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Abstract 

 The first objective of this thesis was to predict the future success of selected tree 

species under low (B1, 550 CO2 ppm) and moderate (A1B, 720 CO2 ppm) climate change 

scenarios as defined in the Special Report on Emissions Scenarios (SRES). This was 

accomplished through the creation of radial-growth forecasts for eastern hemlock (Tsuga 

Canadensis (L.) Carr.), sugar maple (Acer saccharum L.), white spruce (Picea glauca 

(Moench.) Voss), and white pine (Pinus strobus L.) in the Grand River Watershed of 

Ontario, Canada. The forecasts were founded on historic growth-climate relationships 

between standardized regional dendrochronologies for each species and past climate data 

from the Guelph OAC weather station. These species-specific growth-climate relationships 

were then extended to 2100 using modeled climate data from the Third Generation Coupled 

Global Climate Model (CGCM3) to project radial-growth under both emissions scenarios. 

Results indicated that eastern hemlock radial-growth will remain stable throughout the 21
st
-

century, sugar maple and white spruce growth will start to decline, and white pine growth 

will increase. While the radial-growth forecasts were limited by the length of the past climate 

data, the accuracy of the modeled climate data, and the number and type of variables used in 

the forecast model, the results were statically significant and strongly supported in the 

literature. 

 The second thesis objective was to assess the potential impact of the radial-growth 

forecasts on environmental planning policy and forest management strategy in the Grand 

River Watershed. Examples of how the forecasts could influence basic management 

strategies in the watershed were provided to display the conceptual linkages between the 
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results and policy formulation. Next, the radial-growth forecasts were presented to four forest 

managers working in the watershed to gage the practical implications, perceptions and 

limitations of the radial-growth forecasting method. While the managers found the radial-

growth forecasts interesting, they also noted that the results were of limited use since they 

could not account for other factors important to the future success of the study species, such 

as seedling dispersal and establishment rates, as well as the potential effects of pathogens, 

insects and invasive species. Therefore, it was recommended that future research should 

work to extrapolate the results of the radial-growth forecasts to other tree species and types in 

the region, as well as incorporate more variables into the models, so that more accurate and 

applicable growth projections could be constructed in the watershed.    
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Chapter 1: Introduction 

Climate change threatens the health and stability of forested areas throughout the 

world. Increasing concentrations of atmospheric greenhouse gases have caused average 

global temperatures to rise by 0.74°C since 1900 (Intergovernmental Panel on Climate 

Change (IPCC), 2007a). Trees have responded through range shifts and alterations in the 

timing of key-life events (Higgins & Harte, 2007; Parmesan & Yohe, 2003; Root et al., 

2003). Marked transformations in ecosystem functions, species interactions, population 

biology and the distribution of trees are expected to continue (Chapin et al., 2004; Melillo, 

Callaghan, Woodward, Salati, & Sinha, 1990; Schwartz, Iverson, & Prasad, 2001), as 

temperatures are projected to warm by an additional 1.8 to 4°C throughout the 21
st
-century 

(Intergovernmental Panel on Climate Change (IPCC), 2007a). These climate change 

scenarios are believed to be far beyond the natural adaptation abilities of most species (J. A. 

Malcolm, Markham, & Garaci, 2002; Scott & Lemieux, 2007; Solomon & Kirilenko, 1997), 

and fragmented landscapes hinder the migration of trees into climatically suitable regions (de 

Dios, Fischer, & Colinas, 2007; Higgins & Harte, 2007; Schwartz, 1993). Thus, the future 

survival of many tree species may rely on progressive policies and strategies to protect urban 

and rural forests (McKenney, Pedlar, Lawrence, Campbell, & Hutchinson, 2007; Pitelka, 

1997); many of which are essential to the long-term sustainability of our communities.  

In view of this knowledge, the purposes of this thesis were twofold. The first was to 

predict the future success of selected tree species, and the second to evaluate the potential 

implications of these results on regional planning policy and forest management strategy. To 
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complete these tasks, radial-growth forecasts for four tree species common to the Grand 

River Watershed of Ontario, Canada were constructed using dendroclimatology. Next, the 

results were presented to forest managers working in the watershed to gain insight regarding 

the impact of the study. Consequently, the usefulness of the radial-growth forecasting method 

as a planning and management tool in the watershed was gauged, and future research was 

proposed. 

 To more easily disseminate these findings, the two thesis objectives were addressed 

as individual chapters. The first chapter discusses the methods and results of the radial-

growth forecasting study, and is directed towards scientists interested in forest ecology and 

dendrochronology. The second chapter examines the planning and management implications 

of the radial-growth forecasting study in the Grand River Watershed, and offers suggestions 

for future research. The thesis concludes by summarizing the primary findings and 

implications of the entire research project. 
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Chapter 2: Radial-Growth Forecasts of Tsuga canadensis, 

Acer saccharum, Picea glauca and Pinus strobus in the 

Grand River Watershed of Ontario, Canada 

2.1 Introduction 

Greenhouse gas concentrations in the atmosphere are projected to increase throughout 

the 21
st
-century, resulting in longer, warmer and drier growing seasons in Ontario (Pacific 

Climate Impacts Consortium (PCIC), 2007; Wotton, Martell, & Logan, 2003). Consequently, 

the moisture content of forest soil and vegetation will drop, shifting the climatic niches of 

individual tree species within the province (McKenney et al., 2007). During the last 

significant warming period (Hypsithermal interval, 5000-7000 years ago), trees could 

naturally move across the landscape to survive. Now they are constrained by land-use 

patterns and forest fragmentation (Higgins & Harte, 2007; Iverson, Prasad, & Schwartz, 

1996; Peters, 1990; Schwartz, 1993). Accordingly, government agencies and researchers 

have recommended adaptation strategies, such as assisted migration and reforestation 

projects, to protect Ontario‟s forested landscapes and environmentally sensitive areas (Office 

of the Auditor General, 2006; Parry, Hulme, Nicholls, & Livermore, 1998; Scott & Lemieux, 

2007).  

Interest in adaptation strategies has spurred research investigating the effects of 

climate change on the geographic ranges and climatic niches of flora. For instance, 

Mckenney, Pedlar, Lawrence, Campbell and Hutchinson (2007) studied the impacts of 

climate change on the ranges of 130 North American tree species. They estimated an average 

northward range shift of 330 to 700 Km depending on the dispersal model and climate 
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change scenario used. These models are, however, too coarse to directly inform management 

decisions at the scales used by most planners, and they cannot account for the local genetic 

adaptations of forest trees to climate (Laroque, 2005; Morgenstern, 1996; Pilkey & Pilkey-

Jarvis, 2007). As a result, recent literature has strongly promoted finer-scale research when 

planning for forested landscapes under dynamic climatic conditions (Millar, Stephenson, & 

Stephens, 2007; Pilkey & Pilkey-Jarvis, 2007; Scott, Malcolm, & Lemieux, 2002; Suffling & 

Scott, 2002). 

To predict the success of or demise of individual tree species at the regional level, 

researchers have forecasted the radial-growth patterns of trees using dendroclimatology 

(Girardin, Raulier, Bernier, & Tardif, 2008; Laroque & Smith, 2003). In short, species-

specific radial-growth forecasts are founded on growth-climate relationships using dated and 

measured tree-rings, as well as historical climate data. These relationships are then extended 

into the future using modeled climate scenarios. Thus one can forecast the radial-growth 

trends for each species. As a result, researchers are able to identify species that will 

experience higher or lower radial-growth rates under climate change. This is important, as 

trees facing climatic stress are more likely to succumb to competition, disease or insect attack 

(van Mantgem et al., 2009). Despite the potential usefulness of radial-growth forecasts, only 

two such studies have been carried out: One on Vancouver Island, British Columbia, Canada 

(Laroque & Smith, 2003) and the Duck Mountain Provincial Forest in Manitoba, Canada 

(Girardin et al., 2008).  

Closely replicating the method described by Laroque and Smith (2003), this paper 

forecasts the radial-growth response of four tree species common to the Grand River 
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Watershed (42°51‟ to 44°13‟ N latitude, 80°56‟ to 80°20‟ W longitude) (Fig 2.1). In this 

instance, 11 tree-ring chronologies from 8 sites are used to establish species specific growth-

climate relationships with historical climate data from the Guelph Ontario Agricultural 

College (OAC) weather station (43°31'12"N, 80°13'48"W, climate station identifier # 

6143083) (Fig. 2.2). To approximate future radial-growth rates, these relationships are then 

extended to 2100 using future precipitation and temperature data derived from the Third 

Generation Coupled Climate Model (CGCM3) produced by the Canadian Center for Climate 

Modeling and Analysis (Flato & Boer, 2001; Flato et al., 2000). Individual species forecasts 

based on the Special Report on Emissions Scenarios (SRES) B1 (550 CO2 ppm) and A1B 

(720 CO2 ppm) emissions scenarios are presented (Intergovernmental Panel on Climate 

Change (IPCC), 2007a). 

2.2 Study Site and Species 

The Grand River Watershed (GRW) of southwestern Ontario, Canada drains 6965 

Km
2
,
 
making it the largest direct drainage basin to Lake Erie in Canada. The main stream 

rises at 525 m asl and runs 300 Km to Lake Erie. In 2007, roughly 925,000 people resided 

within the watershed, most of whom live in the cities of Kitchener, Waterloo, Cambridge, 

Guelph and Brantford (Grand River Conservation Authority, 2007). Demographic forecasts 

released by the Province of Ontario to 2031 predict continued high growth and development 

for the major centers in the GRW (Province of Ontario, 2006). Consequently, the protection 

and management of the watershed and its resources have gained in importance as evidenced 

in recent planning documents (City of Waterloo, 2007; Regional Municipality of Waterloo, 

2008).  
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Figure 2.1 Location of the Grand River Watershed and the GCM square used in the study. 
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The GRW is particularly suitable for radial-growth forecasting, and of interest to 

ecologists, managers and planners, as it straddles the key ecological transition zone of two 

major forested regions in Ontario, the Great Lakes-St. Lawrence Forest and the North 

American Temperate Deciduous Forest (Neumann, 2009). Projections suggest that some tree 

species in the deciduous forest will migrate northward at the expense of species in the Great 

Lakes-St. Lawrence Forest as temperatures increase (J. Malcolm, Puric-Mladenovic, & Shi, 

2004; Scott & Lemieux, 2007). This raises planning, policy and management questions 

regarding climate change effects on species in both regions. If appropriate information can be 

generated, then mitigation and adaptation  needs can be defined and addressed (Hovingh, 

2008).   

 The GRW is composed of 11 minor physiographic regions that include sand, till and 

clay plains, sand hills, drumlin fields, moraines, and ridges (Chapman & Putnam, 1984). The 

habitats in the northern sections of the study site are made-up of marshes, mixed deciduous-

coniferous swamps, upland deciduous forest and agricultural lands. Eastern hemlock (Tsuga 

Canadensis (Carr.) L.), white pine (Pinus strobus L.), sugar and red maple (Acer saccharum 

L. and Acer rubrum L.), and some species common in the boreal forest, notably white spruce 

(Picea glauca (Moench) Voss), jack pine (Pinus banksiana (Lamb.)) and white birch (Betula 

papyrifera (Marsh.)), dominate the northern, Great Lakes-St. Lawrence Forest (Neumann, 

2009). On the other hand, the southern region is comprised of Carolinian and slough forests, 

extensive marshes, floodplain meadows and oak savannas (Neumann, 2009). Sassafras 

(Sassafras albidum (Nutt.) Nees), hickory (Carya spp.(Nutt.)) and Walnut (Juglans nigra L.) 

are visible here, often found mixed with ash (Fraxinus spp. L.), maple (Acer spp.L.), oak 
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(Quercus spp.L.), and beech (Fagus grandifolia (Ehrh.)) forests (Neumann, 2009). 

According to the modified Guelph OAC weather dataset (see methods), the mean January, 

July and average annual temperatures in the GRW from 1881-2006 were 6.9°C, 19.8°C, and 

6.7°C, respectively. Average annual precipitation over the same time period was 813mm.   

Eastern hemlock, sugar maple, white spruce and white pine were the four species 

selected for the analysis. These species were chosen in consultation with managers from the 

Regional Municipality of Waterloo, the City of Kitchener and the Grand River Conservation 

Authority to ensure their significance within the study area. Significance was based on the 

ecological and economic role of each species in the GRW. Sugar maple was viewed as vital 

due to its considerable presence in parks throughout the area, as well as its role in the local 

maple syrup and timber industries. White pine and eastern hemlock were selected because of 

their abundance in remnant forests, especially along the river valleys. Finally, white spruce 

was chosen as a result of its vulnerability to predicted climate change, as it is positioned at 

the very southern extremity of its natural range in the GRW.         

Tree-ring data for this project were collected at eight sites throughout the GRW using 

handheld increment boring tools to extract 430 cores (Fig. 2.2, Table 2.1). Selected sites were 

geographically separated from one another by at least 30 Km and contained the particular 

species of investigation in a mature dominant or co-dominant role. Sugar maple, eastern 

hemlock and white pine were each sampled at a minimum of three sites. For these species, 

twenty trees were selected at each site and cored twice at breast height (1.3 m) for a total of 

40 cores per site. Cores were extracted at 90° from one another in level areas, and 180° from 

each other on steep slopes. Tree-ring data for white spruce were obtained from only nine 
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trees (n=18) at one site due to the rarity of the species growing naturally in the GRW. To find 

sufficiently mature trees (>150 years) in this highly developed region, site differences such as 

slope, aspect, elevation and substrate were ignored. While these site-to-site differences likely 

contributed to variance in radial-growth rates, these were of no real concern as general 

climatic conditions and their relationship to radial-growth were the focus of this study. 

 

 

Figure 2.2 The 8 sample sites and 5 weather stations used in the study. 
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Table 2.1 The species sampled, elevations and locations of the eight study sites 

                                          

No. Name Tree Species Sampled                                         
 

Site description  

     Ea
st

er
n

 H
em

lo
ck

 

Su
ga

r 
M

ap
le

 

W
h

it
e 

P
in

e 

W
h

it
e 

Sp
ru

ce
 

  

La
ti

tu
d

e
 

  

Lo
n

gi
tu

d
e

 

  

El
ev

at
io

n
 (

m
 a

sl
) 

1 Luther Marsh X 
   

    43°54'07"N 80°27'11"W 342 

2 Homer Watson X X X 
   

43°24'18"N 80°26'14"W 318 

3 Oakland Swamp X 
     

43°04'16"N 80°22'23"W 235 

4 Guelph Lake 
 

X 
    

43°37'02"N 80°15'27"W 384 

5 Indian Woods 
 

X X 
   

43°22'53"N 80°21'91"W 310 

6 Private White 
  

X 
   

43°24"44'N 80°13'02"W 307 

7 Griffen West 
  

X 
   

43°16'17"N 80°21'07"W 314 

8 Eramosa River       X     43°42'36"N 80°07'46"W 350 
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2.3 Methods 

2.3.1 Tree-Ring Data 

Increment cores were prepared following standard dendrochronological methods 

(Stokes & Smiley, 1968). Cores were glued into wooden mounts, polished on a belt sander 

and finally buffed by hand to reveal growth ring patterns. The annual ring widths were 

measured to 0.001mm using a WinDendro digital image processing and measuring system 

(Guay, Gagnon, & Morin, 1992), and were cross-dated using the statistical program, 

COFECHA (Holmes, 1983). Once trees from each site were successfully cross-dated 

(Appendix A), site master chronologies were created through the program ARTSAN (F. 

Cook & Holmes, 1984)  by standardizing the individual cores in each chronology to form a 

group growth signal (Appendix B). By standardizing chronologies, variations in growth 

attributable to age, soil type and site history are dampened so as to allow better 

characterization of the climate-related growth signal. Each individual site chronology was 

detrended with a 50-year cubic smoothing spline with a 50% frequency response (E. R. Cook 

& Peters, 1981). 

Individual master chronologies from each site were entered into a correlation matrix 

to determine the degree of statistical similarity between the sites for each species. Since all of 

the species-specific sites correlated to one another above critical levels and were statically 

significant (P < 0.01), cross-dated individual cores from the different sites were combined to 

create regional chronologies for each species (Table 2.2). As with the individual site master-

chronologies, the regional master-chronologies were standardized through ARTSAN to 
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create a unified growth signal (Fig. 2.3). These regional master-chronologies were used to 

establish species-specific growth-climate relationships with historical climate data. 

Table 2.2 Correlation matrices of a 125-year time series (1882-2007) of radial-growth increments 

between species specific study sites in the Grand River Watershed 

Eastern Hemlock 
        Name   Luther Marsh Homer Watson Oakland Swamp 

  

          Luther Marsh X 
 

0.313 
 

0.254 
   

          Homer Watson 0.313 
 

X 
 

0.26 
   

          Oakland Swamp 0.254   0.26   X   
  Sugar Maple 

        Name   Guelph Lake Indian Woods Homer Watson 
  

          Guelph Lake X 
 

0.63 
 

0.431 
   

          Indian Woods 0.63 
 

X 
 

0.4 
   

          Homer Watson 0.431   0.4   X   
  White Pine 

        Name   Private White Griffen West Indian Woods Homer Watson 

          Private White X 
 

0.484 
 

0.437 
 

0.421 
 

          Griffen West 0.484 
 

X 
 

0.655 
 

0.531 
 

          Indian Woods 0.437 
 

0.655 
 

X 
 

0.592 
 

          Homer Watson 0.421   0.531   0.592   X   

Values of Pearson's r are listed. All values are significant to the 0.01 level. White spruce does not appear 
because it only occurred at one site.  
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Figure 2.3 The standardized regional chronologies of the four study species in the Grand River 

Watershed 

2.3.2 Past Climate Data 

Species master-chronologies were entered into regression models to establish 

mathematical relationships between radial-growth and climate expressed as long-term 

monthly temperature and precipitation data from the Guelph OAC station (Environment 

Canada, 2008). Guelph OAC station was selected due to its central location relative to the 

sample sites. Missing data from the Guelph OAC station were filled using averages from four 

other nearby stations, namely Cambridge-Galt (43°19'47”N, 80°19'11"W, station identifier 
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#6141095), Woodstock (43°8'24"N, 80°46'11"W, station identifier #6149625), Fergus Shand 

Dam (43°43'47"N, 80°19'47"W, station identifier #6142400) and Stratford (43°22'48"N, 

81°0'0"W, station identifier #6148100) (Fig. 2.2) (Environment Canada, 2008). Before using 

these substitutes, all the station data were analyzed to verify that their values were 

significantly correlated to one another. Less than 10% of the Guelph OAC station dataset 

needed to be filled using averages from the four other weather stations.  

Temperature and precipitation variables from the previous year‟s May until the end of 

the current year were compared to the standardized regional chronologies (Laroque & Smith, 

2003). A tree‟s current growth is often correlated with growth in the previous season and this 

factor has to be filtered out statistically. Thus, an independent variable was also added for 

one year‟s previous growth for each species-specific model to account for the relationship 

between the current and previous year‟s growth (Fritts, 1976).  

Next, the climate and autocorrelation variables having the greatest impact on radial-

growth were identified through a stepwise multiple regression analysis using SPSS (Version 

16) (Table 2.3). The “F to enter” and “F to remove” confidence levels were set at 0.2 and 

0.25, respectively, to limit the number of independent variables entered into the regression. 

The use of these limiting parameters approximated the “10%” rule of thumb recommended 

for such statistical tests, and ensured that „overfitting‟ of the regressions did not occur 

(Laroque & Smith, 2003; Sokal & Rohlf, 1997). The predictive ability of these regression 

models was tested using a calibration/verification scheme. For all of the species, a 60/40 

calibration to verification ratio was used. The calibration period for eastern hemlock, 



15 

 

Table 2.3 The study species‟ relationship with climate as determined by the stepwise regression analysis. 

 
Current year 

  Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. 

Mean Temp.   
          

  
Eastern Hemlock     + -           +     
Sugar Maple   

   
+ 

      
  

White Spruce     +     -             
White Pine   

 
+ 

        
  

Precipitation                         
Eastern Hemlock         +               
Sugar Maple   

     
+ 

    
  

White Spruce +           +           
White Pine         +   +           

  

  

Previous year 
      May June July Aug. Sept. Oct. Nov. Dec. 

    Mean Temp. 

       
  

    Eastern Hemlock     -           
    Sugar Maple 

 
- - 

 
- 

  
  

    White Spruce     -           
    White Pine 

 
+ + 

    
  

    Precipitation                 
    Eastern Hemlock     +           
    Sugar Maple 

   
+ 

   
  

    White Spruce                 
    White Pine             +   
                            The positive (+) and negative (-) significant growth relationships between the study species and climate as determined by the stepwise regression analysis                   
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white pine and sugar maple ran from 2006 to 1932 (n=74), and the verification period 

between 1931 and 1882 (n=49). Due to the limited number of mature white spruce samples, 

the calibration period for this species ran from 2006-1946 (n=60), and the verification period 

between 1945 and 1906 (n=39).        

The growth-climate relationships illustrate that 66-84% of annual variance (r) in 

radial-growth for each of the four species can be explained using climate data from the filled 

Guelph OAC station dataset and one autocorrelation variable (Table 2.4). All of the models 

were significant when verified using standard goodness-of-fit tests (Table 2.5, Appendix C). 

Table 2.4 Results of the stepwise regression analysis between annual radial-growth increments 

(dependant variable) and historical weather data from the Guelph OAC weather station  

 

 

Dependent variable (model) 
 

Number of independent Explained r (r²) 

    

variables in the equation 

                    

Master Eastern Hemlock 

 

7 

 

0.729 (0.53) 

Master White Pine 
  

7 
 

0.84 (0.71) 

Master White Spruce 

 

6 

 

0.762 (0.58) 

Master Sugar Maple     7   0.667 (0.45) 

All models include a 1-year lag parameter and are statically significant at P < 0.01. 
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Table 2.5 Pearson correlation values confirming the relationship between radial-growth and the 

calibration/verification periods for each of the species specific models, as well as the mean square 

error of prediction test (MSEP) illustrating the error between actual and modeled growth.  

 

Tree Species Models   

Eastern Hemlock Sugar Maple White Spruce White Pine 

Calibration 
Period   0.729 0.667 0.761 0.84 

Calibration MSEP 0.015 0.028 0.021 0.014 

Calibration % error 12.71 16.82 15.03 12.6 

Verification Period 0.495 0.23 0.323 0.617 

Verification MSEP 0.053 0.044 0.049 0.034 

Verification % error 25.04 21.61 21.94 19.15 

 

2.3.3 Future Climate Data 

CGCM3 model outputs were used to derive the future climate data through a 2.81° x 

2.81° GCM grid square covering the latitudes 40°26'24” N to 43°15'00” N and longitudes 

from 81°33'36” W to 78°45'00” W (Fig. 2.1). CGCM3 provides climate projections for the 

period 1850-2100. In this instance, precipitation was summed as monthly totals and 

temperature data were reported as monthly means (Laroque & Smith, 2003). To test the 

capacity of CGCM3 to model the climate of the GRW, the model outputs were compared to 

the filled Guelph OAC weather station data for 1881-2000. A visual comparison of the actual 

to modeled climate data shows that CGCM3 produced average temperature predictions about 

0.7°C cooler than those recorded at Guelph OAC station (Fig. 2.4). On the other hand, the 

modeled precipitation values appear very similar to the recorded data, with only a few 

exceptions evident in the older sections of the dataset (Fig. 2.5). It is important to note that 

CGCM3 produces 21
st
-century temperature projections for Ontario that are in line with other 
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GCMs, while it generates precipitation data that is generally wetter than comparable models 

(Pacific Climate Impacts Consortium (PCIC), 2007).   

 

Figure 2.4 A comparison of temperature data from Guelph OAC station (1881-2000) and the 

unadjusted CGCM3 data derived from the surrounding grid square.   

 

Figure 2.5 A comparison of precipitation data from Guelph OAC station (1881-2000) and the 

unadjusted CGCM3 data derived from the surrounding grid square. 
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Divergence between the CGCM3 and Guelph OAC climate data were unsurprising, as 

the CGM grid square used for this project covered a large area relative to the study site, and 

as the center of the gird square falls south of the Guelph OAC weather station. To account for 

these issues, the climate model data were adjusted to represent the study area more 

accurately. The conversion began by subtracting the CGCM3 data from the Guelph OAC 

data on a monthly scale for each year during 1881-2000. These results were averaged for 

each month to create monthly divergence values. These values were then applied back onto 

the annual CGCM3 figures at the same monthly resolution. The outcome of this correction 

was a CGCM3 past climate dataset that better matched the historical Guelph OAC records 

(Fig. 2.6 and Fig. 2.7). This change factor was later applied to the future dataset, which 

tailored the zonal CGCM3 data to the climatic conditions experienced in Guelph. 

 

Figure 2.6 A comparison of temperature data from Guelph OAC station (1881-2000) and the adjusted 

CGCM3 data derived from the surrounding grid square. 
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Figure 2.7 A comparison of precipitation data from Guelph OAC station (1881-2000) and the 

adjusted CGCM3 data derived from the surrounding grid square.  

2.3.4 Forecasting Radial-Growth 

The growth-climate relationships established through the stepwise regression analysis 

were applied to the adjusted CGCM3 future dataset (2000-2100) to forecast the radial-growth 

patterns for each species. Forecasts were produced based on low (B1) to moderate (A1B) 

SRES emissions scenarios. Under these scenarios, mean temperatures in the GRW are 

expected to warm by approximately 2.5°C (B1) to 3.0°C (A1B) by 2100, while annual 

precipitation rates are expected to increase by about 50mm (B1) to 150mm (A1B) by 

century‟s end (Fig. 2.8 and Fig. 2.9). 
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Figure 2.8 Predicted temperature and precipitation trends for the study site under the B1 (550 CO2 

ppm) emissions scenario.   

 

Figure 2.9 Predicted temperature and precipitation trends for the study site under the A1B (720 CO2 

ppm) emissions scenario. 
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2.4 Results 

2.4.1 Eastern Hemlock 

The radial-growth response of eastern hemlock in the GRW to past (1881-2006) and 

future climates (2007-2100) is shown in figures 2.10 and 2.11. Under the B1 emissions 

scenario, the radial-growth rates of eastern hemlock remain within its long-term range of 

variation throughout the 21
st
-century (Fig. 2.10). The forecast shows slightly below average 

growth for eastern hemlock through the 2060s, followed by a recovery to historical averages 

for the rest of the century. Under the A1B scenario, eastern hemlock displays slightly above 

average radial growth patterns until 2090 when rates drop sharply below historical averages 

(Fig. 2.11). The general stability of eastern hemlock throughout the next century can be 

attributed to the significant positive and negative climatic factors that influence radial-growth 

essentially negating one another. In particular, eastern hemlock‟s positive growth response to 

March temperature counteracts the unfavorable growth effects of warmer and drier Julys. 

2.4.2 Sugar Maple 

Under the B1 scenario, radial-growth rates for sugar maple drop below the smallest 

recorded annual growth increments by 2020 (Fig. 2.12). Following that period, growth rates 

stabilize until 2100 at about 50% of historical averages. This eventual stabilization is not 

evident, however, under the A1B scenario, in which sugar maple growth increments 

consistently decline throughout the 21
st
-Century (Fig. 2.13). This second forecast illustrates 

sugar maple exceeding the smallest historical growth rates by 2030, and only generating 

rings about 25% as wide as the historical average by century‟s end. The decline of sugar 
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maple in the GRW is due to the warmer and drier summers anticipated by CGCM3 under 

both emissions scenarios. 

2.4.3 White Spruce 

White spruce will experience rapidly declining growth rates in the B1 forecast, 

resulting in ring widths smaller than the historical average by 2030 (Fig. 2.14). After this 

initial drop, annual growth stabilizes for the next seven decades at about 50% of past 

averages. Under the higher emissions scenario, growth rates for white spruce will steadily 

decline throughout the century (Fig. 2.15). Consistently decreasing radial-growth rates in 

white spruce are primarily linked to hot and dry summers. 

2.4.4 White Pine 

In contrast to white spruce, white pine will experience rapid increases in radial-

growth rates through the next century under both emissions scenarios. The B1 forecast shows 

white pine radial-growth increments quickly rising until the 2060s at which point they 

stabilize at growth rates around 3 times the historical average (Fig. 2.16). The A1B forecast 

shows a constant increase in radial-growth until 2100 when growth rates reach levels almost 

4 times greater than the historical average (Fig. 2.17). The magnitudes of these white pine 

forecasts are exaggerated because of the species‟ strong association with the previous growth 

(PG) variable. This variable, which explains 78% of variance in the forecasted curve, makes 

the forecasts rise almost exponentially, as the high autocorrelation value appears to create a 

compounding positive feedback loop. Removal of the PG variable from the white pine model 

leads to the same increasing growth trend, but at a lower trajectory (Fig. 2.18 and Fig. 2.19).  
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Figure 2.10 Eastern hemlock radial-growth forecast, B1 emissions scenario 

 

 

Figure 2.11 Eastern hemlock radial-growth forecast, A1B emissions scenario
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Figure 2.12 Sugar maple radial-growth forecast, B1 emissions scenario 

 

 

Figure 2.13 Sugar maple radial-growth forecast, A1B emissions scenario 
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Figure 2.14 White spruce radial-growth forecast, B1 emissions scenario 

 

 

 

Figure 2.15 White spruce radial-growth forecast, A1B emissions scenario 
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Figure 2.16 White pine radial-growth forecast, B1 emissions scenario 

 

 

Figure 2.17 White pine radial-growth forecast, A1B emissions scenario 
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Figure 2.18 White pine radial-growth forecast, B1 emissions scenario, excluding previous growth 

variable 

 

Figure 2.19 White pine radial-growth forecast, A1B emissions scenario, excluding previous growth 

variable 
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2.5 Discussion 

2.5.1 Eastern Hemlock 

The stability of eastern hemlock throughout the 21
st
-century can be attributed to its 

strong positive growth relationships with March temperature and July precipitation in the 

year prior to ring formation, as well as its negative growth reaction to previous July 

temperature. The projected warming trend in March (3.5-4°C) essentially offsets the 

anticipated warmer and drier Julys. The notion that increasing March temperatures could 

potentially negate the effects of drier summers on the growth rates of eastern hemlock was 

initially suggested by Cook and Cole (1991) in their dendroclimatic study of the species 

throughout most of its range. Another factor in eastern hemlock‟s steady forecast could be its 

positive growth relationship with October temperature and negative association with April 

temperature, both of which are expected to rise through the next century. The only other 

climatic factor used in the eastern hemlock model was its positive growth link to May 

precipitation, which is projected to remain constant until 2100 under both emissions 

scenarios.      

The strong positive relationship between eastern hemlock growth and March 

temperature evident in this study supports related findings (Abrams, van de Gevel, Dobson, 

& Copenheaver, 2000; Black & Abrams, 2005; E.R. Cook & Cole, 1991; J. Tardif, Brisson, 

& Bergeron, 2001). The hypothesis that higher March temperatures result in greater hemlock 

growth through the quicker removal of snow cover and earlier than normal resumption of 

photosynthesis is further supported by this paper (E.R. Cook & Cole, 1991; J. Tardif et al., 

2001). Also, the limitation of eastern hemlock growth by July drought in the year prior to 
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ring formation is supported by literature examining the species‟ growth-climate relationship 

during the last century (Abrams et al., 2000; E.R. Cook & Jacoby, 1977; Gove & 

Fairweather, 1987; Lyon, 1935; J. C. Tardif, Conciatoril, Nantel, & Gagnon, 2006), as well 

as its decreased pollen occurrence during the mid-Holocene (Calcote, 2003; Foster, Oswald, 

Faison, Doughty, & Hansen, 2006; Shuman et al., 2001). Other climatic factors affecting the 

growth of eastern hemlock in the GRW (+ October temperature, + May precipitation, -April 

temperature) do not appear to have been previously noted in the literature. Connections can 

be drawn, however, between this study and that of Tardif, Brisson, and Bergeron (2001), who 

found that eastern hemlock growth responds positively to June precipitation and negatively to 

May temperature. Combined with this study, these results suggest that late spring/early 

summer water balance is important to the radial-growth of eastern hemlock, especially in 

May.  

2.5.2 Sugar Maple 

The downward trajectory of the sugar maple forecasts is due to historical growth-

climate relationships that show the species reacting negatively to warm June, July and 

August temperatures in the year prior to ring formation, as well as its positive growth 

response to precipitation in August of the previous year and July of the current year. Since 

both climate change scenarios project warmer and drier summers, it is not surprising that 

sugar maple will decline in the region when considering climatic factors alone. These results, 

which suggest sugar maple is limited by summertime drought, align with other published 

findings (Bauce & Allen, 1991; Bernier & Brazeau, 1988; Friesner & Friesner, 1942; 

Graumlich, 1993; Hartmann & Messier, 2008; Hornbeck, Smith, & Federer, 1988; Miller, 
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1951; Ni & Pallardy, 1992; Payette, Fortin, & Morneau, 1996; Sinclair, 1964; St. Clair, 

Sharpe, & Lynch, 2008; J. Tardif et al., 2001; Yin, Foster, Morrison, & Arp, 1994). The 

positive link between sugar maple growth and May temperature has also been noted 

(Graumlich, 1993; Lane, Reed, Mroz, & Liechty, 1993; J. Tardif et al., 2001). The modeled 

rise in May temperatures by 2-4°C, however, will do little to counter the detrimental effects 

of an increasingly arid late growing season on sugar maple growth within the GRW. 

2.5.3 White Spruce 

The forecast decline of white spruce radial-growth is largely due to its strong negative 

growth association with previous July and current June temperature, as well as its positive 

link to July precipitation. While white spruce growth also displays a positive connection to 

March temperature, warmer springs will not offset the drier growing season anticipated for 

the GRW. The limitation of white spruce by previous year and current summertime 

temperatures has been well documented, as has its positive association with July precipitation 

(Barber, Juday, & Finney, 2000; Chhin & Wang, 2002, 2008; Chhin, Wang, & Tardif, 2004; 

Girardin & Tardif, 2005; Hogg & Wein, 2005; Larsen & MacDonald, 1995; St. George, 

Meko, & Evans, 2008; J. Tardif & Conciatori, 2001; Wilmking, Juday, Barber, & Zald, 

2004). The results of this study are in line with others that suggested the range of white 

spruce, particularly at its southern limit, is controlled mainly by moisture stress caused 

directly by low precipitation levels, or indirectly by temperature-induced drought stress 

(Chhin & Wang, 2002, 2008; Chhin et al., 2004; Hogg & Hurdle, 1995; Zoltai, 1975). 

Furthermore, the historical growth-climate relationships revealed in this study support 

paleoclimatic data from New England and elsewhere that showed a dramatic decline in Picea 
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as temperatures increased during the Holocene (Hou et al., 2006; Huang, Shuman, Wang, & 

Webb III, 2002; Stuiver, Grootes, & Braziunas, 1995), as well as its reemergence over the 

past 2000 years in response to cooler and moister conditions (Davis, Spear, & Shane, 1980; 

Foster & Zebryk, 1993; Schauffler & Jacobson Jr., 2002; Shuman, Newby, Huang, & Webb, 

2004).   

 As in eastern hemlock, the positive growth response of white spruce to March 

temperature is likely due to the earlier onset of snowmelt. This relationship has been noted by 

other researchers studying white spruce throughout its range (Driscoll, Wiles, D‟Arrigo, & 

Wilmking, 2005; J. Tardif & Conciatori, 2001; Wilmking et al., 2004). The final climatic 

factor included in the white spruce forecast was its weak positive growth association with 

January precipitation. While January temperature has been identified as important to the 

growth of white spruce before (Chhin & Wang, 2008), it appears that the species‟ growth 

relationship to January precipitation has not been noted previously. Perhaps more snow in 

January prevents the destructive effects of soil freeze by providing an insulating effect, or it 

benefits white spruce in spring by providing extra moisture. 

2.5.4 White Pine 

The increasing radial-growth predicted for white pine in the GRW is due to the 

species‟ positive growth association with temperature in June and July of the year prior to 

ring formation as well as with March of the current year. Also, white pine‟s positive growth 

relationship with precipitation in November of the previous year and May of the current year 

result in high future growth driven by these variables, as precipitation is expected to slightly 

increase in the GRW during both months under the two emissions scenarios. The only other 



 

 33 

climatic factor included in the radial-growth forecasts was white pine‟s positive growth 

association with July precipitation, which is expected to decrease very slightly (5-10mm) 

according to the modeled climate. Given the negligible increases expected for November and 

May precipitation in this century, in addition to the minimal decreases expected for rainfall in 

July, monthly precipitation appears relatively unimportant for the growth of white pine in the 

GRW. Temperature as the primary factor driving the growth of white pine was also noted by 

Graumlich (1993).  

Given the wide ecological amplitude of white pine and its propensity to occupy 

several physiographic regions (Wendel & Smith, 1990), it is unsurprising that ambiguous and 

contradictory findings appear when reviewing its growth response to climate. For instance, 

some studies have shown that white pine thrives in damper and cooler climates (Abrams et 

al., 2000; Denton & Barnes, 1987; Hotchkiss, Calcote, & Lynch, 2007), while other research 

supports the findings of this thesis. The positive growth relationship between white pine and 

March temperature in the GRW, for example, is consistent with other papers displaying the 

species‟ sensitivity to warmer temperatures during the early growing season (March/April) 

(Graumlich, 1993; Kilgore & Telewski, 2004; Mácová, 2008). Like other conifers, the 

positive growth response of white pine to March temperature is likely due to the ability of  its 

evergreen foliage to take advantage of early growing season warmth (Fritts, 1976). The 

positive connection between the growth of white pine and a warmer, drier mid-growing 

season is also supported in the literature, particularly in articles discussing the expanding 

range of the species throughout eastern North America during the Holocene (Jacobson Jr. & 

Dieffenbacher-Krall, 1995; Newby et al., 2000).  
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The positive association between the growth of white pine and July precipitation in 

the GRW also supports previously published works. For example, Denton (1987) found that 

white pine in Michigan had a moderately high-ratio of July-August evapotranspiration to 

precipitation rate, and Mácová (2008) noted the species‟ positive growth response to summer 

rain in dry areas. Conversely, the influence of previous November and current May 

precipitation on the radial-growth of white pine as highlighted in this study has not been 

mentioned before.  

The prospective success of white pine in the GRW is in line with Jacobson and 

Dieffenbacher-Krall (1995), who suggested that future warming could favor the next 

generation of white pine trees and be well-tolerated by existing stands. Importantly, the 

magnitudes of the white pine forecasts presented here are exaggerated because of the species‟ 

strong association with the previous growth variable. Until further research is conducted on 

the effects of this variable in the establishment of historical growth-climate relationships, in 

addition to its theoretical and statistical role in dendroclimatological modeling, conclusions 

surrounding radial-growth forecasts should only be drawn based on the general trajectory of 

the results, as opposed to the specific rates of projected growth (Phillips, 2009). This is 

particularly important when examining species with high autocorrelation rates, such as in this 

white pine case. 

2.5.5 Predictive Limitations of Radial-Growth Forecasting 

The radial-growth forecasts are predominately limited by the accuracy of the CGCM3 

future climate dataset. CGCM3 and related models are constantly being updated and refined 

with more, and better, spatially continuous data. With future climate scenarios and new 
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generations of models, the radial-growth forecasts upon which they are based also need 

updating. This is particularly true in the GRW given the complex effects of the Great Lakes 

on climate (Burnett, Kirby, Mullins, & Patterson, 2003). Second, the radial-growth models 

presented here were calibrated using only the past 60-74 years of climate data. While there 

has been much variability during this time, there are future forecasted maximums of both 

temperature and precipitation that fall outside the range of the past 60-74 years. Thus, the 

models are limited in their capacity to extrapolate radial-growth under forecasted climates 

which exceed past climatic ranges. Finally, these models did not account for a host of other 

climatic and non-climatic variables that would surely impact the four species. For example, 

the response of the study species to elevated CO2 and other types of air pollution were not 

considered (Bartholomay, Eckert, & Smith, 1997; Bazzaz, Coleman, & Morse, 1990), nor did 

the model account for the shifting climatic factors that the species may depend on at various 

stages during their life cycle (Colenutt & Luckman, 1991; Parish, Antos, & Hebda, 1999; 

Szeicz & MacDonald, 1994). Also, the potential effects of pathogens, insects and 

competition in the GRW were not incorporated, and no attempt was made to predict the 

propensity of the study species to successfully disperse or germinate under changing climatic 

scenarios. 

2.6 Conclusion 

Radial-growth forecasting models have been developed for four significant tree 

species in the Grand River Watershed. Regional master dendrochronologies for each of the 

study species were built, standardized, and used to establish growth-climate relationships. 

Using 21
st
-century modeled climate scenarios from CGCM3, these historical growth-climate 
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relationships were extended to 2100 to forecast the radial-growth rates for each of the 

species. Results indicate that eastern hemlock radial-growth will remain stable throughout the 

next century, sugar maple and white spruce growth will start to decline, and white pine 

growth will increase. While the magnitudes of the forecasts were amplified by the presence 

of the previous growth variable, they are based on historical growth-climate relationships that 

are statically significant and strongly supported in the literature. Despite inherent limitations, 

this modeling technique successfully used future climate scenarios to predict radial-growth 

rates, instead of simply relying on past trends and making casual inferences about the future. 

Given the results of this study and the others upon which it was based, the usefulness of 

radial-growth forecasting as an effective climate change adaptation tool is evident. 
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Chapter 3: Radial-Growth Forecasting as a Planning and 

Management Tool in the Grand River Watershed of Ontario, Canada 

3.1 Introduction 

Rapidly warming temperatures, in conjunction with highly fragmented landscapes, 

threaten the health of forests throughout North America. Consequently, government officials 

and academics have recommended adaptation strategies (Office of the Auditor General, 

2006; Parry et al., 1998; Scott & Lemieux, 2007). Such measures typically focus on the 

future success of individual trees species. Therefore, many scientists have worked to predict 

the future ranges, habitats and growth rates of individual species given likely climate change 

scenarios. Much of the latest work has been based on course models, particularly those 

predicting continental-scale range shifts and habitats using the Climate Envelope (CE) 

approach (Iverson & Prasad, 1998; Iverson, Prasad, Matthews, & Peters, 2008; McKenney et 

al., 2007; Walker, Davis, & Sugita, 2002). While these large-scale models are useful for 

examining the magnitudes of potential changes, they are often conducted at scales beyond the 

scope of most managers and planners, and fail to account for the local genetic adaptations of 

forest trees to climate (Laroque, 2005; Morgenstern, 1996; Pilkey & Pilkey-Jarvis, 2007). As 

a result, recent literature has favored finer-scale forestry models (Heller & Zavaleta, 2009; 

Millar et al., 2007; Pilkey & Pilkey-Jarvis, 2007; Scott et al., 2002; Suffling & Scott, 2002). 

To predict the success or demise of individual tree species at more relevant and useful 

scales (i.e. watershed and sub-watershed), researchers have begun forecasting the radial-

growth rates of socially, economically, ecologically and environmentally significant tree 

species using dendroclimatology. Laroque and Smith (2003) were the first to model radial-
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growth patterns in their study of five high-elevation conifers on Vancouver Island, Canada. 

To do so, the authors initially constructed species-specific relationships between radial-

growth and past climate data. Next, they extended these growth-climate relationships to 2100 

using modeled climate data to project the future radial-growth rates for each of their study 

species. As a result, the authors identified which species would experience higher or lower 

radial-growth rates under probable climate change scenarios. This knowledge is important, as 

trees facing climatic stress are more likely to succumb to competition, disease or insect attack 

(van Mantgem et al., 2009).  

Despite the significance and success of Laroque and Smith‟s (2003) study, only 

Girardin, Raulier, Bernier, and Tardif (2008) have replicated their methods in a study of three 

species within the Duck Mountain Provincial Park of Manitoba, Canada. Furthermore, no 

researcher has explained how radial-growth forecasts could be used in the formulation of 

effective environmental planning policy or forest management strategy. Thus, this paper uses 

the results of a recently completed radial-growth forecast to show the study‟s implications for 

regional planning and management. The paper begins by reviewing evidence of past and 

future climate change, the subsequent calls for climate change adaptation strategies, and the 

effects of warming temperatures and land use patterns on trees. Next, examples of course and 

fine scale forestry models are presented to display the advantages of the latter when planning 

for forests in a rapidly changing climate. Finally, the results of a radial-growth forecasting 

study from the Grand River Watershed (GRW) of Ontario, Canada are presented, and 

suggestions regarding how this study could influence environmental planning policy and 

forest management strategy in the region are raised. 
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3.2 Evidence of Climate Change 

The Intergovernmental Panel on Climate Change (IPCC) recently reported strong 

evidence of a pending and profound change in global climate due to anthropogenic activities 

(2007a). Globally, the IPCC (2007a) estimated that mean temperatures have increased by 

0.74°C over the past 100 years, and will probably rise an additional 1.8 to 4°C by the end of 

the 21
st
-century depending on future greenhouse gas emissions scenarios. Hanson et al. 

(2001) argued that these estimated rates of warming have been unprecedented in the last 

10,000 years, and that current average global temperatures are within 1°C of the maximum 

temperature of the past million years. Thus by 2100, average global temperatures could be 

higher than any other time during the Quaternary Period. 

The IPCC (2007a) projected that future climate change will generally affect land 

areas and high latitudes more than the oceans and tropics. For example, Canada is projected 

to experience substantially higher rates of warming than the global average, with mean 

annual temperature increases between 3.1 and 10.6 °C before the end of the century (Pacific 

Climate Impacts Consortium (PCIC), 2007; Scott & Lemieux, 2007). These rapid increases 

in temperature are expected to significantly alter natural systems and feedback-loops such as 

the hydrologic cycle (Trenberth, Dai, Rasmussen, & Parsons, 2003), as well as geographic 

ranges of numerous plant and animal species (Higgins & Harte, 2007; Intergovernmental 

Panel on Climate Change (IPCC), 2007b; Iverson et al., 1996; Schwartz et al., 2001). 
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3.3 Calls for Climate Change Adaptation Strategies 

Current and projected climate change effects have led numerous North American 

researchers and government officials to recommend adaptation strategies. For instance, the 

Report of the Commissioner of the Environment and Sustainable Development (Office of the 

Auditor General, 2006) recently proposed that all levels of government begin to develop 

comprehensive action plans that deal with climate change adaptation, and that new ways to 

connect related researchers to decision makers be implemented. The report warns that failure 

to invest in climate change research will affect Canada‟s ability to make wise decisions. 

Likewise, Scott and Lemieux (2007, p.348) suggested that Canada‟s “protected areas will 

need to be established, planned and managed differently if they are to meet the conservation 

challenges posed by climate change over the 21st century and beyond.” Finally, Parry, 

Hulme, Nicholls and Livermore (1998) warned that future climate change could be very 

serious for society and hazardous for nature if progressive plans, policies and strategies are 

not put forth. 

3.4 Climate Change and Land-Use Effects on Trees 

Plant species have responded to past climate changes through range shifts and 

alterations in the timing of key-life events, notably budburst and seasonal migration patterns 

(Higgins & Harte, 2007; Parmesan & Yohe, 2003; Root et al., 2003). Paleoecological 

evidence has documented such responses following the end of the last glaciation about 

10,000 years ago (Delcourt & Delcourt, 1988; Liu, 1990; Malanson, 1993; J. W. Williams, 

Shuman, Webb, Bartlein, & Leduc, 2004). Similarly, recent warming trends have affected 

plant species. A study by Parmesan and Yohe (2003) concluded with “very high confidence” 
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that the trend of increasing temperatures during the 20
th
-century significantly altered the 

ranges and physiological timing for 279 of the plant species they studied worldwide. 

Furthermore, Soja et al. (2007) recently highlighted the uphill migration of white spruce tree-

lines in mountainous Alaska, while others have noted longer growing seasons in Europe of 

up to 20 days since the 1960s (Linderholm, 2006; Menzel, 2000; Walther & Linderholm, 

2006). Since 21
st
-century climate changes are projected to far exceed those of the 20

th
-

century, marked transformations in ecosystem functions, species interactions, population 

biology and the distribution of plants are expected (Chapin et al., 2004; Melillo et al., 1990; 

Schwartz et al., 2001).   

Even under conservative greenhouse gas emissions scenarios, the large and rapid 

climate changes expected throughout the 21
st
-century imply species migration at rates about 

ten times faster than those supposed for the last postglacial period (J. A. Malcolm et al., 

2002; Scott & Lemieux, 2007; Solomon & Kirilenko, 1997). Consequently, researchers have 

argued that the migrations of trees will lag behind the poleward shifts of their climatic zones 

(Gear & Huntley, 1991; Intergovernmental Panel on Climate Change (IPCC), 2007b). Thus, 

some species may face extinction as they may fail to re-establish in areas that are 

climatically, physiologically, and ecologically suitable (Scott & Lemieux, 2007). Conversely, 

fast-growing and rapidly dispersing species could flourish (Dukes, 2003; Tilman & Lehman, 

2001), resulting in major changes in species‟ ecological interactions, as well as ecosystem 

structure and function, which could significantly impact biodiversity (Intergovernmental 

Panel on Climate Change (IPCC), 2007b; Scott & Lemieux, 2007). In other words, the 

success of plant species in the future will depend on the rate and magnitude of future climate 
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change, as well as the speed at which plants are able to migrate and adapt in response to 

those climatic changes (Higgins & Harte, 2007).  

Modern-day land-use patterns complicate ecosystem adaptation to climate change by 

hindering the migration of plants by reducing suitable habitats and creating fragmented 

landscapes (de Dios et al., 2007; Higgins & Harte, 2007; Iverson et al., 1996; Peters, 1990; 

Schwartz, 1993). Schwartz (1993) noted that unlike the last postglacial period when trees 

migrated about 50 kilometers per century through fully forested landscapes, future rates may 

only be 1-10 kilometers per century in highly fragmented habitats. As a result, the survival of 

some species, in addition to the protection of ecologically, environmentally, and 

economically significant areas, may rely more on human activities, such as artificial 

reforestation programs, than on natural dispersal mechanisms (McKenney et al., 2007; 

Pitelka, 1997). 

3.5 Modeling and Predicting Future Forests 

Efforts to predict the consequences of warming temperatures on plant ecosystems, 

migrations and adaptations throughout the continent have increased as the effects of climate 

change have become apparent (Andalo, Beaulieu, & Bosquet, 2005; Botkin et al., 2007; 

Higgins & Harte, 2007; Iverson et al., 2008; Laroque & Smith, 1999; McKenney et al., 2007; 

Schwartz et al., 2001; J. C. Tardif et al., 2006). In particular, researchers have focused on 

predicting the range limits and success of individual tree species under projected climate 

change scenarios. McKenney, Pedlar, Lawrence, Campbell, and Hutchinson (2007) recently 

studied the potential impacts of climate change on the geographic ranges of 130 tree species 

throughout North America. The study determined the present-day climatic niches for each of 
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these species, located the conditions for these niches under future climate scenarios using 

maps, and then indicated where each of the species could potentially occur by the end of the 

century. The present-day niches for the study species were determined using the Climate 

Envelope approach through the software program ANUCLIM. To project future climate, the 

authors ran three GCMs under high (A2) and low (B2) emissions scenarios as defined by the 

Special Report on Emissions Scenarios (SRES) (Intergovernmental Panel on Climate Change 

(IPCC), 2007a). Finally, potential future migrations were estimated using “full dispersal” and 

“no dispersal” situations. The “full dispersal” model allowed tree populations to migrate 

entirely into their future climate habitat, while the “no dispersal” model assumed that species 

would be unable to migrate quickly enough to survive, and thus, only exist in areas that 

overlapped with their current climatic range. Under the “full dispersal” situation, the authors 

concluded that the average climate envelope size of their study species would decline by 

12%, and that the average southern edge of the species ranges would shift approximately 700 

Km northward. On the other hand, the “no dispersal” scenario displayed an average climate 

envelope decrease of 58% and an average range shift of 330 Km northward. The report noted 

that as the habitats and ranges of species change, important policy concerns regarding 

assisted migration and forest regeneration projects will arise.    

Similarly, Walker, Davis and Sugita (2002) predicted the migrations of multiple tree 

species through a course model that used bioclimatic variables and species-specific 

parameters. Specifically, the model STASH (STAtic SHell) was used to determine the current 

and potential future ranges of ten tree species within the Great Lakes region. The model 

operated by identifying bioclimatic tolerance values for each of the species and then used 
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those values to determine where the species could occur under several emissions scenarios 

and two GCMs. The authors found that the migrations predicted by the two climate models 

were similar in direction but different in magnitude, and that future climate changes will 

affect each of the species uniquely. As a result, they argued that future migrations could have 

significant economic and ecological implications for the forests in the Great Lakes region 

and beyond. The report warned that important timber species whose southern limits fall 

within the region, notably white, jack and red pine (Pinus strobus L., P. banksiana (Lamb.), 

and P. resinosa (Sol.)) bigtooth aspen (Populus grandidentata (Michaux)) and yellow birch 

(Betula alleghaniensis (Britt.)), are predicted to move hundreds of kilometers northwards, 

while broadleaf trees with current northern range limits within the region, such as black 

walnut (Juglans nigra L.) and black cherry (Prunus serotina (Ehrh.)), are projected to gain 

habitat due to more growing days and increases in coldest-month temperatures (Walker et al., 

2002).    

Broad-scale tree habitat and migration studies like McKeney et al.‟s (2007) and 

Walker et al.‟s (2002) are useful when examining macro-level tree migrations, as well as the 

potential implications of forthcoming range shifts. These models also raise awareness about 

climate change impacts, and help direct general climate change adaptation theory, strategy 

and policy. Broad-scale models, however, cannot effectively influence management and 

planning decisions at the regional or municipal level, as their outputs are too coarse to be 

accurately interpreted (Pilkey & Pilkey-Jarvis, 2007), and they fail to account for the local 

genetic adaptations of forest trees to climate (Laroque, 2005; Morgenstern, 1996). As a 



 

 45 

result, recent literature has favored finer-scale forestry models (Heller & Zavaleta, 2009; 

Millar et al., 2007; Pilkey & Pilkey-Jarvis, 2007; Scott et al., 2002; Suffling & Scott, 2002).  

Researchers have examined the effects of climate change on individual tree species at 

more applicable scales through dendroclimatology; a sub-field of dendrochronology that uses 

dated tree-rings to reconstruct and study past and present climates (Fritts, 1976). Laroque and 

Smith (2003) conducted a breakthrough study that forecast the radial-growth rates of five 

high-elevation conifer species on Vancouver Island, British Columbia, Canada. The authors 

initially created growth-climate relationships between local historical climate data and 88 

tree-ring chronologies. Next, coupled GCM outputs and several emissions scenarios were 

used to estimate future climate for Vancouver Island from 2000 to 2100. Finally, radial-

growth forecasts for each species were established by extending the historical growth-climate 

relationships to 2100 using the GCM data. The authors concluded that each species will react 

differently to future climate change due to increasing temperatures, shifts in precipitation 

patterns, and less snow during the winter months.  

Likewise, Girardin et al. (2008) forecasted the radial growth response of three tree 

species to future climates in the Duck Mountain Provincial Forest of Manitoba, Canada. The 

authors concluded that the radial growth rates for each species would decline under a 2 x CO₂ 

scenario. The declining radial-growth rates were attributed to drought stress, and the authors 

warned of decreasing forest productivity within the site.  

Besides these two projects, no other researcher was found to have forecast the future 

radial-growth rates of individual tree species, or to have discussed the usefulness of the 

method as a planning or management tool. Thus, the following uses the results of the Grand 
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River Watershed radial-growth forecasts described in chapter two to discuss the implications, 

perceptions, and limitations of the study on environmental planning and forest management 

in the region throughout the 21
st
-century. 

3.6 Radial-Growth Forecasting in the Grand River Watershed: Local 

Management Options and Planning Implications 

Recently, the radial-growth rates of sugar maple (Acer saccharum L.), eastern 

hemlock (Tsuga Canadensis (L.) Carr.), white pine (Pinus strobus L.) and white spruce (Pica 

glauca (Moench.) Voss) within the GRW were forecasted to 2100. The methods closely 

replicated those of Laroque and Smith (2003), and the results were statically significant. The 

study indicated that eastern hemlock radial-growth would remain stable throughout the next 

century, sugar maple and white spruce growth would start to decline, and white pine growth 

would increase. With these results, managers and planners in the GRW could respond using 

one or a combination of four general strategies, which range from acquiescent to highly 

interventionist. 

3.6.1 Passive Strategy 

By employing a passive strategy, managers and planners in the GRW would simply 

let nature take its course concerning tree conservation. Suffling and Scott (2002) described 

this strategy as being based on the belief that ecosystems inherently accommodate climate 

change, and therefore, should be allowed to adapt without anthropogenic interference. This 

approach would be the most affordable of all the options in the short-term due to the lack of 

human intervention. However, if climatic shifts ravage the region‟s forests, managers and 

planners may be forced to take emergency adaptation measures, which would arguably be 
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less effective and more costly than preventative adaptation measures over the long-term 

(Wilson, 2006). Also, this laissez-faire approach could result in irreversible impacts such as 

species extinction (Scott & Lemieux, 2005), and citizens may be unwilling to accept the 

actual negative consequences of these passive strategies (Suffling & Scott, 2002). Despite 

this, passive strategies dominate current policy in the GRW due to lingering uncertainties 

regarding climate change impacts, a lack of public funds to pursue other options, and a 

shortage of locally-based forestry research addressing climate change adaptation.    

Under a passive approach, sugar maple and white spruce would be left to decline, 

assuming that no other natural factors counteracted the species‟ negative response to future 

climate change. A passive strategy towards sugar maple in the GRW could result in severe 

consequences, given its abundance in parks and private land throughout the watershed, as 

well as its significant role in the local maple syrup and timber industries. Conversely, the 

potential negative ramifications of passive strategies targeting white spruce may not be 

serious, as the species occurs naturally in only one small pocket of the region. This approach 

may not be appropriate, however, if the one remaining stand provides vital habitat for a rare 

or threatened species, if the stand serves a key environmental or economic role that could not 

be substituted by other tree species, or if the species would be missed by the public.   

The projected stability of eastern hemlock and success of white pine in the GRW 

could have positive or negative effects in the region under a passive strategy. For instance, by 

not intentionally suppressing the growth or constraining the migration of eastern hemlock 

and white pine, the species could outcompete those in decline and naturally establish in 

ecologically or environmentally important areas. As a result, the costs of highly 
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interventionist initiatives, such as species translocation or artificial reforestation projects, 

could be avoided. Alternatively, if the species were left unbridled, their increasing presence 

could alter the structure and function of many ecosystems vital to the sustainability and 

health of surrounding natural and built communities. Until further research is conducted on 

the capacity of eastern hemlock and white pine seedlings to establish in the climatically 

modified area, the capability of the species to migrate across highly fragmented landscapes, 

and the effects of their increasing presence on other plants and animals, the passive strategy 

should be approached with caution in the GRW throughout the 21
st
-century. Failure to do so 

may result in very costly and rushed adaptation measures that may not prove effective when 

necessary.    

3.6.2 Resistance Strategy 

Millar, Stephenson, and Stephens (2007) defined resistance strategies as those which 

work to contain insect infestations, aggressively suppress invasive species, and control fire 

hazards in an attempt to mitigate the effects of rising temperatures. These options are best 

applied in the short-term and to forests of high value or those with a low sensitivity to 

climate (Millar et al., 2007). Importantly, resistance strategies should not be seen as an all-or-

nothing approach, as they are often applied to specific stands within a larger management 

area, and therefore, are generally executed independent of higher-level policy and strategy by 

public and private woodlot owners.    

 When choosing which species to target using the resistance approach, decision 

makers in the GRW must weigh the social, economic, ecological and environmental value of 

the species, the non-climatic threats facing each of them, and their projected success in the 
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region. Resistance efforts may not be necessary for species that are highly valued, relatively 

resistant to non-climatic factors, and are projected to remain stable or thrive in the region. 

Likewise, such strategies may not be appropriate for species of high value that are currently, 

or will almost certainly be severely affected by a wide-spread insect, pathogen or invasive 

species for which there is no realistic way of restraining. Also, the resistance approach is 

probably not worth applying to any species of low value given the resources required. Thus, 

species that are highly valued and face only low to moderate threats from non-climatic 

factors would be the sole candidates for resistance strategies.  

Planners and managers in the GRW should first determine if sugar maple and white 

spruce are suitable for resistance strategies due to their projected radial-growth decline. 

Assuming that no unmanageable non-climatic factors threatened sugar maple in the GRW, 

important stands of the species could qualify for resistance strategies considering its 

importance and prevalence. Resistance strategies for white spruce may not be fitting due to 

its minimal presence and apparent low social, economic, ecological and environmental value 

in the GRW. With respect to eastern hemlock and white pine, resistance strategies would be 

ideal only if the two species faced non-climatic challenges that were realistically 

suppressible, as they are valued in the region and are projected to fair well under future 

climate change. 

3.6.3 Resilience Strategy 

Resilience strategies are founded on the notion that plants are most sensitive to 

climatic changes during the establishment phase, particularly in regards to site suitability 

(Betancourt, Breshears, & Mulholland, 2004). Activities such as surplus seed-banking (Ledig 
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& Kitzmiller, 1992) and intensive management during seedling establishment have been 

shown to enable the retention of desired species even if the site is no longer climatically 

optimal (Millar et al., 2007; Spittlehouse & Stewart, 2003). The high costs and levels of 

intervention required for such an approach, however, could require resources and time 

beyond the scope of government agencies in the GRW. Thus, the implementation of 

resilience strategies in the region may rely on progressive provincial and federal partnerships 

dealing with climate change research and adaptation strategy, in addition to public awareness 

campaigns that teach private landowners how to perform resilience techniques 

independently.  

 If supported, authorities and individuals in the GRW could effectively apply 

resilience strategies to any of the four study species in the short to medium term. Before 

pursuing this approach, however, background research should first examine the current and 

projected establishment rates for each species in the watershed. Perhaps test plots using 

seedlings from the four species could be planted in the southernmost parts of the GRW to 

replicate drier and warmer conditions. To measure their success under more extreme climate 

scenarios, the seedlings could also be planted further south in the United States. This exercise 

would display the capability of the four species to naturally establish under a variety of 

potential future climates. Additionally, the test plots would let forest managers gauge the 

levels of intervention necessary to aid in the successful establishment of a species under 

altered climate if it cannot do so itself. As a result, policymakers could combine this 

information with the radial-growth forecasts to define those species that (A) require 

assistance to establish and are projected to decline; (B) species that require assistance to 
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establish but are otherwise projected to remain stable or thrive; (C) species that will establish 

naturally but are projected to decline; and (D) species that will establish naturally and are 

projected to remain stable or thrive (Fig. 3.1). If resilience strategies are deemed suitable in 

the GRW, efforts should be focused on species that fall into category (B). For these species, 

resources should be directed towards methods that maximize the success of seedling 

establishment, and in the creation of effective seedling monitoring programs. Resilience 

strategies would not be recommended for species in the (A) category due to the high risks of 

failure both in the short and long term. Similarly, resilience strategies may not be appropriate 

for species in the (D) category, as they may not require assistance to survive. Finally, species 

in the (C) category could survive in the GRW without resilience strategies, presuming that 

resistance strategies mitigated the detrimental effects of climate change and the potential 

pathogens, insects and invasive species that accompany it.  
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Figure 3.1 A decision tree illustrating the suitability of tree species for resilience strategies if they do or do not require assistance to establish 

under altered climate scenarios. 
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3.6.4 Active Management Strategy 

Active management strategies maximize the capacity of species and ecological 

communities to adapt to future climatic changes through a combination of locally-based 

research and interventionist management practices (Millar et al., 2007; Suffling & Scott, 

2002). With accurate knowledge concerning the success of individual tree species under 

projected climate scenarios, managers and planners could effectively carryout an array of 

projects that would increase levels of sustainability throughout the GRW. For instance, 

species projected to succeed, like white pine and eastern hemlock in this case, could be used 

in the construction of ecological corridors to facilitate the migration of other suitable species 

(de Dios et al., 2007; Wilby & Perry, 2006). Also, reforestation initiatives could use thriving 

species to maintain current buffer zones and to protect key environmental features like 

watersheds (Millar et al., 2007). Conversely, knowledge of species projected to decline could 

lead to more accurate impact assessments at local and regional scales (Lasch, Lindner, 

Erhard, Suckow, & Wenzel, 2002), as well as new zoning regulations that would soften the 

impact of certain land-uses around fragile communities (Solecki & Rosenzweig, 2004; 

Tompkins & Adger, 2004). Since active strategies work to increase the functionality and 

adaptability of ecosystems to climate change, they are often grounded in high-level policy 

aiming to protect and enhance the linkages between natural heritage features and 

communities. Because these linkages usually cross several jurisdictions, it is essential that all 

tiers of government work together when implementing active management strategies if the 

proposed benefits are to be achieved.  
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Given their narrow and specialized focus, the GRW radial-growth forecasts provide a 

starting point for planners and managers in the region if active management strategies are 

ever attempted. The forecasts not only eliminate some uncertainties about climate change 

impacts, but they could also spur on longer-term and more strategic thinking regarding 

climate change adaptation techniques (Wilson, 2006). While active strategies are 

theoretically appealing and offer promise, they require substantial localized research and 

intensive management practices that would prove costly over the long-term. Also, they are 

not guaranteed to be effective given the complexities surrounding climate change, and may 

even result in unforeseen consequences, such as the quicker movement of invasive species 

and disease through artificial corridors (Scott & Lemieux, 2005; P. Williams et al., 2005).    

3.7 The Radial-Growth Forecasting Method: Views and Opinions from 

Practicing Forest Managers 

The GRW radial-growth forecasts were presented to forest managers from the Region 

of Waterloo, City of Kitchener, RARE Charitable Research Reserve, and the Grand River 

Conservation Authority to gain insight regarding the implications of the results. While all 

four managers viewed the radial-growth forecasts as interesting and potentially useful, they 

also recognized that the results failed to incorporate a host of other factors that would alter 

the projected success of the species. For instance, all of the managers believed that 

information concerning seedling dispersal and establishment is critical when predicting the 

future success of individual tree species, as are the potential effects of invasive species, 

competition, and disease. Accordingly, they all felt that the radial-growth forecasts will have 

little effect on policy or strategy within the watershed as an independent piece of research. 
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Interestingly, one manager suggested that even if these radial-growth forecasts were paired 

with research covering subjects like seedling dispersal and establishment, they may still lack 

the capacity to inspire progressive action, as citizens, and subsequently politicians, do not yet 

view urban and rural forests as assets essential to the health of their communities (Schmitt & 

Suffling, 2006), nor do they fully appreciate the potential effects and threats of climate 

change on forested areas. Thus, the lack of necessary ecological information at the regional-

level, in conjunction with the current social and political climate, accounts for the limited 

significance and usage of the GRW radial-growth forecasts at this time.  

While the GRW radial-growth forecasts may not result in direct changes to planning 

or forest management policy now, all the managers agreed that the results could raise 

awareness about the effects of climate change in the GRW, as well as inspire new ideas 

regarding future forest management options in the region. Also, two managers mentioned 

that they would immediately start using white spruce and sugar maple as indicators of 

climate change impacts, as they are forecast to react negatively to warmer and drier 

conditions. Finally, one manager noted that these radial-growth forecasts may soon be 

considered in some tree planting projects, particularly in situations where established trees 

are transplanted to create or maintain buffer zones along roadways or conflicting land uses. 

3.8 Practical Limitations of Radial-Growth Forecasting and Suggestions for 

Future Research 

In addition to the theoretical and technical limitations discussed above, the radial-

growth forecasting method is also restricted practically by the large amounts of time, 

expertise and equipment required to carry out the research. Mature trees first have to be 
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located and sampled, then regional chronologies constructed and standardized. Next, growth-

climate relationships must be established, and modeled climate data obtained to forecast 

radial-growth patterns. All this can take up to one year, making it a large and potentially 

costly undertaking. Despite these limitations, however, the GRW radial-growth forecasts 

effectively identified species-specific growth-climate relationships, and used standard 

modeled climate outputs to predict radial-growth rates.  

Three general recommendations for future research are evident after considering this 

study. First, researchers should explore if it is possible to extrapolate the results of the GRW 

radial-growth forecasts to other species in the watershed. For instance, would it be reasonable 

to assume that red pine will thrive since it is commonly found with and closely related to 

white pine? Perhaps ordination studies (Bray & Curtis, 1957; Hill, 1979; ter Braak & 

Prentice, 1988), genetic testing or species range maps could provide starting points to address 

this question. Second, the results of the GRW radial-growth forecasts could be paired with 

research examining the potential long-term impacts of other factors likely to influence the 

future success of the four study species, such as dispersal and establishment mechanisms, and 

the effects of insects, pathogens and competition. This would lead to more accurate growth 

projections for each of the species, and possibly result in useful guidelines for managers and 

planners working within the watershed. Finally, comparisons should be drawn between the 

regional chronologies constructed for the radial-growth forecasting study and those from 

mature street trees throughout the region. If a correlation exists between the two sets of 

chronologies, then one might assume that the GRW radial-growth forecasts are also 

applicable to street trees. Consequently, progressive street tree management practices and 
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policy could be formulated to benefit urban areas by maintaining or enhancing the positive 

micro-climatic effects that street trees offer (Wilby & Perry, 2006). Street tree forecasts 

could also lead to new urban design guidelines that would ensure long-lasting, resilient and 

cost-effective planting projects. 
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Chapter 4: General Conclusions 

Anthropogenic induced climate change and modern-day land-use patterns could 

threaten the survival of many tree species throughout the 21
st
-century. To mitigate the effects 

of rising temperatures and fragmented landscapes on forested areas, numerous researchers, 

managers, activists and politicians have started recommending adaptation strategies. Since 

the effectiveness of these strategies generally relies on the success of individual tree species, 

efforts have been made to predict the future ranges, habitats and growth-rates of many 

species at both coarse and fine scales. While broad models offer useful insight regarding the 

potential impacts and magnitudes of future range shifts, they are often too coarse to be of use 

for forest managers and environmental planners. As a result, recent literature has favored 

finer-scale forestry research, particularly when climate change effects are being considered. 

One method by which researchers have carried out more localized forestry research is 

through radial-growth forecasting. 

In this instance, radial-growth forecasts were constructed for four tree species 

common to the Grand River Watershed of Ontario, Canada. Species-specific regional 

chronologies were first constructed and standardized. Historical growth-climate relationships 

were then established between the standardized regional chronologies and past climate data 

from the Guelph OAC weather station. These historical growth-climate relationships were 

then extended to 2100 using modeled climate data from the Third Generation Coupled 

Global Model to forecast radial-growth rates. Results indicated that eastern hemlock radial-

growth will remain stable throughout the next century, sugar maple and white spruce growth 

will start to decline, and white pine growth will increase. While the magnitudes of the radial-
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growth forecasts were amplified by the presence of the previous growth variable, the results 

were founded on growth-climate relationships that were statically significant and strongly 

supported in the literature.  

Examples of how the radial-growth forecasts could influence planning policy and 

forest management strategy in the GRW were provided to illustrate the possible linkages 

between the results and policy formulation. This was important, as connections between 

technical studies and policy development are often tenuous (Dessler & Parson, 2006). To 

gage the practical implications, perceptions and limitations of the radial-growth forecasts on 

planning and management in the Grand River Watershed, the results were presented to four 

forest managers working in the area. All the managers found the radial-growth forecasts 

interesting, as they provided new information regarding climate change impacts. As an 

independent piece of research, however, the managers agreed that the radial-growth forecasts 

would not likely impact policy or strategy in the watershed, as the results could not account 

for a host of other factors that would certainly impact the future success of the study species. 

As a result, it was recommended that future research should work to extrapolate the results of 

the radial-growth forecasts to more tree species and types throughout the GRW, as well as 

begin to incorporate other climatic and non-climatic factors into the models, so that more 

accurate and useful growth projections can be constructed in the watershed.    
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Appendix A 

Cross-Dated Eastern Hemlock Individual Site Chronologies (Accessible 

through the International Tree-Ring Databank as of Jan. 1, 2010) 

Homer Watson (08PL800‟s) 

 

Luther Marsh (08IL800‟s) 
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Oakland Swamp (08NL800‟s) 

 

Cross-Dated Sugar Maple Individual Site Chronologies 

Guelph Lake (08KLE00‟s) 
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Indian Woods (08OLE00‟s) 

 

Homer Watson (08PLE00‟s) 

 

 

 

 



 

 63 

Cross-Dated White Spruce Individual Site Chronology 

Eramosa River 

 

Cross-Dated White Pine Individual Site Chronologies 

Private White (08LL400‟s) 
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Griffen West (08ML400‟s) 
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Indian Woods (08OL400‟s) 

 

Homer Watson (08PL400‟s) 
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Appendix B 

Standardized Eastern Hemlock Individual Site Chronologies 

Luther Marsh (08IL800‟s) 
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Oakland Swamp (08NL800‟s) 

 

Standardized Sugar Maple Individual Site Chronologies 
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Indian Woods (08OLE00‟s) 

 

Homer Watson (08PLE00‟s) 
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Standardized White Spruce Individual Site Chronology 

Eramosa River (08JL200‟s) 

 

Standardized White Pine Individual Site Chronologies 

Private White (08LL400‟s) 
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Griffen West (08ML400‟s) 

 

Indian Woods (08OL400‟s) 

 

 

 

 

 

 

0

0.5

1

1.5

2

1860 1880 1900 1920 1940 1960 1980 2000

A
R

ST
A

N
 In

d
e

x

Years

0

0.5

1

1.5

2

2.5

1850 1870 1890 1910 1930 1950 1970 1990

A
R

ST
A

N
 In

d
ex

Years



 

 71 

Homer Watson (08PL400‟s) 
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Appendix C 

Calibration / Verification Visual Tests 

Eastern Hemlock 
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Sugar Maple 
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White Spruce 
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White Pine 
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