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Abstract

The purpose of this Thesis is to present a Bayesian analysis of oncological data sets

with particular focus on cervical carcinomas and ovarian cancers.

Bayesian methods of data analysis have a very long history, and have been used

with great success in many disciplines, from Physics to Econometrics. Nonetheless,

they remain very controversial among statisticians who belong to the orthodox -

i.e, frequentist school, and are not well known by the medical community. To help

in that direction, we reviewed in the introductory chapter the basic philosophical

and practical differences between the two schools, and in the second chapter, we

briefly reviewed the history of Bayesian methodology, from the early efforts of

Thomas Bayes and of Pierre Simon de Laplace to the modern contributions of

Harold Jeffreys, Richard Cox, and Edwin Jaynes.

In many aspects of medical research, we deal with experimental data from which

a certain proposition or hypothesis is validated. Unlike in physics, where we have

strong and solid foundations such as Newton’s law of motion, Snell’s optical laws,

Kirchoff’s laws, Einstein’s relativity theory, and many more, we do not have such

privileges in medical research. Hence, many hypotheses are constantly tested as

new evidence becomes available. One of the actively-researched medical areas is

cancer research about which our understanding is still in its infancy. Numerous

experiments (both in vivo and in vitro) and clinical trials have been conducted

to further our knowledge; thus, Bayesian methodology finds its place to aid us

in obtaining scientific inferences about certain propositions or hypotheses from

available data and resources.

In this work, we use data given to us by our medical collaborators at the Princess

Margaret Hospital (PMH) in Toronto to carry out two main projects: Firstly, to

make an inference about the oxygenation status (oxygen partial pressure, pO2)

within human cervical carcinomas and secondly, an inference about the effectiveness

of various molecularly-targeted agents (MTAs) in phase II clinical trials of relapsed

ovarian cancer patients.
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In the first problem, we address the challenges of tumor hypoxia - a state of

oxygen deprivation in tumors. Currently, there are two methods to obtain tumor

oxygen status, namely the direct Eppendorf needle electrode and the indirect im-

munohistochemical assay of a protein marker, Carbonic Anhydrase IX (CAIX). In

this project, we introduce Bayesian probability theory to obtain inferences about

tumor oxygenation from each technique and the concordance between the two tech-

niques. From this study, we conclude that under certain conditions, two biopsies

are sufficient to infer the tumor oxygenation level based on the immunohistochem-

ical assays of CAIX. Additionally, there is a fair concordance between the direct

and the indirect measurements of tumor oxygenation.

In the latter problem, ovarian cancer is the topic of study. Ovarian cancer has

the highest mortality rate among gynecological cancers and one that is known to

relapse. CA-125 is still the most inexpensive biomarker for monitoring ovarian can-

cers. From the phase II clinical trial data, we demonstrate the survival advantage

of CA-125 responsive group of patients by means of a non-parametric Kaplan-Meier

statistic.
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Chapter 1

Introduction

This Thesis provides an account of Bayesian data analysis applied to oncological

research with particular focus on cervical carcinomas and ovarian cancers.

The data were obtained in a prospective study that evaluated hypoxia in patients

with cervix cancer treated at the Princess Margaret Hospital (PMH) in Toronto,

Canada. Patient selection criteria, measurements of tumor oxygenation, and tissue

handling were performed according to the methods described in the literature (Fyles

et al., 2002; Hedley et al., 2003; Iakovlev et al., 2007).

All living tissues need a certain amount of oxygen for the cells to function well,

and if its concentration has an optimum value the tissue is called oxic. However,

for various reasons some regions of the tissue may have a lower than normal con-

centration of oxygen; in that case, the tissue is said to be hypoxic. Obviously, the

oxygen is carried to the cells by the blood microcirculation, and since tumor cells

tend to be tightly packed together, tumor vasculature tends to be highly chaotic,

and it is very likely that there will be regions where cells do not receive adequate

oxygenation.

It has been known for a long time that oxygen concentration levels within a tu-

mor have a significant impact on the effectiveness of radiation therapy (Hall, 1994),

and it may also be the case that oxygen is “the most important determinant of

response [to radiotherapy] among tumors of the same type” (Harrison et al., 2002).
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In fact, it is considered an established fact among medical researchers that hypoxia

is “related to poor response to radiation and chemotherapy, genetic instability, se-

lection for resistance to apoptosis, and increased risk of invasion and metastasis”

(Fyles et al., 2002; Vaupel and Harrison, 2004), and more recent studies give further

confirmation of these findings (Vaupel and Mayer, 2007; Tatum et al., 2006).

Given this knowledge, it is quite understandable that the assessment of tumor

hypoxia has become a central concern of cancer researchers. The gold standard

of tumor hypoxia assessment is a direct measurement of pO2 (oxygen tension) in

vivo by the Eppendorf polarographic electrode (Fatt, 1976), which is an invasive

technique restricted to accessible biological sites and samples (∼ 100-150 points)

within the tumor. An attractive alternative is immunohistochemical assay (stain-

ing) to detect proteins expressed by cells during hypoxia. Carbonic anhydrase IX

(CAIX) is an enzyme expressed on the cell membrane during hypoxia in response

to balance the immediate extracellular microenvironment, and is widely regarded

as a surrogate marker of chronic hypoxia in various cancers (Loncaster et al., 2001;

Hoskin et al., 2003; Mseide et al., 2004; Olive et al., 2001; Hoogsteen et al., 2005).

The study conducted by the PMH group produced data on hypoxia assessment

by means of both the Eppendorf electrode and by CAIX staining, and have been

published along with a statistical analysis carried out with the well-established

techniques of conventional (orthodox) statistics (Fyles et al., 2002; Iakovlev et al.,

2007). Despite the use of quite sophisticated techniques, this analysis left practically

unresolved one of the most important objectives of the study, namely whether CAIX

staining can be used with confidence in assessing tumor hypoxia, thus making the

Eppendorf polarographic electrode obsolete.

It is, therefore, clearly of interest to re-analyze the data with a different method-

ology, such as the Bayesian approach taken in this Thesis. With the availability of

today’s powerful computers, Bayesian data analysis has become more and more at-

tractive to researchers in various disciplines. Thus, for example, this approach has

been popular in Econometrics (Zellner, 1971), in the analysis of Nuclear Magnetic
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Resonance (NMR) spectra (Bretthorst, 1988), in astrophysical studies (Gregory,

2005), in image processing (Sivia, 2006), and in many other areas. In medical

research, however, Bayesian methods are not yet widely used, though there are

clear signs of appreciation of its advantages and power (Berry, 2006, 2005), as well

as strong proponents of the Bayesian approach against the blind reliance on P-

values and hypothesis testing (Goodman, 1999, 2005; Goodman and Sladky, 2005).

Nonetheless, Bayesian methods are still considered non-orthodox and controver-

sial, and it is therefore important to have a clear grasp of why this controversy still

exists.

The fundamental difference between the two schools of thought rests on the

interpretation of probability. According to the conventional or orthodox school,

probability theory can only be applied to random variables. A classic example is

the number on the up face of a rolled fair die: Any of the integers 1, 2, ... , 6 can be

the outcome. When the die is rolled n times under the same conditions, the result

will be a sequence of n outcomes, possibly not all different, and if the order in which

the various outcomes occurred is not of interest, it is often convenient to summarize

such a data sequence in terms of relative frequencies of outcomes. Experiments of

this type have several possible outcomes, which are totally random in the sense

that it is impossible to say in advance which one will occur. However, experience

has shown that in many repetitions of the experiment the relative frequencies with

which the various outcomes occur will stabilize and tend to a fixed values. Although

it is impossible to predict which face will show up when the fair die is rolled just

once, we can say with some confidence that in a large number of rolls each face will

show up about 1
6

of the time.

From this point of view, probabilities are defined as the limiting values ap-

proached by relative frequencies as n →∞. The probability of an outcome is then

the fraction of the time that the outcome would occur in infinitely many repetitions

of the experiment. In other words, probabilities are approximated, or estimated, by

the corresponding relative frequency, and since the latter are measured it follows
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that probabilities are objective quantities like masses, lengths, temperatures, and

so on.

The restriction of probability to random variables poses serious problems in

data analysis. In most cases, scientists want to use data to make inferences about

the values of unknown parameters entering the model, or theory, which is sup-

posed to accurately describe the phenomenon under study. But these parameters

are constants, not random variables; hence, probability theory cannot be directly

applied to them. In order to cope with this problem, mathematicians created a new

subject – Statistics. To estimate a parameter, one must first relate it to the data

through a function of the data called a statistic; and since the data are subject to

noise, the statistic becomes the random variable to which the rules of probability

theory can be applied. This, of course, poses immediately another serious problem:

How should one choose the statistic ? Most of the last century saw statisticians

occupied with the solution of this problem. The masters, such as Fisher, Neyman,

and Pearson, created a variety of different principles, which in the hands of others

resulted in a plethora of tests and procedures without clear underlying rationale.

The Bayesian school of thought, on the other hand, sees probability in a com-

pletely different light. To pioneers like Bayes and above all Laplace, a probability

P (A|E) represented a degree-of-belief, or plausibility, of the truth of a proposi-

tion A given the evidence E at hand. Thus all probabilities are conditional, in

contrast to the frequentist interpretation where probabilities are absolute. To the

19th century scholars this seemed too vague and subjective an idea to be the basis

of a rigorous mathematical theory, and Laplace’s uses of probability theory were

scorned for over a century. (A brief review of the history of this conflict, up to the

present, is given in chapter two.)

A second point of contention between the two schools was Laplace’s use of

Bayes’ theorem as the main tool for making inductive inferences from the data and

the available prior information. Due to the fact that Bayesian probability is not

necessarily a frequency, but rather a measure of the plausibility of the truth of
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a proposition, this point of view allowed Laplace to solve scientific problems that

were beyond the capability of the frequentists, such as his famous estimate of the

mass of Saturn (which is recounted in chapter two). Thus Laplace was taking the

first steps toward the use of probability theory as generalized logic of science, as

spelled out by Edwin Jaynes in his recent book (Jaynes, 2003).

The most important contribution to this view of probability was given by

Richard Cox in the middle of the last century (Cox, 1946, 1961). Instead of getting

involved in the controversy about whether or not Laplace gave us the right “calculus

of inductive reasoning”, Cox took the constructive path of asking if such a calculus

is possible in the first place, and if so, whether or not there is a consistent set of

mathematical rules for carrying out plausible, rather than deductive, reasoning. He

started out with a few simple and common-sensical desiderata (axioms) on which

all reasonable people can agree. Firstly, given propositions A, B, and C, the plau-

sibilities of their truth within a context K must possess the transitive property : If

A is more plausible than B, and B is more plausible than C, then we must assert

that A is more plausible than C. To do otherwise would lead us to argue in cir-

cles. This can be simply accomplished by assigning a real number – in the interval

[0, 1] for convenience – to each proposition; the larger the number P (A|K) is, the

higher the plausibility that A is true. Of course, the interval endpoints represent

certainty, namely, P (A|K) = 0 means that A is false whereas P (A|K) = 1 means

that A is true. A second straightforward assumption is that once the plausibility

P (A|K) that A is true has been specified, the plausibility P (Ā|K) that A is false

is also specified automatically. Thirdly, if the plausibility P (B|K) that B is true is

specified, and then the plausibility that A is true given that B is true P (A|B, K)

is also specified, then the plausibility that both A and B are true P (AB|K) is also

automatically specified.

Cox did not prescribe the functional relations between the various plausibilities,

but only assumed their existence. Then, using Boolean algebra and the constraint of

consistency (in the sense that if two different methods of calculation are permitted
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by the rules, then they should yield the same result), he showed rigorously that

the consistency conditions take the form of two functional equations, whose general

solutions he found. Those solutions uniquely determine the two following rules:

P (A|K) + P (Ā|K) = 1, and P (AB|K) = P (A|B, K)×P (B|K). By mathematical

transformations one can, of course, change the form of these rules; but what Cox

proved is that any change of their content will produce inconsistencies, in the

sense that two methods of calculations, each permitted by the rules, will yield

different results. But the two rules above are just the sum and product rules of the

mathematical theory of probability, and all other equations needed for applications

can be derived from them. Therefore, the plausibility P (A|K) is nothing but the

probability that A is true given the context K. The proofs of all these results

are given in the references cited above, and a simplified modern version of them is

presented in Appendix B of (Sivia, 2006).

One thing missing from the outstanding work of Cox was a theory of how to

derive from fundamental logical principles the rules for assigning the prior probabil-

ities that are necessary to use Bayes’ theorem as the basic tool for making scientific

inferences. Fortunately, soon afterwards the seminal work of Shannon in informa-

tion theory and the realization by Jaynes of its relevance to the logical assignment of

priors, resulted in the Maximum Entropy (MaxEnt) algorithm that put to rest the

main objections to Bayesian methodology. Their contributions – along with those

of Harold Jeffreys – are reviewed in chapter two, to which the reader is referred.

Chapter three gives a rather brief review of the principles of Bayesian inference,

with particular regard to parameter estimation and model selection. Then, in

chapter four, we begin with the applications of Bayesian methodology for inferring

tumor oxygenation status within human cervical carcinomas. This work has been

done in collaboration with Dr. Vladimir Iakovlev (at the Keenan Research Centre,

St. Michael’s Hospital) and Dr. Michael Milosevic (at the Radiation Medicine

Program, Princess Margaret Hospital). In chapter five, we introduce Bayesian

methods to infer the effectiveness of various molecularly-targeted agents (MTAs)

6



from four phase II clinical trials of relapsed ovarian cancer patients. This project

has been done in collaboration with Dr. Amit Oza (of the Drug Development

Program, Princess Margaret Hospital). Finally, we conclude the Thesis with a

critical discussion of the results of the Bayesian analysis versus those of the orthodox

statistical methods, and point out future useful directions for application of the

Bayesian methodology.
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Chapter 2

A brief history of Bayesian

methodology

It is convenient, for completeness’ sake, to start out with a brief historical review

of the developments of Bayesian methods of data analysis.

2.1 Bayes and Laplace

Traditionally, the starting point is associated with the paper of a British clergyman

(and amateur mathematician), Thomas Bayes (1763), but it was really Pierre Simon

de Laplace who gave impetus to the use of Bayes’ theorem as the ideal tool for

making inferences from a data set. In his famous memoir on the “probabilities

of causes” (Laplace, 1774), he had already pointed out the fundamental difference

between pure mathematics and scientific reasoning. The former relies on logical

deduction as the tool for making inferences, with the result that there is no room

for propositions of the type “This is probably the cause of that event”. The latter,

on the other hand, is concerned with the problem of inferring the probable cause

of an observed event or phenomenon, as schematically indicated in Figure 2.1, and

no certainty can ever be produced in this process. As already pointed out long ago

by Hume, no amount of observations of the sun rising in the East in the past can

8



Figure 2.1: Schematic process of deductive logic (top) versus inductive logic (bot-
tom)
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be used to deduce that it will rise in the East tomorrow as well. The best we can

do in Science is to learn from our past experience and infer from that and any new

data the most probable cause of the observed phenomenon.

The manner in which Laplace used probability theory for making inductive

inferences about causes is succinctly summarized by Edwin Jaynes (Jaynes, 1978)

as follows. Suppose E is an observable event which could result from a set (C1, C2,

... , CN) of conceivable causes. Suppose also that we have found, according to some

model, the “sampling distribution” or “direct” probabilities of E for each cause:

P (E|Ci), i = 1, 2, ..., N . Finally, assume that initially the possible causes Ci are

equally likely, i.e, assume a uniform prior distribution of Ci. Then, says Laplace,

the “inverse” probability P (Ci|E), i.e, the posterior probability, is given by

P (Ci|E) =
P (E|Ci)∑N

k=1 P (E|Ck)
, (2.1)

which Laplace used with great success in solving many problems in astronomy,

meteorology, geodesy, population statistics, and more.

Later on, Laplace generalized (2.1) by noting that if initially the causes cannot

be considered equally likely, but have prior probabilities P (Ci|I), where I stands

for the prior information, then the terms in (2.1) should be weighted according to

these priors to give

P (Ci|E, I) =
P (E|Ci, I)P (Ci|I)∑N

k=1 P (E|Ck, I)P (Ck|I)
, (2.2)

which, following a long-established custom, is always referred to in the literature

as “Bayes’ theorem”.

Despite Laplace’s success in using (2.1), there were clear difficulties with this

approach. Firstly, in many practical problems, it is not possible to list a finite

number of causes in order to apply the so-called “principle of insufficient reason”.

This had already been noticed by James (Jakob) Bernoulli, who in his posthumously

published Ars Conjecturandi (1713) remarked that
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“ ... this may be done only in a very few cases and almost nowhere other
than in games of chance ... But what mortal will ever determine, for
example, the number of diseases – these and other such things depend
upon causes completely hidden from us –”.

Secondly, Laplace never derived (2.1) and (2.2) from fundamental logical principles,

but simply stated them as intuitive recipes, thus leaving room for doubt as to their

logical justification and uniqueness. Finally, Laplace was unable to tell how the

prior probabilities P (Ci|I) in (2.2) were to be assigned in a non-arbitrary manner,

leaving room for the critics to attack him on the grounds of non-objectivity, and

hence non-scientificity, of his results.

2.2 The frequentist reaction

In view of the great practical achievements by Laplace with (2.1), it would seem rea-

sonable to expect that the difficulties mentioned above should have stimulated the

next generation of statisticians to build constructively on the foundations laid down

by him; in particular, they should have focused their attention on seeking new and

more general principles for determining prior probabilities. Instead, what followed

was a concerted series of increasingly violent attacks on Laplace’s works, some of

which can be found in the works of Ellis (1842), Boole (1854), Venn (1866), and von

Mises (1928); they were so successful in their opposition that the Bayes/Laplace

uses of probability theory laid discredited for a century.

The objectives voiced by these writers were not directed against Bayes’ theo-

rem per se, for this theorem follows trivially from the product and sum rules of

probability theory, namely

P (AB|C) = P (A|BC)× P (B|C), (2.3)

and

P (A|B) + P (Ā|B) = 1, (2.4)
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where

• A, B, and C can be any event or proposition;

• AB|C denotes proposition A and B are both true given that proposition C
is true; and finally,

• Ā stands for proposition A is false.

Now by the product rule, we have

P (AB|C) = P (A|BC)× P (B|C),

P (BA|C) = P (B|AC)× P (A|C),

and, since P (AB|C) must equal P (BA|C), subtracting term by term gives

0 = P (A|BC)× P (B|C)− P (B|AC)× P (A|C),

or else

P (A|BC) =
P (B|AC)× P (A|C)

P (B|C)
, provided P (B|C) > 0, (2.5)

which is just Bayes’ Theorem. As long as A, B, and C refer to random variables

and the probability is interpreted as frequency, as explained in the Introduction,

the orthodox statisticians have no objections to using (2.5). But that is not the

way Bayes/Laplace intended it. To see this, I can do no better than to follow the

explanation given by Sivia in his delightful introductory textbook (Sivia, 2006),

namely to read (2.5) as

P (hypothesis|data, I) =
P (data|hypothesis, I)× P (hypothesis|I)

P (data|I)
, (2.6)

where

• P (hypothesis|I) is referred to the ‘prior probability’; it is our state-of-knowledge
before we analyze the data or before we do any experiment regarding the hy-
pothesis at hand.
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• P (data|hypothesis, I) is the ‘direct probability’, also known as the ‘likelihood
function’. It is the implication of the hypothesis on the data.

• P (data|I) is the ‘evidence’. It only acts as a normalization constant in the pa-
rameter estimation case; however, it plays a crucial role in the model selection
case. This is the evidence representing the ‘merit’ of a particular hypothesis.

• P (hypothesis|data, I) is referred to the ‘posterior probability’; it represents
our updated state-of-knowledge in light of the new data.

Thus, in (2.6), we have a mathematical representation of the process of learning;

that is, of the scientific method. In the application of (2.5), one of the outstanding

successes of Laplace is recounted by Jaynes (Jaynes, 1985) as follows:

“For example – a famous example that Laplace actually did solve –
proposition A might be the statement that the unknown mass MS of
Saturn lies in a specified interval, B the data from observatories about
the mutual perturbations of Jupiter and Saturn, C the common sense
observation that MS cannot be so small that Saturn would lose its
rings; or so large that Saturn would disrupt the solar system. Laplace
reported that, from the data available up to the end of 18th Century,
Bayes’ theorem estimates MS to be (1/3512) of the solar mass, and
gives a probability of 0.99991, or odds of 11,000:1, that MS lies within
1% of that value. Another 150 years’ accumulation of data has raised
the estimate 0.63 percent.”

It goes without saying that this failed to impress the statisticians of the frequen-

tist school. In the first place, they pointed out, we cannot use probability theory

in estimating the mass of Saturn since it is a constant, not a random phenomenon;

hence, it cannot have a frequency distribution. In the frequency theory, one has

to imagine hypothetical ensembles of universes in which everything remains iden-

tical except the mass of Saturn. Then, one has to relate the mass of Saturn to

the observations through a function called a statistic. The data are obtained from

some experiments; hence, they are subject to measurement error, which is regarded

as ‘random noise’. As a consequence, the statistic becomes a random variable to

which the rules of probability can be applied. In the second place, they strongly

objected to the use of the prior, for if probability is just a measure of our state of
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knowledge then it cannot be objective, since different people will assign different

priors; therefore, objective (scientific) knowledge would not be possible to achieve.

2.3 Jeffreys and Cox

It was not until the middle of the 20th century that Laplace’s work in probability

theory was taken up and greatly expanded. In 1939, Harold Jeffreys published

his book entitled Theory of Probability, which saw several editions and reprints

(Jeffreys, 1958), and contained a strong defense of plausible, i.e, inductive reasoning,

as the true scientific method. Jeffreys pointed out that just as deduction must start

from axioms that must be accepted without proof, so induction must start from a

set of rules of reasoning that we cannot prove a priori but can only be justified

a posteriori. He then listed the following five rules that in his view are essential

(Jeffreys, 1958):

1. All hypotheses used must be explicitly stated and the conclusions must follow
from the hypotheses.

2. The theory must be self-consistent; that is, it must not be possible to derive
contradictory conclusions from the postulates and any given set of observa-
tional data.

3. Any rule given must be applicable in practice. A definition is useless unless
the thing defined can be recognized in terms of the definition when it occurs.
The existence of a thing or the estimate of a quantity must not involve an
impossible experiment.

4. The theory must provide explicitly for the possibility that inferences made
by it turn out to be wrong. A law may contain adjustable parameters, which
may be wrongly estimated, or the law itself may be afterwards found to
need modification – the relativity and quantum theories providing conspicuous
instances – and there is no conclusive reason to suppose that any of our present
laws are final. But we do accept inductive inference in some sense; we have
a certain amount of confidence that it will be right in any particular sense,
though this confidence does not amount to logical certainty.

5. The theory of induction must not deny any empirical proposition a priori;
any precisely stated empirical proposition must be formally capable of being
accepted in the sense of the last rule, given a moderate amount of relevant
evidence.
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In addition to the five essential rules, Jeffreys stated three more “useful guides”:

6. The number of postulates should be reduced to a minimum.

7. Although we do not regard the human mind as a perfect reasoner, we must
accept it as a useful one and the only one available. The theory need not
represent actual thought processes in detail but should agree with them in
outline.

8. In view of greater complexity of induction, we cannot hope to develop it more
thoroughly than deduction. We therefore take it as a rule that an objection
carries no weight if an analogous objection invalidates part of generally ac-
cepted pure mathematics.

Note that number six is essentially a statement of Ockham’s razor: the explanation

of any phenomenon should make as few assumptions as possible, eliminating those

that make no difference in the observable predictions of the explanatory hypothesis

or theory. Furthermore, the seventh “useful guide” shows that a theory of in-

duction must agree with common sense in evaluating propositions about empirical

phenomena.

In addition to formulating rules for induction or plausible reasoning, Jeffreys at-

tempted to rebut the accusation of subjective prior assignment in Bayesian method-

ology. It is not at all arbitrary but required by logical consistency to represent a

state-of-knowledge before analyzing the data. Prior probability represents our ‘ig-

norance’ apriori. At any state of knowledge it is legitimate to ask about a given

proposition or hypothesis, ‘How do you know ?’ The answer will usually depend

on observational data. If we ask further, ‘What did you think of the proposition or

the hypothesis before you had these data ?’ we may be told of some less convincing

data. If we ask further questions, we shall reach a state where the answer must be:

‘I thought the matter worth considering, but had no opinion about whether it was

true’ (Jeffreys, 1958). In the event, when we do not have any information regarding

the value of a certain proposition or hypothesis, we can assign equal probabilities.

They are not in any way an assertion that they must occur equally often in any

‘random experiment’. As Jeffreys emphasized, taking a uniform or equal proba-

bilities prior is “not a statement of any belief about the actual composition of the
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world, nor is it an inference from previous experience; it is merely the formal way

of expressing ignorance” (Jeffreys, 1958).

No matter how reasonable Jeffreys’ rules appear to open-minded people, the

unfortunate fact is that he did not succeed in deriving them logically from any

compelling set of desiderata. The result was that the adherents of the frequency

school, i.e, the majority of mathematicians and scientists of the time, attacked

Jeffreys with the same acrimony as they had reserved for Laplace, and Bayesian

methodology kept being shunned for many more years.

This state of affairs did not change even after Richard Cox published what is

perhaps the most important work in the history of Bayesian Probability. In an

unpretentious little paper (Cox, 1946), he avoided getting involved in the debate

about whether or not it is appropriate to use probability as a measure of degree

of plausibility for the truth of a proposition, and focused instead on asking the

following question: Is it possible to construct a consistent set of mathematical

rules for carrying out plausible, rather than deductive, reasoning ? To find out, he

assumed the following desiderata:

1. Degrees of plausibility are represented by real numbers;

2. degrees of plausibility must be in qualitative correspondence with common
sense – i.e., with rationality; and finally,

3. if a conclusion can be reasoned out in more than one way, then every possible
way must lead to the same result.

Then, using Boolean algebra, he proved that the consistency conditions took the

form of two functional equations whose general solution he was able to find. Those

solutions determined the rules (2.3) and (2.4) to within a change of variables that

can alter their form but not their content. This result was summarized by Jaynes

(Jaynes, 1985) as follows:

“So, thanks to Cox, it was now a theorem that any set of rules for
conducting inference, in which we represent degrees of plausibility by
real numbers, is necessarily either equivalent to the Laplace-Jeffreys
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rules, or inconsistent. The reason for their pragmatic success is then
pretty clear. Those who continued to oppose Bayesian methods after
1946 have been obliged to ignore not only the pragmatic success, but
also the theorem.”

2.4 Shannon and Jaynes

The full scope and generality of Bayesian inference had been already recognized

by Jeffreys, and Cox’s theorem legitimized what he had been doing all along. But

the main bone of contention with the frequentists, namely the alleged subjectivity

of Bayesian methods, was still at issue. In particular, there was still no logically

derived method to assign prior probabilities with scientific objectivity.

A breakthrough occurred soon after the appearance of the fundamental paper

The Mathematical Theory of Communication by Claude Shannon in 1948 (reprinted

in (Shannon, 1971)), which laid the foundations of the new field of Information

Theory. The communication system considered by Shannon consists of several

elements:

• An information source, which selects a message from a set of possible mes-
sages;

• A transmitter, which changes the message into a signal;

• A communication channel, such as a wire, which carries the signal; and

• A receiver, which changes the transmitted signal back into a message and
hands the message on to the destination.

The kind of questions which Shannon sought to answer were fundamental to

communication theory. First of all, he asked how we can measure the amount of

information. Secondly, how can information be coded efficiently and how can we

measure the channel capacity. Thirdly, and importantly, how do we handle the

noise which inevitably will try to corrupt the message. Finally, Shannon pointed

out that information should not be confused with meaning; in his words, “the

semantic aspects of communication are irrelevant to the engineering aspect.” Now

17



in a communication process, we have N messages m1, m2, ... , mN from which we

are free to choose the one to be sent. Suppose we assign probabilities P1, P2, ... ,

PN to the messages; these probabilities are known, but that is all we know about

which message will be chosen. Then, asked Shannon, can we find a measure of how

much “choice” is involved in the selection of the message or of how uncertain we are

of the outcome ? (Shannon, 1971). Calling such a measure H(P1, P2, ..., PN) and

requiring it to obey some reasonable mathematical constraints, such as continuity

in the Pi’s and consistency, Shannon proved that the only such measure has the

form (Theorem 2 of (Shannon, 1971))

H = −K
N∑

i=1

Pi log Pi, (2.7)

where K is a positive constant. He then went on to stress that quantities of the

form H = −
∑N

i=1 Pi log Pi play a central role in information theory as measures

of information, choice, and uncertainty. Since this form is just the expression for

entropy in statistical mechanics, it will be called the entropy of the probability

distribution Pi.

Next Shannon considers the problem of encoding a message into binary digits

in the most efficient way. The most important step is to assign probabilities to each

conceivable message, which in general will not be possible. For example, he says,

“If a source can produce only one particular message its entropy is zero,
and no channel is required. For example, a computing machine set up
to calculate the successive digits of π produces a definite sequence with
no chance element. No channel is required to ‘transmit’ this to another
point. One could construct a second machine to compute the same
sequence at the point. However, this may be impractical. In such a case
we can choose to ignore some or all of the statistical knowledge we have
of the source. We might consider the digits of π to be a random sequence
in that we construct a system capable of sending any sequence of digits.
In a similar way we may choose to use some of our statistical knowledge
of English in constructing a code, but not all of it. In such a case we
consider the source with the maximum entropy subject to the statistical
conditions we wish to retain. The entropy of this source determines the
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channel capacity which is necessary and sufficient. In the π example
the only information retained is that all of the digits are chosen from
the set 0, 1, ... , 9. In the case of English one might wish to use the
statistical saving possible due to letter frequencies, but nothing else.
The maximum entropy source is then the first approximation to English
and its entropy determines the required channel capacity.” (Shannon,
1971)

Shannon does not show mathematically what this suggested calculation method

produces, nor does he discuss the interpretation of the probability distribution Pi,

but simply moves on to other matters.

It was Edwin Jaynes that realized the importance of Shannon’s suggestion to-

wards the solution of the old problem of assigning prior probabilities in the most

objective way possible. In his words,

“The great advance provided by information theory lies in the discov-
ery that there is a unique, unambiguous criterion for the ‘amount of
uncertainty’ represented by a discrete probability distribution, which
agrees with our intuitive notions that a broad distribution represents
more uncertainty than does a sharply peaked one, and satisfies all other
conditions which make it reasonable. ... It is now evident how to solve
our problem; in making inferences on the basis of partial information
we must use that probability distribution which has maximum entropy
subject to whatever is known. This is the only unbiased assignment we
can make; to use any other would amount to arbitrary assumption of
information which by hypothesis we do not have.” (Jaynes, 1985)

Furthermore, as already noted by Shannon, the entropy H is maximum when all

Pi’s are equal and no information is given except for the enumeration of all possible

outcomes. Thus, Jaynes pointed out that the Maximum Entropy Principle (Max-

Ent) contains as a particular case the principle of insufficient reason, but with the

following essential difference:

“The maximum entropy distribution may be asserted for the positive
reason that it is uniquely determined as the one which is maximally non-
committal with regard to missing information, instead of the negative
one that there was no reason to think otherwise. Thus, the concept of
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entropy supplies the missing criterion of choice which Laplace needed to
remove the apparent arbitrariness of the principle of insufficient reason,
and in addition it shows precisely how this principle is to be modified
in case there are reasons for ‘thinking otherwise’. ” (Jaynes, 1985).
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Chapter 3

The basics of Bayesian inference

Fundamental to Bayesian methodology is learning to revise a probability represent-

ing a degree-of-belief in the truth of a certain proposition in light of new information

or empirical data through Bayes’ theorem. This process is also referred to as the

principle of inverse probability and is schematically illustrated in Fig. 3.1. As

explained in the introduction chapter of this Thesis, probability is defined as a

degree-of-belief or plausibility of truth of a certain proposition, and probability is

always conditional on our background information. As should be clear from Fig.

3.1, Bayesian reasoning is a gradual learning process.

The two aspects of Bayesian analysis that are reviewed here are those of pa-

Figure 3.1: The process of revising probabilities. Redrawn from (Zellner, 1971)
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rameter estimation and model selection. The former is the simplest to explain;

therefore, we will begin with the application of Bayesian methods in estimating a

parameter. The latter is important when one wants to compare various hypotheses

or propositions about a certain phenomenon.

3.1 Parameter estimation

Consider for a illustration purposes that we are concerned about a parameter θ,

which is assumed to be a continuous variable in a finite interval. Following the

scheme in Fig. 3.1, we begin the Bayesian analysis by quantifying our knowledge

about θ through the prior probability. We may be aware of a plausible value of

θ from previous experience, either theoretically or experimentally. If not, we shall

not despair. We can use a prior probability that represents total ignorance, namely

P (θ|I) =

 1
[θmax−θmin]

, for θmin ≤ θ ≤ θmax

0 otherwise,
(3.1)

where θmax and θmin are the minimum and the maximum value for θ respectively. In

any physical application, the parameter θ is bound either by theoretical or practical

limits. This type of prior probabilities is also known as the flat prior. It basically

states that we do not know which particular values of θ are more plausible; equiv-

alently, it assigns equal probability to all values that θ can take. Note, however,

that this does not mean that those values must occur equally often in any “random

experiment”, as the frequentists would have it; rather, as emphasized by Jeffreys,

it is only a formal way of saying “I don’t know”

Next we must calculate the likelihood function, P (D|θ, I), which is basically the

implication of our model of f(θi) on the data (D). We can model the data di in

general as

di = f(θi) + εi, i = 1, 2, ..., N (3.2)

where εi is the error parameters, commonly referred to as noise, and f(θi) represents
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the functional form of the model. For clarity purposes, let us assume that we have

a constant model f(θi) = θ (∀i) for the data,

di = θ + εi; (3.3)

in scientific experiments, the data may be thought of consisting a constant signal θ

and a noise εi. In Bayesian probability theory, one need not make assumption about

the sampling distribution of the noise; rather, one assigns what is actually known

about the noise. In other words, we assign to the noise a prior distribution which is

consistent with what is known about it. This prior should be as uninformative as

possible, as a precaution against “seeing” things in the data which are not there.

It can be shown by means of the Maximum Entropy (MaxEnt) principle that the

least informative prior probability of the errors εi is given by (Bretthorst, 1988),

P (εi|si, I) =
1√
2πsi

exp

{
− ε2

i

2s2
i

}
, (3.4)

where s2
i is the second moment of the noise. Now from Eq. 3.3 we may write

the error, which is the difference between the assumed model (f(θi) = θ) and the

actual data (di), in the form ε2
i = (θ − di)

2, and so the direct probability that we

should obtain the data D = {d1, d2, ..., dN}, given the parameters, will give us the

likelihood function (proportional to the direct probability) as

P (di|θ, I) =
1√
2πsi

exp

(
−χ2

i

2

)
, (3.5)

where χ2
i =

(
di−θ

si

)2

is the mismatch between the data di and the model θ. Assum-

ing that each datum is independent, we have

P (D|θ, I) =
N∏

i=1

P (di|θ, I),

= (2π)−
N
2

1∏N
i=1 si

exp

(
−

N∑
i=1

χ2
i

2

)
. (3.6)
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Then the application of Bayes’ theorem gives us our new knowledge about the

parameter θ in light of the data encapsulated in a posterior probability density

function (pdf),

P (θ|D, I) =
P (D|θ, I) P (θ|I)

P (D|I)
. (3.7)

Since this is a parameter estimation case, we may absorb the evidence, P (D|I),

into the normalization constant, resulting in

P (θ|D, I) ∝ P (D|θ, I) P (θ|I),

=

[
(2π)−

N
2

1∏N
i=1 si

exp

(
−

N∑
i=1

χ2
i

2

)] [
1

[θmax − θmin]

]
,

∝ exp

(
−

N∑
i=1

χ2
i

2

)
; (3.8)

from which the best estimate of θ is found by maximizing this probability density

function (pdf). Obviously, for this to happen we must have

d[P (θ|D, I)]

dθ

∣∣∣∣
θ=θ̂

= 0 , (3.9)

where θ̂ represents the desired maximum, along with a negative second derivative.

In most cases, it is much simpler to deal with the (natural) logarithm of the pdf

(Sivia, 2006),

L = ln[P (θ|D, I)] ∝ −1

2

N∑
i=1

χ2
i . (3.10)

Expanding about its maximum θ = θ̂ and ignoring terms higher than quadratic,

we obtain an approximation for the pdf,

P (θ|D, I) ≈ A exp

[
1

2

d2L

dθ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2

]
, (3.11)

where A is a normalization constant. We therefore approximate the posterior pdf

with the well-known Gaussian distribution.

The simplest case is when all the error-bars can be taken to be equal - i.e, when
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s1 = s2 = ... = s. Then Eq. 3.11 can be written as

P (θ|D, I) =
1√
2πσ

exp

{
−(θ − θ̂)2

2σ2

}
, (3.12)

where we have adopted the notation σ =
(

d2L
dθ2

∣∣∣
θ=θ̂

)− 1
2
. The posterior pdf thus has

the classical bell-shaped form and the uncertainty can be represented by the full

width at half maximum (FWHM). For a Gaussian pdf, it can be shown easily that

the FWHM is 2×
√

2 ln 2σ ≈ 2.35σ (Sivia, 2006). In such a case, we can summarize

the result of our inference by the expression

θ = θ̂ ± σ. (3.13)

In general, however, it may not be possible to encapsulate the best estimate

from the posterior pdf in two simple numbers such as θ̂ and s. For an asymmetric

pdf, it is not appropriate to use the FWHM of the posterior pdf to quantify the

uncertainty of the estimate; however, we may utilize a credibility interval to express

our uncertainty, namely

P (θ1 ≤ θ ≤ θ2|D, I) =

∫ θ2

θ1

P (θ|D, I) dθ ≈ 1− α, (3.14)

where θ2 − θ1 is as small as possible. The region θ1 ≤ θ ≤ θ2 is called the shortest

1−α credibility interval, where α is usually taken as 0.05. We can then proceed with

the Lagrange’s optimization technique to find θ1 and θ2, by solving the straight-

forward problem:

min θ2 − θ1,

subject to

∫ θ2

θ1

P (θ|D, I) dθ = 1− α. (3.15)

For a multimodal pdf which has one peak that is relatively much higher the others,

we may neglect the smaller peaks. However, if we have more than one peaks
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that have relatively the same height, we cannot use only one number for the best

estimate of the parameter. Hence, the most honest thing we can do in that case is

just displaying the posterior pdf itself (Sivia, 2006).

So far we have assumed that the error-bars are known. But very frequently

they are not, so that the simplest case is when we have to deal with two unknown

parameters, θ and s. Our posterior pdf is then the joint pdf, P (θ, s|D, I), and we

still would like to get the best estimate of θ. This situation poses great difficulties

to the frequentist school, and that is the reason why orthodox statisticians refer

to parameter like s as nuisance parameters. In the Bayesian approach, nuisance

parameters pose no problem, for all we have to do is using marginalization,

P (θ|D, I) =

∫
s

P (θ, s|D, I)ds, (3.16)

where the integral is over the whole range of s. With the application of Bayes’

theorem and the product rule to the integrand, we obtain

P (θ|D, I) ∝
∫

s

P (D|θ, s, I) P (θ, s|I)ds,

=

∫
s

P (D|θ, s, I)︸ ︷︷ ︸
Eq. 3.6

P (θ|s, I) P (s|I)ds. (3.17)

We may use the assumption of independence for each datum and between the data

and the error-bar; thus, P (θ|I) = P (θ|s, I). For the prior probabilities, we use the

flat prior for P (θ|I); however, since s is a scale parameter, we shall use the Jeffrey’s

prior for the error parameter (Jeffreys, 1958),

P (s|I) =

 1
s
, for 0 < s < ∞

0 otherwise.
. (3.18)
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As a result, the posterior pdf becomes

P (θ|D, I) ∝
∫

s

1

sN+1
exp

(
−

N∑
i=1

(di − θ)2

2 s2

)
ds,

=
A(∑N

i=1 (di − θ)2
)N

2

, (3.19)

where the integration is easily evaluated by a change of variable t = 1
s

and A is the

normalization constant. The posterior pdf in Eq. 3.19 has a Student-t distribution

as opposed to Gaussian distribution. The best estimate of θ and its uncertainty

can be obtained by following the same procedures as in the previous case.

In general, if we have more than one parameters to be estimated ~θ = (θ1, θ2, ..., θk),

the above derivation extends naturally; we will have a joint posterior pdf instead

of single variable posterior pdf,

P (~θ|D, I) ∝ exp

(
−

N∑
i=1

[di − f(~θ)]2

2 s2
i

)
, (3.20)

if the si are known. If they are unknown, we have

P (~θ|D, I) ∝ 1(∑N
i=1 [di − f(~θ)]2

)N
2

. (3.21)

In both cases, we will have a posterior hyper-surface rather than a posterior curve.

For illustration purposes, interested readers are encouraged to visit chapter three

of (Sivia, 2006) in which a straight-line fitting example is presented. Furthermore,

for curious readers, a paper by Stephen Gull entitled “Bayesian data analysis -

Straight line fitting” (Gull, 1988) is a good starting point for the case where both

dependent and independent variables contain uncertainties.
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x σ
1.867 0.014
1.837 0.012
1.847 0.003
1.853 0.003
1.858 0.003
1.906 0.020

Table 3.1: Adapted from (Hamilton, 1964)

3.2 An example from theoretical chemistry

As a simple example of application of the theory reviewed in the previous section,

consider the following scientific problem. Crystallographic techniques have been

used to measure the length of the bond between an atom of Phosphor and an atom

of Carbon in a certain molecule ((PC3)4). Six measurements have been performed,

and the results are displayed in Tab. 3.1.

In Bayesian reasoning, we ask ourselves what the plausible value of the P-C

bond length is in light of these six observations. Let us denote by µ the estimate

for the P-C bond length, which is a constant. We want to obtain P (µ|data, I).

Thanks to Bayes’ theorem, we can write

P (µ|data, I) ∝ P (data|µ, I) P (µ|I), (3.22)

and since this is a parameter estimation case, we absorb P (data|I) into the normal-

ization constant. For the prior probability, we shall assign a uniform prior because

we have no reason to believe any particular value is more preferable than others.

The most honest way to assign the prior probability is

P (µ|I) =

 1
[µmax−µmin]

, for µmin ≤ µ ≤ µmax

0 otherwise.
. (3.23)

For the likelihood function formulation, we need to look at the implication of
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the constant model. We can model the data as

xi = µ + εi, (i = 1, 2, ..., 6), (3.24)

where εi is the noise. Since the errors follow a Gaussian distribution, we have,

P (xi|µ, I) =
1√

2π σi

exp

{
− 1

2σ2
i

(xi − µ)2

}
. (3.25)

Assuming that each observation is independent, the likelihood function is simplified

into

P (data|µ, I) =
1

(
√

2π)6

1

σ1σ2 ... σ6

exp

{
−1

2

6∑
i=1

(xi − µ)2

σ2
i

}
. (3.26)

The posterior density function (pdf) is essentially the product of the likelihood

function (Eq. 3.26) and the prior probability (Eq. 3.23); thus,

P (µ|data, I) = C exp

{
−1

2

6∑
i=1

(xi − µ)2

σ2
i

}
, (3.27)

where all the constants are absorbed into C, which is determined so that the area

under the curve is unity. Following the procedures explained in the previous section

on data with known error-bars, we obtain the following estimate

µ̂ = 1.853± 0.0017, (3.28)

for the most plausible P-C bond length based on the six observations. Had we

not known the uncertainties or error-bars on each observation, we could have used

marginalization as shown in previous section on data with unknown error-bars. The

estimate for the most probable P-C bond length is then

µ̂ = 1.861± 0.013. (3.29)
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Fig. 3.2 illustrates the posterior probability density for each case.

It is important to keep in mind that the estimate µ̂ is nothing more than the

most plausible value in light of these six measurements and our prior information.

As it is evident from Fig. 3.2 the full width at half maximum (FWHM) represents

the reliability of our estimate. As a result, it is appropriate to summarize our

estimate in the form (most plausible value ± something) as long as the resulting

posterior pdf is symmetric and unimodal.
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Figure 3.2: The posterior probability density function as a result of known (left)
and unknown (right) error-bars respectively.
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3.3 Model Selection

The assumed form of the model f(θi) in Section 3.1 was simply a constant. In many

other situations, however, we might be interested in inferring whether the model

should be a linear, or a quadratic, or an even more complicated function. Choosing

a model in cases when there is uncertainty as to which one of a set of alternative

models is most suitable is called model selection.

Confronted with this problem, we might think of choosing the model on the basis

of how well the alternatives fit the data. However, this thought is naive because

models with more adjustable parameters, of which they may be infinitely many,

will always fit the data better. Still, most people would prefer the model with the

fewest possible parameters, as the main goal of science is to explain the observed

phenomena with the simplest possible theory.

To explain how the decision is made within the Bayesian framework, it is best

to repeat the elementary formulation (originally due to Jeffreys (Jeffreys, 1958))

presented in chapter four of Sivia (Sivia, 2006). Suppose that in a graph-fitting

context we formulate two models:

• M1 – The noisy measurements of y versus x are described by y = 0;

• M2 – The same measurements are described by y = c, with c an adjustable
parameter.

Which is more plausible on the basis of data D ? In the Bayesian framework,

we quantify the merit of the two theories based on each posterior probability,

P (M1|D, I) and P (M2|D, I), respectively. Equivalently, we may use the posterior

ratio,

posterior ratio =
P (M1|D, I)

P (M2|D, I)
; (3.30)

if the posterior ratio is greater than one (in order of magnitude) then the theory M1

is more plausible than that of M2. If the posterior ratio is less than one then M2

is more plausible. Finally, if the posterior ratio is approximately of order one, then
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the current data is insufficient to make an informed judgement. Applying Bayes’

theorem on the right-hand side gives

posterior ratio =
P (D|M1, I)

P (D|M2, I)
× P (M1|I)

P (M2|I)︸ ︷︷ ︸
prior ratio

, (3.31)

where the evidence P (D|I) cancels out. Probability theory tells us that the merit

of the two theories depends partly on what each individual knows prior to the

analysis of the data. If we assign the prior ratio to be unity, representing fairness,

the posterior ratio becomes the ratio of the likelihood functions, and to assign

the latter, we need to be able to compare the data with the predictions of M1

and M2: The larger the mismatch, the lower the corresponding probability. The

calculation for M1 is straight-forward, but the one for M2 is complicated by the

fact that the parameter c is unknown. This is a clear example of the usefulness of

marginalization, for we can write

P (D|M2, I) =

∫
c-range

P (D, c|M2, I)dc,

=

∫
c-range

P (D|c, M2, I)P (c|M2, I)dc, (3.32)

where in the second step we just applied the product rule. The first factor under

the integral is the ordinary likelihood function (on a par with P (D|M1, I)) with the

value of c given. The second factor, on the other hand, is M2’s prior probability

for c. Hence, it is the duty of the theorist to articulate his state-of-knowledge, or

ignorance, before seeing the data. We will illustrate how this idea can be developed

in the application presented in the next section.

3.4 Another example from theoretical chemistry

Consider a set of data representing the natural rubber content in mixture of nat-

ural and synthetic rubber obtained by infrared spectroscopy (Mandel, 1984). The
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i xi (%) yi

1 0 0.734
2 20 0.885
3 40 1.050
4 60 1.191
5 80 1.314
6 100 1.432

Table 3.2: The experiments on the mixture of natural and synthetic rubber (xi)
and the natural rubber content (yi)

experimental results are tabulated in Tab. 3.2 and plotted in Fig. 3.3. From the

experimental data, we want to infer which model is more plausible: a linear or a

quadratic model.

The two propositions of interests are H1 and H2, where respectively,

1. H1 is a proposition of a linear model: y
(1)
i = a1 + b1xi + εi, and

2. H2 is a proposition of a quadratic model: y
(2)
i = a2 + b2xi + c2x

2
i + εi,

where i = 1, ..., 6 and εi denotes the measurement error (noise) for the ith datum.

In the first model H1, we have two adjustable parameters (a1 and b1); whereas,

in H2, we have three adjustable parameters (a2, b2, and c2). We begin with the

posterior pdf for each proposition through Bayes’ theorem,

P (Hk|D, I) =
P (D|Hk, I) P (Hk|I)

P (D|I)
, (3.33)

where k = 1, 2 denoting each proposition. The denominator in Eq. 3.33 cancels

out if we use the posterior ratio (odds ratio),

O12 =
P (D|H1, I)

P (D|H2, I)
× P (H1|I)

P (H2|I)︸ ︷︷ ︸
prior ratio

. (3.34)

If we assign equal plausibility to each proposition, the odds ratio simplifies into the

likelihood ratio,

O12 =
P (D|H1, I)

P (D|H2, I)
. (3.35)
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Figure 3.3: The scatter-plot of the experiments

Thus, we need to compare the data in light of each proposition H1 and H2; the

larger the mismatch the smaller the probability.

We cannot directly compare the data with each of the propositions because

each proposition contains adjustable parameters which are unknown. As it was

explained earlier, the measurement errors follow a Gaussian distribution with an

unknown variance, s. Thus, we have three unknowns for H1 and four unknowns

for H2. Instead of estimating each unknown which is not our concern in evaluating

the merit of a proposition, we may use marginalization available to us; therefore,
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for H1,

P (D|H1, I) =

∫
b1

∫
a1

∫
s

P (D, a1, b1, s|H1, I)dsda1db1,

=

∫
b1

∫
a1

∫
s

P (D|a1, b1, s, H1, I)P (a1, b1, s|H1, I)dsda1db1,

=

∫
b1

∫
a1

∫
s

P (D|a1, b1, s, H1, I)︸ ︷︷ ︸
likelihood

P (a1, b1|s, H1, I)︸ ︷︷ ︸
∗

P (s|H1, I)dsda1db1,

(3.36)

where we applied consecutive product rules. In general, we need not find the es-

timates for each parameter; however, as we see later, in order to find analytically

tractable solution, we may need to do so. It is reasonable to assume that the ad-

justable parameters are independent of the variance of the noise, so that ∗ becomes

simply P (a1, b1|H1, I), which is the joint prior for parameter a1 and b1. P (s|H1, I)

is just the prior for the standard deviation of the noise. The limits of integration for

each adjustable parameter are determined by its range of possible values. Since we

have no prior information about the plausibility of the values for each parameter,

we then assign a flat prior for each adjustable parameter,

P (ai|I) =

 1
4ai

, for amin
i ≤ ai ≤ amax

i

0 otherwise.
, (3.37)

where 4ai = amax
i −amin

i , i = 1, 2, and similarly for the adjustable parameter b and

c. For the scale parameter s, we assign the Jeffrey’s prior,

P (s|I) =

 1
s
, for s ∈ (0,∞)

0 otherwise.
. (3.38)

For each likelihood, we assume independent, additive, Gaussian noise; as a result,

the inner most integration due to the marginalization of the variance of the noise

converges as s → ∞, giving a Student-t distribution or also known as Cauchy

distribution (Section 3.2). Similar procedures apply for H2 but we have one more
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integral due to the additional adjustable parameter c2. The odds ratio now becomes,

after some simplifications,

O12 =
4a2 4 b2 4 c2

4a1 4 b1︸ ︷︷ ︸
Ockham’s factor

×

∫
b1

∫
a1

1hP6
i=1(a1+b1xi−y

(1)
i )2

i3 da1db1∫
c2

∫
b2

∫
a2

1hP6
i=1(a2+b2xi+c2x2

i−y
(2)
i )2

i3 da2db2dc2

. (3.39)

We then may proceed either analytically by approximating the likelihood func-

tion or numerically by computing the multi-dimensional integrals. The latter can

be done by using a Monte Carlo integration; since we only have up to three dimen-

sional integration, a crude Monte Carlo method still suffices. For higher dimensions

however, it may be more efficient to use importance sampling. The former approach

is better in a sense that it is analytically tractable. We outline this approach briefly.

If the joint prior for the adjustable parameters does not cut off too much of the in-

tegrand P (D|a1, b1, s, H1, I) - i.e, if most of the distribution falls into the rectangle

[amin
1 , amax

2 ]× [bmin
1 , bmax

2 ] - then we can make the approximation:

P (D|a1, b1, s, H1, I) ≈ P (D|â1, b̂1, s, H1, I) exp

{
−1

2

[
(a1 − â1)

2

δa2
1

+
(b1 − b̂1)

2

δb2
1

]}
,

(3.40)

where â1 and b̂1 are the best estimate for each adjustable parameter in H1 and

δa1 and δb1 are the uncertainty of the estimates. We can generalize Eq. 3.40 by

including the correlation term; however, for illustration purposes, we ignore the

correlation between a1 and b1. The best estimates, along with their uncertainties,

can be obtained by following the parameter estimation method explained in Section

3.1. The parameter estimates are tabulated in Tab. 3.3. Substituting Eq. 3.40,

along with its respective prior probabilities, into Eq. 3.36, and evaluating the

integral respectively, we obtain

P (D|H1, I) ∝ 1[∑6
i=1(â1 + b̂1xi − y

(1)
i )2

]3 δa1δb1

4a1 4 b1

; (3.41)

similar procedures for H2 except that we have an additional integration. Thus, the
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Estimate
â1 7.5× 10−1

b̂1 7.1× 10−3

δa1 1.1× 10−2

δb1 1.9× 10−4

â2 7.3× 10−1

b̂2 8.5× 10−3

ĉ2 −1.5× 10−4

δa2 4.2× 10−3

δb2 2.0× 10−4

δc2 1.9× 10−6

Table 3.3: The best estimates, along with their uncertainties, of each proposition.

posterior ratio O12 becomes

O12 =

likelihood ratio︷ ︸︸ ︷[∑6
i=1(â1 + b̂1xi − y

(1)
i )2

]−3

[∑6
i=1(â2 + b̂2xi + ĉ2x2

i − y
(2)
i )2

]−3 ×
δa1δb1

δa2δb2δc2

× 4a2 4 b2 4 c2

4a1 4 b1︸ ︷︷ ︸
Ockham’s factor

,

≈ O(105), (3.42)

where the prior ranges for each parameter are taken as follows

• ai ∈ [0, 100]; when we do not have any rubber in the mixture, the probability
of the rubber content is zero. The maximum value however can be as large
as possible (for simplicity, we set the maximum to be 100),

• bi ∈ [0, 100]; the argument is that the more rubber we have in the mixture,
the rubber content shall increase, therefore, this eliminates the possibility of
negative slopes,

• c2 ∈ [−100, 100]; this however can be negative since we can also have a nega-
tive concavity when we have a positive slope.

where i = 1, 2. We keep in mind that in determining of possible ranges for each

parameter, we should be as uninformative as possible unless we have had experience

with similar experiments before. Additionally, we should not be influenced with

the scatter-plot of the current data since, by definition, prior probability is assigned

before we look at the current data.
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The latter approach can be done easily with a Monte Carlo integration (see

Appendix A, for a brief overview of Monte Carlo integration), leading to the same

conclusion which is in favor of the linear model. Evidently, the likelihood ratio

prefers the more complicated model; whereas, the Ockham’s factor punishes the

more complicated model because of its additional parameter. Thus, based on the

experimental data and our prior knowledge, we conclude that the most plausible

proposition is the linear one as opposed to the quadratic one.

In the next chapter, we begin applying Bayesian methods to cancer research

problems, namely tumor hypoxia inference in cervical carcinomas and clinical trials’

data analysis in relapsed ovarian cancers.
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Chapter 4

Bayesian analysis of tumor

hypoxia data

In this chapter, we present the results of the assessment of tumor hypoxia by using

Bayesian methods to analyze the data generated by the PMH group by means of

both direct oxygen partial pressure (pO2) measurements in vivo and immunohis-

tochemical assays of an intrinsic protein marker, namely Carbonic Anhydrase IX

(CAIX). Additionally, we analyze whether or not the two tumor hypoxia quantifi-

cations are in concordance with each other. First, however, a description of tumor

hypoxia, more detailed than the one given in the Introduction is in order.

4.1 Tumor hypoxia

Hypoxia is defined as a state of oxygen deficiency. It occurs in an early stage of

tumor growth when tumor cells depend on the diffusion of oxygen from nearby

blood vessels. At this stage, the tumor is said to be in an avascular stage. Some

examples of avascular tumors include carcinomas, lymphomas, and sarcomas. A

vascular tumor, on the other hand, is a matured one. It does not depend on

the diffusion of oxygen any longer because it has already completed angiogenesis,

which is the formation of new blood vessels. Thus, a vascular tumor tends to be
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aggressive because it has its own supply of nutrients; moreover, tumor cells are

capable of entering blood vessels and traveling to distant sites, forming metastasis.

A more precise definition of tumor hypoxia is a state of a decreased dissolved

oxygen concentration (pO2) below a critical level (Hckel and Vaupel, 2001). The

definite critical oxygen level is still debatable. Nevertheless, many agree that if

the tissue oxygen level falls below 10 mmHg, the particular tissue is considered

hypoxic (Hckel and Vaupel, 2001; Milosevic et al., 2004). Based on the causes at

tissue level, tumor hypoxia can be classified into three different groups, known as

radiobiological hypoxia (Raleigh et al., 1996; Horsman, 1998).

The first type of radiobiological hypoxia is a chronic (diffusion-limited) hypoxia.

Thomlinson and Gray demonstrated that tumor cells that are beyond 150 µm of

nearby blood vessels become starved of oxygen and die, forming necrosis (Hall,

1994; Dewhirst, 1998; Vaupel and Harrison, 2004). Additionally, diffusion-limited

hypoxia may also be caused by the deterioration of diffusion “geometry”, for ex-

ample, concurrent versus countercurrent blood flow within the tumor microvessel

network (Vaupel and Harrison, 2004). The second type is acute or perfusion-limited

hypoxia which is transient in nature (Hall, 1994; Dewhirst, 1998; Vaupel and Har-

rison, 2004). This type of hypoxia is usually present in the stroma of solid tumors.

Perfusion-limited hypoxia is caused by inadequate blood flow in tissues due to severe

structural and functional abnormalities in tumor blood flows (Vaupel and Harrison,

2004). Tumor microvessels are widely known to be dilated, tortuous, elongated, and

saccular; moreover, they often collapse and cause transient blockages in the flow of

oxygen (Hckel and Vaupel, 2001). Once the blockages disappear, oxygen is able to

flow to reoxygenate the tumor area. The third type of tumor hypoxia is an anemic

hypoxia. It is caused by a reduced O2 transport capacity of the blood subsequent

to tumor-associated or therapy-induced anemia (Vaupel and Harrison, 2004).

The three types of tumor hypoxia mentioned earlier are the ones that are im-

portant for tumors. With the exception of anemic hypoxia, both chronic and acute

hypoxia have been widely demonstrated to be crucially important for cancer treat-
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ment (Raleigh et al., 1996; Horsman, 1998). Nevertheless, there has not been any

success in distinguishing between the two types of tumor hypoxia. Sequential imag-

ing may provide some clues whether or not tumor hypoxia is acute; however, not

all tumor sites are accessible by imaging techniques. Additionally, tumor vascula-

ture is uncontrollably chaotic. Tumor microvessels are leaky, tortuous, elongated;

moreover, they have incomplete endothelial linings and an increased vascular per-

meability. (For a more complete review regarding tumor vasculature and its effects

on radiotherapy, the reader is kindly directed to (Vaupel, 2004).) This provides

another challenge in determining the cause of tumor hypoxia. There are numerous

factors affecting tumor hypoxia: to name a few, the host tissue of the tumor, the

type of the tumor, and the grade of the tumor. These factors make the modeling

of tumor hypoxia very challenging.

4.2 Tumor hypoxia measurements

Many studies of tumor hypoxia was based on direct pO2 measurements using a

polarographic oxygen electrode. A commonly used commercial system is the Ep-

pendorf needle probe with an outer diameter of 300µm and a tip diameter of 120µm.

The electrode is inserted into the tissue in steps of 1.0 mm; each is followed by a

backward motion of 0.3 mm (Fyles et al., 2002). The inserted tip of the electrode

is covered with teflon permeable only to oxygen molecules. As a result, the ‘bump-

ing’ of these oxygen molecules to the tip of the needle is transformed into electrical

signals which are then processed by a computer. What the electrode measures is

the partial pressure of oxygen (pO2) within a tumor. A complete review of the

polarographic needle probe can be found in (Fatt, 1976). The Eppendorf needle

electrode is considered the ‘gold standard’ in tumor hypoxia quantification.

Although this technique provides the most direct measurement, it is limited by

its invasiveness. Some sites (kidney, urether, bladder, testicles) are considered

to be too risky for oxygen electrode use (Raleigh et al., 1996). An attractive
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alternative is immunohistochemical staining to detect proteins expressed by cells

during hypoxia. Hypoxia is one of the adverse cell environments; consequently, cells

are forced to adapt to it. The idea of immunohistochemistry is to identify chemicals

responsible for cells’ response. As the study of immunohistochemistry (protein

markers) advances, scientists have been able to isolate chemicals that are specific to

hypoxic cells. Raleigh and his group laid the basis for the hypoxia marker technique

in tumor hypoxia quantification. They observed that 2-nitroimidazoles hypoxic cell

radiosensitizers are activated and bound to hypoxic cells. This process shows an

oxygen dependence close to that for the radiobiological oxygen effect (Raleigh et al.,

1996; Horsman, 1998; Cline et al., 1990). The binding is a metabolic process. It

involves endogeneous nitroreductases (enzymes) which convert the nitroheterocyclic

compounds to binding intermediates in an oxygen dependence manner (Cline et al.,

1990).

There are many 2-nitroimidazole compounds; however, CCI-103F (used in ca-

nine solid tumors), pimonidazole, and EF5 are the ones commonly used in tumor

hypoxia research (Cline et al., 1997; Evans et al., 2006; Durand and Aquino-Parsons,

2006). While CCI-103F has been used solely in canine tumors, pimonidazole has

been widely used as a hypoxia marker in a number of human malignancies. It has

been designated as a novel hypoxia marker (Varia et al., 1998). The significant rela-

tionship between tumor blood vessels and EF5 staining makes this marker a “blood

vessel marker”, showing perfused blood vessels (Evans et al., 2001). Tumors with a

high density of EF5 indicate that they have already begun or completed angiogen-

esis. Additionally, thioredoxin may serve as a hypoxia marker because of its role

in redox mediators in biochemical pathways promoting cell survival under adverse

conditions such as hypoxia (Hedley et al., 2004).

The hypoxia markers mentioned earlier are of extrinsic or exogeneous type. It

means that there is a need for an injection of the marker prior to sampling (biopsy).

Fortunately, there are other types of hypoxia markers that do not require any ad-

ministration prior to biopsy: two such examples are HIF-1α and Carbonic Anhy-
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drase IX (CAIX). This type of hypoxia marker is called an intrinsic or endogeneous

marker.

The overexpression of hypoxia-inducible factor-1α (HIF-1α) indicates that tu-

mor cells have already begun to adapt to adverse environments (such as low oxy-

genation); hence, an anti-angiogenic therapy, whose goal is to fail tumor angiogene-

sis, may be more suitable rather than conventional cancer therapies (chemotherapy

or radiotherapy). For a more detail review about anti-angiogenic therapy, the reader

is directed to (Jain, 2005). Carbonic anhydrase IX (CAIX) is an enzyme expressed

on the cell membrane during hypoxia to balance the immediate extracellular mi-

croenvironment. It is widely regarded as a surrogate marker of chronic hypoxia

in various cancers (Olive et al., 2001; Hoogsteen et al., 2005; Mseide et al., 2004;

Hoskin et al., 2003); moreover, the overexpression of CAIX has been significantly

associated with a poor prognosis (Hedley et al., 2003).

In an attempt to replace the direct pO2 measurements with immunohistochemi-

cal assays of hypoxia protein markers, many researchers have claimed that hypoxia

markers can assess tumor hypoxia as well as the in vivo Eppendorf pO2 measure-

ments. Nevertheless, there is no agreement in current literature; some believe that

the two hypoxia quantification methods shall correlate with each other (Loncaster

et al., 2001) but some disagree with that conclusion (Mayer et al., 2005; Hedley

et al., 2003). Clarifying this confusion is one of the topics in this thesis; however,

first we will take a step back and attempt to ask a question: what do we want

to learn from the Eppendorf pO2 measurements and the immunohistochemistry of

CAIX respectively ? The next question is then how the two methods fare in quan-

tifying tumor hypoxia, whether or not they are in concordance with each other.

4.3 Tumor hypoxia inferences

The first question is definitely an inference problem; we do not have a complete

knowledge about the tumor. Our knowledge is limited to the data either obtained
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from biopsies or direct Eppendorf measurements and by our theoretical knowledge

about tumor dynamics. Unfortunately, unlike the laws of classical physics, the

laws of tumor dynamics have not been solidly formulated yet. Nonetheless, physi-

cians are called everyday to make decisions which affect patients directly, and data

analysis in the presence of uncertainty is the best tool available.

As already mentioned, the hypoxia data generated by the PMH group have been

analyzed with the classical orthodox statistical techniques, but some fundamental

ambiguities and contradictions have not been resolved. It is therefore of practical

importance to find out whether Bayesian probability methods are capable of offering

sharper and more consistent inferences from the available data. First, we will

proceed with tumor hypoxia quantification by the direct pO2 measurements.

4.3.1 The direct pO2 measurements

The pO2 measurements by the Eppendorf needle can be performed in linear, ran-

dom, or circular tracks. Each track consists of about 20 - 30 measurements each of

which is recorded in mmHg. A typical track of pO2 measurements is tabulated in

Tab. 4.1. From all the tracks obtained, we are interested in inferring the hypoxic

proportion, the proportion of measurements that is less than or equal to 5 mmHg

(HP5). This is a measure used by clinicians to quantify tumor hypoxia. If HP5

is greater than or equal to 50%, the tumor is considered to be hypoxic based on

the pO2 measurements. HP5 is by no means the standard rule. Some prefer to use

HP10 or HP2.5 to quantify tumor hypoxia.

Our collaborators at the Princess Margaret Hospital provided us with data sets

of pO2 measurements for 21 patients with invasive cervical carcinomas. From these,

we want to obtain the most probable HP5 from each patient. Let us denote by X

the proportion of the pO2 measurements that are less than or equal to 5 mmHg.

As it was explained earlier, the inferential machinery in Bayesian methodology is
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Study number Track number Position pO2 (mmHg)
2136 1 1 3.5
2136 1 2 3.6
2136 1 3 3.8
2136 1 4 3.5
2136 1 5 3.8
2136 1 6 47.6
2136 1 7 154.7
2136 1 8 118.1
2136 1 9 82.1
2136 1 10 50.2
2136 1 11 29.5
2136 1 12 7.8
2136 1 13 2.9
2136 1 14 2.8
2136 1 15 2.7
2136 1 16 6.6
2136 1 17 18.1
2136 1 18 31.7
2136 1 19 40.7
2136 1 20 32.7
2136 1 21 24.8
2136 1 22 13.5
2136 1 23 5.2
2136 1 24 3.2
2136 1 25 3.2
2136 1 26 3.2
2136 1 27 2.8
2136 1 28 3.3
2136 1 29 3.2
2136 1 30 3.0
2136 1 31 2.8
2136 1 32 3.4
2136 1 33 3.1

Table 4.1: The first track of the pO2 measurements taken from patient 2136
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Bayes’ theorem:

P (X(i)|D(i), I) ∝ P (D(i)|X(i), I)× P (X(i)|I), (4.1)

where the superscript i denotes the ith track (i = 1, 2, ..., 5) and I is the background

information such as each track and each measurement is independent of one another,

respectively. By the application of the Bayes’ theorem, we obtain the most probable

value of the HP5 in light of the data and prior knowledge.

For the prior knowledge or the prior probability assignment, we assign a uniform

or ignorance prior,

P (X(i)|I) =

 1, for 0 ≤ X(i) ≤ 1

0 otherwise
, (4.2)

because we have no reason to prefer any value for the HP5. The direct probability

or the likelihood function can be thought of as obtaining the data ‘r measurements

that are less than or equal to 5 mmHg in N measurements’ in a track, which is a

binomial distribution,

P (D(i)|X(i), I) ∝ X(i)r (1−X(i))N−r. (4.3)

The first application of the Bayes’ theorem gives us a posterior probability density

function (pdf) for HP5 based on one track of measurements; this posterior pdf can

in turn serve as the prior knowledge for the second track and so on. Thus, one can

view Bayes’ theorem as an inferential tool that gradually incorporates additional

information as they become available to improve our knowledge. The best estimate

for the most probable HP5 value in a patient is given by the maximum of the

posterior pdf in light of the last track’s data and the uncertainty is simply the full

width at half maximum (FWHM) of the posterior pdf. The results are summarized

in Tab. 4.2. For completeness, we also present the other commonly-used hypoxic

proportions: HP2.5 and HP10, summarized in Tab. 4.3 and 4.4 respectively. Based
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on the criterion that a tumor is considered to be hypoxic if its HP5 is greater than or

equal to 50% (Pitson et al., 2001), there are 12 out of 21 tumors can be classified as

hypoxic (Tab. 4.2). In contrast, only nine of the same tumors would be considered

as hypoxic marker under the HP2.5 rule, while that number goes up to 14 under the

HP10 rule. Although these rules are arbitrary, most medical researchers consider

the HP5, which falls in the middle of the range, as the most reliable criterion.
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4.3.2 The immunohistochemical assay of CAIX

In addition to the direct pO2 measurements, our collaborators at the Princess Mar-

garet Hospital provided us with immunohistochemical assay of carbonic anhydrase

IX (CAIX) data from the same patients with invasive cervical carcinomas. A typi-

cal size of biopsy is about five millimeters in diameter. The first data set consists

of ten patients from whom three to five biopsies were obtained from each patients.

Each biopsy is cut into four slices, except for three tumors (2144, 2148, and 2152)

whose biopsies are fully sectioned. CAIX content was assessed as a percentage of

area positive for the protein within each tumor slice (with protocol described in

(Iakovlev et al., 2007)). The percentage of CAIX-positive pixels (area stained /

total area) within the three tumors (2144, 2148, and 2152) of the first data set is

shown in Fig. 4.1. The data generation for the first data sets is illustrated in Fig.

4.2. Based on each patient’s data, we want to infer the proportion of CAIX-positive

cells in the whole tumor. Additionally, we want to find the minimum number of

biopsies which is sufficient to learn about the tumor hypoxia.

This is again an inference problem which shall be tackled by Bayes’ theorem.

Let us denote Y be the proportion of CAIX-positive cells within a tumor. In other

words, we assume that the amount of CAIX positive staining is a constant in the

tumor, which is equivalent to saying that the tumor hypoxia is supposed to be ho-

mogeneously distributed throughout the tumor. This is a simplifying assumption

that is frequently made in the literature. Nonetheless, it is a very optimistic as-

sumption which will be discussed in chapter six. Now our knowledge is encapsulated

in the form of a posterior probability density function (pdf) of Y ,

P (Y |D(i), I) ∝ P (D(i)|Y, I)× P (Y |I), (4.4)

which follows from the Bayes’ theorem (i indicates the biopsy number). Since we

have no information regarding the proportion of CAIX-positive cells, we assign a
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Figure 4.1: Percentage of CAIX-positive pixels within three (a, b, and c) tumors
with fully sliced biopsies. Each (a, b, and c) panel is for one patient, five biopsies
per patient, and each point gives CAIX value within an individual slice. The slices
are shown in the sequence in which they were cut. Adapted from (Iakovlev et al.,
2007)
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Figure 4.2: The data generation protocol for the first data sets

uniform prior,

P (Y |I) =

 1, for 0 ≤ Y ≤ 1

0 otherwise
. (4.5)

The direct probability however is different than in the case of pO2 measurements.

The stained tumor slices are imaged by fluorescence using a TISSUEscope laser

scanning microscope (Iakovlev et al., 2007). A threshold for determining CAIX

positivity within a tumor slice is set by a pathologist (Dr. Vladimir Iakovlev). Thus,

there are occasions of over- and under-estimating the proportion of CAIX-positivite

cells. This inaccuracy (noise) can be assumed to follow a Gaussian distribution with

zero mean and s unknown standard deviations. The CAIX data within ith biopsy

is modeled as

D
(i)
j = Y + εj, (4.6)

where j = 1, 2, ..., n is the number of slices within a biopsy (i). Starting with the
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first biopsy, the likelihood function is given by

P (D(1)|Y, I) ∝
n∏

j=1

1√
2πs

exp

{
− 1

2s2
(D

(1)
j − Y )2

}
,

∝ 1

sn
exp

{
− 1

2s2

n∑
j=1

(D
(1)
j − Y )2

}
, (4.7)

assuming each slice is independent of one another, which is reasonable because the

slices were cut far enough from each other (Iakovlev et al., 2007). The reason why

the likelihood function takes this form is that, as was mentioned earlier, that the

noise follows a Gaussian distribution; hence, the probability of the noise ε
(i)
j is

P (ε
(1)
j |Y, I) =

1√
2πs

exp

{
− 1

2s2
(ε

(1)
j )2

}
,

=
1√
2πs

exp

{
− 1

2s2
(D

(1)
j − Y )2

}
, (4.8)

which is exactly Eq. 4.7. Assuming that the noise is independent among the slices,

the above equation simplifies to Eq. 4.7,

P (ε(1)|Y, I) ∝ 1

sn
exp

{
− 1

2s2

n∑
j=1

(D
(1)
j − Y )2

}
. (4.9)

The posterior probability density function (pdf) for the proportion of CAIX-

positive cells based on the first biopsy is given by a joint conditional probability

density P (Y, s|Dj, I) because s is also unknown. The presence of the nuisance

parameter s can be handled easily by marginalization, namely

P (Y |D(1), I) =

∫
R

P (Y, s|D(1), I)ds, (4.10)

where R is the range of s. The choice of R is not important in the case of a param-

eter estimation problem (however, it is crucial if we are doing a model selection).
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Applying Bayes’ theorem to the integrand of Eq. 4.10 we have

P (Y |D(1), I) =

∫
R

P (D(1)|Y, s, I) P (Y, s|I)ds,

=

∫
R

P (D(i)|Y, s, I) P (Y |s, I) P (s|I)ds. (4.11)

Now the first factor is given by Eq. 4.7 and in the second factor we may use Eq.

4.5, since by hypothesis P (Y |s, I) = P (Y |I). For the last factor in the integrand

we use Jeffrey’s prior,

P (s|I) =

 1
s

for 0 < s < ∞

0 otherwise
, (4.12)

because s is a scale parameter. Hence, the posterior pdf is (after integrating with

a change of variable t = 1
s
)

P (Y |D(1), I) =

∫
R

1

sn+1
exp

{
− 1

2s2

n∑
j=1

(D
(1)
j − Y )2

}
ds,

∝ 1(∑n
j=1(D

(1)
j − Y )2

)n
2

, (4.13)

which can be put in the form of a Student-t distribution (see Appendix B). The

best estimate of the proportion of CAIX-positive cells is obtained by maximizing

Eq. 4.13 and the uncertainty of the estimate is the full width at the half maximum

of the posterior pdf. For the cases where the posterior is unimodal and symmetric

with respect to the maximum, the best estimate of the proportion of CAIX-positive

cells within the tumor can be simply encapsulated in the form

Y = Ŷ ± σ, (4.14)

where, as usual, σ is proportional to the FWHM provided that the posterior pdf is

very well approximated by Gaussian density. However, as already mentioned, for

the cases where the posterior pdf is multimodal (patient 2148), the full posterior pdf
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Patient 2144 Patient 2148 Patient 2152

Biopsy Ŷ (%) σ (%) Ŷ (%) σ (%) Ŷ (%) σ (%)

1 8.2 0.6 2.3 0.3 4.5 0.6
2 9.5 0.6 2.9 0.6∗ 6.2 0.6
3 9.9 0.6 3.4 0.4 6.3 0.5
4 9.1 0.5 3.4 0.3 5.9 0.5
5 9.2 0.5 3.7 0.3 6.6 0.4

Table 4.5: Summary of the proportion of CAIX-positive staining from the first data
sets where the biopsies are fully-sectioned. The ∗ denotes cases where the posterior
pdf is not symmetric.

is the best way to present the inference about the proportion of CAIX-positive cells.

The inferences about the tumor hypoxia obtained from the first biopsy of the three

patients constituting the first data set are given by the first row of Tab. 4.5. Next,

we apply the same algorithm to the second biopsy. This time, however, we are not

completely ignorant about the value of our parameter Y , and so the uninformative

prior of Eq. 4.5 is no longer appropriate. In fact, since what we have learned about

Y from the first biopsy is given by Eq. 4.13, we use this posterior as the new

prior in Bayes’ theorem, and as a result we obtain the new posterior P (Y |D(2), I)

which incorporates information from both the first and the second biopsies. This

sequential analysis is repeated for the third, fourth, and fifth biopsies, and the final

posterior P (Y |D(5), I) will contain all the information that can be extracted from all

five biopsies (under the assumption of homogeneous distribution of hypoxia). The

results of the first data sets analysis are summarized in Tab. 4.5. For the biopsies

that are fully sectioned, we show the posterior probability density functions (pdfs)

in Fig. 4.3. As it is evident from Fig. 4.3 and Tab. 4.5, from the first data

set (patient 2144, 2148, and 2152) whose biopsies are fully sectioned, two biopsies

seem sufficient to learn about the oxygenation status in the whole tumor. The

importance of this result will be discussed in chapter six.

The second data set was generated by a different protocol (Iakovlev et al.,

2007). Shortly, two biopsies from each of the 24 patients are sectioned three levels:

the first and the second level are 250 µm apart and the third level is taken from

57



Figure 4.3: The posteriors of the first biopsy obtained from three patients of the
first data set
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Figure 4.4: The posteriors for each of the five biopsies (black dashed: first biopsy;
red dashed: second biopsy; blue dashed: third biopsy; green dashed: fourth biopsy;
bold solid: fifth biopsy)
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Figure 4.5: The data generation protocol for the second data sets

the opposite side of the biopsy (Fig. 4.5). CAIX content was also assessed as a

percentage of area positive for the protein within the tumor tissue. The Bayesian

analysis of this second data set proceeds in exactly the same manner as in the first

case. The difference, of course, is that we have only two biopsies per tumor; hence,

the knowledge we can infer from the data will be encapsulated by the posterior

P (Y |D(2), I), and the most plausible values of Y obtained are shown in Tab. 4.6.

Given the relatively large number of patients, we are not showing the graphs of

all posteriors, but only a few representative samples in Fig. 4.7. The top three

panels show typical examples of symmetric posteriors in which the contribution in

the increase of our knowledge from the second biopsy is either minimal or clearly

visible. Overall, 17 out of 24 cases have a similar behavior. The bottom two panels

of Fig. 4.7, however, show two of the several cases where the result or our inferences

cannot be summarized simply by the two number Ŷ and σ. Rather than illustrating

all the pdfs, we show a subset of the pdfs; some of the cases where two biopsies
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Biopsy 1 Biopsy 2

Patient Ŷ (%) Ŷ (%)

2142 9.3 ± 0.6 7.1 ± 0.4
2144 14.5 ± 0.3 14.6 ± 0.3
∗ 2149 13.3 ± 1.8 10.0 ± 1.4

215 6.1 ±0.8 6.6 ± 0.8
2152 8.6 ± 0.6 8.7 ± 0.6
2154 3.9 ± 0.7 4.1 ± 0.7
2156 2.6 ± 0.3 2.7 ± 0.3
2157 2.4 ± 0.5 2.8 ± 0.6
2161 17.3 ± 0.8 17.5 ± 0.8
2163 1.7 ± 0.2 1.7 ± 0.2
2165 0.41 ± 0.02 0.42 ± 0.02
2166 2.9 ± 0.2 3.0 ± 0.2
2167 1.0 ± 0.2 1.1 ± 0.2
∗ 2169 17.2 ± 2.6 5.7 ± 0.6
∗ 2170 9.4 ± 1.8 0.38 ± 0.1
2171 21.8 ± 0.7 8.8 ± 0.5
∗ 2172 35.8 ± 1.5 36.9 ± 1.3
2174 12.7 ± 0.4 12.9 ± 0.4
∗ 2175 27.8 ± 1.7 26.2 ± 1.5
2176 16.2 ± 0.5 15.9 ± 0.6
2177 0.49 ± 0.04 0.49 ± 0.04
2179 7.1 ± 2.0 6.4 ± 0.8
∗ 2180 51.8 ± 1.6 13.8 ± 1.4
∗ 2183 26.0 ± 1.3 28.7 ± 1.1

Table 4.6: Summary for the best estimate of the overall CAIX percentage within
a cervical carcinoma along with the reliability of the estimate based on three-level
sampling protocol. The ∗ denotes cases in which the inference Y = Ŷ ± σ is not
reliable.
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suffice and a couple of cases where two biopsies are not sufficient (Fig. 4.7).
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Figure 4.6: Examples of P (Y |D(2)) from the second data set which results in sym-
metric and unimodal pdf (thin dashed: first biopsy; solid: second biopsy).
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Figure 4.7: Examples of P (Y |D(2)) which results in bimodal or truncated pdf (thin
dashed: first biopsy; solid: second biopsy).
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4.4 Correlation and concordance

The next important step in tumor hypoxia research is to find out whether or not

the two tumor hypoxia quantifications tell the same story about hypoxia within

a tumor. In other words, we need to ascertain whether or not the indirect im-

munohistochemical assays of CAIX protein marker is correlated with the direct

pO2 measurements. This problem has been tackled by numerous researchers, but

so far no consensus has been reached.

Loncaster and her groups was the first to demonstrate that CAIX was correlated

with tumor oxygen measurements in cervical carcinomas, based on a prospective

study of 68 patients (Loncaster et al., 2001); however, other research groups were

not able to reproduce the conclusion. Some research groups (Hedley et al., 2003;

Mayer et al., 2005) showed that CAIX expression and tumor oxygenation status do

not correlate in cervical carcinomas. In addition to the heterogeneity of the tumors,

the statistical analyses performed by each research group might be different. This

provides challenges in order to confirm other studies.

A Bayesian approach to the problem does not require any ad-hoc procedures.

Assuming that both HP5 and CAIX staining measure the amount of hypoxia in a

tissue, we denote by X the former and by Y the latter. Next we introduce the joint

pdf P (X, Y |Dx, Dy, I), where Dx and Dy are the available data for HP5 and CAIX

respectively, and I is the background information. With this pdf the concept of

error-bar in the one-dimensional case can be easily extended by the introduction of

the variances of X and Y , namely

σ2
X =

∫ ∫
R

(X − X̂)2 P (X, Y |Dx, Dy, I)dXdY, (4.15)

σ2
Y =

∫ ∫
R

(Y − Ŷ )2 P (X, Y |Dx, Dy, I)dY dX, (4.16)

and the idea of variance can, in turn, be extended by introduction of the covariance,

σ2
XY =

∫ ∫
R

(X − X̂)(Y − Ŷ ) P (X, Y |Dx, Dy, I)dXdY, (4.17)
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Figure 4.8: A scatter-plot for the HP5 versus CAIX in 21 patients

where R is the range of X and Y and X̂ and Ŷ are the best estimates of the hypoxic

proportion by HP5 and the CAIX-positive cells respectively. If this were applied to

the two hypoxia measurements of each patient, we would get σ2
XY = 0. This is due

to the fact that the joint posterior pdf, P (X, Y |Dx, Dy, I) factors into the separate

pdf for X and Y , since the two hypoxia measurements are independent.

In other words, we would be asking the wrong question. A more appropriate

question is to ask whether a scatter-plot of X and Y for all patients shows any

correlation. In Fig. 4.8, we display the best estimate of the percentage of CAIX-

positive staining against the best estimate of the HP5. The error bars are neglected

for a reason that will be explained later on. Having pooled all the data from 21

patients, we would like to observe the correlation between the HP5 and the CAIX.

We can then fit an ellipse on the data and then investigate whether the major axis

of the ellipse has a positive or negative slope (Sivia, 2006). To begin with, we use
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the general equation of a conic,

aX2 + bXY + cY 2 + dX + eY + f = 0. (4.18)

If the discriminant,

• b2 − 4ac < 0, we have an ellipse, or circle;

• b2 − 4ac = 0, we have a parabola;

• b2 − 4ac > 0, we have a hyperbola.

Furthermore, one may rewrite Eq. 4.18 in the following way:

xT AQ x = 0, (4.19)

where xT = (x y 1) and

AQ =


a b/2 d/2

b/2 c e/2

d/2 e/2 f

 ; (4.20)

the subscript Q stands for quadratic.

We can proceed with the similar procedures as in the case of parameter estima-

tion (Section 3.1). We can model the data Xi in general as

X2
i = [AY 2

i + BXiYi + CXi + DYi + E] + εi, i = 1, 2, ..., 21 (4.21)

where εi is the noise. Eq. 4.21 is related to Eq. 4.18: a = 1, A = −c, B = −b,

C = −d, D = −e, and E = −f . As it was explained earlier, assuming the noise

has an unknown second moment and using uninformative prior for the parameters

but Jeffrey’s prior for the standard deviation of the noise, we have the following
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Figure 4.9: Ellipse-fitting to the data

posterior pdf,

P ({A, ..., E}|D, I) ∝ 1[∑21
i=1 (X2

i − {AY 2
i + BXiYi + CXi + DYi + E})2

] 21
2

.

(4.22)

Using the optimization technique explained in Section 3.1, we can obtain the most

plausible value for each estimate. Fig. 4.9 illustrates the fitting according to our

proposed model. Having obtained the most plausible values for each parameter, we

can write the matrix representation of the conic section,

AQ =


1 −0.22 0.037

−0.22 0.59 −0.11

0.037 −0.11 −0.068

 . (4.23)

In order to analyze the nature of the ellipse, we can investigate the first minor of
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Figure 4.10: Ellipse-fitting to the data with log(CAIX)

AQ:

A1 =

 1 −0.22

−0.22 0.59

 . (4.24)

The principal axes of the ellipse can be determined from the eigenvectors of A1. Fur-

thermore, the inverse of A1 is related to the covariance matrix, whose off-diagonal

entries indicate the correlation coefficient between X and Y (Sivia, 2006). From

these pooled data, we have a correlation coefficient of 0.40, which is similar to the

result obtained by the PMH group (Iakovlev et al., 2007).

For better visualization purposes, one can transform the CAIX values into their

logarithm space and then proceed with the similar conical fitting. In doing so, we

obtain Fig. 4.10 and a slightly stronger correlation coefficient of 0.47. One has to

keep in mind that the axes in Fig. 4.10 are not in the same scale.

Let us refer back to the statement that “the error-bars on each datum can be

neglected”. Had we included the error-bars on each datum, we would have had a
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very much smaller ellipse, whose axes are perpendicular, around each datum. One

of the possible approaches is then to perform a convolution between each small

ellipse and a much larger one encompassing all the data. Nonetheless, we realize

that a convolution between two functions, one of which is much larger than the

other, would only give us the larger function (Gregory, 2005). Our conclusion

would not have changed, had we included the added complexity of the error-bars

around each datum.

In addition to correlation statistic, many medical researchers have used a concor-

dance statistic to measure the degree of agreements between two raters (Feinstein,

2002). This technique can be implemented in tumor hypoxia research. We begin

by setting a threshold for which the tumor is classified as hypoxic. For example,

according to the PMH group a reasonable choice is ≥ 8% for the CAIX measure-

ment and ≥ 50% for the HP5. Given this much, we can proceed with our Bayesian

approach as follows. Let H ∈ [0, 1] denote the concordance measure. If H = 0,

then the two techniques are in perfect discordance; whereas, if H = 1, then the two

techniques are in perfect concordance. Thus, by the application of Bayes’ theorem,

we have

P (H|{data}, I) ∝ P ({data}|H, I)× P (H|I), (4.25)

where I denotes our background information, for instance, the assumption of ho-

mogeneous tumor can be included in I. Since we have no additional information

for the concordance, we use the uniform prior probability for H,

P (H|I) =

 1, for 0 ≤ H ≤ 1

0 otherwise.
(4.26)

The direct probability of obtaining the data ‘r agreements; i.e., both analyses in-

dicate hypoxic tissue (when the CAIX percentage is ≥ 8% and the HP5 is ≥ 50%)

and non-hypoxic tissue (when the CAIX percentage is < 8% and the HP5 is < 50%)
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Figure 4.11: The posterior pdfs for the concordance between the estimate of the
proportion of CAIX-positive cells and the HP5 in 21 patients.

in N patients’ follows a binomial distribution:

P ({data}|H, I) ∝ Hr (1−H)N−r. (4.27)

Finally, substituting Eg. 4.26 and 4.27 into the Bayes’ theorem (Eq. 4.25) gives

us a posterior probability density function (pdf) for the concordance and the best

estimate of the concordance,

H = 0.67± 0.10. (4.28)

Thus, our updated state-of-knowledge about this type of concordance between the

CAIX immunohistochemical analysis and the direct pO2 measurements in quan-

tifying tumor hypoxia is depicted in Fig. 4.11. Of course, if the thresholds are

chosen differently, then this estimate will change. Nonetheless, this definition of
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concordance appears to be quite useful in a medical setting.
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Chapter 5

Data analysis of phase II clinical

trials of relapsed ovarian cancers

Before we proceed with the analysis, it is useful to provide some background knowl-

edge for this clinical study. We will begin with a brief overview of clinical trials and

ovarian cancers. For readers who are familiar with these concepts, the next two

sections may be skipped and proceed directly to the third section of this chapter.

5.1 A brief review of clinical trials

According to some scholars, the origin of clinical trials dates as early as the year

980 when Avicenna, an Arabian physician and philosopher, proposed some rules to

evaluate the effects of drugs on diseases. In his Canon of Medicine, he suggested

that

“a remedy should be used in its natural state, with uncomplicated dis-
ease, and should be observed in two ‘contrary type of disease’ ... the
time of action and reproducibility of the treatment effect should be
studied” (Meinert, 1986)

The formal definition and constitution of a clinical trial however have not been pro-

posed until centuries later. There are several definitions of a clinical trial; however,
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Everitt and Pickles (Everitt and Pickles, 2004) define a clinical trial as

“any form of planned experiment designed to assess the most appro-
priate treatment of patients with a particular medical condition, where
the outcome in a group of patients treated with the test treatment are
compared with those observed in a similar group of patients receiving
control treatment, and patients in both groups are enrolled, treated,
and followed over the same period.”

Consequently, studies involving animals or carried out in vitro using human biolog-

ical substances cannot be regarded as clinical trials. The first recorded clinical trial

was conducted by James Lind in 1747 while at sea on board the Salisbury. For the

full historical account of clinical trials, interested readers are directed to (Meinert,

1986). Tab. 1.1 of (Everitt and Pickles, 2004) briefly summarizes historical events

in the development of clinical trials.

Early clinical trials allocated their patients into test and control groups (also

known as treatment arms) in an arbitrary and non-systematic scheme. Fisher then

introduced the concept of randomization in clinical trials and the first properly

randomized group was for the clinical trial of streptomycin in the treatment of

pulmonary tubercolosis (Everitt and Pickles, 2004). Since then randomized clin-

ical trials have become a standard procedure in the evaluation of new drugs or

treatments. The justification for randomized clinical trials is that “[They] nicely

illustrate the desire of modern democratic society to justify [their] medical choices

on the basis of the objectivity inherent in statistical and quantitative data” (Everitt

and Pickles, 2004).

Randomization is regarded as the primary requirement in any acceptable clinical

trial. Another necessary requirement for an acceptable clinical trial is blinding. The

fundamental idea of blinding is that trial participants, physicians, and those who

are involved with their management and data collection, shall not be influenced by

knowledge of the assigned treatment. Blinding is a way to minimize the possibility

of bias (Everitt and Pickles, 2004). There are two types of blinding processes:
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1. Single-blinding, in which only the patients who are unaware of which treat-
ment(s) they are receiving;

2. Double-blinding, when both the patients and the investigators are unaware
of the patients’ treatment(s).

The most common design for a clinical trial is the fixed sample size parallel

groups design with random allocation of patients to treatment(s). This design is

easy to implement; however, a large number of patients are needed to estimate

reliably the magnitude of any treatment difference. We shall keep in mind that the

clinical trial design has been formulated under the frequentist methodology; as a

result, a large number of sample size is necessary to minimize the effect of ‘chance’.

In the parallel group design, each clinical trial group is administered one treatment.

A modification of the parallel group design is the cross-over design, in which each

patient receives two treatments; for example, in the 2 × 2 cross-over design, one

group receives two treatments in the order AB and the other group receives in the

order BA, with patients randomly allocated to the two groups (Senn, 1993). The

second treatment must be administered once the effect of the first treatment has

disappeared. This requirement can be difficult to satisfy; hence, a cross-over design

is rarely used. A more general clinical trial design is the factorial design, proposed

by the late David Byar in 1992. He stated that “such designs may offer impressive

gains in efficiency compared with series of trials studying one treatment at a time.

This is especially true when treatements do not interact with one another” (Byar

et al., 1993). In a factorial design, several treatments are considered at the same

time. The number of clinical trial groups (treatment arms) is 2n, where n is the

number of test treatments. Lubsen and Pocock conducted a clinical trial with a

factorial design for three test treatments, ISIS-4 trial, whose protocol is summarized

as follows:

“Patients were simultaneously randomized to each of the three active
treatments or their respective controls (captopril or its placebo, monon-
itrate or its placebo, magnesium or no magnesium) in ... a complete
2 × 2 × 2 factorial (sometimes called a three-way factorial). Note that
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there are, clinically speaking 2× 2× 2 = 8 treatment groups: captopril
plus mononitrate plus magnesium, captopril plus mononitrate, captopril
plus magnesium, mononitrate plus magnesium, captopril alone, monon-
itrate alone, magnesium alone, and none of these (placebo).” (Lubsen
and Pocock, 1994)

Those three clinical trial designs are the ones commonly conducted; randomization

and blinding can easily be implemented in those designs as long as no surgery is

involved. There are however other clinical trial designs such as open design and

orphan design, for which randomization and blinding cannot be guaranteed. The

open design is usually for any clinical trial involving a surgical procedure; whereas,

the orphan design is conducted for testing drugs or treatments to treat diseases

affecting fewer than 200,000 peoples worldwide or rare genetic diseases (Health,

2000). Due to the small sample size, randomization is difficult for this case.

Whichever clinical trial the design investigators choose, it has four well-known

phases (Everitt and Pickles, 2004):

1. Phase I: Clinical pharmacology and toxicity;

2. Phase II: Initial clinical investigation for treatment effect;

3. Phase III: Full-scale evaluation of treatment; and

4. Phase IV: Post-marketing surveillance.

The first phase of clinical trials deal primarily with drug safety and toxicity. One

of the objectives is to determine the maximum tolerated dose (MTD), obtained

from dose-escalation experiments. Additionally, investigators also conduct studies

of drug metabolism and bioavailability. Typically, this phase consists of about 20 -

80 participants who are in a healthy condition. The second phase of clinical trials

continues to monitor the safety of the drugs or treatments and their effectiveness

in a larger sample size (typically about 100 - 200 patients). In this phase, drugs

or treatments are screened; those which are effective are selected to proceed to the

next phase. The primary objectives in the phase II of clinical trials are to

• identify the group of patients that can benefit from the drug or treatment
and to
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• verify and estimate the effectiveness of the drug dosage determined in the
previous phase (Everitt and Pickles, 2004).

The third phase of clinical trials is the one which is usually made public. This

phase consists of a substantial number of patients (usually greater than 200 pa-

tients from various hospitals) and it is the most expensive phase of clinical trials.

In this phase, a new drug or treatment is evaluated against the current standard

treatment(s). Under the standard clinical trial protocol, investigators cannot mod-

ify the clinical trial once it has already begun this phase. It has to continue until

the prescribed endpoint is reached. The reason for this stiffness in clinical trials is

to ensure that randomization and blinding processes are preserved for quantitative

analysis purposes. Once the phase III is completed, the drug or treatment is deter-

mined whether or not it can be marketed. If so, the final phase of clinical trials is

to closely monitor the patients using the drug or treatment for any possible adverse

effects. Further research may still be required to study the long-term morbidity or

mortality caused by the new drug or treatment.

5.2 A brief introduction to ovarian cancer

According to the National Cancer Institute (NCI, 2009), ovarian cancer is defined

as

“cancer that forms in tissues of the ovary (one of a pair of female re-
productive glands in which the ova, or eggs, are formed). Most ovarian
cancers are either ovarian epithelial carcinomas (cancer that begins in
the cells on the surface of the ovary) or malignant germ cell tumors
(cancer that begins in egg cells).”

The estimated new cases and deaths from ovarian cancer in Canada in 2008 were

2,500 and 1,700 respectively (CCS, 2009) and in the United States for the same

year, the estimated new cases and deaths were 21,650 and 15,520 respectively.
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The typical treatment for ovarian cancer includes surgery, chemotherapy, radi-

ation therapy, immunotherapy, or combination of therapies. The current first-line

treatment for patients with ovarian cancer is a combination of carboplatin and pa-

clitaxel. Unfortunately, despite advances in therapy, ovarian cancer still remains

one of the deadliest gynecological cancers. Here is a statistical summary for ovarian

cancers:

“Less than 30% of women with advanced stage disease survive long-
term. When diagnosed in stage I, 90% of patients can be cured with
conventional surgery and chemotherapy. At present, only 25% of ovar-
ian cancers are detected in stage I due, in part, to the absence of specific
symptoms and to lack of an effective screening strategy” (Badgwell and
Bast, 2007) [and] ... 70% of stage IIA (metastases to the uterus or Fal-
lopian tubes) tumors are curable if detected, 70% of women who are di-
agnosed with stage III and IV tumors have widespread intra-abdominal
disease or distant metastases at diagnosis. For these patients, the cure
rate plummets to < 30%. ... Ovarian cancer has an overall cure rate of
approximately 45%, a relatively discouraging prognosis” (Rustin et al.,
2004).

Despite conventional treatments, the mortality rate remains greater than 50% of

the diagnosed patients and 80% of the patients will relapse (Rustin et al., 2004).

Recent breakthrough in biomedical research have resulted in the development of

numerous molecularly-targeted agents that inhibit signal transduction, angiogen-

esis, and other cellular pathways. Some of these agents, such as bevacizumab,

trastuzumab (Herceptin) or Gleevec, are undergoing clinical trials in the hope of

continuing to improve the treatment of ovarian cancers.

In addition to advances in cancer treatments, it is evident from the statistics

that early detection of ovarian cancers is crucial. Currently, there is no single

effective early diagnostic tool for ovarian cancers. The most commonly reported

symptoms prior to ovarian cancer diagnosis are “abdominal or pelvic pain, bloating,

gastrointestinal distress, and abdominal swelling” (Smith et al., 2005), which can

be symptoms for other diseases; hence, misdiagnosis or late diagnosis often occurs

in ovarian cancer patients.
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The most direct detection tool for early diagnosis is transvaginal sonography

(TVS), but TVS alone is incapable to detect ovarian cancer effectively; some tu-

mor locations prohibit the use of such imaging techniques. Additionally, obtaining

high resolution biological images is still expensive and an active area of research.

Furthermore, one may not be able to distinguish whether tumor masses are benign

or malignant solely from their images.

One can determine the characteristic of tumor masses by performing biomarker

assays, identifying certain proteins common in cancer cells. Cancer antigen 125

(CA-125), “a heavily glycosylated high-molecular-weight mucin (MUC 16)” (O’Brien

et al., 1991; Yin et al., 2002), has been widely used as a serum marker for ovarian

cancers. Unlike CAIX, which is a protein present in the extracellular cell mem-

brane, CA-125 is a larger protein that can be easily separated from blood plasma.

The discovery of CA-125 serum has been promising and many have been convinced

that it is one of the best early indicators for ovarian cancers because

“CA-125 levels are elevated in 50 − 60% of patients with early stage
ovarian cancer and in 90% of patients diagnosed with late stage ovarian
cancer (Bast et al., 2005). Overall, significant expression of CA-125 is
observed in 80% of ovarian cancers at a tissue level” (Rosen et al., 2005).

The interpretation of serum marker analysis depends heavily on statistical method-

ologies for the analysis of serum marker data. Two important and commonly used

measures in the studies of reliability of diagnostic tools are sensitivity and speci-

ficity. Sensitivity measures the proportion of actual positives correctly identified as

positives (true positive). Specificity measures the proportion of negatives correctly

identified (true negative). These two measures (Tab. 5.1) are closely related to the

concepts of type I (α) and type II (β) errors in orthodox statistics (Armitage et al.,

2002),

sensitivity =
number of true positive

number of true positive + number of false negative
,

specificity =
number of true negative

number of true negative + number of false positive
, (5.1)
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Test
True + -
+ 1− β (sensitivity) β
- α 1− α (specificity)
↓ ↓ positive predictive value ↓ negative predictive value

Table 5.1: The binary classification for diagnostic tests

In addition to sensitivity and specificity, positive predictive value is also a com-

monly used measure in diagnostic studies; it measures the proportion of true posi-

tives,

PPV =
number of true positive

number of true positive + number of false positive
. (5.2)

Thus, a reliable diagnostic tool shall have a high sensitivity, specificity and in turn,

a high positive predictive value.

In order to be a reliable diagnostic tool, CA-125 has to satisfy the above re-

quirements: high sensitivity, high specificity, and high positive predictive value. For

general population of women (pre-menopausal and post-menopausal), CA-125 has

limited sensitivity; moreover, individual values of CA-125 are not sufficiently spe-

cific for early detection of ovarian cancers (Badgwell and Bast, 2007). CA-125 level

is elevated in response to any irritation of the surfaces of body cavity, the peritoneal

cavity, and the pleural cavity. Elevation of CA-125 level may also be caused by other

non-malignant diseases such as cirrhosis of the liver, pneumonia, and heart failure.

A variety of benign conditions including menstruation, first trimester of pregnancy,

and endometriosis can increase CA-125 level. All of these provide challenges for

using CA-125 as an early diagnostic tool for ovarian cancers. To enhance both sensi-

tivity and specificity of CA-125, many have studied and performed clinical trials on

the combination of CA-125 assay and transvaginal sonography (TVS) concurrently

and sequentially. The Prostate, Lung, Colon, and Ovary (PLCO) Screening Trial

has conducted ovarian cancer screening clinical trial for post-menopausal women

between 55 and 74 years of age: 37,000 patients randomized to the screening group

of the trial and another 37,000 patients participating as non-screened controls (Bast
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et al., 2005; Hayes et al., 2000). The preliminary report of this study suggested

a combined positive predictive value (PPV) of TVS and CA-125 was 23.5%; as

opposed to individual PPV of 1% and 3.7% for TVS and CA-125 respectively.

In an effort to improve sensitivity and specificity of early diagnostic tools for

ovarian cancers, many have also considered the use of multiple serum biomarkers.

There have been many novel biomarkers discovered for the past decade. Badgewell

and Bast provide a clear and brief summary for the commonly used and recently

discovered biomarkers for ovarian cancers (Badgwell and Bast, 2007). To name a

few of those: mesothelin, a protein attached to the cell surface thought to have a

role in cell adhesion and possibly in cell-to-cell recognition and signalling; kallikrein,

enzyme that has peptide bond in protein; osteopontin, a glycoprotein responsible

for cell attachment and wound healing; vascular endothelial growth factor (VEGF),

sub-family of growth factors which is important in angiogenesis; interleukin, a group

of signalling molecules crucial in immune system, and many others. While advances

in biomedical research lead to the discovery of many novel biomarkers, the cost of

administering them in patients is still very high. Consequently, CA-125 is still

actively used as a serum marker for ovarian cancers despite its relatively low speci-

ficity.

In the next section, we illustrate how Bayesian methods contribute to analyze

the study of phase II clinical trials of relapsed ovarian cancer patients involving

molecularly-targeted agents (MTAs) conducted by the Princess Margaret Hospital.

5.3 Clinical trials’ data classifications

We have clinical trials’ data from four phase II relapsed ovarian cancer clinical trials

involving molecularly-targeted agents (MTAs). Each clinical trial consists of eligible

eighteen to sixty-five patients. For each clinical trial group, one or a combination of

MTAs is administered (Welsch, Wang, Gunawan, Mackay, Nathwani, Yau, Tsang,

MacAlpine, Sivaloganathan, and Oza, Welsch et al.). The level of CA-125 serum

81



marker is monitored regularly according to the Gynocologic Cancer InterGroup

(GCIG) guidelines for a relapsed clinical trial. In a relapsed clinical trial, a patient

is classified to have a response according to a CA-125 serum level if there is “at

least a 50% reduction in CA-125 levels from a pretreatment sample and the response

must be confirmed and maintained for at least 28 days” (GCIG, 2009).

Additionally, the longest diameter of the tumor is regularly monitored during

each follow-up according to the Response Criteria in Solid Tumors (RECIST) guide-

lines. Without going into details, we summarize some of the important concepts.

First, the eligibility criteria for clinical trials’ patients are described in the following

(RECIST, 2009):

• Only patients with measurable disease at baseline (course index 0) should be
included in protocols. Measurable disease means that there is at least one
measurable lesion;

• all measurements should be taken and recorded in metric notation. All base-
line evaluations should be performed as closely as possible to the beginning
of treatment and never more than 4 weeks prior to the treatment;

• the same method of assessment and the same technique must be used at
baseline and during follow-up; and finally,

• tumor markers alone cannot be used to assess response. If markers are initially
above the upper normal limit, they must [be in a normal range] for a patient to
be considered in complete clinical response when all lesions have disappeared.

The baseline documentation of “target” lesions shall be performed on lesions with

the longest diameter (LD) and lesions which are suitable for accurate repeated

measurements. The baseline LD is used as reference to characterize the objective

tumor. The eligible clinical trials’ patients are classified in the following way:

• Complete Response (CR): disappearance of all target lesions

• Partial Response (PR): At least 30% decrease in the sum of the LD of
target lesions, taking as reference the baseline sum LD

• Progressive Disease (PD): At least 20% increase in the sum of LD of
target lesions, taking as reference the smallest sum LD recorded since the
treatment started or the appearance of one or more new lesions
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• Stable Disease (SD): Neither sufficient shrinkage to qualify for PR nor
sufficient increase to qualify for PD, taking as reference the smallest sum LD
since the treatment started.

Note that to be assigned a status of PR or CR, changes in tumor measurements

must be confirmed by repeat assessments that should be performed no less than

4 weeks after the criteria for response are first met. In the case of SD, follow-up

measurements must have met the SD criteria at least once after study entry at a

minimum interval (in general, not less than 6-8 weeks) that is defined in the study

protocol.

Each eligible patient is classified either ‘responsive’ or ‘non-responsive’ according

to CA-125 serum level and the RECIST criteria (only CR and PR are classified

as ‘responsive’). Tab. 5.2 on the next page summarizes the clinical trial responses

as assessed by the PMH group (Welsch, Wang, Gunawan, Mackay, Nathwani, Yau,

Tsang, MacAlpine, Sivaloganathan, and Oza, Welsch et al.). These are the data

which we shall use in our Bayesian analysis.
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5.4 Concordance analysis

The purpose of this section is to analyze whether or not CA-125 responses are

in concordance with the objective tumor measurements of the longest diameter

in four clinical trial groups. The two classifications are in concordance if CA-

125 serum level indicates ‘response’ and the RECIST criteria based on the longest

diameter indicate ‘complete response (CR)’ or ‘partial response (PR)’. Thus, the

concordance we are talking about here is not the straight-forward measure given

by the covariance of the two parameters (which involves the entire data set), but

rather, it is what we called “medical concordance” in the last section of chapter

four, namely the one which only uses the subset of the data satisfying prescribed

“thresholds”.

As we did in the case of CAIX staining and the direct pO2 measurements,

we hypothesize that the plausibility that the concordance between the RECIST

response and the CA-125 response is quantified by H ∈ [0, 1]. If H = 0, then both

CA-125 and the objective tumor measure are in perfect discordance; whereas, if

H = 1, then they are in perfect concordance. As usual, by the application of the

Bayes’ theorem, we have

P (H|{data}, I) ∝ P ({data}|H, I) P (H|I), (5.3)

where I denotes our background information, for instance, the two responses (CA-

125 and RECIST) are independent of each other and the outcome of one patient

shall not influence that of another. The direct probability of obtaining the data ‘r

agreements; i.e., both criteria indicate response due to the administered MTA(s) in

a clinical trial group of a size N ’ follows a binomial distribution:

P ({data}|H, I) ∝ Hr (1−H)N−r. (5.4)

When we have no prior knowledge about the concordance, we may use the
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uniform prior probability for H. For illustration purpose, we also include two other

prior probabilities: One prior is peaked at H = 0.5, reflecting an approximately

50% concordance, and the other alternative prior is sharply peaked at H = 0 and

H = 1, indicating that our inference about the concordance is heavily biased toward

the ends (Fig. 5.1). Next we must assign the prior P (H|I). We have discussed at

Figure 5.1: Various prior probability assignments: Uniform prior (solid), unimodal
prior at H = 0.5 (dashed), and biased prior toward the ends (dotted)

length the importance of this assignment in the first three chapters of this Thesis.

However, some readers interested in this problem might not have the time, or the

desire, to do that extra reading; consequently, we will briefly review here the effect

of different priors for the present problem.

Consider first the case where we have no information prior to seeing the data

of Tab. 5.2. Then the most honest way of describing our ignorance is to assign

a uniform prior, i.e, to set P (H|I) = constant. Graphically, this distribution is

shown in Fig. 5.1 by the horizontal solid line for the case constant = 1. Next,
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we consider the case where we do have information about the values of H. For

illustration purposes, Fig. 5.1 shows two distributions for P (H|I): A Gaussian

distribution peaked at H = 0.5 (dashed line), and a biased distribution showing

great preference for the values H = 0 and H = 1 (dotted line).

We are now ready to apply the Bayesian parameter estimation algorithm with

these three priors to the data of Tab. 5.2, starting with group 19 (the leftmost table

of the figure). The number 19 is just the first two digits of the code in the first

column, and the groups representing the other three clinical trials will be identified

in the same manner.

As we did before, we will apply the sequential procedure; that is, after the

assigned priors and the likelihood function, Eq. 5.4, are used in Bayes’ theorem

Eq. 5.3 we get the posterior pdf, and this will now be used as the prior for the

second case of group 19, and so on. The evolutions of the posteriors as more data

are used shown in Fig 5.2, and the final posterior pdf’s are reproduced in the top

left panel of Fig. 5.3. The other three panels in this figure represent the final

posterior pdf’s for group 25, 37, and 41.

As it is evident in Fig. 5.2, the uniform (flat) prior and the biased priors adjust

quickly once a concordance and a discordance have been observed; these two priors

encode a large degree of ignorance about the nature of the concordance between

the two classifications. In contrast, the second prior assignment (a unimodal prior

or Gaussian prior peaked at H = 0.5) claims to be quite well-informed about the

nature of the concordance between the two classifications. As Sivia mentioned in

(Sivia, 2006), this is a ‘fair-minded’ prior; hence, it takes much more to be convinced

that the nature of the concordance is not fair compared to ignorant priors.

The biased prior yields a bimodal probability density function (Tab. 5.3); nev-

ertheless, one of the modes is much smaller than the other (at least a factor 1,000).

The bimodality of the resulting pdf can be explained in the following way: Initially,

the biased prior gives a high preference to perfect concordance and perfect discor-

dance respectively. As more concordances accumulate from the data, the biased
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Figure 5.3: The posterior probability density function for group 19 and 25 respec-
tively, as a result of different prior assignments.
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Figure 5.4: The posterior probability density function for group 37 and 41, respec-
tively, as a result of different prior assignments.
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Group Huniform Hgaussian Hbiased

19 0.92± 0.07 0.65± 0.09 0.97 ± 0.03 and 0.30± 0.05
25 0.63± 0.09 0.57± 0.07 0.79 ± 0.05 and 0.31± 0.05
37 0.67± 0.09 0.59± 0.07 0.80 ± 0.05 and 0.33± 0.05
41 1 0.65± 0.09 1 and 0.28± 0.06

Table 5.3: Summary for the best estimate of the concordances as a result of various
priors. The bold fonts denote the ones with higher probability.

prior becomes more convinced that the concordance is more preferred, pulling away

from discordance. With the uniform prior, however, we are open-minded about the

nature of the concordance; as a result, our inference about the concordance be-

tween the two classifications is not as extreme as the biased prior. In group 41, the

data show no discordance between the two classifications; that is why, the uniform

prior and the biased prior have a maximum value of probability at H = 1. The

fair-minded prior however only shifts a little to the right. Since we only have ten

eligible patients in this group, they are not large enough to significantly convince

this fair-minded prior.

The three cases above are just examples of the dependence of the posterior pdf

from the assigned prior. In the actual case, our collaborators from PMH made

available to us data from earlier clinical trials conducted in other institutions under

similar procedures and MTAs. So we were able to repeat the previous analysis for

this set of data before looking at the PMH data. Thus, we were not ignorant about

the concordance parameter, and it was possible for us to use this information and

use this pdf as the prior for the analysis of the PMH data.

With the informative prior probability assignment, our inference about the con-

cordance in each group, based on the current clinical trials changes accordingly.

Unlike in the previous cases when we do not have any information prior to observ-

ing the clinical trials’ data, informative prior assignment means that we have some

knowledge about the concordance before looking at the current data. The results of

the concordance are tabulated in Tab. 5.4 and the final posterior pdfs are displayed

in Fig. 5.6.
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Figure 5.5: The posterior probability density function for group 19 and 25 respec-
tively, as a result of informative prior assignment from past experiments.

92



Figure 5.6: The posterior probability density function for group 37 and 41, respec-
tively, as a result of informative prior assignment from past experiments.
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Group H

19 0.84± 0.05
25 0.73± 0.06
37 0.76± 0.06
41 0.86± 0.05

Table 5.4: The inferences about the concordance with informative prior from pre-
vious experiments.

5.5 A survival analysis for SD classified patients

According to the standard clinical trial’s paradigm for a relapsed study (RECIST),

SD classified patients are considered ‘non-responsive’. Many oncologists and clini-

cians have hypothesized that the administered MTA(s) may have a cytostatic effect

rather than a cytotoxic one; as a result, the effect of the MTA(s) may not be as obvi-

ous as eradicating a large number of tumor cells. In this section, we want to analyze

further on the importance of patients classified as ‘stable disease’ (SD). In order to

validate the hypothesis, we dichotomize all SD patients into two groups: CA-125

responders (19 patients) and CA-125 non-responders (49 patients). A common ap-

proach used in the statistical community is computing the survival probability in

each group of patients using the Kaplan-Meier estimates.

The Kaplan-Meier statistic is a function used to define a survival probability

for a period of time. Specific to the Kaplan-Meier statistic is that the intervals are

defined by the observed events (in our case, when death occurs); a new interval

would be demarcated each time a mortality occurs.The Kaplan-Meier statistic is a

generalization of the fixed time interval method, which is also known as Berkson-

Gage method (Feinstein, 2002). Tab. 5.5 and 5.6 summarize the Kaplan-Meier

estimates for each of the two groups of SD patients. Fig. 5.7 is a common feature

for illustrating the survival probabilities in CA-125 responders and CA-125 non-

responders. Based on Fig. 5.7, it is evident that CA-125 responders (the blue line)

have a survival advantage compared to CA-125 non-responders. This lends the

support that the administered MTAs have a cytostatic effect rather than cytotoxic

94



Cumulative Time of
survival rate death(s) Number Interval Censored

Number before that end(s) alive before Number survival before
of interval death(s) interval death(s) of deaths rate next death

(month)
1 1 8 19 1 0.9474 4
2 0.9474 9 14 1 0.9286 0
3 0.8798 10 13 1 0.9231 0
4 0.8121 11 12 1 0.9167 0
5 0.7445 13 11 1 0.9091 2
6 0.6768 14 8 2 0.7500 0
7 0.5076 15 6 1 0.8333 0
8 0.4213 17 5 1 0.8000 0
9 0.3371 18 4 1 0.7500 0
10 0.2528 21 3 1 0.6667 1
11 0.1685 27 1 0 1 0

Table 5.5: The Kaplan-Meier survival rates for CA-125 responders

one.
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Cumulative Time of
survival rate death(s) Number Interval Censored

Number before that end(s) alive before Number survival before
of interval death(s) interval death(s) of deaths rate next death

(month)
1 1 3 44 2 0.9545 9
2 0.9545 4 33 2 0.9394 3
3 0.8967 5 28 5 0.8214 1
4 0.7365 6 22 1 0.9545 1
5 0.7030 7 20 1 0.9500 0
6 0.6679 19 2 2 0.8950 1
7 0.5978 9 16 1 0.9375 0
8 0.5604 10 15 2 0.8667 1
9 0.4857 11 12 1 0.9167 0
10 0.4552 12 11 1 0.9091 0
11 0.4047 13 10 1 0.9000 1
12 0.3642 14 8 1 0.8750 1
13 0.3187 15 6 2 0.6667 0
14 0.2125 16 4 1 0.7500 0
15 0.1594 20 3 1 0.6667 1
16 0.1063 24 1 1 0.9583 0

Table 5.6: The Kaplan-Meier survival rates for CA-125 non-responders
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Figure 5.7: The survival rates for SD classified patients
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Chapter 6

Discussion and conclusion

Data analysis is a crucial component of Science and Engineering, but the collection

of reliable data is in turn importantly dependent on advanced technology. That is,

perhaps, the main reason why for several millennia, Medicine has been considered

more of an art than a science. In the last century, however, advances in technol-

ogy have resulted in quite sophisticated instruments which have allowed medical

researchers to collect reams of data in all areas of medicine. Two examples of such

instruments, important in the area of oncology, are the Eppendorf polarographic

electrode and the CAIX immunohistochemical assay, which are used in the assess-

ment of hypoxia levels in tumors as explained in chapter four.

The second aspect of data analysis has to do with the methods used, which

are necessarily highly mathematical. This has traditionally represented an obstacle

for medical researchers who have only a passing knowledge of higher mathematics.

The standard solution of the conundrum is for the doctor to pass on the data set

to the statistician, who does the actual analysis and passes on the results back to

the doctor. Although this “team-work” is a practical necessity, given the extremely

complicated systems one deals with in biological settings, it is also fraught with

danger for two reasons. On the one hand, the statistician (usually a conventional

one) may not be knowledgeable enough to appreciate the medical background, and

on the other, the doctor may misinterpret the statistical results and make clinical
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decisions that may be harmful to the patient.

The danger of misinterpretation is pointed out with force by Steven Goodman

when doctors have to deal with a P-value:

“In my experience teaching many academic physicians, when physicians
are presented with a single-sentence summary of a study that produced
a surprising result with P=0.05, the overwhelming majority will con-
fidently state that there is a 95% or greater chance that the null hy-
pothesis is incorrect. This is an understandable but categorically wrong
interpretation because P-value is calculated on the assumption that the
null hypothesis is correct. It cannot, therefore, be a direct measure of
the probability that the null hypothesis is false.” (Goodman, 1999)

This logical error reinforces the mistaken belief that the data alone can tell us the

probability that a hypothesis is true. In other words, this type of interpretation

of a P-value is an attempt to make inferences from the data without using Bayes’

theorem, because the latter requires the use of a prior probability as we already

saw in chapter one of this Thesis. Numerous authors have tried to correct this mis-

understanding (Browner and Newman, 1987; Diamond and Forrester, 1983; Lilford

and Braunholtz, 1996) but the error is still widespread in the medical literature,

so much that almost no papers reporting the analysis of medical data are accepted

for publication without a P-value.

The misunderstanding and the confusion are further increased by the joining of

the P-value with Hypothesis Testing. The latter method was introduced long ago

by (Neyman and Pearson, 1933) as an answer to the inappropriateness of Fisher’s

P-value to the development of an inferential method without Bayes’ theorem. In

their hypothesis test, one poses two hypotheses about nature: a null hypothesis Ho

and an alternative hypothesis Ha. The outcome of the test is a behavior, not an

inference, namely to reject one hypothesis and accept the other exclusively on the

basis of the data. This puts the researcher at risk for two types of errors; that is -

in the case of comparing two therapies, for example - behaving as though the two

therapies differ when they are actually the same (false positive result, a type I error
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or an α error), or concluding that they are the same when in fact, they differ (false

negative result, a type II error or a β error).

This approach is appealing to the mathematician because if we assume an un-

derlying truth, then the chances of these errors can be calculated deductively, and

therefore, “objectively”. Nevertheless, as a model for scientific practice, it is prob-

lematic, to say the least. These authors recognized that their method represented

a drastic change in the way scientific conclusions must be drawn. In their words:

“ ... no test based upon a theory of probability can itself provide any
valuable evidence of the truth or falsehood of a hypothesis. But we
may look at the purpose of a test from another viewpoint. Without
hoping to know whether each separate hypothesis is true or false, we
may search for rules to govern our behavior with regard to them, in
following which we insure that, in the long-run of experience, we shall
not often be wrong.” (Neyman and Pearson, 1933)

As pointed out by Goodman (1999), this passage clearly states the price that must

be paid for “objectivity”: We must abandon our ability to measure evidence, or

judge truth, in an individual experiment.

“Hypothesis tests are equivalent to a system of justice that is not con-
cerned with which individual defendant is found guilty or innocent (that
is, whether each separate hypothesis is true or false) but tries instead to
control the overall number of incorrect verdicts (that is, in the long-run
of experience, we shall not often be wrong).” (Goodman, 1999)

In practice, the Neyman and Pearson method means that the researcher’s duty

is to report only whether or not the results are statistically significant and act in

accordance with that verdict. This is often held up as a paradigm of the scientific

method.

Notwithstanding the explicit words of Neyman and Pearson cited above, it ap-

peared to many that if the P-value were used in the hypothesis testing procedure

then the drawbacks of the method would be eliminated. Thus, in the medical area

(and not only there), the researchers proceed as follows: An experiment is designed
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to control the probabilities of two types of “error”, namely type I error (α, usually

equal to 0.05) and type II error (β, usually less than 0.20). When the data are

obtained, a P-value is calculated and used as a quantitative measure of evidence

against Ho. If P< α, then the result is declared “significant” and Ho is regarded as

unlikely to be true.

The reason why this procedure appears appealing is due to the superficial simi-

larity of the P-value and the false positive error rate α. Both are tail-area probabil-

ities under the null hypothesis Ho. Because of this similarity, it is easy to identify

P as a special case of α, specific to the data at hand. Additionally, using Fisher’s

contention that P-value measures how severely Ho is contradicted by the data -

that is, it could serve as a measure against Ho - we have an index (P ) that does

double duty: It seems to be a Neyman-Pearson data specific, false positive error

rate and a Fisher measure of evidence against Ho (Royall, 1997; Goodman, 1993;

Fisher, 1973).

Thus, this approach is based on the fallacy that an event can be viewed simul-

taneously both from a long-run and a short-run perspective.

“In the ‘long-run’ perspective, which is error-based and deductive, we
group the observed result together with other outcomes that might have
occurred in hypothetical repetitions of the experiments. In the ‘short-
run’ perspective, which is evidential and inductive, we try to evaluate
the meaning of the observed result from a single experiment. If we could
combine these perspectives, it would mean that inductive ends (drawing
scientific conclusions) could be served with purely deductive methods
(objective probability calculations).” (Goodman, 1999)

But these views cannot be reconciled because a given result (the short-run)

can legitimately be included in many different long-runs. Equivalently, a result

cannot be at the same time be an anonymous member of a group of results (the

long-run view) and an identifiable (i.e., unique) member (the short-run view). A

real-world example helps clarifying this. Suppose we examine the meaning of the

statement that “a result with P=0.05 is in a group of outcomes that has 5% chance
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of occurring under Ho”. Although that is literally the case, we know that the result

is not just in that group (that is, anonymous); we know where it is (that is, it is

identifiable). As an analogy, we can consider the following statement,

“... a student who ranks 10 out of 100 is in the top 10% of the class ...
Although literally true, [this statement is] deceptive because [it suggests]
that a student could be anywhere in a top fraction when we know he or
she is at the lowest level of that group.” (Goodman, 1999)

In contrast to this state of affairs, the Bayesian approach adopted in this Thesis

is completely straight-forward. The philosophical differences have been pointed out

in chapter one, and the contributions of the ‘founding fathers’ have been reviewed

in chapter two. We recognize from the start that scientific reasoning is inductive,

which means that we must make appropriate assessments of the uncertainty nec-

essarily produced by the measuring apparatus. It follows that measurements and

inferences have to be described as probability distributions.

Consider a measuring apparatus which is designed to let the experimenter in-

vestigate some unknown features X = {X1, X2, ...} of observed samples. Regret-

tably, equipment seldom measures X directly or in full. Instead, it produces data

D = {d1, d2, ...} which may depend on X in a complicated way. Also, repeated ob-

servations even on the same sample usually produce different data because of noise.

Supposing there exists a functional form (or a model of it) D = R(x), which we

can call the “response function” of the equipment, these data will vary according

to some probability distribution

P (D|X, I) = likelihood function,

where, as usual, the vertical bar denotes conditioning and I stands for “background

information”. Usually, we suppose that noise (denoted by σ) is additive so that we

can write

D = R(x)± σ,
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and that the additive noise has a Gaussian pdf, in which case we have the explicit

formula (for the likelihood function)

P (D|X, I) =
1

Z
exp

{
−χ2

2

}
,

where χ2 is the usual misfit between the mock data and the actual data, namely

χ2(X) =
∑ [R(Xk)− dk]

2

σ2
k

.

Once we have the likelihood function, we know what the data mean, and so we can

realistically aim to infer the values of the unknown quantities X. Such inference

will be uncertain; hence, we can at best aim for the posterior pdf

P (X|D, I) = inference,

This involves inverting the assigned likelihood, but the inversion requires us to

assign a prior pdf

P (X|I) = prior,

which represents our guess, or preconception, about the range of the unknown

values that might be present before we see the data. As seen in chapter two and

three, it is the Bayes’ theorem which effects the inversion.

We have applied in chapter four this methodology to the analysis of CAIX stain-

ing and pO2 measurements on the data collected by the PMH group, and analyzed

by them with the methods of conventional (frequentist) statistics. Throughout the

analysis, the simplifying assumption of tumor homogeneity was made, and as a

result we were able to estimate the minimum number of biopsies capable of giving

an estimate of the amount of hypoxia in the entire tumor - something not easily

done by conventional methods.

But even more interesting are the results reported in Section 4.4 concerning the

question of whether or not a positive correlation exists between the CAIX assess-
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ment of hypoxia and the Eppendorf probe assessment. Finding such a correlation

is an important goal for oncological research, in that it would replace the Eppen-

dorf polarographic electrode which is far more cumbersome and subject to large

fluctuations in the measurement of oxygen tension. Calculations of this potential

correlation is published so far were done using only conventional techniques, and

little, or at most moderate, correlation was found. We have estimated this correla-

tion in Section 4.4 using the entire data set, and found zero correlation. We then

repeated the calculation with a manipulated set of data, which was the same set

used by our collaborators at PMH. They used conventional statistics and reported

their results in the following form: “Pearson = 0.30, Spearman = 0.35, P = 0.091”

(Iakovlev et al., 2007). With our Bayesian approach we found a much higher value,

namely 0.67.

In our opinion, this result should be taken with great caution because of the

manipulation of the data. One of the merits of Bayesian methods is that it gives

the most honest inference from a given data set, provided the full data set and only

monotonic transformations are used. This is not always the case in the frequentist

approach; for example, in (Iakovlev et al., 2007), they used the transformation

caix = arcsin
√

CAIX,

where CAIX is the original proportion and caix is the transformed value in order

to “stabilize the variance of the residuals”.

Finally, in chapter five, we report on the Bayesian analysis of an unrelated set

of data, namely data from phase II clinical trials of relapsed ovarian cancers. Here

as well the underlying assumptions are such that the Bayesian calculations are

completely straight-forward, and the results are currently being incorporated in a

paper jointly with our medical collaborators (Welsch, Wang, Gunawan, Mackay,

Nathwani, Yau, Tsang, MacAlpine, Sivaloganathan, and Oza, Welsch et al.).
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Appendix A

A brief overview of Monte Carlo

integration

Monte Carlo simulation is a vast area of research; here, we provide a brief overview

for crude Monte Carlo integration technique. For simplicity, let us consider a one-

dimensional definite integral,

θ =

∫
D

f(x) dx. (A.1)

Suppose we can find a random variable y with support in D such that

f(y) = g(y) p(y)︸︷︷︸
pdf of y

. (A.2)

Since ∫
D

g(y) p(y) dy =< g >, (A.3)

where < g > denotes the expectation of g, then assuming the random variable is

uniformly distributed (i.e. p(y) = const = 1 without lost of generality), allows us

to write ∫
D

f(x) dx =

∫
D

g(y) p(y) dy = θ. (A.4)
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k f(ξk)
1 0.4651
2 0.3616
3 0.4169
4 0.4684
5 0.2925

For illustration purposes, let us consider the following example,

θ =

∫ 1

0

ex − 1

e− 1
dx,

where θ = 0.418 (Hammersley and Handscomb, 1964). For five iterations, the crude

Monte Carlo results are : Hence the expectation of f(ξ) is

θ̂ =
1

5

5∑
k=1

f(ξk), (A.5)

therefore, θ ≈ θ̂. This is an example of crude Monte Carlo method; there are

various other Monte Carlo methods for definite integration, namely, hit-and-miss

Monte Carlo, or Monte Carlo with importance sampling, leading to the development

of more sophisticated techniques such as Markov Chain Monte Carlo (MCMC). We

should keep in mind that unlike deterministic numerical integrations, there is no rule

of convergence in Monte Carlo methods and they may have long ‘burn-in’ time for a

high dimensional integration; consequently, we must be cautious in interpreting the

results. There are numerous review resources for Monte Carlo methods; however,

(Hammersley and Handscomb, 1964) is a good resource for the fundamentals of

Monte Carlo methods and (Gentle, 2003) is detailed resource about various types

of random number generators.
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Appendix B

Student-t distribution

When we use a Gaussian distribution with an unknown standard deviation s for

our prior probability of the noise, we obtain the following form for our posterior

pdf (after integration and uniform prior assignment)

P (Y |D, I) ∝ 1(∑N
i=1(di − Y )2

)N
2

, (B.1)

where Y is our parameter of interest and N is the total data points. It is the well-

known Student-t distribution after some simple simplifications in the denominator,

N∑
i=1

(di − Y )2 =
N∑

i=1

(d2
i − 2diY + Y 2),

=
N∑

i=1

d2
i − 2Y

N∑
i=1

di + NY 2,

= N(Y 2 − 2Y d̄) +
N∑

i=1

d2
i ,
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where d̄ = 1
N

∑N
i=1 di, the sample mean. We proceed by completing the square in

the first factor on the right-hand side, and adding and subtracting Nd̄2,

N∑
i=1

(di − Y )2 = N(Y − d̄)2 −Nd̄2 +
N∑

i=1

d2
i ,

= N(Y − d̄)2 + Nd̄2 − 2Nd̄2 +
N∑

i=1

d2
i ,

= N(Y − d̄)2 + Nd̄2 − 2Nd̄

∑N
i=1 di

N
+

N∑
i=1

d2
i ,

= N(Y − d̄)2 + Nd̄2 − 2d̄
N∑

i=1

di +
N∑

i=1

d2
i .

We complete the square again on the last two factors on the right-hand side,

N∑
i=1

(di − Y )2 = N(Y − d̄)2 + Nd̄2 +
N∑

i=1

(di − d̄)2 −Nd̄2,

= N(Y − d̄)2 +
N∑

i=1

(di − d̄)2,

where often we write V =
∑N

i=1(di−d̄)2. Finally, the posterior pdf has the following

form

P (Y |D, I) ∝ 1(
N(Y − d̄)2 + V

)N
2

, (B.2)

which is known as a Student-t distribution with N − 1 degrees of freedom. When

N = 2, this probability density function is also known as the Cauchy distribution.

It has a maximum is at Y = d̄, a full width at half maximum (FWHM) proportional

to
√

V , and a very long tail.
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Appendix C

Bayesian non-parametric analysis

In chapter four and five of this Thesis, we saw some applications of Bayesian data

analysis in cancer research. The analyses presented in those chapters fall under

the category parameter estimation because we estimate the parameter based on

an assumed functional model (CAIX-positive cells are constant within a tumor, in

chapter 4). In cases where we do not know the exact functional model but we may

have some reasons to restrict the functional model into a class of functions, we may

use a model selection procedure, i.e, when we want to determine the number of

exponential models present in the data as in (Sivia, 2006; Bretthorst et al., 2005).

A much harder case is where we cannot characterize the functional model at all;

we do not know about the physics of the problem and have no confidence to assume

the distribution has a simple form (Sivia, 2006). This type of problems falls under

the class of “non-parametric” or “free-form” estimation. In many experiments, we

may need to compare samples of data from a probability whose density function

(pdf) is unknown. For example, estimating the CAIX-positive cells’ distribution in

a tumor from a sample. As we mentioned earlier, we do not yet know about the

physics of CAIX protein to be able to predict the theoretical form of the distribution

and we have no reason to assume the distribution has some simple form, such as

Gaussian.

Although this type of problem is also encountered in the classical method (Ar-
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mitage et al., 2002; Wadsworth, 1997), we will proceed with the Bayesian approach

as first proposed by Gull and Fielden (1984). In the Bayesian framework, we make

only minimal assumptions about the nature of the underlying pdf (Gull and Fielden,

1984). For illustration purposes, we follow the procedures for estimating the posi-

tion of a quantile (i.e., the median of a pdf not the sample) is outlined as follows

(Gull and Fielden, 1984).

Suppose that we have N samples, {xi}, taken from a certain pdf P (x), where

x ∈ [a, b]. Let us then denote by Mx the proposition that the median lies at x:

Mx :

∫ x

a

P (s)ds =
1

2
, (C.1)

because median position at x means that the area under the probability density

function to the left of x and to the right of x is equal. Then, using the Bayes’

theorem, we obtain the posterior probability density function (pdf) for Mx,

P (Mx|{xi}, I) ∝ P (Mx|I)× P ({xi}|Mx, I). (C.2)

The proposition Mx (for different x) are exclusive and exhaustive, since the median

certainly lies in [a, b]. We therefore take the prior P (Mx|I) to be uniform for all

x in this interval. Unlike in the earlier cases, the likelihood P ({xi}|Mx, I) is not

uniquely determined by the position of the median.The proposition Mx however

constitutes testable information about P (x); i.e, given any P (x), we decide imme-

diately whether it is consistent with information Mx. Furthermore, if the samples

are exchangeable, then Mx is testable information about the joint pdf P ({xi});

thus, we shall seek a pdf that incorporates information available, yet is maximally

non-committal about other parameters of the distribution. We shall use Maximum

Entropy (MaxEnt) principle under the constraint Mx; we maximize

S = −
∫

dNx P ({xi}) log

[
P ({xi})
m({xi})

]
, (C.3)
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subject to normalization condition,

∫
dNx P ({xi}) = 1, (C.4)

and the position of the median,

∫ x

a

dNs P ({si}) =
1

2
, (C.5)

because the integral is N -dimensional, rather than writing many integral notations,

we use the notation commonly used in the physics literature. For one sample, x′,

and a uniform prior in [a, b], the solution has a simple form:

P (x′|Mx, I) =

 1
2(x−a)

, for x′ < x

1
2(b−x)

, for x′ > x.
(C.6)

As an example consider x′ = 0.75, a = 0, and b = 1, the likelihood is

P (0.75|Mx, I) =

 1
2(x−0)

, for 0.75 < x

1
2(1−x)

, for 0.75 > x.
(C.7)

Using Bayes’ theorem, P (Mx|0.75, I) ∝ P (0.75|Mx, I); hence, for the posterior pdf,

we can view Eq. C.7 as a function of x. Fig C.1 displays the result for one-sample

posterior pdf for the median position Mx.

For multiple, exchangeable samples, the MaxEnt distribution is necessarily in-

dependent because the constraints all take the form of separate equalities on each

of the marginal distributions. We find the likelihood to have the following form:

P ({xi}|Mx, I) =

[
1

2(x− a)

]N< [
1

2(b− x)

]N>

, (C.8)

where N < and N > are the number of data points xi < x amd xi > x respectively.

The posterior pdf is proportional to C.8 but viewed as a function of x. In this

case, we wish to estimate, from a certain sample of size N , the position of the
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Figure C.1: The posterior pdfs for the position of median for one-sample set. The
pdf is normalized vertically so that the maximum height is unity.
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Figure C.2: The posterior pdfs for the position of median for 39 samples uniformly
distributed between -1 and 1. The pdf is normalized vertically so that the maximum
height is unity.

median making only minimal assumptions about the form of the distribution. Note

that we are not claiming that the MaxEnt distribution for some x is in fact the

underlying pdf. To illustrate this in practice, let us follow the example provided in

(Gull and Fielden, 1984): determining the position of the median of the pdf based

on 39 samples uniformly spaced between -1 and 1, with a prior range of [−1.5, 1.5].

Fig. C.2 illustrates the posterior pdf of Mx, the position of the median.

An interesting feature about this problem is that the effect of the prior range is

still apparent. Fig. C.3 shows the posterior pdf for the same sample with a prior

range [−1.5, 1.5], [−3, 3], and [−5, 5] respectively. As it is evident, the distribution

gets wider as the prior range is increased, but not proportionally. This is reasonable

when we consider how little has been assumed about the distribution (Gull and

Fielden, 1984). In this example, we specifically designed the sample to be uniformly

spaced between [−1, 1]; thus, the resulting pdf is symmetric and unimodal, aside
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Figure C.3: The posterior pdfs for the position of median for 39 samples uniformly
distributed between -1 and 1 with different prior ranges.
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Figure C.4: The posterior pdfs for the position of median for 600 samples uniformly
distributed between -1 and 1.

from the discontinuities at the sample points. The best estimate of the position

of the median is the value which yields the maximum and the uncertainty of the

estimate is simply the full width at half maximum of pdf.

As we notice from the figures, the posterior pdf has an unusual characteristic,

namely discontinuities at the sample points. If we have many more sample points

(i.e, 600 points uniformly spaced within [−1, 1]), then the discontinuities will be

unnoticeable (Fig. C.4). Although many have attempted in considerable length to

explain this phenomenon, it is not necessary; as mentioned in (Gull and Fielden,

1984), “it is the job of a pdf to tell us how much probability falls into any interval

x, hence it must certainly be integrable”. There is no requirement that pdf has to

be a continuous one.

In real experimental data however, there is no guarantee for the symmetric and

unimodal pdf. As an example, let us consider the CAIX data from the first and
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second set, respectively (Fig. C.5). The best estimate of the median in patient

2144’s data can be inferred quite reliably (Fig. C.5, left). The same conclusion

cannot be said for patient 2149’s data due to their multimodality.

As a final note, in the CA-125 project, the PMH group is interested in de-

termining the median survival times for two different classes of ‘SD’ classified

patients: CA-125 responders and CA-125 non-responders in order to investigate

the importance of CA-125 serum marker. As it is mentioned in (Welsch, Wang,

Gunawan, Mackay, Nathwani, Yau, Tsang, MacAlpine, Sivaloganathan, and Oza,

Welsch et al.), the molecularly-targeted agents (MTAs) may have cytostatic effects

rather than cytotoxic ones; consequently, the administered MTAs may be effective

in SD classified patients and CA-125 serum marker is the diagnostic tool to show

the effectiveness of the MTAs in these clinical trials. Fig. C.6 shows the posterior

pdf for the median survival times for CA-125 responders (black line) and CA-125

non-responders (red line). Even though we see that the posterior pdf of CA-125

responders is located to the right of the posterior pdf of CA-125 non-responders,

the width of the pdf of CA-125 responders and the multimodality of the pdf of

CA-125 non-responders warn us that we should not jump to conclusions based on

these data.
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Figure C.5: The posterior pdfs for the position of median. Left: patient 2144 (from
the first data set). Right: patient 2149 (from the second data set)
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Figure C.6: The posterior pdfs for median survival times in SD classified patients.
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