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Abstract

This thesis proposes new methodology for alternating binary longitudinal responses
collected at discrete time points which may not correctly classify the state of the
unobservable true process. The model consists of two distinct parts and enables
estimation of the probabilities associated with two types of misclassification when
supplementary information is available at each observation time. The misclassifi-
cation part models misclassification probabilities as logistic functions of misclassi-
fication predictors available at each observation time and the true process part is
modeled as a continuous-time counter model with time-independent covariates.

Parameter identifiability and estimability issues are investigated when a Type
I counter model has exponential state sojourn time distributions. Characteristic
functions are used to identify distinct sets of parameter values which yield the
same likelihood value for a data set. Estimability issues are discussed when the
sampling interval is inadequate or the model is misspecified.

The effect of misclassification on the parameter estimates in the case of con-
stant inter-observation times is next considered. In the absence of covariates and
supplementary information, approximated estimators of Type I counter transition
probabilities are constructed based on linear functions of known misclassification
probabilities. Estimators ignoring misclassification are compared with the approx-
imated and maximum likelihood estimators.

Standard model assessment techniques comparing observed and expected tran-
sition counts are applied and may not adequately detect model departures. A

simulation study motivates a Type I counter model where one sojourn time has an

iv



exponential distribution and the other has a gamma distribution for the data sets
considered. Via approximation, the equilibrium probabilities at three consecutive
time points are used with misclassification probabilities to calculate expected fre-
quencies. The discrepancy between the expected and observed data at these time
points is minimized to obtain parameter estimates and estimates for the true state

Jjoint equilibrium probabilities.
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Chapter 1

Introduction

Researchers are often faced with problems in which the data they would like to
collect are not directly observable. Instead, data are collected on a process thought
to be related to the true unobservable process. In the biostatistics setting, for
example, a true disease process may be monitored by an imperfect diagnostic in-
dicator. The observed process may misclassify the true state of the process at a
particular time, if the relationship between the observed and the true process is not
completely understood. If misclassification is ignored in the modeling, incorrect
conclusions may be drawn about the true unobservable process. These incorrect
conclusions may influence the treatment a patient receives and may prevent greater
understanding of the true disease process.

This thesis considers an underlying stochastic process which has two states and
the process alternates between these states at different times. Such a process can be
represented by Figure 1.1 and is referred to as the true process. Another response,

thought to be related to the true process, is observed and may be used to predict
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the state of the true process. The observed process might be the outcome of a

diagnostic test or some other supplementary information.

Figure 1.1: Schematic diagram of a two-state alternating process.

State 0 State 1

At a particular time point, the observed state may not agree with the true
state. Disagreement between the two processes indicates that the observed state is
misclassified. Misclassification may result if the relationship between the observed
and true process is not completely deterministic. Misclassification error can happen
in two ways: either the true state is 0 and the observed state is 1 or the true state is 1
and the observed state is 0. The probabilities associated with each of these errors,
called misclassification probabilities, may also be related to a particular variable
referred to as the misclassification predictor. This predictor is also collected at the
same times as the observed state.

Biostatistical data provide an example of the types of processes involved. Many
chronic diseases follow a relapsing-remitting disease process. A relapsing-remitting
disease is one which sufferers experience periods when the disease is worsening (re-
lapsing) and periods when it is improving (remitting). Symptoms are severe during
the relapsing state and mild or absent during the remitting state. The true process,
in this type of situation, may be the true relapsing or remitting state of the disease

process. While the actual disease process is not observable directly, the outcome of
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a diagnostic test may help determine the true state. The misclassification predictor
could indicate whether or not the patient has experienced an exacerbation recently.
If an exacerbation has been experienced lately and the outcome of the diagnostic
test suggests the disease is worsening, the observed and true state may be more
likely to agree than if the diagnostic test suggests an improving period.

The goal is to use the misclassification predictor to clarify the relationship be-
tween the true process and the possibly misclassified observed response. Longitu-
dinal data are collected on the observed response, misclassification predictor and
covariates to enable estimation of both misclassification probabilities and regression
parameters associated with the covariate information.

The model proposed consists of two distinct parts: the misclassification part
specifies probabilities related to the misclassification predictor and the true process
part is modeled with time-independent covariates. Each of these parts could be
modeled in various ways. The approach taken here is to model the misclassifica-
tion probabilities as logistic functions of the misclassification predictor available at
each observation time. A stochastic process approach is taken for the true process.
Counter model methodology is considered, particularly appealing because of parsi-
monious parameterization and its suggestion of a mechanism. Counter models are
based on physical machines used to count incoming particles. Different types of
events may “trigger” a transition from state 0 to state 1 in the true process. Trig-
gers play the role of the incoming particles and may induce a transition to state 1 if
the current state of the process is state 0. The state sojourn time distributions are

both considered to be exponential. Chapter 2 provides an overview of the literature
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and describes the theoretical framework for the model proposed.

Two biostatistical data sets are available to motivate the methodology and il-
lustrate its application. The first set involves a clinical trial of relapsing-remitting
Multiple Sclerosis patients. Data include baseline covariates, information from pa-
tient brain scans as well as whether a patient has experienced a worsening of symp-
toms. The second data set, taken from the literature, measures the detection of a
parasite in a study of Kenyan children. The data consists of weekly measurements
of the parasite’s presence or absence in each child. The data sets and preliminary
analyses are described in Chapter 3.

Incorporating the possibility of misclassification in a model makes estimation
more difficult. Models for misclassification, or the related topic of measurement
error, often encounter problems with parameter estimation. For the proposed
likelihood-based model, the related issues of identifiability and estimability of model
parameters are considered in Chapter 4.

The observed data do not properly describe the true process unless the modeling
accounts for the possibility of misclassification. Researchers may incorrectly ignore
the possibility of misclassification and draw conclusions based on potentially biased
estimates. Chapter 5 examines the effect misclassification has on transition proba-
bility estimates and investigates the bias that may result from naively concluding
that the observed data is correctly classified.

Model assessment is an important aspect of the model building process. When
a transitional modeling approach is taken for binary longitudinal data, the model

specification is usually assessed by comparing expected and observed transition
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counts. Chapter 6 investigates the performance of such assessment tools when
applied to a transition model with misclassification. The results of this chapter
lead to consideration of a gamma distributed sojourn time for state 1 in Chapter 7.
A semi-Markov model is constructed for the true process where state 0 has an
exponential sojourn time distribution and state 1 has a gamma distributed sojourn
time. Additionally, the methodology described in Chapter 2 is extended to allow
for more than two states.

The final chapter summarizes the findings and discusses further research is-

sues.



Chapter 2

Model Description

2.1 Overview

A model with distinct specifications for the misclassification and true process is
developed. The probabilities for the two types of misclassification are modeled as
logistic functions of misclassification predictors available at each observation time.
The true process is modeled as a Type I or Type II counter model with exponential
state sojourn times and time-independent covariates. These models are appealing
because of parsimonious parameterization and the suggestion of a mechanism. The
relationship between the covariates and each state transition rate is assumed to be
log-linear. The model yields a recursive likelihood function for parameter estimation

and jackknife standard error estimates are considered.
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2.2 Introduction

The model proposed for misclassified binary data consists of two distinct parts.
One part describes the movement between states of the unobservable true process.
The other part relates the observed process, for which data are collected, to the
unobservable true process through classification and misclassification probabilities.
The unobservable true process is modeled as a counter model, with the open and
blocked states of the counter corresponding to the two states of the true process.
The probability of misclassification for an observed state is modeled as a logistic
function of misclassification predictors.

Background for misclassification models and counter models is given in Sec-
tion 2.3. Sections 2.4 and 2.5 describe the misclassification and the unobservable
true process parts of the model, respectively. The full model with covariates is
considered in Section 2.6 and the formula for jackknife standard error estimates is

given in Section 2.7.

2.3 Literature Review

2.3.1 Misclassification of the Response

Misclassification in the context of longitudinal data has not been widely addressed
in the literature. Often the total number of subjects making a transition from
one state to another, called a gross flow, is adjusted for misclassification without
consideration of the covariates which may be involved. When the longitudinal

data are categorical and progressive, authors including Albert, Hunsberger and
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Biro (1997), Espeland, Platt and Gallagher (1989) and Gu (1996) have proposed
misclassification models. In many such cases, the misclassification mechanism is of
primary interest. In a binary progressive process, subjects may all move from one
state to the other and the accurate detection of the change is the focus.

Several authors have considered Hidden Markov Models (HMMs) (see Mac-
Donald and Zucchini (1997), Le, Leroux and Puterman (1992) and Juang and
Rabiner (1991), for example). In these models the state sequence generated by
a first-order Markov process cannot be observed directly. The observed process
is assumed to be stochastic with a set of observation probability measures. The
probability of an observed state sequence can be expressed without assuming knowl-
edge of the underlying process from which it was generated. Many of the specific
references that follow can be considered special cases of a Hidden Markov Model.

Kasagi et al. (1988) adjust for disease status misclassification under a two-time
follow-up study. Two separate diagnostic tests for the presence or absence of disease
are considered. Test A has imperfect sensitivity (false negatives) while Test B has
imperfect specificity (false positives). All subjects are first tested with Test A.
Subjects with a negative result are administered Test B. This testing protocol is
conducted at two examination times. Maximum likelihood estimates are calculated
to evaluate the incidence and reversion rates of the disease. The modeling does not
include any covariates.

More recently, Cook, Ng and Meade (1999) consider a discrete-time HMM with
several diagnostic tests applied repeatedly over time. Classification distributions

are constructed using log-linear models which are conditional on the true state.
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These models allow tests to behave dependently, conditional on the true state. The
likelihood constructed is recursive and can provide transition probability and initial
state estimates for first-order and second-order Markov models along with classifi-
cation probability estimates. The methodology can also be adapted to handle the
case of missing data. Model assumptions are assessed over time by examining the
bootstrap distribution of conditional residuals. The methodology is applied to bi-
nary chest radiograph data where the hidden Markov processes investigated are first
order, second order and time-nonhomogeneous and different physician diagnoses are
considered as individual diagnostic tests.

A logistic model for survey data is examined by Skinner (1992). The focus
is on the proportion of subjects of the population who move from one state to
another on successive occasions. A logistic model describes the relationship between
transition probabilities and covariates for the situation with two states and two
occasions. An adjusted estimator of the regression coefficients is calculated based
on information about the nature of misclassification from validation studies or under
the assumption of unbiased measurement errors. Kuha and Skinner (1997) give a
review of the methods for survey data with misclassification errors.

Singh and Rao (1995) also consider survey data which are subject to classifi-
cation error from one point in time to the next. Methods developed by Poterba
and Summers (1986) and Abowd and Zellner (1985) based on reinterview-interview
data and the assumption of independent classification errors (ICE) are modified
to ensure marginal totals of the adjusted flow table at two subsequent time points

agree with published “stocks”. Reinterview-interview data are usually divided into
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a sample where reinterviewers reconcile discrepancies between the original inter-
view and the reinterview with respondents and a sample where no reconciliations
are carried out. Reconciled samples, with or without the unreconciled samples, are
used to estimate the correct classification and misclassification probabilities that
govern an individual’s responses at two subsequent time points. The modifications
do not require any final marginal adjustment. The robustness of the ICE assump-
tion is examined under different departures from the assumption. The inclusion of
covariates is not considered.

Satten and Longini (1996) consider measurement error in CD4 cell counts used
as a marker for the progression of the human immunodeficiency virus (HIV). The
CD4 counts are discretized into states. The true CD4 count has a corresponding
true state and the true state is assumed to follow a continuous-time Markov chain.
The logarithm of the observed counts is equal to the logarithm of the true CD4
counts plus a normal error. Likelihood based estimation is carried out using the dis-
cretized states. A progressive model is considered as well as a bidirectional model.
In the bidirectional model, a subject may either move forward to the next lowest
CD4 count state or move backwards to the next highest CD4 count state. The
objective of the authors is to make population rather than individual predictions.

Albert, Hunsberger and Biro (1997) examine monotonic ordinal responses which
are subject to misclassification. The underlying monotonic response and the diag-
nostic misclassification process are modeled separately. Diagnostic error is assumed
to be independent over visits and the underlying monotonic process is assumed to

follow a first-order Markov chain with a proportional odds parameterization. The
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misclassification mechanism is modeled as a function of the distance between the
observed and the true state labels and can either be symmetric around the true
state or asymmetric. An EM algorithm is developed to handle maximum likelihood
estimation when covariates are introduced in the state transition probabilities or in
the misclassification mechanism and when the observed ordinal states are missing
at random. The method is used to analyze sexual maturation data.

The case of imperfect detectability of parasitic infections is discussed by Nagelk-
erke, Chunge and Kinoti (1990). False negatives are assumed to occur, whereas
false positives do not occur. The unobservable true states are assumed to follow a
Markov model with constant infection and cure rates. Parameters are estimated via
a maximum likelihood approach. Goodness-of-fit tests are suggested for the model
involving the cure rate, infection rate and false negative probability parameters.
The methods and results of this paper are further examined in the sections that lie

ahead.

2.3.2 Counter Models

Several authors, such as Takdcs (1956), Smith (1958) and Pyke (1958), have ad-
dressed problems involving counter models. Counter models are based on physical
devices used to count incoming particles. The Geiger-Miiller counter is a classic
example. Not all incoming particles are counted (registered). The registering of
a particle induces a period of time for which the counter is blocked. During this
blocked time or dead time, any incoming particles cannot be registered. Thus, only

a subsequence of the incoming particles are registered. The incoming particles are
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called the input process and the registered particles are referred to as the thinned
process.

Several kinds of blocking can be considered. The more common mechanisms
are called Type I (or non-paralyzable) and Type II (or paralyzable). Figure 2.1
illustrates the difference between these two counter model types when the dead time

is constant. For a Type I counter, only particles arriving during an unblocked time

Figure 2.1: Counter models of Type I and II with constant dead time. The incoming

particles and dead times are denoted by x and - -, respectively.
Time
Inputs —x—¢ K a3 ¢ >
Typel 9y
Registrations e s G e > - - -~ I} oven L.
CTypell _ o .. e X e e Ko -
Registrations

are registered and induce a dead time. During this dead time, any other incoming
particles are not registered and do not alter the dead time. If the incoming particles
during the dead time extend the dead time as if they had been registered, the model
is a Type II counter.

Albert and Nelson (1953) consider a generalization which includes both Type I
and II counters as special cases. The generalization is essentially a Type II counter
model with the exception that incoming particles during the dead time may prolong
the dead time with a certain probability. Other modifications have been considered
by authors including Srinivasan and Rajamannar (1970) and Dvurecenskij and

Ososkov (1985).
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A few papers have been produced with counter model applications. Singh (1964)
considers a Type I model for couple fertility. Conception corresponds to the thinned
process which is followed by a rest period (dead time) when no other conceptions
can be made. A constant probability of conceiving in one time unit during the
entire observed time and for all non-sterile, non-abstinent couples is assumed. The
rest period is assumed to be constant for all couples and taken to be one year.
Since conception data are unavailable, the analysis takes births as the thinned
process with the assumption of a one-to-one correspondence between conceptions
and births.

Nguyen and Murthy (1984) consider two warranty policies and their associated
costs. A warranty where the manufacturer pays for all replacements and repairs
during the warranty period relates to a Type I counter with a constant dead time.
With a pro rata warranty, the customer purchases a replacement at a reduced rate
if the item fails during the warranty and the replacement item is covered by an
identical warranty. The pro rata warranty is a Type II counter with constant dead
time.

The probability distribution of traffic counts is addressed by Oliver (1961). A
Type I counter is formed with vehicles as the input process and the intervehicle
spacings constitute the dead time.

Sequences of bases of DNA are investigated in Biggins and Cannings (1987).
DNA sequences can be thought of as long sequences of letters. A particular sub-
sequence of letters is called a word. Individual letters index the input process, the

occurrence of a word is the thinned process and the length of the word represents
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the dead time.

As will be seen later on, it is natural to think of certain disease history models
in terms of counter processes. Surprisingly, there appears to be very little explicit
use of this idea in the literature, although general Markov and semi-Markov models

are often invoked (see Andersen et al. (1993), for example).

2.4 Misclassification Specification

First suppose the two-state process is a homogeneous Markov process and consider
the binary responses for one subject. Suppose there are n observations for the
subject at times t;,ts,... ,t, such that ¢; < t; < -+ < t,. Let O; take values
0 or 1 depending on the state determined by the observed, possibly misclassified,
response. Hereafter, O; will be referred to as the observed state. The state of the
unobservable true process at time ¢ is denoted by £(t). At observation time ¢;, the
state of the unobservable true process is labeled ¢;.

The true and observed states either agree or disagree. The observed state is
misclassified if it differs from the true state. Suppose there is some supplementary
information available at each observation time which may help clarify the relation-
ship between the observed and true process. Variables fitting this description are
referred to as misclassification predictors. Observations for g misclassification pre-

dictors are collected at each observation time, where ¢ is a nonnegative integer. The
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random variables for the misclassification predictors can be written in a matrix as

(1 1...1\

Cll 012 te Cln

\qu Cya - an)

where the rows are the different misclassification predictor variables and the columns
are the misclassification predictors collected at each observation time. The first
row of ones corresponds to an intercept term for the misclassification probabilities
defined below. These misclassification predictors may be continuous or discrete
variables.

For simplicity, consider the situation with only one misclassification predictor,
C, being collected at observation j, j = 1,...,n. The labels for the two types of
classification and misclassification probabilities appear in Table 2.1. An appropriate
Table 2.1: Labels for the misclassification probabilities. The probability of being

misclassified in state b at observation j when the true classification is state a is

vab(Cj) = Pr(0; = b|§; = a,C;) for a,b € {0,1}.

Observed State (0O;)
0 1
True State 0 | voo(C;) = 1 ~ va1(Cj) vo1(Cj)
(&) 1 v10(C;j) v11(C;) = 1 —v10(Cj)

functional form for the misclassification probabilities is assumed to be logistic,
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where
eao+a|C,- eaa-i-aIC,-

vm(C_.,-) and ‘Ulo(Cj) (21)

- 1 + eao+a10j = 1 + eaa+a;0j *

Assuming that the probabilities for the two types of misclassification may be non-
symmetric, ag # aj and a; # of.

Let OU) denote the history of the observed process up to and including obser-
vation j, OU) = (0y,0,,...,0;), j = 1,...,n. The probability for the observed
state depends on the history, the misclassification probabilities, and the continuous-
time probability transition matrix, P(t), of the true process. The true process is
assumed to have the homogeneous Markov property, so that Pr(§; |§;-1,...,&) =
Pr(§;|€;-1), and the entries of the continuous-time probability transition matrix
for observations taken At; = t; — t;_; time units apart are denoted by Fh(At;) =
Pr(§; =b|&;-1 = a) fora,be {0,1},j=2,... ,n.

Further, let the history of the misclassification predictor be denoted by C) =
(C1,Cs,... ,C;). If v; denotes the probability Pr(¢; = 1| 0W,C)), then the prob-
ability of observing a 1 conditional on the past observed responses and misclassifi-

cation predictors is

Pr(0; = 1|06, C0)) =,,(C;) [(1 — ¥i-1) Po1(At;) + 751 Pu(Atj)] 22)

+ vo1(Cj) [(1 — 75-1) Poo(At;) + -1 Pxo(Atj)]
and Pr(0; = 0/0U-Y,C0)) = 1 — Pr(0; = 1|0U-1,Cl)) has a similar form.
The probability for each potentially misclassified observed state depends on the

probability of transitioning from the last state, which may also be misclassified.
When considering the observed state, the Markov property no longer holds. The
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probability of an observed state is dependent on the last observed state as well as
earlier states through v;_,. Bayes’ rule can be used to calculate v; recursively since

an explicit expression is difficult to derive. Hence, ; is calculated as

v; =Pr(¢&; =1| oY, ¢l
_ Pr(0;]¢& =1,0U"Y,c9) Pr(¢; = 1| 01, W)
1 Pr(0; | ¢ = b, 061, ) Pr(¢; = b| OG-, L))

10(C5) [( = 75-1) Por(At5) + 7i-1 Pu(At;)] 020
im0 0(Cs) [(1— 75-1) Pos(At) + 751 Pu(Ay)] 23)
v11(C5) [(1 = 75-1) Por(A¢5) +75-1 Pu(Aty)] £0: =1 '
a0 vr(C5) [(1 = 7i-1) Pu(At;) + 751 P (A)]

and with m, = Pr(§; = 1) as the constant probability for state 1, j = 1,...,n, and

o =1—my,
U10(01)7f1 .
ifO; =0
"= v0(C1) o + v10(C1) m '
! 1)11(01)7?1 f£0, =1
v01(C1) ®o + v11(C1) my . .

The contribution to the likelihood for one observed sequence is,

Pr(01,0,,...,0,) = Pr(01|C1) [[ Px(0; | 0¥, 1) (2.4)

vy

where
C + v10(C ifO,=0
Pr(01|C1)= voo( 1)7l’o Um( 1)“1 1 (2.5)
‘001(01)770 +1111(Cl) ™ lf 01 =1.
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2.5 TUnobservable True Process

The states of the unobservable true process are linked with the open or blocked
status of a counter. Figure 2.2 graphically displays the relationship between the
two concepts. The time the counter is open corresponds to the time spent in state
0. Similarly, if the counter is blocked, then state 1 is occupied. The registration
of an input causes a transition to state 1 and the state is occupied during the
blocked time. Once the blocked time is over, the counter becomes open again and
a transition is made back to state 0. The input process may also be referred to as
triggering events. Not all triggers will cause a transition from state 0 to 1 just as
not all inputs are registered. Triggers which do cause a state transition represent
the thinned process. Examples of such triggers in the biostatistical setting could

Figure 2.2: The relationship between the alternating process and the counter model.
The blocked time is denoted by the dashed line while the x indicate an input.

Time
Inputs ¥ '3 3% -
Registrations ——————X--------oemeneee K eenennann —_
States 0 1 0 1 0

be infections, stress or fatigue with states healthy (0) and sick (1).

The distributions for the input process and dead times can be specified to suit
the problem at hand. The most tractable situations are to consider Poisson inputs
and either constant or exponentially distributed dead times. The case of Poisson

inputs and exponentially distributed dead times, often addressed in the literature
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(see Cox and Isham (1980), for example), is considered here. As in the previous
section, only one subject is discussed.

The input counting process N(t), N(t) =number of inputs in time interval [0, ¢],
is assumed to be a renewal process with interval sequence {Z;}. The Poisson input
assumption implies that Z: has an exponential distribution with intensity (renewal
density) Az(Z) = p, density f3(Z) = pe"* and survivor function Fz(z) = e %,
z > 0. The sequence of independent identically distributed blocked times is {Yi}
which have density g(y) = ne™"¥, distribution function G(y) = 1 — e™"¥, and sur-
vivor function G(y) = e™"¥, y > 0. The state process is labeled {(t) and is an
alternating renewal process. The thinned process is a renewal process. Let {Z;}

refer to the interval sequence of the thinned process, Z, ~ fz. Figure 2.3 gives a

pictorial representation for the random variables in a simple example.

Figure 2.3: Random variables involved in the counter model, Z,Z and Y. Incoming
particles and dead times are denoted by x and :--, respectively.

Z1 F4] - .
= - Time
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Registrations ——————X------ooeneeennes 3G v neennes N
D S B e
N Y2

- -~
- >
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Two common counter models are considered with Poisson inputs and exponen-
tially distributed blocked times. Section 2.5.1 shows the necessary calculations for

the Type I counter model while the Type II model is discussed in Section 2.5.2.
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2.5.1 Type I Counter

At the instant the counter becomes unblocked, a transition is made to state 0 and
the counter awaits the next trigger. Use of the Poisson assumption for the input
process implies that once the counter becomes unblocked, the waiting time for the
next trigger is exponentially distributed with rate p. Similarly, at the instant the
counter becomes blocked, the blocked time has an exponential distribution with rate
n. These two raies characterize the conditional intensities for the Type I counter,

forming the transitional intensity matrix

where p and 7 are not functionally dependent. The transition intensity matrix along

with the probability transition matrix form a system of first order linear differential
equations,

a

5P = P'()

with solution P/(t) = €9t = 3% (Q't)"/n!. The matrix @' is diagonalized to
obtain @/ = BDB™! where

—(p+m) 0 1
p_| " wd Bl ?

0 0 -n 1



CHAPTER 2. MODEL DESCRIPTION 21

The probability transition matrix can then be calculated as

Pt) = B (i 9%) B!

n=0
1 p e-t(P’*'ﬂ) + 1, p (1 - e-t(p"'ﬂ))
P + n n (1 — e—t(p+ﬂ)) p +. n e_t(P'*'ﬂ)

and the steady state probability for state 1 is 7y = p/(p + 7).

The first entry of the probability transition matrix is the probability of being
in state 0 at time ¢ given that the process was in state 0 at time ¢ = 0. This
probability transition matrix is identical to the two-state homogeneous Markov
process. Note that such a specification implies constraints on the sums of the
diagonals and off-diagonals. Data consistent with this model must have Py, (t) +
Pio(t) < 1 and Pa(t) + Pyy(t) > 1 for any t. The constraint trace(P'(t)) >
1 is referred to as the embeddability criterion discussed by several authors; for
example Kingman (1962), Singer and Spilerman (1976), Singer and Cohen (1980)
and Kalbfleisch and Lawless (1985). If the embeddability criterion is not satisfied,
a discrete-time approach should be considered. See Section 5.4.1 for a detailed

outline of the argument.

2.5.2 Type II Counter

As in the Type I counter model, the waiting time for a trigger when the Type
II counter is not blocked is exponentially distributed with rate p. However, the

conditional intensity from state 1 to state 0 now must depend on the number and
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timing of triggers that occur during the dead time. In this case, an interval of
dead time may be followed by another blocked period before returning to state
0. Calculating the probability transition matrix directly is less complicated than
working from the intensity matrix in the case of Poisson inputs.

First consider the probability that the counter is open at time t given that the
counter is open at time ¢t = 0. Suppose exactly M, M € {0,1,...}, inputs occur in
(0,t]. Let ty,t,,...,tp be the times of the M inputs with resulting dead times Y,
m=1,...,M. If for all m, Y;, <t —t,,, then the counter will be open at time ¢.

Hence,

o0 t t t
Pult) = 3 [ty [(dtsee: [ dewg pMemGlt —t) -Gt -ta) - (27)
M=0 0 191 t

M-1

= exp {—p/:duG(t —u)}

= exp { -5(1 - e-"‘)} : (2.8)

Note that (2.7) holds for the more general case when the dead time distributions
are not exponential.

If the counter starts a dead time of length Y, at ¢ = 0 and the counter is open
at time ¢, then Y; < ¢ and inputs must occur in (0,¢] in the same manner as stated

above. The resulting transition probability is

Pio(t) = G(t)Poo(t) = (1 — ™) exp {-5(1 - e-"')} . (2.9)

Note that this quantity must be interpreted carefully, since the process is not
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Markov, and only the beginning of a dead time is a regeneration point. Using
(2.8) and (2.9) gives the probability transition matrix

Poo(t) 1 — Pyo(2)

P1) = , (2.10)
(1 - e"") Pog(t) 1- (1 - e"") Poo(t)

2.6 Incorporating Covariate Information

Some further notation is required to include responses from each subject at the
different follow-up times. Longitudinal data are collected on I subjects. Suppose
there are n; observations at times t;y,t:,. .., ¢y, such that ¢ < £ < --- < ¢y, for
subject 7,2 = 1,...,I. The time between consecutive observations for subject 7 is
At;;, where At;; = tij—t;j-  for j =2,...,n;,i=1,...,I. The observed, possibly
misclassified, response for subject i at observation j is labeled O;;, with history
0?) = (Os,...,0;j), and the true state is &;, j = 1,...,n;, ¢ = 1,...,[. For
notational simplicity, assume that only one misclassification predictor C is available
for subject i at observation j, j = 1,...,n;, ¢ = 1,...,I. The history of the
misclassification predictors for subject i is C,gj) = (Cia, Ciay...,Ci5), 3 =1,...,m,
t =1,...,I. The subject-specific misclassification probabilities in (2.1) depend on

Ci; and become

eaotarCij e®ot+aiCij

vu(Cij) = T —mer and  (Cy) =

1 4 e@otaCij 1 + exotaiCij”

Further, define the misclassification parameter vectors ag; = (@o,@;)T and ayo =

(af,a;)?. This specification implies that the misclassification probabilities depend
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on the misclassification predictor in exactly the same way for all subjects at all
observation times.

Let X; be a random vector of baseline covariates for subject ¢ with observed
values, x; = (1,Zi,...,Zip), for some positive integer p. Assume that the rates
for the input process and blocked time for a particular individual are based on
these baseline covariates and are denoted by p(x;) and 7(x;), respectively. The

relationship between the covariates and the rates is assumed to be log-linear,

px) = and  nix;) = ¥

with regression parameters 8, = (B0, - - -,8:p)T and B, = (Bro, - .. +Bnp)T. For each
individual, the probability transition matrices P! and P now also depend on the
covariate vector. The parameters p and 7 are replaced by p(x;) and n(x;) for subject
i,1=1,...,I. Dropping the superscripts indexing the type of counter model, let

P(t,x;) denote the probability transition matrix for subject 7,2 =1,...,1,

Pyo(t,x;) Poi(t,x;)
Pio(t,x;) Pr(t,x:)

which depends on the parameter vector © = (a1, @10,8,,8,). Subjects with iden-
tical covariates will have identical probability transition matrices resulting in po-
tentially fewer than I distinct matrices.

The steady state probability for subject ¢ is labeled m(x;) = Pr(&; = 1,x:)

for state 1,6 = 1,...,I. In the Type I counter model, this steady state proba-
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bility is mi(x;) = p(x:)/(p(x:) + n(x:)). With the definition ;(x;) = Pr(&; =
1] 0§”’,c§"’, x;), (2.2) becomes

Pr(0; = 1|07V, ¢, x;)
= 001(Ci) [(1 — g (36)) Pon (Atis, 1) + Fogms () P (At )
+v01(Cyj) [(1 — %ij-1(%:)) Poo(Atij, Xi) + %ij-1(%:) Pro(Atyj, xi)]-

The likelihood involving all the observations for each subject is

I n; .
L(®) = [[ Pr(0u | Cur, x::0) [ Pr(051 08V, ¢ x;;0)  (2.11)
=1 j=2
where

vo(Ci1) ®o(X;) + v10(Cir) m(x:) if Oy =0
v01(Ci1) mo(%:) + v11(Caa) m(x;) if O = 1.

Pr(0i | Ci1,%i;0) =

When the misclassification probabilities are constants such that vg; = 0 and
vio > 0, and the unobservable process is modeled as a two-state homogeneous
Markov chain, the model here becomes the model proposed by Nagelkerke, Chunge
and Kinoti (1990).

Not all possible ranges of misclassification probabilities are permissible in the
model. In particular, if vo;(Ci;) + v10(Ci;) =1for j=1,...,n;and i =1,...,1,
then it turns out that vgo(Ci;) = v10(Ci;) and v11(Ci;) = vo1(Ci;). The probability

of the observed state is completely independent of the unobservable true state. If
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0‘(0) and c§°’ are defined to be empty sets, then

vm(C;_.,-) lf O{j =0
vm(C;j) lf 0,'_.,' =1

Pr(0;; |07V, ¢, x;) =

for j = 1,...,n;5, 4 = 1,...,I. The likelihood will be flat with respect to the
regression parameters. Mathematically, a situation with vo;(Ci;) + v10(Ci;) = 1 is
not informative, although this situation may be possible theoretically. In practice,
it is unlikely to have exact equality when multiple misclassification predictors may
be available.

Note that the unobservable process modeled as a counter model is completely
distinct from any misclassification specification. The counter model approach could
be used directly if misclassification was not an issue. The distributions for the state
sojourns depend on the baseline covariates for each subject.

The misclassification probabilities at a particular observation time only depend
on the misclassification predictors collected at that observation. Hence, the misclas-
sification probabilities only depend on the value of the misclassification predictors
and will be the same for any subject at any observation time with the same mis-
classification predictor values. The misclassification predictors could come from an
auxiliary series or could be functions of 0‘(1' Y. For example, it would be possible to
have misclassification probabilities depend on the time since last apparent transition
as well as the misclassification predictors. However, such misclassification probabil-
ities should not depend on the true process parameters. When the misclassification

predictors come from functions of O ™), the misclassification could be termed dif-
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ferential with respect to the previous history of the process (see Chen (1989), for
example). Conversely, the misclassification is non-differential with respect to the
previous history of the process if an auxiliary series is used for the misclassification
predictors.

Although the model has several parameters requiring estimation, these parame-
ters are able to quantify the effect each covariate has on each transition rate as well

as the effect each misclassification predictor has on each misclassification probabil-

ity.

2.7 Jackknife Standard Error Estimation

The likelihood given in (2.11) is recursive and has several parameters even when only
a few covariates are involved. Calculating the partial derivatives necessary to obtain
an information matrix for parameter standard error estimates is prohibitive. A
jackknife estimate of parameter standard errors can be calculated instead based on
dropping one subject or a group from the estimation at a time. Many authors have
considered jackknife estimates for bias and variance including Quenouille (1949),
Tukey (1958), Efron (1979) and Wolter (1985).

Let © be the maximum likelihood estimate of © based on the data from all
subjects and let 6(.-) be the maximum likelihood estimate of © based on the data

without subject ¢, i = 1,... ,I. The drop-1 jackknife estimate of © is written as

I
-~ 1 -~
6(.) = T E 9(,-).
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and the jackknife estimated variance-covariance matrix for the parameters is
ZOEESY (80 -80) (60 -8) -
i=1

More generally, suppose the subjects are partitioned into groups gi,...,gi with
m subjects each. Let é(m) be the maximum likelihood estimate of © based on
the data without the subjects in group g, , £ = 1,...,k. The drop-m jackknife

estimated variance-covariance matrix for the parameters is

where

(ge)*

»
|

x| -
-
()

Drop-1 jackknife variance-covariance estimates will be calculated when the com-
putational time is feasible. Otherwise, simple random sampling without replace-
ment will determine the groups of size m to be dropped for variance-covariance
estimates.

The jackknife estimate of standard errors only requires computation of é(,,)
for each group of size m. One alternative method to consider is the bootstrap
(Efron (1979)). Bootstrap methods may require 100 or 200 replicates for standard
error estimation (Efron and Tibshirani (1993)). These values are substantially

larger than the numbers of subjects contained in the data sets described in the next
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chapter, and thus, the jackknife requires far less computation. In addition to the
computational advantage for the data examined hereafter, the jackknife considers
data sets which are similar to the original data and may help to identify influential
observations. Further investigations could be done to see if bootstrap methods give

more stable variance estimates.



Chapter 3

Data Description and Preliminary

Analyses

3.1 Overview

A relapsing-remitting Multiple Sclerosis clinical trial and a longitudinal study of
childhood parasitic infection are introduced. Type I counter models with misclas-
sification are fit using each data set. The models considered assume known mis-
classification probabilities or estimate misclassification probability parameters and
regression parameters. The Multiple Sclerosis data set yields extreme parameter

estimates for some models with misclassification predictors and covariates.

30
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3.2 Introduction

Two biostatistical data sets are available to demonstrate methodology. The first is a
substudy of a larger clinical trial for the evaluation of a new treatment in relapsing-
remitting Multiple Sclerosis (MS). The second data set is the parasitic infection (PI)
data modeled in Nagelkerke, Chunge and Kinoti (1990). The descriptions of these
data sets appear in Sections 3.3 and 3.4 along with preliminary analyses based on
a Type I counter model for the unobservable process. In these analyses, models are
considered which have assumed known misclassification probabilities and models

are considered for which the misclassification probabilities are estimated.

3.3 Multiple Sclerosis Clinical Trial

A multicenter, randomized, double-blind, placebo-controlled drug trial was con-
ducted on 372 ambulatory patients with relapsing-remitting MS. Patients experi-
ence unforeseeable attacks (exacerbations) which are followed by periods of remis-
sion. Interferon beta-1b (IFNB) was the drug treatment under investigation with
placebo, 1.6 million international units (MIU) IFNB and 8 MIU IFNB treatment
arms. Enrollment started in June 1988 and patients were followed for two years.
At the end of two years, patients had the option of continuing treatment for a
maximum of 2.5 more years. A substudy of the trial, involving fifty-two subjects,
was conducted at the University of British Columbia (UBC). These patients had
cranial magnetic resonance imaging (MRI) every six weeks for two years. Data were

collected at the UBC MS Clinic as part of the UBC Frequent MRI Substudy of the
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Betaseron Clinical Trial sponsored by Berlex Laboratories, Richmond, California
and provided by Professor A. John Petkau, Department of Statistics, UBC.-

Fifty patients from the UBC substudy constitute the data available. Several
variables were measured at the baseline scan (MRI). The patient’s age in years,
gender, duration of the disease in years, treatment group, origin and burden of
disease were recorded as baseline covariates. The Expanded Disability Status Scale
(EDSS) for each patient at baseline was also collected. This scale is an ordinal scale,
ranging from 0 to 10 with increments of 0.5, and a clinical standard in MS neu-
rological impairment assessment. A scale of 0 corresponds to normal neurological
examinations, 5-6 means the patient requires walking assistance of varying degrees
and 10 represents death due to MS (Kurtzke (1983)). All patients had EDSS scores
of 5.5 or less. Origin indicates if a patient was a British Columbia or Washington
State resident. Burden of disease, measured at each scan time, is the total area of
MS lesions from all slices of an MRI scan.

At each follow-up scan, three variables were considered response variables: bur-
den of disease, active scans and exacerbations. Each scan is evaluated as active
(1) or inactive (0) based on comparison with the immediately preceding scan. A
scan was considered active if a new lesion appeared, a lesion recurred at the same
position of an earlier lesion that had subsequently disappeared, or if an existing
lesion enlarged “significantly”, when compared to its immediate predecessor. An
exacerbation is defined as the appearance of a new symptom or worsening of an
old symptom attributable to MS. Examples of such symptoms include disturbances

in visual acuity, bowel and bladder incontinence, and motor disturbances involv-
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Figure 3.1: Active scans and exacerbations at MRI scan times for three MS study
subjects.
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ing walking (Stienman (1996)). At each scan, it is noted if an exacerbation had
occurred (1) or not (0) in the period since the last scan. Figure 3.1 displays the
activity status and exacerbation status of three study subjects. Paty et al. (1993)
and Petkau and White (1995) provide more information about the UBC substudy.

Not all data are complete: some patients missed scans intermittently and 5 pa-
tients dropped out after 12 or more visits. Although a subject may have missed
one or more of the intermediate scans, information may still be available to deter-
mine whether or not an exacerbation occurred, either between the last scan and

the missed scan time or the missed scan time and the next scan.
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Individual cranial MRIs are not well correlated with standard impairment scales
of clinical status (Lohr and Schroeder (1990)). MRIs in this study, along with
clinical assessment, are used to monitor the trial. The relationship between the
activity status of a scan and the true relapsing or remitting status of the patient is
of interest. The definition of a relapse is not precise and involves both concepts of
activity and exacerbation. According to McAlpine’s definition of relapse reported

in Matthews (1991), Kesselring (1997) defines a relapse as

... the occurrence of a new symptom, or the recurrence of a symptom
previously present. Symptoms should be considered to be an expression
of a relapse if they can be explained as due to a new lesion within the
CNS [Central Nervous System] or to a reactivation of lesions previously

present ...

The beginning of a relapse may be seen in the MRI scan and the clinical symptoms of
an exacerbation may follow. The scan activity may misclassify the true relapsing or
remitting state if new, recurring or significantly enlarging lesions are not identified
by a technician or if new or recurring lesions are not consistent with the appearance
or the recurrence of a symptom. Examining how the exacerbation and activity
status relate may lead to an etiological understanding of the disease process and
enable better evaluation of potential treatments.

The goals are to model the misclassification in the activity status and the true
relapsing-remitting status. Studies, such as Sibley, Bamford and Clark (1985) and
Panitch et al. (1992), have suggested that intercurrent clinical viral infections trigger

exacerbations and may be the most dominant environmental influence in the disease
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process (Sibley et al. (1991)). These “triggers” motivate the use of counter models.
The relapsing and remitting states are denoted by 1 and 0, respectively. The
exacerbation status will only be used in the misclassification part of the
model and will be considered the misclassification predictor. In this
case, the likelihood in (2.11) will be a partial likelihood (Cox (1975)) since the
misclassification predictor is an internal time-varying covariate, with relationship
to the true process being modeled independently of the true process parameters. If
an exacerbation has occurred in the time since the last scan, the patient may still
be in a relapsing period and an active scan would be consistent with the true status

of the patient. The modeling will incorporate the baseline covariates listed above.

3.3.1 Type I Counter Analysis

Of the 50 patients, 38 had complete data for all 17 MRI scans. This reduced data
set is referred to as the complete data set. The activity of an MRI scan is considered
to be the observed state which is possibly misclassified and the occurrence or not
of an exacerbation between scans is the misclassification predictor. For subject ¢
define

1 if scan j is active

O;; = . . :

0 if scan j is not active
0 if an exacerbation has not occurred between scans j — 1 and j

1 if the subject is in a relapsing period at scan j
0 if the subject is not in a relapsing period at scan j

C.. = { 1 if an exacerbation has occurred between scans j — 1 and j
ij
&i = {
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fori=1,...,38, 7 =1,...,17, and scan 0 refers to the baseline scan.

For these patients, the first scan is active for 7 individuals while it is inactive
for 31. The four possible transitions, 0-0, 0-1, 1-0 and 1-1, have counts 400, 78, 75
and 55, respectively. The continuous covariates, age, duration and initial burden
(burden of disease at the baseline scan) for the complete data set are standardized
to facilitate numerical stability. The means and standard deviations for these co-
variates appear in Table 3.1. The inter-scan times ranged from 20 days to 70 days

with 50% of the times falling between 42 and 44 days.

Table 3.1: Means and standard deviations for continuous covariates in the complete
case MS data set.

Covariate Mean  Std.Deviation
Age 36.079 7.205
Duration 9.158 6.223
Initial Burden 2124.789 2344.583

All computations are provided by the author’s C program which incorporates
the linear algebra package developed by Stuber (1996). A direction set (Powell’s)
method provided in Press et al. (1992) is used to maximize the log-likelihood for
the models considered in the following sections. This method is preferred when
derivatives are not easily calculated and is fairly simple to implement. Given the
recursive nature of the observed state dependence on all previous states through
%ij, finding the derivatives would involve complicated expressions. The algorithm
is started at several different starting conditions and is stopped when the log-
likelihood function fails to increase by more than 10~ on one iteration.

The models considered in the next few sections generally take far less than
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1000 function evaluations for each starting point when at most one covariate is
included. Of course, the computational burden increases with more covariates.
The lack of derivative calculations prevents evaluation of standard errors by use of
an information matrix.

Models which do not depend on the covariates or exacerbation status are the
simplest cases to consider first. Estimating both misclassification probabilities and
both transition rates is problematic in such cases. More than one set of parameter
values can give the same probabilities for possible data sets. This situation is
referred to as an identifiability problem and issues of identifiability are deferred
to Chapter 4. For now, consider models which have either known values for each

misclassification probability or only one type of misclassification possible.

Assumed Misclassification Probabilities

Consider three classes of models where the misclassification probabilities are known,
small values. Misclassification is assumed to be independent of the exacerbation
data. Misclassification probabilities, input rate and blocked period rate are assumed
to be the same for all subjects across all scan times. No covariate data are included
at this time. The three classes of models are referred to as perfect sensitivity,
perfect specificity, and imperfect sensitivity and specificity.

In the perfect sensitivity model, if the true relapsing-remitting status is relaps-
ing, the observed state will be active. The misclassification probabilities are

e

1+ e
v110(Ci5) =Pr(0;; = 0|&;; =1) =0

=v%n

vo1(Ci;) =Pr(0; =1[§&; =0) =
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fort=1,...,38,5=1,...,17.
If the true relapsing-remitting status is remitting, the observed state will not

be active in the perfect specificity model. For this case, the misclassification prob-

abilities are
e%a
‘Um(ng) =0 and vm(C,-,-) = m.—;- = %10
fori=1,...,38,7 =1,...,17. This model corresponds with the situation assumed

by Nagelkerke, Chunge and Kinoti (1990).
The imperfect sensitivity and specificity model allows both misclassification

probabilities to be nonzero. Hence,
a0 e%o

vou(Cig) = T =vaand  uy(Cy) =

fore=1,...,38,j=1,...,17.
Since an underlying counter model for the MS data is assumed, in all three cases

with a 28-day time scale, the probability transitions are equal to

. = P (1 _ ~Fotn) :
Py (At;;/28) = e (1 e~ ) J#1

.. " _(_ -ﬁ(ﬁn) ;
Puo(Ati/28) = - +,7(1 T j£1

where p = exp(Bn), 7 = exp(fno), and m; = p/(p + 7), for i = 1,...,38 and
j=1,...,1%.

The parameter estimates, rates and estimated mean times for the three types
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of models with assumed misclassification probabilities appear in Table 3.2. Esti-
mated mean times are calculated as the reciprocal of the state transition rates.
For the perfect sensitivity and specificity models, as the respective misclassification
probability increases, the parameter estimates and rates become smaller and the
estimated mean times increase (Satten and Longini (1996)). The estimated mean
times are smallest when vg; = v10 = 0.01 and largest when vg; = vy0 = 0.05 in the
imperfect sensitivity and specificity model. For a specific value of vo;, the estimated
mean times increase as vyg increases. Similarly, the estimated mean times increase
as v, increases, for a specific value of vyp. Symmetry in the misclassification is not
apparent since the estimated mean times are larger when vg; = 0.05 and vy = 0.01
than when vo; = 0.01 and vy = 0.05. In all cases, the estimated mean time in the
remitting state is at least three times larger than the estimated mean time in the
relapsing state.

The log-likelihood function is plotted for some specified values of the misclassi-
fication probabilities in Figure 3.2. As the misclassification probabilities increases,
the log-likelihood function becomes flatter and is stretched less in the B0 — B0 (or
n/p) direction than in the B0 + Bso (or pn) direction. This feature indicates that it
may be hard to estimate both p and n well individually whereas n/p may be more

easily estimated.

Unknown Misclassification Probabilities

The misclassification probability is quite large in the perfect specificity model when
vy0 is not assumed known. Both state occupancy times are about the same as the

total time on study. Clearly, these results indicate that subjects are not making any
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Table 3.2: MS estimates under assumed misclassification probabilities for the per-
fect sensitivity, perfect specificity, and imperfect sensitivity and specificity models.
State 0 is remitting, state 1 is relapsing, and EMT is the estimated mean time in
days. Jackknife standard errors are given in parentheses.

Perfect Sensitivity
Assumed Misclassification Probabilities
Quantity '001=0.01 ‘001=0.05 '001=0.10 1)01=0.15
Boo -1.704(0.249) | -2.111(0.337) | -2.718(0.448) | -3.296(0.529)
p 0.182 0.121 0.066 0.037
State 0 EMT 154 231 424 756
Bro -0.383(0.244) | -0.562(0.277) | -0.832(0.310) | -1.045(0.339)
n 0.682 0.570 0.435 0.352
State 1 EMT 41 49 64 80
log-likelihood -321.064 -319.809 -318.950 -320.849
Perfect Spectficity
Assumed Misclassification Probabilities
Quantity ‘010=0.01 ‘U10=0.05 '010=0.10 ‘Um=0.15
Boo -1.626(0.237) | -1.659(0.255) | -1.718(0.287) | -1.803(0.330)
p 0.197 0.190 0.179 0.165
State 0 EMT 142 147 156 170
Bro -0.368(0.244) | -0.460(0.274) | -0.600(0.325) | -0.774(0.390)
n 0.692 0.631 0.549 0.461
State 1 EMT 40 44 51 61
log-likelihood -321.222 -320.609 -319.658 -318.437
Imperfect Sensitinty and Specificity
Assumed Misclassification Probabilities
‘001=0.01 ‘Um=0.01 ‘Uol=0.05 1701:0.05
Quantity '010=0.01 ‘010=0.05 '010=0.01 1110:0.05
B -1.712(0.253) | -1.754(0.277) | -2.132(0.349) | -2.250(0.437)
p 0.181 0.173 0.119 0.105
State 0 EMT 155 162 236 266
Bro -0.405(0.251) | -0.506(0.288) | -0.597(0.293) | -0.773(0.392)
n 0.667 0.603 0.550 0.462
State 1 EMT 42 46 51 61
log-likelihood -230.912 -320.226 -319.562 -318.377
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Figure 3.2: Plots of the MS log-likelihood function for specified values of the mis-
classification probabilities. Each contour after the first represents a drop of 2 in
the log-likelihood function. In parentheses, 8,0 and (3,9 are given along with the

maximum value of the log-likelihood function. (8, =In p, B = Inn)

Vo1 = 0.05 Vio = 0.00
(-2.111,-0.562,-319.809)

Vo1 = 0.05 Vig = 0.05
(-2.250,-0.773,-318.377)

Bro -]

Vo1 = 0.05 Vio = 0.10
(-2.524,-1.124,-316.202)

Vo1 = 0.05 Vo = 0.15
(-2.867,-1.547,-313.164)

Vo1 = 0.10 Vg = 0.10
(-3.519,-1.795,-312.332)

/7‘ g
78
- 3

Vo1 = 0.15 Vio = 0.15
(-4.298,-2.378,-311.437)

T
-2




CHAPTER 3. DATA DESCRIPTION AND PRELIMINARY ANALYSES

state transitions during the study time and suggest that there is a problem with
the model. The perfect sensitivity model gives more reasonable estimates, perhaps

because the model is close to identifiable. The results for these two models appear

in Table 3.3.

Table 3.3: MS estimates under perfect sensitivity and perfect specificity with con-
stant input and blocked rates (p and ). Misclassification probabilities are esti-
mated. State 0 is the remitting and state 1 is relapsing. Jackknife standard errors

are given in parentheses.

Perfect Sensitivity
Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time
Bro -2.667 (0.557) p 0.070 | State 0 400 days
Bro -0.810 (0.342) n 0.445 | State 1 63 days
Qo -2.245 (0410) Vo1 0.096
log-likelihood: -318.940
Perfect Spectficity
Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time
Bpo -3.086 (0.437) P 0.046 | State 0 609 days
Bro -3.233 (0.656) n 0.039 | Statel 718 days
ag 0.382 (0.316) V10 0.594
log-likelihood: -303.959

Misclassification with a Single Covariate

Now consider the full misclassification model which is dependent on the exacer-

bation status and for which the transition rates depend on one covariate, z. The
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model with covariates becomes

edo+aiCij

1)01(0,':') = Pl‘(Oij = llfij = 0) = 1+ e@o+a1Cij

e®o+aiCij
no(Cj) = Pr(03 = 01&; = 1) = 1 amvare;
plar) = Frtas g(a) = Setban @)=~ )
Poy(At;/28,z;) = ;F’)’(z_‘%m (1 _ e-%‘—.‘i(p(z;)+n(z,.))) i1
Pro(At;;/28,z;) = ;(% (1- e g1

fori=1,...,38and j =1,...,17. The input and blocked rates will be different for
different subjects based on individual subject covariates. Only one covariate is con-
sidered at a time and the resulting estimates appear in Table 3.4. The continuous
covariates are standardized for better numerical stability. The EDSS is an ordinal
scale and is not addressed at this time. The estimated mean times are calculated
for continuous covariates at median values -0.080, -0.033, and -0.217 for age, initial
burden, and duration, respectively.

Several features can be seen in the table. Many of the effect sizes are much
more extreme than expected. In proportional hazards regression, effect sizes are
rarely beyond -3 or +3. In the model discussed here, the relationship between the
covariates and the input process and blocked times has a similar form as in propor-
tional hazards regression. Particularly for the standardized continuous variables,
the coefficient values seem too extreme. For example, the estimate of 8, in the
age model is -6.227. This value implies that a one standardized unit increase in age

results in 0.2% of the trigger rate, an increase in the estimated mean time remitting
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Table 3.4: MS single covariate model estimates under imperfect sensitivity and
specificity. Age, initial burden (IB), and duration are standardized. Estimated
mean state occupancy times (EMTs) are given in days for the median values of the
continuous covariates and at each level of the categorical covariates. (L=low dose,

H=high dose, F=female, B=BC resident)

—m,

Parameters Age IB Duration Sex Treatment | Origin
p(z) By | -10.056 -4.800 -6.212 | -39.231 -4.228 -0.482
B -6.227 0.277 -2.794 35.054F 0.285L -3.6258
-0.973n
State 0 EMT | 395,484 3,434 7,615 >10%" 1,920 45
1,825F 1,444L 1,701
5,081n
n(z) Bgo -9.294 -4.287 -5.802 | -39.040 -4.830 -1.324
B -5.514 | -0.905 -2.385 35.762F 1.814L -3.5228
0.9751
State 1 EMT | 195,469 1,976 5,806 >10%" 3,506 105
T43F 571L 3,5628
1,322u
vo1(Cij) ao -2.485 -2.544 -2.797 -2.491 -2.587 0.218
a -1.092 -1.879 | -78.152 -1.200 -21.774 -0.147
v01(0) 0.077 0.073 0.057 0.076 0.070 0.554
vor(1) 0.027 0.012 | <1071 0.024 <10-10 0.518
v10(Cij) g -0.016 0.096 0.228 -0.110 0.081 2.559
aj 0.151 0.106 0.076 0.228 0.079 20.374
v10(0) 0.496 0.524 0.557 0.473 0.520 0.928
v10(1) 0.534 0.550 0.575 0.529 0.540 1.000
log-likelihood | -288.220 | -290.782 | -291.302 | -292.823 | -291.125 -290.318
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of more than a factor of 500. The situation is more dramatic when sex is considered
as the only covariate. The rates for males are essentially zero.

Most of the estimated mean times are very large, suggesting that the estimated
process is not transitioning. The misclassification probabilities are mostly small
for vg;(+) and large for vio(-). Several causes may be contributing to such extreme
results. The type of counter model may be incorrect as well as the exponential
assumption. The single covariate models may not provide enough information on
the process. The link between the covariates and rates may be inappropriate. Issues
of model specification are further discussed in Chapter 6.

The misclassification probabilities appear to be different for different values of
the exacerbation status in some of the models. In general, if the observed activity
status agrees with the exacerbation status then the misclassification probabilities
are lower than when these two indicators disagree. The estimates for v1o(C;;) are
very similar for both values of the exacerbation indicator as well as quite large for
all of the models fit. These estimates are fairly consistent with the results from
the perfect specificity model in Table 3.3. The estimates of v, (C;;) are smaller for

most of the models than the perfect sensitivity model previously fit.

Sensitivity Analysis in Age Model

The results in the previous sections seem to give unreasonable estimates for the
mean time spent in a state. An examination of the behaviour of regression param-
eter estimates for different misclassification probabilities is conducted next. This
comparison is carried out with the standardized covariate age model.

Consider the model given in (3.1) depending on the standardized covariate age
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along with a simplification. Specified misclassification probabilities which are in-
dependent of the misclassification predictor are investigated. The model is fit with
different assumed values of vg; and vy0. The misclassification probabilities are al-
lowed to take on values in 0.05 increments ranging from 0 to 0.95. In total, 390 com-
binations of v, and vyg are specified and the regression parameters are estimated.
However, not all combinations produce unique estimates. The closer vg; + vy is to
1, the less information there is about the other parameters. The likelihood function
becomes fairly flat when vq; +v,0 is close to 1 and the maximization algorithm may
find more than one maximum. Recall that the maximization algorithm is started at
several different starting conditions and is stopped when the log-likelihood function
fails to increase by more than 10~ on one iteration.

Plots of regression parameter estimates for varying degrees of misclassification
can be examined. The effect of different misclassification probabilities on Bm for age
is displayed in Figure 3.3 as an example. It is clear that for larger values of vg; and
v30 the estimates seem more extreme. For values of v, less than 0.2, the estimates
appear to be generally smaller in magnitude for lower values of vyo. For larger
values, the estimates may be large negative numbers. The value of the estimate is
clearly highly dependent on the degree of misclassification present. The intercept
estimates, B,,o and ﬁno, also depend closely on the misclassification probabilities.
These estimates become more extreme as vo; + v39 approaches 1. For values of vg;
less than 0.2, B,,l seems to decrease for small values of vyg. Clearly, these estimates
depend on small misclassification probabilities in a more controlled manner than

for larger misclassification probabilities. The dependence on small misclassification
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Figure 3.3: MS age model estimates of Bnl for age under different specified misclas-
sification probabilities, vg; and v,9. Only unique estimates are plotted.
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probabilities will be further examined in Chapter 5.

3.4 Parasitic Infection Longitudinal Data

A study with young children was conducted in the mid-1980’s to examine the in-
cidence and prevalence of a flagellated protozoal parasite which lives in the small
intestine. The parasite, called Giardia lamblia, is well known to be difficult to de-
tect. Parasitic infection of this type may cause health problems such as diarrhoea
and loss of appetite. The parasite is transmitted between subjects when infected
individuals excrete viable cysts in feces which are subsequently swallowed by unin-
fected individuals. The prevalence is relatively high among children. In a village
near Nairobi, Kenya, eighty-four children between the ages of 11 and 18 months
were studied for 44 consecutive weeks.

Each week, the stools of the children were examined for the presence of the
parasite. The data is not complete since not all children were examined each week
for various reasons. Nagelkerke, Chunge and Kinoti (1990) selected the longest run
of at least 10 uninterrupted weekly examinations for each child in their analysis.
This selection resulted in 58 children who have between 10 and 44 observations.
The four possible transitions, 0-0, 0-1, 1-0 and 1-1, have counts 378, 119, 112 and
321, respectively. Covariate information and misclassification predictors are not
available for this study. Chunge (1989) gives the full details of the study and
Appendix A.2 lists the parasitic infection (PI) data for the 58 children.
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3.4.1 Assumed Misclassification Probabilities

The same misclassification probability models considered for the MS data are also
examined here for the PI data. Since examinations are made weekly, the inter-
observation times At;; are all equal to 7 days, j = 2,... ,n; i = 1,...,58. For

subject ¢,

0 { 1 if a parasite is detected at observation j
1Y)

0 if a parasite is not detected at observation j

€ = 1 if infected at observation j
¥ 7 ) 0 if uninfected at observation j

defined the observed and true states.

The parameter estimates, rates, and estimated mean times for the perfect sen-
sitivity, perfect specificity, and imperfect sensitivity and specificity models with
assumed misclassification probabilities appear in Table 3.5. Again, as the misclas-
sification probability increases, the parameter estimates and rates become smaller
and the estimated mean times increase. Comparing with the MS results, the size
of the misclassification probability does not seem to have as strong an effect on the
parameter estimates.

Plots of the log-likelihood function are given in Figure 3.4 for several specified
values of the misclassification probabilities. These plots also show the likelihood is
stretched more in the B0+ B0 direction than in the 8,0 — 8,0 direction as was seen
in Figure 3.2 for the MS data set. For the PI data set, the log-likelihood function

appears to be less flat than in the MS data set.
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Table 3.5: PI estimates under assumed misclassification probabilities for the per-

fect sensitivity, perfect specificity, and imperfect sensitivity and specificity models.
State 0 is uninfected, state 1 is infected, and EMT is the estimated mean time in
days. Jackknife standard errors are given in parentheses.

Perfect Sensitivity
Assumed Misclassification Probabilities
Quantlty ‘Um=0.01 1)01=0.05 '001=0.10 ’001=0.15
B0 -3.128(0.126) | -3.382(0.160) | -3.660(0.187) | -3.901(0.207)
p 0.044 0.034 0.026 0.020
State 0 EMT 23 29 39 49
Bro -2.994(0.142) | -3.115(0.150) | -3.301(0.150) | -3.425(0.148)
n 0.050 0.044 0.037 0.033
State 1 EMT 20 23 27 31
log-likelihood -559.847 -555.727 -552.851 -553.043
Perfect Specificity
Assumed Misclassification Probabilities
Quantity 'vm=0.01 ‘vm=0.05 1110=0.10 ’vm=0.15
Boo -3.093(0.120) | -3.196(0.134) | -3.295(0.143) | -3.371(0.145)
p 0.045 0.041 0.037 0.034
State 0 EMT 22 24 27 29
Bno -3.006(0.148) | -3.197(0.179) | -3.401(0.198) | -3.578(0.206)
n 0.049 0.041 0.033 0.028
State 1 EMT 20 24 30 36
log-likelihood -560.281 -558.082 -557.293 -558.762
Imperfect Sensitivity and Specificity
Assumed Misclassification Probabilities
'Uol=0.01 1701=0.01 1701=0.05 'Uo1=0.05
Quantity ‘010=0.01 U1o=0.05 1)1():0.01 1)10=0.05
Boo -3.159(0.130) | -3.274(0.148) | -3.429(0.166) | -3.612(0.206)
p 0.042 0.038 0.032 0.027
State 0 EMT 24 26 31 37
Bno -3.047(0.150) | -3.246(0.183) | -3.215(0.161) | -3.488(0.219)
n 0.048 0.039 0.040 0.031
State 1 EMT 21 26 25 33
log-likelihood -559.074 -556.586 -554.642 -551.016
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Figure 3.4: Plots of the PI log-likelihood function for specified values of the mis-
classification probabilities. Each contour after the first represents a drop of 2 in
the log-likelihood function. In parentheses, 8,0 and B, are given along with the
maximum value of the log-likelihood function. (8, = Inp, By =In7n)
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3.4.2 Estimated Misclassification Probabilities

When the nonzero misclassification probability is estimated, the results for the
perfect sensitivity and perfect specificity models appear in Table 3.6. The perfect
specificity model was considered in Nagelkerke, Chunge and Kinoti (1990) and the
estimates are similar. The jackknife standard error estimates are larger than the
information based standard errors given in Nagelkerke, Chunge and Kinoti (1990).
In the context of the study, a parasite could not be detected in the sample if the
Table 3.6: PI estimates under perfect sensitivity and perfect specificity with con-
stant input and blocked rates. Misclassification probabilities are estimated. State

0 is the uninfected and state 1 is infected. Jackknife standard errors are given in
parentheses.

Perfect Sensitinty

Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time

Beo -3.766 (0.242) p 0.023 | State 0 43 days
Bro -3.357 (0.155) n 0.035 | Statel 29 days
ag -1.980 (0.267) Vo1 0.121

log-likelihood: -552.570

Perfect Specificity

Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time

B -3.281 (0.157) p 0.038 | State 0 27 days
Bro -3.369 (0.221) n 0.034 | Statel 29 days
ag -2.293 (0.357) V10 0.092

log-likelihood: -557.261

child was uninfected. The perfect sensitivity model is given here for illustration
only. The fact that the infected estimated mean time is the same in either model is
an interesting feature. Attempting to estimate both vg; and v, gives many different

estimates with the same likelihood function value. Such issues are further discussed
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in Chapter 4.



Chapter 4

Parameter Identifiability and

Estimability Issues

4.1 Overview

Parameter identifiability and estimability issues are investigated when the true pro-
cess is modeled as a Type I counter model. Using characteristic functions, exactly
two distinct sets of parameter values for the Type I counter model are shown to
yield the same distribution function for the data when the same covariates and
misclassification predictors are used to explain each state rate and misclassification
probability. Identifiability is shown to be possible in this case if the misclassifica-
tion probabilities can be restricted to be less than 0.5. Estimability of parameters
is discussed when the sampling interval is inadequate or the model is misspeci-
fied. Provided that the sampling interval is appropriate and the model is correctly

specified, all parameters should be estimable.

o4
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4.2 Introduction

Unknown parameters in a model are nonidentifiable if more than one set of param-
eter values gives the same distribution function for the observation. Conversely,
unknown parameters are identifiable if each possible distribution function for the
data corresponds to a unique set of parameter values. Identifiability of model
parameters is an important consideration for valid estimation and inference. Infer-
ences cannot be complete in principle if two or more explanations of the process
are indistinguishable.

Estimability is a concept closely related to identifiability and usually referred
to in the linear hypothesis context. For a particular realization of the data, the
unknown parameters are termed nonestimable if, for the largest likelihood function
values, the likelihood function is flat in some directions of the allowable parameter
space. If the observed data do not provide enough information to distinguish pa-
rameter values under the model, then the likelihood function will be close to flat as
the parameter values vary. Unknown parameters are said to be estimable if in the
region of largest likelihood values, the likelihood function is not flat in any direction
of the allowable parameter values. Identifiability can be considered as a property of
the parameterization while estimability is a property of both the parameterization
and a particular data set. Parameter nonestimability and nonidentifiability share
the same consequences for inferences.

Problems in measurement error and hidden Markov type models include pa-
rameter nonidentifiability. In measurement error regression problems, continuous

explanatory variables are measured with error and categorical explanatory variables
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are misclassified. The models with continuous explanatory variables generally as-
sume that all variables are normally distributed and such an assumption leads to
nonidentifiability of the regression parameters (Reiersol (1950), Bekker (1986)).
When a dichotomous explanatory variable is subject to misclassification, Bekker,
Van Montfort and Mooijaart (1991) show that all parameters are identifiable if a
range restriction is made to the probability that the dichotomous variable is mis-
classified. In practice the problem of nonidentifiability is solved by incorporating
supplementary data such as validation studies as well as adding constraints to the
parameters (see Carroll and Stefanski (1990), for example).

In hidden Markov models, since only a function of the state in a finite state
Markov chain is observed, parameter identifiability is a basic problem. Ito, Amari
and Kobayashi (1992) give an algorithm for determining when two seemingly dif-
ferent hidden Markov processes are equivalent. In practice, states may be labeled
to correspond with increasing parameter estimates in order to ensure parameter
identifiability (see MacDonald and Zucchini (1997), for example). The model pro-
posed by Nagelkerke, Chunge and Kinoti (1990) (a special case of a hidden Markov
model) did not allow both types of misclassification and parameter identifiability
or estimability were not specifically addressed.

Section 4.3 discusses situations which require restrictions for parameter identi-
fiability. Even under such a restriction, the parameters may not all be estimable
when the sampling interval is too long or when the underlying model is misspec-
ified. Section 4.4 addresses these two situations as well as estimability when the

sampling interval is adequate and the model is correctly specified.
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4.3 Restrictions for Parameter Identifiability

Consider first the Type I counter model with both types of misclassification and
exponential sojourn time distributions. When the misclassification probabilities
depend on the same set, possibly empty, of misclassification predictors and the
transition probabilities depend on the same set of covariates, there are exactly two
sets of parameter values which give the same distribution for the observations. Sec-
tion 4.3.1 gives two sets of parameter values which imply the same distribution for
the observed process and Section 4.3.2 proves that these two sets of parameter val-
ues uniquely determine the distribution under the assumption that the transition
probabilities lie in the interval (0,1). The features of Type I counter misclassifica-
tion models which do not require such restrictions for parameter identifiability are

discussed in Section 4.3.3.

4.3.1 Two Sets of Parameter Values Implying the Same
Distribution

Consider the Type I model where both transition rates depend on the same set
of covariates in a log-linear fashion and both misclassification probabilities have a
logistic link to the same set of misclassification predictors. Recall from Section 2.6
that © = (ao1,@10,8,,8,) are regression parameters for vy, (C), v10(C), p(x) and
1(x), respectively. The distribution for the observed data, and hence the likelihood

function, will be the same for two sets of parameter values @, and O, if the two
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parameter vectors are identical, the trivial solution, or if

91 = (am,am,ﬂ,,,ﬂ,,) and 62 = ("a101 —0017ﬁmﬂp)' (41)

The non-trivial solution highlights the symmetry in the model. If the labels for the
states are interchanged, then the transition probabilities are interchanged and the
misclassification probabilities become proper classification probabilities under the
new state labels.

Solution (4.1) can be seen by examining features of the relationships between
the misclassification predictors and the misclassification probabilities as well as
the covariate and transition probability relationships. The logistic link for the

misclassification probabilities has the property that

ec:-';-am 1
(i Ou) = T oo = Ty e — (i@

along with vgo(C;j; 1) = v10(Cij; ©2), where C;; is the vector of misclassification
predictor values for subject 7 collected at observation j,:=1,...,I,j=1,... ,n;
To simplify notation, the dependency on C;; is dropped and relations for the mis-

classification probabilities under the two parameter vectors are

v01(61) =1- ‘Uw(ez) a.nd ‘010(61) =1- 1)01(62). (4.2)

The steady state probability for state 1, 7;, under the two parameter vectors can
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be written as

exTﬂ, exTﬂ.,

exTﬁp + exrﬂn =1- exrpﬂ + e"Tﬂn =

m(61) = 1 —m(6;). (4.3)

Similarly, the transition probabilities under the two sets of parameter values become
P01(t;91) = Pm(t;ez) and Plo(t;el) = Pol(t;ez). (44)

Using (4.2) and (4.4), it is easily seen that Pr(0;; = 1;0,) = Pr(Oy = 1;0;)
fori = 1,...,I. Under the two sets of parameter values, the recursion relations

are related as

7,-(61) =1- ")/_7(92) (45)

This relationship can be proved by induction. First, for n = 1,

1(0y) = (1= 01)v10(01) m(61) + 0, v11(0:) 71(04)
et v00(01) Ta(01) + v10(01) 71(01)  v01(01) ®o(©1) + v11(01) 71(61)
_ (1 = 01) v00(O2) 70(O2) n 0101(02) 70(O2)
v10(02) m1(02) + v00(O2) 70(O2) ~ v11(O2) 71(O2) + v01(O2) 70 (O:)
11— (1 = 01) v10(02)71(07) _ 0, v11(02) 71(03)
v00(02) 10(02) + v10(O2) 11(02)  v01(02) 70(O2) + v11(O2) 71 (O2)
=1- 71(62).

Next, assume that the relationship holds for j = 1,...,n—1 observations. Define
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functions A, and B, such that,

Aas(At;;01) =v45(01)[(1 — 7j-1(01)) Por(At;;01) +7-1(01) Pra(At;; 61)]
Bab(Atj01) =va5(01) [(1 — 7j-1(01)) Poo( Atj; 1) +7j-1(81) Pro(At;; 61))]

for a,b € {0,1}. For j = 1,...,n — 1 under the two sets of parameter values,
Au(At,-;Gl) = Bol(Atj;ez) and Alo(Atj; 62) = Boo(Atj;el) since ’7j(61) =1-

v;(©2). For j = n observations,

7,-(61) — (1 - OJ) Am(Atj;Ol) Oj Au(Atj;Ol)
Boo(At;;01) + A10(Atj;01)  Boi(Atj;01) + Au(At;;01)
_ 1- Oj) Boo(At;; 0,) Oj Bo1(At_,-; 0.)
— A(At;;0,) + Boo(At;;0;) - An(Atj;0:) + Boi(At5;6;)
—1- (1 - OJ) Am(Atj; 62) 0_-,' Au(At,-;Gg)
Boo(Atj; 62) + Am(At,-;Gz) Bm(At,-;Gg) + Au(Atj; 92)
=1-1j(8,)

and the relationship holds for all observations j = 1,...,n. In fact, this equality is
obvious when the interpretation of the two sets of parameter values is considered.
The model under O, is the same as the model under ©; except the state labels
are interchanged. Misclassification probabilities under ©; become classification
probabilities under @, and vice versa. For the true process, {; = 1 under ©, is the
same as §; = 0 under ©,. Hence, v;(0,) = 1 — v;(03) for any j.

As a consequence of (4.2)-(4.5), the conditional probabilities for the observed
process are equal under the two sets of parameter values, Pr(O;ﬂOEj-l),el) =
Pr(0;;|09™,8,) for i = 1,...,I and j = 2,...,n;. These results show that
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the likelihood functions resulting from the two sets of parameter values 6, =

(a011a101ﬂp7ﬂﬂ) and 92 = (—am, —0017ﬂmﬂp) are equal’

I n; .
L(8,) = [ Pr(0a; 6:) [[ Pr(0s107 7", 81)

i=1 j=2

= flpr(o.-l;ez) ﬁPr(o,-,-|o,€f">,e,) = L(©,).
i=1 i=2
In particular, if (@, @0, 3p,ﬁn) are maximum likelihood estimates for the param-
eters, then (—a;o, —EOI,ﬁn,ﬁp) are also maximum likelihood estimates.

One of the two sets of parameter values can be eliminated if a simple restriction
is added to the model. The logistic form for the misclassification probabilities
guarantees that the misclassification probabilities are always between 0 and 1. If
the misclassification probabilities are further restricted to the interval [0,0.5), then
not both of the parameter values ©, and ©; can have misclassification probabilities
within the smaller interval. If 0 < v (0:) < 0.5 and 0 < v10(81) < 0.5, then
0 < 113(02) < 0.5 and 0 < vg(O2) < 0.5. Since v13(02) = 1 — v10(62) and
v00(63) = 1~v01(O3), the ranges of v1,(62) and ve(O2) imply that 0.5 < vg,(02) <
1 and 0.5 < v30(©2) < 1, which are not admissible misclassification probabilities.

This restriction is common in error-in-variables problems where the imperfect
explanatory variable is dichotomous (Bekker, Van Montfort and Mooijaart (1991)).
Requiring the misclassification probabilities to lie within the restricted range is
a reasonable assumption. If the true misclassification probabilities do not, then
either the observed data set is not a good indicator of the true underlying process

and should not be used or the labels for the states should be interchanged. In



CHAPTER 4. PARAMETER IDENTIFIABILITY AND ESTIMABILITY 62

terms of the misclassification predictors and parameters, the range restriction forces
C?am < 0 and C?am <0,forj=1,...,n;

Table 4.1 shows the results when the constraint is applied to the PI and MS
data sets. Both misclassification probabilities are found to be significantly different
than zero for the PI data set. In the case of the MS data set, the estimate for v,

is near 0.5 and the estimated mean times are large.

Table 4.1: Estimates under restricted imperfect sensitivity and specificity model
with constant input and blocked rates for the PI and MS data sets. Jackknife
standard error estimates are given in parentheses.

PI Data Set
Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time
B -4.169(0.306) p 0.015 | State 0 65 days
Bro -4.013(0.300) n 0.018 | State 1 55 days
ao -2.071(0.253) | o 0.112
ag -2.202(0.327) V10 0.100
log-likelihood: -545.547
MS Data Set
Parameter Estimate (se) | Quantity Estimate | Estimated Mean Time
B0 -4.489(0.852) p 0.011 | State 0 2394 days
Bro -3.673(0.881) n 0.025 | State 1 1102 days
ap -2.542(0.322) vo1 0.073
ag -0.155(0.072) V10 0.461

log-likelihood: -296.419
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4.3.2 Exactly Two Distinct Sets of Parameter Values Imply

the Same Distribution

Section 4.3 indicated one way for two distinct sets of parameter values to give rise
to the same likelihood function. This section proves that exactly those two sets of
parameter values produce the same distribution for the data when the transition
probabilities are not equal to 0 or 1 and there are at least three observations.
Characteristic functions form the basis of the proof.

Suppose that more than one set of parameter values gives the same distribution
for the data. Let two distinct sets of parameter values, 8, = (aq, @10,8,,05) and
0, = (ag,ao, Bp,ﬁ,,) generate the same distribution. To avoid the degenerate
case mentioned in Section 2.6, suppose ag; # —ayo and @ # @. Two sets of
parameter values generate the same distribution if their characteristic functions are
the same. Dropping the subscript indexing subject, the characteristic function for

one subject with n observations is given by

n
Pn(s1,. .. 1803 01) = Y et OrtmOstrtunOn pr(0,; @) [ Pr(0;/0V1; 0y)
Kn j=2
where K,, is the set of all possible binary sequences of length n and « = +/—1. For
the equality @n(S1,-.. ,30;01) = pn(s1,... ,3,;03) to hold,

Pr(0; = 01;0,) HPr(Oj = 0;|0U™Y = oli-1). @)

i=2

= Pr(0, = 0,;0,) HPI(O,- = Ojlo(j_l) = o(j-l);ez)

i=1
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for each possible observed sequence o™ = (oy,... ,0,).

Consider the simple case when only the first two observations are examined and
the misclassification probabilities only depend on intercept parameters, vo1(Cij) =
€ /(1 + e*) and v,0(C;;) = €% /(1 + €%). Define terms hoj, hyj, po(t:1) and py(t)
such that hg; = (1 —0;)veo+0;vo1 and hyj; = (1—0j) v10+Oj vy, for j = 1,2, and

1-0 0 " .
po(t1) = Uo(o m(;))i:‘l:;%’?x) and pi(t)) = m‘(:;f*_:tf’?l - The characteristic function

for two observations is

p2(31,82;01) = Z g1 01+u202 (hm wo(X) + h1y Wl(x))
K,

X { [(Po(tl) +pi(t1)) (1 ~ Puu(Atz) — Pry(Ats)) + POI(Atz)]

X (202 ad 1) (1 — Vo1 —7-’10) + h02}

where

_px) ~t(p(x)+n(x))

Pt) = i) )
o M%) g —tex)nix)
Pult) = Sy e ¢ )

with rates p(x) = exp(xT8,) and 5(x) = exp(x¥B,) and steady state probability
m(x) = p(x)/(p(x) + n(x)). Under parameter values ©,, the relevant quantities
are denoted by p(x), 7(x), Vo, and vye.

The conditions under which 3(s;,82;0;) = a(31,32;0;) can be found by
solving for p(x) and 7(x) in terms of the unknowns p(x), 7(x), vo1, Vo1, v10 and yo.

The resulting expressions from Maple (Waterloo Maple Inc. (1996)) for p(x) and
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1(x) are,

p(x) ={ (vor = Tor) 7(X) + (B0 + vor — 1) 5()}
x { ~if(x) - 2o + 10 — 1) — I () + (t2 — ta) (Flx) +7(x))
+In [(vor = Bor) 71(xX) + (Fr0 + vor — 1) A(x)] (4.6)
+In [(v10 — Ba0) Ax) + (Box + w10 — 1) 7(x)] }

X {(tz - tl) (p(x) + (x)) (vio + vor — 1)}

and
(Por + v10 — 1) 7(x) + (v10 — V10) p(x)
x)= — — — X p(x). 4.7
1) = (s = 500) 700) + (B0 + 901 = D) < P 47)
Any solutions of @n(s1,...,90;01) = @n(s1,...,5n;62) are also solutions of

@i(s1,-..,85;01) = pj(s1,...,85;0,) forall j € {1,2,3,... ,n—1}. In particular,
the solutions to (3(sy, 52, 33; 1) = @3(31, 82, 83; ©2) must also solve p2(s1,52;0,) =
©a(81, 82;02). The solution for the 3 observation case can be found by substituting
(4.6) and (4.7) into 3(sy, 32, 83;01) = @a(s1, 92, $3; ) and using Maple to solve
for voy and vyg in terms of p(x), 77(x), Do1 and ¥1o. The only distinct misclassification

probability parameter sets satisfying o3(s1, 82, 83; 01) = wa(s1, 82, 53; 03) are

Vo1 = 1- ?)'10 and Vg = 1- 1701. (48)

Substituting (4.8) into (4.6) and (4.7) results in p(x) = 7(x) and n(x) = p(x).

Therefore, the only distinct parameter sets with the same characteristic function



CHAPTER 4. PARAMETER IDENTIFIABILITY AND ESTIMABILITY 66

for three observations are

vor = 1 =710 p(x) = 7(x)
(4.9)
vie=1-"7g n(x) = p(x).

Since (4.9) must be true for a subject with any value of the covariate vector x, the

solution is equivalent to

ag = —@o B, = ~r] (4.10)

Il
!

a0 = Qo Bn P

implying that @2 = (—ajo, —ao1,8y,8,) is the only distinct solution as given
in (4.1).

Now consider the case where both misclassification probabilities are not con-
stants and depend on misclassification predictors. For notational simplicity, assume
that only one misclassification predictor is available, and has value C; at observa-
tion time t;, j = 1,...,n. The characteristic function for the first observation

is

©1(51;01) =(1 ~ vo1(C1)) mo(x) + v10(C1) m1(x)

+e* [vo(Cr) mo(x) + (1 — v1o(Cr)) m(x)].

The characteristic functions under the two sets of parameter values agree for the
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first observation if and only if

(1 — v01(C1)) ma(x) + v10(C1) m1(x) = (1 = V61(C1)) To(x) + D10(C1) 1 (x)

This equation can be rewritten to solve for m,(x),

(1 = v01(C1) — 010(C1)) Tr(x) + (T01(C1) — v01(C1)) To(x)
(910(C1) — v10(C1)) Fa(x) + (1 —v10(Cy) - 701(C1)) Wo(x)

m(x) = mo(x) (4.11)

Since the left-hand side of (4.11) does not depend on C), the right-hand side

must also be independent of C,. In particular, it must be the case that

(1 = v01(C1) = 310(C1)) T1(x) + (V01 (C1) — vo1(C1)) To(x)
(1710(01) - ‘Um(Cl)) %1(X) + (1 - ‘010(01) - 1701(01)) ;Q(X)

= w(x) (4.12)
where w(x) does not depend on C;. This relationship can be further simplified by
rewriting o(x) in terms of 7 (x)

(1 = 1(C1) — 10(C1)) T1(X) + o1 (C1) — v01(Ch)
~(1 = %1(C1) — B10(C1)) T1(%) + 1 — v10(C1) — Vo1 (C1)

= w(x). (4.13)

Suppose that the misclassification predictor has at least two levels, where ¢ and d are
two of these levels. Since (4.13) is independent of the value of the misclassification

predictor

(1 = Foa(e) — Tro(€)) Fa(X) + Tou(e) — vo()
—~(1 = To1(c) = 10(c)) T1(x) + 1 — v1o(c) — Toa(c)
_ (1 = Tou(d) — Tro(d)) Fr(x) + Toa(d) — vou(d)
—(1 = Fo1(d) — 10(d)) F1(x) + 1 — v10(d) — Taa(d)’

(4.14)
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Provided that x is not a constant, the terms involving the powers of 71(x) can be

equated to give equalities

(1 = TFou(e) = Bro(e)) (1 ~ vor(d) — v10(d))

= (1 = Tu(d) - Tro(d)) (1 - var(c) = vio(c))  (4.15)
(1 — v10(d) = Tor(d)) (Tor(c) — var(c))

= (1 = w10(c) = Fou(e)) (Fon(d) — vou(d))- (4.16)

Certainly, these equations are satisfied with the trivial solution and the distinct
solution given in (4.1). Of interest are any other values of the parameters which
yield equality. Solving (4.16) for vg;(c) gives

(1 - ‘1701(6) - 'Um(C)) 'Um(d) + (1 - ’Um(d)) iol(c) - (1 - ‘Um(C)) 1701(d)
1- Ulo(d) o 1701(d)

vm(c) =

(4.17)

in terms of the other unknowns. Substituting (4.17) for vg;(c) in (4.15) and solving

for vg;(d) gives

‘Um(d) =1- 'vm(d)

using Maple. This solution implies v (C1) + v10(C1) = 1, which is the non-
admissible degenerate case. Thus, the only distinct parameter sets are given in (4.1).
Generally speaking, if each misclassification probability depends on a larger set

of misclassification predictors, the same methods can be used. The cases under
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consideration have either constant misclassification probabilities or the misclassi-
fication probabilities depending on the same misclassification predictors and the
transition rates depending on the same covariates. These cases have shown that
the characteristic functions for three or even fewer observations were identical only
for the solution (4.1). Thus, the only distinct parameter set which generates the

same distribution for the data is given in (4.1).

4.3.3 Situations where Parameter Restrictions are Unnec-
essary

The results of Section 4.3.2 apply to a specific model where the underlying true pro-
cess is assumed to follow a Type I counter model, with exponential sojourn times
based on the same covariates and misclassification probabilities which have a lo-
gistic link to the same misclassification predictors. These specifications resulted in
parameter nonidentifiability unless parameter constraints are incorporated. How-
ever, parameters are identifiable in some special cases of the aforementioned model,
and in other situations for which the relationships identified in (4.2) and (4.4) do
not hold.

First consider the Type I counter model with exponential sojourn times depend-
ing on the same covariates and constant misclassification probabilities. Suppose
that one of the misclassification probabilities is 0, say vo; = 0. Substituting vo; = 0
into (4.6) and (4.7), the values p(x)|u,=0 and 7(x)|u,=0 are obtained. A calcula-
tion, similar to that which produced (4.9), shows that characteristic functions for 3

observations agree only when the two sets of parameter values are equal. Hence, in
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the model with covariates and no misclassification predictors, the model parameters
are identifiable when one of the misclassification probabilities is identically zero.

Similarly, when one misclassification probability is zero and the other depends
on misclassification predictors, the characteristic functions agree only when the two
sets of parameter values are the same. Changing one misclassification probability to
zero in (4.12) reveals that only the trivial solution generates the same distribution.
All model parameters are identifiable in this case as well.

In the Type I counter model with exponential sojourn times where the same
misclassification predictors do not appear in both vg, and v,q or the transition rates
depend on different covariate sets or both, only the trivial solution exists. Let the
transition rates depend on two different covariate sets x, and x,, say. Equation
(4.9) implies that x7 8, = xﬂﬁn and xJ 8, = fﬁp resulting in xT B, —Bn) =
x;f B, - E ,). Since this equality must be true for a subject with any values of the
distinct covariate vectors x, and x,, the only solution is 8, = ﬁp and B, = E,,.
As a result of this conclusion, no other set of parameter values gives the same
characteristic function and the model parameters are identifiable. An analogous
deduction can be made by considering the misclassification probabilities modeled
on two different sets of the misclassification predictors. These statements also apply
to the Type II counter model.

If one of the sojourn times for the Type I counter is not exponential, then the
transition probabilities will not have the relationship given in (4.4). The relation-
ship shown in (4.4) will not be true if the link between the misclassification prob-

abilities and the misclassification predictors is not logistic. These two features are
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necessary and sufficient conditions for the parameters to be nonidentifiable. There-
fore, in situations where the underlying process follows a Type I counter model with
a non-exponential sojourn time, or a non-symmetric link is used for the misclassi-
fication probabilities, the parameters are identifiable and no parameter restrictions

are necessary.

4.4 Data Considerations for Parameter Estima-
bility

Providing estimates of parameters which explain phenomena is a goal of any model.
Now that parameter identifiability is established, possibly under misclassification
probability range restrictions, parameter estimability issues are the focus of atten-
tion. Sections 4.4.1 and 4.4.2 describe two specific situations where estimability is

a problem and Section 4.4.3 discusses estimability in the absence of such situations.

4.4.1 Sampling Interval Considerations

The relationship between the true state sojourn times and the observation times
of the possibly misclassified process is an important consideration in parameter
estimability. If the sampling interval is too long relative to the sojourn times of the
true states, even if the misclassification probabilities are constrained for parameter
identifiability, not all transition rate regression parameters and misclassification
predictor parameters are estimable.

If the sampling times are far apart with respect to the state transition rates,
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observations 2,3,... ,n are like observations from Bernoulli trials when stationar-
ity is assumed. Consider the case when covariate and misclassification predictor
variables are not available to supplement the data. The probability of observing
state 1 is the probability the true state was 1 and was correctly classified or the
true state was 0 and was misclassified, 7,vy; + movg;. Since the number of subjects
and observations are fixed, only one degree of freedom is available. Hence, the new
parameter, m = mvy; + WoVo is estimable but individually 7y, ve; and v, are not.
In the perfect specificity or perfect sensitivity models, only mvy; or mouge can be
estimated, respectively.

With covariates and misclassification predictors available, the situation is sim-
ilar. Only the complete expression m1(xjv11(c) + mo(x)voi(c) for each observed
combination of x and c in the data is estimable. Individual regression param-
eters involved in the transition rates and misclassification probabilities are not
estimable. Constraining the range of the misclassification probabilities does not
permit estimation of the regression and misclassification parameters. An esti-
mate of my(x)vy1(c) + 7o(X)voi(c) for a particular combination of x and ¢ can
give several admissible values for m;(x), voi(c) and vio(c). For example, suppose
71(0) v11(0) + mo(0) v (0) = 0.4. If m; = 0.25, v1,(0) = 0.85 and vy (0) = 0.25,
then these terms combine to give 0.4. The values 7; = 0.6, v1;(0) = 0.65 and
vo1(0) = 0.025 also give the same result. In both cases, the misclassification prob-
abilities are less than 0.5.

A small simulation study was conducted to investigate the behaviour of esti-

mates with different state sojourn times. Data sets were generated to have the
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same numbers of subjects and visits as the MS data set. As well, the observation
times for the simulated data were taken to be the same as the MS data set. The
state sojourn times were generated from exponential distributions with means of
28, 120 or 250 days and misclassification probabilities were set as either 0.02 or
0.10. These sojourn times correspond to about 0.67, 3 and 6 times the length of
the scheduled 42 days between visits for the MS patients. Covariates and misclas-
sification predictors were not incorporated in the simulations.

The data were simulated in two separate parts. First, exponential sojourn times
were generated according to the settings listed above to construct subject histories
and the observation times were used to convert these histories to the true states.
For each subject at each observation time, a uniform random number uj; between 0
and 1 was generated to determine if the true state was misclassified, : = 1,...,38,
j =1,...,17. An observation which was a 0 became misclassified as a 1 if u}; < vox
and an observation that was a 1 became misclassified as a 0 if u; < vio.

Selected results for specific combinations of vg; and v,g are shown in Table 4.2.
These results give the average maximum likelihood estimates for 10 simulated data
sets per simulation setting combination. Note that since both misclassification
probabilities are nonzero, the constraint described previously in Section 4.3.1 is
used here. In parentheses, the standard errors are also given.

The results when one of the sojourn times has a mean of 28 days show how
poorly the mean times and misclassification probabilities can be estimated when
the sampling interval is la.rgef than the mean of the state sojourn time. These

cases show how variable the estimate can be from simulated data set to simulated
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Table 4.2: Average estimated mean times (EMTs) and misclassification probability estimates for simulations
of size 10 generated with specified mean times (MTs) and misclassification probabilities. Standard errors for
the average are in parentheses and the most common inter-observation time is 42 days.

CHAPTER 4. PARAMETER IDENTIFIABILITY AND ESTIMABILITY

Settings Estimate (se)
MTO0 MT1 Vo1 Y10 EMT 0 EMT 1 -..5— Q—c
28 28 0.02 002 | 65.642 (25.466) 148.923 (119.022) 0.104 (0.046) 0.071 (0.050)
28 28 0.02 0.10 | 1547.798(1441.212)  241.237 (140.350) 0.147 (0.061) 0.196 (0.059)
28 28 0.10 0.10 | >10° (>10°) >10° (> 10%) 0.208 (0.071) 0.246 (0.064)
28 120 0.02 0.02| 40.535 (7.617) 181.935 (41.688) 0.115(0.051) 0.043 (0.015)
28 120 0.02 0.10| 59.336 (13.486) 462.766 (317.962) 0.240 (0.073) 0.087 (0.029)
28 120 0.10 0.02| 45979 (10.195) 160.107 (53.577) 0.288 (0.066) 0.044 (0.021)
28 250 0.02 0.02| 40477 (5.066) 330.882 (148.766) 0.266 (0.066) 0.020 (0.011)
28 250 0.02 0.10| 44.189 (7.413) 277.586 (77.022) 0.101 (0.056) 0.058 (0.019)
28 250 0.10 0.02| 45.134 (11.949) 1238.716(1018.072) 0.213 (0.072) 0.029 (0.013)
28 250 0.10 0.10 | 31.208 (7.063) 123.031 (37.157) 0.245 (0.081) 0.032 (0.017)
120 28 0.10 0.10 | 302.529 (83.753)  70.405 (11.419) 0.121(0.023) 0.265 (0.070)
120 120 0.02 0.02 | 126.032 (5.263) 121.437 (9.667) 0.013 (0.006) 0.030 (0.013)
120 120 0.02 0.10 | 132.340 (17.507) 119.964 (20.408) 0.033 (0.012) 0.083 (0.019)
120 120 0.10 0.10 | 152.797 (27.119) 138.714 (17.540) 0.091 (0.032) 0.119 (0.021)
120 250 0.02 0.02 | 139.050 (5.634) 212.223 (10.055) 0.011 (0.006) 0.020 (0.006)
120 250 0.02 0.10 | 140.504 (8.644) 184.271 (9.776) 0.037 (0.013) 0.077 (0.008)
120 250 0.10 0.02 | 140.862 (10.536) 212.773 (13.780) 0.070 (0.017) 0.022 (0.007)
120 250 0.10 0.10 | 163.757 (12.757) 262.124 (15.772) 0.091 (0.015) 0.118 (0.006)
250 250 0.02 0.02 | 300.517 (12.354) 207.289 (12.244) 0.020 (0.007) 0.025 (0.008)
250 250 0.02 0.10 | 299.852 (18.701) 225.924 (17.773) 0.026 (0.007) 0.089 (0.010)
250 250 0.10 0.10 | 301.553 (23.523) 210.102 (17.826) 0.092 (0.012) 0.105 (0.015)
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data set. Not surprisingly, some of these simulated data sets required several max-
imization attempts to obtain the maximum likelihood estimates presented here. If
the estimated mean times are not too far off, the estimates for the misclassifica-
tion probabilities can be substantially over-estimated. For simulations when the
mean times are at least 120 days in each state, both state estimated mean times
and the misclassification probabilities are fairly well estimated. Since most of the
inter-observation times are around 42 days, the results suggest that collecting data
a minimum of three times during the occupancy of each state seems to enable esti-
mation of the state rates as well as estimation of small misclassification probabilities
for the simulation settings considered here.

The true state sojourn times are unknown. Investigators plan the sampling pro-
tocol, based on previous studies and experience, attempting to make observations
sufficiently frequent relative to the perceived mean sojourn times. The data may
help determine if the sampling times were not sufficiently frequent. Estimation
which produces transition probabilities very close to the steady state probabilities

may signal that observations were collected too far apart.

4.4.2 Estimability in the Misspecified Model

Estimating parameters can be problematic when the model for the data is incorrect.
Several different parameter sets may generate the same likelihood values. Discussion
focuses on the MS data set which provides an example of this type of parameter
nonestimability.

Recall from Section 3.3.1, that many of the parameter estimates appeared to
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be unreasonable for the MS data, implying that the model was incorrect. The
estimates for the model based on the covariate sex were particularly extreme and
are reproduced in Table 4.3. Table 4.3 also contains estimates for the model subject
to the misclassification probability constraints given in Section 4.3.

When the parameters are constrained, even more extreme estimates for the
rates are seen. The likelihood for this model has fairly flat regions which result
in different claimed maxima for different iterations. Recall from Section 3.3.1 that
the maximization algorithm terminates when the log-likelihood function fails to
increase by more than 10~® on one iteration. The estimates for aj and aj only
differ by the sign, forcing v10(1) = 0.5. This estimate lies on the boundary of ad-
missible values for misclassification probabilities. The constrained misclassification
probability model has nonestimable parameters for this data.

In both models, the male estimates of p(x) and 7(x) are extreme with each
approximately smaller than 10~!7. Such extreme values are effectively zero. Many
values of ﬁpo and ﬁ,,o will also produce rates which are effectively zero. For example,
if in either model, 1 is subtracted from ﬁ,,o, ﬁpl and 1 is added to ﬁ,,o and ﬁ,,l, without
changing the misclassification parameters, the same likelihood value is obtained.
This feature represents an estimability problem when a misspecified model produces
extreme parameter estimates. In the region of maximal likelihood function values,
the likelihood function is constant in some directions of the parameters.

Such nonestimability suggests that the data set is highly unlikely under the
specified model and another model needs to be specified. Model misspecification

is an important concern regardless of its effect on the estimability of parameters.
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Table 4.3: Imperfect sensitivity and specificity model for MS data based on the
covariate sex. Estimated mean state occupancy times (EMTs) are given in days for
males and females (F). In the constrained model, vo; < 0.5 and vy < 0.5.

Unconstrained Model

Transition Misclassification
Parameters Estimates Parameters Estimates
p(z) ﬂpo -39.231 'Uol(C{j) Qo -2.491

Bo 35.054F a -1.200
State 0 EMT >10%7 v01(0) 0.076
1,825F vo1(1) 0.024
n(z) PBro -39.040 | v10(Ci;) g -0.110
Bm 35.762F aj 0.228
State 1 EMT >10"7 v10(0) 0.473
743F ‘010(1) 0.529
log-likelihood:  -292.823

Constrained Model

Transition Misclassification
Parameters Estimates Parameters Estimates
p(z)  PBeo -61.055 | vo1(Cij) ao -2.483

B 56.911r a -1.199

State 0 EMT >10%7 '001(0) 0.077
1,764F ‘001(1) 0.025

n(z) Bro -60.857 | v10(Ci;) g -0.131
Bn1 57.641F ay 0.131

State 1 EMT >10%" v10(0) 0.467
698F v10(1) 0.500

log-likelihood:

-202.886
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Issues in model misspecification are further discussed in Chapter 6.

4.4.3 Parameter Estimability in the Properly Sampled and
Specified Model

The previous two sections considered situations where estimability is a problem and
attention now shifts to situations when estimability is likely. We look for cases where
the transition counts and misclassification predictor pair counts contain sufficient
information to ensure parameter estimability in the two types of counter models.

When the model is not Markov, transition counts are not sufficient statistics. No
data reduction to sufficient statistics seems possible in the two types of misclassifica-
tion counter models. The entire history of observed process values, misclassification
predictors and covariates will classify the subjects into distinct groups. Provided
that these groups number at least one more than the number of parameters, pa-
rameter estimability should not be a problem. A fortiori, if the transition counts
together with the misclassification predictor pair counts and covariates themselves
provide enough information for parameter estimability, then certainly the entire
data set contains enough information to estimate all parameters.

In the absence of misclassification predictors and covariates, transition pair
counts under a stationary assumption are not sufficient for estimability of all pa-
rameters. In a data structure with N transition pairs, it is easily seen that the
expected numbers of transition pairs 0-0, 0-1, 1-0, 1-1 must sum to N, and must
be equal for 0-1 and 1-0. Thus there are 2 independent expected transition counts,

and 4 parameters vg;, vy, p and 7, in the case where the underlying process is
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Markov. Estimation of the parameters must use more than transition pair counts
from the data.

However, covariates and/or misclassification predictors in the model mean that
transition counts can be subdivided in informative ways. First, consider a Type I
counter model with a binary misclassification predictor and for simplicity, one co-
variate. For each covariate value z = z,, the probabilities associated with the pair-
wise observations under a stationarity assumption can be listed as in Table 4.4. Note
that the argument is the covariate and the time interval is suppressed in the tran-
sition probabilities for this section. The relationship mo(z) Poy1(z) = m1(z) Pro(z)
in the Type I counter model is responsible for the equal probabilities seen in the
table. Since the probabilities of the observed process pairs are conditional on the
value of the misclassification predictor pairs, the rows sum to 1.

The number of parameters which need to be estimated in the model can easily
be calculated. Four misclassification parameters are involved: vg;(0), vo1(1), v10(0)
and vo(1). If the covariate z is continuous, 4 parameters specify the intercept and
slope terms in the transition rates p(z) and n(z). If the covariate z is discrete with
[ levels, the transition rates p(z) and n(z) involve 2 x ! parameters.

Consider now only the information contained in the transition counts, misclassi-
fication predictor pair counts and covariates. Let N(zo) denote the total number of
observation pairs with covariate value z = 9. The number of pairs that correspond
to misclassification predictors 0-0, 0-1, 1-0 and 1-1 are labeled Ngo(zo), Noi(Zo),
Nio(zo) and Nyy(zo), respectively. The expected counts for each combination of

misclassification predictor and observation pairs are given in Table 4.5. The num-
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ber of independent expected counts in the table is 7 and the number of (functionally
independent) observed counts will be at least as large if all Noo, Noi, Nio and Ny
are large enough. Two such tables exist when the covariate has 2 levels, with 14
independent expected counts available to estimate 8 parameters. The parameters
should be estimable.

More generally, for a covariate with [ levels, there are 7 x I independent expected
counts to estimate the 4 + 2 x [ parameters. A continuous covariate z would have
potentially a large number of such tables and the number of independent expected
counts likely would be much larger than the number of parameters. In any case, the
information contained in the transition counts with the misclassification predictor
pair counts and covariate should be adequate for estimation.

The same statement should hold when more than one covariate enters the model
or the misclassification predictor has more than two levels or more than one mis-
classification predictor is considered. For example, if the misclassification predictor
has 3 levels, the number of independent expected counts for each covariate level
is 15 and only two more misclassification parameters are required than in the di-
chotomous case.

Parameter estimability is a property of the parameterization and data collected.
If nonestimability of parameters is a problem, several steps can be taken to gain
some insight. Different parameterizations can be considered which may be estimable
for a particular data set. In the Type I counter model with misclassification, for
example, the rate parameterization may be changed to parameters representing the

steady state probability for state 1 and the sum of the original rate parameters,
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Table 4.4: Probabilities associated with binary misclassification predictor (MP) and observed process pairs
under a stationarity assumption for a particular covariate value z = z,.

Observed Process
MP 0-0 0-1 1-0 1-1
0-0 | my3(20) m12(z0) m13(20) m14(Z0)
= vo(0)mo(20) Poo(z0) = vo0(0)v11(0)mo(20) Por(20) | = mi2(20) | = v}1(0)m1(20)Pir(20)
+ v10(0)voo(0)71(z0) Pro(=o) + v10(0)v11(0)71(20) Pr1(20) + v01(0)v11(0)mo(z0) Po1 (z0)
+ vg0(0)v10(0)mo(z0) Por (o) + v00(0)v01(0)7o(20) Poo(2o) + v11(0)vo1 (0) 1 (20) Pio(20)
+ v35(0)m1(20) Pr1(20) + v10(0)v01(0)m1 (20) Pro(Z0) + v31(0)7o(20) Poo(20)
0-1 | 7y Aaov s.SAaoV L nuAacv ana?ov
= vgo(0)voo(1)mo(z0) Poo(z0) = vgo(0)v11(1)70(z0) Po1(zo) = m32(z0) | = v11(0)v11(1)m1(2z0) Pr1(0)
+ v10(0)voo(1)71(z0) Pro(z0) + v10(0)v11(1)71(20) P11 (Z0) + v01(0)v11(1)mo(z0) Po1 (o)
+ v11(0)vo1 (1) 71 (20) Pro(2o0) + v0(0)vo1(1)mo(20) Poo(20) + v11(0)vo1(1)71(20) Pio(z0)
+ v10(0)v10(1)m1(20) P11 (z0) + v10(0)vo1(1)71(20) Pio(=0) + v01(0)vo1(1)mo(20) Poo(2o)
1-0 aa_?cv a.uu?ov :8?& au._?ov
= m31(zo) = v11(0)vgo(1)m1(20) Pro(Zo) = m3(z0) | = m24(z0)
+ v01(0)vge(1)mo(z0) Poo(zo)
+ v11(0)v10(1) ™1 (20) P11(20)
+ ec~AcvﬁnkovﬂcAHcvwc—Aﬁcv
1-1 | 741(z0) Ta2(z0) 743(Z0) 744(Z0)
= v3o(1)mo(Z0) Poo(Zo) = vgo(1)vn1(1)mo(z0) Por(z0) | = maz2(2zo) | = v}, (1)m1(2z0)Pr1(20)
+ v10(1)voo(1) 71 (20) Pro(0) + v10(1)v11(1)7 1 (20) Pr1(20) + v01(1)v11(1)7o(20) Por (z0)
+ voo(1)v10(1)7o(20) Por(z0) + vgo(1)vo1(1)mo(20) Poo(20) + v11(1)vo1(1)m1(z0) Pio(20)
+ vio(1)mi(20) Pr1(2o0) + v10(1)v01(1)m1(20) Pro(2o0) + v, (1)mo(20) Poo(2o0)
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Table 4.5: Expected counts for the misclassification predictor (MP) and observed
process pairs under a stationarity assumption for z = z,.

Observed Process

MP 00 01 10 11 Total

00 | Noo(zo) m11(z0) Noo(zo) w12(z0) Noo(zo) m13(z0) Noo(Zo) 714(Z0) Noo(zo)

01 No1(-’b'o) 7f21(1=o) Nox(to)"l’zz(zo) Nm(-'l!o)"fza(zo) No1(2o) "24(20) Nm(zo)
)
)

10 | Nyo(Zo) m31(z0) N1o(Zo) maz(a) Nio(Zo) ®as(Zo) Nio(Zo) 734(zo) Nio(Zo
11 | Nyy(zo) ma1(za) Nii(zo) ma2(20) Nia(Zo) maa(zo) Nii(Zo) Taa(zo) Nu(zo

m1(x) and p(x)+7(x), respectively. Prior assumptions may be necessary to estimate
all parameters.

Prior distributions may be considered for some parameters and the remaining
parameters can be estimated based on these distributions. If certain values or small
ranges of values are assumed for some parameters, then the remaining parameters
can be estimated. As Section 4.4.2 indicated, attempting to fit an adequate model
to describe the data is an important step in achieving estimability. Certainly,
maximizing the likelihood function with varying starting conditions and examining
likelihood function plots in the area surrounding the claimed maximum will be
helpful in establishing parameter estimability for a particular data set. Further, if
partial derivatives of the likelihood function are not prohibitive, a positive-definite
Hessian matrix would support parameter estimability. Numerical derivatives could

also be calculated to obtain the Hessian matrix.



Chapter 5

Effects of Ignoring

Misclassification

5.1 Overview

The effect of misclassification on the parameter estimates in the case of constant
inter-observation times is next considered. In the absence of covariates and mis-
classification predictors, the impact of misclassification on three estimators of the
true process transition probabilities in the Type I counter is examined. Approxi-
mated estimators are constructed by expanding the maximum likelihood estimates
around assumed small misclassification probabilities. Naive estimators based on the
observed transition counts, which ignore misclassification, are compared with max-
imum likelihood estimators and approximated estimators. Via simulation studies,
the approximated estimators prove to be reasonable for small values of the misclas-

sification probabilities while the naive estimators are shown to be biased.

83
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5.2 Introduction

Misclassification of states in transitional models has not widely been discussed in
the literature (Satten and Longini (1996)). The observed response is considered
to be correct in most studies, even where it may be subject to misclassification.
The effect ignoring misclassification has on the model estimates when the process
is subject to misclassification is of interest. More simply, if it is incorrectly assumed
that the misclassification probabilities are both 0, then the resulting estimates will
be different from the estimates which do not assume zero misclassification probabil-
ities. The biases in the estimates will be related to the size of the misclassification
probabilities involved. Quantifying the relationship between the estimates and mis-
classification probabilities, and hence establishing the magnitude of the biases that
may result if misclassification is ignored, is an important aspect for any inferences
that may be drawn.

Section 5.3 gives an approximation for the two Type I counter model transi-
tion probability estimates in terms of the misclassification probabilities when the
misclassification probabilities are small. Simulations are carried out in Section 5.4
to illuminate the behaviour of the approximation and the biases resulting from

incorrectly assuming zero misclassification probabilities.
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5.3 Transition Probabilities as Functions of the
Misclassification Probabilities

Consider the Type I counter model with exponential state sojourns and at least one
nonzero misclassification probability: ve; # 0, vio # 0 or both. Assume that the
number of observations on each subject is the same, for notational convenience, and
that these observations occur at constant intervals of length ¢t. With the constant

time between observations, the transition probabilities can be reparameterized as
a

a = Py (t) and b = Pio(t) with steady state probability for state 1, m; = P

When the initial state is not used, the log-likelihood for this model is
I I n
£p(a,b,v01,v10) Z ElnPr (05108 =" "InP;

=1 j=2 i=1 j=2

where for j = 2,3,... ,nand i = 1,... , I the conditional probability of the current

observation given the history of the observed process can be written as
Pi; =(20;; — 1)(1 —vor —v10) [Fij-1(1 —a =b) + a] + (1 — O5)(1 — vo1) + Oijvar.

The recursive formula for the conditional probability that the true process is in

state 1 at time ¢;; = jt given the present and past observed process states, v;; =
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Pr(&; =1]09), has the form

—(1 = 0ij)vo [71.1—-1 (1—-a—b)+ ]
[7,,_1 (1—-a-b)+ a] (1 —vo1 —v10) — (1 — vo1)
0;j (1 — v10) [7j-1 (1 —a —b) + a]
[7.‘,_1 (1 —a-b) a] (1 —vo1 —v10) + var

Vi =

for j =2,3,... ,n with

(1 - Oi)voa Oi1 (1 —vy0)a
(1—v01)b+v10a v01b+(1—vm)a'

Yir =

How the maximum likelihood (ML) estimates @ and b differ for different values
of vy and vy is of primary interest. The estimators may be approximated for small
values of vo; and v;9. Expanding the estimators around the point (vo1,v10) = (0, 0)

gives approximations @,(vo;,v10) and b.(voy,v10),

da Ja ~
@.(vo1,v10) =G0 + Vo1 z— 3 + V10 = ~  a(vo1,v10) (5.1)
o1 |(0,0) v10|(0,0)
and
~ &b b ~
b.(vo1,v10) = bo + vo1 — — ~  b(vo1,v10) (5.2)

v
Ovg, (0,0) Ovyo

(0,0

where the partial derivatives are evaluated at (vg;,v10) = (0,0). Note that the terms
@p and 30 are the maximum likelihood estimators for a Markov chain model without
misclassification. In the case of likelihood considered here, the first observation is

not used and the ML estimates are simple functions of the observed transition
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counts,

~ To1 -~ 130
Too + Noy ny + 71

where ny; denotes the number of observed transitions from state k to state I, k,[ €
{0,1}. These estimates are referred to as the naive transition probability estimates.
The ML estimates for a and b can be found by setting the partial derivatives of

£p involving these parameters to zero,
0
O_aep(a’ b, vo1,v10) =0
0
ab

(5.3)
eP(av b, Vo1, le) =0

which places a constraint on the relationships between {a,b} and {vo1,v10}. Use of
the implicit function theorem (Buck (1956), for example), provided that suitable
regularity conditions are satisfied, reveals these relationships. From this, the for-
mulas for a and b are determined entirely in terms of the unknown probabilities vg,

and vyg

a= 5(‘001, 010)

(5.4)
b = b(‘Uo;, ‘010).
Use of (5.4) with (5.3) yields a system of algebraic constraints
¢1(@(vo1, v10), b(vo1, ¥10), Vo1, v10) = 0 (55)

#2(@(vo1, v10), b(vo1, ¥10), Vo1, v10) = 0.
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This system is satisfied for all admissible vg; and vyo. Taking the total derivatives of

(5.5) with respect to vo; and vyo and applying the chain rule gives the four equations

04y 0% 93 Iy ab

Ovey Oa Ovey  8b Ovg =0
o 04 08 0% &b _
Ovyy Oa Ovyy 39b Ovuyg
Ogs 04y 98 O¢r Bb _
Ovey, Oa Gvgy  0b Ovgy
04, 0%, 8 042 b _

avm 6a a'Um 0b va -

These equations can be rewritten in matrix form as AQ = R where

9 b 8¢ O 0, Od:

_| 6va 0Ov _| Pa Da _ | Ovyy 6w
A=l B 9=\ ) Re-| o ok
51,_10 E)To- ob 0b dvye vy

The partial derivatives of the transition probability estimates with respect to the
misclassification probabilities can be evaluated in terms of the other partial deriva-
tives by solving for the matrix A, A = RQ™!. Hence,

¢y O0¢a + Od; Oy O0¢y B2  O¢2 Oy

_ Y TGu, 9b " Buey Ob Ovy a vy Ja
A=Z\ _90i 06, 06 06 961962 D 2 06y (5.6)

—a'vm ab a‘Ulo ab a’vm Ba - va aa

81 0d: _ 0 04y
8a 0b Ob Oa’

where € =
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The formulas for ¢;(a, b, vo,v10) and ¢2(a, b, vor,v10) are

I =n
i ;- _
$ = Z Z (20:; — 1)(1 —voy —10) (—’g’—ii(l —a—b) — i1 + 1) % :p._j1

=1 j=2

I n
05— -
¢2 = Z Z (20,‘_.,’ - 1)(1 — o1 '—'010) ( 73'2 1(1 —a _b) - ’Yi,j—l) X P;jl-

i=1 j=2

General formulas for the partial derivatives of @y, ¢, and -;; as functions of any vg,
and vy, appear in Appendix B. For the specific case when the partial derivatives
are evaluated at (voy,v10) = (0,0), the functions Wy = (1 — @ —30) and Do =
—W, 0;; — @ are introduced. In the absence of misclassification, the recursion
relation simplifies to the observed data, v;; = Oy for j = 1,... ,n. The nonzero

first order partial derivatives of 4;; at (vo1,v10) = (0,0) are

Hia _ _0Oa [ i1 _(1-0a)a
3001 (0,0) ao avlo (0,0) 30
and the nonzero second order partial derivatives are
Pv | _Oube | _1-0a
Ovp10a (0,0) ’&5 a'vmaa (0,0) Zo
*va __ Ou i _ _(1=0a)a
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The partial derivatives of ;; at (voy, v10) = (0,0) for j = 2,...,n are

| _0ij(Dij-10+1)
Ovoy (0,0) - D; j-10
1| _ _ (1=04)Dij1o
%:(; (0,0) T Di,j-m +1
0% _ 05 (1 = 0ij)
Ova18a (g ) T D}
O | _(1-04)(1 - 0ij1)
dvi0da |y ) - (Dij-10 +1)°
i | _ 0 0ij
0vo10b| g g © D}

and

0 (035 — 1) 05,1

a’"loab (0,0) B (Di,j—I:O + 1)2

Ovii 0w i P g P
0a’ Ob’ 0adb’ Jda? ap?

are all zero at

and the partial derivatives
(vor1,v10) = (0,0).

The partial derivatives of ¢; and ¢ are fairly complicated. In the expressions
which follow, P;;0 = (20;; — 1) (0; ;-1 Wo +@o) + 1 — O;5. The partial derivatives of

¢, with respect to the misclassification probabilities, evaluated at (voy, v10) = (0,0),
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are
| __@0a-1(, o o.lbo Oubo y, _ Oubo
Ovor |0 < Pizo a3 g
20;; — 1)? Oi1h
—g‘—.';z——)—(l"on) (Dilzo— - 0W0+1>
i2:0
I n
(205; ~ 1) [ ((1 0; j-2) (Dsj-2:0 + 1))]
M T N 0 Wy — sd=20 7 2/
* ; ; Pijo T\ Dy ° D; j-2.0
(201_1 1)2 ( Oi.j—l (Di,j—z;o + 1) )
2% =y 040 (Do
L, ( -1) | Dij~10+ Disre Wo+1
and
Oy L (20 - 1) ( 1- 0y (1-0x )ao>
o) _y a2y g, 2Tty 4
Fv10|(0,0) ; Pizo ' bo ’ bo
2 PR
(20211 (1 —-0x) (Dm + (1= Oulao 9‘1)00 Wo)
Pl 0

I n
(20;-1) . (1 - 0ij-2) D;;j-20
¥ Z ZS Pijio (1 0"1-1) ' (Di..‘i-2:0 + 1)2 We Di'.j—2:0 +1

(1~ 0;;-1)D; j-20 )
. . Wol.
Di,j—!:O +1 °

(204 = 1)’
ng :0

(1 - 0i-1) (Di.j-lzo -

The partial derivatives of ¢, with respect to the transition probabilities are quite

simple when evaluated at (vo1,v10) = (0,0),

I n

—EZ—(2OP » LY (1- 0.1—1)

(00) =1 j=2

L)
Ba
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and

9 L& (205 — 1)?
~ = —(1- 0;, §— 0,', i—1-
b (00) ;; pfyo ( J 1) J—-1

When evaluated at (vo1,v10) = (0,0), the partial derivatives of ¢, with respect to

the misclassification probabilities are

Oz d (20i2 - 1) O O:1bo
— =)y — | Oy—=—Wo+ —
31.101 {0,0) ; PiZ'O ! ag 0 Qg
20;, — 1) 0; b
+ '(—7;2—) Oq (Dino - =W + 1)
12:0 a
I n
O; -2 D;j_2.0 + 1)
+ 0; 1 - == Wy — =222~ —
,Z_I: ,E_; Pia ( D}z Dijoae
20;; — 1)? O;:1(Di 20 +1
+ ——( ,’;2 - ) 0;.j-1 (Di.j-no + = li). "1220 + )Wo + 1)
ij: 6,j—2:
and
0| <= (205 -1) (0_ (L= 0u)ao ,p, _ (1= 01)a0>
dvre - T Paa \CRT T 1 0T
Yolo0) = 12:0 b3 bo
20;, — 1)2 i
+ (—-,-;—) Oi (Du 0+ —= 1)00 )
12:0
I n
(20;; -1) (1- Oij-l)oi j-2 (1 - 0i;j-1)D;j20
+ - ST gy | 0 Siet)
.z.x: _1-23 Pijo Ot (Dsj-10+ 1)2 ° Dij20+1
(20;; — 1)2 ( (1 = 0;-1)D; j—2:0 )
—=57—0;j-1 | Dij-1.0 - : J Wol.
* Pu :0 a7 a0 Di,j-z:o +1 o

Finally, the partial derivatives of ¢; with respect to the transition probabilities and
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evaluated at (vo;,v10) are

I n
20;; — 1)? 0
3 (20 —1)° Oijo1(1—0;jo1) = 99,

- 2
(0,0) i=l j=2 Pl'j:O ab (0,0

942
da

and

3

I n
R Pt

2 ilj_ ) 8¢
Pij:O

(0,0) i=1 j=2

The above partial derivative expressions, when combined in (5.6), give a compli-
cated formula for the dependency of the transition probability estimators on the
misclassification probabilities. However, calculating these expressions for the values
of the data are straightforward and easily obtained by a computer program. The
programming was checked by comparing the program results with the results of
test cases where the derivatives were known exactly.

The Multiple Sclerosis and parasitic infection data sets are used in an assess-
ment of the approximations given by (5.1) and (5.2). Numerical results for the MS
data under a constant inter-observation time assumption appear in Table 5.1 and
Table 5.2 contains the numerical results for the parasitic infection data set. For
each data set, various misclassification probabilities are assumed and the ML esti-
mates for the transition probabilities are calculated. The approximated estimates
for the transition probabilities are given as well as the error in the approximation.
These results are further summarized graphically in Figure 5.1. The ML estimates
are shown as well as the approximated estimates for different values of the misclas-

sification probabilities.
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The results for the Multiple Sclerosis data show that for small values of vo; and
v10 the approximations seem to be close to the ML estimates. An exception is the
approximated estimate of b when both misclassification probabilities are 0.1. In
almost all cases, the approximations over-estimate the transition probabilities. For
misclassification probabilities both greater than 0.2, the approximated estimates for
a are less than 0. This result emphasizes the assumption that the approximation
holds for small values of the misclassification probabilities.

The parasitic infection data results reiterate the suitability of the approximation
for small misclassification probabilities. For the higher misclassification probabil-
ities given in the table, the approximation does better than in the MS data set.
The relative errors are generally less than 10% when the misclassification probabil-
ities are both below 0.15. In particular, the error in the approximation for b when
(vo1,v10) = (0.1,0.1) is much smaller. The adequacy of the approximated estimates
is likely related to the validity of the assumptions on the true underlying model.
Hence, the model misspecification referred to in Section 4.4.2 may be responsible
for poorer approximations in the case of the Multiple Sclerosis data set.

The impact of misclassification on the ML transition probability estimates is
clearly seen from the tables. These estimates are attenuated by increasing misclas-
sification probabilities. For fixed values of v, b is more sensitive to changes in v9

than @. Conversely, for fixed values of vy, @ is more sensitive to changes in vo; than

b.
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Table 5.1: Maximum likelihood estimates, approximated estimates and errors in
the approximations for the transition probabilities in the Multiple Sclerosis data
set. Inter-observation times are set to be 1.5 28-day units.

a = Pr(&; = 1&j-1=0) b=Pr({i; = 0|61 = 1)

Vo1

V10

a

G«

- ”~
a—a,

b

b

b—b.

0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.05
0.10
0.15

0.163180
0.163650
0.164998
0.165005
0.162354

0.163180
0.163672
0.165641
0.168101
0.170562

0.000000
-0.000022
-0.000643
-0.003096
-0.008207

0.576923
0.570382
0.541606
0.498731
0.447351

0.576923
0.570501
0.544815
0.512707
0.480599

0.000000
-0.000119
-0.003209
-0.013976
-0.033248

0.01
0.01
0.01
0.01
0.01

0.00
0.01
0.05
0.10
0.15

0.153823
0.154110
0.154568
0.152938
0.147869

0.153926
0.154418
0.156387
0.158848
0.161308

-0.000104
-0.000308
-0.001819
-0.005910
-0.013440

0.570985
0.563912
0.532470
0.484659
0.426521

0.571594
0.565172
0.539486
0.507378
0.475270

-0.000609
-0.001260
-0.007016
-0.022719
-0.048749

0.05
0.05
0.05
0.05
0.05

0.00
0.01
0.05
0.10
0.15

0.115029
0.114285
0.109004
0.093787
0.074041

0.116912
0.117404
0.119373
0.121833
0.124294

-0.001883
-0.003120
-0.010369
-0.028046
-0.050253

0.533062
0.522131
0.468858
0.370822
0.267697

0.550278
0.543856
0.518170
0.486062
0.453954

-0.017216
-0.021725
-0.049312
-0.115240
-0.186257

0.10
0.10
0.10
0.10
0.10

0.00
0.01
0.05
0.10
0.15

0.072138
0.069898
0.055051
0.040731
0.035764

0.070644
0.071136
0.073105
0.075565
0.078026

0.001494
-0.001238
-0.018054
-0.034834
-0.042262

0.461926
0.441006
0.324478
0.215692
0.170784

0.523633
0.517211
0.491525
0.459417
0.427309

-0.061707
-0.076205
-0.167047
-0.243725
-0.256525

0.15
0.15
0.15
0.15
0.15

0.00
0.01
0.05
0.10
0.15

0.044911
0.042552
0.031571
0.025095
0.021778

0.024376
0.024868
0.026837
0.029298
0.031758

0.020535
0.017683
0.004734
-0.004203
-0.009980

0.401604
0.371868
0.244385
0.167454
0.129860

0.496988
0.490566
0.464880
0.432772
0.400664

-0.095384
-0.118698
-0.220495
-0.265317
-0.270804

0.20
0.30

0.30
0.20

0.005158
0.000000

-0.007128
-0.104585

0.024685
0.000000

0.277695
0.288620

-0.253010
-0.288620

—————————-——'_'__'—_——__—___—__—__————————————_—_——___———
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Table 5.2: Maximum likelihood estimates, approximated estimates and errors in
the approximations for the transition probabilities in the parasitic infection data
set. Inter-observation times equal 7 days.

a="Pr(€; = 1€;_1 = 0) g: Pr(&;; = 06i.5-1 = 1)"

Vo1

Y10

a

A

a—a,

b

b,

b_b*

0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.05
0.10
0.15

0.239437
0.235873
0.221951
0.208363
0.198019

0.239437
0.235919
0.221851
0.204265
0.186679

-0.000000
-0.000047
0.000100
0.004098
0.011340

0.258661
0.248813
0.213245
0.179933
0.154744

0.258661
0.248714
0.208928
0.159195
0.109463

-0.000000
0.000099
0.004317
0.020738
0.045281

0.01
0.01
0.01
0.01
0.01

0.00
0.01
0.05
0.10
0.15

0.228470
0.224405
0.208414
0.192825
0.180999

0.228466
0.224949
0.210880
0.193295
0.175709

0.000004
-0.000544
-0.002466
-0.000469

0.005291

0.253029
0.242622
0.205059
0.170518
0.144974

0.253194
0.243248
0.203462
0.153729
0.103996

-0.000165
-0.000625
0.001597
0.016789
0.040978

0.05
0.05
0.05
0.05
0.05

0.00
0.01
0.05
0.10
0.15

0.187508
0.181561
0.159202
0.140230
0.127402

0.184585
0.181068
0.167000
0.149414
0.131828

0.002922
0.000493
-0.007798
-0.009183
-0.004426

0.229437
0.216573
0.171808
0.135748
0.112144

0.231329
0.221382
0.181596
0.131864
0.082131

-0.001892
-0.004810
-0.009788
0.003884
0.030013

0.10
0.10
0.10
0.10
0.10

0.00
0.01
0.05
0.10
0.15

0.149501
0.142818
0.121665
0.105488
0.094642

0.129734
0.126217
0.112148
0.094562
0.076977

0.019766
0.016600
0.009517
0.010926
0.017666

0.205219
0.190508
0.145203
0.112270
0.091938

0.203997
0.194050
0.154264
0.104532
0.054799

0.001222
-0.003542
-0.009061

0.007739

0.037139

0.15
0.15
0.15
0.15
0.15

0.00
0.01
0.05
0.10
0.15

0.122135
0.115600
0.097950
0.084416
0.075126

0.074883
0.071366
0.057297
0.039711
0.022125

0.047252
0.044234
0.040653
0.044705
0.053001

0.186468
0.170956
0.128385
0.097807
0.079300

0.176665
0.166719
0.126932
0.077200
0.027467

0.009803
0.004237
0.001452
0.020607
0.051833

0.20
0.30

0.30
0.20

0.046449
0.038593

-0.085484
-0.160014

0.041907
0.047011

-0.149062
-0.104261
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Figure 5.1: Maximum likelihood transition probability estimates as a function of the
misclassification probabilities for the two data sets. The approximated estimates

are the straight lines.
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5.4 Simulation Calculations of Bias

Three biases are of interest: the bias that may result from the ignoring misclassi-
fication, the bias that may result from using the approximated estimates and the
bias in the ML estimates. The first bias is particularly interesting since it quan-
tifies the effect on estimates that may result if misclassification exists in the data
but the misclassification is ignored in the modeling. The bias resulting from use of
the approximated estimates is also of interest. The approximated estimates permit
easier calculation than the ML estimates and readily allow the impact of differing
degrees of misclassification to be seen.

The biases E (@5) — a, E (@.(vo1,v10)) — @ and E(@(voy,v10)) — a for the 0 to
1 transition probability, as well as the biases E(Zo) - b, E(g,,(vm,vm)) — b and
E(Z('Uol, v30)) — b for the 1 to 0 transition probability have complicated dependencies
on the misclassification probabilities. Such complicated dependencies make finding
analytical expressions impossible. Simulation methods are implemented as a way
to assess the magnitude of the expected bias of each estimator.

Data sets are simulated with the same number of subjects (38) and observations
per subject (17) as the complete MS data set. Each misclassification probability
is considered to be either 0, 0.01, 0.05, 0.1 or 0.15. The true state probability
transition a was specified as 0.2, 0.4, 0.6 or 0.8. The value of b was set as 0.1,
0.2, 0.3, 0.4, 0.5, 0.6 or 0.7 subject to the restriction that @ + b < 1. Recall from
Section 2.5.1 that a+ b must be less than one to be consistent with a Type I model.
These transition probability simulation settings were combined with all possible

combinations of the misclassification probabilities for the results that follow.
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The data sets were simulated in two steps. The first step simulated the true
data for each subject at each observation time. The initial state of the true data

was generated based on the steady state probability settings for each state. For

subject i, a uniform random number on (0,1), u;;, was generated, ¢ = 1,...,38. If
0<u;<m= %, then the first observation was set to 1. Conversely, if m; <
a

u;; < 1, then the first observation was set to 0. The remaining observations were
generated based on the transition probability settings. For subject i at observation j
(j =2,8,...,17), a uniform random number u;; was generated between 0 and 1. If
the previous observation was 0, then observation j was set to 1if 0 < u;; < a and 0
otherwise. Similarly, if the previous observation was 1, then observation j was set
to 0 if 0 < u;; < b and 1 otherwise. This data set is termed the true data set.

The second step of the data simulation involved misclassifying the true data
according to the specified misclassification probabilities. A uniform random number
on (0,1), uf;, was generated for subject i and observation j, i = 1,...,38, j =
1,...,17. An observation which was 0 became misclassified as a 1 if u}; < vo;.
Similarly, an observation that was 1 became misclassified as a 0 if uj; < V1o The
data constructed in this second step of the simulation process by misclassifying the
true data set is referred to as the observed data set.

Each data set was then used to calculate the values of the partial derivatives in
the matrix A. These values, along with the specified values for the misclassification
probabilities and the naive transition probability estimates, produced approximated
transition probability estimates. For each combination of simulation settings, the

results from the simulated data sets were averaged to give estimates for the expected
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partial derivatives and the biases.

Simulations of size 50 were run with the 16 combinations of the transition prob-
ability settings. Results from four settings are shown in Tables 5.3-5.6 which start
on page 105. The absolute relative biases of these results are displayed graphi-
cally in Figures 5.2-5.5. In each situation, the time between observations is set
to be 1. The tables give the naive estimates, ML estimates and approximated es-
timates for the transition probabilities centered around the transition probability
simulation settings. These values give estimates of the biases in the naive, ML, and
approximated transition probability estimates. Note that these estimated biases
are uncertain and have standard errors equal to the standard deviations of the 50
simulation estimates divided by /50.

Table 5.3 gives the averages and standard deviations of the simulations when
both transition probabilities are set to 0.2. The average biases calculated for the
ML estimates are all less than their associated standard deviations. In general, the
partial likelihood estimates have relative biases less than 3%, and the biases do not
show any patterns with respect to the misclassification probabilities. Their errors
are mainly the result of the variability associated with the finiteness of the data
sets generated from the simulation settings. The errors given for the case where
both misclassification probabilities are zero illustrate this point. The ML estimates
are approximately unbiased when the values of vo; and vy are correctly specified.

The naive estimates almost always have a positive bias which increases as the
misclassification probabilities increase. Except for the case without misclassifica-

tion, these values are always larger than the ML estimates. The standard deviations
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are generally the same for the naive and ML estimates but are larger in the approx-
imated estimates. The approximated estimates have variability associated with
both the naive estimates as well as the derivative calculations which depend on
the pattern of the observations. The naive estimate of a appears to be reason-
able for values of the misclassification probabilities both less than 0.05. For higher
misclassification probabilities the relative bias is in the 18% to 39% range when
v = 0.05, in the 40% to 58% range when vg; = 0.10 and in the 59% to 80% range
when vg; = 0.15. For these same values of vg; the relative bias ranges for 30 are 8%
to 67%, 15% to 76% and 20% to 80%, respectively. Clearly, do is more semsitive to
the value of vg; than 30 and 30 is more sensitive to the value of v;o than @p. Again,
the naive estimate of b appears to be reasonable for vg; < 0.05 and vy0 < 0.05.
The approximated estimates perform well. Most of the estimated biases are
less than their associated standard deviations. The absolute relative biases in the
approximation are generally less than 10%. This figure is doubled or tripled when
vo: = 0.10 and vy = 0.15 or when vo; = 0.15 and v;9 > 0.10. Sometimes, the
approximated estimates appear to have less bias than the ML estimates. This ap-
pearance generally indicates that the average transition probabilities generating the
true data sets were not exactly the same as the transition probability simulation set-
tings. For example, when (vo1,v10) = (0.01,0.05) the averages of the 50 simulations
yielded 0.2011 for the 0-1 transition probability of the true data sets generated.
The ML estimate of a is closer to 0.2011 than the approximated estimate @,. Such
situations demonstrate the variability associated with the generation of data.

Many of the same comments discussed above apply to Tables 5.4-5.6. Generally,
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the absolute relative bias of the ML estimates is less than 3%. The ML estimates
are approximately unbiased for correct specification of the misclassification proba-
bilities. The naive estimates are more biased and the approximated estimates do
not perform as well for larger values of the misclassification probabilities. The ap-
proximated estimates are generally much closer to the simulation settings than the
naive estimates. The standard deviations of the simulations, not presented here,
are similar to what is shown in Table 5.3.

Within the tables for (a,b) = (0.2, 0.4) and (a,b) = (0.4,0.2), the naive estimates
of a are about the same in the last three blocks of settings in Table 5.4 and the last
block of Table 5.5. The estimated bias is about the same for @y when vo; = 0.15
and v;o ranges from 0 to 0.15 in each of the respective tables. The absolute relative
biases when vy; = 0.15 are around 60% for (a,b) = (0.2,0.4) and around 25%
for (a,b) = (0.4,0.2). The absolute relative biases of @o when (a,b) = (0.2,0.4)
for vg; = 0.05, 0.10 or 0.15 are about twice the magnitude of the corresponding
absolute relative biases when (a,b) = (0.4,0.2). Hence, the naive estimate @
performs better when a = 0.4 than when a = 0.2. A similar statement is also true
for the performance of Bo. For misclassification probabilities both greater than 0.05,
the absolute relative bias ranges from 8% to 29% when (a,b) = (0.2,0.4) and from
17% to 62% when (a, b) = (0.4,0.2). For both of the transition probability settings,
the approximated estimates perform about the same.

Table 5.6 displays the results when (a,b) = (0.6,0.3). In this particular table, @,
has relative biases less than 12% which is smaller than the other tables discussed.

The approximated estimates @, and b, generally perform better here too. When
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v10 = 0.05, 0.10 or 0.15 the absolute relative biases of o range from 5% to 34%.
Settings such as this generated data sets which had distributions close to the sta-
tionary distribution. Convergence was a problem for some of the data sets and the
details are further discussed in the next section.

A few general statements can be made as a summary of these results. The ML
estimates are approximately unbiased when the misclassification probabilities are
correctly specified. The naive estimates over-estimate the transition probabilities
and this positive bias increases as the misclassification probabilities increase. The
naive estimate for a is more sensitive to the value of v, than Bo and Bo is more
sensitive to the value of vy than @. When both of the misclassification probabil-
ities are less than 0.05, the naive estimates will have small bias regardless of the
transition probabilities of the true process. The conclusions drawn from such esti-
mates will likely be adequate. If one of the transition probabilities is quite large,
the naive estimate of that transition probability appears to do better for slightly
larger misclassification probabilities.

The approximated estimates do well and are much easier to calculate than the
ML estimates. While the approximation does get worse for higher values of the
misclassification probabilities, the approximated estimates do well when the mis-
classification probabilities are both less than 0.10 and generally when vo; = 0.15 and
10 < 0.05 or vg; < 0.05 and vy9 = 0.15. The approximated estimates appear to be a
reasonable choice for these values of the misclassification probabilities. For misclas-
sification probabilities which are not too large, the approximated estimates can be

calculated for a range of values of vg; and vyo. For these values, the approximated
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estimates are approximately unbiased for the correct misclassification probability
values. If the investigator believes that the misclassification probabilities are not
small, a couple of possibilities can be considered. A further approximation could
be made which includes higher order partial derivatives. This approximation would
then be reasonable for larger misclassification probability values. Alternatively, the
ML transition probability estimates could be calculated for specified larger values

of the misclassification probabilities.
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Table 5.3: Averages for 50 simulations appear with standard deviations in parentheses. Simulation settings
were a = 0.2, b = 0.2 and At;; = 1 for specified misclassification probabilities.
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vor Vo mwo|ﬂ a—a \Qrt|§ ﬂol@ ﬂ|@ u@ntl.@

0.00 0.00 | -0.005 (0.020) -0.005 (0.020) -0.005 (0.020) | 0.002 (0.024) 0.002 (0.024) _ 0.002 (0.024)
0.00 0.01 | 0.009 (0.029) 0.006 (0.028) 0.005 (0.029) | 0.013 (0.030) 0.005 (0.030) 0.005 (0.030)
0.00 0.05 | 0.016 (0.026) -0.001 (0.026) -0.003 (0.027) | 0.047 (0.023) 0.006 (0.024) -0.002 (0.026)
0.00 0.10 | 0.029 (0.026) -0.001 (0.024) -0.002 (0.027) | 0.087 (0.022) 0.005 (0.025) -0.012 (0.029)
0.00 0.15 | 0.036 (0.025) 0.001 (0.027) 0.005 (0.031) | 0.133 (0.027) 0.011 (0.027) -0.009 (0.038)
0.01 0.00 | 0.015 (0.025) 0.007 (0.025) 0.006 (0.025) | 0.007 (0.025) 0.003 (0.025) 0.003 (0.025)
0.01 0.01 | 0.011 (0.025) -0.001 (0.025) -0.002 (0.025) | 0.007 (0.022) -0.005 (0.021) -0.006 (0.021)
0.01 0.05 | 0.027 (0.028) 0.002 (0.028) 0.000 (0.029) | 0.046 (0.026) 0.002 (0.027) -0.004 (0.030)
0.010.10 | 0.036 (0.024) -0.001 (0.023) -0.001 (0.026) | 0.089 (0.030) 0.005 (0.032) -0.010 (0.038)
0.01 0.15 | 0.050 (0.021) 0.005 (0.021) 0.011 (0.025) | 0.123 (0.023) -0.000 (0.024) -0.018 (0.031)
0.05 0.00 | 0.038 (0.031) -0.001 (0.031) -0.010 (0.034) | 0.017 (0.026) 0.000 (0.026) -0.003 (0.027)
0.05 0.01 | 0.042 (0.031) -0.002 (0.031) -0.009 (0.035) | 0.029 (0.025) 0.004 (0.026)  0.002 (0.028)
0.05 0.05 | 0.061 (0.023) 0.005 (0.022) 0.001 (0.025) | 0.054 (0.031) 0.001 (0.030) -0.003 (0.033)
0.05 0.10 | 0.069 (0.026) 0.002 (0.027)  0.007 (0.031) | 0.101 (0.024) 0.006 (0.027)  0.004 (0.032)
0.05 0.15 | 0.078 (0.032) 0.002 (0.033) 0.017 (0.040) | 0.135 (0.031) -0.002 (0.036) -0.001 (0.047)
0.10 0.00 | 0.081 (0.025) 0.004 (0.025) -0.015 (0.032) | 0.030 (0.025) 0.003 (0.024) -0.001 (0.027)
0.10 0.01 | 0.088 (0.031) 0.004 (0.030) -0.011 (0.038) | 0.037 (0.027)  0.000 (0.027) -0.001 (0.031)
0.10 0.05 | 0.098 (0.034) 0.001 (0.037) -0.002 (0.043) | 0.070 (0.029) 0.001 (0.031)  0.007 (0.035)
0.10 0.10 | 0.111 (0.033) 0.006 (0.035) 0.017 (0.044) | 0.106 (0.027)  0.001 (0.029) 0.011 (0.038)
0.10 0.15 | 0.117 (0.029) 0.004 (0.037) 0.034 (0.042) | 0.152 (0.028) 0.007 (0.033) 0.033 (0.040)
0.15 0.00 | 0.117 (0.025) -0.006 (0.028) -0.030 (0.035) | 0.041 (0.029) 0.001 (0.027) 0.005 (0.032)
0.150.01 | 0.122 (0.029) 0.001 (0.032) -0.018 (0.045) | 0.049 (0.026) 0.005 (0.028) 0.010 (0.035)
0.150.05 | 0.142 (0.033) 0.007 (0.033)  0.008 (0.044) | 0.073 (0.026) -0.001 (0.028) 0.014 (0.034)
0.15 0.10 | 0.140 (0.040) -0.001 (0.043) 0.021 (0.054) | 0.126 (0.024) 0.012 (0.030)  0.042 (0.033)
0.150.15 | 0.159 (0.028) 0.008 (0.036) 0.055 (0.046) | 0.160 (0.034) 0.010 (0.043) 0.058 (0.053)
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Figure 5.2: Percent absolute relative bias of a and b naive estimates (NEs), approx-
imated estimates (AEs) and ML estimates (MLEs) for simulations with a = 0.20
and b = 0.20 and specified misclassification probabilities.
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Table 5.4: Averages of 50 simulations for settings a = 0.2, b = 0.4, A¢;; = 1 and

specified misclassification probabilities.

Vo1

V10

-~
g —a

a—a

a*_a

bo—b

b—b

b —b |

0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.05
0.10
0.15

-0.0029
0.0004
0.0051

-0.0014

-0.0075

-0.0029
0.0004
0.0060
0.0013

-0.0015

-0.0029
0.0004
0.0061
0.0019
0.0000

0.0038
-0.0021
0.0286
0.0587
0.0858

0.0038
-0.0082
-0.0009
-0.0012
-0.0034

0.0038
-0.0082
-0.0011
-0.0007
-0.0000

0.01
0.01
0.01
0.01
0.01

0.00
0.01
0.05
0.10
0.15

0.0066
0.0040
0.0079
0.0038
-0.0029

-0.0014
-0.0039

0.0011
-0.0003
-0.0035

-0.0014
-0.0039
0.0016
0.0010
-0.0012

0.0037
0.0154
0.0386
0.0656
0.0992

-0.0001
0.0056
0.0053
0.0043
0.0087

0.0000
0.0058
0.0060
0.0064
0.0147

0.05
0.05
0.05
0.05
0.05

0.00
0.01
0.05
0.10
0.15

0.0406
0.0450
0.0394
0.0395
0.0338

0.0020
0.0057
-0.0005
0.0037
0.0006

0.0017
0.0063
0.0021
0.0090
0.0098

0.0158
0.0259
0.0338
0.0728
0.1044

0.0030
0.0074
-0.0122
0.0007
0.0015

0.0056
0.0110
-0.0057
0.0114
0.0210

0.10
0.10
0.10
0.10
0.10

0.00
0.01
0.05
0.10
0.15

0.0787
0.0822
0.0775
0.0756
0.0719

0.0003
0.0041
-0.0010
0.0019
0.0024

0.0024
0.0067
0.0063
0.0144
0.0199

0.0193
0.0192
0.0483
0.0826
0.1148

0.0003
-0.0049
-0.0000

0.0102

0.0162

0.0115
0.0063
0.0168
0.0333
0.0487

0.15
0.15
0.15
0.15
0.15

0.00
0.01
0.05
0.10
0.15

0.1217
0.1208
0.1205
0.1146
0.1099

0.0024
0.0016
0.0010
0.0002
-0.0024

0.0116
0.0130
0.0198
0.0250
0.0315

0.0141
0.0243
0.0463
0.0796
0.1039

-0.0039
0.0009
-0.0004
0.0093
-0.0004

0.0179
0.0248
0.0305
0.0471
0.0533
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Figure 5.3: Percent absolute relative bias of a and b NEs, AEs and MLEs for
simulations with @ = 0.20 and b = 0.40 and specified misclassification probabilities.
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Table 5.5: Averages of 50 simulations for settings a = 0.4, b = 0.2, At;; =1 and

specified misclassification probabilities.

Vo1

V10

'&o—a

-~
a—a

a*_a

bo — b

b—b

b —b |

0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.05
0.10
0.15

0.0019
0.0011
0.0215
0.0146
0.0186

0.0019
-0.0023
0.0064
-0.0076
0.0042

0.0019
-0.0022
0.0097
0.0044
0.0243

-0.0003
0.0128
0.0364
0.0782
0.1195

-0.0003
0.0049
-0.0036
-0.0021
0.0026

-0.0003
0.0049
-0.0037
0.0002
0.0110

0.01
0.01
0.01
0.01
0.01

0.00
0.01
0.05
0.10
0.15

0.0092
0.0114
0.0211
0.0243
0.0274

0.0033
0.0022
0.0012
0.0008
0.0048

0.0033
0.0024
0.0048
0.0133
0.0292

-0.0006
0.0136
0.0422
0.0875
0.1220

-0.0005
0.0059
0.0025
0.0081
0.0028

-0.000%
0.0059
0.0030
0.0124
0.0147

0.05
0.05
0.05
0.05
0.05

0.00
0.01
0.05
0.10
0.15

0.0305
0.0387
0.0504
0.0515
0.0488

0.0003
0.0061
0.0085
0.0054
-0.0039

0.0000
0.0067
0.0146
0.0226
0.0289

0.0011
0.0083
0.0444
0.0842
0.1103

0.0018
0.0015
0.0060
0.0064
-0.0097

0.0019
0.0020
0.0086
0.0148
0.0072

0.10
0.10
0.10
0.10
0.10

0.00
0.01
0.05
0.10
0.15

0.0612
0.0692
0.0868
0.0850
0.0657

0.0023
0.0059
0.0165
0.0094
-0.0099

0.0033
0.0087
0.0274
0.0343
0.0296

0.0023
0.0020
0.0378
0.0747
0.1221

0.0057
-0.0028
0.0024
-0.0009
0.0055

0.0064
-0.0012
0.0077
0.0124
0.0321

0.15
0.15
0.15
0.15
0.15

0.00
0.01
0.05
0.10
0.15

0.0906
0.0998
0.1035
0.1027
0.1081

0.0013
0.0080
0.0007
-0.0011
0.0149

0.0051
0.0152
0.0199
0.0333
0.0628

-0.0054
0.0041
0.0335
0.0777
0.1145

0.0012
0.0037
0.0004
0.0068
0.0069

0.0026
0.0064
0.0094
0.0259
0.0391
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Figure 5.4: Percent absolute relative bias of a and b NEs, AEs and MLEs for
simulations with @ = 0.40 and b = 0.20 and specified misclassification probabilities.
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Table 5.6: Averages of 50 simulations for settings a = 0.6, b = 0.3, At;; = 1 and
specified misclassification probabilities.

Yo Vo | Go—a @d—a @.—a | b-b b-b b -—b
0.00 0.00| 0.0122 0.0120 0.0122 | 0.0001 0.0000 0.0001
0.00 0.01 | 0.0029 0.0070 0.0070 | 0.0050 -0.0021 -0.0020
0.00 0.05 |-0.0123 0.0093 0.0094 | 0.0296 -0.0058 -0.0040
0.00 0.10 | -0.0437 0.0021 0.0013 | 0.0715 0.0018 0.0088
0.00 0.15 | -0.0684 0.0012 -0.0020 | 0.1005 -0.0050 0.0107
0.01 0.00| 0.0163 0.0124 0.0125 | -0.0079 -0.0054 -0.0054
0.01 0.01 | 0.0057 0.0052 0.0060 | 0.0036 -0.0013 -0.0008
0.01 0.05|-0.0096 0.0092 0.0092 | 0.0321 -0.0002 0.0018
0.01 0.10 | -0.0473 -0.0064 -0.0075 | 0.0708 0.0042 0.0113
0.01 0.15 | -0.0705 -0.0062 -0.0090 | 0.1021 -0.0003 0.0161
0.05 0.00 | 0.0212 0.0012 0.0022 | -0.0153 -0.0028 -0.0033
0.05 0.01] 0.0185 0.0030 0.0039 | -0.0052 0.0007 0.0005
0.05 0.05 |-0.0029 -0.0018 -0.0008 { 0.0203 -0.0022 0.0002
0.05 0.10 | -0.0235 0.0030 0.0027 | 0.0573 0.0005 0.0091
0.05 0.15 |-0.0497 0.0010 -0.0010 | 0.0952 0.0029 0.0224
0.10 0.00 | 0.0412 0.0012 0.0054 | -0.0279 -0.0025 -0.0044
0.10 0.01 | 0.0337 -0.0027 0.0013 | -0.0200 -0.0018 -0.0032
0.10 0.05 | 0.0140 -0.0049 -0.0009 | 0.0152 0.0068 0.0087
0.10 0.10 | -0.0009 0.0022 0.0086 | 0.0453 -0.0004 0.0110
0.10 0.15 | -0.0327 -0.0016 -0.0012 | 0.0856 0.0075 0.0287
0.15 0.00 | 0.0570 -0.0048 0.0056 | -0.0355 0.0034 -0.0006
0.15 0.01| 0.0645 0.0097 0.0190 | -0.0321 0.0004 -0.0034
0.15 0.05 | 0.0391 0.0008 0.0103 | -0.0012 0.0038 0.0043
0.15 0.10 | 0.0072 -0.0141 -0.0034 | 0.0257 -0.0085 0.0019
0.15 0.15 | -0.0097 0.0031 0.0093 [ 0.0751 0.0117 0.0343
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Figure 5.5: Percent absolute relative bias of a and b NEs, AEs and MLEs for
simulations with @ = 0.60 and b = 0.30 and specified misclassification probabilities.
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5.4.1 Convergence Problems

Convergence problems were seen in the estimation of the transition probabilities
for some simulated data sets. The maximization algorithm maximizes the log-
likelihood with respect to the parameters 8,, and fB,, which form the transition
rates p = exp(8,,) and n = exp(B,,). In turn, these estimated rates along with the
inter-observation time give the estimates of the transition probabilities. When two
distinct sets of values for 3,, and B, provided the same maximum log-likelihood
function, a convergence problem was detected.

These problems occurred only when the transition probabilities of the simulation
settings summed to 0.8 or 0.9. The problems were more frequent when a + b6 = 0.9
and misclassification probabilities were not small. Of the 1250 data sets generated
for the settings a = 0.6 and b = 0.3, 53 data sets reported convergence problems.
For these situations, the true data sets were generated with estimated transition
probabilities too close to the Bernoulli trials situation described in Section 4.4.1.
While the sum of the simulation transition probability settings was constrained to
be less than one, the random generation of the true data sets did produce some
cases where the estimated transition probabilities did sum to one or more. These
estimates were not consistent with the Type I counter model.

Recall from Section 2.5.1 that (1 —a) + (1 — b) > 1 is called the embeddabil-
ity criterion (see Singer and Cohen (1980) and Kalbfleisch and Lawless (1985), for
example). If the criterion is not satisfied, the transition probabilities do not cor-
respond to any continuous-time model. Such probabilities are only possible in a

discrete-time model. This result is easily seen by investigating the relationship be-
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tween the transition rates and probabilities. Ifa+b > 1, then the estimates Bpo and

ﬁm lie in the complex plane. The transition rates constructed from the transition

probabilities are

—a
p =€ =(a+b)t log(1 — a —b)
-b

n:eﬂ'"’ =(a+b)t log(1 —a —b)

where t = 1 in the simulations conducted here. Hence, if a + b = 1, the log function
is not defined and neither are p and 7. If a + b > 1, p and 7 are complex numbers.
The maximization algorithm does not search the complex plane for parameter values
which maximize the likelihood function and two real solutions give the largest log-

likelihood function possible.

In all cases where convergence was a problem, the observed data satisfied

-~ 7 N1 1o
B0+ bo = Ngo + Moy + no + 711 21 (5.7)
and two sets of transition probability estimates yielded the same likelihood function.
Generally, if (5.7) was satisfied, then 1 <@g +30 < 1.05. However, this feature did
not necessarily cause the convergence problems. In several instances, the transition
probabilities were estimated without problems despite the inconsistency of the point
estimates from the true data with the model simulation settings.
A few cases had probability estimates from the true data which summed to
slightly more than one, but with the observed data not satisfying (5.7). In these

cases, convergence of estimates was not a problem. Additionally, an observed data



CHAPTER 5. EFFECTS OF IGNORING MISCLASSIFICATION 115

set with property (5.7) was not sufficient to cause convergence problems. That is, a
few simulations resulted in observed data which satisfied (5.7) but did not result in
convergence problems. These cases numbered two in the simulations with a = 0.6
and b = 0.3.

The values of the naive estimates for the misclassified data seem to be more
important determinants of convergence problems than the transition probability

estimates from the true data set.



Chapter 6

Model Assessment

6.1 Overview

Model assessment techniques are considered for the models estimated previously in
Chapter 3. Expected one-step transition pairs, two-step transition pairs and one-
step transition triplets are calculated under a stationarity assumption and com-
pared with observed counts. Such standard goodness-of-fit techniques for two-state
Markov models prove to be inadequate in the sense that these comparisons do not
detect important departures from the model. Likelihood ratio tests are shown for
continuous covariate models by comparing saturated indicator models with the con-
tinuous covariate models. A simulation study suggests that a gamma distributed

dead time may be more appropriate to consider for the MS data set.

116
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6.2 Introduction

The previous chapters have discussed model specification, parameter identification
and estimation as well as estimator properties. Model assessment is another im-
portant component of the model building process.

Billingsley (1961) reviews topics such as goodness-of-fit related to Markov chains.
When the observations are made at discrete times, Markov models are generally
assessed by comparing observed and expected transition counts under a specific
model. Runs tests have been proposed by many authors (see Goodman (1958),
for example) which assess the Markov property. More recently, Reeves (1993) fo-
cuses on run lengths of Os and 1s in the two-state Markov chain. Tests for the
predominance of the value one, departure from constant hazard, consistency of
the equilibrium distribution, and for the geometric distribution in the presence of
censoring are proposed. Further references on model assessment can be found in
Lindsey (1993) and Agresti (1990).

Comparing observed and expected counts is the approach taken in Section 6.3.
The observed and expected counts are compared for one-step transition pairs, two-
step transition pairs and one-step transition triplets for the PI and MS data sets.
In Section 6.4, MS saturated indicator models and continuous covariate models
are compared using likelihood ratio tests. Gamma dead times are simulated in

Section 6.5 to suggest an appropriate model for the MS data set.
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6.3 Goodness-of-fit for Categorical Covariates

Even if the underlying process is Markov, the observed process will not have the
Markov property when misclassification is present. However, the observed transi-
tion counts can be thought of as a reduction of the data for misclassification models
even though they are not sufficient statistics. The one-step and two-step transi-
tion counts as well as the one-step transition triplets are considered for the MS
single dichotomous covariate models and the model for the parasitic infection data
set. Expected counts are calculated under a stationarity assumption and compared
with the observed counts. For the MS data set, with misclassification predictors

and covariates, these counts are stratified.

6.3.1 One-Step Transition Counts

This section presents a Pearson goodness-of-fit statistic as an indicator of model fit.
The statistic requires notation for the observed and expected one-step transition
counts which are stratified by misclassification predictors and covariate level. Let
Nﬁgclcn be the random variable representing the number of transitions from state
d to state e when subject ¢ has misclassification predictors equal to ¢; and c; on
subsequent visits and covariate z;, d,e,c1,cz € {0,1},7 =1,...,I. The analogous
observed counts are represented by n‘(ii)’cl o+ In the MS data set for example, if
subject ¢ has active scan sequence 01010 and exacerbation sequence 11110, then
n((,?'ll = 2 and ng'g'u = ng'g'm = 1. To observe state d followed by state e at
subsequent visits, there are four possibilities: both states are correctly classified,

both states are misclassified, state d is misclassified and state e is correctly classified,
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or state d is correctly classified and state e is misclassified. With these possibilities,
the expected value for subject i with covariate z;, observed process pair (d, e) and

misclassification predictor pair (cy,c2) is

E(Ngzclc; 3 2:,') = Z (vdd(cl) vce(cz) Wd(zi) P@(At{j, .'B,')

jedd,
+ v1—dd(c1) Vimeel(ce) M1-a(z:) Pi—qy—e(ALj, ;)
(6.1)

+ v1—ad(C1) Vee(C2) M1-d(Z:) Pi-a.e(ALij, z:)

+ vVdd(e1) Vi-e,e(C2) Ta(Zi) Pa1—e(DLsj, :Bi))

where Jc(:)c, = {j|Cij-1 = c1, Cij = ¢, § =2,...,n;} and mq(z;) = Pr(&; = d, z;)
for d,e,ci,co € {0,1},2 = 1,...,I. Since p(z;) = exp(Bp + Bp1z:) and 7(z;) =
exp(Byo + B i), then my(z:) = p(z:)/(p(x:) + n(=:)) and mo(z:) = 1 — my(z:). Let
82,1 be an indicator function taking the value 1 if z; = l and 0 if z; # I, where [ is
a level of the covariate, ! € {z;};. Summing over subjects, the total expected and
observed number of observed process pairs (d, e) for subjects with misclassification

predictor pairs (c,,cz) and covariate level { are
I »
E(Naeerest) = Y bzid B(Nggepoyi %3)
i=1

and nge e = Ef__.l 5:.-,1“&2q o+ Tespectively. The Pearson goodness-of-fit statistic

2 _ (Nde,crez d = E(Nde,cxcz.l))z
= X E(Nicirend)

d.C.C| €2 vl
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can be used as an indicator of model fit. Similarly, the unstratified statistic

(nde — E(Na.))?
XH Z E(Ndc)

can be calculated where E(Ng) = 3., . | E(Nieciert) and nge = 3 ., 1 Rdecrca -
Models with continuous covariates can also be assessed in this manner. However,
the dependence of the transition counts does not permit formal tests of fit based
on a x2 distribution.

For the parasitic infection data with full likelihood estimates given in Table 3.6
and vg; = 0, the observed transition counts are seen in Table 6.1. The observed
Table 6.1: Observed and expected transition counts for the parasitic infection data

set under the perfect specificity model where the full likelihood estimates are p =
0.038/day, 7j = 0.034/day, 90 = 0.092 and vo; = 0.

Parasitic Infection Transition Counts

00 01 10 11

Observed | 378 119 112 321

Expected | 372.834 116.237 116.237 323.692
xft: 0.334

counts appear to be reasonable for the Markov assumption, as would be expected
because the model has 3 parameters.

The MS observed and expected counts stratified by covariates sex and treatment
as well as exacerbation status appear in Table 6.2 for the models given previously
in Table 3.4. Recall that the three treatment levels are placebo (P), low dose (L)

and high dose (H). No comparisons need to be conducted in these cases since the
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Table 6.2: MS observed and expected transition counts for combined data and
stratified by exacerbation status for the two covariates sex and treatment. Expected
counts in parentheses for male (M), females (F), placebo (P), low dose (L) and high
dose (H) subjects.

Exacerbation Scan Activity
Status 00 01 10 11
00 53 (52.830) 14 (14.084) 10 (14.084) 16 (12.002)
M 01 11 (14.558) 4 (2.710) 6 (4.013) 3 (2.719)
10 15 (14.558) 3 (4.013) 3 (2.710) 3 (2.719)
11 3 (1.944) 0 (0.377) 0 (0.377) 0 (0.301)
00 216 (212.281) 42 (39.917) 40 (39.917) 20 (25.885)
F 01 46 (48.952) 8 (5.770) 10 (9.463) 5 (4.815)
10 49 (48.254) 7 (9.314) 5 (5.675) T (4.756)
11 7 (6.790) 0 (0.830) 1 (0.830) 1 (0.551)
xf: 12.525
Total | 400 (400.167) 78 (77.015) 75 (77.069) 55 (53.748)
xh:  0.097
Exacerbation Scan Activity
Status 00 01 10 11
00 66 (61.398) 22 (23.754) 17 (23.754) 23 (19.093)
P 01 11 (15.781) 5 (4.842) 9 (6.004) 6 (4.374)
10 14 (15.276) 6 (5.806) 4 (4.682) 6 (4.236)
11 2 (1621) O (0.487) O (0.487) 1 (0.405)
00 92 (91.485) 18 (15.941) 15 (15.941) 7 (8.633)
L 01 22 (25.972) 5 (2.512) 6 (4.462) 2 (2.054)
10 26 (25.983) 3 (4.452) 3 (2.502) 3 (2.064)
11 5 (4768) 0 (0.449) 1 (0.449) 0 (0.333)
00 111 (111.907) 16 (15.747) 18 (15.747) 6 (7.599)
H 01 24 (21.458) 2 (1.368) 1 (2.977) 0 (1.198)
10 24 (21.457) 1 (2.977) 1 (1.368) 1 (1.197)
11 3 (2.557) 0 (0.158) 0 (0.158) 0 (0.127)
x;:  22.375
Total | 400 (401.220) 78 (78.371) 75 (78.432) 55 (49.976)
x4 0.660
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observed and expected numbers are very similar in the stratified and unstratified
tables. If a rough test is to be conducted, recall from Section 4.4.3 that the stratified
table constructed in this manner for a covariate with two levels has around 14
degrees of freedom less the number of parameters estimated. Similarly, a 3 level
covariate such as treatment has around a third more degrees of freedom associated
with its table. The transition counts are modeled well for both sex and treatment
models. However, the estimated mean occupancy times are unreasonable in both
models except for low dose subjects in the relapsing state. Examining transition

counts in this manner does not provide any insight into the fit of the model.

6.3.2 Two-Step Transition Counts

Now consider a slightly different goodness-of-fit test for such tables. Nagelkerke,
Chunge and Kinoti (1990) looked at the frequency distribution of two-step tran-
sition counts. Rather than counting consecutive pairs of observations, pairs of

observations are constructed two observations apart. Let M, @)

de.c,c; D€ the random

variable representing the number of observations where state d is observed at time
t; j—2 and state e is observed at time ¢;; when subject ¢ has misclassification pre-
dictors equal to ¢; and c; at these times and covariate z;, d,e,c1,c2 € {0,1},

Q]

t=1,...,I,j =3,...,n; The analogous observed counts are denoted by m_ .,

for subject <. In the example referred to earlier for a subject with active scan se-
quence 01010 and exacerbation sequence 11110, the observed two-step transition
counts are m‘(,"o)'u, m((,';,)'w and mﬁ),u are each one.

The probabilities associated with these two-step transition counts are calculated
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in much the same way as for the one-step transition counts. The two-step tran-
sition counts sum over the possibilities for the true state occurring between the
two observed states. The expected value for subject i with covariate z;, observed

process two-step pair (d, e¢) and misclassification predictor two-step pair (c;,cz) is

E(Mg{cm;z,-) =
1
Z ('vdd(cl) Vee(C2) ma(Z:) Z Py (At; jo1, i) Pre( Atsj, 25)
jelfd., k=0
1
+ v1-dd(c1) Vi—ee(C2) T1-a(:) E Pi_a (At jo1, i) Pry-e(Atij, i)
k=0
1
+ v1_gd(c1) Vee(c2) T1-a(2:) Z Py_ay(Ati -1, Ti) Pre (Atij, 2;)
k=0
1
+ vVad(€1) Vi—e,e(C2) Ta(2:) Z Pie(At; j-1, i) Pre 1o (Al zi))

k=0

(6.2)

where J3, = {7|Cij-2 =c1, Cij =2, 7 =3,...,n;}. Summing over subjects, the
total expected and observed number of observed state process two-step pairs (d, )

for subjects with misclassification predictor two-step pairs (ci,c;) and covariate

level [ are
I I3
E(Mueerert) = Y bai EMS. . ;z:)
i=1

and Mge i1 = E;x 5,,.,1m,(;2,q <> Tespectively. The associated Pearson goodness-
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of-fit statistic is denoted by

2 _ (Mdeereat — B(Muecyer 1))’
Xt Z E(Mdc.cm.l) .

dlcvcl €2 ll

Without stratification, the associated Pearson goodness-of-fit statistic is

where E(Mae) =3, .1
The results for the parasitic infection data tell a slightly different story than

E(Mdevclc?J) and mde = EC[,CQ,’ mde.clcg,l-

the one-step transition counts. For the full likelihood model with only one misclas-
sification probability, the two-step transition counts appear in Table 6.3. Nagelk-
erke, Chunge and Kinoti (1990) performed this goodness-of-fit test with the max-
imum likelihood parameter estimates obtained by excluding the initial state. For
that model, the estimates were 5 = 0.0383/day, } = 0.0337/day and ;0 = 0.091
with test statistic x}; = 6.64. The authors acknowledged that the x}; value was
marginally significant at the 0.05 significance level and suggested that the excess
of 00 observations indicated some minor heterogeneity in the state 0 to state 1
transition rate. Although the two-step tramsition counts are less dependent than
the one-step transition counts, these counts are still dependent. Hence, 2 degrees
of freedom may be approximately correct.

The observed and expected two-step counts for the covariates sex and treatment
appear in Table 6.4 for the MS models given previously in Table 3.4. Again, the

expected counts appear to be close to the observed counts, which indicates the



CHAPTER 6. MODEL ASSESSMENT 125

Table 6.3: Observed and expected two-step tramsition counts for the parasitic
infection data set under the perfect specificity model where p = 0.038/day,
7 = 0.034/day, 110 = 0.092 and vo; = 0.

Parasitic Infection Two-Step Transition Counts
00 01 10 11
Observed | 328 143 128 273
Expected | 306.649 151.920 151.920 261.510
xft on 2 df: 6.281

model is consistent with the data despite the extreme parameter estimates.

6.3.3 One-Step Transition Triplet Counts

Rather than counting consecutive pairs of observations, triples of observations can
be counted. Let Ng),mc: be the random variable representing the number of

observations where state d is observed at time ¢; ;_s, € is observed at time ¢; ;_; and

state f is observed at time t;; when subject ¢ has misclassification predictors equal

to ¢, ¢z and c3 at these times and covariate z;, d, e, f,c1,¢2,¢3 € {0,1}, i =1,..., ],
j =3,...,n;. Similarly, n&';),,q eyc, denotes the observed counts for subject i with

observed process (d, e, f), misclassification predictors (¢, ¢z, ¢3) and covariate z;.
The probabilities associated with these transition triplet counts are calculated in
much the same way as the one-step transition counts. For each observation triplet,
either all observations are classified correctly, only one observation is misclassified,
only two observations are misclassified or all three observations are misclassified.

The expected value for subject ¢ with covariate z;, observed process triplet (d,e, f)
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Table 6.4: MS observed and expected two-step transition counts for combined data
and stratified by exacerbation status for the two covariates sex and treatment.
Expected counts in parentheses for male (M), females (F), placebo (P), low dose
(L) and high dose (H) subjects.

Exacerbation Scan Activity
Status 00 01 10 11
00 52 (51.694) 13 (13.781) 11 (13.781) 15 (11.743)
M 01 9 (10.919) 2 (2.032) 5 (3.010) 2 (2.039)
10 12 (12.739) 5 (3.511) 2 (2.371) 2 (2.379)
11 1 (3.240) 2 (0.629) 1 (0.629) 1 (0.502)
00 210 (206.683) 38 (39.963) 38 (39.963) 25 (24.391)
F 01 9 (38.859) 6 (4.760) 7 (7.704) 3 (3.677)
10 7 (36.045) 8 (7.131) 4 (4.402) 2 (3.422)
11 11 (13.528) 2 (1.711) 3 (1.711) 2 (1.050)
xi3:  13.095
Total [ 371 (373.707) 76 (73.518) 71 (73.571) 52 (49.203)
xh:  0.352
Exacerbation Scan Activity
Status 00 01 10 11
00 63 (60.761) 20 (23.727) 18 (23.727) 26 (18.786)
P 01 8 (11.677) 5 (3.624) 6 (4.486) 4 (3.213)
10 10 (11.679) 7 (4.484) 5 (3.622) 1 (3.215)
11 2 (3.773) 2 (1.146) 2 (1.146) 1 (0.935)
00 88 (89.705) 17 (16.094) 17 (16.094) 8 (8.108)
L 01 23 (20.683) 2 (2.104) 2 (3.664) 1 (1.548)
10 21 (20.693) 5 (3.654) 1 (2.094) 1 (1.559)
11 4 (7.119) 1 (0.707) 2 (0.707) 2 (0.467)
00 111 (107.311) 14 (15.271) 14 (15.271) 6 (7.148)
H 01 17 (17.458) 1 (1.141) 4 (2.452) 0 (0.950)
10 18 (16.664) 1 (2.340) O (1.089) 2 (0.906)
11 6 (5.957) 1 (0.378) 0 (0.378) 0 (0.287)
x;: 31974
Total [ 371 (373.480) 76 (74.670) T1 (74.729) 52 (47.122)
xjy:  0.731
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and misclassification triplet (c,, ¢z, c3) is

B(Nipereresi 23) =
Y (vdd(cl) Vee(C2) V1£(3) Ta(T:) Pae(Ali i1, T:) Peg(Atij, i)

e + vaa(C1) Vee(c2) v1-g,p(cs) Ta(2:) Pae(Ati o1, 7:) Pes—p(Aij, 2:)
+ vad(e1) Vi—ee(c2) ves(cs) Ma(2i) Pay-e(Alij1, i) Proc s(Abij, zi)
+ v1-dd(C1) Vee(C2) veg(cs) T1-a(Zi) Pi-de(ALij1, i) Peg(Atij, z:)
+ vad(C1) Vi-ce(C2) v1-g,5(c3) Ta(Zi) Pa-e(Dtij-1, Z:i) Proey—s(Atij, 25)
+ vi-dd(c1) Vee(c2) v1-g.5(c3) T1-a(Z:i) Pr—de(Atij-1, Ti) Pep—-s(Abij, 2;)
+ v1-dd(€1) Vi—ee(c2) veg(ca) T1-a(Zi) Pr-di-e (Al i1, Ti) Proc,s(Alij, i)
+ v1-dd(€1) Vi-ee(c2) V1-g,4(cs) T1-d(z:)

X Pi_g1-e(Ab;j-1,%i) Pie1- (AL, -’Bi))
(6.3)

where Jikhe, = {j|Cij-2 = e1, Cijor = €2, Cij = ¢3,j = 3,...,n;}. Summing
over subjects, the total expected and observed number of state triplets (d, e, f) for

subjects with misclassification predictor triplets (c;, ¢z, c3) and covariate level [ are

I
E(Nde!rclqclvl) = z 62-'.‘ E(Ng)f,clqcs ; zi)

i=1

and Ngef e czeyl = E;{=1 0z n‘(;;)!m cyey» TEspectively. The associated Pearson statistic
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is

2 _ (Mdefcrcresd — E(Ndef.cwzm.l))z
X- Z E(Naeercres ) .

dvev!vcl 1C2,C3 |l

Summing over misclassification predictors and the covariate levels gives

2= Z (Res — E(Naey))’

oy E(Naey)

Where E( Ndc!) = Z E(Ndef!cl €2€3 ll) and nde! = ch ,C2 'call ndcfvcl [ o4} |"

€1,€2,€3 4

The observed and expected triplet counts for the parasitic infection data appear
in Table 6.5. For the very same reason that the ngo and n,q counts were not
Table 6.5: Observed and expected traasition triplet counts for the parasitic infection

data set under the perfect specificity model where p = 0.038/day, 77 = 0.034/day,
1}10 = 0.092 and Vo1 = 0.

Parasitic Infection Transition Triplet Counts
000 001 010 100 011 101 110 111
Observed | 285 7 43 67 66 35 61 238
Expected | 277.918 71.664 28.731 71.664 80.257 37.324 80.257 224.186
xi.: 16.117

completely independent in the one-step transition counts, the one-step triplet counts
ngoy and 7myoo are not completely independent and additionally, ng;; and nyyo are
not completely independent. Hence, Table 6.5 has fewer than 5 degrees of freedom.
The Markov model appears to produce a poorer fit to the transition triplet counts
than the one-step or two-step transition counts examined previously.

For the MS sex and treatment models, the observed and expected triplet counts
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stratified by exacerbation status triplets and covariate levels give sparse tables. The
treatment model results appear in Table 6.7. The observed and expected triplet
counts for the combined exacerbation status triplets and covariate levels are given
in Table 6.6. The observed and expected counts are very close despite the extreme
parameter estimates for the data which is not stratified by exacerbation status. For
the treatment model, the number of 111 active scan triplets expected is smaller than
observed. When the data are stratified by the covariate level and misclassification
predictor triplets, the fit is not as nice. Similar to the situation seen with the two-
step transitions, the placebo patients with 000 exacerbation triplets appear to have
poorer fits for the active scan triplets than the rest of the table. Otherwise, the
expected counts match well with the observed counts for both sparse cells and cells
that are not so sparse. Incidentally, the data set did not have any subjects which

had three consecutive exacerbations.

Table 6.6: Observed and expected transition triplet counts for the MS sex and
treatment models.

Sex Model

Scan Activity Triplets
000 001 010 100 011 101 110 111
Observed | 325 51 46 47 25 24 24 28
Expected | 327.464 47.547 46.237 47.580 29.973 24.774 25.992 24.460
x:.: 1.790

Treatment Model

Scan Activity Triplets
000 001 010 100 011 101 110 111
Observed | 325 51 46 47 25 24 24 28
Expected | 327.393 48.568 47.542 48.609 25.952 25.012 25.979 20.944
Xi.: 2.846
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Table 6.7: Observed and expected transition triplets by exacerbation status and treatment level. Expected

counts are in parentheses.

Exac’n Scan Activity
Status 000 001 010 100 011 101 110 111
000 47(37.940) 9(10.987) 8(10.861) 7(10.987) 8(8.068) 7(7.942) 5(8.068) 11(7.147)
001 4 (7.926) 3 (1.668) 2 (2.228) 1 (2.255) 2(1.483) 1(1.456) 5(1.646) 2(1.338)
010 6 (9.910) 2 (2.817) 2 (2.050) 5 (2.820) 1(1.855) 4(2.021) 1(1.852) 4(1.675)
P 100 7 (7.929) 3 (2.256) 1 (2.227) 2 (1.664) 4(1.643) 1(1.457) 2(1.486) 0(1.339)
011 2 (1.267) 0 (0.260) 0 (0.256) 0 (0.354) 0(0.213) 0(0.227) 0(0.231) 1(0.192)
101 2 (2.958) 1 (0.606) O (0.815) 1 (0.606) 1(0.540) 0(0.486) 1(0.540) 1(0.448)
110 2 (1.268) 0 (0.354) 0 (0.256) 0 (0.260) 0(0.231) 0(0.227) 1(0.213) 0(0.192)
000 | 60(61.882) 10 (8.813) 12 (8.500) 10 (8.808) 2(3.816) 4(3.508) 1(3.820) 3(2.853)
001 16(14.961) 2 (0.982) 3 (2.030) 0 (2.105) 0(0.745) 0(0.670) 1(0.904) 1(0.603)
010 14(18.221) 3 (2.557) 2 (1.101) 5 (2.565) 2(0.908) 0(1.004) 1(0.901) 1(0.743)
L 100 15(14.323) 3 (2.011) 1 (1.937) 0 (0.926) 2(0.858) 1(0.644) 0(0.718) 0(0.582)
011 3 (3.486) 0 (0.224) 1 (0.206) 1 (0.487) 0(0.153) 0(0.150) 0(0.168) 0(0.125)
101 4 (6.278) 1 (0.402) 0 (0.841) 0 (0.401) 0(0.305) 1(0.244) 2(0.306) 1(0.224)
110 5 (4.187) 0 (0.581) 0 (0.246) 1 (0.268) 0(0.203) 0(0.182) 0(0.183) 0(0.151)
000 78(82.365) 11 (9.534) 13 (9.404) 11 (9.533) 2(3.525) 4(3.397) 3(3.527) 2(2.716)
001 15(13.547) 1 (0.534) 0 (1.531) 2 (1.553) 0(0.451) 0(0.428) 1(0.564) 0(0.392)
010 19(14.975) 1 (1.715) 1 (0.567) O (1.714) 0(0.496) 0(0.600) 0(0.497) 0(0.435)
H 100 |15(12.833) 0 (1.472) 0 (1.450) O (0.506) 1(0.534) 1(0.406) 0(0.427) 1(0.371)
011 2 (2.296) 0 (0.088) 0 (0.084) 1 (0.261) 0(0.068) 0(0.070) 0(0.074) 0(0.059)
101 6 (5.358) 1 (0.205) 0 (0.599) 0 (0.205) 0(0.173) 0(0.149) 0(0.173) 0(0.138)
110 3(2.297) 0 (0.260) 0 (0.084) 0 (0.088) 0(0.074) 0(0.070) 0(0.068) 0(0.059)
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6.4 Likelihood Ratio Tests for Continuous Co-

variates

Model reduction can be conducted on the continuous covariates using likelihood
ratio tests. Indicators can be defined for each distinct value of a covariate. The
model including indicators of all levels of a covariate is referred to as the saturated
model. This saturated model can be compared with the model with only the
continuous covariate, the reduced model.

Saturated models were constructed for each of the standardized covariates age,

Table 6.8: Log-likelihoods for MS models with continuous covariates and associated
indicators. Each covariate value has an indicator in the saturated model.

Covariate
Initial
Age Burden Duration
number of distinct values 23 38 34

log-likelihood: saturated model | -284.552 -265.428 -271.480
log-likelihood: reduced model | -288.220 -290.782 -291.302

duration and initial burden in the MS data set. The log-likelihood values appear
for the full and reduced models in Table 6.8. In the case of age, the likelihood
ratio test statistic is 7.34 on 42 ((23 x 2 +4) — (2 x 2 + 4)) degrees of freedom.
The indicator model is not required. The same conclusion is drawn for the initial
burden and duration models. Hence, the reduced models for each variable perform
as well as the saturated indicator models. Further likelihood ratio tests could be

conducted on the models in Table 3.4.
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6.5 Simulated Gamma Dead Times

The extreme parameter estimates for the MS data set suggested that the model with
exponential state sojourn time distributions may not be appropriate. The transition
triplet counts of Section 6.3.3 confirmed this conclusion. Changing the sojourn
time distributions is next considered. As a natural extension to the exponential
distribution, a gamma distribution was examined for the dead time.

The appropriateness of a gamma dead time distribution was determined by
simulation. Data sets were simulated with the same observation times as the MS
data set and the simulated transition counts were compared with the actual counts
obtained. The simulation was carried out in the absence of misclassification pre-
dictors and covariates. However, fixed values of the misclassification probabilities
were considered.

The data were generated by first simulating the true process where exponential
intervals of mean length 1/p and gamma intervals of mean length x/p were con-
structed for the state 0 and state 1 sojourn times, respectively. Initially, an interval
for state 0 was generated and subsequent intervals alternate between state 1 and
state 0. The algorithm generated 100 transitions before the history for the subjects
was recorded. Each subject started in state 0 at time 0. Preliminary investigations
suggested mean times of 180, 210 and 240 days for state 0, n = 0.1 per day and
k=5,6,7,8 or 9 for state 1.

For each subject at each observation time, a uniform random number u;; be-
tween 0 and 1 was generated to determine if the true state was misclassified,

i=1,...,38, § = 1,...,17. The misclassification generation follows in the same
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manner as described in Section 5.4. An observation which was 0 became misclassi-
fied asa lif uy; < vo1 and an observation that was 1 became misclassified as a 0 if
uf; < Vio- Misclassification probabilities of 0, 0.2, 0.05 and 0.10 were considered.
Transition triplet counts for selected simulated data sets appear in Table 6.9. In
the absence of covariates and misclassification predictors, these results indicate that
a model where the state 0 sojourn time is exponentially distributed and the state 1
sojourn time has a gamma distribution is worth pursuing further. Nonexponential
sojourn time distributions leads to the consideration of more general semi-Markov
models in the next chapter.
Table 6.9: Simulated data sets with exponential and gamma distributed sojourn

times for states 0 and 1, respectively, based on the MS observation times. The
mean times are given in days for the two states and 7 = 0.1/day.

Transition Triplet Counts

Simulated data:

1/ P r:,/ n Vo Uig Mgoo Moot Mo10 100 Mo11 Ti01 7110 Tl
180 50 0.02 0.02 334 5 41 55 26 15 28 16
210 60 0.02 0.02 323 57 40 52 32 17 31 18
240 60 0.02 0.10 336 54 43 51 25 16 24 21
240 70 0.05 0.05 294 63 48 60 34 18 34 19
240 80 0.02 0.02 311 58 38 55 36 14 35 23
Observed data: 325 51 46 47 25 24 24 28




Chapter 7

Semi-Markov and General

Markov Processes

7.1 Overview

The suggestion of a gamma distributed dead time motivates a redevelopment of the
true process specification. A semi-Markov model is proposed for the true process
based on joint probabilities when the process is in equilibri;lm. When two states
are considered, the semi-Markov model developed is equivalent to a Type I counter
model with exponential open time distribution and gamma dead time distribu-
tion. Via approximation, the equilibrium probabilities at three consecutive time
points are used with misclassification probabilities to calculate expected frequen-
cies. Minimizing the discrepancy between the expected and observed counts leads
to parameter estimation. This approach provides a better fit for the PI data set

than the Markov model with misclassification implemented previously through a

134
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likelihood approach. Models for the MS data set suggest substantial heterogeneity
which is further investigated by examining simulated run length distributions.
More general Markov models are also proposed. The Type I counter is extended
to a general Markov process with a small number of states. State transitions can
be made from any state to any other state and misclassification probabilities are

defined for each type of misclassification.

7.2 Introduction

Counter models with exponential sojourn time distributions may be too restrictive
for some processes. This may be the case in the MS data set where the estimates
obtained indicated the model specification was not correct. Such results motivate
consideration of a different model specification for the true process. The simulated
data constructed in Section 6.5 suggested that a model with a gamma distributed
dead time may be appropriate.

A semi-Markov model where the two state sojourn time distributions are ex-
ponential and gamma is developed in Section 7.3. The theoretical development
is described in Section 7.3.1 and the implementation and results appear in Sec-
tions 7.3.2-7.3.5. Section 7.4 generalizes the model given in Chapter 2 to include
Markov processes with a small number of states and more than one misclassification

predictor or covariate.
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7.3 Semi-Markov Process

7.3.1 Model Development

When the waiting time in each state is not exponential, a Markov process does
not adequately describe the situation. The process may follow a continuous-time
semi-Markov process where the sojourn times are independently distributed given
the states entered. Semi-Markov models have been considered by many authors
in several fields including insurance, reliability and medicine (see McGilchrist and
Hills (1991) and Cox and Miller (1965), for example).

The goal of this section is to determine joint probabilities for states at three
consecutive observation times under an equilibrium assumption. The probabilities
will be used to calculate expected triplet counts which will be compared with the
observed counts to obtain parameter estimates. Before the joint probabilities can
be determined, several conditional probabilities are defined for a two-state semi-
Markov process in continuous time. The probabilities conditional on a transition

at time 0 are defined as

fa(t)dt = Pr(stay in a until ¢, jump to b in [t,¢ + dt)
| transition into a at time 0) (7.1)
uqs(t) = Pr(in b at time ¢ | transition into a at time 0) (7.2)

uatk(t, 7) = Pr(in b at time ¢, k at time t + 7| transition into a at time 0) (7.3)

where a, b and k are states of the process, ¢, > 0 are times (or lengths of time) and
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by convention fa.(t) = 0. With these definitions, note that ), uss(t) = 1 for all ¢
and ), , uask(t,7) = 1 for all ¢, 7. These conditional probabilities are conditional
on a transition into state a at time 0.

Much of the mathematical development that follows can be extended to han-
dle more than two states and different distributions for the state sojourn times.
However, attention is restricted here to the case of two states. Suppose that state
0 has an exponential sojourn time distribution with rate p and that state 1, the
dead time, has a gamma sojourn time distribution with scale n and shape k. The

sojourn time probability distribution functions for the two states in this case are

(nt)*te™™

fult) =pe™  folt) =2 o £>0

where p and n may depend on baseline covariates in the same manner as described in
Section 2.6, p,n > 0. The transition probabilities associated with the semi-Markov

process are defined as
le o]
Pab = Pr(next jump is to b|transition into a) = / fan(t) dt.
0

For the process in equilibrium, the joint probabilities for states at two or three

consecutive observation times are

wa(t) = Pr(in a at time ¢9 and b at time ¢, + t) (7.4)

Tabk(t, 7) = Pr(in a at time ¢y, b at time £y + ¢ and k at time o+t +7) (7.5)
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and the probability of occupying state a is defined as
7g = Pr(in a at time 0) = Zm,b(t) = Znabk(t,r)
b bk

for all ¢ and 7.
Additionally, when the process is in equilibrium, the conditional probabilities

for two states given the state occupied at time 0 is defined as
das(t) dt = Pr(stay in a until ¢, then jump to bin [t,t + dt) | in a at time 0).

Here, the probability is conditional on occupying state a at time 0 rather than
transitioning to state a at time 0 as in (7.1). For a two state alternating renewal

process, these probabilities are forward recurrence time probabilities, with densities

f:o fm('lD) dw —pt
$or(t) = j;mwfm(w) dw pe
< 10\W dw
$10(t) = f'& wfflf)(u))) do %(1 ~ I(k,nt))

where I(k,nt) is the incomplete gamma function

1 m k=1 —w
I(n,nt):m A w ™" e dw.

Further, the probability of occupying a certain state is a simple function of the
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mean sojourn times for each state in the alternating renewal process,

n = P

n+ Kp n+Kp

Mo =

First, the formulas for the ug(t) and ua(t, ) are required to determine the

equilibrium joint probabilities. The probabilities uq(t) are evaluated as

wilt)= ¥ [ fulw st - w) w30 3 [ fuelw (1.6)

L#a {#a

with the initial condition us(0) = §.5 where 85 = 1 if a = b and 0 otherwise. To
prove (7.6), note that in order to have a transition from state a so that b is occupied
at time ¢, a transition must be made to another state at some time w <t and the
process must occupy b after a further time interval of length ¢ — w. If a = b, the
above description is possible or the process makes a transition into ¢ at time 0 and
occupies a for an interval of length at least £.

The development for three consecutive states follows similarly. The uq(t, 7)

are

Uask(t, ) =) / far (W) wgp(t — w,7) dw
R - (1.7)
+5abz:/ + w)u(t + 17— w)dw+6abkz: fat(w)dw

L#a L#a

where 8. = 04 0. The initial conditions are u.pe(0,0) = dabk, %ask(0,7) =
8ap upk(T) and uqpk(t,0) = ugs(t) Sk To prove (7.7), note that in order to have

state 0 at three consecutive observation times, then one the following possibilities
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must occur:

e the process makes a transition into 0 at time 0, stays in 0 for an interval of
length nearly w, where w is some value in (0, t); makes a transition to another
state; resets the clock time to 0; and occupies state 0 at time ¢ — w and state

0 at timet —w + T;

o the process makes a transition into 0 at time 0, stays in 0 for an interval of
length nearly w, where w is some value in (¢,t + 7); resets the clock time to

0; and occupies state 0 at time ¢ + 7 — w;

o the process makes a transition into 0 at time 0 and stays in 0 for an interval

of length at least ¢ + 7.

When the process is in equilibrium, the joint probabilities for states at two and

three time points are calculated as

Tap(t —waz:/ Par(w) ugp(t — w) dw + dap 74 Z/ dar(w)d

t#a l#a
Wabk(t 1‘ =T, Z/ (ﬁa[ uu,;,(t—'w T)d
L#a
t4r o
thom Y [ dulw)valt +7-w)dw +fuema Y [ el o
L#a L#a

(7.8)

with initial conditions 745(0) = dap Ta, Tabk(0,0) = dabk Tay Tabk(0,7) = dab Woie(T)
and mapk(t,0) = 7a5(t) dsk. Since the joint probabilities are not conditioned on the
state at time 0, (7.8) have a similar form as (7.6) and (7.7) with @.;(t) and weights
7, instead of fuu(t).
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Evaluating the joint probabilities ma;(t) and masi(t, 7) is not feasible unless there
are only two states and the shape parameter is 1 or 2. In these cases, Laplace
transforms can be used to solve (7.6) and (7.7). For all other situations, numerical
methods are required to evaluate the joint probabilities. To solve (7.6)—(7.8), an
approximation scheme is described in Section 7.3.2.

These joint probabilities can be used to calculate the expected counts of tran-
sitions for categorical covariates in much the same way as (6.1) developed in Sec-
tion 6.3.1. The parameters p and 7 appearing in the preceding development become
p(x;) = exp(xiB,) and 7(x:) = exp(x;8,). Attention is restricted to the case of one
categorical covariate. The expected value for subject ¢ with covariate z;, observed

state pair (d,e) and misclassification predictor pair (c;, cz) is

E(Gf,i)'cm;x,-) = Z (vdd(cl)v,e(q)vrdc(Atij, ;)

jeJy).,
+ vad(€1) Vi-ce(C2) Ta1-c(Atij, )
(7.9)
+ vi-dd(C1) Vee(C2) T1-d.e(Atij, i)
+ v1-gd(C1) Viee(c2) T1-d1-c(Dlij, 1‘;))
where j,_g:)c, = {j|Cij-1 = c1,Cij = ¢2, ] = 2,...,n;}. Summing over subjects, the

total expected counts of observed state pairs (d,e) with misclassification predictor

pair (c;,c;) and covariate level I, I € {z:}:, is

I
E(Giemers) = Y 824 B(GS) i %)

i=1

and the observed count is denoted by n4e c,c; 1.
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Similarly, the expected counts for transition triplets can also be calculated. Let
J& s = {j|Cij-z = e1, Cijo1 = ¢2,Cij = €3, j = 3,...,n;}. The expected value
for subject 7 with covariate z;, observed state triplet (d, e, f) and misclassification

predictor triplet (cy, ¢z, ca) is

E(HS, . o0 i)

fic1cze3?

= Y (vdd(f-‘t) Vee(C2) yf(ca) Maep (Ati o1, Bijy i)
j€dtscs
+ vad(c1) Vee(C2) Vi-g,£(C3) Taen—(Ali -1, Abij, T:)
+ vad(c1) Viee(C2) vis(ca) Tap-e s {Abi j-1, Abi, i)
+ v1-dd(€1) Vee(c2) ves(Ca) Mi—dep(Ati j-1, Abij, T5)
+ vag(c1) Vi—ee(c2) vigp(c3) 11— (AL; j-1, Abij, z;)
+ vi-dd(C1) Vee(c2) vi—y,s(c3) T1-de1-#(Al; j-1, Abij, T5)

+ v1-dd(C€1) Viee(C2) Ves(ca) T1—d1-e,s(Al; j—1, Abij, Z5)

+ 'Ul—d.d(cl) vl-e.e(cz) 111-!.{(63) T1-d,1-e,1-f (Ati.j—h Atij, zi)) .

(7.10)

Summing over subjects, the total observed and expected counts of observed state
triplets (d, e, f), misclassification predictor triplets (¢, ¢z, c3) with covariate level [,

are Tef e cyesd a0d

I
E(Hdeftcl‘:?clul) = Z 530'-’ E(ng)f'qc:cs; zi)’

=1

respectively.
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Considering a gamma dead time in the model makes the likelihood function in-
tractable and an alternative method to maximum likelihood estimation is required
for parameter estimation. Providing a good fit to the observed counts is a necessary
condition for an appropriate model and motivates parameter estimation by min-
imizing a discrepancy measure that compares the observed and expected counts.
Although the non-independence of the transitions prevents use of a x? distribution
to assess goodness-of-fit, a discrepancy function of a Pearson type form can be
minimized to estimate © = (aq1,@10,8,,8y, k). Let O and g represent observed
and expected counts with parameter vector © for a generic model, respectively.

Minimizing a measure of the form
_£.)2
Z (O_ge_g‘L)_ (7.11)

with respect to © leads to a biased estimating function. A better estimating func-
tion results from modifying the discrepancy measure. Consider finding g9 by
minimizing

Y. %)— (7.12)

with respect to £o. Provided that each iteration leads to an improvement in the
searching algorithm, this procedure will lead to solutions of an unbiased estimating
function, and (7.12) will be easier to minimize than (7.11). However, if the expec-
tations are costly to compute or if © contains several parameters, an easier function

to minimize is of the form

(O - )’
o (7.13)
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As will be discussed further in the next section, the approximation scheme im-
plemented to calculate the equilibrium joint probabilities requires the choice of
a discrepancy measure which is easily minimized. The significant computational
advantage makes (7.13) the preferred discrepancy function for the models which
follow.

The minimization of the Pearson x? test statistic (7.11) for parameter estima-
tion is generally referred to as minimum y? methods (see Grizzle, Starmer and
Koch (1969), for example). For multinomial situations, the x* distribution can be
used to assess goodness-of-fit as well as more complicated hypotheses. However,
in the context of the model considered here, the counts will not follow a multino-
mial distribution and a x? distribution cannot be used to assess the model or any

hypotheses.

7.3.2 Approximating the Joint Probabilities

For the data sets considered here, observations are only available at discrete time
points. Hence, interest focuses on the value of the probabilities of the previous
section at these discrete time points. Numerical methods can be easily implemented
to solve the convolution formulas and provide estimates of the probabilities at
discrete times. Deriving recursion relations that approximate ugs(t) and uqu(t, 7)
at the discrete observation times is the approach proposed.

The formulas of the previous section are recast to contain cumulative distribu-
tion functions rather than the probability density functions. This change yields

more accurate numerical results. Equations (7.6) and (7.7) can be re-expressed in
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terms of the cumulative probability distribution for each sojourn time,
t
t) = / fab(w) dw. (7.14)
0
Applying integration by parts to uss(t) and noting uq(0) = dap yields

ug(t) = 2 (Fat (w) ues(t — w)| gy + /: For(w) tigs(t — w) dw)

L#a
+ 8w ) (1 Far(t)) (7.15)
{#a
= Far(t) (826 — 0a eF w) ugp(t — w) dw + 4,
; ( at(t) (826 — dap) + /0 e (W) tep( b)

where u4(t) = d—"ﬁ;—:(—'-). Similarly, with a change of variables and recalling the fact

that uapr(0,7) = dap ugr(7), the formula for u,ui(¢, 7) can be rewritten as

uabk(t,-r) = 2 (Fd(w) 'u.u,k(t - w,‘r)|f”___0 +'/0£Faz(w)‘l'l.¢bk(t - w,r) dw)

L#a
t+r

+5°"2 ( w)ug(t +7 — W) + | Far{w)der(t + 7 — w) dw)
L#a ¢

+ dabk Z(l — Fou(t + 7))
L#a

—Z (Fd(t 'uu,(‘r) (Ju, - Jab / Fd(w) uu,k(t -w T) dw)

L#a

+ Jabz ( ak + Fal(t + T) (th —Jak / Fal(t +1D)'ll.u¢(1' - ‘lU) d’llJ)
L#a

(7.16)

where tqp(t, 7) = ﬂ%‘tﬁl.
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Consider the interval of time [0, T'] where T is the maximum time between ob-
servations for the entire data set. The interval can be partitioned into n, segments,
to =0,ty,...,t,, =T, each of equal length ot = (T — to)/n.. A given point ¢, cor-
responds to 8t + o, for some positive integer 7. The integrals in (7.15) and (7.16)
can be approximated by Riemann sums where the leftmost endpoint is evaluated.
Such method gives a first order approximation in 4t.

The derivatives t45(t) and %q.(¢, T) can be approximated by first order forward

differences

-~ uqap(t + 0t) — uqgp(t)

i’labk(t’ 1_) s uabk(t + Jt, ‘;3 - uabk(ta T)

and hence, the discretized version can be written as

Uab(trs1) — uap(ts)
ot

. t, ,t - t,t
uabk(tr’ t') ~ uabk( +1 .)Jt uabk( Y ‘)

‘flab(t,.) ~

where t, =t and T = ¢, for some integers r, s > 0. Since the ¢ and 7 represent days
in the data sets considered here, each discrete observation time can be related to

one of the tg,t,,...,t,, when the associated partition is sufficiently fine.



CHAPTER 7. SEMI-MARKOV AND GENERAL MARKOV PROCESSES 147

Approximating the integrals in (7.15) with Riemann sums gives

uab(tr) =~ Z (Jab + Fa[ (tr)(slb - Jab) + i Fat (tm) dtb(tr - tm) Jt)

t#a m=0
~ Z (Jab (1 = Far(t,)) + 0ep (Far(tr) — Fae(tr1)) (7.17)
L#a
+ i(Fd (tm'H) - Fdl (tm))ulb(tr—l-m)) r 2 1

since t; — tyy = ts—m and Fy(to) = Fas(0) = 0. It can be easily shown that (7.17)
satisfies the initial conditions and constraints identified. Note that choosing to
approximate the derivatives with the forward difference allows ugs(t,) to depend
only on {ues(ts)}esa for s <.

Following the same discretization scheme, an approximation to ugu(t,7) is

r—1
Uabk(tr, te) = Z (Fa(tr)uu:(t.) (0eb — das) + Z For(tm) tepr(te—m,ts) Jt)

L#a

m=0

+ dap Z (&k + Fae(trss) (Ser — dar) + z—: Fat(teim) ten(te-m) Jt)

L#a m=0
= 3 (60 (Pt = Pt} west)
L#a
+ Jab(lsak (1 - Fal (tr+.)) + th (Fal (tr+n) - Fal (t,+,_1)))
r=2
+ Z(Fat (tm+1) - Fal(tm)) “tbk(tr-l—m’ ta)

=2
+ Jab E(Fal (tr+m+l) - Fal (tr+m)) utk(tl-l—m))

m=0

for r > 1, s > 1. All initial conditions and constraints are also satisfied by this
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approximation.
The values of equilibrium joint probabilities can be approximated in the same

manner as g (t) and ugk(t, 7). The approximations for (7.8) are

Tap(te) X Tq Z (5,,1, (1 = Bar(tr)) + deb (Par(tr) — Pae(tr-1))
L#a

+ z—:((bd (tmi1) — Baz (tm)) utb(tr—l—m))

m=0

Wabk(tr,t-) X Tq Z (th ((pat (tr) - (pat (tr—l)) utk(t:)
L#a

+ Jab(sak (1 - (Pat (tr-{-a)) + th (‘Dat (tr+n) - (pal (tr+a—-1)))

-2
+ ) (Bat(tms1) — Bat (tm)) vebk(tr-1-m, ta)

m=0

-2
+ Jab E(‘pal (tr+m+1) - (pat (tr+m)) U k(tn-l—-m))

m=0

where

(L) = /t Pap(w) dw.

In the two state case considered here, the value of ®¢;(¢,) can be easily calculated
since ®o;(¢,) = Foi(t,). Conversely, numerical integration methods are required to
evaluate ®,q(t,).

These approximated equilibrium joint probabilities can be used in (7.13) with
appropriate stratification by misclassification predictors and covariates for parame-
ter estimation. The smaller the value of 8¢, the better the approximation. However,

the recursion relations take more time to calculate for very small values of §t. This
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is particularly so for the calculation of uak(t,,t,). Generally, n, = 70 provides
accuracy of about two significant digits in a reasonable amount of time. With the
estimation technique used here, this is a reasonable approximation since very small
changes in the parameters do not dramatically change the measure of discrepancy
between observed and expected counts. As with the likelihood models, calcula-
tions are provided by the author’'s C program using the linear algebra package
Stuber (1996). The minimization algorithm is started at several different starting
conditions and is stopped when the discrepancy measure fails to decrease by more

than 10~° on one iteration.

7.3.3 Parasitic Infection Fitted Model

The results of Chapter 6 suggested that an underlying Markov process was not
suitable for the parasitic infection data set. Table 6.5 indicated that the observed
transition triplets were not modeled well and suggested a change to the model is
necessary. These findings motivate a semi-Markov model based on the equilibrium
triplet probabilities for the PI data set.

The parameter estimates under a semi-Markov model with exponential open
time distribution and gamma dead time distribution are given in Table 7.1. The

estimates are obtained by minimizing

D~ Z Z E (et — E(Haey))? (7.18)

where ngs and E(Hgy) are the total observed and expected counts of parasitic
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Table 7.1: Observed and expected transition triplet counts for the parasitic infection
data under a semi-Markov model with exponential open time and gamma dead time.
Drop-5 jackknife standard error estimates. (6t = 0.1, n, = 70)

Parameter Estimate (se) Correlations Term Estimate EMT (days)
Boo -0.832 (0.686) p 0.435  State 0 2.30
Bno -4.515 (0.334) 0.226 n 0.011  State 1 2.26

In(k) -3.698 (0.703) —0.967 —0.042 K 0.025
ag -2.586 (0.364) —0.151 —0.596 —0.025 | w0 0.070
Observed and Expected Triplet Counts
000 001 010 100 011 101 110 111
Observed | 285 7 43 67 66 35 61 238
Expected | 285.190 74.552 44.046 66.252 65.771 33.050 65.456 237.683
D: 0.547
Equilibrium Joint Probability Estimates
000 001 010 100 011 101 110 111
Taes(7,7)| 0.312 0.084 0.044  0.074 0.064 0.020 0.063 0.339
m 0.497 |
Observed and Expected Pair Counts under Triplet Estimates
00 01 10 11
Observed | 378 119 112 321
Expected | 383.670 117.121 105.907 323.302
Equilibrium Joint Pair Probability Estimates
00 01 10 11
Tde (7) 0.397 0.107 0.094 0.402
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detection triplets (d, e, f), d,e, f € {0,1}. The joint equilibrium pair and triplet
probabilities are calculated based on the parameter estimates minimizing (7.18).
The observed and expected pair and triplet counts are also given under the param-
eter estimates.

This estimation technique provides a model which more closely fits the observed
triplet data than the likelihood approach. In particular, the 000 and 111 expected
counts are close to the observed counts. There does not appear to be an over-
representation of 000 runs with this model. The equilibrium probability estimates
appear reasonable since the observed data suggests that subjects are almost equally
likely to be in each state. The subjects are more likely to be in the same state for
three consecutive observation times. The misclassification probability is slightly
lower than the maximum likelihood estimate of 0.09. The real difference between
the model specifications is seen in the p, 7 and & estimates. The shape estimate is
much smaller than the shape of 1 equivalent to an exponential distribution. Under
the semi-Markov approach, the estimate of p is about 10 times larger and the
estimate of n is about 33% of the corresponding estimates under the likelihood
approach with exponential sojourn times.

In Tables 7.2 and 7.3, the estimated model in Table 7.1 is compared with models
where the shape is specified and the remaining parameters are estimated. For the
specified shape models, the estimated mean times increase as the shape increases.
The estimate of vyo is fairly stable for all models and appears to be in the 7-12%
range. The Markov model, & = 1, gives estimates for p and 7 close to the maxi-

mum likelihood estimates in Table 3.6 on page 52. When the shape is allowed to
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Table 7.2: Estimates for all other parameters when shape is specified as 0.5 ,1 ,2
or 5 along with estimates from Table 7.1 where & = 0.025. The Markov model
corresponds to k£ = 1 and estimated mean times (EMT) given in days.

Estimates by Shape
£=002 k=05 kK=1 K£=2 kK=9H
State 0: Uninfected
B -0.832 -3.058 -3.339 -3.542 -3.671
p 0.434 0.047 0.035 0.029 0.025
EMT 2,296 21.293 28.194 34.536 39.291
State 1: Infected
Bno -4515 -3.757 -3.370 -2.944 -2.221
n 0.011 0.023 0.034 0.0563 0.108
EMT 2262 21.412 29.071 37.973 46.092
Misclassification
ag -2.586 -2.662 -2.498 -2.173 -1.940
V10 0.070 0.065 0.076 0.102 0.126
Statistic
D 0.547 7.240 12.169 23.771 30.460

Table 7.3: Expected triplet counts for the PI models in Table 7.2.

Expected Triplet Counts
Triplet | Observed £=0025 £=05 K=1 &K=2 &K=35
000 285  285.219 286.883 289.636 294.306 297.856
001 7 74.551 72.210 70.173 65.515 60.906
010 43 44.046 31.403 26.016 21.152 19.388
100 67 66.251 72.072 70.177 65.576  60.975
011 66 65.767 72.823 77.139 81.021 82.345
101 35 33.047 31976 32.982 36.668 40.830
110 61 65.453 72.822 77.142 81.050 82.402
111 238  237.666 231.807 228.734 226.713 227.297
D - 0.547 T7.240 14.169 23.770  30.460
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be estimated, the estimated mean times are small and less than the time between
observations. Further examination of the expected counts for these models in Ta-
ble 7.3 shows why the estimated shape is small. Generally, the expected counts
are fairly similar for the models where the shape is 0.025, 0.5 or 1. The largest
difference in these models appears to be the 010 frequency. This frequency is fit
much better when the shape is 0.025 than when the shape is 1 or higher. This
sequence seems to be influential in the estimation of the shape parameter. While
this model does fit better than the Markov model, knowledge of the distribution of
the statistic D is necessary to assess if this model fits significantly better than the
Markov model. Simulation methods could be used to investigate the distribution
and properties of D.

Using the estimated mean times in Table 7.1, simulations were conducted to
see if the run length distributions of the observed PI data set could arise from the
model estimates. Exponential sojourn times were generated with a mean of 2.3
days for state 0. For state 1, gamma sojourn times were generated with a mean
of 2.26 days and shape 0.025. The true states were determined by comparing the
observation times of the PI data set with the alternating time intervals generated
for each subject. These simulated true data sets were then misclassified according
to the misclassification probability settings vio = 0.07, v10 = 0.09 and vy = 0.15in
a similar manner as described in Section 5.4. Note that vg; was set to be 0 in all
simulations.

One hundred true data sets were generated and misclassified 20 times for each

misclassification probability setting in S-PLUS (MathSoft, Inc. (1996)). Sample
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Table 7.4: Sample run length distributions for simulations! which are close to the
PI data set. Data is generated based on the estimated state mean times and shape
estimate in Table 7.1 with misclassification probabilities vg; = 0.07, vo; = 0.09 or
vo; = 0.15. The means are given in days.

Run Length Distribution of 0s
Sm| 1 2 3 45 6 7 8 910111213141516 171819 20 21 22 | Mean

S1 (5221141616 410 3 4 9 2 3 1 02 0110 00 0f29.06
S2 |5323151511 8 6 44 3 43312110000 02867
S3 [5324141111 9 782 561221010000 1]|2937
S4 |532815 915 9 8 717 41210000001 0(2726
S5 (5626141115 8 831 4 21201110110 02661
S6 (512619 911 9 8 80 8 41210010000 02738
S7 (502517171110 711 4 3 0 2 01 110110 0j2681
PI [5226141212 5 273 315201000000 0]2525

Run Length Distribution of 1s

Sm| 1 2 3456 7 8 910111213141516 17 1819 20 21 22 | Mean
S1 {613011 6 8 2 333 010001000O0O0O0O0O0]|1780
$2 (622913 7 8 3 035 2100000O0O0O0GOCDO0 01816
S$3 /63281112 52 225 000100000O0O0O0TO0O0]|1737
S4 [62271211 6 2 6 22 2 100001000O0O0O0 01886
S5 |57281214 410 312 102100100000 02033
S6 (592913 8 6 4 442 210000000100 01947
S7 56271113 5 3 503 211210000100 02148
PI [612810 810 4 485 2 1110000010 0 0f2260

1S1, S2, S3: generated with v19 = 0.15
S4, S5: generated with vy = 0.09
S6, ST: generated with vy = 0.07
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run length distributions for simulated data sets appear in Table 7.4. These results
suggest that with the misclassification probability vyo in the 7-15% range, data sets
can be generated with estimated mean times of 2.3 and 2.26 days for states 0 and
1, respectively, which have similar run length distributions as the PI data set. In
particular, the runs of lengths 1, 2 or 3 for each of the states agree well for the
simulated data sets and the PI data set. The estimates in Table 7.4 appear to be
plausible in the sense that appropriate run length distributions could arise from
such a model. Note that other shapes were also considered with the same state 1
mean time. Simulations with shapes 0.5, 1 and 2, conducted in the same manner
as described above for k& = 0.025 failed to yield similar run length distributions as

the PI data set.

7.3.4 Multiple Sclerosis Fitted Models

Unlike the PI data set, the likelihood approach for an underlying Markov model
for the MS data set provided good fits to both the observed pair and triplet data
despite the extreme parameter estimates. Attention is now restricted to treatment
(P=placebo, L=low dose, H=high dose) models where estimation is conducted by
use of the equilibrium triplet probabilities.

The full model involves parameters for each treatment level and exacerbation
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status which can be expressed as follows:

M1: p(zLi, THi) = exP(ﬂpP + ﬂpLzLi + ﬂpﬂzm)

n(zLi, £Hi) = exp(Byp + Bnrzri + Bouzhi), shape &
edotarci; edo+aicij

vor(6) = T omtas; tolsd) =

i=1,...,38,j=1,...,17

1 + exstaicij

where zr; and zy; are indicator variables of low or high dose treatment group
membership for subject %, respectively, and ¢;; is the observed exacerbation status
for subject ¢ at visit j. In addition, some of the parameters are constrained. The
shape is restricted to lie in the interval {0.01,7.00] and transitions are restricted
to occur no more than once per day and be at least as frequent as once every
three years. These constraints are imposed merely to facilitate timely minimization.
Preliminary investigations indicated that more extreme values result in taking much
time to calculate the numerical integrals and many more function evaluations for
minimization yielding much larger minima than those found with other starting
conditions. No constraints are applied to the misclassification probabilities other
than they must lie in [0,1}.

Since the exacerbation status is included in the model, the triplet counts can
be stratified by both treatment level and exacerbation status triplet. However, not

all cells in the table have at least one count. To alleviate division by zero, the
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discrepancy function is slightly altered. Consider the function

2= T % (Rdetarcrest = E(Haesrcrea )’ (7.19)

de,fercaes L Mdefereresd + 1

which de-emphasizes disagreement between observed and expected counts for cells
with few or no counts observed. Other alterations could be made, although the
effects of different adjustments have not been definitively investigated (Grizzle,
Starmer and Koch (1969)). The observed and expected counts of active scan
triplets (d,e, f) and exacerbation status triplets (ci,cz,c3) for treatment level !
are denoted by nges e cpest a0 E(Hes i cres1), Tespectively, d e, £, ¢1, €2, ¢3 € {0,1},
l € {P,L,H}. The parameter estimates appear in Table 7.5 and the fits appear in
Tables 7.6 and 7.7. The estimates for the equilibrium joint probabilities m4.¢(¢, T)
for t = 7 = 42/28 also appear in Table 7.5 along with the resulting equilibrium
joint pair probabilities 74 (t), where m4.(t) = b.¢7aes(t,0).

The shape estimate is small and near the boundary of acceptable shapes. The
exacerbation terms appear to be insignificant and lead to the consideration of a
model where misclassification probabilities are independent of exacerbation sta-
tus. The vg;(-) probabilities are small while the v,o(+) probabilities are near 0.5.
These values are consistent with the maximum likelihood estimates presented in
Section 3.3.1. However, the estimated mean times under a semi-Markov model ap-
pear to be more reasonable for the different treatment groups. The expected counts
for the active scan triplet 000 and the exacerbation status triplet 000 do not closely
agree for the placebo and high dose subjects. The fit for the triplet data is similar

to the fit given in Table 6.7 under the maximum likelihood estimates.
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Table 7.5: Model M1 estimates found by minimizing D, for the MS data set with
exponential open time and gamma dead time distributions with exacerbation status.
Drop-1 jackknife standard error estimates, triplet and pair equilibrium probabilities
for 42 day intervals. (8t = 0.042, n, = 58, 28-day timescale)

Parameter Estimate (se) | Term Estimate EMT (days)
State 0: Remitting
Bop -1.510 (0.388) | p(0,0) 0.221 Placebo 126
BoL 2.444 (0.192) | p(1,0) 2.543 Low 11
Bort 1.052 (1.289) | p(0,1) 0.632 High 44
State 1: Relapsing
Bnp -6.506 (0.237) | 7(0,0) 0.001 Placebo 188
BnL 4.413 (0.299) | n(1,0) 0.123 Low 2
Bra 3.265 (1.169) | 7(0,1) 0.039 High 7
In(x) ~-4.600 (10719 | « 0.010
Misclassification
ag -2.935 (0.495) | voy(0) 0.050
o -0.853 (0.991) | voy(1) 0.022
aj -0.211 (0.122) | v10(0) 0.447
aj 0.229 (0.246) | vio(1) 0.504

Equilibrium Joint Probability Estimates (74.¢(1.5,1.5))
7l’000() 17001() Woxo() 11’100() 1"011() 7I’101() 7l’110() 1"111()
0.380 0.011 0.005 0.008 0.007 0.000 0.007 0.583
0.594 0.107 0.086 0.051 0.041 0.009 0.034 0.078
0.771 0.043 0.029 0.024 0.017 0.001 0.016 0.098
Equilibrium Joint Pair Probability Estimates
1|’00(1.5) 7l’01(1.5) 1I’10(1.5) 1?11(1.5) m™
0.391 0.012 0.008 0.589 0.598
0.702 0.127 0.060 0.112 0.172
0.815 0.046 0.025 0.114 0.140

meo

e v
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Table 7.6: Active scan observed and expected transition pair counts by exacerbation
status and treatment level for model M1. Expected counts in parentheses.

Exacerbation Scan Activity
Status 00 01 10 11
P 00 66 (61.285) 22 (21.848) 17 (21.633) 23 (23.235)
01 11 (15.655) 5 (4.479) 9 (5.842) 6 (5.024)
10 14 (15.150) 6 (5.701) 4 (4.284) 6 (4.865)
11 2 (1.600) 0 (0.485) 0 (0.480) 1 (0.435)
L 00 92 (96.934) 18 (17.031) 15 (12.614) 7 (5.421)
01 22 (26.722) 5 (3.496) 6 (3.559) 2 (1.223)
10 26 (26.643) 3 (4.740) 3 (2.400) 3 (1.217)
11 5 (4.748) 0 (0.632) 1 (0.443) 0 (0.177)
H 00 111 (118.919) 16 (13.875) 18 (12.329) 6 (5.877)
01 24 (22.010) 2 (1.735) 1 (2.348) 0 (0.907)
10 24 (21.986) 1 (2.632) 1 (1.482) 1 (0.900)
11 3 (2.530) 0 (0.206) O (0.177) O (0.088)

Next consider a model with misclassification probabilities which are independent

of exacerbation status. Model M2 can be specified as

M2:  p(zLi,zHi) = exp(Bop + BorLi + BorrTai)

n(zLi, zai) = exp(Bnp + Bprzri + Bruzhi), shape &
eo e%0
T+en 0T T1em

i=1,...,38,j=1,...,17.

Vo =

The discrepancy function used for estimation is

=YY (Raegs — E(Haess))? (7.20)

def I Ndef,l
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Table 7.7: Active scan observed and expected transition triplet counts by exacerbation status and treatment

level for model M1. Expected counts in parentheses. (D, = 62.842)

Exacerbation Scan Activity
Status 000 001 010 100 011 101 110 111
P 000 47(39.730) 9 (9.106) 8 (8.945) 7(8.949) 8(8.465) 7(8.290) 5(8.454) 11(10.061)
001 4 (8.134) 3 (1.443) 2 (1.937) 1(1.933) 2(1.476) 1(1.446) 5(1.866) 2 (1.766)
010 6(10.165) 2 (2.461) 2 (1.764) 5(2.424) 1(1.847) 4(2.287) 1(1.843) 4 (2.209)
100 7 (8.134) 3 (1.967) 1 (1.936) 2(1.409) 4(1.864) 1(1.445) 2(1.477) 0 (1.767)
011 2 (1.275) 0 (0.240) 0 (0.236) 0(0.321) 0(0.197) 0(0.244) 0(0.249) 1 (0.237)
101 2 (2.976) 1 (0.559) 0 (0.749) 1(0.548) 1(0.581) 0(0.451) 1(0.581) 1 (0.554)
110 2 (1.275) 0 (0.325) 0 (0.235) 0(0.236) 0(0.250) 0(0.244) 1(0.197) 0 (0.237)
L 000 60(64.281) 10(10.625) 12(10.142) 10(7.713) 2(3.015) 4(2.030) 1(2.683) 3 (1.510)
001 16(15.060) 2 (1.835) 3 (2.403) 0(1.816) 0(0.560) 0(0.375) 1(0.655) 1 (0.296)
010 14(18.329) 3 (3.050) 2 (2.103) 5(2.238) 2(0.693) 0(0.607) 1(0.613) 1 (0.367)
100 15(14.370) 3 (2.381) 1 (2.283) 0(1.156) 2(0.692) 1(0.346) 0(0.482) 0 (0.290)
011 3 (3.397) 0 (0.420) 1 (0.397) 1(0.421) 0(0.103) 0(0.088) 0(0.118) 0 (0.056)
101 4 (6.102) 1 (0.747) 0 (0.985) 0(0.504) 0(0.236) 1(0.117) 2(0.209) 1 (0.101)
110 5 (4.068) 0 (0.680) 0 (0.472) 1(0.341) 0(0.160) 0(0.103) 0(0.109) 0 (0.068)
H 000 78(88.601) 11 (9.062) 13 (8.626) 11(7.898) 2(2.760) 4(2.218) 3(2.686) 2 (2.149)
001 15(14.033) 1 (0.929) 0 (1.392) 2(1.:72) 0(0.355) 0(0.280) 1(0.448) 0 (0.291)
010 19(15.510) 1 (1.611) 1 (0.958) 0(1.107) 0(0.389) 0(0.416) 0(0.383) 0 (0.325)
100 15(13.280) 0 (1.378) 0 (1.318) 0(0.727) 1(0.436) 1(0.261) 0(0.326) 1 (0.275)
011 2 (2.290) 0 (0.155) 0 (0.145) 1(0.212) 0(0.048) 0(0.049) 0(0.059) 0 (0.041)
101 6 (5.341) 1 (0.360) 0 (0.539) 0(0.298) 0(0.143) 0(0.086) 0(0.139) 0 (0.095)
110 3 (2.289) 0 (0.240) 0 (0.144) 0(0.:28) 0(0.061) 0(0.049) 0(0.046) 0 (0.041)
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where ng4s; and E(Hgy,;) are the observed and expected counts of active scan
triplets (d, e, f) for treatment level I, respectively, d,e, f € {0,1}, | € {P,L,H}.
Since exacerbation status does not enter the model, (7.20) does not depend on this
variable. The parameter estimates appear in Table 7.8 and the fits appear in Table

7.9.

Table 7.8: Model M2 estimates found by minimizing D3 for the MS data set with
exponential open time and gamma dead time distributions. Drop-1 jackknife stan-
dard error estimates, triplet and pair equilibrium probabilities for 42 day intervals.
(6t = 0.042, n, = 58, 28-day timescale)

Parameter Estimate (se) | Term Estimate EMT (days)
State 0: Remitting
Bop —2.252 (0.470) | p(0,0) 0.105 Placebo 266
BoL —0.661 (3.940) | p(1,0) 0.054 Low 516
Bor ~1.414 (0.376) | p(0,1) 0.026 High 1095
State 1: Relapsing
Bnp —2.440 (5.978) | 1(0,0) 0.087 Placebo 236
BnL 0.812 (4.307) | n(1,0) 0.196 Low 105
BnH 0.815 (0.344) | n(0,1) 0.197 High 104
In(x) —0.310 (6.244) K 0.733
Misclassification
ag —2.496 (0.151) | wvoy 0.076
ag —0.710 (0.184) | wvyo 0.330 N
Equilibrium Joint Probability Estimates (74.#(1.5,1.5))
mooa() moo1() mo1o() T00()  ®our() moi() mio) mul)
P | 0.404 0.059 0.012 0.059 0.055 0.009 0.055 0.347
L| 0734 0.047 0.017 0.047 0.034 0.003 0.033 0.085
H| 0.861 0.026 0.009 0.026 0.018 0.001 0.017 0.043
Equilibrium Joint Pair Probability Estimates
1I'oo(15) 1"01(1.5) 1?10(1.5) 1l’11(1.5) w1
P | 0.463 0.067 0.067 0.402 0.469
L| 0781 0.050 0.050 0.119 0.169
+ H | 0.887 0.026 0.026 0.061  0.087
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Table 7.9: Active scan observed and expected transition triplet and pair counts by
treatment group for model M2. Expected counts in parentheses.

Scan Activity Triplets
000 001 010 100 011 101 110 111
P|{ 70 18 13 16 16 13 15 19
(68.366) (18.071) (15.077) (18.030) (14.573) (11.609) (14.601) (19.672)
L} 117 19 19 17 6 6 5 6
(120.927) (17.580) (15.449) (17.512) (6.662) (4.562) (6.678) (5.629)
H| 138 14 14 14 3 5 4 3
(136.693) (15.301) (14.136) (15.264) (3.949) (2.799) (3.955) (2.904)
Da: 4.354
Sum over treatment level:
325 51 46 47 25 24 24 28
(325.986) (50.952) (44.662) (50.806) (25.184) (18.970) (25.234) (28.205)

Scan Activity Pairs

00 01 10 11

P} 93 33 30 36
(92.162) (31.665) (31.653) (36.520)

L| 145 26 25 12
(147.717) (23.608) (23.569) (13.105)

H| 162 19 20 7
(162.107) (19.310) (19.287) (7.297)
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Subjects receiving the low or high doses of the drug appear to spend more time
in the remitting state and less time in the relapsing state than the subjects receiving
the placebo. The estimates fur 7 are very simila- for the low and high levels of the
drug. The time spent remitting for high dose patients is very near the boundary of
at least one transition every 3 years. The jackknife standard error estimate for 3,
is quite large compared to the parameter estimate.

Upon examination of the estimates when one subject is dropped at a time, the
estimates for 3,; are around 2 when any of the placebo or high dose subjects are
removed from the data set. Conversely, when any one of the low dose subjects is
dropped, the estimates for 8,; are around 0.77. The same situation is seen for the
shape parameters estimates. If a low dose subject is dropped, the estimate for In(x)
is around -2.4 while any other subject dropped yields an estimate near -4.6. Clearly,
dropping any one of the low dose subjects has a large effect on these two parameters
estimates and this effect leads to the relatively large jackknife standard errors. The
estimate of vg, is fairly consistent with earlier results while the estimate of vyg
is further away from 0.5 than with previous models. The observed and expected
triplet and pair counts appearing in Table 7.9 indicate that the model provides a
good fit to the data.

Note that probabilities for these models take a considerable time to compute.
With n, = 58, each function evaluation requires calculation of a 58 x 58 recursion
relation for each treatment level. With the additional computational burden of
dropping 1 subject at a time for jackknife variance estimation, a model such as

Model M1 with several parameters can take as much as 30 hours of computing time
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on a dedicated Pentium II 233 MHz computer. Several days can be spent trying
to prune model parameters based on the results of larger models and the jackknife
variance estimates.

Drop-5 jackknife variance estimates calculated for the parasitic infection data
set are preferred to the drop-1 estimates presented for the Multiple Sclerosis data
set. Certainly, drop-5 jackknife estimates reduce the computational burden signif-
icantly and were tried for the MS data set as well as drop-3 jackknife. In both
of these cases, the removal of the groups of subjects resulted in large variance es-
timates. Models which resulted in a large reduction of the discrepancy measure
did not have significant parameters. Even for models with only intercept param-
eters and misclassification absent, the intercept parameters were not significant.
Under a drop-1 jackknife, the variance estimates were generally reasonable in the
sense that an additional parameter which reduced the the discrepancy measure by
a large amount had a relatively small variance estimate. Based on these observa-
tions, drop-1 jackknife variance estimation was implemented despite the increased
computational burden.

Computational burden can be considerably reduced if parameter estimation is
based on pairs rather than triplets. In this case, only a one-dimensional recursion
relation is calculated for each treatment level at each function evaluation. When
a model analogous to model M1 is fit with the pair data, the exacerbation status
terms can also be dropped from the model. However, dropping such terms reduces
the degrees of freedom to 6: 2 degrees of freedom for each treatment level. The

pair counts should not be stratified by exacerbation status when this variable is not
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included in the model. Even in the model without misclassification, the number
of parameters requiring estimation for the 3 treatment levels total 7. Hence, the
active scan pair data cannot be used to estimate all the parameters necessary in

the models considered here.

7.3.5 Multiple Sclerosis Movers Data Set

The results of the last section suggest that the shape parameter may be less than
one. Gleser (1989) showed that a gamma distribution with shape parameter less
than 1 can be represented as a scale mixture of exponential distributions. Hence,
the estimated shapes may be explained by subject heterogeneity in the data set.
Different models indicated different groups of heterogeneous subjects indicating no
clear subset of the data. A natural choice is to subset the data set into “movers”
and “stayers” and to look at plausible values for the movers. While other sections
have considered models where the misclassification probabilities are specified and
the regression parameters are estimated, this section takes the opposite approach.
Misclassification probabilities values are considered based on plausible regression
coefficients for the different treatment groups.

If the data are assumed to be classified correctly, only the subjects experiencing
a change of state at at least one observation time can contribute information about
plausible state sojourn times. For the 8 subjects whose scans are never active, any
sojourn time longer than the study duration is plausible. Assuming the observation
times are the transition times, mean sojourn times for the remaining 30 subjects

can be used to determine plausible values. Dropping subject #s 451 (P), 424, 450
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(L), 526, 541, 543 and 566 (H) yields 30 subjects termed the MS Movers data set.
The results that follow are all obtained using this reduced data set.

Table 7.10 gives plausible sojourn times for each state and treatment group.
These values are simply calculated by averaging the observed sojourn times for
all subjects under the assumption that observation times are the transition times
and ignoring the censoring of the sojourn time of the last state. With a 28-day

Table 7.10: Plausible sojourn times in days by state and treatment group for MS
Movers data set.

Treatment | Remitting (0) Relapsing (1)

Placebo (P) 168.435 88.211
Low Dose (L) 220.494 61.003
High Dose (H) 259.038 62.375

time-scale, the results in Table 7.10 lead to regression coefficients

p(zri,zp:i) = exp(—1.794 — 0.270 zz; — 0.431 zg;
( p( ) (721)

n(zLi, Thi) = exp(—1.148 + In(x) + 0.369 zL; + 0.347 z;)
where & is the shape of the gamma distribution for the state 1 sojourn time.

To investigate the plausibility of these sojourn time values, simulations were
conducted for different shape and misclassification probability settings. Gamma
sojourn times were generated for each subject according to the model terms in
(7.21) to determine subject true process histories. Using the observation times, the
histories were converted to true states. The simulated true data sets were then mis-

classified according to the misclassification probability settings in similar manner
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as described in Section 5.4. Here, misclassification probabilities were allowed to be
independent or dependent on the exacerbation status for each subject. Table 7.11
lists the misclassification probability settings considered. One hundred true data
sets were generated and misclassified 20 times for each misclassification probability
setting V1, V3, V5 and V7. Similarly, another 100 true data sets were generated
and misclassified 20 times for each setting V2, V4, V6 and V8. This process was
repeated for each of 3 shapes: 0.5, 1 and 2. The run length distributions for each
state in the simulated data were compared with the run length distributions in the
MS Movers data set. S-PLUS (MathSoft, Inc. (1996)) was used to carry out the

simulation results.

Table 7.11: Misclassification probability settings for MS Movers simulations.

Code 1}01(0) ‘001(1) '010(0) '010(1)
V1 | 0.050 0.050 0.050 0.050
V2 | 0.075 0.050 0.050 0.075
v3 | 0.100 0.100 0.100 0.100
V4 | 0.120 0.100 0.100 0.120
V5 | 0.150 0.150 0.150 0.150
Vé | 0.175 0.150 0.150 0.175
V7 | 0.200 0.200 0.200 0.200
V8 | 0.220 0.200 0.200 0.220

The average run length distributions for the simulations appear in Tables 7.12
and 7.13 for the two states. Generally, the average run length distributions tend
not to agree closely with the observed data for both states. The misclassification
probability settings V5 and V6 provide the closest results to the run length distri-

butions of 1s. While the run lengths of size 1 and 3 are fit well in these simulations,
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Table 7.12: Average run lengths of Os for simulated misclassified data sets for shapes 0.5, 1 and 2. Run lengths
for active scans in the MS Movers data set appear in the last row.

k Code | 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
05 V1 (170 118 98 75 6.1 56 42 33 28 21 18 13 11 09 07 05 1.9
v2 (198 137 107 83 71 53 43 34 26 21 16 12 10 08 05 04 1.1
V3 | 243 158 122 91 7.0 57 42 32 25 18 14 10 08 06 04 03 08
V4 (267 175 127 95 75 55 41 31 23 1.7 1.2 09 07 05 03 02 06
V5 | 316 198 141 102 74 55 39 28 21 15 10 07 05 04 03 02 03
V6 (346 215 149 104 75 54 37 26 18 13 09 06 04 03 02 01 02
V7 | 386 236 159 107 74 52 34 23 16 11 07 05 03 02 01 01 01
Vs |411 248 163 107 73 49 32 21 14 10 06 04 02 02 01 0.1 0.1
1.0 V1 [197 139 112 87 69 55 43 34 26 21 15 1.2 1.0 07 04 05 1.1
V2 | 226 160 121 93 71 56 43 33 24 19 13 11 07 05 04 03 08
V3 [265 176 135 99 73 56 42 31 23 18 12 09 07 05 03 03 05
V4 | 291 195 139 103 74 55 41 29 21 15 11 08 05 04 03 02 03
V5 |334 214 153 106 76 53 38 26 19 13 09 06 04 03 02 02 02
V6 | 366 231 159 110 74 51 36 24 16 11 07 05 03 02 01 01 0.1
V7 | 402 248 167 110 74 49 34 22 15 10 06 04 02 02 01 0.1 01
Vs | 431 260 169 110 72 47 30 20 13 08 05 03 02 01 01 0.0 0.1
20 V1 [222 158 128 95 74 56 43 32 24 20 14 11 08 06 04 03 08
V2 | 258 177 135 100 78 56 43 31 21 17 12 09 06 05 03 02 05
V3 | 286 194 146 104 7.7 56 40 29 21 16 11 07 06 04 03 02 04
V4 |317 210 151 106 78 55 39 27 18 13 09 06 05 03 02 0.1 0.2
Vs [352 228 161 1.1 76 54 36 24 1.7 12 08 05 04 02 0.2 0.1 02
V6 [385 244 166 11.2 76 51 34 22 14 09 06 04 03 02 01 0.1 01
V7 | 420 260 171 111 74 49 31 20 13 09 05 03 02 01 01 01 0.1
V8 (446 272 173 110 71 45 29 18 11 07 04 03 02 01 01 0.0 0.0
Movers 31 21 11 7 10 4 2 1 0 2 2 1 1 3 1 1 0
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Table 7.13: Average run lengths of 1s for simulated misclassified data sets for shapes 0.5, 1 and 2. Run lengths
for active scans in the MS Movers data set appear in the last row.

Kk Code| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
05 V1 |340 110 65 37 21 14 10 06 04 02 02 01 01 00 00 00 0.0
V2 (390 120 65 40 23 15 09 05 05 03 02 01 01 01 00 00 0.0
V3 |459 138 7.0 38 20 12 08 05 03 02 01 01 00 00 00 00 0.0
V4 (492 147 72 41 23 13 08 05 04 02 01 01 00 00 00 00 0.0
V5 | 556 169 7.6 39 20 11 07 04 02 01 01 00 00 00 00 00 0.0
V6 | 585 183 80 41 22 12 07 04 03 01 01 00 00 00 00 00 0.0
vVr |633 201 85 41 20 11 06 03 02 01 01 00 00 00 00 00 0.0
Vs | 648 214 91 42 22 11 06 03 02 01 01 00 00 00 00 00 00
1.0 V1 |37.3 150 7.7 40 22 12 06 03 02 0.1 00 00 00 00 00 0.0 0.0
V2 {418 156 78 43 23 13 08 03 02 01 01 00 00 00 00 00 0.0
V3 | 482 170 80 41 21 11 05 03 02 01 00 00 00 00 00 00 0.0
V4 | 513 176 82 44 22 12 07 03 01 01 00 00 00 00 00 00 0.0
V5 | 573 195 87 41 21 10 05 02 01 01 00 00 00 00 00 00 0.0
V6 | 599 206 90 44 22 11 05 03 01 01 00 00 00 00 00 0.0 0.0
vr | 643 223 93 42 20 09 05 02 01 00 00 00 0.0 00 00 00 0.0
V8 | 656 233 9.7 45 21 10 05 02 01 00 00 00 0.0 00 0.0 00 0.0
20 V1 |405 177 87 43 18 09 05 02 00 01 00 00 00 00 00 0.0 0.0
V2 (442 190 94 44 20 09 04 02 0.1 01 00 00 00 00 00 00 00
V3 |506 192 91 42 18 08 04 02 01 00 00 00 00 00 00 00 0.0
V4 | 530 206 96 43 19 09 04 02 01 00 00 00 00 00 00 0.0 0.0
V5 | 588 213 94 42 18 08 04 01 00 00 00 00 00 00 00 00 0.0
V6 | 606 228 102 44 20 09 04 02 01 00 00 00 0.0 00 00 00 0.0
V7 | 652 238 102 43 18 07 03 01 01 0.0 00 00 00 00 00 00 0.0
V8 | 663 248 105 46 20 08 04 02 01 00 00 00 00 00 00 00 0.0
Movers 58 11 9 6 0 0 0 0 1 0 0 0 0 0 0 0 0
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the run lengths of size 2 are generally over-represented. The corresponding results
for the run lengths of Os provided higher average run counts for the smaller run
lengths than those seen in the MS Movers data set. In general, the larger mis-
classification probabilities examined tend to shorten the run lengths for each state
and all shapes considered. These findings are consistent with the results presented
in Chapter 5. Higher probabilities considered for the MS data set led to smaller
estimates of the transition probabilities. Smaller transition probabilities imply the
possibility of longer run lengths in the true data than seen in the observed data.

The run length distributions of the simulated true data sets can also be exam-
ined before the data is misclassified. In all cases, these data sets exhibited run
length distributions close to the distributions found in the MS Movers data set and
generally had too few short run lengths for each state. Hence, the smaller mis-
classification settings V1 and V2 tend to have many fewer run lengths of size 1 for
either state than the MS Movers data set. Although the plausible estimated mean
times were determined under the assumption that the data is correctly classified,
these plausible values do not generate appropriate run length distributions. The
simulated true data set must be misclassified to produce run length distributions
similar to the observed data.

In Table 7.14, individual run length distributions are given for simulated data
that closely matched the observed data set. These samples agree well with the
smallest three run lengths for both states and suggest that any one of the three
shapes could be plausible. The simulations also indicate that misclassification prob-

abilities within [0.05,0.25] are consistent with the plausible estimated mean times



CHAPTER 7. SEMI-MARKOV AND GENERAL MARKOV PROCESSES 171

considered and may be dependent on exacerbation status.

Based on the simulation results, several models where every parameter was
specified were fit using the semi-Markov approach described earlier. These models
followed the specification of (7.21) for p and n with misclassification probabilities
set to values that provided close run length distributions for shapes 0.5, 1.0 and 2.0.
These models did not provide close fits. Hence, the misclassification probabilities
were estimated while p, 7 and s were specified. As seen from the complete data set
exacerbation status has estimated standard errors of about the same order as the
estimates. The results for the three shape models with constant misclassification
probabilities appear in Table 7.15. For each of the three shapes, the models give
fairly consistent estimates for the misclassification probabilities and discrepancy
function. The fit appears in Table 7.16 for shape 1 and generally reflects the same
patterns seen in the two other shape models. The placebo 000 triplet appears to
be over-represented by che model while the 111 triplet is under-represented. Each
of the other shape models from Table 7.15 also display this same result. Any of
the three shapes 0.5, 1 and 2 seem to yield roughly equivalent results under the
specified treatment model parameters. When a model with all possible parameters
was fit, as was done with M1 in the previous section, to the MS Movers data set,
the results again suggest that the shape is close to the boundary of 0.01.

Additionally, maximum likelihood estimates were also found for several differ-
ent treatment models with only the MS Movers data set. Models included specified
values of the treatment parameters with misclassification probability parameters es-

timated as well as full estimation of all misclassification probability and treatment
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Table 7.14: Sample run length distributions for simulations! which are close to the
observed MS Movers data set.

Run Length Distribution of Os
Label {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
S1 32211010 6 8 7 52 1 0 1 1 0 O O O
S2 322110 513 4 414 2 1 2 1 1 0 0 0
S3 32211010 6 8 75 2 1 0 1 1 0 0 0 O
S4 322110 513 4 4 1 4 2 1 2 1 1 0 0 0
S5 302211 7 510 4 23 2 2 0 0 1 0 0 2
S6 3123 9 710 7 5 43 1 0 1 1 1 0 0 O
S7 32191112 5 6 6 4 2 1 0 1 0 0 1 0 O
S8 3191 610 3 552 1 1 1 1 0 2 1 0
S9 31211410 4 526 3 0 1 1 0 2 0 0 O
Movers |31 2111 710 4 2 1 0 2 2 1 1 3 1 1 0
Run Length Distribution of 1s
Label |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
S1 5712 8 4 2 0110 O O O O O O O O
S2 5712 8 3 1 2 001 0 O O O O o0 0 O
S3 5712 8 4 2 01 10 0 O O O O o0 O O
S4 5712 8 3 1.2 001 O 0 O O O 0 O O
S5 6013 91 0 2000 0 0 0 0 0 o0 0 O
S6 5811 9 6 0 2 0 00 0 0 O O 0 o0 o0 O
S7 5814 8 3 2 5100 0 0 0 0 0 0 0 O
S8 5013 8 2 3 0 0 00 0 O O O O o0 0 O
S9 5713 9 4 5 1010 0 0 0 0 0 0 0 O
Movers {5811 9 6 0 0 0 0 1 0 O O O O O O O

1S1, S2, S3, S4: k= 0.5 generated with V4
S5, S6: k = 1.0 generated with V3

S7: & = 1.0 generated with V5

S8: x = 2.0 generated with V3

S9: k = 2.0 generated with V5



CHAPTER 7. SEMI-MARKOV AND GENERAL MARKOV PROCESSES 173

Table 7.15: Estimated misclassification probabilities under specified shape and

treatment parameters. Standard errors in parentheses.

K g ag Vo1 V10 D3

0.5 -2.148 (0.038) -0.991 (0.235) 0.105 0.271 16.444
1.0 -2.317 (0.041) -1.208 (0.290) 0.090 0.230 16.798
2.0 -2.472 (0.061) -1.368 (0.358) 0.078 0.203 18.299

Table 7.16: Observed and expected triplet counts by treatment group for shape 1

model from Table 7.15. Expected counts in parentheses.

Scan Activity Triplets

(62.612) (13.235) (11.581) (13.152) (5.484) (3.844)

000 001 010 100 o1t 101 110 111
P| 55 18 13 16 16 13 15 19
(65.742) (19.014) (15.818) (18.913) (11.734) (8.558) (11.749) (13.472)
L] 87 19 19 17 6 6 5 6
(82.319) (18.676) (16.190) (18.541) (8.230) (5.774) (8.245) (7.026)
H| 63 14 14 14 3 5 4 3

(5.486)  (4.606)
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parameters. Generally speaking, when all parameters are estimated, a likelihood
ratio test concludes that the dependence on exacerbation status can be dropped
from both misclassification probabilities. When vg; and v, are restricted to be both
less than 0.5 to permit estimation, the estimates are 9; = 0.16 and ;0 ~ 0.50 with
unreasonably large estimated mean times (> 10° days) for the different treatment
groups and rate terms. This model has 8 parameters and -2 log-likelihood=552.134.
If the treatment parameters are specified according to Table 7.10, estimation of the
misclassification probability parameters again leads to a model without exacerba-
tion status. The misclassification probabilities are smaller and appear with observed
and expected transition counts in Table 7.17.

Table 7.17: Maximum likelihood misclassification probability estimates for model
with treatment rates (7.21). (k = 1)

Parameter Estimate (se) Correlation Term Estimate
Qo -2.216 (0338) Vo1 0.098
ag -1.169 (0.497) 0.071 V10 0.237

log-likelihood: ~ -283.099

Scan Activity Pairs
Treatment 00 01 10 11
P 77 (88.426) 33 (30.258) 30 (30.258) 36 (27.058)
L 113 (106.684) 26 (26.822) 25 (26.822) 12 (15.672)
H 82 (80.360) 19 (18.657) 20 (18.657) 7 (10.326)
- X3 7.273

In summary, the semi-Markov estimating function approach worked well for
the.PI data set and provided fits as least as good as the likelihood approach for

the MS data set with more reasonable parameter estimates. The semi-Markov
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approach requires significant computation time when compared with maximum
likelihood estimation but allows both misclassification probabilities to be estimated
without requiring misclassification predictors or constraints on these probabilities.
The models consistently showed the misclassification probabilities did not depend
reliably on exacerbation status. Exacerbation status proved to be more closely
linked to the vg; misclassification probability than to v;9. The exacerbation status
and shape coefficients seemed to be the least stable. This lack of stability may
suggest that the relationship between exacerbation status and the misclassification
probabilities was misspecified for all or some subgroup of the subjects. While the
remitting state is misclassified as active with a relatively small probability, the
relapsing state is misclassified as inactive 2 to 3 times more frequently. There does
appear to be a treatment effect with the treated subjects spending more time on
average in the remitting state and less time on average in the relapsing state than
the placebo subjects. Subject heterogeneity seemed to be responsible for relatively
large jackknife variance estimates and this heterogeneity was still inherent in the
MS Movers data set. One approach to account for the excess heterogeneity would be
the use of a frailty model (Aalen (1988)). Simulations suggested misclassification
was required to generate data sets with similar run length distributions as the
MS Movers data set and that these misclassification probabilities are likely in the
interval [0.05,0.25].
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7.4 General Markov Process

Next consider a true process which has exponential sojourn time distributions for
3+ 1 states, where s is small. Label the states from 0 to s and let S = {0,1,...,s}.
The observed state may be misclassified. The probability of misclassification is
allowed to depend on at least one predictor. Let I be the number of subjects
and assume each subject has n; observations at times ;; < tiz < -+ < fip;, ¢ =
1,...,I. The time between observation j and observation j — 1 is denoted by
At;;, Ab;; = ti; — t;j—1- The true state of the process for subject ¢ at time ¢ is
&i(t) and at observation j is &; = &i(t:;), while the observed state is labeled Oy;,
with history OF) = (04, ...,0;;). Let the vector of misclassification predictors for
subject ¢ at observation j be denoted by C;; = (1,Cyyj, . . ., Cqij), for some positive
integer q. The history of the misclassification predictors at observation t;, C,gj),
contains all current and past values of the misclassification predictors for subject <.
The probability of being misclassified in state b at observation j when the true
classification is state a is denoted by v,(C;), for a,b € S.

A logistic relationship is assumed between the misclassification predictors and
probabilities. Denote the parameters for misclassification in state b when the true
state is a by agp, @2, = (Qgab; Q1abs - - -  Agap). The misclassification probabilities can

be represented as

exp(C;jaab) — exp(aOab +-- 4 aqaqut'j )
1 +exp(Cijass) 1+ exp(acas + -+ + @gasCiij)

vab(Cij) =

for a #b,a,b € S, and v,(Cij) =1 - z vab(C'ij)-

b=0, b#a
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Subject i has covariate vector x; = (1,Xy;,. .. ,Xpi) for some positive integer
p. Define the steady state probabilities for subject i as my(x;) = Pr(§; = b, X;)
for b€ S, i = 1,...,I. The transition probabilities for the true process are
Pop(Atij, %) = Pr(& = b|&ij-1 = a,x;) for subject ¢ at observation j with covari-
ate vector x;, ¢,b € S. The recursive probability is defined as '7,(; )( ) =Pr(&; =
a|O¥ ).c¥) x;) for a € S and the observed state probabilities become

Pr(On = k[Ca,xi) = ) vnk(Caa)ms(x:)

b_o
Pr(0; = k|OF™,c\ %) = Zm i) Zv L (%) Pas( Ak, x3)
b=0 a=0

forkeS,i=1,...,I,j =1,...,n; The quantity 'y,(:)(x,) can be determined by

the recursion relation for j > 1

(a) 'vak tJ) Zb-—o 71 _1-1 Pbd(At'Jv x‘)

Ys; (xt) = P P a if Oi' =k
! Zb:o upk(C'i5) Za_o 71( ;) 1 (x:) Pap(At;j, X;) ’
where
(a) vak(CtJ)Wa(xi) if O = k
T () = Y b=0 Vok(Cij)me(x:) "
for a,k € S.

For subject i, the probability intensity of going from state a to b, Ags(X;), is
defined as

das(xi) = exp(xiBas) a£b, a,beS
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with Aga(x;) = — E Aab(x:) and Bgp = (Boads - - - » ﬁmb)T is the vector of regression
b=0, b#a
parameters. Collecting the parameters in the vector ©, © = {agp}ap U {Bab}ap for

a # b, the likelihood can be written as

n;
L(®) = f[ Pr(Oi1 | Ca1, x:;0) [[ Pr(0:; 107V, ¢, x;;0).
i=1 j=2

The number of parameters will be determined by the number of possible tran-
sitions as well as the number of states which are always classified correctly. If all
s + 1 states have nonzero misclassification probabilities and it is possible to move
from any one of the states in S to any of the other states in S, then the num-
ber of parameters is equal to (”2'1) ((g+1)+(+ 1)) where ¢ is the number of
misclassification predictors and p is the number of covariates.

The relationship between the transition intensities and probabilities becomes
complicated as the number of states increases. Numerically, however, the rela-
tionship is simpler. Diagonalization and matrix exponentiation of the transition
intensities, as was done in Section 2.5.1, can be done with standard computer soft-
ware. The situation will be simplified if any states are absorbing.

A further simplification occurs if not all states can be misclassified. In the case
of an absorbing state such as death, the state may always be correctly classified.
Other states may similarly have misclassification probabilities equal to 0.

In general, several tests of parameters may be of interest. In the misclassification
part, the dependence on misclassification predictors can be tested. It may be the

case that not all of the misclassification predictors provide information about the
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misclassification. The effect one misclassification predictor has on two different
misclassification probabilities may be the same, ajo2 = ayo3 for example. Further,
it might be reasonable to have symmetric misclassification probabilities, va(Cij) =
vsa(C;). In the covariate part, different transition intensities may have the same
relationship with the covariates.

The situation where vgy(Ci;) = v15(Cij) = -+ = vas(Cij), for all states b € S,
i=1,...,1,j = 1,...,n; is degenerate. In this case, the probability of being
correctly classified in state b is the same as the probability of misclassification in
any of the other states. As seen in the two-state alternating case, the regression

parameters {8} cannot be estimated.



Chapter 8

Discussion and Further Work

This research focused on methodology for binary longitudinal responses collected
on an alternating process and subject to misclassification. The misclassification
mechanism was modeled separately from the underlying progress as a logistic func-
tion of misclassification predictors available at each observation time. The true
process was modeled as a continuous-time counter model with time-independent
covariates. The Type I counter was the focus and the sojourn time distributions
examined reduced the model to either a Markov or semi-Markov model for the true
process.

With the Markov model, identifiability and estimability of the model param-
eters were examined in Chapter 4. Exactly two distinct sets of parameter values
were shown to provide equally likely explanations of the data when a likelihood
approach was used for estimation provided that each transition rate depended on
the same covariates and each misclassification probability depended on the same

misclassification predictors. Restricting both misclassification probabilities to be

180
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less than 0.5 removed this problem, but this solution is appropriate only if it can be
assumed that both probabilities are less than 0.5. This last point was highlighted
by the results of Section 4.4.2 where the restriction forced one misclassification
probability for the MS data set to be 0.5 and transition rate estimates were even
more extreme than previously seen in Section 3.3.1.

Parameter estimability was described as a property of both the parameteri-
zation and a particular data set. Even if the restriction proposed is appropriate
and identifiability is assured, model parameters may still not be estimable. Recall
from Section 4.4, that parameters may not be estimable if the likelihood function
is constant in some directions of the parameters. For example, when the sampling
interval is too long relative to the sojourn times of the true states, not all transition
rate regression parameters and misclassification predictor parameters are estimable.
The results of Section 4.4.1 suggested that for small misclassification probabilities,
the observations should be made at least 3 times during an interval equal to the
average length of occupancy of each state. If the data are not sampled frequently
enough, some parameters will need to be specified to allow estimation of other pa-
rameters. For the properly sampled and specified model, estimability will likely
not be a problem if the observed history, misclassification predictors and covari-
ates classify subjects into more distinct groups than parameters, as was seen in
Section 4.4.3.

Identifiability and estimability issues were discussed specifically for the Markov
case with either constant misclassification probabilities or misclassification proba-

bilities modeled as logistic functions of the misclassification predictor. These issues
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could be further investigated for a Type I counter with non-exponential sojourn
times, for a Type II counter and for links other than the logistic link. These issues
also need to be addressed in terms of the estimating function approach discussed
in Section 7.3.

The impact of misclassification on Markov transition probability estimates was
investigated in Chapter 5 through simulation studies. Three estimates of the transi-
tion probabilities were examined as functions of the specified misclassification prob-
abilities: naive estimates calculated assuming vg; = vy9 = 0, maximum likelihood
estimates found by maximizing the likelihood for specified values of the misclassifi-
cation probabilities and approximated estimates based on a linear function of naive
estimates and specified misclassification probabilities. The misclassification prob-
abilities investigated were both at most 0.15. The maximum likelihood estimates
were approximately unbiased for correct specification of vo; and v0. The naive
estimates over-estimated the transition probabilities and this bias increased as the
misclassification probabilities increased. Depending on the true process transition
probabilities, these estimates may have relative biases of 30% or higher when mis-
classification probabilities are both 5% or higher. While these estimates need to be
assessed in conjunction with their standard errors, conclusions drawn on such esti-
mates when vp; > 0.05 and vy > 0.05 will likely not be appropriate. The approx-
imated estimates were easier to calculate than the maximum likelihood estimates
and were less biased than the naive estimates. When vo; < 0.10 and v < 0.10
and generally when vo; = 0.15 and vy < 0.05 or vg; < 0.05 and vy = 0.15, the

biases were small and inferences drawn with misclassification probabilities in these
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ranges are likely to be reasonable. The approximated estimates can be used as an
exploratory tool to allow researchers to more clearly see the dependency between
transition probability estimates and the misclassification probabilities.

Similar investigations of estimates could be done on the regression parameter
estimates as well as the transition parameter estimates, and allowing for varying as
well as fixed times between observations. Estimates could be examined when the
underlying process is not first-order Markov or the misclassification probabilities
are not correctly specified. Further, misclassification predictors could be included
in such investigations.

Model assessment is an important aspect of the model building process. Ex-
pected counts of one-step transition pairs, two-step transition pairs and one-step
transition triplets under a stationarity assumption were compared with the observed
counts using traditional goodness-of-fit measures with categorical covariates. In the
model assessments of Chapter 6, the parameter estimates were obtained from max-
imum likelihood estimates when the underlying process was modeled as a Markov
process. The comparison of expected frequencies with the observed transition fre-
quencies was not extremely useful in the sense that these comparisons did not
adequately detect important and obvious departures from the model. The MS
analysis in Section 3.3.1 gave extreme parameter estimates which seemed to pro-
vide adequate fits in Chapter 6. More work is required in this area. Given the
dependencies of the transition counts, specific degrees of freedom for tables such as
those presented in Chapter 6 are necessary for any formal model testing. Assess-

ment tools which check the fit of run length distributions for the two states could
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also be incorporated. While assessing the specification of both the misclassification
and true process parts of the model is difficult, progress may more easily be made
by looking at assessment of the true process when the misclassification probabilities
are assumed known.

Simulations in Section 6.5 suggested that a gamma dead time distribution may
be appropriate for the MS data set. An estimating function approach was taken to
estimate parameters for this semi-Markov model. Under equilibrium assumptions
for the true process, the joint probabilities for the true states at two and three con-
secutive times were calculated based on approximations to convolution equations.
This approach permitted tractable calculations for a gamma dead time, and other
distributions can easily be considered for the open and dead times provided that
the computations are feasible. The parameter estimation was conducted by min-
imizing the discrepancy between observed and expected frequencies. The method
was computationally intensive but seemed to permit estimation of both misclassifi-
cation probabilities in the absence of a misclassification predictor in the sense that
solutions to minimize the discrepancy were obtained.

The semi-Markov specification yielded estimates which fit the observed data
better than the Markov model for the PI data set and provided at least as good a
fit in the MS data set with more reasonable estimates. The latter model suggested
that the exacerbation status was not informative regarding misclassification and
subject heterogeneity may have been responsible for an unstable shape estimate.
Whether or not the fits are significantly better than fits of the Markov model is

yet to be determined. While the discrepancy of a specific model may be assessed
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by simulating data according to the estimates and determining how likely a more
extreme discrepancy value is obtained, further work is necessary to test whether
the shape parameter is significantly different from one. Further computations, via
faster simulation based estimation techniques such as Monte Carlo Markov Chain
methods (eg. Hastings (1970) and Geyer (1991)), can facilitate investigation of the
sensitivity of this estimating approach, the relationship between the shape and
the misclassification probability estimates, and the distribution of the discrepancy
measure, as well as performance of other choices to measure the discrepancy.

Several other aspects could also be investigated. The work of this thesis concen-
trated on continuous-time models whereas discrete-time models could also be inves-
tigated. The recursive nature of the likelihood and estimating functions guided the
choice of variance estimation by the jackknife. The performance of such a variance
estimator in the context of misclassified longitudinal data needs to be examined.
Missing data in the misclassification predictor for the MS data set were not han-
dled in the analyses presented. Work could be done to incorporate this type of
missingness. Further work can be done to examine different design aspects as well.
Guidelines for the applicability of the methods presented are needed with respect
to the number of subjects, the number of observations per subject and the criteria
for a potential misclassification predictor.

Several suggestions can be made for the practical application of the methodology
developed in this thesis for data where the misclassification probabilities are small.
An investigator planning a study involving the type of data discussed can simulate

data according to likely state estimated mean times and a range of misclassification
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probabilities to get an idea of the type of data which may be observed. Based on
these simulations, a minimum desirable sampling frequency could be determined,
to be followed or exceeded as permitted by the budget. Once the investigator has
obtained the data, approximated estimates can be calculated, perhaps stratified
by subgroups, for specified misclassification probabilities as an exploratory tool.
These estimates may suggest how sensitive the Markov transition probabilities are
to changes in the degree of misclassification. Finding maximum likelihood estimates
for the regression parameters with specified values of the misclassification probabil-
ities would be the next step in assessing the effect of misclassification on estimates.
All parameters can then be estimated via maximum likelihood, possibly requiring
constraints on the misclassification probabilities, and the variability of these es-
timates can be examined. Influential subjects can be identified and the stability
of estimates can be observed. Using the estimates, data sets can be simulated to
check that the run length distributions seen in the simulated data sets adequately
match the observed data. Further, estimates could also be obtained from the semi-
Markov estimating approach either with exponential or non-exponential sojourn
time distributions. These estimates could be compared to the maximum likelihood

estimates for the Markov case to identify discrepancies and stable estimates.
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Data Sets

A.1 Multiple Sclerosis (MS) Data Set

Table A.1: MS baseline covariate descriptions.

Name

Description

ID

age
initedss
duration
dose
origin
sex

area

patient identification number

age in years at entry

EDSS score at entry

duration of disease in years

0 = placebo; 1= low dose; 2 = high dose
0 = Washington; 1 = BC

0 = male; 1 = female

burden of disease in mm? at entry
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Table A.2: MS baseline covariates.

ID [age initedss duration dose origin sex area
420 | 42 2 44 0 1 0 2513
421 | 35 1 28 0 1 0 567
443 27 1.5 69 0 1 1 1808
446 |34 1.5 69 0 1 1 14
449 | 38 4 42 0 1 0 171
451 |34 25 171 0 1 0 4829
498 (31 3.5 38 0 1 0 4490
501 | 35 2 16.2 0 1 1 325
504 | 33 1 143 0 1 1 379
507 |41 25 69 0 1 0 1584
522 |36 25 41 0 0 0 2167
523 | 37 1 1.1 0 1 1 3191
539 | 35 2 8 0 1 1 1980
540 | 25 1 15 0 1 1 136
545 | 30 1 91 0 1 1 498
550 |38 15 54 0 0 1 3179
565 | 37 1 131 0 1 1 5074
419 | 31 1.5 121 1 1 0 3228
424 | 29 3 4 1 1 1 42
448 (51 1.5 34 1 1 1 2103
450 |49 3.5 20 1 1 1 2611
452 | 39 0 61 1 1 1 899
499 |24 15 91 1 1 1 12295
502 | 48 0 58 1 1 1 227
505 | 47 3 143 1 1 1 0
508 (31 25 15 1 1 1 1302
521 | 35 3 109 1 0 1 3834
525 |36 3.5 152 1 0 1 187
542 | 34 1 59 1 1 1 37
044 |27 15 37 1 1 0 5779
947 | 42 2 1.8 1 0 1 236
548 [ 47 3.5 26.1 1 0 1 297
564 | 26 2 33 1 0 1 854
968 |41 3.5 182 1 0 1 7794

continued on next page

188



APPENDIX A. DATA SETS

baseline covariates continued from previous page

patient | age initedss duration dose origin sex area
422 | 34 1.5 125 2 1 1 1648
444 | 44 3 18 2 1 0 560
445 | 47 2.5 149 2 1 1 2426
453 | 35 1 10.1 2 1 1 1673
454 | 42 1.5 101 2 1 1 5778
497 | 20 3.5 1.1 2 1 1 4823
500 |33 L.5 104 2 1 1 1883
503 | 30 3 32 2 1 1 1657
506 | 22 3.5 95 2 1 1 2583
524 | 36 3 75 2 1 1 4223
526 | 46 2.5 94 2 1 0 1559
541 | 36 2.5 88 2 1 1 634
543 | 45 1.5 23.8 2 1 1 917
546 | 49 5.9 228 2 0 0 3118
549 | 34 1.5 105 2 0 1 3640
566 | 42 3 26 2 1 1 333
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Table A.3: MS Placebo Group: Day of Scan Data.

Scan Number

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

420
421
443
446
449
451
498
501
504
507
522
523
539
540
545
550
565

43 85 127 169 211 253 295 337 379 421 463 505 547 589 638 673 715
43 85 127 169 211 253 NA 337 381 414 463 505 540 589 631 680 722
48 82 125 173 202 251 295 335 377 419 461 503 545 594 629 678 720
43 85 129 169 213 255 302 344 NA 421 463 505 554 589 631 672 722
38 85 127 171 213 260 304 339 381 423 458 505 549 589 638 673 730
45 87 127 171 211 255 297 344 381 423 465 507 549 591 633 674 724
45 87 127 176 213 260 297 337 388 421 463 505 549 588 638 694 722
45 87 129 171 220 255 297 346 NA 423 465 507 549 591 633 682 752
45 92 129 169 220 267 297 339 388 423 465 507 556 584 633 675 724
45 87 122 171 213 255 297 339 388 423 465 514 549 591 633 668 724
43 85 141 169 211 253 281 337 379 421 456 505 554 596 637 680 743
43 85 126 169 204 253 295 337 NA 421 472 512 540 598 645 673 722
45 87 129 185 213 260 302 337 379 421 464 505 547 582 NA NA NA
43 86 127 183 218 260 295 337 379 421 463 505 547 589 631 666 722
43 92 127 171 211 255 288 344 381 421 470 519 547 596 638 673 736
38 87 129 164 220 255 290 339 381 423 465 507 556 591 633 675 731
45 87 129 178 213 269 297 339 381 423 465 500 554 591 638 689 724
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Table A.4: MS Low Dose Group: Day of Scan Data.

Scan Number

12 3 4 5 6 7 8 910 11 12 13 14 15 16 17

419
424
448
450
452
499
502
505
508
521
525
542
544
547
548
564
568

43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 673 729
50 85 127 169 204 253 297 337 379 428 463 505 547 596 633 680 722
43 85 127 171 213 255 295 339 381 NA 465 507 549 591 633 NA 724
45 87 127 169 213 253 297 339 381 423 465 507 549 598 633 682 724
43 85 127 169 225 255 297 344 393 423 463 507 549 591 633 682 724
45 87 129 171 213 260 297 339 381 423 465 507 549 588 633 696 724
43 85 127 169 211 255 311 337 381 416 465 507 549 591 633 668 731
45 87 127 169 218 262 NA 339 381 423 465 507 549 590 640 675 724
45 85 128 176 225 262 295 33C 379 421 463 505 561 589 631 673 722
45 87 129 171 213 255 311 339 381 430 472 507 577 598 640 682 731
50 85 127 169 211 253 295 337 379 421 463 512 547 589 631 673 729
50 85 127 169 218 260 302 337 379 421 463 505 547 589 631 673 722
44 85 142 169 211 255 316 337 379 421 463 519 570 NA NA NA NA
38 87 129 164 213 255 311 339 381 423 465 507 549 591 633 675 731
45 87 129 171 213 262 297 339 381 437 465 507 549 591 633 682 724
50 85 127 169 197 253 302 337 371 421 463 505 561 589 638 673 729
43 85 127 169 211 253 288 323 379 414 484 505 547 NA NA NA NA
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Table A.5: MS High Dose Group: Day of Scan Data.

Scan Number

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

422
444
445
453
454
497
500
503
506
524
526
541
543
546
549
566

43 85 127 169 211 253 297 344 388 414 465 505 554 589 631 673 729
43 85 129 169 206 255 297 339 381 423 458 507 549 598 633 675 724
43 85 129 171 213 255 297 339 381 423 465 507 549 591 633 675 724
43 87 122 171 213 255 297 339 381 423 465 514 549 591 633 673 729
43 94 122 171 213 255 297 344 381 423 465 514 549 598 633 675 724
23 85 127 171 213 255 297 339 381 423 465 507 549 591 633 675 724
45 87 127 169 211 253 295 344 381 421 465 507 549 591 633 661 724
45 87 127 169 234 254 304 344 379 430 470 519 556 596 631 673 722
43 85 126 169 211 253 295 337 379 421 462 505 NA NA NA NA NA
45 85 136 178 213 255 290 339 381 423 458 510 549 591 633 NA 731
43 85 127 169 211 253 295 330 379 421 463 505 547 596 638 680 722
43 85 129 171 213 255 297 337 381 423 465 505 549 591 633 675 724
43 80 127 169 204 246 295 330 372 442 470 505 547 596 631 673 722
43 92 129 178 213 248 297 330 381 423 465 519 NA NA NA NA NA
45 87 129 171 213 255 297 338 381 423 463 507 556 597 633 675 731
45 94 129 171 213 255 297 346 381 430 465 507 549 591 633 675 731
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Table A.6: MS Active MRI Scans: O=inactive, l=active.
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active scans continued from previous page
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=no, l=yes.

Table A.7: MS Exacerbation occurred between scans: 0
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exacerbations continued from previous page

Scan Number

15 16 17
0 NA NA NA NA

14

0
0

0
0

0
0

1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0

0
0

1

0

0
0
1
0

0 1 0 O
0
NA NA NA NA NA

0
1

0
0

1
1

0
0

0
1

0
0

1

0

0

1

0

0

1

D(123456 7891011 12 13

568(0 000000000 0 O

422|10 00101000 0 0 O

4440 000000000 0 O

445(0 100000000 0 O

453]0 000000000 0 O

454100000000 0 0 O

4971000110100 0 0

5000 000000000 O

503(/0 00000000 0 0 O

506(1 001100000 0 0 NA NA NA NA NA

524(/0 0001 0001 0 0 O
5260 00000100 0

54111 00000000 O
5430 01 00001

566{0 01 010110 1
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A.2 Parasitic Infection (PI) Data Set

Table A.8: Weekly presence (1) or absence (0) of parasitic infection.

Child

Observations
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continued on next page
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continued from previous page

Child

Observations
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Appendix B

Derivative Calculations for
Approximated Transition

Probability Estimators

The partial derivatives required in Section 5.3 calculated by Maple (Waterloo Maple
Inc. (1996)) are quite lengthy and are listed here. Recall that the the number of
observations on each subject is considered to be the same for notational convenience,
and the time between observations is constant. The transition probabilities are
written as a = Pp;(t) and b = Pyo(t).

To simplify the partial derivatives of ¢, and ¢, let W = (1 —a —b) and U =
(1 —voy —vpo) and for j = 2,... ,nlet Tj oy = ﬁ*";,{;—‘-‘-(1 —a —=b) — ¥ j-1, Sij-1 =

ai-g',;‘—‘(l —a —b) — i j-1 and V; ;o1 = 7;;-1(1 —a —b) + a. The partial derivatives

199



APPENDIX B. DERIVATIVES FOR APPROXIMATED ESTIMATORS 200

of ¢, become,

I n

O¢r _ 3 P%ij1 3’7:'.:'-1) -1
vy § ,z=; (205 -1) [ T+ )+ U (3170130 w- Ovgy Py
—(20s; — 12 U(T; j—1 +1) (-Vi,j—l + O WU + 1) x P’
Ovoy
I [ (32%’ -1 O ‘-1) -
991 _ 20;; — 1) | =(T:i Zha-l gy TRzl gty
Ao ;,Z:;( B dvio0a W v )] &
- (20;; = 12 U(T;j-1 +1) (—V.',j-L + i1 WU) x P’
Ovio
R oY P 8%7; -1 i j-1 -1
E—§§(2O,J 1)U(——a—az—W—2—0T)x’P,J
— (20;; ~ 1)2U*(T;j-1 + 1)* x P
and
TR S 0% j-1 i1 Mg -1
2 ;;QO" nu ( a6 " " da b ) Py
i - -
— (205 = 1*U*(Tij1 +1) (—'la—;)—‘ W - 7.-,,--1) x P3?,
where

Pij =(2045 — 1)(1 —vor —v10) [1j-1(1 —a =b) + @] + (1 — O;)(1 — va1) + Oijva
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fori=1,...,land j =2,...,n. The partial derivatives of ¢, become,

o2 ZI: Zn: (20;; - 1) |=Sij-1 +U s gy Oigma ) | pot
va v W=l avmab 3v01 1

i=1 j=2

—(20;; —1)*US; ;1 (—Vi,j-l + 3‘7_.,_,__}_ WU + 1) pd 'P;}z

3’001

94 _ EI: zn: (205 — 1) | =8ijor + U Pijor yy _ Ot | po
avm v -l avmab va Y

=1 j=2

—(20;; - l)2 US;j-1 (—Vi.j-l + Mg WU) X 7’;}2

a'vm

942 _ S . %ot e %1 0% -
FE‘ZZ@O""”U( adb ' " " ob  oda )"P‘f

i=1 j=2

— (20,’,‘ - 1)2U25i,j—1(Ti.j—1 + 1) X ’Paz
and

062 _ NN oy 0™%ij-1 i1 -1
-51,-_22(20, -1)U (WW'2T) x P

i=1 j=2

- (20,'j - 1)2U25."j_12 X 'Paz

The first order partial derivatives for v;; are

37,-1 - (1 - 0;1)‘010 ab _ 0,'1(1 - vm)a b
a'vOl [(1 - ‘001)b + Y10 a]z [‘Um b + (1 - ‘llm)(l]z
% _— (0{1 - 1) (1 —‘Um)ab _ 0{1‘00101)

avm B [(1 -_— ‘llol)b + Y10 Cl,]2 [‘001 b + (1 -_— ‘Dm)a]2
07 =—(051 —1)(1 —vo1)vaod . Ouvor (1 — v10)d
da [(1 = vo1)b + 10 Glz [ b+ (1 - "-’10)0]2
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and

Oy =(0i1 —1)(1 — vo1)vioa Oi1v01(1 — v10)a
ab [(1 - Uol)b + Y10 a]z ['U(n b + (1 - vw)a]z

The second order partial derivatives for the recursion relation for j =1 are

Fyir (1= 0a)viob[~(1 —vo1)b+v10 al  Ou(l —v10)b[vor b — (1 — vi0)al
g fa [(1 = vo1)b + v10 a)’ [vor b+ (1 — vo)al’
327,'1 _(Ou - 1)(1 - vm)b [—-(1 - ‘Um)b + vy G] _ Onvo1 b ["-’01 b— (1 - le)a]
dvieda [(1 - vo1)b + vioa)® [vor b+ (1 — vi0)a]’
Py _ (0iy — 1)(1 = vo1)v10 [—(1 — vo1)b + v104]
dadb [(1 - vo1)b + vioa]®

Oiva1(1 — v10) [vorb — (1 — v10)a]
[vo1 b+ (1 — vio)a]’
v -9 (0 = 1)(1 = vor)vio®b 9 Oirvor(1 — vi0)? b

da? [(1 = vo1)b + vy0 a]3 [vo1 b+ (1 — v10) a]s
v (0 = 1)(1 — voy)?vi0a Oavn®(l — vio)a
7 =~ 2 3 3
ab [(1 - ‘vm)b + V10 a] ['001 b + (1 - 'Um)d]
v __ (Oi1 — 1)vyga [—(1 — vo1)b + v10 4]
Ovo,10b [(1 = vo1)b + v10 a]3

Oi1(1 = vi0)a [vor b — (1 — v10)a]

+
[1)01 b + (1 - vm)a]s

and

327{1 - (0{1 - 1)(1 - vm)a [—(1 - ‘Um)b + 'Uma] 0{11}010 ['vmb - (1 - vm)a]
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The first order partial derivatives for v;;, 7 = 2,... ,n, are

dy; (1= O05)ve B2 W 04(1 = vao) izt yy
Ovay, —VijaU+1-—va Vii-1 U + v
(1 - ,,)'vmV;_,- (- MWU—{-’Y;,J'_; W+a-1)
(Vi1 U+ 1 —vp)?
03 (1 = v10) Vijor (B WU — 3y W —a + 1)
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Ovij _ (1=0y)Vijr | (1=0i) o Tt W
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ab (UV;j-1 — 1 +va)? (UVijor +va1)?
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For 74;;, j =2,... ,n the second order partial derivatives are
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