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Abstract

Warming induced changes in Arctic vegetation have to date been studied through
observational and experimental field studies, leaving significant uncertainty about
the representativeness of selected field sites as well as how these field scale findings
scale up to the entire pan-Arctic. The purposes of this thesis were therefore to
1) analyze remotely-sensed/modeled temperature, Normalized Difference Vegeta-
tion Indices (NDVI) and plant Net Primary Productivity (NPP) to assess coarse-
scale changes (1982–2006) in vegetation; and 2) compare field, remote sensing and
model outputs to estimate limitations, challenges and disagreements between data
formats. The following data sources were used:

• Advanced Very High Resolution Radiometer Polar Pathfinder Extended (APP-
x, temperature & albedo)

• Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Dif-
ference Vegetation Index (NDVI) & Enhanced Vegetation Index (EVI) )

• Landsat Enhanced Thematic Mapper (Landsat ETM, NDVI)

• Global Inventory Modeling and Mapping Studies (GIMMS, NDVI)

• Global Productivity Efficiency Model (GloPEM, Net Primary Productivity
(NPP))

Over the pan-Arctic (1982-2007), increases in temperature, total annual NPP and
maximum annual NDVI were observed. Increases in NDVI and NPP were found to
be closely related to increases in temperature according to non-parametric Sen’
slope and Mann Kendall tau tests. Variations in phenology were largely non-
significant but related to increases in growing season temperature.

Snow melt onset and spring onset correspond closely. MODIS, Landsat and
GIMMS NDVI data sets agree well, and MODIS EVI and NDVI are very similar
for spring and summer at Fosheim Peninsula. GloPEM NPP and field estimates
of NPP are poorly correlated, whereas GIMMS NDVI and GloPEM NPP are well
correlated, indicating a need for better calibration of model NPP to field data.

In summary, increases in pan-Arctic biological productivity indicators were ob-
served, and were found to be closely related to recent circumpolar warming. How-
ever, these changes appear to be focused in regions from which recent field studies
have found significant ecological changes (Alaska), and coarse resolution remote
sensing estimates of ecological changes have been less marked in other regions. Dis-
crepancies between results from model, field data and remote sensing, as well as
central questions remaining about the impact of increases in productivity on soil-
vegetation-atmosphere feedbacks, indicate a clear need for continued research into
warming induced changes in pan-Arctic vegetation.
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Chapter 1

Introduction

Arctic warming is predicted to continue over the next century with simultaneous

increases in precipitation (Christensen et al., 2007). To date, ecological changes

have been noted at the field scale in the earlier onset of spring snow melt in north-

ern Alaska (Stone et al., 2002) and bud burst in Greenland (Høye et al., 2007).

Repeat photography has indicated increasing shrub prevalence in Alaskan tundra

(Sturm et al., 2005). Remote sensing has shown northward movement of the Arctic

tree line (Grace et al., 2002) and small changes in the greeness and quantity of Arc-

tic vegetation, as indicated by the Normalized Difference Vegetation Index (Neigh

et al., 2007). In order to establish whether the Arctic has changed from a carbon

sink to source under a warming and wetting climate, it is important to quantify

changes in the annual sequestration of carbon by vegetation and to compare this to

the rate at which carbon is released from Arctic soils (Oechel et al., 1993; Wu and

Lynch, 2000; Thompson et al., 2006; Sitch et al., 2007). With rising levels of CO2,

plant stomates can ingest neccessary quantities of CO2 while remaining less open,

which decreases the quantity of plant evapotranspiration, thus increasing the quan-

tity of soil moisture (Beerling , 2007). Increases in soil moisture induce higher levels

of anaerobic respiration, thus increasing the release of methane (CH4), a potent
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greenhouse gas, from thawing permafrost.

The complexity of the ecological response to climate change, as well as the

significant role of Arctic vegetation on global nutrient and atmospheric cycling,

mean that there are many positive and negative feedbacks involved in the response

of vegetation to climate change [Figure 1.1]. It is therefore vital that recent climate

induced changes in Arctic vegetation be accurately quantified and analyzed over

the entire pan-Arctic.

Figure 1.1: Snow, vegetation and temperature feedbacks (Eamer , 2009)

The vegetation indicators chosen for this thesis (productivity, phenology, NDVI)

are established bioclimatological indicators (Roerink et al., 2003). Each indicator

can be assessed using a combination of modeling and remote sensing, but is more

commonly assessed in field studies. Productivity refers to the net carbon uptake of

vegetation, phenology refers to the seasonal timing of biological processes (specif-
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ically, of spring bud-burst and autumn senescence), biomass refers to the total

amount of aboveground plant matter and bioclimate subzones refers to standard-

ized characterization of Arctic vegetation according to climate and plant species

present.

The scarcity of carbon flux towers and field measurement data in the vast and

heterogeneous Arctic have so far prevented the extensive validation of model pro-

ductivity estimates. Furthermore, the ecophysiological parametrizations of produc-

tivity models for Arctic biomes is also problematic (White et al., 2000; Liu et al.,

2002; Thornton, 2009). Changes in productivity of Arctic vegetation, as well as the

errors introduced by different estimation methods, remain poorly understood. Cur-

rent methods of estimating productivity have indicated little net change, with small

seasonal changes attributed to Arctic Oscillations and El Niño/La Niña (Zhang

et al., 2007).

Biomass estimation and bioclimate subzone classification have both been con-

ducted using three years of data by the International Association of Vegetation

Science (Walker et al., 2005). A recent paper by Raynolds et al. (2008) analyzed

changes in NDVI and vegetation distributions using the aforementioned classifica-

tions according to changes in temperature.

1.1 Aims and objectives

Responses of Arctic vegetation to experimental in-situ warming and nutrient en-

richment have been well documented, most notably as part of the International

Tundra Experiment (Henry and Elmendorf , 2008). Furthermore, recent studies

have observed climate-induced shifts in Arctic vegetation (Snyder , 2008; Levesque

et al., 2008; Tape et al., 2006). Despite these changes, NDVI has been found to

decrease slightly in tundra regions by Snyder (2008), change slightly across the

3



Arctic by Neigh et al. (2007), and found to increase in tundra regions by Raynolds

et al. (2008) and Jia et al. (2007). The aims of this thesis were therefore to 1)

understand how recent changes in pan-Arctic vegetation (1982–2006) bioclimato-

logical indicators (phenology, NDVI and productivity) are reflected in satellite and

remote sensing records; 2) analyze the relationship between trends in temperature

and trends in the aforementioned indicators; and 3) compare findings from remote

sensing, model outputs and field studies.

1.1.1 Objectives

The objectives of this thesis are to:

• Estimate phenology, net primary productivity and normalized difference veg-

etation index over time (1982-2000) over the pan-Arctic (north of 60N) using

remote sensing and model outputs.

• Analyze the aforementioned vegetation indicators to understand the response

of the pan-Arctic to recent climate change, potential implications and how

results fit with recent findings and debates in literature.

• Statistically assess changes over time in temperature and bioclimatological

variables, and whether they are related.

• Conduct comparisons of remote sensing, model and field observations of

changes in Arctic vegetation in order to elucidate potential data assimilation

and scaling challenges which arise when studying Arctic vegetation.
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1.2 Thesis significance

Establishing historical estimates of bioclimatological indicators in Arctic vegetation

is of theoretical significance; comparing various sensors with one another and field

data is of practical significance.

1.2.1 Practical

Comparing readings from multiple resolutions of NDVI for the Arctic (AVHRR at

8×8km, MODIS at 500×500m and Landsat at 30×30m) is important for shedding

light on the scale at which processes can be tracked in these ecosystems. Very

high resolution imagery such as IKONOS (1-4×1-4m) has been found to adequately

represent ecological changes observed in field studies (Laidler et al., 2008); however,

the majority of net primary productivity models occur over much larger spatial

resolutions (Cramer and Field , 1999). It is therefore important to understand

whether coarser resolutions adequately capture field scale processes.

1.2.2 Theoretical

Phenology and productivity are both reliable biophysical indicators of changes oc-

curing in the Arctic and NDVI is an established indicator of climate variability

(Roerink et al., 2003). Understanding when and where changes are taking place

is important for understanding the underlying system dynamics and establishing

remote sensing based estimates to enable further research in this area. Monitor-

ing Northern vegetation is also important because it affects albedo, vegetation-

atmosphere gas exchange and permafrost (Olthof et al., 2008). Arctic remote sens-

ing phenological studies have so far been limited to regions of tundra (Delbart and

Picard , 2007), Eurasia (Karlsen et al., 2006; Picard et al., 2005; Ebata and Tateishi ,
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2001), or North America (White et al., 2008; Reed , 2006; Vierling et al., 1997), or

have been limited to spring onset studies (Bunn and Goetz , 2006). The major the-

oretical contribution of this thesis is therefore in assessing circumpolar spring and

autumn phenology.

Understanding the NPP dynamics of the High Arctic is important both for

understanding whether, where, and how Arctic vegetation has changed, and also

for understanding both regional and global carbon dynamics (Hobbie et al., 2000).

Temperature is main driver of GPP in wetlands, but both precipitation and temper-

ature drive evergreen coniferous forest GPP (Migliavacca et al., 2008). It therefore

important that the parameter set used for estimating productivity is geographically

appropriate, and that the fit with field data is properly assessed.Since NPP prod-

ucts are calibrated globally using eddy flux covariance measurements, and there are

very few eddy flux towers in the Arctic, it is possible that the modeled results of

NPP are not entirely accurate.

1.3 Structure of thesis

The following thesis begins with a literature review focusing on the response of Arc-

tic ecosystems to recent climate warming, comparisons of field, remote sensing and

model findings, and Arctic-specific research challenges. Methodology follows with

a description of study sites, data products used and techniques for data handling

and statistical analysis. Results are then presented for 1) changes in temperature,

albedo, NPP, and NDVI over time, as well as the response of NPP and NDVI to

changes in mean May–September temperature; 2) comparison of data products,

and remote sensing vs field data; and 3) pan-Arctic comparison of changes in bio-

climatological indicators (NDVI, phenology and NPP) over time and their relation

to changes in mean May–September temperature. Discussion focuses on conceptual
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linkages between the aforementioned indicators, as well as a critical examination of

what is indicated by the multi-faceted perspectives on warming-induced changes in

Arctic vegetation provided by various technologies. Conclusions focus on implica-

tions of findings and suggestions for future work.
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Chapter 2

Literature Review

The purpose of the literature review is to first assess the current state of research

regarding Arctic ecosystem responses to a changing climate, and linkages between

findings from field, model and remote sensing approaches. Site specific challenges

are then described in context. For an in depth review of remote sensing and mod-

eling tools that can be used to estimate the productivity of vegetation, please refer

to Luus and Kelly (2008). Conclusions focus on pertinent research gaps, and their

significance.

2.1 Arctic ecosystem response to climate change

Changes in vegetation are predicted to occur under a warmer and wetter climate in

the Arctic (Christensen et al., 2007) due to multiple interactions between tempera-

ture, hydrology, soil nutrient levels, vegetative reproduction and rates of predation

which are complex and difficult to quantify. Because of the complexity involved, the

majority of studies conducted on changes in Arctic vegetation have been conducted

at a small scale using field experimentation. Traditional ecological knowledge in-

dicates the following changes in Arctic vegetation: earlier blooming, increase in
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prevalence of birch, increased shrubiness, longer shoots and lower berry productiv-

ity, increase in tree productivity (supported up by tree ring studies), larch spread

to new locations and deepening of the soil active layer which results in softer soil

(Levesque et al., 2008). However, these claims are often based on subjective ex-

periences, and are therefore difficult to verify quantitatively especially since they

result from field-scale observations which are not necessarily representative of large

regions of the Arctic. It is therefore important to establish documented and consis-

tent remote sensing based estimates. Also, even if there is no net change, ecosystem

dynamics can be rapidly altered by shifts in the timing of vegetation (Høye et al.,

2007). Therefore, the following sections focus on in-situ field scale and remote sens-

ing experiments on changes in Arctic species composition, productivity, phenology,

nutrient cycling and carbon cycling.

2.1.1 Species composition/ NDVI

Arctic vegetation is highly heterogeneous (Stow et al., 2004). The main environ-

mental factors determining species prevalence being soil moisture, elevation, soil

type and surface temperature regime, depending on the region sampled. Land

cover changes are influenced indirectly and broadly by human contact, with few

areas of intensive impact (Stow et al., 2004). The majority of the Arctic contains

non-vascular plants such as bryophytes and lichens. Non-vascular plants can only

outcompete vascular plants in conditions where water table stability and where

both nutrient (N and P) levels and temperature are low. Under the aforementioned

conditions, lichens and bryophytes can form extensive groundcover and can domi-

nate non-vascular plants by decomposing slowly and capturing available N and C

(Vitt , 2007).

Plant growth tends to be limited more by nutrient levels than temperature in
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areas of low elevation (Nadelhoffer et al., 1997); however, across the entire Arctic,

temperature is the main limiting factor (Raynolds et al., 2008). Regions of high

elevation tend to be water-limited, and vegetation type in these areas depends most

closely on soil moisture (Laidler et al., 2008; Vitt , 2007).

One method of detecting species composition changes over time and relationship

to environmental variables has been through the extraction of the Normalized Dif-

ference Vegetation Index (NDVI) from remotely sensed images. NDVI calculates a

normalized ratio between near- infrared (τNIR) and red (τRED) surface reflectance

as follows (Tucker , 1979):

NDV I =
ρNIR − ρRED
ρNIR + ρRED

(2.1)

The ratio between red (0.63-0.69 µm) and near-infrared (0.76-0.90 µm) radiation

is a useful indicator of the presence of vegetation because whereas non-vegetated

regions reflect red and infrared light equally, vegetated surfaces reflect much more

infrared radiation than red radiation [Figure 2.1]. The discrepancy in light reflec-

tion by vegetation is due to the propensity of leaf mesophyll to reflect near-infrared

rays and for chlorophyll to absorb red light. NDVI is therefore highest (≈ 1) in

the presence of dense vegetation and lowest (≈ 0) in the presence of snow, bare

soil or clouds. NDVI is widely recognized as an excellent way to estimate the frac-

tion of ground covered by vegetation, quantity of biomass and health of vegetation

(Pettorelli et al., 2005). Additionally, NDVI has been found to be strongly corre-

lated with productivity in the Arctic (Laidler et al., 2008), and to be moderately

positively correlated with land surface temperature (Raynolds et al., 2008).

Analyses of bimonthly NDVI data have also indicated little change over the past

two decades in terms of productivity (Neigh et al., 2007; Bunn and Goetz , 2006),

with tundra regions showing increases in productivity and forested areas showing
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Figure 2.1: Surface target spectra for regions with (below) and without (above) live
vegetation cover from Trishchenko et al. (2002)

decreases in productivity (Bunn and Goetz , 2006). This finding was confirmed

by a similar study of 60-70o N tundra NDVI by Jia et al. (2007), which found

increases in NDVI of 0.64%/y over North America and 0.44%/y over Eurasia. The
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difference between these studies is explained by Jia et al. (2007) as being due to

the restriction of Arctic study sites to tundra regions, and the application of a

homogenous vegetation approach to remove noise caused by bare ground and lakes.

Several recent studies have focused on the key controls on the NDVI response

of Arctic vegetation. Studies in Nunavut have shown that NDVI has been found to

be positively correlated to the percentage of vegetative landcover and surface mois-

ture (Laidler et al., 2008). Field comparisons of IKONOS and Landsat-derived

NDVI indicated that Landsat-derived NDVI showed the closest relationship with

environmental factors (Laidler et al., 2008). In a similar study, Raynolds et al.

(2006) used AVHRR-derived NDVI composites of the circumpolar Arctic to estab-

lish theoretical relationships between environmental variables and NDVI. Growth

was almost exclusively temperature-limited in the coldest regions, defined as those

which were dominated by mosses, lichens and liverworts. Intermediate regions

dominated by forbs and dwarf-shrubs were influenced by substrate and elevation.

Warmest Arctic regions with tussock vegetation were mostly influenced by geologic

history (Raynolds et al., 2006). The divergent conclusions reached by Laidler et al.

(2008) and Raynolds et al. (2006) may be explained in part by the propensity of

water to pool in regions of low elevation, leaving higher elevations drier. Thus,

elevation and surface moisture tend to be positively correlated, and may present as

confounding factors.

Regardless, the complex interactions between environmental variables and how

they influence spectral response, species composition and productivity remains an

open question in Arctic research. This question becomes even more pertinent when

considered in context of a changing climate, whereby warming, drying and increased

plant productivity (Sitch et al., 2007) as well as warming. Both drying (44%) and

wetting (53%) in different areas (Thompson et al., 2006) have been observed. With

a changing climate come changes in limiting factors which lead to changes in the
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phenology, productivity and species composition of vegetation.

Climate change is known to bring about changes in interspecific competition

which are most likely to be observed at ecotone boundaries (Stow et al., 2004).

Repeat large format photography in 1999-2002 of areas photographed in 1945-

1953 by Tape et al. (2006) indicated an increase in shrub abundance in pan-Arctic

regions. Similarly, Stow et al. (2004) has observed increases in the number of

shrubs in Northern Alaska using repeated oblique-aerial photographs taken at a

high resolution. Experimental warming and N fertilization have transformed acidic

tundra ecotones into tall, shrub-dominated ecotones (Thompson et al., 2006).

Increased shrubiness has been found to be associated with faster snow melt in

spring because shrubs provide greater surface insulation, thereby advancing the

date of snow melt (Wang and Overland , 2004). Another positive feedback of in-

creased shrubiness is a reduction in albedo which is hypothesized to lead to surface

and low atmospheric warming, resulting in an increase in shrub prevalence (Wang

and Overland , 2004). However, positive feedbacks hypothesized to exist between

shrubification, warming and CO2 release by Chapin III et al. (1995) were recently

disproved in an experimental field study conducted by Myers-Smith and Hik (2008).

2.1.2 Nutrient cycling

The limiting nutrient in the majority of the Arctic is nitrogen (N), which has

been closely linked to LAI in studies of a variety of ecotones in Northern Alaska

(Williams and Ratsetter , 1999), whereas wet sedge environments are phosphorous

(P) limited (Nadelhoffer et al., 1997). In an experiment that increased nutrient

levels, deciduous shrub biomass increased “at the expense of nonvascular plants,

graminoids, and evergreen shrubs” (Nadelhoffer et al., 1997). In an experiment with

increased temperature, vascular plants increased in prevalence while non-vascular
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plants became rarer (Nadelhoffer et al., 1997).

Deepening of the active layer is predicted to occur as a result of increasing

surface temperatures, and has the result of decreasing soil N (Thompson et al.,

2006). Perhaps as a result of the N limitation of drier regions, there are predictions

that moist regions will show a greater response to climate change than drier regions,

and ecosystem change will be determined more by storage, than mineralization,

of N (Nadelhoffer et al., 1997). Methane emissions from lakes and permafrost

have been growing recently as temperatures have been rising, and this increase is

expected to rise even as water tables rise because methanogenesis is more sensitive

to temperature than saturation (Sitch et al., 2007).

Disturbance history and N cycle control ecosystem response to CO2 (Thornton,

2008). Model results indicate increase in CO2 increases NPP and the existence of a

strong disturbance interaction related to N availability (Thornton, 2008). However,

N limitation is reducing the extent of NPP enhancement instigated by elevated CO2

(Norby et al., 2008). Moderate Resolution Imaging Spectroradiometer (MODIS) is

a NASA instrument on Terra and Aqua satellites which measures reflected and emit-

ted visible and infrared light in 36 discrete wavebands over 1-2 days. Many products

with a wide range of scientific applicationshave been developed using MODIS ob-

servations (NASA, 2009). One MODIS product, MODIS Land Surface Albedo,

estimates Earth radiation and was not designed for biophysical applications. Re-

cently, however, a strong correlation was found to exist between percentage canopy

foliar nitrogen and MODIS albedo (r=0.88) (Ollinger et al., 2008a). This is signifi-

cant because neither MODIS Albedo nor foliar N are related to the Leaf Area Index

(ratio of leaf to ground unit, LAI) (Ollinger et al., 2008a), and because foliar N is

directly related to ecosystem CO2 uptake (Ollinger et al., 2008b). The correlation

between CO2 uptake, foliar N and albedo may offer an interesting way to both

assess changes in productivity over time, and to estimate the accuracy of remotely
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sensed CO2 uptake (Net Primary Productivity) model outputs.

Eight Mile Lake near Healy, Alaska contains discontinuous permafrost undergo-

ing thawing (Schuur et al., 2008). Repeated observations at this site have revealed

positive feedbacks to exist between permafrost thawing and nutrient enrichment.

Thawing of permafrost leads to release of old carbon (as measured using carbon

isotope 14C02) which increases respiration, NPP and GPP. Although this region of

the Arctic continues to function as a C sink, Schuur et al. (2008) hypothesizes that

continued warming may lead to the loss of 77-106 Pg of C from Arctic permafrost

along with C cycle destabilization and increased growth of vegetation.

Concerns regarding positive feedbacks between warming and permafrost thaw-

ing are heightened by the prevalence of methane in permafrost which is formed

through the anerobic decomposition of vegetation. Methane is a greenhouse gas

with twenty-five times greenhouse gas warming potency of CO2 (Freedman, 2007).

Under recent warming (1970-2000), methane emissions from permafrost have in-

creased 20-60% at Stordalen mine in subarctic Sweden (Christensen et al., 2004).

2.1.3 Phenology

Phenology is defined as the “science of natural recurring events”, and is studied

extensively in Europe using a continuous and well maintained data set exists for

mean onset dates and temperatures (Menzel et al., 2006). Within the context of this

thesis, ‘phenology’ is used to refer specifically to the seasonal timing of biological

processes in vegetation.

Although the impacts of climate change can be seen both in the net biomass

produced by vegetation as well as the seasonal timing of this growth, vegetation

phenology has tended to be frequently overlooked (Roerink et al., 2003). To date,

field studies of phenology in the High Arctic have been limited to a single field
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study by Høye et al. (2007) which found >30 day advances in emergence dates

for arthropods, birds and six plant species in Zackenberg, Northeast Greenland

from 1996-2005. Studies have also found that a herbaceous alpine pioneer species,

Ranunculus glacialis, does not display changes in phenology under experimental

warming (Totland and Alatalo, 2002). Phenological changes in the High Arctic

“may weaken or even disrupt trophic interactions among species that are crucial to

successful reproduction in this highly seasonal environment” (Høye et al., 2007).

The impact of changes in phenology on carbon sequestration, however, is less

well understood. Whereas Stow et al. (2004) suggested that total carbon uptake is

independent of phenological dates, Baldocchi et al. (2005) found that every addi-

tional day of growing season increased C sequestration by 5gC/day in a decidious

forest. To date, spring onset in vegetation has been independent of autumn onset

(White et al., 2008), meaning that earlier spring onset is not correlated with ei-

ther late or early autumn onset. It is therefore reasonable to hypothesize that little

change in pan-Arctic productivity will be directly linked to alterations in phenology,

though it remains an interesting research question of pertinence to this thesis.

There has also been some disagreement over which remote sensing strategies

are best suited to estimating phenology. The majority of remote sensing studies

of phenology have relied on NDVI data extracted from AVHRR, yet AVHRR is

poorly calibrated to terrestrial surfaces and has difficulties with geometric registra-

tion and cloud screening (Zhang et al., 2003). Conversely, MODIS was validated

with good results for deriving phenology over New England (Zhang et al., 2003).

Another option is to use GIMMS, which is an AVHRR-derived product created by

the Global Land Cover Facility (www.landcover.org) that is geometrically, atmo-

spherically and cloud corrected and has been used in previous studies of Alaskan

phenology (Verbyla, 2008).

Products such as GIMMS have been used both for assessing phenology as well
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as productivity. Verbyla (2008) used GIMMS AVHRR-derived NDVI, and found

decreases in net maximum NDVI over boreal Alaska and an increase in NDVI along

the northern coast of Alaska. In order to extract phenology from a time series of

NDVI for a site, the most popular method is to use a Fast Fourier Transform to

change the 15-day composite images into a continuous data set, and then choose

points of inflection to determine the start and end of both spring bud-burst and

autumn senescence (Loyarte et al., 2008).

Once a continuous remote sensing record is established, there are several other

methods of estimating important dates for phenology. These methods include set-

ting global thresholds for an entire study site, or setting locally tuned NDVI thresh-

olds (ex: estimating start of spring as the date when NDVI>0.3). More complex

methods of estimating phenology are either conceptual-mathematical, or are a hy-

brid of previously mentioned methods (White et al., 2008). Therefore, significant

uncertainty exists regarding both which date should be regarded as the start of sea-

son, problems arise in the comparison of data from studies using different methods,

and a clear need exists to look at the timing of specific biological processes rather

than estimating a single date (White et al., 2008).

Currently, the largest retrieval uncertainty is faced by studies in the tropics

and high latitudes (White et al., 2008). A recent study by White et al. (2008)

has indicated an earlier start of season in central/southern Alaska with no trend

detected in the rest of the North American Arctic (1982-2006) (White et al., 2008).

2.1.4 Productivity

Primary productivity refers to “the rate at which energy is stored in the organic

matter of plants per unit area of the Earth’s surface. It is often expressed in units

of dry matter (e.g., grams of dry mass/ m2 y) rather than energy because of the
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ease of determining mass and the relative constancy of the conversion from mass

to energy (caloric) units for plant tissues” (Fahey and Knapp, 2007).

Gross Primary Productivity (GPP) is the “amount of carbon photosynthesized

by plants” (Myneni et al., 1995). Net Primary Productivity (NPP) is calculated by

subtracting autotrophic respiration from GPP, which corresponds to roughly 50%

of net canopy photosynthesis (Gower et al., 1999). Net Ecosystem Productivity

(NEP) is NPP minus soil respiration (Maisongrande et al., 1995). Gross Ecosystem

Productivity (GEP) can thus either be calculated by adding NEP and autotrophic

respiration, or by subtracting soil respiration from GPP. Autotrophic respiration

(RA) refers to respiration by plants, and heterotrophic respiration (RH)refers to

respiration by organic matter decomposers. For a brief comparison of these terms,

please refer to Table 2.1.

From a field sampling perspective, productivity can be expressed either as a

mass or energy flux. If assessed as a mass flux, productivity can be described either

through C mass or as dry weight (with or without ash). C mass accounts for 50%

(47%–55%) of total dry weight. Alternatively, annual growth can be estimated

using measurements in shrub diameter multiplied using species-specific allometric

biomass equations (Young , 2007). Annual non-vascular growth can be estimated

using innate (leaf, frond or stem, patterns) or surrogate (neighbour or wire/net)

markers, which can then be multipled by bulk density to estimate annual production

(Vitt , 2007).

Primary Productivity Ecosystem Productivity
Gross GPP:rate of plant energy storage GEP:GPP-heterotrophic respiration
Net NPP: GPP -autotrophic respiration NEP: NPP-heterotrophic respiration

Table 2.1: Definitions of productivity terms.

Of all the aforementioned variables, NPP is most widely used for resource man-

agement, studies of the terrestrial carbon sink and analyses of ecosystem health
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(Cao et al., 2004). NPP is usually modeled either using remote sensing-based mod-

els such as GloPEM or ecosystem simulation models such as 3-PGS. N and P fer-

tilization of a wet sedge tundra by Boelman et al. (2003) over 13 years resulted in a

four-fold increase in aboveground biomass and Gross Ecosystem Production (GEP)

with corresponding increases in NDVI (R2 = 0.84). However, Net Ecosystem Pro-

duction (NEP) was not found to vary between treatments. This is because NEP is

calculated by subtracting Ecosystem Respiration (ER) from GEP, and treatments

increased GEP and ER equally (Boelman et al., 2003). This finding suggests that

changes in biomass could be assessed remotely using NDVI as a proxy for GEP.

Furthermore, recent studies by Williams et al. (2008) have shown LAI and NDVI

to be closely related in Arctic ecosystems. NDVI is therefore a proven proxy for

GEP and LAI. Furthermore, because of the low ratio of aboveground vegetation

per unit of ground (LAI<3) of biomass in the Arctic, no issues exist with NDVI

saturation (Haboudane et al., 2004).

Since 2004, NPP has been decreasing in deciduous forest control and experi-

mental plots (Norby et al., 2008). Some of the changes in NPP can be explained

by the leaf area day (total days for which leaves are present) (Norby et al., 2008).

Although climate change has been predicted to bring about increased productivity

in the Arctic (Stow et al., 2004), NPP has increased in tundra biomes while de-

creasing in shrub and tree biomes (Thompson et al., 2006). Experimental studies

conducted as part of the International Tundra Experiment (ITEX) have indicated

strong response of vegetation to warming and fertilization, with smaller increases

found with fertilization along but no significant increase due to warming alone

(Chapin III et al., 1995; Grogan, 2008). Experimental nitrogen enhancement in a

bog led to increase in photosynthesis, and a decrease in respiration (Juutinen et al.,

2008)

A recent increase in temperature was found to suppress lichen productivity
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and increases vascular plant productivity, and that replacing lichen with vascular

plants causes increases in NDVI (Olthof et al., 2008). These changes in NDVI

were detected using robust trend detection. Changes in vegetation composition

were observed using spectral mixture analysis (Olthof et al., 2008). Wang and

Overlander 2004 observed significant decreases (1982-2000) in NDVI area of Arctic

tundra (Henry and Elmendorf , 2008). Goetz et al. (1999) observed a 10% increase

in NDVI over the past 20 years (Grogan, 2008).

2.1.5 Carbon cycling

Northern regions are an important source and sink of Carbon (C), and contain

between 25-33% of the world’s C pool (Oechel and Vourlitis , 1997). The impacts of

climate change are predicted to be most significant in the Arctic, which release C

at a greater rate at rising temperatures (Oelbermann et al., 2008). Recent research

has indicated that current warming trends in Alaska are leading to significant in-

creases in the rate of Alaskan permafrost thaw, with older carbon being released

preferentially (according to 14CO2:12CO2 ratios) (Schuur et al., 2008).

Process-based models have been used to assess CO2 exchange in the Arctic

under climatic changes. These models use either eddy flux covariance data or

experimental field data for parametrization (Sitch et al., 2007).

Plants store C because their C:N ratio is greater than that of the soil (Sitch

et al., 2007), although they were earlier thought to have equal C:N ratios (Nadel-

hoffer et al., 1997). C emissions occur as a result of nutrient increase following

warming (Mack et al., 2004). With increasing nutrient release and uptake, plants

were found to undergo twice as much growth which increased their storage of C but

also increased by an equivalent amount the emission of C from deeper soil levels

(Mack et al., 2004). In a similar experiment, experimental warming and N fertil-
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ization simulating expected impacts of climate change resulted in decreases in soil

C (Thompson et al., 2006).

Under a regime of increased CO2, earlier experiments found increases in plant

productivity instigated by higher CO2 levels would return to normal within 3 weeks,

but at the time, a hypothesis was stated that synergistic effects might cause more

long-lasting changes in productivity (Oechel and Vourlitis , 1997).

An often-debated research gap in the study of Arctic remains regarding how

climate change will impact C cycling in the Arctic (Wu and Lynch, 2000), since

the rate of C storage is based on NPP and decomposition (Thompson et al., 2006).

Climatic warming is predicted to increase plant productivity, thus sequestering

carbon at a greater rate and increasing microbial respiration in soils, which will

increase atmospheric C (Stieglitz et al., 2000; Boelman et al., 2003). Whether in-

creased emissions of C are counterbalanced by increased C sequestration therefore

remains an often discussed issue. With increased temperature in the Arctic, het-

erotrophic respiration (RH) is thought to increase more rapidly than NPP over

the short-term, and NPP more than RH over the long-term. The growth in RH is

especially prevalent if soils dry, according to model predictions (Sitch et al., 2007)

since RH is inversely proportional to soil moisture (Thompson et al., 2006). Since

leaf stomates can ingest CO2 more easily during higher CO2 periods, their stomates

remain closed more often, thus decreasing the quantity of evapotranspiration and

raising soil moisture levels (Beerling , 2007). Higher CO2 conditions therefore lead

to increased soil moisture, which may lead to decreases in RH , thus leading the

Arctic to act more as a sink than source of C.

One method of assessing this question has been to collect field measurements

of CO2 release and NPP under experimental warming, as in Boelman et al. (2003).

Another approach has been to couple a Terrestrial Ecosystem Model (TEM) with a

soil thermal model to assess carbon cycling (Thompson et al., 2006), and calibrate
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the model using field-derived measurements of aboveground NPP.

2.2 Site-specific challenges

Arctic vegetation poses significant accuracy challenges for both remote sensing and

modeling. The classification accuracy of remote sensing at visible and infra-red

wavelengths is complicated by cloud cover and low spatial resolution.

2.2.1 Field studies

Field studies are sparse for Arctic regions because study sites are remote, difficult

and expensive to access. Vegetation is characterized by a short growing season

and harsh winter which complicates the installation of year-round fixtures. Of

benefit to researchers studying net primary production is the relatively small size

of vegetation, which allows destructive sampling that would not be possible in

regions with very large trees. Samples can also be dried more easily because of

their size. Vegetation is diverse across the Arctic, but each individual study site is

likely to have smaller biodiversity than an equivalently sized plot in a temperate or

tropical region.

2.2.2 Remote sensing of Arctic vegetation

Of the many challenges posed by remote sensing in Arctic environments, the most

notable problem is that of cloud cover. In some parts of the Arctic, there is persis-

tent cloud cover for up to weeks at a time (Stow et al., 2004). Many Arctic studies

therefore use passive microwave sensors, since passive microwave readings are in-

dependent of solar illumination and cloud cover. If passive microwave can be used,

the L band is better suited to assessing changes in vegetation than the Ku and C
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bands (Sitch et al., 2007). However, extraction of vegetation indices such as NDVI

require cloud-free optical data (Jensen, 2007). Because of long-lasting Arctic cloud

cover, it is possible that changes requiring the use of optical satellite instruments

can be missed completely (Stow et al., 2004). Finally, NDVI measurements are

heavily sensitive to changes in illumination levels caused by varying cloud cover

(Hope, 1999). Most commonly, researchers therefore select images according to a

maximum cloud cover threshold to reduce errors associated with cloud cover (Hope,

1999).

When possible, a high temporal resolution of observations should be used to

enhance the ability to catch phenological changes (Stow et al., 2004). Another

approach is to create composite images of maximum values of NDVI which then

effectively removes the effect of clouds, which have a lower NDVI than vegetation.

This method is used to create the GIMMS product, which has been found to be

reliable in a study of Alaskan vegetation by Verbyla (2008).

Another challenge of Arctic remote sensing is that of large quantities of surface

water, as well as snow and ice cover, which can bias measurements of vegetation

(Stow et al., 2004). The challenges posed by surface water are especially problematic

in regions of Hudson’s Bay lowlands such as near Churchill. Also, because the

incident sun angles are so low at Arctic latitudes, shade contributes to solar radiance

which results in a great deal of noise (Stow et al., 2004). Fortunately, the low height

of vegetation mitigates the size of shadows (Laidler et al., 2008). Soil also has a

high reflectance ( 0.3 for red and NIR) (Laidler et al., 2008) which complicates the

differentiation of soil from vegetation.
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2.3 Conclusions

Changes in the productivity, phenology and species composition of vegetation, as

well as in nutrient and carbon cycling are currently observed in in situ studies of

the Arctic (Stone et al., 2002; Høye et al., 2007; Christensen et al., 2007). Yet, the

sparse distribution of Arctic field sites requires these field studies to be compared

to remotely sensed historical datasets in order to assess whether the sample sites

are representative of pan-Arctic changes, and to analyze challenges that occur in

scaling and assimilating findings from field, model and remote sensing data sets.

The cumulative impacts of these changes on Arctic ecosystem dynamics and global

carbon cycling remain poorly understood due to their complexity and the challenges

involved in conducting field, modeling and remote sensing studies in this region

(Sitch et al., 2007; Stow et al., 2004).

Although the processes leading to changes in vegetation are complex, analyzing

remote sensing estimates of these changes over time will enable further research

into the factors associated with these changes (soil moisture, surface temperature,

soil nutrients), and can thereby provide insights into changes in Arctic ecosystem

dynamics occurring under an ever-changing climate.

Many important questions remain regarding the response of pan-Arctic vegeta-

tion to climate change. Combining remote sensing with models enables pan-Arctic

comparisons over time that can yield important insights. However, issues related

to scaling, reliability and interconnections between data products need to first be

analyzed. It is therefore hoped that the following thesis will analyze pan-Arctic veg-

etation changes over time using the aforementioned products, and also assess the

reliability, interconnections and challenges of using remote sensing and modeling to

estimate biophysical vegetation changes over time.
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Chapter 3

Methodology

Methodology is described first according to the acquisition and characteristics data

sets (GloPEM, GIMMS, MODIS EVI, MODIS NDVI, Landsat and APP-x). Each

data set was analyzed both over the pan-Arctic, within 5o latitudinal bands and

20o longitudinal, as well as for three study sites in the Canadian Arctic. The

second section of methodology therefore describes Canadian Arctic study sites in

detail with associated high resolution images. The next methodology sections focus

on technical aspects of data processing, and the visual and statistical analysis of

results.

3.1 Data products

The data products used for this thesis are described in table 3.1 below in terms of

their technical specifications, pertinent recent applications, and the extent to which

these products are likely to be of benefit in this study according to both how well

they perform in Arctic vegetation biomes as well as how well they estimate the

specified indices. One challenge of AVHRR-derived GIMMS NDVI and GloPEM

NPP is that there is an artefact causing a strong horizontal line to appear in north-
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central Russia. Emails to providers of GIMMS and GloPEM products regarding

this artefact have gone unanswered.

Product Spatial Temporal resolution Inputs Description
APP-x 25×25km 30 day (1982–2004) AVHRR Temp/Albedo
GIMMS 8×8km 15 day (1981–2006) AVHRR NDVI
GloPEM 8×8km 10 day (1981–2000) AVHRR,met,field NPP
Landsat 4-5 TM 30×30m ≈weekly (1982–) – Multispectral
MOD13A1 500×500m 16 days (2000–) Terra & Aqua NDVI & EVI

Table 3.1: Data product key characteristics. For key acronyms, please refer to text
below or Table B.1

3.1.1 AVHRR Polar Pathfinder-Extended (APP-x)

APP-x products provide estimates of a variety of radiation, cloud cover and surface

properties for the pan-Arctic using AVHRR readings upscaled from 1.1×1.1km to

25×25km in addition to ozone and atmospheric profile data. APP-x products are

calculated by the Cooperative Institute for Meteorological Satellite Studies at the

University of Wisconsin Madison, and are calibrated to 41 Arctic meteorological

stations. APP-x monthly mean temperature and albedo were used for this study,

although higher temporal resolution data is available (Wang and Key , 2003).

3.1.2 GIMMS (NDVI)

GIMMS, Landsat and MODIS NDVI are calculated using the same standard equa-

tion NDVI equation(Tucker , 1979):

NDV I =
ρNIR − ρRED
ρNIR + ρRED

(3.1)

Global Inventory Modeling and Mapping Studies (GIMMS) is a Normalized

Difference Vegetation Index (NDVI) product calculated from 1.1×1.1km Advanced
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Very High Resolution Radiometer (AVHRR) data, and resampled to 8×8km com-

posites. GIMMS NDVI is geometrically and atmospherically corrected, and conveys

maximum NDVI observed over 15 day periods in order to filter out clouds, which

have a low NDVI. GIMMS is an established indicator of phenology (Yoccoz , 2008;

Reed , 2006; Stow et al., 2001) and biomass in low Leaf Area Index (LAI) regions

such as the Arctic (Williams et al., 2008; Boelman et al., 2003; Raynolds et al.,

2006).

3.1.3 Landsat (NDVI)

Landsat is a multispectral sensor with a very long hisorical record (1982–) and a

finer resolution than GIMMS (30x30m), which is now offered for free by the US

Geological Survey (USGS). Although free data sets are not corrected, resampled or

composited to remove noise, the availability of this data set as well as its historical

record makes it desirable for long term dynamical studies of land cover. Landsat

Thematic Mapper 4-5 contains 7 bands, where bands 3 and 4 are red and infra-red

radiation respectively. NDVI can therefore be calculated directly from Landsat

images using a simple equation (Global Land Cover Facility).

3.1.4 Field net primary production estimates

Net primary productivity is assessed in situ by extracting aboveground vegetation

samples, oven drying them and then determining NPP based on the weight of dry

plant matter. Carbon accounts for 47–55% of dry plant weight, with a mean value

of 50% for the majority of species. NPP is much more difficult to measure than dry

plant weight, the robust and well-accepted conversion of NPP=50% of dry weight is

widely used (Fahey and Knapp, 2007). The main challenges in field sampling are in

determining how many plots to sample, and whether to use randomized or selective
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sampling (where samples are taken from regions with varying characteristics in one

region). Another challenge is that field measurements are usually taken with the

idea of characterizing a larger region using many measurements. However, there

can be a great deal of heterogeneity in the distribution of NPP, over a typical (1

ha) sampling region (Fahey and Knapp, 2007).

Two challenges are posed in field sampling of moss and lichen vegetation which

cover a majority of the Arctic. Firstly, both decay more slowly than vascular

plants, and it can therefore be difficult to differentiate live and decomposing peat.

A second issue arises in the classification of aboveground biomass, since much of

the non-shrub biomass in tundra ecosystems lies along the ground beneath the

shrub canopy and the transition between growing and decomposing sections of a

biomass is gradual (Vitt , 2007). Vitt (2007) therefore recommended that non-

vascular biomass estimates should be based on samples of the top 5cm and 10cm to

enable consistency in the way in which ‘aboveground’ is defined. Shrub dominated

regions are also difficult to characterize in terms of NPP because shrubs tend to

propagate widely into dense communities and contain numerous stems (Young ,

2007). Furthermore, the rate of herbivory is difficult to quantify for any ecological

region (Young , 2007).

3.1.5 MODIS EVI and NDVI

MODIS NDVI has been compared with GIMMS and Landsat for the high Arctic

because MODIS NDVI has a 500×500m resolution which offers a medium resolu-

tion in comparison to GIMMS (8×8km) and Landsat (30×30m) (Jensen, 2005).

Questions of the influence of scale on results can therefore be examined.

MODIS Enhanced Vegetation Index (EVI) and NDVI images are available as

16 day composites from NASA, both at the 500×500m resolution and from 2000
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onwards. Also, MODIS NDVI and EVI have been found to outperform AVHRR in

estimating percentage tree cover (Hansen et al., 2002) so it will be interesting to

see if this success holds over to Arctic vegetation estimation.

MODIS EVI is calculated as follows:

EV I = G
ρNIR − ρRED

ρNIR + C1 × ρRED − C2 × ρBLUE + L
(3.2)

”where ρ are atmospherically corrected or partially atmosphere corrected (Rayleigh

and ozone absorption) surface reflectances, L is the canopy background adjustment

that addresses nonlinear, differential NIR and RED radiative transfer through the

canopy, and C1, C2 are the coefficients of the aerosol resistance term, which uses the

blue band to correct for aerosol influences in the red band. The coefficients adopted

in the EVI algorithm are L = 1, C1 = 6, C2 = 7.5 and G(gain factor)=2.5” (Huete

et al., 2002). EVI is therefore designed for monitoring vegetation while removing

atmospheric noise (Huete et al., 2002). MODIS EVI has recently been found to

be outperform AVHRR NDVI in estimating phenology, productivity and photo-

synthesis in temperate regions (Mahadevan et al., 2008; Sims et al., 2006; Xiao

et al., 2004). In a low Arctic (70o north) sedge-shrub tundra, NDVI was conversely

found to be more closely correlated to green phytomass (r=0.63) and leaf turnover

(r=0.79) than EVI. The relationship between EVI, NDVI and productivity in the

high Arctic has yet to be assessed.

3.1.6 GloPEM (NPP)

Net Primary Productivity (NPP) estimations can be conducted at the in situ using

biomass sampling or eddy flux covariance data, or by modeling a combination of

remote sensing, field and meteorological estimates (Gower et al., 1999). Please

refer to Luus and Kelly (2008) for a discussion of different approaches used to
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estimate NPP using modeling and remote sensing. NPP estimates tend to be better

calibrated in regions where extensive vegetation sampling has been conducted, and

which contain numerous eddy flux covariance towers; conversely, the shortage of

these inputs in Arctic regions limits the ability to assess the accuracy of NPP

estimates.

NPP provides important input on the quantity of carbon taken up by vegetation.

In the Arctic, NPP readings over time relate directly to both to the role of vegeta-

tion in global carbon cycling, and furthermore reflects changes in biomass induced

by recent climate warming. GloPEM (Global Production Efficiency Model) derives

10-day estimates of NPP (gC/m2/10 day) from 1981-2000 using USGS AVHRR

data, resampled to an 8×8km resolution (Goetz et al., 1999). GloPEM calculates

NPP as a function of autotrophic respiration, and the utilization and absorption

of canopy radiation. Remote sensing inputs are all derived from AVHRR, and

consist of canopy air temperature, photosynthetically active radiation and fraction

of photosynthetically active radiation absorbed by the canopy. Meteorological in-

puts include the quantity of aboveground biomass (kg/m2), site latitude, optimal

air temperature for photosynthesis, soil water holding capacity, monthly mean air

temperature, daily surface vapor pressure, precipitation, mean fraction of sunshine,

diurnal temperature range (K), net radiation and initial soil water content. To date,

research has been conducted of comparing carbon estimates in China (Pan et al.,

2006) using GloPEM, but no studies have yet focused on GloPEM estimates of

NPP for the Arctic, or on quantifying Arctic GloPEM NPP uncertainties.

3.2 Acquisition

Data product sources are summarized below in Table 3.2. Landsat images were

selected on the basis of having <20% cloud cover, being free of snow and available
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Product Source of data Website
APP-x Polar Satellite Meteorology stratus.ssec.wisc.edu/products/appx
GIMMS Global Landcover Facility glcf.umiacs.umd.edu/data/gimms
GloPEM Global Landcover Facility glcf.umiacs.umd.edu/data/glopem
Landsat USGS Earth Explorer edcsns17.cr.usgs.gov/EarthExplorer
MOD13 NASA Land Processes lpdaac.usgs.gov/lpdaac/get data

Table 3.2: Data product acquisition information. For key acronyms, please refer to
text below or Table B.1, and for data product descriptions, refer to Table 3.2

for summer months June, July and August. Selecting images for NDVI analysis

based on a maximum cloud cover threshold is an established unbiased method for

dealing with cloud cover(Hope, 1999).

GIMMS, GloPEM and APP-x data sets were downloaded in their entirety for

the Arctic. MOD13 EVI and NDVI will be downloaded for one site only, Fosheim

peninsula, and for summer months May through September, to assess whether EVI

is better at predicting snow on/off dates than NDVI.

3.3 Study site selection

Study sites were selected on the basis of availability of field data, which was found

using the International Polar Year Polar Data Catalogue (www.polardata.ca).

The location of study sites is indicated with square boxes in Figures 3.1 and 3.3,

and site characteristics are summarized in Table 3.3. Field data were collected on

Study site Northing Easting Ecotone
Churchill 58.80-58.27 -93.93- -92.95 Sedge, moss, low shrub wetland
Herschel 69.64-69.52 -139.27- -138.84 Sedge, moss, dwarf-shrub wetland
Fosheim 80.12-80.08 -85.67 - -85.50 Prostrate/hemiprostrate shrub tundra

Table 3.3: Study site characteristics

Cape Churchill from 1989 to August 2008 by R.L. Jefferies and E. Horrigan from

the University of Toronto, and were generously shared for this thesis as part of

International Polar Year.
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The three study sites are located near the westernmost, easternmost and north-

ernmost extents of the Canadian Arctic, and provide an interesting contrast. The

northernmost site, Fosheim, has undergone the largest extent of warming [Figure

3.1] and is also predicted to undergo the largest increase in surface temperature in

response to scenarios invoking a doubling in CO2 levels, followed by Herschel and

then Churchill (Moritz et al., 2002). However, whereas Churchill and Herschel have

both undergone increases in NDVI, NDVI has decreased in Fosheim between 1982–

2005 [Figure 3.2] which indicates that there is something more complex driving

patterns in NDVI than surface temperatures alone.

Herschel and Churchill provide an interesting basis of comparison because they

have undergone different changes in surface temperature and NDVI [Figures 3.1 and

3.2], and are far apart geographically but they are both sedge and moss intertidal

wetlands which remain dry in summer [Figure 3.3]. Another benefit of these three

study sites is that they are all located relatively close to meteorological stations

(YUB, YRB and YYQ), which are sparse in the Canadian Arctic but important

for setting parameters for modeling net primary productivity. All three regions

are characterized by Cryosolic (permafrost containing) soil type according to Soil

Classification Working Group (1998).

True colour satellite images indicating the GIMMS 8×8km footprint are pre-

sented below for Churchill [Figure 3.4], Fosheim [Figure 3.5] and Herschel [Figure

3.4]. The Churchill site is part of La Perouse Bay, a saltwater intertidal marsh.

It contains a large number of ponds and lakes, which are likely to diminish the

NDVI signal because of the low NDVI of water in comparison to vegetation. The

Churchill site contains low Arctic shrub wetland dominated by Carex subpathacea

sedge, Puccinellia phrynganodes grass and willow (Jefferies et al., 1979; Jefferies ,

2008). An east-west gradient exists in the GIMMS pixel, where the western edge

contains a higher proportion of shrubs and willows, and the remainder of the site is
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of a lower elevation with smaller wetland vegetation and more ponds. Of the three

sites, Churchill is the most heterogeneous in distribution of water and vegetation

types.

Fosheim Peninsula, the study site which is furthest North, is also the most bar-

ren and rockiest [Figure 3.5]. Prostate/hemiprostrate shrub tundra is interspersed

by unconsolidated gravel and sand on west- and northwest- facing slopes (Young

et al., 1997). Over 140 species of vascular plant are found at Fosheim Peninsula,

whereas surrounding regions of Ellesmere Island are much colder and have lower

plant diversity (Young et al., 1997).

Herschel Island is a coastal salt marsh like Churchill [Figure 3.4]. However,

unlike Churchill, Herschel Island is in the High Arctic. Herschel Island is covered

mainly in Puccinellia phryganodes grass and Carex ursina sedge (Jefferies , 1977).

The GIMMS pixel used for analysis of the Herschel study site contains a great deal

of water. Due to the small size of Herschel Island in relation to GIMMS pixels,

the pixel selected contains the highest proportion of land area possible. However,

masking of water pixels will likely be easier for Herschel Island than for Churchill

because of the smaller number of ponds and lakes, which vary seasonally much

more than the coastline.
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Figure 3.1: Changes in surface air temperature from 1970-2000 (Moritz et al., 2002)

Figure 3.2: Changes in 1982–2005 North American AVHRR-derived NDVI accord-
ing to Neigh et al. (2007)
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Figure 3.3: Map of circumpolar Arctic vegetation types classified by Walker et al.
(2005)
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Figure 3.4: Landsat (1990 composite) image of Churchill, with GIMMS 8×8km
footprint in white
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Figure 3.5: Google Earth image of Fosheim Peninsula, with GIMMS 8×8km foot-
print in white
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Figure 3.6: Landsat (1990 composite) image of Herschel Island, with GIMMS
8×8km footprint in white
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3.4 Data processing

For all data sets, masking of pixels composed mostly of water was conducted ac-

cording to the internal classifications of each data set. Within each product, if a

pixel was labelled ‘water’ at any point throughout the time series, this pixel was

then assigned a ‘Not a Number’ (NaN) in Matlab to ensure it is masked out for the

entire duration of analysis. All calculations and analysis were conducted in Matlab

7.6 (R 2008a).

3.4.1 Temperature, productivity and NDVI

Surface temperature from APP-x, NDVI from GIMMS and NPP from GloPEM are

available processed and georeferenced. GloPEM NPP estimates (grams of C per

m2 per 15 days) are available on a 15-day 8km×8km resolution from 1981-2000.

In addition to assessing NDVI over time for three study sites, estimates of

maximum annual NDVI will be generated in order to assess changes in maximum

greeness (as done for northern Alaska by Jia et al. (2003) ). Maximum annual

NDVI is additionally recognized as a reliable indicator of pan-Arctic aboveground

phytomass (Raynolds et al., 2006).

Pan-Arctic estimates of these characteristics were therefore drawn directly from

these products, using coordinate data georeferenced in ArcGIS. The Matlab func-

tion map2pix was used to convert map coordinates of study sites to the appropriate

pixels, and imcrop was used to extract the specified locations from the datasets.

Programming loops were used in Matlab to batch crop, process, and plot data. In

order for phenology and statistics to be estimated, data sets were split into time

series matrices where each matrix would be composed of a single row over time. To

save memory, each loop would load variables for one matrix, make calculations and

then save all variables in a .mat file for further processing.
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3.4.2 Phenology

GIMMS NDVI has already been atmospherically, cloud and geometrically corrected.

GIMMS has also been successfully used in the past by Yoccoz (2008) to estimate

Arctic phenology. Estimates of productivity will therefore be based directly on the

GIMMS product for 1981-2006. Many methods exist for determining key pheno-

logical dates, with much variation resulting between methods (Olthof et al., 2008).

One of these established methods involves estimating the day at which NDVI=50%

of mean maximum annual NDVI at each pixel for both spring (as NDVI is rising)

and autumn (as NDVI is falling) [Figure 3.7]. The aforementioned method was

used for estimating phenology in this thesis because it requires only remote sensing

input (and no further model or field inputs), and is widely used in remote sensing

studies of phenology. The shortcoming of this approach is that it doesn’t relate

closely to field derived measurements of key spring and autumn dates as the time

at which buds open, and leaves begin to dessicate and fall. Each sequence of NDVI

images was assessed to determine the threshold for each individual pixel, defined

as half of the mean (1982–2006) maximum annual NDVI [Figure 3.8].

Figure 3.7: Illustration of interpolated GIMMS NDVI over time with identification
of key spring and autumn dates as 50% of annual maximum NDVI
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NDVI was then interpolated linearly and in two-dimensions using the Matlab

function interp1 in order to have NDVI estimates for each day from 1982 to 2006.

Key dates were defined as the date at which NDVI goes from below to above pixel-

specific thresholds in spring, and vice versa in autumn. Processing pan-Arctic

phenology was conducted column by column across the entire scene to minimize

matrix size. Site level phenology was determined by following a single 8×8km pixel

over time.

3.5 Net primary productivity (field)

Field net primary productivity readings were collected by Robert L. Jefferies, Emma

Horrigan and other students/field assistants between 1989 and 2003 at two field

sites in La Perouse Bay, east of Churchill named Randy’s Flat and East Bay. In

each year, biweekly samples of aboveground vegetation (g/m2) were taken at 5-6

locations at each study site from May to August (Jefferies , 2008). For the purpose

of comparing field to GloPEM NPP, samples from the 5-6 locations at each study

site were averaged and compared directly to GloPEM.

3.6 Statistical analysis and plotting

All statistical tests were conducted at the nominal <0.05 level. No correction for

multiple testing was applied, although limitations of this approach are described in

the discussion section. Pearson parametric correlation was used for comparing fit

between field NPP and GloPEM as well as between Landsat and GIMMS because

relationships between these variables were expected to be linear.

Mann-Kendall test and Sen’s slope were used to determine change over time in

temperature and bioclimatological indicators, as well as to identify relationships be-
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tween temperature and bioclimatological indicators. Sen’s slope estimates the slope

of a univariate time series non-parametrically based on the median slope of paired

ordinal points. Mann-Kendall test determines whether decreases and increases in a

data set are significant according to the sum of sign differences between observation

pairs. Both statistics are considered to be the most useful trend analysis statistics

for environmental time series (Mahey , 2008), and have been used in many papers

such as Duguay et al. (2006). Pan-Arctic plots of statistical results were created by

first building time series matrices for each column, then calculating statistics for

each pixel over time then reconstructing the pan-Arctic scene. Trends in vegetation

indices were analyzed both over time, and according to mean annual growing season

(May–September) temperatures. Sen’s non-parametric slope and Mann-Kendall

test non-parametric coefficients were calculated in Matlab using Jeff Burkey’s script

downloaded from www.mathworks.com/matlabcentral/fileexchange/11190.

Bodies of water and ice were masked out in map plots by first assigning the value

NaN to all water cells and then modifying the colormap to display all NaN values

in white. Plotting was done in Matlab using hist for histograms, plot for dot

plots, and imagesc for maps. Trend lines were inserted in plots according to Sen’s

slope value for time series which indicated significant (α <0.05) change over time

according to Mann-Kendall. Because the intercept for these values is unknown, the

median value was instead used to center the trend line.
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Chapter 4

Results

Results and discussion are divided below according to the various aims of this

thesis. Within each section, results are provided first for the three study sites

with appropriate figures as well as Mann-Kendall test test results and Sen’s slope

to detect changes over time and relationship between changes in bioclimatological

characteristics and mean May–September temperature. Results are then provided

for changes over the pan-Arctic according to Mann-Kendall test and Sen’s slope.

The first section focuses on findings regarding albedo and temperature using

the AVHRR Polar Pathfinder Extended (APP-x), since these provide an important

context for further discussions regarding climate-induced changes in pan-Arctic

vegetation. The next section assesses NDVI, NPP and NDVI-derived phenology

over time to look at the response of vegetation. The third section compares re-

mote sensing products to one another (GloPEM NPP vs GIMMS NDVI, MODIS

EVI/NDVI vs GIMMS NDVI, and GIMMS vs Landsat NDVI), and concludes with

a comparison of field vs GloPEM NPP for a study site near Churchill. The final sec-

tion provides a comparison of pan-Arctic changes over time and according to mean

May–September temperature according to 5o latitudinal bands, 20o longitudinal

bands and for the entire pan-Arctic.
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4.1 APP-x temperature

The increase in temperature at Fosheim is significant at the mean annual, March–

May and growing season (May–September) time periods [Table 4.1]. However, rises

in temperature observed in March–May and June–August are not significant. In

summary, rises in temperature at Herschel are not significant. Fosheim underwent

an increase in mean annual and growing season temperature. Churchill tempera-

tures in June–August rose significantly.

Herschel Churchill Fosheim
Mean annual temperature 0.06 0.04 0.17

Mean May–Sept temperature 0.07 0.10 0.26
Mean March, April & May temperature 0.09 0.04 0.09
Mean June, July & August temperature 0.05 0.09 0.34

Table 4.1: Temporal trend in APP-x temperature variables in terms of Sen’s slope
(oC/year) (1982–2004). Results considered significant according to Mann-Kendall
test (α <0.05) appear in bold.

Pan-Arctic increases in mean seasonal land surface temperature of 1oC per

decade (1982–2004) are observed for spring, summer and fall months equally [Figure

4.1] from monthly AVHRR Polar Pathfinder Extended (APP-x) readings. These

results are consistent with recent findings by Wang and Key (2003) of significant

(α <0.1) increases in mean temperature for the entire pan-Arctic (land and ocean).

Significant increases in temperature are highest in south-eastern Alaska/Yukon

and Novaya Zemlaya (Russia) [Figure 4.8]. Increases in temperature are also

concentrated in northeastern Russia, north and south-west Alaska and Nunavut,

Ellesmere Island and Baffin Island. Maximum decreases in temperature are smaller

than maximum increases in temperature, and are only concentrated in coastal Ice-

land, Greenland and central Scandinavia.
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Figure 4.1: Mean pan-Arctic land surface temperature (C) 1982–2000, as divided
per season (spring- top, summer- middle, and fall- bottom)
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4.2 Vegetation indices

The following subsection describes changes over time in maximum annual NDVI

over time. Phenology is estimated from GIMMS NDVI in section 4.2.3.

4.2.1 GIMMS NDVI

At the three study sites, NDVI displays regular, periodic and seasonal changes, with

equal amplitude at maximum NDVI over time. NDVI is very low in winter due

to the small difference between the quantity of red and infrared radiation reflected

from snow. As the snow melts and aboveground biomass increases, NDVI rises

because plant chlorophyll preferentially absorbs red radiation whereas plant mes-

ophyll reflects infrared radiation (Pettorelli et al., 2005). Senescence of vegetation

in autumn again causes a drop in NDVI [Figure 4.3].

An increase in maximum annual NDVI (1982–2006) was observed at Herchel

[Table 4.2]. However, maximum annual NDVI at the other two study sites does not

vary significantly over time. No change was observed in the date of peak annual

NDVI. Plots of maximum annual NDVI values and the percentage of anomaly of

maximum NDVI to mean maximum NDVI (defined as maximum annual NDVI

divided by the fraction of the long term average) can be found in Figures C.2 and

C.3, respectively. Changes in the timing and size of maximum annual NDVI are

not explained by mean annual growing season temperature [Table 4.3].

Herschel Churchill Fosheim
Maximum annual NDVI 0.01 -0.00 -0.00
Date of maximum annual NDVI 0.00 0.00 0.00

Table 4.2: Temporal trend in GIMMS NDVI in terms of Sen’s slope (NDVI/year
and ordinal days/year) (1982–2006). Results considered significant according to
Mann-Kendall test (α <0.05) appear in bold.
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Herschel Churchill Fosheim
Maximum annual NDVI 0.00 0.00 0.00
Date of maximum annual NDVI 0.00 -0.03 0.00

Table 4.3: Trend in GIMMS NDVI according to mean annual growing season tem-
perature in terms of Sen’s slope (NDVI/oC) (1982–2004). No results are significant
according to Mann-Kendall test (α <0.05).

At the pan-Arctic scale, variations in maximum annual NDVI were first tracked,

and then classified according to Circumpolar Arctic Vegetation Map (CAVM) max-

imum NDVI ranges [Figure 4.4]. Plotting the surface area (km2) covered by each

vegetation classification over time, likewise, indicates that there are no significant

net differences over time in relative maximum greenness [Figure 4.5].

However, the locations of differences in maximum annual NDVI does change over

time [Figure 4.6]. Significant increases in peak annual NDVI were observed along

the Arctic Circle in North America (northern Alaska, northern Yukon, northern

Northwest Territories and southern Nunavut), western Greenland, Iceland, Scan-

dinavia/western Russia and eastern Russia. Significant decreases in peak annual

NDVI were observed in central Alaska and southern Northwest Territories, as well

as north-central Russia. All in all, many regions experienced shifts in maximum

annual NDVI although the average area covered by each CAVM categorization

remains unchanged.
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Figure 4.4: Circumpolar Arctic Vegetation Map mean annual maximum NDVI
classifications from Walker et al. (2005)
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4.2.2 GloPEM NPP

NPP has a similar seasonal cycle to NDVI, with no NPP in winter and peak NPP

around the beginning of August, depending on site. At Herschel Island, Churchill

and Fosheim Peninsula, no significant change is observed over time (1982–2000) in

total annual NPP and maximum annual NPP. The date of maximum annual NPP

does not change significantly at any site [Table 4.4]. However, it is interesting to

note the magnitude of total annual NPP Sen’s slope is quite large, despite the lack

of slope significance according to Mann-Kendall. It is therefore likely that there

are large outlying pairs of observations of total annual NPP, although the sum of

all pairwise differences is not greater than that which would be expected due to

chance.

However, although changes in NPP over time are not significant at Churchill,

increases in total annual NPP and maximum annual NPP at Churchill can be

explained by increases in mean growing season temperature [Table 4.5]. Changes

in total annual NPP, maximum annual NPP and the timing of peak annual NDVI at

the other study sites cannot be explained by changes in growing season temperature.

Herschel Churchill Fosheim
Total annual NPP (gC/m2/year) -3.19 3.58 0.37
Maximum annual NPP (gC/m2/10 days) -1.14 0.53 0.07
Date of maximum annual NPP (ordinal days/year) 0.24 -0.10 0.20

Table 4.4: Temporal trend in GloPEM NPP in terms of Sen’s slope (1982–2000).
Results considered significant according to Mann-Kendall test (α <0.05) appear in
bold.

Herschel Churchill Fosheim
Total annual NPP 12.7 27.1 5.00
Maximum annual NPP -0.43 3.48 1.53
Date of maximum annual NPP 0.00 0.00 0.00

Table 4.5: Trend in GloPEM NPP according to mean annual growing season tem-
perature in terms of Sen’s slope (gC/m2/oC) (1982–2000). Results considered sig-
nificant according to Mann-Kendall test (α <0.05) appear in bold.
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Mean annual pan-Arctic GloPEM NPP increases substantially (9%) between

1982 to 2000 by 25 gC/year/m2. Grouping mean annual NPP according to 2.5o

latitudinal pan-Arctic bands indicates that the increase in NPP is greatest at 63.5-

67.5oN (≈ 40 gC/year/m2).

Figure 4.7: Pan-Arctic total annual NPP grouped according to 2.5 degree latitudi-
nal bands (gC/m2/year). Trend line according to Sen’s slope indicated in black.

Significant increases in total annual NPP are observed in northern Yukon, south-

ern Finland, western Norway and central Russia. Decreases are limited to small

regions of northeast Alaska and Banks Island [Figure 4.8]. Churchill has a much

higher reading for total annual NPP than readings within the pan-Arctic diagram;

however, this is likely because Churchill is 2o south of 60oN, and is therefore outside

the pan-Arctic range of this figure.
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4.2.3 GIMMS NDVI-derived phenology

Phenology is an important indicator of climatic response of vegetation which has

dramatic consequences for Arctic food webs that rely on synchronous timing of

plant, insect and animal populations. Figure 4.9 shows autumn onset in Churchill

over time. Key autumn phenology dates in Churchill are stable every year near day

250 within a small range of variation until 2004, when it begins rising dramatically

up to day 294 in 2005. It appears that autumn onset has been delayed by about

a month on average after 2004 [Figure 4.9]. Fosheim peninsula undergoes greater

variability in autumn onset (±15 days), although 2006 is again the record high for

the period [Figure 4.10]. Herschel Island [Figure 4.11] autumn onset dates vary

slightly between day 254 and 258 until 2005–2006, where autumn onset is late by

over 10 days.

Spring onset, likewise, is relatively similar every year near Churchill until 2005,

with a range of variation of less than 30 days. In 2005, spring onset is ≈50 days

later than over the previous years. 2006 and 2007 spring onset is later than during

the period 1982-2004 [Figure 4.12]. The onset and end dates of snow melt onset

for Churchill remain relatively stable (2000-2006) and agree well with the dates

at which NDVI is equal to 50% of mean maximum annual NDVI, with snow melt

[Figure 4.13]. Spring onset on Herschel varies greatly (>100 days) over the entire

1982-2007 period, with only a slight indication of earlier spring onset in 2005-2007

that is likely not significant [Figure 4.14]. As with Churchill, the date of spring

onset in vegetation corresponds very closely to the dates of snow melt onset and

end [Figure 4.15]. Fosheim Peninsula spring onset varies by >30 days throughout

the study time period, with a slight shift to later spring onset from 2002 onwards

[Figure 4.16]. Spring onset co-occurs with snow melt onset and end near Fosheim

[Figure 4.17].
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In summary, over 1982 to 2006, spring continues arriving at the same time at

Herschel Island, and arrives later at Fosheim and Churchill. Autumn onset (1982–

2006) becomes later at Churchill and Herschel Island. When comparing spring

onset dates to snow on/off dates gathered by Wang et al. (2008), it appears that

there is a very close fit between snow onset dates and the date at which vegetation

reaches 50% of its annual maximum for all three study sites. However, years with

double peaks in linearly interpolated NDVI cause mistakes in phenology estimates

that prevent very good fit between snow melt end/onset and spring phenology.

Filtering of noise caused by snow, snow sublimation and lakes would likely lead to

improved accuracy in detecting spring phenology, and improved fit between snow

melt and phenology estimates.

Figure 4.9: Fall phenology dates at Churchill

Despite many variations in year to year spring and fall onset dates observed in

the Figures 4.9–4.17, these changes are not significant [Table 4.6]. These fluctua-

tions over time have low Sen’s slope values and do not indicate change according
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Figure 4.10: Fall phenology dates at Fosheim

to Mann-Kendall tests, and are therefore considered as noise.

When compared to changes in growing season temperature, however, increases

in temperature appear to be related to earlier spring onset [Table 4.7]. However,

the slope of these changes may be exaggerated for these three sites since Churchill

and Herschel have both undergone non-significant and small (<=0.1 Sen’s slope)

increases in mean annual and mean growing season temperature. Fosheim, a site

which has undergone significant increases in temperature, does not show a signif-

icant relationship between spring onset and growing season temperature. At all

three sites, autumn onset is not related to changes in growing season temperature.

Herschel Churchill Fosheim
Ordinal date of autumn onset 0.00 0.33 0.20
Ordinal date of spring onset 0.03 0.00 0.35

Table 4.6: Temporal trend in GIMMS NDVI-derived phenology in terms of Sen’s
slope (ordinal days/year) (1982–2006). Results considered significant according to
Mann-Kendall test (α <0.05) appear in bold.
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Figure 4.11: Fall phenology dates at Herschel

Herschel Churchill Fosheim
Ordinal date of autumn onset 0.00 0.33 0.20
Ordinal date of spring onset -3.40 -2.38 0.50

Table 4.7: Trend in GIMMS NDVI-derived phenology according to mean annual
growing season temperature in terms of Sen’s slope (ordinal days/oC) (1982–2004).
Results considered significant according to Mann-Kendall test (α <0.05) appear in
bold.

Observations of later fall onset are thinly dispersed across southern Scandinavia

and western Russia [Figure 4.18]. Delays in spring onset are observed on Ellesmere

Island and northern Russia. Spring onset is slightly delayed in southern Scandinavia

and central Russia [Figure 4.19].
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Figure 4.12: Spring phenology dates at Churchill (red) estimated from GIMMS
NDVI compared to (Wang et al., 2008) snow melt onset (blue) and end (green)
dates.

Figure 4.13: Spring phenology dates at Churchill (blue) compared to (Wang et al.,
2008) snow melt onset/end dates (green). Threshold NDVI indicated in red.
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Figure 4.14: Spring phenology dates at Herschel (red) estimated from GIMMS
NDVI compared to (Wang et al., 2008) snow melt onset (blue) and end (green)
dates.

Figure 4.15: Spring phenology dates at Herschel (blue) compared to (Wang et al.,
2008) snow melt onset/end dates (green). Threshold NDVI indicated in red.
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Figure 4.16: Spring phenology dates at Fosheim (red) estimated from GIMMS
NDVI compared to (Wang et al., 2008) snow melt onset (blue) and end (green)
dates.

Figure 4.17: Spring phenology dates at Fosheim (blue) compared to (Wang et al.,
2008) snow melt onset/end dates (green). Threshold NDVI indicated in red.
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4.3 Data product comparison

4.3.1 MODIS NDVI & EVI to GIMMS NDVI

GIMMS NDVI was compared to summertime (May to September, or MJJAS)

MODIS NDVI and EVI readings for years 2002–2006. MODIS NDVI and EVI

were not collected for winter readings because these are beyond the Arctic growing

season, and thus beyond the scope of this study.

MODIS EVI gives a much lower estimate than MODIS NDVI, and gives lower

readings over winter snow [Figure 4.20]. Although the GIMMS product filters wa-

ter and clouds by producing the maximum NDVI value per fortnight and MODIS

averages NDVI, MODIS NDVI appears to overestimate NDVI when comparing the

maximum pixel value within MODIS NDVI to GIMMS NDVI. However, GIMMS

appears to overestimate NDVI when compared to the pixel value of MODIS aver-

aged over 8×8km. Overestimation is likely due to the difference in spatial resolution

between the two products, which means that MODIS is a purer pixel value than

GIMMS.

Overall, the timing of MODIS EVI, GIMMS NDVI and MODIS NDVI fit very

closely, and it is impossible to determine which product best captures fluctuations in

plant biomass without corresponding field measurements. The large drop in MODIS

products in winter 2004 indicates a need for correction. Furthermore, MODIS

does not appear to pick up on changes in vegeation below the scale of GIMMS

[Figure4.20]. The observed discrepancy between in situ and remote sensing NDVI

studies of ecology is therefore not due to processes which occur at the <500×500m

resolution. Overall, the closeness of timing and fit of the two products, when

considered in the context of the greater ease and better atmospheric correction

of GIMMS compared to MODIS, confirm the decision to use GIMMS instead of
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MODIS for estimating phenology and fit with NPP earlier in this thesis.

Figure 4.20: Comparison of mean MODIS NDVI (red) & EVI (blue) with GIMMS
NDVI (green) near Fosheim (8×8km)
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4.3.2 Landsat vs GIMMS NDVI

The following section examines fit between Landsat NDVI and GIMMS NDVI. Al-

though the aforementioned section examined changes at the Fosheim site, Landsat

images for this site were ordered in January 2009 and have yet to arrive. GIMMS

NDVI was therefore compared to Landsat NDVI for an alternate study site, Her-

schel Island.

Moderate (Pearson r=0.74, root mean squared error=0.12) agreement exists

between Landsat and GIMMS NDVI from 1985 to 2006 [Figure 4.23]. GIMMS

appears to overestimate NDVI in comparison to Landsat, as seen in a scatterplot

in Figure 4.21. Figure 4.22 examines the distribution of Landsat values for a single

date (June 20, 2006) where GIMMS NDVI=0.34, and indicates a skewed distri-

bution of Landsat readings with many low (NDVI<0.1) values. The date selected

is representative of other single date examinations of the distribution of Landsat

values. The low median estimates of NDVI by Landsat in comparison to GIMMS

therefore likely arise from the fact that GIMMS uses the maximum NDVI value,

whereas Landsat images selected have up to 20% cloud and high surface water

percentages, both of which diminish NDVI.

This confirms the earlier hypothesis that GIMMS overestimates NDVI in com-

parison to Landsat because, unlike GIMMS, Landsat does not filter out surface

water and clouds. Landsat therefore has many more low (NDVI<0.2) readings, al-

though the mode values of Landsat NDVI (NDVI≈0.42) are higher than the GIMMS

NDVI value (NDVI=0.34). Since the very low (NDVI< 0.2) readings are unlikely

to be due to vegetation, it therefore appears that remote sensing at a 30×30m

resolution does not pick up on any additional changes in vegetation not picked up

by GIMMS. The discrepancy between field and remote sensing may therefore be

either because in situ findings of rapid ecological change may not representative of
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larger regions, or because even 30×30m resolution is too coarse to pick up on field

scale changes in ecology.

Figure 4.21: Scatterplot of GIMMS NDVI vs Landsat NDVI (Pearson r=0.74)

Figure 4.22: Histogram of Landsat pixels near Herschel Island, with vertical black
line indicating GIMMS pixel value at this point in time (NDVI=0.34)
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4.3.3 Comparison of GloPEM NPP with field NPP

Net primary productivity from satellite measurements was compared with field

measurements, with both considered instantaneous measurements. Both field and

remote sensing estimates of NPP are in gC/m2, and are within the same 8×8km re-

gion. The time period 1989-2000 was selected for all comparisons based on availabil-

ity of field data collected by Dr. Robert Jefferies (University of Toronto). GloPEM

NPP is moderately correlated with field NPP for East Bay (r=0.50) [Figure 4.24]

and not correlated with field NPP for Randy’s Flat (r=0.10) [Figure 4.25].

Figure 4.24: Correlation between East Bay and GloPEM NPP

However, field NPP from Randy’s Flat and East Bay are moderately correlated

(r=0.60). A comparison of GloPEM, Randy’s Flat and East Bay NPP over time in

Figure 4.26 indicates that GloPEM NPP tends to overestimate start of season NPP

71



Figure 4.25: Correlation between Randy’s Flat and GloPEM NPP

and underestimate peak NPP. This is especially interesting in light of the heavy

summertime grazing of this region by snow geese (Jefferies , 2008), which would

lead to the expected hypothesis that peak field NPP would be overestimated by

GloPEM.
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4.4 Pan-Arctic changes in temperature bioclima-

tological indicators

The following section contains tables which compare the Sen’s slope and Mann-

Kendall test results for trend analysis in bioclimatological indicators and tempera-

ture over time [Table 4.8], followed by a similar analysis of trends in bioclimatologi-

cal indicators relative to changes in mean annual growing season (May–September)

temperatures [Table 4.4.2]. Figures indicating pixel-specific changes in each indi-

cator are distributed across the previous sections.

4.4.1 Temporal trends

Pan-Arctic mean annual and growing season temperature increased significantly

(1982–2004). Mean annual and annual growing season (May–September) tempera-

ture increased significantly 1982–2004 at all latitudes (except growing season tem-

perature at 70-75o N). However, these changes appear to have been focused in -60–

180o E for mean annual temperature, and -60–20o E, 60–100o E and 140–180o E for

mean summer temperature.

Changes in temperature are therefore focused in Europe and Russia, rather than

Canada. Spring (March, April & May) temperatures did not increase significantly

in any latitudinal band, but increased between -100– -60 and -20– 60 longitude.

Summer (June, July & August) temperatures increased at longitudes -20–20, and

latitudes 60–65, which corresponds to southern Scandinavia and the low latitudes

of the Arctic. Overall, temperature increases were of a greater magnitude and

significant over the greatest number of seasonal brackets in the low (60-65oN) lati-

tudes, which corresponds well with earlier findings in 4.2.2. of NPP increases being

greatest at the low (60–65o N) latitudes.
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Total annual NPP increased across the pan-Arctic, and were largest at 60-70o

N, -20 – 20o E (Scandinavia) and 100–140o E (eastern Russia). NDVI and NPP

were found to increase in different regions of the Arctic. Maximum annual NDVI

increases at -100– -60o E (eastern Nunavut) and 140–180o E (eastern Russia). The

discrepancy is interesting in light of the close theoretical and field correspondence

between NPP and NDVI (Raynolds et al., 2008). GloPEM NPP is furthermore

calculated from AVHRR inputs that are very similar to NDVI, and NDVI and

NPP are well correlated across the pan-Arctic [Figure 4.27]. Total annual NPP

also shows a greater increase over time than maximum annual NDVI.

The ordinal date of spring onset increases at 80–85o N, and the date of autumn

onset similarly decreases at 75–85o N (northern Canadian archipelago and northern

Russia). Earlier spring and later autumn, indicative of a longer growing season,

is inconsistent with what would be expected under warming conditions, and it is

surprising that changes in spring and autumn onset are not significant at lower

latitudinal bands, or across longitudinal bands.

In summary, significant pan-Arctic increases are observed in annual tempera-

ture, annual growing season temperature and total annual NPP. Increases in NPP

and NDVI are observed for different regions of the Arctic. Diminishing growing

season is observed at high latitudes (80–85o N).

4.4.2 Trends according to temperature

The following subsection analyzes changes over time in bioclimatological indices

with respect to changes in mean annual summer temperature over the same latitu-

dinal or longitudinal bands [Table 4.4.2].

Across the pan-Arctic, increases in total annual NPP and maximum annual

NDVI are significantly related to changes in mean annual summer temperature.
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Increases in maximum annual NDVI are most closely related to rises in growing

season temperature at the low (60–75o N) latitudes as well as between -100– -60o

E (eastern Nunavut). Similarly, increases in total annual NPP are best explained

by rises in growing season in low (60–75) latitudes, as well as between 60–100o E

(western Russia) and 140–180o E (eastern Russia). It therefore appears that both

maximum annual NDVI and total annual NPP are sensitive to changes in growing

season temperature, and report changes at similar regions.

Shifts in spring and autumn onset are not significantly related to increasing

growing season temperature across the pan-Arctic. However, later spring onset

appears to be significantly related to rises in high Arctic (70–85o N) growing season

temperature, although the opposite would be expected. Similarly, earlier autumn

onset is related to increasing growing season temperature at 70–75o N, 60–100o E

and 140–180o E.

Yet, because temperatures at the start and end of the growing season would be

likely to have the greatest impact on spring and fall onset, it was believed that May

temperatures would be positively related to spring onset, and September tempera-

tures would be positively related to autumn onset. A comparison of these variables

indicated no significant trends at any longitude or latitude [Table 4.4.2]. Further

research therefore needs to be conducted into the dependence of temperature on

Arctic phenology, and on the interpretation of these variables using remote sensing.

76



L
at

it
u

d
e

60
–6

5
65

–7
0

70
–7

5
75

–8
0

80
–8

5
P

an
-A

rc
ti

c
M

ea
n

an
n
u

al
te

m
p

er
at

u
re

(o
C

/y
ea

r)
0
.0

8
0
1

0
.0

4
5
4

0
.0

2
2
7

0
.0

1
9
3

0
.0

1
3
6

0
.0

1
5
8

M
ea

n
su

m
m

er
te

m
p

er
at

u
re

(o
C

/y
ea

r)
0
.0

9
8
6

0
.0

5
3
9

0.
02

17
0
.0

2
4
2

0
.0

2
0
4

0
.0

1
7
5

M
ea

n
M

ar
ch

,
A

p
ri

l
&

M
ay

te
m

p
er

at
u

re
(o

C
/y

ea
r)

0
.0

5
6
4

0.
01

96
-0

.0
00

5
0.

00
32

0.
00

25
0.

00
00

M
ea

n
J
u

n
e,

J
u

ly
&

A
u

gu
st

te
m

p
er

at
u

re
(o

C
/y

ea
r)

0
.0

2
3

0.
01

67
0.

00
59

0.
00

5
0.

00
36

0.
00

44
M

ax
im

u
m

an
n
u

al
N

D
V

I
(N

D
V

I/
ye

ar
)

0.
00

01
0.

00
03

0.
00

01
0.

00
00

0.
00

00
0.

00
00

O
rd

in
al

d
at

e
of

sp
ri

n
g

on
se

t
(o

rd
in

al
d

ay
s/

ye
ar

)
-0

.3
20

3
-0

.4
06

1
-0

.0
52

8
0.

09
15

0
.0

3
8
4

0.
03

05
O

rd
in

al
d

at
e

of
fa

ll
on

se
t

(o
rd

in
al

d
ay

s/
ye

ar
)

0.
04

75
-0

.0
03

1
-0

.0
83

5
-0

.0
8
7
7

-0
.0

1
2
2

-0
.0

26
3

T
ot

al
an

n
u

al
N

P
P

(g
C

/m
2
/y

ea
r)

2
.2

3
0
6

1
.0

1
5
9

0.
04

44
0.

00
23

0.
00

89
0
.4

3
6
1

L
on

gi
tu

d
e

-1
80

–
-1

40
-1

40
–

-1
00

-1
00

–
-6

0
-6

0–
-2

0
-2

0–
20

20
–6

0
60

–1
00

10
0–

14
0

14
0–

18
0

M
ea

n
an

n
u

al
te

m
p

er
at

u
re

0.
01

4
0.

00
38

0.
00

97
0
.0

1
2
2

0
.0

1
1
5

0
.0

1
5
2

0
.0

3
2
9

0
.0

2
3
2

0
.1

1
4
1

M
ea

n
su

m
m

er
te

m
p

er
at

u
re

0.
02

1
0.

00
4

0.
02

81
0
.0

1
4
6

0
.0

1
3
6

0.
00

65
0
.0

3
3
5

0.
01

87
0
.1

8
9
2

M
ea

n
M

ar
ch

,
A

p
ri

l
&

M
ay

te
m

p
er

at
u

re
0.

00
22

-0
.0

00
4

0
.0

2
4
2

0.
00

39
0
.0

0
6
8

0
.0

0
6
8

0.
00

37
0.

00
33

0.
06

12
M

ea
n

J
u

n
e,

J
u

ly
&

A
u

gu
st

te
m

p
er

at
u

re
0.

00
83

0.
00

34
0.

00
82

0.
00

48
0
.0

0
3
8

0.
00

1
0.

00
75

0.
00

58
0.

04
17

M
ax

im
u

m
an

n
u

al
N

D
V

I
0.

00
00

0.
00

00
0
.0

0
0
1

0.
00

00
0.

00
00

0.
00

01
0.

00
02

0.
00

01
0
.0

0
0
2

O
rd

in
al

d
at

e
of

sp
ri

n
g

on
se

t
0.

01
98

0.
05

14
0.

20
16

0.
05

14
0.

02
77

0.
17

-0
.1

14
6

0.
05

93
0.

01
98

O
rd

in
al

d
at

e
of

sp
ri

n
g

on
se

t
0.

00
71

0.
04

21
0.

10
54

0.
00

32
0.

00
59

0.
05

9
-0

.0
89

0.
06

02
0.

02
54

O
rd

in
al

d
at

e
of

fa
ll

on
se

t
-0

.0
39

-0
.0

34
7

0.
02

32
0.

05
8

0.
02

24
0.

01
99

-0
.1

07
4

-0
.1

78
6

0.
00

01
T

ot
al

an
n
u

al
N

P
P

0.
34

68
0.

02
93

0.
20

46
0.

05
76

0
.1

5
1
9

0.
40

56
0.

56
79

1
.1

3
5
8

1.
58

89

T
ab

le
4.

8:
T

em
p

or
al

tr
en

d
in

S
en

’s
sl

op
e

of
te

m
p

er
at

u
re

an
d

b
io

cl
im

at
ol

og
ic

al
va

ri
ab

le
s

(1
98

2–
20

06
).

R
es

u
lt

s
co

n
si

d
er

ed
si

gn
ifi

ca
n
t

ac
co

rd
in

g
to

M
an

n
-K

en
d

al
l

te
st

(α
<

0.
05

)
ap

p
ea

r
in

b
ol

d
.

77



L
at

it
u

d
e

60
–6

5
65

–7
0

70
–7

5
75

–8
0

80
–8

5
P

an
-A

rc
ti

c
M

ax
im

u
m

an
n
u

al
N

D
V

I
(N

D
V

I/
o
C

)
0
.0

0
2

0
.0

0
3
7

0
.0

0
3
1

0.
00

04
0.

00
01

0
.0

0
4
3

O
rd

in
al

d
at

e
of

sp
ri

n
g

on
se

t
(d

ay
/o

C
)

5.
24

1
5.

26
71

5
.3

8
0
3

3
.0

7
8
5

1
.5

1
6
1

2.
30

24
O

rd
in

al
d

at
e

of
fa

ll
on

se
t

(d
ay

/o
C

)
-0

.1
42

8
-0

.5
48

2
-1

.8
7
7
7

-1
.2

22
6

-0
.1

22
4

-1
.4

10
3

T
ot

al
an

n
u

al
N

P
P

(g
C

/m
2
/o

C
)

1
3
.7

9
8
4

1
3
.0

7
7
1

7
.2

1
2
7

1
.8

6
7
2

0.
64

04
1
8
.6

4
2
3

L
on

gi
tu

d
e

-1
80

–
-1

40
-1

40
–

-1
00

-1
00

–
-6

0
-6

0–
-2

0
-2

0–
20

20
–6

0
60

–1
00

10
0–

14
0

14
0–

18
0

M
ax

im
u

m
an

n
u

al
N

D
V

I
0.

00
11

0.
00

1
0
.0

0
1
4

0.
00

11
0.

00
21

0.
00

1
0.

00
31

0.
00

2
0
.0

0
0
9

O
rd

in
al

d
at

e
of

sp
ri

n
g

on
se

t
-0

.5
11

4
1.

45
85

0.
26

28
-0

.0
38

5
0.

69
34

4.
16

54
-0

.6
93

0.
73

17
0.

00
76

O
rd

in
al

d
at

e
of

fa
ll

on
se

t
0.

39
51

-0
.5

45
7

-0
.6

25
3

1.
68

63
-1

.3
08

-1
.5

84
4

-2
.0

0
6
6

0.
58

41
0.

00
09

T
ot

al
an

n
u

al
N

P
P

5.
71

22
0.

25
53

3.
36

03
-0

.4
10

2
2.

80
98

-6
.0

98
7

2
3
.3

4
8

21
.3

97
4

9
.0

3
9
2

T
ab

le
4.

9:
S

en
’s

sl
op

e
(w

it
h

si
gn

ifi
ca

n
t

M
an

n
-K

en
d

al
l

te
st

s
b

ol
d

ed
)

of
p

an
-A

rc
ti

c
ve

ge
ta

ti
on

ac
co

rd
in

g
to

m
ea

n
su

m
m

er
te

m
-

p
er

at
u

re
ov

er
ti

m
e

(1
98

2–
20

04
)

78



F
ig

u
re

4.
27

:
P

ea
rs

on
co

rr
el

at
io

n
(r

)
b

et
w

ee
n

su
m

m
er

G
IM

M
S

N
D

V
I

an
d

G
lo

P
E

M
N

P
P

(M
ay

,
J
u

n
e,

J
u

ly
,

A
u

gu
st

an
d

S
ep

te
m

-
b

er
,

19
82

-2
00

0)

79



L
on

gi
tu

d
e

-1
80

–
-1

40
-1

40
–

-1
00

-1
00

–
-6

0
-6

0–
-2

0
-2

0–
20

20
–6

0
60

–1
00

10
0–

14
0

14
0–

18
0

S
p

ri
n

g
(M

ay
)

0.
06

01
-0

.5
13

2
0.

74
15

-0
.0

04
0

0.
47

19
0.

90
49

1.
95

69
-0

.3
07

3
0.

27
75

F
al

l
(S

ep
t)

0.
29

58
-0

.3
78

6
-0

.2
79

0
0.

29
63

0.
60

64
-0

.3
11

1
-0

.8
07

6
0.

08
48

-0
.0

07
3

T
ab

le
4.

10
:

S
en

’s
sl

op
e

of
p

an
-A

rc
ti

c
sp

ri
n

g
an

d
fa

ll
on

se
t

d
at

es
(1

98
2–

20
04

)
ac

co
rd

in
g

to
m

ea
n

M
ay

an
d

S
ep

te
m

b
er

te
m

p
er

at
u

re
re

sp
ec

ti
ve

ly
(o

rd
in

al
d

ay
s/
o
C

).
N

o
re

su
lt

s
ar

e
si

gn
ifi

ca
n
t

ac
co

rd
in

g
to

M
an

n
-K

en
d

al
l

te
st

s.

80



Chapter 5

Discussion

The following chapter discusses the main findings from this thesis in light of the

major thesis aims relating to changes over time in bioclimatological indicators,

warming induced changes in vegetation and a comparison of remote sensing, model

and field data. However, the section begins with a discussion of limitations of the

methodology applied in this study and how it may affect results.

5.1 Limitations

The primary limitation of using remote sensing and model outputs at an 8×8km

resolution is that ecological observations at a finer resolution may be missed in their

entirety. Results from this thesis indicate small but significant changes in ecology

whereas field studies have indicated much more significant changes in species distri-

bution, phenology and productivity, as described in Section 2.1. Poor fit between

remote sensing NPP and field NPP further reinforce that coarse resolution remote

sensing may not accurately assess Arctic ecosystem characteristics.

However, observed changes in NPP and NDVI have tended to be focused in re-

gions of Alaska that coincide with the locations of field camps reporting significant
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ecological changes (Verbyla, 2008; Tape et al., 2006; Jia et al., 2003). Further inves-

tigation will need to be conducted to determine whether the discrepancy between

field studies and remote sensing is eliminated by very high resolution (<4×4m)

imaging, or whether the discrepancy is in fact because of site selection in regions

undergoing the greatest change.

Similarly, uncertainty regarding the sensitivity thresholds of the selected bio-

climatological indicators, and how well these represent Arctic ecosystem change.

Because these sensitivity thresholds are not well understood, it is possible that cli-

matologically or ecologically significant trends do not appear as being statistically

significant, or vice versa.

A data processing limitation has arisen regarding artefacts in several figures,

as indicated by straight lines in Figures 3.8 and 4.2. The presence of these lines

indicates a problem in processing that could not be resolved through different splic-

ing of time series matrices, and it appears that the line in northern Russia seen in

Figure 4.2 is present in the raw data provided by the Global Land Cover Facility.

Questions regarding the reason for this line were not answered, and the artefact

remains in the data set. The line appears to be consistent throughout the data

set, which means that it would consistently underestimate NDVI in this region. It

is therefore hoped that this artefact would thus not significantly affect analysis of

change over time in NDVI and phenology.

Another limitation of this thesis methodology is the difficulty in downloading

large batches of MODIS and Landsat data, which prevented pan-Arctic comparisons

of data products. Also, cloud effects on MODIS and Landsat NDVI were dealt with

through simple selection of <20% cloud cover images, whereas GIMMS is filtered

for clouds using maximum two week NDVI. The difference between these data sets

using the same type of filtering could therefore not be assessed. Snow and water

also continue to act as confounders by creating low NDVI and NPP noise in pixels
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that has not been filtered for. Most notably, this noise has led to a double peak

in springtime NDVI which has led to false estimates of later spring onset, and has

worsened the fit between snow melt end/onset and spring onset. Furthermore, field

work would have provided greater insight into Arctic NPP but was not possible to

conduct at this time.

A final significant limitation is that tests were conducted at nominal <0.05 level

with no multiple testing corrections applied. Since there are 226 Mann-Kendall

tests conducted, 11 of the positives detected may be false positives. 62 positive

test results were found, which means that ≈18% of positives detected in this thesis

may be false. This weakens confidence in all positive results, but could only be

corrected through multiple testing corrections.

5.2 Bioclimatological indicators over time

Total annual NPP increased significantly across the Arctic, and was especially fo-

cused in low latitude regions that underwent the greatest increases in temperature.

In terms of NDVI indicators, maximum annual NDVI showed the most significant

change over time, followed by changes in timing of spring onset, autumn onset then

peak NDVI.

The area (km2) covered by each CAVM maximum annual NDVI classification

over time showed very little change over time; however, small but significant cir-

cumpolar increases in maximum annual NDVI were observed throughout the Arctic.

This observation is important in light of the close relationship between bioclimate

subzones and NDVI classification described by Walker et al. (2005). It appears

that recent increases in maximum annual NDVI are significant, but too small to be

captured by Walker et al. (2005) classification bands (≈ 0.05–0.1 NDVI). Overall,

the finding of increases in NDVI is consistent with Neigh et al. (2007); Jia et al.
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(2007).

The ordinal date of spring and autumn onset showed a great deal of variation

from year to year. Spring onset occurred significantly earlier at Churchill; however,

at the remaining study sites and the Arctic, very few significant changes occurred

in spring and autumn phenology, and the observed significant changes were small

(±3 days). Recent field findings of >30 day shifts in High Arctic ecology (Høye

et al., 2007) must therefore be considered in light of the lack of changes observed

in remote sensing records.

It is possible that GIMMS NDVI is too coarse to pick up on regional ecological

changes. Alternatively, because the response of various taxa and species to warm-

ing is highly divergent in the High Arctic (Høye et al., 2007), it is possible that

GIMMS NDVI is picking up strong signals from large and dominant species with

phenological patterns that are less responsive to warming increases.

5.3 Response of vegetation to warming

Significant pan-Arctic increases in mean annual and mean growing season tem-

perature were observed (1982–2004) (mean 1oC/decade). Increases in pan-Arctic

maximum annual NDVI and total annual NPP can be explained by these rises in

mean growing season temperature. The spatial distribution of significant rises in

mean annual temperature (focused in Alaska, Scandinavia, eastern Nunavut and

eastern Russia) is also consistent with the pattern of rises in maximum annual NDVI

and, to a lesser extent, total annual NPP. It is interesting that maximum annual

NDVI shows significant increases in relation to temperature for the pan-Arctic, but

that no relationship was found between these two variables for the three selected

field sites. Both NPP and NDVI increase according to pan-Arctic warming, which

is consistent with field level findings of a close correlation between NPP and NDVI
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(Laidler et al., 2008). However, the regions at which changes in NPP and NDVI

increase, as well as the locations to which they increase significantly with growing

season temperature, although they are closely correlated and GloPEM NPP uses

AVHRR inputs similar to GIMMS NDVI. Further research is therefore required to

elucidate the dependence of NPP and NDVI at the remote sensing scale.

Findings of warming-induced increases in productivity, as indicated by NDVI

and NPP, are in line with predictions from field-scale experimental studies from

ITEX (Henry and Elmendorf , 2008) as well as recent remote sensing studies (Raynolds

et al., 2008). The consequences of warming on greenhouse gas cycling therefore fall

into uncertainty, and remain a central question in climate and biogeochemistry

studies (Heimann, 2009). Uncertainty remains about the quantity of increased

greenhouse gases being sequestered by the increased productivity of Arctic vegeta-

tion, especially in light of greenhouse gas emissions and sequestration by soils.

Another important finding was that delayed spring onset and earlier fall onset

were related to increases in growing season temperature, although field studies have

found opposite reactions to warming. Conversely, leaf phenology has been modeled

by (Delbart and Picard , 2007) mainly as a positive function of air temperature.

Comparisons of spring onset to May temperature, and autumn onset to September

temperature indicated no relationship to growing season temperature. It is therefore

likely that there must be confounding factors which are not properly identified which

obscure the relationship between remote sensing NDVI estimates of phenology and

remote sensing estimates of temperature.

5.4 Remote sensing, model and field data

Remote sensing and model outputs at >30×30m resolution do not relay significant

changes in vegetation observed at the field scale at Churchill, Fosheim and Her-
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schel. GIMMS and Landsat are correlated, although Landsat underestimates land

vegetation by not filtering out low (NDVI<0.2) readings which are likely caused by

cloud cover or surface water.

Comparisons of field and model NPP indicate that GloPEM underestimates

peak annual NPP, even though GloPEM does not account for heavy grazing of the

region by snow geese documented by Jefferies (2008). Furthermore, GloPEM is not

correlated with Randy’s Flat NPP and moderately correlated with East Bay NPP.

Therefore, a clear need exists for better calibration and data collection of NPP

models. GloPEM is heavily reliant on AVHRR inputs, and relies little on meteo-

rological and field inputs, even though these appear to be important determinants

of NPP.

Timing of snow melt end and onset from QuickScat data coincides very closely

with GIMMS estimates of spring onset. Previous field studies have examined this

linkage between snow melt-spring onset (Buus-Hinkler et al., 2006; Totland and

Alatalo, 2002), and the finding of a close fit in two remote sensing records lends

credit to the validity of spring onset estimates. GIMMS NDVI, and MODIS EVI

and NDVI, all share very similar timing of seasonal rises and falls, although EVI

gives much lower readings than NDVI.
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Chapter 6

Conclusions

The central finding from this thesis is small but significant pan-Arctic changes were

observed in maximum annual NDVI and net primary productivity over time, and

these changes can be explained as a function of increasing terrestrial circumpolar

temperatures. The most significant findings from this thesis are that field and

GloPEM NPP do not correspond closely, QuickScat and GIMMS estimates of snow

melt and spring onset correspond well and that variations in autumn onset are

significant at high (75-85o N) latitudes, but shifts to earlier autumn onset cannot

be explained by increases in temperature.

The major aim of this thesis was to provide insights into how bioclimatolog-

ical indicators 1) vary over time; 2) are related to changes in temperature; 3)

are represented in field, model and remote sensing records. This aim has been ful-

filled through statistical investigations of pan-Arctic GIMMS NDVI, GloPEM NPP,

Landsat TM, APP-x, MODIS EVI/NDVI and field NPP data sets, and analysis of

the relationships between results and their context within recent literature. The

research process has unfurled a number of new questions and potential directions

for future studies, summarized in the section below.
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6.1 Future work

Important research gaps remain regarding the relationship between MODIS and

Landsat in the Arctic, the spectral response of various species of Arctic vegetation

to warming, and which vegetation indices give the best estimates of Arctic plant

health, biomass and field-scale productivity. One potential project could involve

assessing the impact of site selection and scaling in recent field studies which have

found dramatic changes in Arctic vegetation whereas this coarse resolution remote

sensing study found few changes.

Estimating the current and future greenhouse gas balance of the Arctic under

various warming scenarios is also a major research question (Sitch et al., 2007),

as is the assessment of feedbacks between soil, atmosphere and vegetation in the

Arctic (Heimann, 2009). Insights into these feedbacks will require the use of NPP

models which are well suited to the Arctic, and it appears that future work will

be needed to calibrate GloPEM NPP, as well as to assess the reliability of various

NPP models over heterogeneous Arctic ecosystems.

One potential idea would be to better understand the relationship between

ground-based observations of phenology and productivity (from eddy flux flux tow-

ers and destructive sampling), and use this information to develop a model of Arctic

vegetation growth which could be run under various IPCC scenarios. It will be very

important in future for reliable estimates of productivity, phenology and NDVI to

be gathered and analyzed if insights are to be gained about global greenhouse cy-

cling and its response to climate change.
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Appendix B

Appendix- Acronyms

Acronym Definition
APP-x Advanced Very High Resolution Radiometer Polar Pathfinder- Extended
AVHRR Advanced Very High Resolution Radiometer
C Carbon
CO2 Carbon dioxide
EVI Enhanced Vegetation Index
GEP Gross Ecosystem Production
GIMMS Global Inventory Modeling and Mapping Studies
GLCF Global Land Cover Facility
GloPEM Global Productivity Efficiency Model
GPP Gross Primary Productivity
Landsat ETM Landsat Enhanced Thematic Mapper
MODIS Moderate Resolution Imaging Spectroradiometer
N Nitrogen
NASA National Aeronautics and Space Administration
NEP Net Ecosystem Production
NDVI Normalized Difference Vegetation Index
NPP Net Primary Productivity
P Phosphorous
QuickSCAT Quick Scatterometer
USGS United States Geological Survey

Table B.1: Acronym definitions
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Appendix C

Appendix- Additional diagrams

For pan-Arctic time series videos of maximum annual NDVI, total annual NPP, and
ordinal dates of spring and fall onset, please visit http://www.fes.uwaterloo.ca/u/kaluus.
The following pages contain other additional thesis figures.

Figure C.1: Mean pan-Arctic albedo 1982–2000, as divided per season (spring- top,
summer- middle, and fall- bottom)
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Figure C.2: Maximum annual NDVI at Fosheim (blue), Churchill (green) and Her-
schel (red)

Figure C.3: Date of annual maximum NDVI at Fosheim (blue), Churchill (green)
and Herschel (red)
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Figure C.4: GloPEM NPP 1982-2000

Figure C.5: Date of maximum annual NPP
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Figure C.6: Correlation between Randy’s Flat and East Bay NPP

Figure C.7: Comparison of maximum MODIS NDVI (red) & EVI (blue) with
GIMMS NDVI (green) near Fosheim (8×8km)
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