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ABSTRACT 

 In comparison with other metals such as Cd, Cu, Pb, Ni, and Zn, little is known about uranium 

(U) toxicity to Hyalella azteca. There is even no national U water or sediment quality guideline yet for 

the protection of aquatic life in Canada, despite Canada being home to some of the biggest U producers 

in the world. In this context, the aim of this research was to determine the toxic effects of U 

concentrations in the water and sediment to H. azteca, and if these relationships can be modelled. This 

thesis demonstrated that U bioaccumulation was mainly via the water phase rather than the sediment 

phase. It showed that U bioaccumulation measurements in H. azteca were more reliable indicators of U 

toxicity than U concentrations in the water or sediment. A water-bioaccumulation saturation model was 

satisfactory at describing this relationship. Overlying water chemistry was found not only to influence 

U bioaccumulation and toxicity in the H. azteca but also the desorption of U in the sediment into the 

overlying water. A water-sediment partitioning saturation model was also satisfactory at explaining 

these interactions.  

   Both body size and gut-content had an overall effect on U bioaccumulation in H. azteca 

exposed to water-only U concentrations in soft water. A saturation model was used not only to estimate 

the effect of gut-content on U bioaccumulation, but to predict the uptake and elimination rate constants 

for H. azteca exposed to water-only U concentrations. 

 A field study was conducted to determine if the saturation models developed and applied in the 

laboratory could be used in the field to quantify U bioavailability, bioaccumulation and toxicity to H. 

azteca. Unfortunately, U concentrations in the water and sediment were below concentrations needed to 

validate these models. However, toxicity, not related to U concentrations in the field, was observed at 

some field sites. 

 Overall this thesis not only encourages more work on U toxicity to H. azteca, but provides 

significant data and models to be used by risk assessors and regulators in the development of U water 

and sediment quality guidelines in the protection of aquatic environments in Canada. 
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

1.1 Uranium in the Aquatic Environment 

 Uranium (U) is a non-essential metal naturally found in the environment, with two modes of 

toxicity: radiological and chemical (EC/HC, 2004; Sheppard et al., 2005). Chemical toxicity is 

considered to be more important than radiological toxicity due to the low specific activity for 238U 

(1.24×104 Bq/g), the most abundant (99.3%) radioactive isotope in the environment (EC/HC, 2004; 

Sheppard et al., 2005). 

  Due to its significant value as a nuclear energy resource, U can enter the aquatic environment 

through anthropogenic activities such as the mining, milling and refining of U (EC/HC, 2004). 

Waterborne U concentrations in surrounding lakes near U operating facilities such as Rabbit Lake, 

McArthur River, Key Lake, Cluff Lake, and McClean Lake in Northern Saskatchewan, Canada, have 

been reported to range between 0.004 to 4 μmol U/L (EC/HC, 2004). Uranium concentrations in water 

near decommissioned mining sites at Elliot Lake and Bancroft, Ontario typically range from 0.004 to 

0.2 μmol U/L (Clulow et al., 1998, OMOE, 2003). 

 Uranium concentrations in the sediment are usually in the range of 0.002 to 0.02 μmol U/g 

(Markich, 2002). The highest concentration reported in sediments impacted by U mining and milling in 

Canada was 80 μmol U/g dry weight (Hart et al., 1986; Cooley and Klaverkamp, 2000). Concentrations 

in sediments concentration near active U mines in Saskatchewan range from 0.02-20 μmol U/g dry 

weight, while 0.01 to 2 μmol U/g dry weight have been measured in sediments near former U mines in 

Ontario (OMOE, 2003; EC/HC, 2004). Uranium concentrations in the sediment vary depending on the 

particle size and mineral composition of the sediment, and the chemistry such as the pH, hardness and 

dissolved organic matter of the overlying water (Markich et al., 2002). Loss of U from water to 

sediment is affected by sediment type and is in the order of: organic sediment >clay> sand (Bird and 

Evenden, 1994).  

1.2 Routes of Exposure and metal uptake 

  Aquatic organisms can be exposed to U through the water, sediment and/or diet. Depending on 

the route of exposure and the environmental conditions (temperature, pH, water and sediment 

chemistry, metal speciation, and metal distribution) there are two important pathways in which metals 

may enter and accumulate in an aquatic invertebrate such as freshwater amphipod, Hyalella azteca: the 

gills, via direct contact with the aqueous phase, and/or the gastrointestinal tract, via the ingestion of 

metal contaminated food or suspended sediment particles (Langston and Spence, 1995; Marsden and 
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Rainbow, 2004). The absorption of metals onto the exoskeleton of invertebrates may also contribute to 

metal uptake and accumulation. However, this type of metal uptake is considered not biologically 

available to play a physiological role within the animal (Rainbow and Dallinger, 1993; Rainbow, 2007).  

 Metal uptake at the gills occurs by the passive transport of dissolved metals from the aqueous 

phase into the haemolymph via intracellular high affinity protein carriers in the gills (Simkiss and 

Taylor, 1995). This metal uptake pathway at the gills includes most metals with the exception of the 

major ions (Na, K, Ca, and Mg) that rely on active pumps and metals bound as lipophilic 

organometallic compounds (e.g., Hg) that diffuse through a lipid membrane to gain entry into the 

animal (Rainbow and Dallinger, 1993; Simkiss and Taylor, 1995; Mardsen and Rainbow, 2004).  

Depending on the metal, once these dissolved metals are transported across the cell membrane, they 

may be further transferred to binding sites of higher metal-binding strengths in the gill (Langston and 

Spence, 1995). These metal-ligand complexes may be sequestered or excreted in the gills and/or further 

transported into the haemolymph, where the metals may be distributed to other tissues in the animal 

(Rainbow and Dallinger, 1993; Rainbow, 2007).   

 Freshwater invertebrates may also accumulate metal via ingestion of food and/or ingested 

sediment particles (Rand et al., 1995), however the mechanisms of this type of uptake route in 

invertebrates is less well known compared to metal uptake at the gills.  Uptake at the gastrointestinal 

tract is thought to occur by dissolution of the particulate form of the metal from the foodstuff, followed 

by the absorption by the hepatopancreas and/or mid-gut of the gastrointestinal tract into the 

haemolymph and further transported to other tissues in the animal (Vonk, 1960).  Metals in the aqueous 

phase are considered to be more bioavailable than metals associated with the solid phase, however 

higher metal concentrations in food and suspended sediment particles, does make the solid phase an 

important source of metal uptake by aquatic organisms (Langston and Spence, 1995). The 

bioavailability of the metal uptake from the diet will depend on the chemical form of the solid, the 

binding affinity of the metal to the solid, the presence of organic and inorganic particles in the solid, the 

particle size of the ingested solid, the feeding habits and the digestive process of the animal (Langston 

and Spence, 1995; Marsden and Rainbow, 2004).  

1.3 Metal Regulation and excretion 

 After the metal is taken up, it may be transported, distributed, and/or sequestered within the 

animal and this may lead to elimination from the animal (Rainbow and Dallinger, 1993). The 

differences between metal uptake and excretion will determine metal bioaccumulation in the animal.  

To avoid potentially toxic effects of an influx of excess metal, the animal may be able to excrete the 

metal or store the metal in a soluble or insoluble form that is not bioavailable to cause adverse effects to 
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the animal (Langston and Spence, 1995; Marsden and Rainbow, 2004). For example, the freshwater 

amphipod H. azteca can regulate Cu (Borgmann et al., 1993; Borgmann and Norwood, 1995) while the 

marine amphipod, Allorchestes compressa is able to regulate Cu and Zn, with some evidence of Cr 

regulation over a range of 0 to 100 μg Cr/L in the water (Ahsanullah and Williams, 1991).  In some 

species there is a production of metal-binding ligands, such as metallothioneins, that bind the 

bioavailable metal into a non-toxic form (Langston and Spence, 1995). Chassard-Bouchaud (1982; 

1983) found that U was in the form of an insoluble phosphate in the lysosomal system of the freshwater 

crayfish Pontastacus leptodactylus, and associated with calcium phosphate microgranules 

(spherocrystals) in the gill cuticle and hindgut epithelia of a marine crab, Carcinus maenas, when 

exposed to aqueous-phase U. These microgranules, which can eventually be eliminated from the 

animal, may act as temporary storage sites for U in the tissue and prevent adverse effects in the animal 

by binding the metal in a biologically unavailable form. 

 Knowledge of the uptake route, kinetics rate constants, bioaccumulation pattern, and 

relationship to the exposure concentration by the invertebrate of interest is required if these animals are 

to be used as biomonitors of metal bioavailability and toxicity in the environment. In other words, the 

bioaccumulated metal needs to increase with the exposure concentration, such that the metal cannot be 

fully regulated. When these assumptions are met, metal burdens in the H. azteca have been shown to be 

reliable indicators of metal bioavailability and toxicity (Borgmann and Norwood, 1997; Norwood et al., 

2006).  These bioaccumulation measurements of metals have also been shown to be better predictors of 

biological effects than concentrations in both the water and sediment, because the physicochemical 

factors (e.g. temperature, pH, metal speciation, and metal distribution) affecting metal bioavailability 

and toxicity in the environment are accounted for within the organism (Borgmann et al., 1991; 

Borgmann and Norwood, 1997; Borgmann, 2000).    

1.4 Modifying factors affecting bioaccumulation 

 If not accounted for  or controlled, factors such as growth and body size can contribute to 

variability in total metal bioaccumulation estimates due to their influence on the uptake kinetics, 

bioaccumulation and elimination of metals in the animal (Langston and Spence, 1995; Rand et al., 

1995). If metal uptake is slow, growth can have an effect on body burden concentrations because a 

slow-growing animal may accumulate a higher concentration of a metal when compared to a faster 

growing animal, due to the dilution of the metal in the faster growing animal.. Body size can have a 

modifying effect due to the larger surface area to volume ratio and faster metabolic rate of smaller 

animals (Rainbow and Moore, 1986; Langston and Spence, 1995).  What may be thought of as a 

sensitivity difference between organisms may actually be a body size effect on the kinetic rate constants 
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due to the differences in surface area to volume ratios between organisms of different sizes (Rand et al., 

1995).  For instance, Markich (2003) found that the mean variability in valve movement responses in 

the freshwater (unionoid) bivalve Velesunio angasi exposed to waterborne U concentrations was 

reduced by 81% when corrected for body size, age and gender.   

 Gut-content can also contribute to total metal accumulation in the animal, even if there is not an 

effect on toxicity (Neumann et al., 1999). A high metal content in the gut can lead to a significant 

overestimation of bioaccumulation and metal bioavailability in the environment, which in turn can 

overestimate lethal body burden thresholds (e.g., lethal body burden causing 50% mortality, LBC50).  

For instance, Neumann et al. (1999) found that without gut-clearance real body concentrations of Pb 

and Zn were overestimated by 438 and 44%, respectively, in H. azteca exposed to Pb- or Zn-spiked 

sediments. This suggests that animals should be depurated prior to metal burden analysis, especially in 

sediment toxicity tests, so that the overestimation in total body bioaccumulation is avoided. Overall, 

when reporting bioaccumulation measurements and interpreting toxicity one must be sure to account 

and/or correct for the influence of modifying factors such as growth, body-size and gut-content which 

can contribute to variability in bioaccumulation measurements and toxicity estimates (Langston and 

Spence, 1995). Alternatively one could standardize test procedures, such as using same size animals 

and ensuring that animals were gut cleared, so that body size, growth and gut content do not influence 

the overall bioaccumulation measurements and toxicity estimates. 

 Water chemistry and the surface permeability of the animal can also influence metal 

bioaccumulation. Depending on their concentration, cation such as Ca2+, Mg2+, Na+, and H+ can 

compete with other metals such as Cd2+ and Pb2+ in the water for metal binding and uptake at a 

biological membrane (i.e., the gills), and/or with the ions in the animal (Borgmann, 2000; Pagenkopf, 

1983). Anions such as OH-, HCO-
3, CO3

2-
 , Cl-, S2O3

2- ,S2-,, and dissolved organic carbon in the water 

can also complex these metals and thus prevent uptake by the organism (Wood, 2008).  For example, 

water pH can influence metal speciation and bioavailability in the water, and thereby metal 

bioaccumulation, by affecting the permeability and sensitive of the cell surface in the animal (Campbell 

and Stokes, 1985). At low pH, the hydrogen ion can compete for metal binding on a biological surface 

such as the fish gill, thus decreasing metal uptake (and toxicity) for the metals such as Cd and Zn, but 

not for the metal Pb (Pagenkopf, 1983; Bradley and Sprague, 1985a, b; Campbell and Stokes, 1985;  

Cusimano et al., 1986; Spry and Weiner, 1991).  In the case of Pb, it appears that the effect of the 

hydrogen ion has more to do with its effect on metal speciation rather than with hydrogen ion 

competition at the biological surface (Campbell and Stokes, 1985; Spry and Wiener, 1991). 

 Low concentrations of Cd, Zn and Pb in the water have been associated with blocking Ca 

uptake in fish (Verbost et al., 1987, 1989; Hogstrand et al., 1995, 1996, Alsop and Wood, 1999; Rogers 
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et al., 2003; Rogers and Wood, 2004), with higher concentrations of Ca in the water or food decreasing 

Cd and Pb uptake and accumulation (Varanasi and Gmur, 1978; Part et al., 1985; Franklin et al., 2005; 

Alves and Wood, 2006). This is because Cd (Verbost, 1987; Verbost, 1989), Pb (Varanasi and Gmur, 

1978; Rogers et al., 2003; Rogers and Wood, 2004) and Zn (Spry et al., 1989; Hogstrand et al., 1995, 

1996), are considered to be Ca-mimics or antagonists (Varanasi and Gmur, 1978; Verbost, 1987; 

Verbost, 1989; Spry and Weiner, 1991; Rogers et al., 2003; Rogers and Wood, 2004; Franklin et al., 

2005) that compete at and/or are transported across the cell membrane using the same or similar 

channels to that of Ca. Similarly, Wright (1980) found that Cd uptake by freshwater amphipod, 

Gammarus pulex probably followed a similar uptake pathway to that of Ca, given that Cd uptake was 

significantly inhibited for animals exposed to dinitrophenol, a drug that inhibits active processes, and 

the negative relationship between the Cd uptake rate and Ca concentration in the animals.  

 The diet of animals can also influence metal uptake. For instance, if the animal is getting the 

proper metal ions such as Ca or Mg from the diet, the animal may be able to down-regulate transport 

channels at the gill surface, especially at contaminated waterborne sites, thus decreasing metal uptake 

of these ions and in turn of other toxic metals such as Cd and Pb into the animal.  For instance, Varansai 

and Gmur (1978) found that coho salmon had reduced waterborne Pb concentrations in the gills when 

fed a Ca diet, while Alves and Wood (2006) suggested that an increase in dietary Ca may not only 

reduce Pb uptake at the rainbow trout intestine, but may down-regulate Ca and Pb uptake at the gills in 

order to maintain Ca ion-regulation in the fish. 

 Anionic ligands such as dissolved organic carbon have been shown to complex metals in the 

water and render them unavailable for uptake by the animal and in turn, reduce toxicity (e.g. Wang 

1987; Spry and Weinger, 1991; Playle 1993 a,b; Paquin et al., 2002; Heijerick al., 2003; Clifford and 

McGeer, 2009). However, the presence of organic complexing agents in the water may facilitate metal 

uptake, such that lipophilic complexing agents that bind toxic metals (i.e., organometallic compounds) 

in the water may in turn be able to directly diffuse through the lipid membranes of the organism, 

accumulate and cause toxicity (Borgmann, 2000).  

1.5 Uranium speciation and toxicity  

The chemical speciation of U and uptake by organisms has been shown to be affected by the 

factors of the environment such as alkalinity, hardness, pH, and natural organic matter (Markich et al; 

2000; Sheppard et al., 2005).  Although U may occur in several oxidation states, the hexavalent (U6+, 

UO2 
2+; uranyl ion) ions are the major and most stable form in oxidized waters because they readily 

form complexes with hydroxide, carbonate, phosphate or sulfate ions (Langmuir, 1978; Gascoyne, 

1992; Markich, 2002; Sheppard et al., 2005). In anoxic waters and sediments, the tetravalent U (U4+) is 
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the major form (Markich, 2002). In the tetravalent form, U has a tendency to precipitate and remain 

immobile (Gascoyne, 1992). The uranyl and UO2OH+ ions have been suggested as the ions responsible 

for much of the toxicity of U (Markich, 2002).  Markich et al. (2000) showed that the effect of U on the 

valve movements of the mussel Velesunio angasi was related to the activity of uranyl ion in solution. 

This relationship, however, was better explained using both UO22+ and UO2OH+ ions than with the 

UO2
2+ ion alone, with the formation of UO2OH+ ion being dependent on water alkalinity and the 

formation of uranyl ion being dependent on water hardness. In other words, an increase in alkalinity in 

the water will result in the formation of U ternary carbonate complexes which in turn decreases the  

UO2OH+ ion in solution, while an increase in Ca concentrations in the water, results in the formation of 

ternary U complexes with Ca that reduces the presence of UO2
2+  ion in solution.. 

Many studies (e.g. Tarzwell and Henderson, 1960; Parkhurst, 1984; Riethmuller et al., 2001; 

Charles et al., 2002; Borgmann et al., 2005) have shown that U toxicity decreases with increasing water 

hardness. In H. azteca exposed to U in one-week water-only experiments, U was found to be more toxic 

in soft water (hardness 18 mg CaCO3/L; alkalinity 14 mg CaCO3/L, pH 7.8) than hard water (water 

hardness 124 mg CaCO3/L, alkalinity 84 mg CaCO3/L, pH 8.3; Borgmann et al., 2005). The 7d- LC50 

(lethal water concentration resulting in 50% mortality)  was 0.02 mg U/L (measured) and 1.65 mg U/L 

(nominal) for the soft water and hard water, respectively (Borgmann et al., 2005). Tarzwell and 

Henderson (1960) reported a 96h-LC50 value of 3.1 mg U/L for fathead minnow (Pimephales 

promelas) exposed to uranyl nitrate at water hardness of 20 mg CaCO3/L, total alkalinity of 20 mg 

CaCO3/L, and pH 7.4. No toxicity was observed at a hardness of 400 mg CaCO3/L /L, total alkalinity of 

360 mg CaCO3/L  and pH 8.2. Poston et al. (1984) found that acute U toxicity to Daphnia magna 

decreased by a factor of 7.5 when water hardness and alkalinity were increased by approximately 1.5. 

They suggested that this decrease in U toxicity was due to the complexation of the uranyl ions with the 

carbonate ions. Charles et al. (2002) found a 5-fold decrease in U toxicity to Chlorella sp. when water 

hardness was increased 50-fold (8 to 400 mg CaCO3/L), at a constant pH (7.0) and alkalinity (8 mg 

CaCO3/L). It was suggested that the reduction in U toxicity was due to the competition between U and 

Ca for binding sites on the algal cell surface given that there was no significant difference in the 

speciation calculations of U with increasing water hardness.  

Although the above studies have shown that U is more toxic in soft water than hard water, 

some of them have, however, failed to separate the effect of water hardness from that of alkalinity and 

pH (e.g. Tarzwell and Henderson, 1960; Parkhurst et al., 1984). For example, Parkhurst et al. (1984) 

reported a 96h LC50 for juvenile brook trout, Salvelinus fontinalis, to be 5.5 and 23 mg/L in soft (32 

mg/L as CaCO3; alkalinity 12 mg/L as CaCO3, pH 6.7) and hard (210 mg/L CaCO3; alkalinity 54 mg/L 

as CaCO3, pH 7.5) water, respectively.  Thus, future studies are needed to elucidate the difference 
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between alkalinity, pH and hardness so that the interpretations of U toxicity to an organism of interest 

are correct. 

1.6 Environment Quality Guidelines 

Currently there are no national environmental quality and management guidelines for the 

protection of aquatic life for U in Canada. This is unfortunate given that Canada is home to some of the 

richest U deposits in the world. The only national guideline for U is the Canadian drinking water 

quality guideline. The maximum acceptable concentration of U in the drinking water is set at 0.02 mg 

U/L (84 nmol U/L;HC, 2008). Ontario is the only province in Canada that has an emergency provincial 

interim water quality objective for U which is 0.005 mg/L (21 nmol U/L; OMOE, 1994). Care is 

required when interpreting this objective because it was derived using a limited data set (MOEE, 1994).  

Of the studies available on U toxicity to freshwater organisms, half have used model organisms 

native to the Southern Hemisphere, mainly Australia (e.g. Bywater et al.,1991; Franklin et al., 2000; 

Markich et al., 2000; Charles et al., 2002; Hogan et al., 2005). These studies are not representative of 

species found in the temperate Northern Hemisphere and perhaps inappropriate to be relied upon, 

especially in cases where these species do not have similar uptake and toxicity patterns to native 

species, when setting and developing environment quality guidelines for U in Canada. The bulk of 

studies that use species native to North America (e.g. Tarzwell and Henderson, 1960; Parkhurst et al., 

1984; Cooley and Klaverkamp, 2000; Pyle et al. 2001, 2002) have focused on fish models to evaluate U 

toxicity in freshwater environments.  In order to develop a U water and sediment quality guideline that 

is representative and applicable to the holistic freshwater environment, one needs to evaluate the 

toxicity relationships of U not only in the water, but in U-contaminated sediment exposures to other 

potentially sensitive groups such as invertebrates. 

Only a few studies have investigated U bioavailability and toxicity (LC50) to freshwater 

invertebrates such as Daphnia magna (e.g. Poston et al., 1984; Zeman et al., 2008), and H. azteca 

(Borgmann et al., 2005) via U waterborne exposures. The sublethal effects on survival, development 

time, growth and LC50 for Chironomus ripanius larvae (e.g. Dias et al., 2005, 2005) exposed to 

sediment-bound U have also investigated. In spite of the limited studies available in the literature on U 

toxicity to invertebrates, Sheppard et al. (2005) were able to derive a predicted no effect concentration 

(PNEC) for the chemical toxicity of U in freshwater invertebrates and benthos of 0.005 mg/L in water 

and 100 mg/g dry weight in sediment. These PNEC were derived using the most sensitive and 

ecologically relevant endpoint, such as the concentration where the endpoint was decreased by 25% 

compared to the control (EC25) for the most ecological relevant organism(s).  The reliability of these 

PNEC values is low given the limited number of studies used to derive them. Therefore, more studies 
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on U toxicity to a variety of ecologically relevant organisms and via different exposure routes (i.e. the 

sediment) are required if regulators want to develop and set appropriate water and sediment quality 

guidelines for U in Canada. 

1.7 Project Objectives 

 The Biotic Ligand Model (BLM), which is a chemical–equilibrium based model, has gained 

popularity in North America in predicting metal toxicity (Paquin et al., 2002). The BLM considers how 

different factors in the environment, such as the concentration of the free-metal ions, complexation of 

free-metal ions with abiotic ligands and competition with other cations influence the extent to which a 

free-metal ion binds and accumulates on or in an organism (biotic ligand; Niyogi and Wood, 2004). An 

inherent problem of the BLM model, however, is in the limited types of chemical species and quality of 

the thermodynamic constants available to accurately predict the free ion speciation (Slaveykova and 

Wilkinson, 2005). Alternatively, a bioaccumulation saturation model has been shown to be successful 

at predicting and relating toxicity to the H. azteca exposed to the metals and metalloids, Cu, Cd, As, 

Co, Cr, Mn, Ni, Zn, Tl, Pb in water and sediment  (Borgmann et al., 2004; Norwood et al., 2006). This 

model is analogous to the BLM in which toxicity is assumed to be a function of the amount of metal 

bound to a specific ligand (e.g. fish gill) that has become saturated on the organism (Paquin et al., 2002; 

Borgmann et al., 2004). This model is applicable only when the animal does not regulate or sequester 

the metal and shows a saturation relationship between the exposure and bioaccumulation of the metal 

(Borgmann and Norwood, 1997; Norwood et al., 2006). If properly developed and utilized, the 

bioaccumulation saturation model can be used to predict metal bioavailability and toxicity to 

invertebrates such as H. azteca exposed to U in the water. This model can also help explain the water-

sediment interactions of H. azteca exposed to sediment bound U, if U binding to the sediment saturates. 

Regulators and risk assessors can in turn use these saturation models to develop appropriate U water 

and sediment quality guidelines.  

 The purpose of this thesis is to determine if a water–bioaccumulation saturation model or a 

water-sediment partitioning saturation model could be used to explain and quantify metal 

bioavailability, bioaccumulation and toxicity to a representative freshwater amphipod, H. azteca, 

exposed to U-spiked and contaminated field sediments with different overlying water chemistries. This 

amphipod is found throughout North America, has a short generation time and is easy to culture, 

identify and collect in the field (Borgmann and Munawar, 1989; Borgmann et al., 1989). It is sensitive 

to metals and commonly used in sediment toxicity tests (EC, 1997). The following objectives, grouped 

under the three headings, were set forth: 
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1. Bioaccumulation and toxicity of U in sediments as affected by overlying water chemistry. I 

first determined how water chemistry influences the bioavailability, bioaccumulation and toxicity 

of U to H. azteca exposed to spiked-U sediments by independently varying hardness, alkalinity and 

pH parameters in the overlying water. Second, I determined whether the water or sediment phase is 

the major exposure pathway of U bioaccumulation in H. azteca is a more reliable indicator of 

toxicity than concentrations in the water or sediment. Depending on the exposure pathway, the third 

objective was to determine U bioaccumulation saturates in the animal, and if a saturation model can 

be developed to explain metal bioavailability, bioaccumulation and toxicity to H. azteca. The last 

objective was to apply a water-sediment partitioning saturation model to explain the water-sediment 

interactions of U with different water chemistry (Chapter 2). 

 

2. Uranium kinetics and modifying factors.  I determined if there is the an effect on body size and 

gut-content on the U bioaccumulation and toxicity to H. azteca exposed to water-only U 

concentrations, given that these factors can influence the variability of metal bioaccumulation due 

to the kinetics of uptake and elimination. Another objective was to estimate the uptake and 

elimination rate constants to determine if steady-state is reached within a given exposure period to 

ensure that future designs and interpretation of freshwater U toxicity tests are correct (Chapter 3). 

 

3. Application of laboratory derived models in the field.  Determine if the water-bioaccumulation 

saturation model and water-sediment partitioning saturation model developed in the laboratory can 

be applied in the field to quantify and explain U bioavailability and toxicity under natural 

conditions (Chapter 4). 
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CHAPTER 2 

 

WATER-SEDIMENT INTERACTIONS FOR Hyalella azteca EXPOSED TO 

URANIUM-SPIKED SEDIMENT 
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Abstract 

 Data on the toxicity of uranium in sediments to Hyalella azteca and the effect of overlying 

water chemistry are limited. This study exposed H. azteca to sediments spiked with U (0 to 10 000 μg 

U/g dry weight) and five different overlying waters, which varied independently in hardness and 

alkalinity. Water pH had a major effect on U uptake by H. azteca. Uranium toxicity was higher when 

overlying water pH was low, while desorption of U into the overlying water increased with increasing 

pH. There appears to be little effect of Ca on U uptake, other than its influence on U speciation. 

Experiments with caged animals indicate that U accumulation and toxicity occurs mainly through the 

dissolved phase rather than the solid phase. Uranium bioaccumulation is a more reliable indicator of U 

toxicity than U concentrations in water or sediment. Uranium bioaccumulation in H. azteca and U 

adsorption to sediment can be satisfactory explained using saturation models. 

 

Keywords: Hyalella azteca; Uranium; Bioavailability; Toxicity; Biotic ligand model 

2.0 Introduction 

 Uranium (U) is an interesting metal in that there are two modes of toxic action: chemical and 

radiological. The chemical form is generally of more concern, since the radioactivity of U has a low 

specific activity, 1.24 X 104 Bq/g for U-238, the most common isotope in natural ores (EC/HC, 2004). 

Due to its significant value as a nuclear energy resource, U can enter the aquatic environment through 

anthropogenic activities (EC/HC, 2004). An Environment Canada/ Health Canada (2004) report on 

releases from nuclear facilities concluded that U and U compounds from mines and mills were 

potentially chemically toxic and could cause immediate or long-term effects on the environment. 

Radionuclides, on the other hand were not considered to be toxic at the current concentrations released 

into the environment. However, the report did recommend that the release of any radionuclides from U 

facilities be regularly monitored to determine future risks associated with radiological exposure. 

Despite the concern that the chemical form of U in the environment may be toxic, there are currently no 

U water and sediment quality guidelines in Canada or the United States. This is impeding the 

management of aquatic environments near U mines and tailings.  

 The chemical speciation of U in water is complex and not fully understood. Chemical 

speciation of U is affected by hardness, pH and natural organic matter (Markich, 2002). Although U 

may occur in several oxidation states, the hexavalent uranyl ion (UO2
2+) is the major and most stable 

form in oxidized waters. Chemical speciation models have shown that UO2
2+ and UO2OH+ ions may be 

the major species responsible for U toxicity (Markich et al., 2000) in aquatic organisms. 
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 The toxicity of U in water varies with water chemistry. In Hyalella azteca exposed for 1 week 

in water-only experiments, there was 30-fold higher toxicity of U in soft water than hard water 

(Borgmann et al., 2005). Studies with fathead minnow, Pimephales promelas (Tarzwell and Henderson, 

1960), green hydra, Hydra viridissima  (Riethmuller et al., 2001) and Chlorella sp. (Charles et al., 

2002) have also shown that U toxicity decreases with increasing water hardness.  Currently, there are 

no published studies that address the toxic effects of sediment-bound U to the freshwater invertebrate 

H. azteca; a species commonly used in sediment toxicity tests and representative of invertebrates found 

in Canadian freshwaters (EC, 1997; Borgmann and Norwood, 1997a).   

 The Biotic Ligand Model (BLM), in which it is assumed that free metal causes toxicity when 

the metal binds and accumulates to a certain concentration at the site of action or a surrogate for that 

site on or in an organism, has gained popularity in North America as a tool to predict metal toxicity in 

the aquatic environment (Paquin et al., 2002). The BLM takes into consideration how different factors 

in water, such as complexation of free-metal ions with abiotic ligands and competition with other 

cations, can influence the extent to which a free-metal ion binds to a site of toxic action on an organism 

(Niyogi and Wood, 2004).  

 One way to account for the effects of different confounding factors (e.g., pH and hardness) on 

the speciation, bioavailability and toxicity of metals in water and sediments is to measure metal 

bioaccumulation by an organism. Metal body concentrations in H. azteca, have been shown to be a 

reliable indicator of metal toxicity for non-regulated and non-sequestered metals (Borgmann and 

Norwood, 1997a, 1999a; Norwood et al., 2006).  

 The purpose of this study was to investigate and compare the bioaccumulation, bioavailability, 

and toxicity of U to H. azteca exposed to U-spiked sediments with different overlying waters for 28 

days. The objectives were to determine how overlying water chemistry affects the desorption of U from 

the sediment, if a saturation model like the BLM can be used to describe U bioaccumulation and 

toxicity to H. azteca, if pH and/or hardness are the main factor(s) influencing U speciation and toxicity, 

if the toxicity of U to H. azteca is via the solid phase (sediment) or dissolved phase (water) and if U 

bioaccumulation in H. azteca is a better indicator of U bioavailability and toxicity compared to U 

concentrations in water and sediment. 

 

2.1 Theory 

2.1.0 Metal Bioaccumulation  

 A mechanistic saturation model (Borgmann et al., 2004; Norwood et al., 2006) has been shown 

to be as good as, or better than, allometric equations (McGeer et al., 2003) at describing 

bioaccumulation of Cd, Cu, Hg, Ni, Pb, Ti, and Zn by H. azteca. This model is described by: 
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where CTB is the total body concentration of a metal, max is the maximum (above background 

concentration) accumulation of the metal by the organism, Cw is the concentration of the metal in water, 

K0.5 is the half saturation constant (concentration at which the CTB is halfway between the maximum 

accumulation and background concentrations), and CBKG is the background CTB in animals in the 

absence of any metal added to the water. 

 In the BLM (Di Toro et al., 2001, Paquin et al., 2002) metal binding to the site of toxic action 

can be described by: 
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where LT is the total (bound plus free) ligand ([LT]=[L] +[ML] + [HL]+ [CaL] +…), Km is the binding 

strength of the metal to L, KH and KCa are the binding strengths of competing ions for the same site, and 

H+ and Ca2+ are the concentration of hydrogen and free calcium ion. Other cations, such as potassium 

(K+) or magnesium (Mg+), could also appear in the model, depending on the metal and organism being 

tested, but are omitted here for simplicity. Eq. (2.2) is analogous to Eq. (2.1) (Borgmann et al., 2004). 

For instance, max may be equivalent to the number of binding sites on the biotic ligand, [LT]. 

Alternatively CTB might be a function of the ratio of metal uptake to metal excretion (Borgmann et al., 

2004; Norwood et al., 2006).  In this study, the max term is a function of ML, the rate of transport of 

metal into the organism by ML, and the inverse of the metal excretion rate. 

 The K0.5 value can be expressed as: 

 

 ... +++= + (Ca)  )(H    K 0.5 cba n                                             (2.3) 

 

where a = 1/Km, and b, and c are the products of a and the corresponding binding constants of the 

different cations. In Eq. (2.2) n = 1, however n can also be equal to other integer values if more than 

one hydrogen ion binds to the ligand. The value of n is the slope of the plot of log (K0.5) versus log (H+) 

if the other ions are held constant.  Overall, Eq (2.3) results in a linear relationship between the K0.5 

value and all the major cations in the water, except possibly for H+, on a free ion concentration basis. 
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2.1.1 Sediment  

 The binding of metal in water-sediment can also be explained by Eq. (2.1), but may, as in this 

study, require modification to include additional binding sites: 
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where Csed is the total metal concentration in the sediment, CBKGS is the background concentration of 

Csed in the absence of spiked metal, max’ and max’’ are the maximum (above background 

concentration) in the sediment, Cw is the concentration of the metal in water, K0.5’ and K0.5’’ are half 

saturation constant. The difference between Eqs. (2.1) and Eq. (2.4) is that in Eq. (2.4), Csed is assumed 

to have two binding sites.   

 If the first binding site of the sediment is extremely weak, K’0.5 >>Cw, then Eq. (2.4) can be 

simplified to:  
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where “α” represents max'/K0.5'; the initial slope of the saturation curve (Borgmann et al., 2004).  

 The inverse of α in Eq. (2.5) can also be related to major ion concentrations in a manner similar 

to K0.5 in Eq. (2.3). In this case: 
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where a’ = 1/Km’ and b’, and c’ are the products of a’ and the corresponding binding constants of the 

different cations. 

 For the second binding site, the sediment K0.5’’ is related to the major ion concentration as 

described in Eq. (2.3): 
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2.1.2 Metal Toxicity and Bioaccumulation Relationships 

 Mortality in H. azteca is described using the mortality rate model (Borgmann et al., 2004): 
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where m is the mortality rate if mortality is constant and continuous, N is the number of surviving 

animals, N0 is the initial number of animals,  N’ is the number of surviving control animals, t is time, m’ 

is control mortality and m’’ is the mortality caused by the metal.   

 Mortality can also be described using the saturation models (Borgmann et al., 2004): 
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where the maxw, maxTBX, Kw, KTB, and CTB (background-corrected) are analogous to max, K0.5, CW, and 

CTB in Eq. (2.1). 

 At the LC50 (lethal concentration causing 50% survival) or LBC50 (lethal body concentration 

causing 50% survival), the maxTBX constant in Eqs. (2.9a) and (2.9b) can be replaced with the LC50 or 

LBC50 giving (Borgmann et al., 2004): 
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If mortality reaches a maximum, then the K value represents the concentration at which mortality 

reaches 0.5nw or 0.5nb times max. 

 The effect of water chemistry on acute metal toxicity to invertebrates LC50 and LCB50 

estimates can be predicted using the BLM model approach (De Schamphelaere and Janssen, 2002; 

Borgmann et al., 2004) by re-arranging Eq. (2.1): 
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and replacing CTB with LBC50 and Cw with LC50 to give: 
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If the LBC50, CBKG and max are constant, then the LC50 is proportional to K0.5 and can be described 

using an equation analogous to Eq. (2.3). 

 

2.2 Methods  

2.2.0 Culturing 

 H. azteca were cultured as described by Borgmann et al. (1989) in dechlorinated Burlington tap 

water originating from Lake Ontario. Each culture container was supplied with 1 L of  dechlorinated 

water (in mg/L: dissolved organic carbon = 0.6 ± 0.1; dissolved inorganic carbon = 18.7 ± 0.7; Cl = 

28.2 ± 1.8; SO4 = 42.0 ± 3.0; Ca = 36.5 ± 1.1; Mg = 9.0 ± 0.3; Na = 17.4 ±1.7; K= 1.7 ± 0.1, alkalinity 

(as CaCO3) = 78.0 ± 2.8;  hardness (as CaCO3) = 127.9 ± 3.9, pH 7.9 to 8.2). Culture water was 

renewed weekly, with the young being separated from the adults in order to maintain a continuous 

supply of 0-1- week-old amphipods for the experiments. The culture and experimental animals were 

held in a walk-in incubator at 25 ± 1°C with a 16h light: 8h dark photoperiod. The animals that were 

used in the experiments were acclimated in their respective experimental water media (see below) for 3-

7 days prior to the start of the experiments. Therefore, the initial age of the H. azteca at the start of the 

experiment was 3-14 days for the young and 14-15 weeks for the adults.   

2.2.1 Sediment 

Reference sediments from two Canadian Shield Lakes, Tomiko (TOM10, 46.06º N 79.80º W) 

and Restoule (RES10, 46.53º N 79.83º W), at a depth of 10 m, were used for U spiking. Sediments 

were collected in May of 1996 as described by Borgmann et al. (2001a). Equal volumes of TOM10 and 

RES10 were mixed together to produce a sufficient volume of sediment. Each sediment was composed 

of 56-59% clay, 41-44% silt, 6.7-8.8% organic carbon, 0% sand, and moisture content 83-87%. The 

sediments were not sieved or treated prior to spiking with U. 

 Sediments were spiked as described by Borgmann and Norwood, (1997b, 1999a). In short, a 

stock solution containing U (uranyl nitrate trihydrate, International Bio-Analytical Industries, Inc.) was 

diluted with Milli-Q® water to different nominal concentrations of U. For each nominal concentration, 
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an equal amount of the diluted stock solution (250 mL) and reference sediment (250 mL) were mixed 

together in 500 mL bottles to achieve the nominal concentrations of 0.079-79 μmol U/g dry weight 

(dw). This procedure was repeated twice for each concentration.   

 The 500 mL bottles were attached to a rolling rotor and gently rolled at 4 rpm for a week. The 

bottles were removed from the rotor and stored at 4°C for 1 month to allow the U to bind and partition 

to the sediment. The two bottles with the same nominal concentrations were combined by first 

centrifuging the bottles for 20 min at 3540 rpm and then aspirating off ~250 mL of the overlying water. 

The two bottles of sediment were combined (500 mL of spiked sediment), and placed in a 4°C cold 

room until further use. 

 The concentrations of U in the sediment (Table 2.1) were determined by first drying each 

sediment sample for 1 week in a 60оC oven and digesting the dried sediment with 70% nitric acid (high 

purity acid, omniTrace®, E.M. Science) for 1 week at room temperature followed by 30% hydrogen 

peroxide (A.C.S. reagent, J.T. Baker) for 24 h. Each sample was then made up to a final volume with 

Milli-Q® water and analyzed by the National Laboratory for Environmental Testing (NLET), 

Burlington, Ontario using inductively coupled plasma mass spectrometry (ICP-MS; NLET, 2007).  

2.2.2 Water Chemistry 

 Chronic 4-week (28 day) static, non-renewal experiments were conducted with five different 

overlying water treatments: SAM, moderately hard water with high alkalinity (5-salt Standard Artificial 

Medium: 1 mM CaCl2, 1mM NaHCO3, 0.25 mM MgSO4, 50 μM KCl, 10 μM NaBr); MHSAM, hard 

water with low alkalinity (Modified Hard SAM: SAM with 90% of the NaHCO3 replaced with NaCl); 

50SAM, intermediate hard water with intermediate alkalinity (50% SAM: SAM diluted to 50% with 

Nanopure® water; Barnstead International, Iowa, USA); MSSAM, soft water with high alkalinity 

(Modified Soft SAM: same as SAM but with only 10% as much CaCl2 and MgSO4); and 10SAM, soft 

water with low alkalinity (10% SAM: SAM diluted to 10% with Nanopure® water (10SAM(1)) or 

10SAM(2) with 0.1 mM of NaHCO3 added to the water).  SAM is similar to Lake Ontario water and 

10SAM is similar to waters commonly found in Canadian Shield Lakes. The MHSAM has the same 

hardness and cation content as hard water (SAM) but the same pH and alkalinity as that of soft water 

(10SAM). The MHSAM water is similar to effluent that may flow from tailings that have been limed.  

In initial experiments with 10SAM (1) there was a substantial decline in pH (to pH 5-6) in the 

overlying water after a 2-week equilibrium period. The overlying water in the 10SAM (1) treatment 

was replaced and allowed once again to equilibrate for two weeks. Since water renewal has the 

potential to flush bioavailable metals out of the test chamber (Ankley et al., 1993), a second experiment  

was completed with 10SAM (2). The addition of 0.1 mM NaHCO3 to the original 10SAM (1) 
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maintained a more constant pH, eliminating the need for water renewal.  This allowed this treatment to 

be better compared with the other treatments where water renewal did not take place. 

2.2.3 Experimental Set-up 

Approximately 5 mL of sediment with a depth of 1 cm and a surface diameter of 3 cm was 

added to a polycarbonate Imhoff settling cone (Borgmann and Norwood, 1999b). One litre of overlying 

water was added to achieve a water-to-sediment ratio of 200:1 (Fig. 2.1). The use of settling cones with 

a high water to sediment ratio ensures a better quality of the overlying water (e.g. reduction in pH 

shifts) compared to standard static toxicity tests using beakers (Borgmann and Norwood, 1999b).  The 

test chambers were covered with a plastic translucent lid and placed in a cone rack in a walk-in 

incubator at 25 оC. Each chamber was allowed to equilibrate for 2 weeks prior to the addition of the 

animals. The surface of the sediment was oxygenated by gentle aeration through a glass tube capped 

with a 200 μL polypropylene pipette tip. During the 2-week equilibrium period, the chambers were kept 

in the dark to prevent algal growth. Control treatments were done in triplicate, while the U-spiked 

treatments were done in duplicate. 

After the initial 2-week equilibrium period in the dark, 15 H. azteca (3-14-day-old) were added 

to each chamber and exposed to the U-spiked sediment for 28 days under fluorescent lighting with a 

16h light: 8h dark period. Ground TetraMin® fish flakes (Tetra Holding Inc., USA) were added to each 

test chamber three times per week at the following rates:  week 1 and 2, 2 mg; week 3, 2.5 mg; and 

week 4, 5 mg.  

Studies have shown that equilibration between metals in H. azteca and water is rapid 

(Borgmann and Norwood, 1999a, 1999b), allowing reasonable estimates of bioaccumulation to be 

obtained with 1-week exposures. Thus, for SAM (2) and 10SAM (2) treatments, 15 caged adult (14-15-

week-old) H. azteca were suspended above the sediment mid-way through the 4-week tests (day 14) for 

1-week (Fig. 2.1). Cages were made of 120 mL polypropylene specimen containers with the bottoms 

cut out and replaced with a 200 μm mesh. Each cage also contained a 2.5 x 2.5 cm of cotton gauze as a 

substrate for the animals. The purpose of the caged animals was to determine if U accumulation was 

from the dissolved (water) phase or the solid (sediment) phase, since non-caged animals were in contact 

with the sediment-water interface. These caged animals were fed 5.0 mg of ground TetraMin® fish 

flakes three times per week.  

Two 10 mL overlying water samples were taken on days 0 and 28 from each chamber to 

determine total and dissolved U. Water samples were acidified to 1% with  HNO3 (high purity acid, 

omniTrace®, E.M. Science) and placed in a 4 оC cold-room pending analysis. For the dissolved U water 

samples, water was first passed through a 0.4 μm polycarbonate filter (Nuclepore® (PC) Polycarbonate, 
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Whatman) prior to acidification. Ten milliliters of water samples were collected and used to measure 

pH (ATI ORION, Model 420A), ammonia (Aquarium Test for freshwater, NUTRAFIN®), conductivity 

(VWR Scientific, Model 1054) and dissolved oxygen (Thermo Orion, Model 805APlus) at the 

beginning and end of the experiments.  

On day 28, 125 mL of overlying water were collected and measured for dissolved organic and 

inorganic carbon using a UV-persulfate TOC analyzer (Pheniox 8000TM); 500 mL of water were 

collected and measured for the major ions Ca, Mg, Na, and K using an atom absorption 

spectrophotometer and Cl and SO4 using ion chromatography. These water samples were all analyzed 

by the National Laboratory for Environmental Testing (NLET), Burlington, Ontario, Canada (NLET, 

2007)  

For the treatments involving exposure to caged animals, the cages were removed from the 

incubator on day 21. For all experiments the cones were removed on day 28. In both cases surviving 

amphipods were isolated by sieving and rinsing in clean water. The amphipods were counted and 

placed in a 120 mL plastic specimen container with 50 μM EDTA (Ethylenediaminetetra-acetic acid, 

BDH Chemicals, LTD.) and 5.0 mg TetraMin® food for 24 h to clear their guts. The gut-cleared 

amphipods were weighed as a group to provide a mean mass per container and dried for 48 h at 60°C. 

Groups of six dried amphipods (about 1-3 mg total dry mass) were digested as described in Borgmann 

and Norwood (1997b) and then analyzed for U concentrations. All U chemical analyses were done by 

the National Laboratory for Environmental Testing (NLET) using inductively coupled plasma-mass 

spectrometry (ICP-MS, NLET, 2007).  

2.2.4 Statistical and Data Analysis  

 Statistical and model analyse were conducted using SYSTAT version 10.0 (Chicago, Illinois, 

USA). The survival data were converted to a mortality rate using Eq. (2.8) above. The mortality rates 

were fourth-root transformed, growth data were square-root transformed and all metal concentration 

data were logarithmically transformed to normalize the data and equalize variances before statistical 

analysis. Comparisons between treatments and groups were made by one-way analysis of variance 

(ANOVA) followed by Tukey’s multiple comparison test for differences among treatments and groups 

(P<0.05). The log-log relationships between U in the water, sediment and H. azteca, were obtained 

using the NONLIN (non-linear regression) module. The same module was used for calculating the 95% 

Wald confidence intervals, growth parameters and mortality rates. Curve fitting was performed using 

the combined 28-day data from all seven experiments to provide the best fit estimate of the overall 

relationship.  
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 The LC50s in the water/sediment and the LCB50 in H. azteca were determined using the 

trimmed Spearman-Karber method (Hamilton et al., 1977).  The measured U concentrations in each 

experiment were then divided by the respective LC50s to convert all water concentrations to toxic units 

(TU).  The data for all experiments were then pooled and Eq. (2.10a) above was used to compute the 

LC50, LC25 and LC10 for the pooled data on a toxic unit basis by replacing the Cw term in Eq. (2.10a) 

with the TU data. Converting Cw into TU allowed pooling of the data from all experiments, thereby 

increasing the number of partial-effect points and providing a better estimate for the slope of the 

toxicity curve. The 1/K term was also replaced with KI, so that the inverse of K was estimated rather 

than K. This allows the 1/K estimate to be equal to 0 if K approaches infinity (Borgmann et al., 2004). 

 Growth after 4 weeks exposure was determined on a wet weight basis using the model 

described by Borgmann et al. (1998): 

                                                             na
W'W

)(C1 w+
=                                                         (2.13) 

where W’ is the control or maximum wet weight when Cw=0,  and a and n are constants. The FUNPAR 

module in SYSTAT was then used to compute the 10% (EC10), 25% (EC25) and 50% (EC50) growth 

effect from the estimated a and n values from Eq (2.13) as: 
n
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where EC10, EC25 and EC50 = Cw in Eq. (2.13) with W/W’ = 0.90, 0.75 and 0.5 respectively 

(Borgmann et al., 1998). 

 The EBC10, EBC25 and EBC50 were calculated using Eq. (2.1) with Cw replaced with EC10, 

EC25, and EC50, respectively, i.e. 
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EC50K
EC50max EBC50

0.5 +
=  

 Uranium speciation was determined using stability constants from NIST Standard Reference 

Database 46, the OECD Nuclear Energy Agency (Guillaumont et al. 2003), and Dong and Brooks 

(2006) and compared to MINTEQA2 version 4.03 (U.S. EPA, Athens, Georgia, USA) for verification. 

 

2.3 Results 

2.3.0 Overlying Water Chemistry  

 Dissolved oxygen, ammonia and pH levels were consistent among the various experiments. 

The mean (95% CI) dissolved oxygen was 8.64 (0.58) mg/L for all experiments. Mean ammonia 

readings for all treatments were <0.1 mM, except for SAM (0.10 mM) and MSSAM (0.13 mM). 

Survival in the SAM and MSSAM treatments was, however, between 81 and 88%, suggesting that the 

increased ammonia levels did not contribute to toxicity. The LC50 of ammonia in tap water (similar to 

SAM) is 0.95 mM (Borgmann, 1994).  Conductivity was consistent within overlying water treatments, 

but ranged from 482 (SAM) to 62 μS/cm (10SAM) among treatments. 

 Dissolved (0.4 μm filtered) U in the overlying water increased significantly (p<0.05) with 

increasing U concentrations in the sediment (Table 2.1). The release of U from the sediment into the 

overlying water increased with increasing pH. At pH around 8, there was a higher total dissolved U 

concentration in the overlying water compared to pH around 7 at the same sediment concentrations 

(Table 2.1). 

2.3.1 Speciation Model 

 Uranium speciation estimates for the various treatments (Table 2.2), based on the model 

reported here, showed that at low pH  0.1-0.4% of U was in the free form, 53-61% was in the neutral 

carbonate complex, a lesser amount was present as dicarbonate, and 7-15% was in the form of one of 

two hydroxides. In addition, when there was a higher concentration of Ca (40 mg/L) in the water at a 

higher pH (7.97-8.00), approximately 62% was predicted in the Ca2UO2CO3 form, while 68% was 

predicted as CaUO2(CO3)3 at pH  7.23 and  low Ca concentrations.  
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2.3.2 Bioaccumulation and Sediment Saturation Models 

2.3.2.0 Bioaccumulation   

 A background term (CBKG) was used in all saturation models (Table 2.3; Fig(s). 2.2 and 2.3) in 

order to fit the bioaccumulation data. These background terms were calculated from the geometric 

mean of the control samples in the absence of U exposure. 

 The bioaccumulation of U from water followed a dose-response relationship described by Eq. 

(2.1). The max and K0.5 estimates and corresponding confidence limits (Table 2.3) for the different 

treatments were obtained using the NONLIN regression module in SYSTAT. The R2 for all the 

treatments ranged from 0.86 to 0.98 (Table 2.3; Fig. 2.2). The max values among the different 

overlying water treatments were similar (Table 2.3). The half saturation (K0.5) values, on the other hand, 

varied between the treatments, with the K0.5 values being lower for treatments with a low pH and higher 

for treatments with a high pH. The same was true for the max/K0.5 values, which represent the initial 

slope of the bioaccumulation curve. This agrees with the BLM where the K0.5 value is dependent on the 

water chemistry, while the max term is independent of water chemistry.  

 These findings suggest that a U BLM model for H. azteca is feasible. Given that the max values 

among the different treatments were similar (Table 2.3), the geometric mean for max was calculated (73 

nmol/g dw) and fixed in Eq. (2.1). The model was then re-run to estimate a second set of K0.5 values 

(Table 2.3). The second set of estimated K0.5 was used to calculate a, b, and c constants and n in Eq. 

(2.3).  

 The best fit in Eq. (2.3) was obtained when n was set equal to 4(Fig. 2.4). The a, b and the 

corresponding 95% confidence intervals were 4.2E-2 (1.6E-3-1.1) pmol/L and 2.17E+6 (4.5E+5-

1.1E+7), respectively. The R2 was equal to 0.91 (Fig. 2.4).  For the K0.5-free ion based on measured 

dissolved U and modelled percent free uranyl ion, a positive value for c could not be obtained. This 

suggests that there was no Ca effect on U uptake, other than its influence on U speciation. 

2.3.2.1 Caged H. azteca 

 When U body concentrations were regressed against U water concentration for animals 

exposed to the water-only phase compared to animals exposed to both the dissolved and solid phase, the 

points overlapped (Fig. 2.3) in both the SAM (2) and 10SAM (2) treatments. This suggests that U is 

mainly accumulated via the water rather than the solid-phase sediment. When estimating the max and 

K0.5 values using Eq. (2.1) for the caged adult animals (Table 2.3), the max and K0.5 trends were similar 

to those animals exposed to the solid phase.  
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2.3.2.2 Sediment 

 The binding of metal to sediment can also be explained by a saturation model, but with 

inclusion of a second weak-binding site, Eq. (2.5). The max'', K0.5'' and max''/ K0.5'' estimates are given 

in Table 2.4. The R2 for the individual treatments ranged from 0.93 to 0.99. The K0.'' values for the 

sediment to water interaction were lower for treatments of low pH relative to those with a high pH. The 

max'' was also similar among the treatments, with a geometric mean of 7500 nmol/g dw. The α value, 

which represents the weak binding site on the sediment, was higher for the treatments with the lower 

pH than those with a higher pH. This matches the trend for max'/K0.5'. 

   As was similarly done for the H. azteca bioaccumulation model, Eq. (2.1), the geometric mean 

of max for sediment (7500 nmol/g dw) was fixed in Eq. (2.5) and the model was re-run to estimate a 

second set of α and K0.5'' values (Table 2.4). The second set of estimated α and K0.5'' values were used to 

calculate the a' and b' constants in Eq. (2.6) for α, as well as the a'' and b'' constants in Eq. (2.7) for 

K0.5''.  The best fit for α in Eq. (2.6) was achieved when n = 4 and a' and b'1 were equal to 0 and 170 

(55-530), respectively. The R2 was equal to 0.95.  

 The best fit in Eq. (2.7) for the sediment K0.5
'' was obtained when n was also equal to 4. The a'', 

b'' and the corresponding 95% confidence intervals for Eq. (2.7) were estimated to be 0 and 2.02E+5 

(6.71E+4-6.08E+5), respectively. The R2 was 0.96.   

 The ratio max''/K0.5'' divided by α was also computed (Table 2.4). This ratio was similar among 

the treatments, suggesting that both the first weak binding site and the second binding site on the 

sediment are affected similarly by water chemistry (Table 2.4).  This is not surprising since no value for 

a', a'', c' or c'' greater than 0 could be estimated, and since the best fit for n was equal to 4 in both Eqs. 

(2.6) and (2.7).  Both K0.5'' and 1/α are, therefore, proportional to hydrogen ion to the fourth power. 

2.3.2.3 Uranium Toxicity 

 The LC50 based on measured U in water, and corresponding confidence limits, were strongly 

dependent on overlying water chemistry (Table 2.5). The order of U toxicity was soft water, low 

alkalinity (10SAM)> hard water, low alkalinity (MHSAM)> soft water, high alkalinity (MSSAM)> 

intermediate hard water, intermediate alkalinity (50SAM)> hard water, high alkalinity (SAM). On 

average, U toxicity was higher when the overlying water pH was low. A higher concentration of Ca in 

the water did not have a major effect on U toxicity at circumneutral pH (Table 2.5). 

                                                 
1 In the published article the b’ estimate was reported incorrectly. It should have been 170 and not 2.17E+6. All 
the appropriate changes were made throughout. 
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  The LBC50 vaules for H. azteca were more consistent than LC50s between the different 

overlying waters and sediments (Table 2.5). This suggests that U bioaccumulation may be a better 

indicator of U bioavailability and toxicity than total U concentrations in the overlying water or the 

sediment.   

 When the dissolved U LC50s were compared on a free uranyl ion basis, there were more free 

ions in overlying waters of low pH compared to those of high pH (Table 2.5). In addition, a higher 

concentration of Ca in the overlying water (MHSAM) appeared to have only a minor effect in reducing 

the free uranyl ion concentration in the water. It appears that speciation of U in the water is affected 

primarily by pH, which in turns modulates U toxicity to H. azteca. 

 The LC50, LC25 and LC10 values obtained by fitting Eq. (2.10a) to the pooled data for U in 

water, respectively, on a toxic unit basis were 1.02, 0.74 and 0.56.  This gave an LC25/LC50 and 

LC10/LC50 ratio of 0.73 and 0.55 for U in water. Applying Eqs. (2.1) and (2.5) gave an average 

L(B)C25/L(B)C50 and L(B)C10/L(B)C50 ratio of 0.87 and 0.76 for U in H. azteca and 0.79  and 0.65 

for U in sediment, respectively. 

 Since U toxicity to H. azteca is relatively constant on a body concentration basis, and since 

bioaccumulation follows a saturation model, this saturation model can be applied to estimate the effect 

of the hydrogen ion (water chemistry) on U toxicity, i.e. the free ion LC50. Combining Eqs. (2.3) and 

(2.12) results in the relationship: 
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                                            (2.14) 

 

 The exponent is expected to equal 4 because toxicity is a function of bioaccumulation and 

because bioaccumulation is best modelled assuming that four protons bind to each binding site.  The 

observed free ion LC50s matched the predicted free ion LC50s, calculated using Eq. (2.14) with the a 

and b estimates from the bioaccumulation models and mean LBC50, reasonably well (Fig. 2.5a). The 

data for Fig. 2.5a were, however, too variable to clearly demonstrate a curvature at low hydrogen ion 

concentrations analogous to that seen in Fig. 2.4. 

 When the dissolved LC50 (nmol/L) is plotted against the H+ (μmol H/L), it decreases with 

increasing H+ (Fig. 2.5b). A single line cannot be drawn through these data because the speciation of U 

is dependent on Ca as well as pH. Nevertheless, the observed LC50s did match the predicted LC50s 

reasonably well (Fig. 2.5b). 

 Growth on a wet weight basis was modelled using Eq. (2.13). The estimated values for the a 

and n constants were, however, extremely variable.  The exponent n ranged from 0.56 to 6.6 between 
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experiments, with wide confidence limits.  Both the median and geometric mean for n was 1.4.  A 

second set of values for each experiment was, therefore, determined by fixing n to 1.4. The n value of 

1.4 and the second set of a estimates were used to compute the EC10, EC25 (Table 2.5) and EC50 for 

growth. An EC25/EC50 and EC10/EC50 ratio of 0.46 and 0.21, respectively for U in the water was 

determined. 

 There was a growth effect of U on H. azteca. The EC25 followed a similar trend to the LC50 in 

that the EC25 was lower in overlying water of low pH than at high pH (Table 2.5). Although growth 

was a slightly more sensitive endpoint than survival, it was more variable.  The confidence limits for 

the EC25 were considerably wider than for the LC50 (Table 2.5). 

 The EBC10, EBC25 and EBC50 could not be determined directly from bioaccumulated U 

using Eq. (2.13), because there were no surviving animals in which to measure U body concentrations 

at those concentrations causing mortality. Given that bioaccumulation followed a saturation model, Eq. 

(2.1) was applied to estimate the EBC10, EBC25 and EBC50. To do this Cw in Eq. (2.1) was replaced 

with the appropriate EC10, EC25 or EC50 value, the max was set to the geometric mean of 73 nmol 

U/g (Table 2.3) and the appropriate K0.5 values (Table 2.3) were used.   

 EBC25/EBC50 and EBC10/EBC50 ratios of 0.68 and 0.41 for U in H. azteca were determined. 

Table 2.5 shows the EBC25 for H. azteca growth. The EBC25 shows a trend similar to that of the 

EC25, with EBC25 being more sensitive to overlying water chemistries of low pH than high pH. The 

EBC25 estimates were similar to those of the LBC50, suggesting that growth may be as sensitive as 

survival in predicting U toxicity in H. azteca exposed to spiked-U sediments for 28 days. 

2.4 Discussion 

 Benthic organisms often accumulate most of their metal burdens from the overlying and/or pore 

water (Borgmann, 2000). That is the case in this study: H. azteca suspended in cages in overlying water 

(Fig. 2.3) showed the same bioaccumulation and toxicity of U as those exposed directly to U-spiked 

sediment. This suggests that the bioaccumulation of U by H. azteca is primarily through the dissolved 

phase rather than the sediment. This was also the case for studies with Cd, Ni and Pb (Borgmann et al., 

1991; Borgmann and Norwood, 1999a; Borgmann et al., 2001b). 

   Since bioaccumulation is primarily via dissolved metal, the impact of metal-contaminated 

sediments on aquatic organisms involves two phases: desorption of metals from the sediment into the 

water, and uptake of the metals from the water into the animal. Many times the partitioning of metals 

from the sediment into the overlying water is influenced by the overlying water chemistry. That was the 

situation in this study, where the desorption of U from the sediment to the overlying water increased 

with increasing pH (Table 2.1). The higher concentration of U is probably due to a higher association of 
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the uranyl ion with Ca-CO3 complexes in water at increasing pH (Table 2.2). Speciation calculations, 

using recently published U stability constants (Dong and Brooks, 2006) suggest that the Ca2UO2(CO3)3 

(~ 68% bound to uranyl ion) is more important at high Ca concentrations than the CaUO2(CO3)3
2- 

(~62% bound to uranyl ion), which appears to be more important at lower Ca concentrations with high 

pH (Table 2.2). 

 The saturation model, Eq. (2.1), which is analogous to the BLM, Eq.(2.2), was used to explain 

the dose-response relationship of U bioaccumulation in H. azteca via water (Fig. 2.2). The value of max 

for U for H. azteca was low when compared to other metals studies with H. azteca as the model 

organism. For instance, the geometric mean max of 73 nmol/g for this study was lower than those for 

As, Pb, Cd, Co, Cr and Hg (range 219-1760 nmol/g; Borgmann et al., 2004; Norwood et al., 2006). This 

suggests that a small amount of U bioaccumulation is enough to saturate the binding sites on H. azteca 

and therefore, contribute to toxicity. 

 Eq. (2.3) was useful for differentiating the effect of the hydrogen ion from that of hardness. The 

K0.5 value, which is dependent on water chemistry, was determined to be a function of the hydrogen ion 

to the power of 4. The values of a (4.2E-14 mol/L) and b (2.17E+18) could be calculated (Fig. 2.4), but 

a positive value for c could not be obtained, suggesting that Ca does not play a major factor in reducing 

U uptake by H. azteca.  

  Since a=1/ Km, the estimated log K for U was calculated to be 13.38. The log K for U is higher 

in comparison to chronic BLM studies on Daphina magna and rainbow trout for Cu (8.02) and Zn 

(5.50, De Schamphelaere and Janssen, 2004a; De Schamphelaere and Janssen, 2004b). However, the 

log K values for Cu and Zn cannot be realistically comparable because the log K values for Cu and Zn 

in the above chronic studies were by default set equal to the log K values estimated for acute studies. 

Log K values reported for Ag (7.3-10), Cu (7.4-8.0), Cd (8.6), Co (5.1), Pb (6.0) and Zn (5.3-5.5) for 

mostly acute studies (Niyogi and Wood, 2004) are all lower than our estimate of log K for U. 

 Since b (Eq. 2.3) = KH/Km, the log K value for H+ calculated in this study is 31.7.  However, 

this K value is for the binding of four, rather than just one, hydrogen ions to the ligand.  It is not, 

therefore, comparable to the log K values for H+ in the chronic Cu  (6.7) and Zn (6.3) BLM models for 

Daphina magna and rainbow trout, respectively (De Schamphelaere and Janssen, 2004a; De 

Schamphelaere and Janssen, 2004b).   

 Fortin et al. (2007) found that the uptake of U by the green alga, Chlamydomonas reinhardtii, is 

influenced by pH: U uptake increased with increasing pH (5-7) despite a decrease (65-0.1%) in the 

proportion of calculated free uranyl ion concentration in solution. The authors suggested that the 

influence of pH is two-fold in that increasing pH reduces the proton concentration, thus decreasing 

competition for the physiologically active sites on the algal cells, while the complexation by carbonates 
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and hydroxides reduces the free uranyl activity, thereby reducing U bioavailability.  By comparison, for 

H. azteca the influence of pH on U uptake appears to be more dependent on U speciation than H+ 

competition at ligand binding sites, given that there was a decrease in U uptake by H. azteca with 

increasing pH and decreasing free uranyl ions (Table 2.2). 

 The sediment-to-water saturation model, Eq. (2.5) was successful in explaining the interactions 

of U in the water with the sediment (Table 2.4).  Both α and K0.5’’ were related to the effect of the 

hydrogen ion in the water-sediment saturation model as described by Eqs. (2.6) and (2.7), respectively.  

However, a value for a’ and a’’ could not be calculated. This is probably because the ligands in the 

sediment are likely almost all protonated, leaving limited amount of available free ligands.  An 

experiment with overlying pH levels above 8, with fewer protons in solution and a higher proportion of 

free ligand, may be sufficient to determine these a’ and a’’ values. 

 The ratio max''/K0.5'' divided by α was computed (Table 2.4) with similar values amongst 

treatments.  This ratio indicates that both binding sites on the sediment are affected similarly by water 

chemistry (Table 2.4).  This would be expected if a’ and a’’ are both negligible and if n in Eq. (2.6) 

equals n in Eq. (2.7). 

 Published studies on the toxicity of U to aquatic organisms are limited. The few studies that 

have looked at U toxicity to organisms such as fathead minnows (P. promelas), green hydra, Chlorella 

sp. and H. azteca (Tarzwell and Henderson, 1960; Riethmuller et al., 2001; Charles 2002) have all 

shown that increasing water hardness, decreases U toxicity. Borgmann et al. (2005) found that when H. 

azteca were exposed for 1-week to waterborne U concentrations, U toxicity to H. azteca was greater in 

soft water (hardness 18 mg CaCO3/L; alkalinity 14 mg CaCO3/L; pH 7.8) than in hard water (water 

hardness 124 mg CaCO3/L, alkalinity 84 mg CaCO3/L, pH 8.3). There was a 30-fold difference 

between the 7 day-LC50 for U in soft water (0.02 mg U/L measured) versus hard water (1.65 mg U/L; 

nominal; Borgmann et al., 2005). The same was true in this study where U was more toxic to H. azteca 

in soft than hard water (Table 2.5). There was an approximate 46-fold difference between hard water 

(SAM(1)) and soft water (10SAM(1)). These differences are largely driven by the presence of more 

free uranyl ion (less complexation) at low pH as stated above; inhibition of U uptake by hydrogen ions 

was not sufficient to fully overcome the effect of pH on U speciation (Table 2.5) and no inhibition of 

uptake by Ca ions could be detected after accounting for the effects of Ca on U speciation.  

  In this study, U toxicity expressed on a water basis was more variable than U toxicity 

expressed on either a sediment or body burden basis (Table 2.5). For instance, the chronic toxicity of U 

varied over 46-fold when expressed on a water basis versus 2.1 fold when expressed as a body burden. 

The same conclusion was reached in studies with sediments spiked with Cd, Ni, Pb, and Tl (Borgmann 

et al., 1991, Borgmann et al., 1998; Borgmann and Norwood, 1999a; Borgmann et al., 2001b), in which 
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chronic toxicity of these metals was more constant when toxicity was expressed as a function of the 

metal bioaccumulated rather than water or sediment metal concentrations. For example, the chronic 

toxicity of Cd to H. azteca in dechlorinated tap water originating from Lake Ontario with and without 

the addition of complexing agents (humic acid and EDTA) or sediments varied by 36-fold when 

expressed as Cd measured in the overlying water, but only 2.6 fold when expressed as Cd measured in 

the body (Borgmann et al., 1991).  

  The importance of pH-dependent uranyl ion complexation in mediating U toxicity is reinforced 

when U toxicity is expressed on a free uranyl ion water basis at constant pH (Table 2.5). There was 

over a 3000-fold difference in U toxicity between overlying waters with low pH (10SAM (1)) 

compared to high pH (SAM(1)). However, the protective effect of Ca on the toxicity of total dissolved 

U at nearly constant high pH (MSSAM vs SAM) was not reflected in the toxicity on both a free uranyl 

ion and dissolved ion basis (Fig. 2.5a and 2.5b). Thus, the modest ameliorating effect of Ca on U 

toxicity appears to be due primarily to its effect on aqueous speciation, rather than the direct inhibition 

of U toxicity. 

 Unlike studies with Zn (Borgmann and Norwood, 1997b) and Pb (Borgmann and Norwood, 

1999a) spiked sediments, U caused a reduction in growth (Table 2.5). This finding is similar to a 

previous study on H. azteca exposed to Cu-spiked sediment where growth was a sensitive indicator of 

metal toxicity (Borgmann and Norwood, 1997b).    

 Given that body concentrations are a good indicator of U toxicity to H. azteca, Eq. (2.12) can 

be used to predict the LC50 in water. When the predicted water LC50s estimates were compared to the 

observed LC50s using the trimmed Spearman-Kaber method, the predicted values were within a factor 

of 1.6 from the observed values (Table 2.5, Fig. 2.5a). This suggests that a saturation model can be used 

successfully to predict water LC50s, both in the lab (as done here) and in the field (if the effect of 

dissolved organic matter, if elevated, on speciation can be estimated). 

 Currently, sediment quality guidelines do not take overlaying water chemistry into account. 

This can be a problem for some metals, such as Cd (Nowierski et al. 2005) and, as shown in this study, 

for U.  The current Canadian interim sediment quality guidelines (ISQGs) are not based on cause-and-

effect relationships, but are derived from correlations between observed effects (i.e. decrease in benthic 

community) and sediment concentrations (CCME, 1999). An ISQG exceedance indicates that there is 

an increased likelihood that sediment toxicity is occurring, although this toxicity might not be caused 

by the metal for which the guideline is exceeded. Sediments are often contaminated by more than one 

metal and metal concentrations often correlate with one another (Borgmann, 2003). In addition, if the 

sediment has a strong binding affinity towards a metal, then a high total metal concentration in the 

sediment may be nontoxic to aquatic biota. On the other hand, sediments with a low binding capacity 
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for metals may contain more bioavailable metal that may be toxic (Borgmann and Norwood, 1999a). 

This makes the prediction of effects difficult.  

 In this study we attempted to develop a true-cause effect SQG relationship given that (a) U 

concentration in H. azteca is a reliable indicator of U toxicity and bioavailability and that (b) Eqs. (2.1) 

and Eq. (2.5) for this study are both a function of the same U water concentration, Cw. In order to 

develop this model the predicted LC50w was first calculated using Eq. (2.12). Given that the geometric 

mean of max = 73 nmol/g (Table 2.2) and LBC50-CBKG = 43 nmol/g (Table 2.5), Eq. (2.12) was 

simplified to  

 

LC50w = K0.5w 1.28                                                               (2.15) 

 

 Secondly, since, Eqs. (2.1) and (2.5) are both a function of the same Cw, the predicted LC50sed 

was determined by substituting Cw in Eq.(2.5) with LC50w in Eq. (2.15) to give: 

 

BKGS
w5.0

"
5.0

w5.0
w5.0sed C

)28.1K(K
)28.1K(max"

)28.1K(50LC +
+

+α=                                     (2.16) 

 

When Eqs. (2.15) and (2.16) were tested, both the predicted LC50w and the predicted LC50sed had 

similar values to those estimated using the trimmed Spearman-Karber method.  The predicted values 

were within a factor of 2.1 of the observed values (Table 2.5, Fig. 2.5b). Thus a successful LC50 

sediment model was generated in this study by comparing bioaccumulation of the metal in the tissue 

and in the overlying water with total metal concentration in the sediment. However, the ability of the 

current model to predict the bioavailability of U in field-collected sediments still needs to be 

determined, since there may be different pH/Ca relationships between U in overlying water and U in 

sediment in the field if the U is in a different form. 

 It appears from this study that saturation models can be successfully used to explain U 

desorption from the sediment to the water and U uptake by H. azteca and the resultant toxicity. 

2.5 Conclusion 

 Overlying water chemistry (especially pH) affects U speciation in water, desorption of U from 

sediment, and U bioaccumulation by H. azteca. The influence of Ca on U uptake is negligible, except 

for its effect on U speciation in the overlying water.  Uranium bioaccumulation was due primarily to the 

dissolved phase rather than the sediment solid phase. Uranium bioaccumulation in H. azteca, as well as 

water-sediment partitioning, can be satisfactorily explained using BLM type saturation models.  
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Uranium bioaccumulation in H. azteca was a better indicator of U toxicity than U concentrations in 

water and sediment. Growth and survival were both sensitive indicators of U toxicity for H. azteca 

exposed to U-spiked sediments. 
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Fig. 2.1. Imhoff cone and cage experiment set-up. 
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Fig. 2.2. U body concentration in H. azteca versus overlying water concentration. Lines represent the 

fitted saturation model CTB= maxCw/(K0.5 + Cw) + CBKG.  Since the line for SAM overlapped MSSAM, 

it was omitted for clarity.  
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Fig. 2.3. U body concentration in juvenile (4 weeks exposure) versus caged adult H. azteca (1 week 

exposure) in the overlying water (a) SAM (2) and (b)10SAM(2). 
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Fig. 2.4. Free ion K0.5 versus hydrogen ion. Symbols represent overlying waters that had low Ca 

(10SAM and MSSAM) to intermediate Ca (50SAM) to high Ca (SAM and MHSAM). Fitted line 

represents the predicted K0.5 = a + b(H+)4.  
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Fig. 2.5. LC50 free U ions versus H+ (a), and LC50 dissolved U in water versus H+ (b). Same legend as 

Fig. 2.4, with open symbols (b) representing predicted LC50 values using Eq. (2.14) and the fitted a 

and b estimates from the bioaccumulation model. 
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APPENDIX 
 

Quality Assurance and Quality Control (QA/QC)   

 All U chemical analyses in terms of U concentrations in sediment, water and H. azteca were 

done by the National Laboratory for Environmental Testing (NLET) using inductively coupled plasma-

mass spectrometry (ICP-MS, NLET, 2007). Quality assurance and quality control procedures were 

carried out by NLET, such as standard verifications to monitor sensitivity drift of the machine, control 

standards to confirm accuracy of the calibration curve, and reference materials to monitor accuracy and 

precision. A high-purity standard for U (High-Purity Standards, Charleston, South Carolina, USA) and 

an Environment Canada (National Laboratory for Environmental Testing at the National Water 

Research Institute, Environment Canada, Burlington, ON, Canada) certified trace elements drinking 

water standard (TM-DWS) were included with the sediment, water and H. azteca samples in order 

validate the ICP-MS calibration curve for U. The average percent recovery for the high-purity standard 

(n=3) and Environment Canada standard (n=6) from the true value was 97.4 and 99.8%, respectively. 

Method blanks were collected and processed at the same time as water and sediment and tissue digests 

were collected and processed, using the same containers, digestion or preservation techniques. Method 

blanks were measured, with U concentrations measured in the sediment, water and H. azteca being 

background corrected by subtracting by the blank measured value. This blank correction accounted for 

any potential U contamination that may have been present during the collection and processing of the 

samples. For the majority of the blank samples, U concentrations were below the ICP-MS detection 

level of 0.0005 μg/L.    

 Blanks and appropriate standard reference materials for the major ions (Ca, Mg, Na and K),  

DIC/DOC, and the anions, SO4 and Cl measurements were analysed by NLET in accordance with their 

quality assurance and quality control procedures. Dissolved organic and inorganic carbon samples were 

measured on a UV-persulfate TOC analyzer (Pheniox 8000TM). The major ions Ca, Mg, Na, and K were 

measured on an atom absorption spectrophotometer, while the anions, Cl and SO4 were measured using 

ion chromatography. 

 pH measurements were measured using the Ross®  Sure-Flow electrode (Thermo Scientific 

Inc., USA) with a filling solution of 3M KCl.  A three buffer calibration of pH 4, pH, 7 and pH 10 

(Canadawide Scientific LTD., Ottawa, Ontario, Canada) were used to calibrate the electrode. The 

buffers were at the same temperature as the samples when the electrode was calibrated. 
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Trimmed Spearman-Karber Method 

 The trimmed Spearman-Karber method (Hamilton et al., 1977) is able to estimate the LC50 and 

LBC50 from weighted averages of midpoints between concentrations on a logarithmic scale. The 

applied weight to each midpoint is the change in proportion of effect (i.e. mortality) between two 

concentrations. This method requires that the data be symmetrical, monotonic and includes both 0 and 

100% effects (i.e. mortality). Trimming is used to try and correct for non-symmetry in the distribution 

curve (EC, 2005).. 

 
 
EC (Environment Canada)., 2005. Guidance document on statistical methods for environmental toxicity 

tests. Method Development and Applications Section, Environmental Technology Centre, Environment 

Canada, Ottawa, Ontario, pp. 241.
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Table 2.A1 Relative ion concentrations of a 5-salt Standard Artificial Medium  
used to make up the different overlying water chemistries in chapter two 
Experiment Ca & Mg Na & K HCO3   
SAMa 1x 1x 1x   
MHSAMb 01x 1x 0.1x   
50SAM 0.5x 0.5x 0.5x   
MSSAM 0.1x 1x 1x   
10SAM 0.1x 0.1x 0.1x   
a1x= 1 mM CaCl2; 1mM NaHCO3; 0.25 mM MgSO4; 50 μM KCl; 10 μM 
NaBr  
bContains 0.9 mM of NaCl     

 
 
 
 
Table 2.A2 Overlying water chemistry measurements for the major ions, Cl, SO4, DOC, DIC and alkalinity

Ca Mg Na K Cl SO4 DOC DIC Alkalinity
(mM) (mM) (mM) (mM) (mM) (mM) (mg/L) (mg/L) mM

10SAM (2) 0.12(0.016) 0.031 (0.0030) 0.24 (0.022) 0.016 (0.010) 0.23 (0.023) 0.11(0.032) 2.3 (1.8) 2.7(1.3) 0.23 (0.11)
MSSAM 0.12 (0.013) 0.031 (0.0025) 1.3 (0.18) 0.073 (0.015) 0.33 (0.051) 0.12 (0.02) 2.9 (2.1) 13 (1.9) 1.1 (0.16)
SAM (2) 1.0 (0.052) 0.27 (0.011) 1.1 (0.057) 0.063 (0.010) 2.1 (0.09) 0.36 (0.02) 2.3 (1.4) 10 (1.1) 0.84 (0.10)
The overlying waters for the SAM (1), MHSAM, 50SAM and 10SAM(1) treatments were collected, but not measured for the major ions, Cl,
SO4, DOC, DIC and alkalinity.
For the 10SAM(2), MSSAM and SAM(2) treatments water samples were only submitted for samples that approximated 
the trimmed Spearman-Karber 4-week LC25 and LC50s estimates for the water. In other words, the sediments with the nominal concentrations
of 2530 and 4430 nmol/g dw for both the 10 SAM and MSSAM treatments, and 7910 and 14 200  nmol/g dw for the SAM treatment.
n=4 with the 95% confidence interval in parentheses

Major ions

 

 
 

 

 

Table 2.A3 The model input concentrations used to determine U speciation in Table 2.2
10SAM (1) 10SAM(2) MHSAM 50SAM MSSAM SAM (1) SAM (2)

pH 6.9               7.2 7.2             7.6 8.0 7.9               8.0
Alkalinity (mM) 0.10 0.2 0.1 0.5 1.0 1.0 1.0
Ca (mM) 0.10 0.1 1.0 0.5 0.10 1.0 1.0
Mg (mM) 0.025 0.025 0.25 0.13 0.025 0.25 0.25
Na (mM) 0.10 0.20 1.0 0.51 1.0 1.0 1.0
K (mM) 0.0050 0.0050 0.050 0.025 0.050 0.050 0.050
Cl (mM) 0.21 0.21 3.0 1.0 0.25 2.1 2.1
SO4 (mM) 0.025 0.025 0.25 0.13 0.025 0.25 0.25
Br (mM) 0.0010 0.0010 0.0010 0.0050 0.0010 0.010 0.010
UO2

++ (μM) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
The input values were based on the nominal concentrations used to make-up the different artifical overlying waters in Table 2.A1,
with the exception of the pH values in which the measured values were used.
These nominals concentrations were within range of the measured values (Table 2.A2).
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Table 2.A4 The thermodynamic (Log K) constants used for the U speciation estimates in Table 2.2 
Ligand Complex Log K Source
OH CaOH+ 1.30 NIST 46
OH KOH 0.214 NIST 46
OH MgOH+ 2.60 NIST 46
OH NaOH 0.100 NIST 46
OH UO2OH+ 8.75 NIST 46
OH UO2(OH)2 15.8 NIST 46
OH UO2(OH)3

- 21.7 NIST 46
OH UO2(OH)4

-2 23.6 NIST 46
CO3 CaCO3 3.20 NIST 46
CO3 MgCO3 2.92 NIST 46
CO3 NaCO3

- 1.27 NIST 46
CO3 UO2CO3 9.94 Guillaumont et al. (2003)
CO3 UO2(CO3)2

-2 16.6 Guillaumont et al. (2003)
CO3 UO2(CO3)3

-4 21.8 Guillaumont et al. (2003)
CaCO3 Ca2UO2(CO3)3 30.7 Dong and Brooks (2006)
CaCO3 CaUO2(CO3)3 27.2 Dong and Brooks (2006)
HCO3 CaHCO3

+ 1.27 NIST 46
HCO3 MgHCO3

+ 1.01 NIST 46
HCO3 NaHCO3 -0.25 NIST 46
MgCO3 MgUO2(CO3)3 26.1 Dong and Brooks (2006)
SO4 CaSO4 2.36 NIST 46
SO4 HSO4

- 1.99 NIST 46
SO4 KSO4

- 0.85 NIST 46
SO4 MgSO4 2.26 NIST 46
SO4 NaSO4

- 0.73 NIST 46
SO4 UO2SO4 3.15 Guillaumont et al. (2003)
SO4 UO2(SO4)2

-2 4.14 Guillaumont et al. (2003)
SO4 UO2(SO4)3

-4 3.02 Guillaumont et al. (2003)
Cl CaCl+ 0.629 NIST 46
Cl KCl -0.500 NIST 46
Cl MgCl+ 0.600 NIST 46
Cl NaCl -0.500 NIST 46
Cl UO2Cl+ 0.170 Guillaumont et al. (2003)
Cl UO2Cl2 -1.10 Guillaumont et al. (2003)
Ionic strength corrections were performed using the Davies equation (Serkiz, S.M., Allison, J.D., 
Perdue, E.M., Allen, H.E., Brown, D.S., 1996. Correcting errors in the thermodynamic database for 
the equilibrium speciation model MINTEQA2. Water Research 30, 1930-1933.) 
Total UO2

++ concentration was 1.0 μM  
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The difference between the model used to estimate U speciation in Table 2.2 and the MINTEQ A2 

version 4.03 (U.S. EPA, Athens, Georgia, USA) is that  MINTEQ A2 version 4.03  does not include the 

updated stability constants for:   

UO2CO3 

UO2(CO3)2
-2 

UO2(CO3)3
-4 

Ca2UO2(CO3)3 

CaUO2(CO3)3 

MgUO2(CO3)3 

UO2SO4 

UO2(SO4)2
-2 

UO2(SO4)3
-4 

UO2Cl+ 

UO2Cl2 

which have become important in the prediction of U speciation (Dong and Brooks, 2006; Guillaumont 

et al., 2003).
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CHAPTER 3 
 

KINETICS OF URANIUM UPTAKE IN SOFT WATER AND THE EFFECT OF BODY 

SIZE, BIOACCUMULATION AND TOXICITY TO Hyalella azteca 
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Abstract 

 The kinetics of uptake and the effect of body size on uranium (U) bioaccumulation and toxicity 

to Hyalella azteca exposed to water-only U concentrations in soft water were evaluated. The effect of 

body size on U bioaccumulation was significant with a slope of –0.35 between log body concentration 

and log body mass.  A saturation kinetic model was satisfactory to describe the uptake rate, elimination 

rate and the effect of gut-clearance on size-corrected U bioaccumulation in H. azteca.  The one-week 

lethal water concentrations causing 50% mortality for juvenile and adult H. azteca were 1100 and 4000 

nmol U/L, respectively. The one-week lethal body concentration causing 50% mortality was 140 nmol 

U/g for juvenile H. azteca and 220 nmol U/g for adult H. azteca. One-week bioaccumulation studies 

that properly account for body-size and gut-clearance times can provide valuable data on U 

bioavailability and toxicity in the environment.  

 

Keywords:  Kinetics; uranium; Hyalella azteca; body size; toxicity 

 

Capsule: Uranium accumulation by H. azteca approaches steady-state after one week but is strongly 

dependent on body size. 

 3.0 Introduction 

 In Canada uranium (U) concentrations in waters surrounding lakes near active and 

decommissioned U mines have been reported to range from 4.2-4200 nmol U/L (EC/HC, 2004; Clulow 

et al., 1998; OMOE, 2003).  Mean U concentrations of 105 nmol U/g have been reported in the tissues 

of Hyalella azteca exposed to waterborne U concentrations near U mining operations (Robertson and 

Liber, 2007). Measurable U concentrations of 8-34 nmol U/g were also detected in composite samples 

of aquatic macroinvetrebrates collected near a U tailings site in Utah (Peterson et al., 2002). 

  Currently there are no national environmental quality guidelines for U to aid managers in the 

protection of aquatic life in Canada. The drinking water quality guideline of 0.02 mg/L (84 nmol/L) is 

the only comparable national guideline with the purpose of protecting the health of Canadians (HC, 

2008). Ontario is the only province in Canada with a provincial interim water quality objective for U 

(0.005 mg/L, or 21 nmol/L) with the sole intention of protecting aquatic life 100% of the time (MOEE, 

1994). However, caution needs to be used when applying this objective because it was set as an 

emergency value derived using the best, but limited, U toxicity studies with aquatic organisms, and was 

not subjected to a peer review (MOEE, 1994). This is unfortunate given that Canada, especially the 

province of Saskatchewan, is home to some of the largest U operation facilities and deposits in the 

world.   
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 The freshwater amphipod H. azteca is a sensitive species commonly used in laboratory and 

field studies to evaluate metal toxicity (EC, 1997). Several authors (e.g. Borgmann et al., 1991; 

Norwood et al., 2006; Alves et al., 2008) have shown that non-essential metal concentrations in H. 

azteca provide a better prediction of metal toxicity to this invertebrate than metal concentrations in 

water and sediment because the physicochemical factors affecting metal bioavailability from the 

environment are taken into account (Borgmann and Norwood, 1995a). 

 Alves et al. (2008) found that U concentrations in H. azteca were more reliable indicators of 

toxicity than waterborne and sediment concentrations. Nevertheless, the influences of biological factors 

such as body size, which can affect metal concentrations in an animal (Langston and Spence, 1995), 

were not considered in that study. Studies with other animals and metals (e.g., Boyden, 1974, 1977; 

Strong and Luoma, 1981; Mubiana et al., 2006) have all shown a correlation of body size with metal 

concentrations in animals. Thus, the relationship between body size and U body concentration needs to 

be established if H. azteca is to be considered as a potential indicator species for U contamination in the 

environment. 

 The relationship between chronic U accumulation and toxicity of H. azteca exposed to U-

spiked sediments has been determined (Alves et al., 2008). However, the exposure period needed for 

whole body U concentrations in H. azteca to reach steady state with the exposure media is currently 

unknown. Uptake studies with Cu, Zn and Pb (Borgmann and Norwood, 1995b; MacLean et al., 1996) 

have all shown that the steady-state between water and the tissue is reached in less than one week, 

making one-week accumulation studies feasible to predict long-term toxicity (Borgmann and Norwood, 

1995b). If the kinetics of U are similar to the above metals, then short-term studies may be employed to 

quantify, evaluate, interpret and manage the potential impacts of U facilities and tailings to aquatic life 

in Canadian freshwaters.  

 The objectives of this study were: (1) to investigate the effect of body size on U accumulation 

in H. azteca exposed to waterborne U concentrations; (2) to evaluate U toxicity and bioaccumulation of 

juvenile and adult H. azteca exposed to water-only U concentrations for one week; (3) to determine if 

the kinetics of U for H. azteca exposed to waterborne concentrations for seven days versus 28 days is 

similar and can be explained using a saturation kinetic model; (4), to consider the effect of gut-

clearance on metal accumulation, given that failure to gut-clear animals may overestimate the lethal 

body concentration causing toxicity (Neumann et al., 1999; Bartlett et al., 2004).  All of these 

experiments were conducted in an artificial soft water medium similar to waters common to the 

Canadian Shield where the majority of U facilities and tailings are located. 
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3.1 Theory 

3.1.0 Metal Bioaccumulation Model 

  The kinetics of U accumulation were modelled using 

bkg
Cgutclearloss1tgeke1

wC
wC

gek
umaxV

TB
C

0.5
K

+×−+−−
+

×
+

= ))()((
)()(

 (3.1a) 

where CTB (nmol/g) is the concentration of U in H. azteca as a function of time (t), CW (nmol/L) is U 

concentration in water, and Cbkg is the background U concentration in the amphipods.  When CW<<K0.5 

this is a first order one-compartment kinetic model similar to the ones that have often been used to 

describe bioaccumulation and elimination of metals via the water by various organisms (e.g., Xu and 

Pascoe, 1993; Borgmann and Norwood, 1995b; Lim et al., 1998).  The rate of metal uptake (ku × CW) is 

the product of the uptake rate constant (ku, L/g/day) and the concentration of U in water.  In Eq. (3.1a) 

Vumax/K0.5 is equal to ku at low CW, while ku equals Vumax/CW as CW approaches infinity. K0.5, the (time-

independent) half saturation constant, is the concentration of CW at which the metal uptake rate equals 

Vumax/2 (Norwood et al., 2006).  The rate of loss of U from amphipod tissues is the sum of the U 

excretion rate (ke, per day) and growth dilution, described by the growth rate (g, per day). 

 At any given time when t is constant, Eq. (3.1a) can be simplified to 
  

bkg

w5.0

w

TB
C)gutclearloss1(

)CK(
Cmax

C +×−
+
×

=                                      (3.1b) 

 

where max = (Vumax/(ke + g)) )( g)te(ke1 +−− .  This is Eq. (1) of Norwood et al. (2006) and Alves et al. 

(2008) and Eq. (2) of the Borgmann et al. (2004) study.  At steady state (t=∞ or large t, e−(ke+g)t ~ 0), and 

max becomes Vumax/(ke + g). Such a mechanistically based saturation model has been shown to describe 

the uptake of many metals well at steady-state, including U (Borgmann et al., 2004; Norwood et al., 

2006; Alves et al., 2008). In Eq. (3.1a) gutclear is a dummy variable set equal to either 1 or 0: 1 for 

animals that have undergone a 24 h gut-clearance before digestion and 0 for non-gut-cleared animals.  

Loss is the fraction of U lost in 24 h due to gut-clearance (Norwood et al., 2006).  Therefore (1 - loss× 

gutclear) = 1 for non-gut-cleared animals and (1 – loss) for gut-cleared amphipods.  Inclusion of the (1 

- loss× gutclear) term allows for the pooling of data from gut-cleared and non-gut-cleared amphipods 

into a single regression. 
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3.1.1 Mortality model 

 Given that the relationship between water and body concentration in this study followed a 

saturation curve, mortality in H. azteca was determined using the saturation model, similar to Eq. (3.1b) 

at steady-state and described in Borgmann et al., (2004): 

n]
)CK(

Cmax['mm
+
×

+=                                                                         (3.2)  

where m is the instantaneous mortality rate (per week) computed by regressing ln(number of surviving 

animals) against time in weeks (Borgmann et al., 1998; Borgmann et al., 2004); m’ is the mortality rate 

(per week) in control animals; max is a maximum analogous to the maximum for accumulation of the 

metal from the water by the organism; C  is U in water (CW) or the background-corrected total body 

concentration of U in the animal (CTBX); K is a half saturation constant analogous to K0.5 in Eq. (3.1a), n 

is a constant based on water (nw) or  background-corrected total metal body concentration (nb). 

 The max term in Eq. (3.2) can be replaced with the LC50 (lethal water concentration causing 

50% mortality) or the LBC50 (lethal body concentration causing 50% mortality) to give (Borgmann et 

al., 2004): 
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where t is the exposure time (in weeks) for any given LC50 or LBC50. K is equal to KW for mortality 

based on U in water (LC50) or KTBX for mortality based on U in H. azteca (LBC50).  The same model 

was used to calculate the LC25, LBC25, LC10 and LBC10, by adjusting survival to correspond with 

25% and 10% mortality for the L(B)C25 or L(B)C10  as follows:  
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Eqs. (3.2)-(3.5) are mathematically equivalent expressions, but allow computation of different L(B)C 

values. 
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3.2 Materials and Methods  

3.2.0 Culturing  

  Hyalella azteca were cultured in dechlorinated Burlington City tap water from Lake Ontario as 

described by Borgmann et al. (1989). Water quality analyses as measured by the National Laboratory 

for Environmental Testing (NLET, 2007), Environment Canada, from January 2006 to January 2008 

were (n=36, mean ± 95% CI in mg/L): dissolved organic carbon = 0.8 ± 0.1; dissolved inorganic carbon 

= 18 ± 0.5; Cl = 29 ± 3.3; SO4 = 37 ± 1.6; Ca =36 ± 0.5; Mg = 8.6 ± 0.2; Na = 15 ± 0.8; K= 2.9 ± 0.8, 

alkalinity (as CaCO3) = 76 ± 2.1; hardness (as CaCO3) = 120 ± 1.1), pH 7.9-8.2. Culture water was 

renewed weekly with the young being separated from the adults in order to maintain a continuous 

supply of amphipods of known age. Animals were held in a walk-in incubator at 25 ± 1°C with a 16 h 

light: 8 h dark photoperiod. H. azteca in all experiments were acclimated to their experimental water 

medium for one week (7 days) prior to their use in the experiments. 

3.2.1 Water chemistry and U water concentrations 

 All experiments were conducted in a 5-salt standard artificial medium (SAM: 1 mM CaCl2; 1 

mM NaHCO3; 0.25 mM MgSO4; 50 μM KCl; 10 μM NaBr) diluted to 10% (10SAM) with Nanopure® 

water (Barnstead International, Iowa, USA). The 10SAM medium was then spiked with uranyl nitrate 

trihydrate (UO2(NO3)2●3H2O, International Bio-Analytical Industries, Inc.) to achieve nominal U 

concentrations of  0, 10, 18, 32, 40, 56, 100, 180, 250, 320, 560, 1000, 1800 nmol U/L for selected 

experiments.   

3.2.2 Body size experimental set-up 

 A one-week (7 day) static, replicated, water renewal U-body size experiment was conducted in 

5L of 10SAM in 7.5 L polycarbonate aquaria with 0, 100, and 250 nmol U/L. Each replicated aquarium 

contained approximately 365 acclimated H. azteca of varying size (0.01-0.10 mg dry weight), with the 

initial age of 1-22 weeks at the start of the experiment. Two 5 x 5 cm pieces of cotton gauze presoaked 

in distilled water were added to each container. The cotton gauze was used as a substrate for the H. 

azteca. Amphipods were fed ground TetraMin® fish flakes (Tetra Holding Inc, VA, USA, but made in 

Germany) at a rate of 5 mg three times per week.   

 The water exposure media were changed every two days in order to maintain constant U 

concentrations in the water and decrease the potential of U loss due to adsorption onto the walls of the 

test chambers (e.g., Borgmann et al., 1991; MacLean et al., 1996). In this experiment and throughout, 

10 mL water samples were collected before and after water renewal and filtered with 0.4 μm 

(Nucleopore® (PC) Polycarbonate, Whatman) filter attached to a syringe for subsequent analysis of 
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dissolved U. These filtered water samples were preserved by acidifying to 1% HNO3 (high purity acid, 

omniTrace®, E.M. Science). Five milliliters unfiltered water samples were also collected before and 

after the water renewal for ammonia, conductivity, dissolved oxygen, and pH measurements. During 

every water renewal period, and after the addition of U to the water, test chambers were allowed to 

equilibrate for 3 h prior to the addition of animals and removal of water samples.  

 At the end of the seven day exposure period animals were sorted with half the amphipods being 

placed in 120 mL plastic specimen containers with 50 μM EDTA and 5 mg TetraMin® food for 24 h to 

clear their guts and remove any loosely-bound U from the surface of the animals. EDTA has been 

shown to complex U (Bhat and Krishnamaurthy, 1964) and remove U bound to the outside of the 

freshwater algal Chlorella (Franklin et al., 2000). EDTA has also been used in other studies (e.g., 

Borgmann and Norwood, 1995a; Neumann et al., 1999; Norwood et al., 2006) with H. azteca to 

complex other loosely bound metals (e.g. Cd, Cr, Co, Cu, Mn, Pb, and Zn) during gut-clearance to 

prevent re-absorption. The 0 and 24 h gut-cleared amphipods were each wet weighted as a group and 

then dried for 48 h in a 60°C oven to a constant weight. Animals of similar dry weights were pooled 

together prior to digestion. In some cases as many as 24 animals were grouped together for amphipods 

ranging in size from 0.01 to 0.05 mg dry weight and groups of two animals for amphipods between the 

sizes of 0.8-1 mg dry weight. Animals were digested using a modified procedure based on Stephenson 

and Mackie (1988), whereby 120 μL of 70% HNO3 was added to each container and allowed to sit at 

room temperature for one week. This was followed by the addition of 100 μL of 30% H2O2 for 24 h. 

Each sample was then made up to a final volume of 5 mL with Nanopure® water.  

3.2.3 Acute toxicity and bioaccumulation experiment 

  A one-week (7 day) static, replicated, water renewal concentration series test was conducted in 

400 mL of 10SAM spiked with the nominal U concentrations of 0, 56, 100, 180, 320, 560, 1000, 1800 

nmol/L in 500 mL polyethylene containers. Tests were initiated with 20 1-2-week juveniles and 15 4-6-

week caged adult H. azteca. Cages were made out of 120 mL specimen cups with their bottoms cut out 

and replaced with a 200 μm mesh. Cages where placed in the overlying water and held in place with a 

clothes pin. The purpose of the caged adults was to have enough tissue and animals to determine if a 

bioaccumulation curve similar to Alves et al. (2008) could be reproduced. 

A pre-soaked 5 x 5 cm piece of cotton gauze was added to each container and cage. 

Approximately 2.5 mg and 5 mg of ground TetraMin® fish food flakes were added to each container 

and cage, respectively, every second day. Water was also renewed every second day. On day seven, 

surviving amphipods were sorted and counted and placed into 120 mL specimen containers containing 

50 μM EDTA and 5 mg of TetraMin® food for 24 h to clear their guts. Twenty-four hour gut-cleared 
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amphipods were wet weighted and dried for 48 h in a 60°C oven. Groups of 5-6 dried amphipods were 

digested using the procedures described above. 

 

3.2.4 Kinetic experimental set-up 

3.2.4.0 Acute uptake and depuration time series  

 A one-week (7 day) static, replicated, water renewal U uptake experiment initiated with 4-6-

week old acclimated H. azteca, and followed by a two-week (14 day) depuration period, was conducted 

in 1 L of 10SAM with and without U in a 2 L polyethylene container. Nominal U water concentrations 

of 0, 40, 100 and 250 nmol/L were used in the uptake experiment. For the depuration exposure period 

50 μM EDTA in 10SAM in the absence of waterborne U concentrations was used. On day seven, 

animals were placed into 50 μM EDTA-10SAM solution. The use of EDTA in the depuration study 

allowed for the complexion of any potential U depurated from the animal and the removal of any 

strongly bound U from the surface of the animal.  A 50 μM EDTA concentration was within the range 

tolerated by H. azteca (Borgmann and Norwood, 1995a). Water was renewed every two days for the 

uptake exposures and weekly for the depuration period.  

 Each container contained a 5 x 5 cm piece of cotton gauze with animals being fed 2.5 mg of 

ground TetraMin® fish food three times per week. 

 On day 0, 1, 2, 4, 7, 8, 9, 11, 14, and 21 six (6) animals were randomly sampled from each 

individual container. The amphipods were weighed as a group to provide a mean wet weight per 

container and then dried for 48 hours in a 60°C oven. The dried amphipods were digested as previously 

described in the above body-size experiment. 

3.2.4.1 Chronic uptake time series 

 A four week (28 day) static, replicated, water renewal experiment was conducted in 5 L of 

10SAM, with or without U, in a 7.5 L polycarbonate aquarium.  The 10SAM medium was spiked with 

nominal U concentrations of 0, 10, 18, 32, and 56 nmol U/L. Forty-five, 4-6-week old acclimated H. 

azteca and two 5 x 5 cm pieces of cotton gauze presoaked in distilled water were added to each 

container. In this experiment water was renewed weekly. 

 Ground TetraMin® fish food flakes were added three times per week to each test container in 

the following amounts: 10 mg in week 0; 7.5 mg in week 1; 5.0 mg in weeks 2, 3, and 4.   

 On day 0, 1, 2, 4, 7, 14, 21, and 28, twelve (12) animals were randomly sampled from each 

individual container. Half of the amphipods were placed in 120 mL plastic specimen containers with 50 

μM EDTA and 2.0 mg TetraMin® for 24 h to clear their guts. 24 h and 0 h gut-cleared amphipods were 

weighed as a group to provide a mean wet weight per container and then dried for 48 hours in a 60°C 
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oven. Groups of six dried amphipods (about 1-3 mg total dry mass) were digested according to the 

above procedure described for the body size experiment.  

 

3.2.5 Uranium analysis 

 Water and tissues were analyzed for U concentrations by NLET using inductively coupled 

plasma-mass spectrometry (ICP-MS; NLET, 2007  

3.2.6 Statistical and data analysis 

 Statistical, data and model analyses were conducted using SYSTAT version 10.0 (Chicago, 

Illinois, USA) for Windows. All metal concentration data were logarithmically transformed, while the 

mortality rates were fourth-root transformed, to normalize data and equalize variances before statistical 

analysis. The log-log relationships between U in H. azteca and water were obtained using the NONLIN 

(non-linear regression) module. The FUNPAR command was used for calculating the 95% Wald 

confidence intervals. Curve fitting in the time series experiments was performed using the combined 

acute and chronic data in order to provide the best-fit estimate of the overall relationship.  

 
3.3 Results 
3.3.0 Water quality  

 Water quality parameters remained consistent between all experiments and containers. pH 

ranged between 6.7 and 7.2 (Table 3.1), while ammonia levels were below 0.06 mM. Conductivity 

measurements ranged between 37-59 μS/cm, whereas dissolved oxygen was between 7.1-9.4 mg/L. U 

water concentrations for the body size study averaged 95% of the target nominal U water 

concentrations (Table 3.1). For the concentration series (bioaccumulation and toxicity) experiment, U 

water concentrations were on average 62% of the target nominal U water concentrations, while 

approximately 64% and 54% of the target nominal U water concentrations were achieved in the acute 

and chronic time series, respectively (Table 3.1). The low U water concentrations for some of the 

treatments were probably due to the combination of U adsorption onto the test chamber walls, cotton 

gauze, food and/or uptake by the H. azteca. 

3.3.1 Body size effect 

 Whole-body U concentrations in both non-gut-cleared and 24 h gut-cleared H. azteca were 

higher in smaller animals than larger animals when exposed to either 100 or 250 nmol/L water-only U 

concentrations (Fig. 3.1). The relationship between body concentration and body mass for the pooled 

data can be described using the log regression relationship of the power funtion: 
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CTB = a (Bm)b(1-loss× gutclear)                                                       (3.6)  

 

where CTB is the total U body concentration in the animal, a is a constant, Bm is the body weight and b is 

the overall slope of the relationship (Rainbow and Moore, 1986).  The (1-loss × gutclear) term is 

equivalent to the term in Eq. (3.1a) and therefore permits the pooling of the gut-cleared and non-gut-

cleared animals. The total loss of the metal eliminated in 24 h by gut-cleared as compared to non-gut-

cleared animals was 72% (i.e., loss = 0.72, gutclear = 0 or 1 in Eq. (3.6). 

The overall slope (b, Eq. 3.6) of the relationship was negative, indicating that the U-body 

concentration decreases with increasing body weight of the animals. This relationship was significant 

(ANCOVA, P <0.05) for the pooled data (Fig. 3.1) with an R2 of 0.85 and a slope (b; 95% confidence 

interval) of -0.35 (-0.44 to -0.26).  The relationship between U-body concentration and body mass using 

only the 24 h gut-cleared animals was also significant (ANCOVA, P <0.05) with the b coefficient 

estimate of -0.35 (-0.45 to -0.25). This relationship was also significant when using only the non-gut-

cleared animals, giving a b estimate of -0.35 (-0.51 to -0.18). Therefore, in order to increase the power 

of the model the gut-cleared and non-gut-cleared animals were pooled using the (1-loss × gutclear) 

term. 

 The slope was not significantly different for H. azteca exposed to 100 versus 250 nmol U/L 

waterborne U (ANCOVA, P = 0.83). The estimated value of a for H. azteca exposed to the 100 and 250 

nmol U/L treatment was 160 (130-190) and 350 (290-420), respectively. Overall this study suggests 

that H. azteca body size needs to be taken into account before one can properly explain U 

bioaccumulation.  

 

3.3.2 One-week bioaccumulation   

Given that there was a body size effect on U bioaccumulation, body size was standardized to 

0.22 mg dry weight for the concentration series and time series experiments. This was the geometric 

mean for body dry weight when all the animals from all experiments except the body size experiment 

were pooled. 

Size-standardized U bioaccumulation was explained using the bioaccumulation saturation 

model, Eq. (3.1b) (Fig. 3.2; Table 3.2). However, due to high variability in the adult bioaccumulation 

data R2 was only 0.53 (Fig. 3.2).  

 The size-standardized adult and juvenile bioaccumulation data, when plotted on the same 

graph, overlapped completely (Fig. 3.2). This suggests that the juveniles may have a similar uptake 

curve to the adults. Given that there were no surviving juveniles at nominal U concentrations > 320 
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nmol U/L in the water (Fig. 3.2), and hence no tissue to measure U accumulation in the animals, and 

that the juveniles follow a similar uptake, the adult K0.5 of 560 (Table 3.2) was fixed in the juvenile 

bioaccumulation saturation model to estimate max. This relationship produced an R2=0.92 and a max of 

210 nmol/g.  The predicted max for the young H. azteca (210 nmol/g) is 12.5% lower than the 

computed max of 240 nmol/g for the adult H. azteca (Table 3.2), since the mean accumulation at lower 

U concentrations in water was 12.5% lower in the young than the adult H. azteca. 

 

3.3.3 Kinetics 

3.3.3.0 Acute study 

  The total loss of metal eliminated in 24 h for gut-cleared versus non-gut-cleared animals in one 

week was 79%, similar to the 72% loss observed in the size experiment.  

 With the exception of the body size and depuration experiments, data from all one-week 

exposure experiments with the corrected gut-cleared (i.e., by dividing body concentration by 1-loss x 

gutclear) and non-gut-cleared adult H. azteca were pooled. Pooling the data not only increased the 

intermediate water concentrations used in the different experiments, but provided an overall best model 

fit to the data. Pooling these data was feasible because the H. azteca came from the same genetic stock 

(i.e., culture), were approximately the same age in each experiment (i.e., 4-6 weeks old) and were all 

exposed using the same water medium (i.e., 10SAM). For visual display purposes (Figs. 3.3-3.5), total 

U concentration in the non-gut-cleared and corrected gut-cleared H. azteca was corrected further by 

dividing by the term Cw/(K0.5 + Cw). This correction factor accounted for the different U waterborne 

concentrations to which these animals were exposed. 

 A growth constant of 0.023/day (Table 3.3) was calculated using the pooled data by regressing 

ln(dry weight) against time (day).  The growth rate constant was fixed in Eq. (3.1a) when estimating 

metal accumulation (Vumax) and the elimination rate constant ke (Table 3.3).   

 The corrected U bioaccumulation for H. azteca exposed to water U concentrations of 10-1800 

nmol/L from the pooled studies for one week showed a rapid accumulation within the first day, 

followed by a more gradual increase in the remainder of the uptake phase (Fig. 3.3). Depuration was 

fairly rapid within two weeks in the absence of U water concentrations (Fig. 3.4). The depuration curve 

was estimated based on animals previously exposed to U waterborne concentrations of 40-250 nmol/L 

in the acute uptake time series study. For the other experiment (i.e., chronic uptake time series) a true 

depuration period of more than 24 h was not done. The value of ke based on the depuration experiment 

was equal to 0.29 (0.25-0.33), with an R2=0.94 (Table 3.3; Fig. 3.3).  Uptake was estimated to reach 

86% of steady state in one week, based on this ke. 
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  Given that the juvenile and adult H. azteca fit the same bioaccumulation curve (Fig. 3.1; Eq. 

3.1b) in the bioaccumulation toxicity experiment when K0.5 was set to 560 nmol/L, K0.5 was also set to 

560 in the saturation kinetic model (Eq. 3.1).  The estimate of ke = 0.29 was used to estimate Vumax, and 

in turn Vumax/K0.5, the value of ku at low CW, in the acute and chronic study.  The value of Vumax was 

estimated to be 810 (650-1000) giving a Vumax/K0.5 of  1.4 (Table 3.3; Fig. 3.3). 

 

 3.3.3.1 Chronic study 

 The full 28 day bioaccumulation data set, pooled with the seven day data from the acute uptake 

time series, was modelled in the same way as described above for data to day seven. The total loss of 

metal in 24 h for gut-cleared versus non-gut-cleared animals in four weeks was 76%. The corrected 

bioaccumulation of U in non-gut-cleared and corrected gut-cleared H. azteca pooled data demonstrated 

a quick accumulation within the first four days (Fig. 3.5). The value of Vumax was estimated to be 880 

(740-1100) with a Vumax/K0.5 of 1.6 when K0.5 and ke were fixed to 560 and 0.29, respectively (Table 3.3; 

Fig. 3.5). These values were similar to the Vumax and Vumax/K0.5 of 810 and 1.4 estimated in the acute 

study. Bioaccumulation reached 99.98% of steady state in the chronic study, based on the one 

compartment model.  However, a slow further increase in U accumulation after day 14, beyond that 

predicted by the one-compartment model, is suggested by the data (Fig. 3.5). 

 

3.3.4 Mortality 

 The mortality model based on the saturation model (Eqs. 3.3-3.5) was used to estimate the 

LC50, LC25, LC10 and LBC50, LBC25 and LBC10.  The LC50 values, 1100 and 4000 nmol/L for 

juveniles and adults, respectively (Table 3.4), differed more between young and adult than did the 

LBC50 values (140 and 220 nmol/g, respectively, Table 3.5).  The same was true for the LC25 and 

LC10 values.  The fit of the model for the adults was poor (R2=0.61) when compared to the juveniles 

(R2=0.92) when estimating the LC50 to LC10 values. The same was true for the LBC50-LBC10 

estimates. 

3.4 Discussion  

3.4.0 Body size  

 Factors such as growth and body size can contribute to variability in total metal body 

concentrations if not taken into account (Langston and Spence, 1995). In this study there was a 

significant negative correlation between metal body concentration and body mass (Fig. 3.1). In Fig. 3.1 

the relatively few data points for the body size <0.1 mg dw may be influencing the overall significance 

of the slope. However when these data are removed, there is still a significant (P<0.05) negative 
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correlation (-0.36) between metal body concentration and body mass. This suggests that the smaller 

animals had a higher body concentration of U than the larger animals.  The body size relationship 

remains even after gut-clearance which results in a 72% loss of total metal. It may be that the majority 

of the bound U is strongly adsorbed to the integument of the H. azteca, since small animals have a 

larger surface to volume ratio than large animals (Rainbow and Moore, 1986).  Alternatively, U might 

be absorbed internally and the abundance of uptake sites for U might be proportional to surface area.  In 

either case, this study indicates that, for U uptake by the freshwater amphipod H. azteca, researchers 

need to standardize for body size before reporting U bioaccumulation parameters such as lethal body 

concentrations (i.e., LBC50), especially for field experiments where different sized H. azteca are 

present. For example, the importance of correcting for body size was evident in a study with the 

freshwater (unionoid) bivalve Velesunio angasi exposed to waterborne U concentrations, whereby the 

mean variability in valve movement responses was reduced by 81%, when size, age and/or gender were 

taken into account (Markich, 2003).  

 

3.4.1 Bioaccumulation  

 In this study a bioaccumulation saturation model, Eq. (3.1a), was used to predict U 

bioaccumulation in size-standardized juvenile and adult H. azteca exposed to water-only U 

concentrations for one week (Table 3.2; Fig. 3.2). These U bioaccumulation estimates (Table 3.2) 

compared well with Alves et al. (2008) who used the same saturation model to predict U 

bioaccumulation via the water in H. azteca exposed to U-spiked sediment for 28 days (Fig. 3.2). In fact, 

the bioaccumulation saturation curve went through all the data points when the max (73 nmol/g) and 

K0.5 (106 nmol/L, the geometric mean for 10SAM treatments) estimated by Alves et al., (2008) were 

used and compared to data from this study (Fig. 3.2).  

  

3.4.2 Kinetics  

 As observed in the Borgmann and Norwood (1995b) study, where Cu and Zn kinetics were 

better predicted using a saturation model, the same was true for this study with U. The uptake of U by 

H. azteca was fast, with 89% and 99.98% of the steady state being reached by day seven and day 28 for 

the acute and chronic uptake time series studies, respectively. The time to steady state for U by the H. 

azteca was slower compared with the metals Cu (4 days), Zn (<4 days) and Pb (4 days), but faster than 

the compound tributyltin (14 days, Borgmann and Norwood, 1995b; MacLean et al., 1996; Bartlett et 

al., 2004).   

 The acute and chronic Vumax/K0.5 estimates for U by the H. azteca (Table 3), equal to ku at low 

CW, is similar to the ku for Pb of 1.5/day for H. azteca exposed to one-week waterborne Pb 
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concentrations (MacLean et al., 1996). The initial four-day ku estimate with Cu (0.73/day) and Zn 

(3.5/day) is also similar (Borgmann and Norwood, 1995b). The only difference between the kinetics of 

Pb, Cu, Zn, and U is that both Pb and Zn have higher ke rates, 0.76 and 0.68, respectively, than that of 

Cu (0.16) and U (0.29).   

 Bioaccumulation, and hence uptake rate (if ke is constant), levels off above approximately 1000 

nmol/L (Fig. 3.2).  This is higher than U concentrations found in most natural waters (Clulow et al., 

1998, OMOE, 2003, EC/HC, 2004). Uranium uptake appeared to level off by day seven in the seven-

day experiment (Fig. 3.3). However, the chronic uptake of U by H. azteca did not completely level off 

by day 28, as would be expected based on the ke of 0.29 obtained in the depuration experiment (Fig. 

3.5). This suggests the presence of another slower compartment that may be storing U during long term 

exposure. Unfortunately, the data from this study were not sufficient to fully model this slower 

compartment. However, Chassard-Bouchaud (1983) found that U was associated with calcium 

phosphate microgranules (spherocrystals) in the gill cuticle and hindgut epithelia of marine crabs 

(Carcinus maenas) when exposed to water-only U concentrations for 14 days. Similarly, Chassard-

Bouchaud (1982) found that U was in the form of an insoluble phosphate in the lysosomal system of the 

freshwater crayfish Pontastacus leptodactylus when exposed to U concentrations in water.  These 

microgranules, which can eventually be eliminated out of the animal, may act as temporary storage sites 

for U in the tissue. This may be the same for H. azteca given that Graf and Michaut, (1977) found that 

spherocrystals similar to those in the marine crab are present in amphipods of the genus Orchestia.  

 

3.4.3 Gut-clearance 

 An understanding of the effect of gut-clearance on whole body metal concentration is important 

so that the overestimation of true body metal concentrations is avoided in non-gut-cleared animals, 

especially following sediment exposure, and when comparing lethal body concentrations (e.g., 

LBC50s) in water and sediment exposed animals.  Gut-clearance is not always necessary in water-only 

exposures, but it is for sediment exposures.  Estimates of LBC50s for both non-gut-cleared animals 

(when conducting water-only tests) and gut-cleared animals (for comparison to metal bioaccumulation 

in exposures to contaminated sediments) are, therefore, needed.  Neumann et al. (1999) and Bartlett et 

al. (2004) have both demonstrated how gut-contents significantly contribute to total metal (e.g., Pb, Cd, 

Zn and Cu) and tributyltin body concentrations in H. azteca exposed to contaminated sediments. For 

instance, Neumann et al. (1999) found that non-gut-cleared H. azteca exposed to spiked sediments had 

initial total body concentrations of Pb, Zn and Cd that were 438, 44, and 12% above the true body 

concentration, respectively.  Hence, gut-clearance is necessary in sediment exposures.  However, true 

excretion from the body also occurs during the gut-clearance period. In this study 72-79% of total U 
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loss from the body in 24 h was estimated in the various experiments. This loss is higher than that for the 

metals and metalloids As (34%), Co (13%), Cr (4%) and Mn (48%), also in water-only exposures 

(Norwood et al., 2006).  The U excretion rate measured after gut-clearance (0.29/day, Table 3.2) would 

be expected to result in a 24% loss of total body U after 24 h, far less than the 72-79% loss observed.  A 

reason for the additional 48-55% loss may be the presence of a second fast true body component as well 

as gut-content.  

 Although no U was added to the food in this study, U could have adsorbed onto the food and 

accumulated in the gut. The diet, depending on the animal, metal and type of food sources, may have a 

significant or even dominant effect on metal accumulation in aquatic animals compared to the dissolved 

phase (Wang and Fisher, 1999). Stephenson and Turner (1993) reported that approximately 58% of the 

Cd concentration in field collected H. azteca was due to Cd absorption from the food. Borgmann et al. 

(2007) investigated the relative contribution of food collected in the field and water to the 

bioaccumulation of 27 metals and metalloids in caged H. azteca near rivers affected by metal mining 

and found that Cd, Cu and Se were the only metals in which the food had a significant effect on whole 

body accumulation. Despite there being a 6.5 fold concentration range of U in the food in the 

Borgmann et al. (2007) study, there was no effect of U concentrations in the food on total U 

concentration in the H. azteca. This suggests that U in the diet was not bioavailable in that study. No 

attempt was made in this study to measure U uptake from food. 

 

3.4.4 Toxicity 

 The mortality model based on the saturation model was used to predict the sensitivity of H. 

azteca exposed to waterborne U concentrations for one week (Tables 3.4 and 3.5). The LC50 estimate 

for the juveniles was approximately 13 times higher than the one-week juvenile LC50 (88 nmol/L) 

conducted in water similar to 10SAM (Borgmann et al., 2005). We are not able to explain these 

differences between our study and Borgmann et al. (2005), especially since the latter study did not 

report toxicity as total body concentration (e.g. LBC50).  

 At the LC50 concentration of 4000 nmol/L for the adults (Table 3.4), U bioaccumulation was 

starting to level off (Fig.3.2). Uranium bioaccumulation was not determined for juveniles above 320 

nmol/L and thus it cannot be claimed that accumulation leveled off at 1100 nmol/L, the LC50 

concentrations for the juveniles. However, if accumulation in the juvenile H. azteca was also reaching a 

maximum, this may partly explain why the LBC50 estimates were more similar between the juveniles 

and adults when reported on a body concentration basis than a waterborne basis.  
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3.5 Conclusion 

 Uranium bioaccumulation, kinetics, and toxicity can be explained successfully using a 

saturation model. However, when predicting U bioaccumulation and toxicity for H. azteca, a body size 

correction is required. Given that 89% of steady state was reached within one week, based on the one-

compartment model, one week U bioaccumulation tests are feasible to predict the bioavailability and 

impact of U contamination in the water to H. azteca. As long as U water concentrations are below 

levels resulting in saturation of uptake, U concentrations in H. azteca will reflect current U levels in the 

environment, and H. azteca are likely to be good monitors of U bioavailability in the field. 
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Table 3.1 Mean measured waterborne U concentrations 
and pH for  
the different series of experiments in this study  

Body Size Experiment (7 days)   
Nominal Measured pH  

 nmol/L   
0 0.13 ± 0.29 7.1 ± 0.25  

100 110 ± 20 7.1 ± 0.14  
250 280 ± 50 7.1 ± 0.08  

    
One-week toxicity study  

Nominal Measured pH (uptake)  
 nmol/L   

0 0.20 ± 0.16 7.0 ± 0.30  
56 43 ± 19 7.0 ± 0.23  

100 88 ± 34 7.0 ± 0.21  
180 150 ± 73 7.0 ± 0.23  
320 270 ± 140 7.1 ± 0.22  
560 580 ± 240 7.1 ± 0.15  
1000 1100 ± 370 7.0 ± 0.18  
1800 1900 ± 670 6.9 ± 0.22  

    
Acute kinetic study (7 days) 

Nominal Measured pH (uptake) pH (depuration) 
 nmol/L   

0 0.12 ± 0.31 7.4 ± 0.68 6.37 ± 0.55 
40 37 ± 14 7.4 ± 0.78 6.20 ± 0.23 

100 65± 19 6.9 ± 0.20 6.13 ± 0.22 
250 190 ± 51 6.9 ± 0.22 6.02 ± 0.22 

    
Chronic kinetic Study (28 days)  

Nominal  Measured pH  
 nmol/L   

0 0.01 ± 0.02 6.9 ± 0.18  
10 5.4 ± 0.02 6.9 ± 0.20  
18 10 ± 2.2 7.0 ± 0.16  
32 19 ± 3.4 6.9 ± 0.19  
56 60 ± 6.3 6.9 ± 0.20   

Values represented as mean ± standard deviation 
n=19 for chronic U water 
measurements  
n=14 for acute U water 
measurements  
n=12 for the one week toxicity U water measurements 
n=12 for the body size experiment  
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Table 3.2 Maximum metal accumulation (max ), half saturation constant (K 0.5 ),
background metal accumulation (C bkg ), and the 95% confidence interval in parentheses
for metal accumulation fitted to a water-bioaccumulation saturation curvea,b

max ( nmol/g) K 0.5 (nmol/L) max/K 0.5 (L/g) C bkg (nmol/g) R 2

Adults 240 (100-560) 560 (160-2000) 0.46 (0.24-0.74) 0.15 0.53

Juvenilesc 210 (150-210) 560 (fixed) 0.37 (0.32-0.45) 0.07 0.85
a model C TB =(max xC w /(K 0.5  + C w ) ) + C bkg
b These estimates are based on 24 h gut-cleared animals; 0 h gut-cleared animals were not sampled
in this particular study
c The max for the juveniles is an extrapolated value based on max/K 0.5  and computed using 
a fixed K0.5 of 563 estimated using the adult H. azteca  standardized to a body size of 0.22 mg dry weight  
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Table 3.3 Kinetic modela estimates (95% confidence interval in parentheses)

Chronic
Uptake Depuration Uptake

g 0.023 (0.015-0.035) 0.023 (0.015-0.035) 0.023 (0.015-0.035)
Duration (day) 7 14 28
C bkg  (nmol/g dw) 0.09 0.12 0.09
V umax 810 (650-1000) 1300 (1000-1700) 880 (740-1100)
K 0.5

b (fixed) 560 560 560
k e

c (fixed) 0.29 0.29 (0.25-0.33) 0.29
R2 0.85 0.94 0.82
V umax /K 0.5 1.4 1.6
loss (in 24h) 0.79 (0.73-0.86) 0.76 (0.70-0.82)
steady-state (%) 89% 99% 99.98%
amodel C TB =(V umax /(k e +g))(C w /(K 0.5  +C w ))(1-e -(ke+g)t )(1-loss x gutclear) + C bkg
bThe fixed  K 0.5  is based on the estimated value from the bioaccumulation study
cThe fixed k e  is based on the estimated value from depuration study
dPercent of steady-state=(1- e−(ke +g )t ) x 100

Acute
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Fig. 3.1 Total U body concentration versus body size in H. azteca exposed to 100 (○) and 250 (●) nmol 

U/L for one week (R2=0.85, in both treatments). Data includes the pooled non-gut-cleared and corrected 

gutclear animals. Gut-cleared animals were divided by (1-loss × gutclear) to correct for total loss of U 

concentration in 24h. 
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Fig. 3.2 Bioaccumulation saturation curve for juvenile, R2=0.85 (●) and adult, R2=0.53 (○) H. azteca 

exposed to waterborne U concentrations of 56-1800 nmol/L for one week in the acute toxicity-

bioaccumulation experiment. The solid line represents the bioaccumulation saturation curve (Eq.(3.1)), 

using the max and K0.5 parameters estimated in this study (Table 3.2); the dash line represents the 

bioaccumulation saturation curve (Eq.(3.1a)) estimated using the geometric mean max of 73 nmol/g and 

K0.5 of 106 nmol/L (for the 10SAM treatment)  in the Alves et al. (2008) study.  
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Fig. 3.3 Corrected total corrected body concentration (nmol U/g dry weight) versus time (day) for 

pooled non-gut-cleared and corrected 24h gut-cleared (i.e. by dividing the body concentration by1-loss 

× gutclear) H. azteca exposed to the pooled waterborne U concentrations of 10-1800 nmol/L from 

various experiments for one week (R2=0.85). The corrected concentration in H. azteca were further 

divided by Cw/(K0.5 + Cw) to account for differences in U water concentrations. 
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Fig. 3.4 Depuration curve for total corrected U-body concentration versus time (day) for H. azteca in 

the absence of waterborne U concentrations (R2=0.94). H. azteca were exposed for one week to U 

waterborne concentrations of 40-250 nmol/L (i.e., acute uptake time series experiment) prior to 

depuration. Corrected body burden in H. azteca were divided by Cw/(K0.5 + Cw) to account for 

differences in water U concentrations. 
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Fig. 3.5 Total corrected U-body concentration versus time (day) for non-gut-cleared and corrected gut-

cleared animals (i.e., 1-loss× gutclear) H. azteca exposed to pooled waterborne U concentrations of 10-

1800 nmol/L from various experiments for four weeks (R2=0.82). Corrected body concentration in H. 

azteca were divided by Cw/(K0.5 + Cw) to account for differences in U water concentrations. 
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APPENDIX 
 
Qualiy Assurance and Quality Control (QA/QC) 

 Quality assurance and quality control procedures were carried out by NLET, such as standard 

verifications to monitor sensitivity drift of the machine, control standards to confirm accuracy of the 

calibration curve, and reference materials to monitor accuracy and precision (ICP-MS, NLET, 2007). A 

high-purity standard for U (High-Purity Standards, Charleston, South Carolina, USA) and an 

Environment Canada (National Laboratory for Environmental Testing at the National Water Research 

Institute, Environment Canada, Burlington, ON, Canada)  certified trace elements drinking water 

standard (TM-DWS) were included with the water and H. azteca samples in order validate the ICP-MS 

calibration curve for U. The average percent recovery for the high-purity standard (n=6) and 

Environment Canada standard (n=6) from the true value was 99.5 and 108%, respectively. Method 

blanks were collected and processed at the same time as water and sediment and tissue digests were 

collected and processed, using the same containers, digestion or preservation techniques. Method 

blanks were also measured. Uranium concentrations in the water and H. azteca were background 

corrected, by subtracting by the blank measured value. This blank correction accounted for any 

potential U contamination that may have been present during the collection and processing of the 

samples. For the majority of the blank samples, U concentrations were below the ICP-MS detection 

level of 0.0005 μg/L.    

 Blanks and appropriate standard reference materials for the major ions (Ca, Mg, Na and K), 

DIC/DOC, and the anions, SO4 and Cl measurements were analysed by NLET in accordance with their 

quality assurance and quality control procedures. Dissolved organic and inorganic carbon samples were 

measured on a UV-persulfate TOC analyzer (Pheniox 8000TM). The major ions Ca, Mg, Na, and K were 

measured on an atom absorption spectrophotometer, while the anions, Cl and SO4 were measured using 

ion chromatography. 
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CHAPTER 4 
 

THE CONCENTRATION OF URANIUM AND 26 OTHER METALS IN THE WATER, 
SEDIMENT, AND TISSUES OF Hyalella azteca EXPOSED TO SEDIMENT AND SITE 

WATER COLLECTED NEAR FORMER URANIUM MINING DISTRICTS: ELLIOT LAKE 
AND BANCROFT, ONTARIO, CANADA 

Abstract 
The purpose of this study was to determine if a water-bioaccumulation model using the 

freshwater amphipod Hyalella azteca as the model organism, and a water-sediment saturation model 

developed in a previous study, could be applied to quantify Uranium (U) bioavailability under natural 

conditions. The evaluation and bioavailability of 26 other metals were also assessed in the sediment, 

water and H. azteca, in order to distinguish between toxicity, if any, caused by U exposure versus those 

caused by the presence of others metals in the environment. The water-bioaccumulation saturation 

model could not be validated in this study due to U concentrations in H. azteca and overlying water 

being close to background levels. Similarly, U concentrations in the sediment were close to background 

concentrations for the majority of the sites making it difficult to test the water-sediment partitioning 

saturation model. For some sites where metal concentrations in the sediment and water were above 

background concentrations, the water-sediment partitioning saturation model under-predicted U binding 

to the sediment when compared to the observed field concentrations. Toxicity did take place at some 

sites, but this toxicity was not due to U, but rather to Cd. This study emphasized the use of metal 

bioaccumulation when conducting field risk assessments to determine metal bioavailablitiy in the 

aquatic environment. 

4.0 Introduction 
 There have been many studies that have focused on bioaccumulation of uranium (U) and U-

series radionuclides, mainly radium, in many species near Elliot Lake, a former U mining district in 

Ontario, Canada (e.g.,  Clulow et al., 1991; Clulow et al., 1992; Clulow et al., 1996; Clulow et al., 

1998a; Clulow et al., 1998b).  However, the chemical toxicity of U, which is considered to be more 

toxic than the radiological toxicity (EC/HC, 2004) has received little attention in the field and in aquatic 

invertebrates. Of the studies that are currently available, Alves et al. (2008) found that for Hyalella 

azteca, a sensitive freshwater amphipod, U bioaccumulation was mainly via the water rather than the 

sediment when H. azteca were exposed to U-spiked sediments for 28 days (Alves et al., 2008). The 

bioaccumulation of this animal was found to be a more reliable indicator of U toxicity than 

concentrations in the water and sediment (Alves et al., 2008). However, Alves et al. (Chapter 3) 

cautioned that body-size needs to be taken into account when reporting U accumulation and toxicity in 
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these animals, given the presence of a significant negative relationship between U and body size when 

H. azteca were exposed to water-only U concentrations for one week.  

 Water chemistry such as pH can influence U bioaccumulation and toxicity in some species. For 

instance, Markich et al. (2000) found that the valve movement response of a freshwater bivalve, 

Velesunio angasi, was dependent on pH, whereby the bivalves were more sensitive to U concentrations 

at a low water pH (5.0). By applying a water-bioaccumulation and water-sediment partitioning 

saturation model, Alves et al. (2008) were able to determine that water pH not only affects U speciation 

in the water, but the dissolution of U from the sediment into the water and the uptake of U by H. azteca. 

In fact, the half-saturation constant for U partitioning or accumulation in their saturation model varied 

strongly with the hydrogen ion concentration to the fourth power, suggesting the presence of four 

binding sites for hydrogen ion on the sediment or H. azteca. 

   Although, Alves et al. (2008) was able to successfully apply these saturation models in a 

practical laboratory setting, their validity in the field still need to be demonstrated. If these models are 

successfully validated in the field, they will be essential monitoring tools for environmental regulators 

and industry in the management of aquatic environments near U mines and tailings management areas. 

Therefore, the goal of this study was to first determine if U is bioavailable to H. azteca exposed to field 

sediments and waters near decommissioned U mining and tailings management areas in Ontario, and if 

the saturation models employed by Alves et al. (2008) can be applied to quantify U concentrations 

under natural conditions. The evaluation and bioavailability of 26 other metals (i.e. Ag, Al, As, B, Ba, 

Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Tl, V and, Zn) were also 

assessed in the sediment, water and H. azteca, in order to distinguish between toxicity, if any, caused by 

U exposure versus toxicity caused by presence of others metals.   

4.1 Theory 
4.1.0 Metal Bioaccumulation  

 A saturation model (Borgmann et al., 2004; Alves et al., 2008) has been shown to describe the 

bioaccumulation of metals such as Cd, Cu, Pb, Ni and U by H. azteca; this model is described by: 

 

bkg
W0.5

W
TB C

CK
C 

C +
+

=
max

                                                         (4.1) 

 

where CTB is the total body concentration of a metal, max is the maximum (above background 

concentration) accumulation of the metal by the organism, CW is the concentration of the metal in water, 

K0.5 is the half saturation constant (concentration at which the CTB is halfway between the maximum 
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accumulation and background concentrations), and Cbkg is the background CTB in animals in the absence 

of any added metal to the water. 

 The K0.5 value for U is expressed as: 

 

K0.5 = a + b(H+)4                                                                                             (4.2) 

 

where a = 1/Km and Km is the binding strength of the metal to the binding site (ligand), and b is the 

product of a and the corresponding binding constants to the hydrogen ion. The estimated values for the 

a and b constants predicted from the Alves et al. (2008) study are shown in Table 4.1. In Eq. (4.2), 4 is 

the slope of the plot of log (K0.5) versus log (H+) if the other ions are held constant. This slope also 

represents the number of hydrogen binding sites (i.e. four bindings sites) binding to the ligand.  

 

4.1.1 Water-sediment partitioning  

The binding of U in water to sediment is also described using a saturation model, similar to Eq. (4.1), 

but with an inclusion of an additional binding site (Alves et al., 2008):   
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where Csed is the total metal concentration in the sediment, max’ and max’’ are the maximum (above 

background concentration) in the sediment, K0.5’ and K0.5’’ are half saturation constants, analogous to 

K0.5 in Eq. (4.1) and Cbkgs is the background concentration of Csed in the absence of any added metal to 

the sediment.   

 If the first binding site of the sediment is weak, K0.5' >>Cw, then Eq. (4.3) can be simplified to 

(Alves et al., 2008):  

 bkgs
W0.5

W
Wsed C   

)C"(K
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   C αC +
+

+=
max"

                                              (4.4) 

 

where α represents max'/K0.5'; the initial slope of the saturation curve (Borgmann et al., 2004; Alves et 

al., 2008).  

 The inverse of α and binding to the second binding site are also related to the hydrogen ion 

concentration similar to K0.5 in Eq. (4.2) as follows: 
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4)(H1 ++= b'a'

α
                                                                                           (4.5) 

and 

 

K0.5’’ = a’’ + b’’(H+)4                                                       (4.6) 

 

where a’ = 1’/Km’, a’’= 1’’/Km’’; b’ and b’’ are the products of a’ and a’’, respectively, and the 

corresponding binding constants to the hydrogen ion, while Km’ and Km’’ are the binding strengths of 

the metal to binding site. The estimated values for the constants a’, a”, b’, and b” from Alves et al. 

(2008) are shown in Table 4.1.  

4.2 Materials and Methods 
4.2.0. Study area(s) 

 4.2.0.1 Elliot Lake, Algoma District  

 The City of Elliot Lake is located on the Canadian Shield in Northern Ontario, within the 

Serpent River watershed, north of Lake Huron and between Sudbury and Sault Ste. Marie (Fig. 4.1). 

Uranium mining and milling operations flourished during the mid-1950’s to 1960’s and then again from 

the 1970’s to the 1990’s with a total of 12 decommissioned mines, 11 associated decommissioned mills, 

and 10 decommissioned tailings management areas near Elliot Lake (EC/HC,2004; LLRWMO, 2004; 

Minnow Environmental Inc., 2005 ).  

 Five lakes near Elliot Lake were sampled: Ten Mile (TNM), Dunlop (DUN), Quirke (QKE), 

Elliot (ELT), and McCarthy (MCC) Lake for U concentrations in the sediment, water and H. azteca 

(Fig. 4.2). Ten Mile and Dunlop were selected as reference lakes because they were both upstream of 

any U decommissioned mines/mills and tailings management areas (Fig. 4.2; EC/HC, 2004).  Quirke 

and Elliot Lake were chosen because at one time there were a total of seven and three operating mines, 

respectively, near the vicinity of these lakes (LLRWMO, 2004; Minnow Environmental Inc. 2005; Fig. 

4.2). Currently, Quirke Lake, which is the largest water body in the Serpent River watershed, receives 

treated effluent from three tailings management areas (EC/HC, 2004). McCarthy Lake, which is 

downstream of all the decommissioned mines/mills and tailings management areas, receives the 

combined flow from all the above lakes sampled (EC/HC, 2004). In terms of lakes, McCarthy Lake is a 

good representative of the total U concentrations within the Serpent River watershed.   

 

4.2.0.2 Bancroft, Hasting County 

 The town of Bancroft, on the southern edge of the Canadian Shield in Eastern Ontario, is 

located on the York River, north-east of Toronto and west of Ottawa (Fig. 4.1). Uranium mining and 
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milling occurred during the late 1950’s to mid-1960’s and then resumed again in late 1970’s to early 

1980’s with a total of two decommissioned mines, a decommissioned mill and three decommissioned 

tailings management areas (OMOE, 2003; LLRWMO, 2004; Fig. 4.3). Five Lakes near Bancroft were 

sampled: Centre (CTR), Siddon (SID), Bentley (BEN), Bow (BOW), and the upper part of Paudash 

Lake, Inlet (INT) Bay, for U concentrations in the sediment, water and H. azteca. Centre and Siddon 

Lake were chosen as reference lakes, given their locations upstream of any decommissioned mines or 

mill, and tailings management areas (Fig. 4.3). Both Bentley and Bow Lake were adjacent to a 

decommissioned mill and a tailings management area, whereas Inlet Bay was downstream of a 

decommissioned mine and a tailings management area (Fig. 4.3). All of these lakes empty into the 

Crowe River system, which forms part of the Lake Ontario watershed (OMOE, 2003). 

4.2.1 Sediment  

 Sediments were collected near Elliot Lake in August 2007 and Bancroft in October 2007. A 

mini-PONAR grab was used to collect approximately 250 mL of sediment at each sampling site (Table 

4.2). For each individual lake, sediments were collected at the deepest part of the lake and at 20 meters 

for lakes near Elliot Lake and 10 meters for lakes near Bancroft. Samples were placed into 250 mL 

acid-washed polypropylene containers. Sediment samples were stored in a 4○C cooler and transported 

to Burlington, Ontario, Canada, Centre for Inland Waters Research, Environment Canada. Sub-samples 

of the sediments were freeze dried and analyzed for particle size using the procedure of Duncan and 

LaHaie (1979) and total organic carbon using the LECO®CR-12 carbon determinator (LECO Corp, MI, 

USA). Other sub-samples of the sediment were dried in a 60°C oven for one week and analyzed for 

moisture content before being digested and analyzed for the 27 metals: Ag, Al, As, B, Ba, Be, Bi, Cd, 

Co, Cr, Cu, Fe, Ga, La, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V, and Zn  by the National 

Laboratory for Environmental Testing (NLET), Environment Canada, Burlington, Ontario, Canada, 

using inductively coupled plasma-mass spectrometry (ICP-MS, NLET, 2007). Sediment digestions 

were carried out as described by Alves et al. (2008) for the H. azteca.  The leftover sediments were 

placed in a 4○C walk-in incubator prior to their use in the cone experiments (see below). 

 

4.2.2 Field water  

 Ten liters of surface water at the deepest part of each sampled lake were collected along with 

field blanks (Nanopure® water). Water temperature, conductivity, pH, and dissolved oxygen were 

measured with a submersible YSI Datasonde probe (YSI 6600D-multi-parameter water quality monitor, 
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YSI Environmental System, OH, USA). Ammonia was analyzed using an assay kit (Aquarium Test for 

freshwater, NUTRAFIN®, Quebec, Canada). 

 Water was collected for dissolved inorganic carbon and dissolved organic carbon (DIC/DOC), 

alkalinity, hardness, and the major ions: Ca, Mg, Na, and K measurements at the deepest part of the 

lake. For the DIC/DOC water was collected in glass containers with no head space. Filtered (0.45 μm 

Supor® (PES) membrane ion chromatography Acrodisc®, Pall Corporation, Ann Arbor, MI) and 

unfiltered water were collected and acidified to 1% HNO3 with 70% supra trace HNO3. Water samples 

were stored in a 4○C cooler and transported to Burlington, Ontario were they were kept in a 4○C walk-in 

incubator pending analysis. 

4.2.3 Benthic collection and other samples 

 Hyalella azteca and periphyton were collected, where present, near the shoreline (Table 4.2). 

Hyalella azteca were collected by disrupting the surface layer of the sediment for one minute and 

skimming the layer with a D-net. The animals were placed into a 10 L bucket with lake water and 

transported to Burlington. These animals were counted, gut-cleared for 24 h in dechlorinated water 

originating from Lake Ontario, dried, digested, using the procedure described in Alves et al. (2008), and 

analyzed for the above mentioned 27 metal concentrations by NLET (NLET, 2007). These field 

collected H. azteca were used only as an indication of their presence in the lake and as a measurement 

of metal concentrations in the field for these animals. They were not used in the cone experiments (see 

below). 

 Periphyton was collected by scraping off rocks and logs near the shoreline (Table 4.2). The 

periphyton was placed in a 1 L acid-wash polypropylene container with lake water and stored in a 4○C 

cooler while in the field and in a 4○C walk-in incubator once in the laboratory. Sub-samples of the 

periphyton were dried and digested as described in Alves et al. (2008) for H. azteca and then analyzed 

for the 27 metals by NLET (NLET, 2007). The leftover periphyton was used as food source for the H. 

azteca as a side experiment in the cone study (see below).    

4.2.4 Culturing 

 Hyalella azteca were cultured using the procedures of Borgmann et al. (1989), but in 

polyethylene containers rather than glass containers. Each culture was supplied with 1L of 

dechlorinated Burlington City tap water originating from Lake Ontario (from July 07 -Dec 07 in mg/L 

(n=9)): dissolved organic carbon = 1.1 ± 0.2 ; dissolved inorganic carbon = 18.3 ± 0.8 ; Cl = 26.9 ± 1.3; 

SO4 = 39.1 ± 2.1 ; Ca = 35.4 ± 0.5 ; Mg = 8.7 ± 0.1 ; Na =14.5 ± 0.8 ; K = 3.6 ± 1.9, alkalinity (as 

CaCO3) = 76.3 ± 3.1;  hardness (as CaCO3) = 124.3 ± 1.6, pH 7.9 to 8.2). Culture water was renewed 
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weekly with the young being separated from the adults in order to maintain a continuous supply of zero 

to one-week-old-amphipods. The culture and experimental animals were held in a walk-in incubator at 

24 ± 1°C with a 16h light: 8h dark photoperiod. Animals used in the experiments were acclimated in a 

5-salt artificial medium (see below) for one week prior to the start of the experiments. The initial age of 

juvenile H. azteca used in the cone studies at the start of the experiments was 7-14 days old.   

4.2.5 Experiment water chemistry 

 Chronic four-week (28 day) static, non-renewal experiments were conducted using sediments 

from each site with both site water and a moderately hard water with high alkalinity, 5-salt Standard 

Artificial Medium (SAM): 1 mM CaCl2; 1mM NaHCO3; 0.25 mM MgSO4; 50 μM KCl; 10 μM NaBr.  

The SAM is similar to Lake Ontario water with a pH of about 8. Given that Canadian Shield waters are 

usually soft, with a lower pH around 7, the inclusion of SAM in this study was to provide some 

variability to the water chemistry in the study and to observe if there were any consistent patterns in 

terms U partitioning from field sediment and decrease in U bioaccumulation in H. azteca with an 

increase in overlying water pH as reported in Alves et al., (2008). 

 Experiments were carried as described by Alves et al. (2008), but with the exclusion of caged 

animals. In short, within 4-7 days of sediment collection, approximately 5 mL of sediment with a depth 

1 cm and surface diameter of 3 cm was added to a polycarbonate Imhoff settling cone. One liter of 

SAM or site overlying water was added to each cone in order to achieve a water to sediment ratio of 

200:1. Each cone was allowed to equilibrate for two weeks. After the two-week equilibrium period 15 

acclimated H. azteca in SAM were added to each cone and exposed to the field sediments and the 

different overlying waters for 28 days with a 16h light: 8 h dark period at 24 ± 1°C. Amphipods were 

fed ground TetraMin® fish flakes (Tetra Holding Inc., U.S.A) or natural periphyton collected in the 

field three times per week at the following rates: 2 mg for week 1 and 2; 2.5 mg for week 3, and 5 mg 

for week 4.  

Ten milliliters of filtered (0.45 μm) overlying water samples were collected on day zero and 28 

from each chamber for the measurement of the dissolved metal concentrations, Ag, Al, As, B, Ba, Be, 

Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Li, Mn, Mo, Ni,  Pb, Rb, Sb, Se, Sr, Tl, U, V, and Zn in the water. 

Water samples were acidified to 1% with HNO3 (high purity acid, omniTrace®, E.M. Science) and 

placed in a 4оC cold-room pending analysis. Ten milliliter water samples were collected and used to 

measure pH (ATI ORION, Model 420A), ammonia (Aquarium Test for freshwater, NUTRAFIN®), 

conductivity (VWR Scientific, Model 1054) and dissolved oxygen (Thermo Orion, Model 805APlus) at 

the beginning and end of the exposure periods.  
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On day 28, 125 mL of overlying water was collected and measured for dissolved organic and 

inorganic carbon using a UV-persulfate TOC analyzer (Pheniox 8000TM), while 500 mL of water was 

collected and measured for the major ions Ca, Mg, Na, and K using an atom absorption 

spectrophotometer and Cl and SO4 using ion chromatography. These water samples as well as the field 

collected waters were analyzed by NLET (NLET, 2007).  

Surviving amphipods were sieved and rinsed in clean City of Burlington tap water. The 

amphipods were counted and placed in a 120 mL plastic specimen container with 50 μM EDTA 

(Ethylenediaminetetra-acetic acid, BDH Chemicals, LTD.) made-up in SAM and 5.0 mg of  TetraMin 

for 24 h to clear their guts. The gut-cleared amphipods were weighed as a group to provide a mean 

mass per container and dried for 48 h at 60°C. Groups of six dried amphipods were digested as 

described in Alves et al. (2008) and analyzed for the 27 metal concentrations by NLET (NLET, 2007). 

 

4.2.6 Quality Assurance and Quality Control (QA/QC)  

 Blanks and appropriate standard reference materials for major ions, DIC/DOC, SO4 and Cl 

measurements were analysed by the National Laboratory for Environmental Testing (NLET) in 

accordance with their quality assurance and quality control procedures.  

 All U chemical analyses in terms of the 27 metals (Ag, Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, 

Fe, Ga, La, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, Tl, V and, Zn) concentrations in sediment, water H. 

azteca and periphyton were done by the NLET using inductively coupled plasma-mass spectrometry 

(NLET, 2007). Quality assurance and quality control procedures were carried out by NLET, such as 

standard verifications to monitor sensitivity drift of the machine, control standards to confirm accuracy 

of the calibration curve, and reference materials to monitor accuracy and precision (ICP-MS, NLET, 

2007). Method blanks and field blank were collected at the same time as the water was collected and 

the sediment and tissue digests were processed, using the same containers, digestion or preservation 

techniques. Measured metal concentrations in the sediment, water, H. azteca and periphyton were 

background corrected by subtracting these values by the method blank and field blank measurements. 

This blank correction accounted any potential metal contamination that may have been present during 

the collection and processing of the samples. 

 A high-purity standards certified reference material for trace elements (High-Purity Standards, 

Charleston, South Carolina, USA) and an Environment Canada (National Laboratory for Environmental 

Testing at the National Water Research Institute, Environment Canada, Burlington, ON, Canada) 

certified trace elements drinking water standard (TM-DWS) were analysis along side the sediment, 

water, H. azteca, and periphyton samples in order to validate the ICP-MS calibration curve for the 

different elements. These standards were acidified to 1% with HNO3 (high purity acid, omniTrace®, 
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E.M. Science). Two additional certified sediment reference materials (SUD-1, collected from Ramsey 

Lake near Sudbury, Ontario, and WQB-3, a mixture of Hamilton Harbour and Lake Ontario sediments, 

National Laboratory for Environmental Testing at the National Water Research Institute, Environment 

Canada, Burlington, ON, Canada) processed in the same manner as the sediment digests were included 

to validate the ICP-MS calibration curve for the different elements when analysing the sediment 

samples. The Institute for National Measurement Standards National Research Council of Canada 

certified reference material, Tort-2, lobster, hepatopancrease (National research council of Canada, 

Ottawa, Canada), digested using the H. azteca digestion method, was used to validate the ICP-MS 

calibration curve for the different elements during the H. azteca samples analyses. The mean percent 

recovery for the high-purity standard (n=4) and Environment Canada certified standards (n=4) for a 

suite of certified metals was within 11% and 7%, respectively, of the certified standard values. The 

mean percent recovery for the two certified reference sediments, SUD-1 (n=2) and WQB-3 (n=4), were 

both within 8% of the certificate reference value for the certified metals. The mean recovery for Tort-2 

(n=6) was between 2% of the certified value among the different certified metals.  

 

4.2.7 Statistics and data analysis 

All statistical tests were performed using SYSTAT version 10.0 (Chicago, Illinois, USA). 

Survival data was arcsine transformed to approximate the normal distribution. Comparisons in 

normalized data between the treatments and the lakes were made using a nested analysis of variance 

(ANOVA) where treatments were nested within the lakes, followed by a Tukey's pairwise comparison 

for differences among the treatments and lakes (P<0.05). 

4.3 Results  

4.3.0 Surface water chemistry in field  

 Dissolved oxygen concentrations were higher in the lakes sampled near Bancroft than near 

Elliot Lake. Water temperature was about 10°C higher for water collected from Elliot Lake area 

compared to Bancroft area (Table 4.3). This may explain why the dissolved oxygen concentrations 

were higher for the Bancroft region. given that more oxygen can dissolve in cold water compared to 

warm water. pH readings for the Elliot Lake sites (7.3-8.5) were more variable than those from 

Bancroft sites (7.7 to 7.9; Table 4.3).   

 Conductivities were on average lower (28-170 μS/cm) at sites near Elliot Lake compared to 

those at Bancroft (46-540 μS/cm; Table 4.3). This is not surprising since the major ions Ca, Mg, Na and 

K, as well as the Cl, and SO4 were higher in the Bancroft waters in comparison to sites near Elliot Lake 

(Table 4.3). Dissolved organic carbon (DOC) was consistent between the two studies ranging between 
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1.7 to 3.6 mg/L for the Elliot Lake sites and 3.5 to 5.6 mg/L for the Bancroft sites. Dissolved inorganic 

carbon (DIC) was on average three times higher for waters in the Bancroft region compared to the sites 

in the Elliot Lake district (Table 4.3), thus explaining the higher alkalinity measurements in the 

Bancroft region (Table 4.3). The high conductivity at some sites (e.g., MCC1, QKE1, BEN1, BOW1; 

Table 4.3) may be associated with the liming of the tailings that took place in the past and/or is 

currently taking place at some of the tailings management areas near Elliot Lake (e.g. QKE Lake). 

4.3.1 Overlying water chemistry in the cone experiments 

 Dissolved oxygen in the overlying water was on average higher for the Elliot Lake study (7.9-

8.3 mg/L) compared to the Bancroft study (7.3-7.7; Table 4.4); but overall was consistent within each 

study. pH was maintained around 8.0 for H. azteca exposed to the overlying SAM water in all studies. 

The site waters: SID, BEN, BOW and INT were also maintained around pH of 8.0 in the four-week 

cone experiments for H. azteca fed the TetraMin or periphyton diet (Table 4.4). The overlying water for 

the TNM, DUN, MCC, and ELT sites were around circumneutral pH for animals fed a TetraMin or 

periphyton diet (Table 4.4). The same was true of the overlying water from the QKE site for animals 

fed periphyton. For animals reared on a TetraMin diet for the CTR and QKE sites, pH was around 6.1 

and 6.2, respectively (Table 4.4).  

 Conductivity ranged between 430-480 μS/cm in cones with the SAM overlying water. Similar 

to the observations in the field waters, the major ion and conductivity measurements were on average 

lower for site waters collected near Elliot Lake compared to sites near Bancroft (Table 4.3; Table 4.4). 

For the BEN and BOW sites, conductivity was higher than the SAM overlying water. This is not 

surprising given that major ions Ca and Mg were higher than those in the SAM water for these sites, 

also explaining the higher hardness levels at these sites (Table 4.4).  

 Dissolved organic carbon was on average 2-3 times lower in the SAM overlying waters, 

compared to the site waters. The only exception to this was QKE-SAM (10 mg/L) where DOC was 2.5 

times higher compared to the site waters (4.1 mg/L; Table 4.4). With the exception of the BEN and 

BOW sites, the opposite was true for DIC and alkalinity measurements, whereby these measurements 

where on average higher for the SAM versus site waters (Table 4.4). 

4.3.2 Metal concentrations in field collected lake water samples 

 Dissolved metal and metalloid concentrations for the surface water collected at the various 

lakes in the Elliot Lake and Bancroft regions are reported in Table 4.5. The dissolved metals and 

metalloids concentrations in the surface water were compared to available freshwater Ontario 

Provincial Water Quality Objectives (PWQO) for Ag, Al, As, B, Be, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb, 
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Sb, Se, Tl, U, V, Zn and Canadian Water Quality Guidelines (CWQG) for Ag, Al, As, Cd, Cr, Cu, Fe, 

Ni, Pb, Se, Tl and Zn, which both report these values on a total metal concentration basis (MOEE,1999; 

CCME,1999). Comparing dissolved versus total metal concentrations values should not affect the 

overall intent of the guidelines, which is to protect all forms and aspects of aquatic life and life stages 

during any duration of metal exposure via the water (MOEE, 1999; CCME, 1999), especially given that 

the dissolved or the free ion form of the metal is usually associated with causing adverse effects to the 

organism. In other words, if the dissolved form exceeds the total metal concentration values of the 

guidelines this suggests that the environmental conditions may not be appropriate for supporting aquatic 

life (MOEE, 1999).  

 For the CWQG, the guidelines are derived using the lowest observable effect level (LOEL) 

based on chronic studies using a non-lethal endpoint (e.g. growth and reproduction) for the most 

sensitive life cycle/stage of the most sensitive native Canadian aquatic species studied, and then 

multiplying this value by an uncertain safety factor of  0.1. Alternatively, the guideline may be set by 

using the median lethal (LC50) or median effective concentration (EC50) from an acute study for the 

most sensitive species and then multiplying by an acute/chronic ratio (CCME, 1999). If there are 

limited data for a particular contaminant an interim guideline is derived (CCME, 1999). The PWQG are 

derived in a similar manner (OMOE, 1992). 

The majority of the dissolved metal and metalloid concentrations in the surface water collected 

in the field were well below the set PWQO and CWQG, except for the metals B, Cd and U (Table 4.5).  

Boron concentrations exceed the PWQO of 18500 nmol/L by 1.8 fold only at BEN1 (Table 4.5). Boron 

concentrations were also close to PWQO guideline for BOW1 (17000 nmol/g), but did not exceed this 

value (Table 4.5). Cadmium concentrations were at the CWQG interim value of 0.04 nmol/L, based on 

a hardness of 10 mg/L as CaCO3, for TNM (0.04 nmol/L) and DUN (0.03 nmol/L), and exceeded the 

CWQG interim value of 0.07 nmol/L for Cd at ELT (0.09 nmol/L; Table 4.5). 

The highest dissolved U concentrations in the water were found at the BOW1 (130 nmol/L), 

BEN1 (110 nmol/L) and QKE1 (4.1 nmol/L; Table 4.5). For the BOW1 and BEN1 sites, these U 

concentrations exceeded the PWQO of 21 nmol/L, by 6 and 5 fold, respectively (Table 4.5). 

Centre Lake, a reference lake in the Bancroft area, did have elevated Fe levels of 3500 nmol/L 

in its surface water. However, these concentrations were approximately 1.5 times lower than both the 

PWQO and CWQG of 5400 nmol/L for Fe (Table 4.5).  

Dunlop Lake, a reference lake in the Elliot Lake area, had elevated concentrations of Cr (15 

nmol/L) compared to the other lakes in the study. However, this value was below the PWQO and 

CWQG for Cr (VI) of 19 nmol/L and Cr (III) 170 nmol/L (Table 4.5). Chromium redox speciation was 

not measured in the water so it cannot be concluded if the dissolved fraction of Cr was in the Cr (VI) or 
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Cr (III) form, with the Cr (VI) form being more toxic at lower concentrations than Cr(III). Although, 

there are no guidelines for Sr, this metal was between 10-200 times elevated at BEN1 and BOW1 

compared to the other sites sampled in this study (Table 4.5). 

4.3.3 Metal concentrations in overlying water of the cone experiments 

 Metal concentrations in the site or SAM overlying waters in the cone experiment are shown in 

Table 4.6. The overlying water and H. azteca (see below) data were pooled together for the different 

sediment sampling sites within each lake for the sediment cone toxicity tests. This was done due 

increase the sample size.. 

 The metals concentrations of Al, Ga, Mn, Pb and V concentrations were often higher in the 

SAM overlying water when compared to the site waters collected near the Elliot Lake and Bancroft 

areas. Selenium was always higher in the SAM overlying water with the Bancroft area collected 

sediments, while U concentrations were higher in the SAM overlying waters with the sediments 

collected near the Elliot Lake area (Table 4.6). The higher concentrations of these metals in the SAM 

overlying water are probably due to the complexation of these metals to carbonates with increasing pH 

and hardness in the water. Based on the available PWQO and the CWQG, the majority of the metals 

and metalloids concentrations in the overlying SAM and site waters were below the guidelines except 

for Cd concentrations in the overlying SAM water at DUN, and Al, B, Cd, Cu, and U at various 

overlying site waters near the Elliot Lake and Bancroft areas (Table 4.6). Al concentrations exceeded 

the CWQG at the DUN, QKE and CTR-site when adjusting for pH (<6.5; Table 4.6). For instance, Al 

concentrations were four times higher than the CWQG at CTR-site. 

 Boron concentrations exceeded the PWQG at BEN and BOW sites for animals fed the 

TetraMin or periphyton diets (Table 4.6). Cadmium concentrations exceeded the CWQG for most sites 

in Elliot Lake area in the overlying site water and only the CTR-site near Bancroft after accounting for 

hardness (Table 4.6). Cadmium concentrations exceeded the CWQG when adjusted for hardness for 

DUN-SAM. Similarly, Cu concentrations in the overlying site water exceeded the PWQG and CWQG 

at some sites near Elliot Lake when adjusted for hardness (Table 4.6). For example Cu concentrations 

exceeded the PWQG and the CWQG by 2.5 and 1.3 times, respectively at the ELT-site (Table 4.6). 

Uranium concentrations only exceeded the PWQG at the BEN and BOW Lake using the overlying 

water sites and for animals fed the TetraMin or periphyton diets (Table 4.6).  

4.3.4 Sediment concentrations and analysis  

  Sediments at the deepest part of QKE Lake were not collected due to unsafe weather conditions 

(i.e. too windy) at the time of collection. Sediments at 20 meters for QKE were obtained but not 
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measured for total organic carbon and particle size due to a potential risk of radionuclide exposure to 

the operator during analysis. Organic carbon was always higher than the inorganic carbon for all sites, 

with sediments sampled near Bancroft having a higher total carbon measurements compared to the 

Elliot Lake area sites (Table 4.7). The presence of a higher density of cottages and smaller lake area and 

lake depth or the smaller watershed to smaller lake area ratio near the Bancroft sampling sites compared 

to those near Elliot Lake area may partly explain the higher organic content at Bancroft (Table 4.2; 

Table 4.7; Fig.4.2-4.3).  

 In terms of the particle size distribution (Table 4.7), the majority of the lakes in the Elliot Lake 

area were classified as clayey silt, with the deepest site at DUN1 being sandy silt. All lakes near 

Bancroft were classified as silty clay (Table 4.7). Moisture content in the sediments ranged between 80-

95% for all sites (Table 4.7). 

 Metal concentrations in the sediments for the different lakes are shown in Table 4.8. The 

concentrations for the metals and metalloids: As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediments 

were compared to available freshwater Ontario Provincial Sediment Quality Guidelines (PSGQ): 

Severe Effect Level (SEL) and Lowest Effect Level (LEL; Jaagumagi, 1992). The SEL is the 

concentration of the metal in the sediment that is detrimental (i.e. may cause death) to 95% of benthic 

species, while the LEL is the metal concentration in the sediment which 5% of benthic species cannot 

tolerate (i.e. there is a 5% biological (toxic) response to the benthic species; Jaagumagi, 1992). These 

levels were derived using the Screening Level Concentration (SLC) approach, an effects-based 

approach, developed by Neff et al. (1986), whereby a frequency distribution of the metal concentrations 

collected at different field sites and in co-occurrence with the presence of benthic species is used to 

calculate a species SLC (SSLC) using the 90th percentile, where 90% is the metal concentration that 

can be tolerated by a specific species. From here another frequency distribution is generated using the 

SSLC for each species, with the 5th percentile of this SSLC frequency distribution being set as the LEL 

and the 95th percentile being set as the SEL (Neff et al., 1986). 

 Sediment metal concentrations were also compared to the national freshwater Canadian 

Sediment Quality Guidelines (CSQG) Interim Sediment Quality Guideline (ISQG) and Probable Effect 

Level (PEL) for the available metals and metalloids As, Cd, Cr, Cu, Pb, and Zn. The ISQG (or 

Threshold Effect Level (TEL)) is the concentration at which adverse biological (toxic) effects, such as 

death, rarely occur to aquatic species. It is derived by taking the geometric mean of the 15th percentile 

concentration of a biological effect (i.e. survival, growth, reproduction, etc.) data set and the 50th 

percentile concentration of a biological no-effect data set (CCMC, 1999). The ISQG is derived only 

when data are available, but limited in terms of the sediment type and/or characteristics, given that 

these factors can modify and influence metal bioavailability and toxicity to aquatic species (CCME, 
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1999). The PEL, on the other hand, is the level at which adverse biological (toxic) effects frequently 

take place to aquatic species. This level is calculated by taking the geometric mean of the 50th percentile 

concentration of the biological effect data set and the 85th percentile concentration of the biological no-

effect data set (CCME, 1999).  

The metals Al, Fe, and Mn were consistently higher on a molar basis compared to other 24 

metals at both the Elliot Lake and Bancroft sampling regions (Table 4.8). For the metals Fe and Mn, the 

majority of these high concentrations were found in lakes near decommissioned mines, more so for the 

Elliot Lake region compared to the Bancroft region (Table 4.8). These elevated Fe and Mn 

concentrations may be associated with the solubilization of these metals that probably took place in the 

past when the U ore was acid leached (Dreesen et al., 1982). 

 Currently there are no PSQG and CSQG for the metal Al. According to PSQG, Fe levels for the 

Elliot Lake region were all above the LEL (380 μmol/g dw), with two sites in this region, notably 

MMC2 and QKE1, exceeding the SEL (780 μmol/g dw), by 1.4 and 5.8 times, respectively (Table 4.8).  

Iron levels near the Bancroft region only exceed the PSQG-LEL at BOW sites (Table 4.8). All other 

sampling sites near Bancroft were below the PSQG-LEL (Table 4.8).  

Manganese concentration in the sediments, exceeded the PSQG SEL of 20 μmol/g dw for the 

majority of the sites, except at DUN2, MCC1, ELT1, QKE1, CTR1 and CTR2 (Table 4.8). The PSGQ 

LEL of 8.4 μmol/g dw for Mn was reached at all the sites near Bancroft and Elliot Lake, except for 

CTR2 (Table 4.8).  

For both the Elliot Lake and Bancroft regions As concentrations were at or above both the 

CSQG-ISQG (0.08 μmol/g dw) and PSQG-LEL (0.08 μmol/g dw) for all sample sites (Table 4.8). The 

CSQG-PEL, however, was at or exceeded the DUN1, ELT1, QKE1 and CTR1 sites, while DUN1 and 

QKE1 exceeded the PSQG-SEL for As, by 1 and 2 times, respectively (Table 4.8). Similarly, Cd 

concentrations exceed or where at the CSQG-ISQG (0.01 μmol/g) and PSQG-LEL (0.01 μmol/g) for all 

sites except the QKE1 sites, which was below the ISQG and LEL value (Table 4.8). Only the DUN1, a 

reference site, exceeded the CSQG-PEL for Cd. No site exceeded the PSQG-SEL (0.09 μmol/g dw) for 

Cd (Table 4.8).  

The DUN1 site also exceeded the CSQG-PEL (0.44 μmol/g) for Pb (Table 4.8). Mean Pb 

concentrations exceeded both the PSQG-LEL (0.15 μmol/g dw) and CSQG-SEL (0.17 μmol/g dw) at 

all sediment sampling sites (Table 4.8). Only QKE1 and BOW1 exceeded the PSQG-SEL (1.21 μmol/g 

dw) by approximately 1.7 and 4.0 times, respectively for Pb. In terms of the CSQG-PEL (0.44 μmol/g 

dw), DUN1, QKE1, CTR1, SID1, SID2, and BOW1 and BOW2 exceeded this level for Pb (Table 4.8). 
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Interestingly, sediments from the reference lake, TNM, had high concentrations of metals 

present, most notably Cr and Ni at the TNM1 Site (Table 4.8). The concentrations of Cr and Ni at the 

TNM1 site were on average 10 and 27 times higher, respectively, compared to concentrations measured 

in sediments at different sampling sites in the Elliot Lake region (Table 4.8). The mean Cr 

concentration in the sediment (7.9 μmol/g dw; Table 4.8) was approximately 4.6 times higher than the 

CSQG-PEL of 1.7 μmol/g dw. Overall, Cr concentrations were above the PSGQ LEL of 0.50 μmol/g, 

and below the PSQG SEL of 2.1 μmol/g dw for all other sampling sites near Elliot Lake (Table 4.8). 

Chromium levels, however, were below PSGQ LEL for all sampling sites in the Bancroft region (Table 

4.8). 

The mean Ni concentrations were at or above the PSQG LEL of 0.27 μmol/g dw for all sites in 

the Elliot Lake region and the BOW, SID and BEN sites near Bancroft (Table 4.8). The TNM1 was the 

only site that exceeded the PSQG SEL of 1.28 μmol/g dw for Ni (Table 4.8). The mean Ni 

concentration for the TNM1 sediment was approximately 14 times higher than PSQG-SEL (Table 4.8). 

No available CSQG were available for Ni. 

 Mean Cu concentrations were above both the PSGQ-LEL (0.25 μmol/g dw) and CSQG-ISQG 

(0.56 μmol/g dw) at all sampling sites, except for the INT and CTR2 sites where mean Cu 

concentrations in the sediment were below the CSQG-ISQG. Only the TNM2 and QKE1 exceeded the 

PSQG-SEL (1.73 μmol/g dw) for Cu by approximately 2 and 1 times, respectively. No sites exceeded 

the CSQG-PEL (3.1 μmol/g dw) for Cu in this study.  

 The mean Zn concentrations were all above the PSQG-LEL (1.84 μmol/g dw) and the CSQG-

ISGQ (1.88 μmol/g dw), but on average 4.2 and 1.6 times below the PSQG-SEL (12.5 μmol/g dw) and 

CSQG-PEL (4.82 μmol/g dw), respectively (Table 4.8). 

 Uranium concentrations in the sediment were between 10-80 times higher for ELT2, QKE1, 

BOW1 and BOW2 sites when compared to the references lakes (Table 4.8). Although there are 

currently no sediment quality guidelines for U in Ontario or Canada, the severe effect level (SEL) value 

of 14.3 μmol/g dw for U derived in the Thompson et al. (2005) study using the SLC approach for U 

released from U mining and milling activities in Northern Saskatchewan and Ontario was not exceeded 

at any of the study area sites. But the LEL of 0.13 μmol/g for U estimated in that study was exceeded at 

ELT2, QKE1, BEN1, BOW1 and BOW2 sites (Table 4.8; Thompson et al. 2005).  

 Thompson et al (2005) also derived the LEL and SEL for the metals Mo, Se and V.  When the 

Mo, Se and V concentrations in the sediment in this study were compared to the Thompson et al. (2005) 

estimates, Mo concentrations only exceeded the LEL of 0.09 µmol/g dw at TNM1, SID1, SID2, BEN2, 

BOW1 and BOW2, with no site breaching the SEL of 5.6 µmol/g dw. Nevertheless, the LEL of 0.01 
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and 0.54 µmol/g dw for Se and V, respectively, were exceeded at all sites in the Bancroft and Elliot 

Lake area (Table 4.8; Thompson et al., 2005), with the SEL of 0.06 µmol/g dw and 1.5 µmol/g dw for 

Se and V, respectively, being exceeded at QKE1, and TNM2 for Se and MCC1, MCC2 and ELT1 for V 

(Table 4.8; Thompson et al., 2005). 

4.3.5 Metal concentrations in field Periphyton and TetraMin 

 The metals Al, Fe and Mn were the highest compared to the other 24 metals analyzed in the 

periphyton collected near the Elliot Lake and Bancroft sites (Table 4.9). The confidence intervals in 

Table 4.9 were very wide making it very difficult to determine reliable metal concentrations estimates 

in the periphyton. Metal concentrations in the TetraMin were very low in comparison to those measured 

in the periphyton (Table 4.9). For example, U concentrations in the TetraMin were about 200 times 

lower than that for the lowest U concentrations measured in the periphyton collected at DUN3 (Table 

4.9). 

4.3.6 Metal Concentrations in H. azteca in the field 

 Hyalella azteca were collected at all sites except QKE Lake. The absence of the H. azteca at 

QKE Lake was probably due to the sparse macrophytes along the shoreline at this site. This is not the 

ideal habitat to find H. azteca due to limited food source and coverage from predation (Strong, 1972). 

Out of the 27 metal concentrations measured in these animals for the Elliot Lake region, the metals Al, 

Be, Cr, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Sb, V, and Zn were found to be the highest in the tissues of the H. 

azteca collected at TNM (Table 4.10). Hyalella azteca collected from MCC Lake had the highest metal 

concentrations in their tissues for the metals Ag, Bi, Co, La, Rb, Se, Tl and U when compared to the 

other lakes in this region (Table 4.10). For instance, the concentrations of Fe and Pb measured in the H. 

azteca at TNM were about four times higher than the metal concentrations measured in H. azteca 

collected at DUN, MCC and ELT Lake (Table 4.10). Similarly, Ni and V concentrations were about six 

and three times, respectively higher at TNM compared to the other Lakes in the Elliot Lake region 

(Table 4.10). In addition, Co concentrations in H. azteca at MCC Lake were about three times higher 

compared to the other sites near Elliot Lake.  Interestingly, H. azteca collected at DUN, a reference 

lake, had Cd concentrations that were on average three times higher than Cd concentrations at other 

sites within the Elliot Lake region (Table 4.10). 

In comparison to the Elliot Lake sites, metal concentrations in H. azteca collected near 

Bancroft were on average lower, except for the metals B, Li and Sr. Both B and Li in H. azteca at the 

Elliot Lakes sites were below detection limits (BDL; Table 4.10). The highest metals concentrations in 

the H. azteca collected in the Bancroft region were found at CTR, a reference lake, for the metals Cd, 
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Co, Mn, Pb, Sb, and Se. Cadmium and Mn concentrations were six times and three times, respectively 

higher in H. azteca collected from CTR in comparison to the H. azteca collected at SID, BEN, BOW, 

and INT.  The metals B, Sr, U, V and Zn were the highest in H. azteca collected at BEN, while the 

metals Be, Cu, Fe, La, Li, were the highest at BOW. The metals Cr, Mo, Rb, and Tl were reported to be 

the highest in the H. azteca collected at INT (Table 4.10).   

 Alves et al. (Chapter 3) found that there was a significant relationship between body size and U 

bioaccumulation. Table 4.10 reports both standardized (US) and non-standardized U-body 

concentrations in H. azteca. Body size was standardized to 0.20 mg dw, the geometric mean when the 

dry weights of all the animals collected in the field from both study areas were pooled together. U 

concentrations in the standardized and non-standardized animals did not vary by much (Table 4.10). 

This may be because the animals at these sites were similar in size. The three highest U concentrations 

reported in the H. azteca from highest to lowest were collected at BEN (2.5 nmol/g), MCC (1.9 nmol/g) 

and BOW Lake (1.5 nmol/g; Table 4.10).   

4.3.7 Sediment Toxicity Tests: Metal Bioaccumulation and survival  

 For the majority of sites, metal concentrations in H. azteca exposed to the SAM water were on 

average lower than those exposed to the site waters (Table 4.11). Hyalella azteca exposed to the 

overlying site water and fed TetraMin or periphyton diets had approximately the same or lower total 

metal concentrations, on average, in their bodies when compared to total metal concentrations measured 

in the field collected H. azteca (Table 4.10; Table 4.11). The exception to this was for the metals and 

metalloids concentrations of Ag, As, Ba, Cd and Fe in the Bancroft region, whereby these 

concentrations were consistently higher in the H. azteca used in the sediment toxicity tests than the field 

collected H. azteca (Table 4.10; Table 4.11). In addition, Cd bioaccumulation in the H. azteca used in 

the cone sediment toxicity tests for the DUN-site was the same as that measured in the field collected 

H. azteca, at around 430 nmol/g dw, a Cd body concentration that was close to the four-week lethal 

body concentration causing 25% mortality (LBC25) effect level of 640 nmol/g dw derived in 

Borgmann et al. (2004; Table 4.10; Table 4.11). 

 Uranium concentrations in the cultured H. azteca were also standardized to 0.30 mg dw, the 

geometric mean when the dry weights for all the animals from both study areas were pooled (Table 

4.11). U concentrations in the standardized and non-standardized animals did not change by very much. 

Uranium bioaccumulation in H. azteca (Table 4.11) was on average between 2-20 times lower than 

those of the H. azteca collected in the field (Table 4.10).  

 Animals fed the periphyton diet had on average about the same or higher total metal 

concentrations in their bodies than animals reared on TetraMin diet at both the Elliot Lake and Bancroft 
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study regions (Table 4.11). Due to the wide variation in the confidence value and the small sample size 

(n=1), in some cases (Table 4.10; Table 4.11), a significant difference in total metal accumulation 

between animals fed the different diets could not be inferred. The same was true when trying to 

determine if there was a difference between metal accumulation in H. azteca exposed to the overlying 

site waters versus those exposed to the overlying SAM waters (Table 4.11). 

For H. azteca exposed to the overlying SAM water and fed TetraMin, survival was maintained 

between 90-98% for all sites (Fig.4.4). Survival for the site waters was at or below 50% for all lakes, 

except at BEN (82%), BOW (72%), and MCC (55%) for animals reared on TetraMin (Fig.4.4).  

Mean survival for animals exposed to overlying site water and fed contaminated periphyton 

was at or below 60% (Fig. 4.4). For ELT, MCC and INT, mean survival was similar between those fed 

TetraMin versus those fed the contaminated periphyton (Fig. 4.4). Metal concentrations in the H. azteca 

were also approximately the same for animals fed the TetraMin versus periphyton diet at these sites 

(Table 4.11). For QKE-SITE mean survival (23%) was higher in animals fed the periphyton diet than 

those fed the TetraMin diet (7%). Survival was around 13% and 27% for animals fed periphyton and 

exposed to site water from BEN and BOW, respectively. These mean survivals were about 6.3 and 2.7 

fold lower than for animals exposed to site water and fed the TetraMin diet. When comparing the metal 

body concentrations in the animals fed the periphyton versus those fed the TetraMin for the BEN and 

BOW sites, metal body concentrations were similar except for the metals Al and As, which were on 

average about four times higher in animals fed the contaminated periphyton (Table 4.11). 

 
4.4 Discussion 
 
4.4.0 Bioaccumulation and sediment to water saturation models for U   

 Uranium concentrations measured in cultured H. azteca exposed to waters and sediments 

collected in the field at purportedly contaminated sites, with the exception of BEN and BOW,  were at 

or close to the mean background concentration (95% confidence interval) of 0.12 (0.03) nmol/g dw 

measured in H. azteca exposed to reference overlying waters and sediments (Table 4.11; Table 4.12). 

This mean background concentration in H. azteca was similar to the background concentrations of 0.09 

to 0.16 nmol/g and 9.2 to 13 nmol/g in H. azteca reported by Alves et al. (2008) and Roberston and 

Liber (2007), respectively.  

Uranium concentrations at some sites (Table 4.10; Table 4.11) were also close to the 

background U water concentrations of 0.03 to 0.99 nmol/L measured at the reference sties in this study 

and in the Alves et al. (2008) study, where background concentrations in the overlying water ranged 

between BDL to 0.47 nmol/L (Table 4.10; Table 4.11). This may explain, why at some sites such as 

MCC, the observed versus predicted ratios were close to unity when applying the water-
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bioaccumulation saturation model proposed by Alves et al. (2008; Table 4.12). Taken together, the low 

concentrations of U in the H. azteca and water in this study are not sufficient to properly test the water-

bioaccumulation saturation model. The U bioaccumulation and water data should be significantly 

higher than background concentrations. For example, U concentrations in H. azteca and water in this 

study were on average 90 times lower than mean LBC10 for H. azteca (29 nmol/g) and 50 times lower 

than the mean LC10 (72 nmol/L) estimated in Alves et al. (2008) study using 10SAM; a water medium 

that was more sensitive to U toxicity. 

 Only the BEN and BOW sites had measured U concentrations in  field collected H. azteca and 

in situ lake water, were high enough to test the water-bioaccumulation saturation model, using a max of 

73 nmol/g and the a’ and b’ estimates of 0.042 pmol/L and 2.02E+05 from the Alves et al. (2008) study 

(Table 4.1; Table 4.12). The observed/ measured ratios were 0.9 and 0.3 for the BEN and BOW Lakes, 

respectively. This suggests that the model could potentially be used in a first-tier risk assessment given 

that the observed accumulation matched the predicted accumulation within a factor of 3.3. 

 The bioaccumulation-saturation model was tested using data from Robertson and Liber (2007), 

who exposed caged H. azteca in situ to surface and pore water for 4 days near an active U operation 

(Rabbit Lake) in Saskatchewan, Canada. Uranium concentrations in the Roberston and Liber (2007) 

study were significantly above background levels in the water and H. azteca and within the U 

concentrations used to derive that the water-bioaccumulation model in Alves et al. (2008) study. The 

overall observed/predicted ratios were within a factor of 4.6 using the Robserton and Liber study after 

adjusting for steady-state (Table 4.12; Chapter 3). The water-bioaccumulation model under-predicted U 

bioaccumulation in the H. azteca at all sites, except the Horseshoe Pond surface water site (Table 4.12). 

This can be problematic, despite the observed/predicted ratios being within a factor of 4.6, because this 

would result in an under-estimation of U toxicity in the H. azteca by a factor of up to 4.6. Nevertheless, 

the water-bioaccumulation saturation model may be a potentially good tool in a first-tier risk 

assessment to predict toxicity in H. azteca exposed to U concentrations in the water phase (pore or 

surface water). 

Diet may have a significant effect on metal accumulation in aquatic animals (Wang and Fisher, 

1999) and thus affect the water-bioaccumulation saturation model predictions. Borgmann et al. (2007) 

investigated the relative contribution of food collected in the field and water to the bioaccumulation of 

27 metals and metalloids in caged H. azteca near rivers affected by metal mining and found that Cd, Cu 

and Se were the only metals in the food that had a significant effect on whole body accumulation. 

Despite there being a 6.5 fold concentration range of U in the food in the Borgmann et al. (2007) study, 

there was no effect of U concentrations in the food on total U concentration in the H. azteca. This is 

most likely the case in this study given that U bioaccumulation in the H. azteca was quite constant 
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between animals fed the TetraMin versus the periphyton diet after accounting for body-size (Table 

4.11) and given that U concentrations of up to 1100 nmol/g were reached in the periphyton at some 

sites (e.g. QKE and BOW; Table 4.9). For example, the H. azteca/periphyton ratio was 3.0E-03 for the 

QKE and BOW sites whereby U concentrations in periphyton was 1100 nmol/g dw and U 

concentrations in size-standardized (US) H. azteca were around 2.8 (Table 4.9; Table 4.11). This 

suggests that U in the periphyton was not bioavailable to H. azteca. It also indicates that U in the diet 

did not have an influence on the water-bioaccumulation saturation model predictions. 

The water-sediment partitioning saturation model proposed by Alves et al. (2008) under- 

predicted U concentrations in the sediment when using U water concentrations measured in the 

overlying SAM water, and for most sites using the site overlying water, while over-predicting U 

concentrations in the sediment using the lake water (Table 4.12). However, the water-sediment 

saturation model cannot be tested critically with the majority of naturally contaminated sediments 

collected in this study, except for the BEN and BOW sites using the lake water, and the BOW site using 

site water, because U concentrations in the overlying and lake waters, as mentioned above, were low 

when compared to the Alves et al. (2008) study. When testing the water-sediment partitioning model, 

the observed/predicted ratio was 2.0 and 1.1 for the BEN and BOW sites, respectively, using U 

concentrations measured in the site overlying water (Table 4.12). However, the observed/predicted ratio 

was 0.03 for the BEN and 0.35 for the BOW site when using U concentrations in the lake water to test 

the water-sediment partitioning model. This suggests, at least for the U concentrations measured in the 

lake water, that the uranyl ion used to spike the sediments in the Alves et al. (2008) study had a higher 

binding to the spiked-sediments than in the field sediments. This is more likely due to U being more 

available to bind during the sediment spiking procedure than in the field. Taken together, this suggests 

that the water-sediment saturation model derived in the Alves et al. (2008) study cannot be used with 

natural contaminated sediments to predict toxicity because the partitioning of U from field sediments 

into water will be less than predicted using the water-sediment saturation model, and thus toxicity will 

be under-estimated.  

Although U redox speciation in the sediment was not determined, the sediment surface was 

oxygenated for two weeks prior to the start of the experiment and throughout. Thus, there is reason to 

believe that the surface-bound U would most likely be in the U(VI) form, given U(VI) is the major form 

of U in oxic environments, whereas U(IV) is the major form of U in anoxic environments (Markich, 

2002). However, if U was still in the U(IV) form, this may explain the lower U concentrations in the 

SAM water and sites with similar pH (Table 4.5; Table 4.6), because the U(IV) can easily precipitate 

and remain immobile (Markich, 2002) in the sediment. However, the low concentrations of U dissolved 

from the sediment to the SAM water and to sites of similar pH may also be due to the mere fact that U 
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concentrations in the sediment were low and potentially not available to partition into the overlying 

water at higher pH (8).  

 When measured U concentrations above background levels in the surface water from the 

Robertson (2006) study were used to test the water-sediment partitioning saturation model, the 

observed/predicted ratios were within a factor of four for these sites (Table 4.12). However, for the sites 

using U concentrations above background in the pore water (Robertson, 2006), the observed/predicted 

ratios were around 0.04 and 0.1 (Table 4.12). Thus, the water-sediment partitioning saturation model 

appears to work for U concentrations in the surface water, but not for U concentrations measured in the 

pore water. Given that the observed concentrations of U in the sediment (Csed) were the same using the 

surface versus the pore water, a plausible reason as to why the water-sediment partitioning saturation 

model predicted higher U concentrations in the sediment using the pore water is a higher concentration 

of DOC or humic substances in the pore water than the surface water. The DOC may be heavily 

complexing the U (Markich, 2002) and thus increasing U concentrations in the pore water. For example 

DOC concentrations in this study were on average ten times lower in the surface water, when compared 

to the pore water in the Robsertson (2006) study (Tables 4.3, 4.4). Taken together, this suggests that the 

water-sediment portioning model may be an appropriate first-tier assessment tool for regulators to 

quantify U concentrations and predict sediment toxicity under natural contaminated sediments with 

above background U surface-water, but not pore water measurements. 

  The data set used in this study and from other published sources are not adequate to 

sufficiently validate the above saturation models. A further development of the water-sediment 

partitioning saturation model may need to include other water chemistry parameters such as DOC in the 

water especially in instances were U concentrations in the pore water, rather than the surface water, are 

needed to predict U concentrations in the sediment.   

4.4.1 Overall risk assessments for metals  

The approach proposed in the Aquatic Effects Technology Evaluation program (AETE; ESG, 

1999), a Canadian government-industry program that reviewed appropriate technologies for evaluating 

the impacts of mine effluents on the aquatic environment, can be used to assess the impacts of metals in 

the Elliot Lake and Bancroft regions. This is achieved by addressing the four questions: (1) Are 

contaminants getting into the system? (2) Are contaminants bioavailable? (3) Is there a measurable 

response? (4) Are the contaminants causing this response? 

4.4.1.0 Are the contaminants getting into the system? 
 The concentrations of the metals in the water and sediment demonstrate that metals above 

background levels are present in the lakes sampled at Elliot Lake and Bancroft (Table 4.5-4.6; Table 
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4.8). However, sediment profiles were not conducted in this study to quantify temporal and spatial 

trends in contamination due to natural, pre-mining, post-mining and current metal concentrations. The 

sampling device used in this study, the mini-polar grab, does not sample from a defined depth. Thus, 

the sediment in these grab samples is most likely a mixture of surface and pre/post-industrial sediment 

that are variable and not equally distributed. Therefore, it cannot be concluded that metals that were 

measured in the sediment collected in this study were from recent metal depositions. As such, the metal 

and metalloids measured in the sediments are not sufficient to definitively answer the question “are the 

contaminants getting into the system?” in this study.  

 Consequently, measured metals and metalloids concentrations in the surface water can be 

useful to answer the question “are contaminants getting into the system?” When the geometric mean of 

the metals and metalloids measured in the field collected water (Table 4.5) near Elliot Lake and/or 

Bancroft were compared to the metal and metalloids concentrations measured in the lakes surrounding 

the decommissioned mines/mills and tailings management areas, it appears that some metals and 

metalloids may still be getting into the system. For instance, the metals and metalloids Al, As, B, Ba, 

Be, Ga, La, Li, Mo, Ni, Rb, Se, Sr, Tl, U , V and Zn measured at the various contaminated sites near 

Elliot Lake area were elevated when compared to the reference lakes, TNM and DUN (Table 4.5). For 

the Bancroft area the metals and metalloids B, Cr, Ga, Li, Mo, Ni, Rb, Sr, and U were higher in the 

contaminated lakes than the reference lakes, CTR and SID (Table 4.5). It is suggested that the higher 

levels of the metals and metalloids in the contaminated sites versus those of the reference lakes (Table 

4.5) may be due to metals/metalloids run-off from the decommissioned U mine/milling and tailings 

management areas or potentially the desorption of the metals/metalloids from the sediment, given that 

the majority of the elevated contaminates at these sites (e.g. As, Mo, Se and V) are mostly associated 

with U mining and processing activities. The use of statistics could be inferred here to determine if 

there were any significant difference between metals concentrations in the contaminated and the 

reference lake. However, the sample size (n) was three for each individual site near Elliot Lake and two 

for the Bancroft region making the statistics unreliable. 

  Interestingly, the metals Al, Co, Fe, La and Li were between 8-25 times and 10-50 times higher 

in the water at CTR Lake when compared to the reference lake (i.e. SID), and the contaminated sites 

(i.e. BEN, BOW, and INT; Table 4.5), respectively, for the Bancroft study area. These high metals at 

CTR Lake could not be explained, especially given that the sampling site for this reference lake was 

upstream of the tailings management area and the decommissioned mine (Fig. 4.3). 

4.4.1.1 Are contaminants bioavailable? 
 The metals As, Fe, Mn, Cd, Cr, Pb, Ni, Zn and U exceeded the PSQG-PEL and the CSQG-

ISQG at some sites (e.g. TNM, DUN, BEN, BOW; Table 4.5), but this does not guarantee that these 
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metals are bioavailable to cause an adverse effects to benthic organisms. The sediment compositions for 

the majority of sites in this study were composed mainly of clay and silt particles (Table 4.7). Clay 

sediments, for example, are known to retain metals more strongly than sandy sediment thus rendering 

some metals to be less bioavailable to cause adverse effects to organisms. Complexation of U to organic 

carbon and Fe and Mn oxides in aerobic sediments and to sulfides associated with Fe in anaerobic 

sediments also influence metal bioavailability (Sibley et al., 1996). The elevated levels of Fe and Mn in 

the sediments at the majority of sites in this study compared to the other metals analyzed, may have 

limited the bioavailability of other metals. This is because Fe and Mn oxides are considered major 

scavengers of other metals such as Cu, Pb, Ni and Zn under aerobic conditions (Tessier et al., 1996).  

The influence of overlying water chemistry may also influence metal bioavailability in the 

sediment, especially when the sediment concentrations are below the SQG. For instance, Alves et al. 

(2008) found that with increasing overlying water pH (around 8), the desorption of U from the sediment 

into the overlying water increased. However, the majority of U in the overlying water was not 

bioavailable because the uranyl ion was probably bound as a calcium-carbonate complex (~62-68%).

  

 A more direct way to answer the question “are the contaminants bioavailable” is to measure 

metal bioaccumulation in the animal. This is because the effects of sediment and water chemistry on 

metal bioavailability, speciation and uptake in the animal are all taken into account (Borgmann et al., 

1991; Borgmann et al., 1998; Borgmann and Norwood, 1999; Borgmann, 2000; Alves et al., 2008). 

When comparing metal concentrations measured in H. azteca collected in the field (Table 4.10) versus 

cultured H. azteca used in the sediment cone toxicity tests, (Table 4.11), metal concentrations measured 

in the field were often higher than H. azteca measured in the cone sediment toxicity tests. However, 

these differences were not significant, given the wide variance between field collected H. azteca and 

cultured H. azteca (Table 4.10; Table 4.11). Thus it appears that some contaminants are bioavailable, 

because they were bioaccumulated in these animals. 

 What is interesting is that some metals appeared to be just as bioavailable, and sometimes 

more, at some of the reference sites when compared to the study sites. A case in point is Cd 

bioaccumulation at the DUN site for H. azteca collected in the field and in the sediment toxicity tests 

(Table 4.10; Table 4.11). At this site Cd concentrations in the H. azteca were the same at around 430 

nmol/g dw, approximately 2.6 and 9.3 times higher than metal concentrations measured in the field-

collected and sediment-test H. azteca, respectively, from the other contaminated sites near Elliot Lake 

area (Table 4.10; Table 4.11). Similarly, the same was true for CTR lake, a reference lake, whereby Cd 

bioaccumulation in the H. azteca collected in the field  (9.9 nmol/g dw) or in the sediment toxicity tests 

(69 nmol/g) was about 6 and 22 times, respectively higher than in the tests with contaminated sites 
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(Table 4.10; Table 4.11). Overall, this suggests that there does not seem to be any impact due to mining, 

i.e. the reference lakes had higher metal concentrations than the contaminated sites, but some metals are 

nevertheless bioavailable at some of the sites, given that metal concentrations were measured in the H. 

azteca (Table 4.10; Table 4.11). 

 

4.4.1.2 Is there a measurable response?  

A benthic community structure analysis may confirm the presence of adverse effects to 

organisms under natural conditions. However, it cannot quantify or determine a specific cause-effect 

relationship between the organism and the metal concentrations.  A more direct way to determine if the 

metal concentrations in the sediment and water are toxic to animals is to conduct a sediment toxicity 

test that exposes organisms to these contaminated sediments and waters. The only drawback of 

sediment toxicity tests are that the test conditions do not necessary reflect the conditions found in the 

field. Hence, a benthic community analysis or an in situ bioassay alongside a toxicity test may be 

required (OMOE, 2003).  

Although, a benthic community analysis was not conducted in this study, sediment toxicity 

tests were. It terms of a measurable response via the sediment toxicity tests, there was no effect (i.e. 

mortality was greater than 90%) when animals were exposed to the natural contaminated sediments and 

the SAM overlying water (Fig.4.4). However, there were some effects (i.e. mortality) using the site 

overlying water, but this toxicity was not significant different (P <0.05) between the contaminated sites 

and reference sites (Fig. 4.4). Thus, it cannot be claimed that this measurable response was due to past 

mining operations. 

4.4.1.3 Are the contaminants causing this response? 

The CSQG and PSQG are based on associative information, spiked-sediment toxicity data and 

field data, and not on a site specific basis, thus making it difficult to identify and evaluate a cause-effect 

relationship between a metal or metals and the biota (CCME,1999; Jaagumagi, 1992). They also do not 

take into consideration the effect of water chemistry. Therefore, comparisons of sediment metal 

concentrations with sediment quality guidelines may predict that an effect may be taking place at the 

site of interest, but not the cause of this effect. The same is true when comparing metal concentrations 

in the water to water quality guidelines. 

If the critical body concentrations (i.e. LBC25) that cause toxicity for the different metals are 

known (Tables 4.10-4.11; Table 4.13) it may be possible to identify the metal or metals that are causing 

the measurable response. Studies (Borgmann et al., 1991; Borgmann et al., 1998; Borgmann and 

Norwood, 1999; Borgmann, 2000; Alves et al., 2008) with H. azteca and the metals Cd, Pb, Tl, and U 
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have shown that metal bioaccumulation is a more reliable indicator of metal toxicity than water or 

sediment  concentrations for metals that are not regulated or sequestered by the animal. For example, 

Alves et al. (2008) found that when H. azteca were exposed to different water chemistries, varying 

hardness and alkalinity independently, that the LC50 measurement in the water varied over 50 fold, 

while on a body concentration basis it varied only 2 fold. However, body concentrations cannot be 

successfully employed for metals that are able to be regulated such as Cu and Zn, or stored, because 

there may not be a clear relationship between bioaccumulation and toxicity (Borgmann, 2000).  

According to Table 4.13, and ignoring the possible physiological regulation of Cu and Zn, one 

might suspect that there could be some form of adverse effect or toxicity taking place for the TNM-

SAM and QKE-SAM treatments based on the calculated one-week LBC25 measured/effect ratio of 

0.78 for Cu at TNM and 0.70 for Zn at QKE Lake. However, the sediment toxicity tests show no 

toxicity to H. azteca exposed to the SAM overlying waters from these sites and all other sites near the 

Elliot Lake and Bancroft region for the SAM overlying water (Fig. 4.4).  For H. azteca whereby Cu and 

to an extent Zn concentrations are regulated by these animals, a bioaccumulation-toxicity relationship 

may not be suitable (Borgmann and Norwood, 1995; Borgmann, 2000). In these situations the overlying 

metal water concentrations and the critical water concentration from toxicity tests may provide 

additional information (Borgmann, 2000).  In this case, both the Cu and Zn concentrations at the TNM-

SAM and QKE-SAM were well below the LC25 and LC50 effect concentrations for Cu and Zn in the 

water (Table 4.13; Table 4.14).   

  Survival was around 72 and 82% for the BOW and BEN Lake, respectively, for H. azteca 

exposed to the site waters and fed TetraMin (Fig. 4.4). Despite U concentrations in the water exceeding 

the PWQO of 21 nmol/L, by 5 and 6 fold for BEN and BOW, respectively, the high pH (~8.0) and 

hardness (200-280 mg/L CaCO3; Table 4.6) at these sites could have limited the bioavailability of this 

metal. For instance U bioaccumulation in the H. azteca (Table 4.11) was well below the LBC10 of 32 

nmol/g for a similar water chemistry for H. azteca exposed to U-spiked sediments (Alves et al., 2008). 

The low survival for CTR (8%) and QKE (7%) for animals reared on TetraMin and exposed to 

site overlying water may be partly explained by the low pH of 6 in the water, a pH value which the H. 

azteca do not tolerate (Table 4.4; Fig. 4.4).  The concentrations of Al, Cd, and Pb in the site overlying 

water at CTR Lake and Cd, and Mn concentrations in the site overlying water for QKE Lake (Table 

4.6) may have also contributed to the measurable response. The measured/effect LC50 ratio based on 

one-week toxicity tests and compared to the metals Al, Cd, and Pb measured at CTR Lake was 0.23, 

0.19, and 0.22, respectively.  The measured/effect one-week LC50 was 0.44 and 0.39 for Cd and Mn, 

respectively at QKE-site (Table 4.6; Table 4.14)  
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Cadmium bioaccumulation (69 nmol/g dw) in H. azteca exposed to CTR-SITE overlying water 

was approximately 0.11 the LBC25 of 637 nmol/g dw for Cd in soft water, while the measured/LBC25 

effect ratio was 0.14 for Pb (Table 4.13). There is currently no LBC25 estimate for Al for H. azteca. 

Based on the available published data, it appears that the metals Cd and Pb may have contributed to the 

measurable response at CTR-SITE.  

Cadmium and Mn bioaccumulation in the H. azteca exposed to the site overlying water at QKE 

were about 20 and 29 times lower than the four-week LBC25 of 637 and 4400 nmol/g for Cd and Mn, 

respectively (Table 4.11). The metal body concentrations for the metals Co, Cr, and Ni were elevated in 

the H. azteca exposed to QKE-SITE (Table 4.11). Although the water hardness was about 75 mg/L as 

CaCO3 at QKE (Table 4.4), the measure/ LBC25 effect ratio was calculated to be 0.81, 0.41, and 0.79 

for the metals Co, Cr and Ni, respectively, using a four-week LBC25 estimated in water hardness of 

130 mg/L as CaCO3 (Table 4.13). It may be suggested that the metals Co, Cr, and Ni may be exerting 

some adverse effects to the animals exposed to QKE water (Fig. 4.4). 

Although there was a 50% survival of H. azteca exposed to the SID overlying site water and 

fed TetraMin, this measurable response could not be explained. Iron levels in the H. azteca (15000 

nmol/g dw) were about 1.4 times higher at SID-SITE when compared to CTR-SITE and about 8 times 

higher at SID lake when compared to the other lakes in this region (Table 4.11). Gillan et al. (2004) 

found that the amphipod Urothoe poseidonis living in the burrows of Echinocardium cordatum 

frequently had Fe-encrusted coatings on their appendages and sternites in the winter. However, in the 

summer they were not coated with Fe. The uncoated amphipods in the summer were suggested to be 

related to the death of the Fe-covered amphipods (Gillan et al. 2004). The same can be taking place 

here, whereby Fe accumulates on the surface of the animals to an extent that it blocks physiology 

activities on the surface of the animals or prevents the animals from doing daily activities such as 

gathering and eating, thus explaining the 50% survival at SID-SITE (Fig. 4.4). 

The low survival for the DUN-SITE (27%; Fig. 4.4) may be associated with Cd and Zn 

concentrations in the water given the measured/effect (LC50) ratio of 0.92 and 0.35, respectively for 

this site (Table 4.14). Cadmium bioaccumulation in the surviving H. azteca from the sediment toxicity 

tests (430 nmol/g) and those collected in the field (also 430 nmol/g) for the DUN-SITE were on average 

three times higher than other Cd concentrations measured at other sites (Table 4.10; Table 4.11). The 

measure/ LBC25 effect ratio was 0.68 for Cd at DUN-SITE (Table 4.14). Thus for the DUN-SITE it 

appears that toxicity may be partially due to Cd concentrations in the water, given that the 

bioavailability and toxicity of Cd to the H. azteca  is primarily due to the dissolved metal (Warren et al., 

1998).  
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Zinc bioaccumulation could have also contributed to a measurable response given a measure/ 

LBC25 effect ratio of 1.2 (Table 4.11; Table 4.13).  However, this body concentration was similar to 

those for the animals in the SAM overlying water, where survival was greater than 90% (Fig. 4.4). This 

is probably because Zn may be partially regulated in the animal (Borgmann and Norwood, 1995) and 

thus not a good metal to use a bioaccumulation-toxicity relationship on (Borgmann, 2000). In fact, both 

Cu and Zn concentrations, which may be regulated by the H. azteca, were close or above the four-week 

LBC25 effect of 2200 nmol/g  and 1800 nmol/g for Cu and Zn, respectively, for amphipods exposed to 

the site water (Table 4.11; Borgmann, 2004). However, these body concentrations were no different to 

Cu and Zn body concentrations measured in the H. azteca exposed to the SAM water, where survival 

was greater than 90% (Table 4.11; Fig. 4.4), and where measured Cu and Zn in the site overlying water 

were about 11-660 and 10-1200 fold lower than the four-week LC50 estimates for Cu and Zn, 

respectively, in hard water (Borgmann et al., 2004; Table 4.6).  

The low survival at TNM (40%), ELT (37%) and MCC (55%; Fig. 4.4) for H. azteca fed 

TetraMin and exposed to the site overlying water could not be explained. However, Cd water 

concentrations were about the same (~0.30 nmol/L; Table 4.6) at these sites. The one-week LC50 

measure/effect ratio was on average about 0.23 for these waters using the one-week LC50 of 1.3 

nmol/L for Cd estimated in Borgmann et al. (2005; Table 4.14). When bioaccumulation measurements 

for the metals Co and Cr were compared to the four-week LBC25 estimates from Norwood et al. (2007) 

for TNM, the measure/ LBC25 effect was 0.61 and 0.23 for Co and Cr, respectively. Similarly, the 

measure/LBC25 effect measurement for Co was 0.24 for ELT. For INT the low survival of 40% could 

not be explained by the available data.  

 For ELT, MCC, and INT, mean survival was similar between those fed the TetraMin versus 

those fed the periphyton diets (Fig. 4.4). Metal concentrations in the H. azteca were also approximately 

the same for animals fed the TetraMin versus periphyton diet at these sites. For QKE mean survival 

(23%) was higher in animals fed the periphyton diet versus those fed the TetraMin diet (7%). Metal 

bioaccumulation for the metals Co, Cr, Mn and Ni were apparently higher in the animals fed the 

TetraMin diet than those fed the periphyton diet (Table 4.11) at QKE. The four-week LBC25 

measure/effect ratio using the estimate (280 nmol/g dw) was 0.78 for animals fed the TetraMin diet 

(Table 4.11; Borgamann et al. 2004) at the QKE. Similarly, for Co and Cr, the four-week LBC25 

measured/effect ratio was 0.81 and 0.42, respectively (Table 4.11; Borgmann et al., 2004). It could be 

suggested that Co, Cr and Ni were some of the metals that may have contributed to toxicity present at 

QKE for animals fed the TetraMin. However, toxicity could not be explained for those animals fed the 

periphyton diet. 
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  Survival was around 13% and 27% for animals fed periphyton and exposed to site overlying 

water from BEN and BOW, respectively. These mean survivals were less than the mean survival 

measurements for the animals fed the TetraMin diet and exposed to the site water at BEN (82%) and 

BOW (72%) sites. When comparing the metal body concentrations in the animals fed the periphyton 

versus those fed the TetraMin for these sites, metal body concentrations were similar except for the 

metals Al and As, which were on average about four times higher in animals fed the contaminated 

periphyton (Table 4.11). The four-week LBC25 measured/effect ratio, using the LBC25 estimated in 

hard-water (83 nmol/g) for As was 0.45 and 0.37 for BEN and BOW, respectively (Table 4.14). A four-

week LBC25 is not known for Al for H. azteca. One could suggest that the metals As and Al from the 

water and food were the contaminants responsible for this response, but the concentrations of these 

metals were comparable to the metal concentrations measured in the site water and periphyton for the 

other sites (Table 4.6; Table 4.9). The overall low survival in all the animals fed periphyton diets at all 

sites may be the result of the poor nutritional quality of periphyton and not the metals in the 

environment. In other words, periphyton may not have provided the adequate nutrition for growth and 

survival of H. azteca, whereas the TetraMin diet is specially formulated to provide the proper nutrition 

for this species. 

Overall, the sediment toxicity tests do show that toxicity does exist at some sites in the Elliot 

Lake and Bancroft regions, however, the contaminants causing this measurable response could not be 

predicted for all sites.  The only metal strongly implicated in contributing to toxicity is Cd at DUN. 

Low pH of about 6.0 at some of the sites (i.e. CTR-SITE and QKE-SITE) may have also contributed to 

the poor survival of the H. azteca. The sediment toxicity tests suggest that toxicity in these regions was 

not due to U concentrations in the sediment, water and H. azteca (Tables 4.6, 4.8, 4.11).. 

4.5 Conclusion 
A water-bioaccumulation model could not be properly validated to quantify metal 

concentrations in the H. azteca under natural conditions because most water and body concentrations of 

U were low and often close to background. The water-sediment binding model was suggested to be an 

appropriate model to predict sediment toxicity using natural contaminated sediments and surface U 

water measurements.  It appears that metals Al, As, B, Ba, Be, Ga, La, Li, Mo, Ni, Rb, Se, Sr, Tl, U, 

and V may be entering the aquatic environment at some sites when compared to the reference lakes. 

Some of these metals were also bioavailable to the H. azteca when measured on a body concentration 

basis at some of the sites. There was toxicity present in this study, but it was not due to U 

concentrations in the sediment, water or bioaccumulation by the H. azteca. At some sites toxicity may 

have been partially due to the bioaccumulation of the metals Cd, Cr, Co or Ni by H. azteca, or to low 
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pH. For other sites it could not be inferred if this toxicity was due to metal concentrations in the 

sediment, water or H. azteca. 
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Table 4.1 Table of coefficientsa for Eq.(s) 2, 5 and 6  
Constant Estimate  

max (nmol/g dw) 73  
a (pmol/L) 0.042  
b 2.2E+06  
a' (pmol/L) 0  
b' 170  
max" (nmol/g dw) 7500  
a" (pmol/L) 0  
b" 2.0E+05  
aEstimates from Alves et al. (2008)  
H+ units in μmol/L   
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Table 4.2 Sampling locations of  field collected sediment, water, H .azteca and periphyton 

Location 
Site 
ID Laditude (N) Longitude (W) 

Depth 
(m)  Collection typea 

Elliot Lake Area      
Ten Mile Lakeb TNM1 46 ° 31' 23'' 82° 45' 55" 100 Sediment/water 
(TNM) TNM2 46 ° 31' 28" 82° 45' 55" 20.0 Sediment 
 TNM3 46 ° 30' 15" 82° 48' 25" 0.30 Periphyton/H.azteca
Dunlop Lakeb DUN1 46 ° 29' 40" 82° 42' 32" 46.5 Sediment/water 
(DUN) DUN2 46 ° 29' 35" 82° 42' 18" 20.0 Sediment 
 DUN3 46 ° 29' 18" 82° 42' 44" 0.30 Periphyton/H.azteca
McCarthy Lake MCC1 46 ° 19' 42" 82° 26' 30" 29.5 Sediment/water 
(MCC) MCC2 46 ° 19' 39" 82° 26' 33" 20.0 Sediment 
 MCC3 46 ° 19' 37" 82° 26' 40" 0.60 Periphyton/H.azteca
Elliot Lake ELT1 46 ° 23' 34" 82°40' 55" 30.6 Sediment/water 
(ELT) ELT2 46 ° 23' 41" 82° 40' 56" 20.0 Sediment 
 ELT3 46 ° 23' 50" 82° 40' 52" 0.80 Periphyton/H.azteca
Quirke Lake  QKE1 46 ° 27' 42" 82° 33' 38" 20.0 Sediment/water 
(QKE) QKE2 46 ° 30' 08" 82° 33' 08" 0.30 Periphyton 
Bancroft Area      
Centre Lakeb CTR1 45° 00' 35" 78° 02' 54'' 17.4 Sediment/water 
(CTR) CTR2 45° 00' 37" 78° 02' 51'' 10.0 Sediment 
 CTR3 45° 00' 39" 78° 02' 55'' 0.70 Periphyton/H.azteca
Siddon Lakeb SID1 45° 01' 44" 77° 54' 22" 18.2 Sediment/water 
(SID) SID2 45° 01' 45" 77° 54' 26" 10.0 Sediment 
 SID3 45º 01' 46" 77° 54' 29'' 0.30 Periphyton/H.azteca
Bentley Lake BEN1 45° 01' 35" 77° 54' 47'' 11.5 Sediment/water 
(BEN) BEN2 45° 01' 35" 77° 54' 49'' 10.0 Sediment 
 BEN3 45° 08' 33" 77° 54' 56''  0.30 Periphyton/H.azteca
Bow Lake  BOW1 45° 01' 02" 77° 55' 29'' 15.2 Sediment/water 
(BOW) BOW2 45° 01' 00" 77° 55' 31" 10.0 Sediment 
 BOW3 45° 01' 05" 77° 54' 35" 0.60 Periphyton/H.azteca
Inlet Bay INT1 44° 58' 49" 78° 01' 40'' 15.7 Sediment/water 
(INT) INT2 44° 58' 57" 78° 01' 47'' 10.0 Sediment 
 INT3 44° 59' 08" 78° 01' 54''  0.50 Periphyton/H.azteca
aField H. azteca were also collected for background metal 
analysis in the field     
bReference Lake      
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Table 4.7 Sedimentology       

Composition (%) 

Site Moisture 
Organic 
carbon 

Inorganic 
carbon 

Total 
carbon Sand Silt Clay Classification

TNM1 89 8.0 0.14 8.1 0.48 60 39 Clayey Silt 
TNM2 92 8.3 0.25 8.6 0.69 62 37 Clayey Silt 
DUN1 80 9.5 0.40 9.9 0.37 65 35 Sandy Silt 
DUN2 90 2.9 0.26 3.2 9.0 67 24 Clayey Silt 
MCC1 82 5.2 0.16 5.4 0.19 61 39 Clayey Silt 
MCC2 83 3.8 0.11 3.9 0.53 53 47 Clayey Silt 
ELT1 89 7.0 0.03 7.0 0.40 58 41 Clayey Silt 
ELT2 89 6.6 0.14 6.7 1.7 63 36 Clayey Silt 
QKE1 92 NM NM NM NM NM NM NM 
CTR1 88 19 0.46 20 0.39 29 71 Silty clay 
CTR2 94 13 4.2 17 0.71 35 65 Silty clay 
SID1 93 13 2.4 16 0.54 41 58 Silty clay 
SID2 95 17 3.3 20 0.35 29 71 Silty clay 
BEN1  95 20 3.2 23 0.27 29 71 Silty clay 
BEN2 94 19 4.2 24 0.31 28 72 Silty clay 
BOW1 93 8.0 0.73 8.7 0.31 44 56 Silty clay 
BOW2 92 6.5 0.13 6.7 0.43 44 56 Silty clay 
INT1 88 13 0.13 14 0.11 35 64 Silty clay 
INT2 91 13 0.19 13 0.18 38 62 Silty clay 
n=1         
NM indicates not measured       
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Table 4.14 Mesure/effect ratios for the maxmium mean measured metal concentrations for 
different metals in different overlying waters (nmol/L) after four-week sediment toxicity tests, 
and available one-week effect LC50 (nmol/L) estimates for water

Metal Site Measure Effecta Measure/Effect
Al-soft BEN-SITE 800 3300 0.24

Cd-hard DUN-SAM 0.46 14 0.03
Cd-soft DUN-SITE 1.2 1.3 0.92
Cr-soft INT-SAM 2 60 0.03

Cu-hard DUN-SAM 52 1400 0.04
Cu-soft TNM-SITE 63 570 0.11
Mn-hard MCC-SAM 520 3100 0.17
Mn-soft QKE-SITE 670 1700 0.39
Ni-soft QKE-SITE 96 1300 0.07

Pb-hard QKE-SAM 1.2 53 0.02
Pb-soft CTR-SITE 1.1 4.8 0.23
U-soft QKE-SITE 2.3 88 0.03

Zn-hard MCC-SAM 190 3400 0.06
Zn-soft DUN-SITE 300 860 0.35

soft indicates soft water, with a water hardness around 18 mg/L , but not more than 120 mg/L CaCO3, Borgmann et al., 2005.
hard indicates a hard water similar to SAM with a hardness of around 120 mg/L CaCO3 or higher, Borgmann et al., 2005.
aData source from Borgmann et al., 2005; one-week LC50 in water-only experiments
For the following metals the measured/effect ratio for one-week LC50 was
 <0.01: Ag, As, B, Be, Co, Cr-hard, La,Li, Ni-hard, Sb, Se, Tl, U-hard, and V.

Maximum Mean measured metal concentration in the overlying water
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Fig. 4.1 Location of sampling sites (Natural Resources Canada, 2002) 
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Fig. 4.2 Map of Elliot Lake and sampling site locations (Minnow Environmental Inc., 2005; Natural 

Resources Canada, 2009) 
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Fig. 4.3 Map of Bancroft and sampling site locations (OMOE, 2003; Natural Resources Canada, 2009) 
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Fig. 4.4 Mean survival for H. azteca fed TetraMin or periphyton and exposed to overlying SAM or site 

water for the sediment toxicity tests. Data is represented as mean ± 95 % confidence interval. For all 

treatments n=4, except for the periphyton treatments where n=2. Values sharing the same lower case 

letter are not significantly different from the other treatment values (P<0.05).  Comparsions between the  

treatments and lakes were maded by an nested ANOVA followed by Tukey's multiple pairwaise  

comparison test for differences among treatments and lakes (P<0.05). 
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APPENDIX 
 

Table 4.A1 Survival data (95% Confidence Interval) and pH values for Fig. 4.4 

Lake 
SAM + 
TetraMin pH 

Site + 
TetraMin pH 

Site + 
Periphyton pH 

TNM 92 (9.8) 8.0 40 (40) 7.0   
DUN 90 (13) 8.0 27 (40) 6.7   
MCC 92 (8.2) 7.9 55 (44) 6.9 60 (19) 7.0 
ELT 92 (6.3) 8.1 37 (32) 6.9 40 7.3 
QKE 93 (13) 8.1 7 (13) 6.2 23 (46) 6.7 
CTR 98 (3.3) 7.9 8 (16) 6.1   
SID 97 (3.8) 8.0 50 (17) 8.0   
BEN 93 (5.3) 8.0 82 (8) 8.0 13 (26) 8.2 
BOW 95 (3.3) 8.0 72 (11) 8.1 27 (52) 8.2 
INT 90 (8.4) 7.9 40 (46) 7.7 53 (26) 7.8 
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CHAPTER 5 
Summary and Conclusions 

 

 It was shown that overlying water chemistry affects Uranium (U) bioavailability, bioaccumulation 

and toxicity to H. azteca exposed to U-spiked sediments for 28 days (Chapter 2). Water pH, rather than 

calcium, predominantly affects the dissolution of U from the sediment and U bioavailability and uptake 

by H. azteca. It was determined that Ca affects U accumulation through its effect on speciation rather 

than through direct competition with U for uptake. The desorption of U from the sediment into the 

overlying water increased with pH from 7 to 8. The increased dissolution of U from the sediment into 

the overlying water at higher pH was probably due to the complexation of the uranyl ion with Ca-CO3 

in the overlying water. Approximately 68% of U was estimated to be in the form of Ca2UO2(CO3)3 and 

62% in the form of CaUO2(CO3)3
2- complexes in overlying waters containing high and low Ca 

concentrations, respectively, at higher pH. Despite the higher U concentrations in overlying water at 

higher pH, toxicity was higher in animals exposed to U-spiked sediment concentrations at lower pH. 

This was because at low pH (~7) there was the  presence of proportionately more UO2
2+ ions, which are 

considered to be responsible for U toxicity, compared to the overlying waters with a high pH (~8). On 

average, approximately 0.16 and 8.2% of U was estimated to be in the form, UO2
2+ and UO2OH+, 

respectively, at low pH compared to 8.8E-06 % as UO2
2+ and 4.1E-3 % as UO2OH+ at higher pH in the 

overlying waters. 

   Experiments with caged animals suggest that U bioaccumulation and toxicity is mainly via water 

rather than the sediment phase (Chapter 2). Uranium bioaccumulation was found to be a more reliable 

indicator of U toxicity than U concentrations in water or sediment, with the growth and survival 

parameters being equally sensitive indicators of U toxicity for H. azteca exposed to U-spiked 

sediments. 

  Given that U bioaccumulation was mainly via the water phase, a water-bioaccumulation model 

was satisfactory to explain U bioaccumulation. It was estimated that the half-saturation constant for U 

accumulation varied strongly with pH (H+ to the fourth power). The water-sediment interaction was 

also satisfactorily explained using a saturation model, with U in the sediment also being a function of 

the H+ to the power of 4 (Chapter 2).  

 The effect of body size on U bioaccumulation was determined to be significant, with a slope of 

-0.35 between log body concentration and log body mass for H. azteca exposed to water-only U 

concentrations in soft water for seven days (Chapter 3). The effect of gut-clearance on whole-body 

concentrations in H. azteca was also substantial, with an approximate 72-79% loss of total U-body 
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concentrations in 24h. This loss in total U concentrations by H. azteca may be due either to the 

elimination of the gut contents or a fast excretion compartment. However, the data were not sufficient 

to model this fast compartment. Overall, this demonstrates that body size needs to be standardized and 

gut-contents accounted for in H. azteca so that the total variability in U bioaccumulation is reduced and 

toxicity estimates are accurate. 

 A saturation kinetic model was used to predict the uptake rate, elimination rate and the effect of 

gut-clearance on whole U body concentration in H. azteca exposed to acute (7 days) and chronic (28 

days) waterborne U concentrations in soft water (Chapter 3). The uptake of U by H. azteca was fast, 

with 89.0% and 99.98% of the steady-state being reached by day seven and day 28, respectively, in 

uptake time series studies. Given that steady state was approached in most experiments, this indicates 

that U concentrations in H. azteca will reflect current U levels in the environment and that H. azteca are 

likely to be good monitors of U contamination in the field. However, it should be noted that the chronic 

uptake of U by H. azteca did not completely level off by day 28. This suggests that there may be 

another slower compartment for U in H. azteca. Unfortunately, the data from this study were not 

sufficient to model this slower compartment.   

 Although a U water-bioaccumulation saturation model was successfully applied in the laboratory 

to predict U bioavailability, toxicity and bioaccumulation, this model could not be properly validated 

under natural conditions near former U mining districts because U concentrations in H. azteca and 

water were at or close to background concentrations (Chapter 4). When the U water-bioaccumulation 

saturation model was applied using U concentrations in the water and H. azteca above background from 

published studies, the predicted concentrations of U in the H. azteca were within a factor of five when 

compared to the observed U concentrations in the H. azteca. This suggests that the water-

bioaccumulation saturation model may be a useful tool for regulators as part of a first-tier risk 

assessment (Chapter 4). 

 The water-sediment partitioning saturation model using waterborne U concentrations above 

background concentrations  under-predicted U concentrations in the sediment when compared to the 

observed field concentrations, except for the tests using the lake overlying water, where U 

concentrations in the sediment were mostly over-predicted when compared to the field observations. 

When the U water-sediment partitioning saturation model was applied using U concentrations in the 

surface water above background from published studies, the predicted concentrations of U in the 

sediment were within a factor of four when compared to the observed U concentrations in the sediment 

(Chapter 4). Overall this demonstrates that the water-sediment partitioning saturation model can be 

used in a first-tier risk assessment to predicted U toxicity and quantify U concentrations using natural 

contaminated sediments and surface waters concentrations above background levels (Chapter 4).  
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Toxicity in terms of mortality did occur at some sites in U mining areas, but this toxicity was 

not due to U concentrations in the environment (Chapter 4). Based on a preliminary assessment of 26 

other metals in the aquatic environment, toxicity to the H. azteca at some sites appeared to be due to Cd 

concentrations in the water and the bioaccumulation of the metals Cd, Cr, Co or Ni by H. azteca or due 

to low pH. At other sites it could not be inferred if toxicity was the result of metal concentrations in the 

sediment, water or bioaccumulation by the H. azteca. 

This thesis demonstrates the influence of overlying water chemistry on U bioavailability, 

bioaccumulation and toxicity to H. azteca and how H. azteca can be an indicator of U toxicity in the 

environment. It also shows how the water-bioaccumulation saturation model and the -sediment 

partitioning saturation model  can be used as an efficient first-tier assessment tool for regulators to 

quantify U concentrations and toxicity in the field for H. azteca and predict toxicity using natural 

contaminated sediments. The data set used in this study and from other published sources may not have 

been adequate to sufficiently validate the above saturation models. A larger sample size may be 

required to further test these two saturation models, especially the water-sediment partitioning model, 

for quantifying U in the field. Further development of the water-sediment partitioning saturation model 

may need to include other water chemistry parameters such as dissolved organic carbon in instances 

were U concentrations in the pore-water are needed to predict U concentrations in the sediment. 

Presently, Canada has a national drinking water and soil quality guidelines for the protection of human 

health and terrestrial organisms (i.e., www. ccme.ca).  It is hoped that the findings of this thesis will be 

incorporated into future water and sediment quality guidelines and regulations, given the limited data 

on U toxicity to native North American invertebrates species and the fact that there are currently no 

national water or sediment quality guidelines in the protection of freshwater aquatic life in the 

environment in Canada, which is home to some of the world’s biggest U producing mines and deposits.  
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