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Abstract

The epidemiology of malaria considers a complex set of local interactions amongst
host, vector, and environment. A history of reemergence, epidemic transition, and
ensuing endemic transmission in Iquitos, Peru reveals an interesting case used to
model and explore such interactions. In this region of the Peruvian Amazon, cli-
mate change, development initiatives and landscape fragmentation are amongst a
unique set of local spatial variables underlying the endemicity of malaria. Tradi-
tional population-based approaches lack the ability to resolve the spatial influences
of these variables. Presented is a framework for spatially explicit, agent-based mod-
eling of malaria transmission dynamics in Iquitos and surrounding areas. The use of
an agent-based model presents a new opportunity to spatially define causal factors
and influences of transmission between mosquito vectors and human hosts. In ad-
dition to spatial considerations, the ability to model individual decisions of humans
can define socio-economic and human-environment interactions related to malaria
transmission. Three interacting sub-models representing human decisions, vector
dynamics, and environmental factors comprise the model. Feedbacks between the
interacting sub-models define individual decisions and ultimately the flexibility that
will allow the model to function in a diagnostic capacity. Sensitivity analysis and
simulated interactions are used to discuss this diagnostic capability and to build

understanding of the physical systems driving local transmission of malaria.
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Chapter 1
Introduction

In the Amazonian region of Peru there is growing concern over reemergent malaria
that is currently responsible for the second largest transmission rate in South Amer-
ica (Branch et al.,|2005; Guarda et al.,[1999; Guthmann et al., 2002; Pinedo-Cancino
et al., 2006} |Roberts et al., [1997; Roper et al., 2000; Roshanravan et al., 2003} |Vittor
et al, 2006)). Reemergent Malaria in the Peruvian Amazon has been observed in a
variety of epidemiological events including sustained endemic transmission and epi-
demic outbreaks. Alarmingly, these events have increased in frequency during the
past two decades in spite of modern control measures. A majority of the observed
cases in the Amazon have originated from the department of Loreto, a populated
expanse of land accessible only by air or boat (Guarda et al., [1999). During the
later part of the 1990s nearly half of all malaria infections reported in Peru occurred
in this region (Arata et al. [1999). The capital city of the Loreto region, Iquitos,
and its surrounding areas are substantially populated and well connected relative to
other Amazonian regions. These attributes as well as additional local causal mech-
anisms have placed the region at additional risk for epidemic and endemic malaria
transmission events. A widely recognized epidemic from 1995 to 1998 raised serious
questions about local factors of reemergence and sustained transmission of malaria
in areas surrounding Iquitos (Bautista et al. 2006; Branch et al., 2005; Guarda
et al., 1999))

Concern over this epidemic as well as sustained transmission in the area gener-
ated a significant amount of literature from epidemiology and public health com-
munities around the world. Much of this research attempted to identify and discuss
causal factors promoting reemergence and sustained transmission of malaria in and
around Iquitos. Despite the volume of research, consensus was not reached on the

causal factors or mechanisms driving reemergence in the Iquitos area. Among the



identified causal mechanisms are a slue of anthropogenic, biological, climatic, and
environmental changes including habitat modification (Bautista et al., [2006), land
use change (Bradley and Altizer} 2007; Derraik and Slaney} |2007; Patz et al., 2004),
variation in regional climate (Martens et al.,|1999; Rogers and Randolph) 2006) and
immunology (Patz and Reisen, 2001)). The range of causal factors explored by this
research presents an interesting case requiring novel tools to test hypothesis and

resolve physical systems driving local transmission dynamics.

Resolution of the interaction space defining local transmission dynamics de-
mands methods capable of modeling a multitude of underling physical systems.
The desired set of systems form a complex set of interactions amongst host, vec-
tor, and environmental factors local to where malaria occurs (Bruce-Chwatt), [1987).
Analysis of the behaviors generated by these systems and the interaction space they
define can be used to promote understanding of physical systems and their roles
in epidemiological events. Unfortunately prior research has accomplished little in
the understanding of coupled physical systems and their role in the transmission of
malaria in the Iquitos area. The malaria in the amazon (MIA) project attempts to
bridge the gap between previously identified casual mechanisms and their role in
coupled physical systems of transmission. To accomplish this, agent based models
(ABMs) will be presented as a novel approach to simulation of interactions amongst

mosquitoes, and humans within a spatially explicit environment.

The novel tool presented in ABMs have shown considerable promise in the sim-
ulation of coupled human-environmental systems (Deadman et al., 2004) and hold
promise for use in epidemiology (Bian, 2004). Here, individual representations of
humans and mosquitoes are generated within the model domain as agents. Agents
each have a unique set of attributes that change in response to interactions within
the model. Agents make autonomous decisions based on assimilated knowledge
from geographically referenced environmental models, as well as interactions with
other agents. Simulation of agents within this environment can potentially enable
observation and analysis of causal mechanisms as part of a coupled human-vector-
environment system. More importantly, changes in agent attributes can be observed
in relation to the dynamics of environmental, social, or vector systems within the
model. Previously identified frameworks for agent-based spatially explicit epidemi-
ological models (Bian, [2004}; [Roche et al.; 2008)) hold great potential to be extended
upon in the study of historic epidemiological events in Iquitos. Thus, MIA will doc-
ument the development of a novel agent-based method to be used as a diagnostic
tool for exploring causal mechanisms and their role in transmission dynamics of the

Iquitos epidemic.



1.1 Goals and Objectives

The ultimate goal of MIA is to develop a tool to contribute greater understanding
to the physical systems driving localized malaria transmission in the Amazon. The
novel approaches developed in MIA will bring spatial understanding to the rela-
tionships between malarial events and previously identified environmental, climatic,
and anthropogenic causal factors. As an intermediary to increased understanding,
MIA, will attempt to answer the question: Can a novel modeling methodology
be developed to resolve local causal factors or mechanisms generated in coupled
human-vector-environmental systems? Additionally, this research seeks to assess
the potential of said methods as diagnostic tools by identifying research gaps and
relating them to future questions. To answer these questions a series of operational

goals are established to help access them:

e Develop a novel agent-based method for simulation of malaria transmission

e Couple physical models representing the dynamics of mosquitoes, humans,

and their physical environment into a single domain

e Devise methods for observation of emergent behaviors resulting from individ-

ual level interactions amongst the coupled systems

e Assess the effects of individual parameterizations within the model domain
through sensitivity analysis and comparison to traditional methods in epi-

demiology

e Identify and foster understanding of localized causal mechanisms as products

of the diagnostic capabilities of the developed model

e Explore previously identified local causal mechanisms including climate and
anthropogenic change as components of the coupled human-vector-environmental

system

MIA will provide reproducible methods that will access these goals within the
localized environment of the suburban communities surrounding Iquitos. A com-
mitment is made to encourage adaptability in the model structures so that analysis
and understanding can be extended to additional study areas requiring diagnostic
capabilities provided by MIA. Additionally, the products of MIA and the method-
ologies developed will be discussed exclusively as diagnostic tools rather than pre-
dictive measures. This will be maintained to ground the capabilities of the model

and discourage misinterpretation of results.



1.2 Motivation for Research

Martens et al.| (1999) described malaria as “the most important vector born disease
in the world”. Arguably this statement is qualified as upwards of 3.3 billion people
are at risk of contracting malaria around the world (Aregawi et al., [2008]). The
global reach of malaria is vast not only in population but physical area affecting
parts of Africa, Asia, Middle East, Central America, South America and Oceania.
Cases world wide in 2006 were estimated to be 247 million across these areas (Are-
gawi et al. 2008]). Additionally, nearly one million of those infected each year die.
The burden of Malaria extends well beyond its mortality rate as the incapacitating
nature of the infection can bring loss of financial capabilities to the households
affected. These issues are compounded when transmission occurs in less developed

nations where financial difficulties are already a burden of everyday life.

Simulations such as the one preposed in MIA provide tools for policy makers
and scientists alike to negate the impact of future epidemiological events by un-
derstanding causal mechanisms. Once identified, attempts can be made to devise
methods of control to address specific causal mechanisms in the localities studied.
Control measures and policy changes can be enacted on a virtual population prior
to subjecting the physical population to said changes. In this, MIA, is driven not
only to provide methods for analysis of human-vector-environmental interactions

in Iquitos but also to further the worldwide fight of malaria.

1.3 Structure of Thesis

The structure of this thesis will guide the reader though a series of introductory
chapters prior to discussion of the model structure and analysis of MIA’s products.
Chapter 2 provides discussion of the study area, its epidemiological history, and the
local considerations of malaria transmission. Additionally, this chapter will provide
introduction to the previous research completed in the Iquitos area. Chapter 3
reviews methods in epidemiological modeling through traditional approaches and
modern adaptations. This chapter will also introduce ABMs in epidemiology and
provide discussion as to how MIA intends to utilize this approach. Chapter 4
discusses the specific components used to develop the methodologies of MIA. This
will include discussion of procedures utilized in the coupled systems approach to
simulation of the transmission of malaria. Chapter 5 presents the simulation results

of the MIA model in a concise manor with discussion how they relate to the Iquitos



epidemic. This will be completed as a series of simulation scenarios testing various
aspects of MIA. Finally, chapter 6 provides discussion of the model contributions,

limitations, and newly generated research questions.



Chapter 2

Malaria in the Peruvian Amazon

2.1 Introduction

To satisfy the goals of this study, and encourage greater understanding of human-
vector-environmental systems, an intimate understanding of local conditions must
first be established. The considerations discussed here will inform parameteriza-
tions, interaction processes, and mathematical models essential to the abstraction
process defining physical systems within MIA. Strong understanding of local con-
ditions driving these physical systems will encourage complexity as a product of
informed interaction space design. To achieve the desired level understanding a
historic perspective of Iquitos and its surrounding areas will be compiled. Efforts
will be made to document the people of the area and the physical environment they
reside in. Moreover, the epidemiological history of the area will be discussed as an
important component of this history. Prior epidemic and endemic transmission of
malaria will be discussed highlighting local considerations of epidemiology. Previ-
ously documented causal factors and mechanisms will be discussed as components
of this history and the physical systems driving transmission. Environmental and
social considerations influencing local transmission dynamics will be introduced as
components of these systems. This discussion will serve to identify and discuss a

preliminary set of assumptions that will be utilized to formulate the basis of MIA.

2.2 The Iquitos Study Area

Found in the northern Peruvian Amazon, the region of Loreto comprises nearly one

fourth of the country’s entire area (Guarda et al., 1999)). This vast expanse of land
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covering 368,852 km? is home to a population of 884,144 (Instituto Nacional de
Estadistica e Informaticaj, 2007). When compared with Peru as a whole this region
has a relatively low density of approximately 2.4 persons/km? (Instituto Nacional
de Estadistica e Informatica, [2007). Despite this low regional density, several areas
of substantial population can be found clustered around regional infrastructure.
Amongst these areas is the Maynas province found in the north-east of Loreto,
sharing borders with Ecuador and Colombia. Within the Maynas province the
highest population density of the Loreto region is found, namely it’s capital and

largest urban center, Iquitos.

The city of Iquitos is a longstanding urban area in the Amazon home to nearly
half of all inhabitants in the Loreto region. Additionally, there are several villages,
much smaller in comparison, in close proximity to the city proper of Iquitos. The
physical location of the study area is most notably distinguished by its proximity
to three major rivers. The Iquitos area is bordered by the Amazon river to the
east, the Itaya river to the south, and Nanay river to the north (Turell et al., 2005]).
The climate of Iquitos is typical of rainforest regions with high temperatures and
humidity throughout the year (Vittor et al., 2006). Seasonal variation in tempera-
ture is minimal ranging from 24°C to 28°C. Due to this, seasonality is best defined
in terms of precipitation where a rainy season begins in January and continues
through May or June (Vittor et al., [2006). Conversely, a dry season comprises the

rest of the year with the exception of November.

Historical records of the area date back as far as 1842 when Iquitos existed as
a village of 200 inhabitants (Kalliola and Paitan, (1998). A boom in population
occurred during 1903, coinciding with the advancement of rubber exploitation in
the area (Kalliola and Paitan|, |1998)). The surge of newly found wealth generated
by primary resource extraction caused significant migration to the area. The initial
boom in population faded near the end of World War I as demands for rubber
dwindled. In the years following logging, mining, and agriculture emerged as the
dominant industries in Iquitos and its neighboring areas (Vittor et al.,|2006). These
industries would sustain Iquitos until the 1950’s, when oil and drug trafficking came
to generate much of the income within the area. More recent increases in population
were driven by relocation programs promoted by the federal government throughout
the 1980s (Singer and de Castro, [2001)). Furthermore, increased military presence,
migration from the Andes, and infrastructure projects have continued to contribute
to migration (Serra-Vega, 1990).

One of the most important infrastructure projects in the Iquitos area has been

the Iquitos-Nauta road which connects the two port cities it is named after (Vittor
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et all 2006). The road itself, while only 95 km long, has significantly improved
access to the area and has ultimately contributed to increased mobility of the local
people. Local development and population growth associated with the construction
of the road coincided with significant deforestation in the area. The heaviest defor-
estation has occurred in areas alongside the Iquitos-Nauta road, as new migration
expands or establishes communities. These communities have engaged in expan-
sive agriculture, resource extraction, and urbanization projects requiring reclaimed
land. The continual deforestation in the area has produced an average annual loss of
4,257 hectares between 1983 and 1995 (Gomez-Romero and Tamariz-Ortiz, [1998).
The areas served by this road will be of particular interest to MIA as they have

been associated with the reemergence of malaria. Due to this, MIA will concentrate

on the suburban communities found outside of Iquitos utilizing this transportation

corridor (Figure [2.1).

Figure 2.1: The suburban community of Zungarococha

One such area outside the city proper of Iquitos is the suburban community
of Zungarococha, located 5 km south-west of the urban center. Zungarococha is

composed of four small villages located along the Nanay river with access to the



Iquitos-Natua road. Zungrococha village (ZG), Puerto Almendra (PA), Ninarumi
(NR), and Llanchama (LC) make up this suburban community and have an ap-
proximate population of 2,200. These small urban centers are of interest as they
have been previous identified as high transmission areas for malaria and potential
sources of the initial reemergence (Guarda et al., [1999; Roper et al., 2000). Fur-
thermore, the proximity of local urbanization to forest and peri-urban areas will
allow previously established hypothesis to be tested within a community sharing a
common history with Iquitos (Arata et al., |1999). A study of the epidemiological
history of Iquitos and this suburban community will reveal many opportunities to

explore unique local transmission dynamics.

2.3 Local Epidemiological History

2.3.1 Malaria Transmission Dynamics

Malaria is a vector-born disease, necessitating a third party to complete transmis-
sion between humans. This cycle of transmission is initiated when the bite of an
Anophales mosquito draws blood from a human infected with the parasite causing
malaria. If the mosquito survives long enough for the parasite’s incubation period
to elapse it will be able to transmit to humans via successive bites. Mosquitoes
in the study area are capable of carrying and transmitting two different parasites
which cause malaria: Plasmodium falciparum and Plasmodium vivax. Each par-
asite is associated with a different intensity of symptoms, the worst of which are
caused by Plasmodium falciparum. Differences in Anophales sub-species behavior
and biological function can cause the dynamics of the transmission process to vary.
As result, it is important for the modeling process to understand the specifics of

the dominant local vector.

The vector of interest in the Iquitos study area and the MIA model is A. darlingsi.
Much like other regions of South America (da Rocha et al., 2008} |Girod et al.,
2008; |Olson et al., 2009)), the recent rise of A. darlingi in Iquitos has been strongly
associated with increases in malaria infection rates (Arata et all [1999)). Prior to
1993 there was no evidence of A. darlingi in the lquitos or the Loreto region. Since
then the vector has become the predominate sub-species of mosquito and primary
vector of malaria in the area. A. darlingi has been identified as a highly proficient
vector by numerous authors (Roberts et al., [2002; Roper et al., [2000; Tadei et al.,

1998). Moreover, the recent emergence of P. falciparum has been attributed to



the dominance of the primary vector A. darlingi (Branch et al. [2005; Roshanravan
et al.,|2003; |Vittor et al.,[2006). These observations are important to understanding
the epidemiological history of Iquitos and will now be used to discuss the Iquitos

epidemic.

2.3.2 The Iquitos Epidemic

Since the early 1990s, the region of Loreto and more specifically it’s capital, Iquitos,
have been the epicenter of reemergent malaria in the Peruvian Amazon (Bautista
et al.;|2006). Following what was thought to be a drastic reduction in malaria cases,
an epidemic occurred in the mid 1990’s that eventually led to endemic transmission
in the area. The epidemiological history of the Loreto region has been described
as heavily intertwined with the demographic evolution of it’s capital city Iquitos
(Vittor et al. [2006)). Furthermore, the history of the region reveals an extended
timeline of past epidemics, malarial control campaigns, and reemergence (Guarda
et al., [1999). Understanding these events can potentially provide insight to inter-

actions that have driven past epidemiological events.

The city of Iquitos and its surrounding areas have a unique history of trans-
mission as reflected in the diversity of infection levels over the last half century.
The first indicators of this diversity were noted during an epidemic transmission
event in 1944. During this event epidemic transmission was observed resulting in
95,000 confirmed cases of malaria in the Loreto region (Guarda et al. 1999). This
epidemiological event coincided with a significant influx of migration to the area,
as previously discussed, due to expanding resource extraction. Elevated malarial
activity in the Loreto region would continue into the 1960s, as the initial epidemic
faded and sustained endemic transmission occurred. Transmission during this pe-
riod occurred at much lower rates, but a constant reservoir of infected humans and
mosquitoes remained. As a reactionary measure, government intervention in 1965
implemented source, chemical, and biological control strategies to limit mosquito
populations and decrease vector transmission of malaria in the Iquitos area (Branch
et al., 2005; Vittor et al.l |2006)). The primary methods of control were insecticides,
pyrethroids, and most notably DDT, to actively limit mosquito populations.

Active control campaigns were highly successful in reducing mosquito popula-
tions in and around Iquitos. This was reflected in a sharp decline of malaria cases as
annual infections dwindled to 1,500 (Guarda et all [1999)). These impressive results
would continue for almost twenty years as the programs were maintained. During

the 1980’s campaigns fell into disrepair and eventually were abandoned (Branch
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et al., [2005). Furthermore, the use of DDT as a control measure ceased during this
time period. Two distinct events would occur following the discontinuation of these
campaigns, and have been explored as pre-cursors to the ensuing epidemic. Firstly,
without active control campaigns limiting mosquito habitat, new sub-species were
allowed to migrate from other Amazonian regions. A. darlingi, a proficient vec-
tor of malaria, previously undocumented in the Iquitos area, was detected in the
early 1990’s (Branch et al., 2005). In addition to this new vector, P. falciparum,
a parasite causing malaria that was previously thought to have been eradicated,
reemerged. Newly emergent P. falciparum was first detected in the suburban com-
munity of Padrecocha in 1991 eventually leading to 140 confirmed cases (Guarda
et al.; 1999). By 1992 P. falciparum had established itself in the Iquitos area with

sustained transmission (Roper et al., |2000).

Following these observed epidemiological changes, the Loreto region and city of
Iquitos experienced their largest epidemic transmission event lasting from 1995 until
1998 (Figure . During the observed epidemic transmission a peak of 54,290 P.
falciparum and 121,268 total cases were recorded (Branch et al., [2005; |(Guarda et al.,
1999). This unprecedented increase would subside in 1998 after transitioning once
again into low level transmission sustained by a reservoir of infected individuals.
Much of the drop in 1998 has been attributed to control measures activated as a
reactionary measure by the Peruvian government (Roshanravan et al., 2003). The
Loreto region has since seen endemic transmission ranging between 5 and 50 cases
per 1000 persons (Branch et al 2005). Retrospective analysis reveals several local
conditions that may have played a role in the epidemic event. Resolution of the
interaction space defining these roles will first require consideration of the local

dynamics underling the epidemiological history of Iquitos.

2.4 Local Epidemiological Considerations

2.4.1 Environmental Considerations
Anthropogenic Change

A variety of anthropogenic factors altering the physical state of the environment
can be found around the Iquitos areas. These factors refer to changes of the physical
environment as a result of human activity. Different human activities carry varying

degrees of impact, but in general have had negative ramifications for the local
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Figure 2.2: The Loreto epidemic (Branch et al. 2005)

environment. In the Iquitos area many of these changes are a direct result of
agriculture, resource extraction, and infrastructure development (Guarda et al.,
1999). The presence of these activities, and their associated anthropogenic change,
have been identified as potential catalysts for increased risk of epidemic transmission
(Vittor et al., 2006). One such product of human activity that holds potential for

increased vectorial capacity and epidemiological activity is deforestation.

The relationship between deforestation and disease is not specific to malaria
and has been associated with a wide range of vector borne diseases (Walsh et al.,
1993). Indirectly, deforestation has the potential to increase disease transmission
by creating or expanding the habitat of the primary vector (Conn et al., [2002)).
The primary vector in Iquitos, A. darlingi, is known to utilize these anthropogenic
habitats including irrigation channels, pastures, rice fields, and roadsides (Vittor
et al., 2006). As many activities generating these types of habitats occur in the
Iquitos area there is potential for a greater vector population as access to breeding
areas is increased. Public infrastructure projects such as road construction acceler-
ate changes leading to increased habitats and vectorial capacity (Patz et al.; 2000).
Moreover, proximity of new or expanded habitats to humans has the added effect of
increasing biting rates. Reclamation of the Amazon forest to facilitate human ac-
tivities such as agriculture often decreases the distance between human residences,

thus promoting increased interactions and transmission opportunities.

Previous studies of vector ecology in the Amazon sampled Anophales larvae and
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adults in areas where human activity has altered the landscape (Tadei et al., 1998).
Their research identified A. darling: as highly associated with areas altered by
human activity, including agricultural activities and urbanization. Utilizing traps
to sample adult and larval stage mosquitoes, population was characterized across
several land coverage types. Areas sampled with human activity were observed to
have active A. darlingi populations in 93% of locations. Undisturbed areas sampled
has an astonishing 0% occurrence of A. darlingi larvae or adults. Unfortunately
a small number of samples were taken at undisturbed locations (n = 5) raising
questions of bias in the results. Regardless of potential errors, this study suggests
that the alteration of land by humans played a significant role in the reemergence

of A. darlingi.

Vittor et al.| (2006) attempted to explore the same relationship utilizing spatial
analysis of human-biting rates, malaria distributions, and the degree of deforesta-
tion. This research concentrated on the areas surrounding Iquitos and the local
vectors found there. The methods employed utilized a series of traps to estimate
human biting across stratified land coverage types. In heavily deforested areas hu-
man biting rates for A. darlingi were observed at 6.5 bites per person per 6 hour
period. With increasing forestation, biting rates approached 0 as traps were placed
completely within the forest. Other Anophales mosquitoes including A. triannula-
tus were observed to have significant biting rates within the same forested areas.
These results suggested that A. darlingi prefers meals and travel in deforested areas.
The feeding preferences documented for A. darlingi will be utilized as parameters

driving the mosquito model implemented by MIA.

Climate Variability

Transmission is effected by changes in temperature and rainfall, expressed as varia-
tion in mosquito survival, parasite incubation, and habitat dynamics (Craig et al.,
1999). Regional climate variability plays an important role in the local transmis-
sion of infectious diseases, but currently presents great uncertainty in its long term
effects (Patz et al., [2005). The uncertainty that climate variability introduces may
be discussed in terms of local and inter-annual events. More specifically, long term
variation in local temperature and rainfall and the effects of El Nino are possible

sources of variation in local malaria transmission.

Estimates of increase in global average temperature, due to changes such as
enhanced greenhouse effect, range from 1.5°C to 4.5°C by 2100 (Intergovernmental

Panel on Climate Change, 2001). These changes in temperature can potentially en-
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courage or mitigate malaria transmission as a product of variation in the mosquito
population, incubation, and feeding. While long term local changes in temperature
may represent only small increases in temperature, these are important in consid-
eration of mosquito population dynamics. In the range of 18°C to 26°C changes
of a single degree can influence the life span of a mosquito by more than a week
(Depinay et al., |2004). Increased mosquito life span can potentially provide addi-
tional opportunities for transmission by increasing total population and the number
of bloodmeals each mosquito acquires. As these changes require significant time-
frames to unfold it is unlikely that an abrupt epidemic could be caused by it. These
aspects of local climatic change will be directly observed though model structures

controlling environmental attributes of the physical environment.

In addition to long term climatic variation, inter-annual variability has been as-
sociated with changes in transmission. Several examples of transmission variation
have been associated inter-annual events, specifically during the El Nino phenom-
ena. These events have taken place in Columbia (Bouma et al., |1997)), Venezuela
(Bouma and Dye, 1997)), Sri Lanka (Bouma and Vanderkay, 1996)), and Uganda
(Hay et al. 2002; |[Lindblade et al. [1999). Many of these regions experienced a
significant increase in precipitation possibly increasing habitat of local vectors. In
1997 the El Nino phenomena was experienced in the Loreto region resulting in an
extended dry season (Guarda et al., |1999). This was a contrasting effect to costal
regions in Peru who experienced increased rainfall. The resulting changes had the
effect of drying potential habitats but also provided increases in temperature that
would foster longevity in the surviving population. These considerations can be
explored as a component of the climatic model framework to bring understanding

to El Nino as a factor of variation in transmission.

Mosquito Dynamics

Review of the biological functions and feeding characteristics of the dominate local
vector A. darlingi reveals several practices favorable to transmission of malaria
between humans. The transmission capabilities of A. darling: benefit from it’s
highly anthropophilic nature (Arata et al., [1999; Roberts et al., 2002)). A. darlingi
will take preference in acquiring its bloodmeals from humans. This is opposed to
other Anophales mosquitoes who will much more readily acquire blood from animals
found in forested areas or livestock. Moreover, A. darlingi is highly endophagic
relative to other sub-species found in the area. Without hesitation A. darling: will

seek bloodmeals indoors where as most vectors will remain outdoors (Roberts et al.,
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2002). The construction of homes in the Iquitos area often incorporate open air
access allowing for greater proximity to humans. As result of these preferences in
feeding A. darlingi has greater exposure to humans and therefore greater potential

for transmission of the parasite causing malaria.

Human contact with A. darlingi generally occurs between the hours of 7 and
12 pm when feeding is most intense. A local study of A. darlingi feeding revealed
a unimodal distribution of biting with a peak occurring between 9 and 10 pm
(Roshanravan et al., 2003). Biting continues through midnight but dwindles as this
time is approached. Here, an interesting model consideration is noted as human
activity during these hours is often limited to the indoors. As people are indoors
their exposure to vectors which do not feed indoors is limited. Finally, parasite
sporozoites found in the salivary glands of A. darlingi have been found at significant
rates compared to other Anophales mosquitoes (de Oliveira-Ferreira et al., [1990)).
Sporozoites are the necessary stage in the parasites life-cycle for transmission to
occur from a mosquito to human. Moreover, A. darlingi is a competent vector
of both parasites causing malaria in the Iquitos area, P. falciparum and P. vivaz.
These coupled attributes and abilities of A. darlingi allow it to be an extremely

proficient vector of malaria to humans in Iquitos.

2.4.2 Social Considerations
Age, Sex, and Occupation

While environmental concerns have been the primary focus of researchers in the
Iquitos area there are several social considerations that should be simulated within
the model domain. Within the demographic structure of Iquitos and its surround-
ing areas there has been observed variation in infection rate amongst age, sex and
occupational cohorts (Guarda et al.,[1999; |[Roper et al., 2000). Two distinct group-
ings of people stood out in this research as being affected by malaria: those over

60 and working age individuals.

Working age individuals are exposed to increased vectors interaction because
of the proximity of many jobs to mosquito habitats. In the Iquitos area this is a
product of the reliance on resource extraction and agriculture. These activities place
individuals participating at increased risk of malaria because of their proximity
to vector habitats. Increased malaria rates due to occupation was particularly

prevalent in males as many of these occupations are traditionally held by them in
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Iquitos. Additionally, those aged over 60 are susceptible because of immunity issues

associated with the aging process.

Infection and Treatment

Of considerable merit is the evaluation of symptomatic presentation in humans
and how individuals deal with with symptoms. |[Roper et al.| (2000) found that
the mean duration of symptoms was two days with a standard deviation of two
days once treatment was sought. Those not acquiring aid were not included in the
calculation as there was no recoded data. More useful to model parameterization
is understanding of recovery as a component of not only time after treatment but
the entire timeframe from initial transmission. This will be discussed later as a
component of the mathematical model. Additionally, there is widespread resistance
to chloroquine in the area and as result alternative methods are often employed to
treat malaria in Iquitos. Seven day treatments of sulfadoxine, pyrimethamine and
primaquine are typically used (Roper et al., 2000). Treatment is free but patients
must seek supervised medical care on a daily basis in order for their medication
to be administered. These requirements may be unattractive to persons who lack

mobility or cannot afford to miss work for treatment.

The Ministry of Health in Peru does not allow private pharmacies to dispense
anti-malarial drugs to symptomatic patients(Roper et al., [2000). This requirement
has been put into place to reduce mishandling of treatment which can result in
pharmaceutical resistance in local parasites. Even though these policies are in
place there is little to no enforcement or monitoring of the situation. It has been
documented that one can easily purchase the same anti-malarial drugs that are
available at Ministry of Health facilities at pharmacies or shops in and around
Iquitos. This is alarming, as misuse of such drugs can increase the prevalence
of resistance strains of the parasites within the community. These increases occur
when options for treating malaria are reduced due to resistances or available options
become too expensive or ineffective. Increased resistance within an already endemic

community will serve to further perpetuate the situation.

2.5 Chapter Summary

Malaria in the Peruvian Amazon is a complex system with many considerations.

Understanding of the physical environment, the people who reside within it, and
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the mosquito population they interact with presents many causal mechanisms that
may be explored though MIA. Understanding of anthropogenic change and the
habitats it generates will be of considerable value to the construction of MIA. This
highly spatial mechanism can potentially offer resolve to the spread of transmis-
sion during prior epidemiological events. Moreover, the dynamics of the mosquito
population are an extremely important component of the modeling system. These
considerations and potential causal mechanism will be explored as components of

a larger system of understanding.
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Chapter 3

Epidemiological Modeling of
Coupled Systems

3.1 Introduction

Modeling is often described as an iterative process whereby an attempt is made to
refine scope, test hypothesis’, define causal understanding, provide quantification,
test reliability, and in some cases assist in policy analysis (Sterman, |2000). MIA at-
tempts to do just this in its generalization of complex systems as an epidemiological
model. As a whole, this process can be conceptualized as a set of refinements with
the ultimate goal of satisfying requirements for realism, robustness, flexibility, clar-
ity, and reproductive ability (Homer and Hirsch) 2006|). While concerned with these
requirements, MIA concentrates on expanding realism as a product of complexity
and providing flexibility in the form of modular design. To achieve the desired levels
of complexity a novel approach that encourages discussion of traditional methods
and novel adaptations is utilized. Here, isolation of specific vulnerabilities in past
methodologies and the discussion of novel approaches will dictate areas of focus
in MIA. Once identified these gaps in knowledge or architecture of epidemiological
modeling can be addressed in the hopes of using adapted methods to understand

causal mechanisms of reemergent malaria in Iquitos.

This chapter and its discussion of epidemiological modeling will allow the reader
an opportunity to access the concepts utilized the in construction of MIA. A sur-
vey of theoretical research and methodologies in traditional epidemiology will first
be used to identify the assumptions of basic transmission modeling. Processes of

abstraction in transmission and specific mathematical models will be introduced to
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illustrate the breadth of approaches available. Deconstruction of model architec-
ture through analysis of strengths and weaknesses will serve to assimilate the best
practices of past methods into MIA’s approach. Additionally, adaptations utilized
in the transition to modern epidemiological modeling will be discussed as interme-
diate steps to MIA’s approach. The concept of an agent-based model (ABM) will
be introduced as a paradigm and potential tool for exploration of epidemiological
events and causal factors. A thorough review of agent-based reference models, past
implementations, and discussion of the merits of individual analysis will be used
to explain the current conceptualization of MIA. Moreover, this chapter will give
insight to the specifics of ABM implementation in MIA and how past research has
been adapted to facilitate this.

3.2 Epidemiology and Modeling

The notion of epidemiological modeling references much more than the simulation
of transmission effects amongst a host population. Rather the complex systems
that many researchers seek to characterize contain a near infinite number of pa-
rameterizations and attributes that address the nuances of disease transmission
amongst humans. The tools utilized in epidemiological modeling are required to
capture the dynamics of not only host interactions but also those occurring in a
much larger interaction space. This enhanced interaction space can include events
between hosts and the physical environment, and the feedbacks effects generated as
result of these interactions. To facilitate the abstraction process of these physical
systems many methods have been developed to provide greater understanding of
the interaction spaces involved. The modern tools used to accomplish this are very
much a product of the past and as such there is great utility in understanding of

the traditional theoretical and design concepts behind them.

3.2.1 Traditional Methods in Epidemiological Modeling

Traditional methods in epidemiological modeling have relied on the use of mathe-
matical models known as dynamic equation (Auchincloss and Roux, 2008)) or dif-
ferential equation models (Rahmandad and Sterman) 2008). Bound by a set of
differential equations, infectious risk states are modeled as trends within an entire
population (Anderson and May, 1991; Kermack and McKendrick} 1991} Rao et al.,

2009). Each differential equation is used to resolve a rate of change as proportional
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to a set of input parameters. Here, the equation set typically will be used to model
individual risk states within a segmented population as susceptible, infected, or re-
covered (SIR). Implemented is an exhaustive measure of transition of an infectious
agent through a population within a simulated epidemiological event. In a basic
implementation of this model type, three governing differential equations model the

change in population size found at each risk state:

L < N =\ + )X (1) (3.1
S =X~ (Y (D (32)
% =Y — pZ(t) (3.3)

Within this equation set, X (t), Y (¢), and Z(t) are representative of the number
of individuals within the model domain who are susceptible, infected, or recovered
respectively at time, ¢t. Birth and death rates, a force of infection, and recovery
rates are parameterized as u, A, and v respectively. Force of infection is represen-
tative of the number of secondary infections resulting from a infected individual. A
critical value exists where force of infection produces more new infections than are
compensated for by those recovering. Modelers utilize this as an indicator of sus-
tained transmission potentially signifying the presence of an epidemic. The input
parameters of the equation set can be adjusted by means of sensitivity analysis for
calibration of the model domain with local observations. Produced from the equa-
tion set are stocks and flows of transitioning population amongst the risk states
(Auchincloss and Roux] 2008). Figure illustrates how the differential equation
set is applied to the segmented population simulating transition. Summation of the
individuals within all cohorts is equal to the total population. This occurs because
all individuals are considered to be susceptible in this traditional framework. The
possible outcomes of this type of model are shown in figure as proportions of
susceptible and infected populations through the course of an epidemic event. Steep
trajectories found in this phase plane occur when significant populations of infected
individuals exist within the model. Epidemic events would be associated with these

steep trajectories where recovery rates have been eclipsed by new infections.

While dated in application, dynamic equation models have been utilized ex-
tensively in epidemiology (Bolker and Grenfel, 1993; Hethcote, 2000; Lloyd, 2001}),
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Figure 3.1: Simple SIR model

host-vector diseases (Feng and Velasco-Hernandez, |1997), and malaria transfer sim-
ulation (Depinay et al., 2004; Ngwal, 2004; Wyse et al.| 2007). Many of these models
employ a common base in the compartmental SIR model structure as originally pro-
posed by Kermack and McKendrick (1991)) and popularized by |Anderson and May|
(1991)). The traditional SIR model discussed above has seen extensive modification

in years past illustrating its potential to adapt to increasing demands of complexity

in epidemiology (Anderson and May, [1991). Such changes include the addition of

supplementary risk states representing individuals who are infected but not yet able

to transmit the infection (Wyse et al.,[2007). Moreover, aspects of heterogeneity in-

cluding social behavior and susceptibly have been addressed by increasing the total

number of compartments in the model domain (Roberts and Heesterbeek, 1993).

This augmentation of traditional SIR models with equation sets numbering in the

hundreds has become increasingly common as demands for descriptive complexity

increase (Homer and Hirsch, 2006)). Regardless of past utilization these traditional

approaches in epidemiological modeling have not escaped criticism.

The aforementioned popularity of dynamic equation models in epidemiology has

just as much to do with a lack of reference models outside of this basic approach

(Roche et al., 2008), as it does with the extensive availability of documentation and

ease of implementation (Anderson and May|, [1991)). Despite its ease of use and po-

tential adaptability several researchers have commented on the serious limitations
inhibiting the ability of dynamic equation models to produce useful results in com-
plex systems (Auchincloss and Roux] 2008; [Roche et al., 2008)). Critics have gone

as far as to refer to SIR implementations as “toy” models signifying the need for

change in epidemiological modeling (Roche et al. [2008). Furthermore, the primary

means of adaptation, expansive differential equation sets, can become unmanage-

able due of the vast number of parameterizations required (Auchincloss and Roux,
2008; Roche et al., 2008)).

Further criticism of traditional methods can be generated with discussion of
the basic assumption set utilized. A population based approach, such as dynamic

equation modeling of epidemiological events requires a set of rigid assumptions to
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Figure 3.2: Trajectories of traditional SIR models (Hethcote, 2000))

relate individuals to the context of a population. (2004)) summarizes these
assumptions as four basic rules used in population based models. Firstly, all in-
dividuals within the model are assumed to be identical whereby heterogeneity of

susceptibility is not considered. This assumption explicitly ignores host specific vul-

nerabilities in humans such as age (Breman, 2001; Marsh et al., [1995; Snow et al.,
1999) and occupation (Guthmann et al., 2001} |Ongecha et al., [2006). Moreover,

host specific immunities and protections rely on simplified global parameters which

can compromise local scale heterogeneity of humans (McKenzie, [2000). Interactions

amongst individuals occur globally within the model domain meaning that spatial
adjacency is not considered as a limiting factor. Lack of local spatial context disre-
gards the finite number of interactions hosts are capable of due to spatial adjacency.
Rather than address the spatial context of hosts, a uniform spatial distribution is
assumed in most dynamic equation models. Due to this, previously identified clus-

tering properties of malaria in settlements and around access to infrastructure are

ignored (Carter et al.,2000)). Finally it is assumed that contact between individuals

occurs equally as all individuals are identical. This, as with all assumptions of this
model structure, inherently limits spatial analysis and resolution of causal factors

within localized study areas.
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The continued use of dynamic equation models in epidemiology has been cau-
tioned as limitations will continue to inhibit complexity and understanding of causal
factors (Bian, |2004). These problems of complexity are compounded when address-
ing coupled human-environment interactions as a function of malaria distribution.
Additional methodologies must be explored or developed to resolve the desired in-
teractions across multiple spatial interaction spaces. The requirements noted here
have caused divergent paths between traditional epidemiological modeling of di-
rectly transmitted diseases and vector transmitted diseases such as malaria. While
sharing many commonalities, the divergent research path of malaria modeling has
been quicker to adapt new tools because of its specific requirements. As a result,
past methods and adaptations in the simulation of malaria should be explored as

an intermediary prior to the discussion of newer methods.

3.2.2 Traditional Methods in Malaria Modeling

The use of traditional epidemiological methods in the modeling of malaria is prob-
lematic because unlike directly transmitted diseases multiple population sets hold
the ability to host to the infectious agent (McKenzie, [2000)). If applied to traditional
epidemiology the modeling of malaria must be completed with both humans and
mosquitoes represented as hosts in a dually-compartmentalized population. Much
of the preliminary work in modeling of malaria transmission can be traced back to
the work of Ronald Ross| (1910)). His pioneering research was able to illustrate that
malaria was transmitted by Anopheles genus of mosquitoes. This was against a
common misconception that the source of malaria transmission was contaminated
water (Hurley] [1905). Additionally, Ross| (1910)) was able to show that significant
reductions in malaria infections did not require the complete eradication of the
transmitting vector but rather a reduction below a threshold reproduction rate.
This work would largely go ignored at the time with few of his contemporaries giv-

ing consideration to his research and mathematical models (McKenzie and Samba,
2004).

It was not until the 1950’s that researchers such as Macdonald (1957) would
revive and continue the important work Ross had begun. Research published by
both [Ross (1910)) and [Macdonald| (1957) utilized a compartmental approach simi-
lar to the previously discussed SIR model. The way in which compartmental SIR
models can be applied to an indirectly transmitted diseases needs to be carefully
considered because of the two interacting populations. Due to this, any simulation

of the interaction space must first consider the risk states of each populations sepa-
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rately in order to simulate stocks and flows of the parasite through each population.
These models are then coupled in order to simulate transfer between human and
mosquito populations:

dx M

i abﬁy(l —z)—x (3.4)
dy
hut A 1—q) — :
o = ace(l—y) —py (3:5)

Here, x and y represent the fraction of infected humans and mosquitoes; a is the
biting rate of mosquitoes on humans as a per capita; b is a measure of probability
describing the chance of a bite from an infected mosquito transmitting to a human,
¢ is the inverse probability that a mosquito biting an infected human will receive
the parasite; 7 is the human recovery rate; p is the mosquito death rate; and
finally M/N is the ratio of malaria free female mosquitoes to humans (Roberts and
Heesterbeek, 2003). As the differential equation set utilized in the traditional SIR
model estimated infected population within a single set of hosts, this set of equations
couples the two population estimating transmission of between them. To estimate
the secondary infections and ultimately the potential for epidemic transmission this

basic model utilizes the basic reproduction ratio, Ry:

Ry = Mate (3.6)
N yp
If Ry > 1 the number of infected in the population will increase, if Ry < 1 the
cases will decrease (Smith et al., [2007)). Utilized as a metric in epidemiological
events, values greater than one hold potential to indicate an epidemic event, as
the number of secondary cases will exceed the clearing rate. This would indicate
that there is a sustainable reservoir of infected humans and mosquitoes within the
simulated populations. When utilized as a measure to assess the effectiveness of
control campaigns, goals are set to lower the value of Ry to less than one. If the
basic reproduction rate is lowered to this level, transmission will not be sustainable

and will eventually lead to eradication of the infectious agent.

Macdonald’s work, as with the work of Ross before him, failed to consider the
population dynamics of humans and Anopheles mosquitoes (McKenziel, 2000). The
basic differential equation set assumes a static population, ageless, and unsuscep-
tible to successive reinfections or immunities. Furthermore, little consideration

was given to the abstraction of physical processes involved in the life cycle of the
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parasites causing malaria. Ross (1910) wrote of his own model:

“Such calculations may appear far-fetched to many, but they are useful,
not so much for numerical estimates yielded by them, but because they

give more precision to our ideas and a guide for future investigations”

His analysis of his own work highlights many of the short comings of traditional
methods in malaria modeling, but provides necessary focus on the diagnostic util-
ity of these past implementations. Moreover, his view that the value of dynamic
equation models is in their ability to provide precision in future investigations is
valuable, as detailed analysis of these models has isolated several gaps in knowl-
edge. Influence of this pioneering work in diagnostics of causal factors of malaria
transmission can be seen in much of the research today. Products of such models
have been been used extensively to aid in decision-making by providing analysis of
proposed control strategies and retrospective analysis of causal factors (McKenzie,
2000). While powerful, these models, which are primarily based in biology, could
be linked to social or economic models to provide greater insight (McKenzie, 2000)).
Thanks to modern computing power there is potential for compartmental models
to facilitate this and to be brought down to individual level (McKenzie and Samba,
2004). Computational modeling has established itself as the preferential tool for the
exploration of interaction complexities involved with epidemiological events (Roche
et al., 2008)). MIA proposes to harness the power of individual based analysis to ad-
dress many of the inadequacies of traditional methods in epidemiological modeling.
ABMs will be employed as a tool to facilitate this adaptation of malaria modeling.
As such, a thorough review of ABMs and how they can be applied within the MIA

framework is warranted.

3.3 Agent-Based Modeling

Agent-based modeling provides a platform that can be used to simulate disaggre-
gated decisions amongst individuals within a spatially explicit environment (Parker
et al., 2003)). This basic principle contrasts against the assumptions of the previ-
ously discussed population-based methods. Dynamic equation models often ag-
gregate analysis to the population level as an inherent product of their equation
sets. Conversely, ABMs observe and define model procedures at an individual or

“agent” level. Agents are treated as unique entities capable of making informed
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decisions based upon information gathered through interactions. This level of anal-
ysis is promoted in the ABM in the hopes of observing emergent behaviors between

interacting agents that would otherwise be lost in aggregation.

Prior to understanding how such analysis can be applied to epidemiology a basic
understanding of what an agent is must be developed. To answer this|Grimm et al.
(2005) ask what makes James Bond an agent? The answer resolves both cases:
they have a clear set of goals, make autonomous decisions to reach their goals, and
are able to adapt their decisions rapidly in response to information they collect.
Examples of such agents are all around us but in the context of MIA humans and
mosquitos fit this description. The abstraction of an agent requires an object centric
approach not to be confused with the popular software paradigm object-oriented
programming (Jennings, 2000). In this approach specific coding structures are
utilized to create unique objects within the model domain able to store and maintain
attributes as tangible representations of real-world parameterizations. The agent
is then held as this object within a spatially explicit environment throughout its
procedural lifespan. While divergent in application, agents are bound by a set of

commonalities that can be used to define its purpose in a model:

e Agents have the ability to act as autonomous entitles within the model domain
e FEach agent has an associated set of attributes or characteristics

e Agents are given spatial context though the use of coordinate systems, normal
grids, or social networks

e Each agent’s procedural tasks are formed from a set of characteristics and

rules

The commonalities presented here provide a basis for the unique assumption set
employed by the ABM process. Intrinsic individuality maintains that all agents
differ as a product of their unique set of attributes. This reflects heterogeneity of
populations, as contrasted with previous assumptions utilized by dynamic equation
models. Moreover, spatial context provides the means for local interactions in and
amongst agents and their surroundings. Attention is drawn to this assumption as
it strongly counters the global interaction space maintained in dynamic equation
models. Finally, the autonomous actions of agents foster complexity in the decision

making process.

Agents within the model need not be representative only of living organisms

rather they can be used to abstract any perception or understanding of physical
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systems in a broadest sense (Sanders, [2007). A wide range of agent types including
parcels of land (Deadman et al.; 2004)), fluids (Xiang et al., 2004), and geomorphic
processes (Guthrie et al., 2008) have been utilized in the past. Social structures
have also been extended to agent-based representations including supply chains
(Hanafizadeh and Sherkat} 2009). The above set of commonalities and assumptions
of ABMs provides a basis upon which the MIA model can be extended to address

specific gaps of knowledge and complexity in the modeling of malaria.

3.3.1 Relevancy of Agent-Based Modeling in Epidemiology

A pioneer in complexities research, Wolfram| (1984a)), suggested that complex sys-
tems in nature were a product of interactions amongst many simple, identical, com-
ponents. He felt that our understanding of these components was advanced but
the mechanisms of interaction amongst them, fostering complexity, were relatively
unknown. He suggested a discrete dynamical system known as cellular automata
(CA) to advance understanding of the complexities resulting from their interaction.
CA utilizes a grid based system with prescribed rule sets, and local interactions to
develop understanding of complex patterns in physical or biological systems (Wol-
fram|, [1984b). This was an important advancement in complexities research as it
provided an object-based conceptualization of physical systems and an alternative
to differential equation models. Despite the benefits of CA, the components of
malaria transmission exemplify a measure of heterogeneity that if applied to CA
could be lost in its simplicity. Moreover, systems comprising MIA’s interaction
space would be limited by localized interactions imposed by a CA. Abstraction of
Humans and mosquitoes will require integration of a vast number of states beyond
the scope of traditional CA. Due to these limiting factors a true CA will not be
used in MIA. Notwithstanding, the pioneering ideas developed in this work such
spatially explicit objects have been extended to ABMs and will be used to reinforce
MIA.

ABMs hold potential to extend the advancements of CA to epidemiological
simulation of coupled systems. This has been reinforced in previous literature
which defines ABMs as tools showing considerable promise in the simulation of
coupled human-environmental systems (Deadman et al., 2004). The use of ABMs
in epidemiological modeling promotes a novel conceptualization of the interactions
amongst hosts by providing facilities to simulate individual heterogeneity. This
is important when considering the complex interaction space of coupled systems

encompassing humans, mosquitoes, and the physical environment. Perhaps the
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most valuable products of the ABM process are not generated from direct obser-
vation of individuals but rather from the products of interactions between them.
Emergent behaviors, whereby observations from the interaction space are generated
from interactions between individuals and their physical environment, can provide
a novel understanding of causal mechanisms otherwise lost in population-based
analysis. These emergent behaviors are a product of not only parameterizations
of the model domain but are generated by the autonomous actions of the agents.
A majority of dynamic equation models do not begin to consider the resolution
of causal mechanisms, but only provide direct estimates of the affected population
size (Bian, 2004). As the transmission of malaria is a product of the interactions
between two sets of individuals an agent-based approach can be useful to highlight

the mechanics found in the physical processes facilitating transmission.

3.3.2 Agent-based Modeling in Epidemiology

Several studies utilizing agent-based methodologies had have been published for
directly transmitted diseases including the spread of avian flu in Southeast Asia
(Ferguson et al., [2005)), and localized smallpox outbreaks (Eubank et al.; [2004)).
Unfortunately, these studies have been vague in their methods and employ com-
plex procedures to estimate transmission amongst individuals. For these reasons
the model structures employed in these studies have not been reproducible. While
operating at the individual level these models do not necessarily fit the basic as-
sumptions of ABMs as they lack spatial context or rely on rigid rule sets to define
interactions amongst agents. Regardless of the results presented in these studies
they have done little for the ABM community in epidemiology. Authors responded
to this situation by proposing reference models for ABMs in epidemiology. Pro-
posals for this standardization were developed by Bian| (2004)), and later by Roche
et al.| (2008). Their standardized frameworks attempted for the first time to pro-
vide researchers with easily replicated or adapted methods for spatially explicit

investigation of causal factors and mechanisms.

Bian| (2004) sought to define transmission as a network function amongst agents
within the model domain. Measures of adjacency and social networking between
agents form the basis for this transmission function. Testing of this methodology
showed encouraging results promoting the use of ABMs as a method of increas-
ing complexity. Figure |3.3| shows the running results of one such testbed against
traditional methods in epidemiology. Bian| (2004) highlighted the ill effects of the

assumption set used in traditional epidemiological modeling by showing an overop-
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timistic infection rates and timing as result of global mixing. The agent-based
approach produced a longer, sustained period of epidemic with lower total infec-
tions. This was a direct result of localized contact of agents, limiting each to finite
interaction space. Also important in this study was the analysis of spatial cluster-
ing, which was largely resolved due to the interaction assumptions used in ABMs.
iterates that her proposed framework can be amended to vector-borne
infectious diseases but that it requires modeling of both human and vectors as pre-
viously discussed. While this work diligently documented the benefits of an ABM,
and outlined what the theoretical constructing of such a system would entail, it

failed to provide the specific means of implementation.
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Figure 3.3: Traditional and individually-based model comparison (Bian), 2004)

The work of Roche et al.|(2008) appeared several years later, striving to promote
turn-key methods in epidemiological modeling. Tired of lackluster documentation
and complex approaches, the authors of this study proposed a standard agent-
based methodology for modeling of vector-borne diseases. As apposed to the work

of (2004)), this framework was to be used explicitly for diseases communicated
by vectors, as is the case of malaria. Inspired by the traditional SIR methods

previously mentioned, segmented populations were extended to individual analysis
amongst multiple sets of hosts. They attempted to illustrate the adaptable nature
of this implementation by integrating representative environmental landscapes and

parallel computing aspects as optional components of the framework.

The framework was created in the Java programming language, implementing
a functional ABM with the Swarm simulation toolkit (Minar et al., [1996]). Object

abstractions of parasites and hosts were utilized to form the agent classes within the

model domain. The complete source code including functional examples were re-
leased with the paper to allow researchers an opportunity to adapt their framework
to current research. The end result was a simplistic implementation of an ABM
for transmission of vector-borne diseases. While platform independent, the Swarm

toolkit it utilizes was originally developed in the mid 1990s and has since been
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replaced by a new generation of potentially more powerful tools. At the time of the
MIA, no literature had yet utilized the methods proposed by Roche et al. (2008).
Despite poor adaptation of reference models in agent-based epidemiology, there are
several encouraging studies that have been able to bring theoretical frameworks

into practical application in the simulation of malaria transmission.

3.3.3 Applied Agent-Based Malaria Modeling

Recently two studies have attempted to implement an ABM to simulate malaria
transfer dynamics at local scales. These early adopters of ABMs in the simulation
of malaria transfer were able to extend conceptual designs and existing mathemat-
ical models into functional systems. Prior to these studies, such modeling efforts
remained only as reference frameworks lacking real-world application. This was due
in part to a lack of adequate field data for parameterization as well as restrictions
imposed by computing resources. Extensive field work and embedded mathemati-
cal models were coupled with existing agent-based methods to enable abstraction
of epidemiology and malaria transmission. Contrasting in purpose these two ap-
proaches may be used as reference points in the construction of MIA. Discussion
will be given to the merits of these studies as precursors and potential references for
future ABMs in malaria transmission. Additionally, their work will be compared

and contrasted to the proposed methodologies of MIA.

The first of the two studies concentrated on risk assessment by examining po-
tential reemergence of malaria in southern France. The model as implemented
by Linard et al.| (2009) was created as a reactionary measure to the detection of
local autochthonous transmission in 2006. Autochthonous transmission indicates
that the transfer was localized between hosts in the study area and not a result
of importation. This drew considerable attention as malaria was thought to have
been eradicated in the wake of previous vector eradication campaigns. Even with
the identification of recent localized transmission the authors indicate that the as-
sumed risk of local malaria re-emergence is low (Poncon et al., 2007). Due to this
the framework did not seek to identify reemergence temporally but rather was an
exercise in spatial analysis of causal factors and emergent behaviors driving risk
analysis. An immediate parallel can be drawn to the priorities of the MIA in the

creation of an infrastructure for diagnostic modeling.

Their model, MALCAM, was tasked with estimating spatial and temporal vari-
ation in actual biting rates (ABR) between mosquitoes and humans over a sin-

gle season (May to October). This approach borrows from traditional metrics of
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epidimicy such as Ry, or basic reproductivity, estimated from local variables such
as biting rates (Smith et al., 2007)). Sensitivity analysis tests showed that mosquito
reproduction and mortality greatly influenced contacts between mosquitoes and hu-
mans. Unsurprisingly these parameters control the abundance of mosquitoes found
in the model and thus increase opportunities for biting to occur. The emergent
behaviors shown in these results are promising as they show similar changes to the
pioneering work of Ross| (1910). Using ABMs to accomplish this has the added

value of producing spatial results in which clusterings can be observed.

As apposed to studies considering reemergent malaria in topical regions, climate
change is not a driving factor in the malaria transmission model of MALCAM.
Rather, land use change is assumed as the primary factor behind potential reemer-
gence. This is related to extensive local rice farming that has provided expansive
habitat space for the primary vector A. hyrcanus. It was presumed that habitat
extension would allow for an increased carrying capacity within the local environ-
ment, encouraging an increased vector population. Thus, an interesting case has
been submitted for diagnostic modeling of an epidemiological event within an en-
vironment contrasting to that of MIA. The research completed here promoted a
strong case for the use of sensitivity testing of input parameters to understand how
land use and other biological factors could drive reemergence. Figure shows
the sensitivity analysis of several biological input parameters in MALCAM. Each
was tested 20% above and below the default input parameter. As was previously
suggested, sensitivities in reproduction and mortality rates of mosquitoes has a
exponential relationship with actual biting rates simulated in the model domain.
A 20% increase in reproduction of mosquitoes results in a near 300% increase in
biting rates simulated. This reinforced the need to implement polices that could
negatively impact the reproductive cycles of the mosquitoes themselves and reduce

available habitat space.

MALCAM uses a set of mathematical models to drive population dynamics of
mosquitoes that was calibrated with in-situ measurements and biological specifics of
the primary vector in the study area. For these reasons, as well as an assumed non-
endemic population, the possibility of extending this model to epidemic/endemic
regions such as the Peruvian Amazon are limited. Furthermore, specific vulnerabil-
ities of the MALCAM model restrict mosquito habitat space to rice fields with no
consideration of precipitation or hydrological variation within the abstracted phys-
ical environment. Notwithstanding, the design concepts employed by the authors
of this study, as well as their testing rigor, provide valuable insight into the design

of an ABM for malaria transmission.
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Figure 3.4: Sensitivity analysis of reproduction (r), mortality (m), maximum flight
distance (flight-dist), initialization conditions (ad-setup(maz)) and carrying ca-
pacity (maz-larvae) (Linard et al., 2009)

Developed around the same time as MALCAM, Bomblies et al.| (2008)) presented

a coupled hydrological-entomological model to assess local scale malaria transmis-

sion in the village of Banizoumbou, Niger. Their model attempted to extend an

existing individually-based mathematical model developed by Depinay et al.| (2004)

that was capable of simulating mosquito population dynamics. The applied mathe-
matical framework included procedures for estimation of mosquito mortality, repro-

duction, vectorial capacity, and controlling habitat dynamics. The integration of

this mathematical modeling system developed by |Depinay et al.| (2004) placed the

model at a considerable level of complexity over the previous efforts of MALCAM.
As the local study area is a desert-fringe environment the hydrological dynamics
strongly drive habitat generation and ultimately mosquito population size. The
model was calibrated with extensive field work that included mosquitos collected
from light traps, soil sampling, and extensive meteorological monitoring. As result
of their efforts the model was able to accurately simulate mosquito habitats and
population. Despite their successes, the authors identify a limitation of the model
as not being able to “perfectly reproduce weekly CDC light trap measurements”
(Bomblies et al., [2008). This is consistent with the tone of the paper throughout,

as consideration of the diagnostic capabilities of the model are used primarily as

metrics for the predictive capabilities of the model.

While each of these ABMs utilized climatic data including temperature to assist
in the modeling of transmission little consideration was given to the the effects
of local climate variability. Each study identified a relationship between climatic
variability and specific physical systems but failed to explore how local observations
tied into larger climate systems. This can be attributed to the restricted temporal

scale of each model which limited the potential to assess climate change over time
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as a component of malaria transmission. MIA will attempt to extend analysis of
climatic variability into a larger context as a component of global climate change

and its effects on local vector populations and malaria transmission.

3.3.4 MIA Agent-Based Approach

The approach in MIA merges the theories used in traditional epidemiological model-
ing, such as SIR, with the spatially explicit individual level analysis of ABMs. The
proposed system will characterize two sets of agents in mosquitoes and humans.
These agent sets will be used to model transfer dynamics through the interactions
that occur between the two sets of agents. Additionally, a spatially explicit envi-
ronment will be created to provide agents a common space within which agents can

interact and gather information.

Each set of agents will have attached attributes to indicate their current risk
state as well as a vast number of ancillary states abstracting population dynamics,
biological functions, and environmental interactions. This disaggregation will allow
for greater control of biological drivers and possibly facilitate an increase in model
complexity though refinement of physical system interactions. The interaction rules
and procedural lifespan of each agent will be driven by a series of mathematical

models and heuristic rule sets.

3.4 Chapter Summary

Comparative analysis of traditional methods in epidemiology and novel approaches
such as ABMs show accessible gaps in research in the modeling of malaria trans-

mission. Specific issues identified though the prior discussion include:
e Restricted complexity because of rigid assumption sets employed in tradi-
tional epidemiological modeling

e Compromises in prior implementations can be accommodated by using novel

hybrid approaches and and enhanced resolution of the level of analysis

e ABMs can be exploited to access emergent behaviors and extend understand-

ing of physical systems.
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e Past implementations of ABMs in epidemiology and malaria have assessed
many research gaps and as a whole can be synthesized to devise a novel
approach to transmission modeling.

MIA will attempt to address many of these shortcomings though the introduc-
tion of novel methods that incorporate traditional approaches with the agent-based
paradigm of modeling. Even with potential solutions in sight, the cognitive burden
of understanding model behavior can often become a restrictive cost of increasing
complexity in modeling (Rahmandad and Sterman, 2008). Several researchers of
the past have understood this basic principle in epidemiological modeling, and MIA
will attempt to empathize this in its methodologies and discussion. Carrying for-
ward the base of understanding established in this chapter, focus will now be turned
to the specific methodologies employed in MIA to illustrate the conceptualization

of the novel approach synthesized from the lessons of the past.
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Chapter 4

Methodology

As an exercise in model building and implementation, the methodologies utilized
in MIA are presented in detail to draw attention to the complexities of interaction
amongst it’s abstracted physical systems. Focus is given to the coupled nature
of sub-model structures demonstrating an integrated approach to physical model-
ing of human-mosquito-environment interactions. This approach aims to address
how specific research questions have been accessed through the construction of the
model. Development and implementation of the model is described in this chapter,
utilizing the overview, design concepts, and details (ODD) protocol for individu-
ally based models (Grimm et al.; 2006)). The complex integrated nature of the MIA
model demands standardized descriptive structures for abstraction of model pro-
cesses and mathematical sub-systems. A general purpose overview of the model’s
structure will be given in the methodological purpose, platform description, ex-
planation of state variables, and process-scheduling definition. Conceptual design
is then discussed to demonstrate theoretical processes as related to specific model
structures and parameterizations. Lastly, detailed discussion of model initializa-
tion, input, and sub-model processes will be developed to finalize understanding of

the MIA model implementation.

4.1 Overview

4.1.1 Purpose

From a methodological perspective the model strives to abstract physical systems

into either mathematical models or heuristic rule sets. These model constructs are
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responsible for providing the means to observe emergent behaviors resulting from
simulated individuals. Developed structures and abstractions in the model serve
as feedbacks to additional systems of simulation that comprise a larger conceptu-
alization of the processes involved in malaria transmission. It is in analysis of the
connections amongst processes that hypothesis testing and analysis of emergent
behaviors can best be observed. In the case of MIA, the construct of modeling
implies not a tool of historical epidemiology but rather an avenue for systematic
exploration of processes and feedbacks driving interactions of interest. The forth-
coming methodologies seek to provide the basis for a spatially explicit ABM of
malaria transmission dynamics and the procedures necessary to utilize the model

as a diagnostic tool.

4.1.2 Platform

The development platform of MIA can be broken down into two main components
of processing and data handling (Figure: . The model processing platform is
created in a Java programming environment (Gosling et al., 2005)) utilizing the Java
implementation of the recursive porous agent simulation toolkit otherwise known as
REPAST (Collier, 2003)). The REPAST toolkit offers an open source platform for
development and deployment of ABMs. REPAST provides facilities for controller,
scheduler, action, and agent processing (North et al., 2006 which is used heavily to
coordinate the model at the system level. Structures in the programming platform,
other than those provided by REPAST, were developed as original code of this
project. These structures were also created in a Java environment utilizing an
object oriented programming approach. Working in a Java environment allows for
strong coupling of third party open source facilities for data handling purposes. The
model takes advantage of this by structuring data handling as a two part process.
A coupled MySQL database (MySQL, [2009) gathers and stores global and agent
states at each time step. Database entries then are processed using the R statistical
language (R Development Core Team, 2009). The R statistical language provides
strong aptitude for statistical processing that is utilized to present results and drive
discussion. Much like the processing platform, structures utilized to couple third

party data handling software were developed as original code for MIA.
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Figure 4.1: MIA model platform

4.1.3 State Variables and Scales

MIA is characterized by five hierarchal levels where individuals (agents), house-
holds, habitats, population, and environment are observed as model components.
Each level of analysis offers a different perspective to the desired interaction proper-
ties in the model by capturing a unique set of state variables. The processing tasks
assigned at each level are contrasting in approach and require sub-model specific

structures to govern their behaviors and methods of simulation.

The individual level forms the basis of all ABMs by abstracting individual enti-
ties as agent objects with a unique set of state variables dictated by their interac-
tions in the model domain. An assumption that all agents are able to make decisions
or follow rule sets independently across time is maintained at the individual level.
An individual may only be considered at a single spatially explicit location during
discrete temporal events within the model domain. The model structure considers
two unique classes of physically based agents in humans and mosquitoes. Each class
of agents is characterized by a set of state variables inherited from their agent type.
Human agents are characterized with a set of state variables including identification
number, location coordinates, age, sex, occupation, and malarial state (see table
. Human agents that have not completed their 15 year of life are considered
to be children, and all others adults. Human children carry an identical set of state
variables as their adult agent counterparts but are limited in occupation and utilize
different mortality rates. Stochastic simulations and heuristic rule sets of a human
sub-model determine the actions of agents in the model and facilitate changes in

state variables.

Also considered at the individual level of analysis are adult-stage mosquitoes.

Adult-stage mosquitoes have emerged from aquatic-stage simulation to be discussed
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Table 4.1: Human agent attributes

Variable Data Type Description

ID Integer Unique Identifier

X Integer Current X coordinate

y Integer Current Y coordinate
homeY Integer Household X coordinate
homeX Integer Household Y coordinate

age Integer Agent age in years
stepsToLive Integer Simulated year of death

sex Integer Sex of agent

occupation Integer Occupation of agent
hasMalaria Boolean True if agent is infected
isInfectious Boolean True if agent is infectious
isSymptomatic Boolean True if agent is symptomatic
stepsSincelnfection Integer Tracking for incubation period

in the mosquito sub-model becoming flying agents. Mosquitoes at the adult-stage
inherit a different set of state variables unique to their agent type. This set of state
variables is comprised of a identification number, geographic location, gonotropic
cycle status, and malarial status (see table: . A series of tasks directed by an
adult mosquito sub-model are completed to simulate interactions and development
within the model domain. Simulation at the individual level generates hundreds of
thousands of unique instances representing each adult mosquito or human in the
model. This produces rich data sets detailing the interactions of individuals but
is also the most computationally expensive level of observation. Due to this, addi-
tional levels of analysis are utilized to observe and simulate smaller scale processes
in the MIA model.

The second tier of analysis is comprised of two related units of aggregation:
households and habitats. A household is defined as a spatially explicit unit that
can be occupied by a group of human agents during any time period of a model
run. The household unit is characterized by state variables including identification
number, location coordinates, agents residing in the household, and the presence
of aquaculture. The agents composing this unit are considered a family unit and
are related within the model domain. The existence of the household unit is reliant
on it being occupied by human agents. If the number of human agents becomes
zero at any point during the model run the household unit is abandoned. In this
state the household can be colonized by new families dynamically imported into

the study site by migration or human agents already operating within the study
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Table 4.2: Mosquito agent attributes

Variable Data Type Description

ID Integer Unique Identifier

X Integer Current X coordinate

y Integer Current Y coordinate

xX Integer Temporary movement variable
yX Integer Temporary movement variable
gonotropicCycle Double Monitoring of gonotropic cycle
isOvipositing Boolean True if laying eggs during step
isInfectious Boolean True if agent can transmit
isInfected Boolean True if agent is infected
hasBitten Boolean True if agent bit human
eggsLaid Integer Count of eggs laid in current cycle
stepsSincelnfection Integer Tracking for incubation periods

site. The aquaculture state of the household describes aquatic farming practices
and is dependent on the actions of the agents inhabiting the household and model
initialization parameters. Currently, the household level exists purely for statistical
purposes. Simulated household decisions are not made based upon the individuals

who reside within in it but in the future may be modified to do so.

As humans inhabit household units, mosquitoes utilize habitats in the model
to accommodate their biological processes. Habitats are represented in the model
as geographical units with embedded sub-models to facilitate tasks including the
laying of eggs (oviposition) and simulation of aquatic-stage mosquito development.
The spatial characteristics of a habitat unit are bound by the normal grid cell size
used to represent the physical environment. In contrast to adult-stage mosquitoes
who are simulated as agents, immature or aquatic-stage mosquitoes are simulated
as aggregate units within a grid cell habitat. This process requires an embedded
mathematical model to govern development of the immature mosquitoes within
each habitat. Due to this, mosquito habitats are a complicated units of analysis
and hold potential for uncertainly if improperly parameterized. Utilizing a large set
of variables, habitats are characterized with states of water dynamics, immature
mosquitoes dynamics (eggs, larvae, pupae) and local development rates. Unlike
households, habitats do not require the presence of individual agents for their op-
eration. Habitat simulation is completed iteratively throughout the entire run of
the model. This ensures that the embedded models are ready for aquatic-stage

simulation at any point of a model run.

Aggregate analysis of trends in groups of individuals, households, or habitats
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is handled by the model at the population level. Human agents at the population
level are characterized by size, number of households, and infection rates. These
observations can be accessed in a spatial fashion for observation of trends over time
and space. The same set of variables is used to characterize adult mosquitoes in
addition to biting rates, global gonotropic cycling estimates, and oviposition rates.
Aquatic-stage mosquitoes can also be observed at the population level characterized
by total population at egg, larval, and pupal stages of development. Population
level analysis provides important observational tools allowing for analysis of pa-
rameterization changes made at the individual level in relation to expected results

in the study site.

All previously discussed levels of the model exist within the final and the high-
est order of the model, the environment. The environmental sub-model governs
this level of the model and provides a spatially explicit representation of the study
area including land cover types and climatic conditions. A regular grid is used
to define the spatial locations found within the environmental level. The environ-
ment is characterized by state variables including temperature, barometric pressure,
relative humidity, time of sun rise/set, precipitation, and land cover type. More
importantly all lower tier elements of the model are bound by the limits of the
environment existing within it’s domain. The resulting product generates a space
in which interactions amongst agents or between agents and the environment can
be simulated in a spatially explicit fashion. The environmental level provides cou-
pling structures for all sub-models and is the true interface through which emergent

behaviors can be observed in the MIA model.

4.1.4 Processes Overview and Scheduling

Three interacting sub-models abstract human, mosquito, and environmental sys-
tems to retrospectively simulate the dynamics of malaria transfer in the MIA model
(Figure: . The implemented model structure separates processes into these
three primary categories corresponding to physical systems targeted in the research
questions. Each of the three major components is governed by a sub-model that
simulates known processes and provides process coupling. To simulate physical
systems each sub-model generates a series of tasks which are completed as discrete

time steps.

The discrete time steps in MIA contain five programming structures which fa-

cilitate the tasks required to simulate the human, mosquito, and environmental
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sub-models. Figure illustrates the order of these tasks in a UML sequence di-
agram. Tasks to be simulated are shown as elements of the previously discussed
hierarchal levels. An additional level known as the scheduler is added to repre-
sent system level processing of the MIA model. While not a unit of analysis its
purpose is to coordinate the model sequencing during each time step using the
REPAST controller. The scheduling sequence at each time step begins with an
update of global variables including temperature, carrying capacities, and devel-
opment rates. Following the global update human and mosquito sub-models are
updated to reflect changes in population based upon the updated state variables
from the previous step or initialization parameters. This sequence provides an esti-
mation of population size and generates new mosquito agents. Finally, the primary
model stepping iterates through each human and mosquito agent simulating sub-
model tasks at the agent level. The tasks of each human and mosquito agent are
completed asynchronously in an attempt to characterize interactions between the

two sets of individuals replicating the dynamics of the physical environment.

Time in MIA is addressed using discrete steps representative of a 24 hour pe-
riod. This global stepping corresponds with the course requirements of the model
as a whole. Specific sub-model elements are allowed to simulate at finer temporal

scales to satisfy their particular requirements. The results of sub-scale elements
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are aggregated to correspond with MIA’s global temporal resolution. For example,
a structural element such as the mathematical model governing aquatic-stage de-
velopment requires that each hour of the day be simulated. Thus this process is
allowed to iterate within each step to produce an aggregate measure of develop-
ment based upon hourly estimates. This structuring of temporal scale is utilized to
correspond with the temporal availability of climatic data and the computational

capacity of the systems used to simulate the model.

4.2 Design Concepts and Details

4.2.1 Sensing

Sensing is an important concept in the model referring to the proprietary meth-
ods used by agents to gather information about their surrounding environment.
Mosquito agents utilize sensing feedbacks from environmental and human systems
to simulate their behavior and development. These sensing abilities extend to en-
able detection of variables including human presence, and detection of suitable
breeding sites. Mosquito agents will make decisions based upon the variable in-
formation and stochastic processes gathered from their sensing abilities. Human
agents are assumed to have abilities to sense their surroundings, including loca-
tional and household information. Additionally human agents are aware of their

infectious status through the presentation of symptoms such as fever.

4.2.2 Interaction

The model as a whole is driven by the interactions amongst agents and their en-
vironment. Interactions are facilitated though the grid spaces generated by the
environmental model. Spatially explicit grid cells can be occupied by agents and
attributes so that sensing can occur and interactions develop. These feedbacks
are utilized by the mosquito agents to ultimately generate the interaction that the
model seeks to characterize, biting, and the potential transfer of malaria. Agents
have the ability to modify their environment but are also influenced by changes in
the environment. Emergent behavior simulated between agents is largely a product
of these cycles of modification, reaction, and adaptation as generated in interac-
tion. Concepts of space and time are maintained as discreet locations and temporal

events with all interactions.
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4.2.3 Stochasticity

The MIA model relies on several stochastic processes to introduce variability into
deterministic mathematical models. Gaussian and weighted uniform probability
distributions are used to consider heterogeneity in agent state variables and at-
tributes. Additionally some variables describing mosquito development are stochas-

tically generated as discussed later as sub-model structure.

4.2.4 Model Initialization

In order to bring the model to a stable state several elements require initialization.
Human agents are randomly generated and assigned to households based on known
population size at the initialization date of the model. This process utilizes known
population distributions to assign ages and expiry dates to human agents spawned
during initialization. Agents generated after initialization will be assumed either
new born or simulated migrants with an assigned age. Households are allocated
across land coverage types based upon known urbanization rates from Peruvian
census data. The exact locations of households are randomly generated within each
land cover type. Additionally aquaculture pools are assigned to random households

at the onset of the model based upon the requirements of the simulation type.

The mosquito population at initialization is set to fifty adult stage mosquitos
with no aquatic-stage population. Fach is randomly placed in a habitat in the
study site. Testing of the model with smaller numbers in many cases failed to reach
steady state. The minimum selected here ensures that a steady state is reached
within the model. With this initialization the model requires approximately six to
eight months to reach a steady state. The results produced from the first year of the
model are not considered in analysis because of this. The effect of the initialization
processes carries potential uncertainties which necessitate sensitivity testing. Steps
will be taken in the discussion of the model results to provide analysis of these

uncertainties.

4.3 Environmental Sub-Model

The environmental sub-model (ESM) is the most important sub-system of the MIA

model because of its spatially explicit nature. Utilized to create a coupling interface,
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the ESM facilitates interactions amongst sub-model simulation spaces. Conceptu-
ally, the ESM is a spatially explicit representation of the physical environment found
within the study area. A “world” object is generated and utilized as a container
for agents and spatial variables much in the same way we live and interact within
our physical environment (Roche et al., 2008). Spatial interactions between agents
and the physical environment can then be simulated though time and space when
coupled in the larger context of the model. To define the model’s “world” the ESM
generates cellular landscapes or grids in which agents and environmental attributes
are given spatial context. As each type of agent has it’s own environmental con-
siderations a cellular landscape is generated to address the specific needs of each
governing sub-model. Georectification is implemented to ensure that locations in
any of the cellular landscapes relate the same physical location. This has been
completed to allow interactions not only within but amongst cellular landscapes.
Computationally, each grid is managed as a matrix, storing cell values and variables
in memory during the model run. The following section documents the inputs uti-
lized in the generation of each grid and methodologies used to create environmental

simulation space.

4.3.1 Sub-Model Inputs

The primary input of the ESM is based on satellite imagery acquired by the Landsat
series of space-borne optical sensors. Images were acquired on November 11th,
1987, August 5th, 1993, and July 6th, 1996 from the thematic mapper (TM) sensor
of Landsat 5, and May 31st, 2001 from the enhanced thematic mapper (ETM+)
of Landsat 7. Prior to assimilation of these images into the model a series of
pre-processing steps are completed to prepare the data. A process of image to
image rectification is completed to ensure that grid cells in each of the images are
representative of the same location in the physical environment. Permanent urban
features such as a road network intersections, airport runways, and building features
were utilized as reference points between each image. Due to a lack of locally
available ground control points the accuracy of coordinate systems in relation to
real world locations cannot be presently ensured. This does not concern the model
as certainty of image to image rectification allows for minimal errors in observation
of changes over time. A root mean square error rate of less than one pixel was
maintained in both the X and Y planes to ensure accuracy in the image to image

rectification process.
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4.3.2 Environmental Simulation

Simulation of the physical environment in this sub-model is completed in three
steps, generating a number of cellular landscapes. Environmental and human grid
spaces are derived from satellite imagery detailing specific land coverage types of
the physical environment within the model. These grid spaces are similar and will
be discussed together in regards to their creation. Next a grid space abstracting
mosquito habitat is created based on the products of the environmental and human
grid spaces. Each grid space consists of a 240 by 180 regular grid at a spatial resolu-
tion of 30 m x 30 m. The grid space resolution is a compromise between complexity
and computational overhead. The spatial resolution selected comes from the native
resolution of the the satellite imagery providing a reasonable space in which habi-
tats and agent tasks can be simulated. Refinement of the spatial resolution would
add computational overhead by compounding grid based calculations in relation to
the number of additional cells. Considering the already significant computational
requirements of an agent-based model the native resolution of the satellite serves

as an adequate compromise.

Environmental and Human Grid Space

To simulate human agency with spatial consideration, the model requires geo-
graphic definition of areas suitable for agents to occupy. The ESM accomplishes
this by creating a grid space where agents occupy grid cells based upon known land
coverage types. Rulesets are extended to isolate cells acceptable for habitation and
the establishment of household structures. The ESM utilizes land coverage types
including urban and peri-urban for the initial human habitation ruleset. Addition-
ally, land cover types of forest, bare ground, and water are processed to complete
the model representation of the physical environment. The rendered spatially ex-
plicit land covers, coupled with known urbanization rates, is utilized to estimate

spatial population distributions throughout the study site.

Generating these land cover classifications requires Landsat 5 and 7 satellite
imagery to be assimilated into the model. Images from the Landsat series prior
to processing have a swath 185 km wide (Jensen, |2000). Due to this, unprocessed
images represent areas much larger than the observed study site in the MIA model.
A sub-set of the image is made for the 8 km x 4 km study area focused on the
Zungarococha suburban communities. Here, each image is bound by bound by a
coordinate set found in the north west at 73° 24’ 52”7 W, 32 49’ 27" S and south-east
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at 73° 20" 237 W, 3° 51" 43" S.

The TM and ETM+ sensors used to acquire Landsat 5 and 7 imagery respec-
tively capture seven bands of visual and infrared data (Jensen, 2000). For the
purposes of the land cover classification in the model only four bands are selected
including red, green, and blue visual spectrum data as well as near infrared data.
To increase contrast and help in the classification process a normalized vegetation
index (NDVI) is calculated based upon observed red and near infrared data. Clas-
sification of land cover types is processed using PCI geomatica (PCI Geomatics,
2002) with an k-means unsupervised classification. From the iterative unsupervised
classification 16 initial classes are generated and aggregated to five possible land
cover types: bare ground, forested, peri-urban, urban, and water. Classifications
are completed for all available imagery and made available to the model domain
between time steps of acquisition as ASCII grids. The generated environmental

grid is made available to the entire model to aid in other sub-model simulations.

The preprocessing steps described above are completed using third party soft-
ware and are not internally coupled with the MIA model. Due to this there is no
automation of these processes and the data must be prepared manually prior to
assimilation by the ESM. One of the operational goals of MIA in the future should
be the elimination of reliance on closed source applications and coupled automation

of preprocessing.

Mosquito Grid Space

The mosquito grid space represents possible habitat locations for adult and aquatic-
stage mosquitoes in MIA. Identification of these habitats relies on understanding
of the requirements and preferences of local mosquitoes for completion of their
biological functions. Adult mosquitos laying their eggs and developing immature
mosquitoes require aquatic environments (Guarda et al., [1999; Roshanravan et al.,
2003). Keeping this in mind the MIA model provides two possible structures for

habitation: water edge environments and aquaculture.

The model uses the previously completed land use classifications to identify
existing bodies of water. An edge detection algorithm extracts cells bordering
known bodies of water which are added to the mosquito grid space. These locations
have an assumed presence of water providing favorable habitats for mosquito agents
and aquatic-stage simulation. The locations of aquaculture ponds are simulated

through the model initialization and are allocated to households randomly in the
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study area. As these ponds often have stagnate water sources preferable to mosquito

habitation they are added to the grid space.

Indeed there are many sub-scale mosquito habitats that are unaccounted for
in the model including but not limited to discarded tires, wells, and sources of
standing water. The processes currently utilized are in place to accomplish the
proof of concept goals of the first generation MIA model and will not consider sub-
scale habitats. These hydrological complexities and possible strategies to resolve

them will be discussed as a model limitation at the conclusion of the paper.

4.4 Mosquito Sub-Model

In the modeling of transmission the actions of mosquitoes are simulated to observe
emergent behaviors between potential hosts of the parasite causing malaria. Long
before one can consider these potential interactions between hosts, discrete events
such as blood meals, dispersal, egg laying, and immature mosquito development
must be considered to simulate local mosquito population dynamics. A set of rules
and mathematical models governing these actions allow for physical processes to be
parameterized, simulated, and observed. Simulation of these discrete events along
with the tracking agent state variables, such as the infectious status, are utilized
as feedbacks in the dynamic simulation prior to transmission. Finally, transmission
can be conceptualized as series of events where successive bloodmeals of a mosquito

can transfer the parasite causing malaria from one human host to another.

The mosquito sub-model considers these processes as a simulation the mosquito’s
lifespan. The mosquitoes life is divided into two major cohorts: aquatic and adult.
Due to the contrasting nature of aquatic-stage and adult-stage development two sep-
arate modeling techniques are utilized to simulate these stages. MIA has taken local
environmental and biological considerations and applied them to existing mathe-
matical models and heuristic rule sets to simulate each of the development stages.
To explain the modeling techniques utilized, discussion will be given to the data
inputs, aquatic-stage simulation, adult-stage simulation, and their parameteriza-

tions.

4.4.1 Sub-Model Inputs

A primary meteorological data set and a variety of internal parameters generated

from coupled sub-models are used to drive the mosquito sub-model. Meteorological
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data is assimilated directly into the mosquito sub-model for use in the physically-
based mathematical models. This data was acquired from a meteorological tower
located at the Iquitos airport approximately 4 km North-East of the study site
at 3° 45’ 07 S, 73° 13’ 48”7 W. This station was selected because of the large
number of variables and temporal coverage available. In rare cases where data was
missing replicate data from prior periods was used to make averaged estimates. Air
temperature (min, max, mean), relative humidity, and precipitation are used in the
mosquito sub model. Climatic variables are considered to be uniform across the
entire study site but can be be adjusted for specific grid cell habitats utilizing the
input parameter space of the model. Model parameters abstracting environmental
considerations such as shading, cloud cover, and pool depth can be applied via this

interface in future generations of MIA.

4.4.2 Aquatic-Stage Simulation

The modeling of the aquatic-stage relies on an understanding of immature mosquito
development and how spatiotemporal variables can influence development at each
stage. The local vector of malaria, A. darlingi, much like other mosquitoes, has
three basic aquatic stages of development. Starting as an egg the immature mosquito
hatches and enters the first larval stage (L1). As the larvae grows it completes three
additional larval stages (L.2-1.3-1.4) until it develops into a pupae. Finally, surviv-
ing the pupae stage, it will emerge as a flying adult-stage mosquito. Each stage
of development is governed by complex set of determining variables such as tem-
perature, moisture, nutrients, predation, and dispersal (Depinay et al., 2004} |Girod
et all 2008; |Grieco et al. |2007; Turell et all 2008). The aquatic-stage model is
used to estimate development at egg, larvae, and pupae stages in relation to these
variables within the model. To do so the aquatic-stage model is embedded at each
grid cell previously identified as favorable habitat in the ESM. Initialization of the
aquatic-stage model occurs when an adult-stage mosquito lays eggs at in one of
these grid cells. Figure illustrates this process where previously laid eggs from
mosquito agents are used as input for the embedded aquatic-stage model. The
embedded aquatic-stage model consists of three major components used to esti-
mate aquatic-stage sub-populations: (1) development, (2) carrying capacity, and

(3) mortality.
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Figure 4.4: Aquatic-stage sub-model

Aquatic-Stage Development Model

The embedded aquatic-stage simulation utilizes a mathematical model pioneered

by Depinay et al| (2004) for estimation of development and aquatic-stage sub-

populations at each grid cell. Derived from mosquito development, environmental,

and field validation data in Africa with A. gambiae the model of Depinay et al.

(2004)) simulates internal biological processes of the mosquito to simulate develop-
ment. Incorporation of local climatic and biological parameters unique to each stage

of development drives estimation of sub-populations transitioning between stages

of development. While the model of Depinay et al. (2004) was not intentionally

built for study sites in South America or the Peruvian Amazon, the assumptions of
the mathematical model are not geographically exclusive to the areas in which it
has been previously applied. Moreover, the mathematical model is adaptive in that

it can be parameterized to incorporate the attributes of local mosquito populations

and environmental conditions (Bomblies et al., [2008)).

Depinay et al. (2004 describes development of mosquitoes as a temperature

dependent function over time where Ty is the temperature over a specific time
interval, k£, as shown in equation This mathematical model is based on the as-
sumption that mosquitoes are poikilothermic, meaning that their internal tempera-

ture varies in accordance with the ambient temperature of their direct environment

(Hildebrand and Goslow, [2001). This is a important concept as poikilothermic

organisms are sensitive to small changes in temperature due to their inability to

govern their internal temperature (Depinay et al., [2004). Due to this an ambient

change of even a single degree can result in large changes in a mosquito’s life span.
These changes in life span are a direct result of changing reaction rates of enzymes
important for development within the mosquito in relation to ambient temperatures
(Sharpe and Demichele, |1977). The basis of understanding prior to the model of
pinay et al.| (2004)) was extended by Sharpe and Demichele| (1977) who first derived

a reaction kinetics model for poikilotherms using three assumptions of analysis:
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1. A single control enzyme regulates development. Observed reaction
rates of this enzyme determines development rates of an organism.

2. The product of concentration of active enzymes and the associated
rate constants have a proportional development rate associated
them.

3. Three states exist for the control enzyme. This includes two tem-
perature dependent inactivations states and an active state.

The model is developed from these assumptions by simulating the three possible
states of control enzymes in the organism population. This produces an estimate
of concentrations found to be active or inactive which are used to estimate a pro-
portional rate of development as per the second assumption. The mathematical
model assumes that this is the only control enzyme regulating development and
the products of the mathematical model determine the development of the organ-
isms satisfying the first assumption. Knowing mosquitoes are poikilothermic, the
reaction kinetics model was adapted by Depinay et al. (2004) and is applied to
aquatic-stage populations with known ambient water temperature of their habitat
to estimate development. The temperature dependent development of the poikilo-

thermic mosquitoes is estimated as r(7") resolved in equation

r(T) = (4.2)

rear S (= )| e [ (s -4)

In this equation pysec is a known development rate per hour at a temperature
of 25°C with no inactivation of the control enzymes; T is the ambient temperature
(°K) of the mosquitoes direct environment. The remainder of the equation relies
on an understanding of enthalpy of activation where AHZ;é relates to the reaction
catalyzed by the control enzyme (cal - mol™'); AHy is the change associated with
low temperature (cal-mol™'); AHp is the change associated with high temperature
(cal - mol™1); T jy represents the temperature at which 50% of control enzymes are
inactivated because of high temperatures; inversely T% ; represents 50% inactivation
due to low temperature; and R is the universal gas constant (1.987 cal - mol™')
(Depinay et al., [2004).

Development rates are calculated independently at the beginning of each time

step for all aquatic-stages using a set of parameters defined in table [4.3] Sequential
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calculations are completed to estimate the size of the sub-population transitioning
from one stage to another based on the sub-population size of the previous step mul-
tiplied against the calculated development rate. Equation produces the hourly
estimation of the development variable needed to transition sub-populations in this
manner. To match the temporal resolution of the model the development prod-
uct is aggregated as observed in equation producing a measure of cumulative
development.

Table 4.3: Developmental rate parameters
p25oc AH‘Zé AHL T%L AHL T%H
Egg 0.0413 1 -170644 288.8 1000000 313.3

Larvae 0.037 156684 -229902 286.4 822285 3134
Pupae 0.034 1 -154394 288.8 554707 313.8

k—1
CD(t,) =Y dy (4.3)

Completion at any of the development stages is defined as C'D(t,) > CDy =1,
where cumulative development is greater than one. It has been suggested that
completion be addressed as a stochastic process to model variability in develop-
ment (Bomblies et al. 2008; Depinay et al., [2004)). Equation implements this
suggestion by modeling variability with the addition of a normal random variable
(G) with a mean of 0 and standard deviation of 10%. The new estimation of com-
pletion is defined as cumulative development greater than one with the addition of

a randomly generated parameter from the normal distribution.
CD(t,) >CD; =1+ G(0,0.1) (4.4)

Carrying Capacity

The methods demonstrated thus far for estimating aquatic-stage populations con-
sider only temperature as a factor. To properly estimate aquatic-stage populations
consideration must be given to additional regulatory mechanisms limiting popu-
lation. In this regard there is a need to estimate nutrient competition in aquatic
habitats by defining carrying capacity. Each grid cell habitat has a finite availabil-

ity of nutrients and if the feeding requirements of aquatic-stage mosquitoes exceed
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these requirements development will not be sustainable. Carrying capacity is ap-
plied as a regulatory mechanism to larval stages as they are the only aquatic stage
that require ingestion of nutrients for development. Larval stages are sensitive to
nutrient competition because of the length of the larval stage relative to egg and
pupae stages and the relationship to final adult weight (Hoshen and Morse, 2004]).
Prolonged nutrient deficiency will drastically limit larval development until a sus-
tainable state is reached in the system. Reflecting the model of Depinay et al.

(2004) aquatic-stage populations are limited by estimation of nutrient competition,

C.
C= <€_ew> (4.5)

Equation resolves nutrient competition, C', where e is a parameterized car-

rying capacity (mg-m~2) and w is the summation of larval biomass in the habitat.
It is assumed that no grid cell will have 100% of its surface favorable for larval
development and a maximum carrying capacity of 3000 mg per grid cell is set. If
this is not assumed a 30 x 30 grid cell would sustain an aquatic population of over
300,000 larvae which is well beyond the estimated densities found in the study site
(Turell et al., [2008)). Once calculated the current larval population and the nutrient
competition parameter will define the carrying capacity limited larval population
at each time step. The procedure generates a logarithmic relationship between the
maximum carrying capacity and the larval population. This is desirable so hard
thresholds are not imposed on the simulation allowing for a more natural represen-

tation of the real world systems.

Mortality

Mortality is the final regulatory mechanism used to simulate aquatic-stage devel-
opment. Sources of morality unrelated to carrying capacity or temperature de-
pendent development are integrated as model parameterizations for aquatic-stage
simulation. These include egg-larvae-pupae specific death rates, cannibalism, and
predation. Stage specific death rates have been adapted from previous literature as
daily or hourly measures. The parameters are used in the model during each step
by removing a percentage of the population based upon the documented rate. Can-
nibalism is modeled at each iteration of the mosquito sub-model where L1 larvae
are eaten by L4 larvae. Additionally predation is modeled as a simple percentage

of the total population removed at each step.
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Parameterization

The discussed elements of the mosquito sub-model require definition of a variety
of parameters to drive simulation. As the sub-model draws largely on the work
of Depinay et al. (2004) and Bomblies et al.| (2008), many of the initial parameter
values are a product of their work. Table details the parameterizations used
in the aquatic-stage sub-model. The parameterizations listed here are the initial
conditions used to test the model. Parameters will be tested by using sensitivity

analysis during the discussion of results.

Table 4.4: Aquatic-stage simulation parameters

Variable Value Unit Reference
Weight of L1 Larvae 0.02 mg Depinay et al| (2004)
Weight of L2 Larvae 0.16 mg Depinay et al.| (2004))
Weight of L3 Larvae 0.30 mg Depinay et al.| (2004))
Weight of L4 Larvae 0.45 mg Depinay et al.| (2004)
Carrying capacity of habitat 300 mgm~2 [Bomblies et al.| (2008)
Egg death rate 0.01 h~! Depinay et al.| (2004))
Larval death rate 0.005 h™! Depinay et al.| (2004))
Pupae death rate 0.005 h—! Depinay et al.| (2004))
Predation 0.005 h=! Depinay et al.| (2004)

Cannibalism rate of L1 larvae 0.0008 h=! Bomblies et al.| (2008))

4.4.3 Adult-Stage Simulation

At the beginning of each model time step newly emergent mosquito agents are
generated, added to the model domain, and tracked as individuals based upon sim-
ulated completion of the pupae aquatic-stage. As previously discussed, a prescribed
sequence of events is simulated for each mosquito where an agent seeks a bloodmeal,
bites, rests, lays eggs (oviposition), and repeats until death. Each event type and
related interactions are modeled in MIA to drive the actions of mosquito agents.
The sub-model assumes that all adult-stage mosquitoes are fertilized immediately
after emergence, and thus is not a limiting factor in the sub-model (Hoshen and
Morsel [2004). As in the aquatic-stage model only female mosquitoes will be sim-
ulated. This subsection details the modeling procedures utilized to simulate each

task including the biological parameterization of adult-stage mosquitoes.
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Figure 4.5: Adult-stage mosquito behavior. Adapted from (Bomblies et al., 2008).

Bloodmeal Simulation

Assuming immediate fertilization, simulated female mosquitoes require intake of

protein to catalyze the development of their fertilized eggs (Hoshen and Morse,
. To acquire the required protein a female mosquito will seek a host to draw a
bloodmeal. A. darling: is anthropophilic meaning it has a preference for bloodmeals
acquired from human hosts (Roberts et al 2002)). This has much to do with the
mosquitoes approach to acquiring bloodmeals where it will bite not only in its own
habitat but will also enter human homes to do so (Branch et al., [2005; |(Charlwood,
. Within the first 24 hours after emergence the mosquito will begin searching
for its first bloodmeal (Depinay et al., |2004).

To find its first bloodmeal the mosquito agent is directed by a series of weighted-
random movements. In the model domain these movements are simulated as tran-
sitions from cell to cell in the ESM grid space. While little is known about the
movements of mosquitoes it has been suggested that movement is influenced by
variables such as wind, visual cues, sensing of carbon dioxide, and land cover type.
At the present time there is inadequate data to simulate the complex influences of

wind and as such is not considered in the model. Additionally, inclusion of carbon
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dioxide modeling has been deemed excessive to the current model complexity as
the procedures required to simulate this are sub-grid scale to the environmental
model. As result mosquito movement is restricted in the adult-stage sub-model
with parameterization of maximum distance, preference in land cover type, and

proximity to human agents.

Previous literature indicates that mosquitoes can travel anywhere from 1 km to
2.5 km per day depending on climatic and environmental conditions (Linard et al.,
2009; Service, 1997)). These observations are incorporated as a limiting parameter
of each mosquito agent in their search for bloodmeals. An agent-based parameter
establishes the maximum distance that can be traveled in a day by a mosquito
agent. Variability is modeled in the system as a random normal variable with a
standard deviation of 10%. The simulated variation is added to the parameterized
maximum distance of flight to establish the maximum distance an agent will travel
in search of a human host. The spatial resolution of the model is utilized to define
units of distance in the model where a transition from cell to cell comprises a total

of 30 m traveled.

Next, preference to land cover types where human activity occurs is given to
the agents through a weighting parameter. A queen’s case neighborhood analysis
around the mosquito is used analyze its surrounding land coverage types. This
model parameterization equates to an approximate 30 m vision for the mosquito.
Once the coverage types around the mosquito have been identified they are assigned
weights utilizing a statistical selector. Slight preference is given to coverage types
associated with human activity. This causes the mosquitoes to be pulled towards

peri-urban or urban land cover types when seeking bloodmeals.

Mosquitoes can sense carbon dioxide up to a maximum distance of 20 m (Kettle,
1995). Rather than simulate carbon dioxide sources as emitted by humans this is
parameterized into the model as an assumption that mosquito agents are only
capable of attraction to a human agent if they are located in the same grid cell.
Due to the size of the grid space the sensing capabilities of the mosquito are sub-
scale and currently are assumed to extend to 30 m. If humans are detected by the
mosquito in the same cell a random human in the grid cell will be selected by the

mosquito and bit.

The mosquito agent will search for a human host for a maximum of three model
steps before it is assumed that a bloodmeal was taken from an animal source another
source. By this time 80% of all mosquitoes in the model will have taken a bloodmeal

from a human agent. In the real world not all bloodmeals allow for full development
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of eggs and mosquitoes in this situation are described as pre-gravid (Lyimo and
Takken) 1993). Pre-gravid processes are ignored in the model and all bloodmeals are
assumed to initiate and sustain egg development. This may produce overestimation
but due to lack of documented parameterization pre-gavid considerations could
contribute unnecessary model uncertainties if included. Once the mosquito has
acquired its bloodmeal through a bite two possible processes are activated where
egg development is initiated and/or intrinsic incubation of malaria begins if the

human host was infected.

Egg Development and Oviposition Simulation

As per previous assumptions, if a mosquito agent completes a bloodmeal internal
egg development is catalyzed by the ingestion of protein. As per previous as-
sumptions, if a mosquito agent completes a bloodmeal, a process of internal egg
development is catalyzed by the ingestion of protein. The period of development
occurring here is known as the gonotrophic cycle and describes the time required
between a completed bloodmeal and oviposition. This cycle in tropical climates
typically takes 2 to 2.5 days to complete. As in aquatic-stage development, egg de-
velopment is a temperature dependent process governed by equation 4.2l The input
parameters in table and the equation produce a hourly measure of development.
A measure of cumulative development is calculated much the same as equation 4.3
Once cumulative development reaches a value of 1 or greater the gonotrophic cycle

is completed and the mosquito agent can oviposit.

Table 4.5: Gonotrophic cycle parameters
pec AHL  AH, Ty AH, Tiy
Egg development 0.034 1 -154394 288.8 554707 313.8

Oviposition can only take place in the aquatic habitats defined by the ESM. To
find these habitats the mosquito agent will again utilize weighted-random move-
ments in its search. Rather than weighting being placed on human centric envi-
ronments, weighting is allocated to draw the mosquito towards possible habitats.
The mosquito agent will then assess a predetermined probability distribution to
decide if it will utilize the habitat. If this process is successful it will lay its eggs
adding them to the aquatic-stage embedded sub-model at that grid cell location.
Mosquito agents will continue to search for habitat until a successful oviposit or

they are removed from the simulation. If literature becomes available to support
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temporal thresholds for oviposition agents can be guided towards adequate habitats

within specific time frames.

Intrinsic Incubation Simulation

When considering the simulation of bloodmeals, parasite transfers can occur not
only from the mosquito to the human but also from the human to the mosquito.
This is an important aspect in the modeling of human malaria as the initial infection
of a mosquito is based upon acquisition from a bloodmeal of an infected human. In
this preliminary implementation of the MIA model parasite transfers from humans
to mosquitos are assumed to occur at a rate of 90% per bloodmeal. While arbitrary,
previous literature has described to the local vector as extremely proficient. Due to
this, not all mosquitoes taking a bloodmeal from infected human agents will acquire
the parasite. The process success rate has been parameterized in the sub-model
structure meaning that if additional information is acquired new generations MIA

can be made to incorporate infection success rates.

A mosquito who has acquired a parasite from a human bloodmeal does not im-
mediately become infectious. An incubation period is required for the transition of
the parasite in the midgut of the mosquito to its salivary glands for transmission.
This transition has been described as a degree day dependance where the devel-
opment of sporozoites in the salivary glands requires 111 degree days above 16°C
calculated as (Detinovay, [1962):

DD

(4.6)
Where DD is the number of degree days required for incubation and T is the tem-
perature. The progression of incubation is tracked within each mosquito agent.
Once elapsed agents will be able to the transmit of the parasite back to humans
in subsequent bloodmeals. The infectious status of the mosquito will remain un-

changed until its death once a parasite has moved to the salivary glands.

Mortality

The daily survival of the mosquito agent is temperature dependent (Hoshen and
Morsel 2005). Anopheles best survive in temperatures ranging from 20 to 25°C
(Martens and Millstone] 1998). Temperatures exceeding these thresholds signifi-

cantly affect the mosquitoes daily survival. Mosquito lifespan in MIA is modeled
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by subjecting the mosquito agent to a survivability measure at each time step.
Martens and Millstone] (1998) defined this daily survivability as p in equation [4.7}

-1
_ A7
b= (—4.4 1317, — 0.03T3) (4.7)

Here the temperature dependent survivability is resolved where T, is the average
temperature of the previous step. At the beginning of each time step all agents
surviving the prior step are subjected to the survivability measure. To do this
a uniform random number is generated between 0 and 1. If the the randomly
generated number is higher than the calculated survival threshold the mosquito is
unsuccessful in its attempt at survival. If they are unsuccessful in surviving the

step they are removed from the model domain.

Parameterization

Much like the aquatic-stage, adult-stage simulation requires a multitude of input
parameters to drive the sub-model processes. The numerical parameterizations
used in the adult-stage simulation are shown in table [4.6] The initial parameters
draw from a variety of sources that have conducted processes specific studies to aid

in parameterization.

Table 4.6: Adult-stage simulation parameters

Variable Value Unit Reference
Maximum flight distance 65 m h~! Bomblies et al|(2008)
Mean flight distance 15 m h™! Bomblies et al.| (2008))
Carrying capacity of habitat 300 mg m? Bomblies et al.| (2008))
Intrinsic incubation period 111 Degree Days Detinovaj (1962])
Inoculation efficiency 0.90 Hoshen and Morse| (2005))
Human biting rate 0.90 Branch et al.| (2005)
Habitat selection 0.90 Bomblies et al.| (2008))

4.5 Human Sub-Model

The simulated actions of mosquitoes in MIA comprise only part of the interaction
space found in the transmission of malaria. To complete the interaction space

a human sub-model is deployed to emulate the demographic transitions and the
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actions of individual humans. In the human sub-model individuals are abstracted
as agents and associated with a set of state variables. Agents and attributes are
tracked through time and space to model interactions between the two agent types
and the environment. Each human agent finds spatial definition by its location

within a single grid cell of the human grid space produced by the ESM.

The time period considered for simulation of human agents is based upon the
biting habits of A. darlingi. These mosquitoes will actively seek bloodmeals at night
with the most intense period of biting found around 10 pm (Silver and Service,
2008)). As the primary focus of MIA is tightly coupled with time periods of intense
mosquito activity consideration of human actions outside of this time period add
unnecessary complexity. Therefore, all human agent activities are simulated only
for the time period where A. darlingi is active. Simulation of night time hours
enables a reasonable assumption that human activity is limited to the indoors.
Thus a majority of human agents will be considered immobile while existing within
the model.

4.5.1 Sub-Model Inputs

The human sub-model requires local demographic information to drive simulation.
Here, Peruvian national census data is used including age distributions, death by
age distributions, population by year, and sex ratios. A majority of the data used
was extracted from the 2005 census. Many of these distributions and ratios are
not used directly by the sub-model but rather parameterize a weighted selector for

creation of weighted uniform distributions.
4.5.2 Human Agent Simulation

Demographic Simulation

Simulation of a human agent’s life in MIA is reliant on external information about
demographic distributions local to the study site. As mentioned previously peruvian
census data is used to drive the human demographic systems of MIA. Demographic
simulation in the model considers variables including deaths, births, and migration.

Population change at each time step is calculated as:

Pchange =b—d + Min, — Mous (48)
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Where P,pange is the change in population since last step; b is the the number of
new births; d is the number of deaths; m;, is the number of new migrants; and M
is the number of people who have migrated out of the model domain. The total
population at the current time step can then be calculated as P = P + Perange-
These population dynamics are driven by the changes of state simulated at the

agent level of the model as a product processed census distributions.

At the beginning of each time step, the components making up population
change are updated for each human agent. A known birth rate per population of
1000 is used to estimate the the number of new births to be added to the simulation
at the beginning of every model step. If a positive number is calculated new agents
are added to the model and are give an expiry date based on a weighted random
variable assigned from the selector. The weighted selector is parametrized with a
known distribution of death by age from census data. After the year of death has

been calculated a specific day is generated from a uniform distribution of 365 days.

The death of an agent is simulated by comparing the expiry date of the agent
to the models current step date. If the two values are the same, the agent is
removed from MIA prior to the beginning of the current step. Additionally, the
agent is removed from any household that it belonged to. While the structures to
accommodate human demographics are rough in implementation it is important
to consider the lifespan of a human relative to the model length. This makes
small variations minor in comparison to potential uncertainties in mosquito lifespan.
Malaria will not be considered as a factor in mortality because of the low annual
rates. Previous literature has documents annual deaths due to malaria from 1.3
to 1.8 per 1000 in Loreto during epidemic years (Guarda et al., [1999). Moreover,
the census data utilized to generate the distributions driving agent deaths already

considers all sources of mortality, including malaria.

Infectious State Simulation

The population of human agents adopts a traditional epidemiological conceptual-
ized in regards to infectious status as the following:
P=P,+ P +PF (4.9)

Where P is the total population; P, are susceptible individuals; P, are exposed
individuals; and P, are those who are infectious. These three divisions of the

population represent the three possible states that human agents can have. A
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majority of the human agent population can be found in the susceptible state as
immunities are not considered the the model. Immunities could easily be integrated
as an agent attribute once data can be organized to document rates occurring
in Iquitos. Additionally individuals who have recovered from a malaria infection

become susceptible for the same reason.

Exposed human agents are those who have been bitten by an infected mosquito
and a successful transfer of the parasite has occurred. This is reflected by a change
in the infected state variable tracked within each human agent. Changes to an in-
dividuals infected state initiate an incubation period that governs transition to the
infectious state from the exposed. The incubation period models the required time
for the appearance of gametocytes in the humans blood. The presence of gameto-
cytes is required for the human agent to become infectious to biting mosquitoes.
Incubation has been parameterized as a two week period before the agent will be-
come infectious based on previous literature (Bomblies et al., |2008)). Once this

period has elapsed the agent will change states from exposed to infectious.

Exit from the infectious state of human agents is modeled after natural clearing
process which are very slow lasting up to one year (Hoshen and Morse, 2005). At the
beginning of each step infected human agents generate a uniform random number
and compare it to a known clearing rate. If the number is lower than the clearing
rate the infection is carried forward to the next time step. In MIA the clearing
rate has been parameterized as 0.12 per step (Hoshen and Morse, 2004). This
representation does not currently consider distances to medical care or available
services but can be amended to incorporate this in future model builds. All agents
are assumed to be capable of clearing and no malaria related mortality is introduced

into the model.
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Chapter 5

Simulation Results and Discussion

5.1 Introduction

The MIA framework has been designed to allow for the testing of a variety of
scenarios within the model domain. Each simulation consists of a specific param-
eterization aimed at enabling observation of targeted transmission dynamics or
causal mechanisms. The simulations documented in this chapter facilitate three
primary roles: sensitivity testing of key parameters, observation of localized trans-
mission effects, and climate variability analysis. The first simulation type focuses
on the effects of individual parameters within the model domain by assessing how
synthetic variation relates to global behavior and uncertainty. Simulation runs
enabling observation of localized transmission generate the primary result set of
MIA. Moreover, this simulation type will attempt to assess the model as a diagnos-
tic tool driven by currently available data sources. The resulting output is used as
the basis of discussion for emergent behaviors documented though the models in-
teraction processes. Efforts will be made to relate results to previously documented
causal factors in order to comment on the diagnostic abilities of the model. Finally,
the model will be tested in the context of climate variability and discussed as a

component of regional climate.

Each simulation run in MIA generates an extensive set of results which are
written to a database for later analysis. As previously discussed this is facilitated
through coupling of a mySQL database, the R statistical language, and MIA. The
database system is capable of capturing data at several levels of analysis including
individual, household, and domain. As a result, exceptional amounts of data are

generated during each step of a simulation. Specific elements of this output will be
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used to highlight trends relevant to each simulation type. By this process a primary
set of is data generated from individual interactions of mosquitoes, humans and
their physical environment. Simulated results pertaining to mosquito population,
parasitic capacity, biting rates, and reproductivity will be discussed as components
of this output. The products of the ESM will also be discussed in relation to aquatic
stage mosquitoes and their habitat utilization. Additionally, data pertaining to
human infection rates and population dynamics will be presented as a component

of these systems interactions.

5.2 Sensitivity Analysis

One of the potential consequences of increased complexity is the introduction of
uncertainty in model structure and parameter estimation (Xu and Gertner, [2008]).
As MIA strives to conceptualize and simulate complexities previously unaddressed
in epidemiology this issue is of considerable concern to the model. Approximation
of these uncertainties in parameter estimation can be accomplished with methods of
sensitivity analysis (Henderson-Sellers and Henderson-Sellers, 1996). A basic imple-
mentation of sensitivity testing allows variation in a single parameter while holding
the remaining parameters constant. Consideration is then given to model outputs
to detect irregularities or instabilities resulting from the imposed changes. MIA
will utilize this approach to evaluate the sensitivity of the model to key parameters
previously identified as possible sources of uncertainty. A selection of attributes
including mosquito mortality, flight distance, and ecological carrying capacity will
be tested.

Sensitivity analysis is an important pre-cursor to model validation as it can iden-
tify undesirable instabilities found in model outputs usually as one of two distinct
cases (Henderson-Sellers and Henderson-Sellers, [1996). Firstly, observed sensitivity
in model outputs can suggest that the model is finely tuned to a specific value. This
is observed as drastic changes in output when variability is applied to a parameter.
Such parameter over-fittings can compromise the heterogeneity of an abstracted
system by restricting the utility of the model to a small range of inputs. A second
case exists where model sensitivities are representative of real world systems and
changes within modeled systems reflect those in the physical system characterized.
This case is preferable but due to the complexities of coupled systems instabilities
can be lost in the vast interaction space created by the model. In the context of

MIA undesirable sensitivity or instabilities can be a product of the embedded math-
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ematical models, model couplings, or local scale variability unaccounted for. MIA
will apply sensitivity analysis in the hope that exploration of these model dynam-
ics will enable greater understanding of interactions and limit uncertainties in it’s
human-mosquito-environmental systems. Additionally, sensitivity analysis enables

the isolation of specific model weakness that may be addressed in later research.

5.2.1 Mosquito Mortality

Previous research (Bomblies et al. 2008; [Linard et al., 2009) indicated that sig-
nificant variance in mosquito population and more importantly actual biting rates
(ABR) could be observed in model outputs when sensitivity testing was applied to
mosquito morality. This echos the observations of Ross (1910) who documented
vector mortality as a critical parameter utilized to impact malaria transmission
during control campaigns. A hypothesis may be formulated that if mortality is var-
ied in MIA significant changes in mosquito population and ABR will be simulated.
In order to test this hypothesis a series of model runs are completed in which the
mathematical model controlling mosquito mortality is augmented with an external
forcing parameter. Implemented in cohorts of 5%, modification to the parameter
controlling mosquito mortality is applied at £20%. The external forcing param-
eter is added to the calculated mosquito mortality at the beginning of each step.
Finally, each cohort test is iterated ten times and the results are averaged amongst
them. To observe the global effect of this change, ABR and mosquito populations
are calculated as averaged daily rates over the entire model run. The condensed
numerical results are presented in table documenting the changes in average

ABR and mosquito population relative to variation in mosquito survivability.

Table 5.1: Mosquito mortality testing

ABR  Change(%) Population Change (%)
-20% 126 -63.9 543 -78.4
-15% 179 -48.7 809 -67.8
-10% 193 -44.7 1015 -59.6
-5% 218 -37.5 1386 -44.8
0% 349 0.0 2511 0.0
+5% 350 0.3 4424 76.2
+10% 581 66.5 25514 916.1
+15% 606 73.6 38794 1445.0
+20% 721 106.6 42124 1577.6

As expected, changes in both ABR and mosquito population occur relative to
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changes in mosquito morality. Noteworthy are the drastic increases in the mosquito
population simulated at and beyond an increase of 10% in mosquito life span. Fur-
ther sensitivity testing utilizing fine cohorts revealed that exponential growth oc-
curred as this threshold in morality was approached. Investigation of agent life
span associated with the simulated increases reveals an unrealistic scenario pro-
moting instability in the mathematical model. Increases such as this elevate what
would normally be a daily survival in the low to mid 80% to an astounding 95%
or higher daily probability of survival for each mosquito agent. With synthetically
generated daily survival above 95% mosquito agents can live lives upwards of three
weeks and are able to partake in successive bloodmeals well beyond documented or
plausible rates. Thus, results beyond an increase of 10% are extremely unlikely to
occur and should be considered the upward bounds of model stability in mosquito
mortality. Graphing these results shows a smooth relationship abruptly ended with
exponential growth as the simulation approaches +10% (see figure: .
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Figure 5.1: Mosquito mortality sensitivity analysis

Encouragingly, these same issues are not associated with reductions or small
increases in the daily survival of mosquito agents. Relative change in population
and ABR to survival presents a positive correlation reminiscent of those discussed by
previous authors (Bomblies et al., 2008; |Linard et al., 2009). In the most extreme
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case the average population is reduced to 1/5" of an unaltered run. Contrary
to the previous results this change is gradual. The areas of stability generated
through the mortality parameter suggest that the model maybe affected by outliers.
Consultation of the previously discussed parameters of mosquito mortality show
that temperature is the primary factor in mosquito lifespan. As the climate is
constant year round in Iquitos there is little concern that potential outliers will

drastically effect model results.

5.2.2 Mosquito Flight Distance

Aside from the biological functions of mosquitos there are several behavioral pa-
rameters governing mosquito agent feeding. One such parameter is the maximum
flight distance assigned to each mosquito agent. This parameter is of interest as
each mosquito has access to a finite number of humans and habitats defined by the
distance they are able to travel each step. Modification of this parameter could
expose the agent to additional interactions which otherwise would be unavailable.
Lack of documentation of local mosquito travel patterns makes this issue all the
more pressing. To test the sensitivity of this parameter simulations similar to those
completed in the testing of mortality are employed. A summary of the simulated

results is presented in table as both changes in ABR and mosquito population.

Table 5.2: Mosquito flight distance testing

ABR  Change(%) Population Change (%)
-20% 314 2.9 2363 1.3
-15% 290 -5.1 2291 -1.8
-10% 301 -14 2338 0.2
-5% 309 1.5 2352 0.9
0% 305 0 2332 0

+5% 296 -2.9 2312 -0.9
+10% 294 3.8 2310 -1.0
+15% 287 -6.1 2279 -2.3
+20% 296 -3.0 2318 -0.6

The resulting changes in both ABR and mosquito population are miniscule
when compared to those generated from increased mortality. Moreover, there is no
specific relationship observed between changes in maximum flight distance and ABR
or population. Rather the results seem to present themselves only as noise within

a small range of change. While these results might suggest that the maximum
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flight distance is arbitrary there are several interactions that must be considered to

substantiate this claim.

Analysis of individual mosquito flights show that a majority of individuals do
not utilize the maximum flight distance. Rather, shorter range habitats or meals
are selected prior to the limit being reached. This underutilization of the parame-
ter may be a result of indirect model structures, such as the directional weighting
system, and biting preference. These methods cumulatively define when mosquito
agents engage in interactions and could promote overoptimistic simulation. Overop-
timistic simulation of interaction implies that the mosquito agent will participate in
a simulated interaction more readily than in the abstracted physical system. Here,
weighted movements can cause agents to be drawn towards interactions before the
maximum flight distance is reached. Moreover, parameters such as biting prefer-
ence which use rigid statistical thresholds can promote overoptimistic simulation of
interactions due to a lack of local parameterization. Both model structures would
benefit from the integration of in situ observations to refine model variability and

interaction mechanics currently generating the simulated noise.

Unfortunately the noise exhibited in the sensitivity test raises more questions
than answers. The noise simulated in this parameter is likely not a product of a
lone parameterization but rather the complex interaction space generated by the
coupled system. Problems such as this are related to the previously discussed issues
of increasing complexity where uncertainties become a product of the interaction

space.

5.2.3 Ecological Carrying Capacity

Outside of the parameterization of individual mosquitos, the environmental sub-
model’s parameter space holds potential to influence global outputs. Amongst the
driving factors of habitat simulation, ecological carrying capacity demonstrates a
limiting parameter capable of introducing uncertainty. Enacted to stabilize vari-
ance, this parameter drives a logarithmic transformation of the immature mosquito
population within each simulated habitat. While this ensures abrupt restrictions of
population are not encountered it can potentially encourage misestimation. This
is most likely to occur during periods of increased temperature where the limiting
properties of the carrying capacity will have greater influence on larval development
(Depinay et al., 2004)). The ecological carrying capacity parameter defines the total
biomass that can be sustained in a simulated habitat. Internal estimation of a habi-

tats biomass is completed as a summation of larval mosquito weight. The weights
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utilized in this calculation (Table have been adopted from studies outside of
Iquitos. As these calculations number in the millions during a simulation uncertain-
ties, specifically the lack of local parameterization, may become compounded over
an entire run. As larval mosquito populations are a product of the habitats gov-
erned by this parameter sensitivity testing is warranted to document its influence

on global outputs.

Unlike maximum flight distance there is an observable relationship between the
ecological carrying capacity and mosquito population. A 20% increase in ecological
carrying capacity results in a 17.6% increase in mosquito population. Conversely
a 20% reduction in ecological carrying capacity results in a 18.6% reduction in
mosquito population. To a slightly lesser extent ABR also has a relationship with
with ecological carrying capacity resulting in a 17.2% increase in biting at 20%
increased capacity. The resulting changes in biting appear to saturate above and
below a 10% change in ecological carrying capacity (Figure . The observed
saturation may suggesting that the sensitivity of the parameter is tightly coupled
with local parameterization requiring additional study of mosquito dynamics to

elevate this issue.
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Figure 5.2: Ecological carrying capacity sensitivity analysis
A tangible relationship to the real world exists through this parameter that
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could be used to test policy and control measures. Previous studies of nutrient
availability found strong relationships between immature mosquito population and
the availability of algae (Kaufman et al., [2006)), and maize pollen (Ye-Ebiyo et al.,
2003). The carrying capacity is conceptually a product of available nutrients and
the biological requirements of the habitat. Local reduction strategies could be
implemented within the model to test the capabilities of said programs. The sen-
sitivity sweep suggests that programs capable to reducing the carrying capacity of
habitats between 5% and 10% would see comparable reductions in local biting. As
with previous results these findings must be handled carefully until steps can be

taken to validate the model structures producing them.

5.3 Dynamics of Local Transmission

MIA, through it’s operational goals, has sought to develop modeling structures
capable of enabling agent-based modeling of epidemiology. These structures outline
the abstraction of human-vector-environmental coupled systems and provide several
output types useful to observation of local transmission. Their construction and
primary sensitivity testing complete, an opportunity exits to apply MIA in a study
site specific simulation. The following explores the simulation capabilities of MIA

though analysis of its primary result set, transmission scenarios, and visualizations.

5.3.1 MIA Primary Simulation Results

Mosquito Population Dynamics

Disregarding the period required for model initialization MIA produces a result set
for years including and after 1993. This time period is representative of the years
immediately prior to and during the most recent epidemic transmission event. Here,
MIA is used to explore causality and generate discussion of the models diagnostic
capabilities. Unlike previous sensitivity analysis this simulation is averaged over
fifty iterations of the MIA model in an attempt to minimize outliers. The decision
to assess the model as an iterative approach stems from previously observed uncer-
tainties in sensitivity analysis. Rather than enabling water edge habitats discussed
in methods, only those in proximity to human habitats have been used. This ef-
fectively reduces the available habitat by approximately 75%, relegating habitation

to urban and peri-urban environments. Largely bound by hardware and software
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limitations currently imposed on MIA, this modification helps maintains a com-
putationally manageable number of agents. As replication of population is not
as important as the identification of emergent trends this model condition can be
utilized without compromising assessment of MIA’s diagnostic capabilities. Each
model run is initialized with 350 humans households, resulting in a human popu-
lation of approximately 2,000. Finally, habitats are seeded randomly with a total
of 500 adult-stage mosquito agents. With this set of conditions MIA is allowed to
simulate the dynamics of transmission local to the study area.

The simulated mosquito population is presented in figure [5.3| as daily summa-
tion of adult mosquito agents. The interaction space generated by this simulation
maintained an average of 24,951 mosquito agents during each step. Additionally a
maximum of 31,904 mosquito agents were simulated. Within the results, interest-
ing model behaviors appear as two distinct trends in mosquito population. Here,
substantial differences in seasonal populations are simulated in years prior to, and
during the epidemic. Initially, seasonality in mosquito population appears to have
been captured by the model as oscillations between wet and dry seasons. Years
prior to the epidemic show reduction in mosquito population between June and
November. This period of time corresponds with the dry season in Iquitos and is in
agreement with previously documented seasonal reductions in A. darlingi (Guarda;
et al., |1999).

Contrasting trends in mosquito population between 1993 and 1996 become ap-
parent when plotted in twelve month segments (Figure . Again during 1993
and 1994 discernible reductions in population are simulated during the dry months.
Although the trends amongst these two years appear similar they are not synchro-
nized temporally with the minimum population of 18,915 occurring during August
of 1993 and 19,066 in July of 1994. A much different trend is simulated during 1995
resulting in a muted seasonal oscillation during the dry months. During the dry
season a minimum of 22,029 mosquitos were simulated, a 13.5% increase over the
previous low during the same time period. Interestingly the simulated reduction
pales in comparison to the gains in population simulated during this same period.
Here, three substantial increases in population occur during the months of January,
April, and October causing the population to approach or exceed 30,000. Two of
the three simulated increases exceed the maximum population in the two previ-
ous years. These increases and lack of dry season recession result in a 5.4% daily

increase in mosquito population over the previous two years.

The simulated changes in population during 1995 result in 500,000 additional

mosquitoes entering the model domain during that year. The muted seasonal oscil-
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lations and substantial increases facilitating this changes appears to coincide with
beginning of the Iquitos epidemic. While this result does not imply causation it’s
existence warrants additional investigation into the factors driving the simulated
trends. One such route of exploration exists in observation of the environmental
sub-model and its climatic outputs during this period. Here, previously discussed
climatic interactions hold potential to drive mosquito population in response to
variation in temperature and precipitation. Analysis of the climatic simulation
shows that during this period the mean temperature within the study site rose
from 25.51°C in 1993 to 25.95°C in 1995. Previously discussed as a component of
climate variability, the work of Depinay et al.| (2004) suggested that changes of even
a single degree in the range of 18°C to 26°C can result in extension of the mosquitos
life span by more than a week. The 0.44°C change in mean temperature found in
MIA is then a justifiable catalyst for increased vectorial capacity as this was a per-
sistent factor of change throughout the year. Moreover, total precipitation during
1995 increased to 3,047 mm over previous totals of 2,393 mm in 1993 and 2,338 in
1994. These gains in precipitation could potentially create new or reinforce existing
habitats encouraging increases in mosquito population. The results generated in
the simulation, while not validated, suggest conditions conducive to increased vec-
torial activity in the area signifying a potential catalyst for increased transmission.
Moreover, the reactive simulation trends provide a positive indicator for structural
validation as documented environmental interactions have been captured by the

model.

Undiscussed thus far have been the dynamics of mosquito population just prior
the peak of the epidemic in 1997. Contrary to the elevated numbers simulated
at the onset of the epidemic, the trend during 1996 appears to exhibit a general
reduction in population over prior years. This is reflected in a 13% reduction
of daily mean population to 23,074 mosquito agents. As with prior variation in
the simulated population, climate appears to have played a large role during this
period. The elevated temperatures observed during the previous year were reduced
slightly to 25.61 °C. Interestingly, yearly precipitation during 1996 increased to
3,177 mm contrary to commentary from previous authors. Further investigation of
precipitation patterns during 1996 reveals that 520 mm of the total precipitation
observed can be attributed to three large rain events. Without these rain events
the total precipitation for the year is similar to the years prior to the epidemic.
As the quality of this data set is unknown the impact of these large rain events is
questionable and will require future research to investigate the validity of their role

in population dynamics.
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After the simulated reduction in mosquito population a rebound was simulated
during 1997. Unfortunately this simulated change in mosquito population poten-
tially illustrates one of the main limitations of MIA. While plausible, the simulated
increase in population occurs during the well documented El Nino phenomena. El
Nino in Iquitos was associated with an extended dry period which could drasti-
cally impact mosquito habitat. This is potentially reflected in the simulation as
a stabilization of population from mid April until September. Here, stabilization
throughout the extended dry season does not emulate previous minimums sim-
ulated during previous dry season oscillation. While increased temperatures are
conducive to increases in mosquito population, coupled with reductions in precipi-
tation, habitats would hold little potential to support such gains in population. At
the least this should be emulated in trend as a substantial reduction in aquatic-
stage mosquitos. The true impact of this issue cannot be assessed until limitations
of both data availability and hydrological simulation are resolved. These issues will

be discussed as limitations of MIA and provide insight into potential solutions.

Mosquito Biting Dynamics

MIA’s structure, sensitivity analysis, and discussion of previous literature have all
made apparent the positive relationship between mosquito population and biting.
Due to this, previously simulated increases in mosquito population should be re-
flected as increases in human biting by mosquito agents. This potential result is
of interest as increases in biting will create additional opportunities for transmis-
sion. Sharp increases in biting during the simulation will therefor have potential for
creating substantial transmission events that may provide insight into the Iquitos
epidemic. Figure presents the daily human biting rates as simulated by MIA.
The presented results are not representative of total mosquito biting as agents are
free to feed from sources other than humans. Agents making the decision to feed
on sources other than humans exist only in small numbers because of the anthro-
pophilic nature of the primary local vector A. darlingi. Coupled with the model’s
simulation of mosquito-human transmission, non-human interactions will not be

considered for analysis at this time.

The expected relationship between these two variables is realized in a corre-
lation coefficient from linear regression of 0.85 R?. The anthropophilic nature of
A. darlingi causes human biting to be very reactive to increases in population be-
cause of their preference for human meals over animals. Moreover, there is minimal

lag between population increases and biting as each agent will seek a bloodmeal
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within one model step of their initial emergence. As expected increased feeding is
simulated during 1995 corresponding with the previously documented increases of
mosquito population during the same period. Simulated increases in biting dur-
ing this period are not only a product increased mosquito population but are also
a result of the biological response to observed increases in temperature by each
mosquito agent. Here, the gonotrophic cycle of each agent was accelerated relative
to increased temperature as a product of the mathematical model governing this
process. As result, the time needed by each mosquito agent for egg development
and oviposition was significantly reduced. Within the lifespan of a mosquito agent
this caused an increase in frequency of these events necessitating additional blood-
meals. The resulting agent behavior produces additional need for protein intake

reflected as increased biting in the model.

Additionally, two large increases in biting are simulated at short lags after pre-
viously discussed increases in population during 1994 and 1995. Finally, the popu-
lation dynamics discussed during 1996 and 1997 have caused substantial decreases
in mosquito biting. These biting rates will need to be addressed in future research
to verify if instabilities in population previously discussed are in fact causing serious
misestimation during inter-annual climate events. Overall the simulated trends in
mosquito population and human biting seem to reflect variation as a product of a

large interaction space.

5.3.2 MIA Transmission Scenarios

Evaluation of MIA would be incomplete without discussion of it’s ability to simu-
late malaria transmission within the virtual population. Here, the coupled nature
of MIA is truly tested as transmission is a product of every system, structure, and
parameterization of the model. Simulation of this interaction space generates biting
events between mosquito and human agents, some of which result in transmission
of malaria. The model is then capable of tracking infections resulting from success-
ful interactions through changes in human state. This complex interaction space
driving transmission has been discussed previously as sub-system components but
not yet as a model result. Contrary to previous analysis, an iterative approach
can cause the dynamics of unique transmission scenarios to be lost in aggregation.
Thus, rather than discussing transmission as an iterative measure, specific trends
in model output will be highlighted to identify potential epidemiological events.
Consideration will now be given to a selection of scenarios, discussed as reoccurring

trends in MIA’s transmission output.
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Two emergent transmission scenarios resulting from model interactions are pre-
sented in figure [5.60f While unique, each represents a reoccurring scenario simulated
in several model iterations. The first scenario simulates an acute transmission event
occurring during the later part of 1995. The initial conditions of this scenario sim-
ulate a small number of cases prior to 1995. This is similar to the Iquitos epidemic
where several clusters of emergent low level transmission were observed prior to the
epidemic. These initial transmission events fail to gain momentum within the sim-
ulation and are cleared from the study site within weeks of the initial case. Initial
events such as this suggest an insufficient number of infectious humans to enable
sustained transmission within the model domain. Moreover, this result indicates
a low incidence of secondary infection. The absence of transmission is abruptly
ended midway through 1995 when a simulated increase generates over twenty in-
fected agents. Here a process spanning nearly two months causes the transmission
to change from intermittent to sustained transmission effecting nearly 1% of the
total human population. The change in infections corresponds with simulated in-
creases in mosquito population and biting in relation to climatic variability during
this period. Increases in mosquito population enable adequate transmission to es-
tablish a sustainable reservoir of human infections. Once this occurs sustained
transmission is enabled and continues through the end of the simulation. Smaller
variances in infections are simulated throughout the remainder of the run but do

not reach the magnitude of the initial outbreak.

The second transmission scenario of interest simulates a sustained event through-
out the observed epidemic years in Iquitos. This trend in transmission suggests a
persistent reservoir of infected human agents throughout the simulation potentially
in the same manner as the observed endemic transmission in Iquitos (Guarda et al.,
1999). In addition to this initial observation, two interesting behaviors emerge dur-
ing sustained transmission causing an acute increase in infection followed by a
recession. Prior to the simulated peak in malaria cases a seasonal oscillation effect
is simulated during the first two years. This is in agreement with previously dis-
cussed emergent behaviors impacting mosquito population and biting during dry
periods. Directly after these events a strong increase in infection is simulated at
the end of 1994 and beginning of 1995. This increase is a result of the increased
mosquito activity simulated during the previously discussed climatic changes dur-
ing this period. Elevated rates of infection continue until mid 1996 when a drop in
cases is simulated corresponding with the El Nino phenomena. This decrease seems
to contradict the observed increases in malaria during the same period in Loreto.

As discussed in mosquito population dynamics this may be result of uncertainties in
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Figure 5.6: MIA simulated malaria cases
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habitat simulation causing underestimation of mosquito population. Future consid-
eration will need to be given to the uncertainties associated with habitat mechanics

and climatic interactions to resolve the potential issues simulated here.

The simulated scenarios discussed here generate interesting dynamics of trans-
mission that in the future can potentially be used to validate the structural com-
position of MIA. The simulation space was unable to reproduce the specific trans-
mission dynamics of Iquitos epidemic in 1997 but it must be recognized that this
was never the intention of MIA. Rather the reactive structural composition of MIA
has shown that several abstracted systems respond to their intended environmental
and behavioral interactions. Due to this there is promise that such systems can
be refined in the future to produce meaningful results for the Iquitos area. The
dynamics generated here suggest parameterizations including human agent recov-
ery, parasite incubation, and climatic interactions, should be reevaluated within
the model. Here there is an obvious need to parameterize these elements based on

in situ observations and clinical data gathered during the epidemic event.

5.3.3 MIA Spatial Visualization

While a majority of outputs discussed thus far have been empirically based the spa-
tially explicit nature of the model allows for visualization of agent locational infor-
mation. These visualizations can be used as qualitative measures to observe move-
ment and clustering of mosquito agents over time. One area of the MIA that benefits
from this type of observation is the dispersion of adult-stage mosquito agents. Intro-
duced in methodology, each mosquito agent is assigned a weighted movement grid
to govern searches for bloodmeals or breeding habitats. The weighted movement
routines were implemented to reflect prior research suggesting that higher concen-
trations of A. darlingi could be found in deforested or peri-urban land coverage
types (Johnson et al., 2008; Vittor et al., 2006). The same research indicated little
prevalence of A. darlingi in forested areas reinforcing its preference to deforested
areas. The weighted grids were parameterized to reflect these attributes and draw

mosquito agents towards urban and peri-urban environments.

Figure illustrates the spatial distribution of mosquito agents during an ar-
bitrary step of a simulation run. Mosquito agents are shown in red and human
agents in black. Coverage types are differentiated by colour with forest as green,
peri-urban as teal, urban as grey, and water as blue. The simulated distribution of
mosquito agents is a culmination of parameters including maximum flight distance,

human subject preference, habitat selection, and land coverage preference. While
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in the future spatial statistics can be used to assess these distributions, currently

only qualitative measures have been employed in analysis

Landcover Agents

. Water . Mosquito
I:‘ Forest . Human

Figure 5.7: MIA visualization of mosquito dispersion

Clusters of mosquito agents are most apparent in areas where available habitat
has been saturated. Here the edges of the river, ponds, and small lakes promote
clustering of the mosquito population. This clustering is a product of anthropophilic
nature of A. darlingi, land coverage preference, proximity to habitat, and the pro-
gramming structures utilized to simulate these traits. Mosquitos in their dispersion
make decisions to utilize land coverage types associated with human activity rather
than move through forested areas. It is in these choices that the influences of
anthropogenic change are apparent in the spatial dispersion of mosquito agents.
Visually, corridors created by deforestation can be identified as facilitating move-
ment of mosquitos from habitat area to another. In an area where transmission of
malaria is driven by human movement this additional dynamic stands to promote

short range expansion of malaria transmission.

5.4 Climate Variability

Climate variability is the final simulation role in which MIA will be tested. This role
is considered because of the growing number of studies exploring the relationships
between climate and disease (Derraik and Slaney, [2007; Hay et al., [2002; Martens
et al., [1999, [1997} [Patz et al. 2005, 2004; Rogers and Randolph, [2006). Many of
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these studies have identified changes in regional climate as an important factor in
increased transmission of vector-borne diseases. As malaria relies on this type of
transmission MIA can be utilized to test the local effects of climate variability on
transmission dynamics. In this regard, steps will be taken to document changes in
output as result of variation in the simulated climate and the interaction dynamics

it facilitates.

Authors including Martens (1998) and Jetten et al.| (1996) recognized the impor-
tance of climate variability and applied climate scenarios to traditional epidemio-
logical models of malaria. These studies utilized regional climate models to forecast
changes in temperature and precipitation. Forecasted climate data was then used
to drive existing malaria transmission models to gauge epidemic potential as a
product climatic variability. In the absence of the facilities to forecast climatic
variation MIA will attempt assess the impact of variation in regional climate by
applying plausible scenarios to retrospective data. While this gives little indication
of how future epidemics may unfold in relation to regional climate it can poten-
tially provide useful insight into how changes effect larger systems of transmission

in Iquitos.

Within the range of previously discussed IPCC estimates, retrospective simu-
lation of climate variability scenarios is completed. Six simulation scenarios are
tested to gauge a single habitat response to increases of 1°C. Each simulation is
iterated a total of ten times and the results averaged amongst them. The generated
simulation space can be viewed in table as population trends between each of
the six scenarios. The simulation results illustrate a strong relationship to increased
mosquito activity, biting, and potentially transmission opportunities as results of

plausible increases in temperature in current climate scenarios.

Table 5.3: MIA climate change results

ABR  Change(%) Mosquito Population Change (%)
0°C 323 0.0 2443 0.0
+1°C 395 22.3 2843 16.4
+2°C 473 46.3 3284 34.4
+3°C 619 91.6 3816 56.2
+4°C 561 73.7 3944 61.5
+5°C 666 106.2 4403 80.2

The simulated increases are a result of the role temperature plays within the model.
Several model structures such as development of mosquitos agents, and immature

population dynamic are driven by this parameter. Thus even small increases can
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result in large changes in population by effecting mosquito emergence rates and sur-
vivability. The simulated increases in daily population are concerning when viewed
in the context of MIA’s previously discussed climatic relationships. Previous anal-
ysis pointed to large increases in mosquito populations just prior to the epidemic as
related to less than half a degree change in temperature. In the same capacity the
simulated results from an increase of just 1°C could produce an more than 1,000,000
additional mosquito agents within a span of a year. If small increase of 1°C were to
occur even as an inter-annual effect it could greatly increases the chances epidemic
transmission. Malaria transmission scenarios produced from this single habitat re-
sponse should not be given consideration until measures can be taken to optimize
model structures and test climatic change without habitat restriction. Future gen-
erations of MIA with the ability to test and validate such findings should utilize

forecasted climate data to simulate mosquito and transmission dynamics.
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Chapter 6
Conclusions

The results generated by MIA present a glimpse of the potential this prototype
model has to offer. Limited in several respects, the first generation of MIA stands
as a proof of concept and exercise in model building. The simulated results appear
to be a cumulative product of deforestation, dominance of A. darlingi, expansive
habitat, preferable climatic conditions, and season oscillations. While not yet val-
idated these results show encouraging trends and exhibit model behaviors hinting
at causal mechanisms. The thesis will now conclude with insights and commentary
regarding how MIA has contributed, it’s limitations, and recommendations for the

future.

6.1 Contributions

At the onset of this thesis a set of operational goals were established as a guide
to address the research questions at hand. While ambitious, several of these goals
have been achieved and tangible products exist because of them. In this regard
MIA was developed and deployed as novel agent-based methodology for simulation
of malaria transmission. This was accomplished using coupled physical systems,
facilities for observation of emergent behaviors, and testing environments to assess
model sensitivities. Regardless of the outcome of future validation, the interaction
space and framework established in MIA can be parameterized and modified to
meet the needs of successive generations of the model. Moreover, MIA has only
begun to foster understanding of localized causal mechanisms in the Iquitos area.
The full potential of MIA as a diagnostic tool will not be realized until successive

generations are able to address the limitations of this prototype. At the least
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MIA has addressed the remaining goals by generating intimate discussion of the

limitations hindering its progress.

This thesis asked the question: Can a novel modeling methodology be devel-
oped to resolve local causal factors or mechanisms generated in coupled human-
vector-environmental systems? The answer to this question is perhaps the greatest
contribution of MIA. A flexible framework for agent-based simulation of malaria
transmission has been created from theoretical concepts and existing physical mod-
els. MIA is one of very few examples of practical application of an agent based model
in epidemiology, and even more so in transmission of malaria. Moreover, MIA is
the only example of agent-based multi-year simulation of local scale malaria trans-
mission dynamics. While this model is by no stretch perfect a large number of it’s
limiting factors are known and through discussion of these issues the future of the

model can be established.

6.2 Limitations

6.2.1 Local Parameterization, Data, and Bias

The three limitations covered in of this sub-section are inter-related and comprise
a reoccurring theme limiting the potential of MIA. One of the primary limita-
tions of MIA throughout the course of this research has been the lack of local
parameterization for the Iquitos area. This is reflected in the number of parame-
terizations imported from studies of malaria centered outside of Iquitos and South
America. Individual parameterizations from larval weight to mortality suffer from a
lack of local parameterization. While literature seems to demonstrate inter-species
variability in mosquitoes as minimal, even small uncertainties can quickly become
unmanageable and cause instability in results. Environmental system parameters
such as ecological carrying capacity would benefit from local knowledge and allow
for emergent behaviors to reflect real world complexities. Moreover, where sources
of local data do exist, such as satellite imagery and climatic data, there is a need
to extend the availability of these resources to the model. Limiting the number of
observations available to the model can potentially increase the impact of uncer-
tainties in the small data sets available. Building a database of local knowledge
will not only allow for refinement of physical systems simulation but also provide
a basis for validation of model results and analysis. Currently many of the trends

and simulated behaviors found in MIA cannot be substantiated until field data
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validates the parameterizations utilized.

In addition to unavailability of data, a lack of exposure of this researcher to the
local study site carries an assumption of bias from the literature and data utilized
in development and analysis. In this, uncertainties encountered and undocumented
in prior research become the burden of MIA until steps can be taken to expose
this research to local study and validation. At the onset of MIA hopes were high
for external resources to alleviate these issues but due to unforeseen circumstances
MIA was relegated to freely acquired resources. Moreover, comparable projects in
the past have been undertaken by teams of multiple researchers. The limited time
of a master student to accomplish the ambitious goals of this project have become

as much of a limitation as the prior mentioned issues.

6.2.2 Hydrological Modeling

While MIA is capable of simulating habitat level biology it lacks methods for dy-
namic generation and elimination of habitat objects. In the absence of such meth-
ods MIA is susceptible to overestimations of mosquito populations during the dry
seasons and underestimations during the wet season. This issue was of particu-
lar interest during 1997 when the El Nino phenomena generated an extended dry
season but did not reflect previous lows in seasonal oscillation. Evaporation of
resting water or reduction of soil moisture during these events could eliminate en-
tire immature mosquito populations developing in these habitats. Events such as
this would drastically limit populations creating variability currently inaccessible
to MIA. The effect of such limitations may be enhanced in wet environments such
as those studied in MIA.

The coupling of a hydrological model with MIA could elevate this issue by pro-
viding overland flow and soil moisture estimates to the habitat simulation struc-
tures. Coupled with enhanced resolution of the simulation grid space a hydrological
model could enable MIA to react to precipitation events which could cause drastic
shifts in population. The timeframe for change would be in the scale of approxi-
mately one week as a product by the immature mosquitoes development simulated
during and after an event. Unfortunately the addition of a system such as this
would be a large undertaking requiring significant understanding of hydrological
modeling and coupled physical systems. The environmental sub-model would not
require serious retooling but steps would need to be taken to make sure that mes-
sage passing interfaces were established between the connected systems. Previous

work by [Bomblies et al. (2008]) appears to have successfully undertaken this feat.
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As their approach applied hydrological modeling in a water scarce region significant
testing would be required prior to introducing it to a rainforest region. Regardless,
the current modular design of MIA would allow for the coupling of a hydrological
modeling systems such as the one utilized by [Bomblies et al. (2008). The inputs
necessary including precipitation, evapotranspiration, and elevation data are read-

ily available from the existing data set employed by MIA.

As alternative to this approach several authors have suggested the use of re-
mote sensing as a tool to model mosquito habitats (Achee et al., 2006; |Atkinson
and Grahaml|, 2006; Hay et al.l [2006; Kalluri et al. 2007; (Omumbo et al.| 2005}
Zeilhofer et al., [2007). This approach relies on relating in situ characterization of
preferable habitats to spectral responses in satellite imagery. Characteristics such
as soil moisture and land cover type have been derived from satellite imagery and
used to produce fuzzy measures of habitat capacity. Habitat classification such
as this could be easily integrated because of MIA’s existing use of grids in the
ESM. Unfortunately, a majority of these studies are temporally static providing
only a single observation. Habitats within MIA’s study site are highly reactive
to temperature and precipitation events resulting in acute variability. Without a
high temporal resolution of imagery the desired dynamic changes would be left
unresolved. This limitation offers a simple but expensive solution by increasing
availability of satellite imagery within the model. Moreover, interpolation methods
could be utilized to estimate habitats between observations based on climatic in-
puts. Prior to implementation of a remote sensing based solution a study would be
required to identify the minimum temporal resolution necessary to advance habitat

generation and elimination in MIA.

6.2.3 Sub-Scale Variability

MIA is spatially explicit, but the grid system employed to facilitate this may be a
limiting factor. More specifically, the common grid cell resolution used with MIA’s
coupled systems is a compromise in resolution potentially ignoring microhabitats
and small-scale variability. This may be problematic in light of literature suggesting
microhabitats and small-scale variability play a significant role in mitigating stress
of a mosquito population and promoting increased survivability (Okech et al., 2003)).
These habitats exist in a variety of forms within the study site including tire tracks,
surface run-off, and ditches. In MIA, microhabitats would be of particular interest
during climatic extremes and inter-annual oscillations as habitat is a significant

limiting factor of mosquito population. Currently MIA does not possess the spatial
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resolution to consider the influence of microhabitats. Instead it uses aggregate
measures to estimate multiple habitats within a single grid cell. Changes to increase
the spatial resolution of MIA would require resampling of all grid based data and

adjustment of internal parameterizations.

The first consideration prior to such changes is the potential for diminishing
returns with increasing complexity. As previously mentioned in sensitivity analysis
the complex interaction space formed amongst the interacting systems can cause
uncertainties to become lost in the results and worse yet diminish the ability of
those interpreting the results to generate useful discussion. As the physical charac-
terization of these small-scale systems would be accompanied by large uncertainties
the potential benefits to the model could be outweighed by convolution in results.
In the case of sub-scale variability simplicity may offer a better solution until ef-
forts can be made to assess potential of additional structures fostering complexity.
The second consideration is the increased computational overhead resulting from
increased spatial resolution. Increasing grid cell resolution would result in substan-
tial increases in the number of grid cells which need to be processed during each
step. The problem of computational overhead is not unique to sub-scale issues and

will be discussed now as a limitation of the model.

6.2.4 Computational Overhead

The simulation space of MIA revealed that the computational demands of such sys-
tems exceed that of current desktop computing. Parry and Evans (2008) suggested
two potential solutions to allow for simulation of millions of agents in applications
such as MIA. These methods included the use of mathematically derived super-
individuals or hardware based parallel computing. Originally proposed by Schefter
et al. (1995), super-individuals are an aggregate modeling approach whereby indi-
viduals are grouped together in an effort reduce the total number of objects simu-
lated. Forgoing individual heterogeneity, this approach implies that observed phe-
nomena are not a primary product of individual behavior. The changes needed to
implement this approach do not necessitate model reformation but require changes
to be made to the model structure (Scheffer et al., [1995). These changes can po-
tentially influence model results as individual heterogeneity is lost in the applied
aggregate functions. Parry and Evans (2008) proposed an example where aphids
agents born at the same grid location would be grouped as super-individuals. Their
actions, mortality, and spatial context are then facilitated though aggregate sta-

tistical measures instead of individualistic parameterizations. Noted complications
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of this modeling approach included temporal variability, underestimation of pop-
ulation, unwanted spatial clustering, and inadequate dispersion. Moreover, the
observed Issues were compounded as the number of agents increases in the simula-

tion.

Parry and Evans (2008)) concluded that while easier to implement, super-individuals
are inappropriate in simulations with interactive agents. This is especially true in
spatial models such as MIA where the individual spatial actions of agents drive
emergent behaviors. The loss of spatial interaction properties desired in these
models negates the potential gains in model runtime. Alternatively a hardware
based solution was proposed in parallel computing, offering decreased computing
time without alteration of model results. Parallel computerizing allows for the
computationally tasking elements to be distributed amongst a cluster of computers,
balancing the load over many processors. This solution requires hardware and inter-
connectivity be available but also that a software interface be employed to distribute
tasks amongst the available hardware. Solving these requirements would be a major
undertaking to the MIA project but offer large gains if implemented. Parallelization
is an extremely attractive option as asynchronous mosquito agents could easily be
adapted to this type of processing. The shared hierarchal academic research com-
puting network (SHARCNET) of Ontario have recently deployed MPJ express, a
java based message passing interface to allow for parallelization of REPAST based
models. Unfortunately these systems have only become available at the conclusion

of MIA’s testing and have not been utilized as of yet.

6.3 Recommendations for Research

MIA has great potential to evolve and respond positively to additional research
by refining complexities and parameterizations. The work completed thus far has
shown successes in transitioning theoretical agent-based epidemiological modeling
into practical application. As the vast majority of effort in the research has focused
on construction of these modeling structures there is near limitless potential to
refine and integrate new methods to enhance the established core. A majority of
changes required to facilitate this advancement have been discussed as uncertainties
in data or model structures. Successive generations of MIA will need to address
these issues in order to move past the limitations of the current generation. Three

primary issues exist which will require immediate attention in the next generation

of MIA:
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e Integration of hydrological modeling and exploration sub-scale variability
e Parallelization of model structures to allow for high performance computing

e Local parameterization of mosquito, human, and environmental sub-models

with in situ data

The potential solutions to these issues will require significant investment of time
and funds. The preliminary work has already been completed for hydrological
modeling and parallelization but will required additional expertise in the future.
Encouragingly previous literature has shown sufficient gains can be made through
these additions (Bomblies et al., |2008; Parry and Evans, 2008). Collection of in-
situ data will be the most challenging of these additions requiring significant field
work and external funding to facilitate it. Regardless of cost, the addition of in
situ observations would allow for local parameterization and most importantly val-
idation. This will give direction to future generations by isolating weakness and
identifying sources of uncertainty in MIA. A gamut of secondary recommendations
exist and should be consideration during the construction of the next generation of
MIA. First efforts should be made to incorporate traditional epidemiological met-
rics. This will enable commentary from academics foreign to modeling and provide
a tool for communication model results. Additionally, these results should be pre-
sented with enhanced visualizations to reflect spatial distributions of population

and infection.

6.4 The Future

Looking beyond limitations, several advancements could allow MIA to evolve in it’s
role as a tool of spatial epidemiology. This is perhaps most apparent in the coding
structures utilized by MIA. While implemented to simulate the transmission of
malaria, model code could easily be adapted to simulate a multitude of vector-borne
diseases. This may be of interest to researchers examining spatial transmission of
dengue fever, or in the case of Ontario, emergent west nile virus. Additionally, MIA
can be adapted to new study sites because of its versatile parameter space. Given
adequate data this parameter space could be adapted to consider a large number
of terrestrial study sites. If the dominant vector in new study sites is different than
MIA, additional Anophales sub-species could be considered with retooling of the

agent parameter space. If multiple vectors are found in the study area this can
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be accommodated by adding additional agent classes and parameterizing each to
specific sub-species. These potential roles illustrate the adaptability of MIA and

promote use well beyond it’s current scope.

MIA, despite it’s potential for advancement, is a prototype and should be
treaded as such. Sensitivity analysis may have provided the greatest insights to
prescribe the use of the current generation of MIA. Here, parameters exhibit reac-
tions to real world phenomena, potential over-fittings, and interaction space noise.
Results such as this must be interpreted as indicators of uncertainly warranting
substantial investigation into the models validity. Moreover, these results my be
indicative of a much larger problem in excessive complexity. While the intentions
of MIA were to foster complexity in design, a potential overshot of this goal could
drive noise as result of cumulative uncertainties. As a guideline, the results pro-
duced by MIA should be handled with care. Their usefulness in applications outside
of validation are not substantiated and could potentially foster misinterpretation.
Due to this the first generation of MIA should be used as a guide in model design

to encourage future generations of ABMs in epidemiology.
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Appendix A

Abbreviations and Acronyms

A.1 List of Abbreviations

A. - Anophales

P. - Plasmodium

A.2 List of Acronyms

ABM(s) - Agent-based model(s)

ABR - Actual biting rate

CA - Cellular automata

DDT - Dichlorodiphenyltrichloroethane

ESM - Environmental sub-model

MIA - Malaria in the Amazon

ODD - Overview, design concepts, details

REPAST - Recursive porous agent simulation toolkit

SHARCNET - Shared hierarchal academic research computing network
SIR - Susceptible, infected, recovered

UML - Unified modeling language
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Appendix B

Temperature Calculations

B.1 Hourly between sunrise and sunset

t—tsr)
D+ A

Ty = Toin + (Tmaz - Tmzn) - Sin - (7T (Bl)
Where T is an estimation of temperature in °C at hour ¢. 7" is the minimum
temperature of the day, 7% is the maximum, " is the hour of sunrise, D is the

number of hours of sunlight, and A is two times the maximum temperature after
midday (Jetten et al., [1996)).

B.2 Hourly temperature after sunset

Tmin - TSS : e_N/T + (TSS - Tm'm) : e(t/TSS)/T

E = 1 — e*N/T

(B.2)
Where 7% is temperature at sunset, N is the number of hours without sunlight,

T5% is the hour of sunset, and 7 is a nocturnal time constant (Jetten et al., [1996).

An estimate of 4 hours was used to set the nocturnal time constant.
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