, and purify 

several Class II FBP aldolases from pathogenic microorganisms, 2) to characterize these enzymes and 

determine their susceptibility to inhibition by a range of synthetic inhibitors; 3) to gain a better 

understanding of the reaction mechanism of the Class II adolases; 4) to investigate possible links 

between structural features such as mobile loops and the kinetic and inhibition parameters; and 5) to 

make recommendations for rational inhibitor design.  Several of these goals have been achieved and 

significant progress has been made towards novel inhibitor development during this project, as will be 

summarized in the following section.  
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6.2 Original contributions to research 

The Class II aldolases from P. aeruginosa, B. cereus, M. grisea, H. pylori, S. pneumoniae, and  

H. influenzae were successfully cloned and overexpressed in E. coli.  The active recombinant 

enzymes from M. tuberculosis, P.aeruginosa, B. cereus, M. grisea, E. coli and H. pylori were 

purified, often in gram-scale quantities from E. coli cells grown in a bench-top fermentor.  It is 

relevant to point out that the aldolase from M. grisea had, to our knowledge, never been purified 

previously.  The purification yields of the Class II aldolases from M. tuberculosis, B. cereus, and      

P. aeruginosa were improved significantly over those reported for the purifications from the original 

host.   

The recombinant enzymes were characterized in terms of their metal ion specificity, stability and 

kinetic parameters to allow a thorough interpretation of the inhibition kinetics results.  The enzymes 

were also tested in the presence of various organic solvents and at elevated temperatures to assess 

their potential as catalysts for aldol condensation in organic synthesis.  This was the widest parallel 

investigation of the substrate specificity and catalytic efficiency of evolutionarily divergent Class II 

FBP aldolases. 

Several metal-chelating compounds were tested as Class II FBP aldolase inhibitors, and a kinetic 

model of the inhibition by the most potent compounds, DPA, DMPS, compounds 6 and 13 was 

proposed.  The compounds likely form an unstable ternary complex with the catalytic metal ion and 

the active site amino acid residues.  The compound DMPS was modeled into the crystal structure of 

the E. coli aldolase active site, and a novel inhibitor structure (AK4) based on this compound was 

proposed as the next step towards the generation of a potent lead inhibitory compound.   

In order to study the structure-function relationship of the active site mobile loops of the Class II 

FBP aldolases, six mutants were generated by replacing active site and loop residues with tryptophan 
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residues.  Five of these mutants were purified and their kinetic properties were compared with those 

of the wild-type enzymes.  These inserted tryptophan residues were used as fluorescent probes to 

monitor enzyme movements upon substrate and inhibitor binding.  The preliminary results of the 

equilibrium fluorescence studies indicate that the tryptophan residues introduced in the large catalytic 

loop of the M. tuberculosis and B. cereus aldolases increase in fluorescence upon substrate binding.  

This indicates that stopped-flow kinetic studies using fluorescence could be performed in the future to 

monitor loop movements during catalysis, and possibly to monitor inhibitor binding. 

6.3 Recommendations 

The following future studies are recommended in light of the results obtained in this doctoral project: 

1. It may be useful to express the enzyme with a C-terminal affinity tag and compare the results 

with those presented here, now that the optimal specific activity of the native recombinant enzymes 

has been determined.  If the C-terminally tagged enzymes have similar properties to the native 

recombinant enzymes, the purification methods could be significantly improved in terms of both 

yields and time.  This was done successfully with the M. tuberculosis aldolase, as was recently 

reported (Rukseree et al. 2008). 

2. Crystal structures of the enzymes with bound inhibitors will be helpful.  Future generations of 

inhibitors could then be designed by combining these small compounds using linkers of appropriate 

length with the metal-binding compounds identified in the present study, to obtain higher-affinity 

compounds.  These high affinity inhibitors should then be screened for host toxicity and protection 

against disease.  As discussed in Chapter 1, it is expected that only the very potent inhibitors that 

eliminate more than 95% of the Class II FBP aldolase activity in vivo will demonstrate a protective 

effect against the targeted pathogens.  An alternative approach is to use High Throughput Screening 

(HTS), which would allow the building of a database of molecules with at least moderate affinity for 
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the Class II aldolase that can be combined with metal affinity functional groups to increase 

specificity.  After the submission of this thesis, a structure of the M. tuberculosis Class II aldolase 

was published (Pegan et al. 2009).  This should be very useful for future inhibitor design. 

3. Since the Class II enzymes’ dimerization is essential for activity, inhibitors can be designed to 

destabilize this interface as was demonstrated with HIV-1 reverse transcriptase (Sluis-Cremer et al. 

2000).   The heat-sensitive FBP aldolase found in the ts8 mutant of the E. coli strain JS8 has a Val-to-

Gly mutation at position 300 which is a conserved hydrophobic residue in the dimerization arm of the 

enzyme (Singer et al. 1991a) (Figure 6.1).  This mutation may reduce the stability of the dimer, which 

needs to be intact for catalysis to occur since the active site is composed of residues from both 

subunits (see Figure 1.11).  This indicates that a dimer-destabilizing inhibitor could strongly influence 

the enzyme’s catalytic capabilities.  

4. The aldolases could be tested for their capacity to utilize different aldehydes in aldol 

condensation with DHAP.  This would be helpful for inhibitor design and for the use of Class II 

aldolases as catalysts in organic synthesis.  A protocol to monitor the condensation activity of the 

aldolases using a direct colorimetric assay would be useful.  A stopped assay using a colorimetric 

reagent to detect the triose phosphates has been adapted for 96-well plates recently (Rukseree et al. 

2008).  The development of such an assay, suitable for use in neutral pH conditions at room 

temperature, may also be more suitable than the coupled assay for HTS. 

5. The native tryptophan residue (W130) of the M. tuberculosis catalytic loop mutant I175W could 

be replaced by an isoleucine residue. This double mutant can be used for transient kinetic analysis 

using stopped-flow to monitor loop movements during catalysis.  The double mutant is expected to 

display an increase in fluorescence upon substrate binding according to the preliminary steady-state 

results obtained with the mutant  I175W relative to those obtained with the wild-type  M. tuberculosis 
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Figure 6.1 Location of the Val-to-Gly substitution in the heat-sensitive E. coli Class II FBP 
aldolase (ts8 mutation).  

The mutation is in the dimerization arm of the enzyme (Val300 residue in dark blue, shown in 
space-fill format).  The two different subunits are shown in cyan and green, with the catalytic Zn2+ 
shown as pink spheres.  The illustration was produced with PyMOL (DeLano Scientific LLC) using 
the E. coli aldolase structure (PDB ID: 1B57). 

 

 

aldolase.  It would be interesting to test if such a change in fluorescence occurs upon binding of a 

potent inhibitor (such as PGH) to the active site.  Similar experiments could be done after creating a 

B. cereus aldolase double mutant with a single tryptophan in the mobile loop (for example, I149W-

W30F double mutation). 

In conclusion, it bears repeating that antibacterial and antifungal discovery is a risky, long and 

difficult endeavor.  Enzymes’ properties and mechanism were studied in-depth since the 1930s, but it 

is still difficult to predict enzyme structure and kinetic behavior in the absence of an already well-
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characterized homologous enzyme.  Even though antimicrobial drug resistance is an increasing 

concern, pharmaceutical companies have all but abandoned this field of research in the last few years, 

in favor of the development of drugs for the treatment of the much more profitable chronic diseases.  

Although protein-ligand interaction predictions are constrained by our limited knowledge, the 

multidisciplinary collaborative efforts presented here are the best chance for drug discovery in an 

academic setting. 
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Appendix A 
Plasmids, aldolase genes, and protein sequences 

Vector pT7-5 

Nucleotide ID=AY230150 

 

pT7-5 p33
2369 bp

BamHI (20)

NdeI (2127)

ClaI (54)

EcoRI (2)

HindIII (47)

SacI (12)

SalI (32)

SmaI (17)

XbaI (26)

PstI (42)

BglI (317)

BglI (2330)

 

Figure 6.2 Map of plasmid pT7-5 
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Nucleotide sequence and restriction sites of pT7-5: 
 
              SacI    SmaI        XbaI         PstI 
       ~~~~~~~ ~~~~~~~     ~~~~~~~      ~~~~~~~ 
 EcoRI              BamHI          SalI           HindIII 
 ~~~~~~             ~~~~~~~       ~~~~~~          ~ 
1 GAATTCGAGC TCGCCCGGGG ATCCTCTAGA GTCGACCTGC AGCCCAAGCT 
 HindIII 
 ~ 
   ClaI 
  ~~~~~~ 
51 TATCGATGAT AAGCTGTCAA ACATGAGAAT TAAATCAATC TAAAGTATAT 
101 ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT 
151 ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT 
201 CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG 
251 CAATGATACC GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA 
             BglI 
          ~~~~~~~~~~~~~ 
301 AACCAGCCAG CCGGAAGGGC CGAGCGCAGA AGTGGTCCTG CAACTTTATC 
351 CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT 
401 CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG 
451 GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG 
501 ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT 
551 CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTTATCA 
601 CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT 
651 AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT 
701 AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 
751 ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC 
801 TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA 
851 TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC 
901 AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG 
951 AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT 
1001 ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 
1051 GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG 
1101 AAAAGTGCCA CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT 
1151 ATAAAAATAG GCGTATCACG AGGCCCTTTC GTCTTCAAGA ATAAAAGGAT 
1201 CTAGGTGAAG ATCCTTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG 
1251 AGTTTTCGTT CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT 
1301 TCTTGAGATC CTTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAAA 
1351 ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC 
1401 TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTC 
1451 CTTCTAGTGT AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC 
1501 GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GCTGCCAGTG 
1551 GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT 
1601 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT 
1651 GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG 
1701 AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC 
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1751 GGCAGGGTCG GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC 
1801 CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA CTTGAGCGTC 
1851 GATTTTTGTG ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC 
1901 AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT 
1951 GTTCTTTCCT GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT 
2001 TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG 
2051 TCAGTGAGCG AGGAAGCGGA AGAGCGCCTG ATGCGGTATT TTCTCCTTAC 
                            NdeI 
                           ~~~~~~~ 
2101 GCATCTGTGC GGTATTTCAC ACCGCATATG GTGCACTCTC AGTACAATCT 
2151 GCTCTGATGC GCTACGTGAC TGGGTCATGG CTGCGCCCCG ACACCCGCCA 
2201 ACACCCGCTG ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA 
2251 CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC 
                            BglI 
                         ~~~~~~~~~~~~ 
2301 CGTCATCACC GAAACGCGCG AGGCCCAGCT GGCTTATCGA AATTAATACG 
2351 ACTCACTATA GGGAGACCG 
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pT7-7 p35
2466 bp

BamHI (23)

NdeI (2466)

BglI (320)

ClaI (57)

EcoRI (9)

HindIII (50)

SalI (35)

SmaI (20)

PstI (45)

AatII (1122)

XbaI (29)XbaI (2426)

BglII (2136)

BglII (2148)

 

Figure 6.3 Map of plasmid pT7-7 
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                   SmaI        XbaI         PstI 
                  ~~~~~~~     ~~~~~~~      ~~~~~~ 
 NdeI   EcoRI           BamHI         SalI           Hind 
 ~~~    ~~~~~~~         ~~~~~~       ~~~~~~~ 
    1 ATGGCTAGAA TTCGCGCCCG GGGATCCTCT AGAGTCGACC TGCAGCCCAA 
 HindIII 
 ~~~~ 
      ClaI 
     ~~~~~~~ 
   51 GCTTATCGAT GATAAGCTGT CAAACATGAG AATTAAATCA ATCTAAAGTA 
  101 TATATGAGTA AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA 
  151 CCTATCTCAG CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC 
  201 CGTCGTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG 
  251 CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA 
                 BglI 
              ~~~~~~~~~~~~ 
  301 ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT 
  351 ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA 
  401 GTTCGCCAGT TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC 
  451 GTGGTGTCAC GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA 
  501 ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA 
  551 GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA 
  601 TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC 
  651 CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG 
  701 AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AACACGGGAT 
  751 AATACCGCGC CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG 
  801 TTCTTCGGGG CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT 
  851 CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC 
  901 ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAA 
  951 GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC 
 1001 AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA 
 1051 TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC 
                  AatII 
                  ~~~~~~~ 
 1101 CCGAAAAGTG CCACCTGACG TCTAAGAAAC CATTATTATC ATGACATTAA 
 1151 CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTCTTCA AGAATAAAAG 
 1201 GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC 
 1251 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA 
 1301 TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA 
 1351 AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA GAGCTACCAA 
 1401 CTCTTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT ACCAAATACT 
 1451 GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA ACTCTGTAGC 
 1501 ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA 
 1551 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG 
 1601 GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG 
 1651 CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCTAT 
 1701 GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA 
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 1751 AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA 
 1801 CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC 
 1851 GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC 
 1901 AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA 
 1951 CATGTTCTTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC CGTATTACCG 
 2001 CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC CGAGCGCAGC 
 2051 GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CTGATGCGGT ATTTTCTCCT 
                                      BglII        BglII 
                                      ~~~~~~~      ~~~~ 
 2101 TACGCATCTG TGCGGTATTT CACACCGCAT AGGAAGATCT TCCGGAAGAT 
 BglII 
 ~~ 
 2151 CTTCCTATGG TGCACTCTCA GTACAATCTG CTCTGATGCG CTACGTGACT 
 2201 GGGTCATGGC TGCGCCCCGA CACCCGCCAA CACCCGCTGA CGCGCCCTGA 
 2251 CGGGCTTGTC TGCTCCCGGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC 
 2301 CGGGAGCTGC ATGTGTCAGA GGTTTTCACC GTCATCACCG AAACGCGCGA 
 2351 GGCCCAGCGA TTCGAACTTC TGATAGACTT CGAAATTAAT ACGACTCACT 
                            XbaI 
                           ~~~~~~~ 
 2401 ATAGGGAGAC CACAACGGTT TCCCTCTAGA AATAATTTTG TTTAACTTTA 
               NdeI 
               ~~~ 
 2451 AGAAGGAGAT ATACAT 
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pT7-7-HIFBA p347
3518 bp

BglI (1372)

EcoRI (9)

HindIII (1102)

XbaI (3478)

AatII (2174)

NdeI (441)

NdeI (3518)

ClaI (447)

ClaI (1109)

BglII (3188)

BglII (3200)

 

Figure 6.4 Map of plasmid pT7-7/HIFBA 

 

Fructose-bisphosphate aldolase [Haemophilus influenzae Rd KW20]  

Other Aliases: HI0524  

GeneID: 949539 

Amino acid sequence: 
1-  MAKLLDIVKP GVVTGEDVQK VFAYAKEHNF AIPAVNCVGS DSVNAVLETA ARVKAPVIIQ 

60- FSNGGAAFYA GKGIKPTSGT RPDVLGAIAG AKQVHTLAKE YGVPVILHTD HAAKKLLPWI 

120-DGLLDAGEKH FAETGRPLFS SHMIDLSEES MEENMAICRE YLARMDKMGM TLEIEIGITG 

180-GEEDGVDNSD VDESRLYTQP SDVLYVYDQL HPVSPNFTVA AAFGNVHGVY KPGNVKLKPS 

240-ILGESQEFVS KERNLPAKPI NFVFHGGSGS SREEIREAIG YGAIKMNIDT DTQWASWNGI 

300-LNFYKANEAY LQGQLGNPEG PDAPNKKYYD PRVWLRKMEE SMSKRLEQSF EDLNCVDVL 
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Below is the nucleotide sequence of the H. influenzae aldolase gene, starting from the NdeI restriction 

site of plasmid pT7-7 and ending at the HindIII restriction site of this plasmid.   The gene was cloned 

using the EcoRI and HindIII sites, which results in the protein being expressed with 5 extra amino 

acids from the pT7-7 plasmid at the N-terminus (a.a. sequence MARIL).  The H. influenzae aldolase 

gene’s original start and stop codons are shown in bold): 

 

 NdeI   EcoRI 
 ~~~    ~~~~~~~ 
    1 ATGGCTAGAA TTCTGATGGC TAAATTATTA GATATTGTGA AACCCGGTGT 
   51 TGTAACAGGC GAAGATGTGC AAAAAGTTTT TGCTTATGCT AAAGAGCATA 
  101 ACTTTGCTAT TCCTGCCGTA AACTGTGTGG GTTCAGACTC CGTTAATGCC 
  151 GTGTTAGAAA CTGCTGCACG CGTAAAAGCA CCAGTGATTA TCCAATTTTC 
  201 AAATGGTGGC GCAGCGTTCT ACGCAGGTAA AGGTATCAAA CCAACGAGTG 
  251 GTACTCGTCC TGATGTGCTT GGTGCGATTG CTGGAGCGAA ACAGGTTCAT 
  301 ACTTTAGCGA AAGAATACGG TGTGCCTGTT ATTCTTCATA CTGATCACGC 
  351 AGCGAAAAAA TTATTACCTT GGATCGACGG TTTATTAGAT GCAGGCGAAA 
                                                  ClaI 
                                                 ~~~~~~ 
                                           NdeI 
                                          ~~~~~~ 
  401 AACATTTTGC CGAAACGGGT CGTCCACTTT TCTCTTCACA TATGATCGAT 
  451 TTATCTGAAG AGTCAATGGA AGAAAATATG GCAATCTGTC GTGAATACCT 
  501 CGCTCGTATG GATAAAATGG GGATGACCCT TGAAATCGAA ATTGGCATTA 
  551 CTGGTGGCGA AGAAGACGGC GTTGATAACT CTGATGTTGA TGAATCACGT 
  601 TTATATACAC AACCTTCTGA TGTGCTTTAT GTTTACGATC AATTGCATCC 
  651 AGTAAGCCCT AACTTTACCG TTGCTGCTGC ATTCGGTAAC GTACACGGTG 
  701 TTTACAAACC AGGTAATGTA AAATTAAAAC CATCTATTTT AGGTGAATCA 
  751 CAAGAGTTCG TTTCTAAAGA ACGCAATCTT CCTGCAAAAC CAATTAATTT 
  801 CGTATTCCAC GGTGGTTCAG GTTCTAGCCG CGAAGAAATC CGCGAAGCAA 
  851 TTGGCTACGG TGCAATCAAA ATGAACATTG ATACTGATAC GCAATGGGCA 
  901 TCTTGGAATG GTATTTTGAA TTTCTATAAA GCAAATGAAG CATATCTTCA 
  951 AGGTCAATTA GGTAACCCTG AAGGCCCAGA TGCACCAAAC AAAAAATACT 
 1001 ACGACCCACG TGTTTGGTTA CGTAAAATGG AAGAATCTAT GTCTAAACGC 
 1051 TTAGAGCAAT CTTTCGAAGA CTTAAATTGT GTTGATGTTT TATAATCCAC 
 HindIII 
 ~~~~~~ 
1101   AAGCTT 
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pT7-7-HPFBA p346
3357 bp

NdeI (3357)

BglI (1211)

ClaI (948)

XbaI (3317)

AatII (2013)

BglII (3027)

BglII (3039)

 

Figure 6.5 Map of plasmid pT7-7/HPFBA 

 

 

fructose-bisphosphate aldolase (tsr) [Helicobacter pylori 26695]  

Other Aliases: HP0176  

GeneID: 900140  

Amino acid sequence: 
1-  MLVKGNEILL KAHKEGYGVG AFNFVNFEML NAIFEAGNEE NSPLFIQTSE GAIKYMGIDM 

60- AVGMVKTMCE RYPHIPVALH LDHGTTFESC EKAVKAGFTS VMIDASHHAF EENLELTSKV 

120-VKMAHNAGVS VEAELGRLMG IEDNISVDEK DAVLVNPKEA EQFVKESQVD YLAPAIGTSH 

180-GAFKFKGEPK LDFERLQEVK RLTNIPLVLH GASAIPDNVR KSYLDAGGDL KGSKGVPFEF 

240-LQESVKGGIN KVNTDTDLRI AFIAEVRKVA NEDKSQFDLR KFFSPAQLAL KNVVKERMKL 

300-LGSANKI 
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Below is the nucleotide sequence of the amplified H. pylori aldolase gene cloned in the restriction 

sites NdeI and ClaI of plasmid pT7-7:  

 NdeI 
 ~~~ 
    1 ATGTTAGTTA AAGGCAATGA AATTTTATTG AAAGCCCATA AAGAAGGTTA 
   51 TGGGGTGGGG GCGTTTAATT TCGTGAATTT TGAAATGCTA AACGCTATTT 
  101 TTGAAGCAGG AAATGAGGAA AATTCCCCGC TTTTCATTCA AACGAGTGAG 
  151 GGAGCGATCA AATACATGGG GATTGATATG GCGGTAGGCA TGGTGAAAAC 
  201 CATGTGCGAA CGCTACCCGC ACATTCCTGT AGCCTTACAC CTAGATCATG 
  251 GCACGACTTT TGAAAGCTGT GAAAAAGCCG TGAAAGCGGG TTTCACTTCT 
  301 GTGATGATTG ATGCGTCTCA TCATGCTTTT GAAGAAAATT TGGAATTGAC 
  351 TTCTAAAGTG GTCAAAATGG CGCATAACGC TGGGGTGAGC GTGGAAGCGG 
  401 AGCTGGGGCG TTTGATGGGG ATTGAAGACA ATATTTCAGT AGATGAAAAA 
  451 GACGCGGTGT TAGTGAATCC TAAAGAAGCG GAGCAGTTTG TCAAAGAATC 
  501 TCAAGTGGAT TACTTAGCCC CAGCTATTGG GACAAGCCAC GGAGCGTTTA 
  551 AATTTAAGGG CGAGCCAAAA TTGGATTTTG AACGCTTGCA AGAAGTCAAA 
  601 AGGCTCACTA ATATCCCTTT AGTTTTGCAT GGAGCGAGCG CGATACCAGA 
  651 TAATGTGAGA AAATCTTATT TGGACGCTGG AGGCGATTTG AAAGGCTCTA 
  701 AGGGCGTGCC TTTTGAATTT TTACAAGAAT CCGTGAAAGG GGGGATCAAT 
  751 AAGGTCAATA CTGACACGGA TTTAAGGATC GCTTTCATCG CAGAAGTGCG 
  801 CAAGGTGGCC AATGAAGATA AGAGCCAATT TGATTTGAGG AAGTTTTTTT 
  851 CTCCGGCCCA ATTAGCGCTT AAAAATGTGG TCAAAGAGCG CATGAAACTT 
                                                  ClaI 
                                                  ~~~~~ 
  901 TTGGGCAGCG CTAATAAAAT TTAATCAACA AGGAAAGAGT GTAACATCGA 
 ClaI 
 ~ 
  951   T 
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pT7-5modified-BCFBA p345
3252 bp

BamHI (873)

EcoRV (655)

NcoI (256)

SacI (3234)

SalI (885)

XbaI (879)

AatII (1972)

PstI (895)

BglI (1170)

BglI (3183)

EcoRI (833)

EcoRI (3224) NdeI (168)

NdeI (2980)

NdeI (3252)

ClaI (291)

ClaI (510)

ClaI (907)

HindIII (204)

HindIII (265)

HindIII (900)

 

Figure 6.6 Map of plasmid pT7-5/BCFBA 

 

Fructose-bisphosphate aldolase [Bacillus cereus ATCC 10987]  

Other Aliases: BC5335  

GeneID: 1207675 

Amino acid sequence: 
1-  MPLVSMKEML NKALEGKYAV GQFNMNNLEW TQAILAAAEE EKSPVILGVS EGAARHMTGF 

60- KTVVAMVKAL IEEMNITVPV AIHLDHGSSF EKCKEAIDAG FTSVMIDASH HPFEENVETT 

120-KKVVEYAHAR NVSVEAELGT VGGQEDDVIA EGVIYADPAE CKHLVEATGI DCLAPALGSV 

180-HGPYKGEPNL GFAEMEQVRD FTGVPLVLHG GTGIPTADIE KAISLGTSKI NVNTENQIEF 

240-TKAVREVLNK DQEVYDPRKF IGPGRDAIKA TVIGKIREFG SNGKA 
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Nucleotide sequence and restriction sites of the plasmid pT7-5/BCFBA (plasmid modified to include 

the ribosome binding site present in the plasmid pT7-7): 

 
Containing the Class II fructose bisphosphate aldolase from Bacillus cereus ATCC 10987 (GeneID 

2748113) inserted SacI-BamHI in pT7-5, but with added RBS in primer to make it like pT7-7.  An 

NdeI site was also added at the start codon position. The stop codon is shown in bold. 

 
 NdeI 

 ~~~ 
    1 ATGCCTTTAG TTTCTATGAA AGAAATGCTA AACAAAGCAC TAGAAGGAAA 
   51 ATACGCAGTT GGTCAATTCA ACATGAACAA CTTAGAGTGG ACTCAAGCTA 
  101 TCTTAGCTGC TGCGGAAGAA GAAAAATCTC CTGTAATCCT AGGTGTATCT 
                  NdeI 
                 ~~~~~~~ 
  151 GAGGGTGCAG CTCGTCATAT GACTGGTTTC AAAACAGTTG TAGCTATGGT 
   HindIII 
   ~~~~~~ 
  201 TAAAGCTTTA ATCGAAGAAA TGAACATCAC TGTTCCTGTA GCGATTCACC 
      NcoI     HindIII                     ClaI 
     ~~~~~~~   ~~~~~~~                    ~~~~~~ 
  251 TTGACCATGG TTCAAGCTTC GAAAAATGTA AAGAAGCAAT CGATGCAGGT 
  301 TTCACATCTG TAATGATCGA CGCTTCTCAC CACCCATTCG AAGAAAACGT 
  351 AGAAACTACT AAAAAAGTAG TAGAATACGC ACACGCTCGT AACGTATCTG 
  401 TTGAAGCTGA GCTTGGAACA GTTGGCGGAC AAGAAGACGA CGTAATCGCT 
  451 GAAGGCGTAA TTTACGCTGA CCCAGCTGAG TGTAAGCACC TTGTTGAAGC 
         ClaI 
        ~~~~~~~ 
  501 AACAGGTATC GATTGCCTAG CTCCAGCTTT AGGTTCTGTA CACGGTCCTT 
  551 ACAAAGGTGA GCCTAACTTA GGATTCGCTG AAATGGAACA AGTTCGTGAC 
  601 TTCACTGGCG TACCTTTAGT ATTACACGGT GGTACTGGTA TCCCAACTGC 
  EcoRV 
  ~~~~~~ 
  651 TGATATCGAA AAAGCTATCT CTTTAGGTAC TTCAAAAATC AACGTAAACA 
  701 CTGAGAACCA AATTGAGTTT ACAAAAGCTG TTCGTGAAGT ATTAAACAAA 
  751 GACCAAGAAG TTTACGATCC TCGTAAATTT ATCGGACCTG GCCGCGACGC 
                                   EcoRI 
                                   ~~~~~~~ 
  801 TATCAAAGCA ACTGTTATTG GTAAAATTCG CGAATTCGGT TCTAACGGTA 
                               XbaI         PstI 
                              ~~~~~~~      ~~~~~~ 
                        BamHI         SalI           HindIII 
                        ~~~~~~       ~~~~~~~         ~~ 
  851 AAGCGTAAGA ATAAAATTCC GGGATCCTCT AGAGTCGACC TGCAGCCCAA 
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 HindIII 
 ~~~~ 
      ClaI 
     ~~~~~~~ 
  901 GCTTATCGAT GATAAGCTGT CAAACATGAG AATTAAATCA ATCTAAAGTA 
  951 TATATGAGTA AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA 
 1001 CCTATCTCAG CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC 
 1051 CGTCGTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG 
 1101 CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA 
                 BglI 
              ~~~~~~~~~~~~ 
 1151 ATAAACCAGC CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT 
 1201 ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA 
 1251 GTTCGCCAGT TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC 
 1301 GTGGTGTCAC GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA 
 1351 ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA 
 1401 GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA 
 1451 TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC 
 1501 CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG 
 1551 AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AACACGGGAT 
 1601 AATACCGCGC CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG 
 1651 TTCTTCGGGG CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT 
 1701 CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC 
 1751 ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAA 
 1801 GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC 
 1851 AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA 
 1901 TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC 
                  AatII 
                  ~~~~~~~ 
 1951 CCGAAAAGTG CCACCTGACG TCTAAGAAAC CATTATTATC ATGACATTAA 
 2001 CCTATAAAAA TAGGCGTATC ACGAGGCCCT TTCGTCTTCA AGAATAAAAG 
 2051 GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC 
 2101 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA 
 2151 TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA 
 2201 AAAACCACCG CTACCAGCGG TGGTTTGTTT GCCGGATCAA GAGCTACCAA 
 2251 CTCTTTTTCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT ACCAAATACT 
 2301 GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA ACTCTGTAGC 
 2351 ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA 
 2401 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG 
 2451 GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG 
 2501 CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCTAT 
 2551 GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA 
 2601 AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA 
 2651 CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC 
 2701 GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC 
 2751 AGCAACGCGG CCTTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA 
 2801 CATGTTCTTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC CGTATTACCG 
 2851 CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC CGAGCGCAGC 
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 2901 GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CTGATGCGGT ATTTTCTCCT 
                               NdeI 
                              ~~~~~~~ 
 2951 TACGCATCTG TGCGGTATTT CACACCGCAT ATGGTGCACT CTCAGTACAA 
 3001 TCTGCTCTGA TGCGCTACGT GACTGGGTCA TGGCTGCGCC CCGACACCCG 
 3051 CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC 
 3101 TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT 
                               BglI 
                            ~~~~~~~~~~~~ 
 3151 CACCGTCATC ACCGAAACGC GCGAGGCCCA GCTGGCTTAT CGAAATTAAT 
                                SacI 
                               ~~~~~~ 
                         EcoRI                        NdeI 
                         ~~~~~~~                      ~ 
 3201 ACGACTCACT ATAGGGAGAC CGGAATTCGA GCTCTAAGAA GGAGATATAC 
 NdeI 
 ~~ 
 3251 AT 
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Below is an alignment of the B. cereus FBP aldolase gene sequence (GeneID 2748113), showing the 

nucleotides that differ from the B. anthracis str. ‘Ames Ancestor’ aldolase gene (GeneID 2815030).  

The amino acid sequence is identical for both genes.  
 
Query line:  >ref|NC_003909.8|  Bacillus cereus ATCC 10987, complete genome 
 gb|AE017194.1|  Bacillus cereus ATCC 10987, complete genome 
Length=5224283 
 
 
Sbjct line :  >ref|NC_007530.2|  Bacillus anthracis str. 'Ames Ancestor', complete 
genome 
 gb|AE017334.2|  Bacillus anthracis str. 'Ames Ancestor', complete genome 
Length=5227419 
 
 Features in this part of subject sequence: 
   fructose-bisphosphate aldolase 
 
 Score = 1568 bits (849),  Expect = 0.0 
 Identities = 855/858 (99%), Gaps = 0/858 (0%) 
 Strand=Plus/Minus 
 
Query  1        ATGCCTTTAGTTTCTATGAAAGAAATGCTAAACAAAGCACTAGAAGGAAAATACGCAGTT  60 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064417  ATGCCTTTAGTTTCTATGAAAGAAATGCTAAACAAAGCACTAGAAGGAAAATACGCAGTT  
5064358 
 
Query  61       GGTCAATTCAACATGAACAACTTAGAGTGGACTCAAGCTATCTTAGCTGCTGCGGAAGAA  120 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064357  GGTCAATTCAACATGAACAACTTAGAGTGGACTCAAGCTATCTTAGCTGCTGCGGAAGAA  
5064298 
 
Query  121      GAAAAATCTCCTGTAATCCTAGGTGTATCTGAGGGTGCAGCTCGTCATATGACTGGTTTC  180 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064297  GAAAAATCTCCTGTAATCCTAGGTGTATCTGAGGGTGCAGCTCGTCATATGACTGGTTTC  
5064238 
 
Query  181      AAAACAGTTGTAGCTATGGTTAAAGCTTTAATCGAAGAAATGAACATCACTGTTCCTGTA  240 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064237  AAAACAGTTGTAGCTATGGTTAAAGCTTTAATCGAAGAAATGAACATCACTGTTCCTGTA  
5064178 
 
Query  241      GCGATTCACCTTGACCATGGTTCAAGCTTCGAAAAATGTAAAGAAGCAATCGATGCAGGT  300 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064177  GCGATTCACCTTGACCATGGTTCAAGCTTCGAAAAATGTAAAGAAGCAATCGATGCAGGT  
5064118 
 
Query  301      TTCACATCTGTAATGATCGACGCTTCTCACCACCCATTCGAAGAAAACGTAGAAACTACT  360 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064117  TTCACATCTGTAATGATCGACGCTTCTCACCACCCATTCGAAGAAAACGTAGAAACTACT  
5064058 
 
Query  361      AAAAAAGTAGTAGAATACGCACACGCTCGTAACGTATCTGTTGAAGCTGAGCTTGGAACA  420 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5064057  AAAAAAGTAGTAGAATACGCACACGCTCGTAACGTATCTGTTGAAGCTGAGCTTGGAACA  
5063998 
 
Query  421      GTTGGCGGACAAGAAGACGACGTAATCGCTGAAGGCGTAATTTACGCTGACCCAGCTGAG  480 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5063997  GTTGGCGGACAAGAAGACGACGTAATCGCTGAAGGCGTAATTTACGCTGACCCAGCTGAG  
5063938 
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Query  481      TGTAAGCACCTTGTTGAAGCAACAGGTATCGATTGCCTAGCTCCAGCTTTAGGTTCTGTA  540 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5063937  TGTAAGCACCTTGTTGAAGCAACAGGTATCGATTGCCTAGCTCCAGCTTTAGGTTCTGTA  
5063878 
 
 
Query  541      CACGGTCCTTACAAAGGTGAGCCTAACTTAGGATTCGCTGAAATGGAACAAGTTCGTGAC  600 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5063877  CACGGTCCTTACAAAGGTGAGCCTAACTTAGGATTCGCTGAAATGGAACAAGTTCGTGAC  
5063818 
 
Query  601      TTCACTGGCGTACCTTTAGTATTACACGGTGGTACTGGTATCCCAACTGCTGATATCGAA  660 
                |||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5063817  TTCACTGGTGTACCTTTAGTATTACACGGTGGTACTGGTATCCCAACTGCTGATATCGAA  
5063758 
 
Query  661      AAAGCTATCTCTTTAGGTACTTCAAAAATCAACGTAAACACTGAGAACCAAATTGAGTTT  720 
                ||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||| 
Sbjct  5063757  AAAGCTATCTCTTTAGGTACTTCAAAAATCAACGTAAACACTGAGAACCAAATCGAGTTT  
5063698 
 
Query  721      ACAAAAGCTGTTCGTGAAGTATTAAACAAAGACCAAGAAGTTTACGATCCTCGTAAATTT  780 
                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  5063697  ACAAAAGCTGTTCGTGAAGTATTAAACAAAGACCAAGAAGTTTACGATCCTCGTAAATTT  
5063638 
 
Query  781      ATCGGACCTGGCCGCGACGCTATCAAAGCAACTGTTATTGGTAAAATTCGCGAATTCGGT  840 
                ||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
Sbjct  5063637  ATCGGACCTGGCCGCGACGCTATCAAAGCTACTGTTATTGGTAAAATTCGCGAATTCGGT  
5063578 
 
Query  841      TCTAACGGTAAAGCGTAA  858 
                |||||||||||||||||| 
Sbjct  5063577  TCTAACGGTAAAGCGTAA  5063560 
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pT7-7-MTFBA p299
3485 bp

BamHI (1042)

NdeI (3485)

BglI (1339)

EcoRI (173)

NotI (456)

SmaI (1039)

PstI (1064)

ClaI (411)

ClaI (1076)

SalI (824)

SalI (1054)

XbaI (1048)

XbaI (3445)

BglII (3155)

BglII (3167)

HindIII (662)

HindIII (963)

HindIII (1069

 

Figure 6.7 Map of plasmid pT7-7/MTFBA 

 

FBP aldolase Mycobacterium tuberculosis H37Rv  

Other Aliases: Rv0363c  

GeneID: 886474 

Amino acid sequence: 
1-  MPIATPEVYA EMLGQAKQNS YAFPAINCTS SETVNAAIKG FADAGSDGII QFSTGGAEFG 

60- SGLGVKDMVT GAVALAEFTH VIAAKYPVNV ALHTDHCPKD KLDSYVRPLL AISAQRVSKG 

120-GNPLFQSHMW DGSAVPIDEN LAIAQELLKA AAAAKIILEI EIGVVGGEED GVANEINEKL 

180-YTSPEDFEKT IEALGAGEHG KYLLAATFGN VHGVYKPGNV KLRPDILAQG QQVAAAKLGL 

240-PADAKPFDFV FHGGSGSLKS EIEEALRYGV VKMNVDTDTQ YAFTRPIAGH MFTNYDGVLK 

300-VDGEVGVKKV YDPRSYLKKA EASMSQRVVQ ACNDLHCAGK SLTH 
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Amplified M. tuberculosis gene cloned in the restriction sites NdeI and SmaI of plasmid pT7-7:  

 
 NdeI 
 ~~~ 
    1 ATGCCTATCG CAACGCCCGA GGTCTACGCG GAGATGCTCG GTCAGGCCAA 
   51 ACAAAACTCG TACGCTTTCC CGGCTATCAA CTGCACCTCC TCGGAAACCG 
  101 TCAACGCCGC GATCAAAGGT TTCGCCGACG CCGGCAGTGA CGGAATCATC 
                        EcoRI 
                        ~~~~~~ 
  151 CAGTTCTCGA CCGGTGGCGC AGAATTCGGC TCCGGCCTCG GGGTCAAAGA 
  201 CATGGTGACC GGTGCGGTCG CCTTGGCGGA GTTCACCCAC GTTATCGCGG 
  251 CCAAGTACCC GGTCAACGTG GCGCTGCACA CCGACCACTG CCCCAAGGAC 
  301 AAGTTGGACA GCTATGTCCG GCCCTTGCTG GCGATCTCGG CGCAACGCGT 
  351 GAGCAAAGGT GGCAATCCTT TGTTCCAGTC GCACATGTGG GACGGCTCGG 
          ClaI 
         ~~~~~~~ 
  401 CAGTGCCAAT CGATGAGAAC CTGGCCATCG CCCAGGAGCT GCTCAAGGCG 
      NotI 
    ~~~~~~~~~ 
  451 GCGGCGGCCG CCAAGATCAT TCTGGAGATC GAGATCGGCG TCGTCGGCGG 
  501 CGAAGAGGAC GGCGTGGCGA ACGAGATCAA CGAGAAGCTG TACACCAGCC 
  551 CGGAGGACTT CGAGAAAACC ATCGAGGCGC TGGGCGCCGG TGAGCACGGC 
  601 AAATACCTGC TGGCCGCGAC GTTCGGCAAC GTGCATGGCG TCTACAAGCC 
            HindIII 
            ~~~~~~ 
  651 CGGCAACGTC AAGCTTCGCC CCGACATCCT TGCGCAAGGG CAACAGGTGG 
  701 CGGCGGCCAA GCTCGGACTG CCGGCCGACG CCAAGCCGTT CGACTTCGTG 
  751 TTCCACGGCG GCTCGGGTTC GCTTAAGTCG GAGATCGAGG AGGCGCTGCG 
                          SalI 
                         ~~~~~~~ 
  801 CTACGGCGTG GTGAAGATGA ACGTCGACAC CGACACCCAG TACGCGTTCA 
  851 CCCGCCCGAT CGCCGGTCAC ATGTTCACCA ACTACGACGG AGTGCTCAAG 
  901 GTCGATGGCG AGGTGGGTGT CAAGAAGGTC TACGACCCGC GCAGCTACCT 
             HindIII 
             ~~~~~~ 
  951 CAAGAAGGCC GAAGCTTCGA TGAGCCAGCG GGTCGTTCAG GCGTGCAATG 
                                        SmaI      
                                       ~~~~~ ~~ 
 1001   ACCTGCACTG CGCCGGAAAG TCCCTAACCC ACTAACCCGG GG 
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pT7-7-PAFBA p343
3587 bp

BamHI (1144)

NdeI (3587)

ClaI (1178)

HindIII (1171)

SacI (75)

SmaI (1141)

XhoI (569)

AatII (2243)

BglI (437)

BglI (1441)

DraIII (248)

DraIII (739)

SalI (626)

SalI (1156)

XbaI (1150)

XbaI (3547)

BglII (3257)

BglII (3269)

PstI (936)

PstI (1166)

 

Figure 6.8 Map of plasmid pT7-7/PAFBA 

 

fructose-1,6-bisphosphate aldolase [Pseudomonas aeruginosa PAO1]  

Other Aliases: PA0555;  GeneID: 880792 

Amino acid sequence: 
1-  MALISMRQML DHAAEFGYGV PAFNVNNLEQ MRAIMEAADK TDSPVIVQAS AGARKYAGAP 

60- FLRHLILAAI EEFPHIPVVM HQDHGTSPDV CQRSIQLGFS SVMMDGSLRE DGKTPADYDY 

120-NVRVTQQTVA FAHACGVSVE GELGCLGSLE TGMAGEEDGV GAEGVLDHSQ LLTDPEEAAD 

180-FVKKTKVDAL AIAIGTSHGA YKFTKPPTGD TLSIQRIKEI HARIPDTHLV MHGSSSVPQD 

240-WLAIINEYGG EIKETYGVPV EEIVEGIKYG VRKVNIDTDL RLASTGAIRR FLAQNPSEFD 

300-PRKYFSKTVE AMRDICIARY EAFGTAGNAS KIKPISLEGM FQRYARGELD PKVN 
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Amplified P. aeruginosa gene cloned in the restriction sites NdeI and SmaI of plasmid pT7-7:  

 
 NdeI 
 ~~~ 
    1 ATGATGCTCC CGGTAGTAAG GTCAATTGGC GTGGAACCTG AGGGCAAGGA 
                      SacI 
                     ~~~~~~ 
   51 ATGCATGGGT GTCTTCAGCG AGCTCGGTCT CAAGCCCGGC GTCCTCTACG 
  101 GCGAGGAGGT CTACAAGCTG TTTGAGCACG CCAAGAAGAA TGTCTACGCC 
  151 ATTCCTGCCA TCAACGTGAC CTCGTCGTCC ACCATTATCG CCTCCCTTGA 
                                               DraIII 
                                              ~~~~~ 
  201 GGCCGCCCGC GACTCCAAGT CCCCCATCAT CCTGCAAATG TCACAAGGTG 
  251 GTGCCGCCTA CTTCGCCGGC AAGGGTGTCT CCAACACCAA CCAGGAGGCC 
  301 TCGATCGCTG GTGCCGTTGC TGCCGCCCAC TTCATCCGCT CGATTGCTCC 
  351 CATCTACGGC GTCCCGGTCG TCCTTCACAC CGACCACTGC GCCAAGAAGC 
                                   BglI 
                                ~~~~~~~~~~~~ 
  401 TCCTCCCGTG GCTCGACGGC ATGCTCGATG CCGACGAGGC TTTCCACAAG 
  451 GAGAACGGCA CCCCTCTGTT CAGCTCGCAC ATGATCGACC TGTCTGAGGA 
  501 GCCCCGTGAC TGGAACATCG AGACCACTGC CAAGTACCTC AAGCGTGCTG 
                    XhoI 
                   ~~~~~~~ 
  551 CCCCCATGAA GCAGTGGCTC GAGATGGAGA TTGGTCTGAC CGGTGGTGAG 
                            SalI 
                           ~~~~~~~ 
  601 GAGGATGGTG TCAACAACGA GGATGTCGAC AACAACTCCC TCTACACCCA 
  651 GCCCGAGGAC ATCTTTGCCA TCCACCAGGC CCTGAGCCCC ATCTCCAAGT 
                                     DraIII 
                                    ~~~~~~~~~~ 
  701 ACTTCTCCAT CGCCGCAGGC TTCGGCAACG TCCACGGCGT GTACAAGCCC 
  751 GGCAACGTTC GTCTTCACCC TGAGCTGCTT GACAAGCACC AGAAGTACGT 
  801 TATTGAGAAG CTCGGCTGCG AGGAGAAGAA GCCTATCTTC TTCGTCTTCC 
  851 ACGGTGGCTC CGGCTCCGGC GACTCCGAGT TCCAGGAGGC CATCAGCTAC 
                                   PstI 
                                  ~~~~~~ 
  901 GGTGTCATCA AGGTCAACCT CGACACTGAC CTGCAGTGGG CCTACCTGAG 
  951 CGGTATCCGT GACTACGTCA CCAGCAAGAT CGAGTACCTC AACTCGCAGG 
 1001 TCGGCAACCC TGACGGCGCT GACAAGCCCA ACAAGAAGTA CTACGACCCC 
 1051 CGCGTCTGGG TTCGTGAGGG TGAGAAGACC ATGAAGGCCC GCATCCAGCA 
                                          SmaI       
                                         ~~~ ~~~ 
1101 GGCTCTGAAG GTCTTCAACG CCGAGAACAC CATCTAACCC GGG  
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pT7-7-MGFBA p344
3510 bp

NdeI (3510)

ClaI (1101)

SacI (21)

SalI (572)

XbaI (3470)

XhoI (515)

AatII (2166)

PstI (882)

BglI (383)

BglI (1364)

DraIII (194)

DraIII (685)

BglII (3180)

BglII (3192)

 
Figure 6.9 Map of plasmid pT7-7/MGFBA 

 

Magnaporthe grisea 70-15/protein_id="EAA48565.1" replaced by EDK03188 

db_xref="GI:38101632" replaced by Gene ID  2674368 

 

Below is the aldolase amino acid sequence from the BAC vector (primers starting from position 6741 

and ending at position 8153 the GenBank sequence no. AACU01001388): 

 
1-  MGVFSELGLK PGVLYGEEVY KLFEHAKKNV YAIPAINVTS SSTIIASLEA ARDSKSPIIL 

60- QMSQGGAAYF AGKGVSNTNQ EASIAGAVAA AHFIRSIAPI YGVPVVLHTD HCAKKLLPWL 

120-DGMLDADEAF HKENGTPLFS SHMIDLSEEP RDWNIETTAK YLKRAAPMKQ WLEMEIGLTG 

180-GEEDGVNNED VDNNSLYTQP EDIFAIHQAL SPISKYFSIA AGFGNVHGVY KPGNVRLHPE 

240-LLDKHQKYVI EKLGCEEKKP IFFVFHGGSG SGDSEFQEAI SYGVIKVNLD TDLQWAYLSG 

300-IRDYVTSKIE YLNSQVGNPD GADKPNKKYY DPRVWVREGE KTMKARIQQA LKVFNAENTI 
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Amplified M. grisea gene cloned in the restriction sites NdeI and ClaI of plasmid pT7-7, with all 

introns removed: 

 

 NdeI             SacI 
 ~~~             ~~~~~~~ 
    1 ATGGGTGTCT TCAGCGAGCT CGGTCTCAAG CCCGGCGTCC TCTACGGCGA 
   51 GGAGGTCTAC AAGCTGTTTG AGCACGCCAA GAAGAATGTC TACGCCATTC 
  101 CTGCCATCAA CGTGACCTCG TCGTCCACCA TTATCGCCTC CCTTGAGGCC 
                                          DraIII 
                                         ~~~~~~~~~ 
  151 GCCCGCGACT CCAAGTCCCC CATCATCCTG CAAATGTCAC AAGGTGGTGC 
  201 CGCCTACTTC GCCGGCAAGG GTGTCTCCAA CACCAACCAG GAGGCCTCGA 
  251 TCGCTGGTGC CGTTGCTGCC GCCCACTTCA TCCGCTCGAT TGCTCCCATC 
  301 TACGGCGTCC CGGTCGTCCT TCACACCGAC CACTGCGCCA AGAAGCTCCT 
                               BglI 
                            ~~~~~~~~~~~~ 
  351 CCCGTGGCTC GACGGCATGC TCGATGCCGA CGAGGCTTTC CACAAGGAGA 
  401 ACGGCACCCC TCTGTTCAGC TCGCACATGA TCGACCTGTC TGAGGAGCCC 
  451 CGTGACTGGA ACATCGAGAC CACTGCCAAG TACCTCAAGC GTGCTGCCCC 
                XhoI 
               ~~~~~~~ 
  501 CATGAAGCAG TGGCTCGAGA TGGAGATTGG TCTGACCGGT GGTGAGGAGG 
                        SalI 
                       ~~~~~~ 
  551 ATGGTGTCAA CAACGAGGAT GTCGACAACA ACTCCCTCTA CACCCAGCCC 
  601 GAGGACATCT TTGCCATCCA CCAGGCCCTG AGCCCCATCT CCAAGTACTT 
                                DraIII 
                               ~~~~~~~~~ 
  651 CTCCATCGCC GCAGGCTTCG GCAACGTCCA CGGCGTGTAC AAGCCCGGCA 
  701 ACGTTCGTCT TCACCCTGAG CTGCTTGACA AGCACCAGAA GTACGTTATT 
  751 GAGAAGCTCG GCTGCGAGGA GAAGAAGCCT ATCTTTTTCG TCTTCCACGG 
  801 TGGCTCCGGC TCCGGCGACT CCGAGTTCCA GGAGGCCATC AGCTACGGTG 
                              PstI 
                             ~~~~~~~ 
  851 TCATCAAGGT CAACCTCGAC ACTGACCTGC AGTGGGCCTA CCTGAGCGGT 
  901 ATCCGTGACT ACGTCACCAG CAAGATCGAG TACCTCAACT CGCAGGTCGG 
  951 CAACCCTGAC GGCGCTGACA AGCCCAACAA GAAGTACTAC GACCCCCGCG 
 1001 TCTGGGTTCG TGAGGGTGAG AAGACCATGA AGGCCCGCAT CCAGCAGGCT 
                                                     ClaI 
               ~~ 
 1051 CTGAAGGTCT TCAACGCCGA GAACACCATC TAAATTCCCA CGCAACCTAT 
 ClaI 
 ~~~~ 
 1101  CGAT 
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pT7-7-SPFBA p426
3321 bp

NdeI (3321)

BglI (1175)

ClaI (912)

HindIII (905)

XbaI (3281)

AatII (1977)

PstI (900)

BglII (2991)

BglII (3003)

 

Figure 6.10 Map of plasmid pT7-7/SPFBA 

 

Streptococcus pneumoniae aldolase 

CDS 9890-10771; label=spr0530; protein_id="AAK99334.1"; db_xref="GI:15458104"; 

Gene ID: 933499 

 

Amino acid sequence: 
1-  MAIVSAEKFV QAARDNGYAV GGFNTNNLEW TQAILRAAEA KKAPVLIQTS MGAAKYMGGY 

60- KVARNLIANL VESMGITVPV AIHLDHGHYE DALECIEVGY TSIMFDGSHL PVEENLKLAK 

120-EVVEKAHAKG ISVEAEVGTI GGEEDGIIGK GELAPIEDAK AMVETGIDFL AAGIGNIHGP 

180-YPVNWEGLDL DHLQKLTEAL PGFPIVLHGG SGIPDEQIQA AIKLGVAKVN VNTECQIAFA 

240-NATRKFARDY EANEAEYDKK KLFDPRKFLA DGVKAIQASV EERIDVFGSE GKA 
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Amplified S. pneumoniae gene cloned in the restriction sites NdeI and PstI of plasmid pT7-7: 

 
 NdeI 
 ~~~ 
    1 ATGGCAATCG TTTCAGCAGA AAAATTTGTC CAAGCAGCCC GTGACAACGG 
   51 TTATGCAGTT GGTGGATTTA ACACAAACAA CCTTGAGTGG ACTCAAGCTA 
  101 TCTTGCGCGC AGCAGAAGCT AAAAAAGCTC CAGTTTTGAT CCAAACTTCA 
  151 ATGGGTGCTG CTAAATACAT GGGTGGTTAC AAAGTTGCTC GCAACTTGAT 
  201 CGCTAACCTT GTTGAATCAA TGGGTATCAC TGTACCAGTA GCTATCCACC 
  251 TTGACCACGG TCACTACGAA GATGCACTTG AGTGTATCGA AGTTGGTTAT 
  301 ACTTCAATCA TGTTTGACGG TTCACACCTT CCAGTTGAAG AAAACCTTAA 
  351 ATTGGCTAAA GAAGTTGTTG AAAAAGCACA CGCTAAAGGT ATCTCAGTAG 
  401 AAGCTGAAGT TGGTACTATC GGTGGTGAAG AAGACGGAAT CATCGGTAAA 
  451 GGTGAATTGG CTCCAATCGA AGACGCTAAA GCAATGGTTG AAACTGGTAT 
  501 CGACTTCTTG GCAGCTGGTA TCGGTAACAT CCACGGCCCT TACCCAGTAA 
  551 ACTGGGAAGG TCTTGACCTT GACCACTTGC AAAAATTGAC AGAAGCTCTT 
  601 CCAGGATTCC CAATCGTATT GCACGGTGGA TCAGGTATTC CTGATGAGCA 
  651 AATCCAAGCA GCTATCAAAC TTGGTGTTGC CAAAGTTAAC GTTAACACAG 
  701 AATGCCAAAT CGCATTCGCT AACGCAACTC GTAAATTTGC TCGTGACTAC 
  751 GAAGCAAACG AAGCAGAATA CGACAAGAAA AAACTCTTCG ACCCACGTAA 
  801 ATTCTTGGCT GACGGTGTAA AAGCTATCCA AGCATCGGTT GAAGAACGTA 
                                                  PstI 
                                                 ~~~~~~ 
  851 TCGACGTATT CGGTTCAGAA GGTAAAGCAT AAAGCATAAT CTAGCTGCAG 
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Appendix B 
Synthesized inhibitory compounds codes and molecular weights 

 

Table 6.1 Synthesized inhibitory compounds names and structures 

Most DPA derivatives were synthesized as pyridinium chlorides, except for compounds 5 and 7 
which were synthesized as pyridine N-oxides. 
 
Compound  Laboratory 

code 

Molecular 

weight 

(g/mol) 

Structure and name 

1 GD-A2 201.13 

       
2 GD-A3 184.12 

 
3 GD-A4 216.13 

 
4 GD-A5 236.18 

 
5 GD-A6 233.12 
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Table 6.1 (continued) 

Compound  Laboratory 

code 

Molecular 

weight 

(g/mol) 

Structure and name 

6 GD-A7 or 

MS191 

253.58 

 
7 GD-A8 183.2 

 
8 MS183 288.02 

 
9 MS213 373.13 

 
10 TR04-83B 209.16 

 
11 TR04-107B 225.2 
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Table 6.1 (continued) 

Compound  Laboratory 

code 

Molecular 

weight 

(g/mol) 

Structure and name 

12 TR04-113 231.59 

 
13 AK3 331.24 
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Appendix C 
Derivation of time-dependent irreversible inhibition equations 

The difference between reversible and irreversible inhibition is that in the case of the former, there is 

a fractional enzymatic activity at steady-state, whereas for irreversible inhibition, there is complete 

inhibition of the enzyme. 

 

The following demonstration is a partial rendition of the article “Kinetics of substrate reaction 

during irreversible modification of enzyme activity”, published by C. L. Tsou (1988). 

 

General Scheme applicable to reversible and irreversible inhibition by the modifier I: 

 

 

Scheme 7.1 

 

 

The KM and K*M Michaelis constants are described by Equations 7.1 and 7.2: 
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It is assumed that [S] >> [E]0  and [I]  >> [E]0  and that the inhibition reactions are relatively slow 

compared to the establishment of the steady-state of the enzymatic reaction.  In that case the enzyme 

concentrations are defined by Equations 7.3 to 7.6: 

 

Where the total concentrations of the uninhibited and inhibited enzymes are defined by Equations 7.7 

and 7.8, respectively: 

 [ET] = [E] + [ES]      and      [E*T] = [EI] + [EIS] 

If [E]0 is the total concentration, then: 

 

Equation 7.9: 

 

 

 This equation can be written in the form: 

 

Equation 7.9b:                 
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where A and B are the apparent rate constants for the binding of the inhibitor and the backward 

reaction, respectively.  For irreversible inhibition where both k-0 and k’-0 equal zero: 

 

 

Equation 7.10:                  

 

From these equations, an expression for the substrate reaction in the presence of the inhibitor can be 

obtained.  For inhibitors resulting in the complete suppression of enzyme activity, that is EIS is 

inactive, and therefore k+2 = 0: 

Equation 7.11:               

 

The integration is possible if the conditions are such that the change in [S] does not significantly 

affect the ratio [E]/[ES] and [EI]/[EIS].  This condition is easily met when the enzyme is effectively 

saturated with the substrate.  Experimentally, if without the inhibitor, the same extent of substrate 

reaction has not led to significant change in the initial reaction rate, it can be considered that the ratio 

[E]/[ES] remains constant.  Unless EI has a significantly higher affinity for S than the unmodified 

enzyme, it can also be assumed that [EI]/[EIS] hasn’t changed.  The integration of the above equation 

from P= 0 at t=0 gives the product concentration at time t: 
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Equation 7.12:               

 

 

For irreversible inhibition, B = 0, 

Equation 7.13                        

 

and the product formed, [P]∞ when t approaches infinity: 

 

Equation 7.14                       

 

 For very-tight-inhibitor binding, the off-rate becomes very small compared even to a slow on-rate 

and when B approaches zero, the inhibition can be virtually treated as irreversible.   

 

Determination of the type of inhibition 

In competitive, noncompetitive, and uncompetitive irreversible inhibitions, as for reversible 

inhibitions, substrate binding prevents, does not affect, or promotes inhibitor binding, respectively.  
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The effect of substrate concentration on the apparent rate constant A for the binding of the inhibitor 

can be used as the criteria for the characterization of different types of substrate competition.  The 

three types of substrate competition in irreversible inhibition can be distinguished by suitable plots of 

A and [S]. 

For competitive irreversible inhibition, where I does not bind to ES (k’+0=0):  

Equation 7.15a:                           

 

For noncompetitive irreversible inhibition, where I does not affect ES binding (k+0 = k’+0): 

Equation 7.15b:                           

 

For uncompetitive irreversible inhibition, where I binds to ES only (k+0=0): 

 

Equation 7.15c:                             

 

Thus, while A is independent of [S] for noncompetitive inhibition, a plot of 1/A versus [S] gives a 

straight line for competitive inhibition and for uncompetitive inhibition a straight line is obtained 

from the plot of 1/A versus 1/[S], giving the value of the rate constant for the modification step from 

the ordinate intercepts.  
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